Science.gov

Sample records for candu power reactor

  1. Tritium activities in Canada supporting CANDU{sup R} nuclear power reactors

    SciTech Connect

    Miller, J. M.

    2008-07-15

    An overview of the various Canadian tritium research and operational activities supporting the development, refurbishment and operation of CANDU{sup R} nuclear power reactors is presented. These activities encompass tritium health and safety, tritium in the environment, tritium interaction with materials, and tritium processing, and relate to both supporting R and D advances as well as operational best practices. The collective results of these activities contribute to our goals of improving worker and public safety, and operational efficiency. (authors)

  2. The CANDU Reactor System: An Appropriate Technology.

    PubMed

    Robertson, J A

    1978-02-10

    CANDU power reactors are characterized by the combination of heavy water as moderator and pressure tubes to contain the fuel and coolant. Their excellent neutron economy provides the simplicity and low costs of once-through natural-uranium fueling. Future benefits include the prospect of a near-breeder thorium fuel cycle to provide security of fuel supply without the need to develop a new reactor such as the fast breeder. These and other features make the CANDU system an appropriate technology for countries, like Canada, of intermediate economic and industrial capacity.

  3. Actinide Burning in CANDU Reactors

    SciTech Connect

    Hyland, B.; Dyck, G.R.

    2007-07-01

    Actinide burning in CANDU reactors has been studied as a method of reducing the actinide content of spent nuclear fuel from light water reactors, and thereby decreasing the associated long term decay heat load. In this work simulations were performed of actinides mixed with natural uranium to form a mixed oxide (MOX) fuel, and also mixed with silicon carbide to form an inert matrix (IMF) fuel. Both of these fuels were taken to a higher burnup than has previously been studied. The total transuranic element destruction calculated was 40% for the MOX fuel and 71% for the IMF. (authors)

  4. Systems analysis of the CANDU 3 Reactor

    SciTech Connect

    Wolfgong, J.R.; Linn, M.A.; Wright, A.L.; Olszewski, M.; Fontana, M.H.

    1993-07-01

    This report presents the results of a systems failure analysis study of the CANDU 3 reactor design; the study was performed for the US Nuclear Regulatory Commission. As part of the study a review of the CANDU 3 design documentation was performed, a plant assessment methodology was developed, representative plant initiating events were identified for detailed analysis, and a plant assessment was performed. The results of the plant assessment included classification of the CANDU 3 event sequences that were analyzed, determination of CANDU 3 systems that are ``significant to safety,`` and identification of key operator actions for the analyzed events.

  5. Thermal-hydraulic interfacing code modules for CANDU reactors

    SciTech Connect

    Liu, W.S.; Gold, M.; Sills, H.

    1997-07-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.

  6. Leak detection capability in CANDU reactors

    SciTech Connect

    Azer, N.; Barber, D.H.; Boucher, P.J.

    1997-04-01

    This paper addresses the moisture leak detection capability of Ontario Hydro CANDU reactors which has been demonstrated by performing tests on the reactor. The tests confirmed the response of the annulus gas system (AGS) to the presence of moisture injected to simulate a pressure tube leak and also confirmed the dew point response assumed in leak before break assessments. The tests were performed on Bruce A Unit 4 by injecting known and controlled rates of heavy water vapor. To avoid condensation during test conditions, the amount of moisture which could be injected was small (2-3.5 g/hr). The test response demonstrated that the AGS is capable of detecting and annunciating small leaks. Thus confidence is provided that it would alarm for a growing pressure tube leak where the leak rate is expected to increase to kg/hr rapidly. The measured dew point response was close to that predicted by analysis.

  7. Modeling and simulation of CANDU reactor and its regulating system

    NASA Astrophysics Data System (ADS)

    Javidnia, Hooman

    Analytical computer codes are indispensable tools in design, optimization, and control of nuclear power plants. Numerous codes have been developed to perform different types of analyses related to the nuclear power plants. A large number of these codes are designed to perform safety analyses. In the context of safety analyses, the control system is often neglected. Although there are good reasons for such a decision, that does not mean that the study of control systems in the nuclear power plants should be neglected altogether. In this thesis, a proof of concept code is developed as a tool that can be used in the design. optimization. and operation stages of the control system. The main objective in the design of this computer code is providing a tool that is easy to use by its target audience and is capable of producing high fidelity results that can be trusted to design the control system and optimize its performance. Since the overall plant control system covers a very wide range of processes, in this thesis the focus has been on one particular module of the the overall plant control system, namely, the reactor regulating system. The center of the reactor regulating system is the CANDU reactor. A nodal model for the reactor is used to represent the spatial neutronic kinetics of the core. The nodal model produces better results compared to the point kinetics model which is often used in the design and analysis of control system for nuclear reactors. The model can capture the spatial effects to some extent. although it is not as detailed as the finite difference methods. The criteria for choosing a nodal model of the core are: (1) the model should provide more detail than point kinetics and capture spatial effects, (2) it should not be too complex or overly detailed to slow down the simulation and provide details that are extraneous or unnecessary for a control engineer. Other than the reactor itself, there are auxiliary models that describe dynamics of different

  8. CANDU in-reactor quantitative visual-based inspection techniques

    NASA Astrophysics Data System (ADS)

    Rochefort, P. A.

    2009-02-01

    This paper describes two separate visual-based inspection procedures used at CANDU nuclear power generating stations. The techniques are quantitative in nature and are delivered and operated in highly radioactive environments with access that is restrictive, and in one case is submerged. Visual-based inspections at stations are typically qualitative in nature. For example a video system will be used to search for a missing component, inspect for a broken fixture, or locate areas of excessive corrosion in a pipe. In contrast, the methods described here are used to measure characteristic component dimensions that in one case ensure ongoing safe operation of the reactor and in the other support reactor refurbishment. CANDU reactors are Pressurized Heavy Water Reactors (PHWR). The reactor vessel is a horizontal cylindrical low-pressure calandria tank approximately 6 m in diameter and length, containing heavy water as a neutron moderator. Inside the calandria, 380 horizontal fuel channels (FC) are supported at each end by integral end-shields. Each FC holds 12 fuel bundles. The heavy water primary heat transport water flows through the FC pressure tube, removing the heat from the fuel bundles and delivering it to the steam generator. The general design of the reactor governs both the type of measurements that are required and the methods to perform the measurements. The first inspection procedure is a method to remotely measure the gap between FC and other in-core horizontal components. The technique involves delivering vertically a module with a high-radiation-resistant camera and lighting into the core of a shutdown but fuelled reactor. The measurement is done using a line-of-sight technique between the components. Compensation for image perspective and viewing elevation to the measurement is required. The second inspection procedure measures flaws within the reactor's end shield FC calandria tube rolled joint area. The FC calandria tube (the outer shell of the FC) is

  9. In-reactor performance of pressure tubes in CANDU reactors

    NASA Astrophysics Data System (ADS)

    Rodgers, D. K.; Coleman, C. E.; Griffiths, M.; Bickel, G. A.; Theaker, J. R.; Muir, I.; Bahurmuz, A. A.; Lawrence, S. St.; Resta Levi, M.

    2008-12-01

    The pressure tubes in CANDU reactors have been operating for times up to about 25 years. The in-reactor performance of Zr-2.5Nb pressure tubes has been evaluated by sampling and periodic inspection. This paper describes the behaviour and discusses the factors controlling the behaviour of these components in currently operating CANDU reactors. The mechanical properties (such as ultimate tensile strength, UTS, and fracture toughness), and delayed-hydride-cracking properties (crack growth rate Vc, and threshold stress intensity factor, KIH) change with irradiation; the former reach a limiting value at a fluence of <1 × 10 25 n m -2, while Vc and KIH reach a steady-state condition after a fluence of about 3 × 10 25 n m -2 and 3 × 10 24 n m -2, respectively. At saturation the UTS is raised by about 200 MPa, toughness is reduced to about 40% of its initial value, Vc increases by about a factor of ten while KIH is only slightly reduced. The role of microstructure and trace elements in these behaviours is described. Pressure tubes exhibit elongation and diametral expansion. The deformation behaviour is a function of operating conditions and material properties that vary from tube-to-tube and as a function of axial location. Semi-empirical predictive models have been developed to describe the deformation response of average tubes as a function of operating conditions. For corrosion and, more importantly deuterium pickup, semi-empirical predictive models have also been developed to represent the behaviour of an average tube. The effect of material variability on corrosion behaviour is less well defined compared with other properties. Improvements in manufacturing have increased fracture resistance by minimising trace elements, especially H and Cl, and reduced variability by tightening controls on forming parameters, especially hot-working temperatures.

  10. Plutonium Consumption Program, CANDU Reactor Project final report

    SciTech Connect

    Not Available

    1994-07-31

    DOE is investigating methods for long term dispositioning of weapons grade plutonium. One such method would be to utilize the plutonium in Mixed OXide (MOX) fuel assemblies in existing CANDU reactors. CANDU (Canadian Deuterium Uranium) reactors are designed, licensed, built, and supported by Atomic Energy of Canada Limited (AECL), and currently use natural uranium oxide as fuel. The MOX spent fuel assemblies removed from the reactor would be similar to the spent fuel currently produced using natural uranium fuel, thus rendering the plutonium as unattractive as that in the stockpiles of commercial spent fuel. This report presents the results of a study sponsored by the DOE for dispositioning the plutonium using CANDU technology. Ontario Hydro`s Bruce A was used as reference. The fuel design study defined the optimum parameters to disposition 50 tons of Pu in 25 years (or 100 tons). Two alternate fuel designs were studied. Safeguards, security, environment, safety, health, economics, etc. were considered. Options for complete destruction of the Pu were also studied briefly; CANDU has a superior ability for this. Alternative deployment options were explored and the potential impact on Pu dispositioning in the former Soviet Union was studied. An integrated system can be ready to begin Pu consumption in 4 years, with no changes required to the reactors other than for safe, secure storage of new fuel.

  11. Development of an on-line fuel failure monitoring system for CANDU reactors

    NASA Astrophysics Data System (ADS)

    Livingstone, Stephen Jason

    this thesis is considered a Beta version ready for testing at a commercial station, and for development to add and improve algorithms and the user interface. There are several possible improvements discussed, including gaps in defected fuel understanding that require further research. COLDD is highly stable and has been demonstrated to be effective; it is a new powerful tool in the arsenal ofa reactor operator faced with defected fuel in core. Key words: Defected fuel, CANDU, Nuclear, Fission Product Release, Diagnostic.

  12. Enhanced CANDU6: Reactor and fuel cycle options - Natural uranium and beyond

    SciTech Connect

    Ovanes, M.; Chan, P. S. W.; Mao, J.; Alderson, N.; Hopwood, J. M.

    2012-07-01

    The Enhanced CANDU 6{sup R} (ECo{sup R}) is the updated version of the well established CANDU 6 family of units incorporating improved safety characteristics designed to meet or exceed Generation III nuclear power plant expectations. The EC6 retains the excellent neutron economy and fuel cycle flexibility that are inherent in the CANDU reactor design. The reference design is based on natural uranium fuel, but the EC6 is also able to utilize additional fuel options, including the use of Recovered Uranium (RU) and Thorium based fuels, without requiring major hardware upgrades to the existing control and safety systems. This paper outlines the major changes in the EC6 core design from the existing C6 design that significantly enhance the safety characteristics and operating efficiency of the reactor. The use of RU fuel as a transparent replacement fuel for the standard 37-el NU fuel, and several RU based advanced fuel designs that give significant improvements in fuel burnup and inherent safety characteristics are also discussed in the paper. In addition, the suitability of the EC6 to use MOX and related Pu-based fuels will also be discussed. (authors)

  13. FMDP Reactor Alternative Summary Report: Volume 2 - CANDU heavy water reactor alternative

    SciTech Connect

    Greene, S.R.; Spellman, D.J.; Bevard, B.B.

    1996-09-01

    The Department of Energy Office of Fissile Materials Disposition (DOE/MD) initiated a detailed analysis activity to evaluate each of ten plutonium disposition alternatives that survived an initial screening process. This document, Volume 2 of a four volume report, summarizes the results of these analyses for the CANDU reactor based plutonium disposition alternative.

  14. Root-cause analysis of the better performance of the coarse-mesh finite-difference method for CANDU-type reactors

    SciTech Connect

    Shen, W.

    2012-07-01

    Recent assessment results indicate that the coarse-mesh finite-difference method (FDM) gives consistently smaller percent differences in channel powers than the fine-mesh FDM when compared to the reference MCNP solution for CANDU-type reactors. However, there is an impression that the fine-mesh FDM should always give more accurate results than the coarse-mesh FDM in theory. To answer the question if the better performance of the coarse-mesh FDM for CANDU-type reactors was just a coincidence (cancellation of errors) or caused by the use of heavy water or the use of lattice-homogenized cross sections for the cluster fuel geometry in the diffusion calculation, three benchmark problems were set up with three different fuel lattices: CANDU, HWR and PWR. These benchmark problems were then used to analyze the root cause of the better performance of the coarse-mesh FDM for CANDU-type reactors. The analyses confirm that the better performance of the coarse-mesh FDM for CANDU-type reactors is mainly caused by the use of lattice-homogenized cross sections for the sub-meshes of the cluster fuel geometry in the diffusion calculation. Based on the analyses, it is recommended to use 2 x 2 coarse-mesh FDM to analyze CANDU-type reactors when lattice-homogenized cross sections are used in the core analysis. (authors)

  15. The application of Plant Reliability Data Information System (PRINS) to CANDU reactor

    SciTech Connect

    Hwang, S. W.; Lim, Y. H.; Park, H. C.

    2012-07-01

    As risk-informed applications (RIAs) are actively implanted in the nuclear industry, an issue associated with technical adequacy of Probabilistic Safety Assessment (PSA) arises in its modeling and data sourcing. In Korea, PSA for all Korean NPPs has been completed and KHNP(Korea Hydro and Nuclear Power Plant Company) developed the database called the Plant Reliability Data Information System (PRinS). It has several characteristics that distinguish it from other database system such as NPRDs (INPO,1994), PRIS (IAEA), and SRDF (EdF). This database has the function of systematic data management such as automatic data-gathering, periodic data deposition and updating, statistical analysis including Bayesian method, and trend analysis of failure rate or unavailability. In recent PSA for CANDU reactor, the component failure data of EPRI ALWR URD and Component Reliability Database were preferentially used as generic data set. The error factor for most component failure data was estimated by using the information NUREG/CR-4550 and NUREG/CR-4639. Also, annual trend analysis was performed for the functional losses of components using the statistical analysis and chart module of PRinS. Furthermore, the database has been updated regularly and maintained as a living program to reflect the current status. This paper presents the failure data analysis using PRinS which provides Bayesian analysis on main components in the CANDU reactor. (authors)

  16. Passive emergency heat rejection concepts for CANDU reactors

    SciTech Connect

    Spinks, N.J.; Rabbat, R.M.

    1994-12-31

    A study is in progress at AECL to assess the safety and capital cost implications of a more extensive use of passive design features in CANDU reactors. The study is focussed on emergency heat rejection and applies passive design principles to enhance the independence of core cooling via the moderator, as distinct from core cooling via the emergency coolant injection system. Emergency heat rejection from the moderator and from containment is integrated via a water jacket formed in part by the cylindrical wall of a steel containment vessel. The water jacket acts as an interim heat sink and ultimately transfers its heat to the outside air. The design as described here uses an advance in fuel channel design that enables the moderator to act as a heat sink even at zero subcooling. This provides the option of passive moderator heat rejection during normal operation, and facilitates the design of passive moderator heat rejection during accidents. With two diverse and redundant emergency core cooling systems, core melt frequency is reduced to an insignificant level.

  17. A probabilistic method for leak-before-break analysis of CANDU reactor pressure tubes

    SciTech Connect

    Puls, M.P.; Wilkins, B.J.S.; Rigby, G.L.

    1997-04-01

    A probabilistic code for the prediction of the cumulative probability of pressure tube ruptures in CANDU type reactors is described. Ruptures are assumed to result from the axial growth by delayed hydride cracking. The BLOOM code models the major phenomena that affect crack length and critical crack length during the reactor sequence of events following the first indications of leakage. BLOOM can be used to develop unit-specific estimates of the actual probability of pressure rupture in operating CANDU reactors and supplement the existing leak before break analysis.

  18. Calibration of a Antineutrino Detector for the Monitoring of a CANDU Reactor

    NASA Astrophysics Data System (ADS)

    Walsh, Nicholas; Svoboda, R.; Bernstein, A.; Bowden, N.; Classen, T.; Cabrera-Palmer, B.; Kogler, L.; Reyna, D.; Jonkmans, G.; Sur, B.

    2012-10-01

    Detecting antineutrinos emitted from nuclear reactors has been previously demonstrated as a monitor of fuel content and usage. The continuous fuel cycle of a CANDU on-load reactor presents a unique challenge for monitoring. We present the calibration and characterization of a detector designed for this task. The detector will be deployed Fall 2012 at Point Lepreau Generating Station.

  19. A dynamic fuel cycle analysis for a heterogeneous thorium-DUPIC recycle in CANDU reactors

    SciTech Connect

    Jeong, C. J.; Park, C. J.; Choi, H.

    2006-07-01

    A heterogeneous thorium fuel recycle scenario in a Canada deuterium uranium (CANDU) reactor has been analyzed by the dynamic analysis method. The thorium recycling is performed through a dry process which has a strong proliferation resistance. In the fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides, and fission products of a multiple thorium recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. The analysis results have shown that the heterogeneous thorium fuel cycle can be constructed through the dry process technology. It is also shown that the heterogeneous thorium fuel cycle can reduce the spent fuel inventory and save on the natural uranium resources when compared with the once-through cycle. (authors)

  20. Transmutation of actinides in power reactors.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.

  1. A strategy for intensive production of molybdenum-99 isotopes for nuclear medicine using CANDU reactors.

    PubMed

    Morreale, A C; Novog, D R; Luxat, J C

    2012-01-01

    Technetium-99m is an important medical isotope utilized worldwide in nuclear medicine and is produced from the decay of its parent isotope, molybdenum-99. The online fueling capability and compact fuel of the CANDU(®)(1) reactor allows for the potential production of large quantities of (99)Mo. This paper proposes (99)Mo production strategies using modified target fuel bundles loaded into CANDU fuel channels. Using a small group of channels a yield of 89-113% of the weekly world demand for (99)Mo can be obtained.

  2. Once-through CANDU reactor models for the ORIGEN2 computer code

    SciTech Connect

    Croff, A.G.; Bjerke, M.A.

    1980-11-01

    Reactor physics calculations have led to the development of two CANDU reactor models for the ORIGEN2 computer code. The model CANDUs are based on (1) the existing once-through fuel cycle with feed comprised of natural uranium and (2) a projected slightly enriched (1.2 wt % /sup 235/U) fuel cycle. The reactor models are based on cross sections taken directly from the reactor physics codes. Descriptions of the reactor models, as well as values for the ORIGEN2 flux parameters THERM, RES, and FAST, are given.

  3. Plutonium Consumption Program, CANDU Reactor Project: Feasibility of BNFP Site as MOX Fuel Supply Facility. Final report

    SciTech Connect

    1995-06-30

    An evaluation was made of the technical feasibility, cost, and schedule for converting the existing unused Barnwell Nuclear Fuel Facility (BNFP) into a Mixed Oxide (MOX) CANDU fuel fabrication plant for disposition of excess weapons plutonium. This MOX fuel would be transported to Ontario where it would generate electricity in the Bruce CANDU reactors. Because CANDU MOX fuel operates at lower thermal load than natural uranium fuel, the MOX program can be licensed by AECB within 4.5 years, and actual Pu disposition in the Bruce reactors can begin in 2001. Ontario Hydro will have to be involved in the entire program. Cost is compared between BNFP and FMEF at Hanford for converting to a CANDU MOX facility.

  4. TEM characterization of in-reactor neutron irradiated CANDU spacer material Inconel X-750

    NASA Astrophysics Data System (ADS)

    Zhang, He Ken; Yao, Zhongwen; Morin, Gregory; Griffiths, Malcolm

    2014-08-01

    The irradiation induced defects in CANDU Inconel X-750 spacers, which were removed from reactors after about 14 effective full power years, were examined by transmission electron microscopy (TEM). The spacers in the form of garter springs were reported to operate at various temperatures depending on locations. Two samples from different locations with different estimated irradiation temperatures were tested: (1) ∼180 °C at 6 o’clock position and (2) ⩾300 °C at 12 o’clock position. Obvious temperature effects were observed. In the ∼180 °C irradiated sample, a high density of small lattice defects (1-3 nm) developed during irradiation, including stacking fault tetrahedra and both 1/3 <1 1 1> and ½ <1 1 0> type dislocation loops. A uniform distribution of small cavities (∼1-3 nm) was observed. In >300 °C irradiated sample, apart from small point defect clusters, large Frank type interstitial loops presented. The sizes of the cavities were also greater than those in the ∼180 °C irradiated sample. The distribution of cavities was more heterogeneous and an obvious agglomeration of cavities to grain boundaries and phase boundaries were observed. In both samples, dissolution of the primary strengthening phase γ‧ was noted.

  5. The behaviour of transuranic mixed oxide fuel in a Candu-900 reactor

    SciTech Connect

    Morreale, A. C.; Ball, M. R.; Novog, D. R.; Luxat, J. C.

    2012-07-01

    The production of transuranic actinide fuels for use in current thermal reactors provides a useful intermediary step in closing the nuclear fuel cycle. Extraction of actinides reduces the longevity, radiation and heat loads of spent material. The burning of transuranic fuels in current reactors for a limited amount of cycles reduces the infrastructure demand for fast reactors and provides an effective synergy that can result in a reduction of as much as 95% of spent fuel waste while reducing the fast reactor infrastructure needed by a factor of almost 13.5 [1]. This paper examines the features of actinide mixed oxide fuel, TRUMOX, in a CANDU{sup R}* nuclear reactor. The actinide concentrations used were based on extraction from 30 year cooled spent fuel and mixed with natural uranium in 3.1 wt% actinide MOX fuel. Full lattice cell modeling was performed using the WIMS-AECL code, super-cell calculations were analyzed in DRAGON and full core analysis was executed in the RFSP 2-group diffusion code. A time-average full core model was produced and analyzed for reactor coefficients, reactivity device worth and online fuelling impacts. The standard CANDU operational limits were maintained throughout operations. The TRUMOX fuel design achieved a burnup of 27.36 MWd/kg HE. A full TRUMOX fuelled CANDU was shown to operate within acceptable limits and provided a viable intermediary step for burning actinides. The recycling, reprocessing and reuse of spent fuels produces a much more sustainable and efficient nuclear fuel cycle. (authors)

  6. Optimization and implementation study of plutonium disposition using existing CANDU Reactors. Final report

    SciTech Connect

    1996-09-01

    Since early 1994, the Department of Energy has been sponsoring studies aimed at evaluating the merits of disposing of surplus US weapons plutonium as Mixed Oxide (MOX) fuel in existing commercial Canadian Pressurized Heavy Water reactors, known as CANDU`s. The first report, submitted to DOE in July, 1994 (the 1994 Executive Summary is attached), identified practical and safe options for the consumption of 50 to 100 tons of plutonium in 25 years in some of the existing CANDU reactors operating the Bruce A generating station, on Lake Huron, about 300 km north east of Detroit. By designing the fuel and nuclear performance to operate within existing experience and operating/performance envelope, and by utilizing existing fuel fabrication and transportation facilities and methods, a low cost, low risk method for long term plutonium disposition was developed. In December, 1995, in response to evolving Mission Requirements, the DOE requested a further study of the CANDU option with emphasis on more rapid disposition of the plutonium, and retaining the early start and low risk features of the earlier work. This report is the result of that additional work.

