An Atmospheric Guidance Algorithm Testbed for the Mars Surveyor Program 2001 Orbiter and Lander
NASA Technical Reports Server (NTRS)
Striepe, Scott A.; Queen, Eric M.; Powell, Richard W.; Braun, Robert D.; Cheatwood, F. McNeil; Aguirre, John T.; Sachi, Laura A.; Lyons, Daniel T.
1998-01-01
An Atmospheric Flight Team was formed by the Mars Surveyor Program '01 mission office to develop aerocapture and precision landing testbed simulations and candidate guidance algorithms. Three- and six-degree-of-freedom Mars atmospheric flight simulations have been developed for testing, evaluation, and analysis of candidate guidance algorithms for the Mars Surveyor Program 2001 Orbiter and Lander. These simulations are built around the Program to Optimize Simulated Trajectories. Subroutines were supplied by Atmospheric Flight Team members for modeling the Mars atmosphere, spacecraft control system, aeroshell aerodynamic characteristics, and other Mars 2001 mission specific models. This paper describes these models and their perturbations applied during Monte Carlo analyses to develop, test, and characterize candidate guidance algorithms.
Formation Flying for Distributed InSAR
NASA Technical Reports Server (NTRS)
Scharf, Daniel P.; Murray, Emmanuell A.; Ploen, Scott R.; Gromov, Konstantin G.; Chen, Curtis W.
2006-01-01
We consider two spacecraft flying in formation to create interferometric synthetic aperture radar (InSAR). Several candidate orbits for such in InSar formation have been previously determined based on radar performance and Keplerian orbital dynamics. However, with out active control, disturbance-induced drift can degrade radar performance and (in the worst case) cause a collision. This study evaluates the feasibility of operating the InSAR spacecraft as a formation, that is, with inner-spacecraft sensing and control. We describe the candidate InSAR orbits, design formation guidance and control architectures and algorithms, and report the (Delta)(nu) and control acceleration requirements for the candidate orbits for several tracking performance levels. As part of determining formation requirements, a formation guidance algorithm called Command Virtual Structure is introduced that can reduce the (Delta)(nu) requirements compared to standard Leader/Follower formation approaches.
Trajectory Guidance for Mars Robotic Precursors: Aerocapture, Entry, Descent, and Landing
NASA Technical Reports Server (NTRS)
Sostaric, Ronald R.; Zumwalt, Carlie; Garcia-Llama, Eduardo; Powell, Richard; Shidner, Jeremy
2011-01-01
Future crewed missions to Mars require improvements in landed mass capability beyond that which is possible using state-of-the-art Mars Entry, Descent, and Landing (EDL) systems. Current systems are capable of an estimated maximum landed mass of 1-1.5 metric tons (MT), while human Mars studies require 20-40 MT. A set of technologies were investigated by the EDL Systems Analysis (SA) project to assess the performance of candidate EDL architectures. A single architecture was selected for the design of a robotic precursor mission, entitled Exploration Feed Forward (EFF), whose objective is to demonstrate these technologies. In particular, inflatable aerodynamic decelerators (IADs) and supersonic retro-propulsion (SRP) have been shown to have the greatest mass benefit and extensibility to future exploration missions. In order to evaluate these technologies and develop the mission, candidate guidance algorithms have been coded into the simulation for the purposes of studying system performance. These guidance algorithms include aerocapture, entry, and powered descent. The performance of the algorithms for each of these phases in the presence of dispersions has been assessed using a Monte Carlo technique.
Predictive Lateral Logic for Numerical Entry Guidance Algorithms
NASA Technical Reports Server (NTRS)
Smith, Kelly M.
2016-01-01
Recent entry guidance algorithm development123 has tended to focus on numerical integration of trajectories onboard in order to evaluate candidate bank profiles. Such methods enjoy benefits such as flexibility to varying mission profiles and improved robustness to large dispersions. A common element across many of these modern entry guidance algorithms is a reliance upon the concept of Apollo heritage lateral error (or azimuth error) deadbands in which the number of bank reversals to be performed is non-deterministic. This paper presents a closed-loop bank reversal method that operates with a fixed number of bank reversals defined prior to flight. However, this number of bank reversals can be modified at any point, including in flight, based on contingencies such as fuel leaks where propellant usage must be minimized.
Vertical Motion Simulator Experiment on Stall Recovery Guidance
NASA Technical Reports Server (NTRS)
Schuet, Stefan; Lombaerts, Thomas; Stepanyan, Vahram; Kaneshige, John; Shish, Kimberlee; Robinson, Peter; Hardy, Gordon H.
2017-01-01
A stall recovery guidance system was designed to help pilots improve their stall recovery performance when the current aircraft state may be unrecognized under various complicating operational factors. Candidate guidance algorithms were connected to the split-cue pitch and roll flight directors that are standard on large transport commercial aircraft. A new thrust guidance algorithm and cue was also developed to help pilots prevent the combination of excessive thrust and nose-up stabilizer trim. The overall system was designed to reinforce the current FAA recommended stall recovery procedure. A general transport aircraft model, similar to a Boeing 757, with an extended aerodynamic database for improved stall dynamics simulation fidelity was integrated into the Vertical Motion Simulator at NASA Ames Research Center. A detailed study of the guidance system was then conducted across four stall scenarios with 30 commercial and 10 research test pilots, and the results are reported.
Software Technology Readiness Assessment. Defense Acquisition Guidance with Space Examples
2010-04-01
are never Software CTE candidates 19 Algorithm Example: Filters • Definitions – Filters in Signal Processing • A filter is a mathematical algorithm...Segment Segment • SOA as a CTE? – Google produced 40 million (!) hits in 0.2 sec for “SOA”. Even if we discount hits on the Society of Actuaries and
A guidance and control assessment of three vertical landing options for RLV
NASA Technical Reports Server (NTRS)
Gallaher, M.; Coughlin, D.; Krupp, D
1995-01-01
The National Aeronautics and Space Administration is considering a vertical lander as a candidate concept for a single-stage-to-orbit reusable launch vehicle (RLV). Three strategies for guiding and controlling the inversion of a reentering RLV from a nose-first attitude to a vertical landing attitude are suggested. Each option is simulated from a common reentry state to touchdown, using a common guidance algorithm and different controllers. Results demonstrate the characteristics that typify and distinguish each concept and help to identify peculiar problems, level of guidance and control sophistication required, feasibility concerns, and areas in which stringent subsystem requirements will be imposed by guidance and control.
Guided filter and convolutional network based tracking for infrared dim moving target
NASA Astrophysics Data System (ADS)
Qian, Kun; Zhou, Huixin; Qin, Hanlin; Rong, Shenghui; Zhao, Dong; Du, Juan
2017-09-01
The dim moving target usually submerges in strong noise, and its motion observability is debased by numerous false alarms for low signal-to-noise ratio. A tracking algorithm that integrates the Guided Image Filter (GIF) and the Convolutional neural network (CNN) into the particle filter framework is presented to cope with the uncertainty of dim targets. First, the initial target template is treated as a guidance to filter incoming templates depending on similarities between the guidance and candidate templates. The GIF algorithm utilizes the structure in the guidance and performs as an edge-preserving smoothing operator. Therefore, the guidance helps to preserve the detail of valuable templates and makes inaccurate ones blurry, alleviating the tracking deviation effectively. Besides, the two-layer CNN method is adopted to obtain a powerful appearance representation. Subsequently, a Bayesian classifier is trained with these discriminative yet strong features. Moreover, an adaptive learning factor is introduced to prevent the update of classifier's parameters when a target undergoes sever background. At last, classifier responses of particles are utilized to generate particle importance weights and a re-sample procedure preserves samples according to the weight. In the predication stage, a 2-order transition model considers the target velocity to estimate current position. Experimental results demonstrate that the presented algorithm outperforms several relative algorithms in the accuracy.
MADM-based smart parking guidance algorithm
Li, Bo; Pei, Yijian; Wu, Hao; Huang, Dijiang
2017-01-01
In smart parking environments, how to choose suitable parking facilities with various attributes to satisfy certain criteria is an important decision issue. Based on the multiple attributes decision making (MADM) theory, this study proposed a smart parking guidance algorithm by considering three representative decision factors (i.e., walk duration, parking fee, and the number of vacant parking spaces) and various preferences of drivers. In this paper, the expected number of vacant parking spaces is regarded as an important attribute to reflect the difficulty degree of finding available parking spaces, and a queueing theory-based theoretical method was proposed to estimate this expected number for candidate parking facilities with different capacities, arrival rates, and service rates. The effectiveness of the MADM-based parking guidance algorithm was investigated and compared with a blind search-based approach in comprehensive scenarios with various distributions of parking facilities, traffic intensities, and user preferences. Experimental results show that the proposed MADM-based algorithm is effective to choose suitable parking resources to satisfy users’ preferences. Furthermore, it has also been observed that this newly proposed Markov Chain-based availability attribute is more effective to represent the availability of parking spaces than the arrival rate-based availability attribute proposed in existing research. PMID:29236698
Pattern-Recognition System for Approaching a Known Target
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance; Cheng, Yang
2008-01-01
A closed-loop pattern-recognition system is designed to provide guidance for maneuvering a small exploratory robotic vehicle (rover) on Mars to return to a landed spacecraft to deliver soil and rock samples that the spacecraft would subsequently bring back to Earth. The system could be adapted to terrestrial use in guiding mobile robots to approach known structures that humans could not approach safely, for such purposes as reconnaissance in military or law-enforcement applications, terrestrial scientific exploration, and removal of explosive or other hazardous items. The system has been demonstrated in experiments in which the Field Integrated Design and Operations (FIDO) rover (a prototype Mars rover equipped with a video camera for guidance) is made to return to a mockup of Mars-lander spacecraft. The FIDO rover camera autonomously acquires an image of the lander from a distance of 125 m in an outdoor environment. Then under guidance by an algorithm that performs fusion of multiple line and texture features in digitized images acquired by the camera, the rover traverses the intervening terrain, using features derived from images of the lander truss structure. Then by use of precise pattern matching for determining the position and orientation of the rover relative to the lander, the rover aligns itself with the bottom of ramps extending from the lander, in preparation for climbing the ramps to deliver samples to the lander. The most innovative aspect of the system is a set of pattern-recognition algorithms that govern a three-phase visual-guidance sequence for approaching the lander. During the first phase, a multifeature fusion algorithm integrates the outputs of a horizontal-line-detection algorithm and a wavelet-transform-based visual-area-of-interest algorithm for detecting the lander from a significant distance. The horizontal-line-detection algorithm is used to determine candidate lander locations based on detection of a horizontal deck that is part of the lander.
A Mathematical Basis for the Safety Analysis of Conflict Prevention Algorithms
NASA Technical Reports Server (NTRS)
Maddalon, Jeffrey M.; Butler, Ricky W.; Munoz, Cesar A.; Dowek, Gilles
2009-01-01
In air traffic management systems, a conflict prevention system examines the traffic and provides ranges of guidance maneuvers that avoid conflicts. This guidance takes the form of ranges of track angles, vertical speeds, or ground speeds. These ranges may be assembled into prevention bands: maneuvers that should not be taken. Unlike conflict resolution systems, which presume that the aircraft already has a conflict, conflict prevention systems show conflicts for all maneuvers. Without conflict prevention information, a pilot might perform a maneuver that causes a near-term conflict. Because near-term conflicts can lead to safety concerns, strong verification of correct operation is required. This paper presents a mathematical framework to analyze the correctness of algorithms that produce conflict prevention information. This paper examines multiple mathematical approaches: iterative, vector algebraic, and trigonometric. The correctness theories are structured first to analyze conflict prevention information for all aircraft. Next, these theories are augmented to consider aircraft which will create a conflict within a given lookahead time. Certain key functions for a candidate algorithm, which satisfy this mathematical basis are presented; however, the proof that a full algorithm using these functions completely satisfies the definition of safety is not provided.
Conceptual Design of a Hypervelocity Asteroid Intercept Vehicle (HAIV) Flight Validation Mission
NASA Technical Reports Server (NTRS)
Barbee, Brent W.; Wie, Bong; Steiner, Mark; Getzandanner, Kenneth
2013-01-01
In this paper we present a detailed overview of the MDL study results and subsequent advances in the design of GNC algorithms for accurate terminal guidance during hypervelocity NEO intercept. The MDL study produced a conceptual con guration of the two-body HAIV and its subsystems; a mission scenario and trajectory design for a notional flight validation mission to a selected candidate target NEO; GNC results regarding the ability of the HAIV to reliably intercept small (50 m) NEOs at hypervelocity (typically greater than 10 km/s); candidate launch vehicle selection; a notional operations concept and cost estimate for the flight validation mission; and a list of topics to address during the remainder of our NIAC Phase II study.
Launch flexibility using NLP guidance and remote wind sensing
NASA Technical Reports Server (NTRS)
Cramer, Evin J.; Bradt, Jerre E.; Hardtla, John W.
1990-01-01
This paper examines the use of lidar wind measurements in the implementation of a guidance strategy for a nonlinear programming (NLP) launch guidance algorithm. The NLP algorithm uses B-spline command function representation for flexibility in the design of the guidance steering commands. Using this algorithm, the guidance system solves a two-point boundary value problem at each guidance update. The specification of different boundary value problems at each guidance update provides flexibility that can be used in the design of the guidance strategy. The algorithm can use lidar wind measurements for on pad guidance retargeting and for load limiting guidance steering commands. Examples presented in the paper use simulated wind updates to correct wind induced final orbit errors and to adjust the guidance steering commands to limit the product of the dynamic pressure and angle-of-attack for launch vehicle load alleviation.
NASA Technical Reports Server (NTRS)
Clement, Warren F.; Mcruer, Duane T.; Magdeleno, Raymond E.
1987-01-01
Nap-Of-the-Earth (NOE) flight in a conventional helicopter is extremely taxing for two pilots under visual conditions. Developing a single pilot all-weather NOE capability will require a fully automatic NOE navigation and flight control capability for which innovative guidance and control concepts were examined. Constrained time-optimality provides a validated criterion for automatically controlled NOE maneuvers if the pilot is to have confidence in the automated maneuvering technique. A second focus was to organize the storage and real-time updating of NOE terrain profiles and obstacles in course-oriented coordinates indexed to the mission flight plan. A method is presented for using pre-flight geodetic parameter identification to establish guidance commands for planned flight profiles and alternates. A method is then suggested for interpolating this guidance command information with the aid of forward and side looking sensors within the resolution of the stored data base, enriching the data content with real-time display, guidance, and control purposes. A third focus defined a class of automatic anticipative guidance algorithms and necessary data preview requirements to follow the vertical, lateral, and longitudinal guidance commands dictated by the updated flight profiles and to address the effects of processing delays in digital guidance and control system candidates. The results of this three-fold research effort offer promising alternatives designed to gain pilot acceptance for automatic guidance and control of rotorcraft in NOE operations.
Joint Multi-Leaf Segmentation, Alignment, and Tracking for Fluorescence Plant Videos.
Yin, Xi; Liu, Xiaoming; Chen, Jin; Kramer, David M
2018-06-01
This paper proposes a novel framework for fluorescence plant video processing. The plant research community is interested in the leaf-level photosynthetic analysis within a plant. A prerequisite for such analysis is to segment all leaves, estimate their structures, and track them over time. We identify this as a joint multi-leaf segmentation, alignment, and tracking problem. First, leaf segmentation and alignment are applied on the last frame of a plant video to find a number of well-aligned leaf candidates. Second, leaf tracking is applied on the remaining frames with leaf candidate transformation from the previous frame. We form two optimization problems with shared terms in their objective functions for leaf alignment and tracking respectively. A quantitative evaluation framework is formulated to evaluate the performance of our algorithm with four metrics. Two models are learned to predict the alignment accuracy and detect tracking failure respectively in order to provide guidance for subsequent plant biology analysis. The limitation of our algorithm is also studied. Experimental results show the effectiveness, efficiency, and robustness of the proposed method.
NASA Technical Reports Server (NTRS)
Spratlin, Kenneth Milton
1987-01-01
An adaptive numeric predictor-corrector guidance is developed for atmospheric entry vehicles which utilize lift to achieve maximum footprint capability. Applicability of the guidance design to vehicles with a wide range of performance capabilities is desired so as to reduce the need for algorithm redesign with each new vehicle. Adaptability is desired to minimize mission-specific analysis and planning. The guidance algorithm motivation and design are presented. Performance is assessed for application of the algorithm to the NASA Entry Research Vehicle (ERV). The dispersions the guidance must be designed to handle are presented. The achievable operational footprint for expected worst-case dispersions is presented. The algorithm performs excellently for the expected dispersions and captures most of the achievable footprint.
Should living kidney donor candidates with impaired fasting glucose donate?
Vigneault, Christine Buchek; Asch, William Stuart; Dahl, Neera Kanhouwa; Bia, Margaret Johnson
2011-08-01
As the kidney transplant waiting list grows, the willingness of transplant centers to accept complex donors increases. Guidelines for the evaluation of living kidney donors exist but do not provide clear guidance when evaluating the complex donor. Although few transplant centers will approve donor candidates with impaired glucose tolerance and most, if not all, will deny candidates with diabetes, many will approve candidates with impaired fasting glucose (IFG). Furthermore, the demographic of living donors has changed in the past 10 years to increasingly include more nonwhite and Hispanic individuals who are at greater risk for future diabetes and hypertension. IFG may be more of a concern in potential donors whose nonwhite and Hispanic ethnicity already places them at greater risk. We review the definition of diabetes, diabetes prediction tools, and transplant guidelines for donor screening and exclusion as it pertains to impaired glucose metabolism, and additional ethnic and nonethnic factors to consider. We offer an algorithm to aid in evaluation of potential living donors with IFG in which ethnicity, age, and features of the metabolic syndrome play a role in the decision making.
Enhanced Automated Guidance System for Horizontal Auger Boring Based on Image Processing
Wu, Lingling; Wen, Guojun; Wang, Yudan; Huang, Lei; Zhou, Jiang
2018-01-01
Horizontal auger boring (HAB) is a widely used trenchless technology for the high-accuracy installation of gravity or pressure pipelines on line and grade. Differing from other pipeline installations, HAB requires a more precise and automated guidance system for use in a practical project. This paper proposes an economic and enhanced automated optical guidance system, based on optimization research of light-emitting diode (LED) light target and five automated image processing bore-path deviation algorithms. An LED target was optimized for many qualities, including light color, filter plate color, luminous intensity, and LED layout. The image preprocessing algorithm, feature extraction algorithm, angle measurement algorithm, deflection detection algorithm, and auto-focus algorithm, compiled in MATLAB, are used to automate image processing for deflection computing and judging. After multiple indoor experiments, this guidance system is applied in a project of hot water pipeline installation, with accuracy controlled within 2 mm in 48-m distance, providing accurate line and grade controls and verifying the feasibility and reliability of the guidance system. PMID:29462855
Enhanced Automated Guidance System for Horizontal Auger Boring Based on Image Processing.
Wu, Lingling; Wen, Guojun; Wang, Yudan; Huang, Lei; Zhou, Jiang
2018-02-15
Horizontal auger boring (HAB) is a widely used trenchless technology for the high-accuracy installation of gravity or pressure pipelines on line and grade. Differing from other pipeline installations, HAB requires a more precise and automated guidance system for use in a practical project. This paper proposes an economic and enhanced automated optical guidance system, based on optimization research of light-emitting diode (LED) light target and five automated image processing bore-path deviation algorithms. An LED light target was optimized for many qualities, including light color, filter plate color, luminous intensity, and LED layout. The image preprocessing algorithm, direction location algorithm, angle measurement algorithm, deflection detection algorithm, and auto-focus algorithm, compiled in MATLAB, are used to automate image processing for deflection computing and judging. After multiple indoor experiments, this guidance system is applied in a project of hot water pipeline installation, with accuracy controlled within 2 mm in 48-m distance, providing accurate line and grade controls and verifying the feasibility and reliability of the guidance system.
Benchmarking of state-of-the-art needle detection algorithms in 3D ultrasound data volumes
NASA Astrophysics Data System (ADS)
Pourtaherian, Arash; Zinger, Svitlana; de With, Peter H. N.; Korsten, Hendrikus H. M.; Mihajlovic, Nenad
2015-03-01
Ultrasound-guided needle interventions are widely practiced in medical diagnostics and therapy, i.e. for biopsy guidance, regional anesthesia or for brachytherapy. Needle guidance using 2D ultrasound can be very challenging due to the poor needle visibility and the limited field of view. Since 3D ultrasound transducers are becoming more widely used, needle guidance can be improved and simplified with appropriate computer-aided analyses. In this paper, we compare two state-of-the-art 3D needle detection techniques: a technique based on line filtering from literature and a system employing Gabor transformation. Both algorithms utilize supervised classification to pre-select candidate needle voxels in the volume and then fit a model of the needle on the selected voxels. The major differences between the two approaches are in extracting the feature vectors for classification and selecting the criterion for fitting. We evaluate the performance of the two techniques using manually-annotated ground truth in several ex-vivo situations of different complexities, containing three different needle types with various insertion angles. This extensive evaluation provides better understanding on the limitations and advantages of each technique under different acquisition conditions, which is leading to the development of improved techniques for more reliable and accurate localization. Benchmarking results that the Gabor features are better capable of distinguishing the needle voxels in all datasets. Moreover, it is shown that the complete processing chain of the Gabor-based method outperforms the line filtering in accuracy and stability of the detection results.
PredGuid+A: Orion Entry Guidance Modified for Aerocapture
NASA Technical Reports Server (NTRS)
Lafleur, Jarret
2013-01-01
PredGuid+A software was developed to enable a unique numerical predictor-corrector aerocapture guidance capability that builds on heritage Orion entry guidance algorithms. The software can be used for both planetary entry and aerocapture applications. Furthermore, PredGuid+A implements a new Delta-V minimization guidance option that can take the place of traditional targeting guidance and can result in substantial propellant savings. PredGuid+A allows the user to set a mode flag and input a target orbit's apoapsis and periapsis. Using bank angle control, the guidance will then guide the vehicle to the appropriate post-aerocapture orbit using one of two algorithms: Apoapsis Targeting or Delta-V Minimization (as chosen by the user). Recently, the PredGuid guidance algorithm was adapted for use in skip-entry scenarios for NASA's Orion multi-purpose crew vehicle (MPCV). To leverage flight heritage, most of Orion's entry guidance routines are adapted from the Apollo program.
Finite element solution of optimal control problems with inequality constraints
NASA Technical Reports Server (NTRS)
Bless, Robert R.; Hodges, Dewey H.
1990-01-01
A finite-element method based on a weak Hamiltonian form of the necessary conditions is summarized for optimal control problems. Very crude shape functions (so simple that element numerical quadrature is not necessary) can be used to develop an efficient procedure for obtaining candidate solutions (i.e., those which satisfy all the necessary conditions) even for highly nonlinear problems. An extension of the formulation allowing for discontinuities in the states and derivatives of the states is given. A theory that includes control inequality constraints is fully developed. An advanced launch vehicle (ALV) model is presented. The model involves staging and control constraints, thus demonstrating the full power of the weak formulation to date. Numerical results are presented along with total elapsed computer time required to obtain the results. The speed and accuracy in obtaining the results make this method a strong candidate for a real-time guidance algorithm.
Ascent guidance algorithm using lidar wind measurements
NASA Technical Reports Server (NTRS)
Cramer, Evin J.; Bradt, Jerre E.; Hardtla, John W.
1990-01-01
The formulation of a general nonlinear programming guidance algorithm that incorporates wind measurements in the computation of ascent guidance steering commands is discussed. A nonlinear programming (NLP) algorithm that is designed to solve a very general problem has the potential to address the diversity demanded by future launch systems. Using B-splines for the command functional form allows the NLP algorithm to adjust the shape of the command profile to achieve optimal performance. The algorithm flexibility is demonstrated by simulation of ascent with dynamic loading constraints through a set of random wind profiles with and without wind sensing capability.
Guidance and Control Algorithms for the Mars Entry, Descent and Landing Systems Analysis
NASA Technical Reports Server (NTRS)
Davis, Jody L.; CwyerCianciolo, Alicia M.; Powell, Richard W.; Shidner, Jeremy D.; Garcia-Llama, Eduardo
2010-01-01
The purpose of the Mars Entry, Descent and Landing Systems Analysis (EDL-SA) study was to identify feasible technologies that will enable human exploration of Mars, specifically to deliver large payloads to the Martian surface. This paper focuses on the methods used to guide and control two of the contending technologies, a mid- lift-to-drag (L/D) rigid aeroshell and a hypersonic inflatable aerodynamic decelerator (HIAD), through the entry portion of the trajectory. The Program to Optimize Simulated Trajectories II (POST2) is used to simulate and analyze the trajectories of the contending technologies and guidance and control algorithms. Three guidance algorithms are discussed in this paper: EDL theoretical guidance, Numerical Predictor-Corrector (NPC) guidance and Analytical Predictor-Corrector (APC) guidance. EDL-SA also considered two forms of control: bank angle control, similar to that used by Apollo and the Space Shuttle, and a center-of-gravity (CG) offset control. This paper presents the performance comparison of these guidance algorithms and summarizes the results as they impact the technology recommendations for future study.
Autonomous Guidance Strategy for Spacecraft Formations and Reconfiguration Maneuvers
NASA Astrophysics Data System (ADS)
Wahl, Theodore P.
A guidance strategy for autonomous spacecraft formation reconfiguration maneuvers is presented. The guidance strategy is presented as an algorithm that solves the linked assignment and delivery problems. The assignment problem is the task of assigning the member spacecraft of the formation to their new positions in the desired formation geometry. The guidance algorithm uses an auction process (also called an "auction algorithm''), presented in the dissertation, to solve the assignment problem. The auction uses the estimated maneuver and time of flight costs between the spacecraft and targets to create assignments which minimize a specific "expense'' function for the formation. The delivery problem is the task of delivering the spacecraft to their assigned positions, and it is addressed through one of two guidance schemes described in this work. The first is a delivery scheme based on artificial potential function (APF) guidance. APF guidance uses the relative distances between the spacecraft, targets, and any obstacles to design maneuvers based on gradients of potential fields. The second delivery scheme is based on model predictive control (MPC); this method uses a model of the system dynamics to plan a series of maneuvers designed to minimize a unique cost function. The guidance algorithm uses an analytic linearized approximation of the relative orbital dynamics, the Yamanaka-Ankersen state transition matrix, in the auction process and in both delivery methods. The proposed guidance strategy is successful, in simulations, in autonomously assigning the members of the formation to new positions and in delivering the spacecraft to these new positions safely using both delivery methods. This guidance algorithm can serve as the basis for future autonomous guidance strategies for spacecraft formation missions.
Simulating an underwater vehicle self-correcting guidance system with Simulink
NASA Astrophysics Data System (ADS)
Fan, Hui; Zhang, Yu-Wen; Li, Wen-Zhe
2008-09-01
Underwater vehicles have already adopted self-correcting directional guidance algorithms based on multi-beam self-guidance systems, not waiting for research to determine the most effective algorithms. The main challenges facing research on these guidance systems have been effective modeling of the guidance algorithm and a means to analyze the simulation results. A simulation structure based on Simulink that dealt with both issues was proposed. Initially, a mathematical model of relative motion between the vehicle and the target was developed, which was then encapsulated as a subsystem. Next, steps for constructing a model of the self-correcting guidance algorithm based on the Stateflow module were examined in detail. Finally, a 3-D model of the vehicle and target was created in VRML, and by processing mathematical results, the model was shown moving in a visual environment. This process gives more intuitive results for analyzing the simulation. The results showed that the simulation structure performs well. The simulation program heavily used modularization and encapsulation, so has broad applicability to simulations of other dynamic systems.
Jits, Roman Y; Walberg, Gerald D
2004-03-01
A guidance scheme designed for coping with significant dispersion in the vehicle's state and atmospheric conditions is presented. In order to expand the flyable aerocapture envelope, control of the vehicle is realized through bank angle and angle-of-attack modulation. Thus, blended control of the vehicle is achieved, where the lateral and vertical motions of the vehicle are decoupled. The overall implementation approach is described, together with the guidance algorithm macrologic and structure. Results of guidance algorithm tests in the presence of various single and multiple off-nominal conditions are presented and discussed. c2003 Published by Elsevier Ltd.
Stall Recovery Guidance Algorithms Based on Constrained Control Approaches
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje; Kaneshige, John; Acosta, Diana
2016-01-01
Aircraft loss-of-control, in particular approach to stall or fully developed stall, is a major factor contributing to aircraft safety risks, which emphasizes the need to develop algorithms that are capable of assisting the pilots to identify the problem and providing guidance to recover the aircraft. In this paper we present several stall recovery guidance algorithms, which are implemented in the background without interfering with flight control system and altering the pilot's actions. They are using input and state constrained control methods to generate guidance signals, which are provided to the pilot in the form of visual cues. It is the pilot's decision to follow these signals. The algorithms are validated in the pilot-in-the loop medium fidelity simulation experiment.
Description and performance analysis of a generalized optimal algorithm for aerobraking guidance
NASA Technical Reports Server (NTRS)
Evans, Steven W.; Dukeman, Greg A.
1993-01-01
A practical real-time guidance algorithm has been developed for aerobraking vehicles which nearly minimizes the maximum heating rate, the maximum structural loads, and the post-aeropass delta V requirement for orbit insertion. The algorithm is general and reusable in the sense that a minimum of assumptions are made, thus greatly reducing the number of parameters that must be determined prior to a given mission. A particularly interesting feature is that in-plane guidance performance is tuned by adjusting one mission-dependent, the bank margin; similarly, the out-of-plane guidance performance is tuned by adjusting a plane controller time constant. Other features of the algorithm are simplicity, efficiency and ease of use. The trimmed vehicle with bank angle modulation as the method of trajectory control. Performance of this guidance algorithm is examined by its use in an aerobraking testbed program. The performance inquiry extends to a wide range of entry speeds covering a number of potential mission applications. Favorable results have been obtained with a minimum of development effort, and directions for improvement of performance are indicated.
NASA Technical Reports Server (NTRS)
Herman, G. C.
1986-01-01
A lateral guidance algorithm which controls the location of the line of intersection between the actual and desired orbital planes (the hinge line) is developed for the aerobraking phase of a lift-modulated orbital transfer vehicle. The on-board targeting algorithm associated with this lateral guidance algorithm is simple and concise which is very desirable since computation time and space are limited on an on-board flight computer. A variational equation which describes the movement of the hinge line is derived. Simple relationships between the plane error, the desired hinge line position, the position out-of-plane error, and the velocity out-of-plane error are found. A computer simulation is developed to test the lateral guidance algorithm for a variety of operating conditions. The algorithm does reduce the total burn magnitude needed to achieve the desired orbit by allowing the plane correction and perigee-raising burn to be combined in a single maneuver. The algorithm performs well under vacuum perigee dispersions, pot-hole density disturbance, and thick atmospheres. The results for many different operating conditions are presented.
Closed-loop endo-atmospheric ascent guidance for reusable launch vehicle
NASA Astrophysics Data System (ADS)
Sun, Hongsheng
This dissertation focuses on the development of a closed-loop endo-atmospheric ascent guidance algorithm for the 2nd generation reusable launch vehicle. Special attention has been given to the issues that impact on viability, complexity and reliability in on-board implementation. The algorithm is called once every guidance update cycle to recalculate the optimal solution based on the current flight condition, taking into account atmospheric effects and path constraints. This is different from traditional ascent guidance algorithms which operate in a simple open-loop mode inside atmosphere, and later switch to a closed-loop vacuum ascent guidance scheme. The classical finite difference method is shown to be well suited for fast solution of the constrained optimal three-dimensional ascent problem. The initial guesses for the solutions are generated using an analytical vacuum optimal ascent guidance algorithm. Homotopy method is employed to gradually introduce the aerodynamic forces to generate the optimal solution from the optimal vacuum solution. The vehicle chosen for this study is the Lockheed Martin X-33 lifting-body reusable launch vehicle. To verify the algorithm presented in this dissertation, a series of open-loop and closed-loop tests are performed for three different missions. Wind effects are also studied in the closed-loop simulations. For comparison, the solutions for the same missions are also obtained by two independent optimization softwares. The results clearly establish the feasibility of closed-loop endo-atmospheric ascent guidance of rocket-powered launch vehicles. ATO cases are also tested to assess the adaptability of the algorithm to autonomously incorporate the abort modes.
Development of an analytical guidance algorithm for lunar descent
NASA Astrophysics Data System (ADS)
Chomel, Christina Tvrdik
In recent years, NASA has indicated a desire to return humans to the moon. With NASA planning manned missions within the next couple of decades, the concept development for these lunar vehicles has begun. The guidance, navigation, and control (GN&C) computer programs that will perform the function of safely landing a spacecraft on the moon are part of that development. The lunar descent guidance algorithm takes the horizontally oriented spacecraft from orbital speeds hundreds of kilometers from the desired landing point to the landing point at an almost vertical orientation and very low speed. Existing lunar descent GN&C algorithms date back to the Apollo era with little work available for implementation since then. Though these algorithms met the criteria of the 1960's, they are cumbersome today. At the basis of the lunar descent phase are two elements: the targeting, which generates a reference trajectory, and the real-time guidance, which forces the spacecraft to fly that trajectory. The Apollo algorithm utilizes a complex, iterative, numerical optimization scheme for developing the reference trajectory. The real-time guidance utilizes this reference trajectory in the form of a quartic rather than a more general format to force the real-time trajectory errors to converge to zero; however, there exist no guarantees under any conditions for this convergence. The proposed algorithm implements a purely analytical targeting algorithm used to generate two-dimensional trajectories "on-the-fly"' or to retarget the spacecraft to another landing site altogether. It is based on the analytical solutions to the equations for speed, downrange, and altitude as a function of flight path angle and assumes two constant thrust acceleration curves. The proposed real-time guidance algorithm has at its basis the three-dimensional non-linear equations of motion and a control law that is proven to converge under certain conditions through Lyapunov analysis to a reference trajectory formatted as a function of downrange, altitude, speed, and flight path angle. The two elements of the guidance algorithm are joined in Monte Carlo analysis to prove their robustness to initial state dispersions and mass and thrust errors. The robustness of the retargeting algorithm is also demonstrated.
Choice of crystal surface finishing for a dual-ended readout depth-of-interaction (DOI) detector.
Fan, Peng; Ma, Tianyu; Wei, Qingyang; Yao, Rutao; Liu, Yaqiang; Wang, Shi
2016-02-07
The objective of this study was to choose the crystal surface finishing for a dual-ended readout (DER) DOI detector. Through Monte Carlo simulations and experimental studies, we evaluated 4 crystal surface finishing options as combinations of crystal surface polishing (diffuse or specular) and reflector (diffuse or specular) options on a DER detector. We also tested one linear and one logarithm DOI calculation algorithm. The figures of merit used were DOI resolution, DOI positioning error, and energy resolution. Both the simulation and experimental results show that (1) choosing a diffuse type in either surface polishing or reflector would improve DOI resolution but degrade energy resolution; (2) crystal surface finishing with a diffuse polishing combined with a specular reflector appears a favorable candidate with a good balance of DOI and energy resolution; and (3) the linear and logarithm DOI calculation algorithms show overall comparable DOI error, and the linear algorithm was better for photon interactions near the ends of the crystal while the logarithm algorithm was better near the center. These results provide useful guidance in DER DOI detector design in choosing the crystal surface finishing and DOI calculation methods.
Test Results for Entry Guidance Methods for Space Vehicles
NASA Technical Reports Server (NTRS)
Hanson, John M.; Jones, Robert E.
2004-01-01
There are a number of approaches to advanced guidance and control that have the potential for achieving the goals of significantly increasing reusable launch vehicle (or any space vehicle that enters an atmosphere) safety and reliability, and reducing the cost. This paper examines some approaches to entry guidance. An effort called Integration and Testing of Advanced Guidance and Control Technologies has recently completed a rigorous testing phase where these algorithms faced high-fidelity vehicle models and were required to perform a variety of representative tests. The algorithm developers spent substantial effort improving the algorithm performance in the testing. This paper lists the test cases used to demonstrate that the desired results are achieved, shows an automated test scoring method that greatly reduces the evaluation effort required, and displays results of the tests. Results show a significant improvement over previous guidance approaches. The two best-scoring algorithm approaches show roughly equivalent results and are ready to be applied to future vehicle concepts.
Test Results for Entry Guidance Methods for Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Hanson, John M.; Jones, Robert E.
2003-01-01
There are a number of approaches to advanced guidance and control (AG&C) that have the potential for achieving the goals of significantly increasing reusable launch vehicle (RLV) safety and reliability, and reducing the cost. This paper examines some approaches to entry guidance. An effort called Integration and Testing of Advanced Guidance and Control Technologies (ITAGCT) has recently completed a rigorous testing phase where these algorithms faced high-fidelity vehicle models and were required to perform a variety of representative tests. The algorithm developers spent substantial effort improving the algorithm performance in the testing. This paper lists the test cases used to demonstrate that the desired results are achieved, shows an automated test scoring method that greatly reduces the evaluation effort required, and displays results of the tests. Results show a significant improvement over previous guidance approaches. The two best-scoring algorithm approaches show roughly equivalent results and are ready to be applied to future reusable vehicle concepts.
Dynamic traffic assignment : genetic algorithms approach
DOT National Transportation Integrated Search
1997-01-01
Real-time route guidance is a promising approach to alleviating congestion on the nations highways. A dynamic traffic assignment model is central to the development of guidance strategies. The artificial intelligence technique of genetic algorithm...
NASA Technical Reports Server (NTRS)
Bennett, A.
1973-01-01
A guidance algorithm that provides precise rendezvous in the deterministic case while requiring only relative state information is developed. A navigation scheme employing only onboard relative measurements is built around a Kalman filter set in measurement coordinates. The overall guidance and navigation procedure is evaluated in the face of measurement errors by a detailed numerical simulation. Results indicate that onboard guidance and navigation for the terminal phase of rendezvous is possible with reasonable limits on measurement errors.
Closed Loop Guidance Trade Study for Space Launch System Block-1B Vehicle
NASA Technical Reports Server (NTRS)
Von der Porten, Paul; Ahmad, Naeem; Hawkins, Matt
2018-01-01
NASA is currently building the Space Launch System (SLS) Block-1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. The design of the next evolution of SLS, Block-1B, is well underway. The Block-1B vehicle is more capable overall than Block-1; however, the relatively low thrust-to-weight ratio of the Exploration Upper Stage (EUS) presents a challenge to the Powered Explicit Guidance (PEG) algorithm used by Block-1. To handle the long burn durations (on the order of 1000 seconds) of EUS missions, two algorithms were examined. An alternative algorithm, OPGUID, was introduced, while modifications were made to PEG. A trade study was conducted to select the guidance algorithm for future SLS vehicles. The chosen algorithm needs to support a wide variety of mission operations: ascent burns to LEO, apogee raise burns, trans-lunar injection burns, hyperbolic Earth departure burns, and contingency disposal burns using the Reaction Control System (RCS). Additionally, the algorithm must be able to respond to a single engine failure scenario. Each algorithm was scored based on pre-selected criteria, including insertion accuracy, algorithmic complexity and robustness, extensibility for potential future missions, and flight heritage. Monte Carlo analysis was used to select the final algorithm. This paper covers the design criteria, approach, and results of this trade study, showing impacts and considerations when adapting launch vehicle guidance algorithms to a broader breadth of in-space operations.
Enhancements on the Convex Programming Based Powered Descent Guidance Algorithm for Mars Landing
NASA Technical Reports Server (NTRS)
Acikmese, Behcet; Blackmore, Lars; Scharf, Daniel P.; Wolf, Aron
2008-01-01
In this paper, we present enhancements on the powered descent guidance algorithm developed for Mars pinpoint landing. The guidance algorithm solves the powered descent minimum fuel trajectory optimization problem via a direct numerical method. Our main contribution is to formulate the trajectory optimization problem, which has nonconvex control constraints, as a finite dimensional convex optimization problem, specifically as a finite dimensional second order cone programming (SOCP) problem. SOCP is a subclass of convex programming, and there are efficient SOCP solvers with deterministic convergence properties. Hence, the resulting guidance algorithm can potentially be implemented onboard a spacecraft for real-time applications. Particularly, this paper discusses the algorithmic improvements obtained by: (i) Using an efficient approach to choose the optimal time-of-flight; (ii) Using a computationally inexpensive way to detect the feasibility/ infeasibility of the problem due to the thrust-to-weight constraint; (iii) Incorporating the rotation rate of the planet into the problem formulation; (iv) Developing additional constraints on the position and velocity to guarantee no-subsurface flight between the time samples of the temporal discretization; (v) Developing a fuel-limited targeting algorithm; (vi) Initial result on developing an onboard table lookup method to obtain almost fuel optimal solutions in real-time.
Gillis, Anne M
2014-10-01
The results from numerous clinical studies provide guidance for optimizing outcomes related to RV or biventricular pacing in the pacemaker and ICD populations. (1) Programming algorithms to minimize RV pacing is imperative in patients with dual-chamber pacemakers who have intrinsic AV conduction or intermittent AV conduction block. (2) Dual-chamber ICDs should be avoided in candidates without an indication for bradycardia pacing. (3) Alternate RV septal pacing sites may be considered at the time of pacemaker implantation. (4) Biventricular pacing may be beneficial in some patients with mild LV dysfunction. (5) LV lead placement at the site of latest LV activation is desirable. (6) Programming CRT systems to achieve biventricular/LV pacing >98.5% is important. (7) Protocols for AV and VV optimization in patients with CRT are not recommended after device implantation but may be considered for CRT nonresponders. (8) Novel algorithms to maximize the benefit of CRT are in evolution further.
Six-degree-of-freedom guidance and control-entry analysis of the HL-20
NASA Technical Reports Server (NTRS)
Powell, Richard W.
1993-01-01
The ability of the HL-20 lifting body to fly has been evaluated for an automated entry from atmospheric interface to landing. This evaluation was required to demonstrate that not only successful touchdown conditions would be possible for this low lift-to-drag-ratio vehicle, but also the vehicle would not exceed its design dynamic pressure limit of 400 psf during entry. This dynamic pressure constraint limit, coupled with limited available pitch-control authority at low supersonic speeds, restricts the available maneuvering capability for the HL-20 to acquire the runway. One result of this analysis was that this restrictive maneuvering capability does not allow the use of a model-following atmospheric entry-guidance algorithm, such as that used by the Space Shuttle, but instead requires a more adaptable guidance algorithm. Therefore, for this analysis, a predictor-corrector guidance algorithm was developed that would provide successful touchdown conditions while not violating the dynamic pressure constraint. A flight-control system was designed and incorporated, along with the predictor-corrector guidance algorithm, into a six-DOF simulation. which showed that the HL-20 remained controllable and could reach the landing site and execute a successful landing under all off-nominal conditions simulated.
An Augmentation of G-Guidance Algorithms
NASA Technical Reports Server (NTRS)
Carson, John M. III; Acikmese, Behcet
2011-01-01
The original G-Guidance algorithm provided an autonomous guidance and control policy for small-body proximity operations that took into account uncertainty and dynamics disturbances. However, there was a lack of robustness in regards to object proximity while in autonomous mode. The modified GGuidance algorithm was augmented with a second operational mode that allows switching into a safety hover mode. This will cause a spacecraft to hover in place until a mission-planning algorithm can compute a safe new trajectory. No state or control constraints are violated. When a new, feasible state trajectory is calculated, the spacecraft will return to standard mode and maneuver toward the target. The main goal of this augmentation is to protect the spacecraft in the event that a landing surface or obstacle is closer or further than anticipated. The algorithm can be used for the mitigation of any unexpected trajectory or state changes that occur during standard mode operations
NASA Technical Reports Server (NTRS)
Jaggers, R. F.
1974-01-01
An optimum powered explicit guidance algorithm capable of handling all space shuttle exoatospheric maneuvers is presented. The theoretical and practical basis for the currently baselined space shuttle powered flight guidance equations and logic is documented. Detailed flow diagrams for implementing the steering computations for all shuttle phases, including powered return to launch site (RTLS) abort, are also presented. Derivation of the powered RTLS algorithm is provided, as well as detailed flow diagrams for implementing the option. The flow diagrams and equations are compatible with the current powered flight documentation.
Four-dimensional guidance algorithms for aircraft in an air traffic control environment
NASA Technical Reports Server (NTRS)
Pecsvaradi, T.
1975-01-01
Theoretical development and computer implementation of three guidance algorithms are presented. From a small set of input parameters the algorithms generate the ground track, altitude profile, and speed profile required to implement an experimental 4-D guidance system. Given a sequence of waypoints that define a nominal flight path, the first algorithm generates a realistic, flyable ground track consisting of a sequence of straight line segments and circular arcs. Each circular turn is constrained by the minimum turning radius of the aircraft. The ground track and the specified waypoint altitudes are used as inputs to the second algorithm which generates the altitude profile. The altitude profile consists of piecewise constant flight path angle segments, each segment lying within specified upper and lower bounds. The third algorithm generates a feasible speed profile subject to constraints on the rate of change in speed, permissible speed ranges, and effects of wind. Flight path parameters are then combined into a chronological sequence to form the 4-D guidance vectors. These vectors can be used to drive the autopilot/autothrottle of the aircraft so that a 4-D flight path could be tracked completely automatically; or these vectors may be used to drive the flight director and other cockpit displays, thereby enabling the pilot to track a 4-D flight path manually.
Progress in Guidance and Control Research for Space Access and Hypersonic Vehicles (Preprint)
2006-09-01
affect range capabilities. In 2003 an integrated adaptive guidance control and trajectory re- shaping algorithm was flight demonstrated using in-flight...21] which tied for the best scores as well as a Linear Quadratic Regulator[22], Predictor - Corrector [23], and Shuttle-like entry[24] guidance method...Accurate knowledge of mass, center- of-gravity and moments of inertia improves the perfor- mance of not only IAG& C algorithms but also model based
A Comparison of Two Skip Entry Guidance Algorithms
NASA Technical Reports Server (NTRS)
Rea, Jeremy R.; Putnam, Zachary R.
2007-01-01
The Orion capsule vehicle will have a Lift-to-Drag ratio (L/D) of 0.3-0.35. For an Apollo-like direct entry into the Earth's atmosphere from a lunar return trajectory, this L/D will give the vehicle a maximum range of about 2500 nm and a maximum crossrange of 216 nm. In order to y longer ranges, the vehicle lift must be used to loft the trajectory such that the aerodynamic forces are decreased. A Skip-Trajectory results if the vehicle leaves the sensible atmosphere and a second entry occurs downrange of the atmospheric exit point. The Orion capsule is required to have landing site access (either on land or in water) inside the Continental United States (CONUS) for lunar returns anytime during the lunar month. This requirement means the vehicle must be capable of flying ranges of at least 5500 nm. For the L/D of the vehicle, this is only possible with the use of a guided Skip-Trajectory. A skip entry guidance algorithm is necessary to achieve this requirement. Two skip entry guidance algorithms have been developed: the Numerical Skip Entry Guidance (NSEG) algorithm was developed at NASA/JSC and PredGuid was developed at Draper Laboratory. A comparison of these two algorithms will be presented in this paper. Each algorithm has been implemented in a high-fidelity, 6 degree-of-freedom simulation called the Advanced NASA Technology Architecture for Exploration Studies (ANTARES). NASA and Draper engineers have completed several monte carlo analyses in order to compare the performance of each algorithm in various stress states. Each algorithm has been tested for entry-to-target ranges to include direct entries and skip entries of varying length. Dispersions have been included on the initial entry interface state, vehicle mass properties, vehicle aerodynamics, atmosphere, and Reaction Control System (RCS). Performance criteria include miss distance to the target, RCS fuel usage, maximum g-loads and heat rates for the first and second entry, total heat load, and control system saturation. The comparison of the performance criteria has led to a down select and guidance merger that will take the best ideas from each algorithm to create one skip entry guidance algorithm for the Orion vehicle.
Observability-Based Guidance and Sensor Placement
NASA Astrophysics Data System (ADS)
Hinson, Brian T.
Control system performance is highly dependent on the quality of sensor information available. In a growing number of applications, however, the control task must be accomplished with limited sensing capabilities. This thesis addresses these types of problems from a control-theoretic point-of-view, leveraging system nonlinearities to improve sensing performance. Using measures of observability as an information quality metric, guidance trajectories and sensor distributions are designed to improve the quality of sensor information. An observability-based sensor placement algorithm is developed to compute optimal sensor configurations for a general nonlinear system. The algorithm utilizes a simulation of the nonlinear system as the source of input data, and convex optimization provides a scalable solution method. The sensor placement algorithm is applied to a study of gyroscopic sensing in insect wings. The sensor placement algorithm reveals information-rich areas on flexible insect wings, and a comparison to biological data suggests that insect wings are capable of acting as gyroscopic sensors. An observability-based guidance framework is developed for robotic navigation with limited inertial sensing. Guidance trajectories and algorithms are developed for range-only and bearing-only navigation that improve navigation accuracy. Simulations and experiments with an underwater vehicle demonstrate that the observability measure allows tuning of the navigation uncertainty.
Zhang, Peng; Liu, Keping; Zhao, Bo; Li, Yuanchun
2015-01-01
Optimal guidance is essential for the soft landing task. However, due to its high computational complexities, it is hardly applied to the autonomous guidance. In this paper, a computationally inexpensive optimal guidance algorithm based on the radial basis function neural network (RBFNN) is proposed. The optimization problem of the trajectory for soft landing on asteroids is formulated and transformed into a two-point boundary value problem (TPBVP). Combining the database of initial states with the relative initial co-states, an RBFNN is trained offline. The optimal trajectory of the soft landing is determined rapidly by applying the trained network in the online guidance. The Monte Carlo simulations of soft landing on the Eros433 are performed to demonstrate the effectiveness of the proposed guidance algorithm. PMID:26367382
On-Board Entry Trajectory Planning Expanded to Sub-orbital Flight
NASA Technical Reports Server (NTRS)
Lu, Ping; Shen, Zuojun
2003-01-01
A methodology for on-board planning of sub-orbital entry trajectories is developed. The algorithm is able to generate in a time frame consistent with on-board environment a three-degree-of-freedom (3DOF) feasible entry trajectory, given the boundary conditions and vehicle modeling. This trajectory is then tracked by feedback guidance laws which issue guidance commands. The current trajectory planning algorithm complements the recently developed method for on-board 3DOF entry trajectory generation for orbital missions, and provides full-envelope autonomous adaptive entry guidance capability. The algorithm is validated and verified by extensive high fidelity simulations using a sub-orbital reusable launch vehicle model and difficult mission scenarios including failures and aborts.
Advances in Orion's On-Orbit Guidance and Targeting System Architecture
NASA Technical Reports Server (NTRS)
Scarritt, Sara K.; Fill, Thomas; Robinson, Shane
2015-01-01
NASA's manned spaceflight programs have a rich history of advancing onboard guidance and targeting technology. In order to support future missions, the guidance and targeting architecture for the Orion Multi-Purpose Crew Vehicle must be able to operate in complete autonomy, without any support from the ground. Orion's guidance and targeting system must be sufficiently flexible to easily adapt to a wide array of undecided future missions, yet also not cause an undue computational burden on the flight computer. This presents a unique design challenge from the perspective of both algorithm development and system architecture construction. The present work shows how Orion's guidance and targeting system addresses these challenges. On the algorithm side, the system advances the state-of-the-art by: (1) steering burns with a simple closed-loop guidance strategy based on Shuttle heritage, and (2) planning maneuvers with a cutting-edge two-level targeting routine. These algorithms are then placed into an architecture designed to leverage the advantages of each and ensure that they function in concert with one another. The resulting system is characterized by modularity and simplicity. As such, it is adaptable to the on-orbit phases of any future mission that Orion may attempt.
Sherick, Ivan
2009-01-01
A parent guidance intervention is illustrated. The value of such work is underscored to help parents and candidates in child analysis understand intergenerational psychopathology and its consequences for a child. Technical considerations of parent guidance are addressed. A revival of such work is advocated in child analysis training programs.
NASA Technical Reports Server (NTRS)
D'souza, Sarah N.; Kinney, David J.; Garcia, Joseph A.; Sarigul-Klijn, Nesrin
2014-01-01
The state-of-the-art in vehicle design decouples flight feasible trajectory generation from the optimization process of an entry spacecraft shape. The disadvantage to this decoupled process is seen when a particular aeroshell does not meet in-flight requirements when integrated into Guidance, Navigation, and Control simulations. It is postulated that the integration of a guidance algorithm into the design process will provide a real-time, rapid trajectory generation technique to enhance the robustness of vehicle design solutions. The potential benefit of this integration is a reduction in design cycles (possible cost savings) and increased accuracy in the aerothermal environment (possible mass savings). This work examines two aspects: 1) the performance of a reference tracking guidance algorithm for five different geometries with the same reference trajectory and 2) the potential of mass savings from improved aerothermal predictions. An Apollo Derived Guidance (ADG) algorithm is used in this study. The baseline geometry and five test case geometries were flown using the same baseline trajectory. The guided trajectory results are compared to separate trajectories determined in a vehicle optimization study conducted for NASA's Mars Entry, Descent, and Landing System Analysis. This study revealed several aspects regarding the potential gains and required developments for integrating a guidance algorithm into the vehicle optimization environment. First, the generation of flight feasible trajectories is only as good as the robustness of the guidance algorithm. The set of dispersed geometries modelled aerodynamic dispersions that ranged from +/-1% to +/-17% and a single extreme case was modelled where the aerodynamics were approximately 80% less than the baseline geometry. The ADG, as expected, was able to guide the vehicle into the aeroshell separation box at the target location for dispersions up to 17%, but failed for the 80% dispersion cases. Finally, the results revealed that including flight feasible trajectories for a set of dispersed geometries has the potential to save mass up to 430 kg.
Automated low-thrust guidance for the orbital maneuvering vehicle
NASA Technical Reports Server (NTRS)
Rose, Richard E.; Schmeichel, Harry; Shortwell, Charles P.; Werner, Ronald A.
1988-01-01
This paper describes the highly autonomous OMV Guidance Navigation and Control system. Emphasis is placed on a key feature of the design, the low thrust guidance algorithm. The two guidance modes, orbit change guidance and rendezvous guidance, are discussed in detail. It is shown how OMV will automatically transfer from its initial orbit to an arbitrary target orbit and reach a specified rendezvous position relative to the target vehicle.
Atmospheric Ascent Guidance for Rocket-Powered Launch Vehicles
NASA Technical Reports Server (NTRS)
Dukeman, Greg A.
2002-01-01
An advanced ascent guidance algorithm for rocket- powered launch vehicles is developed. This algorithm cyclically solves the calculus-of-variations two-point boundary-value problem starting at vertical rise completion through main engine cutoff. This is different from traditional ascent guidance algorithms which operate in a simple open-loop mode until high dynamic pressure (including the critical max-Q) portion of the trajectory is over, at which time guidance operates under the assumption of negligible aerodynamic acceleration (i.e., vacuum dynamics). The initial costate guess is corrected based on errors in the terminal state constraints and the transversality conditions. Judicious approximations are made to reduce the order and complexity of the state/costate system. Results comparing guided launch vehicle trajectories with POST open-loop trajectories are given verifying the basic formulation of the algorithm. Multiple shooting is shown to be a very effective numerical technique for this application. In particular, just one intermediate shooting point, in addition to the initial shooting point, is sufficient to significantly reduce sensitivity to the guessed initial costates. Simulation results from a high-fidelity trajectory simulation are given for the case of launch to sub-orbital cutoff conditions as well as launch to orbit conditions. An abort to downrange landing site formulation of the algorithm is presented.
Improved guidance hardware study for the scout launch vehicle
NASA Technical Reports Server (NTRS)
Schappell, R. T.; Salis, M. L.; Mueller, R.; Best, L. E.; Bradt, A. J.; Harrison, R.; Burrell, J. H.
1972-01-01
A market survey and evaluation of inertial guidance systems (inertial measurement units and digital computers) were made. Comparisons were made to determine the candidate systems for use in the Scout launch vehicle. Error analyses were made using typical Scout trajectories. A reaction control system was sized for the fourth stage. The guidance hardware to Scout vehicle interface was listed.
4D BADA-based Trajectory Generator and 3D Guidance Algorithm
NASA Technical Reports Server (NTRS)
Palacios, Eduardo Sepulveda; Johnson, Marcus A.
2013-01-01
This paper presents a hybrid integration between aerodynamic, airline procedures and other BADA-based (Base of Aircraft Data) coefficients with a classical aircraft dynamic model. This paper also describes a three-dimensional guidance algorithm implemented in order to produce commands for the aircraft to follow a flight plan. The software chosen for this work is MATLAB.
On the calculation of low-thrust fail-safe trajectories
NASA Technical Reports Server (NTRS)
Sauer, C. G., Jr.
1975-01-01
A guidance algorithm is developed for a low-thrust spacecraft such that target intercept is possible in spite of premature thrust termination along the trajectory. Such a trajectory is called a 'fail-safe' trajectory and the spacecraft thrust is utilized to minimize the relative target-spacecraft approach speed. The fail-safe guidance algorithm is solved using the concept of a critical thrust plane and a non-critical thrust direction. Several examples of fail-safe guidance are presented for a solar-electric propulsion flyby mission to the comet Encke.
Integrated Test and Evaluation (ITE) Flight Test Series 4
NASA Technical Reports Server (NTRS)
Marston, Michael
2016-01-01
The integrated Flight Test 4 (FT4) will gather data for the UAS researchers Sense and Avoid systems (referred to as Detect and Avoid in the RTCA SC 228 ToR) algorithms and pilot displays for candidate UAS systems in a relevant environment. The technical goals of FT4 are to: 1) perform end-to-end traffic encounter test of pilot guidance generated by DAA algorithms; 2) collect data to inform the initial Minimum Operational Performance Standards (MOPS) for Detect and Avoid systems. FT4 objectives and test infrastructure builds from previous UAS project simulations and flight tests. NASA Ames (ARC), NASA Armstrong (AFRC), and NASA Langley (LaRC) Research Centers will share responsibility for conducting the tests, each providing a test lab and critical functionality. UAS-NAS project support and participation on the 2014 flight test of ACAS Xu and DAA Self Separation (SS) significantly contributed to building up infrastructure and procedures for FT3 as well. The DAA Scripted flight test (FT4) will be conducted out of NASA Armstrong over an eight-week period beginning in April 2016.
Guidance for feasibility analysis of candidate sites : handbook.
DOT National Transportation Integrated Search
2009-09-30
The purpose of this handbook is to provide guidance in determining whether or not speed : harmonization and peak period shoulder is feasible for a given site or set of sites. The content of : this handbook is based on the analysis conducted for this ...
NASA Technical Reports Server (NTRS)
Swei, Sean
2014-01-01
We propose to develop a robust guidance and control system for the ADEPT (Adaptable Deployable Entry and Placement Technology) entry vehicle. A control-centric model of ADEPT will be developed to quantify the performance of candidate guidance and control architectures for both aerocapture and precision landing missions. The evaluation will be based on recent breakthroughs in constrained controllability/reachability analysis of control systems and constrained-based energy-minimum trajectory optimization for guidance development operating in complex environments.
NASA Astrophysics Data System (ADS)
Lee, K. J.; Stovall, K.; Jenet, F. A.; Martinez, J.; Dartez, L. P.; Mata, A.; Lunsford, G.; Cohen, S.; Biwer, C. M.; Rohr, M.; Flanigan, J.; Walker, A.; Banaszak, S.; Allen, B.; Barr, E. D.; Bhat, N. D. R.; Bogdanov, S.; Brazier, A.; Camilo, F.; Champion, D. J.; Chatterjee, S.; Cordes, J.; Crawford, F.; Deneva, J.; Desvignes, G.; Ferdman, R. D.; Freire, P.; Hessels, J. W. T.; Karuppusamy, R.; Kaspi, V. M.; Knispel, B.; Kramer, M.; Lazarus, P.; Lynch, R.; Lyne, A.; McLaughlin, M.; Ransom, S.; Scholz, P.; Siemens, X.; Spitler, L.; Stairs, I.; Tan, M.; van Leeuwen, J.; Zhu, W. W.
2013-07-01
Modern radio pulsar surveys produce a large volume of prospective candidates, the majority of which are polluted by human-created radio frequency interference or other forms of noise. Typically, large numbers of candidates need to be visually inspected in order to determine if they are real pulsars. This process can be labour intensive. In this paper, we introduce an algorithm called Pulsar Evaluation Algorithm for Candidate Extraction (PEACE) which improves the efficiency of identifying pulsar signals. The algorithm ranks the candidates based on a score function. Unlike popular machine-learning-based algorithms, no prior training data sets are required. This algorithm has been applied to data from several large-scale radio pulsar surveys. Using the human-based ranking results generated by students in the Arecibo Remote Command Center programme, the statistical performance of PEACE was evaluated. It was found that PEACE ranked 68 per cent of the student-identified pulsars within the top 0.17 per cent of sorted candidates, 95 per cent within the top 0.34 per cent and 100 per cent within the top 3.7 per cent. This clearly demonstrates that PEACE significantly increases the pulsar identification rate by a factor of about 50 to 1000. To date, PEACE has been directly responsible for the discovery of 47 new pulsars, 5 of which are millisecond pulsars that may be useful for pulsar timing based gravitational-wave detection projects.
Aerocapture Guidance Algorithm Comparison Campaign
NASA Technical Reports Server (NTRS)
Rousseau, Stephane; Perot, Etienne; Graves, Claude; Masciarelli, James P.; Queen, Eric
2002-01-01
The aerocapture is a promising technique for the future human interplanetary missions. The Mars Sample Return was initially based on an insertion by aerocapture. A CNES orbiter Mars Premier was developed to demonstrate this concept. Mainly due to budget constraints, the aerocapture was cancelled for the French orbiter. A lot of studies were achieved during the three last years to develop and test different guidance algorithms (APC, EC, TPC, NPC). This work was shared between CNES and NASA, with a fruitful joint working group. To finish this study an evaluation campaign has been performed to test the different algorithms. The objective was to assess the robustness, accuracy, capability to limit the load, and the complexity of each algorithm. A simulation campaign has been specified and performed by CNES, with a similar activity on the NASA side to confirm the CNES results. This evaluation has demonstrated that the numerical guidance principal is not competitive compared to the analytical concepts. All the other algorithms are well adapted to guaranty the success of the aerocapture. The TPC appears to be the more robust, the APC the more accurate, and the EC appears to be a good compromise.