  7. POWER REACTOR

    DOEpatents

    Zinn, W.H.

    1958-07-01

    A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.

  8. RELAP5 Simulation of Thermal-Hydraulic Behavior in a CANDU Reactor - Assessments of RD-14 Experiments

    SciTech Connect

    Lee, Sukho; Kim, In-Goo

    2000-04-15

    The critical reactor header break and the thermosiphoning experiments in the RD-14 test facility were simulated with the RELAP5/MOD3.1 code. The RELAP5 code has been developed for best-estimate transient simulation of pressurized water reactors and associated systems, but it has not been assessed for a Canada deuterium uranium (CANDU) reactor. Therefore, this study has been initiated with an aim to identify the code applicability in a CANDU reactor by simulating some of the tests performed in the RD-14 facility. The RD-14 test facility at Whiteshell Nuclear Research Establishment is a full-scale pressurized-water loop. The RD-14 is not a scale model of any particular CANDU reactor. Rather, it possesses many geometric features of a CANDU reactor heat transport system and is capable of operating at conditions similar to those expected to occur in a reactor under normal operation and some postulated accident conditions. In this study, two critical reactor header break tests (B8711 and B8713) and three thermosiphoning tests (T8513, T8515, and T8517) were analyzed with the RELAP5 code. The results were compared with experimental data and those of CATHENA performed by Atomic Energy of Canada Ltd. The RELAP5 analyses demonstrate the code's capability to predict reasonably the main phenomena occurring in the transient, in both the qualitative and the quantitative view. However, some discrepancies after the emergency coolant injection for the critical break case and also related to the behaviors of the mass flow rate and the primary pressure for the thermosiphoning case were observed.

  9. Implementation of an on-line monitoring system for transmitters in a CANDU nuclear power plant

    NASA Astrophysics Data System (ADS)

    Labbe, A.; Abdul-Nour, G.; Vaillancourt, R.; Komljenovic, D.

    2012-05-01

    Many transmitters (pressure, level and flow) are used in a nuclear power plant. It is necessary to calibrate them periodically to ensure that their measurements are accurate. These calibration tasks are time consuming and often contribute to worker radiation exposure. Human errors can also sometimes degrade their performance since the calibration involves intrusive techniques. More importantly, experience has shown that the majority of current calibration efforts are not necessary. These facts motivated the nuclear industry to develop new technologies for identifying drifting instruments. These technologies, well known as on-line monitoring (OLM) techniques, are non-intrusive and allow focusing the maintenance efforts on the instruments that really need a calibration. Although few OLM systems have been implemented in some PWR and BWR plants, these technologies are not commonly used and have not been permanently implemented in a CANDU plant. This paper presents the results of a research project that has been performed in a CANDU plant in order to validate the implementation of an OLM system. An application project, based on the ICMP algorithm developed by EPRI, has been carried out in order to evaluate the performance of an OLM system. The results demonstrated that the OLM system was able to detect the drift of an instrument in the majority of the studied cases. A feasibility study has also been completed and has demonstrated that the implementation of an OLM system at a CANDU nuclear power plant could be advantageous under certain conditions.

  10. Development and optimization of new generation Start-Up Instrumentation systems (SUI) for domestic CANDU reactors

    NASA Astrophysics Data System (ADS)

    Nasimi, Elnara

    Due to the age and operating experience of Bruce Power units, equipment ageing and obsolescence has become one of the main challenges that need to be resolved for all systems, structures and components in order to ensure a safe and reliable production of energy. The research objectives of this thesis will focus on methodology for modernization of Start-Up Instrumentation (SUI), both in-core and Control Room equipment, using a new generation of detectors and cables in order to manage obsolescence. The main objective of this thesis is to develop a new systematic approach to SUI installation/replacement procedure development and optimization. Although some additional features, such as real-time data monitoring and storage/archiving solutions for SUI systems are also examined to take full advantage of today's digital technology, the objective of this thesis does not include detailed parametrical studies of detector or system performance. Instead, a number of technological, operational and maintenance issues associated with Start-Up Instrumentation systems at Bruce Power will be identified in this project and a structured approach to developing a replacement/installation procedure that can be standardized and used across all of the domestic CANDU stations is proposed. Finally, benefits of Hierarchical Control Chart (HCC) methodology for all stages of plant life management, such as system design, development, operation and maintenance are demonstrated. Keywords: Task Breakdown and Analysis methodology, installation/removal procedure development and optimization, risk-based analysis and optimization, Hierarchical Control Chart (HCC) methodology for system maintenance and troubleshooting, Start-Up Instrumentation (SUI), Ion Chambers, Fission Chambers, proportional counters, Shutdown System 1 (SDS1), Shutdown System 2 (SDS2).

  11. Monte Carlo estimation of the dose and heating of cobalt adjuster rods irradiated in the CANDU 6 reactor core.

    PubMed

    Gugiu, Daniela; Dumitrache, Ion

    2005-01-01

    The present work is a part of a more complex project related to the replacement of the original stainless steel adjuster rods with cobalt assemblies in the CANDU 6 reactor core. The 60Co produced by 59Co irradiation could be used extensively in medicine and industry. The paper will mainly describe some of the reactor physics and safety requirements that must be carried into practice for the Co adjuster rods. The computations related to the neutronic equivalence of the stainless steel adjusters with the Co adjuster assemblies, as well as the estimations of the activity and heating of the irradiated cobalt rods, are performed using the Monte Carlo codes MCNP5 and MONTEBURNS 2.1. The activity values are used to evaluate the dose at the surface of the device designed to transport the cobalt adjusters.

  12. NEUTRONIC REACTOR POWER PLANT

    DOEpatents

    Metcalf, H.E.

    1962-12-25

    This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

  13. FAST: A Fuel And Sheath Modeling Tool for CANDU Reactor Fuel

    NASA Astrophysics Data System (ADS)

    Prudil, Andrew Albert

    Understanding the behaviour of nuclear fuel during irradiation is a complicated multiphysics problem involving neutronics, chemistry, radiation physics, material-science, solid mechanics, heat transfer and thermal-hydraulics. Due to the complexity and interdependence of the physics and models involved, fuel modeling is typically clone with numerical models. Advancements in both computer hardware and software have made possible new more complex and sophisticated fuel modeling codes. The Fuel And Sheath modelling Tool (FAST) is a fuel performance code that has been developed for modeling nuclear fuel behaviour under normal and transient conditions. The FAST code includes models for heat generation and transport, thermal expansion, elastic strain, densification, fission product swelling, pellet relocation, contact, grain growth, fission gas release, gas and coolant pressure and sheath creep. These models are coupled and solved numerically using the Comsol Multiphysics finite-element platform. The model utilizes a radialaxial geometry of a fuel pellet (including dishing and chamfering) and accompanying fuel sheath allowing the model to predict circumferential ridging. This model has evolved from previous treatments developed at the Royal Military College. The model has now been significantly advanced to include: a more detailed pellet geometry, localized pellet-to-sheath gap size and contact pressure, ability to model cracked pellets, localized fuel burnup for material property models, improved U02 densification behaviour, fully 2-dimensional model for the sheath, additional creep models, additional material models, an FEM Booth-diffusion model for fission gas release (including ability to model temperature and power changes), a capability for end-of-life predictions, the ability to utilize text files as model inputs, and provides a first time integration of normal operating conditions (NOC) and transient fuel models into a single code (which has never been achieved

  14. Pressurized heavy water reactor fuel behaviour in power ramp conditions

    NASA Astrophysics Data System (ADS)

    Ionescu, S.; Uţă, O.; Pârvan, M.; Ohâi, D.

    2009-03-01

    In order to check and improve the quality of the Romanian CANDU fuel, an assembly of six CANDU fuel rods has been subjected to a power ramping test in the 14 MW TRIGA reactor at INR. After testing, the fuel rods have been examined in the hot cells using post-irradiation examination (PIE) techniques such as: visual inspection and photography, eddy current testing, profilometry, gamma scanning, fission gas release and analysis, metallography, ceramography, burn-up determination by mass spectrometry, mechanical testing. This paper describes the PIE results from one out of the six fuel rods. The PIE results concerning the integrity, dimensional changes, oxidation, hydriding and mechanical properties of the sheath, the fission-products activity distribution in the fuel column, the pressure, volume and composition of the fission gas, the burn-up, the isotopic composition and structural changes of the fuel enabled the characterization of the behaviour of the Romanian CANDU fuel in power ramping conditions performed in the TRIGA materials testing reactor.

  15. HOMOGENEOUS NUCLEAR POWER REACTOR

    DOEpatents

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  16. Radiation physics and shielding codes and analyses applied to design-assist and safety analyses of CANDU{sup R} and ACR{sup TM} reactors

    SciTech Connect

    Aydogdu, K.; Boss, C. R.

    2006-07-01

    This paper discusses the radiation physics and shielding codes and analyses applied in the design of CANDU and ACR reactors. The focus is on the types of analyses undertaken rather than the inputs supplied to the engineering disciplines. Nevertheless, the discussion does show how these analyses contribute to the engineering design. Analyses in radiation physics and shielding can be categorized as either design-assist or safety and licensing (accident) analyses. Many of the analyses undertaken are designated 'design-assist' where the analyses are used to generate recommendations that directly influence plant design. These recommendations are directed at mitigating or reducing the radiation hazard of the nuclear power plant with engineered systems and components. Thus the analyses serve a primary safety function by ensuring the plant can be operated with acceptable radiation hazards to the workers and public. In addition to this role of design assist, radiation physics and shielding codes are also deployed in safety and licensing assessments of the consequences of radioactive releases of gaseous and liquid effluents during normal operation and gaseous effluents following accidents. In the latter category, the final consequences of accident sequences, expressed in terms of radiation dose to members of the public, and inputs to accident analysis, e.g., decay heat in fuel following a loss-of-coolant accident, are also calculated. Another role of the analyses is to demonstrate that the design of the plant satisfies the principle of ALARA (as low as reasonably achievable) radiation doses. This principle is applied throughout the design process to minimize worker and public doses. The principle of ALARA is an inherent part of all design-assist recommendations and safety and licensing assessments. The main focus of an ALARA exercise at the design stage is to minimize the radiation hazards at the source. This exploits material selection and impurity specifications and relies

  17. Compact power reactor

    DOEpatents

    Wetch, Joseph R.; Dieckamp, Herman M.; Wilson, Lewis A.

    1978-01-01

    There is disclosed a small compact nuclear reactor operating in the epithermal neutron energy range for supplying power at remote locations, as for a satellite. The core contains fuel moderator elements of Zr hydride with 7 w/o of 93% enriched uranium alloy. The core has a radial beryllium reflector and is cooled by liquid metal coolant such as NaK. The reactor is controlled and shut down by moving portions of the reflector.

  18. Neutronic calculations for CANDU thorium systems using Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Saldideh, M.; Shayesteh, M.; Eshghi, M.

    2014-08-01

    In this paper, we have investigated the prospects of exploiting the rich world thorium reserves using Canada Deuterium Uranium (CANDU) reactors. The analysis is performed using the Monte Carlo MCNP code in order to understand how much time the reactor is in criticality conduction. Four different fuel compositions have been selected for analysis. We have obtained the infinite multiplication factor, k∞, under full power operation of the reactor over 8 years. The neutronic flux distribution in the full core reactor has already been investigated.

  19. Estimation of clearance potential index and hazard factors of Candu fuel bundle and its validation based on the measurements of radioisotopes inventories from Pickering reactor fuel

    SciTech Connect

    Pavelescu, Alexandru Octavian; Tinti, Renato; Voukelatou, Konstantina; Cepraga, Dan Gabriel

    2007-07-01

    This paper is related to the clearance potential levels, ingestion and inhalation hazard factors of the spent nuclear fuel and radioactive wastes. This study required a complex activity that consisted of more steps such as: the acquisition, setting up, validation and application of procedures, codes and libraries. The paper reflects the validation stage of this study. Its objective was to compare the measured inventories of selected actinide and fission products radionuclides in an element from the Pickering Candu reactor with the inventories predicted using a recent version of the SCALE 5/ORIGEN-ARP code coupled with the time dependent cross sections library for the Candu 28 reactor (produced by the sequence SCALE4.4a/SAS2H and SCALE4.4a/ORIGEN-S). In this way, the procedures, the codes and the libraries for the characterization of radioactive material in terns of radioactive inventories, clearance, and biological hazard factors could be qualified and validated, in support of the safety management of the radioactive wastes. (authors)

  20. Zero Power Reactor Simulation

    SciTech Connect

    2010-01-01

    Ever wanted to see a nuclear reactor core in action? Here's a detailed simulation of the Zero Power Reactor experiment, run by Argonne's unique "UNIC" code. Here, we use VisIt to visualize a numerical model of the ZPR-6 Assembly 6a experiment simulated using the Argonne UNIC code. 0:00-0:06: The fuel and other plates are dropped into an example drawer, and the drawer is inserted into the matrix tube. 0:06-0:21: The two matrix halves are brought together to make a critical (self-sustaining) assembly. 0:21-0:35: The fission power is revealed to be centralized in the thin, enriched Uranium plates. 0:35-0:53: Returning to our example drawer, we show the detailed local plate powers and their relation to the drawer composition. 0:53-1:11: Our model shows that each plate can have widely-varying local changes in the space and energy neutron densities. Read more at http://www.anl.gov/Media_Center/News/2010/news100121.html

  1. Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who

    SciTech Connect

    Forsberg, C.W.; Reich, W.J.

    1991-09-01

    The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactor concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.

  2. Automated refueling simulations of a CANDU for the exploitation of thorium fuels

    NASA Astrophysics Data System (ADS)

    Holmes, Bradford

    CANDU nuclear reactors are in a unique circumstance where they are able to utilize and exploit a number of different fuel options to provide power as a utility. Thorium, a fertile isotope found naturally, is one option that should be explored. Thorium is more abundant than uranium, which is the typical fuel in the reactor and the availability of thorium makes nuclear energy desirable to more countries. This document contains the culmination of a project that explores, tests, and analyzes the feasibility of using thorium in a CANDU reactor. The project first develops a set of twodimensional lattice and three dimensional control rod simulations using the DRAGON Version 4 nuclear physics codes. This step is repeated for many concentrations of thorium. The data generated in these steps is then used to determine a functional enrichment of thorium. This is done via a procedural elimination and optimization of certain key parameters including but not limited to average exit burnup and reactivity evolution. For the purposes of this project, an enrichment of 1 % thorium was found viable. Full core calculations were done using the DONJON 4 code. CANFUEL, a program which simulates the refueling operations of a CANDU reactor for this fuel type was developed and ran for a simulation period of one hundred days. The program and the fuel selection met all selected requirements for the entirety of the simulation period. CANFUEL requires optimization for fuel selection before it can be used extensively. The fuel selection was further scrutinized when a reactivity insertion event was simulated. The adjuster rod 11 withdrawal from the core was analyzed and compared to classical CANDU results in order to ensure no significant deviations or unwanted evolutions were encountered. For this case, the simulation results were deemed acceptable with no significant deviations from the classical CANDU case.

  3. Multimegawatt space power reactors

    NASA Astrophysics Data System (ADS)

    Dearien, J. A.; Whitbeck, J. F.

    In response to the need of the Strategic Defense Initiative (SDI) and long range space exploration and extra-terrestrial basing by the National Air and Space Administration (NASA), concepts for nuclear power systems in the multi-megawatt levels are being designed and evaluated. The requirements for these power systems are being driven primarily by the need to minimize weight and maximize safety and reliability. This paper will discuss the present requirements for space based advanced power systems, technological issues associated with the development of these advanced nuclear power systems, and some of the concepts proposed for generating large amounts of power in space.

  4. Multimegawatt space power reactors

    SciTech Connect

    Dearien, J.A.; Whitbeck, J.F.

    1989-01-01

    In response to the need of the Strategic Defense Initiative (SDI) and long range space exploration and extra-terrestrial basing by the National Air and Space Administration (NASA), concepts for nuclear power systems in the multi-megawatt levels are being designed and evaluated. The requirements for these power systems are being driven primarily by the need to minimize weight and maximize safety and reliability. This paper will discuss the present requirements for space based advanced power systems, technological issues associated with the development of these advanced nuclear power systems, and some of the concepts proposed for generating large amounts of power in space. 31 figs.

  5. POWER BREEDER REACTOR

    DOEpatents

    Monson, H.O.

    1960-11-22

    An arrangement is offered for preventing or minimizing the contraction due to temperature rise, of a reactor core comprising vertical fuel rods in sodium. Temperature rise of the fuel rods would normally make them move closer together by inward bowing, with a resultant undesired increase in reactivity. According to the present invention, assemblies of the fuel rods are laterally restrained at the lower ends of their lower blanket sections and just above the middle of the fuel sections proper of the rods, and thus the fuel sections move apart, rather than together, with increase in temperature.

  6. Cascade ICF power reactor

    SciTech Connect

    Hogan, W.J.; Pitts, J.H.

    1986-05-20

    The double-cone-shaped Cascade reaction chamber rotates at 50 rpm to keep a blanket of ceramic granules in place against the wall as they slide from the poles to the exit slots at the equator. The 1 m-thick blanket consists of layers of carbon, beryllium oxide, and lithium aluminate granules about 1 mm in diameter. The x rays and debris are stopped in the carbon granules; the neutrons are multiplied and moderated in the BeO and breed tritium in the LiAlO/sub 2/. The chamber wall is made up of SiO tiles held in compression by a network of composite SiC/Al tendons. Cascade operates at a 5 Hz pulse rate with 300 MJ in each pulse. The temperature in the blanket reaches 1600 K on the inner surface and 1350 K at the outer edge. The granules are automatically thrown into three separate vacuum heat exchangers where they give up their energy to high pressure helium. The helium is used in a Brayton cycle to obtain a thermal-to-electric conversion efficiency of 55%. Studies have been done on neutron activation, debris recovery, vaporization and recondensation of blanket material, tritium control and recovery, fire safety, and cost. These studies indicate that Cascade appears to be a promising ICF reactor candidate from all standpoints. At the 1000 MWe size, electricity could be made for about the same cost as in a future fission reactor.

  7. PUSH-PULL POWER REACTOR

    DOEpatents

    Froman, D.K.

    1959-02-24

    Power generating nuclear reactors of the homogeneous liquid fuel type are discussed. The apparatus utilizes two identical reactors interconnected by conduits through heat exchanging apparatus. Each reactor contains a critical geometry region and a vapor region separated from the critical region by a baffle. When the liquid in the first critical region becomes critical, the vapor pressure above the fuel is increased due to the rise in the temperature until it forces the liquid fuel out of the first critical region through the heat exchanger and into the second critical region, which is at a lower temperature and consequently a lower vapor pressure. The above reaction is repeated in the second critical region and the liquid fuel is forced back into the first critical region. In this manner criticality is achieved alternately in each critical region and power is extracted by the heat exchanger from the liquid fuel passing therethrough. The vapor region and the heat exchanger have a non-critical geometry and reactivity control is effected by conventional control rods in the critical regions.

  8. Assessment for advanced fuel cycle options in CANDU

    SciTech Connect

    Morreale, A.C.; Luxat, J.C.; Friedlander, Y.

    2013-07-01

    The possible options for advanced fuel cycles in CANDU reactors including actinide burning options and thorium cycles were explored and are feasible options to increase the efficiency of uranium utilization and help close the fuel cycle. The actinide burning TRUMOX approach uses a mixed oxide fuel of reprocessed transuranic actinides from PWR spent fuel blended with natural uranium in the CANDU-900 reactor. This system reduced actinide content by 35% and decreased natural uranium consumption by 24% over a PWR once through cycle. The thorium cycles evaluated used two CANDU-900 units, a generator and a burner unit along with a driver fuel feedstock. The driver fuels included plutonium reprocessed from PWR, from CANDU and low enriched uranium (LEU). All three cycles were effective options and reduced natural uranium consumption over a PWR once through cycle. The LEU driven system saw the largest reduction with a 94% savings while the plutonium driven cycles achieved 75% savings for PWR and 87% for CANDU. The high neutron economy, online fuelling and flexible compact fuel make the CANDU system an ideal reactor platform for many advanced fuel cycles.

  9. Characterisation of laboratory-produced CANDU-like workplace neutron fields.

    PubMed

    Nunes, J C; Faught, R T

    2001-01-01

    Two neutron fields were produced in the Neutron Irradiation Facility (NIF) at the Chalk River Laboratories of the Atomic Energy of Canada Ltd. by directing (d,D) neutrons from a 150 kV neutron generator through a specially designed moderator assembly. Bonner sphere and proton recoil spectrometry systems were used to characterise these fields to determine whether they were CANDU-like*, i.e. whether they resembled neutron fields found in workplaces around pressurised heavy-water moderated power reactors such as CANDU reactors. Similarities were found between the distributions in energy of neutron fluence and ambient dose equivalent of the neutron fields produced in the NIF and those measured previously in power plants. In addition, there was agreement between theoretical (Monte Carlo) data and measured data, thereby validating continued use of Monte Carlo modelling for field characterisations in the NIF. The CANDU-like fields add to the repertoire of neutron fields available in the NIF and are expected to be useful for evaluating neutron dosemeters.

  10. Plasma instrumentation for fusion power reactor control

    SciTech Connect

    Sager, G.T.; Bauer, J.F.; Maya, I.; Miley, G.H.

    1985-07-01

    Feedback control will be implemented in fusion power reactors to guard against unpredicted behavior of the plant and to assure desirable operation. In this study, plasma state feedback requirements for plasma control by systems strongly coupled to the plasma (magnet sets, RF, and neutral beam heating systems, and refueling systems) are estimated. Generic considerations regarding the impact of the power reactor environment on plasma instrumentation are outlined. Solutions are proposed to minimize the impact of the power reactor environment on plasma instrumentation. Key plasma diagnostics are evaluated with respect to their potential for upgrade and implementation as power reactor instruments.

  11. Zirconium Hydride Space Power Reactor design.

    NASA Technical Reports Server (NTRS)

    Asquith, J. G.; Mason, D. G.; Stamp, S.

    1972-01-01

    The Zirconium Hydride Space Power Reactor being designed and fabricated at Atomics International is intended for a wide range of potential applications. Throughout the program a series of reactor designs have been evaluated to establish the unique requirements imposed by coupling with various power conversion systems and for specific applications. Current design and development emphasis is upon a 100 kilowatt thermal reactor for application in a 5 kwe thermoelectric space power generating system, which is scheduled to be fabricated and ground tested in the mid 70s. The reactor design considerations reviewed in this paper will be discussed in the context of this 100 kwt reactor and a 300 kwt reactor previously designed for larger power demand applications.

  12. Neutronics-thermalhydraulics coupling in a CANDU SCWR

    NASA Astrophysics Data System (ADS)

    Adouki, Pierre

    In order to implement new nuclear technologies as a solution to the growing demand for energy, 10 countries agreed on a framework for international cooperation in 2002, to form the Generation IV International Forum (GIF). The goal of the GIF is to design the next generation of nuclear reactors that would be cost effective and would enhance safety. This forum has proposed several types of Generation IV reactors including the Supercritical Water-Cooled Reactor (SCWR). The SCWR comes in two main configurations: pressure vessel SCWR and pressure tube SCWR (PT-SCWR). In this study, the CANDU SCWR (a PT-SCWR) is considered. This reactor is oriented vertically and contains 336 channels with a length of 5 m. The target coolant inlet and outlet temperatures are 350 Celsius and 625 Celsius, respectively. The coolant flows downwards, and the reactor power is 2540 MWth. Various fuel designs have been considered in order not to exceed the linear element rating. However, the dependency between the core power and thermalhydraulics parameters results in the necessity to use a neutronics/thermalhydaulics coupling scheme to determine the core power and the thermalhydraulics parameters. The core power obtained has a power peaking factor of 1.4. The bundle power distribution for all channels has a peak at the third bundle from the inlet, but the value of this peak increases with the channel power. The heat-transfer coefficient and the specific-heat capacity have a peak at the same location in a channel, and this location shifts toward the inlet as the channel power increases. The exit coolant temperature increases with the channel power, while the exit coolant density and pressure decrease with the channel power. Also, higher channel powers lead to higher fuel and cladding temperatures. Moreover, as the coupling method is applied, the effective multiplication factor and the values of thermalhydaulics parameters oscillate as they converge.

  13. Experimental development of power reactor advanced controllers

    SciTech Connect

    Edwards, R.M. . Dept. of Nuclear Engineering); Weng, C.K. . Dept. of Mechanical Engineering); Lindsay, R.W. )

    1992-01-01

    A systematic approach for developing and verifying advanced controllers with potential application to commercial nuclear power plants is suggested. The central idea is to experimentally demonstrate an advanced control concept first on an ultra safe research reactor followed by demonstration on a passively safe experimental power reactor and then finally adopt the technique for improving safety, performance, reliability and operability at commercial facilities. Prior to completing an experimental sequence, the benefits and utility of candidate advanced controllers should be established through theoretical development and simulation testing. The applicability of a robust optimal observer-based state feedback controller design process for improving reactor temperature response for a TRIGA research reactor, Liquid Metal-cooled Reactor (LMR), and a commercial Pressurized Water Reactor (PWR) is presented to illustrate the potential of the proposed experimental development concept.

  14. Experimental development of power reactor advanced controllers

    SciTech Connect

    Edwards, R.M.; Weng, C.K.; Lindsay, R.W.

    1992-06-01

    A systematic approach for developing and verifying advanced controllers with potential application to commercial nuclear power plants is suggested. The central idea is to experimentally demonstrate an advanced control concept first on an ultra safe research reactor followed by demonstration on a passively safe experimental power reactor and then finally adopt the technique for improving safety, performance, reliability and operability at commercial facilities. Prior to completing an experimental sequence, the benefits and utility of candidate advanced controllers should be established through theoretical development and simulation testing. The applicability of a robust optimal observer-based state feedback controller design process for improving reactor temperature response for a TRIGA research reactor, Liquid Metal-cooled Reactor (LMR), and a commercial Pressurized Water Reactor (PWR) is presented to illustrate the potential of the proposed experimental development concept.

  15. MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR

    DOEpatents

    Balent, R.

    1963-03-12

    This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)

  16. Low power reactor for remote applications

    SciTech Connect

    Meier, K.L.; Palmer, R.G.; Kirchner, W.L.

    1985-01-01

    A compact, low power reactor is being designed to provide electric power for remote, unattended applications. Because of the high fuel and maintenance costs for conventional power sources such as diesel generators, a reactor power supply appears especially attractive for remote and inaccessible locations. Operating at a thermal power level of 135 kWt, the power supply achieves a gross electrical output of 25 kWe from an organic Rankine cycle (ORC) engine. By intentional selection of design features stressing inherent safety, operation in an unattended mode is possible with minimal risk to the environment. Reliability is achieved through the use of components representing existing, proven technology. Low enrichment uranium particle fuel, in graphite core blocks, cooled by heat pipes coupled to an ORC converter insures long-term, virtually maintenance free, operation of this reactor for remote applications. 10 refs., 7 figs., 3 tabs.

  17. Reactor power system/spacecraft integration

    NASA Technical Reports Server (NTRS)

    Elms, R. V.

    1985-01-01

    The new national initiative in space reactor technology evaluation and development is strongly tied to mission applications and to spacecraft and space transportation system (STS) compatibility. This paper discusses the power system integration interfaces with potential using spacecraft and the STS, and the impact of these requirements on the design. The integration areas of interest are mechanical, thermal, electrical, attitude control, and mission environments. The mission environments include space vacuum, solar input, heat sink, space radiation, weapons effects, and reactor power system radiation environments. The natural, reactor, and weapons effects radiation must be evaluated and combined to define the design requirements for spacecraft electronic equipment.

  18. Reactor power system/spacecraft integration

    NASA Technical Reports Server (NTRS)

    Elms, R. V.

    1985-01-01

    The new national initiative in space reactor technology evaluation and development is strongly tied to mission applications and to spacecraft and space transportation system (STS) compatibility. This paper discusses the power system integration interfaces with potential using spacecraft and the STS, and the impact of these requirements on the design. The integration areas of interest are mechanical, thermal, electrical, attitude control, and mission environments. The mission environments include space vacuum, solar input, heat sink, space radiation, weapons effects, and reactor power system radiation environments. The natural, reactor, and weapons effects radiation must be evaluated and combined to define the design requirements for spacecraft electronic equipment.

  19. Compact reactor/ORC power source

    SciTech Connect

    Meier, K.L.; Kirchner, W.L.; Willcutt, G.J.

    1986-01-01

    A compact power source that combines an organic Rankine Cycle (ORC) electric generator with a nuclear reactor heat source is being designed and fabricated. Incorporating existing ORC technology with proven reactor technology, the compact reactor/ORC power source offers high reliability while minimizing the need for component development. Thermal power at 125 kWt is removed from the coated particle fueled, graphite moderated reactor by heat pipes operating at 500/sup 0/C. Outside the reactor vessel and connected to the heat pipes are vaporizers in which the toluene ORC working fluid is heated to 370/sup 0/C. In the turbine-alternator-pump (TAP) combined-rotating unit, the thermal energy of the toluene is converted to 25 kWe of electric power. Lumped parameter systems analyses combined with a finite element thermal analysis have aided in the power source design. The analyses have provided assurance of reliable multiyear normal operation as well as full power operation with upset conditions, such as failed heat pipes and inoperative ORC vaporizers. Because of inherent high reliability, long life, and insensitivity to upset conditions, this power source is especially suited for use in remote, inaccessible locations where fuel delivery and maintenance costs are high. 10 refs.

  20. Parliament votes against building fifth power reactor

    SciTech Connect

    Not Available

    1993-11-01

    After a heated three-day debate, Finland's parliament voted on September 24 to reject the proposal to build the country's fifth nuclear power reactor. As predicted, the vote was close: 107 voted against more nuclear power, 90 were in favor, two members of the 200-seat parliament were not present, and the speaker did not vote.

  1. Extended SP-100 reactor power systems capability

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Winter, J. M.; Mckissock, B. I.; Sovie, R. J.

    1988-01-01

    The SP-100 space nuclear power system development program and the NASA Civil Space Technology Initiative (CSTI) are discussed. The advanced technologies being developed for the CSTI high capacity nuclear reactor power system are outlined. The relationship between the CSTI and the Pathfinder project is considered.

  2. Heat pipe reactors for space power applications

    NASA Technical Reports Server (NTRS)

    Koenig, D. R.; Ranken, W. A.; Salmi, E. W.

    1977-01-01

    A family of heat pipe reactors design concepts has been developed to provide heat to a variety of electrical conversion systems. Three power plants are described that span the power range 1-500 kWe and operate in the temperature range 1200-1700 K. The reactors are fast, compact, heat-pipe cooled, high-temperature nuclear reactors fueled with fully enriched refractory fuels, UC-ZrC or UO2. Each fuel element is cooled by an axially located molybdenum heat pipe containing either sodium or lithium vapor. Virtues of the reactor designs are the avoidance of single-point failure mechanisms, the relatively high operating temperature, and the expected long lifetimes of the fuel element components.

  3. Heat pipe reactors for space power applications

    NASA Technical Reports Server (NTRS)

    Koenig, D. R.; Ranken, W. A.; Salmi, E. W.

    1977-01-01

    A family of heat pipe reactors design concepts has been developed to provide heat to a variety of electrical conversion systems. Three power plants are described that span the power range 1-500 kWe and operate in the temperature range 1200-1700 K. The reactors are fast, compact, heat-pipe cooled, high-temperature nuclear reactors fueled with fully enriched refractory fuels, UC-ZrC or UO2. Each fuel element is cooled by an axially located molybdenum heat pipe containing either sodium or lithium vapor. Virtues of the reactor designs are the avoidance of single-point failure mechanisms, the relatively high operating temperature, and the expected long lifetimes of the fuel element components.

  4. Gaseous fuel reactors for power systems

    NASA Technical Reports Server (NTRS)

    Kendall, J. S.; Rodgers, R. J.

    1977-01-01

    Gaseous-fuel nuclear reactors have significant advantages as energy sources for closed-cycle power systems. The advantages arise from the removal of temperature limits associated with conventional reactor fuel elements, the wide variety of methods of extracting energy from fissioning gases, and inherent low fissile and fission product in-core inventory due to continuous fuel reprocessing. Example power cycles and their general performance characteristics are discussed. Efficiencies of gaseous fuel reactor systems are shown to be high with resulting minimal environmental effects. A technical overview of the NASA-funded research program in gaseous fuel reactors is described and results of recent tests of uranium hexafluoride (UF6)-fueled critical assemblies are presented.

  5. Advances in ICF power reactor design

    SciTech Connect

    Hogan, W.J.; Kulcinski, G.L.

    1985-04-17

    Fifteen ICF power reactor design studies published since 1980 are reviewed to illuminate the design trends they represent. There is a clear, continuing trend toward making ICF reactors inherently safer and environmentally benign. Since this trend accentuates inherent advantages of ICF reactors, we expect it to be further emphasized in the future. An emphasis on economic competitiveness appears to be a somewhat newer trend. Lower cost of electricity, smaller initial size (and capital cost), and more affordable development paths are three of the issues being addressed with new studies.

  6. Advances in Tandem Mirror fusion power reactors

    SciTech Connect

    Perkins, L.J.; Logan, B.G.

    1986-05-20

    The Tandem Mirror exhibits several distinctive features which make the reactor embodiment of the principle very attractive: Simple low-technology linear central cell; steady-state operation; high-..beta.. operation; no driven current or disruptions; divertorless operation; direction conversion of end-loss power; low-surface heat loads; and advanced fusion fuel capability. In this paper, we examine these features in connection with two tandem mirror reactor designs, MARS and MINIMARS, and several advanced reactor concepts including the wall-stabilized reactor and the field-reversed mirror. With a novel compact end plug scheme employing octopole stabilization, MINIMARS is expressly designed for short construction times, factory-built modules, and a small (600 MWe) but economic reactor size. We have also configured the design for low radioactive afterheat and inherent/passive safety under LOCA/LOFA conditions, thereby obviating the need for expensive engineered safety systems. In contrast to the complex and expensive double-quadrupole end-cell of the MARS reactor, the compact octopole end-cell of MINIMARS enables ignition to be achieved with much shorter central cell lengths and considerably improves the economy of scale for small (approx.250 to 600 MWe) tandem mirror reactors. Finally, we examine the prospects for realizing the ultimate potential of the tandem mirror with regard to both innovative configurations and novel neutron energy conversion schemes, and stress that advanced fuel applications could exploit its unique reactor features.

  7. POWER GENERATING NEUTRONIC REACTOR SYSTEM

    DOEpatents

    Vernon, H.C.

    1958-03-01

    This patent relates to reactor systems of the type wherein the cooiing medium is a liquid which is converted by the heat of the reaction to steam which is conveyed directly to a pnime mover such as a steam turbine driving a generatore after which it is condensed and returred to the coolant circuit. In this design, the reactor core is disposed within a tank for containing either a slurry type fuel or an aggregation of solid fuel elements such as elongated rods submerged in a liquid moderator such as heavy water. The top of the tank is provided with a nozzle which extends into an expansion chamber connected with the upper end of the tank, the coolant being maintained in the expansion chamber at a level above the nozzle and the steam being formed in the expansion chamber.

  8. Liquid Metal Cooled Reactor for Space Power

    NASA Astrophysics Data System (ADS)

    Weitzberg, Abraham

    2003-01-01

    The conceptual design is for a liquid metal (LM) cooled nuclear reactor that would provide heat to a closed Brayton cycle (CBC) power conversion subsystem to provide electricity for electric propulsion thrusters and spacecraft power. The baseline power level is 100 kWe to the user. For long term power generation, UN pin fuel with Nb1Zr alloy cladding was selected. As part of the SP-100 Program this fuel demonstrated lifetime with greater than six atom percent burnup, at temperatures in the range of 1400-1500 K. The CBC subsystem was selected because of the performance and lifetime database from commercial and aircraft applications and from prior NASA and DOE space programs. The high efficiency of the CBC also allows the reactor to operate at relatively low power levels over its 15-year life, minimizing the long-term power density and temperature of the fuel. The scope of this paper is limited to only the nuclear components that provide heated helium-xenon gas to the CBC subsystem. The principal challenge for the LM reactor concept was to design the reactor core, shield and primary heat transport subsystems to meet mission requirements in a low mass configuration. The LM concept design approach was to assemble components from prior programs and, with minimum change, determine if the system met the objective of the study. All of the components are based on technologies having substantial data bases. Nuclear, thermalhydraulic, stress, and shielding analyses were performed using available computer codes. Neutronics issues included maintaining adequate operating and shutdown reactivities, even under accident conditions. Thermalhydraulic and stress analyses calculated fuel and material temperatures, coolant flows and temperatures, and thermal stresses in the fuel pins, components and structures. Using conservative design assumptions and practices, consistent with the detailed design work performed during the SP-100 Program, the mass of the reactor, shield, primary heat

  9. Space reactor power system programs overview

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1992-01-01

    The present development history and current development status evaluation of space reactor power system technologies gives attention to subsystem and component readiness and performance, and assesses the technology data base available in each case. This data base characterization gives attention to the most compatible reactor-power conversion system combinations for prospective DOD and commercial missions, as well as NASA missions. Candidate systems for near, middle, and far term application are selected and prioritized on the basis of technical risk. The programs covered encompass SNAPs 1, 2, 8, and 10A, SNAP 50, and SP-100.

  10. Reactor power system deployment and startup

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.; Nelin, C. J.; Britt, E. J.; Klein, G.

    1985-01-01

    This paper addresses issues that should receive further examination in the near-term as concept selection for development of a U.S. space reactor power system is approached. The issues include: the economics, practicality and system reliability associated with transfer of nuclear spacecraft from low earth shuttle orbits to operational orbits, via chemical propulsion versus nuclear electric propulsion; possible astronaut supervised reactor and nuclear electric propulsion startup in low altitude Shuttle orbit; potential deployment methods for nuclear powered spacecraft from Shuttle; the general public safety of low altitude startup and nuclear safe and disposal orbits; the question of preferred reactor power level; and the question of frozen versus molten alkali metal coolant during launch and deployment. These issues must be considered now because they impact the SP-100 concept selection, power level selection, weight and size limits, use of deployable radiators, reliability requirements, and economics, as well as the degree of need for and the urgency of developing space reactor power systems.

  11. A small, 1400 K, reactor for Brayton space power systems.

    NASA Technical Reports Server (NTRS)

    Lantz, E.; Mayo, W.

    1972-01-01

    An investigation was conducted to determine minimum dimensions and minimum weight obtainable in a design for a reactor using uranium-233 nitride or plutonium-239 nitride as fuel. Such a reactor had been considered by Krasner et al. (1971). Present space power status is discussed, together with questions of reactor design and power distribution in the reactor. The characteristics of various reactor types are compared, giving attention also to a zirconium hydride reactor.

  12. A small, 1400 K, reactor for Brayton space power systems.

    NASA Technical Reports Server (NTRS)

    Lantz, E.; Mayo, W.

    1972-01-01

    An investigation was conducted to determine minimum dimensions and minimum weight obtainable in a design for a reactor using uranium-233 nitride or plutonium-239 nitride as fuel. Such a reactor had been considered by Krasner et al. (1971). Present space power status is discussed, together with questions of reactor design and power distribution in the reactor. The characteristics of various reactor types are compared, giving attention also to a zirconium hydride reactor.

  13. Transients in reactors for power systems compensation

    NASA Astrophysics Data System (ADS)

    Abdul Hamid, Haziah

    This thesis describes new models and investigations into switching transient phenomena related to the shunt reactors and the Mechanically Switched Capacitor with Damping Network (MSCDN) operations used for reactive power control in the transmission system. Shunt reactors and MSCDN are similar in that they have reactors. A shunt reactor is connected parallel to the compensated lines to absorb the leading current, whereas the MSCDN is a version of a capacitor bank designed as a C-type filter for use in the harmonic-rich environment. In this work, models have been developed and transient overvoltages due to shunt reactor deenergisation were estimated analytically using MathCad, a mathematical program. Computer simulations used the ATP/EMTP program to reproduce both single-phase and three-phase shunt reactor switching at 275 kV operational substations. The effect of the reactor switching on the circuit breaker grading capacitor was also examined by considering various switching conditions.. The main original achievement of this thesis is the clarification of failure mechanisms occurring in the air-core filter reactor due to MSCDN switching operations. The simulation of the MSCDN energisation was conducted using the ATP/EMTP program in the presence of surge arresters. The outcome of this simulation shows that extremely fast transients were established across the air-core filter reactor. This identified transient event has led to the development of a detailed air-core reactor model, which accounts for the inter-turn RLC parameters as well as the stray capacitances-to-ground. These parameters are incorporated into the transient simulation circuit, from which the current and voltage distribution across the winding were derived using electric field and equivalent circuit modelling. Analysis of the results has revealed that there are substantial dielectric stresses imposed on the winding insulation that can be attributed to a combination of three factors. (i) First, the

  14. 78 FR 73898 - Operator Licensing Examination Standards for Power Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... COMMISSION Operator Licensing Examination Standards for Power Reactors AGENCY: Nuclear Regulatory Commission... Standards for Power Reactors.'' DATES: Submit comments by February 7, 2014. Comments received after this... of New Reactors; or Timothy Kolb, Office of Nuclear Reactor Regulation, U.S. Nuclear...

  15. Stochastic modelling of power reactor fuel behavior

    NASA Astrophysics Data System (ADS)

    Mirza, Shahid Nawaz

    An understanding of the in-reactor behavior of nuclear fuel is essential to the safe and economic operation of a nuclear power plant. It is no longer possible to achieve this without computer code calculations. A state of art computer code, FRODO, for Fuel ROD Operation, has been developed to model the steady state behavior of fuel pins in a light water reactor and to do sensitivity analysis. FRODO concentrates on the thermal performance, fission product release and pellet-clad interaction and can be used to predict the fuel failure under the prevailing conditions. FRODO incorporates the numerous uncertainties involved in fuel behavior modeling, using statistical methods, to ascertain fuel failures and their causes. Sensitivity of fuel failure to different fuel parameters and reactor conditions can be easily evaluated. FRODO has been used to analyze the sensitivities of fuel failures to coolant flow reductions. It is found that the uncertainties have pronounced effects on conclusions about fuel failures and their causes.

  16. Static conversion systems. [for space power reactors

    NASA Technical Reports Server (NTRS)

    Ewell, R.; Mondt, J.

    1985-01-01

    Historically, all space power systems that have actually flown in space have relied on static energy conversion technology. Thus, static conversion is being considered for space nuclear power systems as well. There are four potential static conversion technologies which should be considered. These include: the alkali metal thermoelectric converter (AMTEC), the thermionic converter, the thermoelectric converter, and the thermophotovoltaic converter (TPV). These four conversion technologies will be described in brief detail along with their current status and development needs. In addition, the systems implications of using each of these conversion technologies with a space nuclear reactor power system will be evaluated and some comparisons made.

  17. Static conversion systems. [for space power reactors

    NASA Technical Reports Server (NTRS)

    Ewell, R.; Mondt, J.

    1985-01-01

    Historically, all space power systems that have actually flown in space have relied on static energy conversion technology. Thus, static conversion is being considered for space nuclear power systems as well. There are four potential static conversion technologies which should be considered. These include: the alkali metal thermoelectric converter (AMTEC), the thermionic converter, the thermoelectric converter, and the thermophotovoltaic converter (TPV). These four conversion technologies will be described in brief detail along with their current status and development needs. In addition, the systems implications of using each of these conversion technologies with a space nuclear reactor power system will be evaluated and some comparisons made.

  18. NACA Zero Power Reactor Facility Hazards Summary

    NASA Technical Reports Server (NTRS)

    1957-01-01

    The Lewis Flight Propulsion Laboratory of the National Advisory Committee for Aeronautics proposes to build a zero power research reactor facility which will be located in the laboratory grounds near Clevelaurd, Ohio. The purpose of this report is to inform the Advisory Commit tee on Reactor Safeguards of the U. S. Atomic Energy Commission in re gard to the design of the reactor facility, the cha,acteristics of th e site, and the hazards of operation at this location, The purpose o f this reactor is to perform critical experiments, to measure reactiv ity effects, to serve as a neutron source, and to serve as a training tool. The reactor facility is described. This is followed by a discu ssion of the nuclear characteristics and the control system. Site cha racteristics are then discussed followed by a discussion of the exper iments which may be conducted in the facility. The potential hazards of the facility are then considered, particularly, the maximum credib le accident. Finally, the administrative procedure is discussed.

  19. 78 FR 64028 - Decommissioning of Nuclear Power Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... COMMISSION Decommissioning of Nuclear Power Reactors AGENCY: Nuclear Regulatory Commission. ACTION... regulatory guide (RG) 1.184 ``Decommissioning of Nuclear Power Reactors.'' This guide describes a method NRC... decommissioning process for nuclear power reactors. The revision takes advantage of the 13 years...

  20. Gas-core reactor power transient analysis

    NASA Technical Reports Server (NTRS)

    Kascak, A. F.

    1972-01-01

    The gas core reactor is a proposed device which features high temperatures. It has applications in high specific impulse space missions, and possibly in low thermal pollution MHD power plants. The nuclear fuel is a ball of uranium plasma radiating thermal photons as opposed to gamma rays. This thermal energy is picked up before it reaches the solid cavity liner by an inflowing seeded propellant stream and convected out through a rocket nozzle. A wall-burnout condition will exist if there is not enough flow of propellant to convect the energy back into the cavity. A reactor must therefore operate with a certain amount of excess propellant flow. Due to the thermal inertia of the flowing propellant, the reactor can undergo power transients in excess of the steady-state wall burnout power for short periods of time. The objective of this study was to determine how long the wall burnout power could be exceeded without burning out the cavity liner. The model used in the heat-transfer calculation was one-dimensional, and thermal radiation was assumed to be a diffusion process.