G-Guidance Interface Design for Small Body Mission Simulation
NASA Technical Reports Server (NTRS)
Acikmese, Behcet; Carson, John; Phan, Linh
2008-01-01
The G-Guidance software implements a guidance and control (G and C) algorithm for small-body, autonomous proximity operations, developed under the Small Body GN and C task at JPL. The software is written in Matlab and interfaces with G-OPT, a JPL-developed optimization package written in C that provides G-Guidance with guaranteed convergence to a solution in a finite computation time with a prescribed accuracy. The resulting program is computationally efficient and is a prototype of an onboard, real-time algorithm for autonomous guidance and control. Two thruster firing schemes are available in G-Guidance, allowing tailoring of the software for specific mission maneuvers. For example, descent, landing, or rendezvous benefit from a thruster firing at the maneuver termination to mitigate velocity errors. Conversely, ascent or separation maneuvers benefit from an immediate firing to avoid potential drift toward a second body. The guidance portion of this software explicitly enforces user-defined control constraints and thruster silence times while minimizing total fuel usage. This program is currently specialized to small-body proximity operations, but the underlying method can be generalized to other applications.
Accurate predictor-corrector skip entry guidance for low lift-to-drag ratio spacecraft
NASA Astrophysics Data System (ADS)
Enmi, Y.; Qian, W.; He, K.; Di, D.
2018-06-01
This paper develops numerical predictor-corrector skip en try guidance for vehicles with low lift-to-drag L/D ratio during the skip entry phase of a Moon return mission. The guidance method is composed of two parts: trajectory planning before entry and closed-loop gu idance during skip entry. The result of trajectory planning before entry is able to present an initial value for predictor-corrector algorithm in closed-loop guidance for fast convergence. The magnitude of bank angle, which is parameterized as a linear function of the range-to-go, is modulated to satisfy the downrange requirements. The sign of the bank ang le is determined by the bank-reversal logic. The predictor-corrector algorithm repeatedly applied onboard in each guidance cycle to realize closed-loop guidance in the skip entry phase. The effectivity of the proposed guidance is validated by simulations in nominal conditions, including skip entry, loft entry, and direct entry, as well as simulations in dispersion conditions considering the combination disturbance of the entry interface, the aerodynamic coefficients, the air density, and the mass of the vehicle.
Flexible Multi agent Algorithm for Distributed Decision Making
2015-01-01
How, J. P. Consensus - Based Auction Approaches for Decentralized task Assignment. Proceedings of the AIAA Guidance, Navigation, and Control...G. ; Kim, Y. Market- based Decentralized Task Assignment for Cooperative UA V Mission Including Rendezvous. Proceedings of the AIAA Guidance...scalable and adaptable to a variety of specific mission tasks . Additionally, the algorithm could easily be adapted for use on land or sea- based systems
Guidance Concept for a Mars Ascent Vehicle First Stage
NASA Technical Reports Server (NTRS)
Queen, Eric M.
2000-01-01
This paper presents a guidance concept for use on the first stage of a Mars Ascent Vehicle (MAV). The guidance is based on a calculus of variations approach similar to that used for the final phase of the Apollo Earth return guidance. A three degree-of-freedom (3DOF) Monte Carlo simulation is used to evaluate performance and robustness of the algorithm.
An adaptive reentry guidance method considering the influence of blackout zone
NASA Astrophysics Data System (ADS)
Wu, Yu; Yao, Jianyao; Qu, Xiangju
2018-01-01
Reentry guidance has been researched as a popular topic because it is critical for a successful flight. In view that the existing guidance methods do not take into account the accumulated navigation error of Inertial Navigation System (INS) in the blackout zone, in this paper, an adaptive reentry guidance method is proposed to obtain the optimal reentry trajectory quickly with the target of minimum aerodynamic heating rate. The terminal error in position and attitude can be also reduced with the proposed method. In this method, the whole reentry guidance task is divided into two phases, i.e., the trajectory updating phase and the trajectory planning phase. In the first phase, the idea of model predictive control (MPC) is used, and the receding optimization procedure ensures the optimal trajectory in the next few seconds. In the trajectory planning phase, after the vehicle has flown out of the blackout zone, the optimal reentry trajectory is obtained by online planning to adapt to the navigation information. An effective swarm intelligence algorithm, i.e. pigeon inspired optimization (PIO) algorithm, is applied to obtain the optimal reentry trajectory in both of the two phases. Compared to the trajectory updating method, the proposed method can reduce the terminal error by about 30% considering both the position and attitude, especially, the terminal error of height has almost been eliminated. Besides, the PIO algorithm performs better than the particle swarm optimization (PSO) algorithm both in the trajectory updating phase and the trajectory planning phases.
NASA Technical Reports Server (NTRS)
Ogletree, G.; Coccoli, J.; Mckern, R.; Smith, M.; White, R.
1972-01-01
The ten candidate SIMS configurations were reduced to three in preparation for the final trade comparison. The report emphasizes subsystem design trades, star availability studies, data processing (smoothing) methods, and the analytical and simulation studies at subsystem and system levels from which candidate accuracy estimates will be presented.
Development of the L-1011 four-dimensional flight management system
NASA Technical Reports Server (NTRS)
Lee, H. P.; Leffler, M. F.
1984-01-01
The development of 4-D guidance and control algorithms for the L-1011 Flight Management System is described. Four-D Flight Management is a concept by which an aircraft's flight is optimized along the 3-D path within the constraints of today's ATC environment, while its arrival time is controlled to fit into the air traffic flow without incurring or causing delays. The methods developed herein were designed to be compatible with the time-based en route metering techniques that were recently developed by the Dallas/Fort Worth and Denver Air Route Traffic Control Centers. The ensuing development of the 4-D guidance algorithms, the necessary control laws and the operational procedures are discussed. Results of computer simulation evaluation of the guidance algorithms and control laws are presented, along with a description of the software development procedures utilized.
Rapid near-optimal aerospace plane trajectory generation and guidance
NASA Technical Reports Server (NTRS)
Calise, A. J.; Corban, J. E.; Markopoulos, N.
1991-01-01
Effort was directed toward the problems of the real time trajectory optimization and guidance law development for the National Aerospace Plane (NASP) applications. In particular, singular perturbation methods were used to develop guidance algorithms suitable for onboard, real time implementation. The progress made in this research effort is reported.
17 CFR Appendix A to Part 38 - Guidance on Compliance With Designation Criteria
Code of Federal Regulations, 2011 CFR
2011-04-01
...-matching algorithm and order entry procedures. An application involving a trade-matching algorithm that is... algorithm. (b) A designated contract market's specifications on initial and periodic objective testing and...
17 CFR Appendix A to Part 38 - Guidance on Compliance With Designation Criteria
Code of Federal Regulations, 2012 CFR
2012-04-01
...-matching algorithm and order entry procedures. An application involving a trade-matching algorithm that is... algorithm. (b) A designated contract market's specifications on initial and periodic objective testing and...
Genetic algorithms as global random search methods
NASA Technical Reports Server (NTRS)
Peck, Charles C.; Dhawan, Atam P.
1995-01-01
Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that the schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solutions and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.
Genetic algorithms as global random search methods
NASA Technical Reports Server (NTRS)
Peck, Charles C.; Dhawan, Atam P.
1995-01-01
Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that that schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solution and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.
A maximally stable extremal region based scene text localization method
NASA Astrophysics Data System (ADS)
Xiao, Chengqiu; Ji, Lixin; Gao, Chao; Li, Shaomei
2015-07-01
Text localization in natural scene images is an important prerequisite for many content-based image analysis tasks. This paper proposes a novel text localization algorithm. Firstly, a fast pruning algorithm is designed to extract Maximally Stable Extremal Regions (MSER) as basic character candidates. Secondly, these candidates are filtered by using the properties of fitting ellipse and the distribution properties of characters to exclude most non-characters. Finally, a new extremal regions projection merging algorithm is designed to group character candidates into words. Experimental results show that the proposed method has an advantage in speed and achieve relatively high precision and recall rates than the latest published algorithms.
Maneuver Algorithm for Bearings-Only Target Tracking with Acceleration and Field of View Constraints
NASA Astrophysics Data System (ADS)
Roh, Heekun; Shim, Sang-Wook; Tahk, Min-Jea
2018-05-01
This paper proposes a maneuver algorithm for the agent performing target tracking with bearing angle information only. The goal of the agent is to estimate the target position and velocity based only on the bearing angle data. The methods of bearings-only target state estimation are outlined. The nature of bearings-only target tracking problem is then addressed. Based on the insight from above-mentioned properties, the maneuver algorithm for the agent is suggested. The proposed algorithm is composed of a nonlinear, hysteresis guidance law and the estimation accuracy assessment criteria based on the theory of Cramer-Rao bound. The proposed guidance law generates lateral acceleration command based on current field of view angle. The accuracy criteria supply the expected estimation variance, which acts as a terminal criterion for the proposed algorithm. The aforementioned algorithm is verified with a two-dimensional simulation.
NASP guidance design for vehicle autonomy
NASA Astrophysics Data System (ADS)
Wagner, E. A.; Li, I.; Nguyen, D. D.; Nguyen, P. L.
1990-10-01
Vehicle guidance for General Dynamics' NASP vehicle is planned to be self-contained onboard the vehicle, and independent of any ground support during the mission. It will include real-time onboard abort and ascent trajectory optimization capability. Although these features should be considered a natural outgrowth of research in guidance and trajectory optimization and advances in computation, facilitating full vehicle autonomy for NASP represents a significant advance relative to any flight-demonstrated guidance. Algorithms and processing requirements for autonomous NASP vehicle guidance are considered.
Genetic algorithm enhanced by machine learning in dynamic aperture optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yongjun; Cheng, Weixing; Yu, Li Hua
With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given “elite” status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitnessmore » of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. Furthermore, the machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.« less
Genetic algorithm enhanced by machine learning in dynamic aperture optimization
NASA Astrophysics Data System (ADS)
Li, Yongjun; Cheng, Weixing; Yu, Li Hua; Rainer, Robert
2018-05-01
With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given "elite" status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitness of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. The machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.
Genetic algorithm enhanced by machine learning in dynamic aperture optimization
Li, Yongjun; Cheng, Weixing; Yu, Li Hua; ...
2018-05-29
With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given “elite” status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitnessmore » of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. Furthermore, the machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.« less
Guidance strategies and analysis for low thrust navigation
NASA Technical Reports Server (NTRS)
Jacobson, R. A.
1973-01-01
A low-thrust guidance algorithm suitable for operational use was formulated. A constrained linear feedback control law was obtained using a minimum terminal miss criterion and restricting control corrections to constant changes for specified time periods. Both fixed- and variable-time-of-arrival guidance were considered. The performance of the guidance law was evaluated by applying it to the approach phase of the 1980 rendezvous mission with the comet Encke.
NASA Technical Reports Server (NTRS)
Osder, S.; Keller, R.
1971-01-01
Guidance and control design studies that were performed for three specific space shuttle candidate vehicles are described. Three types of simulation were considered. The manual control investigations and pilot evaluations of the automatic system performance is presented. Recommendations for systems and equipment, both airborne and ground-based, necessary to flight test the guidance and control concepts for shuttlecraft terminal approach and landing are reported.
VTOL shipboard letdown guidance system analysis
NASA Technical Reports Server (NTRS)
Phatak, A. V.; Karmali, M. S.
1983-01-01
Alternative letdown guidance strategies are examined for landing of a VTOL aircraft onboard a small aviation ship under adverse environmental conditions. Off line computer simulation of shipboard landing task is utilized for assessing the relative merits of the proposed guidance schemes. The touchdown performance of a nominal constant rate of descent (CROD) letdown strategy serves as a benchmark for ranking the performance of the alternative letdown schemes. Analysis of ship motion time histories indicates the existence of an alternating sequence of quiescent and rough motions called lulls and swells. A real time algorithms lull/swell classification based upon ship motion pattern features is developed. The classification algorithm is used to command a go/no go signal to indicate the initiation and termination of an acceptable landing window. Simulation results show that such a go/no go pattern based letdown guidance strategy improves touchdown performance.
Doubling down on phosphorylation as a variable peptide modification.
Cooper, Bret
2016-09-01
Some mass spectrometrists believe that searching for variable PTMs like phosphorylation of serine or threonine when using database-search algorithms to interpret peptide tandem mass spectra will increase false-positive matching. The basis for this is the premise that the algorithm compares a spectrum to both a nonphosphorylated peptide candidate and a phosphorylated candidate, which is double the number of candidates compared to a search with no possible phosphorylation. Hence, if the search space doubles, false-positive matching could increase accordingly as the algorithm considers more candidates to which false matches could be made. In this study, it is shown that the search for variable phosphoserine and phosphothreonine modifications does not always double the search space or unduly impinge upon the FDR. A breakdown of how one popular database-search algorithm deals with variable phosphorylation is presented. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Secondary Teacher Candidates' Lesson Planning Learning
ERIC Educational Resources Information Center
Santoyo, Christina; Zhang, Shaoan
2016-01-01
Teacher candidates (TCs) use clinical experiences to enact concepts taught in their university courses; therefore field experiences may be the most important component of teacher preparation (Hammerness et al., 2005). TCs require support and guidance as they learn to adapt curriculum materials for effective use in the classroom (Davis, 2006). They…
NASA Technical Reports Server (NTRS)
Jacobson, R. A.
1975-01-01
Difficulties arise in guiding a solar electric propulsion spacecraft due to nongravitational accelerations caused by random fluctuations in the magnitude and direction of the thrust vector. These difficulties may be handled by using a low thrust guidance law based on the linear-quadratic-Gaussian problem of stochastic control theory with a minimum terminal miss performance criterion. Explicit constraints are imposed on the variances of the control parameters, and an algorithm based on the Hilbert space extension of a parameter optimization method is presented for calculation of gains in the guidance law. The terminal navigation of a 1980 flyby mission to the comet Encke is used as an example.
Gaur, Pallavi; Chaturvedi, Anoop
2017-07-22
The clustering pattern and motifs give immense information about any biological data. An application of machine learning algorithms for clustering and candidate motif detection in miRNAs derived from exosomes is depicted in this paper. Recent progress in the field of exosome research and more particularly regarding exosomal miRNAs has led much bioinformatic-based research to come into existence. The information on clustering pattern and candidate motifs in miRNAs of exosomal origin would help in analyzing existing, as well as newly discovered miRNAs within exosomes. Along with obtaining clustering pattern and candidate motifs in exosomal miRNAs, this work also elaborates the usefulness of the machine learning algorithms that can be efficiently used and executed on various programming languages/platforms. Data were clustered and sequence candidate motifs were detected successfully. The results were compared and validated with some available web tools such as 'BLASTN' and 'MEME suite'. The machine learning algorithms for aforementioned objectives were applied successfully. This work elaborated utility of machine learning algorithms and language platforms to achieve the tasks of clustering and candidate motif detection in exosomal miRNAs. With the information on mentioned objectives, deeper insight would be gained for analyses of newly discovered miRNAs in exosomes which are considered to be circulating biomarkers. In addition, the execution of machine learning algorithms on various language platforms gives more flexibility to users to try multiple iterations according to their requirements. This approach can be applied to other biological data-mining tasks as well.
NASA Technical Reports Server (NTRS)
Hess, Ronald A.
1990-01-01
A collection of technical papers are presented that cover modeling pilot interaction with automated digital avionics systems and guidance and control algorithms for contour and nap-of-the-earth flight. The titles of the papers presented are as follows: (1) Automation effects in a multiloop manual control system; (2) A qualitative model of human interaction with complex dynamic systems; (3) Generalized predictive control of dynamic systems; (4) An application of generalized predictive control to rotorcraft terrain-following flight; (5) Self-tuning generalized predictive control applied to terrain-following flight; and (6) Precise flight path control using a predictive algorithm.
Powered Descent Guidance with General Thrust-Pointing Constraints
NASA Technical Reports Server (NTRS)
Carson, John M., III; Acikmese, Behcet; Blackmore, Lars
2013-01-01
The Powered Descent Guidance (PDG) algorithm and software for generating Mars pinpoint or precision landing guidance profiles has been enhanced to incorporate thrust-pointing constraints. Pointing constraints would typically be needed for onboard sensor and navigation systems that have specific field-of-view requirements to generate valid ground proximity and terrain-relative state measurements. The original PDG algorithm was designed to enforce both control and state constraints, including maximum and minimum thrust bounds, avoidance of the ground or descent within a glide slope cone, and maximum speed limits. The thrust-bound and thrust-pointing constraints within PDG are non-convex, which in general requires nonlinear optimization methods to generate solutions. The short duration of Mars powered descent requires guaranteed PDG convergence to a solution within a finite time; however, nonlinear optimization methods have no guarantees of convergence to the global optimal or convergence within finite computation time. A lossless convexification developed for the original PDG algorithm relaxed the non-convex thrust bound constraints. This relaxation was theoretically proven to provide valid and optimal solutions for the original, non-convex problem within a convex framework. As with the thrust bound constraint, a relaxation of the thrust-pointing constraint also provides a lossless convexification that ensures the enhanced relaxed PDG algorithm remains convex and retains validity for the original nonconvex problem. The enhanced PDG algorithm provides guidance profiles for pinpoint and precision landing that minimize fuel usage, minimize landing error to the target, and ensure satisfaction of all position and control constraints, including thrust bounds and now thrust-pointing constraints.
Optimum Guidance Law and Information Management for a Large Number of Formation Flying Spacecrafts
NASA Astrophysics Data System (ADS)
Tsuda, Yuichi; Nakasuka, Shinichi
In recent years, formation flying technique is recognized as one of the most important technologies for deep space and orbital missions that involve multiple spacecraft operations. Formation flying mission improves simultaneous observability over a wide area, redundancy and reconfigurability of the system with relatively small and low cost spacecrafts compared with the conventional single spacecraft mission. From the viewpoint of guidance and control, realizing formation flying mission usually requires tight maintenance and control of the relative distances, speeds and orientations between the member satellites. This paper studies a practical architecture for formation flight missions focusing mainly on guidance and control, and describes a new guidance algorithm for changing and keeping the relative positions and speeds of the satellites in formation. The resulting algorithm is suitable for onboard processing and gives the optimum impulsive trajectory for satellites flying closely around a certain reference orbit, that can be elliptic, parabolic or hyperbolic. Based on this guidance algorithm, this study introduces an information management methodology between the member spacecrafts which is suitable for a large formation flight architecture. Routing and multicast communication based on the wireless local area network technology are introduced. Some mathematical analyses and computer simulations will be shown in the presentation to reveal the feasibility of the proposed formation flight architecture, especially when a very large number of satellites join the formation.
Providing reliable route guidance : phase II.
DOT National Transportation Integrated Search
2010-12-20
The overarching goal of the project is to enhance travel reliability of highway users by providing : them with reliable route guidance produced from newly developed routing algorithms that : are validated and implemented with real traffic data. To th...
NASA Technical Reports Server (NTRS)
Brown, Todd S.
2016-01-01
The NASA Soil Moisture Active Passive (SMAP) spacecraft was designed to use radar and radiometer measurements to produce global soil moisture measurements every 2-3 days. The SMAP spacecraft is a complicated dual-spinning design with a large 6 meter deployable mesh reflector mounted on a platform that spins at 14.6 rpm while the Guidance Navigation and Control algorithms maintain precise nadir pointing for the de-spun portion of the spacecraft. After launching in early 2015, the Guidance Navigation and Control software and hardware aboard the SMAP spacecraft underwent an intensive spacecraft checkout and commissioning period. This paper describes the activities performed by the Guidance Navigation and Control team to confirm the health and phasing of subsystem hardware and the functionality of the guidance and control modes and algorithms. The operations tasks performed, as well as anomalies that were encountered during the commissioning, are explained and results are summarized.
ERIC Educational Resources Information Center
Bas, Asli Uz
2016-01-01
The purpose of this study was to assess the "Positive Psychology" course according to comments and life satisfaction levels of counselor candidates. The course was offered in Guidance and Psychological Counseling undergraduate program as an elective course. The participants of the study were 56 senior undergraduate students attended…
Getting into the Game: Helping Preservice Candidates Find Initial Teaching Positions
ERIC Educational Resources Information Center
Ayers, Suzan F.; Senne, Terry A.
2011-01-01
Many teacher candidates fumble through the job-hunting process by employing the "discovery" approach to finding a teaching position. The purpose of this article is to provide direction and guidance for securing an initial teaching position in physical education. The areas outlined in this article include (1) developing application…
Psychological Help-Seeking Attitudes of Helping Professional Candidates and Factors Influencing Them
ERIC Educational Resources Information Center
Kumcagiz, Hatice
2013-01-01
This study was designed as descriptive to identify psychological help-seeking attitudes of helping professional candidates and factors influencing them. The research population consisted of 447 first and fourth grade students studying in the Departments of Psychological Counselling and Guidance, Psychology or Nursing at Ondokuz Mayis University.…
Differentially Private Frequent Sequence Mining via Sampling-based Candidate Pruning
Xu, Shengzhi; Cheng, Xiang; Li, Zhengyi; Xiong, Li
2016-01-01
In this paper, we study the problem of mining frequent sequences under the rigorous differential privacy model. We explore the possibility of designing a differentially private frequent sequence mining (FSM) algorithm which can achieve both high data utility and a high degree of privacy. We found, in differentially private FSM, the amount of required noise is proportionate to the number of candidate sequences. If we could effectively reduce the number of unpromising candidate sequences, the utility and privacy tradeoff can be significantly improved. To this end, by leveraging a sampling-based candidate pruning technique, we propose a novel differentially private FSM algorithm, which is referred to as PFS2. The core of our algorithm is to utilize sample databases to further prune the candidate sequences generated based on the downward closure property. In particular, we use the noisy local support of candidate sequences in the sample databases to estimate which sequences are potentially frequent. To improve the accuracy of such private estimations, a sequence shrinking method is proposed to enforce the length constraint on the sample databases. Moreover, to decrease the probability of misestimating frequent sequences as infrequent, a threshold relaxation method is proposed to relax the user-specified threshold for the sample databases. Through formal privacy analysis, we show that our PFS2 algorithm is ε-differentially private. Extensive experiments on real datasets illustrate that our PFS2 algorithm can privately find frequent sequences with high accuracy. PMID:26973430
Sela, Itamar; Ashkenazy, Haim; Katoh, Kazutaka; Pupko, Tal
2015-07-01
Inference of multiple sequence alignments (MSAs) is a critical part of phylogenetic and comparative genomics studies. However, from the same set of sequences different MSAs are often inferred, depending on the methodologies used and the assumed parameters. Much effort has recently been devoted to improving the ability to identify unreliable alignment regions. Detecting such unreliable regions was previously shown to be important for downstream analyses relying on MSAs, such as the detection of positive selection. Here we developed GUIDANCE2, a new integrative methodology that accounts for: (i) uncertainty in the process of indel formation, (ii) uncertainty in the assumed guide tree and (iii) co-optimal solutions in the pairwise alignments, used as building blocks in progressive alignment algorithms. We compared GUIDANCE2 with seven methodologies to detect unreliable MSA regions using extensive simulations and empirical benchmarks. We show that GUIDANCE2 outperforms all previously developed methodologies. Furthermore, GUIDANCE2 also provides a set of alternative MSAs which can be useful for downstream analyses. The novel algorithm is implemented as a web-server, available at: http://guidance.tau.ac.il. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Study of guidance techniques for aerial application of agricultural compounds
NASA Technical Reports Server (NTRS)
Caldwell, J. D.; Dimmock, P. B. A.; Watkins, R. H.
1980-01-01
Candidate systems were identified for evaluation of suitability in meeting specified accuracy requirements for a swath guidance system in an agriculture aircraft. Further examination reduced the list of potential candidates to a single category, i.e., transponder type systems, for detailed evaluation. Within this category three systems were found which met the basic accuracy requirements of the work statement. The Flying Flagman, the Electronic Flagging and the Raydist Director System. In addition to evaluating the systems against the specified requirements, each system was compared with the other two systems on a relative basis. The conclusions supported by the analyses show the Flying Flagman system to be the most suitable system currently available to meet the requirements.
Uprated fine guidance sensor study
NASA Technical Reports Server (NTRS)
1984-01-01
Future orbital observatories will require star trackers of extremely high precision. These sensors must maintain high pointing accuracy and pointing stability simultaneously with a low light level signal from a guide star. To establish the fine guidance sensing requirements and to evaluate candidate fine guidance sensing concepts, the Space Telescope Optical Telescope Assembly was used as the reference optical system. The requirements review was separated into three areas: Optical Telescope Assembly (OTA), Fine Guidance Sensing and astrometry. The results show that the detectors should be installed directly onto the focal surface presented by the optics. This would maximize throughput and minimize point stability error by not incoporating any additional optical elements.
Encke-Beta Predictor for Orion Burn Targeting and Guidance
NASA Technical Reports Server (NTRS)
Robinson, Shane; Scarritt, Sara; Goodman, John L.
2016-01-01
The state vector prediction algorithm selected for Orion on-board targeting and guidance is known as the Encke-Beta method. Encke-Beta uses a universal anomaly (beta) as the independent variable, valid for circular, elliptical, parabolic, and hyperbolic orbits. The variable, related to the change in eccentric anomaly, results in integration steps that cover smaller arcs of the trajectory at or near perigee, when velocity is higher. Some burns in the EM-1 and EM-2 mission plans are much longer than burns executed with the Apollo and Space Shuttle vehicles. Burn length, as well as hyperbolic trajectories, has driven the use of the Encke-Beta numerical predictor by the predictor/corrector guidance algorithm in place of legacy analytic thrust and gravity integrals.
Kwon, Ji-Wook; Kim, Jin Hyo; Seo, Jiwon
2015-01-01
This paper proposes a Multiple Leader Candidate (MLC) structure and a Competitive Position Allocation (CPA) algorithm which can be applicable for various applications including environmental sensing. Unlike previous formation structures such as virtual-leader and actual-leader structures with position allocation including a rigid allocation and an optimization based allocation, the formation employing the proposed MLC structure and CPA algorithm is robust against the fault (or disappearance) of the member robots and reduces the entire cost. In the MLC structure, a leader of the entire system is chosen among leader candidate robots. The CPA algorithm is the decentralized position allocation algorithm that assigns the robots to the vertex of the formation via the competition of the adjacent robots. The numerical simulations and experimental results are included to show the feasibility and the performance of the multiple robot system employing the proposed MLC structure and the CPA algorithm. PMID:25954956
NASA Technical Reports Server (NTRS)
Powell, Richard W.
1998-01-01
This paper describes the development and evaluation of a numerical roll reversal predictor-corrector guidance algorithm for the atmospheric flight portion of the Mars Surveyor Program 2001 Orbiter and Lander missions. The Lander mission utilizes direct entry and has a demanding requirement to deploy its parachute within 10 km of the target deployment point. The Orbiter mission utilizes aerocapture to achieve a precise captured orbit with a single atmospheric pass. Detailed descriptions of these predictor-corrector algorithms are given. Also, results of three and six degree-of-freedom Monte Carlo simulations which include navigation, aerodynamics, mass properties and atmospheric density uncertainties are presented.
A Design Study of Onboard Navigation and Guidance During Aerocapture at Mars. M.S. Thesis
NASA Technical Reports Server (NTRS)
Fuhry, Douglas Paul
1988-01-01
The navigation and guidance of a high lift-to-drag ratio sample return vehicle during aerocapture at Mars are investigated. Emphasis is placed on integrated systems design, with guidance algorithm synthesis and analysis based on vehicle state and atmospheric density uncertainty estimates provided by the navigation system. The latter utilizes a Kalman filter for state vector estimation, with useful update information obtained through radar altimeter measurements and density altitude measurements based on IMU-measured drag acceleration. A three-phase guidance algorithm, featuring constant bank numeric predictor/corrector atmospheric capture and exit phases and an extended constant altitude cruise phase, is developed to provide controlled capture and depletion of orbital energy, orbital plane control, and exit apoapsis control. Integrated navigation and guidance systems performance are analyzed using a four degree-of-freedom computer simulation. The simulation environment includes an atmospheric density model with spatially correlated perturbations to provide realistic variations over the vehicle trajectory. Navigation filter initial conditions for the analysis are based on planetary approach optical navigation results. Results from a selection of test cases are presented to give insight into systems performance.
Comparative Analysis of Guidance Algorithms for the Hyper Velocity Missile and AFTI/F-16
1991-11-12
concept has matured since T.C. Aden explained it in his Hyper-velocity Missile paper [21, but his work still details the heart of the weapon system. Aden’s...Electro-Optical Guidance System (AEOGS) . The responsibilities of the carrier aircraft and its AEOGS are outlined very well by Aden [2); however, some...the guidance and control concept. The guidance and control concept explained by Aden was abandoned during early development testing according to
An integrated environment for tactical guidance research and evaluation
NASA Technical Reports Server (NTRS)
Goodrich, Kenneth H.; Mcmanus, John W.
1990-01-01
NASA-Langley's Tactical Guidance Research and Evaluation System (TGRES) constitutes an integrated environment for the development of tactical guidance algorithms and evaluating the effects of novel technologies; the modularity of the system allows easy modification or replacement of system elements in order to conduct evaluations of alternative technologies. TGRES differs from existing systems in its capitalization on AI programming techniques for guidance-logic implementation. Its ability to encompass high-fidelity, six-DOF simulation models will facilitate the analysis of complete aircraft dynamics.
Entry Guidance for the Reusable Launch Vehicle
NASA Technical Reports Server (NTRS)
Lu, Ping
1999-01-01
The X-33 Advanced Technology Demonstrator is a half-scale prototype developed to test the key technologies needed for a full-scale single-stage reusable launch vehicle (RLV). The X-33 is a suborbital vehicle that will be launched vertically, and land horizontally. The goals of this research were to develop an alternate entry guidance scheme for the X-33 in parallel to the actual X-33 entry guidance algorithms, provide comparative and complementary study, and identify potential new ways to improve entry guidance performance. Toward these goals, the nominal entry trajectory is defined by a piecewise linear drag-acceleration-versus-energy profile, which is in turn obtained by the solution of a semi-analytical parameter optimization problem. The closed-loop guidance is accomplished by tracking the nominal drag profile with primarily bank-angle modulation on-board. The bank-angle is commanded by a single full-envelope nonlinear trajectory control law. Near the end of the entry flight, the guidance logic is switched to heading control in order to meet strict conditions at the terminal area energy management interface. Two methods, one on ground-track control and the other on heading control, were proposed and examined for this phase of entry guidance where lateral control is emphasized. Trajectory dispersion studies were performed to evaluate the effectiveness of the entry guidance algorithms against a number of uncertainties including those in propulsion system, atmospheric properties, winds, aerodynamics, and propellant loading. Finally, a new trajectory-regulation method is introduced at the end as a promising precision entry guidance method. The guidance principle is very different and preliminary application in X-33 entry guidance simulation showed high precision that is difficult to achieve by existing methods.
TreePOD: Sensitivity-Aware Selection of Pareto-Optimal Decision Trees.
Muhlbacher, Thomas; Linhardt, Lorenz; Moller, Torsten; Piringer, Harald
2018-01-01
Balancing accuracy gains with other objectives such as interpretability is a key challenge when building decision trees. However, this process is difficult to automate because it involves know-how about the domain as well as the purpose of the model. This paper presents TreePOD, a new approach for sensitivity-aware model selection along trade-offs. TreePOD is based on exploring a large set of candidate trees generated by sampling the parameters of tree construction algorithms. Based on this set, visualizations of quantitative and qualitative tree aspects provide a comprehensive overview of possible tree characteristics. Along trade-offs between two objectives, TreePOD provides efficient selection guidance by focusing on Pareto-optimal tree candidates. TreePOD also conveys the sensitivities of tree characteristics on variations of selected parameters by extending the tree generation process with a full-factorial sampling. We demonstrate how TreePOD supports a variety of tasks involved in decision tree selection and describe its integration in a holistic workflow for building and selecting decision trees. For evaluation, we illustrate a case study for predicting critical power grid states, and we report qualitative feedback from domain experts in the energy sector. This feedback suggests that TreePOD enables users with and without statistical background a confident and efficient identification of suitable decision trees.
Smart-Divert Powered Descent Guidance to Avoid the Backshell Landing Dispersion Ellipse
NASA Technical Reports Server (NTRS)
Carson, John M.; Acikmese, Behcet
2013-01-01
A smart-divert capability has been added into the Powered Descent Guidance (PDG) software originally developed for Mars pinpoint and precision landing. The smart-divert algorithm accounts for the landing dispersions of the entry backshell, which separates from the lander vehicle at the end of the parachute descent phase and prior to powered descent. The smart-divert PDG algorithm utilizes the onboard fuel and vehicle thrust vectoring to mitigate landing error in an intelligent way: ensuring that the lander touches down with minimum- fuel usage at the minimum distance from the desired landing location that also avoids impact by the descending backshell. The smart-divert PDG software implements a computationally efficient, convex formulation of the powered-descent guidance problem to provide pinpoint or precision-landing guidance solutions that are fuel-optimal and satisfy physical thrust bound and pointing constraints, as well as position and speed constraints. The initial smart-divert implementation enforced a lateral-divert corridor parallel to the ground velocity vector; this was based on guidance requirements for MSL (Mars Science Laboratory) landings. This initial method was overly conservative since the divert corridor was infinite in the down-range direction despite the backshell landing inside a calculable dispersion ellipse. Basing the divert constraint instead on a local tangent to the backshell dispersion ellipse in the direction of the desired landing site provides a far less conservative constraint. The resulting enhanced smart-divert PDG algorithm avoids impact with the descending backshell and has reduced conservatism.
NASA Technical Reports Server (NTRS)
Von der Porten, Paul; Ahmad, Naeem; Hawkins, Matt; Fill, Thomas
2018-01-01
NASA is currently building the Space Launch System (SLS) Block-1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. NASA is also currently designing the next evolution of SLS, the Block-1B. The Block-1 and Block-1B vehicles will use the Powered Explicit Guidance (PEG) algorithm (of Space Shuttle heritage) for closed loop guidance. To accommodate vehicle capabilities and design for future evolutions of SLS, modifications were made to PEG for Block-1 to handle multi-phase burns, provide PEG updated propulsion information, and react to a core stage engine out. In addition, due to the relatively low thrust-to-weight ratio of the Exploration Upper Stage (EUS) and EUS carrying out Lunar Vicinity and Earth Escape missions, certain enhancements to the Block-1 PEG algorithm are needed to perform Block-1B missions to account for long burn arcs and target translunar and hyperbolic orbits. This paper describes the design and implementation of modifications to the Block-1 PEG algorithm as compared to Space Shuttle. Furthermore, this paper illustrates challenges posed by the Block-1B vehicle and the required PEG enhancements. These improvements make PEG capable for use on the SLS Block-1B vehicle as part of the Guidance, Navigation, and Control (GN&C) System.
The implement of Talmud property allocation algorithm based on graphic point-segment way
NASA Astrophysics Data System (ADS)
Cen, Haifeng
2017-04-01
Under the guidance of the Talmud allocation scheme's theory, the paper analyzes the algorithm implemented process via the perspective of graphic point-segment way, and designs the point-segment way's Talmud property allocation algorithm. Then it uses Java language to implement the core of allocation algorithm, by using Android programming to build a visual interface.
Design constraints of the LST fine guidance sensor
NASA Technical Reports Server (NTRS)
Wissinger, A. B.
1975-01-01
The LST Fine Guidance Sensor design is shaped by the rate of occurrence of suitable guide stars, the competition for telescope focal plane space with the Science Instruments, and the sensitivity of candidate image motion sensors. The relationship between these parameters is presented, and sensitivity to faint stars is shown to be of prime importance. An interferometric technique of image motion sensing is shown to have improved sensitivity and, therefore, a reduced focal plane area requirement in comparison with other candidate techniques (image-splitting prism and image dissector tube techniques). Another design requirement is speed in acquiring the guide star in order to maximize the time available for science observations. The design constraints are shown parametrically, and modelling results are presented.
NASA Technical Reports Server (NTRS)
Gershzohn, Gary R.; Sirko, Robert J.; Zimmerman, K.; Jones, A. D.
1990-01-01
This task concerns the design, development, testing, and evaluation of a new proximity operations planning and flight guidance display and control system for manned space operations. A forecast, derivative manned maneuvering unit (MMU) was identified as a candidate for the application of a color, highway-in-the-sky display format for the presentation of flight guidance information. A silicon graphics 4D/20-based simulation is being developed to design and test display formats and operations concepts. The simulation includes the following: (1) real-time color graphics generation to provide realistic, dynamic flight guidance displays and control characteristics; (2) real-time graphics generation of spacecraft trajectories; (3) MMU flight dynamics and control characteristics; (4) control algorithms for rotational and translational hand controllers; (5) orbital mechanics effects for rendezvous and chase spacecraft; (6) inclusion of appropriate navigation aids; and (7) measurement of subject performance. The flight planning system under development provides for: (1) selection of appropriate operational modes, including minimum cost, optimum cost, minimum time, and specified ETA; (2) automatic calculation of rendezvous trajectories, en route times, and fuel requirements; (3) and provisions for manual override. Man/machine function allocations in planning and en route flight segments are being evaluated. Planning and en route data are presented on one screen composed of two windows: (1) a map display presenting a view perpendicular to the orbital plane, depicting flight planning trajectory and time data attitude display presenting attitude and course data for use en route; and (2) an attitude display presenting local vertical-local horizontal attitude data superimposed on a highway-in-the-sky or flight channel representation of the flight planned course. Both display formats are presented while the MMU is en route. In addition to these displays, several original display elements are being developed, including a 3DOF flight detector for attitude commanding, a different flight detector for translation commands, and a pictorial representation of velocity deviations.
Optimal guidance with obstacle avoidance for nap-of-the-earth flight
NASA Technical Reports Server (NTRS)
Pekelsma, Nicholas J.
1988-01-01
The development of automatic guidance is discussed for helicopter Nap-of-the-Earth (NOE) and near-NOE flight. It deals with algorithm refinements relating to automated real-time flight path planning and to mission planning. With regard to path planning, it relates rotorcraft trajectory characteristics to the NOE computation scheme and addresses real-time computing issues and both ride quality issues and pilot-vehicle interfaces. The automated mission planning algorithm refinements include route optimization, automatic waypoint generation, interactive applications, and provisions for integrating the results into the real-time path planning software. A microcomputer based mission planning workstation was developed and is described. Further, the application of Defense Mapping Agency (DMA) digital terrain to both the mission planning workstation and to automatic guidance is both discussed and illustrated.
Real-time multiple-objective path search for in-vehicle route guidance systems
DOT National Transportation Integrated Search
1997-01-01
The application of multiple-objective route choice for in-vehicle route guidance systems is discussed. A bi-objective path search algorithm is presented and its use demonstrated. A concept of trip quality is introduced that is composed of two objecti...
Flight evaluation of a computer aided low-altitude helicopter flight guidance system
NASA Technical Reports Server (NTRS)
Swenson, Harry N.; Jones, Raymond D.; Clark, Raymond
1993-01-01
The Flight Systems Development branch of the U.S. Army's Avionics Research and Development Activity (AVRADA) and NASA Ames Research Center developed for flight testing a Computer Aided Low-Altitude Helicopter Flight (CALAHF) guidance system. The system includes a trajectory-generation algorithm which uses dynamic programming and a helmet-mounted display (HMD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor guidance symbology. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and precision navigation information to determine a trajectory between mission waypoints that seeks valleys to minimize threat exposure. This system was developed and evaluated through extensive use of piloted simulation and has demonstrated a 'pilot centered' concept of automated and integrated navigation and terrain mission planning flight guidance. This system has shown a significant improvement in pilot situational awareness, and mission effectiveness as well as a decrease in training and proficiency time required for a near terrain, nighttime, adverse weather system.
Autonomous control of roving vehicles for unmanned exploration of the planets
NASA Technical Reports Server (NTRS)
Yerazunis, S. W.
1978-01-01
The guidance of an autonomous rover for unmanned planetary exploration using a short range (0.5 - 3.0 meter) hazard detection system was studied. Experimental data derived from a one laser/one detector system were used in the development of improved algorithms for the guidance of the rover. The new algorithms which account for the dynamic characteristics of the Rensselaer rover can be applied to other rover concepts provided that the rover dynamic parameters are modified appropriately. The new algorithms will also be applicable to the advanced scanning system. The design of an elevation scanning laser/multisensor hazard detection system was completed. All mechanical and electronic hardware components with the exception of the sensor optics and electronic components were constructed and tested.
Safe Onboard Guidance and Control Under Probabilistic Uncertainty
NASA Technical Reports Server (NTRS)
Blackmore, Lars James
2011-01-01
An algorithm was developed that determines the fuel-optimal spacecraft guidance trajectory that takes into account uncertainty, in order to guarantee that mission safety constraints are satisfied with the required probability. The algorithm uses convex optimization to solve for the optimal trajectory. Convex optimization is amenable to onboard solution due to its excellent convergence properties. The algorithm is novel because, unlike prior approaches, it does not require time-consuming evaluation of multivariate probability densities. Instead, it uses a new mathematical bounding approach to ensure that probability constraints are satisfied, and it is shown that the resulting optimization is convex. Empirical results show that the approach is many orders of magnitude less conservative than existing set conversion techniques, for a small penalty in computation time.
[A study on medical image fusion].
Zhang, Er-hu; Bian, Zheng-zhong
2002-09-01
Five algorithms with its advantages and disadvantage for medical image fusion are analyzed. Four kinds of quantitative evaluation criteria for the quality of image fusion algorithms are proposed and these will give us some guidance for future research.
NASA Astrophysics Data System (ADS)
Schulte, Peter Z.; Spencer, David A.
2016-01-01
This paper describes the development and validation process of a highly automated Guidance, Navigation, & Control subsystem for a small satellite on-orbit inspection application, enabling proximity operations without human-in-the-loop interaction. The paper focuses on the integration and testing of Guidance, Navigation, & Control software and the development of decision logic to address the question of how such a system can be effectively implemented for full automation. This process is unique because a multitude of operational scenarios must be considered and a set of complex interactions between subsystem algorithms must be defined to achieve the automation goal. The Prox-1 mission is currently under development within the Space Systems Design Laboratory at the Georgia Institute of Technology. The mission involves the characterization of new small satellite component technologies, deployment of the LightSail 3U CubeSat, entering into a trailing orbit relative to LightSail using ground-in-the-loop commands, and demonstration of automated proximity operations through formation flight and natural motion circumnavigation maneuvers. Operations such as these may be utilized for many scenarios including on-orbit inspection, refueling, repair, construction, reconnaissance, docking, and debris mitigation activities. Prox-1 uses onboard sensors and imaging instruments to perform Guidance, Navigation, & Control operations during on-orbit inspection of LightSail. Navigation filters perform relative orbit determination based on images of the target spacecraft, and guidance algorithms conduct automated maneuver planning. A slew and tracking controller sends attitude actuation commands to a set of control moment gyroscopes, and other controllers manage desaturation, detumble, thruster firing, and target acquisition/recovery. All Guidance, Navigation, & Control algorithms are developed in a MATLAB/Simulink six degree-of-freedom simulation environment and are integrated using decision logic to autonomously determine when actions should be performed. The complexity of this decision logic is the primary challenge of the automated process, and the Stateflow tool in Simulink is used to establish logical relationships and manage data flow between each of the individual hardware and software components. Once the integrated simulation is fully developed in MATLAB/Simulink, the algorithms are autocoded to C/C++ and integrated into flight software. Hardware-in-the-loop testing provides validation of the Guidance, Navigation, & Control subsystem performance.
Data Synchronization Discrepancies in a Formation Flight Control System
NASA Technical Reports Server (NTRS)
Ryan, Jack; Hanson, Curtis E.; Norlin, Ken A.; Allen, Michael J.; Schkolnik, Gerard (Technical Monitor)
2001-01-01
Aircraft hardware-in-the-loop simulation is an invaluable tool to flight test engineers; it reveals design and implementation flaws while operating in a controlled environment. Engineers, however, must always be skeptical of the results and analyze them within their proper context. Engineers must carefully ascertain whether an anomaly that occurs in the simulation will also occur in flight. This report presents a chronology illustrating how misleading simulation timing problems led to the implementation of an overly complex position data synchronization guidance algorithm in place of a simpler one. The report illustrates problems caused by the complex algorithm and how the simpler algorithm was chosen in the end. Brief descriptions of the project objectives, approach, and simulation are presented. The misleading simulation results and the conclusions then drawn are presented. The complex and simple guidance algorithms are presented with flight data illustrating their relative success.
17 CFR Appendix A to Part 37 - Guidance on Compliance With Registration Criteria
Code of Federal Regulations, 2011 CFR
2011-04-01
... facility should include the system's trade-matching algorithm and order entry procedures. A submission involving a trade-matching algorithm that is based on order priority factors other than on a best price/earliest time basis should include a brief explanation of the alternative algorithm. (b) A board of trade's...
17 CFR Appendix A to Part 37 - Guidance on Compliance With Registration Criteria
Code of Federal Regulations, 2012 CFR
2012-04-01
... facility should include the system's trade-matching algorithm and order entry procedures. A submission involving a trade-matching algorithm that is based on order priority factors other than on a best price/earliest time basis should include a brief explanation of the alternative algorithm. (b) A board of trade's...
NASA Astrophysics Data System (ADS)
Tolson, B.; Matott, L. S.; Gaffoor, T. A.; Asadzadeh, M.; Shafii, M.; Pomorski, P.; Xu, X.; Jahanpour, M.; Razavi, S.; Haghnegahdar, A.; Craig, J. R.
2015-12-01
We introduce asynchronous parallel implementations of the Dynamically Dimensioned Search (DDS) family of algorithms including DDS, discrete DDS, PA-DDS and DDS-AU. These parallel algorithms are unique from most existing parallel optimization algorithms in the water resources field in that parallel DDS is asynchronous and does not require an entire population (set of candidate solutions) to be evaluated before generating and then sending a new candidate solution for evaluation. One key advance in this study is developing the first parallel PA-DDS multi-objective optimization algorithm. The other key advance is enhancing the computational efficiency of solving optimization problems (such as model calibration) by combining a parallel optimization algorithm with the deterministic model pre-emption concept. These two efficiency techniques can only be combined because of the asynchronous nature of parallel DDS. Model pre-emption functions to terminate simulation model runs early, prior to completely simulating the model calibration period for example, when intermediate results indicate the candidate solution is so poor that it will definitely have no influence on the generation of further candidate solutions. The computational savings of deterministic model preemption available in serial implementations of population-based algorithms (e.g., PSO) disappear in synchronous parallel implementations as these algorithms. In addition to the key advances above, we implement the algorithms across a range of computation platforms (Windows and Unix-based operating systems from multi-core desktops to a supercomputer system) and package these for future modellers within a model-independent calibration software package called Ostrich as well as MATLAB versions. Results across multiple platforms and multiple case studies (from 4 to 64 processors) demonstrate the vast improvement over serial DDS-based algorithms and highlight the important role model pre-emption plays in the performance of parallel, pre-emptable DDS algorithms. Case studies include single- and multiple-objective optimization problems in water resources model calibration and in many cases linear or near linear speedups are observed.
A stereo-vision hazard-detection algorithm to increase planetary lander autonomy
NASA Astrophysics Data System (ADS)
Woicke, Svenja; Mooij, Erwin
2016-05-01
For future landings on any celestial body, increasing the lander autonomy as well as decreasing risk are primary objectives. Both risk reduction and an increase in autonomy can be achieved by including hazard detection and avoidance in the guidance, navigation, and control loop. One of the main challenges in hazard detection and avoidance is the reconstruction of accurate elevation models, as well as slope and roughness maps. Multiple methods for acquiring the inputs for hazard maps are available. The main distinction can be made between active and passive methods. Passive methods (cameras) have budgetary advantages compared to active sensors (radar, light detection and ranging). However, it is necessary to proof that these methods deliver sufficiently good maps. Therefore, this paper discusses hazard detection using stereo vision. To facilitate a successful landing not more than 1% wrong detections (hazards that are not identified) are allowed. Based on a sensitivity analysis it was found that using a stereo set-up at a baseline of ≤ 2 m is feasible at altitudes of ≤ 200 m defining false positives of less than 1%. It was thus shown that stereo-based hazard detection is an effective means to decrease the landing risk and increase the lander autonomy. In conclusion, the proposed algorithm is a promising candidate for future landers.
Angle-of-Attack-Modulated Terminal Point Control for Neptune Aerocapture
NASA Technical Reports Server (NTRS)
Queen, Eric M.
2004-01-01
An aerocapture guidance algorithm based on a calculus of variations approach is developed, using angle of attack as the primary control variable. Bank angle is used as a secondary control to alleviate angle of attack extremes and to control inclination. The guidance equations are derived in detail. The controller has very small onboard computational requirements and is robust to atmospheric and aerodynamic dispersions. The algorithm is applied to aerocapture at Neptune. Three versions of the controller are considered with varying angle of attack authority. The three versions of the controller are evaluated using Monte Carlo simulations with expected dispersions.
A trajectory generation framework for modeling spacecraft entry in MDAO
NASA Astrophysics Data System (ADS)
D`Souza, Sarah N.; Sarigul-Klijn, Nesrin
2016-04-01
In this paper a novel trajectory generation framework was developed that optimizes trajectory event conditions for use in a Generalized Entry Guidance algorithm. The framework was developed to be adaptable via the use of high fidelity equations of motion and drag based analytical bank profiles. Within this framework, a novel technique was implemented that resolved the sensitivity of the bank profile to atmospheric non-linearities. The framework's adaptability was established by running two different entry bank conditions. Each case yielded a reference trajectory and set of transition event conditions that are flight feasible and implementable in a Generalized Entry Guidance algorithm.
Access to aidable residual hearing in adult candidates for cochlear implantation in the UK.
Fielden, Claire A; Hampton, Rosa; Smith, Sandra; Kitterick, Pádraig T
2016-04-01
Guidance from the National Institute for Health and Care Excellence (NICE) permits candidates to receive a cochlear implant provided they only hear sounds louder than 90 dB HL at 2 and 4 kHz. In some patients, their level of residual hearing may be sufficient to warrant the use of a hearing aid in their non-implanted ear. A survey of unilaterally implanted adults indicated that those implanted since the publication of NICE guidance were almost seven times more likely to use a hearing aid than those implanted prior to this. If contralateral hearing aid use provides additional benefits over implant use alone, it may be appropriate to consider the capacity to use residual hearing following implantation when determining candidacy.
Quaternion error-based optimal control applied to pinpoint landing
NASA Astrophysics Data System (ADS)
Ghiglino, Pablo
Accurate control techniques for pinpoint planetary landing - i.e., the goal of achieving landing errors in the order of 100m for unmanned missions - is a complex problem that have been tackled in different ways in the available literature. Among other challenges, this kind of control is also affected by the well known trade-off in UAV control that for complex underlying models the control is sub-optimal, while optimal control is applied to simplifed models. The goal of this research has been the development new control algorithms that would be able to tackle these challenges and the result are two novel optimal control algorithms namely: OQTAL and HEX2OQTAL. These controllers share three key properties that are thoroughly proven and shown in this thesis; stability, accuracy and adaptability. Stability is rigorously demonstrated for both controllers. Accuracy is shown in results of comparing these novel controllers with other industry standard algorithms in several different scenarios: there is a gain in accuracy of at least 15% for each controller, and in many cases much more than that. A new tuning algorithm based on swarm heuristics optimisation was developed as well as part of this research in order to tune in an online manner the standard Proportional-Integral-Derivative (PID) controllers used for benchmarking. Finally, adaptability of these controllers can be seen as a combination of four elements: mathematical model extensibility, cost matrices tuning, reduced computation time required and finally no prior knowledge of the navigation or guidance strategies needed. Further simulations in real planetary landing trajectories has shown that these controllers have the capacity of achieving landing errors in the order of pinpoint landing requirements, making them not only very precise UAV controllers, but also potential candidates for pinpoint landing unmanned missions.
Fast-Solving Quasi-Optimal LS-S3VM Based on an Extended Candidate Set.
Ma, Yuefeng; Liang, Xun; Kwok, James T; Li, Jianping; Zhou, Xiaoping; Zhang, Haiyan
2018-04-01
The semisupervised least squares support vector machine (LS-S 3 VM) is an important enhancement of least squares support vector machines in semisupervised learning. Given that most data collected from the real world are without labels, semisupervised approaches are more applicable than standard supervised approaches. Although a few training methods for LS-S 3 VM exist, the problem of deriving the optimal decision hyperplane efficiently and effectually has not been solved. In this paper, a fully weighted model of LS-S 3 VM is proposed, and a simple integer programming (IP) model is introduced through an equivalent transformation to solve the model. Based on the distances between the unlabeled data and the decision hyperplane, a new indicator is designed to represent the possibility that the label of an unlabeled datum should be reversed in each iteration during training. Using the indicator, we construct an extended candidate set consisting of the indices of unlabeled data with high possibilities, which integrates more information from unlabeled data. Our algorithm is degenerated into a special scenario of the previous algorithm when the extended candidate set is reduced into a set with only one element. Two strategies are utilized to determine the descent directions based on the extended candidate set. Furthermore, we developed a novel method for locating a good starting point based on the properties of the equivalent IP model. Combined with the extended candidate set and the carefully computed starting point, a fast algorithm to solve LS-S 3 VM quasi-optimally is proposed. The choice of quasi-optimal solutions results in low computational cost and avoidance of overfitting. Experiments show that our algorithm equipped with the two designed strategies is more effective than other algorithms in at least one of the following three aspects: 1) computational complexity; 2) generalization ability; and 3) flexibility. However, our algorithm and other algorithms have similar levels of performance in the remaining aspects.
2014-03-06
THE 2013 ASTRONAUT CANDIDATE CLASS VISITED THE THRUST VECTOR CONTROL TEST LAB AT MARSHALL'S PROPULSION RESEARCH DEVELOPMENT LABORATORY WHERE ENGINEERS ARE DEVELOPING AND TESTING THE SPACE LAUNCH SYSTEM'S GUIDANCE, NAVIGATION AND CONTROL SOFTWARE AND AVIONICS HARDWARE.
Rapid Contingency Simulation Modeling of the NASA Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Betts, Kevin M.; Rutherford, R. Chad; McDuffie, James; Johnson, Matthew D.
2007-01-01
The NASA Crew Launch Vehicle is a two-stage orbital launcher designed to meet NASA's current as well as future needs for human space flight. In order to free the designers to explore more possibilities during the design phase, a need exists for the ability to quickly perform simulation on both the baseline vehicle as well as the vehicle after proposed changes due to mission planning, vehicle configuration and avionics changes, proposed new guidance and control algorithms, and any other contingencies the designers may wish to consider. Further, after the vehicle is designed and built, the need will remain for such analysis in the event of future mission planning. An easily reconfigurable, modular, nonlinear six-degree-of-freedom simulation matching NASA Marshall's in-house high-fidelity simulator is created with the ability to quickly perform simulation and analysis of the Crew Launch Vehicle throughout the entire launch profile. Simulation results are presented and discussed, and an example comparison fly-off between two candidate controllers is presented.
Exact and heuristic algorithms for Space Information Flow.
Uwitonze, Alfred; Huang, Jiaqing; Ye, Yuanqing; Cheng, Wenqing; Li, Zongpeng
2018-01-01
Space Information Flow (SIF) is a new promising research area that studies network coding in geometric space, such as Euclidean space. The design of algorithms that compute the optimal SIF solutions remains one of the key open problems in SIF. This work proposes the first exact SIF algorithm and a heuristic SIF algorithm that compute min-cost multicast network coding for N (N ≥ 3) given terminal nodes in 2-D Euclidean space. Furthermore, we find that the Butterfly network in Euclidean space is the second example besides the Pentagram network where SIF is strictly better than Euclidean Steiner minimal tree. The exact algorithm design is based on two key techniques: Delaunay triangulation and linear programming. Delaunay triangulation technique helps to find practically good candidate relay nodes, after which a min-cost multicast linear programming model is solved over the terminal nodes and the candidate relay nodes, to compute the optimal multicast network topology, including the optimal relay nodes selected by linear programming from all the candidate relay nodes and the flow rates on the connection links. The heuristic algorithm design is also based on Delaunay triangulation and linear programming techniques. The exact algorithm can achieve the optimal SIF solution with an exponential computational complexity, while the heuristic algorithm can achieve the sub-optimal SIF solution with a polynomial computational complexity. We prove the correctness of the exact SIF algorithm. The simulation results show the effectiveness of the heuristic SIF algorithm.
Yurtkuran, Alkın; Emel, Erdal
2016-01-01
The artificial bee colony (ABC) algorithm is a popular swarm based technique, which is inspired from the intelligent foraging behavior of honeybee swarms. This paper proposes a new variant of ABC algorithm, namely, enhanced ABC with solution acceptance rule and probabilistic multisearch (ABC-SA) to address global optimization problems. A new solution acceptance rule is proposed where, instead of greedy selection between old solution and new candidate solution, worse candidate solutions have a probability to be accepted. Additionally, the acceptance probability of worse candidates is nonlinearly decreased throughout the search process adaptively. Moreover, in order to improve the performance of the ABC and balance the intensification and diversification, a probabilistic multisearch strategy is presented. Three different search equations with distinctive characters are employed using predetermined search probabilities. By implementing a new solution acceptance rule and a probabilistic multisearch approach, the intensification and diversification performance of the ABC algorithm is improved. The proposed algorithm has been tested on well-known benchmark functions of varying dimensions by comparing against novel ABC variants, as well as several recent state-of-the-art algorithms. Computational results show that the proposed ABC-SA outperforms other ABC variants and is superior to state-of-the-art algorithms proposed in the literature.
CNES-NASA Studies of the Mars Sample Return Orbiter Aerocapture Phase
NASA Technical Reports Server (NTRS)
Fraysse, H.; Powell, R.; Rousseau, S.; Striepe, S.
2000-01-01
A Mars Sample Return (MSR) mission has been proposed as a joint CNES (Centre National d'Etudes Spatiales) and NASA effort in the ongoing Mars Exploration Program. The MSR mission is designed to return the first samples of Martian soil to Earth. The primary elements of the mission are a lander, rover, ascent vehicle, orbiter, and an Earth entry vehicle. The Orbiter has been allocated only 2700 kg on the launch phase to perform its part of the mission. This mass restriction has led to the decision to use an aerocapture maneuver at Mars for the orbiter. Aerocapture replaces the initial propulsive capture maneuver with a single atmospheric pass. This atmospheric pass will result in the proper apoapsis, but a periapsis raise maneuver is required at the first apoapsis. The use of aerocapture reduces the total mass requirement by approx. 45% for the same payload. This mission will be the first to use the aerocapture technique. Because the spacecraft is flying through the atmosphere, guidance algorithms must be developed that will autonomously provide the proper commands to reach the desired orbit while not violating any of the design parameters (e.g. maximum deceleration, maximum heating rate, etc.). The guidance algorithm must be robust enough to account for uncertainties in delivery states, atmospheric conditions, mass properties, control system performance, and aerodynamics. To study this very critical phase of the mission, a joint CNES-NASA technical working group has been formed. This group is composed of atmospheric trajectory specialists from CNES, NASA Langley Research Center and NASA Johnson Space Center. This working group is tasked with developing and testing guidance algorithms, as well as cross-validating CNES and NASA flight simulators for the Mars atmospheric entry phase of this mission. The final result will be a recommendation to CNES on the algorithm to use, and an evaluation of the flight risks associated with the algorithm. This paper will describe the aerocapture phase of the MSR mission, the main principles of the guidance algorithms that are under development, the atmospheric entry simulators developed for the evaluations, the process for the evaluations, and preliminary results from the evaluations.
Attitude guidance and simulation with animation of a land-survey satellite motion
NASA Astrophysics Data System (ADS)
Somova, Tatyana
2017-01-01
We consider problems of synthesis of the vector spline attitude guidance laws for a land-survey satellite and an in-flight support of the satellite attitude control system with the use of computer animation of its motion. We have presented the results on the efficiency of the developed algorithms.
Targetting and guidance program documentation. [a user's manual
NASA Technical Reports Server (NTRS)
Harrold, E. F.; Neyhard, J. F.
1974-01-01
A FORTRAN computer program was developed which automatically targets two and three burn rendezvous missions and performs feedback guidance using the GUIDE algorithm. The program was designed to accept a large class of orbit specifications and to automatically choose a two or three burn mission depending upon the time alignment of the vehicle and target. The orbits may be specified as any combination of circular and elliptical orbits and may be coplanar or inclined, but must be aligned coaxially with their perigees in the same direction. The program accomplishes the required targeting by repeatedly converging successively more complex missions. It solves the coplanar impulsive version of the mission, then the finite burn coplanar mission, and finally, the full plane change mission. The GUIDE algorithm is exercised in a feedback guidance mode by taking the targeted solution and moving the vehicle state step by step ahead in time, adding acceleration and navigational errors, and reconverging from the perturbed states at fixed guidance update intervals. A program overview is presented, along with a user's guide which details input, output, and the various subroutines.
Link, W.A.; Barker, R.J.
2008-01-01
Judicious choice of candidate generating distributions improves efficiency of the Metropolis-Hastings algorithm. In Bayesian applications, it is sometimes possible to identify an approximation to the target posterior distribution; this approximate posterior distribution is a good choice for candidate generation. These observations are applied to analysis of the Cormack?Jolly?Seber model and its extensions.
Genetic Algorithm Tuned Fuzzy Logic for Gliding Return Trajectories
NASA Technical Reports Server (NTRS)
Burchett, Bradley T.
2003-01-01
The problem of designing and flying a trajectory for successful recovery of a reusable launch vehicle is tackled using fuzzy logic control with genetic algorithm optimization. The plant is approximated by a simplified three degree of freedom non-linear model. A baseline trajectory design and guidance algorithm consisting of several Mamdani type fuzzy controllers is tuned using a simple genetic algorithm. Preliminary results show that the performance of the overall system is shown to improve with genetic algorithm tuning.
Goodswen, Stephen J; Kennedy, Paul J; Ellis, John T
2013-11-02
An in silico vaccine discovery pipeline for eukaryotic pathogens typically consists of several computational tools to predict protein characteristics. The aim of the in silico approach to discovering subunit vaccines is to use predicted characteristics to identify proteins which are worthy of laboratory investigation. A major challenge is that these predictions are inherent with hidden inaccuracies and contradictions. This study focuses on how to reduce the number of false candidates using machine learning algorithms rather than relying on expensive laboratory validation. Proteins from Toxoplasma gondii, Plasmodium sp., and Caenorhabditis elegans were used as training and test datasets. The results show that machine learning algorithms can effectively distinguish expected true from expected false vaccine candidates (with an average sensitivity and specificity of 0.97 and 0.98 respectively), for proteins observed to induce immune responses experimentally. Vaccine candidates from an in silico approach can only be truly validated in a laboratory. Given any in silico output and appropriate training data, the number of false candidates allocated for validation can be dramatically reduced using a pool of machine learning algorithms. This will ultimately save time and money in the laboratory.