  1. A high-fidelity Monte Carlo evaluation of CANDU-6 safety parameters

    SciTech Connect

    Kim, Y.; Hartanto, D.

    2012-07-01

    Important safety parameters such as the fuel temperature coefficient (FTC) and the power coefficient of reactivity (PCR) of the CANDU-6 (CANada Deuterium Uranium) reactor have been evaluated by using a modified MCNPX code. For accurate analysis of the parameters, the DBRC (Doppler Broadening Rejection Correction) scheme was implemented in MCNPX in order to account for the thermal motion of the heavy uranium nucleus in the neutron-U scattering reactions. In this work, a standard fuel lattice has been modeled and the fuel is depleted by using the MCNPX and the FTC value is evaluated for several burnup points including the mid-burnup representing a near-equilibrium core. The Doppler effect has been evaluated by using several cross section libraries such as ENDF/B-VI, ENDF/B-VII, JEFF, JENDLE. The PCR value is also evaluated at mid-burnup conditions to characterize safety features of equilibrium CANDU-6 reactor. To improve the reliability of the Monte Carlo calculations, huge number of neutron histories are considered in this work and the standard deviation of the k-inf values is only 0.5{approx}1 pcm. It has been found that the FTC is significantly enhanced by accounting for the Doppler broadening of scattering resonance and the PCR are clearly improved. (authors)

  2. Modular stellarator reactor: a fusion power plant

    SciTech Connect

    Miller, R.L.; Bathke, C.G.; Krakowski, R.A.; Heck, F.M.; Green, L.; Karbowski, J.S.; Murphy, J.H.; Tupper, R.B.; DeLuca, R.A.; Moazed, A.

    1983-07-01

    A comparative analysis of the modular stellarator and the torsatron concepts is made based upon a steady-state ignited, DT-fueled, reactor embodiment of each concept for use as a central electric-power station. Parametric tradeoff calculations lead to the selection of four design points for an approx. 4-GWt plant based upon Alcator transport scaling in l = 2 systems of moderate aspect ratio. The four design points represent high-aspect ratio. The four design points represent high-(0.08) and low-(0.04) beta versions of the modular stellarator and torsatron concepts. The physics basis of each design point is described together with supporting engineering and economic analyses. The primary intent of this study is the elucidation of key physics and engineering tradeoffs, constraints, and uncertainties with respect to the ultimate power reactor embodiment.

  3. Power conditioning for space nuclear reactor systems

    NASA Technical Reports Server (NTRS)

    Berman, Baruch

    1987-01-01

    This paper addresses the power conditioning subsystem for both Stirling and Brayton conversion of space nuclear reactor systems. Included are the requirements summary, trade results related to subsystem implementation, subsystem description, voltage level versus weight, efficiency and operational integrity, components selection, and shielding considerations. The discussion is supported by pertinent circuit and block diagrams. Summary conclusions and recommendations derived from the above studies are included.

  4. Power conditioning for space nuclear reactor systems

    NASA Technical Reports Server (NTRS)

    Berman, Baruch

    1987-01-01

    This paper addresses the power conditioning subsystem for both Stirling and Brayton conversion of space nuclear reactor systems. Included are the requirements summary, trade results related to subsystem implementation, subsystem description, voltage level versus weight, efficiency and operational integrity, components selection, and shielding considerations. The discussion is supported by pertinent circuit and block diagrams. Summary conclusions and recommendations derived from the above studies are included.

  5. Overview of high-temperature fuel behaviour with relevance to CANDU fuel

    NASA Astrophysics Data System (ADS)

    Lewis, B. J.; Iglesias, F. C.; Dickson, R. S.; Williams, A.

    2009-10-01

    This paper provides an overview of high-temperature phenomena in nuclear fuel elements and bundles, with particular relevance to the CANDU fuel design. The paper describes heat generation, fuel thermal response, and thermophysical properties of the fuel and sheath that can affect the thermal and mechanical response of the fuel element. Sources of chemical heat that can arise during accident conditions in the fuel element are also detailed. Specific phenomena associated with fuel restructuring, fuel sheath deformation, fuel-to-sheath heat transfer, fuel sheath failure criteria, oxidation, hydriding and embrittlement of the Zircaloy sheath, gap transport processes in failed elements, fuel/sheath interaction and fuel dissolution by molten cladding are detailed as important phenomena that can impact reactor safety analysis. Fuel behaviour during a power pulse and fuel bundle behaviour that occurs during a severe reactor accident are further considered. The review also points out areas of further research that are needed for a more complete understanding.

  6. A method of examining iron oxides speciation and transport to steam generators during nuclear power reactor startups

    NASA Astrophysics Data System (ADS)

    Sawicki, Jerzy A.; Sawicka, Barbara D.; Price, James E.

    2010-12-01

    Secondary side corrosion products (sludge) collected during one of CANDU1 reactor startups from wet layup have been examined by X-ray fluorescence and Mössbauer spectroscopy. The transport and chemical form of iron oxides and oxyhydroxides were determined in condensate, feedwater and preheater outlet as a function of temperature and time. The sludge burst and oxidation states of iron oxides were correlated with the rise of reactor power and corresponding changes in temperature, condensate vacuum and water flow rate. In particular, a sharp γ-FeOOH to Fe 3O 4 switch was observed that coincided in time with the onset of condensate vacuum. Also, it was found that the startup after wet layup is characterized by only brief and fairly small sludge burst at about 30% reactor power and which contributes only a small amount of undesirable α-Fe 2O 3 to total iron transport to steam generator. Thus, sludge burden to steam generators can be minimized with proper layup and startup practices. ™ Trademark of Atomic Energy of Canada Limited.

  7. Nuclear safety as applied to space power reactor systems

    SciTech Connect

    Cummings, G.E.

    1987-01-01

    Current space nuclear power reactor safety issues are discussed with respect to the unique characteristics of these reactors. An approach to achieving adequate safety and a perception of safety is outlined. This approach calls for a carefully conceived safety program which makes uses of lessons learned from previous terrestrial power reactor development programs. This approach includes use of risk analyses, passive safety design features, and analyses/experiments to understand and control off-design conditions. The point is made that some recent accidents concerning terrestrial power reactors do not imply that space power reactors cannot be operated safety.

  8. REACTOR-FLASH BOILER-FLYWHEEL POWER PLANT

    DOEpatents

    Loeb, E.

    1961-01-17

    A power generator in the form of a flywheel with four reactors positioned about its rim is described. The reactors are so positioned that steam, produced in the reactor, exists tangentially to the flywheel, giving it a rotation. The reactors are incompletely moderated without water. The water enters the flywheel at its axis, under sufficient pressure to force it through the reactors, where it is converted to steam. The fuel consists of parallel twisted ribbons assembled to approximate a cylinder.

  9. Analysis of UF6 breeder reactor power plants

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.

    1976-01-01

    Gaseous UF6 fueled breeder reactor design and technical applications of such concepts are summarized. Special attention was given to application in nuclear power plants and to reactor efficiency and safety factors.

  10. Optimization of power-cycle arrangements for Supercritical Water cooled Reactors (SCWRs)

    NASA Astrophysics Data System (ADS)

    Lizon-A-Lugrin, Laure

    The world energy demand is continuously rising due to the increase of both the world population and the standard of life quality. Further, to assure both a healthy world economy as well as adequate social standards, in a relatively short term, new energy-conversion technologies are mandatory. Within this framework, a Generation IV International Forum (GIF) was established by the participation of 10 countries to collaborate for developing nuclear power reactors that will replace the present technology by 2030. The main goals of these nuclear-power reactors are: economic competitiveness, sustainability, safety, reliability and resistance to proliferation. As a member of the GIF, Canada has decided to orient its efforts towards the design of a CANDU-type Super Critical Water-cooled Reactor (SCWR). Such a system must run at a coolant outlet temperature of about 625°C and at a pressure of 25 MPa. It is obvious that at such conditions the overall efficiency of this kind of Nuclear Power Plant (NPP) will compete with actual supercritical water-power boilers. In addition, from a heat-transfer viewpoint, the use of a supercritical fluid allows the limitation imposed by Critical Heat Flux (CHF) conditions, which characterize actual technologies, to be removed. Furthermore, it will be also possible to use direct thermodynamic cycles where the supercritical fluid expands right away in a turbine without the necessity of using intermediate steam generators and/or separators. This work presents several thermodynamic cycles that could be appropriate to run SCWR power plants. Improving both thermal efficiency and mechanical power constitutes a multi-objective optimization problem and requires specific tools. To this aim, an efficient and robust evolutionary algorithm, based on genetic algorithm, is used and coupled to an appropriate power plant thermodynamic simulation model. The results provide numerous combinations to achieve a thermal efficiency higher than 50% with a

  11. SOAR: Space Orbiting Advanced Fusion Power Reactor.

    DTIC Science & Technology

    1987-09-01

    AP-AIS 234 SOAR SPAC ITZGAYCEFUONPlRRETA() 11 NISCONSIN UNIY-MADISON F L KULCINSKI ET AL. SEP I? WINK.-TR-B?-204S F33615-S6-C-2705 UCLRSSIFIED FIG 22... Kulcinski J. F. Santarius UNIVERSITY OF WISCONSIN 1500 JOHNSON DRIVE MADISON, WISCONSIN 53706-1687 DTIC sELECTE~ l SEPTEMBER 1987 FINAL REPORT FOR...Include Security Classification) SOAR: Space Orbiting Advanced Fusion Power Reactor 12 PERSONAL AUTHOR(S) C. L . Kulcinski 13a TYPE OF REPORT 13b

  12. Cascade: a high-efficiency ICF power reactor

    SciTech Connect

    Pitts, J.H.

    1985-10-31

    Cascade attains a net power-plant efficiency of 49% and its cost is competitive with high-temperature gas-cooled reactor, pressurized-water reactor, and coal-fired power plants. The Cascade reactor and blanket are made of ceramic materials and activation is 6 times less than that of the MARS Tandem Mirror Reactor operating at comparable power. Hands-on maintenance of the heat exchangers is possible one day after shutdown. Essentially all tritium is recovered in the vacuum system, with the remainder recovered from the helium power conversion loop. Tritium leakage external to the vacuum system and power conversion loop is only 0.03 Ci/d.

  13. Nuclear reactor power for an electrically powered orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

    1987-01-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low earth orbit (LEO) and geosynchronous earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

  14. Nuclear reactor power for an electrically powered orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

    1987-01-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low earth orbit (LEO) and geosynchronous earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

  15. SP-100 Space Reactor Power System readiness

    NASA Astrophysics Data System (ADS)

    Josloff, A. T.; Matteo, D. N.; Bailey, H. S.

    The SP-100 Space Reactor Power System is being developed by GE, under contract to the U.S. Department of Energy, to provide electrical power in the range of 10's to 100's of kW. The system represents an enabling technology for a wide variety of earth orbital and interplanetary science missions, nuclear electric propulsion (NEP) stages, and lunar/Mars surface power for the Space Exploration Initiative (SEI). An effective infrastructure of Industry, National Laboratories and Government agencies has made substantial progress since the 1988 System Design Review. Hardware development and testing has progressed to the point of resolving all key technical feasibility issues. The technology and design is now at a state of readiness to support the definition of early flight demonstration missions. Of particular importance is that SP-100 meets the demanding U.S. safety, performance, reliability and life requirements. The system is scalable and flexible and can be configured to provide 10's to 100's of kWe without repeating development work and can meet DoD goals for an early, low-power demonstration flight in the 1996 - 1997 time frame.

  16. UF6 breeder reactor power plants for electric power generation

    NASA Technical Reports Server (NTRS)

    Rust, J. H.; Clement, J. D.; Hohl, F.

    1976-01-01

    The reactor concept analyzed is a U-233F6 core surrounded by a molten salt (Li(7)F, BeF2, ThF4) blanket. Nuclear survey calculations were carried out for both spherical and cylindrical geometries. Thermodynamic cycle calculations were performed for a variety of Rankine cycles. A conceptual design is presented along with a system layout for a 1000 MW stationary power plant. Advantages of the gas core breeder reactor (GCBR) are as follows: (1) high efficiency; (2) simplified on-line reprocessing; (3) inherent safety considerations; (4) high breeding ratio; (5) possibility of burning all or most of the long-lived nuclear waste actinides; and (6) possibility of extrapolating the technology to higher temperatures and MHD direct conversion.

  17. UF6 breeder reactor power plants for electric power generation

    NASA Technical Reports Server (NTRS)

    Rust, J. H.; Clement, J. D.; Hohl, F.

    1976-01-01

    The reactor concept analyzed is a U-233F6 core surrounded by a molten salt (Li(7)F, BeF2, ThF4) blanket. Nuclear survey calculations were carried out for both spherical and cylindrical geometries. Thermodynamic cycle calculations were performed for a variety of Rankine cycles. A conceptual design is presented along with a system layout for a 1000 MW stationary power plant. Advantages of the gas core breeder reactor (GCBR) are as follows: (1) high efficiency; (2) simplified on-line reprocessing; (3) inherent safety considerations; (4) high breeding ratio; (5) possibility of burning all or most of the long-lived nuclear waste actinides; and (6) possibility of extrapolating the technology to higher temperatures and MHD direct conversion.

  18. World power energetics. Fusion reactors. ITER project

    NASA Astrophysics Data System (ADS)

    Velikhov, E. P.

    1996-10-01

    The prospects of various energy sources have to be evaluated on the basis of economical, energy and political factors, and ecological consequences. The gradual replacement of energy technologies based on burning of fossil fuels by the new 'clean' ones not yielding greenhouse gases is called for so as to conserve the atmosphere at least in the present state. From this point, one of the most promising energy technologies is controlled fusion. Today, we are in the stage of transition from proof-of-principle plasma physics experiments to practical realization of this concept. The place of future fusion power reactors in the global system is being discussed widely. In 1985, the Government Agreement on the design of the International Thermonuclear Experimental Reactor (ITER) was signed by Russia, Japan, The European Community, and the United States of America. That was the starting point of this enormous project; and now we are in the second phase, i.e. the Engineering Design Activities, to be completed by 1998. The focal point for design is the Joint Central Team, with about 200 scientists and engineers from Russia, Japan, the European Community, and the USA working jointly. The national Home Teams provide strong support for the design and research and development programs on the basis of equal contributions to the Project. One of the key problems to be solved concerns fusion reactor materials, including the creation of a complete database on appropriate materials irradiated up to a neutron fluence of 10 23 n · cm -3, the development of new alloys and relevant engineering technologies.

  19. Tokamak power reactor ignition and time dependent fractional power operation

    SciTech Connect

    Vold, E.L.; Mau, T.K.; Conn, R.W.

    1986-06-01

    A flexible time-dependent and zero-dimensional plasma burn code with radial profiles was developed and employed to study the fractional power operation and the thermal burn control options for an INTOR-sized tokamak reactor. The code includes alpha thermalization and a time-dependent transport loss which can be represented by any one of several currently popular scaling laws for energy confinement time. Ignition parameters were found to vary widely in density-temperature (n-T) space for the range of scaling laws examined. Critical ignition issues were found to include the extent of confinement time degradation by alpha heating, the ratio of ion to electron transport power loss, and effect of auxiliary heating on confinement. Feedback control of the auxiliary power and ion fuel sources are shown to provide thermal stability near the ignition curve.

  20. Programmable AC power supply for simulating power transient expected in fusion reactor

    SciTech Connect

    Halimi, B.; Suh, K. Y.

    2012-07-01

    This paper focus on control engineering of the programmable AC power source which has capability to simulate power transient expected in fusion reactor. To generate the programmable power source, AC-AC power electronics converter is adopted to control the power of a set of heaters to represent the transient phenomena of heat exchangers or heat sources of a fusion reactor. The International Thermonuclear Experimental Reactor (ITER) plasma operation scenario is used as the basic reference for producing this transient power source. (authors)

  1. Assessment of nuclear reactor concepts for low power space applications

    NASA Technical Reports Server (NTRS)

    Klein, Andrew C.; Gedeon, Stephen R.; Morey, Dennis C.

    1988-01-01

    The results of a preliminary small reactor concepts feasibility and safety evaluation designed to provide a first order validation of the nuclear feasibility and safety of six small reactor concepts are given. These small reactor concepts have potential space applications for missions in the 1 to 20 kWe power output range. It was concluded that low power concepts are available from the U.S. nuclear industry that have the potential for meeting both the operational and launch safety space mission requirements. However, each design has its uncertainties, and further work is required. The reactor concepts must be mated to a power conversion technology that can offer safe and reliable operation.

  2. Assessment of nuclear reactor concepts for low power space applications

    NASA Technical Reports Server (NTRS)

    Klein, Andrew C.; Gedeon, Stephen R.; Morey, Dennis C.

    1988-01-01

    The results of a preliminary small reactor concepts feasibility and safety evaluation designed to provide a first order validation of the nuclear feasibility and safety of six small reactor concepts are given. These small reactor concepts have potential space applications for missions in the 1 to 20 kWe power output range. It was concluded that low power concepts are available from the U.S. nuclear industry that have the potential for meeting both the operational and launch safety space mission requirements. However, each design has its uncertainties, and further work is required. The reactor concepts must be mated to a power conversion technology that can offer safe and reliable operation.

  3. Power ascension strategy following a reactor trip during EOC coastdown

    SciTech Connect

    Beard, C.L.; Heibel, M.D. ); Lesnick, D.C. )

    1992-01-01

    The difficulties associated with returning a reactor to the pretrip power level following a reactor trip during an end-of-cycle (EOC) power coastdown maneuver, and maintaining it once achieved, have caused utilities to abandon the restart and enter their refueling outages ahead of schedule. The Commonwealth Edison Company (CECo) Braidwood and Byron units have experienced reactor trips during EOC power coastdown maneuvers and have successfully performed restarts. The installation of the BEACON core monitoring system, which provides core monitoring, measurement reduction, core analysis and follow, and core prediction capability utilizing a very fast and accurate three-dimensional nodal code, at the CECo Byron, Braidwood, and Zion stations allows the reactor engineers at these units to accurately determine reactor response. The capabilities of the BEACON system allow an optimal return to power strategy to be developed and continuously updated. This paper presents a method for establishing the optimal return to power strategy utilizing the BEACON system.

  4. Liquid metal cooled reactors for space power applications

    NASA Technical Reports Server (NTRS)

    Bailey, S.; Vaidyanathan, S.; Van Hoomissen, J.

    1985-01-01

    The technology basis for evaluation of liquid metal cooled space reactors is summarized. Requirements for space nuclear power which are relevant to selection of the reactor subsystem are then reviewed. The attributes of liquid metal cooled reactors are considered in relation to these requirements in the areas of liquid metal properties, neutron spectrum characteristics, and fuel form. Key features of typical reactor designs are illustrated. It is concluded that liquid metal cooled fast spectrum reactors provide a high confidence, flexible option for meeting requirements for SP-100 and beyond.

  5. Consumption of the electric power inside silent discharge reactors

    SciTech Connect

    Yehia, Ashraf

    2015-01-15

    An experimental study was made in this paper to investigate the relation between the places of the dielectric barriers, which cover the surfaces of the electrodes in the coaxial cylindrical reactors, and the rate of change of the electric power that is consumed in forming silent discharges. Therefore, silent discharges have been formed inside three coaxial cylindrical reactors. The dielectric barriers in these reactors were pasted on both the internal surface of the outer electrode in the first reactor and the external surface of the inner electrode in the second reactor as well as the surfaces of the two electrodes in the third reactor. The reactor under study has been fed by atmospheric air that flowed inside it with a constant rate at normal temperature and pressure, in parallel with the application of a sinusoidal ac voltage between the electrodes of the reactor. The electric power consumed in forming the silent discharges inside the three reactors was measured as a function of the ac peak voltage. The validity of the experimental results was investigated by applying Manley's equation on the same discharge conditions. The results have shown that the rate of consumption of the electric power relative to the ac peak voltage per unit width of the discharge gap improves by a ratio of either 26.8% or 80% or 128% depending on the places of the dielectric barriers that cover the surfaces of the electrodes inside the three reactors.

  6. Preliminary Study of 20 MWth Experiment Power Reactor based on Pebble Bed Reactor

    NASA Astrophysics Data System (ADS)

    Irwanto, Dwi; Permana, Sidik; Pramuditya, Syeilendra

    2017-07-01

    In this study, preliminary design calculations for experimental small power reactor (20 MWt) based on Pebble Bed Reactor (PBR) are performed. PBR technology chosen due to its advantages in neutronic and safety aspects. Several important parameters, such as fissile enrichment, number of fuel passes, burnup and effective multiplication factor are taken into account in the calculation to find neutronic characteristics of the present reactor design.

  7. Analyse du transfert de chaleur et de la perte de pression pour des ecoulements supercritiques dans le reacteur CANDU-SCWR

    NASA Astrophysics Data System (ADS)

    Zoghlami, Sarra

    channel, some geometrical simplifications are made. In fact, we assumed that the coolant flow in the fuel channel is represented by the flow around the fuel rod, bounded by the first crown. This simplified model was used for neutronic/thermal-hydraulic coupled calculation performed with neutronic codes DRAGON/DONJON (Varin et al., 2005), to analyse the thermal-hydraulic behavior of the fuel channel in CANDU-SCWR. We observed that the coolant density at the fuel rod external surface, at the sixth fuel bundle is 3.5 times lower than the average coolant density in the fuel channel. This puts into question the assumption of considering the supercritical water flow as an homogeneous flow and the ability to build a supercritical water nuclear reactor in CANDU type, i.e., with horizontal fuel channels. In order to validate ARTHUR &barbelow;SCWR code, we compared our results to SUBCHAN code (Jiang et al., 2009), which is a thermal-hydraulic code developed to analyze CANDU-SCWR. Both codes give the same shapes and orders of magnitude for the coolant average temperature and the cladding-surface temperature. The axial distribution of the centerline temperature in the fuel rod is different. This is due to the fact that the calculations performed by the SUBCHAN code are not coupled to a neutronic code. For this reason, the thermal power distributions differs in the two codes. The variation of the mass flow influences the forced convective heat transfer, so, the distribution of thermal-physical properties in the channel. In fact, if the mass flow is reduced by 50% compared to the nominal mass flow rate, following a pump failure, the external fuel rod surface temperature exceeds the melting point, which is between 1400°C and 1455°C. This phenomenon may results in the radioactive contamination of the environment.

  8. Ultrasonic level and temperature sensor for power reactor applications

    SciTech Connect

    Dress, W.B.: Miller, G.N.

    1983-01-01

    An ultrasonic waveguide employing torsional and extensional acoustic waves has been developed for use as a level and temperature sensor in pressurized and boiling water nuclear power reactors. Features of the device include continuous measurement of level, density, and temperature producing a real-time profile of these parameters along a chosen path through the reactor vessel.

  9. Validation of WIMS-IST for CANDU R-type lattices

    SciTech Connect

    Bromley, B. P.; Davis, R.

    2006-07-01

    Prior validation studies of 28-element natural uranium (28-NU) CANDU R-type fuel bundles using the WIMS-IST lattice physics code had demonstrated a bias in the calculation of the coolant void reactivity (CVR) of approximately +0.5 to +0.6 mk (1 mk =100 pcm = 0.001 {Delta}k/k). However, these validation studies were performed using experimental data for 28-element bundles with pressure tubes that were smaller than standard CANDU-type pressure tubes, giving a smaller coolant volume, and a modified neutron energy spectrum. Validation studies performed with 37-element and 43-element fuel bundles with a CANDU-type lattice pitch and pressure tube had shown a CVR bias of {approx} 1.7 to 1.9 mk. It was believed that the CVR bias for a 28-element bundle would be closer to this range of values if a standard CANDU pressure tube diameter were used The objective of this study was to confirm this hypothesis, that using a larger CANDU-standard pressure tube would give a larger CVR bias for a 28-NU fuel bundle, as computed by WIMS-IST in comparison to experimental measurements of critical buckling. Thus, new critical-height and flux-map measurements were performed in substitution experiments in the ZED-2 research reactor to determine the pure critical lattice buckling for 28-element fuel with standard-size CANDU pressure tubes. The derived buckling from these experiments were used in WIMS-IST transport calculations to determine the effective multiplication factors for cooled and voided lattices and hence the bias in the CVR. Calculation results demonstrated that the CVR bias for the 28-NU was {approx} 1.7 mk {+-} 0.42 mk, which is consistent with the results for 37-element and 43-element CANDU-type lattices. (authors)

  10. Assessment of tritium breeding requirements for fusion power reactors

    SciTech Connect

    Jung, J.

    1983-12-01

    This report presents an assessment of tritium-breeding requirements for fusion power reactors. The analysis is based on an evaluation of time-dependent tritium inventories in the reactor system. The method presented can be applied to any fusion systems in operation on a steady-state mode as well as on a pulsed mode. As an example, the UWMAK-I design was analyzed and it has been found that the startup inventory requirement calculated by the present method significantly differs from those previously calculated. The effect of reactor-parameter changes on the required tritium breeding ratio is also analyzed for a variety of reactor operation scenarios.

  11. Computer optimization of reactor-thermoelectric space power systems

    NASA Technical Reports Server (NTRS)

    Maag, W. L.; Finnegan, P. M.; Fishbach, L. H.

    1973-01-01

    A computer simulation and optimization code that has been developed for nuclear space power systems is described. The results of using this code to analyze two reactor-thermoelectric systems are presented.

  12. Heat pipe nuclear reactor for space power

    NASA Technical Reports Server (NTRS)

    Koening, D. R.

    1976-01-01

    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  13. Heat pipe nuclear reactor for space power

    NASA Technical Reports Server (NTRS)

    Koening, D. R.

    1976-01-01

    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  14. COUPLED FAST-THERMAL POWER BREEDER REACTOR

    DOEpatents

    Avery, R.

    1961-07-18

    A nuclear reactor having a region operating predominantly on fast neutrons and another region operating predominantly on slow neutrons is described. The fast region is a plutonium core and the slow region is a natural uranium blanket around the core. Both of these regions are free of moderator. A moderating reflector surrounds the uranium blanket. The moderating material and thickness of the reflector are selected so that fissions in the uranium blanket make a substantial contribution to the reactivity of the reactor.

  15. Reference Reactor Module for the Affordable Fission Surface Power System

    NASA Astrophysics Data System (ADS)

    Poston, David I.; Kapernick, Richard J.; Dixon, David D.; Amiri, Benjamin W.; Marcille, Thomas F.

    2008-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The requirements of many surface power applications allow the consideration of systems with much less development risk than most other space reactor applications, because of modest power (10s of kWe) and no driving need for minimal mass (allowing temperatures <1000 K). The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. This paper describes the reference AFSPS reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based, UO2-fueled, liquid metal-cooled fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. One of the important ``affordability'' attributes is that the concept has been designed to minimize both the technical and programmatic safety risk.

  16. Reference Reactor Module for the Affordable Fission Surface Power System

    SciTech Connect

    Poston, David I.; Kapernick, Richard J.; Dixon, David D.; Amiri, Benjamin W.; Marcille, Thomas F.

    2008-01-21

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The requirements of many surface power applications allow the consideration of systems with much less development risk than most other space reactor applications, because of modest power (10s of kWe) and no driving need for minimal mass (allowing temperatures <1000 K). The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. This paper describes the reference AFSPS reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based, UO{sub 2}-fueled, liquid metal-cooled fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. One of the important 'affordability' attributes is that the concept has been designed to minimize both the technical and programmatic safety risk.

  17. Safety and licensing for small and medium power reactors

    SciTech Connect

    Trauger, D.B.

    1987-01-01

    Proposed new concepts for small and medium power reactors differ substantially from traditional Light Water Reactors (LWRs). Although designers have a large base of experience in safety and licensing, much of it is not relevant to new concepts. It can be a disadvantage if regulators apply LWR rules directly. A fresh start is appropriate. The extensive interactions between industry, regulators, and the public complicates but may enhance safety. It is basic to recognize the features that distinguish nuclear energy safety from that for other industries. These features include: nuclear reactivity, fission product radiation, and radioactive decay heat. Small and medium power reactors offer potential advantages over LWRs, particularly for reactivity and decay heat.

  18. Gas-cooled reactor power systems for space

    SciTech Connect

    Walter, C.E.

    1987-01-01

    Efficiency and mass characteristics for four gas-cooled reactor power system configurations in the 2- to 20-MWe power range are modeled. The configurations use direct and indirect Brayton cycles with and without regeneration in the power conversion loop. The prismatic ceramic core of the reactor consists of several thousand pencil-shaped tubes made from a homogeneous mixture of moderator and fuel. The heat rejection system is found to be the major contributor to system mass, particularly at high power levels. A direct, regenerated Brayton cycle with helium working fluid permits high efficiency and low specific mass for a 10-MWe system.

  19. Investigation of materials for fusion power reactors

    NASA Astrophysics Data System (ADS)

    Bouhaddane, A.; Slugeň, V.; Sojak, S.; Veterníková, J.; Petriska, M.; Bartošová, I.

    2014-06-01

    The possibility of application of nuclear-physical methods to observe radiation damage to structural materials of nuclear facilities is nowadays a very actual topic. The radiation damage to materials of advanced nuclear facilities, caused by extreme radiation stress, is a process, which significantly limits their operational life as well as their safety. In the centre of our interest is the study of the radiation degradation and activation of the metals and alloys for the new nuclear facilities (Generation IV fission reactors, fusion reactors ITER and DEMO). The observation of the microstructure changes in the reactor steels is based on experimental investigation using the method of positron annihilation spectroscopy (PAS). The experimental part of the work contains measurements focused on model reactor alloys and ODS steels. There were 12 model reactor steels and 3 ODS steels. We were investigating the influence of chemical composition on the production of defects in crystal lattice. With application of the LT 9 program, the spectra of specimen have been evaluated and the most convenient samples have been determined.

  20. Thermal Stress Calculations for Heatpipe-Cooled Reactor Power Systems

    NASA Astrophysics Data System (ADS)

    Kapernick, Richard J.; Guffee, Ray M.

    2003-01-01

    A heatpipe-cooled fast reactor concept has been under development at Los Alamos National Laboratory for the past several years, to be used as a power source for nuclear electric propulsion (NEP) or as a planetary surface power system. The reactor core consists of an array of modules that are held together by a core lateral restraint system. Each module includes a single heatpipe surrounded by 3-6 clad fuel pins. As part of this development effort, a partial array of a candidate heatpipe-cooled reactor is to be tested in the SAFE-100 experimental program at the Marshall Space Flight Center. The partial array comprises 19 3-pin modules, which are powered by resistance heaters. This paper describes the analyses that were performed in support of this test program, to assess thermal and structural performance and to specify the test conditions needed to simulate reactor operating conditions.

  1. Design of megawatt power level heat pipe reactors

    SciTech Connect

    Mcclure, Patrick Ray; Poston, David Irvin; Dasari, Venkateswara Rao; Reid, Robert Stowers

    2015-11-12

    An important niche for nuclear energy is the need for power at remote locations removed from a reliable electrical grid. Nuclear energy has potential applications at strategic defense locations, theaters of battle, remote communities, and emergency locations. With proper safeguards, a 1 to 10-MWe (megawatt electric) mobile reactor system could provide robust, self-contained, and long-term power in any environment. Heat pipe-cooled fast-spectrum nuclear reactors have been identified as a candidate for these applications. Heat pipe reactors, using alkali metal heat pipes, are perfectly suited for mobile applications because their nature is inherently simpler, smaller, and more reliable than “traditional” reactors. The goal of this project was to develop a scalable conceptual design for a compact reactor and to identify scaling issues for compact heat pipe cooled reactors in general. Toward this goal two detailed concepts were developed, the first concept with more conventional materials and a power of about 2 MWe and a the second concept with less conventional materials and a power level of about 5 MWe. A series of more qualitative advanced designs were developed (with less detail) that show power levels can be pushed to approximately 30 MWe.

  2. Gas-cooled reactor for space power systems

    SciTech Connect

    Walter, C.E.; Pearson, J.S.

    1987-05-01

    Reactor characteristics based on extensive development work on the 500-MWt reactor for the Pluto nuclear ramjet are described for space power systems useful in the range of 2 to 20 MWe for operating times of 1 y. The modest pressure drop through the prismatic ceramic core is supported at the outlet end by a ceramic dome which also serves as a neutron reflector. Three core materials are considered which are useful at temperatures up to about 2000 K. Most of the calculations are based on a beryllium oxide with uranium dioxide core. Reactor control is accomplished by use of a burnable poison, a variable-leakage reflector, and internal control rods. Reactivity swings of 20% are obtained with a dozen internal boron-10 rods for the size cores studied. Criticality calculations were performed using the ALICE Monte Carlo code. The inherent high-temperature capability of the reactor design removes the reactor as a limiting condition on system performance. The low fuel inventories required, particularly for beryllium oxide reactors, make space power systems based on gas-cooled near-thermal reactors a lesser safeguard risk than those based on fast reactors.

  3. Reference reactor module for NASA's lunar surface fission power system

    SciTech Connect

    Poston, David I; Kapernick, Richard J; Dixon, David D; Werner, James; Qualls, Louis; Radel, Ross

    2009-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO{sub 2}-fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.

  4. Small reactor power systems for manned planetary surface bases

    SciTech Connect

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.

  5. Small reactor power systems for manned planetary surface bases

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1987-01-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.

  6. HIGH TEMPERATURE, HIGH POWER HETEROGENEOUS NUCLEAR REACTOR

    DOEpatents

    Hammond, R.P.; Wykoff, W.R.; Busey, H.M.

    1960-06-14

    A heterogeneous nuclear reactor is designed comprising a stationary housing and a rotatable annular core being supported for rotation about a vertical axis in the housing, the core containing a plurality of radial fuel- element supporting channels, the cylindrical empty space along the axis of the core providing a central plenum for the disposal of spent fuel elements, the core cross section outer periphery being vertically gradated in radius one end from the other to provide a coolant duct between the core and the housing, and means for inserting fresh fuel elements in the supporting channels under pressure and while the reactor is in operation.

  7. ENHANCING ADVANCED CANDU PROLIFERATION RESISTANCE FUEL WITH MINOR ACTINIDES

    SciTech Connect

    Gray S. Chang

    2010-05-01

    The advanced nuclear system will significantly advance the science and technology of nuclear energy systems and to enhance the spent fuel proliferation resistance. Minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs can play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In this work, an Advanced CANDU Reactor (ACR) fuel unit lattice cell model with 43 UO2 fuel rods will be used to investigate the effectiveness of a Minor Actinide Reduction Approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance. The main MARA objective is to increase the 238Pu / Pu isotope ratio by using the transuranic nuclides (237Np and 241Am) in the high burnup fuel and thereby increase the proliferation resistance even for a very low fuel burnup. As a result, MARA is a very effective approach to enhance the proliferation resistance for the on power refueling ACR system nuclear fuel. The MA transmutation characteristics at different MA loadings were compared and their impact on neutronics criticality assessed. The concept of MARA, significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in atoms for peace and the intermediate term of nuclear energy reconnaissance.

  8. 75 FR 79423 - In the Matter of All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-20

    ... All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent Nuclear Fuel; Order... Director, Office of Nuclear Reactor Regulation under 10 CFR 50.4. In addition, licensee submittals that... Director, Office of Nuclear Reactor Regulation, may, in writing, relax or rescind any of the...

  9. Application of reactor-pumped lasers to power beaming

    SciTech Connect

    Repetti, T.E.

    1991-10-01

    Power beaming is the concept of centralized power generation and distribution to remote users via energy beams such as microwaves or laser beams. The power beaming community is presently performing technical evaluations of available lasers as part of the design process for developing terrestrial and space-based power beaming systems. This report describes the suitability of employing a nuclear reactor-pumped laser in a power beaming system. Although there are several technical issues to be resolved, the power beaming community currently believes that the AlGaAs solid-state laser is the primary candidate for power beaming because that laser meets the many design criteria for such a system and integrates well with the GaAs photodiode receiver array. After reviewing the history and physics of reactor-pumped lasers, the advantages of these lasers for power beaming are discussed, along with several technical issues which are currently facing reactor-pumped laser research. The overriding conclusion is that reactor-pumped laser technology is not presently developed to the point of being technially or economically competitive with more mature solid-state technologies for application to power beaming. 58 refs.

  10. Application of reactor-pumped lasers to power beaming

    SciTech Connect

    Repetti, T.E.

    1991-10-01

    Power beaming is the concept of centralized power generation and distribution to remote users via energy beams such as microwaves or laser beams. The power beaming community is presently performing technical evaluations of available lasers as part of the design process for developing terrestrial and space-based power beaming systems. This report describes the suitability of employing a nuclear reactor-pumped laser in a power beaming system. Although there are several technical issues to be resolved, the power beaming community currently believes that the AlGaAs solid-state laser is the primary candidate for power beaming because that laser meets the many design criteria for such a system and integrates well with the GaAs photodiode receiver array. After reviewing the history and physics of reactor-pumped lasers, the advantages of these lasers for power beaming are discussed, along with several technical issues which are currently facing reactor-pumped laser research. The overriding conclusion is that reactor-pumped laser technology is not presently developed to the point of being technially or economically competitive with more mature solid-state technologies for application to power beaming. 58 refs.

  11. Nuclear Power from Fission Reactors. An Introduction.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  12. Gas-cooled reactor power systems for space

    SciTech Connect

    Walter, C.E.

    1987-01-01

    In this paper the characteristics of six designs for power levels of 2, 10, and 20 MWe for operating times of 1 and 7 y are described. The operating conditions for these arbitrary designs were chosen to minimize system specific mass. The designs are based on recent work which benefits from earlier analyses of nuclear space power systems conducted at our Laboratory. Both gas- and liquid-cooled reactors had been considered. Pitts and Walter (1970) reported on the results of a detailed study of a 10-MWe lithium-cooled reactor in a potassium Rankine system. Unpublished results (1966) of a computer analysis provide details of an argon-cooled reactor in an argon Brayton system. The gas-cooled reactor design was based on extensive development work on the 500-MWth reactor for the nuclear ramjet (Pluto) as described by Walter (1964). The designs discussed here draw heavily on the Pluto project experience, which culminated in a successful full-power ground test as reported by Reynolds (1964). At higher power levels gas-cooled reactors coupled with Brayton systems with advanced radiator designs become attractive.

  13. Reactor Lithium Heat Pipes for HP-STMCs Space Reactor Power System

    NASA Astrophysics Data System (ADS)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    2004-02-01

    Design and performance analysis of the nuclear reactor's lithium heat pipes for a 110-kWe Heat Pipes-Segmented Thermoelectric Module Converters (HP-STMCs) Space Reactor Power system (SRPS) are presented. The evaporator length of the heat pipes is the same as the active core height (0.45 m) and the C-C finned condenser is of the same length as the STMC panels (1.5 m). The C-C finned condenser section is radiatively coupled to the collector shoes of the STMCs placed on both sides. The lengths of the adiabatic section, the values of the power throughput and the evaporator wall temperature depend on the radial location of the heat pipe in the reactor core and the number and dimensions of the potassium heat pipes in the heat rejection radiator. The reactor heat pipes have a total length that varies from 7.57 to 7.73 m, and a 0.2 mm thick Mo-14%Re wick with an average pore radius of 12 μm. The wick is separated from the Mo-14%Re wall by a 0.5 mm annulus filled with liquid lithium, to raise the prevailing capillary limit. The nominal evaporator (or reactor) temperature varies from 1513 to 1591 K and the thermal power of the reactor is 1.6 MW, which averages 12.7 kW for each of the 126 reactor heat pipes. The power throughput per heat pipe increase to a nominal 15.24 kW at the location of the peak power in the core and to 20.31 kW when an adjacent heat pipe fails. The prevailing capillary limit of the reactor heat pipes is 28.3 kW, providing a design margin >= 28%.

  14. Reactor Lithium Heat Pipes for HP-STMCs Space Reactor Power System

    SciTech Connect

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    2004-02-04

    Design and performance analysis of the nuclear reactor's lithium heat pipes for a 110-kWe Heat Pipes-Segmented Thermoelectric Module Converters (HP-STMCs) Space Reactor Power system (SRPS) are presented. The evaporator length of the heat pipes is the same as the active core height (0.45 m) and the C-C finned condenser is of the same length as the STMC panels (1.5 m). The C-C finned condenser section is radiatively coupled to the collector shoes of the STMCs placed on both sides. The lengths of the adiabatic section, the values of the power throughput and the evaporator wall temperature depend on the radial location of the heat pipe in the reactor core and the number and dimensions of the potassium heat pipes in the heat rejection radiator. The reactor heat pipes have a total length that varies from 7.57 to 7.73 m, and a 0.2 mm thick Mo-14%Re wick with an average pore radius of 12 {mu}m. The wick is separated from the Mo-14%Re wall by a 0.5 mm annulus filled with liquid lithium, to raise the prevailing capillary limit. The nominal evaporator (or reactor) temperature varies from 1513 to 1591 K and the thermal power of the reactor is 1.6 MW, which averages 12.7 kW for each of the 126 reactor heat pipes. The power throughput per heat pipe increase to a nominal 15.24 kW at the location of the peak power in the core and to 20.31 kW when an adjacent heat pipe fails. The prevailing capillary limit of the reactor heat pipes is 28.3 kW, providing a design margin {>=} 28%.

  15. Protective actions as a factor in power reactor siting

    SciTech Connect

    Gant, K.S.; Schweitzer, M.

    1984-06-01

    This report examines the relationship between a power reactor site and the ease of implementing protective actions (emergency measures a serious accident). Limiting populating density around a reactor lowers the number of people at risk but cannot assure that all protective actions are possible for those who reside near the reactor. While some protective measures can always be taken (i.e., expedient respiratory protection, sheltering) the ability to evacuate the area or find adequate shelter may depend on the characteristics of the area near the reactor site. Generic siting restrictions designed to identify and eliminate these site-specific constraints would be difficult to formulate. The authors suggest identifying possible impediments to protective actions at a proposed reactor site and addressing these problems in the emergency plans. 66 references, 6 figures, 8 tables.

  16. Measurements of the reactor neutron power in absolute units

    SciTech Connect

    Lebedev, G. V.

    2015-12-15

    The neutron power of the reactor of the Yenisei space nuclear power plant is measured in absolute units using the modernized method of correlation analysis during the ground-based tests of the Yenisei prototypes. Results of the experiments are given. The desired result is obtained in a series of experiments carried out at the stage of the plant preparation for tests. The acceptability of experimental data is confirmed by the results of measuring the reactor neutron power in absolute units at the nominal level by the thermal balance during the life cycle tests of the ground prototypes.

  17. High power density reactors based on direct cooled particle beds

    SciTech Connect

    Powell, J.R.; Horn, F.L.

    1985-01-01

    Reactors based on direct cooled HTGR type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out long the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBR's) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed. 12 figs.

  18. The Rockwell SR-100G reactor turboelectric space power system

    NASA Technical Reports Server (NTRS)

    Anderson, R. V.

    1985-01-01

    During FY 1982 and 1983, Rockwell International performed system and subsystem studies for space reactor power systems. These studies drew on the expertise gained from the design and flight of the SNAP-10A space nuclear reactor system. These studies, performed for the SP-100 Program, culminated in the selection of a reactor-turboelectric (gas Brayton) system for the SP-100 application; this system is called the SR-100G. This paper describes the features of the system and provides references where more detailed information can be obtained.

  19. Uranium ARC Fission Reactor for Space Power and Propulsion

    DTIC Science & Technology

    1992-03-01

    thruster or MHD accelerator/generator. Uranium arc technology is being developed for use in space nuclear thermal and electric propulsion reactors. In...specific impulse propulsion or ultrahigh temperature power conversion. Fission events in the nuclear arc plasma provide for additional dissociation and...I Technical Objectives 3 2. URANIUM ARC FISSION REACTOR CONCEPT AND NUCLEAR -AUGMENTED THRUSTER CONCEPT 4 2.1 Physics Basis 4 2.2 Uranium Arc

  20. Bimodal, Low Power Pellet Bed Reactor System Design Concept

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Liscum-Powell, Jennifer; Pelaccio, Dennis G.

    1994-07-01

    A conceptual design is presented of a bimodal system that employs a pellet bed reactor heat source, helium-xenon Closed Brayton Cycle (CBC) engines, UC fuel, super-alloy structure materials, and hydrogen for propulsion operation. In addition to incorporating state-of-the-art, low risk technologies, and as much off-the-shelf hardware as possible in order to meet a near-term flight demonstration date, the system offers unique design and safety features. These design features include: (a) modularity to support a wide range of electric power and thermal propulsion requirements, (b) sectored, annular reactor core and multiple CBC engines for redundancy and to eliminate a single point failure in the coolant loop, (c) efficient CBC engines, (d) low maximum fuel temperature (<1600 K) that is maintained almost constant during power and propulsion modes, (e) spherical fuel mini-spheres or pellets that provide full retention of fission products and scalability to higher power levels, (f) two independent reactor control systems with built-in redundancy, (h) passive decay heat removal from the reactor core, (g) ground testing of the fully assembled system using electric heaters and unfueled mini-spheres or pellets, (h) negative temperature reactivity feedback for improved reactor operation and safety, (i) high specific impulse (650s-750s) and specific power (11.0- 21.9 We/kg), at relatively low power levels (10-40 kWe).