2013-01-01
Background An in silico vaccine discovery pipeline for eukaryotic pathogens typically consists of several computational tools to predict protein characteristics. The aim of the in silico approach to discovering subunit vaccines is to use predicted characteristics to identify proteins which are worthy of laboratory investigation. A major challenge is that these predictions are inherent with hidden inaccuracies and contradictions. This study focuses on how to reduce the number of false candidates using machine learning algorithms rather than relying on expensive laboratory validation. Proteins from Toxoplasma gondii, Plasmodium sp., and Caenorhabditis elegans were used as training and test datasets. Results The results show that machine learning algorithms can effectively distinguish expected true from expected false vaccine candidates (with an average sensitivity and specificity of 0.97 and 0.98 respectively), for proteins observed to induce immune responses experimentally. Conclusions Vaccine candidates from an in silico approach can only be truly validated in a laboratory. Given any in silico output and appropriate training data, the number of false candidates allocated for validation can be dramatically reduced using a pool of machine learning algorithms. This will ultimately save time and money in the laboratory. PMID:24180526
The vision guidance and image processing of AGV
NASA Astrophysics Data System (ADS)
Feng, Tongqing; Jiao, Bin
2017-08-01
Firstly, the principle of AGV vision guidance is introduced and the deviation and deflection angle are measured by image coordinate system. The visual guidance image processing platform is introduced. In view of the fact that the AGV guidance image contains more noise, the image has already been smoothed by a statistical sorting. By using AGV sampling way to obtain image guidance, because the image has the best and different threshold segmentation points. In view of this situation, the method of two-dimensional maximum entropy image segmentation is used to solve the problem. We extract the foreground image in the target band by calculating the contour area method and obtain the centre line with the least square fitting algorithm. With the help of image and physical coordinates, we can obtain the guidance information.
NASA Technical Reports Server (NTRS)
Blissit, J. A.
1986-01-01
Using analysis results from the post trajectory optimization program, an adaptive guidance algorithm is developed to compensate for density, aerodynamic and thrust perturbations during an atmospheric orbital plane change maneuver. The maneuver offers increased mission flexibility along with potential fuel savings for future reentry vehicles. Although designed to guide a proposed NASA Entry Research Vehicle, the algorithm is sufficiently generic for a range of future entry vehicles. The plane change analysis provides insight suggesting a straight-forward algorithm based on an optimized nominal command profile. Bank angle, angle of attack, and engine thrust level, ignition and cutoff times are modulated to adjust the vehicle's trajectory to achieve the desired end-conditions. A performance evaluation of the scheme demonstrates a capability to guide to within 0.05 degrees of the desired plane change and five nautical miles of the desired apogee altitude while maintaining heating constraints. The algorithm is tested under off-nominal conditions of + or -30% density biases, two density profile models, + or -15% aerodynamic uncertainty, and a 33% thrust loss and for various combinations of these conditions.
Glisson, Courtenay L; Altamar, Hernan O; Herrell, S Duke; Clark, Peter; Galloway, Robert L
2011-11-01
Image segmentation is integral to implementing intraoperative guidance for kidney tumor resection. Results seen in computed tomography (CT) data are affected by target organ physiology as well as by the segmentation algorithm used. This work studies variables involved in using level set methods found in the Insight Toolkit to segment kidneys from CT scans and applies the results to an image guidance setting. A composite algorithm drawing on the strengths of multiple level set approaches was built using the Insight Toolkit. This algorithm requires image contrast state and seed points to be identified as input, and functions independently thereafter, selecting and altering method and variable choice as needed. Semi-automatic results were compared to expert hand segmentation results directly and by the use of the resultant surfaces for registration of intraoperative data. Direct comparison using the Dice metric showed average agreement of 0.93 between semi-automatic and hand segmentation results. Use of the segmented surfaces in closest point registration of intraoperative laser range scan data yielded average closest point distances of approximately 1 mm. Application of both inverse registration transforms from the previous step to all hand segmented image space points revealed that the distance variability introduced by registering to the semi-automatically segmented surface versus the hand segmented surface was typically less than 3 mm both near the tumor target and at distal points, including subsurface points. Use of the algorithm shortened user interaction time and provided results which were comparable to the gold standard of hand segmentation. Further, the use of the algorithm's resultant surfaces in image registration provided comparable transformations to surfaces produced by hand segmentation. These data support the applicability and utility of such an algorithm as part of an image guidance workflow.
Probability-based hazard avoidance guidance for planetary landing
NASA Astrophysics Data System (ADS)
Yuan, Xu; Yu, Zhengshi; Cui, Pingyuan; Xu, Rui; Zhu, Shengying; Cao, Menglong; Luan, Enjie
2018-03-01
Future landing and sample return missions on planets and small bodies will seek landing sites with high scientific value, which may be located in hazardous terrains. Autonomous landing in such hazardous terrains and highly uncertain planetary environments is particularly challenging. Onboard hazard avoidance ability is indispensable, and the algorithms must be robust to uncertainties. In this paper, a novel probability-based hazard avoidance guidance method is developed for landing in hazardous terrains on planets or small bodies. By regarding the lander state as probabilistic, the proposed guidance algorithm exploits information on the uncertainty of lander position and calculates the probability of collision with each hazard. The collision probability serves as an accurate safety index, which quantifies the impact of uncertainties on the lander safety. Based on the collision probability evaluation, the state uncertainty of the lander is explicitly taken into account in the derivation of the hazard avoidance guidance law, which contributes to enhancing the robustness to the uncertain dynamics of planetary landing. The proposed probability-based method derives fully analytic expressions and does not require off-line trajectory generation. Therefore, it is appropriate for real-time implementation. The performance of the probability-based guidance law is investigated via a set of simulations, and the effectiveness and robustness under uncertainties are demonstrated.
Demonstration of essentiality of entanglement in a Deutsch-like quantum algorithm
NASA Astrophysics Data System (ADS)
Huang, He-Liang; Goswami, Ashutosh K.; Bao, Wan-Su; Panigrahi, Prasanta K.
2018-06-01
Quantum algorithms can be used to efficiently solve certain classically intractable problems by exploiting quantum parallelism. However, the effectiveness of quantum entanglement in quantum computing remains a question of debate. This study presents a new quantum algorithm that shows entanglement could provide advantages over both classical algorithms and quantum algo- rithms without entanglement. Experiments are implemented to demonstrate the proposed algorithm using superconducting qubits. Results show the viability of the algorithm and suggest that entanglement is essential in obtaining quantum speedup for certain problems in quantum computing. The study provides reliable and clear guidance for developing useful quantum algorithms.
A real-time guidance algorithm for aerospace plane optimal ascent to low earth orbit
NASA Technical Reports Server (NTRS)
Calise, A. J.; Flandro, G. A.; Corban, J. E.
1989-01-01
Problems of onboard trajectory optimization and synthesis of suitable guidance laws for ascent to low Earth orbit of an air-breathing, single-stage-to-orbit vehicle are addressed. A multimode propulsion system is assumed which incorporates turbojet, ramjet, Scramjet, and rocket engines. An algorithm for generating fuel-optimal climb profiles is presented. This algorithm results from the application of the minimum principle to a low-order dynamic model that includes angle-of-attack effects and the normal component of thrust. Maximum dynamic pressure and maximum aerodynamic heating rate constraints are considered. Switching conditions are derived which, under appropriate assumptions, govern optimal transition from one propulsion mode to another. A nonlinear transformation technique is employed to derived a feedback controller for tracking the computed trajectory. Numerical results illustrate the nature of the resulting fuel-optimal climb paths.
Automatic design of decision-tree induction algorithms tailored to flexible-receptor docking data.
Barros, Rodrigo C; Winck, Ana T; Machado, Karina S; Basgalupp, Márcio P; de Carvalho, André C P L F; Ruiz, Duncan D; de Souza, Osmar Norberto
2012-11-21
This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor.
Automatic design of decision-tree induction algorithms tailored to flexible-receptor docking data
2012-01-01
Background This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. Results The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. Conclusions We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor. PMID:23171000
Automated longwall guidance and control systems, phase 1
NASA Technical Reports Server (NTRS)
Rybak, S. C.
1978-01-01
Candidate vertical control systems (VCS) and face advancement systems (FAS) required to satisfactorily automate the longwall system were analyzed and simulated in order to develop an overall longwall system configuration for preliminary design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Mark A.; Bigelow, Matthew; Gilkey, Jeff C.
The Super Strypi Navigation, Guidance & Control Software is a real-time implementation of the navigation, guidance and control algorithms designed to deliver a payload to a desired orbit for the rail launched Super Strypi launch vehicle. The software contains all flight control algorithms required from pre-launch until orbital insertion. The flight sequencer module calls the NG&C functions at the appropriate times of flight. Additional functionality includes all the low level drivers and I/O for communicating to other systems within the launch vehicle and to the ground support equipment. The software is designed such that changes to the launch location andmore » desired orbit can be changed without recompiling the code.« less
Vision-based guidance for an automated roving vehicle
NASA Technical Reports Server (NTRS)
Griffin, M. D.; Cunningham, R. T.; Eskenazi, R.
1978-01-01
A controller designed to guide an automated vehicle to a specified target without external intervention is described. The intended application is to the requirements of planetary exploration, where substantial autonomy is required because of the prohibitive time lags associated with closed-loop ground control. The guidance algorithm consists of a set of piecewise-linear control laws for velocity and steering commands, and is executable in real time with fixed-point arithmetic. The use of a previously-reported object tracking algorithm for the vision system to provide position feedback data is described. Test results of the control system on a breadboard rover at the Jet Propulsion Laboratory are included.
Unmanned Vehicle Guidance Using Video Camera/Vehicle Model
NASA Technical Reports Server (NTRS)
Sutherland, T.
1999-01-01
A video guidance sensor (VGS) system has flown on both STS-87 and STS-95 to validate a single camera/target concept for vehicle navigation. The main part of the image algorithm was the subtraction of two consecutive images using software. For a nominal size image of 256 x 256 pixels this subtraction can take a large portion of the time between successive frames in standard rate video leaving very little time for other computations. The purpose of this project was to integrate the software subtraction into hardware to speed up the subtraction process and allow for more complex algorithms to be performed, both in hardware and software.
Efficient sequential and parallel algorithms for finding edit distance based motifs.
Pal, Soumitra; Xiao, Peng; Rajasekaran, Sanguthevar
2016-08-18
Motif search is an important step in extracting meaningful patterns from biological data. The general problem of motif search is intractable and there is a pressing need to develop efficient, exact and approximation algorithms to solve this problem. In this paper, we present several novel, exact, sequential and parallel algorithms for solving the (l,d) Edit-distance-based Motif Search (EMS) problem: given two integers l,d and n biological strings, find all strings of length l that appear in each input string with atmost d errors of types substitution, insertion and deletion. One popular technique to solve the problem is to explore for each input string the set of all possible l-mers that belong to the d-neighborhood of any substring of the input string and output those which are common for all input strings. We introduce a novel and provably efficient neighborhood exploration technique. We show that it is enough to consider the candidates in neighborhood which are at a distance exactly d. We compactly represent these candidate motifs using wildcard characters and efficiently explore them with very few repetitions. Our sequential algorithm uses a trie based data structure to efficiently store and sort the candidate motifs. Our parallel algorithm in a multi-core shared memory setting uses arrays for storing and a novel modification of radix-sort for sorting the candidate motifs. The algorithms for EMS are customarily evaluated on several challenging instances such as (8,1), (12,2), (16,3), (20,4), and so on. The best previously known algorithm, EMS1, is sequential and in estimated 3 days solves up to instance (16,3). Our sequential algorithms are more than 20 times faster on (16,3). On other hard instances such as (9,2), (11,3), (13,4), our algorithms are much faster. Our parallel algorithm has more than 600 % scaling performance while using 16 threads. Our algorithms have pushed up the state-of-the-art of EMS solvers and we believe that the techniques introduced in this paper are also applicable to other motif search problems such as Planted Motif Search (PMS) and Simple Motif Search (SMS).
Enhanced Fuel-Optimal Trajectory-Generation Algorithm for Planetary Pinpoint Landing
NASA Technical Reports Server (NTRS)
Acikmese, Behcet; Blackmore, James C.; Scharf, Daniel P.
2011-01-01
An enhanced algorithm is developed that builds on a previous innovation of fuel-optimal powered-descent guidance (PDG) for planetary pinpoint landing. The PDG problem is to compute constrained, fuel-optimal trajectories to land a craft at a prescribed target on a planetary surface, starting from a parachute cut-off point and using a throttleable descent engine. The previous innovation showed the minimal-fuel PDG problem can be posed as a convex optimization problem, in particular, as a Second-Order Cone Program, which can be solved to global optimality with deterministic convergence properties, and hence is a candidate for onboard implementation. To increase the speed and robustness of this convex PDG algorithm for possible onboard implementation, the following enhancements are incorporated: 1) Fast detection of infeasibility (i.e., control authority is not sufficient for soft-landing) for subsequent fault response. 2) The use of a piecewise-linear control parameterization, providing smooth solution trajectories and increasing computational efficiency. 3) An enhanced line-search algorithm for optimal time-of-flight, providing quicker convergence and bounding the number of path-planning iterations needed. 4) An additional constraint that analytically guarantees inter-sample satisfaction of glide-slope and non-sub-surface flight constraints, allowing larger discretizations and, hence, faster optimization. 5) Explicit incorporation of Mars rotation rate into the trajectory computation for improved targeting accuracy. These enhancements allow faster convergence to the fuel-optimal solution and, more importantly, remove the need for a "human-in-the-loop," as constraints will be satisfied over the entire path-planning interval independent of step-size (as opposed to just at the discrete time points) and infeasible initial conditions are immediately detected. Finally, while the PDG stage is typically only a few minutes, ignoring the rotation rate of Mars can introduce 10s of meters of error. By incorporating it, the enhanced PDG algorithm becomes capable of pinpoint targeting.
A novel line segment detection algorithm based on graph search
NASA Astrophysics Data System (ADS)
Zhao, Hong-dan; Liu, Guo-ying; Song, Xu
2018-02-01
To overcome the problem of extracting line segment from an image, a method of line segment detection was proposed based on the graph search algorithm. After obtaining the edge detection result of the image, the candidate straight line segments are obtained in four directions. For the candidate straight line segments, their adjacency relationships are depicted by a graph model, based on which the depth-first search algorithm is employed to determine how many adjacent line segments need to be merged. Finally we use the least squares method to fit the detected straight lines. The comparative experimental results verify that the proposed algorithm has achieved better results than the line segment detector (LSD).
NASA Astrophysics Data System (ADS)
Donchenko, Sergey S.; Odinokov, Sergey B.; Betin, Alexandr U.; Hanevich, Pavel; Semishko, Sergey; Zlokazov, Evgenii Y.
2017-05-01
The holographic disk reading device for recovery of CGFH is described. Principle of its work is shown. Analyzed approaches for developing algorithms, used in this device: guidance and decoding. Listed results of experimental researches.
Operator Objective Function Guidance for a Real-Time Unmanned Vehicle Scheduling Algorithm
2012-12-01
Consensus - Based Decentralized Auctions for Robust Task Allocation ,” IEEE Transactions on Robotics and Automation, Vol. 25, No. 4, No. 4, 2009, pp. 912...planning for the fleet. The decentralized task planner used in OPS-USERS is the consensus - based bundle algorithm (CBBA), a decentralized , polynomial...and surveillance (OPS-USERS), which leverages decentralized algorithms for vehicle routing and task allocation . This
Comparative Analysis of ACAS-Xu and DAIDALUS Detect-and-Avoid Systems
NASA Technical Reports Server (NTRS)
Davies, Jason T.; Wu, Minghong G.
2018-01-01
The Detect and Avoid (DAA) capability of a recent version (Run 3) of the Airborne Collision Avoidance System-Xu (ACAS-Xu) is measured against that of the Detect and AvoID Alerting Logic for Unmanned Systems (DAIDALUS), a reference algorithm for the Phase 1 Minimum Operational Performance Standards (MOPS) for DAA. This comparative analysis of the two systems' alerting and horizontal guidance outcomes is conducted through the lens of the Detect and Avoid mission using flight data of scripted encounters from a recent flight test. Results indicate comparable timelines and outcomes between ACAS-Xu's Remain Well Clear alert and guidance and DAIDALUS's corrective alert and guidance, although ACAS-Xu's guidance appears to be more conservative. ACAS-Xu's Collision Avoidance alert and guidance occurs later than DAIDALUS's warning alert and guidance, and overlaps with DAIDALUS's timeline of maneuver to remain Well Clear. Interesting discrepancies between ACAS-Xu's directive guidance and DAIDALUS's "Regain Well Clear" guidance occur in some scenarios.
An improved multi-domain convolution tracking algorithm
NASA Astrophysics Data System (ADS)
Sun, Xin; Wang, Haiying; Zeng, Yingsen
2018-04-01
Along with the wide application of the Deep Learning in the field of Computer vision, Deep learning has become a mainstream direction in the field of object tracking. The tracking algorithm in this paper is based on the improved multidomain convolution neural network, and the VOT video set is pre-trained on the network by multi-domain training strategy. In the process of online tracking, the network evaluates candidate targets sampled from vicinity of the prediction target in the previous with Gaussian distribution, and the candidate target with the highest score is recognized as the prediction target of this frame. The Bounding Box Regression model is introduced to make the prediction target closer to the ground-truths target box of the test set. Grouping-update strategy is involved to extract and select useful update samples in each frame, which can effectively prevent over fitting. And adapt to changes in both target and environment. To improve the speed of the algorithm while maintaining the performance, the number of candidate target succeed in adjusting dynamically with the help of Self-adaption parameter Strategy. Finally, the algorithm is tested by OTB set, compared with other high-performance tracking algorithms, and the plot of success rate and the accuracy are drawn. which illustrates outstanding performance of the tracking algorithm in this paper.
NASA Astrophysics Data System (ADS)
Bal, A.; Alam, M. S.; Aslan, M. S.
2006-05-01
Often sensor ego-motion or fast target movement causes the target to temporarily go out of the field-of-view leading to reappearing target detection problem in target tracking applications. Since the target goes out of the current frame and reenters at a later frame, the reentering location and variations in rotation, scale, and other 3D orientations of the target are not known thus complicating the detection algorithm has been developed using Fukunaga-Koontz Transform (FKT) and distance classifier correlation filter (DCCF). The detection algorithm uses target and background information, extracted from training samples, to detect possible candidate target images. The detected candidate target images are then introduced into the second algorithm, DCCF, called clutter rejection module, to determine the target coordinates are detected and tracking algorithm is initiated. The performance of the proposed FKT-DCCF based target detection algorithm has been tested using real-world forward looking infrared (FLIR) video sequences.
Autonomous Locator of Thermals (ALOFT) Autonomous Soaring Algorithm
2015-04-03
estimator used on the NRL CICADA Mk 3 micro air vehicle [13]. An extended Kalman filter (EKF) was designed to estimate the airspeed sensor bias and...Boulder, 2007. ALOFT Autonomous Soaring Algorithm 31 13. A.D. Kahn and D.J. Edwards, “Navigation, Guidance and Control for the CICADA Expendable
Optimal flight trajectories in the presence of windshear, 1984-86
NASA Technical Reports Server (NTRS)
Miele, A.
1986-01-01
Optimal flight trajectories were determined in the presence of windshear and guidance schemes were developed for near optimum flight in a windshear. This is a wind characterized by sharp change in intensity and direction over a relatively small region of space. This problem is important in the takeoff and landing of both civilian airplanes and military airplanes and is key to aircraft saftey. The topics covered in reference to takeoff problems are: equations of motion, problem formulation, algorithms, optimal flight trajectories, advanced guidance schemes, simplified guidance schemes, and piloting strategies.
Comparison of Visually Guided Flight in Insects and Birds.
Altshuler, Douglas L; Srinivasan, Mandyam V
2018-01-01
Over the last half century, work with flies, bees, and moths have revealed a number of visual guidance strategies for controlling different aspects of flight. Some algorithms, such as the use of pattern velocity in forward flight, are employed by all insects studied so far, and are used to control multiple flight tasks such as regulation of speed, measurement of distance, and positioning through narrow passages. Although much attention has been devoted to long-range navigation and homing in birds, until recently, very little was known about how birds control flight in a moment-to-moment fashion. A bird that flies rapidly through dense foliage to land on a branch-as birds often do-engages in a veritable three-dimensional slalom, in which it has to continually dodge branches and leaves, and find, and possibly even plan a collision-free path to the goal in real time. Each mode of flight from take-off to goal could potentially involve a different visual guidance algorithm. Here, we briefly review strategies for visual guidance of flight in insects, synthesize recent work from short-range visual guidance in birds, and offer a general comparison between the two groups of organisms.
Fuel Optimal, Finite Thrust Guidance Methods to Circumnavigate with Lighting Constraints
NASA Astrophysics Data System (ADS)
Prince, E. R.; Carr, R. W.; Cobb, R. G.
This paper details improvements made to the authors' most recent work to find fuel optimal, finite-thrust guidance to inject an inspector satellite into a prescribed natural motion circumnavigation (NMC) orbit about a resident space object (RSO) in geosynchronous orbit (GEO). Better initial guess methodologies are developed for the low-fidelity model nonlinear programming problem (NLP) solver to include using Clohessy- Wiltshire (CW) targeting, a modified particle swarm optimization (PSO), and MATLAB's genetic algorithm (GA). These initial guess solutions may then be fed into the NLP solver as an initial guess, where a different NLP solver, IPOPT, is used. Celestial lighting constraints are taken into account in addition to the sunlight constraint, ensuring that the resulting NMC also adheres to Moon and Earth lighting constraints. The guidance is initially calculated given a fixed final time, and then solutions are also calculated for fixed final times before and after the original fixed final time, allowing mission planners to choose the lowest-cost solution in the resulting range which satisfies all constraints. The developed algorithms provide computationally fast and highly reliable methods for determining fuel optimal guidance for NMC injections while also adhering to multiple lighting constraints.
An analysis of a candidate control algorithm for a ride quality augmentation system
NASA Technical Reports Server (NTRS)
Suikat, Reiner; Donaldson, Kent; Downing, David R.
1987-01-01
This paper presents a detailed analysis of a candidate algorithm for a ride quality augmentation system. The algorithm consists of a full-state feedback control law based on optimal control output weighting, estimators for angle of attack and sideslip, and a maneuvering algorithm. The control law is shown to perform well by both frequency and time domain analysis. The rms vertical acceleration is reduced by about 40 percent over the whole mission flight envelope. The estimators for the angle of attack and sideslip avoid the often inaccurate or costly direct measurement of those angles. The maneuvering algorithm will allow the augmented airplane to respond to pilot inputs. The design characteristics and performance are documented by the closed-loop eigenvalues; rms levels of vertical, lateral, and longitudinal acceleration; and representative time histories and frequency response.
NASA Technical Reports Server (NTRS)
Carroll, Chester C.; Youngblood, John N.; Saha, Aindam
1987-01-01
Improvements and advances in the development of computer architecture now provide innovative technology for the recasting of traditional sequential solutions into high-performance, low-cost, parallel system to increase system performance. Research conducted in development of specialized computer architecture for the algorithmic execution of an avionics system, guidance and control problem in real time is described. A comprehensive treatment of both the hardware and software structures of a customized computer which performs real-time computation of guidance commands with updated estimates of target motion and time-to-go is presented. An optimal, real-time allocation algorithm was developed which maps the algorithmic tasks onto the processing elements. This allocation is based on the critical path analysis. The final stage is the design and development of the hardware structures suitable for the efficient execution of the allocated task graph. The processing element is designed for rapid execution of the allocated tasks. Fault tolerance is a key feature of the overall architecture. Parallel numerical integration techniques, tasks definitions, and allocation algorithms are discussed. The parallel implementation is analytically verified and the experimental results are presented. The design of the data-driven computer architecture, customized for the execution of the particular algorithm, is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, C.C.; Youngblood, J.N.; Saha, A.
1987-12-01
Improvements and advances in the development of computer architecture now provide innovative technology for the recasting of traditional sequential solutions into high-performance, low-cost, parallel system to increase system performance. Research conducted in development of specialized computer architecture for the algorithmic execution of an avionics system, guidance and control problem in real time is described. A comprehensive treatment of both the hardware and software structures of a customized computer which performs real-time computation of guidance commands with updated estimates of target motion and time-to-go is presented. An optimal, real-time allocation algorithm was developed which maps the algorithmic tasks onto the processingmore » elements. This allocation is based on the critical path analysis. The final stage is the design and development of the hardware structures suitable for the efficient execution of the allocated task graph. The processing element is designed for rapid execution of the allocated tasks. Fault tolerance is a key feature of the overall architecture. Parallel numerical integration techniques, tasks definitions, and allocation algorithms are discussed. The parallel implementation is analytically verified and the experimental results are presented. The design of the data-driven computer architecture, customized for the execution of the particular algorithm, is discussed.« less
NASA Technical Reports Server (NTRS)
Mullally, Fergal
2017-01-01
We present an automated method of identifying background eclipsing binaries masquerading as planet candidates in the Kepler planet candidate catalogs. We codify the manual vetting process for Kepler Objects of Interest (KOIs) described in Bryson et al. (2013) with a series of measurements and tests that can be performed algorithmically. We compare our automated results with a sample of manually vetted KOIs from the catalog of Burke et al. (2014) and find excellent agreement. We test the performance on a set of simulated transits and find our algorithm correctly identifies simulated false positives approximately 50 of the time, and correctly identifies 99 of simulated planet candidates.
Implementation of an optimum profile guidance system on STOLAND
NASA Technical Reports Server (NTRS)
Flanagan, P. F.
1978-01-01
The implementation on the STOLAND airborne digital computer of an optimum profile guidance system for the augmentor wing jet STOL research aircraft is described. Major tasks were to implement the guidance and control logic to airborne computer software and to integrate the module with the existing STOLAND navigation, display, and autopilot routines. The optimum profile guidance system comprises an algorithm for synthesizing mimimum fuel trajectories for a wide range of starting positions in the terminal area and a control law for flying the aircraft automatically along the trajectory. The avionics software developed is described along with a FORTRAN program that was constructed to reflect the modular nature and algorthms implemented in the avionics software.
Inferring Gene Regulatory Networks by Singular Value Decomposition and Gravitation Field Algorithm
Zheng, Ming; Wu, Jia-nan; Huang, Yan-xin; Liu, Gui-xia; Zhou, You; Zhou, Chun-guang
2012-01-01
Reconstruction of gene regulatory networks (GRNs) is of utmost interest and has become a challenge computational problem in system biology. However, every existing inference algorithm from gene expression profiles has its own advantages and disadvantages. In particular, the effectiveness and efficiency of every previous algorithm is not high enough. In this work, we proposed a novel inference algorithm from gene expression data based on differential equation model. In this algorithm, two methods were included for inferring GRNs. Before reconstructing GRNs, singular value decomposition method was used to decompose gene expression data, determine the algorithm solution space, and get all candidate solutions of GRNs. In these generated family of candidate solutions, gravitation field algorithm was modified to infer GRNs, used to optimize the criteria of differential equation model, and search the best network structure result. The proposed algorithm is validated on both the simulated scale-free network and real benchmark gene regulatory network in networks database. Both the Bayesian method and the traditional differential equation model were also used to infer GRNs, and the results were used to compare with the proposed algorithm in our work. And genetic algorithm and simulated annealing were also used to evaluate gravitation field algorithm. The cross-validation results confirmed the effectiveness of our algorithm, which outperforms significantly other previous algorithms. PMID:23226565
A Network Selection Algorithm Considering Power Consumption in Hybrid Wireless Networks
NASA Astrophysics Data System (ADS)
Joe, Inwhee; Kim, Won-Tae; Hong, Seokjoon
In this paper, we propose a novel network selection algorithm considering power consumption in hybrid wireless networks for vertical handover. CDMA, WiBro, WLAN networks are candidate networks for this selection algorithm. This algorithm is composed of the power consumption prediction algorithm and the final network selection algorithm. The power consumption prediction algorithm estimates the expected lifetime of the mobile station based on the current battery level, traffic class and power consumption for each network interface card of the mobile station. If the expected lifetime of the mobile station in a certain network is not long enough compared the handover delay, this particular network will be removed from the candidate network list, thereby preventing unnecessary handovers in the preprocessing procedure. On the other hand, the final network selection algorithm consists of AHP (Analytic Hierarchical Process) and GRA (Grey Relational Analysis). The global factors of the network selection structure are QoS, cost and lifetime. If user preference is lifetime, our selection algorithm selects the network that offers longest service duration due to low power consumption. Also, we conduct some simulations using the OPNET simulation tool. The simulation results show that the proposed algorithm provides longer lifetime in the hybrid wireless network environment.
Press Oil Final Release Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whicker, Jeffrey Jay; Ruedig, Elizabeth
There are forty-eight 55 gallon barrels filled with hydraulic oil that are candidates for release and recycle. This oil needs to be characterized prior to release. Principles of sampling as provided in MARSAME/MARSSIM approaches were used as guidance for sampling.
Effect of segmentation algorithms on the performance of computerized detection of lung nodules in CT
Guo, Wei; Li, Qiang
2014-01-01
Purpose: The purpose of this study is to reveal how the performance of lung nodule segmentation algorithm impacts the performance of lung nodule detection, and to provide guidelines for choosing an appropriate segmentation algorithm with appropriate parameters in a computer-aided detection (CAD) scheme. Methods: The database consisted of 85 CT scans with 111 nodules of 3 mm or larger in diameter from the standard CT lung nodule database created by the Lung Image Database Consortium. The initial nodule candidates were identified as those with strong response to a selective nodule enhancement filter. A uniform viewpoint reformation technique was applied to a three-dimensional nodule candidate to generate 24 two-dimensional (2D) reformatted images, which would be used to effectively distinguish between true nodules and false positives. Six different algorithms were employed to segment the initial nodule candidates in the 2D reformatted images. Finally, 2D features from the segmented areas in the 24 reformatted images were determined, selected, and classified for removal of false positives. Therefore, there were six similar CAD schemes, in which only the segmentation algorithms were different. The six segmentation algorithms included the fixed thresholding (FT), Otsu thresholding (OTSU), fuzzy C-means (FCM), Gaussian mixture model (GMM), Chan and Vese model (CV), and local binary fitting (LBF). The mean Jaccard index and the mean absolute distance (Dmean) were employed to evaluate the performance of segmentation algorithms, and the number of false positives at a fixed sensitivity was employed to evaluate the performance of the CAD schemes. Results: For the segmentation algorithms of FT, OTSU, FCM, GMM, CV, and LBF, the highest mean Jaccard index between the segmented nodule and the ground truth were 0.601, 0.586, 0.588, 0.563, 0.543, and 0.553, respectively, and the corresponding Dmean were 1.74, 1.80, 2.32, 2.80, 3.48, and 3.18 pixels, respectively. With these segmentation results of the six segmentation algorithms, the six CAD schemes reported 4.4, 8.8, 3.4, 9.2, 13.6, and 10.4 false positives per CT scan at a sensitivity of 80%. Conclusions: When multiple algorithms are available for segmenting nodule candidates in a CAD scheme, the “optimal” segmentation algorithm did not necessarily lead to the “optimal” CAD detection performance. PMID:25186393
An Automated Method to Compute Orbital Re-entry Trajectories with Heating Constraints
NASA Technical Reports Server (NTRS)
Zimmerman, Curtis; Dukeman, Greg; Hanson, John; Fogle, Frank R. (Technical Monitor)
2002-01-01
Determining how to properly manipulate the controls of a re-entering re-usable launch vehicle (RLV) so that it is able to safely return to Earth and land involves the solution of a two-point boundary value problem (TPBVP). This problem, which can be quite difficult, is traditionally solved on the ground prior to flight. If necessary, a nearly unlimited amount of time is available to find the 'best' solution using a variety of trajectory design and optimization tools. The role of entry guidance during flight is to follow the pre- determined reference solution while correcting for any errors encountered along the way. This guidance method is both highly reliable and very efficient in terms of onboard computer resources. There is a growing interest in a style of entry guidance that places the responsibility of solving the TPBVP in the actual entry guidance flight software. Here there is very limited computer time. The powerful, but finicky, mathematical tools used by trajectory designers on the ground cannot in general be converted to do the job. Non-convergence or slow convergence can result in disaster. The challenges of designing such an algorithm are numerous and difficult. Yet the payoff (in the form of decreased operational costs and increased safety) can be substantiaL This paper presents an algorithm that incorporates features of both types of guidance strategies. It takes an initial RLV orbital re-entry state and finds a trajectory that will safely transport the vehicle to Earth. During actual flight, the computed trajectory is used as the reference to be flown by a more traditional guidance method.
A Multipath Mitigation Algorithm for vehicle with Smart Antenna
NASA Astrophysics Data System (ADS)
Ji, Jing; Zhang, Jiantong; Chen, Wei; Su, Deliang
2018-01-01
In this paper, the antenna array adaptive method is used to eliminate the multipath interference in the environment of GPS L1 frequency. Combined with the power inversion (PI) algorithm and the minimum variance no distortion response (MVDR) algorithm, the anti-Simulation and verification of the antenna array, and the program into the FPGA, the actual test on the CBD road, the theoretical analysis of the LCMV criteria and PI and MVDR algorithm principles and characteristics of MVDR algorithm to verify anti-multipath interference performance is better than PI algorithm, The satellite navigation in the field of vehicle engineering practice has some guidance and reference.
NASA Technical Reports Server (NTRS)
Izumi, K. H.; Thompson, J. L.; Groce, J. L.; Schwab, R. W.
1986-01-01
The design requirements for a 4D path definition algorithm are described. These requirements were developed for the NASA ATOPS as an extension of the Local Flow Management/Profile Descent algorithm. They specify the processing flow, functional and data architectures, and system input requirements, and recommended the addition of a broad path revision (reinitialization) function capability. The document also summarizes algorithm design enhancements and the implementation status of the algorithm on an in-house PDP-11/70 computer. Finally, the requirements for the pilot-computer interfaces, the lateral path processor, and guidance and steering function are described.
SPARTAN: A High-Fidelity Simulation for Automated Rendezvous and Docking Applications
NASA Technical Reports Server (NTRS)
Turbe, Michael A.; McDuffie, James H.; DeKock, Brandon K.; Betts, Kevin M.; Carrington, Connie K.
2007-01-01
bd Systems (a subsidiary of SAIC) has developed the Simulation Package for Autonomous Rendezvous Test and ANalysis (SPARTAN), a high-fidelity on-orbit simulation featuring multiple six-degree-of-freedom (6DOF) vehicles. SPARTAN has been developed in a modular fashion in Matlab/Simulink to test next-generation automated rendezvous and docking guidance, navigation,and control algorithms for NASA's new Vision for Space Exploration. SPARTAN includes autonomous state-based mission manager algorithms responsible for sequencing the vehicle through various flight phases based on on-board sensor inputs and closed-loop guidance algorithms, including Lambert transfers, Clohessy-Wiltshire maneuvers, and glideslope approaches The guidance commands are implemented using an integrated translation and attitude control system to provide 6DOF control of each vehicle in the simulation. SPARTAN also includes high-fidelity representations of a variety of absolute and relative navigation sensors that maybe used for NASA missions, including radio frequency, lidar, and video-based rendezvous sensors. Proprietary navigation sensor fusion algorithms have been developed that allow the integration of these sensor measurements through an extended Kalman filter framework to create a single optimal estimate of the relative state of the vehicles. SPARTAN provides capability for Monte Carlo dispersion analysis, allowing for rigorous evaluation of the performance of the complete proposed AR&D system, including software, sensors, and mechanisms. SPARTAN also supports hardware-in-the-loop testing through conversion of the algorithms to C code using Real-Time Workshop in order to be hosted in a mission computer engineering development unit running an embedded real-time operating system. SPARTAN also contains both runtime TCP/IP socket interface and post-processing compatibility with bdStudio, a visualization tool developed by bd Systems, allowing for intuitive evaluation of simulation results. A description of the SPARTAN architecture and capabilities is provided, along with details on the models and algorithms utilized and results from representative missions.
Status Report on the First Round of the Development of the Advanced Encryption Standard
Nechvatal, James; Barker, Elaine; Dodson, Donna; Dworkin, Morris; Foti, James; Roback, Edward
1999-01-01
In 1997, the National Institute of Standards and Technology (NIST) initiated a process to select a symmetric-key encryption algorithm to be used to protect sensitive (unclassified) Federal information in furtherance of NIST’s statutory responsibilities. In 1998, NIST announced the acceptance of 15 candidate algorithms and requested the assistance of the cryptographic research community in analyzing the candidates. This analysis included an initial examination of the security and efficiency characteristics for each algorithm. NIST has reviewed the results of this research and selected five algorithms (MARS, RC6™, Rijndael, Serpent and Twofish) as finalists. The research results and rationale for the selection of the finalists are documented in this report. The five finalists will be the subject of further study before the selection of one or more of these algorithms for inclusion in the Advanced Encryption Standard.
Predicting the random drift of MEMS gyroscope based on K-means clustering and OLS RBF Neural Network
NASA Astrophysics Data System (ADS)
Wang, Zhen-yu; Zhang, Li-jie
2017-10-01
Measure error of the sensor can be effectively compensated with prediction. Aiming at large random drift error of MEMS(Micro Electro Mechanical System))gyroscope, an improved learning algorithm of Radial Basis Function(RBF) Neural Network(NN) based on K-means clustering and Orthogonal Least-Squares (OLS) is proposed in this paper. The algorithm selects the typical samples as the initial cluster centers of RBF NN firstly, candidates centers with K-means algorithm secondly, and optimizes the candidate centers with OLS algorithm thirdly, which makes the network structure simpler and makes the prediction performance better. Experimental results show that the proposed K-means clustering OLS learning algorithm can predict the random drift of MEMS gyroscope effectively, the prediction error of which is 9.8019e-007°/s and the prediction time of which is 2.4169e-006s
LensFlow: A Convolutional Neural Network in Search of Strong Gravitational Lenses
NASA Astrophysics Data System (ADS)
Pourrahmani, Milad; Nayyeri, Hooshang; Cooray, Asantha
2018-03-01
In this work, we present our machine learning classification algorithm for identifying strong gravitational lenses from wide-area surveys using convolutional neural networks; LENSFLOW. We train and test the algorithm using a wide variety of strong gravitational lens configurations from simulations of lensing events. Images are processed through multiple convolutional layers that extract feature maps necessary to assign a lens probability to each image. LENSFLOW provides a ranking scheme for all sources that could be used to identify potential gravitational lens candidates by significantly reducing the number of images that have to be visually inspected. We apply our algorithm to the HST/ACS i-band observations of the COSMOS field and present our sample of identified lensing candidates. The developed machine learning algorithm is more computationally efficient and complimentary to classical lens identification algorithms and is ideal for discovering such events across wide areas from current and future surveys such as LSST and WFIRST.
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Saptarshi
Multi-agent systems are widely used for constructing a desired formation shape, exploring an area, surveillance, coverage, and other cooperative tasks. This dissertation introduces novel algorithms in the three main areas of shape formation, distributed estimation, and attitude control of large-scale multi-agent systems. In the first part of this dissertation, we address the problem of shape formation for thousands to millions of agents. Here, we present two novel algorithms for guiding a large-scale swarm of robotic systems into a desired formation shape in a distributed and scalable manner. These probabilistic swarm guidance algorithms adopt an Eulerian framework, where the physical space is partitioned into bins and the swarm's density distribution over each bin is controlled using tunable Markov chains. In the first algorithm - Probabilistic Swarm Guidance using Inhomogeneous Markov Chains (PSG-IMC) - each agent determines its bin transition probabilities using a time-inhomogeneous Markov chain that is constructed in real-time using feedback from the current swarm distribution. This PSG-IMC algorithm minimizes the expected cost of the transitions required to achieve and maintain the desired formation shape, even when agents are added to or removed from the swarm. The algorithm scales well with a large number of agents and complex formation shapes, and can also be adapted for area exploration applications. In the second algorithm - Probabilistic Swarm Guidance using Optimal Transport (PSG-OT) - each agent determines its bin transition probabilities by solving an optimal transport problem, which is recast as a linear program. In the presence of perfect feedback of the current swarm distribution, this algorithm minimizes the given cost function, guarantees faster convergence, reduces the number of transitions for achieving the desired formation, and is robust to disturbances or damages to the formation. We demonstrate the effectiveness of these two proposed swarm guidance algorithms using results from numerical simulations and closed-loop hardware experiments on multiple quadrotors. In the second part of this dissertation, we present two novel discrete-time algorithms for distributed estimation, which track a single target using a network of heterogeneous sensing agents. The Distributed Bayesian Filtering (DBF) algorithm, the sensing agents combine their normalized likelihood functions using the logarithmic opinion pool and the discrete-time dynamic average consensus algorithm. Each agent's estimated likelihood function converges to an error ball centered on the joint likelihood function of the centralized multi-sensor Bayesian filtering algorithm. Using a new proof technique, the convergence, stability, and robustness properties of the DBF algorithm are rigorously characterized. The explicit bounds on the time step of the robust DBF algorithm are shown to depend on the time-scale of the target dynamics. Furthermore, the DBF algorithm for linear-Gaussian models can be cast into a modified form of the Kalman information filter. In the Bayesian Consensus Filtering (BCF) algorithm, the agents combine their estimated posterior pdfs multiple times within each time step using the logarithmic opinion pool scheme. Thus, each agent's consensual pdf minimizes the sum of Kullback-Leibler divergences with the local posterior pdfs. The performance and robust properties of these algorithms are validated using numerical simulations. In the third part of this dissertation, we present an attitude control strategy and a new nonlinear tracking controller for a spacecraft carrying a large object, such as an asteroid or a boulder. If the captured object is larger or comparable in size to the spacecraft and has significant modeling uncertainties, conventional nonlinear control laws that use exact feed-forward cancellation are not suitable because they exhibit a large resultant disturbance torque. The proposed nonlinear tracking control law guarantees global exponential convergence of tracking errors with finite-gain Lp stability in the presence of modeling uncertainties and disturbances, and reduces the resultant disturbance torque. Further, this control law permits the use of any attitude representation and its integral control formulation eliminates any constant disturbance. Under small uncertainties, the best strategy for stabilizing the combined system is to track a fuel-optimal reference trajectory using this nonlinear control law, because it consumes the least amount of fuel. In the presence of large uncertainties, the most effective strategy is to track the derivative plus proportional-derivative based reference trajectory, because it reduces the resultant disturbance torque. The effectiveness of the proposed attitude control law is demonstrated by using results of numerical simulation based on an Asteroid Redirect Mission concept. The new algorithms proposed in this dissertation will facilitate the development of versatile autonomous multi-agent systems that are capable of performing a variety of complex tasks in a robust and scalable manner.
Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map.
Tan, Yihua; Li, Qingyun; Li, Yansheng; Tian, Jinwen
2015-09-11
This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR) images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate.
CCOMP: An efficient algorithm for complex roots computation of determinantal equations
NASA Astrophysics Data System (ADS)
Zouros, Grigorios P.
2018-01-01
In this paper a free Python algorithm, entitled CCOMP (Complex roots COMPutation), is developed for the efficient computation of complex roots of determinantal equations inside a prescribed complex domain. The key to the method presented is the efficient determination of the candidate points inside the domain which, in their close neighborhood, a complex root may lie. Once these points are detected, the algorithm proceeds to a two-dimensional minimization problem with respect to the minimum modulus eigenvalue of the system matrix. In the core of CCOMP exist three sub-algorithms whose tasks are the efficient estimation of the minimum modulus eigenvalues of the system matrix inside the prescribed domain, the efficient computation of candidate points which guarantee the existence of minima, and finally, the computation of minima via bound constrained minimization algorithms. Theoretical results and heuristics support the development and the performance of the algorithm, which is discussed in detail. CCOMP supports general complex matrices, and its efficiency, applicability and validity is demonstrated to a variety of microwave applications.
Reserve lithium-thionyl chloride battery for missile applications
NASA Astrophysics Data System (ADS)
Planchat, J. P.; Descroix, J. P.; Sarre, G.
A comparative performance study has been conducted for silver-zinc, thionyl chloride, and thermal batteries designed for such missile applications as ICBM guidance system power supplies. Attention is given to each of the three candidates' conformity to requirements concerning mechanical configuration, electrochemical design, electrolyte reservoir, external case, and gas generator. The silver-zinc and Li-SOCl2 candidates employ similar cell configurations and yield comparable performance. The thermal battery is found to be incapable of meeting battery case temperature-related requirements.
PRF Ambiguity Detrmination for Radarsat ScanSAR System
NASA Technical Reports Server (NTRS)
Jin, Michael Y.
1998-01-01
PRF ambiguity is a potential problem for a spaceborne SAR operated at high frequencies. For a strip mode SAR, there were several approaches to solve this problem. This paper, however, addresses PRF ambiguity determination algorithms suitable for a burst mode SAR system such as the Radarsat ScanSAR. The candidate algorithms include the wavelength diversity algorithm, range look cross correlation algorithm, and multi-PRF algorithm.
Pathway concepts experiment for head-down synthetic vision displays
NASA Astrophysics Data System (ADS)
Prinzel, Lawrence J., III; Arthur, Jarvis J., III; Kramer, Lynda J.; Bailey, Randall E.
2004-08-01
Eight 757 commercial airline captains flew 22 approaches using the Reno Sparks 16R Visual Arrival under simulated Category I conditions. Approaches were flown using a head-down synthetic vision display to evaluate four tunnel ("minimal", "box", "dynamic pathway", "dynamic crow's feet") and three guidance ("ball", "tadpole", "follow-me aircraft") concepts and compare their efficacy to a baseline condition (i.e., no tunnel, ball guidance). The results showed that the tunnel concepts significantly improved pilot performance and situation awareness and lowered workload compared to the baseline condition. The dynamic crow's feet tunnel and follow-me aircraft guidance concepts were found to be the best candidates for future synthetic vision head-down displays. These results are discussed with implications for synthetic vision display design and future research.
A Novel Energy Saving Algorithm with Frame Response Delay Constraint in IEEE 802.16e
NASA Astrophysics Data System (ADS)
Nga, Dinh Thi Thuy; Kim, Mingon; Kang, Minho
Sleep-mode operation of a Mobile Subscriber Station (MSS) in IEEE 802.16e effectively saves energy consumption; however, it induces frame response delay. In this letter, we propose an algorithm to quickly find the optimal value of the final sleep interval in sleep-mode in order to minimize energy consumption with respect to a given frame response delay constraint. The validations of our proposed algorithm through analytical results and simulation results suggest that our algorithm provide a potential guidance to energy saving.
Precise Image-Based Motion Estimation for Autonomous Small Body Exploration
NASA Technical Reports Server (NTRS)
Johnson, Andrew E.; Matthies, Larry H.
1998-01-01
Space science and solar system exploration are driving NASA to develop an array of small body missions ranging in scope from near body flybys to complete sample return. This paper presents an algorithm for onboard motion estimation that will enable the precision guidance necessary for autonomous small body landing. Our techniques are based on automatic feature tracking between a pair of descent camera images followed by two frame motion estimation and scale recovery using laser altimetry data. The output of our algorithm is an estimate of rigid motion (attitude and position) and motion covariance between frames. This motion estimate can be passed directly to the spacecraft guidance and control system to enable rapid execution of safe and precise trajectories.
NASA Technical Reports Server (NTRS)
Dieriam, Todd A.
1990-01-01
Future missions to Mars may require pin-point landing precision, possibly on the order of tens of meters. The ability to reach a target while meeting a dynamic pressure constraint to ensure safe parachute deployment is complicated at Mars by low atmospheric density, high atmospheric uncertainty, and the desire to employ only bank angle control. The vehicle aerodynamic performance requirements and guidance necessary for 0.5 to 1.5 lift drag ratio vehicle to maximize the achievable footprint while meeting the constraints are examined. A parametric study of the various factors related to entry vehicle performance in the Mars environment is undertaken to develop general vehicle aerodynamic design requirements. The combination of low lift drag ratio and low atmospheric density at Mars result in a large phugoid motion involving the dynamic pressure which complicates trajectory control. Vehicle ballistic coefficient is demonstrated to be the predominant characteristic affecting final dynamic pressure. Additionally, a speed brake is shown to be ineffective at reducing the final dynamic pressure. An adaptive precision entry atmospheric guidance scheme is presented. The guidance uses a numeric predictor-corrector algorithm to control downrange, an azimuth controller to govern crossrange, and analytic control law to reduce the final dynamic pressure. Guidance performance is tested against a variety of dispersions, and the results from selected tests are presented. Precision entry using bank angle control only is demonstrated to be feasible at Mars.
Aerocapture Guidance Performance for the Neptune Orbiter
NASA Technical Reports Server (NTRS)
Masciarelli, James P.; Westhelle, Carlos H.; Graves, Claude A.
2004-01-01
A performance evaluation of the Hybrid Predictor corrector Aerocapture Scheme (HYPAS) guidance algorithm for aerocapture at Neptune is presented in this paper for a Mission to Neptune and the Neptune moon Triton'. This mission has several challenges not experienced in previous aerocapture guidance assessments. These challengers are a very high Neptune arrival speed, atmospheric exit into a high energy orbit about Neptune, and a very high ballistic coefficient that results in a low altitude acceleration capability when combined with the aeroshell LD. The evaluation includes a definition of the entry corridor, a comparison to the theoretical optimum performance, and guidance responses to variations in atmospheric density, aerodynamic coefficients and flight path angle for various vehicle configurations (ballistic numbers). The benefits of utilizing angle-of-attack modulation in addition to bank angle modulation to improve flight performance is also discussed. The results show that despite large sensitivities in apoapsis targeting, the algorithm performs within the allocated AV budget for the Neptune mission bank angle only modulation. The addition of angle-of-attack modulation with as little as 5 degrees of amplitude significantly improves the scatter in final orbit apoapsis. Although the angle-of-attack modulation complicates the vehicle design, the performance enhancement reduces aerocapture risk and reduces the propellant consumption needed to reach the high energy target orbit for a conventional propulsion system.
Evaluation of Soil Media for Stormwater Infiltration Best Management Practices (BMPs)
This project will improve the performance of structural management practices, and provide guidance that will allow designers to balance infiltration rates with sorption capacity. This project will also perform a standard column test procedure for evaluating candidate soil media.
Real-time trajectory optimization on parallel processors
NASA Technical Reports Server (NTRS)
Psiaki, Mark L.
1993-01-01
A parallel algorithm has been developed for rapidly solving trajectory optimization problems. The goal of the work has been to develop an algorithm that is suitable to do real-time, on-line optimal guidance through repeated solution of a trajectory optimization problem. The algorithm has been developed on an INTEL iPSC/860 message passing parallel processor. It uses a zero-order-hold discretization of a continuous-time problem and solves the resulting nonlinear programming problem using a custom-designed augmented Lagrangian nonlinear programming algorithm. The algorithm achieves parallelism of function, derivative, and search direction calculations through the principle of domain decomposition applied along the time axis. It has been encoded and tested on 3 example problems, the Goddard problem, the acceleration-limited, planar minimum-time to the origin problem, and a National Aerospace Plane minimum-fuel ascent guidance problem. Execution times as fast as 118 sec of wall clock time have been achieved for a 128-stage Goddard problem solved on 32 processors. A 32-stage minimum-time problem has been solved in 151 sec on 32 processors. A 32-stage National Aerospace Plane problem required 2 hours when solved on 32 processors. A speed-up factor of 7.2 has been achieved by using 32-nodes instead of 1-node to solve a 64-stage Goddard problem.
NASA Technical Reports Server (NTRS)
Swenson, Harry N.; Zelenka, Richard E.; Hardy, Gordon H.; Dearing, Munro G.
1992-01-01
A computer aiding concept for low-altitude helicopter flight was developed and evaluated in a real-time piloted simulation. The concept included an optimal control trajectory-generation algorithm based upon dynamic programming and a helmet-mounted display (HMD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor guidance symbology. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and advanced navigation information to determine a trajectory between mission way points that seeks valleys to minimize threat exposure. The pilot evaluation was conducted at NASA ARC moving base Vertical Motion Simulator (VMS) by pilots representing NASA, the U.S. Army, the Air Force, and the helicopter industry. The pilots manually tracked the trajectory generated by the algorithm utilizing the HMD symbology. The pilots were able to satisfactorily perform the tracking tasks while maintaining a high degree of awareness of the outside world.
NASA Technical Reports Server (NTRS)
Allen, Cheryl L.
1991-01-01
Enhanced engineering tools can be obtained through the integration of expert system methodologies and existing design software. The application of these methodologies to the spacecraft design and cost model (SDCM) software provides an improved technique for the selection of hardware for unmanned spacecraft subsystem design. The knowledge engineering system (KES) expert system development tool was used to implement a smarter equipment section algorithm than that which is currently achievable through the use of a standard data base system. The guidance, navigation, and control subsystems of the SDCM software was chosen as the initial subsystem for implementation. The portions of the SDCM code which compute the selection criteria and constraints remain intact, and the expert system equipment selection algorithm is embedded within this existing code. The architecture of this new methodology is described and its implementation is reported. The project background and a brief overview of the expert system is described, and once the details of the design are characterized, an example of its implementation is demonstrated.
NASA Technical Reports Server (NTRS)
Takallu, M. A.; Glaab, L. J.; Hughes, M. F.; Wong, D. T.; Bartolone, A. P.
2008-01-01
In support of the NASA Aviation Safety Program's Synthetic Vision Systems Project, a series of piloted simulations were conducted to explore and quantify the relationship between candidate Terrain Portrayal Concepts and Guidance Symbology Concepts, specific to General Aviation. The experiment scenario was based on a low altitude en route flight in Instrument Metrological Conditions in the central mountains of Alaska. A total of 18 general aviation pilots, with three levels of pilot experience, evaluated a test matrix of four terrain portrayal concepts and six guidance symbology concepts. Quantitative measures included various pilot/aircraft performance data, flight technical errors and flight control inputs. The qualitative measures included pilot comments and pilot responses to the structured questionnaires such as perceived workload, subjective situation awareness, pilot preferences, and the rare event recognition. There were statistically significant effects found from guidance symbology concepts and terrain portrayal concepts but no significant interactions between them. Lower flight technical errors and increased situation awareness were achieved using Synthetic Vision Systems displays, as compared to the baseline Pitch/Roll Flight Director and Blue Sky Brown Ground combination. Overall, those guidance symbology concepts that have both path based guidance cue and tunnel display performed better than the other guidance concepts.
Limited utility of residue masking for positive-selection inference.
Spielman, Stephanie J; Dawson, Eric T; Wilke, Claus O
2014-09-01
Errors in multiple sequence alignments (MSAs) can reduce accuracy in positive-selection inference. Therefore, it has been suggested to filter MSAs before conducting further analyses. One widely used filter, Guidance, allows users to remove MSA positions aligned with low confidence. However, Guidance's utility in positive-selection inference has been disputed in the literature. We have conducted an extensive simulation-based study to characterize fully how Guidance impacts positive-selection inference, specifically for protein-coding sequences of realistic divergence levels. We also investigated whether novel scoring algorithms, which phylogenetically corrected confidence scores, and a new gap-penalization score-normalization scheme improved Guidance's performance. We found that no filter, including original Guidance, consistently benefitted positive-selection inferences. Moreover, all improvements detected were exceedingly minimal, and in certain circumstances, Guidance-based filters worsened inferences. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
An Automated Method to Compute Orbital Re-Entry Trajectories with Heating Constraints
NASA Technical Reports Server (NTRS)
Zimmerman, Curtis; Dukeman, Greg; Hanson, John; Fogle, Frank R. (Technical Monitor)
2002-01-01
Determining how to properly manipulate the controls of a re-entering re-usable launch vehicle (RLV) so that it is able to safely return to Earth and land involves the solution of a two-point boundary value problem (TPBVP). This problem, which can be quite difficult, is traditionally solved on the ground prior to flight. If necessary, a nearly unlimited amount of time is available to find the "best" solution using a variety of trajectory design and optimization tools. The role of entry guidance during flight is to follow the pre-determined reference solution while correcting for any errors encountered along the way. This guidance method is both highly reliable and very efficient in terms of onboard computer resources. There is a growing interest in a style of entry guidance that places the responsibility of solving the TPBVP in the actual entry guidance flight software. Here there is very limited computer time. The powerful, but finicky, mathematical tools used by trajectory designers on the ground cannot in general be made to do the job. Nonconvergence or slow convergence can result in disaster. The challenges of designing such an algorithm are numerous and difficult. Yet the payoff (in the form of decreased operational costs and increased safety) can be substantial. This paper presents an algorithm that incorporates features of both types of guidance strategies. It takes an initial RLV orbital re-entry state and finds a trajectory that will safely transport the vehicle to a Terminal Area Energy Management (TAEM) region. During actual flight, the computed trajectory is used as the reference to be flown by a more traditional guidance method.
Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map
Tan, Yihua; Li, Qingyun; Li, Yansheng; Tian, Jinwen
2015-01-01
This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR) images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate. PMID:26378543
Composite Particle Swarm Optimizer With Historical Memory for Function Optimization.
Li, Jie; Zhang, JunQi; Jiang, ChangJun; Zhou, MengChu
2015-10-01
Particle swarm optimization (PSO) algorithm is a population-based stochastic optimization technique. It is characterized by the collaborative search in which each particle is attracted toward the global best position (gbest) in the swarm and its own best position (pbest). However, all of particles' historical promising pbests in PSO are lost except their current pbests. In order to solve this problem, this paper proposes a novel composite PSO algorithm, called historical memory-based PSO (HMPSO), which uses an estimation of distribution algorithm to estimate and preserve the distribution information of particles' historical promising pbests. Each particle has three candidate positions, which are generated from the historical memory, particles' current pbests, and the swarm's gbest. Then the best candidate position is adopted. Experiments on 28 CEC2013 benchmark functions demonstrate the superiority of HMPSO over other algorithms.
NASA Technical Reports Server (NTRS)
Jones, D. W.
1971-01-01
The navigation and guidance process for the Jupiter, Saturn and Uranus planetary encounter phases of the 1977 Grand Tour interior mission was simulated. Reference approach navigation accuracies were defined and the relative information content of the various observation types were evaluated. Reference encounter guidance requirements were defined, sensitivities to assumed simulation model parameters were determined and the adequacy of the linear estimation theory was assessed. A linear sequential estimator was used to provide an estimate of the augmented state vector, consisting of the six state variables of position and velocity plus the three components of a planet position bias. The guidance process was simulated using a nonspherical model of the execution errors. Computation algorithms which simulate the navigation and guidance process were derived from theory and implemented into two research-oriented computer programs, written in FORTRAN.
NASA Astrophysics Data System (ADS)
Ulrich, Steve; de Lafontaine, Jean
2007-12-01
Upcoming landing missions to Mars will require on-board guidance and control systems in order to meet the scientific requirement of landing safely within hundreds of meters to the target of interest. More specifically, in the longitudinal plane, the first objective of the entry guidance and control system is to bring the vehicle to its specified velocity at the specified altitude (as required for safe parachute deployment), while the second objective is to reach the target position in the longitudinal plane. This paper proposes an improvement to the robustness of the constant flight path angle guidance law for achieving the first objective. The improvement consists of combining this guidance law with a novel adaptive control scheme, derived from the so-called Simple Adaptive Control (SAC) technique. Monte-Carlo simulation results are shown to demonstrate the accuracy and the robustness of the proposed guidance and adaptive control system.
Adaptive Guidance and Control Algorithms applied to the X-38 Reentry Mission
NASA Astrophysics Data System (ADS)
Graesslin, M.; Wallner, E.; Burkhardt, J.; Schoettle, U.; Well, K. H.
International Space Station's Crew Return/Rescue Vehicle (CRV) is planned to autonomously return the complete crew of 7 astronauts back to earth in case of an emergency. As prototype of such a vehicle, the X-38, is being developed and built by NASA with European participation. The X-38 is a lifting body with a hyper- sonic lift to drag ratio of about 0.9. In comparison to the Space Shuttle Orbiter, the X-38 has less aerodynamic manoeuvring capability and less actuators. Within the German technology programme TETRA (TEchnologies for future space TRAnsportation systems) contributing to the X-38 program, guidance and control algorithms have been developed and applied to the X-38 reentry mission. The adaptive guidance concept conceived combines an on-board closed-loop predictive guidance algorithm with flight load control that temporarily overrides the attitude commands of the predictive component if the corre- sponding load constraints are violated. The predictive guidance scheme combines an optimization step and a sequence of constraint restoration cycles. In order to satisfy on-board computation limitations the complete scheme is performed only during the exo-atmospheric flight coast phase. During the controlled atmospheric flight segment the task is reduced to a repeatedly solved targeting problem based on the initial optimal solution, thus omitting in-flight constraints. To keep the flight loads - especially the heat flux, which is in fact a major concern of the X-38 reentry flight - below their maximum admissible values, a flight path controller based on quadratic minimization techniques may override the predictive guidance command for a flight along the con- straint boundary. The attitude control algorithms developed are based on dynamic inversion. This methodology enables the designer to straightforwardly devise a controller structure from the system dynamics. The main ad- vantage of this approach with regard to reentry control design lies in the fact that inversion renders a scheduled controller. Throughout the reentry, varying sets of actuators are available for control. Depending on which set is available, different inversion schemes are applied. With at least three controls effectors, decoupled control of the attitude angles can be achieved via a successive inversion which exploits the time-scale separation inherent in the attitude dynamics. However, during a flight phase where control needs to be achieved with only two body flaps, internal dynamics must be taken into account. To this end, a redefinition of the controlled variables is carried out so that the internal dynamics are stabilized while satisfactory tracking performance is achieved. The objectives of the present paper are to discuss the guidance and control approach taken, and asses the per- formance of the concepts by numerical flight simulations. For this purpose results obtained by means of a nu- merical flight simulator (CREDITS), that accurately models the characteristics of the X-38 vehicle, are presented to demonstrate the performance and effectiveness of the guidance and control design. Sensitivities to non- nominal flight conditions have been evaluated by Monte-Carlo analyses comprising motion simulations in both three and six degree of freedom. The results show that the mission requirements are met.
Dynamic Forms. Part 2; Application to Aircraft Guidance
NASA Technical Reports Server (NTRS)
Meyer, George; Smith, G. Allan
1997-01-01
The paper describes a method for guiding a dynamic system through a given set of points. The paradigm is a fully automatic aircraft subject to air traffic control (ATC). The ATC provides a sequence of waypoints through which the aircraft trajectory must pass. The waypoints typically specify time, position, and velocity. The guidance problem is to synthesize a system state trajectory that satisfies both the ATC and aircraft constraints. Complications arise because the controlled process is multidimensional, multiaxis, nonlinear, highly coupled, and the state space is not flat. In addition, there is a multitude of operating modes, which may number in the hundreds. Each such mode defines a distinct state space model of the process by specifying the state space coordinatization, the partition of the controls into active controls and configuration controls, and the output map. Furthermore, mode transitions are required to be smooth. The proposed guidance algorithm is based on the inversion of the pure feedback approximation, followed by correction for the effects of zero dynamics. The paper describes the structure and major modules of the algorithm, and the performance is illustrated by several example aircraft maneuvers.
NASA Technical Reports Server (NTRS)
Knox, C. E.