  1. Hybrid thermionic space reactor for power and propulsion

    SciTech Connect

    Sahin, S. . Teknik Egitim Fakueltesi); Kennel, E.B. )

    1994-08-01

    A thermo-hydrodynamic-neutronic analysis is performed for a fast, uranium carbide (UC) fueled space-craft nuclear in-core thermionic reactor. The thermo-hydrodynamic analysis shows that a hybrid thermionic spacecraft nuclear reactor can be designed for both electricity generation and nuclear thermal propulsion purposes. The neutronic analysis has been conducted in S[sub 8]-P[sub 3] approximation with the help of one- and two-dimensional neutron transport codes ANISN and DORT, respectively. The calculations have shown that a UC fueled electricity generating single mode thermionic nuclear reactor can be designed to be extremely compact because of the high atomic density of the nuclear fuel (by 95% sintering density), namely, with a core radius of 8.7 cm and core height of 25 cm, leading to power levels as low as 5 kW (electric) by an electrical output on an emitter surface of 1.243 W/cm[sup 2]. A reactor control with boronated reflector drums at the outer periphery of the radial reflector of 16-cm thickness would make possible reactivity changes of [Delta]k[sub eff] > 10% -- amply sufficient for a fast reactor -- without a significant distortion of the fission power profile during all phases of the space mission. The hybrid thermionic spacecraft nuclear reactor mode contains cooling channels in the nuclear fuel for the hydrogen propellant. This increase the critical reactor size because of the lower uranium atomic density in this design concept. Calculations have lead to a reactor with a core radius of 22 cm and core height of 35 cm leading to power levels [approximately] 50 kW(electric) under the aforementioned thermionic conversion conditions.

  2. Thermonuclear inverse magnetic pumping power cycle for stellarator reactors

    SciTech Connect

    Ho, D.D.M.; Kulsrud, R.M.

    1985-09-01

    A novel power cycle for direct conversion of alpha-particle energy into electricity is proposed for an ignited plasma in a stellarator reactor. The plasma column is alternately compressed and expanded in minor radius by periodic variation of the toroidal magnetic field strength. As a result of the way a stellarator is expected to work, the plasma pressure during expansion is greater than the corresponding pressure during compression. Therefore, negative work is done on the plasma during a complete cycle. This work manifests itself as a back-voltage in the toroidal field coils, and direct electrical energy is obtained from this voltage. For a typical reactor, the average power obtained from this cycle (with a minor radius compression factor on the order of 50%) can be as much as 50% of the electrical power obtained from the thermonuclear neutrons without compressing the plasma. Thus, if it is feasible to vary the toroidal field strength, the power cycle provides an alternative scheme of energy conversion for a deuterium-tritium fueled reactor. The cycle may become an important method of energy conversion for advanced neutron-lean fueled reactors. By operating two or more reactors in tandem, the cycle can be made self-sustaining.

  3. New reactor technology: safety improvements in nuclear power systems.

    PubMed

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems.

  4. Proposed power upgrade of the Hot Fuel Examination Facility's neutron radiography reactor. [NRAD reactor

    SciTech Connect

    Pruett, D.P.; Richards, W.J.; Heidel, C.C.

    1984-01-01

    The Hot Fuel Examination Facility, HFEF, is one of several facilities located at the Argonne Site. HFEF comprises a large hot cell where both non-destructive and destructive examination of highly-irradiated reactor fuels are conducted in support of the LMFBR program. One of the non-destructive examination techniques utilized at HFEF is neutron radiography. Neutron radiography is provided by the NRAD reactor facility, which is located beneath the HFEF hot cell. The NRAD reactor is a TRIGA reactor and is operated at a steady state power level of 250 kW solely for neutron radiography and the development of radiography techniques. When the NRAD facility was designed and constructed, an operating power level of 250 kW was considered to be adequate for obtaining radiographs of the type of specimens envisaged at that time. A typical radiograph required approximately a twenty-minute exposure time. Specimens were typically single fuel rods placed in an aluminum tray. Since that time, however, several things have occurred that have tended to increase radiography exposure times to as much as 90 minutes each. In order to decrease exposure times, the reactor power level is to be increased from 250 kw to 1 MW. This increase in power will necessitate several engineering and design changes. These changes are described.

  5. Reliable reactor coolant pump seal performance - the station's role

    SciTech Connect

    Pothier, N.E.; Metcalfe, R.

    1989-01-01

    During the early days of the Canada deuterium uranium (CANDU) power reactor program, operators and designers learned that close attention to reactor coolant pump (RCP) seals was imperative for achieving high-capacity factors. This lesson was driven home by unpredictable and frequent seal failures in the following early CANDU plants. Those seal failures caused forced outages, maintenance/dose burdens, and heavy-water losses. Because then-available industrial seal technology proved inadequate in providing satisfactory fixes, Atomic Energy of Canada Limited (AECL) began a major effort to understand seal performance, develop improved designs, and evolve the station technology needed to attain the RCP seal reliable lifetime requirement of 4 yr. The payback has been huge: Fixes have been successfully implemented and excellent performance is now being achieved with AECL improved RCP seals. In this paper, the CANDU RCP seal experience, the methodology (with emphasis on the station's role) for attaining reliable long RCP seal life, and the adaptability of this technology to US light water reactors (LWRs) are discussed.

  6. Background radiation measurements at high power research reactors

    DOE PAGES

    Ashenfelter, J.; Yeh, M.; Balantekin, B.; ...

    2015-10-23

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the backgroundmore » fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.« less

  7. Background radiation measurements at high power research reactors

    SciTech Connect

    Ashenfelter, J.; Yeh, M.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Davee, D.; Dean, D.; Deichert, G.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Fan, S.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Kettell, S.; Langford, T. J.; Littlejohn, B. R.; Martinez, D.; McKeown, R. D.; Morrell, S.; Mueller, P. E.; Mumm, H. P.; Napolitano, J.; Norcini, D.; Pushin, D.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Stemen, N. T.; Surukuchi, P. T.; Thompson, S. J.; Varner, R. L.; Wang, W.; Watson, S. M.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yen, Y. -R.; Zhang, C.; Zhang, X.

    2015-10-23

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  8. Background radiation measurements at high power research reactors

    NASA Astrophysics Data System (ADS)

    Ashenfelter, J.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Davee, D.; Dean, D.; Deichert, G.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Fan, S.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Kettell, S.; Langford, T. J.; Littlejohn, B. R.; Martinez, D.; McKeown, R. D.; Morrell, S.; Mueller, P. E.; Mumm, H. P.; Napolitano, J.; Norcini, D.; Pushin, D.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Stemen, N. T.; Surukuchi, P. T.; Thompson, S. J.; Varner, R. L.; Wang, W.; Watson, S. M.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yeh, M.; Yen, Y.-R.; Zhang, C.; Zhang, X.

    2016-01-01

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  9. Specific power of liquid-metal-cooled reactors

    SciTech Connect

    Dobranich, D.

    1987-10-01

    Calculations of the core specific power for conceptual space-based liquid-metal-cooled reactors, based on heat transfer considerations, are presented for three different fuel types: (1) pin-type fuel; (2) cermet fuel; and (3) thermionic fuel. The calculations are based on simple models and are intended to provide preliminary comparative results. The specific power is of interest because it is a measure of the core mass required to produce a given amount of power. Potential problems concerning zero-g critical heat flux and loss-of-coolant accidents are also discussed because these concerns may limit the core specific power. Insufficient experimental data exists to accurately determine the critical heat flux of liquid-metal-cooled reactors in space; however, preliminary calculations indicate that it may be a concern. Results also indicate that the specific power of the pin-type fuels can be increased significantly if the gap between the fuel and the clad is eliminated. Cermet reactors offer the highest specific power because of the excellent thermal conductivity of the core matrix material. However, it may not be possible to take fuel advantage of this characteristic when loss-of-coolant accidents are considered in the final core design. The specific power of the thermionic fuels is dependent mainly on the emitter temperature. The small diameter thermionic fuels have specific powers comparable to those of pin-type fuels. 11 refs., 12 figs, 2 tabs.

  10. Power flow control using distributed saturable reactors

    DOEpatents

    Dimitrovski, Aleksandar D.

    2016-02-13

    A magnetic amplifier includes a saturable core having a plurality of legs. Control windings wound around separate legs are spaced apart from each other and connected in series in an anti-symmetric relation. The control windings are configured in such a way that a biasing magnetic flux arising from a control current flowing through one of the plurality of control windings is substantially equal to the biasing magnetic flux flowing into a second of the plurality of control windings. The flow of the control current through each of the plurality of control windings changes the reactance of the saturable core reactor by driving those portions of the saturable core that convey the biasing magnetic flux in the saturable core into saturation. The phasing of the control winding limits a voltage induced in the plurality of control windings caused by a magnetic flux passing around a portion of the saturable core.

  11. Design considerations for an inertial confinement fusion reactor power plant

    SciTech Connect

    Massey, J.V.; Simpson, J.E.

    1981-08-10

    To further define the engineering and economic concerns for inertial confinement fusion reactors (ICR's), a conceptual design study was performed by Bechtel Group Incorporated under the direction of Lawrence Livermore National Laboratory (LLNL). The study examined alternatives to the LLNL HYLIFE concept and expanded the previous balance of plant design to incorporate information from recent liquid metal cooled fast breeder reactor (LMFBR) power plant studies. The majority of the effort was to incorporate present laser and target physics models into a reactor design with a low coolant flowrate and a high driver repetition rate. An example of such a design is the LLNL JADE concept. In addition to producing a power plant design for LLNL using the JADE example, Bechtel has also examined the applicability of the EAGLE (Energy Absorbing Gas Lithium Ejector) concept.

  12. Safety status of space radioisotope and reactor power sources

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1990-01-01

    The current overall safety criterion for both radioisotope and reactor power sources is containment or immobilization in the case of a reentry accident. In addition, reactors are designed to remain subcritical under conditions of land impact or water immersion. A very extensive safety test and analysis program was completed on the radioisotope thermoelectric generators (RTGs) in use on the Galileo spacecraft and planned for use on the Ulysses spacecraft. The results of this work show that the RTGs will pose little or no risk for any credible accident. The SP-100 space nuclear reactor program has begun addressing its safety criteria, and the design is planned to be such as to ensure meeting the various safety criteria. Preliminary mission risk analyses on SP-100 show the expected value population dose from postulated accidents on the reference mission to be very small. It is concluded that the current US nuclear power sources are the safest flown.

  13. Summary of advanced LMR (Liquid Metal Reactor) evaluations: PRISM (Power Reactor Inherently Safe Module) and SAFR (Sodium Advanced Fast Reactor)

    SciTech Connect

    Van Tuyle, G.J.; Slovik, G.C.; Chan, B.C.; Kennett, R.J.; Cheng, H.S.; Kroeger, P.G. )

    1989-10-01

    In support of the US Nuclear Regulatory Commission (NRC), Brookhaven National Laboratory (BNL) has performed independent analyses of two advanced Liquid Metal Reactor (LMR) concepts. The designs, sponsored by the US Department of Energy (DOE), the Power Reactor Inherently Safe Module (PRISM) (Berglund, 1987) and the Sodium Advanced Fast Reactor (SAFR) (Baumeister, 1987), were developed primarily by General Electric (GE) and Rockwell International (RI), respectively. Technical support was provided to DOE, RI, and GE, by the Argonne National Laboratory (ANL), particularly with respect to the characteristics of the metal fuels. There are several examples in both PRISM and SAFR where inherent or passive systems provide for a safe response to off-normal conditions. This is in contrast to the engineered safety systems utilized on current US Light Water Reactor (LWR) designs. One important design inherency in the LMRs is the inherent shutdown'', which refers to the tendency of the reactor to transition to a much lower power level whenever temperatures rise significantly. This type of behavior was demonstrated in a series of unscrammed tests at EBR-II (NED, 1986). The second key design feature is the passive air cooling of the vessel to remove decay heat. These systems, designated RVACS in PRISM and RACS in SAFR, always operate and are believed to be able to prevent core damage in the event that no other means of heat removal is available. 27 refs., 78 figs., 3 tabs.

  14. Fuzzy power control algorithm for a pressurized water reactor

    SciTech Connect

    Hah, Y.J. ); Lee, B.W. )

    1994-05-01

    A fuzzy power control algorithm is presented for automatic reactor power control in a pressurized water reactor (PWR). Automatic power shape control is complicated by the use of control rods with a conventional proportional-integral-differential controller because it is highly coupled with reactivity compensation. Thus, manual shape controls are usually employed even for the limited capability needed for load-following operations including frequency control. In an attempt to achieve automatic power shape control without any design modifications to the core, a fuzzy power control algorithm is proposed. For the fuzzy control, the rule base is formulated based on a multiple-input multiple-output system. The minimum operation rule and the center of area method are implemented for the development of the fuzzy algorithm. The fuzzy power control algorithm has been applied to Yonggwang Nuclear Unit 3. The simulation results show that the fuzzy control can be adapted as a practical control strategy for automatic reactor power control of PWRs during the load-following operations.

  15. The neutronics studies of fusion fission hybrid power reactor

    SciTech Connect

    Zheng Youqi; Wu Hongchun; Zu Tiejun; Yang Chao; Cao Liangzhi

    2012-06-19

    In this paper, a series of neutronics analysis of hybrid power reactor is proposed. The ideas of loading different fuels in a modular-type fission blanket is analyzed, fitting different level of fusion developments, i.e., the current experimental power output, the level can be obtained in the coming future and the high-power fusion reactor like ITER. The energy multiplication of fission blankets and tritium breeding ratio are evaluated as the criterion of design. The analysis is implemented based on the D-type simplified model, aiming to find a feasible 1000MWe hybrid power reactor for 5 years' lifetime. Three patterns are analyzed: 1) for the low fusion power, the reprocessed fuel is chosen. The fuel with high plutonium content is loaded to achieve large energy multiplication. 2) For the middle fusion power, the spent fuel from PWRs can be used to realize about 30 times energy multiplication. 3) For the high fusion power, the natural uranium can be directly used and about 10 times energy multiplication can be achieved.

  16. 77 FR 38742 - Non-Power Reactor License Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... changes to address technical issues in existing non-power reactor regulations. The NRC is seeking input... draft regulatory basis document describes the NRC's overall objectives, conceptual approaches, potential....regulations.gov in Docket ID NRC-2011-0087. Regulations.gov allows you to receive alerts when changes...

  17. Acrylic acid and electric power cogeneration in an SOFC reactor.

    PubMed

    Ji, Baofeng; Wang, Jibo; Chu, Wenling; Yang, Weishen; Lin, Liwu

    2009-04-21

    A highly efficient catalyst, MoV(0.3)Te(0.17)Nb(0.12)O, used for acrylic acid (AA) production from propane, was used as an anodic catalyst in an SOFC reactor, from which AA and electric power were cogenerated at 400-450 degrees C.

  18. Fuel element concept for long life high power nuclear reactors

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.; Rom, F. E.

    1969-01-01

    Nuclear reactor fuel elements have burnups that are an order of magnitude higher than can currently be achieved by conventional design practice. Elements have greater time integrated power producing capacity per unit volume. Element design concept capitalizes on known design principles and observed behavior of nuclear fuel.

  19. Flying Reactors: The Political Feasibility of Nuclear Power in Space

    DTIC Science & Technology

    2005-04-01

    date , NASA has safely devel- oped, tested, and flown radioisotope power systems on 17 mis- sions and the United States successfully launched a nuclear...subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE ...APR 2005 2. REPORT TYPE 3. DATES COVERED - 4. TITLE AND SUBTITLE Flying Reactors. The Political Feasibility of Nuclear Power in Space 5a

  20. Systems aspects of a space nuclear reactor power system

    NASA Technical Reports Server (NTRS)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    Various system aspects of a 300-kW nuclear reactor power system for spacecraft have been investigated. Special attention is given to the cases of a reusable OTV and a space-based radar. It is demonstrated that the stowed length of the power system is important to mission design, and that orbital storage for months to years may be needed for missions involving orbital assembly.

  1. Systems aspects of a space nuclear reactor power system

    NASA Technical Reports Server (NTRS)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    Various system aspects of a 300-kW nuclear reactor power system for spacecraft have been investigated. Special attention is given to the cases of a reusable OTV and a space-based radar. It is demonstrated that the stowed length of the power system is important to mission design, and that orbital storage for months to years may be needed for missions involving orbital assembly.

  2. Identifying and bounding uncertainties in nuclear reactor thermal power calculations

    SciTech Connect

    Phillips, J.; Hauser, E.; Estrada, H.

    2012-07-01

    Determination of the thermal power generated in the reactor core of a nuclear power plant is a critical element in the safe and economic operation of the plant. Direct measurement of the reactor core thermal power is made using neutron flux instrumentation; however, this instrumentation requires frequent calibration due to changes in the measured flux caused by fuel burn-up, flux pattern changes, and instrumentation drift. To calibrate the nuclear instruments, steam plant calorimetry, a process of performing a heat balance around the nuclear steam supply system, is used. There are four basic elements involved in the calculation of thermal power based on steam plant calorimetry: The mass flow of the feedwater from the power conversion system, the specific enthalpy of that feedwater, the specific enthalpy of the steam delivered to the power conversion system, and other cycle gains and losses. Of these elements, the accuracy of the feedwater mass flow and the feedwater enthalpy, as determined from its temperature and pressure, are typically the largest contributors to the calorimetric calculation uncertainty. Historically, plants have been required to include a margin of 2% in the calculation of the reactor thermal power for the licensed maximum plant output to account for instrumentation uncertainty. The margin is intended to ensure a cushion between operating power and the power for which safety analyses are performed. Use of approved chordal ultrasonic transit-time technology to make the feedwater flow and temperature measurements (in place of traditional differential-pressure- based instruments and resistance temperature detectors [RTDs]) allows for nuclear plant thermal power calculations accurate to 0.3%-0.4% of plant rated power. This improvement in measurement accuracy has allowed many plant operators in the U.S. and around the world to increase plant power output through Measurement Uncertainty Recapture (MUR) up-rates of up to 1.7% of rated power, while also

  3. 75 FR 70042 - In the Matter of All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent Nuclear Fuel; Order... above, shall be submitted to the NRC to the attention of the Director, Office of Nuclear Reactor... properly marked and handled in accordance with 10 CFR 73.21. The Director, Office of Nuclear...

  4. 10 CFR Appendix J to Part 50 - Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors J Appendix J to Part 50 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Pt. 50, App. J Appendix J to Part 50—Primary Reactor...

  5. A gas-cooled reactor surface power system

    NASA Astrophysics Data System (ADS)

    Lipinski, Ronald J.; Wright, Steven A.; Lenard, Roger X.; Harms, Gary A.

    1999-01-01

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  6. A gas-cooled reactor surface power system

    SciTech Connect

    Lipinski, Ronald J.; Wright, Steven A.; Lenard, Roger X.; Harms, Gary A.

    1999-01-22

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  7. A gas-cooled reactor surface power system

    SciTech Connect

    Lipinski, R.J.; Wright, S.A.; Lenard, R.X.; Harms, G.A.

    1999-01-01

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1{percent}Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars. {copyright} {ital 1999 American Institute of Physics.}

  8. A Gas-Cooled Reactor Surface Power System

    SciTech Connect

    Harms, G.A.; Lenard, R.X.; Lipinski, R.J.; Wright, S.A.

    1998-11-09

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life- cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitide clad in Nb 1 %Zr, which has been extensively tested under the SP-I 00 program The fiel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fbel and stabilizing the geometty against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality cannot occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  9. Estimates of power requirements for a manned Mars rover powered by a nuclear reactor

    SciTech Connect

    Morley, N.J.; El-Genk, M.S. Cataldo, R. Bloomfield, H.)

    1991-01-01

    This paper assesses the power requirement for a Manned Mars Rover vehicle. Auxiliary power needs are fulfilled using a hybrid solar photovoltaic/regenerative fuel cell system, while the primary power needs are met using an SP-100 type reactor. The primary electric power needs, which include 30-kW{sub e} net user power, depend on the reactor thermal power and the efficiency of the power conversion system. Results show that an SP-100 type reactor coupled to a Free Piston Stirling Engine (FPSE) yields the lowest total vehicle mass and lowest specific mass for the power system. The second lowest mass was for a SP-100 reactor coupled to a Closed Brayton Cycle (CBC) using He/Xe as the working fluid. The specific mass of the nuclear reactor power systrem, including a man-rated radiation shield, ranged from 150-kg/kW{sub e} to 190-kg/kW{sub e} and the total mass of the Rover vehicle varied depend upon the cruising speed.

  10. Estimates of power requirements for a Manned Mars Rover powered by a nuclear reactor

    NASA Astrophysics Data System (ADS)

    Morley, Nicholas J.; El-Genk, Mohamed S.; Cataldo, Robert; Bloomfield, Harvey

    This paper assesses the power requirement for a Manned Mars Rover vehicle. Auxiliary power needs are fulfilled using a hybrid solar photovoltaic/regenerative fuel cell system, while the primary power needs are meet using an SP-100 type reactor. The primary electric power needs, which include 30-kW(e) net user power, depend on the reactor thermal power and the efficiency of the power conversion system. Results show that an SP-100 type reactor coupled to a Free Piston Stirling Engine yields the lowest total vehicle mass and lowest specific mass for the power system. The second lowest mass was for a SP-100 reactor coupled to a Closed Brayton Cycle using He/Xe as the working fluid. The specific mass of the nuclear reactor power system, including a man-rated radiation shield, ranged from 150-kg/kW(e) to 190-kg/KW(e) and the total mass of the Rover vehicle varied depend upon the cruising speed.

  11. Estimates of power requirements for a manned Mars rover powered by a nuclear reactor

    NASA Astrophysics Data System (ADS)

    Morley, Nicholas J.; El-Genk, Mohamed S.; Cataldo, Robert; Bloomfield, Harvey

    1991-01-01

    This paper assesses the power requirement for a Manned Mars Rover vehicle. Auxiliary power needs are fulfilled using a hybrid solar photovoltaic/regenerative fuel cell system, while the primary power needs are met using an SP-100 type reactor. The primary electric power needs, which include 30-kWe net user power, depend on the reactor thermal power and the efficiency of the power conversion system. Results show that an SP-100 type reactor coupled to a Free Piston Stirling Engine (FPSE) yields the lowest total vehicle mass and lowest specific mass for the power system. The second lowest mass was for a SP-100 reactor coupled to a Closed Brayton Cycle (CBC) using He/Xe as the working fluid. The specific mass of the nuclear reactor power systrem, including a man-rated radiation shield, ranged from 150-kg/kWe to 190-kg/kWe and the total mass of the Rover vehicle varied depend upon the cruising speed.

  12. Estimates of power requirements for a Manned Mars Rover powered by a nuclear reactor

    NASA Technical Reports Server (NTRS)

    Morley, Nicholas J.; El-Genk, Mohamed S.; Cataldo, Robert; Bloomfield, Harvey

    1991-01-01

    This paper assesses the power requirement for a Manned Mars Rover vehicle. Auxiliary power needs are fulfilled using a hybrid solar photovoltaic/regenerative fuel cell system, while the primary power needs are meet using an SP-100 type reactor. The primary electric power needs, which include 30-kW(e) net user power, depend on the reactor thermal power and the efficiency of the power conversion system. Results show that an SP-100 type reactor coupled to a Free Piston Stirling Engine yields the lowest total vehicle mass and lowest specific mass for the power system. The second lowest mass was for a SP-100 reactor coupled to a Closed Brayton Cycle using He/Xe as the working fluid. The specific mass of the nuclear reactor power system, including a man-rated radiation shield, ranged from 150-kg/kW(e) to 190-kg/KW(e) and the total mass of the Rover vehicle varied depend upon the cruising speed.

  13. Estimates of power requirements for a Manned Mars Rover powered by a nuclear reactor

    NASA Technical Reports Server (NTRS)

    Morley, Nicholas J.; El-Genk, Mohamed S.; Cataldo, Robert; Bloomfield, Harvey

    1991-01-01

    This paper assesses the power requirement for a Manned Mars Rover vehicle. Auxiliary power needs are fulfilled using a hybrid solar photovoltaic/regenerative fuel cell system, while the primary power needs are meet using an SP-100 type reactor. The primary electric power needs, which include 30-kW(e) net user power, depend on the reactor thermal power and the efficiency of the power conversion system. Results show that an SP-100 type reactor coupled to a Free Piston Stirling Engine yields the lowest total vehicle mass and lowest specific mass for the power system. The second lowest mass was for a SP-100 reactor coupled to a Closed Brayton Cycle using He/Xe as the working fluid. The specific mass of the nuclear reactor power system, including a man-rated radiation shield, ranged from 150-kg/kW(e) to 190-kg/KW(e) and the total mass of the Rover vehicle varied depend upon the cruising speed.

  14. Gravity Scaling of a Power Reactor Water Shield

    SciTech Connect

    Reid, Robert S.; Pearson, J. Boise

    2008-01-21

    Water based reactor shielding is being considered as an affordable option for potential use on initial lunar surface reactor power systems. Heat dissipation in the shield from nuclear sources must be rejected by an auxillary thermal hydraulic cooling system. The mechanism for transferring heat through the shield is natural convection between the core surface and an array of thermosyphon radiator elements. Natural convection in a 100 kWt lunar surface reactor shield design has been previously evaluated at lower power levels (Pearson, 2006). The current baseline assumes that 5.5 kW are dissipated in the water shield, the preponderance on the core surface, but with some volumetric heating in the naturally circulating water as well. This power is rejected by a radiator located above the shield with a surface temperature of 370 K. A similarity analysis on a water-based reactor shield is presented examining the effect of gravity on free convection between a radiation shield inner vessel and a radiation shield outer vessel boundaries. Two approaches established similarity: 1) direct scaling of Rayleigh number equates gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant on Earth and the Moon. Nussult number for natural convection (laminar and turbulent) is assumed of form Nu = CRa{sup n}. These combined results estimate similarity conditions under Earth and Lunar gravities. The influence of reduced gravity on the performance of thermosyphon heat pipes is also examined.

  15. Gravity Scaling of a Power Reactor Water Shield

    NASA Astrophysics Data System (ADS)

    Reid, Robert S.; Pearson, J. Boise

    2008-01-01

    Water based reactor shielding is being considered as an affordable option for potential use on initial lunar surface reactor power systems. Heat dissipation in the shield from nuclear sources must be rejected by an auxillary thermal hydraulic cooling system. The mechanism for transferring heat through the shield is natural convection between the core surface and an array of thermosyphon radiator elements. Natural convection in a 100 kWt lunar surface reactor shield design has been previously evaluated at lower power levels (Pearson, 2006). The current baseline assumes that 5.5 kW are dissipated in the water shield, the preponderance on the core surface, but with some volumetric heating in the naturally circulating water as well. This power is rejected by a radiator located above the shield with a surface temperature of 370 K. A similarity analysis on a water-based reactor shield is presented examining the effect of gravity on free convection between a radiation shield inner vessel and a radiation shield outer vessel boundaries. Two approaches established similarity: 1) direct scaling of Rayleigh number equates gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant on Earth and the Moon. Nussult number for natural convection (laminar and turbulent) is assumed of form Nu = CRan. These combined results estimate similarity conditions under Earth and Lunar gravities. The influence of reduced gravity on the performance of thermosyphon heat pipes is also examined.

  16. Electrochemically induced deuterium-tritium fusion power reactor; Preliminary design of a reactor system

    SciTech Connect

    Oka, Y.; Koshizuka, S.; Kondo, S. . Faculty of Engineering )

    1989-09-01

    Conceptual design of an electrochemically induced deuterium-tritium fusion power reactor has been carried out. A double-tube-type fuel cell is proposed for efficient electrolysis and to provide a large cathode area. The fuel cell tubes are assembled like a pressurized water reactor (PWR) control rod cluster. The tritium fuel is continuously fed through the cluster rod to the cell. The voltage for the electrolysis is supplied through the rod. The tritium breeding Li/sub 2/O is contained in a hexagonal blanket through which coolant tubes penetrate. The fuel cell tube is inserted in the coolant tube and the water coolant flows through the annuli.

  17. High density operation for reactor-relevant power exhaust

    NASA Astrophysics Data System (ADS)

    Wischmeier, M.

    2015-08-01

    With increasing size of a tokamak device and associated fusion power gain an increasing power flux density towards the divertor needs to be handled. A solution for handling this power flux is crucial for a safe and economic operation. Using purely geometric arguments in an ITER-like divertor this power flux can be reduced by approximately a factor 100. Based on a conservative extrapolation of current technology for an integrated engineering approach to remove power deposited on plasma facing components a further reduction of the power flux density via volumetric processes in the plasma by up to a factor of 50 is required. Our current ability to interpret existing power exhaust scenarios using numerical transport codes is analyzed and an operational scenario as a potential solution for ITER like divertors under high density and highly radiating reactor-relevant conditions is presented. Alternative concepts for risk mitigation as well as strategies for moving forward are outlined.

  18. Closed Brayton cycle power conversion systems for nuclear reactors :

    SciTech Connect

    Wright, Steven A.; Lipinski, Ronald J.; Vernon, Milton E.; Sanchez, Travis

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at

  19. Preliminary plan for testing a thermionic reactor in the Plum Brook Space Power Facility

    NASA Technical Reports Server (NTRS)

    Haley, F. A.

    1972-01-01

    A preliminary plan is presented for testing a thermionic reactor in the Plum Brook Space Power Facility (SPF). A technical approach, cost estimate, manpower estimate, and schedule are presented to cover a 2 year full power reactor test.

  20. Operating margin of Soviet RBMK-1000 nuclear power reactors

    SciTech Connect

    Adams, J.M.; Robinson, G.E. . Dept. of Nuclear Engineering); Hochreiter, L.E. )

    1991-12-01

    This paper reports on a coupled thermal- hydraulic analysis that is performed for the Soviet-designed RBMK-1000 nuclear power reactor to assess the operating margin to critical heat flux (CHF); the Chernobyl-4 reactor serves as the principal model for this study. Calculations are performed using a simplified subchannel analysis. The overall analysis involves an iterative search to determine the individual subchannel flow rates, and a boiling transition analysis is performed to obtain a measure of the core operating margin. The operating margin is determined via two distinct methods. The first involves a calculation of the core critical power ratio (CPR) using an empirically derived correlation that the Soviets developed expressly for the RBMK-1000. Additionally, various subchannel CHF correlations typical of those used in the design of nuclear-powered reactors in the United States are also employed. When the Soviet critical power correlation is used, the calculations carried out for both normal operating and reference overpower conditions result in CPRs of 1.115 and 1.019, respectively. In most cases, the subchannel CHF correlations indicate that additional operating margin over that calculated by the Soviet critical power correlation exists for this design.

  1. Space reactor power 1986 - A year of choices and transition

    NASA Technical Reports Server (NTRS)

    Wiley, R. L.; Verga, R. L.; Schnyer, A. D.; Sholtis, J. A., Jr.; Wahlquist, E. J.

    1986-01-01

    Both the SP-100 and Multimegawatt programs have made significant progress over the last year and that progress is the focus of this paper. In the SP-100 program the thermoelectric energy conversion concept powered by a compact, high-temperature, lithium-cooled, uranium-nitride-fueled fast spectrum reactor was selected for engineering development and ground demonstration testing at an electrical power level of 300 kilowatts. In the Multimegawatt program, activities moved from the planning phase into one of technology development and assessment with attendant preliminary definition and evaluation of power concepts against requirements of the Strategic Defense Initiative.

  2. Reactor subchannel analysis -- Electric Power Research Institute perspective

    SciTech Connect

    Srikantiah, G.

    1995-12-01

    One of the basic objectives of subchannel flow simulation and analysis effort sponsored by the Electric Power Research Institute was the development of a computer code for subchannel analysis and its verification and validation for applications to reactor thermal margin evaluation under steady and transient conditions. A historical perspective is given of the development of specifications for a reactor core subchannel thermal-hydraulics analysis code for utility applications in the evaluation of reactor safety limits during normal operation and accident scenarios. The subchannel analysis capabilities of the VIPRE-01 code based on the homogeneous equilibrium with the algebraic slip model of two-phase flow are presented. The code, which received a safety evaluation report from the US Nuclear Regulatory Commission in 1986, is in wide use in the utility industry for fuel reload safety analysis, critical heat flux correlation development and testing, thermal margin analysis, and core thermal-hydraulic analysis. A considerable amount of work has been done during the past few years on the development of VIPRE-02, an advanced subchannel analysis code based on the two-fluid model of two-phase flow capable of simulating reactor cores, vessels, and internal structures. The functional specifications, development of VIPRE-02, and current applications for VIPRE-02, such as boiling water reactor mixed fuel core evaluation, are also discussed. Code is also used for PWR`s.

  3. 77 FR 3009 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... COMMISSION Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors..., ``Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors.'' DATES... developed using this Catalog along with the Operator Licensing Examination Standards for Power Reactors...

  4. 10 CFR 50.44 - Combustible gas control for nuclear power reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Combustible gas control for nuclear power reactors. 50.44... for nuclear power reactors. (a) Definitions—(1) Inerted atmosphere means a containment atmosphere with... pressurized water nuclear power reactor with an operating license on October 16, 2003, except for...

  5. 77 FR 8902 - Draft Regulatory Guide: Issuance, Availability Decommissioning of Nuclear Power Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... COMMISSION Draft Regulatory Guide: Issuance, Availability Decommissioning of Nuclear Power Reactors AGENCY... ``Decommissioning of Nuclear Power Reactors.'' This guide describes a method NRC considers acceptable for use in... Revision 1 of Regulatory Guide 1.184, ``Decommissioning of Nuclear Power Reactors,'' dated July 2000. This...

  6. 10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... power reactors. 50.72 Section 50.72 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... notification requirements for operating nuclear power reactors. (a) General requirements. 1 (1) Each nuclear... requirements for immediate notification of the NRC by licensed operating nuclear power reactors are contained...

  7. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...

  8. 10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... power reactors. 50.72 Section 50.72 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... notification requirements for operating nuclear power reactors. (a) General requirements. 1 (1) Each nuclear... requirements for immediate notification of the NRC by licensed operating nuclear power reactors are contained...

  9. 10 CFR 50.44 - Combustible gas control for nuclear power reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Combustible gas control for nuclear power reactors. 50.44... for nuclear power reactors. (a) Definitions—(1) Inerted atmosphere means a containment atmosphere with... pressurized water nuclear power reactor with an operating license on October 16, 2003, except for those...

  10. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...

  11. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...

  12. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...

  13. 10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... power reactors. 50.72 Section 50.72 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... notification requirements for operating nuclear power reactors. (a) General requirements. 1 (1) Each nuclear... requirements for immediate notification of the NRC by licensed operating nuclear power reactors are contained...

  14. 10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... power reactors. 50.72 Section 50.72 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... notification requirements for operating nuclear power reactors. (a) General requirements. 1 (1) Each nuclear... requirements for immediate notification of the NRC by licensed operating nuclear power reactors are contained...

  15. 10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... power reactors. 50.72 Section 50.72 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... notification requirements for operating nuclear power reactors. (a) General requirements. 1 (1) Each nuclear... requirements for immediate notification of the NRC by licensed operating nuclear power reactors are contained...

  16. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...

  17. THERMAL STRESS CALCULATIONS FOR HEATPIPE-COOLED REACTOR POWER SYSTEMS.

    SciTech Connect

    Kapernick, R. J.; Guffee, R. M.

    2001-01-01

    A heatpipe-cooled fast reactor concept has been under development at Los Alamos National Laboratory for the past several years, to be used as a power source for nuclear electric propulsion (NEP) or as a planetary surface power system. The reactor core consists of an array of modules that are held together by a core lateral restraint system. Each module comprises a single heatpipe surrounded by 3-6 clad fuel pins. As part of the design development and performance assessment activities for these reactors, specialized methods and models have been developed to perform thermal and stress analyses of the core modules. The methods have been automated so that trade studies can be readily performed, looking at design options such as module size, heatpipe and clad thickness, use of sleeves to contain the fuel, material type, etc. This paper describes the methods and models that have been developed, and presents thermal and stress analysis results for a Mars surface power system and a NEP power source.

  18. Enabling autonomous control for space reactor power systems

    SciTech Connect

    Wood, R. T.

    2006-07-01

    The application of nuclear reactors for space power and/or propulsion presents some unique challenges regarding the operations and control of the power system. Terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of a space reactor power system (SRPS) employed for deep space missions must be able to accommodate unattended operations due to communications delays and periods of planetary occlusion while adapting to evolving or degraded conditions with no opportunity for repair or refurbishment. Thus, a SRPS control system must provide for operational autonomy. Oak Ridge National Laboratory (ORNL) has conducted an investigation of the state of the technology for autonomous control to determine the experience base in the nuclear power application domain, both for space and terrestrial use. It was found that control systems with varying levels of autonomy have been employed in robotic, transportation, spacecraft, and manufacturing applications. However, autonomous control has not been implemented for an operating terrestrial nuclear power plant nor has there been any experience beyond automating simple control loops for space reactors. Current automated control technologies for nuclear power plants are reasonably mature, and basic control for a SRPS is clearly feasible under optimum circumstances. However, autonomous control is primarily intended to account for the non optimum circumstances when degradation, failure, and other off-normal events challenge the performance of the reactor and near-term human intervention is not possible. Thus, the development and demonstration of autonomous control capabilities for the specific domain of space nuclear power operations is needed. This paper will discuss the findings of the ORNL study and provide a description of the concept of autonomy, its key characteristics, and a prospective

  19. Summary of space nuclear reactor power systems, 1983--1992

    SciTech Connect

    Buden, D.

    1993-08-11

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  20. Reactor Power for Large Displacement Autonomous Underwater Vehicles

    SciTech Connect

    McClure, Patrick Ray; Reid, Robert Stowers; Poston, David Irvin; Dasari, Venkateswara Rao

    2016-08-24

    This is a PentaChart on reactor power for large displacement autonomous underwater vehicles. Currently AUVs use batteries or combinations of batteries and fuel cells for power. Battery/fuel cell technology is limited by duration. Batteries and cell fuels are a good match for some missions, but other missions could benefit greatly by a longer duration. The goal is the following: to design nuclear systems to power an AUV and meet design constraints including non-proliferation issues, power level, size constraints, and power conversion limitations. The action plan is to continue development of a range of systems for terrestrial systems and focus on a system for Titan Moon as alternative to Pu-238 for NASA.

  1. Autonomous Control Capabilities for Space Reactor Power Systems

    SciTech Connect

    Wood, Richard T.; Neal, John S.; Brittain, C. Ray; Mullens, James A.

    2004-02-04

    The National Aeronautics and Space Administration's (NASA's) Project Prometheus, the Nuclear Systems Program, is investigating a possible Jupiter Icy Moons Orbiter (JIMO) mission, which would conduct in-depth studies of three of the moons of Jupiter by using a space reactor power system (SRPS) to provide energy for propulsion and spacecraft power for more than a decade. Terrestrial nuclear power plants rely upon varying degrees of direct human control and interaction for operations and maintenance over a forty to sixty year lifetime. In contrast, an SRPS is intended to provide continuous, remote, unattended operation for up to fifteen years with no maintenance. Uncertainties, rare events, degradation, and communications delays with Earth are challenges that SRPS control must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design. In this paper, we describe an autonomous control concept for generic SRPS designs. The formulation of an autonomous control concept, which includes identification of high-level functional requirements and generation of a research and development plan for enabling technologies, is among the technical activities that are being conducted under the U.S. Department of Energy's Space Reactor Technology Program in support of the NASA's Project Prometheus. The findings from this program are intended to contribute to the successful realization of the JIMO mission.

  2. Autonomous Control Capabilities for Space Reactor Power Systems

    NASA Astrophysics Data System (ADS)

    Wood, Richard T.; Neal, John S.; Brittain, C. Ray; Mullens, James A.

    2004-02-01

    The National Aeronautics and Space Administration's (NASA's) Project Prometheus, the Nuclear Systems Program, is investigating a possible Jupiter Icy Moons Orbiter (JIMO) mission, which would conduct in-depth studies of three of the moons of Jupiter by using a space reactor power system (SRPS) to provide energy for propulsion and spacecraft power for more than a decade. Terrestrial nuclear power plants rely upon varying degrees of direct human control and interaction for operations and maintenance over a forty to sixty year lifetime. In contrast, an SRPS is intended to provide continuous, remote, unattended operation for up to fifteen years with no maintenance. Uncertainties, rare events, degradation, and communications delays with Earth are challenges that SRPS control must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design. In this paper, we describe an autonomous control concept for generic SRPS designs. The formulation of an autonomous control concept, which includes identification of high-level functional requirements and generation of a research and development plan for enabling technologies, is among the technical activities that are being conducted under the U.S. Department of Energy's Space Reactor Technology Program in support of the NASA's Project Prometheus. The findings from this program are intended to contribute to the successful realization of the JIMO mission.

  3. Gravity Scaling of a Power Reactor Water Shield

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.; Pearson, J. Boise

    2008-01-01

    Water based reactor shielding is being considered as an affordable option for use on initial lunar surface power systems. Heat dissipation in the shield from nuclear sources must be rejected by an auxiliary thermal hydraulic cooling system. The mechanism for transferring heat through the shield is natural convection between the core surface and an array of thermosyphon radiator elements. Natural convection in a 100 kWt lunar surface reactor shield design has been previously evaluated at lower power levels (Pearson, 2007). The current baseline assumes that 5.5 kW are dissipated in the water shield, the preponderance on the core surface, but with some volumetric heating in the naturally circulating water as well. This power is rejected by a radiator located above the shield with a surface temperature of 370 K. A similarity analysis on a water-based reactor shield is presented examining the effect of gravity on free convection between a radiation shield inner vessel and a radiation shield outer vessel boundaries. Two approaches established similarity: 1) direct scaling of Rayleigh number equates gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant on Earth and the Moon. Nussult number for natural convection (laminar and turbulent) is assumed of form Nu = CRa(sup n). These combined results estimate similarity conditions under Earth and Lunar gravities. The influence of reduced gravity on the performance of thermosyphon heat pipes is also examined.

  4. REACTOR

    DOEpatents

    Roman, W.G.

    1961-06-27

    A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

  5. Technological implications of SNAP reactor power system development on future space nuclear power systems

    SciTech Connect

    Anderson, R.V.

    1982-11-16

    Nuclear reactor systems are one method of satisfying space mission power needs. The development of such systems must proceed on a path consistent with mission needs and schedules. This path, or technology roadmap, starts from the power system technology data base available today. Much of this data base was established during the 1960s and early 1970s, when government and industry developed space nuclear reactor systems for steady-state power and propulsion. One of the largest development programs was the Systems for Nuclear Auxiliary Power (SNAP) Program. By the early 1970s, a technology base had evolved from this program at the system, subsystem, and component levels. There are many implications of this technology base on future reactor power systems. A review of this base highlights the need for performing a power system technology and mission overview study. Such a study is currently being performed by Rockwell's Energy Systems Group for the Department of Energy and will assess power system capabilities versus mission needs, considering development, schedule, and cost implications. The end product of the study will be a technology roadmap to guide reactor power system development.

  6. Nuclear safety as applied to space power reactor systems

    SciTech Connect

    Cummings, G.E.

    1987-01-01

    To develop a strategy for incorporating and demonstrating safety, it is necessary to enumerate the unique aspects of space power reactor systems from a safety standpoint. These features must be differentiated from terrestrial nuclear power plants so that our experience can be applied properly. Some ideas can then be developed on how safe designs can be achieved so that they are safe and perceived to be safe by the public. These ideas include operating only after achieving a stable orbit, developing an inherently safe design, ''designing'' in safety from the start and managing the system development (design) so that it is perceived safe. These and other ideas are explored further in this paper.

  7. Reactor Vessel and Reactor Vessel Internals Segmentation at Zion Nuclear Power Station - 13230

    SciTech Connect

    Cooke, Conrad; Spann, Holger

    2013-07-01

    Zion Nuclear Power Station (ZNPS) is a dual-unit Pressurized Water Reactor (PWR) nuclear power plant located on the Lake Michigan shoreline, in the city of Zion, Illinois approximately 64 km (40 miles) north of Chicago, Illinois and 67 km (42 miles) south of Milwaukee, Wisconsin. Each PWR is of the Westinghouse design and had a generation capacity of 1040 MW. Exelon Corporation operated both reactors with the first unit starting production of power in 1973 and the second unit coming on line in 1974. The operation of both reactors ceased in 1996/1997. In 2010 the Nuclear Regulatory Commission approved the transfer of Exelon Corporation's license to ZionSolutions, the Long Term Stewardship subsidiary of EnergySolutions responsible for the decommissioning of ZNPS. In October 2010, ZionSolutions awarded Siempelkamp Nuclear Services, Inc. (SNS) the contract to plan, segment, remove, and package both reactor vessels and their respective internals. This presentation discusses the tools employed by SNS to remove and segment the Reactor Vessel Internals (RVI) and Reactor Vessels (RV) and conveys the recent progress. SNS's mechanical segmentation tooling includes the C-HORCE (Circumferential Hydraulically Operated Cutting Equipment), BMT (Bolt Milling Tool), FaST (Former Attachment Severing Tool) and the VRS (Volume Reduction Station). Thermal segmentation of the reactor vessels will be accomplished using an Oxygen- Propane cutting system. The tools for internals segmentation were designed by SNS using their experience from other successful reactor and large component decommissioning and demolition (D and D) projects in the US. All of the designs allow for the mechanical segmentation of the internals remotely in the water-filled reactor cavities. The C-HORCE is designed to saw seven circumferential cuts through the Core Barrel and Thermal Shield walls with individual thicknesses up to 100 mm (4 inches). The BMT is designed to remove the bolts that fasten the Baffle Plates to

  8. Development of Improved Burnable Poisons for Commercial Nuclear Power Reactors

    SciTech Connect

    M. L. Grossbeck J-P.A. Renier Tim Bigelow

    2003-09-30

    Burnable poisons are used in nuclear reactors to produce a more level distribution of power in the reactor core and to reduce to necessity for a large control system. An ideal burnable poison would burn at the same rate as the fuel. In this study, separation of neutron-absorbing isotopes was investigated in order to eliminate isotopes that remain as absorbers at the end of fuel life, thus reducing useful fuel life. The isotopes Gd-157, Dy-164, and Er-167 were found to have desirable properties. These isotopes were separated from naturally occurring elements by means of plasma separation to evaluate feasibility and cost. It was found that pure Gd-157 could save approximately $6 million at the end of four years. However, the cost of separation, using the existing facility, made separation cost- ineffective. Using a magnet with three times the field strength is expected to reduce the cost by a factor of ten, making isotopically separated burnable poisons a favorable method of increasing fuel life in commercial reactors, in particular Generation-IV reactors. The project also investigated various burnable poison configurations, and studied incorporation of metallic burnable poisons into fuel cladding.