1984-01-01
A simple airborne flight management descent algorithm designed to define a flight profile subject to the constraints of using idle thrust, a clean airplane configuration (landing gear up, flaps zero, and speed brakes retracted), and fixed-time end conditions was developed and flight tested in the NASA TSRV B-737 research airplane. The research test flights, conducted in the Denver ARTCC automated time-based metering LFM/PD ATC environment, demonstrated that time guidance and control in the cockpit was acceptable to the pilots and ATC controllers and resulted in arrival of the airplane over the metering fix with standard deviations in airspeed error of 6.5 knots, in altitude error of 23.7 m (77.8 ft), and in arrival time accuracy of 12 sec. These accuracies indicated a good representation of airplane performance and wind modeling. Fuel savings will be obtained on a fleet-wide basis through a reduction of the time error dispersions at the metering fix and on a single-airplane basis by presenting the pilot with guidance for a fuel-efficient descent.
Pathway Concepts Experiment for Head-Down Synthetic Vision Displays
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Arthur, Jarvis J., III; Kramer, Lynda J.; Bailey, Randall E.
2004-01-01
Eight 757 commercial airline captains flew 22 approaches using the Reno Sparks 16R Visual Arrival under simulated Category I conditions. Approaches were flown using a head-down synthetic vision display to evaluate four tunnel ("minimal", "box", "dynamic pathway", "dynamic crow s feet") and three guidance ("ball", "tadpole", "follow-me aircraft") concepts and compare their efficacy to a baseline condition (i.e., no tunnel, ball guidance). The results showed that the tunnel concepts significantly improved pilot performance and situation awareness and lowered workload compared to the baseline condition. The dynamic crow s feet tunnel and follow-me aircraft guidance concepts were found to be the best candidates for future synthetic vision head-down displays. These results are discussed with implications for synthetic vision display design and future research.
Application of a Fully Numerical Guidance to Mars Aerocapture
NASA Technical Reports Server (NTRS)
Matz, Daniel A.; Lu, Ping; Mendeck, Gavin F.; Sostaric, Ronald R.
2017-01-01
An advanced guidance algorithm, Fully Numerical Predictor-corrector Aerocapture Guidance (FNPAG), has been developed to perform aerocapture maneuvers in an optimal manner. It is a model-based, numerical guidance that benefits from requiring few adjustments across a variety of different hypersonic vehicle lift-to-drag ratios, ballistic co-efficients, and atmospheric entry conditions. In this paper, FNPAG is first applied to the Mars Rigid Vehicle (MRV) mid lift-to-drag ratio concept. Then the study is generalized to a design map of potential Mars aerocapture missions and vehicles, ranging from the scale and requirements of recent robotic to potential human and precursor missions. The design map results show the versatility of FNPAG and provide insight for the design of Mars aerocapture vehicles and atmospheric entry conditions to achieve desired performance.
Generalization and refinement of an automatic landing system capable of curved trajectories
NASA Technical Reports Server (NTRS)
Sherman, W. L.
1976-01-01
Refinements in the lateral and longitudinal guidance for an automatic landing system capable of curved trajectories were studied. Wing flaps or drag flaps (speed brakes) were found to provide faster and more precise speed control than autothrottles. In the case of the lateral control it is shown that the use of the integral of the roll error in the roll command over the first 30 to 40 seconds of flight reduces the sensitivity of the lateral guidance to the gain on the azimuth guidance angle error in the roll command. Also, changes to the guidance algorithm are given that permit pi-radian approaches and constrain the airplane to fly in a specified plane defined by the position of the airplane at the start of letdown and the flare point.
Optical Guidance for a Robotic Submarine
NASA Astrophysics Data System (ADS)
Schulze, Karl R.; LaFlash, Chris
2002-11-01
There is a need for autonomous submarines that can quickly and safely complete jobs, such as the recovery of a downed aircraft's black box recorder. In order to complete this feat, it is necessary to use an optical processing algorithm that distinguishes a desired target and uses the feedback from the algorithm to retrieve the target. The algorithm itself uses many bit mask filters for particle information, and then uses a unique rectation method in order to resolve complete objects. The algorithm has been extensively tested on an AUV platform, and proven to succeed repeatedly in approximately five or more feet of water clarity.
Ensemble candidate classification for the LOTAAS pulsar survey
NASA Astrophysics Data System (ADS)
Tan, C. M.; Lyon, R. J.; Stappers, B. W.; Cooper, S.; Hessels, J. W. T.; Kondratiev, V. I.; Michilli, D.; Sanidas, S.
2018-03-01
One of the biggest challenges arising from modern large-scale pulsar surveys is the number of candidates generated. Here, we implemented several improvements to the machine learning (ML) classifier previously used by the LOFAR Tied-Array All-Sky Survey (LOTAAS) to look for new pulsars via filtering the candidates obtained during periodicity searches. To assist the ML algorithm, we have introduced new features which capture the frequency and time evolution of the signal and improved the signal-to-noise calculation accounting for broad profiles. We enhanced the ML classifier by including a third class characterizing RFI instances, allowing candidates arising from RFI to be isolated, reducing the false positive return rate. We also introduced a new training data set used by the ML algorithm that includes a large sample of pulsars misclassified by the previous classifier. Lastly, we developed an ensemble classifier comprised of five different Decision Trees. Taken together these updates improve the pulsar recall rate by 2.5 per cent, while also improving the ability to identify pulsars with wide pulse profiles, often misclassified by the previous classifier. The new ensemble classifier is also able to reduce the percentage of false positive candidates identified from each LOTAAS pointing from 2.5 per cent (˜500 candidates) to 1.1 per cent (˜220 candidates).
On the development of efficient algorithms for three dimensional fluid flow
NASA Technical Reports Server (NTRS)
Maccormack, R. W.
1988-01-01
The difficulties of constructing efficient algorithms for three-dimensional flow are discussed. Reasonable candidates are analyzed and tested, and most are found to have obvious shortcomings. Yet, there is promise that an efficient class of algorithms exist between the severely time-step sized-limited explicit or approximately factored algorithms and the computationally intensive direct inversion of large sparse matrices by Gaussian elimination.
The ranking algorithm of the Coach browser for the UMLS metathesaurus.
Harbourt, A. M.; Syed, E. J.; Hole, W. T.; Kingsland, L. C.
1993-01-01
This paper presents the novel ranking algorithm of the Coach Metathesaurus browser which is a major module of the Coach expert search refinement program. An example shows how the ranking algorithm can assist in creating a list of candidate terms useful in augmenting a suboptimal Grateful Med search of MEDLINE. PMID:8130570
García-Calvo, Raúl; Guisado, JL; Diaz-del-Rio, Fernando; Córdoba, Antonio; Jiménez-Morales, Francisco
2018-01-01
Understanding the regulation of gene expression is one of the key problems in current biology. A promising method for that purpose is the determination of the temporal dynamics between known initial and ending network states, by using simple acting rules. The huge amount of rule combinations and the nonlinear inherent nature of the problem make genetic algorithms an excellent candidate for finding optimal solutions. As this is a computationally intensive problem that needs long runtimes in conventional architectures for realistic network sizes, it is fundamental to accelerate this task. In this article, we study how to develop efficient parallel implementations of this method for the fine-grained parallel architecture of graphics processing units (GPUs) using the compute unified device architecture (CUDA) platform. An exhaustive and methodical study of various parallel genetic algorithm schemes—master-slave, island, cellular, and hybrid models, and various individual selection methods (roulette, elitist)—is carried out for this problem. Several procedures that optimize the use of the GPU’s resources are presented. We conclude that the implementation that produces better results (both from the performance and the genetic algorithm fitness perspectives) is simulating a few thousands of individuals grouped in a few islands using elitist selection. This model comprises 2 mighty factors for discovering the best solutions: finding good individuals in a short number of generations, and introducing genetic diversity via a relatively frequent and numerous migration. As a result, we have even found the optimal solution for the analyzed gene regulatory network (GRN). In addition, a comparative study of the performance obtained by the different parallel implementations on GPU versus a sequential application on CPU is carried out. In our tests, a multifold speedup was obtained for our optimized parallel implementation of the method on medium class GPU over an equivalent sequential single-core implementation running on a recent Intel i7 CPU. This work can provide useful guidance to researchers in biology, medicine, or bioinformatics in how to take advantage of the parallelization on massively parallel devices and GPUs to apply novel metaheuristic algorithms powered by nature for real-world applications (like the method to solve the temporal dynamics of GRNs). PMID:29662297
García-Calvo, Raúl; Guisado, J L; Diaz-Del-Rio, Fernando; Córdoba, Antonio; Jiménez-Morales, Francisco
2018-01-01
Understanding the regulation of gene expression is one of the key problems in current biology. A promising method for that purpose is the determination of the temporal dynamics between known initial and ending network states, by using simple acting rules. The huge amount of rule combinations and the nonlinear inherent nature of the problem make genetic algorithms an excellent candidate for finding optimal solutions. As this is a computationally intensive problem that needs long runtimes in conventional architectures for realistic network sizes, it is fundamental to accelerate this task. In this article, we study how to develop efficient parallel implementations of this method for the fine-grained parallel architecture of graphics processing units (GPUs) using the compute unified device architecture (CUDA) platform. An exhaustive and methodical study of various parallel genetic algorithm schemes-master-slave, island, cellular, and hybrid models, and various individual selection methods (roulette, elitist)-is carried out for this problem. Several procedures that optimize the use of the GPU's resources are presented. We conclude that the implementation that produces better results (both from the performance and the genetic algorithm fitness perspectives) is simulating a few thousands of individuals grouped in a few islands using elitist selection. This model comprises 2 mighty factors for discovering the best solutions: finding good individuals in a short number of generations, and introducing genetic diversity via a relatively frequent and numerous migration. As a result, we have even found the optimal solution for the analyzed gene regulatory network (GRN). In addition, a comparative study of the performance obtained by the different parallel implementations on GPU versus a sequential application on CPU is carried out. In our tests, a multifold speedup was obtained for our optimized parallel implementation of the method on medium class GPU over an equivalent sequential single-core implementation running on a recent Intel i7 CPU. This work can provide useful guidance to researchers in biology, medicine, or bioinformatics in how to take advantage of the parallelization on massively parallel devices and GPUs to apply novel metaheuristic algorithms powered by nature for real-world applications (like the method to solve the temporal dynamics of GRNs).
An onboard navigation system which fulfills Mars aerocapture guidance requirements
NASA Technical Reports Server (NTRS)
Brand, Timothy J.; Fuhry, Douglas P.; Shepperd, Stanley W.
1989-01-01
The development of a candidate autonomous onboard Mars approach navigation scheme capable of supporting aerocapture into Mars orbit is discussed. An aerocapture guidance and navigation system which can run independently of the preaerocapture navigation was used to define a preliminary set of accuracy requirements at entry interface. These requirements are used to evaluate the proposed preaerocapture navigation scheme. This scheme uses optical sightings on Deimos with a star tracker and an inertial measurement unit for instrumentation as a source for navigation nformation. Preliminary results suggest that the approach will adequately support aerocaputre into Mars orbit.
Report on the Development of the Advanced Encryption Standard (AES).
Nechvatal, J; Barker, E; Bassham, L; Burr, W; Dworkin, M; Foti, J; Roback, E
2001-01-01
In 1997, the National Institute of Standards and Technology (NIST) initiated a process to select a symmetric-key encryption algorithm to be used to protect sensitive (unclassified) Federal information in furtherance of NIST's statutory responsibilities. In 1998, NIST announced the acceptance of 15 candidate algorithms and requested the assistance of the cryptographic research community in analyzing the candidates. This analysis included an initial examination of the security and efficiency characteristics for each algorithm. NIST reviewed the results of this preliminary research and selected MARS, RC™, Rijndael, Serpent and Twofish as finalists. Having reviewed further public analysis of the finalists, NIST has decided to propose Rijndael as the Advanced Encryption Standard (AES). The research results and rationale for this selection are documented in this report.
Preliminary Design of a Manned Nuclear Electric Propulsion Vehicle Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Irwin, Ryan W.; Tinker, Michael L.
2005-01-01
Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate designs must be identified for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combined analysis codes for NEP subsystems with a genetic algorithm. The use of penalty functions with scaling ratios was investigated to increase computational efficiency. Also, the selection of design variables for optimization was considered to reduce computation time without losing beneficial design search space. Finally, trend analysis of a reference mission to the asteroids yielded a group of candidate designs for further analysis.
NASA Astrophysics Data System (ADS)
Yang, Ruijie; Dai, Jianrong; Yang, Yong; Hu, Yimin
2006-08-01
The purpose of this study is to extend an algorithm proposed for beam orientation optimization in classical conformal radiotherapy to intensity-modulated radiation therapy (IMRT) and to evaluate the algorithm's performance in IMRT scenarios. In addition, the effect of the candidate pool of beam orientations, in terms of beam orientation resolution and starting orientation, on the optimized beam configuration, plan quality and optimization time is also explored. The algorithm is based on the technique of mixed integer linear programming in which binary and positive float variables are employed to represent candidates for beam orientation and beamlet weights in beam intensity maps. Both beam orientations and beam intensity maps are simultaneously optimized in the algorithm with a deterministic method. Several different clinical cases were used to test the algorithm and the results show that both target coverage and critical structures sparing were significantly improved for the plans with optimized beam orientations compared to those with equi-spaced beam orientations. The calculation time was less than an hour for the cases with 36 binary variables on a PC with a Pentium IV 2.66 GHz processor. It is also found that decreasing beam orientation resolution to 10° greatly reduced the size of the candidate pool of beam orientations without significant influence on the optimized beam configuration and plan quality, while selecting different starting orientations had large influence. Our study demonstrates that the algorithm can be applied to IMRT scenarios, and better beam orientation configurations can be obtained using this algorithm. Furthermore, the optimization efficiency can be greatly increased through proper selection of beam orientation resolution and starting beam orientation while guaranteeing the optimized beam configurations and plan quality.
Progress on a generalized coordinates tensor product finite element 3DPNS algorithm for subsonic
NASA Technical Reports Server (NTRS)
Baker, A. J.; Orzechowski, J. A.
1983-01-01
A generalized coordinates form of the penalty finite element algorithm for the 3-dimensional parabolic Navier-Stokes equations for turbulent subsonic flows was derived. This algorithm formulation requires only three distinct hypermatrices and is applicable using any boundary fitted coordinate transformation procedure. The tensor matrix product approximation to the Jacobian of the Newton linear algebra matrix statement was also derived. Tne Newton algorithm was restructured to replace large sparse matrix solution procedures with grid sweeping using alpha-block tridiagonal matrices, where alpha equals the number of dependent variables. Numerical experiments were conducted and the resultant data gives guidance on potentially preferred tensor product constructions for the penalty finite element 3DPNS algorithm.
Powered Descent Trajectory Guidance and Some Considerations for Human Lunar Landing
NASA Technical Reports Server (NTRS)
Sostaric, Ronald R.
2007-01-01
The Autonomous Precision Landing and Hazard Detection and Avoidance Technology development (ALHAT) will enable an accurate (better than 100m) landing on the lunar surface. This technology will also permit autonomous (independent from ground) avoidance of hazards detected in real time. A preliminary trajectory guidance algorithm capable of supporting these tasks has been developed and demonstrated in simulations. Early results suggest that with expected improvements in sensor technology and lunar mapping, mission objectives are achievable.
An index-based algorithm for fast on-line query processing of latent semantic analysis
Li, Pohan; Wang, Wei
2017-01-01
Latent Semantic Analysis (LSA) is widely used for finding the documents whose semantic is similar to the query of keywords. Although LSA yield promising similar results, the existing LSA algorithms involve lots of unnecessary operations in similarity computation and candidate check during on-line query processing, which is expensive in terms of time cost and cannot efficiently response the query request especially when the dataset becomes large. In this paper, we study the efficiency problem of on-line query processing for LSA towards efficiently searching the similar documents to a given query. We rewrite the similarity equation of LSA combined with an intermediate value called partial similarity that is stored in a designed index called partial index. For reducing the searching space, we give an approximate form of similarity equation, and then develop an efficient algorithm for building partial index, which skips the partial similarities lower than a given threshold θ. Based on partial index, we develop an efficient algorithm called ILSA for supporting fast on-line query processing. The given query is transformed into a pseudo document vector, and the similarities between query and candidate documents are computed by accumulating the partial similarities obtained from the index nodes corresponds to non-zero entries in the pseudo document vector. Compared to the LSA algorithm, ILSA reduces the time cost of on-line query processing by pruning the candidate documents that are not promising and skipping the operations that make little contribution to similarity scores. Extensive experiments through comparison with LSA have been done, which demonstrate the efficiency and effectiveness of our proposed algorithm. PMID:28520747
An index-based algorithm for fast on-line query processing of latent semantic analysis.
Zhang, Mingxi; Li, Pohan; Wang, Wei
2017-01-01
Latent Semantic Analysis (LSA) is widely used for finding the documents whose semantic is similar to the query of keywords. Although LSA yield promising similar results, the existing LSA algorithms involve lots of unnecessary operations in similarity computation and candidate check during on-line query processing, which is expensive in terms of time cost and cannot efficiently response the query request especially when the dataset becomes large. In this paper, we study the efficiency problem of on-line query processing for LSA towards efficiently searching the similar documents to a given query. We rewrite the similarity equation of LSA combined with an intermediate value called partial similarity that is stored in a designed index called partial index. For reducing the searching space, we give an approximate form of similarity equation, and then develop an efficient algorithm for building partial index, which skips the partial similarities lower than a given threshold θ. Based on partial index, we develop an efficient algorithm called ILSA for supporting fast on-line query processing. The given query is transformed into a pseudo document vector, and the similarities between query and candidate documents are computed by accumulating the partial similarities obtained from the index nodes corresponds to non-zero entries in the pseudo document vector. Compared to the LSA algorithm, ILSA reduces the time cost of on-line query processing by pruning the candidate documents that are not promising and skipping the operations that make little contribution to similarity scores. Extensive experiments through comparison with LSA have been done, which demonstrate the efficiency and effectiveness of our proposed algorithm.
Talbot, Thomas R; Schaffner, William; Bloch, Karen C; Daniels, Titus L; Miller, Randolph A
2011-01-01
Objective The authors evaluated algorithms commonly used in syndromic surveillance for use as screening tools to detect potentially clonal outbreaks for review by infection control practitioners. Design Study phase 1 applied four aberrancy detection algorithms (CUSUM, EWMA, space-time scan statistic, and WSARE) to retrospective microbiologic culture data, producing a list of past candidate outbreak clusters. In phase 2, four infectious disease physicians categorized the phase 1 algorithm-identified clusters to ascertain algorithm performance. In phase 3, project members combined the algorithms to create a unified screening system and conducted a retrospective pilot evaluation. Measurements The study calculated recall and precision for each algorithm, and created precision-recall curves for various methods of combining the algorithms into a unified screening tool. Results Individual algorithm recall and precision ranged from 0.21 to 0.31 and from 0.053 to 0.29, respectively. Few candidate outbreak clusters were identified by more than one algorithm. The best method of combining the algorithms yielded an area under the precision-recall curve of 0.553. The phase 3 combined system detected all infection control-confirmed outbreaks during the retrospective evaluation period. Limitations Lack of phase 2 reviewers' agreement indicates that subjective expert review was an imperfect gold standard. Less conservative filtering of culture results and alternate parameter selection for each algorithm might have improved algorithm performance. Conclusion Hospital outbreak detection presents different challenges than traditional syndromic surveillance. Nevertheless, algorithms developed for syndromic surveillance have potential to form the basis of a combined system that might perform clinically useful hospital outbreak screening. PMID:21606134
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... promotes social welfare. Whether such an activity promotes social welfare is an independent determination... mutually exclusive. For example, the category of express advocacy communications may overlap with the... Commission under the Federal Election Campaign Act as an independent expenditure. [[Page 71539
Hiring an Effective Special Education Teacher
ERIC Educational Resources Information Center
Fenlon, Amanda
2008-01-01
The task of hiring special education teachers may seem daunting because they serve in what is undeniably the most complex of teaching roles. This article provides guidance and suggestions for identifying key competencies that a viable special education teacher candidate should possess. Although many building leaders may still subscribe to gut…
Principal Induction: A Standards-Based Model for Administrator Development
ERIC Educational Resources Information Center
Wilmore, Elaine L.
2004-01-01
Many school administrator candidates enter the principalship with great potential, but sometimes lack the critical guidance to ensure success. With the many challenges facing principals daily, it is imperative for new and seasoned principals alike to remain informed, rejuvenated, and passionate about providing students with a quality education and…
Global Optimization of a Periodic System using a Genetic Algorithm
NASA Astrophysics Data System (ADS)
Stucke, David; Crespi, Vincent
2001-03-01
We use a novel application of a genetic algorithm global optimizatin technique to find the lowest energy structures for periodic systems. We apply this technique to colloidal crystals for several different stoichiometries of binary and trinary colloidal crystals. This application of a genetic algorithm is decribed and results of likely candidate structures are presented.
Prediction of gene-phenotype associations in humans, mice, and plants using phenologs.
Woods, John O; Singh-Blom, Ulf Martin; Laurent, Jon M; McGary, Kriston L; Marcotte, Edward M
2013-06-21
Phenotypes and diseases may be related to seemingly dissimilar phenotypes in other species by means of the orthology of underlying genes. Such "orthologous phenotypes," or "phenologs," are examples of deep homology, and may be used to predict additional candidate disease genes. In this work, we develop an unsupervised algorithm for ranking phenolog-based candidate disease genes through the integration of predictions from the k nearest neighbor phenologs, comparing classifiers and weighting functions by cross-validation. We also improve upon the original method by extending the theory to paralogous phenotypes. Our algorithm makes use of additional phenotype data--from chicken, zebrafish, and E. coli, as well as new datasets for C. elegans--establishing that several types of annotations may be treated as phenotypes. We demonstrate the use of our algorithm to predict novel candidate genes for human atrial fibrillation (such as HRH2, ATP4A, ATP4B, and HOPX) and epilepsy (e.g., PAX6 and NKX2-1). We suggest gene candidates for pharmacologically-induced seizures in mouse, solely based on orthologous phenotypes from E. coli. We also explore the prediction of plant gene-phenotype associations, as for the Arabidopsis response to vernalization phenotype. We are able to rank gene predictions for a significant portion of the diseases in the Online Mendelian Inheritance in Man database. Additionally, our method suggests candidate genes for mammalian seizures based only on bacterial phenotypes and gene orthology. We demonstrate that phenotype information may come from diverse sources, including drug sensitivities, gene ontology biological processes, and in situ hybridization annotations. Finally, we offer testable candidates for a variety of human diseases, plant traits, and other classes of phenotypes across a wide array of species.
Hypersonic Vehicle Propulsion System Control Model Development Roadmap and Activities
NASA Technical Reports Server (NTRS)
Stueber, Thomas J.; Le, Dzu K.; Vrnak, Daniel R.
2009-01-01
The NASA Fundamental Aeronautics Program Hypersonic project is directed towards fundamental research for two classes of hypersonic vehicles: highly reliable reusable launch systems (HRRLS) and high-mass Mars entry systems (HMMES). The objective of the hypersonic guidance, navigation, and control (GN&C) discipline team is to develop advanced guidance and control algorithms to enable efficient and effective operation of these challenging vehicles. The ongoing work at the NASA Glenn Research Center supports the hypersonic GN&C effort in developing tools to aid the design of advanced control algorithms that specifically address the propulsion system of the HRRLSclass vehicles. These tools are being developed in conjunction with complementary research and development activities in hypersonic propulsion at Glenn and elsewhere. This report is focused on obtaining control-relevant dynamic models of an HRRLS-type hypersonic vehicle propulsion system.
Image-based ranging and guidance for rotorcraft
NASA Technical Reports Server (NTRS)
Menon, P. K. A.
1991-01-01
This report documents the research carried out under NASA Cooperative Agreement No. NCC2-575 during the period Oct. 1988 - Dec. 1991. Primary emphasis of this effort was on the development of vision based navigation methods for rotorcraft nap-of-the-earth flight regime. A family of field-based ranging algorithms were developed during this research period. These ranging schemes are capable of handling both stereo and motion image sequences, and permits both translational and rotational camera motion. The algorithms require minimal computational effort and appear to be implementable in real time. A series of papers were presented on these ranging schemes, some of which are included in this report. A small part of the research effort was expended on synthesizing a rotorcraft guidance law that directly uses the vision-based ranging data. This work is discussed in the last section.
Jeong, Ji-Wook; Chae, Seung-Hoon; Chae, Eun Young; Kim, Hak Hee; Choi, Young-Wook; Lee, Sooyeul
2016-01-01
We propose computer-aided detection (CADe) algorithm for microcalcification (MC) clusters in reconstructed digital breast tomosynthesis (DBT) images. The algorithm consists of prescreening, MC detection, clustering, and false-positive (FP) reduction steps. The DBT images containing the MC-like objects were enhanced by a multiscale Hessian-based three-dimensional (3D) objectness response function and a connected-component segmentation method was applied to extract the cluster seed objects as potential clustering centers of MCs. Secondly, a signal-to-noise ratio (SNR) enhanced image was also generated to detect the individual MC candidates and prescreen the MC-like objects. Each cluster seed candidate was prescreened by counting neighboring individual MC candidates nearby the cluster seed object according to several microcalcification clustering criteria. As a second step, we introduced bounding boxes for the accepted seed candidate, clustered all the overlapping cubes, and examined. After the FP reduction step, the average number of FPs per case was estimated to be 2.47 per DBT volume with a sensitivity of 83.3%.
NASA Technical Reports Server (NTRS)
Lawson, C. L.
1977-01-01
The problem of mathematically defining a smooth surface, passing through a finite set of given points is studied. Literature relating to the problem is briefly reviewed. An algorithm is described that first constructs a triangular grid in the (x,y) domain, and first partial derivatives at the modal points are estimated. Interpolation in the triangular cells using a method that gives C sup.1 continuity overall is examined. Performance of software implementing the algorithm is discussed. Theoretical results are presented that provide valuable guidance in the development of algorithms for constructing triangular grids.
A tunable algorithm for collective decision-making.
Pratt, Stephen C; Sumpter, David J T
2006-10-24
Complex biological systems are increasingly understood in terms of the algorithms that guide the behavior of system components and the information pathways that link them. Much attention has been given to robust algorithms, or those that allow a system to maintain its functions in the face of internal or external perturbations. At the same time, environmental variation imposes a complementary need for algorithm versatility, or the ability to alter system function adaptively as external circumstances change. An important goal of systems biology is thus the identification of biological algorithms that can meet multiple challenges rather than being narrowly specified to particular problems. Here we show that emigrating colonies of the ant Temnothorax curvispinosus tune the parameters of a single decision algorithm to respond adaptively to two distinct problems: rapid abandonment of their old nest in a crisis and deliberative selection of the best available new home when their old nest is still intact. The algorithm uses a stepwise commitment scheme and a quorum rule to integrate information gathered by numerous individual ants visiting several candidate homes. By varying the rates at which they search for and accept these candidates, the ants yield a colony-level response that adaptively emphasizes either speed or accuracy. We propose such general but tunable algorithms as a design feature of complex systems, each algorithm providing elegant solutions to a wide range of problems.
Computationally efficient algorithms for real-time attitude estimation
NASA Technical Reports Server (NTRS)
Pringle, Steven R.
1993-01-01
For many practical spacecraft applications, algorithms for determining spacecraft attitude must combine inputs from diverse sensors and provide redundancy in the event of sensor failure. A Kalman filter is suitable for this task, however, it may impose a computational burden which may be avoided by sub optimal methods. A suboptimal estimator is presented which was implemented successfully on the Delta Star spacecraft which performed a 9 month SDI flight experiment in 1989. This design sought to minimize algorithm complexity to accommodate the limitations of an 8K guidance computer. The algorithm used is interpreted in the framework of Kalman filtering and a derivation is given for the computation.
FHSA-SED: Two-Locus Model Detection for Genome-Wide Association Study with Harmony Search Algorithm.
Tuo, Shouheng; Zhang, Junying; Yuan, Xiguo; Zhang, Yuanyuan; Liu, Zhaowen
2016-01-01
Two-locus model is a typical significant disease model to be identified in genome-wide association study (GWAS). Due to intensive computational burden and diversity of disease models, existing methods have drawbacks on low detection power, high computation cost, and preference for some types of disease models. In this study, two scoring functions (Bayesian network based K2-score and Gini-score) are used for characterizing two SNP locus as a candidate model, the two criteria are adopted simultaneously for improving identification power and tackling the preference problem to disease models. Harmony search algorithm (HSA) is improved for quickly finding the most likely candidate models among all two-locus models, in which a local search algorithm with two-dimensional tabu table is presented to avoid repeatedly evaluating some disease models that have strong marginal effect. Finally G-test statistic is used to further test the candidate models. We investigate our method named FHSA-SED on 82 simulated datasets and a real AMD dataset, and compare it with two typical methods (MACOED and CSE) which have been developed recently based on swarm intelligent search algorithm. The results of simulation experiments indicate that our method outperforms the two compared algorithms in terms of detection power, computation time, evaluation times, sensitivity (TPR), specificity (SPC), positive predictive value (PPV) and accuracy (ACC). Our method has identified two SNPs (rs3775652 and rs10511467) that may be also associated with disease in AMD dataset.
FHSA-SED: Two-Locus Model Detection for Genome-Wide Association Study with Harmony Search Algorithm
Tuo, Shouheng; Zhang, Junying; Yuan, Xiguo; Zhang, Yuanyuan; Liu, Zhaowen
2016-01-01
Motivation Two-locus model is a typical significant disease model to be identified in genome-wide association study (GWAS). Due to intensive computational burden and diversity of disease models, existing methods have drawbacks on low detection power, high computation cost, and preference for some types of disease models. Method In this study, two scoring functions (Bayesian network based K2-score and Gini-score) are used for characterizing two SNP locus as a candidate model, the two criteria are adopted simultaneously for improving identification power and tackling the preference problem to disease models. Harmony search algorithm (HSA) is improved for quickly finding the most likely candidate models among all two-locus models, in which a local search algorithm with two-dimensional tabu table is presented to avoid repeatedly evaluating some disease models that have strong marginal effect. Finally G-test statistic is used to further test the candidate models. Results We investigate our method named FHSA-SED on 82 simulated datasets and a real AMD dataset, and compare it with two typical methods (MACOED and CSE) which have been developed recently based on swarm intelligent search algorithm. The results of simulation experiments indicate that our method outperforms the two compared algorithms in terms of detection power, computation time, evaluation times, sensitivity (TPR), specificity (SPC), positive predictive value (PPV) and accuracy (ACC). Our method has identified two SNPs (rs3775652 and rs10511467) that may be also associated with disease in AMD dataset. PMID:27014873
Progressive data transmission for anatomical landmark detection in a cloud.
Sofka, M; Ralovich, K; Zhang, J; Zhou, S K; Comaniciu, D
2012-01-01
In the concept of cloud-computing-based systems, various authorized users have secure access to patient records from a number of care delivery organizations from any location. This creates a growing need for remote visualization, advanced image processing, state-of-the-art image analysis, and computer aided diagnosis. This paper proposes a system of algorithms for automatic detection of anatomical landmarks in 3D volumes in the cloud computing environment. The system addresses the inherent problem of limited bandwidth between a (thin) client, data center, and data analysis server. The problem of limited bandwidth is solved by a hierarchical sequential detection algorithm that obtains data by progressively transmitting only image regions required for processing. The client sends a request to detect a set of landmarks for region visualization or further analysis. The algorithm running on the data analysis server obtains a coarse level image from the data center and generates landmark location candidates. The candidates are then used to obtain image neighborhood regions at a finer resolution level for further detection. This way, the landmark locations are hierarchically and sequentially detected and refined. Only image regions surrounding landmark location candidates need to be trans- mitted during detection. Furthermore, the image regions are lossy compressed with JPEG 2000. Together, these properties amount to at least 30 times bandwidth reduction while achieving similar accuracy when compared to an algorithm using the original data. The hierarchical sequential algorithm with progressive data transmission considerably reduces bandwidth requirements in cloud-based detection systems.
NASA Astrophysics Data System (ADS)
Cao, Yang; Liu, Chun; Huang, Yuehui; Wang, Tieqiang; Sun, Chenjun; Yuan, Yue; Zhang, Xinsong; Wu, Shuyun
2017-02-01
With the development of roof photovoltaic power (PV) generation technology and the increasingly urgent need to improve supply reliability levels in remote areas, islanded microgrid with photovoltaic and energy storage systems (IMPE) is developing rapidly. The high costs of photovoltaic panel material and energy storage battery material have become the primary factors that hinder the development of IMPE. The advantages and disadvantages of different types of photovoltaic panel materials and energy storage battery materials are analyzed in this paper, and guidance is provided on material selection for IMPE planners. The time sequential simulation method is applied to optimize material demands of the IMPE. The model is solved by parallel algorithms that are provided by a commercial solver named CPLEX. Finally, to verify the model, an actual IMPE is selected as a case system. Simulation results on the case system indicate that the optimization model and corresponding algorithm is feasible. Guidance for material selection and quantity demand for IMPEs in remote areas is provided by this method.
Formation Flight of Multiple UAVs via Onboard Sensor Information Sharing.
Park, Chulwoo; Cho, Namhoon; Lee, Kyunghyun; Kim, Youdan
2015-07-17
To monitor large areas or simultaneously measure multiple points, multiple unmanned aerial vehicles (UAVs) must be flown in formation. To perform such flights, sensor information generated by each UAV should be shared via communications. Although a variety of studies have focused on the algorithms for formation flight, these studies have mainly demonstrated the performance of formation flight using numerical simulations or ground robots, which do not reflect the dynamic characteristics of UAVs. In this study, an onboard sensor information sharing system and formation flight algorithms for multiple UAVs are proposed. The communication delays of radiofrequency (RF) telemetry are analyzed to enable the implementation of the onboard sensor information sharing system. Using the sensor information sharing, the formation guidance law for multiple UAVs, which includes both a circular and close formation, is designed. The hardware system, which includes avionics and an airframe, is constructed for the proposed multi-UAV platform. A numerical simulation is performed to demonstrate the performance of the formation flight guidance and control system for multiple UAVs. Finally, a flight test is conducted to verify the proposed algorithm for the multi-UAV system.
Formation Flight of Multiple UAVs via Onboard Sensor Information Sharing
Park, Chulwoo; Cho, Namhoon; Lee, Kyunghyun; Kim, Youdan
2015-01-01
To monitor large areas or simultaneously measure multiple points, multiple unmanned aerial vehicles (UAVs) must be flown in formation. To perform such flights, sensor information generated by each UAV should be shared via communications. Although a variety of studies have focused on the algorithms for formation flight, these studies have mainly demonstrated the performance of formation flight using numerical simulations or ground robots, which do not reflect the dynamic characteristics of UAVs. In this study, an onboard sensor information sharing system and formation flight algorithms for multiple UAVs are proposed. The communication delays of radiofrequency (RF) telemetry are analyzed to enable the implementation of the onboard sensor information sharing system. Using the sensor information sharing, the formation guidance law for multiple UAVs, which includes both a circular and close formation, is designed. The hardware system, which includes avionics and an airframe, is constructed for the proposed multi-UAV platform. A numerical simulation is performed to demonstrate the performance of the formation flight guidance and control system for multiple UAVs. Finally, a flight test is conducted to verify the proposed algorithm for the multi-UAV system. PMID:26193281
Guo, Weian; Si, Chengyong; Xue, Yu; Mao, Yanfen; Wang, Lei; Wu, Qidi
2017-05-04
Particle Swarm Optimization (PSO) is a popular algorithm which is widely investigated and well implemented in many areas. However, the canonical PSO does not perform well in population diversity maintenance so that usually leads to a premature convergence or local optima. To address this issue, we propose a variant of PSO named Grouping PSO with Personal- Best-Position (Pbest) Guidance (GPSO-PG) which maintains the population diversity by preserving the diversity of exemplars. On one hand, we adopt uniform random allocation strategy to assign particles into different groups and in each group the losers will learn from the winner. On the other hand, we employ personal historical best position of each particle in social learning rather than the current global best particle. In this way, the exemplars diversity increases and the effect from the global best particle is eliminated. We test the proposed algorithm to the benchmarks in CEC 2008 and CEC 2010, which concern the large scale optimization problems (LSOPs). By comparing several current peer algorithms, GPSO-PG exhibits a competitive performance to maintain population diversity and obtains a satisfactory performance to the problems.
New trends in astrodynamics and applications: optimal trajectories for space guidance.
Azimov, Dilmurat; Bishop, Robert
2005-12-01
This paper represents recent results on the development of optimal analytic solutions to the variation problem of trajectory optimization and their application in the construction of on-board guidance laws. The importance of employing the analytically integrated trajectories in a mission design is discussed. It is assumed that the spacecraft is equipped with a power-limited propulsion and moving in a central Newtonian field. Satisfaction of the necessary and sufficient conditions for optimality of trajectories is analyzed. All possible thrust arcs and corresponding classes of the analytical solutions are classified based on the propulsion system parameters and performance index of the problem. The solutions are presented in a form convenient for applications in escape, capture, and interorbital transfer problems. Optimal guidance and neighboring optimal guidance problems are considered. It is shown that the analytic solutions can be used as reference trajectories in constructing the guidance algorithms for the maneuver problems mentioned above. An illustrative example of a spiral trajectory that terminates on a given elliptical parking orbit is discussed.
Applications and accuracy of the parallel diagonal dominant algorithm
NASA Technical Reports Server (NTRS)
Sun, Xian-He
1993-01-01
The Parallel Diagonal Dominant (PDD) algorithm is a highly efficient, ideally scalable tridiagonal solver. In this paper, a detailed study of the PDD algorithm is given. First the PDD algorithm is introduced. Then the algorithm is extended to solve periodic tridiagonal systems. A variant, the reduced PDD algorithm, is also proposed. Accuracy analysis is provided for a class of tridiagonal systems, the symmetric, and anti-symmetric Toeplitz tridiagonal systems. Implementation results show that the analysis gives a good bound on the relative error, and the algorithm is a good candidate for the emerging massively parallel machines.
Report on the Development of the Advanced Encryption Standard (AES)
Nechvatal, James; Barker, Elaine; Bassham, Lawrence; Burr, William; Dworkin, Morris; Foti, James; Roback, Edward
2001-01-01
In 1997, the National Institute of Standards and Technology (NIST) initiated a process to select a symmetric-key encryption algorithm to be used to protect sensitive (unclassified) Federal information in furtherance of NIST’s statutory responsibilities. In 1998, NIST announced the acceptance of 15 candidate algorithms and requested the assistance of the cryptographic research community in analyzing the candidates. This analysis included an initial examination of the security and efficiency characteristics for each algorithm. NIST reviewed the results of this preliminary research and selected MARS, RC™, Rijndael, Serpent and Twofish as finalists. Having reviewed further public analysis of the finalists, NIST has decided to propose Rijndael as the Advanced Encryption Standard (AES). The research results and rationale for this selection are documented in this report. PMID:27500035
NASA Astrophysics Data System (ADS)
Yin, Feilong; Hayashi, Ryuzo; Raksincharoensak, Pongsathorn; Nagai, Masao
This research proposes a haptic velocity guidance assistance system for realizing eco-driving as well as enhancing traffic capacity by cooperating with ITS (Intelligent Transportation Systems). The proposed guidance system generates the desired accelerator pedal (abbreviated as pedal) stroke with respect to the desired velocity obtained from ITS considering vehicle dynamics, and provides the desired pedal stroke to the driver via a haptic pedal whose reaction force is controllable and guides the driver in order to trace the desired velocity in real time. The main purpose of this paper is to discuss the feasibility of the haptic velocity guidance. A haptic velocity guidance system for research is developed on the Driving Simulator of TUAT (DS), by attaching a low-inertia, low-friction motor to the pedal, which does not change the original characteristics of the original pedal when it is not operated, implementing an algorithm regarding the desired pedal stroke calculation and the reaction force controller. The haptic guidance maneuver is designed based on human pedal stepping experiments. A simple velocity profile with acceleration, deceleration and cruising is synthesized according to naturalistic driving for testing the proposed system. The experiment result of 9 drivers shows that the haptic guidance provides high accuracy and quick response in velocity tracking. These results prove that the haptic guidance is a promising velocity guidance method from the viewpoint of HMI (Human Machine Interface).
Vision based obstacle detection and grouping for helicopter guidance
NASA Technical Reports Server (NTRS)
Sridhar, Banavar; Chatterji, Gano
1993-01-01
Electro-optical sensors can be used to compute range to objects in the flight path of a helicopter. The computation is based on the optical flow/motion at different points in the image. The motion algorithms provide a sparse set of ranges to discrete features in the image sequence as a function of azimuth and elevation. For obstacle avoidance guidance and display purposes, these discrete set of ranges, varying from a few hundreds to several thousands, need to be grouped into sets which correspond to objects in the real world. This paper presents a new method for object segmentation based on clustering the sparse range information provided by motion algorithms together with the spatial relation provided by the static image. The range values are initially grouped into clusters based on depth. Subsequently, the clusters are modified by using the K-means algorithm in the inertial horizontal plane and the minimum spanning tree algorithms in the image plane. The object grouping allows interpolation within a group and enables the creation of dense range maps. Researchers in robotics have used densely scanned sequence of laser range images to build three-dimensional representation of the outside world. Thus, modeling techniques developed for dense range images can be extended to sparse range images. The paper presents object segmentation results for a sequence of flight images.
Developing a Pedagogically Useful Content Knowledge in Elementary Mathematics.
ERIC Educational Resources Information Center
Peck, Donald M.; Connell, Michael L.
Elementary school teacher candidates typically enter their professional training with deficiencies in their conceptual understanding of the topics of elementary school mathematics and with a reliance upon procedural (algorithmic) approaches to the solutions of mathematical problems. If elementary school teacher candidates are expected to teach…
Reducing false-positive detections by combining two stage-1 computer-aided mass detection algorithms
NASA Astrophysics Data System (ADS)
Bedard, Noah D.; Sampat, Mehul P.; Stokes, Patrick A.; Markey, Mia K.
2006-03-01
In this paper we present a strategy for reducing the number of false-positives in computer-aided mass detection. Our approach is to only mark "consensus" detections from among the suspicious sites identified by different "stage-1" detection algorithms. By "stage-1" we mean that each of the Computer-aided Detection (CADe) algorithms is designed to operate with high sensitivity, allowing for a large number of false positives. In this study, two mass detection methods were used: (1) Heath and Bowyer's algorithm based on the average fraction under the minimum filter (AFUM) and (2) a low-threshold bi-lateral subtraction algorithm. The two methods were applied separately to a set of images from the Digital Database for Screening Mammography (DDSM) to obtain paired sets of mass candidates. The consensus mass candidates for each image were identified by a logical "and" operation of the two CADe algorithms so as to eliminate regions of suspicion that were not independently identified by both techniques. It was shown that by combining the evidence from the AFUM filter method with that obtained from bi-lateral subtraction, the same sensitivity could be reached with fewer false-positives per image relative to using the AFUM filter alone.
A grid layout algorithm for automatic drawing of biochemical networks.
Li, Weijiang; Kurata, Hiroyuki
2005-05-01
Visualization is indispensable in the research of complex biochemical networks. Available graph layout algorithms are not adequate for satisfactorily drawing such networks. New methods are required to visualize automatically the topological architectures and facilitate the understanding of the functions of the networks. We propose a novel layout algorithm to draw complex biochemical networks. A network is modeled as a system of interacting nodes on squared grids. A discrete cost function between each node pair is designed based on the topological relation and the geometric positions of the two nodes. The layouts are produced by minimizing the total cost. We design a fast algorithm to minimize the discrete cost function, by which candidate layouts can be produced efficiently. A simulated annealing procedure is used to choose better candidates. Our algorithm demonstrates its ability to exhibit cluster structures clearly in relatively compact layout areas without any prior knowledge. We developed Windows software to implement the algorithm for CADLIVE. All materials can be freely downloaded from http://kurata21.bio.kyutech.ac.jp/grid/grid_layout.htm; http://www.cadlive.jp/ http://kurata21.bio.kyutech.ac.jp/grid/grid_layout.htm; http://www.cadlive.jp/
Lin, Jingjing; Jing, Honglei
2016-01-01
Artificial immune system is one of the most recently introduced intelligence methods which was inspired by biological immune system. Most immune system inspired algorithms are based on the clonal selection principle, known as clonal selection algorithms (CSAs). When coping with complex optimization problems with the characteristics of multimodality, high dimension, rotation, and composition, the traditional CSAs often suffer from the premature convergence and unsatisfied accuracy. To address these concerning issues, a recombination operator inspired by the biological combinatorial recombination is proposed at first. The recombination operator could generate the promising candidate solution to enhance search ability of the CSA by fusing the information from random chosen parents. Furthermore, a modified hypermutation operator is introduced to construct more promising and efficient candidate solutions. A set of 16 common used benchmark functions are adopted to test the effectiveness and efficiency of the recombination and hypermutation operators. The comparisons with classic CSA, CSA with recombination operator (RCSA), and CSA with recombination and modified hypermutation operator (RHCSA) demonstrate that the proposed algorithm significantly improves the performance of classic CSA. Moreover, comparison with the state-of-the-art algorithms shows that the proposed algorithm is quite competitive. PMID:27698662
Wang, Sen; Wang, Weihong; Xiong, Shaofeng
2016-09-01
Considering a class of skid-to-turn (STT) missile with fixed target and constrained terminal impact angles, a novel three-dimensional (3D) integrated guidance and control (IGC) scheme is proposed in this paper. Based on coriolis theorem, the fully nonlinear IGC model without the assumption that the missile flies heading to the target at initial time is established in the three-dimensional space. For this strict-feedback form of multi-variable system, dynamic surface control algorithm is implemented combining with extended observer (ESO) to complete the preliminary design. Then, in order to deal with the problems of the input constraints, a hyperbolic tangent function is introduced to approximate the saturation function and auxiliary system including a Nussbaum function established to compensate for the approximation error. The stability of the closed-loop system is proven based on Lyapunov theory. Numerical simulations results show that the proposed integrated guidance and control algorithm can ensure the accuracy of target interception with initial alignment angle deviation and the input saturation is suppressed with smooth deflection curves. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Advanced aviation environmental modeling tools to inform policymakers
DOT National Transportation Integrated Search
2012-08-19
Aviation environmental models which conform to international guidance have advanced : over the past several decades. Enhancements to algorithms and databases have increasingly : shown these models to compare well with gold standard measured data. The...
Guidance, Navigation, and Control Techniques and Technologies for Active Satellite Removal
NASA Astrophysics Data System (ADS)
Ortega Hernando, Guillermo; Erb, Sven; Cropp, Alexander; Voirin, Thomas; Dubois-Matra, Olivier; Rinalducci, Antonio; Visentin, Gianfranco; Innocenti, Luisa; Raposo, Ana
2013-09-01
This paper shows an internal feasibility analysis to de- orbit a non-functional satellite of big dimensions by the Technical Directorate of the European Space Agency ESA. The paper focuses specifically on the design of the techniques and technologies for the Guidance, Navigation, and Control (GNC) system of the spacecraft mission that will capture the satellite and ultimately will de-orbit it on a controlled re-entry.The paper explains the guidance strategies to launch, rendezvous, close-approach, and capture the target satellite. The guidance strategy uses chaser manoeuvres, hold points, and collision avoidance trajectories to ensure a safe capture. It also details the guidance profile to de-orbit it in a controlled re-entry.The paper continues with an analysis of the required sensing suite and the navigation algorithms to allow the homing, fly-around, and capture of the target satellite. The emphasis is placed around the design of a system to allow the rendezvous with an un-cooperative target, including the autonomous acquisition of both the orbital elements and the attitude of the target satellite.Analysing the capture phase, the paper provides a trade- off between two selected capture systems: the net and the tentacles. Both are studied from the point of view of the GNC system.The paper analyses as well the advanced algorithms proposed to control the final compound after the capture that will allow the controlled de-orbiting of the assembly in a safe place in the Earth.The paper ends proposing the continuation of this work with the extension to the analysis of the destruction process of the compound in consecutive segments starting from the entry gate to the rupture and break up.
Writing-Based Teaching: Essential Practices and Enduring Questions
ERIC Educational Resources Information Center
Vilardi, Teresa, Ed.; Chang, Mary, Ed.
2009-01-01
Written by the team at Bard College's Institute for Writing and Thinking, this book is designed to provide practical guidance regarding the challenges and potential of writing-based teaching, and suggestions for how to adapt the practices to particular classroom situations. The contributors share candid, first-hand accounts of what it is like to…
From 1984 to 1996, an impounded segment of the Presumpscot River, downstream of a major point source, failed to attain Maine's Class C aquatic life standards based on benthic invertebrate assemblages. Eight candidate causes were hypothesized: 1) toxic chemicals; 2) floc resultin...
ERIC Educational Resources Information Center
Kopriva, Peter
1989-01-01
This editorial briefly explores issues in special education focusing on: teacher shortages; use of alternative certification; the need for teaching candidates to have knowledge of teaching strategies, classroom management, course planning, and student evaluation; and the need to offer support and guidance to beginning teachers. (JDD)
ERIC Educational Resources Information Center
Jobes, Tammy L. Kester Engel
2017-01-01
Healthcare administration is a complex, multifaceted career path that requires constant adaptation and integration of external guidance. Organizations seeking the most qualified and skilled candidates draw from a multitude of applicants without having a single potential success indicator. The lack of a standard educational background,…
DOT National Transportation Integrated Search
2013-08-01
The purpose of this memorandum is to provide recommended Total System Error (TSE) models for : aircraft using RNAV (GPS) guidance when analyzing the wake encounter risk of proposed simultaneous : dependent (paired) approaches, with 1.5 Nautical...
ERIC Educational Resources Information Center
Duran, Nagihan Oguz; Gökçe, Feyyat
2017-01-01
In the present study, Uludag University, Faculty of Education, Guidance and Psychological Counseling (GPC) undergraduate program students' expectations and satisfaction levels regarding the services and facilities provided by the university were investigated in a sample of 354 students (227 females and 127 males). The data collected by the…
Entry Guidance for the 2011 Mars Science Laboratory Mission
NASA Technical Reports Server (NTRS)
Mendeck, Gavin F.; Craig, Lynn E.
2011-01-01
The 2011 Mars Science Laboratory will be the first Mars mission to attempt a guided entry to safely deliver the rover to a touchdown ellipse of 25 km x 20 km. The Entry Terminal Point Controller guidance algorithm is derived from the final phase Apollo Command Module guidance and, like Apollo, modulates the bank angle to control the range flown. For application to Mars landers which must make use of the tenuous Martian atmosphere, it is critical to balance the lift of the vehicle to minimize the range error while still ensuring a safe deploy altitude. An overview of the process to generate optimized guidance settings is presented, discussing improvements made over the last nine years. Key dispersions driving deploy ellipse and altitude performance are identified. Performance sensitivities including attitude initialization error and the velocity of transition from range control to heading alignment are presented.
NASA Technical Reports Server (NTRS)
Clement, Warren F.; Gorder, Pater J.; Jewell, Wayne F.; Coppenbarger, Richard
1990-01-01
Developing a single-pilot all-weather NOE capability requires fully automatic NOE navigation and flight control. Innovative guidance and control concepts are being investigated to (1) organize the onboard computer-based storage and real-time updating of NOE terrain profiles and obstacles; (2) define a class of automatic anticipative pursuit guidance algorithms to follow the vertical, lateral, and longitudinal guidance commands; (3) automate a decision-making process for unexpected obstacle avoidance; and (4) provide several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the recorded environment which is then used to determine an appropriate evasive maneuver if a nonconformity is observed. This research effort has been evaluated in both fixed-base and moving-base real-time piloted simulations thereby evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and reengagement of the automatic system.
NASA Astrophysics Data System (ADS)
Li, Shuang; Peng, Yuming
2012-01-01
In order to accurately deliver an entry vehicle through the Martian atmosphere to the prescribed parachute deployment point, active Mars entry guidance is essential. This paper addresses the issue of Mars atmospheric entry guidance using the command generator tracker (CGT) based direct model reference adaptive control to reduce the adverse effect of the bounded uncertainties on atmospheric density and aerodynamic coefficients. Firstly, the nominal drag acceleration profile meeting a variety of constraints is planned off-line in the longitudinal plane as the reference model to track. Then, the CGT based direct model reference adaptive controller and the feed-forward compensator are designed to robustly track the aforementioned reference drag acceleration profile and to effectively reduce the downrange error. Afterwards, the heading alignment logic is adopted in the lateral plane to reduce the crossrange error. Finally, the validity of the guidance algorithm proposed in this paper is confirmed by Monte Carlo simulation analysis.
Adaptive guidance for an aero-assisted boost vehicle
NASA Astrophysics Data System (ADS)
Pamadi, Bandu N.; Taylor, Lawrence W., Jr.; Price, Douglas B.
An adaptive guidance system incorporating dynamic pressure constraint is studied for a single stage to low earth orbit (LEO) aero-assist booster with thrust gimbal angle as the control variable. To derive an adaptive guidance law, cubic spline functions are used to represent the ascent profile. The booster flight to LEO is divided into initial and terminal phases. In the initial phase, the ascent profile is continuously updated to maximize the performance of the boost vehicle enroute. A linear feedback control is used in the terminal phase to guide the aero-assisted booster onto the desired LEO. The computer simulation of the vehicle dynamics considers a rotating spherical earth, inverse square (Newtonian) gravity field and an exponential model for the earth's atmospheric density. This adaptive guidance algorithm is capable of handling large deviations in both atmospheric conditions and modeling uncertainties, while ensuring maximum booster performance.
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc
1998-01-01
For long linear block codes, maximum likelihood decoding based on full code trellises would be very hard to implement if not impossible. In this case, we may wish to trade error performance for the reduction in decoding complexity. Sub-optimum soft-decision decoding of a linear block code based on a low-weight sub-trellis can be devised to provide an effective trade-off between error performance and decoding complexity. This chapter presents such a suboptimal decoding algorithm for linear block codes. This decoding algorithm is iterative in nature and based on an optimality test. It has the following important features: (1) a simple method to generate a sequence of candidate code-words, one at a time, for test; (2) a sufficient condition for testing a candidate code-word for optimality; and (3) a low-weight sub-trellis search for finding the most likely (ML) code-word.
NASA Astrophysics Data System (ADS)
Zhang, Ka; Sheng, Yehua; Wang, Meizhen; Fu, Suxia
2018-05-01
The traditional multi-view vertical line locus (TMVLL) matching method is an object-space-based method that is commonly used to directly acquire spatial 3D coordinates of ground objects in photogrammetry. However, the TMVLL method can only obtain one elevation and lacks an accurate means of validating the matching results. In this paper, we propose an enhanced multi-view vertical line locus (EMVLL) matching algorithm based on positioning consistency for aerial or space images. The algorithm involves three components: confirming candidate pixels of the ground primitive in the base image, multi-view image matching based on the object space constraints for all candidate pixels, and validating the consistency of the object space coordinates with the multi-view matching result. The proposed algorithm was tested using actual aerial images and space images. Experimental results show that the EMVLL method successfully solves the problems associated with the TMVLL method, and has greater reliability, accuracy and computing efficiency.
Digital Terrain from a Two-Step Segmentation and Outlier-Based Algorithm
NASA Astrophysics Data System (ADS)
Hingee, Kassel; Caccetta, Peter; Caccetta, Louis; Wu, Xiaoliang; Devereaux, Drew
2016-06-01
We present a novel ground filter for remotely sensed height data. Our filter has two phases: the first phase segments the DSM with a slope threshold and uses gradient direction to identify candidate ground segments; the second phase fits surfaces to the candidate ground points and removes outliers. Digital terrain is obtained by a surface fit to the final set of ground points. We tested the new algorithm on digital surface models (DSMs) for a 9600km2 region around Perth, Australia. This region contains a large mix of land uses (urban, grassland, native forest and plantation forest) and includes both a sandy coastal plain and a hillier region (elevations up to 0.5km). The DSMs are captured annually at 0.2m resolution using aerial stereo photography, resulting in 1.2TB of input data per annum. Overall accuracy of the filter was estimated to be 89.6% and on a small semi-rural subset our algorithm was found to have 40% fewer errors compared to Inpho's Match-T algorithm.
Evaluation of Anomaly Detection Capability for Ground-Based Pre-Launch Shuttle Operations. Chapter 8
NASA Technical Reports Server (NTRS)
Martin, Rodney Alexander
2010-01-01
This chapter will provide a thorough end-to-end description of the process for evaluation of three different data-driven algorithms for anomaly detection to select the best candidate for deployment as part of a suite of IVHM (Integrated Vehicle Health Management) technologies. These algorithms were deemed to be sufficiently mature enough to be considered viable candidates for deployment in support of the maiden launch of Ares I-X, the successor to the Space Shuttle for NASA's Constellation program. Data-driven algorithms are just one of three different types being deployed. The other two types of algorithms being deployed include a "nile-based" expert system, and a "model-based" system. Within these two categories, the deployable candidates have already been selected based upon qualitative factors such as flight heritage. For the rule-based system, SHINE (Spacecraft High-speed Inference Engine) has been selected for deployment, which is a component of BEAM (Beacon-based Exception Analysis for Multimissions), a patented technology developed at NASA's JPL (Jet Propulsion Laboratory) and serves to aid in the management and identification of operational modes. For the "model-based" system, a commercially available package developed by QSI (Qualtech Systems, Inc.), TEAMS (Testability Engineering and Maintenance System) has been selected for deployment to aid in diagnosis. In the context of this particular deployment, distinctions among the use of the terms "data-driven," "rule-based," and "model-based," can be found in. Although there are three different categories of algorithms that have been selected for deployment, our main focus in this chapter will be on the evaluation of three candidates for data-driven anomaly detection. These algorithms will be evaluated upon their capability for robustly detecting incipient faults or failures in the ground-based phase of pre-launch space shuttle operations, rather than based oil heritage as performed in previous studies. Robust detection will allow for the achievement of pre-specified minimum false alarm and/or missed detection rates in the selection of alert thresholds. All algorithms will also be optimized with respect to an aggregation of these same criteria. Our study relies upon the use of Shuttle data to act as was a proxy for and in preparation for application to Ares I-X data, which uses a very similar hardware platform for the subsystems that are being targeted (TVC - Thrust Vector Control subsystem for the SRB (Solid Rocket Booster)).
A Generic Guidance and Control Structure for Six-Degree-of-Freedom Conceptual Aircraft Design
NASA Technical Reports Server (NTRS)
Cotting, M. Christopher; Cox, Timothy H.
2005-01-01
A control system framework is presented for both real-time and batch six-degree-of-freedom simulation. This framework allows stabilization and control with multiple command options, from body rate control to waypoint guidance. Also, pilot commands can be used to operate the simulation in a pilot-in-the-loop environment. This control system framework is created by using direct vehicle state feedback with nonlinear dynamic inversion. A direct control allocation scheme is used to command aircraft effectors. Online B-matrix estimation is used in the control allocation algorithm for maximum algorithm flexibility. Primary uses for this framework include conceptual design and early preliminary design of aircraft, where vehicle models change rapidly and a knowledge of vehicle six-degree-of-freedom performance is required. A simulated airbreathing hypersonic vehicle and a simulated high performance fighter are controlled to demonstrate the flexibility and utility of the control system.
Link!: Potential Field Guidance Algorithm for In-Flight Linking of Multi-Rotor Aircraft
NASA Technical Reports Server (NTRS)
Cooper, John R.; Rothhaar, Paul M.
2017-01-01
Link! is a multi-center NASA e ort to study the feasibility of multi-aircraft aerial docking systems. In these systems, a group of vehicles physically link to each other during flight to form a larger ensemble vehicle with increased aerodynamic performance and mission utility. This paper presents a potential field guidance algorithm for a group of multi-rotor vehicles to link to each other during flight. The linking is done in pairs. Each vehicle first selects a mate. Then the potential field is constructed with three rules: move towards the mate, avoid collisions with non-mates, and stay close to the rest of the group. Once a pair links, they are then considered to be a single vehicle. After each pair is linked, the process repeats until there is only one vehicle left. The paper contains simulation results for a system of 16 vehicles.
Self-similarity Clustering Event Detection Based on Triggers Guidance
NASA Astrophysics Data System (ADS)
Zhang, Xianfei; Li, Bicheng; Tian, Yuxuan
Traditional method of Event Detection and Characterization (EDC) regards event detection task as classification problem. It makes words as samples to train classifier, which can lead to positive and negative samples of classifier imbalance. Meanwhile, there is data sparseness problem of this method when the corpus is small. This paper doesn't classify event using word as samples, but cluster event in judging event types. It adopts self-similarity to convergence the value of K in K-means algorithm by the guidance of event triggers, and optimizes clustering algorithm. Then, combining with named entity and its comparative position information, the new method further make sure the pinpoint type of event. The new method avoids depending on template of event in tradition methods, and its result of event detection can well be used in automatic text summarization, text retrieval, and topic detection and tracking.
Morrison, C S; Sekadde-Kigondu, C; Miller, W C; Weiner, D H; Sinei, S K
1999-02-01
Sexually transmitted diseases (STD) are an important contraindication for intrauterine device (IUD) insertion. Nevertheless, laboratory testing for STD is not possible in many settings. The objective of this study is to evaluate the use of risk assessment algorithms to predict STD and subsequent IUD-related complications among IUD candidates. Among 615 IUD users in Kenya, the following algorithms were evaluated: 1) an STD algorithm based on US Agency for International Development (USAID) Technical Working Group guidelines: 2) a Centers for Disease Control and Prevention (CDC) algorithm for management of chlamydia; and 3) a data-derived algorithm modeled from study data. Algorithms were evaluated for prediction of chlamydial and gonococcal infection at 1 month and complications (pelvic inflammatory disease [PID], IUD removals, and IUD expulsions) over 4 months. Women with STD were more likely to develop complications than women without STD (19% vs 6%; risk ratio = 2.9; 95% CI 1.3-6.5). For STD prediction, the USAID algorithm was 75% sensitive and 48% specific, with a positive likelihood ratio (LR+) of 1.4. The CDC algorithm was 44% sensitive and 72% specific, LR+ = 1.6. The data-derived algorithm was 91% sensitive and 56% specific, with LR+ = 2.0 and LR- = 0.2. Category-specific LR for this algorithm identified women with very low (< 1%) and very high (29%) infection probabilities. The data-derived algorithm was also the best predictor of IUD-related complications. These results suggest that use of STD algorithms may improve selection of IUD users. Women at high risk for STD could be counseled to avoid IUD, whereas women at moderate risk should be monitored closely and counseled to use condoms.
Meng, Qier; Kitasaka, Takayuki; Nimura, Yukitaka; Oda, Masahiro; Ueno, Junji; Mori, Kensaku
2017-02-01
Airway segmentation plays an important role in analyzing chest computed tomography (CT) volumes for computerized lung cancer detection, emphysema diagnosis and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3D airway tree structure from a CT volume is quite a challenging task. Several researchers have proposed automated airway segmentation algorithms basically based on region growing and machine learning techniques. However, these methods fail to detect the peripheral bronchial branches, which results in a large amount of leakage. This paper presents a novel approach for more accurate extraction of the complex airway tree. This proposed segmentation method is composed of three steps. First, Hessian analysis is utilized to enhance the tube-like structure in CT volumes; then, an adaptive multiscale cavity enhancement filter is employed to detect the cavity-like structure with different radii. In the second step, support vector machine learning will be utilized to remove the false positive (FP) regions from the result obtained in the previous step. Finally, the graph-cut algorithm is used to refine the candidate voxels to form an integrated airway tree. A test dataset including 50 standard-dose chest CT volumes was used for evaluating our proposed method. The average extraction rate was about 79.1 % with the significantly decreased FP rate. A new method of airway segmentation based on local intensity structure and machine learning technique was developed. The method was shown to be feasible for airway segmentation in a computer-aided diagnosis system for a lung and bronchoscope guidance system.
2016-09-01
identification and tracking algorithm. 14. SUBJECT TERMS unmanned ground vehicles , pure pursuit, vector field histogram, feature recognition 15. NUMBER OF...located within the various theaters of war. The pace for the development and deployment of unmanned ground vehicles (UGV) was, however, not keeping...DEVELOPMENT OF UNMANNED GROUND VEHICLES The development and fielding of UGVs in an operational role are not a new concept in the battlefield. In
Bhatt-Mehta, Varsha; MacArthur, Robert B.; Löbenberg, Raimar; Cies, Jeffrey J.; Cernak, Ibolja; Parrish, Richard H.
2015-01-01
The lack of commercially-available pediatric drug products and dosage forms is well-known. A group of clinicians and scientists with a common interest in pediatric drug development and medicines-use systems developed a practical framework for identifying a list of active pharmaceutical ingredients (APIs) with the greatest market potential for development to use in pediatric patients. Reliable and reproducible evidence-based drug formulations designed for use in pediatric patients are needed vitally, otherwise safe and consistent clinical practices and outcomes assessments will continue to be difficult to ascertain. Identification of a prioritized list of candidate APIs for oral formulation using the described algorithm provides a broader integrated clinical, scientific, regulatory, and market basis to allow for more reliable dosage forms and safer, effective medicines use in children of all ages. Group members derived a list of candidate API molecules by factoring in a number of pharmacotherapeutic, scientific, manufacturing, and regulatory variables into the selection algorithm that were absent in other rubrics. These additions will assist in identifying and categorizing prime API candidates suitable for oral formulation development. Moreover, the developed algorithm aids in prioritizing useful APIs with finished oral liquid dosage forms available from other countries with direct importation opportunities to North America and beyond. PMID:28975916
Concepts and algorithms for terminal-area traffic management
NASA Technical Reports Server (NTRS)
Erzberger, H.; Chapel, J. D.
1984-01-01
The nation's air-traffic-control system is the subject of an extensive modernization program, including the planned introduction of advanced automation techniques. This paper gives an overview of a concept for automating terminal-area traffic management. Four-dimensional (4D) guidance techniques, which play an essential role in the automated system, are reviewed. One technique, intended for on-board computer implementation, is based on application of optimal control theory. The second technique is a simplified approach to 4D guidance intended for ground computer implementation. It generates advisory messages to help the controller maintain scheduled landing times of aircraft not equipped with on-board 4D guidance systems. An operational system for the second technique, recently evaluated in a simulation, is also described.
Apollo LM guidance computer software for the final lunar descent.
NASA Technical Reports Server (NTRS)
Eyles, D.
1973-01-01
In all manned lunar landings to date, the lunar module Commander has taken partial manual control of the spacecraft during the final stage of the descent, below roughly 500 ft altitude. This report describes programs developed at the Charles Stark Draper Laboratory, MIT, for use in the LM's guidance computer during the final descent. At this time computational demands on the on-board computer are at a maximum, and particularly close interaction with the crew is necessary. The emphasis is on the design of the computer software rather than on justification of the particular guidance algorithms employed. After the computer and the mission have been introduced, the current configuration of the final landing programs and an advanced version developed experimentally by the author are described.
NASA Astrophysics Data System (ADS)
Croft, John; Deily, John; Hartman, Kathy; Weidow, David
1998-01-01
In the twenty-first century, NASA envisions frequent low-cost missions to explore the solar system, observe the universe, and study our planet. To realize NASA's goal, the Guidance, Navigation, and Control Center (GNCC) at the Goddard Space Flight Center sponsors technology programs that enhance spacecraft performance, streamline processes and ultimately enable cheaper science. Our technology programs encompass control system architectures, sensor and actuator components, electronic systems, design and development of algorithms, embedded systems and space vehicle autonomy. Through collaboration with government, universities, non-profit organizations, and industry, the GNCC incrementally develops key technologies that conquer NASA's challenges. This paper presents an overview of several innovative technology initiatives for the autonomous guidance, navigation, and control (GN&C) of satellites.
Near-optimal reconfiguration and maintenance of close spacecraft formations.
Lovell, T A; Tragesser, S G
2004-05-01
This paper investigates orbit guidance algorithms for formation flying experiments. The relative motion of one satellite about a reference satellite is formulated in terms of a set of parameters that clearly describe the size, shape, and orientation of the formation. A nominal three-impulse burn maneuver algorithm is presented that is applicable for both reconfiguration and maintenance of spacecraft formations. Two methods of implementing the algorithm are discussed, one involving fixed times between each burn and one allowing the wait times to vary. The implications of employing four or more impulses for maneuvers are assessed. Examples applying the algorithm to various formation scenarios are presented, along with practical implications of each result.
NASA Astrophysics Data System (ADS)
Sprinks, James Christopher; Wardlaw, Jessica; Houghton, Robert; Bamford, Steven; Marsh, Stuart
2016-10-01
Citizen science platforms allow untrained volunteers to take part in scientific research across a range of disciplines, and often involve the analysis of remotely sensed imagery. The data collected by increasingly advanced and automated instruments has made planetary science a prime candidate for, and user of, citizen science online platforms. In order to process this large volume of information, such systems are increasingly performed in conjunction with data-mining analysis software, with varying configurations of computer and volunteer contribution. Despite citizen science being a relatively new approach, there has been a growing field of research considering the practice in its own right beyond the scientific problems they address, with studies involving interface HCI, platform functionality, and motivation particularly adding to a growing body of citizen science scholarship.Through iterations of the FP7 iMars project's 'Mars in Motion' platform, the work presented studied the effect that guidance information had on volunteers' accuracy and trust. Whilst analysing imagery for change, volunteers were told whether automated change detection software or the consensus of other citizen scientists had found change, with this information varying in terms of accuracy. Results showed that volunteers' ability to both identify change and the type of feature undergoing change was improved when both the software result and crowd opinion guidance information provided had a greater accuracy. However, when guidance information was less accurate volunteers' level of trust fell at a sharper rate when it came from the crowd than when it came from the algorithm, and participants reported more frustration - a counter-intuitive result compared to existing research. Citizen science practitioners need to consider the information they provide to volunteers and how they present it; the results of software analysis or the consensus of a crowd need to be conclusive and above all accurate in order to improve both the performance and engagement of their volunteer community.The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement 607379.
Ko, Gene M; Garg, Rajni; Bailey, Barbara A; Kumar, Sunil
2016-01-01
Quantitative structure-activity relationship (QSAR) models can be used as a predictive tool for virtual screening of chemical libraries to identify novel drug candidates. The aims of this paper were to report the results of a study performed for descriptor selection, QSAR model development, and virtual screening for identifying novel HIV-1 integrase inhibitor drug candidates. First, three evolutionary algorithms were compared for descriptor selection: differential evolution-binary particle swarm optimization (DE-BPSO), binary particle swarm optimization, and genetic algorithms. Next, three QSAR models were developed from an ensemble of multiple linear regression, partial least squares, and extremely randomized trees models. A comparison of the performances of three evolutionary algorithms showed that DE-BPSO has a significant improvement over the other two algorithms. QSAR models developed in this study were used in consensus as a predictive tool for virtual screening of the NCI Open Database containing 265,242 compounds to identify potential novel HIV-1 integrase inhibitors. Six compounds were predicted to be highly active (plC50 > 6) by each of the three models. The use of a hybrid evolutionary algorithm (DE-BPSO) for descriptor selection and QSAR model development in drug design is a novel approach. Consensus modeling may provide better predictivity by taking into account a broader range of chemical properties within the data set conducive for inhibition that may be missed by an individual model. The six compounds identified provide novel drug candidate leads in the design of next generation HIV- 1 integrase inhibitors targeting drug resistant mutant viruses.
Improving the discrimination of hand motor imagery via virtual reality based visual guidance.
Liang, Shuang; Choi, Kup-Sze; Qin, Jing; Pang, Wai-Man; Wang, Qiong; Heng, Pheng-Ann
2016-08-01
While research on the brain-computer interface (BCI) has been active in recent years, how to get high-quality electrical brain signals to accurately recognize human intentions for reliable communication and interaction is still a challenging task. The evidence has shown that visually guided motor imagery (MI) can modulate sensorimotor electroencephalographic (EEG) rhythms in humans, but how to design and implement efficient visual guidance during MI in order to produce better event-related desynchronization (ERD) patterns is still unclear. The aim of this paper is to investigate the effect of using object-oriented movements in a virtual environment as visual guidance on the modulation of sensorimotor EEG rhythms generated by hand MI. To improve the classification accuracy on MI, we further propose an algorithm to automatically extract subject-specific optimal frequency and time bands for the discrimination of ERD patterns produced by left and right hand MI. The experimental results show that the average classification accuracy of object-directed scenarios is much better than that of non-object-directed scenarios (76.87% vs. 69.66%). The result of the t-test measuring the difference between them is statistically significant (p = 0.0207). When compared to algorithms based on fixed frequency and time bands, contralateral dominant ERD patterns can be enhanced by using the subject-specific optimal frequency and the time bands obtained by our proposed algorithm. These findings have the potential to improve the efficacy and robustness of MI-based BCI applications. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A new adaptive multiple modelling approach for non-linear and non-stationary systems
NASA Astrophysics Data System (ADS)
Chen, Hao; Gong, Yu; Hong, Xia
2016-07-01
This paper proposes a novel adaptive multiple modelling algorithm for non-linear and non-stationary systems. This simple modelling paradigm comprises K candidate sub-models which are all linear. With data available in an online fashion, the performance of all candidate sub-models are monitored based on the most recent data window, and M best sub-models are selected from the K candidates. The weight coefficients of the selected sub-model are adapted via the recursive least square (RLS) algorithm, while the coefficients of the remaining sub-models are unchanged. These M model predictions are then optimally combined to produce the multi-model output. We propose to minimise the mean square error based on a recent data window, and apply the sum to one constraint to the combination parameters, leading to a closed-form solution, so that maximal computational efficiency can be achieved. In addition, at each time step, the model prediction is chosen from either the resultant multiple model or the best sub-model, whichever is the best. Simulation results are given in comparison with some typical alternatives, including the linear RLS algorithm and a number of online non-linear approaches, in terms of modelling performance and time consumption.
An Investigation of State-Space Model Fidelity for SSME Data
NASA Technical Reports Server (NTRS)
Martin, Rodney Alexander
2008-01-01
In previous studies, a variety of unsupervised anomaly detection techniques for anomaly detection were applied to SSME (Space Shuttle Main Engine) data. The observed results indicated that the identification of certain anomalies were specific to the algorithmic method under consideration. This is the reason why one of the follow-on goals of these previous investigations was to build an architecture to support the best capabilities of all algorithms. We appeal to that goal here by investigating a cascade, serial architecture for the best performing and most suitable candidates from previous studies. As a precursor to a formal ROC (Receiver Operating Characteristic) curve analysis for validation of resulting anomaly detection algorithms, our primary focus here is to investigate the model fidelity as measured by variants of the AIC (Akaike Information Criterion) for state-space based models. We show that placing constraints on a state-space model during or after the training of the model introduces a modest level of suboptimality. Furthermore, we compare the fidelity of all candidate models including those embodying the cascade, serial architecture. We make recommendations on the most suitable candidates for application to subsequent anomaly detection studies as measured by AIC-based criteria.
NASA Astrophysics Data System (ADS)
Morello, Giuseppe; Morris, P. W.; Van Dyk, S. D.; Marston, A. P.; Mauerhan, J. C.
2018-01-01
We have investigated and applied machine-learning algorithms for infrared colour selection of Galactic Wolf-Rayet (WR) candidates. Objects taken from the Spitzer Galactic Legacy Infrared Midplane Survey Extraordinaire (GLIMPSE) catalogue of the infrared objects in the Galactic plane can be classified into different stellar populations based on the colours inferred from their broad-band photometric magnitudes [J, H and Ks from 2 Micron All Sky Survey (2MASS), and the four Spitzer/IRAC bands]. The algorithms tested in this pilot study are variants of the k-nearest neighbours approach, which is ideal for exploratory studies of classification problems where interrelations between variables and classes are complicated. The aims of this study are (1) to provide an automated tool to select reliable WR candidates and potentially other classes of objects, (2) to measure the efficiency of infrared colour selection at performing these tasks and (3) to lay the groundwork for statistically inferring the total number of WR stars in our Galaxy. We report the performance results obtained over a set of known objects and selected candidates for which we have carried out follow-up spectroscopic observations, and confirm the discovery of four new WR stars.
NASA Astrophysics Data System (ADS)
Li, Jia; Wang, Qiang; Yan, Wenjie; Shen, Yi
2015-12-01
Cooperative spectrum sensing exploits the spatial diversity to improve the detection of occupied channels in cognitive radio networks (CRNs). Cooperative compressive spectrum sensing (CCSS) utilizing the sparsity of channel occupancy further improves the efficiency by reducing the number of reports without degrading detection performance. In this paper, we firstly and mainly propose the referred multi-candidate orthogonal matrix matching pursuit (MOMMP) algorithms to efficiently and effectively detect occupied channels at fusion center (FC), where multi-candidate identification and orthogonal projection are utilized to respectively reduce the number of required iterations and improve the probability of exact identification. Secondly, two common but different approaches based on threshold and Gaussian distribution are introduced to realize the multi-candidate identification. Moreover, to improve the detection accuracy and energy efficiency, we propose the matrix construction based on shrinkage and gradient descent (MCSGD) algorithm to provide a deterministic filter coefficient matrix of low t-average coherence. Finally, several numerical simulations validate that our proposals provide satisfactory performance with higher probability of detection, lower probability of false alarm and less detection time.
Lu, Jing; Chen, Lei; Yin, Jun; Huang, Tao; Bi, Yi; Kong, Xiangyin; Zheng, Mingyue; Cai, Yu-Dong
2016-01-01
Lung cancer, characterized by uncontrolled cell growth in the lung tissue, is the leading cause of global cancer deaths. Until now, effective treatment of this disease is limited. Many synthetic compounds have emerged with the advancement of combinatorial chemistry. Identification of effective lung cancer candidate drug compounds among them is a great challenge. Thus, it is necessary to build effective computational methods that can assist us in selecting for potential lung cancer drug compounds. In this study, a computational method was proposed to tackle this problem. The chemical-chemical interactions and chemical-protein interactions were utilized to select candidate drug compounds that have close associations with approved lung cancer drugs and lung cancer-related genes. A permutation test and K-means clustering algorithm were employed to exclude candidate drugs with low possibilities to treat lung cancer. The final analysis suggests that the remaining drug compounds have potential anti-lung cancer activities and most of them have structural dissimilarity with approved drugs for lung cancer.
Demonstration of an Aerocapture GN and C System Through Hardware-in-the-Loop Simulations
NASA Technical Reports Server (NTRS)
Masciarelli, James; Deppen, Jennifer; Bladt, Jeff; Fleck, Jeff; Lawson, Dave
2010-01-01
Aerocapture is an orbit insertion maneuver in which a spacecraft flies through a planetary atmosphere one time using drag force to decelerate and effect a hyperbolic to elliptical orbit change. Aerocapture employs a feedback Guidance, Navigation, and Control (GN&C) system to deliver the spacecraft into a precise postatmospheric orbit despite the uncertainties inherent in planetary atmosphere knowledge, entry targeting and aerodynamic predictions. Only small amounts of propellant are required for attitude control and orbit adjustments, thereby providing mass savings of hundreds to thousands of kilograms over conventional all-propulsive techniques. The Analytic Predictor Corrector (APC) guidance algorithm has been developed to steer the vehicle through the aerocapture maneuver using bank angle control. Through funding provided by NASA's In-Space Propulsion Technology Program, the operation of an aerocapture GN&C system has been demonstrated in high-fidelity simulations that include real-time hardware in the loop, thus increasing the Technology Readiness Level (TRL) of aerocapture GN&C. First, a non-real-time (NRT), 6-DOF trajectory simulation was developed for the aerocapture trajectory. The simulation included vehicle dynamics, gravity model, atmosphere model, aerodynamics model, inertial measurement unit (IMU) model, attitude control thruster torque models, and GN&C algorithms (including the APC aerocapture guidance). The simulation used the vehicle and mission parameters from the ST-9 mission. A 2000 case Monte Carlo simulation was performed and results show an aerocapture success rate of greater than 99.7%, greater than 95% of total delta-V required for orbit insertion is provided by aerodynamic drag, and post-aerocapture orbit plane wedge angle error is less than 0.5 deg (3-sigma). Then a real-time (RT), 6-DOF simulation for the aerocapture trajectory was developed which demonstrated the guidance software executing on a flight-like computer, interfacing with a simulated IMU and simulated thrusters, with vehicle dynamics provided by an external simulator. Five cases from the NRT simulations were run in the RT simulation environment. The results compare well to those of the NRT simulation thus verifying the RT simulation configuration. The results of the above described simulations show the aerocapture maneuver using the APC algorithm can be accomplished reliably and the algorithm is now at TRL-6. Flight validation is the next step for aerocapture technology development.
Automated Re-Entry System using FNPEG
NASA Technical Reports Server (NTRS)
Johnson, Wyatt R.; Lu, Ping; Stachowiak, Susan J.
2017-01-01
This paper discusses the implementation and simulated performance of the FNPEG (Fully Numerical Predictor-corrector Entry Guidance) algorithm into GNC FSW (Guidance, Navigation, and Control Flight Software) for use in an autonomous re-entry vehicle. A few modifications to FNPEG are discussed that result in computational savings -- a change to the state propagator, and a modification to cross-range lateral logic. Finally, some Monte Carlo results are presented using a representative vehicle in both a high-fidelity 6-DOF (degree-of-freedom) sim as well as in a 3-DOF sim for independent validation.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-13
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention (CDC) Request... CDC is soliciting nominations for membership on the ACIP. The ACIP consists of 15 experts in fields... Services to provide advice and guidance to the Secretary, the Assistant Secretary for Health, and the CDC...
ERIC Educational Resources Information Center
Gundogdu, Rezzan
2012-01-01
The purpose of this quasi-experimental research is to study the effects of the creative drama-based assertiveness program (CDBAP) on the assertiveness skill of Psychological Counselling and Guidance (PCG) department students. The opinions of experimental group students on the program were obtained through the CDBAP evaluation form. The sample of…
Quantitative property-structural relation modeling on polymeric dielectric materials
NASA Astrophysics Data System (ADS)
Wu, Ke
Nowadays, polymeric materials have attracted more and more attention in dielectric applications. But searching for a material with desired properties is still largely based on trial and error. To facilitate the development of new polymeric materials, heuristic models built using the Quantitative Structure Property Relationships (QSPR) techniques can provide reliable "working solutions". In this thesis, the application of QSPR on polymeric materials is studied from two angles: descriptors and algorithms. A novel set of descriptors, called infinite chain descriptors (ICD), are developed to encode the chemical features of pure polymers. ICD is designed to eliminate the uncertainty of polymer conformations and inconsistency of molecular representation of polymers. Models for the dielectric constant, band gap, dielectric loss tangent and glass transition temperatures of organic polymers are built with high prediction accuracy. Two new algorithms, the physics-enlightened learning method (PELM) and multi-mechanism detection, are designed to deal with two typical challenges in material QSPR. PELM is a meta-algorithm that utilizes the classic physical theory as guidance to construct the candidate learning function. It shows better out-of-domain prediction accuracy compared to the classic machine learning algorithm (support vector machine). Multi-mechanism detection is built based on a cluster-weighted mixing model similar to a Gaussian mixture model. The idea is to separate the data into subsets where each subset can be modeled by a much simpler model. The case study on glass transition temperature shows that this method can provide better overall prediction accuracy even though less data is available for each subset model. In addition, the techniques developed in this work are also applied to polymer nanocomposites (PNC). PNC are new materials with outstanding dielectric properties. As a key factor in determining the dispersion state of nanoparticles in the polymer matrix, the surface tension components of polymers are modeled using ICD. Compared to the 3D surface descriptors used in a previous study, the model with ICD has a much improved prediction accuracy and stability particularly for the polar component. In predicting the enhancement effect of grafting functional groups on the breakdown strength of PNC, a simple local charge transfer model is proposed where the electron affinity (EA) and ionization energy (IE) determines the main charge trap depth in the system. This physical model is supported by first principle computation. QSPR models for EA and IE are also built, decreasing the computation time of EA and IE for a single molecule from several hours to less than one second. Furthermore, the designs of two web-based tools are introduced. The tools represent two commonly used applications for QSPR studies: data inquiry and prediction. Making models and data public available and easy to use is particularly crucial for QSPR research. The web tools described in this work should provide a good guidance and starting point for the further development of information tools enabling more efficient cooperation between computational and experimental communities.
Petri net model for analysis of concurrently processed complex algorithms
NASA Technical Reports Server (NTRS)
Stoughton, John W.; Mielke, Roland R.
1986-01-01
This paper presents a Petri-net model suitable for analyzing the concurrent processing of computationally complex algorithms. The decomposed operations are to be processed in a multiple processor, data driven architecture. Of particular interest is the application of the model to both the description of the data/control flow of a particular algorithm, and to the general specification of the data driven architecture. A candidate architecture is also presented.
Study on the Reduced Traffic Congestion Method Based on Dynamic Guidance Information
NASA Astrophysics Data System (ADS)
Li, Shu-Bin; Wang, Guang-Min; Wang, Tao; Ren, Hua-Ling; Zhang, Lin
2018-05-01
This paper studies how to generate the reasonable information of travelers’ decision in real network. This problem is very complex because the travelers’ decision is constrained by different human behavior. The network conditions can be predicted by using the advanced dynamic OD (Origin-Destination, OD) estimation techniques. Based on the improved mesoscopic traffic model, the predictable dynamic traffic guidance information can be obtained accurately. A consistency algorithm is designed to investigate the travelers’ decision by simulating the dynamic response to guidance information. The simulation results show that the proposed method can provide the best guidance information. Further, a case study is conducted to verify the theoretical results and to draw managerial insights into the potential of dynamic guidance strategy in improving traffic performance. Supported by National Natural Science Foundation of China under Grant Nos. 71471104, 71771019, 71571109, and 71471167; The University Science and Technology Program Funding Projects of Shandong Province under Grant No. J17KA211; The Project of Public Security Department of Shandong Province under Grant No. GATHT2015-236; The Major Social and Livelihood Special Project of Jinan under Grant No. 20150905
MSL EDL Entry Guidance using the Entry Terminal Point Controller
NASA Technical Reports Server (NTRS)
2006-01-01
The Mars Science Laboratory will be the first Mars mission to attempt a guided entry with the objective of safely delivering the entry vehicle to a survivable parachute deploy state within 10 km of the pre-designated landing site. The Entry Terminal Point Controller guidance algorithm is derived from the final phase Apollo Command Module guidance and, like Apollo, modulates the bank angle to control range based on deviations in range, altitude rate, and drag acceleration from a reference trajectory. For application to Mars landers which must make use of the tenuous Martian atmosphere, it is critical to balance the lift of the vehicle to minimize the range while still ensuring a safe deploy altitude. An overview of the process to generate optimized guidance settings is presented, discussing improvements made over the last four years. Performance tradeoffs between ellipse size and deploy altitude will be presented, along with imposed constraints of entry acceleration and heating. Performance sensitivities to the bank reversal deadbands, heading alignment, attitude initialization error, and atmospheric delivery errors are presented. Guidance settings for contingency operations, such as those appropriate for severe dust storm scenarios, are evaluated.
Dysphagia in Duchenne muscular dystrophy: practical recommendations to guide management.
Toussaint, Michel; Davidson, Zoe; Bouvoie, Veronique; Evenepoel, Nathalie; Haan, Jurn; Soudon, Philippe
2016-10-01
Duchenne muscular dystrophy (DMD) is a rapidly progressive neuromuscular disorder causing weakness of the skeletal, respiratory, cardiac and oropharyngeal muscles with up to one third of young men reporting difficulty swallowing (dysphagia). Recent studies on dysphagia in DMD clarify the pathophysiology of swallowing disorders and offer new tools for its assessment but little guidance is available for its management. This paper aims to provide a step-by-step algorithm to facilitate clinical decisions regarding dysphagia management in this patient population. This algorithm is based on 30 years of clinical experience with DMD in a specialised Centre for Neuromuscular Disorders (Inkendaal Rehabilitation Hospital, Belgium) and is supported by literature where available. Dysphagia can worsen the condition of ageing patients with DMD. Apart from the difficulties of chewing and oral fragmentation of the food bolus, dysphagia is rather a consequence of an impairment in the pharyngeal phase of swallowing. By contrast with central neurologic disorders, dysphagia in DMD accompanies solid rather than liquid intake. Symptoms of dysphagia may not be clinically evident; however laryngeal food penetration, accumulation of food residue in the pharynx and/or true laryngeal food aspiration may occur. The prevalence of these issues in DMD is likely underestimated. There is little guidance available for clinicians to manage dysphagia and improve feeding for young men with DMD. This report aims to provide a clinical algorithm to facilitate the diagnosis of dysphagia, to identify the symptoms and to propose practical recommendations to treat dysphagia in the adult DMD population. Implications for Rehabilitation Little guidance is available for the management of dysphagia in Duchenne dystrophy. Food can penetrate the vestibule, accumulate as residue or cause aspiration. We propose recommendations and an algorithm to guide management of dysphagia. Penetration/residue accumulation: prohibit solid food and promote intake of fluids. Aspiration: if cough augmentation techniques are ineffective, consider tracheostomy.
Dysphagia in Duchenne muscular dystrophy: practical recommendations to guide management
Toussaint, Michel; Davidson, Zoe; Bouvoie, Veronique; Evenepoel, Nathalie; Haan, Jurn; Soudon, Philippe
2016-01-01
Abstract Purpose: Duchenne muscular dystrophy (DMD) is a rapidly progressive neuromuscular disorder causing weakness of the skeletal, respiratory, cardiac and oropharyngeal muscles with up to one third of young men reporting difficulty swallowing (dysphagia). Recent studies on dysphagia in DMD clarify the pathophysiology of swallowing disorders and offer new tools for its assessment but little guidance is available for its management. This paper aims to provide a step-by-step algorithm to facilitate clinical decisions regarding dysphagia management in this patient population. Methods: This algorithm is based on 30 years of clinical experience with DMD in a specialised Centre for Neuromuscular Disorders (Inkendaal Rehabilitation Hospital, Belgium) and is supported by literature where available. Results: Dysphagia can worsen the condition of ageing patients with DMD. Apart from the difficulties of chewing and oral fragmentation of the food bolus, dysphagia is rather a consequence of an impairment in the pharyngeal phase of swallowing. By contrast with central neurologic disorders, dysphagia in DMD accompanies solid rather than liquid intake. Symptoms of dysphagia may not be clinically evident; however laryngeal food penetration, accumulation of food residue in the pharynx and/or true laryngeal food aspiration may occur. The prevalence of these issues in DMD is likely underestimated. Conclusions: There is little guidance available for clinicians to manage dysphagia and improve feeding for young men with DMD. This report aims to provide a clinical algorithm to facilitate the diagnosis of dysphagia, to identify the symptoms and to propose practical recommendations to treat dysphagia in the adult DMD population.Implications for RehabilitationLittle guidance is available for the management of dysphagia in Duchenne dystrophy.Food can penetrate the vestibule, accumulate as residue or cause aspiration.We propose recommendations and an algorithm to guide management of dysphagia.Penetration/residue accumulation: prohibit solid food and promote intake of fluids.Aspiration: if cough augmentation techniques are ineffective, consider tracheostomy. PMID:26728920
A new catalog of H i supershell candidates in the outer part of the Galaxy
NASA Astrophysics Data System (ADS)
Suad, L. A.; Caiafa, C. F.; Arnal, E. M.; Cichowolski, S.
2014-04-01
Aims: The main goal of this work is to a have a new neutral hydrogen (H i) supershell candidate catalog to analyze their spatial distribution in the Galaxy and to carry out a statistical study of their main properties. Methods: This catalog was carried out making use of the Leiden-Argentine-Bonn (LAB) survey. The supershell candidates were identified using a combination of two techniques: a visual inspection plus an automatic searching algorithm. Our automatic algorithm is able to detect both closed and open structures. Results: A total of 566 supershell candidates were identified. Most of them (347) are located in the second Galactic quadrant, while 219 were found in the third one. About 98% of a subset of 190 structures (used to derive the statistical properties of the supershell candidates) are elliptical with a mean weighted eccentricity of 0.8 ± 0.1, and ~70% have their major axes parallel to the Galactic plane. The weighted mean value of the effective radius of the structures is ~160 pc. Owing to the ability of our automatic algorithm to detect open structures, we have also identified some "galactic chimney" candidates. We find an asymmetry between the second and third Galactic quadrants in the sense that in the second one we detect structures as far as 32 kpc, while for the 3rd one the farthest structure is detected at 17 kpc. The supershell surface density in the solar neighborhood is ~8 kpc-2, and decreases as we move farther away form the Galactic center. We have also compared our catalog with those by other authors. Full table is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A116
Howell, D.; Keller–Olaman, S.; Oliver, T.K.; Hack, T.F.; Broadfield, L.; Biggs, K.; Chung, J.; Gravelle, D.; Green, E.; Hamel, M.; Harth, T.; Johnston, P.; McLeod, D.; Swinton, N.; Syme, A.; Olson, K.
2013-01-01
Purpose The purpose of the present systematic review was to develop a practice guideline to inform health care providers about screening, assessment, and effective management of cancer-related fatigue (crf) in adults. Methods The internationally endorsed adapte methodology was used to develop a practice guideline for pan-Canadian use. A systematic search of the literature identified a broad range of evidence: clinical practice guidelines, systematic reviews, and other guidance documents on the screening, assessment, and management of crf. The search included medline, embase, cinahl, the Cochrane Library, and other guideline and data sources to December 2009. Results Two clinical practice guidelines were identified for adaptation. Seven guidance documents and four systematic reviews also provided supplementary evidence to inform guideline recommendations. Health professionals across Canada provided expert feedback on the adapted recommendations in the practice guideline and algorithm through a participatory external review process. Conclusions Practice guidelines can facilitate the adoption of evidence-based assessment and interventions for adult cancer patients experiencing fatigue. Development of an algorithm to guide decision-making in practice may also foster the uptake of a guideline into routine care. PMID:23737693
Design and Testing of a Low Noise Flight Guidance Concept
NASA Technical Reports Server (NTRS)
Williams, David H.; Oseguera-Lohr, Rosa M.; Lewis, Elliot T.
2004-01-01
A flight guidance concept was developed to assist in flying continuous descent approach (CDA) procedures designed to lower the noise under the flight path of jet transport aircraft during arrival operations at an airport. The guidance consists of a trajectory prediction algorithm that was tuned to produce a high-efficiency, low noise flight profile with accompanying autopilot and flight display elements needed by the flight control system and pilot to fly the approach. A key component of the flight guidance was a real-time display of energy error relative to the predicted flight path. The guidance was integrated with the conventional Flight Management System (FMS) guidance of a modern jet transport airplane and tested in a high fidelity flight simulation. A charted arrival procedure, which allowed flying conventional arrivals, CDA arrivals with standard guidance, and CDA arrivals with the new low noise guidance, was developed to assist in the testing and evaluation of the low noise guidance concept. Results of the simulation testing showed the low noise guidance was easy to use by airline pilot test subjects and effective in achieving the desired noise reduction. Noise under the flight path was reduced by at least 2 decibels in Sound Exposure Level (SEL) at distances from about 3 nautical miles out to about 17.5 nautical miles from the runway, with a peak reduction of 8.5 decibels at about 10.5 nautical miles. Fuel consumption was also reduced by about 17% for the LNG conditions compared to baseline runs for the same flight distance. Pilot acceptance and understanding of the guidance was quite high with favorable comments and ratings received from all test subjects.
Quantum algorithm for association rules mining
NASA Astrophysics Data System (ADS)
Yu, Chao-Hua; Gao, Fei; Wang, Qing-Le; Wen, Qiao-Yan
2016-10-01
Association rules mining (ARM) is one of the most important problems in knowledge discovery and data mining. Given a transaction database that has a large number of transactions and items, the task of ARM is to acquire consumption habits of customers by discovering the relationships between itemsets (sets of items). In this paper, we address ARM in the quantum settings and propose a quantum algorithm for the key part of ARM, finding frequent itemsets from the candidate itemsets and acquiring their supports. Specifically, for the case in which there are Mf(k ) frequent k -itemsets in the Mc(k ) candidate k -itemsets (Mf(k )≤Mc(k ) ), our algorithm can efficiently mine these frequent k -itemsets and estimate their supports by using parallel amplitude estimation and amplitude amplification with complexity O (k/√{Mc(k )Mf(k ) } ɛ ) , where ɛ is the error for estimating the supports. Compared with the classical counterpart, i.e., the classical sampling-based algorithm, whose complexity is O (k/Mc(k ) ɛ2) , our quantum algorithm quadratically improves the dependence on both ɛ and Mc(k ) in the best case when Mf(k )≪Mc(k ) and on ɛ alone in the worst case when Mf(k )≈Mc(k ) .
Landing-Time-Controlled Management Of Air Traffic
NASA Technical Reports Server (NTRS)
Erzberger, Heinz; Tobias, Leonard
1988-01-01
Conceptual system controls aircraft with old and new guidance equipment. Report begins with overview of concept, then reviews controller-interactive simulations. Describes fuel-conservative-trajectory algorithm, based on equations of motion for controlling landing time. Finally, presents results of piloted simulations.
Experiments with Tropical Cyclone Wave and Intensity Forecasts
2008-09-30
algorithm In collaboration with Paul Wittmann (Fleet Numerical Metorology and Oceanography Center) and Hendrik Tolman (National Centers for...Wittmann, P.A., C Sampson and H. Tolman: 2006: Wave Analysis Guidance for Tropical Cyclone Forecast Advisories. 9th International Workshop on Wave
NASA Astrophysics Data System (ADS)
Xu, Lili; Luo, Shuqian
2010-11-01
Microaneurysms (MAs) are the first manifestations of the diabetic retinopathy (DR) as well as an indicator for its progression. Their automatic detection plays a key role for both mass screening and monitoring and is therefore in the core of any system for computer-assisted diagnosis of DR. The algorithm basically comprises the following stages: candidate detection aiming at extracting the patterns possibly corresponding to MAs based on mathematical morphological black top hat, feature extraction to characterize these candidates, and classification based on support vector machine (SVM), to validate MAs. Feature vector and kernel function of SVM selection is very important to the algorithm. We use the receiver operating characteristic (ROC) curve to evaluate the distinguishing performance of different feature vectors and different kernel functions of SVM. The ROC analysis indicates the quadratic polynomial SVM with a combination of features as the input shows the best discriminating performance.
Xu, Lili; Luo, Shuqian
2010-01-01
Microaneurysms (MAs) are the first manifestations of the diabetic retinopathy (DR) as well as an indicator for its progression. Their automatic detection plays a key role for both mass screening and monitoring and is therefore in the core of any system for computer-assisted diagnosis of DR. The algorithm basically comprises the following stages: candidate detection aiming at extracting the patterns possibly corresponding to MAs based on mathematical morphological black top hat, feature extraction to characterize these candidates, and classification based on support vector machine (SVM), to validate MAs. Feature vector and kernel function of SVM selection is very important to the algorithm. We use the receiver operating characteristic (ROC) curve to evaluate the distinguishing performance of different feature vectors and different kernel functions of SVM. The ROC analysis indicates the quadratic polynomial SVM with a combination of features as the input shows the best discriminating performance.
Cohen, Kevin Bretonnel; Glass, Benjamin; Greiner, Hansel M.; Holland-Bouley, Katherine; Standridge, Shannon; Arya, Ravindra; Faist, Robert; Morita, Diego; Mangano, Francesco; Connolly, Brian; Glauser, Tracy; Pestian, John
2016-01-01
Objective: We describe the development and evaluation of a system that uses machine learning and natural language processing techniques to identify potential candidates for surgical intervention for drug-resistant pediatric epilepsy. The data are comprised of free-text clinical notes extracted from the electronic health record (EHR). Both known clinical outcomes from the EHR and manual chart annotations provide gold standards for the patient’s status. The following hypotheses are then tested: 1) machine learning methods can identify epilepsy surgery candidates as well as physicians do and 2) machine learning methods can identify candidates earlier than physicians do. These hypotheses are tested by systematically evaluating the effects of the data source, amount of training data, class balance, classification algorithm, and feature set on classifier performance. The results support both hypotheses, with F-measures ranging from 0.71 to 0.82. The feature set, classification algorithm, amount of training data, class balance, and gold standard all significantly affected classification performance. It was further observed that classification performance was better than the highest agreement between two annotators, even at one year before documented surgery referral. The results demonstrate that such machine learning methods can contribute to predicting pediatric epilepsy surgery candidates and reducing lag time to surgery referral. PMID:27257386
Simulation System of Car Crash Test in C-NCAP Analysis Based on an Improved Apriori Algorithm*
NASA Astrophysics Data System (ADS)
Xiang, LI
In order to analysis car crash test in C-NCAP, an improved algorithm is given based on Apriori algorithm in this paper. The new algorithm is implemented with vertical data layout, breadth first searching, and intersecting. It takes advantage of the efficiency of vertical data layout and intersecting, and prunes candidate frequent item sets like Apriori. Finally, the new algorithm is applied in simulation of car crash test analysis system. The result shows that the relations will affect the C-NCAP test results, and it can provide a reference for the automotive design.
Motion prediction in MRI-guided radiotherapy based on interleaved orthogonal cine-MRI
NASA Astrophysics Data System (ADS)
Seregni, M.; Paganelli, C.; Lee, D.; Greer, P. B.; Baroni, G.; Keall, P. J.; Riboldi, M.
2016-01-01
In-room cine-MRI guidance can provide non-invasive target localization during radiotherapy treatment. However, in order to cope with finite imaging frequency and system latencies between target localization and dose delivery, tumour motion prediction is required. This work proposes a framework for motion prediction dedicated to cine-MRI guidance, aiming at quantifying the geometric uncertainties introduced by this process for both tumour tracking and beam gating. The tumour position, identified through scale invariant features detected in cine-MRI slices, is estimated at high-frequency (25 Hz) using three independent predictors, one for each anatomical coordinate. Linear extrapolation, auto-regressive and support vector machine algorithms are compared against systems that use no prediction or surrogate-based motion estimation. Geometric uncertainties are reported as a function of image acquisition period and system latency. Average results show that the tracking error RMS can be decreased down to a [0.2; 1.2] mm range, for acquisition periods between 250 and 750 ms and system latencies between 50 and 300 ms. Except for the linear extrapolator, tracking and gating prediction errors were, on average, lower than those measured for surrogate-based motion estimation. This finding suggests that cine-MRI guidance, combined with appropriate prediction algorithms, could relevantly decrease geometric uncertainties in motion compensated treatments.
GAMUT: GPU accelerated microRNA analysis to uncover target genes through CUDA-miRanda
2014-01-01
Background Non-coding sequences such as microRNAs have important roles in disease processes. Computational microRNA target identification (CMTI) is becoming increasingly important since traditional experimental methods for target identification pose many difficulties. These methods are time-consuming, costly, and often need guidance from computational methods to narrow down candidate genes anyway. However, most CMTI methods are computationally demanding, since they need to handle not only several million query microRNA and reference RNA pairs, but also several million nucleotide comparisons within each given pair. Thus, the need to perform microRNA identification at such large scale has increased the demand for parallel computing. Methods Although most CMTI programs (e.g., the miRanda algorithm) are based on a modified Smith-Waterman (SW) algorithm, the existing parallel SW implementations (e.g., CUDASW++ 2.0/3.0, SWIPE) are unable to meet this demand in CMTI tasks. We present CUDA-miRanda, a fast microRNA target identification algorithm that takes advantage of massively parallel computing on Graphics Processing Units (GPU) using NVIDIA's Compute Unified Device Architecture (CUDA). CUDA-miRanda specifically focuses on the local alignment of short (i.e., ≤ 32 nucleotides) sequences against longer reference sequences (e.g., 20K nucleotides). Moreover, the proposed algorithm is able to report multiple alignments (up to 191 top scores) and the corresponding traceback sequences for any given (query sequence, reference sequence) pair. Results Speeds over 5.36 Giga Cell Updates Per Second (GCUPs) are achieved on a server with 4 NVIDIA Tesla M2090 GPUs. Compared to the original miRanda algorithm, which is evaluated on an Intel Xeon E5620@2.4 GHz CPU, the experimental results show up to 166 times performance gains in terms of execution time. In addition, we have verified that the exact same targets were predicted in both CUDA-miRanda and the original miRanda implementations through multiple test datasets. Conclusions We offer a GPU-based alternative to high performance compute (HPC) that can be developed locally at a relatively small cost. The community of GPU developers in the biomedical research community, particularly for genome analysis, is still growing. With increasing shared resources, this community will be able to advance CMTI in a very significant manner. Our source code is available at https://sourceforge.net/projects/cudamiranda/. PMID:25077821
WS-BP: An efficient wolf search based back-propagation algorithm
NASA Astrophysics Data System (ADS)
Nawi, Nazri Mohd; Rehman, M. Z.; Khan, Abdullah
2015-05-01
Wolf Search (WS) is a heuristic based optimization algorithm. Inspired by the preying and survival capabilities of the wolves, this algorithm is highly capable to search large spaces in the candidate solutions. This paper investigates the use of WS algorithm in combination with back-propagation neural network (BPNN) algorithm to overcome the local minima problem and to improve convergence in gradient descent. The performance of the proposed Wolf Search based Back-Propagation (WS-BP) algorithm is compared with Artificial Bee Colony Back-Propagation (ABC-BP), Bat Based Back-Propagation (Bat-BP), and conventional BPNN algorithms. Specifically, OR and XOR datasets are used for training the network. The simulation results show that the WS-BP algorithm effectively avoids the local minima and converge to global minima.
NASA Technical Reports Server (NTRS)
Jaggers, R. F.
1977-01-01
A derivation of an explicit solution to the two point boundary-value problem of exoatmospheric guidance and trajectory optimization is presented. Fixed initial conditions and continuous burn, multistage thrusting are assumed. Any number of end conditions from one to six (throttling is required in the case of six) can be satisfied in an explicit and practically optimal manner. The explicit equations converge for off nominal conditions such as engine failure, abort, target switch, etc. The self starting, predictor/corrector solution involves no Newton-Rhapson iterations, numerical integration, or first guess values, and converges rapidly if physically possible. A form of this algorithm has been chosen for onboard guidance, as well as real time and preflight ground targeting and trajectory shaping for the NASA Space Shuttle Program.
Post-Flight EDL Entry Guidance Performance of the 2011 Mars Science Laboratory Mission
NASA Technical Reports Server (NTRS)
Mendeck, Gavin F.; McGrew, Lynn Craig
2013-01-01
The 2011 Mars Science Laboratory was the first Mars guided entry which safely delivered the rover to a landing within a touchdown ellipse of 19.1 km x 6.9 km. The Entry Terminal Point Controller guidance algorithm is derived from the final phase Apollo Command Module guidance and, like Apollo, modulates the bank angle to control the range flown. The guided entry performed as designed without any significant exceptions. The Curiosity rover was delivered about 2.2 km from the expected touchdown. This miss distance is attributed to little time to correct the downrange drift from the final bank reversal and a suspected tailwind during heading alignment. The successful guided entry for the Mars Science Laboratory lays the foundation for future Mars missions to improve upon.
LMI-Based Generation of Feedback Laws for a Robust Model Predictive Control Algorithm
NASA Technical Reports Server (NTRS)
Acikmese, Behcet; Carson, John M., III
2007-01-01
This technical note provides a mathematical proof of Corollary 1 from the paper 'A Nonlinear Model Predictive Control Algorithm with Proven Robustness and Resolvability' that appeared in the 2006 Proceedings of the American Control Conference. The proof was omitted for brevity in the publication. The paper was based on algorithms developed for the FY2005 R&TD (Research and Technology Development) project for Small-body Guidance, Navigation, and Control [2].The framework established by the Corollary is for a robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems that guarantees the resolvability of the associated nite-horizon optimal control problem in a receding-horizon implementation. Additional details of the framework are available in the publication.
SPMBR: a scalable algorithm for mining sequential patterns based on bitmaps
NASA Astrophysics Data System (ADS)
Xu, Xiwei; Zhang, Changhai
2013-12-01
Now some sequential patterns mining algorithms generate too many candidate sequences, and increase the processing cost of support counting. Therefore, we present an effective and scalable algorithm called SPMBR (Sequential Patterns Mining based on Bitmap Representation) to solve the problem of mining the sequential patterns for large databases. Our method differs from previous related works of mining sequential patterns. The main difference is that the database of sequential patterns is represented by bitmaps, and a simplified bitmap structure is presented firstly. In this paper, First the algorithm generate candidate sequences by SE(Sequence Extension) and IE(Item Extension), and then obtain all frequent sequences by comparing the original bitmap and the extended item bitmap .This method could simplify the problem of mining the sequential patterns and avoid the high processing cost of support counting. Both theories and experiments indicate that the performance of SPMBR is predominant for large transaction databases, the required memory size for storing temporal data is much less during mining process, and all sequential patterns can be mined with feasibility.
A region-based segmentation method for ultrasound images in HIFU therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Dong, E-mail: dongz@whu.edu.cn; Liu, Yu; Yang, Yan
Purpose: Precisely and efficiently locating a tumor with less manual intervention in ultrasound-guided high-intensity focused ultrasound (HIFU) therapy is one of the keys to guaranteeing the therapeutic result and improving the efficiency of the treatment. The segmentation of ultrasound images has always been difficult due to the influences of speckle, acoustic shadows, and signal attenuation as well as the variety of tumor appearance. The quality of HIFU guidance images is even poorer than that of conventional diagnostic ultrasound images because the ultrasonic probe used for HIFU guidance usually obtains images without making contact with the patient’s body. Therefore, the segmentationmore » becomes more difficult. To solve the segmentation problem of ultrasound guidance image in the treatment planning procedure for HIFU therapy, a novel region-based segmentation method for uterine fibroids in HIFU guidance images is proposed. Methods: Tumor partitioning in HIFU guidance image without manual intervention is achieved by a region-based split-and-merge framework. A new iterative multiple region growing algorithm is proposed to first split the image into homogenous regions (superpixels). The features extracted within these homogenous regions will be more stable than those extracted within the conventional neighborhood of a pixel. The split regions are then merged by a superpixel-based adaptive spectral clustering algorithm. To ensure the superpixels that belong to the same tumor can be clustered together in the merging process, a particular construction strategy for the similarity matrix is adopted for the spectral clustering, and the similarity matrix is constructed by taking advantage of a combination of specifically selected first-order and second-order texture features computed from the gray levels and the gray level co-occurrence matrixes, respectively. The tumor region is picked out automatically from the background regions by an algorithm according to a priori information about the tumor position, shape, and size. Additionally, an appropriate cluster number for spectral clustering can be determined by the same algorithm, thus the automatic segmentation of the tumor region is achieved. Results: To evaluate the performance of the proposed method, 50 uterine fibroid ultrasound images from different patients receiving HIFU therapy were segmented, and the obtained tumor contours were compared with those delineated by an experienced radiologist. For area-based evaluation results, the mean values of the true positive ratio, the false positive ratio, and the similarity were 94.42%, 4.71%, and 90.21%, respectively, and the corresponding standard deviations were 2.54%, 3.12%, and 3.50%, respectively. For distance-based evaluation results, the mean values of the normalized Hausdorff distance and the normalized mean absolute distance were 4.93% and 0.90%, respectively, and the corresponding standard deviations were 2.22% and 0.34%, respectively. The running time of the segmentation process was 12.9 s for a 318 × 333 (pixels) image. Conclusions: Experiments show that the proposed method can segment the tumor region accurately and efficiently with less manual intervention, which provides for the possibility of automatic segmentation and real-time guidance in HIFU therapy.« less
NASA Astrophysics Data System (ADS)
Gramajo, German G.
This thesis presents an algorithm for a search and coverage mission that has increased autonomy in generating an ideal trajectory while explicitly considering the available energy in the optimization. Further, current algorithms used to generate trajectories depend on the operator providing a discrete set of turning rate requirements to obtain an optimal solution. This work proposes an additional modification to the algorithm so that it optimizes the trajectory for a range of turning rates instead of a discrete set of turning rates. This thesis conducts an evaluation of the algorithm with variation in turn duration, entry-heading angle, and entry point. Comparative studies of the algorithm with existing method indicates improved autonomy in choosing the optimization parameters while producing trajectories with better coverage area and closer final distance to the desired terminal point.
Constrained Surface-Level Gateway Placement for Underwater Acoustic Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Li, Deying; Li, Zheng; Ma, Wenkai; Chen, Hong
One approach to guarantee the performance of underwater acoustic sensor networks is to deploy multiple Surface-level Gateways (SGs) at the surface. This paper addresses the connected (or survivable) Constrained Surface-level Gateway Placement (C-SGP) problem for 3-D underwater acoustic sensor networks. Given a set of candidate locations where SGs can be placed, our objective is to place minimum number of SGs at a subset of candidate locations such that it is connected (or 2-connected) from any USN to the base station. We propose a polynomial time approximation algorithm for the connected C-SGP problem and survivable C-SGP problem, respectively. Simulations are conducted to verify our algorithms' efficiency.
NASA Technical Reports Server (NTRS)
Carreno, Victor A.
2015-01-01
Pair-wise Trajectory Management (PTM) is a cockpit based delegated responsibility separation standard. When an air traffic service provider gives a PTM clearance to an aircraft and the flight crew accepts the clearance, the flight crew will maintain spacing and separation from a designated aircraft. A PTM along track algorithm will receive state information from the designated aircraft and from the own ship to produce speed guidance for the flight crew to maintain spacing and separation
Discrete Analog Processing for Tracking and Guidance Control
1980-11-01
be called the multi- sample algorithm, satisfies -4 67 tD (Da - d) 0 (4.2.2.3) Thus, this descent algorithm will determine a coefficient vector a... flJ -TI:-* IS; 7" rR(VI Dr TH~I ("vFP)ALLCj TT$ C_ F 2C OH Til TPACK I! NC SYS TE ! f- 1I3 cc cc *’I cc. CC snUpcF FIL1j: C~T 01C 0 (1 cc CC OEJCT F I LF
Approach trajectory planning system for maximum concealment
NASA Technical Reports Server (NTRS)
Warner, David N., Jr.
1986-01-01
A computer-simulation study was undertaken to investigate a maximum concealment guidance technique (pop-up maneuver), which military aircraft may use to capture a glide path from masked, low-altitude flight typical of terrain following/terrain avoidance flight enroute. The guidance system applied to this problem is the Fuel Conservative Guidance System. Previous studies using this system have concentrated on the saving of fuel in basically conventional land and ship-based operations. Because this system is based on energy-management concepts, it also has direct application to the pop-up approach which exploits aircraft performance. Although the algorithm was initially designed to reduce fuel consumption, the commanded deceleration is at its upper limit during the pop-up and, therefore, is a good approximation of a minimum-time solution. Using the model of a powered-lift aircraft, the results of the study demonstrated that guidance commands generated by the system are well within the capability of an automatic flight-control system. Results for several initial approach conditions are presented.
Guidance and Control of an Autonomous Soaring UAV
NASA Technical Reports Server (NTRS)
Allen, Michael J.; Lin, Victor
2007-01-01
Thermals caused by convection in the lower atmosphere are commonly used by birds and glider pilots to extend flight duration, increase cross-country speed, improve range, or simply to conserve energy. Uninhabited Aerial Vehicles (UAVs) can also increase performance and reduce energy consumption by exploiting atmospheric convection. An autonomous soaring research project was conducted at the NASA Dryden Flight Research Center to evaluate the concept through flight test of an electric-powered motorglider with a wingspan of 4.27 m (14 ft). The UAV's commercial autopilot software was modified to include outer-loop soaring guidance and control. The aircraft total energy state was used to detect and soar within thermals. Estimated thermal size and position were used to calculate guidance commands for soaring flight. Results from a total of 23 thermal encounters show good performance of the guidance and control algorithms to autonomously detect and exploit thermals. The UAV had an average climb of 172 m (567 ft) during these encounters.
Guidance and Control of an Autonomous Soaring UAV
NASA Technical Reports Server (NTRS)
Allen, Michael J.
2007-01-01
Thermals caused by convection in the lower atmosphere are commonly used by birds and glider pilots to extend flight duration, increase cross-country speed, improve range, or simply to conserve energy. Uninhabited Aerial Vehicles (UAVs) can also increase performance and reduce energy consumption by exploiting atmospheric convection. An autonomous soaring research project was conducted at the NASA Dryden Flight Research Center to evaluate the concept through flight test of an electric-powered motor-glider with a wingspan of 4.27 m (14 ft). The UAV's commercial autopilot software was modified to include outer-loop soaring guidance and control. The aircraft total energy state was used to detect and soar within thermals. Estimated thermal size and position were used to calculate guidance commands for soaring flight. Results from a total of 23 thermal encounters show good performance of the guidance and control algorithms to autonomously detect and exploit thermals. The UAV had an average climb of 172 m (567 ft) during these encounters.
Jones, John W.
2015-01-01
The U.S. Geological Survey is developing new Landsat science products. One, named Dynamic Surface Water Extent (DSWE), is focused on the representation of ground surface inundation as detected in cloud-/shadow-/snow-free pixels for scenes collected over the U.S. and its territories. Characterization of DSWE uncertainty to facilitate its appropriate use in science and resource management is a primary objective. A unique evaluation dataset developed from data made publicly available through the Everglades Depth Estimation Network (EDEN) was used to evaluate one candidate DSWE algorithm that is relatively simple, requires no scene-based calibration data, and is intended to detect inundation in the presence of marshland vegetation. A conceptual model of expected algorithm performance in vegetated wetland environments was postulated, tested and revised. Agreement scores were calculated at the level of scenes and vegetation communities, vegetation index classes, water depths, and individual EDEN gage sites for a variety of temporal aggregations. Landsat Archive cloud cover attribution errors were documented. Cloud cover had some effect on model performance. Error rates increased with vegetation cover. Relatively low error rates for locations of little/no vegetation were unexpectedly dominated by omission errors due to variable substrates and mixed pixel effects. Examined discrepancies between satellite and in situ modeled inundation demonstrated the utility of such comparisons for EDEN database improvement. Importantly, there seems no trend or bias in candidate algorithm performance as a function of time or general hydrologic conditions, an important finding for long-term monitoring. The developed database and knowledge gained from this analysis will be used for improved evaluation of candidate DSWE algorithms as well as other measurements made on Everglades surface inundation, surface water heights and vegetation using radar, lidar and hyperspectral instruments. Although no other sites have such an extensive in situ network or long-term records, the broader applicability of this and other candidate DSWE algorithms is being evaluated in other wetlands using this work as a guide. Continued interaction among DSWE producers and potential users will help determine whether the measured accuracies are adequate for practical utility in resource management.
USDA-ARS?s Scientific Manuscript database
This analysis of National Health and Nutrition Examination Survey (NHANES) 2005-2008 data describes the prevalence of risk factors for osteoporosis and the proportions of men and postmenopausal women age 50 years and older who are candidates for treatment to lower fracture risk, according to the new...
Claxton, Karl; Palmer, Stephen; Longworth, Louise; Bojke, Laura; Griffin, Susan; Soares, Marta; Spackman, Eldon; Rothery, Claire
The value of evidence about the performance of a technology and the value of access to a technology are central to policy decisions regarding coverage with, without, or only in research and managed entry (or risk-sharing) agreements. We aim to outline the key principles of what assessments are needed to inform "only in research" (OIR) or "approval with research" (AWR) recommendations, in addition to approval or rejection. We developed a comprehensive algorithm to inform the sequence of assessments and judgments that lead to different types of guidance: OIR, AWR, Approve, or Reject. This algorithm identifies the order in which assessments might be made, how similar guidance might be arrived at through different combinations of considerations, and when guidance might change. The key principles are whether the technology is expected to be cost-effective; whether the technology has significant irrecoverable costs; whether additional research is needed; whether research is possible with approval and whether there are opportunity costs that once committed by approval cannot be recovered; and whether there are effective price reductions. Determining expected cost-effectiveness is only a first step. In addition to AWR for technologies expected to be cost-effective and OIR for those not expected to be cost-effective, there are other important circumstances when OIR should be considered. These principles demonstrate that cost-effectiveness is a necessary but not sufficient condition for approval. Even when research is possible with approval, OIR may be appropriate when a technology is expected to be cost-effective due to significant irrecoverable costs. Copyright © 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Non-rigid CT/CBCT to CBCT registration for online external beam radiotherapy guidance
NASA Astrophysics Data System (ADS)
Zachiu, Cornel; de Senneville, Baudouin Denis; Tijssen, Rob H. N.; Kotte, Alexis N. T. J.; Houweling, Antonetta C.; Kerkmeijer, Linda G. W.; Lagendijk, Jan J. W.; Moonen, Chrit T. W.; Ries, Mario
2018-01-01
Image-guided external beam radiotherapy (EBRT) allows radiation dose deposition with a high degree of accuracy and precision. Guidance is usually achieved by estimating the displacements, via image registration, between cone beam computed tomography (CBCT) and computed tomography (CT) images acquired at different stages of the therapy. The resulting displacements are then used to reposition the patient such that the location of the tumor at the time of treatment matches its position during planning. Moreover, ongoing research aims to use CBCT-CT image registration for online plan adaptation. However, CBCT images are usually acquired using a small number of x-ray projections and/or low beam intensities. This often leads to the images being subject to low contrast, low signal-to-noise ratio and artifacts, which ends-up hampering the image registration process. Previous studies addressed this by integrating additional image processing steps into the registration procedure. However, these steps are usually designed for particular image acquisition schemes, therefore limiting their use on a case-by-case basis. In the current study we address CT to CBCT and CBCT to CBCT registration by the means of the recently proposed EVolution registration algorithm. Contrary to previous approaches, EVolution does not require the integration of additional image processing steps in the registration scheme. Moreover, the algorithm requires a low number of input parameters, is easily parallelizable and provides an elastic deformation on a point-by-point basis. Results have shown that relative to a pure CT-based registration, the intrinsic artifacts present in typical CBCT images only have a sub-millimeter impact on the accuracy and precision of the estimated deformation. In addition, the algorithm has low computational requirements, which are compatible with online image-based guidance of EBRT treatments.
Integrated detection, estimation, and guidance in pursuit of a maneuvering target
NASA Astrophysics Data System (ADS)
Dionne, Dany
The thesis focuses on efficient solutions of non-cooperative pursuit-evasion games with imperfect information on the state of the system. This problem is important in the context of interception of future maneuverable ballistic missiles. However, the theoretical developments are expected to find application to a broad class of hybrid control and estimation problems in industry. The validity of the results is nevertheless confirmed using a benchmark problem in the area of terminal guidance. A specific interception scenario between an incoming target with no information and a single interceptor missile with noisy measurements is analyzed in the form of a linear hybrid system subject to additive abrupt changes. The general research is aimed to achieve improved homing accuracy by integrating ideas from detection theory, state estimation theory and guidance. The results achieved can be summarized as follows. (i) Two novel maneuver detectors are developed to diagnose abrupt changes in a class of hybrid systems (detection and isolation of evasive maneuvers): a new implementation of the GLR detector and the novel adaptive- H0 GLR detector. (ii) Two novel state estimators for target tracking are derived using the novel maneuver detectors. The state estimators employ parameterized family of functions to described possible evasive maneuvers. (iii) A novel adaptive Bayesian multiple model predictor of the ballistic miss is developed which employs semi-Markov models and ideas from detection theory. (iv) A novel integrated estimation and guidance scheme that significantly improves the homing accuracy is also presented. The integrated scheme employs banks of estimators and guidance laws, a maneuver detector, and an on-line governor; the scheme is adaptive with respect to the uncertainty affecting the probability density function of the filtered state. (v) A novel discretization technique for the family of continuous-time, game theoretic, bang-bang guidance laws is introduced. The performance of the novel algorithms is assessed for the scenario of a pursuit-evasion engagement between a randomly maneuvering ballistic missile and an interceptor. Extensive Monte Carlo simulations are employed to evaluate the main statistical properties of the algorithms. (Abstract shortened by UMI.)
Jarman, Kristin H [Richland, WA; Cannon, William R [Richland, WA; Jarman, Kenneth D [Richland, WA; Heredia-Langner, Alejandro [Richland, WA
2011-07-12
Peptides are identified from a list of candidates using collision-induced dissociation tandem mass spectrometry data. A probabilistic model for the occurrence of spectral peaks corresponding to frequently observed partial peptide fragment ions is applied. As part of the identification procedure, a probability score is produced that indicates the likelihood of any given candidate being the correct match. The statistical significance of the score is known without necessarily having reference to the actual identity of the peptide. In one form of the invention, a genetic algorithm is applied to candidate peptides using an objective function that takes into account the number of shifted peaks appearing in the candidate spectrum relative to the test spectrum.
Properties OF M31. V. 298 eclipsing binaries from PAndromeda
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C.-H.; Koppenhoefer, J.; Seitz, S.
2014-12-10
The goal of this work is to conduct a photometric study of eclipsing binaries in M31. We apply a modified box-fitting algorithm to search for eclipsing binary candidates and determine their period. We classify these candidates into detached, semi-detached, and contact systems using the Fourier decomposition method. We cross-match the position of our detached candidates with the photometry from Local Group Survey and select 13 candidates brighter than 20.5 mag in V. The relative physical parameters of these detached candidates are further characterized with the Detached Eclipsing Binary Light curve fitter (DEBiL) by Devor. We will follow up the detachedmore » eclipsing binaries spectroscopically and determine the distance to M31.« less
Finding Minimum-Power Broadcast Trees for Wireless Networks
NASA Technical Reports Server (NTRS)
Arabshahi, Payman; Gray, Andrew; Das, Arindam; El-Sharkawi, Mohamed; Marks, Robert, II
2004-01-01
Some algorithms have been devised for use in a method of constructing tree graphs that represent connections among the nodes of a wireless communication network. These algorithms provide for determining the viability of any given candidate connection tree and for generating an initial set of viable trees that can be used in any of a variety of search algorithms (e.g., a genetic algorithm) to find a tree that enables the network to broadcast from a source node to all other nodes while consuming the minimum amount of total power. The method yields solutions better than those of a prior algorithm known as the broadcast incremental power algorithm, albeit at a slightly greater computational cost.
Nemoto, Mitsutaka; Hayashi, Naoto; Hanaoka, Shouhei; Nomura, Yukihiro; Miki, Soichiro; Yoshikawa, Takeharu
2017-10-01
We propose a generalized framework for developing computer-aided detection (CADe) systems whose characteristics depend only on those of the training dataset. The purpose of this study is to show the feasibility of the framework. Two different CADe systems were experimentally developed by a prototype of the framework, but with different training datasets. The CADe systems include four components; preprocessing, candidate area extraction, candidate detection, and candidate classification. Four pretrained algorithms with dedicated optimization/setting methods corresponding to the respective components were prepared in advance. The pretrained algorithms were sequentially trained in the order of processing of the components. In this study, two different datasets, brain MRA with cerebral aneurysms and chest CT with lung nodules, were collected to develop two different types of CADe systems in the framework. The performances of the developed CADe systems were evaluated by threefold cross-validation. The CADe systems for detecting cerebral aneurysms in brain MRAs and for detecting lung nodules in chest CTs were successfully developed using the respective datasets. The framework was shown to be feasible by the successful development of the two different types of CADe systems. The feasibility of this framework shows promise for a new paradigm in the development of CADe systems: development of CADe systems without any lesion specific algorithm designing.
Prototype Flight Management Capabilities to Explore Temporal RNP Concepts
NASA Technical Reports Server (NTRS)
Ballin, Mark G.; Williams, David H.; Allen, Bonnie Danette; Palmer, Michael T.
2008-01-01
Next Generation Air Transportation System (NextGen) concepts of operation may require aircraft to fly planned trajectories in four dimensions three spatial dimensions and time. A prototype 4D flight management capability is being developed by NASA to facilitate the development of these concepts. New trajectory generation functions extend today's flight management system (FMS) capabilities that meet a single Required Time of Arrival (RTA) to trajectory solutions that comply with multiple RTA constraints. When a solution is not possible, a constraint management capability relaxes constraints to achieve a trajectory solution that meets the most important constraints as specified by candidate NextGen concepts. New flight guidance functions provide continuous guidance to the aircraft s flight control system to enable it to fly specified 4D trajectories. Guidance options developed for research investigations include a moving time window with varying tolerances that are a function of proximity to imposed constraints, and guidance that recalculates the aircraft s planned trajectory as a function of the estimation of current compliance. Compliance tolerances are related to required navigation performance (RNP) through the extension of existing RNP concepts for lateral containment. A conceptual temporal RNP implementation and prototype display symbology are proposed.
Using qualitative research to inform development of a diagnostic algorithm for UTI in children.
de Salis, Isabel; Whiting, Penny; Sterne, Jonathan A C; Hay, Alastair D
2013-06-01
Diagnostic and prognostic algorithms can help reduce clinical uncertainty. The selection of candidate symptoms and signs to be measured in case report forms (CRFs) for potential inclusion in diagnostic algorithms needs to be comprehensive, clearly formulated and relevant for end users. To investigate whether qualitative methods could assist in designing CRFs in research developing diagnostic algorithms. Specifically, the study sought to establish whether qualitative methods could have assisted in designing the CRF for the Health Technology Association funded Diagnosis of Urinary Tract infection in Young children (DUTY) study, which will develop a diagnostic algorithm to improve recognition of urinary tract infection (UTI) in children aged <5 years presenting acutely unwell to primary care. Qualitative methods were applied using semi-structured interviews of 30 UK doctors and nurses working with young children in primary care and a Children's Emergency Department. We elicited features that clinicians believed useful in diagnosing UTI and compared these for presence or absence and terminology with the DUTY CRF. Despite much agreement between clinicians' accounts and the DUTY CRFs, we identified a small number of potentially important symptoms and signs not included in the CRF and some included items that could have been reworded to improve understanding and final data analysis. This study uniquely demonstrates the role of qualitative methods in the design and content of CRFs used for developing diagnostic (and prognostic) algorithms. Research groups developing such algorithms should consider using qualitative methods to inform the selection and wording of candidate symptoms and signs.
Advanced Guidance and Control Methods for Reusable Launch Vehicles: Test Results
NASA Technical Reports Server (NTRS)
Hanson, John M.; Jones, Robert E.; Krupp, Don R.; Fogle, Frank R. (Technical Monitor)
2002-01-01
There are a number of approaches to advanced guidance and control (AG&C) that have the potential for achieving the goals of significantly increasing reusable launch vehicle (RLV) safety/reliability and reducing the cost. In this paper, we examine some of these methods and compare the results. We briefly introduce the various methods under test, list the test cases used to demonstrate that the desired results are achieved, show an automated test scoring method that greatly reduces the evaluation effort required, and display results of the tests. Results are shown for the algorithms that have entered testing so far.
1992-03-01
de Logiciels") etaient en cours de developpement pour resoudre des problimes similaires dans le monde de la gestion . le Panel... gestion des sp cifications, d’algorithmes et de reprtsentations. Techniques et Sciences Informatiques, 4(3), 1985. 4-21 R. Jacquart, M. Lemoine, and G...Guidance and Control Systems Software (Les Diff~rentes Approches "G6neration" pour la Conception et le D~veloppement de Logiciels de Guidage et de
Luo, Xiongbiao; Wan, Ying; He, Xiangjian
2015-04-01
Electromagnetically guided endoscopic procedure, which aims at accurately and robustly localizing the endoscope, involves multimodal sensory information during interventions. However, it still remains challenging in how to integrate these information for precise and stable endoscopic guidance. To tackle such a challenge, this paper proposes a new framework on the basis of an enhanced particle swarm optimization method to effectively fuse these information for accurate and continuous endoscope localization. The authors use the particle swarm optimization method, which is one of stochastic evolutionary computation algorithms, to effectively fuse the multimodal information including preoperative information (i.e., computed tomography images) as a frame of reference, endoscopic camera videos, and positional sensor measurements (i.e., electromagnetic sensor outputs). Since the evolutionary computation method usually limits its possible premature convergence and evolutionary factors, the authors introduce the current (endoscopic camera and electromagnetic sensor's) observation to boost the particle swarm optimization and also adaptively update evolutionary parameters in accordance with spatial constraints and the current observation, resulting in advantageous performance in the enhanced algorithm. The experimental results demonstrate that the authors' proposed method provides a more accurate and robust endoscopic guidance framework than state-of-the-art methods. The average guidance accuracy of the authors' framework was about 3.0 mm and 5.6° while the previous methods show at least 3.9 mm and 7.0°. The average position and orientation smoothness of their method was 1.0 mm and 1.6°, which is significantly better than the other methods at least with (2.0 mm and 2.6°). Additionally, the average visual quality of the endoscopic guidance was improved to 0.29. A robust electromagnetically guided endoscopy framework was proposed on the basis of an enhanced particle swarm optimization method with using the current observation information and adaptive evolutionary factors. The authors proposed framework greatly reduced the guidance errors from (4.3, 7.8) to (3.0 mm, 5.6°), compared to state-of-the-art methods.
Fundamental resource-allocating model in colleges and universities based on Immune Clone Algorithms
NASA Astrophysics Data System (ADS)
Ye, Mengdie
2017-05-01
In this thesis we will seek the combination of antibodies and antigens converted from the optimal course arrangement and make an analogy with Immune Clone Algorithms. According to the character of the Algorithms, we apply clone, clone gene and clone selection to arrange courses. Clone operator can combine evolutionary search and random search, global search and local search. By cloning and clone mutating candidate solutions, we can find the global optimal solution quickly.
Sensor Fusion, Prognostics, Diagnostics and Failure Mode Control for Complex Aerospace Systems
2010-10-01
algorithm and to then tune the candidates individually using known metaheuristics . As will be...parallel. The result of this arrangement is that the processing is a form that is analogous to standard parallel genetic algorithms , and as such...search algorithm then uses the hybrid of fitness data to rank the results. The ETRAS controller is developed using pre-selection, showing that a
Predicting patchy particle crystals: variable box shape simulations and evolutionary algorithms.
Bianchi, Emanuela; Doppelbauer, Günther; Filion, Laura; Dijkstra, Marjolein; Kahl, Gerhard
2012-06-07
We consider several patchy particle models that have been proposed in literature and we investigate their candidate crystal structures in a systematic way. We compare two different algorithms for predicting crystal structures: (i) an approach based on Monte Carlo simulations in the isobaric-isothermal ensemble and (ii) an optimization technique based on ideas of evolutionary algorithms. We show that the two methods are equally successful and provide consistent results on crystalline phases of patchy particle systems.
A data structure and algorithm for fault diagnosis
NASA Technical Reports Server (NTRS)
Bosworth, Edward L., Jr.
1987-01-01
Results of preliminary research on the design of a knowledge based fault diagnosis system for use with on-orbit spacecraft such as the Hubble Space Telescope are presented. A candidate data structure and associated search algorithm from which the knowledge based system can evolve is discussed. This algorithmic approach will then be examined in view of its inability to diagnose certain common faults. From that critique, a design for the corresponding knowledge based system will be given.
[siRNAs with high specificity to the target: a systematic design by CRM algorithm].
Alsheddi, T; Vasin, L; Meduri, R; Randhawa, M; Glazko, G; Baranova, A
2008-01-01
'Off-target' silencing effect hinders the development of siRNA-based therapeutic and research applications. Common solution to this problem is an employment of the BLAST that may miss significant alignments or an exhaustive Smith-Waterman algorithm that is very time-consuming. We have developed a Comprehensive Redundancy Minimizer (CRM) approach for mapping all unique sequences ("targets") 9-to-15 nt in size within large sets of sequences (e.g. transcriptomes). CRM outputs a list of potential siRNA candidates for every transcript of the particular species. These candidates could be further analyzed by traditional "set-of-rules" types of siRNA designing tools. For human, 91% of transcripts are covered by candidate siRNAs with kernel targets of N = 15. We tested our approach on the collection of previously described experimentally assessed siRNAs and found that the correlation between efficacy and presence in CRM-approved set is significant (r = 0.215, p-value = 0.0001). An interactive database that contains a precompiled set of all human siRNA candidates with minimized redundancy is available at http://129.174.194.243. Application of the CRM-based filtering minimizes potential "off-target" silencing effects and could improve routine siRNA applications.
3D ultrasound image guidance system used in RF uterine adenoma and uterine bleeding ablation system
NASA Astrophysics Data System (ADS)
Ding, Mingyue; Luo, Xiaoan; Cai, Chao; Zhou, Chengping; Fenster, Aaron
2006-03-01
Uterine adenoma and uterine bleeding are the two most prevalent diseases in Chinese women. Many women lose their fertility from these diseases. Currently, a minimally invasive ablation system using an RF button electrode is being used in Chinese hospitals to destroy tumor cells or stop bleeding. In this paper, we report on a 3D US guidance system developed to avoid accidents or death of the patient by inaccurate localization of the tumor position during treatment. A 3D US imaging system using a rotational scanning approach of an abdominal probe was built. In order to reduce the distortion produced when the rotational axis is not collinear with the central beam of the probe, a new 3D reconstruction algorithm is used. Then, a fast 3D needle segmentation algorithm is used to find the electrode. Finally, the tip of electrode is determined along the segmented 3D needle and the whole electrode is displayed. Experiments with a water phantom demonstrated the feasibility of our approach.
A Mathematical Analysis of Conflict Prevention Information
NASA Technical Reports Server (NTRS)
Maddalon, Jeffrey M.; Butler, Ricky W.; Munoz, Cesar A.; Dowek, Gilles
2009-01-01
In air traffic management, conflict prevention information refers to the guidance maneuvers, which if taken, ensure that an aircraft's path is conflict-free. These guidance maneuvers take the form of changes to track angle or ground speed. Conflict prevention information may be assembled into prevention bands that advise the crew on maneuvers that should not be taken. Unlike conflict resolution systems, which presume that the aircraft already has a conflict, conflict prevention systems show conflicts for any maneuver, giving the pilot confidence that if a maneuver is made, then no near-term conflicts will result. Because near-term conflicts can lead to safety concerns, strong verification of information correctness is required. This paper presents a mathematical framework to analyze the correctness of algorithms that produce conflict prevention information incorporating an arbitrary number of traffic aircraft and with both a near-term and intermediate-term lookahead times. The framework is illustrated with a formally verified algorithm for 2-dimensional track angle prevention bands.
A voting-based star identification algorithm utilizing local and global distribution
NASA Astrophysics Data System (ADS)
Fan, Qiaoyun; Zhong, Xuyang; Sun, Junhua
2018-03-01
A novel star identification algorithm based on voting scheme is presented in this paper. In the proposed algorithm, the global distribution and local distribution of sensor stars are fully utilized, and the stratified voting scheme is adopted to obtain the candidates for sensor stars. The database optimization is employed to reduce its memory requirement and improve the robustness of the proposed algorithm. The simulation shows that the proposed algorithm exhibits 99.81% identification rate with 2-pixel standard deviations of positional noises and 0.322-Mv magnitude noises. Compared with two similar algorithms, the proposed algorithm is more robust towards noise, and the average identification time and required memory is less. Furthermore, the real sky test shows that the proposed algorithm performs well on the real star images.
NASA Technical Reports Server (NTRS)
1982-01-01
The active control technology (ACT) control/guidance system task of the integrated application of active controls (IAAC) technology project within the NASA energy efficient transport program was documented. The air traffic environment of navigation and air traffic control systems and procedures were extrapolated. An approach to listing flight functions which will be performed by systems and crew of an ACT configured airplane of the 1990s, and a determination of function criticalities to safety of flight, are the basis of candidate integrated ACT/Control/Guidance System architecture. The system mechanizes five active control functions: pitch augmented stability, angle of attack limiting, lateral/directional augmented stability, gust load alleviation, and maneuver load control. The scope and requirements of a program for simulating the integrated ACT avionics and flight deck system, with pilot in the loop, are defined, system and crew interface elements are simulated, and mechanization is recommended. Relationships between system design and crew roles and procedures are evaluated.
2010-01-01
As part of our effort to increase survival of drug candidates and to move our medicinal chemistry design to higher probability space for success in the Neuroscience therapeutic area, we embarked on a detailed study of the property space for a collection of central nervous system (CNS) molecules. We carried out a thorough analysis of properties for 119 marketed CNS drugs and a set of 108 Pfizer CNS candidates. In particular, we focused on understanding the relationships between physicochemical properties, in vitro ADME (absorption, distribution, metabolism, and elimination) attributes, primary pharmacology binding efficiencies, and in vitro safety data for these two sets of compounds. This scholarship provides guidance for the design of CNS molecules in a property space with increased probability of success and may lead to the identification of druglike candidates with favorable safety profiles that can successfully test hypotheses in the clinic. PMID:22778836
Soft-Decision Decoding of Binary Linear Block Codes Based on an Iterative Search Algorithm
NASA Technical Reports Server (NTRS)
Lin, Shu; Kasami, Tadao; Moorthy, H. T.
1997-01-01
This correspondence presents a suboptimum soft-decision decoding scheme for binary linear block codes based on an iterative search algorithm. The scheme uses an algebraic decoder to iteratively generate a sequence of candidate codewords one at a time using a set of test error patterns that are constructed based on the reliability information of the received symbols. When a candidate codeword is generated, it is tested based on an optimality condition. If it satisfies the optimality condition, then it is the most likely (ML) codeword and the decoding stops. If it fails the optimality test, a search for the ML codeword is conducted in a region which contains the ML codeword. The search region is determined by the current candidate codeword and the reliability of the received symbols. The search is conducted through a purged trellis diagram for the given code using the Viterbi algorithm. If the search fails to find the ML codeword, a new candidate is generated using a new test error pattern, and the optimality test and search are renewed. The process of testing and search continues until either the MEL codeword is found or all the test error patterns are exhausted and the decoding process is terminated. Numerical results show that the proposed decoding scheme achieves either practically optimal performance or a performance only a fraction of a decibel away from the optimal maximum-likelihood decoding with a significant reduction in decoding complexity compared with the Viterbi decoding based on the full trellis diagram of the codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Yueyang; Deng Licai; Liu Chao
A total of {approx}640, 000 objects from the LAMOST pilot survey have been publicly released. In this work, we present a catalog of DA white dwarfs (DAWDs) from the entire pilot survey. We outline a new algorithm for the selection of white dwarfs (WDs) by fitting Sersic profiles to the Balmer H{beta}, H{gamma}, and H{delta} lines of the spectra, and calculating the equivalent width of the Ca II K line. Two thousand nine hundred sixty-four candidates are selected by constraining the fitting parameters and the equivalent width of the Ca II K line. All the spectra of candidates are visuallymore » inspected. We identify 230 DAWDs (59 of which are already included in the Villanova and SDSS WD catalogs), 20 of which are DAWDs with non-degenerate companions. In addition, 128 candidates are classified as DAWDs/subdwarfs, which means the classifications are ambiguous. The result is consistent with the expected DAWD number estimated based on the LEGUE target selection algorithm.« less
A search for H/ACA snoRNAs in yeast using MFE secondary structure prediction.
Edvardsson, Sverker; Gardner, Paul P; Poole, Anthony M; Hendy, Michael D; Penny, David; Moulton, Vincent
2003-05-01
Noncoding RNA genes produce functional RNA molecules rather than coding for proteins. One such family is the H/ACA snoRNAs. Unlike the related C/D snoRNAs these have resisted automated detection to date. We develop an algorithm to screen the yeast genome for novel H/ACA snoRNAs. To achieve this, we introduce some new methods for facilitating the search for noncoding RNAs in genomic sequences which are based on properties of predicted minimum free-energy (MFE) secondary structures. The algorithm has been implemented and can be generalized to enable screening of other eukaryote genomes. We find that use of primary sequence alone is insufficient for identifying novel H/ACA snoRNAs. Only the use of secondary structure filters reduces the number of candidates to a manageable size. From genomic context, we identify three strong H/ACA snoRNA candidates. These together with a further 47 candidates obtained by our analysis are being experimentally screened.
Technician-free system for image-guided bronchoscopy
NASA Astrophysics Data System (ADS)
Khare, Rahul; Bascom, Rebecca; Higgins, William E.
2013-03-01
Previous studies have shown that guidance systems improve accuracy and reduce skill variation among physicians during bronchoscopy. However, most of these systems suffer from one or more of the following limitations: 1) an attending technician must carefully keep the system position synchronized with the bronchoscope position during the procedure; 2) extra bronchoscope tracking hardware may be required; 3) guidance cannot take place in real time; 4) the guidance system is unable to detect and correct faulty bronchoscope maneuvers; and 5) a resynchronization procedure must be followed after adverse events such as patient cough or dynamic airway collapse. Here, we propose an image-based system for technician-free bronchoscopy guidance that relies on two features. First, our system precomputes a guidance plan that suggests natural bronchoscope maneuvers at every bifurcation leading toward a region of interest (ROI). Second, our system enables bronchoscope position verification that relies on a global-registration algorithm to establish the global bronchoscope position and, thus, provide the physician with updated navigational information during bronchoscopy. The system can handle general navigation to an ROI, as well as adverse events, and is directly controlled by the physician by a foot pedal. Guided bronchoscopy results using airway-tree phantoms and human cases demonstrate the efficacy of the system.
Small caliber guided projectile
Jones, James F [Albuquerque, NM; Kast, Brian A [Albuquerque, NM; Kniskern, Marc W [Albuquerque, NM; Rose, Scott E [Albuquerque, NM; Rohrer, Brandon R [Albuquerque, NM; Woods, James W [Albuquerque, NM; Greene, Ronald W [Albuquerque, NM
2010-08-24
A non-spinning projectile that is self-guided to a laser designated target and is configured to be fired from a small caliber smooth bore gun barrel has an optical sensor mounted in the nose of the projectile, a counterbalancing mass portion near the fore end of the projectile and a hollow tapered body mounted aft of the counterbalancing mass. Stabilizing strakes are mounted to and extend outward from the tapered body with control fins located at the aft end of the strakes. Guidance and control electronics and electromagnetic actuators for operating the control fins are located within the tapered body section. Output from the optical sensor is processed by the guidance and control electronics to produce command signals for the electromagnetic actuators. A guidance control algorithm incorporating non-proportional, "bang-bang" control is used to steer the projectile to the target.
A near-optimal guidance for cooperative docking maneuvers
NASA Astrophysics Data System (ADS)
Ciarcià, Marco; Grompone, Alessio; Romano, Marcello
2014-09-01
In this work we study the problem of minimum energy docking maneuvers between two Floating Spacecraft Simulators. The maneuvers are planar and conducted autonomously in a cooperative mode. The proposed guidance strategy is based on the direct method known as Inverse Dynamics in the Virtual Domain, and the nonlinear programming solver known as Sequential Gradient-Restoration Algorithm. The combination of these methods allows for the quick prototyping of near-optimal trajectories, and results in an implementable tool for real-time closed-loop maneuvering. The experimental results included in this paper were obtained by exploiting the recently upgraded Floating Spacecraft-Simulator Testbed of the Spacecraft Robotics Laboratory at the Naval Postgraduate School. A direct performances comparison, in terms of maneuver energy and propellant mass, between the proposed guidance strategy and a LQR controller, demonstrates the effectiveness of the method.
A modified CoRoT detrend algorithm and the discovery of a new planetary companion
NASA Astrophysics Data System (ADS)
Boufleur, Rodrigo C.; Emilio, Marcelo; Janot-Pacheco, Eduardo; Andrade, Laerte; Ferraz-Mello, Sylvio; do Nascimento, José-Dias, Jr.; de La Reza, Ramiro
2018-01-01
We present MCDA, a modification of the COnvection ROtation and planetary Transits (CoRoT) detrend algorithm (CDA) suitable to detrend chromatic light curves. By means of robust statistics and better handling of short-term variability, the implementation decreases the systematic light-curve variations and improves the detection of exoplanets when compared with the original algorithm. All CoRoT chromatic light curves (a total of 65 655) were analysed with our algorithm. Dozens of new transit candidates and all previously known CoRoT exoplanets were rediscovered in those light curves using a box-fitting algorithm. For three of the new cases, spectroscopic measurements of the candidates' host stars were retrieved from the ESO Science Archive Facility and used to calculate stellar parameters and, in the best cases, radial velocities. In addition to our improved detrend technique, we announce the discovery of a planet that orbits a 0.79_{-0.09}^{+0.08} R⊙ star with a period of 6.718 37 ± 0.000 01 d and has 0.57_{-0.05}^{+0.06} RJ and 0.15 ± 0.10 MJ. We also present the analysis of two cases in which parameters found suggest the existence of possible planetary companions.
An intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces.
Ying, Xiang; Xin, Shi-Qing; Sun, Qian; He, Ying
2013-09-01
Poisson disk sampling has excellent spatial and spectral properties, and plays an important role in a variety of visual computing. Although many promising algorithms have been proposed for multidimensional sampling in euclidean space, very few studies have been reported with regard to the problem of generating Poisson disks on surfaces due to the complicated nature of the surface. This paper presents an intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces. In sharp contrast to the conventional parallel approaches, our method neither partitions the given surface into small patches nor uses any spatial data structure to maintain the voids in the sampling domain. Instead, our approach assigns each sample candidate a random and unique priority that is unbiased with regard to the distribution. Hence, multiple threads can process the candidates simultaneously and resolve conflicts by checking the given priority values. Our algorithm guarantees that the generated Poisson disks are uniformly and randomly distributed without bias. It is worth noting that our method is intrinsic and independent of the embedding space. This intrinsic feature allows us to generate Poisson disk patterns on arbitrary surfaces in IR(n). To our knowledge, this is the first intrinsic, parallel, and accurate algorithm for surface Poisson disk sampling. Furthermore, by manipulating the spatially varying density function, we can obtain adaptive sampling easily.
Orion Guidance and Control Ascent Abort Algorithm Design and Performance Results
NASA Technical Reports Server (NTRS)
Proud, Ryan W.; Bendle, John R.; Tedesco, Mark B.; Hart, Jeremy J.
2009-01-01
During the ascent flight phase of NASA s Constellation Program, the Ares launch vehicle propels the Orion crew vehicle to an agreed to insertion target. If a failure occurs at any point in time during ascent then a system must be in place to abort the mission and return the crew to a safe landing with a high probability of success. To achieve continuous abort coverage one of two sets of effectors is used. Either the Launch Abort System (LAS), consisting of the Attitude Control Motor (ACM) and the Abort Motor (AM), or the Service Module (SM), consisting of SM Orion Main Engine (OME), Auxiliary (Aux) Jets, and Reaction Control System (RCS) jets, is used. The LAS effectors are used for aborts from liftoff through the first 30 seconds of second stage flight. The SM effectors are used from that point through Main Engine Cutoff (MECO). There are two distinct sets of Guidance and Control (G&C) algorithms that are designed to maximize the performance of these abort effectors. This paper will outline the necessary inputs to the G&C subsystem, the preliminary design of the G&C algorithms, the ability of the algorithms to predict what abort modes are achievable, and the resulting success of the abort system. Abort success will be measured against the Preliminary Design Review (PDR) abort performance metrics and overall performance will be reported. Finally, potential improvements to the G&C design will be discussed.
Integrated G and C Implementation within IDOS: A Simulink Based Reusable Launch Vehicle Simulation
NASA Technical Reports Server (NTRS)
Fisher, Joseph E.; Bevacqua, Tim; Lawrence, Douglas A.; Zhu, J. Jim; Mahoney, Michael
2003-01-01
The implementation of multiple Integrated Guidance and Control (IG&C) algorithms per flight phase within a vehicle simulation poses a daunting task to coordinate algorithm interactions with the other G&C components and with vehicle subsystems. Currently being developed by Universal Space Lines LLC (USL) under contract from NASA, the Integrated Development and Operations System (IDOS) contains a high fidelity Simulink vehicle simulation, which provides a means to test cutting edge G&C technologies. Combining the modularity of this vehicle simulation and Simulink s built-in primitive blocks provide a quick way to implement algorithms. To add discrete-event functionality to the unfinished IDOS simulation, Vehicle Event Manager (VEM) and Integrated Vehicle Health Monitoring (IVHM) subsystems were created to provide discrete-event and pseudo-health monitoring processing capabilities. Matlab's Stateflow is used to create the IVHM and Event Manager subsystems and to implement a supervisory logic controller referred to as the Auto-commander as part of the IG&C to coordinate the control system adaptation and reconfiguration and to select the control and guidance algorithms for a given flight phase. Manual creation of the Stateflow charts for all of these subsystems is a tedious and time-consuming process. The Stateflow Auto-builder was developed as a Matlab based software tool for the automatic generation of a Stateflow chart from information contained in a database. This paper describes the IG&C, VEM and IVHM implementations in IDOS. In addition, this paper describes the Stateflow Auto-builder.
Remote controlled capsules in human drug absorption (HDA) studies.
Wilding, Ian R; Prior, David V
2003-01-01
The biopharmaceutical complexity of today's new drug candidates provides significant challenges for pharmaceutical scientists in terms of both candidate selection and optimizing subsequent development strategy. In addition, life cycle management of marketed drugs has become an important income stream for pharmaceutical companies, but the selection of least risk/highest benefit strategies is far from simple. The proactive adoption of human drug absorption (HDA) studies using remote controlled capsules offers the pharmaceutical scientist significant guidance for planning a route through the maze of product development. This review examines the position of HDA studies in drug development, using a variety of case histories and an insightful update on remote controlled capsules to achieve site-specific delivery.
Detection with Enhanced Energy Windowing Phase I Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bass, David A.; Enders, Alexander L.
2016-12-01
This document reviews the progress of Phase I of the Detection with Enhanced Energy Windowing (DEEW) project. The DEEW project is the implementation of software incorporating an algorithm which reviews data generated by radiation portal monitors and utilizes advanced and novel techniques for detecting radiological and fissile material while not alarming on Naturally Occurring Radioactive Material. Independent testing indicated that the Enhanced Energy Windowing algorithm showed promise at reducing the probability of alarm in the stream of commerce compared to existing algorithms and other developmental algorithms, while still maintaining adequate sensitivity to threats. This document contains a brief description ofmore » the project, instructions for setting up and running the applications, and guidance to help make reviewing the output files and source code easier.« less
NASA Astrophysics Data System (ADS)
Frank, S.; Mathur, S.; Pieri, M.; York, D. G.
2010-09-01
We report the results of a systematic search for signatures of metal lines in quasar spectra of the Sloan Digital Sky Survey (SDSS) data release 3 (DR3), focusing on finding intervening absorbers via detection of their O VI doublet. Here, we present the search algorithm and criteria for distinguishing candidates from spurious Lyα forest lines. In addition, we compare our findings with simulations of the Lyα forest in order to estimate the detectability of O VI doublets over various redshift intervals. We have obtained a sample of 1756 O VI doublet candidates with rest-frame equivalent width (EW) >=0.05 Å in 855 active galactic nuclei spectra (out of 3702 objects with redshifts in the accessible range for O VI detection). This sample is further subdivided into three groups according to the likelihood of being real and the potential for follow-up observation of the candidate. The group with the cleanest and most secure candidates is comprised of 145 candidates. Sixty-nine of these reside at a velocity separation >=5000 km s-1 from the QSO and can therefore be classified tentatively as intervening absorbers. Most of these absorbers have not been picked up by earlier, automated QSO absorption line detection algorithms. This sample increases the number of known O VI absorbers at redshifts beyond z abs>= 2.7 substantially.
NASA Astrophysics Data System (ADS)
Cobos Arribas, Pedro; Monasterio Huelin Macia, Felix
2003-04-01
A FPGA based hardware implementation of the Santos-Victor optical flow algorithm, useful in robot guidance applications, is described in this paper. The system used to do contains an ALTERA FPGA (20K100), an interface with a digital camera, three VRAM memories to contain the data input and some output memories (a VRAM and a EDO) to contain the results. The system have been used previously to develop and test other vision algorithms, such as image compression, optical flow calculation with differential and correlation methods. The designed system let connect the digital camera, or the FPGA output (results of algorithms) to a PC, throw its Firewire or USB port. The problems take place in this occasion have motivated to adopt another hardware structure for certain vision algorithms with special requirements, that need a very hard code intensive processing.
Validation Study of a Predictive Algorithm to Evaluate Opioid Use Disorder in a Primary Care Setting
Sharma, Maneesh; Lee, Chee; Kantorovich, Svetlana; Tedtaotao, Maria; Smith, Gregory A.
2017-01-01
Background: Opioid abuse in chronic pain patients is a major public health issue. Primary care providers are frequently the first to prescribe opioids to patients suffering from pain, yet do not always have the time or resources to adequately evaluate the risk of opioid use disorder (OUD). Purpose: This study seeks to determine the predictability of aberrant behavior to opioids using a comprehensive scoring algorithm (“profile”) incorporating phenotypic and, more uniquely, genotypic risk factors. Methods and Results: In a validation study with 452 participants diagnosed with OUD and 1237 controls, the algorithm successfully categorized patients at high and moderate risk of OUD with 91.8% sensitivity. Regardless of changes in the prevalence of OUD, sensitivity of the algorithm remained >90%. Conclusion: The algorithm correctly stratifies primary care patients into low-, moderate-, and high-risk categories to appropriately identify patients in need for additional guidance, monitoring, or treatment changes. PMID:28890908
Sharma, Maneesh; Lee, Chee; Kantorovich, Svetlana; Tedtaotao, Maria; Smith, Gregory A; Brenton, Ashley
2017-01-01
Opioid abuse in chronic pain patients is a major public health issue. Primary care providers are frequently the first to prescribe opioids to patients suffering from pain, yet do not always have the time or resources to adequately evaluate the risk of opioid use disorder (OUD). This study seeks to determine the predictability of aberrant behavior to opioids using a comprehensive scoring algorithm ("profile") incorporating phenotypic and, more uniquely, genotypic risk factors. In a validation study with 452 participants diagnosed with OUD and 1237 controls, the algorithm successfully categorized patients at high and moderate risk of OUD with 91.8% sensitivity. Regardless of changes in the prevalence of OUD, sensitivity of the algorithm remained >90%. The algorithm correctly stratifies primary care patients into low-, moderate-, and high-risk categories to appropriately identify patients in need for additional guidance, monitoring, or treatment changes.
2011-05-02
Dacke, J. Reinhard and M.V. Srinivasan (2010) The moment before touchdown: Landing manoeuvres of the honeybee Apis mellifera . Journal of Experimental...moment before touchdown: Landing manoeuvres of the honeybee Apis mellifera . Journal of Experimental Biology 213, 262-270. M.V. Srinivasan (2010
Internship Abstract - Aerosciences and Flight Mechanics Intern
NASA Technical Reports Server (NTRS)
Rangel, John
2015-01-01
Mars is a hard place to land on, but my internship with NASA's Aerosciences & Flight Mechanics branch has shown me the ways in which men and women will one day land safely. I work on Mars Aerocapture, an aeroassist maneuver that reduces the fuel necessary to "capture" into Martian orbit before a descent. The spacecraft flies through the Martian atmosphere to lose energy through heating before it exits back into space, this time at a slower velocity and in orbit around Mars. Spacecraft will need to maneuver through the Martian atmosphere to accurately hit their orbit, and they will need to survive the generated heat. Engineering teams need simulation data to continue their designs, and the guidance algorithm that ensures a proper orbit insertion needs to be refined - two jobs that fell to me at the summer's start. Engineers within my branch have developed two concept aerocapture vehicles, and I run simulations on their behavior during the maneuver. I also test and refine the guidance algorithm. I spent the first few weeks familiarizing myself with the simulation software, troubleshooting various guidance bugs and writing code. Everything runs smoothly now, and I recently sent my first set of trajectory data to a Thermal Protection System group so they can incorporate it into their heat-bearing material designs. I hope to generate plenty of data in the next few weeks for various engineering groups before my internship ends mid-August. My major accomplishment so far is improving the guidance algorithm. It is a relatively new algorithm that promises higher accuracy and fuel efficiency, but it hasn't undergone extensive testing yet. I've had the opportunity to work with the principal developer - a professor at Iowa State University - to find and fix several issues. I was also assigned the task of expanding the branch's aerodynamic heating simulation software. I am excited to do this because engineers in the future will use my work to generate meaningful data and make design decisions. My internship has taught me to how to teach myself. There are no tutors, study sessions or professor office hours. When I am given an assignment I am expected to figure out how to accomplish it, and I have grown in my problem solving abilities. My summer experience has reinforced my drive to work at NASA, and I can definitely see myself working full time on the aerocapture project, or something similar.
Evaluation of low-dose limits in 3D-2D rigid registration for surgical guidance
NASA Astrophysics Data System (ADS)
Uneri, A.; Wang, A. S.; Otake, Y.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Gallia, G. L.; Gokaslan, Z. L.; Siewerdsen, J. H.
2014-09-01
An algorithm for intensity-based 3D-2D registration of CT and C-arm fluoroscopy is evaluated for use in surgical guidance, specifically considering the low-dose limits of the fluoroscopic x-ray projections. The registration method is based on a framework using the covariance matrix adaptation evolution strategy (CMA-ES) to identify the 3D patient pose that maximizes the gradient information similarity metric. Registration performance was evaluated in an anthropomorphic head phantom emulating intracranial neurosurgery, using target registration error (TRE) to characterize accuracy and robustness in terms of 95% confidence upper bound in comparison to that of an infrared surgical tracking system. Three clinical scenarios were considered: (1) single-view image + guidance, wherein a single x-ray projection is used for visualization and 3D-2D guidance; (2) dual-view image + guidance, wherein one projection is acquired for visualization, combined with a second (lower-dose) projection acquired at a different C-arm angle for 3D-2D guidance; and (3) dual-view guidance, wherein both projections are acquired at low dose for the purpose of 3D-2D guidance alone (not visualization). In each case, registration accuracy was evaluated as a function of the entrance surface dose associated with the projection view(s). Results indicate that images acquired at a dose as low as 4 μGy (approximately one-tenth the dose of a typical fluoroscopic frame) were sufficient to provide TRE comparable or superior to that of conventional surgical tracking, allowing 3D-2D guidance at a level of dose that is at most 10% greater than conventional fluoroscopy (scenario #2) and potentially reducing the dose to approximately 20% of the level in a conventional fluoroscopically guided procedure (scenario #3).
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-01
.... NTIS is seeking candidates who can provide guidance on trends in the information industry as the result of technological change and on how NTIS can best adapt to these changes in meeting the needs of its... resume and a statement of why you wish to be considered and what you believe you can contribute as a...
A Method for the Evaluation of Thousands of Automated 3D Stem Cell Segmentations
Bajcsy, Peter; Simon, Mylene; Florczyk, Stephen; Simon, Carl G.; Juba, Derek; Brady, Mary
2016-01-01
There is no segmentation method that performs perfectly with any data set in comparison to human segmentation. Evaluation procedures for segmentation algorithms become critical for their selection. The problems associated with segmentation performance evaluations and visual verification of segmentation results are exaggerated when dealing with thousands of 3D image volumes because of the amount of computation and manual inputs needed. We address the problem of evaluating 3D segmentation performance when segmentation is applied to thousands of confocal microscopy images (z-stacks). Our approach is to incorporate experimental imaging and geometrical criteria, and map them into computationally efficient segmentation algorithms that can be applied to a very large number of z-stacks. This is an alternative approach to considering existing segmentation methods and evaluating most state-of-the-art algorithms. We designed a methodology for 3D segmentation performance characterization that consists of design, evaluation and verification steps. The characterization integrates manual inputs from projected surrogate “ground truth” of statistically representative samples and from visual inspection into the evaluation. The novelty of the methodology lies in (1) designing candidate segmentation algorithms by mapping imaging and geometrical criteria into algorithmic steps, and constructing plausible segmentation algorithms with respect to the order of algorithmic steps and their parameters, (2) evaluating segmentation accuracy using samples drawn from probability distribution estimates of candidate segmentations, and (3) minimizing human labor needed to create surrogate “truth” by approximating z-stack segmentations with 2D contours from three orthogonal z-stack projections and by developing visual verification tools. We demonstrate the methodology by applying it to a dataset of 1253 mesenchymal stem cells. The cells reside on 10 different types of biomaterial scaffolds, and are stained for actin and nucleus yielding 128 460 image frames (on average 125 cells/scaffold × 10 scaffold types × 2 stains × 51 frames/cell). After constructing and evaluating six candidates of 3D segmentation algorithms, the most accurate 3D segmentation algorithm achieved an average precision of 0.82 and an accuracy of 0.84 as measured by the Dice similarity index where values greater than 0.7 indicate a good spatial overlap. A probability of segmentation success was 0.85 based on visual verification, and a computation time was 42.3 h to process all z-stacks. While the most accurate segmentation technique was 4.2 times slower than the second most accurate algorithm, it consumed on average 9.65 times less memory per z-stack segmentation. PMID:26268699
NASA Astrophysics Data System (ADS)
Zhang, Ka; Sheng, Yehua; Gong, Zhijun; Ye, Chun; Li, Yongqiang; Liang, Cheng
2007-06-01
As an important sub-system in intelligent transportation system (ITS), the detection and recognition of traffic signs from mobile images is becoming one of the hot spots in the international research field of ITS. Considering the problem of traffic sign automatic detection in motion images, a new self-adaptive algorithm for traffic sign detection based on color and shape features is proposed in this paper. Firstly, global statistical color features of different images are computed based on statistics theory. Secondly, some self-adaptive thresholds and special segmentation rules for image segmentation are designed according to these global color features. Then, for red, yellow and blue traffic signs, the color image is segmented to three binary images by these thresholds and rules. Thirdly, if the number of white pixels in the segmented binary image exceeds the filtering threshold, the binary image should be further filtered. Fourthly, the method of gray-value projection is used to confirm top, bottom, left and right boundaries for candidate regions of traffic signs in the segmented binary image. Lastly, if the shape feature of candidate region satisfies the need of real traffic sign, this candidate region is confirmed as the detected traffic sign region. The new algorithm is applied to actual motion images of natural scenes taken by a CCD camera of the mobile photogrammetry system in Nanjing at different time. The experimental results show that the algorithm is not only simple, robust and more adaptive to natural scene images, but also reliable and high-speed on real traffic sign detection.
Low-thrust orbit transfer optimization with refined Q-law and multi-objective genetic algorithm
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Petropoulos, Anastassios E.; von Allmen, Paul
2005-01-01
An optimization method for low-thrust orbit transfers around a central body is developed using the Q-law and a multi-objective genetic algorithm. in the hybrid method, the Q-law generates candidate orbit transfers, and the multi-objective genetic algorithm optimizes the Q-law control parameters in order to simultaneously minimize both the consumed propellant mass and flight time of the orbit tranfer. This paper addresses the problem of finding optimal orbit transfers for low-thrust spacecraft.
Guidance and control of swarms of spacecraft
NASA Astrophysics Data System (ADS)
Morgan, Daniel James
There has been considerable interest in formation flying spacecraft due to their potential to perform certain tasks at a cheaper cost than monolithic spacecraft. Formation flying enables the use of smaller, cheaper spacecraft that distribute the risk of the mission. Recently, the ideas of formation flying have been extended to spacecraft swarms made up of hundreds to thousands of 100-gram-class spacecraft known as femtosatellites. The large number of spacecraft and limited capabilities of each individual spacecraft present a significant challenge in guidance, navigation, and control. This dissertation deals with the guidance and control algorithms required to enable the flight of spacecraft swarms. The algorithms developed in this dissertation are focused on achieving two main goals: swarm keeping and swarm reconfiguration. The objectives of swarm keeping are to maintain bounded relative distances between spacecraft, prevent collisions between spacecraft, and minimize the propellant used by each spacecraft. Swarm reconfiguration requires the transfer of the swarm to a specific shape. Like with swarm keeping, minimizing the propellant used and preventing collisions are the main objectives. Additionally, the algorithms required for swarm keeping and swarm reconfiguration should be decentralized with respect to communication and computation so that they can be implemented on femtosats, which have limited hardware capabilities. The algorithms developed in this dissertation are concerned with swarms located in low Earth orbit. In these orbits, Earth oblateness and atmospheric drag have a significant effect on the relative motion of the swarm. The complicated dynamic environment of low Earth orbits further complicates the swarm-keeping and swarm-reconfiguration problems. To better develop and test these algorithms, a nonlinear, relative dynamic model with J2 and drag perturbations is developed. This model is used throughout this dissertation to validate the algorithms using computer simulations. The swarm-keeping problem can be solved by placing the spacecraft on J2-invariant relative orbits, which prevent collisions and minimize the drift of the swarm over hundreds of orbits using a single burn. These orbits are achieved by energy matching the spacecraft to the reference orbit. Additionally, these conditions can be repeatedly applied to minimize the drift of the swarm when atmospheric drag has a large effect (orbits with an altitude under 500 km). The swarm reconfiguration is achieved using two steps: trajectory optimization and assignment. The trajectory optimization problem can be written as a nonlinear, optimal control problem. This optimal control problem is discretized, decoupled, and convexified so that the individual femtosats can efficiently solve the optimization. Sequential convex programming is used to generate the control sequences and trajectories required to safely and efficiently transfer a spacecraft from one position to another. The sequence of trajectories is shown to converge to a Karush-Kuhn-Tucker point of the nonconvex problem. In the case where many of the spacecraft are interchangeable, a variable-swarm, distributed auction algorithm is used to determine the assignment of spacecraft to target positions. This auction algorithm requires only local communication and all of the bidding parameters are stored locally. The assignment generated using this auction algorithm is shown to be near optimal and to converge in a finite number of bids. Additionally, the bidding process is used to modify the number of targets used in the assignment so that the reconfiguration can be achieved even when there is a disconnected communication network or a significant loss of agents. Once the assignment is achieved, the trajectory optimization can be run using the terminal positions determined by the auction algorithm. To implement these algorithms in real time a model predictive control formulation is used. Model predictive control uses a finite horizon to apply the most up-to-date control sequence while simultaneously calculating a new assignment and trajectory based on updated state information. Using a finite horizon allows collisions to only be considered between spacecraft that are near each other at the current time. This relaxes the all-to-all communication assumption so that only neighboring agents need to communicate. Experimental validation is done using the formation flying testbed. The swarm-reconfiguration algorithms are tested using multiple quadrotors. Experiments have been performed using sequential convex programming for offline trajectory planning, model predictive control and sequential convex programming for real-time trajectory generation, and the variable-swarm, distributed auction algorithm for optimal assignment. These experiments show that the swarm-reconfiguration algorithms can be implemented in real time using actual hardware. In general, this dissertation presents guidance and control algorithms that maintain and reconfigure swarms of spacecraft while maintaining the shape of the swarm, preventing collisions between the spacecraft, and minimizing the amount of propellant used.
Subsea Cable Tracking by Autonomous Underwater Vehicle with Magnetic Sensing Guidance.
Xiang, Xianbo; Yu, Caoyang; Niu, Zemin; Zhang, Qin
2016-08-20
The changes of the seabed environment caused by a natural disaster or human activities dramatically affect the life span of the subsea buried cable. It is essential to track the cable route in order to inspect the condition of the buried cable and protect its surviving seabed environment. The magnetic sensor is instrumental in guiding the remotely-operated vehicle (ROV) to track and inspect the buried cable underseas. In this paper, a novel framework integrating the underwater cable localization method with the magnetic guidance and control algorithm is proposed, in order to enable the automatic cable tracking by a three-degrees-of-freedom (3-DOF) under-actuated autonomous underwater vehicle (AUV) without human beings in the loop. The work relies on the passive magnetic sensing method to localize the subsea cable by using two tri-axial magnetometers, and a new analytic formulation is presented to compute the heading deviation, horizontal offset and buried depth of the cable. With the magnetic localization, the cable tracking and inspection mission is elaborately constructed as a straight-line path following control problem in the horizontal plane. A dedicated magnetic line-of-sight (LOS) guidance is built based on the relative geometric relationship between the vehicle and the cable, and the feedback linearizing technique is adopted to design a simplified cable tracking controller considering the side-slip effects, such that the under-actuated vehicle is able to move towards the subsea cable and then inspect its buried environment, which further guides the environmental protection of the cable by setting prohibited fishing/anchoring zones and increasing the buried depth. Finally, numerical simulation results show the effectiveness of the proposed magnetic guidance and control algorithm on the envisioned subsea cable tracking and the potential protection of the seabed environment along the cable route.
Subsea Cable Tracking by Autonomous Underwater Vehicle with Magnetic Sensing Guidance
Xiang, Xianbo; Yu, Caoyang; Niu, Zemin; Zhang, Qin
2016-01-01
The changes of the seabed environment caused by a natural disaster or human activities dramatically affect the life span of the subsea buried cable. It is essential to track the cable route in order to inspect the condition of the buried cable and protect its surviving seabed environment. The magnetic sensor is instrumental in guiding the remotely-operated vehicle (ROV) to track and inspect the buried cable underseas. In this paper, a novel framework integrating the underwater cable localization method with the magnetic guidance and control algorithm is proposed, in order to enable the automatic cable tracking by a three-degrees-of-freedom (3-DOF) under-actuated autonomous underwater vehicle (AUV) without human beings in the loop. The work relies on the passive magnetic sensing method to localize the subsea cable by using two tri-axial magnetometers, and a new analytic formulation is presented to compute the heading deviation, horizontal offset and buried depth of the cable. With the magnetic localization, the cable tracking and inspection mission is elaborately constructed as a straight-line path following control problem in the horizontal plane. A dedicated magnetic line-of-sight (LOS) guidance is built based on the relative geometric relationship between the vehicle and the cable, and the feedback linearizing technique is adopted to design a simplified cable tracking controller considering the side-slip effects, such that the under-actuated vehicle is able to move towards the subsea cable and then inspect its buried environment, which further guides the environmental protection of the cable by setting prohibited fishing/anchoring zones and increasing the buried depth. Finally, numerical simulation results show the effectiveness of the proposed magnetic guidance and control algorithm on the envisioned subsea cable tracking and the potential protection of the seabed environment along the cable route. PMID:27556465
Dunn, Timothy C; Hayter, Gary A; Doniger, Ken J; Wolpert, Howard A
2014-07-01
The objective was to develop an analysis methodology for generating diabetes therapy decision guidance using continuous glucose (CG) data. The novel Likelihood of Low Glucose (LLG) methodology, which exploits the relationship between glucose median, glucose variability, and hypoglycemia risk, is mathematically based and can be implemented in computer software. Using JDRF Continuous Glucose Monitoring Clinical Trial data, CG values for all participants were divided into 4-week periods starting at the first available sensor reading. The safety and sensitivity performance regarding hypoglycemia guidance "stoplights" were compared between the LLG method and one based on 10th percentile (P10) values. Examining 13 932 hypoglycemia guidance outputs, the safety performance of the LLG method ranged from 0.5% to 5.4% incorrect "green" indicators, compared with 0.9% to 6.0% for P10 value of 110 mg/dL. Guidance with lower P10 values yielded higher rates of incorrect indicators, such as 11.7% to 38% at 80 mg/dL. When evaluated only for periods of higher glucose (median above 155 mg/dL), the safety performance of the LLG method was superior to the P10 method. Sensitivity performance of correct "red" indicators of the LLG method had an in sample rate of 88.3% and an out of sample rate of 59.6%, comparable with the P10 method up to about 80 mg/dL. To aid in therapeutic decision making, we developed an algorithm-supported report that graphically highlights low glucose risk and increased variability. When tested with clinical data, the proposed method demonstrated equivalent or superior safety and sensitivity performance. © 2014 Diabetes Technology Society.
NASA Technical Reports Server (NTRS)
Brenner, Richard; Lala, Jaynarayan H.; Nagle, Gail A.; Schor, Andrei; Turkovich, John
1994-01-01
This program demonstrated the integration of a number of technologies that can increase the availability and reliability of launch vehicles while lowering costs. Availability is increased with an advanced guidance algorithm that adapts trajectories in real-time. Reliability is increased with fault-tolerant computers and communication protocols. Costs are reduced by automatically generating code and documentation. This program was realized through the cooperative efforts of academia, industry, and government. The NASA-LaRC coordinated the effort, while Draper performed the integration. Georgia Institute of Technology supplied a weak Hamiltonian finite element method for optimal control problems. Martin Marietta used MATLAB to apply this method to a launch vehicle (FENOC). Draper supplied the fault-tolerant computing and software automation technology. The fault-tolerant technology includes sequential and parallel fault-tolerant processors (FTP & FTPP) and authentication protocols (AP) for communication. Fault-tolerant technology was incrementally incorporated. Development culminated with a heterogeneous network of workstations and fault-tolerant computers using AP. Draper's software automation system, ASTER, was used to specify a static guidance system based on FENOC, navigation, flight control (GN&C), models, and the interface to a user interface for mission control. ASTER generated Ada code for GN&C and C code for models. An algebraic transform engine (ATE) was developed to automatically translate MATLAB scripts into ASTER.
Umphrey, Lisa; Breindahl, Morten; Brown, Alexandra; Saugstad, Ola Didrik; Thio, Marta; Trevisanuto, Daniele; Roehrg, Charles Christoph; Blennow, Mats
2018-05-25
Neonatal resuscitation (NR) combines a set of life-saving interventions in order to stabilize compromised newborns at birth or when critically ill. Médecins Sans Frontières/Doctors Without Borders (MSF), as an international medical-humanitarian organization working particularly in low-resource settings (LRS), assisted over 250,000 births in obstetric and newborn care aid projects in 2016 and provides thousands of newborn resuscitations annually. The Helping Babies Breathe (HBB) program has been used as formal guidance for basic resuscitation since 2012. However, in some MSF projects with the capacity to provide more advanced NR interventions but a lack of adapted guidance, staff have felt prompted to create their own advanced algorithms, which runs counter to the organization's aim for standardized protocols in all aspects of its care. The aim is to close a significant gap in neonatal care provision in LRS by establishing consensus on a protocol that would guide MSF field teams in their practice of more advanced NR. An independent committee of international experts was formed and met regularly from June 2016 to agree on the content and design of a new NR algorithm. Consensus was reached on a novel, mid-level NR algorithm in April 2017. The algorithm was accepted for use by MSF Operational Center Paris. This paper contributes to the literature on decision-making in the development of cognitive aids. The authors also highlight how critical gaps in healthcare delivery in LRS can be addressed, even when there is limited evidence to guide the process. © 2018 The Author(s) Published by S. Karger AG, Basel.
NASA Technical Reports Server (NTRS)
Klumpp, A. R.
1976-01-01
A computer algorithm for extracting a quaternion from a direction-cosine matrix (DCM) is described. The quaternion provides a four-parameter representation of rotation, as against the nine-parameter representation afforded by a DCM. Commanded attitude in space shuttle steering is conveniently computed by DCM, while actual attitude is computed most compactly as a quaternion, as is attitude error. The unit length of the rotation quaternion, and interchangeable of a quaternion and its negative, are used to advantage in the extraction algorithm. Protection of the algorithm against square root failure and division overflow are considered. Necessary and sufficient conditions for handling the rotation vector element of largest magnitude are discussed
Efficient electromagnetic source imaging with adaptive standardized LORETA/FOCUSS.
Schimpf, Paul H; Liu, Hesheng; Ramon, Ceon; Haueisen, Jens
2005-05-01
Functional brain imaging and source localization based on the scalp's potential field require a solution to an ill-posed inverse problem with many solutions. This makes it necessary to incorporate a priori knowledge in order to select a particular solution. A computational challenge for some subject-specific head models is that many inverse algorithms require a comprehensive sampling of the candidate source space at the desired resolution. In this study, we present an algorithm that can accurately reconstruct details of localized source activity from a sparse sampling of the candidate source space. Forward computations are minimized through an adaptive procedure that increases source resolution as the spatial extent is reduced. With this algorithm, we were able to compute inverses using only 6% to 11% of the full resolution lead-field, with a localization accuracy that was not significantly different than an exhaustive search through a fully-sampled source space. The technique is, therefore, applicable for use with anatomically-realistic, subject-specific forward models for applications with spatially concentrated source activity.
Edge-directed inference for microaneurysms detection in digital fundus images
NASA Astrophysics Data System (ADS)
Huang, Ke; Yan, Michelle; Aviyente, Selin
2007-03-01
Microaneurysms (MAs) detection is a critical step in diabetic retinopathy screening, since MAs are the earliest visible warning of potential future problems. A variety of algorithms have been proposed for MAs detection in mass screening. Different methods have been proposed for MAs detection. The core technology for most of existing methods is based on a directional mathematical morphological operation called "Top-Hat" filter that requires multiple filtering operations at each pixel. Background structure, uneven illumination and noise often cause confusion between MAs and some non-MA structures and limits the applicability of the filter. In this paper, a novel detection framework based on edge directed inference is proposed for MAs detection. The candidate MA regions are first delineated from the edge map of a fundus image. Features measuring shape, brightness and contrast are extracted for each candidate MA region to better exclude false detection from true MAs. Algorithmic analysis and empirical evaluation reveal that the proposed edge directed inference outperforms the "Top-Hat" based algorithm in both detection accuracy and computational speed.
Ross, James C; San José Estépar, Rail; Kindlmann, Gordon; Díaz, Alejandro; Westin, Carl-Fredrik; Silverman, Edwin K; Washko, George R
2010-01-01
We present a fully automatic lung lobe segmentation algorithm that is effective in high resolution computed tomography (CT) datasets in the presence of confounding factors such as incomplete fissures (anatomical structures indicating lobe boundaries), advanced disease states, high body mass index (BMI), and low-dose scanning protocols. In contrast to other algorithms that leverage segmentations of auxiliary structures (esp. vessels and airways), we rely only upon image features indicating fissure locations. We employ a particle system that samples the image domain and provides a set of candidate fissure locations. We follow this stage with maximum a posteriori (MAP) estimation to eliminate poor candidates and then perform a post-processing operation to remove remaining noise particles. We then fit a thin plate spline (TPS) interpolating surface to the fissure particles to form the final lung lobe segmentation. Results indicate that our algorithm performs comparably to pulmonologist-generated lung lobe segmentations on a set of challenging cases.
Ross, James C.; Estépar, Raúl San José; Kindlmann, Gordon; Díaz, Alejandro; Westin, Carl-Fredrik; Silverman, Edwin K.; Washko, George R.
2011-01-01
We present a fully automatic lung lobe segmentation algorithm that is effective in high resolution computed tomography (CT) datasets in the presence of confounding factors such as incomplete fissures (anatomical structures indicating lobe boundaries), advanced disease states, high body mass index (BMI), and low-dose scanning protocols. In contrast to other algorithms that leverage segmentations of auxiliary structures (esp. vessels and airways), we rely only upon image features indicating fissure locations. We employ a particle system that samples the image domain and provides a set of candidate fissure locations. We follow this stage with maximum a posteriori (MAP) estimation to eliminate poor candidates and then perform a post-processing operation to remove remaining noise particles. We then fit a thin plate spline (TPS) interpolating surface to the fissure particles to form the final lung lobe segmentation. Results indicate that our algorithm performs comparably to pulmonologist-generated lung lobe segmentations on a set of challenging cases. PMID:20879396
The improved Apriori algorithm based on matrix pruning and weight analysis
NASA Astrophysics Data System (ADS)
Lang, Zhenhong
2018-04-01
This paper uses the matrix compression algorithm and weight analysis algorithm for reference and proposes an improved matrix pruning and weight analysis Apriori algorithm. After the transactional database is scanned for only once, the algorithm will construct the boolean transaction matrix. Through the calculation of one figure in the rows and columns of the matrix, the infrequent item set is pruned, and a new candidate item set is formed. Then, the item's weight and the transaction's weight as well as the weight support for items are calculated, thus the frequent item sets are gained. The experimental result shows that the improved Apriori algorithm not only reduces the number of repeated scans of the database, but also improves the efficiency of data correlation mining.
An Agent Inspired Reconfigurable Computing Implementation of a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Weir, John M.; Wells, B. Earl
2003-01-01
Many software systems have been successfully implemented using an agent paradigm which employs a number of independent entities that communicate with one another to achieve a common goal. The distributed nature of such a paradigm makes it an excellent candidate for use in high speed reconfigurable computing hardware environments such as those present in modem FPGA's. In this paper, a distributed genetic algorithm that can be applied to the agent based reconfigurable hardware model is introduced. The effectiveness of this new algorithm is evaluated by comparing the quality of the solutions found by the new algorithm with those found by traditional genetic algorithms. The performance of a reconfigurable hardware implementation of the new algorithm on an FPGA is compared to traditional single processor implementations.
Hybrid Guidance Control for a Hypervelocity Small Size Asteroid Interceptor Vehicle
NASA Technical Reports Server (NTRS)
Zebenay, Melak M.; Lyzhoft, Joshua R.; Barbee, Brent W.
2017-01-01
Near-Earth Objects (NEOs) are comets and/or asteroids that have orbits in proximity with Earth's own orbit. NEOs have collided with the Earth in the past, which can be seen at such places as Chicxulub crater, Barringer crater, and Manson crater, and will continue in the future with potentially significant and devastating results. Fortunately such NEO collisions with Earth are infrequent, but can happen at any time. Therefore it is necessary to develop and validate techniques as well as technologies necessary to prevent them. One approach to mitigate future NEO impacts is the concept of high-speed interceptor. This concept is to alter the NEO's trajectory via momentum exchange by using kinetic impactors as well as nuclear penetration devices. The interceptor has to hit a target NEO at relative velocity which imparts a sufficient change in NEO velocity. NASA's Deep Impact mission has demonstrated this scenario by intercepting Comet Temple 1, 5 km in diameter, with an impact relative speed of approximately 10 km/s. This paper focuses on the development of hybrid guidance navigation and control (GNC) algorithms for precision hypervelocity intercept of small sized NEOs. The spacecraft's hypervelocity and the NEO's small size are critical challenges for a successful mission as the NEO will not fill the field of view until a few seconds before intercept. The investigation needs to consider the error sources modeled in the navigation simulation such as spacecraft initial state uncertainties in position and velocity. Furthermore, the paper presents three selected spacecraft guidance algorithms for asteroid intercept and rendezvous missions. The selected algorithms are classical Proportional Navigation (PN) based guidance that use a first order difference to compute the derivatives, Three Plane Proportional Navigation (TPPN), and the Kinematic Impulse (KI). A manipulated Bennu orbit that has been changed to impact Earth will be used as a demonstrative example to compare the three methods. In addition, a hybrid approach that is a combination between proportional navigation and kinematic impulse will be investigated to find an effective, error tolerant, and power saving approach. A 3-dimension mission scenario for both the asteroid and the interceptor spacecraft software simulator is developed for testing of the controllers. The current result demonstrates that a miss distance magnitude of less than 10m is found using the PN and TPPN guidance laws for small asteroid in the presence of error in the spacecraft states. Moreover, the paper presents these results and also the hybrid control approach simulation results.
The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease
King, Oliver D.; Gitler, Aaron D.; Shorter, James
2012-01-01
Prions are self-templating protein conformers that are naturally transmitted between individuals and promote phenotypic change. In yeast, prion-encoded phenotypes can be beneficial, neutral or deleterious depending upon genetic background and environmental conditions. A distinctive and portable ‘prion domain’ enriched in asparagine, glutamine, tyrosine and glycine residues unifies the majority of yeast prion proteins. Deletion of this domain precludes prionogenesis and appending this domain to reporter proteins can confer prionogenicity. An algorithm designed to detect prion domains has successfully identified 19 domains that can confer prion behavior. Scouring the human genome with this algorithm enriches a select group of RNA-binding proteins harboring a canonical RNA recognition motif (RRM) and a putative prion domain. Indeed, of 210 human RRM-bearing proteins, 29 have a putative prion domain, and 12 of these are in the top 60 prion candidates in the entire genome. Startlingly, these RNA-binding prion candidates are inexorably emerging, one by one, in the pathology and genetics of devastating neurodegenerative disorders, including: amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U), Alzheimer’s disease and Huntington’s disease. For example, FUS and TDP-43, which rank 1st and 10th among RRM-bearing prion candidates, form cytoplasmic inclusions in the degenerating motor neurons of ALS patients and mutations in TDP-43 and FUS cause familial ALS. Recently, perturbed RNA-binding proteostasis of TAF15, which is the 2nd ranked RRM-bearing prion candidate, has been connected with ALS and FTLD-U. We strongly suspect that we have now merely reached the tip of the iceberg. We predict that additional RNA-binding prion candidates identified by our algorithm will soon surface as genetic modifiers or causes of diverse neurodegenerative conditions. Indeed, simple prion-like transfer mechanisms involving the prion-like domains of RNA-binding proteins could underlie the classical non-cell-autonomous emanation of neurodegenerative pathology from originating epicenters to neighboring portions of the nervous system. PMID:22445064
PEG Enhancement for EM1 and EM2+ Missions
NASA Technical Reports Server (NTRS)
Von der Porten, Paul; Ahmad, Naeem; Hawkins, Matt
2018-01-01
NASA is currently building the Space Launch System (SLS) Block-1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. The next evolution of SLS, the Block-1B Exploration Mission 2 (EM-2), is currently being designed. The Block-1 and Block-1B vehicles will use the Powered Explicit Guidance (PEG) algorithm. Due to the relatively low thrust-to-weight ratio of the Exploration Upper Stage (EUS), certain enhancements to the Block-1 PEG algorithm are needed to perform Block-1B missions. In order to accommodate mission design for EM-2 and beyond, PEG has been significantly improved since its use on the Space Shuttle program. The current version of PEG has the ability to switch to different targets during Core Stage (CS) or EUS flight, and can automatically reconfigure for a single Engine Out (EO) scenario, loss of communication with the Launch Abort System (LAS), and Inertial Navigation System (INS) failure. The Thrust Factor (TF) algorithm uses measured state information in addition to a priori parameters, providing PEG with an improved estimate of propulsion information. This provides robustness against unknown or undetected engine failures. A loft parameter input allows LAS jettison while maximizing payload mass. The current PEG algorithm is now able to handle various classes of missions with burn arcs much longer than were seen in the shuttle program. These missions include targeting a circular LEO orbit with a low-thrust, long-burn-duration upper stage, targeting a highly eccentric Trans-Lunar Injection (TLI) orbit, targeting a disposal orbit using the low-thrust Reaction Control System (RCS), and targeting a hyperbolic orbit. This paper will describe the design and implementation of the TF algorithm, the strategy to handle EO in various flight regimes, algorithms to cover off-nominal conditions, and other enhancements to the Block-1 PEG algorithm. This paper illustrates challenges posed by the Block-1B vehicle, and results show that the improved PEG algorithm is capable for use on the SLS Block 1-B vehicle as part of the Guidance, Navigation, and Control System.
Improving Vector Evaluated Particle Swarm Optimisation by Incorporating Nondominated Solutions
Lim, Kian Sheng; Ibrahim, Zuwairie; Buyamin, Salinda; Ahmad, Anita; Naim, Faradila; Ghazali, Kamarul Hawari; Mokhtar, Norrima
2013-01-01
The Vector Evaluated Particle Swarm Optimisation algorithm is widely used to solve multiobjective optimisation problems. This algorithm optimises one objective using a swarm of particles where their movements are guided by the best solution found by another swarm. However, the best solution of a swarm is only updated when a newly generated solution has better fitness than the best solution at the objective function optimised by that swarm, yielding poor solutions for the multiobjective optimisation problems. Thus, an improved Vector Evaluated Particle Swarm Optimisation algorithm is introduced by incorporating the nondominated solutions as the guidance for a swarm rather than using the best solution from another swarm. In this paper, the performance of improved Vector Evaluated Particle Swarm Optimisation algorithm is investigated using performance measures such as the number of nondominated solutions found, the generational distance, the spread, and the hypervolume. The results suggest that the improved Vector Evaluated Particle Swarm Optimisation algorithm has impressive performance compared with the conventional Vector Evaluated Particle Swarm Optimisation algorithm. PMID:23737718
Improving Vector Evaluated Particle Swarm Optimisation by incorporating nondominated solutions.
Lim, Kian Sheng; Ibrahim, Zuwairie; Buyamin, Salinda; Ahmad, Anita; Naim, Faradila; Ghazali, Kamarul Hawari; Mokhtar, Norrima
2013-01-01
The Vector Evaluated Particle Swarm Optimisation algorithm is widely used to solve multiobjective optimisation problems. This algorithm optimises one objective using a swarm of particles where their movements are guided by the best solution found by another swarm. However, the best solution of a swarm is only updated when a newly generated solution has better fitness than the best solution at the objective function optimised by that swarm, yielding poor solutions for the multiobjective optimisation problems. Thus, an improved Vector Evaluated Particle Swarm Optimisation algorithm is introduced by incorporating the nondominated solutions as the guidance for a swarm rather than using the best solution from another swarm. In this paper, the performance of improved Vector Evaluated Particle Swarm Optimisation algorithm is investigated using performance measures such as the number of nondominated solutions found, the generational distance, the spread, and the hypervolume. The results suggest that the improved Vector Evaluated Particle Swarm Optimisation algorithm has impressive performance compared with the conventional Vector Evaluated Particle Swarm Optimisation algorithm.
White blood cell segmentation by circle detection using electromagnetism-like optimization.
Cuevas, Erik; Oliva, Diego; Díaz, Margarita; Zaldivar, Daniel; Pérez-Cisneros, Marco; Pajares, Gonzalo
2013-01-01
Medical imaging is a relevant field of application of image processing algorithms. In particular, the analysis of white blood cell (WBC) images has engaged researchers from fields of medicine and computer vision alike. Since WBCs can be approximated by a quasicircular form, a circular detector algorithm may be successfully applied. This paper presents an algorithm for the automatic detection of white blood cells embedded into complicated and cluttered smear images that considers the complete process as a circle detection problem. The approach is based on a nature-inspired technique called the electromagnetism-like optimization (EMO) algorithm which is a heuristic method that follows electromagnetism principles for solving complex optimization problems. The proposed approach uses an objective function which measures the resemblance of a candidate circle to an actual WBC. Guided by the values of such objective function, the set of encoded candidate circles are evolved by using EMO, so that they can fit into the actual blood cells contained in the edge map of the image. Experimental results from blood cell images with a varying range of complexity are included to validate the efficiency of the proposed technique regarding detection, robustness, and stability.
White Blood Cell Segmentation by Circle Detection Using Electromagnetism-Like Optimization
Oliva, Diego; Díaz, Margarita; Zaldivar, Daniel; Pérez-Cisneros, Marco; Pajares, Gonzalo
2013-01-01
Medical imaging is a relevant field of application of image processing algorithms. In particular, the analysis of white blood cell (WBC) images has engaged researchers from fields of medicine and computer vision alike. Since WBCs can be approximated by a quasicircular form, a circular detector algorithm may be successfully applied. This paper presents an algorithm for the automatic detection of white blood cells embedded into complicated and cluttered smear images that considers the complete process as a circle detection problem. The approach is based on a nature-inspired technique called the electromagnetism-like optimization (EMO) algorithm which is a heuristic method that follows electromagnetism principles for solving complex optimization problems. The proposed approach uses an objective function which measures the resemblance of a candidate circle to an actual WBC. Guided by the values of such objective function, the set of encoded candidate circles are evolved by using EMO, so that they can fit into the actual blood cells contained in the edge map of the image. Experimental results from blood cell images with a varying range of complexity are included to validate the efficiency of the proposed technique regarding detection, robustness, and stability. PMID:23476713
1/f Noise in the Simple Genetic Algorithm Applied to a Traveling Salesman Problem
NASA Astrophysics Data System (ADS)
Yamada, Mitsuhiro
Complex dynamical systems are observed in physics, biology, and even economics. Such systems in balance are considered to be in a critical state, and 1/f noise is considered to be a footprint. Complex dynamical systems have also been investigated in the field of evolutionary algorithms inspired by biological evolution. The genetic algorithm (GA) is a well-known evolutionary algorithm in which many individuals interact, and the simplest GA is referred to as the simple GA (SGA). However, the GA has not been examined from the viewpoint of the emergence of 1/f noise. In the present paper, the SGA is applied to a traveling salesman problem in order to investigate the SGA from such a viewpoint. The timecourses of the fitness of the candidate solution were examined. As a result, when the mutation and crossover probabilities were optimal, the system evolved toward a critical state in which the average maximum fitness over all trial runs was maximum. In this situation, the fluctuation of the fitness of the candidate solution resulted in the 1/f power spectrum, and the dynamics of the system had no intrinsic time or length scale.
Genetic algorithms for GNC settings and DACS design application to an asteroid Kinetic Impactor
NASA Astrophysics Data System (ADS)
Vernis, P.; Oliviero, V.
2018-06-01
This paper deals with an application of Genetic Algorithm (GA) tools in order to perform and optimize the settings phase of the Guidance, Navigation, and Control (GNC) data set for the endgame phase of a Kinetic Impactor (KI) targeting a medium-size Near Earth Object (NEO). A coupled optimization of the GNC settings and of the GC-oriented design of the Divert and Attitude Control System (DACS) is also proposed. The illustration of the developed principles is made considering the NEOShield study frame.
Design and Implementation of the Automated Rendezvous Targeting Algorithms for Orion
NASA Technical Reports Server (NTRS)
DSouza, Christopher; Weeks, Michael
2010-01-01
The Orion vehicle will be designed to perform several rendezvous missions: rendezvous with the ISS in Low Earth Orbit (LEO), rendezvous with the EDS/Altair in LEO, a contingency rendezvous with the ascent stage of the Altair in Low Lunar Orbit (LLO) and a contingency rendezvous in LLO with the ascent and descent stage in the case of an aborted lunar landing. Therefore, it is not difficult to realize that each of these scenarios imposes different operational, timing, and performance constraints on the GNC system. To this end, a suite of on-board guidance and targeting algorithms have been designed to meet the requirement to perform the rendezvous independent of communications with the ground. This capability is particularly relevant for the lunar missions, some of which may occur on the far side of the moon. This paper will describe these algorithms which are designed to be structured and arranged in such a way so as to be flexible and able to safely perform a wide variety of rendezvous trajectories. The goal of the algorithms is not to merely fly one specific type of canned rendezvous profile. Conversely, it was designed from the start to be general enough such that any type of trajectory profile can be flown.(i.e. a coelliptic profile, a stable orbit rendezvous profile, and a expedited LLO rendezvous profile, etc) all using the same rendezvous suite of algorithms. Each of these profiles makes use of maneuver types which have been designed with dual goals of robustness and performance. They are designed to converge quickly under dispersed conditions and they are designed to perform many of the functions performed on the ground today. The targeting algorithms consist of a phasing maneuver (NC), an altitude adjust maneuver (NH), and plane change maneuver (NPC), a coelliptic maneuver (NSR), a Lambert targeted maneuver, and several multiple-burn targeted maneuvers which combine one of more of these algorithms. The derivation and implementation of each of these algorithms will be discussed in detail, as well and the Rendezvous Targeting "wrapper" which will sequentially tie them all together into a single onboard targeting tool which can produce a final integrated rendezvous trajectory. In a similar fashion, the various guidance modes available for flying out each of these maneuvers will be discussed as well. This paradigm of having the onboard guidance & targeting capability described above is different than the way the Space Shuttle has operated thus far. As a result, a discussion of these differences in terms of operations and ground and crew intervention will also be discussed. However, the general framework of how the mission designers on the ground first perform all mission design and planning functions, and then uplink that burn plan to the vehicle ensures that the ground will be involved to ensure safety and reliability. The only real difference is which of these functions will be done onboard vs. on the ground as done currently. Finally, this paper will describe the performance of each of these algorithms individually as well as the entire suite of algorithms as applied to the Orion ISS and EDS/Altair rendezvous missions in LEO. These algorithms have been incorporated in both a Linear Covariance environment and a Monte Carlo environment and the results of these dispersion analyses will be presented in the paper as well.
On factoring RSA modulus using random-restart hill-climbing algorithm and Pollard’s rho algorithm
NASA Astrophysics Data System (ADS)
Budiman, M. A.; Rachmawati, D.
2017-12-01
The security of the widely-used RSA public key cryptography algorithm depends on the difficulty of factoring a big integer into two large prime numbers. For many years, the integer factorization problem has been intensively and extensively studied in the field of number theory. As a result, a lot of deterministic algorithms such as Euler’s algorithm, Kraitchik’s, and variants of Pollard’s algorithms have been researched comprehensively. Our study takes a rather uncommon approach: rather than making use of intensive number theories, we attempt to factorize RSA modulus n by using random-restart hill-climbing algorithm, which belongs the class of metaheuristic algorithms. The factorization time of RSA moduli with different lengths is recorded and compared with the factorization time of Pollard’s rho algorithm, which is a deterministic algorithm. Our experimental results indicates that while random-restart hill-climbing algorithm is an acceptable candidate to factorize smaller RSA moduli, the factorization speed is much slower than that of Pollard’s rho algorithm.
A novel automated spike sorting algorithm with adaptable feature extraction.
Bestel, Robert; Daus, Andreas W; Thielemann, Christiane
2012-10-15
To study the electrophysiological properties of neuronal networks, in vitro studies based on microelectrode arrays have become a viable tool for analysis. Although in constant progress, a challenging task still remains in this area: the development of an efficient spike sorting algorithm that allows an accurate signal analysis at the single-cell level. Most sorting algorithms currently available only extract a specific feature type, such as the principal components or Wavelet coefficients of the measured spike signals in order to separate different spike shapes generated by different neurons. However, due to the great variety in the obtained spike shapes, the derivation of an optimal feature set is still a very complex issue that current algorithms struggle with. To address this problem, we propose a novel algorithm that (i) extracts a variety of geometric, Wavelet and principal component-based features and (ii) automatically derives a feature subset, most suitable for sorting an individual set of spike signals. Thus, there is a new approach that evaluates the probability distribution of the obtained spike features and consequently determines the candidates most suitable for the actual spike sorting. These candidates can be formed into an individually adjusted set of spike features, allowing a separation of the various shapes present in the obtained neuronal signal by a subsequent expectation maximisation clustering algorithm. Test results with simulated data files and data obtained from chick embryonic neurons cultured on microelectrode arrays showed an excellent classification result, indicating the superior performance of the described algorithm approach. Copyright © 2012 Elsevier B.V. All rights reserved.
Fuel-conservative guidance system for powered-lift aircraft
NASA Technical Reports Server (NTRS)
Erzberger, H.; Mclean, J. D.
1979-01-01
A concept for automatic terminal area guidance, comprising two modes of operation, was developed and evaluated in flight tests. In the predictive mode, fuel efficient approach trajectories are synthesized in fast time. In the tracking mode, the synthesized trajectories are reconstructed and tracked automatically. An energy rate performance model derived from the lift, drag, and propulsion system characteristics of the aircraft is used in the synthesis algorithm. The method optimizes the trajectory for the initial aircraft position and wind and temperature profiles encountered during each landing approach. The design theory and the results of simulations and flight tests using the Augmentor Wing Jet STOL Research Aircraft are described.
Real Time Target Tracking in a Phantom Using Ultrasonic Imaging
NASA Astrophysics Data System (ADS)
Xiao, X.; Corner, G.; Huang, Z.
In this paper we present a real-time ultrasound image guidance method suitable for tracking the motion of tumors. A 2D ultrasound based motion tracking system was evaluated. A robot was used to control the focused ultrasound and position it at the target that has been segmented from a real-time ultrasound video. Tracking accuracy and precision were investigated using a lesion mimicking phantom. Experiments have been conducted and results show sufficient efficiency of the image guidance algorithm. This work could be developed as the foundation for combining the real time ultrasound imaging tracking and MRI thermometry monitoring non-invasive surgery.
Blind guidance system based on laser triangulation
NASA Astrophysics Data System (ADS)
Wu, Jih-Huah; Wang, Jinner-Der; Fang, Wei; Lee, Yun-Parn; Shan, Yi-Chia; Kao, Hai-Ko; Ma, Shih-Hsin; Jiang, Joe-Air
2012-05-01
We propose a new guidance system for the blind. An optical triangulation method is used in the system. The main components of the proposed system comprise of a notebook computer, a camera, and two laser modules. The track image of the light beam on the ground or on the object is captured by the camera and then the image is sent to the notebook computer for further processing and analysis. Using a developed signal-processing algorithm, our system can determine the object width and the distance between the object and the blind person through the calculation of the light line positions on the image. A series of feasibility tests of the developed blind guidance system were conducted. The experimental results show that the distance between the test object and the blind can be measured with a standard deviation of less than 8.5% within the range of 40 and 130 cm, while the test object width can be measured with a standard deviation of less than 4.5% within the range of 40 and 130 cm. The application potential of the designed system to the blind guidance can be expected.
Observability and Estimation of Distributed Space Systems via Local Information-Exchange Networks
NASA Technical Reports Server (NTRS)
Fathpour, Nanaz; Hadaegh, Fred Y.; Mesbahi, Mehran; Rahmani, Amirreza
2011-01-01
Spacecraft formation flying involves the coordination of states among multiple spacecraft through relative sensing, inter-spacecraft communication, and control. Most existing formation-flying estimation algorithms can only be supported via highly centralized, all-to-all, static relative sensing. New algorithms are proposed that are scalable, modular, and robust to variations in the topology and link characteristics of the formation exchange network. These distributed algorithms rely on a local information exchange network, relaxing the assumptions on existing algorithms. Distributed space systems rely on a signal transmission network among multiple spacecraft for their operation. Control and coordination among multiple spacecraft in a formation is facilitated via a network of relative sensing and interspacecraft communications. Guidance, navigation, and control rely on the sensing network. This network becomes more complex the more spacecraft are added, or as mission requirements become more complex. The observability of a formation state was observed by a set of local observations from a particular node in the formation. Formation observability can be parameterized in terms of the matrices appearing in the formation dynamics and observation matrices. An agreement protocol was used as a mechanism for observing formation states from local measurements. An agreement protocol is essentially an unforced dynamic system whose trajectory is governed by the interconnection geometry and initial condition of each node, with a goal of reaching a common value of interest. The observability of the interconnected system depends on the geometry of the network, as well as the position of the observer relative to the topology. For the first time, critical GN&C (guidance, navigation, and control estimation) subsystems are synthesized by bringing the contribution of the spacecraft information-exchange network to the forefront of algorithmic analysis and design. The result is a formation estimation algorithm that is modular and robust to variations in the topology and link properties of the underlying formation network.
Guidance law simulation studies for complex approaches using the Microwave Landing System (MLS)
NASA Technical Reports Server (NTRS)
Feather, J. B.
1986-01-01
This report documents results for MLS guidance algorithm development conducted by DAC for NASA under the Advance Transport Operating Systems (ATOPS) Technology Studies program (NAS1-18028). The study consisted of evaluating guidance laws for vertical and lateral path control, as well as speed control, by simulating an MLS approach for the Washington National Airport. This work is an extension and generalization of a previous ATOPS contract (NAS1-16202) completed by DAC in 1985. The Washington river approach was simulated by six waypoints and one glideslope change and consisted of an eleven nautical mile approach path. Tracking performance was generated for 10 cases representing several different conditions, which included MLS noise, steady wind, turbulence, and windshear. Results of this simulation phase are suitable for use in future fixed-base simulator evaluations employing actual hardware (autopilot and a performance management system), as well as crew procedures and information requirements for MLS.
DAIDALUS Observations From UAS Integration in the NAS Project Flight Test 4
NASA Technical Reports Server (NTRS)
Vincent, Michael J.; Tsakpinis, Dimitrios
2016-01-01
In order to validate the Unmanned Aerial System (UAS) Detect-and-Avoid (DAA) solution proposed by standards body RTCA Inc., the National Aeronautics and Space Administration (NASA) UAS Integration in the NAS project, alongside industry members General Atomics and Honeywell, conducted the fourth flight test in a series at Armstrong Flight Research Center in Edwards, California. Flight Test 4 (FT4) investigated problems of interoperability with the TCAS collision avoidance system with a DAA system as well as problems associated with sensor uncertainty. A series of scripted flight encounters between the NASA Ikhana UAS and various "intruder" aircraft were flown while alerting and guidance from the DAA algorithm were recorded to investigate the timeliness of the alerts and correctness of the guidance triggered by the DAA system. The results found that alerts were triggered in a timely manner in most instances. Cases where the alerting and guidance was incorrect were investigated further.
Pulmonary nodule detection using a cascaded SVM classifier
NASA Astrophysics Data System (ADS)
Bergtholdt, Martin; Wiemker, Rafael; Klinder, Tobias
2016-03-01
Automatic detection of lung nodules from chest CT has been researched intensively over the last decades resulting also in several commercial products. However, solutions are adopted only slowly into daily clinical routine as many current CAD systems still potentially miss true nodules while at the same time generating too many false positives (FP). While many earlier approaches had to rely on rather few cases for development, larger databases become now available and can be used for algorithmic development. In this paper, we address the problem of lung nodule detection via a cascaded SVM classifier. The idea is to sequentially perform two classification tasks in order to select from an extremely large pool of potential candidates the few most likely ones. As the initial pool is allowed to contain thousands of candidates, very loose criteria could be applied during this pre-selection. In this way, the chances that a true nodule is falsely rejected as a candidate are reduced significantly. The final algorithm is trained and tested on the full LIDC/IDRI database. Comparison is done against two previously published CAD systems. Overall, the algorithm achieved sensitivity of 0.859 at 2.5 FP/volume where the other two achieved sensitivity values of 0.321 and 0.625, respectively. On low dose data sets, only slight increase in the number of FP/volume was observed, while the sensitivity was not affected.
Teleoperation with virtual force feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, R.J.
1993-08-01
In this paper we describe an algorithm for generating virtual forces in a bilateral teleoperator system. The virtual forces are generated from a world model and are used to provide real-time obstacle avoidance and guidance capabilities. The algorithm requires that the slaves tool and every object in the environment be decomposed into convex polyhedral Primitives. Intrusion distance and extraction vectors are then derived at every time step by applying Gilbert`s polyhedra distance algorithm, which has been adapted for the task. This information is then used to determine the compression and location of nonlinear virtual spring-dampers whose total force is summedmore » and applied to the manipulator/teleoperator system. Experimental results validate the whole approach, showing that it is possible to compute the algorithm and generate realistic, useful psuedo forces for a bilateral teleoperator system using standard VME bus hardware.« less
A piloted simulator evaluation of a ground-based 4-D descent advisor algorithm
NASA Technical Reports Server (NTRS)
Davis, Thomas J.; Green, Steven M.; Erzberger, Heinz
1990-01-01
A ground-based, four dimensional (4D) descent-advisor algorithm is under development at NASA-Ames. The algorithm combines detailed aerodynamic, propulsive, and atmospheric models with an efficient numerical integration scheme to generate 4D descent advisories. The ability is investigated of the 4D descent advisor algorithm to provide adequate control of arrival time for aircraft not equipped with on-board 4D guidance systems. A piloted simulation was conducted to determine the precision with which the descent advisor could predict the 4D trajectories of typical straight-in descents flown by airline pilots under different wind conditions. The effects of errors in the estimation of wind and initial aircraft weight were also studied. A description of the descent advisor as well as the result of the simulation studies are presented.
A hand tracking algorithm with particle filter and improved GVF snake model
NASA Astrophysics Data System (ADS)
Sun, Yi-qi; Wu, Ai-guo; Dong, Na; Shao, Yi-zhe
2017-07-01
To solve the problem that the accurate information of hand cannot be obtained by particle filter, a hand tracking algorithm based on particle filter combined with skin-color adaptive gradient vector flow (GVF) snake model is proposed. Adaptive GVF and skin color adaptive external guidance force are introduced to the traditional GVF snake model, guiding the curve to quickly converge to the deep concave region of hand contour and obtaining the complex hand contour accurately. This algorithm realizes a real-time correction of the particle filter parameters, avoiding the particle drift phenomenon. Experimental results show that the proposed algorithm can reduce the root mean square error of the hand tracking by 53%, and improve the accuracy of hand tracking in the case of complex and moving background, even with a large range of occlusion.
State-Estimation Algorithm Based on Computer Vision
NASA Technical Reports Server (NTRS)
Bayard, David; Brugarolas, Paul
2007-01-01
An algorithm and software to implement the algorithm are being developed as means to estimate the state (that is, the position and velocity) of an autonomous vehicle, relative to a visible nearby target object, to provide guidance for maneuvering the vehicle. In the original intended application, the autonomous vehicle would be a spacecraft and the nearby object would be a small astronomical body (typically, a comet or asteroid) to be explored by the spacecraft. The algorithm could also be used on Earth in analogous applications -- for example, for guiding underwater robots near such objects of interest as sunken ships, mineral deposits, or submerged mines. It is assumed that the robot would be equipped with a vision system that would include one or more electronic cameras, image-digitizing circuitry, and an imagedata- processing computer that would generate feature-recognition data products.
Automatic vetting of planet candidates from ground based surveys: Machine learning with NGTS
NASA Astrophysics Data System (ADS)
Armstrong, David J.; Günther, Maximilian N.; McCormac, James; Smith, Alexis M. S.; Bayliss, Daniel; Bouchy, François; Burleigh, Matthew R.; Casewell, Sarah; Eigmüller, Philipp; Gillen, Edward; Goad, Michael R.; Hodgkin, Simon T.; Jenkins, James S.; Louden, Tom; Metrailler, Lionel; Pollacco, Don; Poppenhaeger, Katja; Queloz, Didier; Raynard, Liam; Rauer, Heike; Udry, Stéphane; Walker, Simon R.; Watson, Christopher A.; West, Richard G.; Wheatley, Peter J.
2018-05-01
State of the art exoplanet transit surveys are producing ever increasing quantities of data. To make the best use of this resource, in detecting interesting planetary systems or in determining accurate planetary population statistics, requires new automated methods. Here we describe a machine learning algorithm that forms an integral part of the pipeline for the NGTS transit survey, demonstrating the efficacy of machine learning in selecting planetary candidates from multi-night ground based survey data. Our method uses a combination of random forests and self-organising-maps to rank planetary candidates, achieving an AUC score of 97.6% in ranking 12368 injected planets against 27496 false positives in the NGTS data. We build on past examples by using injected transit signals to form a training set, a necessary development for applying similar methods to upcoming surveys. We also make the autovet code used to implement the algorithm publicly accessible. autovet is designed to perform machine learned vetting of planetary candidates, and can utilise a variety of methods. The apparent robustness of machine learning techniques, whether on space-based or the qualitatively different ground-based data, highlights their importance to future surveys such as TESS and PLATO and the need to better understand their advantages and pitfalls in an exoplanetary context.
Agha, Riaz; Whitehurst, Katharine; Jafree, Daniyal; Devabalan, Yadsan; Koshy, Kiron; Gundogan, Buket
2017-07-01
A medical curriculum vitae remains an important document that has 2 main roles: to distinguish candidates applying for various positions, whether that be jobs, posts, grants and it provides a means of keeping an up-to-date record of all your achievements and skills gained thus far. This article provides detailed guidance on how to structure an effective curriculum vitae to maximize your chances of success when applying for these positions.
Agha, Riaz; Whitehurst, Katharine; Jafree, Daniyal; Devabalan, Yadsan; Koshy, Kiron
2017-01-01
A medical curriculum vitae remains an important document that has 2 main roles: to distinguish candidates applying for various positions, whether that be jobs, posts, grants and it provides a means of keeping an up-to-date record of all your achievements and skills gained thus far. This article provides detailed guidance on how to structure an effective curriculum vitae to maximize your chances of success when applying for these positions. PMID:29177224
Guidance Scheme for Modulation of Drag Devices to Enable Return from Low Earth Orbit
NASA Technical Reports Server (NTRS)
Dutta, Soumyo; Bowes, Angela L.; Cianciolo, Alicia D.; Glass, Christopher E.; Powell, Richard W.
2017-01-01
Passive drag devices provide opportunities to return payloads from low Earth orbits quickly without using onboard propulsive systems to de-orbit the spacecraft. However, one potential disadvantage of such systems has been the lack of landing accuracy. Drag modulation or changing the shape of the drag device during flight offer a way to control the de-orbit trajectory and target a specific landing location. This paper discusses a candidate passive drag based system, called Exo-brake, as well as efforts to model the dynamics of the vehicle as it de-orbits and guidance schemes used to control the trajectory. Such systems can enable quick return of payloads from low Earth orbit assets like the International Space Station without the use of large re-entry cargo capsules or propulsive systems.
Reducing 4D CT artifacts using optimized sorting based on anatomic similarity.
Johnston, Eric; Diehn, Maximilian; Murphy, James D; Loo, Billy W; Maxim, Peter G
2011-05-01
Four-dimensional (4D) computed tomography (CT) has been widely used as a tool to characterize respiratory motion in radiotherapy. The two most commonly used 4D CT algorithms sort images by the associated respiratory phase or displacement into a predefined number of bins, and are prone to image artifacts at transitions between bed positions. The purpose of this work is to demonstrate a method of reducing motion artifacts in 4D CT by incorporating anatomic similarity into phase or displacement based sorting protocols. Ten patient datasets were retrospectively sorted using both the displacement and phase based sorting algorithms. Conventional sorting methods allow selection of only the nearest-neighbor image in time or displacement within each bin. In our method, for each bed position either the displacement or the phase defines the center of a bin range about which several candidate images are selected. The two dimensional correlation coefficients between slices bordering the interface between adjacent couch positions are then calculated for all candidate pairings. Two slices have a high correlation if they are anatomically similar. Candidates from each bin are then selected to maximize the slice correlation over the entire data set using the Dijkstra's shortest path algorithm. To assess the reduction of artifacts, two thoracic radiation oncologists independently compared the resorted 4D datasets pairwise with conventionally sorted datasets, blinded to the sorting method, to choose which had the least motion artifacts. Agreement between reviewers was evaluated using the weighted kappa score. Anatomically based image selection resulted in 4D CT datasets with significantly reduced motion artifacts with both displacement (P = 0.0063) and phase sorting (P = 0.00022). There was good agreement between the two reviewers, with complete agreement 34 times and complete disagreement 6 times. Optimized sorting using anatomic similarity significantly reduces 4D CT motion artifacts compared to conventional phase or displacement based sorting. This improved sorting algorithm is a straightforward extension of the two most common 4D CT sorting algorithms.
Petrou, Stavros; Rivero-Arias, Oliver; Dakin, Helen; Longworth, Louise; Oppe, Mark; Froud, Robert; Gray, Alastair
2015-10-01
The process of "mapping" is increasingly being used to predict health utilities, for application within health economic evaluations, using data on other indicators or measures of health. Guidance for the reporting of mapping studies is currently lacking. The overall objective of this research was to develop a checklist of essential items, which authors should consider when reporting mapping studies. The MAPS (MApping onto Preference-based measures reporting Standards) statement is a checklist, which aims to promote complete and transparent reporting by researchers. This paper provides a detailed explanation and elaboration of the items contained within the MAPS statement. In the absence of previously published reporting checklists or reporting guidance documents, a de novo list of reporting items and accompanying explanations was created. A two-round, modified Delphi survey, with representatives from academia, consultancy, health technology assessment agencies and the biomedical journal editorial community, was used to identify a list of essential reporting items from this larger list. From the initial de novo list of 29 candidate items, a set of 23 essential reporting items was developed. The items are presented numerically and categorised within six sections, namely, (i) title and abstract, (ii) introduction, (iii) methods, (iv) results, (v) discussion and (vi) other. For each item, we summarise the recommendation, illustrate it using an exemplar of good reporting practice identified from the published literature, and provide a detailed explanation to accompany the recommendation. It is anticipated that the MAPS statement will promote clarity, transparency and completeness of reporting of mapping studies. It is targeted at researchers developing mapping algorithms, peer reviewers and editors involved in the manuscript review process for mapping studies, and the funders of the research. The MAPS working group plans to assess the need for an update of the reporting checklist in 5 years' time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, S.; Mathur, S.; Pieri, M.
2010-09-15
We report the results of a systematic search for signatures of metal lines in quasar spectra of the Sloan Digital Sky Survey (SDSS) data release 3 (DR3), focusing on finding intervening absorbers via detection of their O VI doublet. Here, we present the search algorithm and criteria for distinguishing candidates from spurious Ly{alpha} forest lines. In addition, we compare our findings with simulations of the Ly{alpha} forest in order to estimate the detectability of O VI doublets over various redshift intervals. We have obtained a sample of 1756 O VI doublet candidates with rest-frame equivalent width (EW) {>=}0.05 A inmore » 855 active galactic nuclei spectra (out of 3702 objects with redshifts in the accessible range for O VI detection). This sample is further subdivided into three groups according to the likelihood of being real and the potential for follow-up observation of the candidate. The group with the cleanest and most secure candidates is comprised of 145 candidates. Sixty-nine of these reside at a velocity separation {>=}5000 km s{sup -1} from the QSO and can therefore be classified tentatively as intervening absorbers. Most of these absorbers have not been picked up by earlier, automated QSO absorption line detection algorithms. This sample increases the number of known O VI absorbers at redshifts beyond z{sub abs{>=}} 2.7 substantially.« less
Fast object detection algorithm based on HOG and CNN
NASA Astrophysics Data System (ADS)
Lu, Tongwei; Wang, Dandan; Zhang, Yanduo
2018-04-01
In the field of computer vision, object classification and object detection are widely used in many fields. The traditional object detection have two main problems:one is that sliding window of the regional selection strategy is high time complexity and have window redundancy. And the other one is that Robustness of the feature is not well. In order to solve those problems, Regional Proposal Network (RPN) is used to select candidate regions instead of selective search algorithm. Compared with traditional algorithms and selective search algorithms, RPN has higher efficiency and accuracy. We combine HOG feature and convolution neural network (CNN) to extract features. And we use SVM to classify. For TorontoNet, our algorithm's mAP is 1.6 percentage points higher. For OxfordNet, our algorithm's mAP is 1.3 percentage higher.
UAS Well Clear Recovery Against Non-Cooperative Intruders Using Vertical Maneuvers
NASA Technical Reports Server (NTRS)
Cone, Andrew; Thipphavong, David; Lee, Seung Man; Santiago, Confesor
2017-01-01
This paper documents a study that drove the development of a mathematical expression in the minimum operational performance standards (MOPS) of detect-and-avoid (DAA) systems for unmanned aircraft systems (UAS). This equation describes the conditions under which vertical maneuver guidance could be provided during recovery of well clear separation with a non-cooperative VFR aircraft in addition to horizontal maneuver guidance. Although suppressing vertical maneuver guidance in these situations increased the minimum horizontal separation from 500 to 800 feet, the maximum severity of loss of well clear increased in about 35 of the encounters compared to when a vertical maneuver was preferred and allowed. Additionally, analysis of individual cases led to the identification of a class of encounter where vertical rate error had a large effect on horizontal maneuvers due to the difficulty of making the correct left-right turn decision: crossing conflict with intruder changing altitude. These results supported allowing vertical maneuvers when UAS vertical performance exceeds the relative vertical position and velocity accuracy of the DAA tracker given the current velocity of the UAS and the relative vertical position and velocity estimated by the DAA tracker. Looking ahead, these results indicate a need to improve guidance algorithms by utilizing maneuver stability and near mid-air collision risk when determining maneuver guidance to regain well clear separation.
Fuentes, Alejandra; Ortiz, Javier; Saavedra, Nicolás; Salazar, Luis A; Meneses, Claudio; Arriagada, Cesar
2016-04-01
The gene expression stability of candidate reference genes in the roots and leaves of Solanum lycopersicum inoculated with arbuscular mycorrhizal fungi was investigated. Eight candidate reference genes including elongation factor 1 α (EF1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), protein phosphatase 2A (PP2Acs), ribosomal protein L2 (RPL2), β-tubulin (TUB), ubiquitin (UBI) and actin (ACT) were selected, and their expression stability was assessed to determine the most stable internal reference for quantitative PCR normalization in S. lycopersicum inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis. The stability of each gene was analysed in leaves and roots together and separated using the geNorm and NormFinder algorithms. Differences were detected between leaves and roots, varying among the best-ranked genes depending on the algorithm used and the tissue analysed. PGK, TUB and EF1 genes showed higher stability in roots, while EF1 and UBI had higher stability in leaves. Statistical algorithms indicated that the GAPDH gene was the least stable under the experimental conditions assayed. Then, we analysed the expression levels of the LePT4 gene, a phosphate transporter whose expression is induced by fungal colonization in host plant roots. No differences were observed when the most stable genes were used as reference genes. However, when GAPDH was used as the reference gene, we observed an overestimation of LePT4 expression. In summary, our results revealed that candidate reference genes present variable stability in S. lycopersicum arbuscular mycorrhizal symbiosis depending on the algorithm and tissue analysed. Thus, reference gene selection is an important issue for obtaining reliable results in gene expression quantification. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Yan, Jun; Yu, Kegen; Chen, Ruizhi; Chen, Liang
2017-05-30
In this paper a two-phase compressive sensing (CS) and received signal strength (RSS)-based target localization approach is proposed to improve position accuracy by dealing with the unknown target population and the effect of grid dimensions on position error. In the coarse localization phase, by formulating target localization as a sparse signal recovery problem, grids with recovery vector components greater than a threshold are chosen as the candidate target grids. In the fine localization phase, by partitioning each candidate grid, the target position in a grid is iteratively refined by using the minimum residual error rule and the least-squares technique. When all the candidate target grids are iteratively partitioned and the measurement matrix is updated, the recovery vector is re-estimated. Threshold-based detection is employed again to determine the target grids and hence the target population. As a consequence, both the target population and the position estimation accuracy can be significantly improved. Simulation results demonstrate that the proposed approach achieves the best accuracy among all the algorithms compared.
Islander: A database of precisely mapped genomic islands in tRNA and tmRNA genes
Hudson, Corey M.; Lau, Britney Y.; Williams, Kelly P.
2014-11-05
Genomic islands are mobile DNAs that are major agents of bacterial and archaeal evolution. Integration into prokaryotic chromosomes usually occurs site-specifically at tRNA or tmRNA gene (together, tDNA) targets, catalyzed by tyrosine integrases. This splits the target gene, yet sequences within the island restore the disrupted gene; the regenerated target and its displaced fragment precisely mark the endpoints of the island. We applied this principle to search for islands in genomic DNA sequences. Our algorithm identifies tDNAs, finds fragments of those tDNAs in the same replicon and removes unlikely candidate islands through a series of filters. A search for islandsmore » in 2168 whole prokaryotic genomes produced 3919 candidates. The website Islander (recently moved to http://bioinformatics.sandia.gov/islander/) presents these precisely mapped candidate islands, the gene content and the island sequence. The algorithm further insists that each island encode an integrase, and attachment site sequence identity is carefully noted; therefore, the database also serves in the study of integrase site-specificity and its evolution.« less
Automatic threshold selection for multi-class open set recognition
NASA Astrophysics Data System (ADS)
Scherreik, Matthew; Rigling, Brian
2017-05-01
Multi-class open set recognition is the problem of supervised classification with additional unknown classes encountered after a model has been trained. An open set classifer often has two core components. The first component is a base classifier which estimates the most likely class of a given example. The second component consists of open set logic which estimates if the example is truly a member of the candidate class. Such a system is operated in a feed-forward fashion. That is, a candidate label is first estimated by the base classifier, and the true membership of the example to the candidate class is estimated afterward. Previous works have developed an iterative threshold selection algorithm for rejecting examples from classes which were not present at training time. In those studies, a Platt-calibrated SVM was used as the base classifier, and the thresholds were applied to class posterior probabilities for rejection. In this work, we investigate the effectiveness of other base classifiers when paired with the threshold selection algorithm and compare their performance with the original SVM solution.
TOM: a web-based integrated approach for identification of candidate disease genes.
Rossi, Simona; Masotti, Daniele; Nardini, Christine; Bonora, Elena; Romeo, Giovanni; Macii, Enrico; Benini, Luca; Volinia, Stefano
2006-07-01
The massive production of biological data by means of highly parallel devices like microarrays for gene expression has paved the way to new possible approaches in molecular genetics. Among them the possibility of inferring biological answers by querying large amounts of expression data. Based on this principle, we present here TOM, a web-based resource for the efficient extraction of candidate genes for hereditary diseases. The service requires the previous knowledge of at least another gene responsible for the disease and the linkage area, or else of two disease associated genetic intervals. The algorithm uses the information stored in public resources, including mapping, expression and functional databases. Given the queries, TOM will select and list one or more candidate genes. This approach allows the geneticist to bypass the costly and time consuming tracing of genetic markers through entire families and might improve the chance of identifying disease genes, particularly for rare diseases. We present here the tool and the results obtained on known benchmark and on hereditary predisposition to familial thyroid cancer. Our algorithm is available at http://www-micrel.deis.unibo.it/~tom/.
Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)
NASA Technical Reports Server (NTRS)
Folta, David C.; Hawkins, Albin; Bauer, Frank H. (Technical Monitor)
2001-01-01
NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center (GSFC) implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard flight design and presents the validation results of this unique system. Results from functionality assessment through fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a standalone algorithm.
A Framework for the Development of Computerized Adaptive Tests
ERIC Educational Resources Information Center
Thompson, Nathan A.; Weiss, David J.
2011-01-01
A substantial amount of research has been conducted over the past 40 years on technical aspects of computerized adaptive testing (CAT), such as item selection algorithms, item exposure controls, and termination criteria. However, there is little literature providing practical guidance on the development of a CAT. This paper seeks to collate some…
Arrieta-Camacho, Juan José; Biegler, Lorenz T
2005-12-01
Real time optimal guidance is considered for a class of low thrust spacecraft. In particular, nonlinear model predictive control (NMPC) is utilized for computing the optimal control actions required to transfer a spacecraft from a low Earth orbit to a mission orbit. The NMPC methodology presented is able to cope with unmodeled disturbances. The dynamics of the transfer are modeled using a set of modified equinoctial elements because they do not exhibit singularities for zero inclination and zero eccentricity. The idea behind NMPC is the repeated solution of optimal control problems; at each time step, a new control action is computed. The optimal control problem is solved using a direct method-fully discretizing the equations of motion. The large scale nonlinear program resulting from the discretization procedure is solved using IPOPT--a primal-dual interior point algorithm. Stability and robustness characteristics of the NMPC algorithm are reviewed. A numerical example is presented that encourages further development of the proposed methodology: the transfer from low-Earth orbit to a molniya orbit.
Discrete range clustering using Monte Carlo methods
NASA Technical Reports Server (NTRS)
Chatterji, G. B.; Sridhar, B.
1993-01-01
For automatic obstacle avoidance guidance during rotorcraft low altitude flight, a reliable model of the nearby environment is needed. Such a model may be constructed by applying surface fitting techniques to the dense range map obtained by active sensing using radars. However, for covertness, passive sensing techniques using electro-optic sensors are desirable. As opposed to the dense range map obtained via active sensing, passive sensing algorithms produce reliable range at sparse locations, and therefore, surface fitting techniques to fill the gaps in the range measurement are not directly applicable. Both for automatic guidance and as a display for aiding the pilot, these discrete ranges need to be grouped into sets which correspond to objects in the nearby environment. The focus of this paper is on using Monte Carlo methods for clustering range points into meaningful groups. One of the aims of the paper is to explore whether simulated annealing methods offer significant advantage over the basic Monte Carlo method for this class of problems. We compare three different approaches and present application results of these algorithms to a laboratory image sequence and a helicopter flight sequence.
Technology transfer: Imaging tracker to robotic controller
NASA Technical Reports Server (NTRS)
Otaguro, M. S.; Kesler, L. O.; Land, Ken; Erwin, Harry; Rhoades, Don
1988-01-01
The transformation of an imaging tracker to a robotic controller is described. A multimode tracker was developed for fire and forget missile systems. The tracker locks on to target images within an acquisition window using multiple image tracking algorithms to provide guidance commands to missile control systems. This basic tracker technology is used with the addition of a ranging algorithm based on sizing a cooperative target to perform autonomous guidance and control of a platform for an Advanced Development Project on automation and robotics. A ranging tracker is required to provide the positioning necessary for robotic control. A simple functional demonstration of the feasibility of this approach was performed and described. More realistic demonstrations are under way at NASA-JSC. In particular, this modified tracker, or robotic controller, will be used to autonomously guide the Man Maneuvering Unit (MMU) to targets such as disabled astronauts or tools as part of the EVA Retriever efforts. It will also be used to control the orbiter's Remote Manipulator Systems (RMS) in autonomous approach and positioning demonstrations. These efforts will also be discussed.
Comparison of Low-Thrust Control Laws for Application in Planetocentric Space
NASA Technical Reports Server (NTRS)
Falck, Robert D.; Sjauw, Waldy K.; Smith, David A.
2014-01-01
Recent interest at NASA for the application of solar electric propulsion for the transfer of significant payloads in cislunar space has led to the development of high-fidelity simulations of such missions. With such transfers involving transfer times on the order of months, simulation time can be significant. In the past, the examination of such missions typically began with the use of lower-fidelity trajectory optimization tools such as SEPSPOT to develop and tune guidance laws which delivered optimal or near- optimal trajectories, where optimal is generally defined as minimizing propellant expenditure or time of flight. The transfer of these solutions to a high-fidelity simulation is typically an iterative process whereby the initial solution may nearly, but not precisely, meet mission objectives. Further tuning of the guidance algorithm is typically necessary when accounting for high-fidelity perturbations such as those due to more detailed gravity models, secondary-body effects, solar radiation pressure, etc. While trajectory optimization is a useful method for determining optimal performance metrics, algorithms which deliver nearly optimal performance with minimal tuning are an attractive alternative.
[The REACH legislation: the consumer and environment protection perspective].
Gundert-Remy, Ursula
2008-12-01
REACH has been initiated with the aim of improving existing legislation. In order to assist in the interpretation of the REACH legislation, guidance documents have been developed, which have only lately become available. According to the REACH annexes and supported by guidance documents, waiving of test requirements will be possible, thus, opening the possibility that under REACH no new (eco)toxicological data will be required. Concerning products, a guidance document was released in April 2008 stating that the substance concentration threshold of 0.1 % (w/w) applies to the article as produced or imported and it does not relate to the homogeneous materials or parts of an article, but relates to the article as such (i.e., as produced or imported). Hence, notification will not be required for many products containing chemicals with properties which place them on the candidate list for authorization. In summary, it is at present not foreseeable whether the expected benefit of the REACH legislation will materialise for the environment and for the health of consumers and at the work place.
Waterway Shielding System and Method
2003-04-30
In early October 12 2002, A French VLCC (Very Large Crude Carrier) chartered by 13 Malaysian state oil company Petronas was attacked by terrorist 14...Combiner 72 may provide a 11 processor with algorithms that are used to add candidates when 12 uncertain and delete candidates when analysis data is fairly...commercial interests that normally have a need to know where 18 shipments of interest on any particular ship are presently 19 located, where competitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Xiongbiao, E-mail: xluo@robarts.ca, E-mail: Ying.Wan@student.uts.edu.au; Wan, Ying, E-mail: xluo@robarts.ca, E-mail: Ying.Wan@student.uts.edu.au; He, Xiangjian
Purpose: Electromagnetically guided endoscopic procedure, which aims at accurately and robustly localizing the endoscope, involves multimodal sensory information during interventions. However, it still remains challenging in how to integrate these information for precise and stable endoscopic guidance. To tackle such a challenge, this paper proposes a new framework on the basis of an enhanced particle swarm optimization method to effectively fuse these information for accurate and continuous endoscope localization. Methods: The authors use the particle swarm optimization method, which is one of stochastic evolutionary computation algorithms, to effectively fuse the multimodal information including preoperative information (i.e., computed tomography images) asmore » a frame of reference, endoscopic camera videos, and positional sensor measurements (i.e., electromagnetic sensor outputs). Since the evolutionary computation method usually limits its possible premature convergence and evolutionary factors, the authors introduce the current (endoscopic camera and electromagnetic sensor’s) observation to boost the particle swarm optimization and also adaptively update evolutionary parameters in accordance with spatial constraints and the current observation, resulting in advantageous performance in the enhanced algorithm. Results: The experimental results demonstrate that the authors’ proposed method provides a more accurate and robust endoscopic guidance framework than state-of-the-art methods. The average guidance accuracy of the authors’ framework was about 3.0 mm and 5.6° while the previous methods show at least 3.9 mm and 7.0°. The average position and orientation smoothness of their method was 1.0 mm and 1.6°, which is significantly better than the other methods at least with (2.0 mm and 2.6°). Additionally, the average visual quality of the endoscopic guidance was improved to 0.29. Conclusions: A robust electromagnetically guided endoscopy framework was proposed on the basis of an enhanced particle swarm optimization method with using the current observation information and adaptive evolutionary factors. The authors proposed framework greatly reduced the guidance errors from (4.3, 7.8) to (3.0 mm, 5.6°), compared to state-of-the-art methods.« less
User's guide to the Fault Inferring Nonlinear Detection System (FINDS) computer program
NASA Technical Reports Server (NTRS)
Caglayan, A. K.; Godiwala, P. M.; Satz, H. S.
1988-01-01
Described are the operation and internal structure of the computer program FINDS (Fault Inferring Nonlinear Detection System). The FINDS algorithm is designed to provide reliable estimates for aircraft position, velocity, attitude, and horizontal winds to be used for guidance and control laws in the presence of possible failures in the avionics sensors. The FINDS algorithm was developed with the use of a digital simulation of a commercial transport aircraft and tested with flight recorded data. The algorithm was then modified to meet the size constraints and real-time execution requirements on a flight computer. For the real-time operation, a multi-rate implementation of the FINDS algorithm has been partitioned to execute on a dual parallel processor configuration: one based on the translational dynamics and the other on the rotational kinematics. The report presents an overview of the FINDS algorithm, the implemented equations, the flow charts for the key subprograms, the input and output files, program variable indexing convention, subprogram descriptions, and the common block descriptions used in the program.
Robust control algorithms for Mars aerobraking
NASA Technical Reports Server (NTRS)
Shipley, Buford W., Jr.; Ward, Donald T.
1992-01-01
Four atmospheric guidance concepts have been adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. The first two offer improvements to the Analytic Predictor Corrector (APC) to increase its robustness to density variations. The second two are variations of a new Liapunov tracking exit phase algorithm, developed to guide the vehicle along a reference trajectory. These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. MARSGRAM is used to develop realistic atmospheres for the study. When square wave density pulses perturb the atmosphere all four controllers are successful. The algorithms are tested against atmospheres where the inbound and outbound density functions are different. Square wave density pulses are again used, but only for the outbound leg of the trajectory. Additionally, sine waves are used to perturb the density function. The new algorithms are found to be more robust than any previously tested and a Liapunov controller is selected as the most robust control algorithm overall examined.
Evaluation and Application of Satellite-Based Latent Heating Profile Estimation Methods
NASA Technical Reports Server (NTRS)
Olson, William S.; Grecu, Mircea; Yang, Song; Tao, Wei-Kuo
2004-01-01
In recent years, methods for estimating atmospheric latent heating vertical structure from both passive and active microwave remote sensing have matured to the point where quantitative evaluation of these methods is the next logical step. Two approaches for heating algorithm evaluation are proposed: First, application of heating algorithms to synthetic data, based upon cloud-resolving model simulations, can be used to test the internal consistency of heating estimates in the absence of systematic errors in physical assumptions. Second, comparisons of satellite-retrieved vertical heating structures to independent ground-based estimates, such as rawinsonde-derived analyses of heating, provide an additional test. The two approaches are complementary, since systematic errors in heating indicated by the second approach may be confirmed by the first. A passive microwave and combined passive/active microwave heating retrieval algorithm are evaluated using the described approaches. In general, the passive microwave algorithm heating profile estimates are subject to biases due to the limited vertical heating structure information contained in the passive microwave observations. These biases may be partly overcome by including more environment-specific a priori information into the algorithm s database of candidate solution profiles. The combined passive/active microwave algorithm utilizes the much higher-resolution vertical structure information provided by spaceborne radar data to produce less biased estimates; however, the global spatio-temporal sampling by spaceborne radar is limited. In the present study, the passive/active microwave algorithm is used to construct a more physically-consistent and environment-specific set of candidate solution profiles for the passive microwave algorithm and to help evaluate errors in the passive algorithm s heating estimates. Although satellite estimates of latent heating are based upon instantaneous, footprint- scale data, suppression of random errors requires averaging to at least half-degree resolution. Analysis of mesoscale and larger space-time scale phenomena based upon passive and passive/active microwave heating estimates from TRMM, SSMI, and AMSR data will be presented at the conference.
NASA Technical Reports Server (NTRS)
Knox, C. E.; Vicroy, D. D.; Simmon, D. A.
1985-01-01
A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, and nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knox, C.E.; Vicroy, D.D.; Simmon, D.A.
A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, andmore » nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.« less
Fine Guidance Sensing for Coronagraphic Observatories
NASA Technical Reports Server (NTRS)
Brugarolas, Paul; Alexander, James W.; Trauger, John T.; Moody, Dwight C.
2011-01-01
Three options have been developed for Fine Guidance Sensing (FGS) for coronagraphic observatories using a Fine Guidance Camera within a coronagraphic instrument. Coronagraphic observatories require very fine precision pointing in order to image faint objects at very small distances from a target star. The Fine Guidance Camera measures the direction to the target star. The first option, referred to as Spot, was to collect all of the light reflected from a coronagraph occulter onto a focal plane, producing an Airy-type point spread function (PSF). This would allow almost all of the starlight from the central star to be used for centroiding. The second approach, referred to as Punctured Disk, collects the light that bypasses a central obscuration, producing a PSF with a punctured central disk. The final approach, referred to as Lyot, collects light after passing through the occulter at the Lyot stop. The study includes generation of representative images for each option by the science team, followed by an engineering evaluation of a centroiding or a photometric algorithm for each option. After the alignment of the coronagraph to the fine guidance system, a "nulling" point on the FGS focal point is determined by calibration. This alignment is implemented by a fine alignment mechanism that is part of the fine guidance camera selection mirror. If the star images meet the modeling assumptions, and the star "centroid" can be driven to that nulling point, the contrast for the coronagraph will be maximized.
NASA Technical Reports Server (NTRS)
Clement, Warren F.; Gorder, Peter J.; Jewell, Wayne F.
1991-01-01
Developing a single-pilot, all-weather nap-of-the-earth (NOE) capability requires fully automatic NOE (ANOE) navigation and flight control. Innovative guidance and control concepts are investigated in a four-fold research effort that: (1) organizes the on-board computer-based storage and real-time updating of NOE terrain profiles and obstacles in course-oriented coordinates indexed to the mission flight plan; (2) defines a class of automatic anticipative pursuit guidance algorithms and necessary data preview requirements to follow the vertical, lateral, and longitudinal guidance commands dictated by the updated flight profiles; (3) automates a decision-making process for unexpected obstacle avoidance; and (4) provides several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the forehand knowledge of the recorded environment (terrain, cultural features, threats, and targets), which is then used to determine an appropriate evasive maneuver if a nonconformity of the sensed and recorded environments is observed. This four-fold research effort was evaluated in both fixed-based and moving-based real-time piloted simulations, thereby, providing a practical demonstration for evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and re-engagement of the automatic system. Volume one describes the major components of the guidance and control laws as well as the results of the piloted simulations. Volume two describes the complete mathematical model of the fully automatic guidance system for rotorcraft NOE flight following planned flight profiles.
NASA Technical Reports Server (NTRS)
Clement, Warren F.; Gorder, Peter J.; Jewell, Wayne F.
1991-01-01
Developing a single-pilot, all-weather nap-of-the-earth (NOE) capability requires fully automatic NOE (ANOE) navigation and flight control. Innovative guidance and control concepts are investigated in a four-fold research effort that: (1) organizes the on-board computer-based storage and real-time updating of NOE terrain profiles and obstacles in course-oriented coordinates indexed to the mission flight plan; (2) defines a class of automatic anticipative pursuit guidance algorithms and necessary data preview requirements to follow the vertical, lateral, and longitudinal guidance commands dictated by the updated flight profiles; (3) automates a decision-making process for unexpected obstacle avoidance; and (4) provides several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the forehand knowledge of the recorded environment (terrain, cultural features, threats, and targets), which is then used to determine an appropriate evasive maneuver if a nonconformity of the sensed and recorded environments is observed. This four-fold research effort was evaluated in both fixed-base and moving-base real-time piloted simulations; thereby, providing a practical demonstration for evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and re-engagement of the automatic system. Volume one describes the major components of the guidance and control laws as well as the results of the piloted simulations. Volume two describes the complete mathematical model of the fully automatic guidance system for rotorcraft NOE flight following planned flight profiles.
The design of digital-adaptive controllers for VTOL aircraft
NASA Technical Reports Server (NTRS)
Stengel, R. F.; Broussard, J. R.; Berry, P. W.
1976-01-01
Design procedures for VTOL automatic control systems have been developed and are presented. Using linear-optimal estimation and control techniques as a starting point, digital-adaptive control laws have been designed for the VALT Research Aircraft, a tandem-rotor helicopter which is equipped for fully automatic flight in terminal area operations. These control laws are designed to interface with velocity-command and attitude-command guidance logic, which could be used in short-haul VTOL operations. Developments reported here include new algorithms for designing non-zero-set-point digital regulators, design procedures for rate-limited systems, and algorithms for dynamic control trim setting.
Community detection in complex networks by using membrane algorithm
NASA Astrophysics Data System (ADS)
Liu, Chuang; Fan, Linan; Liu, Zhou; Dai, Xiang; Xu, Jiamei; Chang, Baoren
Community detection in complex networks is a key problem of network analysis. In this paper, a new membrane algorithm is proposed to solve the community detection in complex networks. The proposed algorithm is based on membrane systems, which consists of objects, reaction rules, and a membrane structure. Each object represents a candidate partition of a complex network, and the quality of objects is evaluated according to network modularity. The reaction rules include evolutionary rules and communication rules. Evolutionary rules are responsible for improving the quality of objects, which employ the differential evolutionary algorithm to evolve objects. Communication rules implement the information exchanged among membranes. Finally, the proposed algorithm is evaluated on synthetic, real-world networks with real partitions known and the large-scaled networks with real partitions unknown. The experimental results indicate the superior performance of the proposed algorithm in comparison with other experimental algorithms.
List-Based Simulated Annealing Algorithm for Traveling Salesman Problem.
Zhan, Shi-hua; Lin, Juan; Zhang, Ze-jun; Zhong, Yi-wen
2016-01-01
Simulated annealing (SA) algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. Parameters' setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a list-based simulated annealing (LBSA) algorithm to solve traveling salesman problem (TSP). LBSA algorithm uses a novel list-based cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms.
Regression Model Optimization for the Analysis of Experimental Data
NASA Technical Reports Server (NTRS)
Ulbrich, N.
2009-01-01
A candidate math model search algorithm was developed at Ames Research Center that determines a recommended math model for the multivariate regression analysis of experimental data. The search algorithm is applicable to classical regression analysis problems as well as wind tunnel strain gage balance calibration analysis applications. The algorithm compares the predictive capability of different regression models using the standard deviation of the PRESS residuals of the responses as a search metric. This search metric is minimized during the search. Singular value decomposition is used during the search to reject math models that lead to a singular solution of the regression analysis problem. Two threshold dependent constraints are also applied. The first constraint rejects math models with insignificant terms. The second constraint rejects math models with near-linear dependencies between terms. The math term hierarchy rule may also be applied as an optional constraint during or after the candidate math model search. The final term selection of the recommended math model depends on the regressor and response values of the data set, the user s function class combination choice, the user s constraint selections, and the result of the search metric minimization. A frequently used regression analysis example from the literature is used to illustrate the application of the search algorithm to experimental data.
A Two-Phase Coverage-Enhancing Algorithm for Hybrid Wireless Sensor Networks.
Zhang, Qingguo; Fok, Mable P
2017-01-09
Providing field coverage is a key task in many sensor network applications. In certain scenarios, the sensor field may have coverage holes due to random initial deployment of sensors; thus, the desired level of coverage cannot be achieved. A hybrid wireless sensor network is a cost-effective solution to this problem, which is achieved by repositioning a portion of the mobile sensors in the network to meet the network coverage requirement. This paper investigates how to redeploy mobile sensor nodes to improve network coverage in hybrid wireless sensor networks. We propose a two-phase coverage-enhancing algorithm for hybrid wireless sensor networks. In phase one, we use a differential evolution algorithm to compute the candidate's target positions in the mobile sensor nodes that could potentially improve coverage. In the second phase, we use an optimization scheme on the candidate's target positions calculated from phase one to reduce the accumulated potential moving distance of mobile sensors, such that the exact mobile sensor nodes that need to be moved as well as their final target positions can be determined. Experimental results show that the proposed algorithm provided significant improvement in terms of area coverage rate, average moving distance, area coverage-distance rate and the number of moved mobile sensors, when compare with other approaches.
Safety of the Wearable Cardioverter Defibrillator (WCD) in Patients with Implanted Pacemakers.
Schmitt, Joern; Abaci, Guezine; Johnson, Victoria; Erkapic, Damir; Gemein, Christopher; Chasan, Ritvan; Weipert, Kay; Hamm, Christian W; Klein, Helmut U
2017-03-01
The wearable cardioverter defibrillator (WCD) is an important approach for better risk stratification, applied to patients considered to be at high risk of sudden arrhythmic death. Patients with implanted pacemakers may also become candidates for use of the WCD. However, there is a potential risk that pacemaker signals may mislead the WCD detection algorithm and cause inappropriate WCD shock delivery. The aim of the study was to test the impact of different types of pacing, various right ventricular (RV) lead positions, and pacing modes for potential misleading of the WCD detection algorithm. Sixty patients with implanted pacemakers received the WCD for a short time and each pacing mode (AAI, VVI, and DDD) was tested for at least 30 seconds in unipolar and bipolar pacing configuration. In case of triggering the WCD detection algorithm and starting the sequence of arrhythmia alarms, shock delivery was prevented by pushing of the response buttons. In six of 60 patients (10%), continuous unipolar pacing in DDD mode triggered the WCD detection algorithm. In no patient, triggering occurred with bipolar DDD pacing, unipolar and bipolar AAI, and VVI pacing. Triggering was independent of pacing amplitude, RV pacing lead position, and pulse generator implantation site. Unipolar DDD pacing bears a high risk of false triggering of the WCD detection algorithm. Other types of unipolar pacing and all bipolar pacing modes do not seem to mislead the WCD detection algorithm. Therefore, patients with no reprogrammable unipolar DDD pacing should not become candidates for the WCD. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Paino, A.; Keller, J.; Popescu, M.; Stone, K.
2014-06-01
In this paper we present an approach that uses Genetic Programming (GP) to evolve novel feature extraction algorithms for greyscale images. Our motivation is to create an automated method of building new feature extraction algorithms for images that are competitive with commonly used human-engineered features, such as Local Binary Pattern (LBP) and Histogram of Oriented Gradients (HOG). The evolved feature extraction algorithms are functions defined over the image space, and each produces a real-valued feature vector of variable length. Each evolved feature extractor breaks up the given image into a set of cells centered on every pixel, performs evolved operations on each cell, and then combines the results of those operations for every cell using an evolved operator. Using this method, the algorithm is flexible enough to reproduce both LBP and HOG features. The dataset we use to train and test our approach consists of a large number of pre-segmented image "chips" taken from a Forward Looking Infrared Imagery (FLIR) camera mounted on the hood of a moving vehicle. The goal is to classify each image chip as either containing or not containing a buried object. To this end, we define the fitness of a candidate solution as the cross-fold validation accuracy of the features generated by said candidate solution when used in conjunction with a Support Vector Machine (SVM) classifier. In order to validate our approach, we compare the classification accuracy of an SVM trained using our evolved features with the accuracy of an SVM trained using mainstream feature extraction algorithms, including LBP and HOG.
An Automated Road Roughness Detection from Mobile Laser Scanning Data
NASA Astrophysics Data System (ADS)
Kumar, P.; Angelats, E.
2017-05-01
Rough roads influence the safety of the road users as accident rate increases with increasing unevenness of the road surface. Road roughness regions are required to be efficiently detected and located in order to ensure their maintenance. Mobile Laser Scanning (MLS) systems provide a rapid and cost-effective alternative by providing accurate and dense point cloud data along route corridor. In this paper, an automated algorithm is presented for detecting road roughness from MLS data. The presented algorithm is based on interpolating smooth intensity raster surface from LiDAR point cloud data using point thinning process. The interpolated surface is further processed using morphological and multi-level Otsu thresholding operations to identify candidate road roughness regions. The candidate regions are finally filtered based on spatial density and standard deviation of elevation criteria to detect the roughness along the road surface. The test results of road roughness detection algorithm on two road sections are presented. The developed approach can be used to provide comprehensive information to road authorities in order to schedule maintenance and ensure maximum safety conditions for road users.
Online Cross-Validation-Based Ensemble Learning
Benkeser, David; Ju, Cheng; Lendle, Sam; van der Laan, Mark
2017-01-01
Online estimators update a current estimate with a new incoming batch of data without having to revisit past data thereby providing streaming estimates that are scalable to big data. We develop flexible, ensemble-based online estimators of an infinite-dimensional target parameter, such as a regression function, in the setting where data are generated sequentially by a common conditional data distribution given summary measures of the past. This setting encompasses a wide range of time-series models and as special case, models for independent and identically distributed data. Our estimator considers a large library of candidate online estimators and uses online cross-validation to identify the algorithm with the best performance. We show that by basing estimates on the cross-validation-selected algorithm, we are asymptotically guaranteed to perform as well as the true, unknown best-performing algorithm. We provide extensions of this approach including online estimation of the optimal ensemble of candidate online estimators. We illustrate excellent performance of our methods using simulations and a real data example where we make streaming predictions of infectious disease incidence using data from a large database. PMID:28474419
NASA Astrophysics Data System (ADS)
Matossian, Mark G.
1997-01-01
Much attention in recent years has focused on commercial telecommunications ventures involving constellations of spacecraft in low and medium Earth orbit. These projects often require investments on the order of billions of dollars (US$) for development and operations, but surprisingly little work has been published on constellation design optimization for coverage analysis, traffic simulation and launch sequencing for constellation build-up strategies. This paper addresses the two most critical aspects of constellation orbital design — efficient constellation candidate generation and coverage analysis. Inefficiencies and flaws in the current standard algorithm for constellation modeling are identified, and a corrected and improved algorithm is presented. In the 1970's, John Walker and G. V. Mozhaev developed innovative strategies for continuous global coverage using symmetric non-geosynchronous constellations. (These are sometimes referred to as rosette, or Walker constellations. An example is pictured above.) In 1980, the late Arthur Ballard extended and generalized the work of Walker into a detailed algorithm for the NAVSTAR/GPS program, which deployed a 24 satellite symmetric constellation. Ballard's important contribution was published in his "Rosette Constellations of Earth Satellites."
Track-Before-Detect Algorithm for Faint Moving Objects based on Random Sampling and Consensus
NASA Astrophysics Data System (ADS)
Dao, P.; Rast, R.; Schlaegel, W.; Schmidt, V.; Dentamaro, A.
2014-09-01
There are many algorithms developed for tracking and detecting faint moving objects in congested backgrounds. One obvious application is detection of targets in images where each pixel corresponds to the received power in a particular location. In our application, a visible imager operated in stare mode observes geostationary objects as fixed, stars as moving and non-geostationary objects as drifting in the field of view. We would like to achieve high sensitivity detection of the drifters. The ability to improve SNR with track-before-detect (TBD) processing, where target information is collected and collated before the detection decision is made, allows respectable performance against dim moving objects. Generally, a TBD algorithm consists of a pre-processing stage that highlights potential targets and a temporal filtering stage. However, the algorithms that have been successfully demonstrated, e.g. Viterbi-based and Bayesian-based, demand formidable processing power and memory. We propose an algorithm that exploits the quasi constant velocity of objects, the predictability of the stellar clutter and the intrinsically low false alarm rate of detecting signature candidates in 3-D, based on an iterative method called "RANdom SAmple Consensus” and one that can run real-time on a typical PC. The technique is tailored for searching objects with small telescopes in stare mode. Our RANSAC-MT (Moving Target) algorithm estimates parameters of a mathematical model (e.g., linear motion) from a set of observed data which contains a significant number of outliers while identifying inliers. In the pre-processing phase, candidate blobs were selected based on morphology and an intensity threshold that would normally generate unacceptable level of false alarms. The RANSAC sampling rejects candidates that conform to the predictable motion of the stars. Data collected with a 17 inch telescope by AFRL/RH and a COTS lens/EM-CCD sensor by the AFRL/RD Satellite Assessment Center is used to assess the performance of the algorithm. In the second application, a visible imager operated in sidereal mode observes geostationary objects as moving, stars as fixed except for field rotation, and non-geostationary objects as drifting. RANSAC-MT is used to detect the drifter. In this set of data, the drifting space object was detected at a distance of 13800 km. The AFRL/RH set of data, collected in the stare mode, contained the signature of two geostationary satellites. The signature of a moving object was simulated and added to the sequence of frames to determine the sensitivity in magnitude. The performance compares well with the more intensive TBD algorithms reported in the literature.
NASA Technical Reports Server (NTRS)
Knox, Charles E.
1993-01-01
A piloted simulation study was conducted to examine the requirements for using electromechanical flight instrumentation to provide situation information and flight guidance for manually controlled flight along curved precision approach paths to a landing. Six pilots were used as test subjects. The data from these tests indicated that flight director guidance is required for the manually controlled flight of a jet transport airplane on curved approach paths. Acceptable path tracking performance was attained with each of the three situation information algorithms tested. Approach paths with both multiple sequential turns and short final path segments were evaluated. Pilot comments indicated that all the approach paths tested could be used in normal airline operations.
Fuel-conservative guidance system for powered-lift aircraft
NASA Technical Reports Server (NTRS)
Erzberger, H.; Mclean, J. D.
1979-01-01
A concept for automatic terminal-area guidance, comprising two modes of operation, has been developed and evaluated in flight tests. In the first or predictive mode, fuel-efficient approach trajectories are synthesized in fast time. In the second or tracking mode, the synthesized trajectories are reconstructed and tracked automatically. An energy rate performance model derived from the lift, drag, and propulsion-system characteristics of the aircraft is used in the synthesis algorithm. The method optimizes the trajectory for the initial aircraft position and wind and temperature profiles encountered during each landing approach. The paper describes the design theory and discusses the results of simulations and flight tests using the Augmentor Wing Jet STOL Research Aircraft.
The Generic Resolution Advisor and Conflict Evaluator (GRACE) for Detect-And-Avoid (DAA) Systems
NASA Technical Reports Server (NTRS)
Abramson, Michael; Refai, Mohamad; Santiago, Confesor
2017-01-01
The paper describes the Generic Resolution Advisor and Conflict Evaluator (GRACE), a novel alerting and guidance algorithm that combines flexibility, robustness, and computational efficiency. GRACE is "generic" in that it makes no assumptions regarding temporal or spatial scales, aircraft performance, or its sensor and communication systems. Accordingly, GRACE is well suited to research applications where alerting and guidance is a central feature and requirements are fluid involving a wide range of aviation technologies. GRACE has been used at NASA in a number of real-time and fast-time experiments supporting evolving requirements of DAA research, including parametric studies, NAS-wide simulations, human-in-the-loop experiments, and live flight tests.
An Improved Text Localization Method for Natural Scene Images
NASA Astrophysics Data System (ADS)
Jiang, Mengdi; Cheng, Jianghua; Chen, Minghui; Ku, Xishu
2018-01-01
In order to extract text information effectively from natural scene image with complex background, multi-orientation perspective and multilingual languages, we present a new method based on the improved Stroke Feature Transform (SWT). Firstly, The Maximally Stable Extremal Region (MSER) method is used to detect text candidate regions. Secondly, the SWT algorithm is used in the candidate regions, which can improve the edge detection compared with tradition SWT method. Finally, the Frequency-tuned (FT) visual saliency is introduced to remove non-text candidate regions. The experiment results show that, the method can achieve good robustness for complex background with multi-orientation perspective, various characters and font sizes.
Algorithms for Maneuvering Spacecraft Around Small Bodies
NASA Technical Reports Server (NTRS)
Acikmese, A. Bechet; Bayard, David
2006-01-01
A document describes mathematical derivations and applications of autonomous guidance algorithms for maneuvering spacecraft in the vicinities of small astronomical bodies like comets or asteroids. These algorithms compute fuel- or energy-optimal trajectories for typical maneuvers by solving the associated optimal-control problems with relevant control and state constraints. In the derivations, these problems are converted from their original continuous (infinite-dimensional) forms to finite-dimensional forms through (1) discretization of the time axis and (2) spectral discretization of control inputs via a finite number of Chebyshev basis functions. In these doubly discretized problems, the Chebyshev coefficients are the variables. These problems are, variously, either convex programming problems or programming problems that can be convexified. The resulting discrete problems are convex parameter-optimization problems; this is desirable because one can take advantage of very efficient and robust algorithms that have been developed previously and are well established for solving such problems. These algorithms are fast, do not require initial guesses, and always converge to global optima. Following the derivations, the algorithms are demonstrated by applying them to numerical examples of flyby, descent-to-hover, and ascent-from-hover maneuvers.
NASA Astrophysics Data System (ADS)
Qian, Kun; Zhou, Huixin; Rong, Shenghui; Wang, Bingjian; Cheng, Kuanhong
2017-05-01
Infrared small target tracking plays an important role in applications including military reconnaissance, early warning and terminal guidance. In this paper, an effective algorithm based on the Singular Value Decomposition (SVD) and the improved Kernelized Correlation Filter (KCF) is presented for infrared small target tracking. Firstly, the super performance of the SVD-based algorithm is that it takes advantage of the target's global information and obtains a background estimation of an infrared image. A dim target is enhanced by subtracting the corresponding estimated background with update from the original image. Secondly, the KCF algorithm is combined with Gaussian Curvature Filter (GCF) to eliminate the excursion problem. The GCF technology is adopted to preserve the edge and eliminate the noise of the base sample in the KCF algorithm, helping to calculate the classifier parameter for a small target. At last, the target position is estimated with a response map, which is obtained via the kernelized classifier. Experimental results demonstrate that the presented algorithm performs favorably in terms of efficiency and accuracy, compared with several state-of-the-art algorithms.
Removing Ambiguities In Remotely Sensed Winds
NASA Technical Reports Server (NTRS)
Shaffer, Scott J.; Dunbar, Roy S.; Hsiao, Shuchi V.; Long, David G.
1991-01-01
Algorithm removes ambiguities in choices of candidate ocean-surface wind vectors estimated from measurements of radar backscatter from ocean waves. Increases accuracies of estimates of winds without requiring new instrumentation. Incorporates vector-median filtering function.
Efficient video-equipped fire detection approach for automatic fire alarm systems
NASA Astrophysics Data System (ADS)
Kang, Myeongsu; Tung, Truong Xuan; Kim, Jong-Myon
2013-01-01
This paper proposes an efficient four-stage approach that automatically detects fire using video capabilities. In the first stage, an approximate median method is used to detect video frame regions involving motion. In the second stage, a fuzzy c-means-based clustering algorithm is employed to extract candidate regions of fire from all of the movement-containing regions. In the third stage, a gray level co-occurrence matrix is used to extract texture parameters by tracking red-colored objects in the candidate regions. These texture features are, subsequently, used as inputs of a back-propagation neural network to distinguish between fire and nonfire. Experimental results indicate that the proposed four-stage approach outperforms other fire detection algorithms in terms of consistently increasing the accuracy of fire detection in both indoor and outdoor test videos.
Bromuri, Stefano; Zufferey, Damien; Hennebert, Jean; Schumacher, Michael
2014-10-01
This research is motivated by the issue of classifying illnesses of chronically ill patients for decision support in clinical settings. Our main objective is to propose multi-label classification of multivariate time series contained in medical records of chronically ill patients, by means of quantization methods, such as bag of words (BoW), and multi-label classification algorithms. Our second objective is to compare supervised dimensionality reduction techniques to state-of-the-art multi-label classification algorithms. The hypothesis is that kernel methods and locality preserving projections make such algorithms good candidates to study multi-label medical time series. We combine BoW and supervised dimensionality reduction algorithms to perform multi-label classification on health records of chronically ill patients. The considered algorithms are compared with state-of-the-art multi-label classifiers in two real world datasets. Portavita dataset contains 525 diabetes type 2 (DT2) patients, with co-morbidities of DT2 such as hypertension, dyslipidemia, and microvascular or macrovascular issues. MIMIC II dataset contains 2635 patients affected by thyroid disease, diabetes mellitus, lipoid metabolism disease, fluid electrolyte disease, hypertensive disease, thrombosis, hypotension, chronic obstructive pulmonary disease (COPD), liver disease and kidney disease. The algorithms are evaluated using multi-label evaluation metrics such as hamming loss, one error, coverage, ranking loss, and average precision. Non-linear dimensionality reduction approaches behave well on medical time series quantized using the BoW algorithm, with results comparable to state-of-the-art multi-label classification algorithms. Chaining the projected features has a positive impact on the performance of the algorithm with respect to pure binary relevance approaches. The evaluation highlights the feasibility of representing medical health records using the BoW for multi-label classification tasks. The study also highlights that dimensionality reduction algorithms based on kernel methods, locality preserving projections or both are good candidates to deal with multi-label classification tasks in medical time series with many missing values and high label density. Copyright © 2014 Elsevier Inc. All rights reserved.
Algorithm of pulmonary emphysema extraction using thoracic 3D CT images
NASA Astrophysics Data System (ADS)
Saita, Shinsuke; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Ohmatsu, Hironobu; Tominaga, Keigo; Eguchi, Kenji; Moriyama, Noriyuki
2007-03-01
Recently, due to aging and smoking, emphysema patients are increasing. The restoration of alveolus which was destroyed by emphysema is not possible, thus early detection of emphysema is desired. We describe a quantitative algorithm for extracting emphysematous lesions and quantitatively evaluate their distribution patterns using low dose thoracic 3-D CT images. The algorithm identified lung anatomies, and extracted low attenuation area (LAA) as emphysematous lesion candidates. Applying the algorithm to thoracic 3-D CT images and then by follow-up 3-D CT images, we demonstrate its potential effectiveness to assist radiologists and physicians to quantitatively evaluate the emphysematous lesions distribution and their evolution in time interval changes.
Algorithm of pulmonary emphysema extraction using low dose thoracic 3D CT images
NASA Astrophysics Data System (ADS)
Saita, S.; Kubo, M.; Kawata, Y.; Niki, N.; Nakano, Y.; Omatsu, H.; Tominaga, K.; Eguchi, K.; Moriyama, N.
2006-03-01
Recently, due to aging and smoking, emphysema patients are increasing. The restoration of alveolus which was destroyed by emphysema is not possible, thus early detection of emphysema is desired. We describe a quantitative algorithm for extracting emphysematous lesions and quantitatively evaluate their distribution patterns using low dose thoracic 3-D CT images. The algorithm identified lung anatomies, and extracted low attenuation area (LAA) as emphysematous lesion candidates. Applying the algorithm to 100 thoracic 3-D CT images and then by follow-up 3-D CT images, we demonstrate its potential effectiveness to assist radiologists and physicians to quantitatively evaluate the emphysematous lesions distribution and their evolution in time interval changes.
VizieR Online Data Catalog: HI supershells catalogue (Suad+, 2014)
NASA Astrophysics Data System (ADS)
Suad, L. A.; Caiafa, C. F.; Arnal, E. M.; Cichowolski, S.
2014-02-01
The HI supershells catalogue was carried out making use of the Leiden-Argentine-Bonn (LAB) HI survey in the outer part of the Galaxy. The identification of the supershell candidates was made using a combination of two techniques: a visual inspection one plus an automatic searching algorithm. A total of 566 supershell candidates were identified. Most of them (347) are located in the second galactic quadrant, while 219 were found in the third one. (1 data file).
An Evolutionary Algorithm for Feature Subset Selection in Hard Disk Drive Failure Prediction
ERIC Educational Resources Information Center
Bhasin, Harpreet
2011-01-01
Hard disk drives are used in everyday life to store critical data. Although they are reliable, failure of a hard disk drive can be catastrophic, especially in applications like medicine, banking, air traffic control systems, missile guidance systems, computer numerical controlled machines, and more. The use of Self-Monitoring, Analysis and…
Adaptive Missile Flight Control for Complex Aerodynamic Phenomena
2017-08-09
at high maneuvering conditions motivate guidance approaches that can accommodate uncertainty. Flight control algorithms are one component...performance, but system uncertainty is not directly addressed. Linear, parameter-varying37,38 approaches for munitions expand on optimal control by... post -canard stall. We propose to model these complex aerodynamic mechanisms and use these models in formulating flight controllers within the
Macedo, Rita; Nunes, Alexandra; Portugal, Isabel; Duarte, Sílvia; Vieira, Luís; Gomes, João Paulo
2018-05-01
Whole-genome sequencing (WGS)-based bioinformatics platforms for the rapid prediction of resistance will soon be implemented in the Tuberculosis (TB) laboratory, but their accuracy assessment still needs to be strengthened. Here, we fully-sequenced a total of 54 multidrug-resistant (MDR) and five susceptible TB strains and performed, for the first time, a simultaneous evaluation of the major four free online platforms (TB Profiler, PhyResSE, Mykrobe Predictor and TGS-TB). Overall, the sensitivity of resistance prediction ranged from 84.3% using Mykrobe predictor to 95.2% using TB profiler, while specificity was higher and homogeneous among platforms. TB profiler revealed the best performance robustness (sensitivity, specificity, PPV and NPV above 95%), followed by TGS-TB (all parameters above 90%). We also observed a few discrepancies between phenotype and genotype, where, in some cases, it was possible to pin-point some "candidate" mutations (e.g., in the rpsL promoter region) highlighting the need for their confirmation through mutagenesis assays and potential review of the anti-TB genetic databases. The rampant development of the bioinformatics algorithms and the tremendously reduced time-frame until the clinician may decide for a definitive and most effective treatment will certainly trigger the technological transition where WGS-based bioinformatics platforms could replace phenotypic drug susceptibility testing for TB. Copyright © 2018 Elsevier Ltd. All rights reserved.
A novel artificial bee colony algorithm based on modified search equation and orthogonal learning.
Gao, Wei-feng; Liu, San-yang; Huang, Ling-ling
2013-06-01
The artificial bee colony (ABC) algorithm is a relatively new optimization technique which has been shown to be competitive to other population-based algorithms. However, ABC has an insufficiency regarding its solution search equation, which is good at exploration but poor at exploitation. To address this concerning issue, we first propose an improved ABC method called as CABC where a modified search equation is applied to generate a candidate solution to improve the search ability of ABC. Furthermore, we use the orthogonal experimental design (OED) to form an orthogonal learning (OL) strategy for variant ABCs to discover more useful information from the search experiences. Owing to OED's good character of sampling a small number of well representative combinations for testing, the OL strategy can construct a more promising and efficient candidate solution. In this paper, the OL strategy is applied to three versions of ABC, i.e., the standard ABC, global-best-guided ABC (GABC), and CABC, which yields OABC, OGABC, and OCABC, respectively. The experimental results on a set of 22 benchmark functions demonstrate the effectiveness and efficiency of the modified search equation and the OL strategy. The comparisons with some other ABCs and several state-of-the-art algorithms show that the proposed algorithms significantly improve the performance of ABC. Moreover, OCABC offers the highest solution quality, fastest global convergence, and strongest robustness among all the contenders on almost all the test functions.
Flight Evaluation of Center-TRACON Automation System Trajectory Prediction Process
NASA Technical Reports Server (NTRS)
Williams, David H.; Green, Steven M.
1998-01-01
Two flight experiments (Phase 1 in October 1992 and Phase 2 in September 1994) were conducted to evaluate the accuracy of the Center-TRACON Automation System (CTAS) trajectory prediction process. The Transport Systems Research Vehicle (TSRV) Boeing 737 based at Langley Research Center flew 57 arrival trajectories that included cruise and descent segments; at the same time, descent clearance advisories from CTAS were followed. Actual trajectories of the airplane were compared with the trajectories predicted by the CTAS trajectory synthesis algorithms and airplane Flight Management System (FMS). Trajectory prediction accuracy was evaluated over several levels of cockpit automation that ranged from a conventional cockpit to performance-based FMS vertical navigation (VNAV). Error sources and their magnitudes were identified and measured from the flight data. The major source of error during these tests was found to be the predicted winds aloft used by CTAS. The most significant effect related to flight guidance was the cross-track and turn-overshoot errors associated with conventional VOR guidance. FMS lateral navigation (LNAV) guidance significantly reduced both the cross-track and turn-overshoot error. Pilot procedures and VNAV guidance were found to significantly reduce the vertical profile errors associated with atmospheric and airplane performance model errors.
Energy management of three-dimensional minimum-time intercept. [for aircraft flight optimization
NASA Technical Reports Server (NTRS)
Kelley, H. J.; Cliff, E. M.; Visser, H. G.
1985-01-01
A real-time computer algorithm to control and optimize aircraft flight profiles is described and applied to a three-dimensional minimum-time intercept mission. The proposed scheme has roots in two well known techniques: singular perturbations and neighboring-optimal guidance. Use of singular-perturbation ideas is made in terms of the assumed trajectory-family structure. A heading/energy family of prestored point-mass-model state-Euler solutions is used as the baseline in this scheme. The next step is to generate a near-optimal guidance law that will transfer the aircraft to the vicinity of this reference family. The control commands fed to the autopilot (bank angle and load factor) consist of the reference controls plus correction terms which are linear combinations of the altitude and path-angle deviations from reference values, weighted by a set of precalculated gains. In this respect the proposed scheme resembles neighboring-optimal guidance. However, in contrast to the neighboring-optimal guidance scheme, the reference control and state variables as well as the feedback gains are stored as functions of energy and heading in the present approach. Some numerical results comparing open-loop optimal and approximate feedback solutions are presented.
NASA Technical Reports Server (NTRS)
Phinney, D. E. (Principal Investigator)
1980-01-01
An algorithm for estimating spectral crop calendar shifts of spring small grains was applied to 1978 spring wheat fields. The algorithm provides estimates of the date of peak spectral response by maximizing the cross correlation between a reference profile and the observed multitemporal pattern of Kauth-Thomas greenness for a field. A methodology was developed for estimation of crop development stage from the date of peak spectral response. Evaluation studies showed that the algorithm provided stable estimates with no geographical bias. Crop development stage estimates had a root mean square error near 10 days. The algorithm was recommended for comparative testing against other models which are candidates for use in AgRISTARS experiments.
Self-tuning regulators for multicyclic control of helicopter vibration
NASA Technical Reports Server (NTRS)
Johnson, W.
1982-01-01
A class of algorithms for the multicyclic control of helicopter vibration and loads is derived and discussed. This class is characterized by a linear, quasi-static, frequency-domain model of the helicopter response to control; identification of the helicopter model by least-squared-error or Kalman filter methods; and a minimum variance or quadratic performance function controller. Previous research on such controllers is reviewed. The derivations and discussions cover the helicopter model; the identification problem, including both off-line and on-line (recursive) algorithms; the control problem, including both open-loop and closed-loop feedback; and the various regulator configurations possible within this class. Conclusions from analysis and numerical simulations of the regulators provide guidance in the design and selection of algorithms for further development, including wind tunnel and flight tests.
Preliminary Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)
NASA Technical Reports Server (NTRS)
Folta, David; Hawkins, Albin
2001-01-01
NASA's first autonomous formation flying mission is completing a primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center has implemented an autonomous universal three-axis formation flying algorithm in executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard design and presents the preliminary validation results of this unique system. Results from functionality assessment and autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a stand-alone algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, A
Purpose: To develop a tumor response model which could be uses to compute tumor hypoxic fraction using serial volumetric tumor imaging. This algorithm may be used for treatment response assessment and also for guidance of more expensive PET imaging of hypoxia. Methods: Previously developed two-level cell population tumor response model was modified to include a third cell level describing hypoxic and necrotic cells. This third level was considered constant value during radiotherapy treatment; therefore, inclusion additional parameter did not compromise stability of model fitting to imaging data. Fitting the model to serial volumetric imaging data was performed using a leastmore » squares objective function and simulated annealing algorithm. The problem of reconstruction of radiobiological parameters from serial imaging data was considered as inverse ill-posed problem described by the Fredholm integral equation of the first kind. Variational regularization was used to stabilize solutions. Results: To evaluate performance of the algorithm, we used a set of serial CT imaging data on tumor-volume for 14 head and neck cancer patients. The hypoxic fractions were reconstructed for each patient and the distribution of hypoxic fractions was compared to the distribution of initial hypoxic fractions previously measured using histograph. The measured and reconstructed from imaging data distributions of hypoxic fractions are in good agreement. The reconstructed distribution of cell surviving fraction was also in better agreement with in vitro data than previously obtained using the two-level cell population model. Conclusion: Our results indicate that it is possible to evaluate the initial hypoxic tumor fraction using serial volumetric imaging and a tumor response model. This algorithm can be used for treatment response assessment and guidance of more expensive PET imaging.« less
Optimization of High-Dimensional Functions through Hypercube Evaluation
Abiyev, Rahib H.; Tunay, Mustafa
2015-01-01
A novel learning algorithm for solving global numerical optimization problems is proposed. The proposed learning algorithm is intense stochastic search method which is based on evaluation and optimization of a hypercube and is called the hypercube optimization (HO) algorithm. The HO algorithm comprises the initialization and evaluation process, displacement-shrink process, and searching space process. The initialization and evaluation process initializes initial solution and evaluates the solutions in given hypercube. The displacement-shrink process determines displacement and evaluates objective functions using new points, and the search area process determines next hypercube using certain rules and evaluates the new solutions. The algorithms for these processes have been designed and presented in the paper. The designed HO algorithm is tested on specific benchmark functions. The simulations of HO algorithm have been performed for optimization of functions of 1000-, 5000-, or even 10000 dimensions. The comparative simulation results with other approaches demonstrate that the proposed algorithm is a potential candidate for optimization of both low and high dimensional functions. PMID:26339237
Image-based global registration system for bronchoscopy guidance
NASA Astrophysics Data System (ADS)
Khare, Rahul; Higgins, William E.
2011-03-01
Previous studies have shown that bronchoscopy guidance systems improve accuracy and reduce skill variation among physicians during bronchoscopy. In the past, we presented an image-based bronchoscopy guidance system that has been extensively validated in live bronchoscopic procedures. However, this system cannot actively recover from adverse events, such as patient coughing or dynamic airway collapses. After such events, the bronchoscope position is recovered only by moving back to a previously seen and easily identifiable bifurcation such as the main carina. Furthermore, the system requires an attending technician to closely follow the physician's movement of the bronchoscope to avoid misguidance. Also, when the physician is forced to advance the bronchoscope across multiple bifurcations, the system is not able to detect faulty maneuvers. We propose two system-level solutions. The first solution is a system-level guidance strategy that incorporates a global-registration algorithm to provide the physician with updated navigational and guidance information during bronchoscopy. The system can handle general navigation to a region of interest (ROI), as well as adverse events, and it requires minimal commands so that it can be directly controlled by the physician. The second solution visualizes the global picture of all the bifurcations and their relative orientations in advance and suggests the maneuvers needed by the bronchoscope to approach the ROI. Guided bronchoscopy results using human airway-tree phantoms demonstrate the potential of the two solutions.
Ensuring Interoperability between UAS Detect-and-Avoid and Manned Aircraft Collision Avoidance
NASA Technical Reports Server (NTRS)
Thipphavong, David; Cone, Andrew; Lee, Seung Man; Santiago, Confesor
2017-01-01
The UAS community in the United States has identified the need for a collision avoidance region in which UAS Detect-and-Avoid (DAA) vertical guidance is restricted to preclude interoperability issues with manned aircraft collision avoidance system vertical resolution advisories (RAs). This paper documents the process by which the collision avoidance region was defined. Three candidate definitions were evaluated on 1.3 million simulated pairwise encounters between UAS and manned aircraft covering a wide range of horizontal and vertical closure rates, angles, and miss distances. They were evaluated with regard to UAS DAA interoperability with manned aircraft collision avoidance systems in terms of: 1) the primary objective of restricting DAA vertical guidance before RAs when the aircraft are close, and 2) the secondary objective of avoiding unnecessary restrictions of DAA vertical guidance at a DAA alert when the aircraft are further apart. The collision avoidance region definition that fully achieves the primary objective and best achieves the secondary objective was recommended to and accepted by the UAS community in the United States. By this definition, UAS and manned aircraft are in the collision avoidance region--during which DAA vertical guidance is restricted--when the time to closest point of approach is less than 50 seconds and either the time to co-altitude is less than 50 seconds or the current vertical separation is less than 800 feet.
NASA Technical Reports Server (NTRS)
Thipphavong, David; Cone, Andrew; Lee, Seungman
2017-01-01
The Unmanned Aircraft Systems (UAS) community in the United States has identified the need for a collision avoidance region in which UAS Detect-and-Avoid (DAA) vertical guidance is restricted to preclude interoperability issues with manned aircraft collision avoidance system vertical resolution advisories (RAs). This paper documents the process by which the collision avoidance region was defined. Three candidate definitions were evaluated on 1.3 million simulated pairwise encounters between UAS and manned aircraft covering a wide range of horizontal and vertical closure rates, angles, and miss distances. Each definition was evaluated with regard to UAS DAA interoperability with manned aircraft collision avoidance in terms of how well it achieved: 1) the primary objective of restricting DAA vertical guidance prior to RAs when the aircraft are close, and 2) the secondary objective of avoiding unnecessary restrictions of DAA vertical guidance at DAA alerts when the aircraft are further apart. The collision avoidance region definition that fully achieves the primary objective and best achieves the secondary objective was recommended to and accepted by the UAS community in the United States. By this definition, UAS and manned aircraft are in the collision avoidance region where DAA vertical guidance is restricted when the time to closest point of approach (CPA) is less than 50 seconds and either the time to co-altitude is less than 50 seconds or the current vertical separation is less than 800 feet.
Design criteria for payload workstation accommodations
NASA Technical Reports Server (NTRS)
Watters, H. H.; Stokes, J. W.
1975-01-01
Anticipated shuttle sortie payload man-system design criteria needs are investigated. Man-system interactions for the scientific disciplines are listed and the extent is assessed to which documented Skylab experience is expected to provide system design guidance for each of the identified interactions. Where the analysis revealed that the reduced Skylab data does not answer the anticipated needs candidate criteria, based on unreduced Skylab data, available prior research, original analysis, or related requirements derived from previous space programs, are provided.
Force Health Protection and Readiness, Volume 5, Issue 2
2010-01-01
the immune responses to a vaccine, both in the laboratory and animal models; and design vaccine candidates. The total cost of the trial was $105...guidances are saying if you create a program it has to be sustainable and the hand-off to the host nation or NGOs working with the host nation is...involved in creating this instruction,” said Donald Thurston, a Public Health policy analyst with CMM. “They have incorporated the input of
Integrated guidance and control for microsatellite real-time automated proximity operations
NASA Astrophysics Data System (ADS)
Chen, Ying; He, Zhen; Zhou, Ding; Yu, Zhenhua; Li, Shunli
2018-07-01
This paper investigates the trajectory planning and control of autonomous spacecraft proximity operations with impulsive dynamics. A new integrated guidance and control scheme is developed to perform automated close-range rendezvous for underactuated microsatellites. To efficiently prevent collision, a modified RRT* trajectory planning algorithm is proposed under this context. Several engineering constraints such as collision avoidance, plume impingement, field of view and control feasibility are considered simultaneously. Then, the feedback controller that employs a turn-burn-turn strategy with a combined impulsive orbital control and finite-time attitude control is designed to ensure the implementation of planned trajectory. Finally, the performance of trajectory planner and controller are evaluated through numerical tests. Simulation results indicate the real-time implementability of the proposed integrated guidance and control scheme with position control error less than 0.5 m and velocity control error less than 0.05 m/s. Consequently, the proposed scheme offers the potential for wide applications, such as on-orbit maintenance, space surveillance and debris removal.
Kamimura, Hidetaka; Ito, Satoshi
2016-01-01
1. Chimeric mice with humanized livers are expected to be a novel tool for new drug development. This review discusses four applications where these animals can be used efficiently to collect supportive data for selecting the best compound in the final stage of drug discovery. 2. The first application is selection of the final compound based on estimated pharmacokinetic parameters in humans. Since chimeric mouse livers are highly repopulated with human hepatocytes, hepatic clearance values in vivo could be used preferentially to estimate pharmacokinetic profiles for humans. 3. The second is prediction of human-specific or disproportionate metabolites. Chimeric mice reproduce human-specific metabolites of drugs under development to conform to ICH guidance M3(R2), except for compounds that were extensively eliminated by co-existing mouse hepatocytes. 4. The third is identifying metabolites with distinct pharmacokinetic profiles in humans. Slow metabolite elimination specifically in humans increases its exposure level, but if its elimination is faster in laboratory animals, the animal exposure level might not satisfy ICH guidance M3(R2). 5. Finally, two examples of reproducing acute liver toxicity in chimeric mice are introduced. Integrated pharmacokinetics, metabolism and toxicity information are expected to assist pharmaceutical scientists in selecting the best candidate compound in new drug development.
A triangle voting algorithm based on double feature constraints for star sensors
NASA Astrophysics Data System (ADS)
Fan, Qiaoyun; Zhong, Xuyang
2018-02-01
A novel autonomous star identification algorithm is presented in this study. In the proposed algorithm, each sensor star constructs multi-triangle with its bright neighbor stars and obtains its candidates by triangle voting process, in which the triangle is considered as the basic voting element. In order to accelerate the speed of this algorithm and reduce the required memory for star database, feature extraction is carried out to reduce the dimension of triangles and each triangle is described by its base and height. During the identification period, the voting scheme based on double feature constraints is proposed to implement triangle voting. This scheme guarantees that only the catalog star satisfying two features can vote for the sensor star, which improves the robustness towards false stars. The simulation and real star image test demonstrate that compared with the other two algorithms, the proposed algorithm is more robust towards position noise, magnitude noise and false stars.
A Model-Based Approach for the Measurement of Eye Movements Using Image Processing
NASA Technical Reports Server (NTRS)
Sung, Kwangjae; Reschke, Millard F.
1997-01-01
This paper describes a video eye-tracking algorithm which searches for the best fit of the pupil modeled as a circular disk. The algorithm is robust to common image artifacts such as the droopy eyelids and light reflections while maintaining the measurement resolution available by the centroid algorithm. The presented algorithm is used to derive the pupil size and center coordinates, and can be combined with iris-tracking techniques to measure ocular torsion. A comparison search method of pupil candidates using pixel coordinate reference lookup tables optimizes the processing requirements for a least square fit of the circular disk model. This paper includes quantitative analyses and simulation results for the resolution and the robustness of the algorithm. The algorithm presented in this paper provides a platform for a noninvasive, multidimensional eye measurement system which can be used for clinical and research applications requiring the precise recording of eye movements in three-dimensional space.
Analytic TOF PET reconstruction algorithm within DIRECT data partitioning framework
Matej, Samuel; Daube-Witherspoon, Margaret E.; Karp, Joel S.
2016-01-01
Iterative reconstruction algorithms are routinely used for clinical practice; however, analytic algorithms are relevant candidates for quantitative research studies due to their linear behavior. While iterative algorithms also benefit from the inclusion of accurate data and noise models the widespread use of TOF scanners with less sensitivity to noise and data imperfections make analytic algorithms even more promising. In our previous work we have developed a novel iterative reconstruction approach (Direct Image Reconstruction for TOF) providing convenient TOF data partitioning framework and leading to very efficient reconstructions. In this work we have expanded DIRECT to include an analytic TOF algorithm with confidence weighting incorporating models of both TOF and spatial resolution kernels. Feasibility studies using simulated and measured data demonstrate that analytic-DIRECT with appropriate resolution and regularization filters is able to provide matched bias vs. variance performance to iterative TOF reconstruction with a matched resolution model. PMID:27032968
Analytic TOF PET reconstruction algorithm within DIRECT data partitioning framework
NASA Astrophysics Data System (ADS)
Matej, Samuel; Daube-Witherspoon, Margaret E.; Karp, Joel S.
2016-05-01
Iterative reconstruction algorithms are routinely used for clinical practice; however, analytic algorithms are relevant candidates for quantitative research studies due to their linear behavior. While iterative algorithms also benefit from the inclusion of accurate data and noise models the widespread use of time-of-flight (TOF) scanners with less sensitivity to noise and data imperfections make analytic algorithms even more promising. In our previous work we have developed a novel iterative reconstruction approach (DIRECT: direct image reconstruction for TOF) providing convenient TOF data partitioning framework and leading to very efficient reconstructions. In this work we have expanded DIRECT to include an analytic TOF algorithm with confidence weighting incorporating models of both TOF and spatial resolution kernels. Feasibility studies using simulated and measured data demonstrate that analytic-DIRECT with appropriate resolution and regularization filters is able to provide matched bias versus variance performance to iterative TOF reconstruction with a matched resolution model.
Sherer, Eric A; Sale, Mark E; Pollock, Bruce G; Belani, Chandra P; Egorin, Merrill J; Ivy, Percy S; Lieberman, Jeffrey A; Manuck, Stephen B; Marder, Stephen R; Muldoon, Matthew F; Scher, Howard I; Solit, David B; Bies, Robert R
2012-08-01
A limitation in traditional stepwise population pharmacokinetic model building is the difficulty in handling interactions between model components. To address this issue, a method was previously introduced which couples NONMEM parameter estimation and model fitness evaluation to a single-objective, hybrid genetic algorithm for global optimization of the model structure. In this study, the generalizability of this approach for pharmacokinetic model building is evaluated by comparing (1) correct and spurious covariate relationships in a simulated dataset resulting from automated stepwise covariate modeling, Lasso methods, and single-objective hybrid genetic algorithm approaches to covariate identification and (2) information criteria values, model structures, convergence, and model parameter values resulting from manual stepwise versus single-objective, hybrid genetic algorithm approaches to model building for seven compounds. Both manual stepwise and single-objective, hybrid genetic algorithm approaches to model building were applied, blinded to the results of the other approach, for selection of the compartment structure as well as inclusion and model form of inter-individual and inter-occasion variability, residual error, and covariates from a common set of model options. For the simulated dataset, stepwise covariate modeling identified three of four true covariates and two spurious covariates; Lasso identified two of four true and 0 spurious covariates; and the single-objective, hybrid genetic algorithm identified three of four true covariates and one spurious covariate. For the clinical datasets, the Akaike information criterion was a median of 22.3 points lower (range of 470.5 point decrease to 0.1 point decrease) for the best single-objective hybrid genetic-algorithm candidate model versus the final manual stepwise model: the Akaike information criterion was lower by greater than 10 points for four compounds and differed by less than 10 points for three compounds. The root mean squared error and absolute mean prediction error of the best single-objective hybrid genetic algorithm candidates were a median of 0.2 points higher (range of 38.9 point decrease to 27.3 point increase) and 0.02 points lower (range of 0.98 point decrease to 0.74 point increase), respectively, than that of the final stepwise models. In addition, the best single-objective, hybrid genetic algorithm candidate models had successful convergence and covariance steps for each compound, used the same compartment structure as the manual stepwise approach for 6 of 7 (86 %) compounds, and identified 54 % (7 of 13) of covariates included by the manual stepwise approach and 16 covariate relationships not included by manual stepwise models. The model parameter values between the final manual stepwise and best single-objective, hybrid genetic algorithm models differed by a median of 26.7 % (q₁ = 4.9 % and q₃ = 57.1 %). Finally, the single-objective, hybrid genetic algorithm approach was able to identify models capable of estimating absorption rate parameters for four compounds that the manual stepwise approach did not identify. The single-objective, hybrid genetic algorithm represents a general pharmacokinetic model building methodology whose ability to rapidly search the feasible solution space leads to nearly equivalent or superior model fits to pharmacokinetic data.
NASA Astrophysics Data System (ADS)
Witharana, Chandi; LaRue, Michelle A.; Lynch, Heather J.
2016-03-01
Remote sensing is a rapidly developing tool for mapping the abundance and distribution of Antarctic wildlife. While both panchromatic and multispectral imagery have been used in this context, image fusion techniques have received little attention. We tasked seven widely-used fusion algorithms: Ehlers fusion, hyperspherical color space fusion, high-pass fusion, principal component analysis (PCA) fusion, University of New Brunswick fusion, and wavelet-PCA fusion to resolution enhance a series of single-date QuickBird-2 and Worldview-2 image scenes comprising penguin guano, seals, and vegetation. Fused images were assessed for spectral and spatial fidelity using a variety of quantitative quality indicators and visual inspection methods. Our visual evaluation elected the high-pass fusion algorithm and the University of New Brunswick fusion algorithm as best for manual wildlife detection while the quantitative assessment suggested the Gram-Schmidt fusion algorithm and the University of New Brunswick fusion algorithm as best for automated classification. The hyperspherical color space fusion algorithm exhibited mediocre results in terms of spectral and spatial fidelities. The PCA fusion algorithm showed spatial superiority at the expense of spectral inconsistencies. The Ehlers fusion algorithm and the wavelet-PCA algorithm showed the weakest performances. As remote sensing becomes a more routine method of surveying Antarctic wildlife, these benchmarks will provide guidance for image fusion and pave the way for more standardized products for specific types of wildlife surveys.
Cuevas, Erik; Díaz, Margarita
2015-01-01
In this paper, a new method for robustly estimating multiple view relations from point correspondences is presented. The approach combines the popular random sampling consensus (RANSAC) algorithm and the evolutionary method harmony search (HS). With this combination, the proposed method adopts a different sampling strategy than RANSAC to generate putative solutions. Under the new mechanism, at each iteration, new candidate solutions are built taking into account the quality of the models generated by previous candidate solutions, rather than purely random as it is the case of RANSAC. The rules for the generation of candidate solutions (samples) are motivated by the improvisation process that occurs when a musician searches for a better state of harmony. As a result, the proposed approach can substantially reduce the number of iterations still preserving the robust capabilities of RANSAC. The method is generic and its use is illustrated by the estimation of homographies, considering synthetic and real images. Additionally, in order to demonstrate the performance of the proposed approach within a real engineering application, it is employed to solve the problem of position estimation in a humanoid robot. Experimental results validate the efficiency of the proposed method in terms of accuracy, speed, and robustness.
Sun, Yahui; Hameed, Pathima Nusrath; Verspoor, Karin; Halgamuge, Saman
2016-12-05
Drug repositioning can reduce the time, costs and risks of drug development by identifying new therapeutic effects for known drugs. It is challenging to reposition drugs as pharmacological data is large and complex. Subnetwork identification has already been used to simplify the visualization and interpretation of biological data, but it has not been applied to drug repositioning so far. In this paper, we fill this gap by proposing a new Physarum-inspired Prize-Collecting Steiner Tree algorithm to identify subnetworks for drug repositioning. Drug Similarity Networks (DSN) are generated using the chemical, therapeutic, protein, and phenotype features of drugs. In DSNs, vertex prizes and edge costs represent the similarities and dissimilarities between drugs respectively, and terminals represent drugs in the cardiovascular class, as defined in the Anatomical Therapeutic Chemical classification system. A new Physarum-inspired Prize-Collecting Steiner Tree algorithm is proposed in this paper to identify subnetworks. We apply both the proposed algorithm and the widely-used GW algorithm to identify subnetworks in our 18 generated DSNs. In these DSNs, our proposed algorithm identifies subnetworks with an average Rand Index of 81.1%, while the GW algorithm can only identify subnetworks with an average Rand Index of 64.1%. We select 9 subnetworks with high Rand Index to find drug repositioning opportunities. 10 frequently occurring drugs in these subnetworks are identified as candidates to be repositioned for cardiovascular diseases. We find evidence to support previous discoveries that nitroglycerin, theophylline and acarbose may be able to be repositioned for cardiovascular diseases. Moreover, we identify seven previously unknown drug candidates that also may interact with the biological cardiovascular system. These discoveries show our proposed Prize-Collecting Steiner Tree approach as a promising strategy for drug repositioning.
NiftySim: A GPU-based nonlinear finite element package for simulation of soft tissue biomechanics.
Johnsen, Stian F; Taylor, Zeike A; Clarkson, Matthew J; Hipwell, John; Modat, Marc; Eiben, Bjoern; Han, Lianghao; Hu, Yipeng; Mertzanidou, Thomy; Hawkes, David J; Ourselin, Sebastien
2015-07-01
NiftySim, an open-source finite element toolkit, has been designed to allow incorporation of high-performance soft tissue simulation capabilities into biomedical applications. The toolkit provides the option of execution on fast graphics processing unit (GPU) hardware, numerous constitutive models and solid-element options, membrane and shell elements, and contact modelling facilities, in a simple to use library. The toolkit is founded on the total Lagrangian explicit dynamics (TLEDs) algorithm, which has been shown to be efficient and accurate for simulation of soft tissues. The base code is written in C[Formula: see text], and GPU execution is achieved using the nVidia CUDA framework. In most cases, interaction with the underlying solvers can be achieved through a single Simulator class, which may be embedded directly in third-party applications such as, surgical guidance systems. Advanced capabilities such as contact modelling and nonlinear constitutive models are also provided, as are more experimental technologies like reduced order modelling. A consistent description of the underlying solution algorithm, its implementation with a focus on GPU execution, and examples of the toolkit's usage in biomedical applications are provided. Efficient mapping of the TLED algorithm to parallel hardware results in very high computational performance, far exceeding that available in commercial packages. The NiftySim toolkit provides high-performance soft tissue simulation capabilities using GPU technology for biomechanical simulation research applications in medical image computing, surgical simulation, and surgical guidance applications.
Automatic needle segmentation in 3D ultrasound images using 3D Hough transform
NASA Astrophysics Data System (ADS)
Zhou, Hua; Qiu, Wu; Ding, Mingyue; Zhang, Songgeng
2007-12-01
3D ultrasound (US) is a new technology that can be used for a variety of diagnostic applications, such as obstetrical, vascular, and urological imaging, and has been explored greatly potential in the applications of image-guided surgery and therapy. Uterine adenoma and uterine bleeding are the two most prevalent diseases in Chinese woman, and a minimally invasive ablation system using an RF button electrode which is needle-like is being used to destroy tumor cells or stop bleeding currently. Now a 3D US guidance system has been developed to avoid accidents or death of the patient by inaccurate localizations of the electrode and the tumor position during treatment. In this paper, we described two automated techniques, the 3D Hough Transform (3DHT) and the 3D Randomized Hough Transform (3DRHT), which is potentially fast, accurate, and robust to provide needle segmentation in 3D US image for use of 3D US imaging guidance. Based on the representation (Φ , θ , ρ , α ) of straight lines in 3D space, we used the 3DHT algorithm to segment needles successfully assumed that the approximate needle position and orientation are known in priori. The 3DRHT algorithm was developed to detect needles quickly without any information of the 3D US images. The needle segmentation techniques were evaluated using the 3D US images acquired by scanning water phantoms. The experiments demonstrated the feasibility of two 3D needle segmentation algorithms described in this paper.
NASA Technical Reports Server (NTRS)
Csank, Jeffrey; Stueber, Thomas
2012-01-01
An inlet system is being tested to evaluate methodologies for a turbine based combined cycle propulsion system to perform a controlled inlet mode transition. Prior to wind tunnel based hardware testing of controlled mode transitions, simulation models are used to test, debug, and validate potential control algorithms. One candidate simulation package for this purpose is the High Mach Transient Engine Cycle Code (HiTECC). The HiTECC simulation package models the inlet system, propulsion systems, thermal energy, geometry, nozzle, and fuel systems. This paper discusses the modification and redesign of the simulation package and control system to represent the NASA large-scale inlet model for Combined Cycle Engine mode transition studies, mounted in NASA Glenn s 10-foot by 10-foot Supersonic Wind Tunnel. This model will be used for designing and testing candidate control algorithms before implementation.
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Stueber, Thomas J.
2012-01-01
An inlet system is being tested to evaluate methodologies for a turbine based combined cycle propulsion system to perform a controlled inlet mode transition. Prior to wind tunnel based hardware testing of controlled mode transitions, simulation models are used to test, debug, and validate potential control algorithms. One candidate simulation package for this purpose is the High Mach Transient Engine Cycle Code (HiTECC). The HiTECC simulation package models the inlet system, propulsion systems, thermal energy, geometry, nozzle, and fuel systems. This paper discusses the modification and redesign of the simulation package and control system to represent the NASA large-scale inlet model for Combined Cycle Engine mode transition studies, mounted in NASA Glenn s 10- by 10-Foot Supersonic Wind Tunnel. This model will be used for designing and testing candidate control algorithms before implementation.
Refining Automatically Extracted Knowledge Bases Using Crowdsourcing.
Li, Chunhua; Zhao, Pengpeng; Sheng, Victor S; Xian, Xuefeng; Wu, Jian; Cui, Zhiming
2017-01-01
Machine-constructed knowledge bases often contain noisy and inaccurate facts. There exists significant work in developing automated algorithms for knowledge base refinement. Automated approaches improve the quality of knowledge bases but are far from perfect. In this paper, we leverage crowdsourcing to improve the quality of automatically extracted knowledge bases. As human labelling is costly, an important research challenge is how we can use limited human resources to maximize the quality improvement for a knowledge base. To address this problem, we first introduce a concept of semantic constraints that can be used to detect potential errors and do inference among candidate facts. Then, based on semantic constraints, we propose rank-based and graph-based algorithms for crowdsourced knowledge refining, which judiciously select the most beneficial candidate facts to conduct crowdsourcing and prune unnecessary questions. Our experiments show that our method improves the quality of knowledge bases significantly and outperforms state-of-the-art automatic methods under a reasonable crowdsourcing cost.
SU-E-T-446: Group-Sparsity Based Angle Generation Method for Beam Angle Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, H
2015-06-15
Purpose: This work is to develop the effective algorithm for beam angle optimization (BAO), with the emphasis on enabling further improvement from existing treatment-dependent templates based on clinical knowledge and experience. Methods: The proposed BAO algorithm utilizes a priori beam angle templates as the initial guess, and iteratively generates angular updates for this initial set, namely angle generation method, with improved dose conformality that is quantitatively measured by the objective function. That is, during each iteration, we select “the test angle” in the initial set, and use group-sparsity based fluence map optimization to identify “the candidate angle” for updating “themore » test angle”, for which all the angles in the initial set except “the test angle”, namely “the fixed set”, are set free, i.e., with no group-sparsity penalty, and the rest of angles including “the test angle” during this iteration are in “the working set”. And then “the candidate angle” is selected with the smallest objective function value from the angles in “the working set” with locally maximal group sparsity, and replaces “the test angle” if “the fixed set” with “the candidate angle” has a smaller objective function value by solving the standard fluence map optimization (with no group-sparsity regularization). Similarly other angles in the initial set are in turn selected as “the test angle” for angular updates and this chain of updates is iterated until no further new angular update is identified for a full loop. Results: The tests using the MGH public prostate dataset demonstrated the effectiveness of the proposed BAO algorithm. For example, the optimized angular set from the proposed BAO algorithm was better the MGH template. Conclusion: A new BAO algorithm is proposed based on the angle generation method via group sparsity, with improved dose conformality from the given template. Hao Gao was partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)« less
Arbitrary temporal shape pulsed fiber laser based on SPGD algorithm
NASA Astrophysics Data System (ADS)
Jiang, Min; Su, Rongtao; Zhang, Pengfei; Zhou, Pu
2018-06-01
A novel adaptive pulse shaping method for a pulsed master oscillator power amplifier fiber laser to deliver an arbitrary pulse shape is demonstrated. Numerical simulation has been performed to validate the feasibility of the scheme and provide meaningful guidance for the design of the algorithm control parameters. In the proof-of-concept experiment, information on the temporal property of the laser is exchanged and evaluated through a local area network, and the laser adjusted the parameters of the seed laser according to the monitored output of the system automatically. Various pulse shapes, including a rectangular shape, ‘M’ shape, and elliptical shape are achieved through experimental iterations.
A Multi-Scale Settlement Matching Algorithm Based on ARG
NASA Astrophysics Data System (ADS)
Yue, Han; Zhu, Xinyan; Chen, Di; Liu, Lingjia
2016-06-01
Homonymous entity matching is an important part of multi-source spatial data integration, automatic updating and change detection. Considering the low accuracy of existing matching methods in dealing with matching multi-scale settlement data, an algorithm based on Attributed Relational Graph (ARG) is proposed. The algorithm firstly divides two settlement scenes at different scales into blocks by small-scale road network and constructs local ARGs in each block. Then, ascertains candidate sets by merging procedures and obtains the optimal matching pairs by comparing the similarity of ARGs iteratively. Finally, the corresponding relations between settlements at large and small scales are identified. At the end of this article, a demonstration is presented and the results indicate that the proposed algorithm is capable of handling sophisticated cases.
Beretta, Lorenzo; Santaniello, Alessandro; van Riel, Piet L C M; Coenen, Marieke J H; Scorza, Raffaella
2010-08-06
Epistasis is recognized as a fundamental part of the genetic architecture of individuals. Several computational approaches have been developed to model gene-gene interactions in case-control studies, however, none of them is suitable for time-dependent analysis. Herein we introduce the Survival Dimensionality Reduction (SDR) algorithm, a non-parametric method specifically designed to detect epistasis in lifetime datasets. The algorithm requires neither specification about the underlying survival distribution nor about the underlying interaction model and proved satisfactorily powerful to detect a set of causative genes in synthetic epistatic lifetime datasets with a limited number of samples and high degree of right-censorship (up to 70%). The SDR method was then applied to a series of 386 Dutch patients with active rheumatoid arthritis that were treated with anti-TNF biological agents. Among a set of 39 candidate genes, none of which showed a detectable marginal effect on anti-TNF responses, the SDR algorithm did find that the rs1801274 SNP in the Fc gamma RIIa gene and the rs10954213 SNP in the IRF5 gene non-linearly interact to predict clinical remission after anti-TNF biologicals. Simulation studies and application in a real-world setting support the capability of the SDR algorithm to model epistatic interactions in candidate-genes studies in presence of right-censored data. http://sourceforge.net/projects/sdrproject/.
Zhang, Jian; Suo, Yan; Liu, Min; Xu, Xun
2018-06-01
Proliferative diabetic retinopathy (PDR) is one of the most common complications of diabetes and can lead to blindness. Proteomic studies have provided insight into the pathogenesis of PDR and a series of PDR-related genes has been identified but are far from fully characterized because the experimental methods are expensive and time consuming. In our previous study, we successfully identified 35 candidate PDR-related genes through the shortest-path algorithm. In the current study, we developed a computational method using the random walk with restart (RWR) algorithm and the protein-protein interaction (PPI) network to identify potential PDR-related genes. After some possible genes were obtained by the RWR algorithm, a three-stage filtration strategy, which includes the permutation test, interaction test and enrichment test, was applied to exclude potential false positives caused by the structure of PPI network, the poor interaction strength, and the limited similarity on gene ontology (GO) terms and biological pathways. As a result, 36 candidate genes were discovered by the method which was different from the 35 genes reported in our previous study. A literature review showed that 21 of these 36 genes are supported by previous experiments. These findings suggest the robustness and complementary effects of both our efforts using different computational methods, thus providing an alternative method to study PDR pathogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.
Best-next-view algorithm for three-dimensional scene reconstruction using range images
NASA Astrophysics Data System (ADS)
Banta, J. E.; Zhien, Yu; Wang, X. Z.; Zhang, G.; Smith, M. T.; Abidi, Mongi A.
1995-10-01
The primary focus of the research detailed in this paper is to develop an intelligent sensing module capable of automatically determining the optimal next sensor position and orientation during scene reconstruction. To facilitate a solution to this problem, we have assembled a system for reconstructing a 3D model of an object or scene from a sequence of range images. Candidates for the best-next-view position are determined by detecting and measuring occlusions to the range camera's view in an image. Ultimately, the candidate which will reveal the greatest amount of unknown scene information is selected as the best-next-view position. Our algorithm uses ray tracing to determine how much new information a given sensor perspective will reveal. We have tested our algorithm successfully on several synthetic range data streams, and found the system's results to be consistent with an intuitive human search. The models recovered by our system from range data compared well with the ideal models. Essentially, we have proven that range information of physical objects can be employed to automatically reconstruct a satisfactory dynamic 3D computer model at a minimal computational expense. This has obvious implications in the contexts of robot navigation, manufacturing, and hazardous materials handling. The algorithm we developed takes advantage of no a priori information in finding the best-next-view position.
Image-guided therapies for myocardial repair: concepts and practical implementation
Bengel, Frank M.; George, Richard T.; Schuleri, Karl H.; Lardo, Albert C.; Wollert, Kai C.
2013-01-01
Cell- and molecule-based therapeutic strategies to support wound healing and regeneration after myocardial infarction (MI) are under development. These emerging therapies aim at sustained preservation of ventricular function by enhancing tissue repair after myocardial ischaemia and reperfusion. Such therapies will benefit from guidance with regard to timing, regional targeting, suitable candidate selection, and effectiveness monitoring. Such guidance is effectively obtained by non-invasive tomographic imaging. Infarct size, tissue characteristics, muscle mass, and chamber geometry can be determined by magnetic resonance imaging and computed tomography. Radionuclide imaging can be used for the tracking of therapeutic agents and for the interrogation of molecular mechanisms such as inflammation, angiogenesis, and extracellular matrix activation. This review article portrays the hypothesis that an integrated approach with an early implementation of structural and molecular tomographic imaging in the development of novel therapies will provide a framework for achieving the goal of improved tissue repair after MI. PMID:23720377
Malaria vaccine research and development: the role of the WHO MALVAC committee
2013-01-01
The WHO Malaria Vaccine Advisory Committee (MALVAC) provides advice to WHO on strategic priorities, activities and technical issues related to global efforts to develop vaccines against malaria. MALVAC convened a series of meetings to obtain expert, impartial consensus views on the priorities and best practice for vaccine-related research and development strategies. The technical areas covered during these consultations included: guidance on clinical trial design for candidate sporozoite and asexual blood stage vaccines; measures of efficacy of malaria vaccines in Phase IIb and Phase III trials; standardization of immunoassays; the challenges of developing assays and designing trials for interventions against malaria transmission; modelling impact of anti-malarial interventions; whole organism malaria vaccines, and Plasmodium vivax vaccine-related research and evaluation. These informed discussions and opinions are summarized here to provide guidance on harmonization of strategies to help ensure high standards of practice and comparability between centres and the outcome of vaccine trials. PMID:24112689
Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing.
Hou, Maoxiang; Zhu, Feng; Wang, Ying; Wang, Yiping; Liao, Changrui; Liu, Shen; Lu, Peixiang
2016-11-28
A gas pressure sensor based on an antiresonant reflecting guidance mechanism in a hollow-core fiber (HCF) with an open microchannel is experimentally demonstrated for gas pressure sensing. The microchannel was created on the ring cladding of the HCF by femtosecond laser drilling to provide an air-core pressure equivalent to the external environment. The HCF cladding functions as an antiresonant reflecting waveguide, which induces sharp periodic lossy dips in the transmission spectrum. The proposed sensor exhibits a high pressure sensitivity of 3.592 nm/MPa and a low temperature cross-sensitivity of 7.5 kPa/°C. Theoretical analysis indicates that the observed high gas pressure sensitivity originates from the pressure induced refractive index change of the air in the hollow-core. The good operation durability and fabrication simplicity make the device an attractive candidate for reliable and highly sensitive gas pressure measurement in harsh environments.
Dynamic expression of a Hydra FGF at boundaries and termini.
Lange, Ellen; Bertrand, Stephanie; Holz, Oliver; Rebscher, Nicole; Hassel, Monika
2014-12-01
Guidance of cells and tissue sheets is an essential function in developing and differentiating animal tissues. In Hydra, where cells and tissue move dynamically due to constant cell proliferation towards the termini or into lateral, vegetative buds, factors essential for guidance are still unknown. Good candidates to take over this function are fibroblast growth factors (FGFs). We present the phylogeny of several Hydra FGFs and analysis of their expression patterns. One of the FGFs is expressed in all terminal regions targeted by tissue movement and at boundaries crossed by moving tissue and cells with an expression pattern slightly differing in two Hydra strains. A model addressing an involvement of this FGF in cell movement and morphogenesis is proposed: Hydra FGFf-expressing cells might serve as sources to attract tissue and cells towards the termini of the body column and across morphological boundaries. Moreover, a function in morphogenesis and/or differentiation of cells and tissue is suggested.
List-Based Simulated Annealing Algorithm for Traveling Salesman Problem
Zhan, Shi-hua; Lin, Juan; Zhang, Ze-jun
2016-01-01
Simulated annealing (SA) algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. Parameters' setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a list-based simulated annealing (LBSA) algorithm to solve traveling salesman problem (TSP). LBSA algorithm uses a novel list-based cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms. PMID:27034650
LEAP: biomarker inference through learning and evaluating association patterns.
Jiang, Xia; Neapolitan, Richard E
2015-03-01
Single nucleotide polymorphism (SNP) high-dimensional datasets are available from Genome Wide Association Studies (GWAS). Such data provide researchers opportunities to investigate the complex genetic basis of diseases. Much of genetic risk might be due to undiscovered epistatic interactions, which are interactions in which combination of several genes affect disease. Research aimed at discovering interacting SNPs from GWAS datasets proceeded in two directions. First, tools were developed to evaluate candidate interactions. Second, algorithms were developed to search over the space of candidate interactions. Another problem when learning interacting SNPs, which has not received much attention, is evaluating how likely it is that the learned SNPs are associated with the disease. A complete system should provide this information as well. We develop such a system. Our system, called LEAP, includes a new heuristic search algorithm for learning interacting SNPs, and a Bayesian network based algorithm for computing the probability of their association. We evaluated the performance of LEAP using 100 1,000-SNP simulated datasets, each of which contains 15 SNPs involved in interactions. When learning interacting SNPs from these datasets, LEAP outperformed seven others methods. Furthermore, only SNPs involved in interactions were found to be probable. We also used LEAP to analyze real Alzheimer's disease and breast cancer GWAS datasets. We obtained interesting and new results from the Alzheimer's dataset, but limited results from the breast cancer dataset. We conclude that our results support that LEAP is a useful tool for extracting candidate interacting SNPs from high-dimensional datasets and determining their probability. © 2015 The Authors. *Genetic Epidemiology published by Wiley Periodicals, Inc.