  9. Automated power control system for reactor TRIGA PUSPATI

    NASA Astrophysics Data System (ADS)

    Ghazali, Anith Khairunnisa; Minhat, Mohd Sabri; Hassan, Mohd Khair

    2017-01-01

    Reactor TRIGA PUSPATI (RTP) Mark II type undergoes safe operation for more than 30 years and the only research reactor exists in Malaysia. The main safety feature of Instrumentation and Control (I&C) system design is such that any failure in the electronic, or its associated components, does not lead to an uncontrolled rate of reactivity. The existed controller using feedback approach to control the reactor power. This paper introduces proposed controllers such as Model Reference Adaptive Control (MRAC) and Proportional Integral Derivatives (PID) controller for the RTP simulation. In RTP, the most important considered parameter is the reactor power and act as nervous system. To design a controller for complex plant like RTP is quite difficult due to high cost and safety factors cause by the failure of the controller. Furthermore, to overcome these problems, a simulator can be used to replace functions the hardware and test could then be simulated using this simulator. In order to find the best controller, several controllers were proposed and the result will be analysed for study the performances of the controller. The output result will be used to find out the best RTP power controller using MATLAB/Simulink and gives result as close as the real RTP performances. Currently, the structures of RTP was design using MATLAB/Simulink tool that consist of fission chamber, controller, control rod position, height-to-worth of control rods and a RTP model. The controller will control the control rod position to make sure that the reactivity still under the limitation parameter. The results given from each controller will be analysed and validated through experiment data collected from RTP.

  10. Supercritical Water Reactor Cycle for Medium Power Applications

    SciTech Connect

    BD Middleton; J Buongiorno

    2007-04-25

    Scoping studies for a power conversion system based on a direct-cycle supercritical water reactor have been conducted. The electric power range of interest is 5-30 MWe with a design point of 20 MWe. The overall design objective is to develop a system that has minimized physical size and performs satisfactorily over a broad range of operating conditions. The design constraints are as follows: Net cycle thermal efficiency {ge}20%; Steam turbine outlet quality {ge}90%; and Pumping power {le}2500 kW (at nominal conditions). Three basic cycle configurations were analyzed. Listed in order of increased plant complexity, they are: (1) Simple supercritical Rankine cycle; (2) All-supercritical Brayton cycle; and (3) Supercritical Rankine cycle with feedwater preheating. The sensitivity of these three configurations to various parameters, such as reactor exit temperature, reactor pressure, condenser pressure, etc., was assessed. The Thermoflex software package was used for this task. The results are as follows: (a) The simple supercritical Rankine cycle offers the greatest hardware simplification, but its high reactor temperature rise and reactor outlet temperature may pose serious problems from the viewpoint of thermal stresses, stability and materials in the core. (b) The all-supercritical Brayton cycle is not a contender, due to its poor thermal efficiency. (c) The supercritical Rankine cycle with feedwater preheating affords acceptable thermal efficiency with lower reactor temperature rise and outlet temperature. (d) The use of a moisture separator improves the performance of the supercritical Rankine cycle with feedwater preheating and allows for a further reduction of the reactor outlet temperature, thus it was selected for the next step. Preliminary engineering design of the supercritical Rankine cycle with feedwater preheating and moisture separation was performed. All major components including the turbine, feedwater heater, feedwater pump, condenser, condenser pump

  11. High power ring methods and accelerator driven subcritical reactor application

    SciTech Connect

    Tahar, Malek Haj

    2016-08-07

    High power proton accelerators allow providing, by spallation reaction, the neutron fluxes necessary in the synthesis of fissile material, starting from Uranium 238 or Thorium 232. This is the basis of the concept of sub-critical operation of a reactor, for energy production or nuclear waste transmutation, with the objective of achieving cleaner, safer and more efficient process than today’s technologies allow. Designing, building and operating a proton accelerator in the 500-1000 MeV energy range, CW regime, MW power class still remains a challenge nowadays. There is a limited number of installations at present achieving beam characteristics in that class, e.g., PSI in Villigen, 590 MeV CW beam from a cyclotron, SNS in Oakland, 1 GeV pulsed beam from a linear accelerator, in addition to projects as the ESS in Europe, a 5 MW beam from a linear accelerator. Furthermore, coupling an accelerator to a sub-critical nuclear reactor is a challenging proposition: some of the key issues/requirements are the design of a spallation target to withstand high power densities as well as ensure the safety of the installation. These two domains are the grounds of the PhD work: the focus is on the high power ring methods in the frame of the KURRI FFAG collaboration in Japan: upgrade of the installation towards high intensity is crucial to demonstrate the high beam power capability of FFAG. Thus, modeling of the beam dynamics and benchmarking of different codes was undertaken to validate the simulation results. Experimental results revealed some major losses that need to be understood and eventually overcome. By developing analytical models that account for the field defects, one identified major sources of imperfection in the design of scaling FFAG that explain the important tune variations resulting in the crossing of several betatron resonances. A new formula is derived to compute the tunes and properties established that characterize the effect of the field imperfections on the

  12. A CFD Model for High Pressure Liquid Poison Injection for CANDU-6 Shutdown System No. 2

    SciTech Connect

    Bo Wook Rhee; Chang Jun Jeong; Hye Jeong Yun; Dong Soon Jang

    2002-07-01

    In CANDU reactor one of the two reactor shutdown systems is the liquid poison injection system which injects the highly pressurized liquid neutron poison into the moderator tank via small holes on the nozzle pipes. To ensure the safe shutdown of a reactor it is necessary for the poison curtains generated by jets provide quick, and enough negative reactivity to the reactor during the early stage of the accident. In order to produce the neutron cross section necessary to perform this work, the poison concentration distribution during the transient is necessary. In this study, a set of models for analyzing the transient poison concentration induced by this high pressure poison injection jet activated upon the reactor trip in a CANDU-6 reactor moderator tank has been developed and used to generate the poison concentration distribution of the poison curtains induced by the high pressure jets injected into the vacant region between the pressure tube banks. The poison injection rate through the jet holes drilled on the nozzle pipes is obtained by a 1-D transient hydrodynamic code called, ALITRIG, and this injection rate is used to provide the inlet boundary condition to a 3-D CFD model of the moderator tank based on CFX4.3, a CFD code, to simulate the formation of the poison jet curtain inside the moderator tank. For validation, an attempt was made to validate this model against a poison injection experiment performed at BARC. As conclusion this set of models is judged to be appropriate. (authors)

  13. Design Concept for a Nuclear Reactor-Powered Mars Rover

    NASA Astrophysics Data System (ADS)

    Elliott, John O.; Lipinski, Ronald J.; Poston, David I.

    2003-01-01

    A study was recently carried out by a team from JPL and the DOE to investigate the utility of a DOE-developed 3 kWe surface fission power system for Mars missions. The team was originally tasked to perform a study to evaluate the usefulness and feasibility of incorporation of such a power system into a landed mission. In the course of the study it became clear that the application of such a power system was enabling to a wide variety of potential missions. Of these, two missions were developed, one for a stationary lander and one for a reactor-powered rover. This paper discusses the design of the rover mission, which was developed around the concept of incorporating the fission power system directly into a large rover chassis to provide high power, long range traverse capability. The rover design is based on a minimum extrapolation of technology, and adapts existing concepts developed at JPL for the 2009 Mars Science Laboratory (MSL) rover, lander and EDL systems. The small size of the reactor allowed its incorporation directly into an existing large MSL rover chassis design, allowing direct use of MSL aeroshell and pallet lander elements, beefed up to support the significantly greater mass involved in the nuclear power system and its associated shielding. This paper describes the unique design challenges encountered in the development of this mission architecture and incorporation of the fission power system in the rover, and presents a detailed description of the final design of this innovative concept for providing long range, long duration mobility on Mars.

  14. Geoneutrinos and reactor antineutrinos at SNO+

    NASA Astrophysics Data System (ADS)

    Baldoncini, M.; Strati, V.; Wipperfurth, S. A.; Fiorentini, G.; Mantovani, F.; McDonough, W. F.; Ricci, B.

    2016-05-01

    In the heart of the Creighton Mine near Sudbury (Canada), the SNO+ detector is foreseen to observe almost in equal proportion electron antineutrinos produced by U and Th in the Earth and by nuclear reactors. SNO+ will be the first long baseline experiment to measure a reactor signal dominated by CANDU cores (~55% of the total reactor signal), which generally burn natural uranium. Approximately 18% of the total geoneutrino signal is generated by the U and Th present in the rocks of the Huronian Supergroup-Sudbury Basin: the 60% uncertainty on the signal produced by this lithologic unit plays a crucial role on the discrimination power on the mantle signal as well as on the geoneutrino spectral shape reconstruction, which can in principle provide a direct measurement of the Th/U ratio in the Earth.

  15. Fast reactor power plant design having heat pipe heat exchanger

    DOEpatents

    Huebotter, Paul R.; McLennan, George A.

    1985-01-01

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  16. Fast reactor power plant design having heat pipe heat exchanger

    DOEpatents

    Huebotter, P.R.; McLennan, G.A.

    1984-08-30

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  17. Inertial fusion energy power reactor fuel recovery system

    SciTech Connect

    Gentile, C. A.; Kozub, T.; Langish, S. W.; Ciebiera, L. P.; Nobile, A.; Wermer, J.; Sessions, K.

    2008-07-15

    A conceptual design is proposed to support the recovery of un-expended fuel, ash, and associated post-detonation products resident in plasma exhaust from a {approx}2 GWIFE direct drive power reactor. The design includes systems for the safe and efficient collection, processing, and purification of plasma exhaust fuel components. The system has been conceptually designed and sized such that tritium bred within blankets, lining the reactor target chamber, can also be collected, processed, and introduced into the fuel cycle. The system will nominally be sized to process {approx}2 kg of tritium per day and is designed to link directly to the target chamber vacuum pumping system. An effort to model the fuel recovery system (FRS) using the Aspen Plus engineering code has commenced. The system design supports processing effluent gases from the reactor directly from the exhaust of the vacuum pumping system or in batch mode, via a buffer vessel in the Receiving and Analysis System. Emphasis is on nuclear safety, reliability, and redundancy as to maximize availability. The primary goal of the fuel recovery system design is to economically recycle components of direct drive IFE fuel. The FRS design is presented as a facility sub-system in the context of supporting the larger goal of producing safe and economical IFE power. (authors)

  18. 10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... reactors. 50.36a Section 50.36a Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors..., including expected occurrences, as low as is reasonably achievable, each licensee of a nuclear power reactor...

  19. 10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... reactors. 50.36a Section 50.36a Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors..., including expected occurrences, as low as is reasonably achievable, each licensee of a nuclear power reactor...

  20. Validation of the ORIGEN-S code for predicting radionuclide inventories in used CANDU fuel

    NASA Astrophysics Data System (ADS)

    Tait, J. C.; Gauld, I.; Kerr, A. H.

    1995-05-01

    The safety assessment being conducted by AECL Research for the concept of deep geological disposal of used CANDU UO 2 fuel requires the calculation of radionuclide inventories in the fuel to provide source terms for radionuclide release. This report discusses the validation of selected actinide and fission-product inventories calculated using the ORIGEN-S code coupled with the WIMS-AECL lattice code, using data from analytical measurements of radioisotope inventories in Pickering CANDU reactor fuel. The recent processing of new ENDF/B-VI cross-section data has allowed the ORIGEN-S calculations to be performed using the most up-to-date nuclear data available. The results indicate that the code is reliably predicting actinide and the majority of fission-product inventories to within the analytical uncertainty.

  1. Issues in the flight qualification of a space power reactor

    NASA Astrophysics Data System (ADS)

    Polansky, G. F.; Schmidt, G. L.; Voss, S. S.; Reynolds, E. L.

    1994-09-01

    This paper presents an overview of the Nuclear Electric Propulsion Space Test Program (NEPSTP). The program goals, the proposed mission, the spacecraft, and the Topaz II space nuclear power system are described. The subject of flight qualification is examined and the inherent difficulties of qualifying a space reactor are described. The differences between US and Russian flight qualification procedures are explored. A plan is then described that was developed to determine an appropriate flight qualification program for the Topaz II reactor to support a possible NEPSTP launch. Refocusing of the activities of the Ballistic Missile Defense Organization (BMDO), combined with budgetary pressures, forced the cancellation of the NEPSTP at the end of the 1993 fiscal year.

  2. Issues in the flight qualification of a space power reactor

    SciTech Connect

    Polansky, G.F.; Schmidt, G.L.; Voss, S.S.; Reynolds, E.L.

    1994-10-01

    This paper presents an overview of the Nuclear Electric Propulsion Space Test Program (NEPSTP). The program goals, the proposed mission, the spacecraft, and the Topaz II space nuclear power system are described. The subject of flight qualification is examined and the inherent difficulties of qualifying a space reactor are described. The differences between US and Russian flight qualification procedures are explored. A plan is then described that was developed to determine an appropriate flight qualification program for the Topaz II reactor to support a possible NEPSTP launch. Refocusing of the activities of the Ballistic Missile Defense Organization (BMDO), combined with budgetary pressures, forced the cancellation of the NEPSTP at the end of the 1993 fiscal year.

  3. PR-EDB: Power Reactor Embrittlement Database - Version 3

    SciTech Connect

    Wang, Jy-An John; Subramani, Ranjit

    2008-03-01

    The aging and degradation of light-water reactor pressure vessels is of particular concern because of their relevance to plant integrity and the magnitude of the expected irradiation embrittlement. The radiation embrittlement of reactor pressure vessel materials depends on many factors, such as neutron fluence, flux, and energy spectrum, irradiation temperature, and preirradiation material history and chemical compositions. These factors must be considered to reliably predict pressure vessel embrittlement and to ensure the safe operation of the reactor. Large amounts of data from surveillance capsules are needed to develop a generally applicable damage prediction model that can be used for industry standards and regulatory guides. Furthermore, the investigations of regulatory issues such as vessel integrity over plant life, vessel failure, and sufficiency of current codes, Standard Review Plans (SRPs), and Guides for license renewal can be greatly expedited by the use of a well-designed computerized database. The Power Reactor Embrittlement Database (PR-EDB) is such a comprehensive collection of data for U.S. designed commercial nuclear reactors. The current version of the PR-EDB lists the test results of 104 heat-affected-zone (HAZ) materials, 115 weld materials, and 141 base materials, including 103 plates, 35 forgings, and 3 correlation monitor materials that were irradiated in 321 capsules from 106 commercial power reactors. The data files are given in dBASE format and can be accessed with any personal computer using the Windows operating system. "User-friendly" utility programs have been written to investigate radiation embrittlement using this database. Utility programs allow the user to retrieve, select and manipulate specific data, display data to the screen or printer, and fit and plot Charpy impact data. The PR-EDB Version 3.0 upgrades Version 2.0. The package was developed based on the Microsoft .NET framework technology and uses Microsoft Access for

  4. Computer study of emergency shutdowns of a 60-kilowatt reactor Brayton space power system

    NASA Technical Reports Server (NTRS)

    Tew, R. C.; Jefferies, K. S.

    1974-01-01

    A digital computer study of emergency shutdowns of a 60-kWe reactor Brayton power system was conducted. Malfunctions considered were (1) loss of reactor coolant flow, (2) loss of Brayton system gas flow, (3)turbine overspeed, and (4) a reactivity insertion error. Loss of reactor coolant flow was the most serious malfunction for the reactor. Methods for moderating the reactor transients due to this malfunction are considered.

  5. Advanced Online Flux Mapping of CANDU PHWR by Least-Squares Method

    SciTech Connect

    Hong, In Seob; Kim, Chang Hyo; Suk, Ho Chun

    2005-07-15

    A least-squares method that solves both the core neutronics design equations and the in-core detector response equations on the least-squares principle is presented as a new advanced online flux-mapping method for CANada Deuterium Uranium (CANDU) pressurized heavy water reactors (PHWRs). The effectiveness of the new flux-mapping method is examined in terms of online flux-mapping calculations with numerically simulated true flux distribution and detector signals and those with the actual core-follow data for the Wolsong CANDU PHWRs in Korea. The effects of core neutronics models as well as the detector failures and uncertainties of measured detector signals on the effectiveness of the least-squares flux-mapping calculations are also examined.The following results are obtained. The least-squares method predicts the flux distribution in better agreement with the simulated true flux distribution than the standard core neutronics calculations by the finite difference method (FDM) computer code without using the detector signals. The adoption of the nonlinear nodal method based on the unified nodal method formulation instead of the FDM results in a significant improvement in prediction accuracy of the flux-mapping calculations. The detector signals estimated from the least-squares flux-mapping calculations are much closer to the measured detector signals than those from the flux synthesis method (FSM), the current online flux-mapping method for CANDU reactors. The effect of detector failures is relatively small so that the plant can tolerate up to 25% of detector failures without seriously affecting the plant operation. The detector signal uncertainties aggravate accuracy of the flux-mapping calculations, yet the effects of signal uncertainties of the order of 1% standard deviation can be tolerable without seriously degrading the prediction accuracy of the least-squares method. The least-squares method is disadvantageous because it requires longer CPU time than the

  6. A lithium-cooled reactor - Brayton turboelectric power converter design for 100-kWe class space reactor electric systems

    SciTech Connect

    Anderson, R.V.

    1984-08-01

    The conceptual design of a 100-kWe space reactor electric system to satisfy the design goals of the Tri-Agency SP-100 Program has been completed. The system was selected from an initial field of over 500 potential choices covering a wide range of reactor, power converter, shield, heat transport, and radiator subsystems. The selected system -- a lithium-cooled, UN-fueled, refractory-clad reactor coupled to a redundant pair of 110-kWe (gross) Brayton turboelectric power converters -shows strong promise of not only meeting the SP-100 Program design goals but also of providing for substantial growth in power levels for potential future needs.

  7. Etude de l'influence du champ magnetique dans une section d'essais thermohydraulique d'un canal de reacteur nucleaire CANDU 6

    NASA Astrophysics Data System (ADS)

    Landry-Lavoie, Renaud

    This memoir deals with the effects of the magnetic fields present in a thermal hydraulic test section of the Canadian nuclear industry. This test section is used to determine the thermal hydraulic conditions that can lead to critical heat flux in a channel of a CANDU 6 nuclear reactor. To perform their series of experiments the STERN Company used strong electric currents to heat the simulation bundles with a thermal power similar to the one found in a channel of a CANDU reactor. The materials constituting the simulation channel and its supports are of ferromagnetic nature. The strong magnetic field generated by the bundles implies that they are subjected to a magnetostatic force due to the magnetization of the ferromagnetic materials. The nuclear industry wants to know if these efforts, combined with the force of gravity, are sufficient to maintain the bundles in place in the simulation channel. The question also arises whether or not the magnetic field present in the channel can affect the parameters of boiling heat transfer. To determine the magnetic field distribution in the simulation channel, we had recourse to the magnetostatic image method and the integral method of calculation of magnetization. The results of the calculations show that the magnetostatic forces exerted by the ferromagnetic elements of the test section are inferior in magnitude to the one estimated by the STERN laboratorie. We used the mechanistic model of Sullivan et al. (1964) to evaluate the possible influence of the magnetic fields on the departure diameter of the vapor bubbles. The deviation in the frequency of bubble emission was evaluated by using the correlations of Zuber et al. (1959) and Cole (1960). By introducing a magnetostatic force in the boiling model and in the correlations, we demonstrated that the magnetic field present in the STERN test section has a negligible effect on the bubble departure diameter and their emission frequency. We conclude that the conditions in the test

  8. 10 CFR Appendix J to Part 50 - Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-Cooled Power Reactors J Appendix J to Part 50 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Pt. 50, App. J Appendix J to Part 50—Primary Reactor Containment... basis accident and specified either in the technical specification or associated bases. J. Pt...

  9. Small space reactor power systems for unmanned solar system exploration missions

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1987-01-01

    A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model.

  10. Small space reactor power systems for unmanned solar system exploration missions

    SciTech Connect

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model.

  11. Neutron dose estimation in a zero power nuclear reactor

    NASA Astrophysics Data System (ADS)

    Triviño, S.; Vedelago, J.; Cantargi, F.; Keil, W.; Figueroa, R.; Mattea, F.; Chautemps, A.; Santibañez, M.; Valente, M.

    2016-10-01

    This work presents the characterization and contribution of neutron and gamma components to the absorbed dose in a zero power nuclear reactor. A dosimetric method based on Fricke gel was implemented to evaluate the separation between dose components in the mixed field. The validation of this proposed method was performed by means of direct measurements of neutron flux in different positions using Au and Mg-Ni activation foils. Monte Carlo simulations were conversely performed using the MCNP main code with a dedicated subroutine to incorporate the exact complete geometry of the nuclear reactor facility. Once nuclear fuel elements were defined, the simulations computed the different contributions to the absorbed dose in specific positions inside the core. Thermal/epithermal contributions of absorbed dose were assessed by means of Fricke gel dosimetry using different isotopic compositions aimed at modifying the sensitivity of the dosimeter for specific dose components. Clear distinctions between gamma and neutron capture dose were obtained. Both Monte Carlo simulations and experimental results provided reliable estimations about neutron flux rate as well as dose rate during the reactor operation. Simulations and experimental results are in good agreement in every positions measured and simulated in the core.

  12. Next Generation CANDU: Conceptual Design for a Short Construction Schedule

    SciTech Connect

    Hopwood, Jerry M.; Love, Ian J.W.; Elgohary, Medhat; Fairclough, Neville

    2002-07-01

    Atomic Energy of Canada Ltd. (AECL) has very successful experience in implementing new construction methods at the Qinshan (Phase III) twin unit CANDU 6 plant in China. This paper examines the construction method that must be implemented during the conceptual design phase of a project if short construction schedules are to be met. A project schedule of 48 months has been developed for the nth unit of NG (Next Generation) CANDU with a 42 month construction period from 1. Concrete to In-Service. An overall construction strategy has been developed involving paralleling project activities that are normally conducted in series. Many parts of the plant will be fabricated as modules and be installed using heavy lift cranes. The Reactor Building (RB), being on the critical path, has been the focus of considerable assessment, looking at alternative ways of applying the construction strategy to this building. A construction method has been chosen which will result in excess of 80% of internal work being completed as modules or as very streamlined traditional construction. This method is being further evaluated as the detailed layout proceeds. Other areas of the plant have been integrated into the schedule and new construction methods are being applied to these so that further modularization and even greater paralleling of activities will be achieved. It is concluded that the optimized construction method is a requirement, which must be implemented through all phases of design to make a 42 month construction schedule a reality. If the construction methods are appropriately chosen, the schedule reductions achieved will make nuclear more competitive. (authors)

  13. Utilization of Minor Actinides (Np, Am, Cm) in Nuclear Power Reactor

    NASA Astrophysics Data System (ADS)

    Gerasimov, A.; Bergelson, B.; Tikhomirov, G.

    2014-06-01

    Calculation research of the utilization process of minor actinides (transmutation with use of power released) is performed for specialized power reactor of the VVER type operating on the level of electric power of 1000 MW. Five subsequent cycles are considered for the reactor with fuel elements containing minor actinides along with enriched uranium. It was shown that one specialized reactor for the one cycle (900 days) can utilize minor actinides from several VVER-1000 reactors without any technological and structural modifications. Power released because of minor actinide fission is about 4% with respect to the total power

  14. Steam generators of the power-generating units of nuclear power plants with vver-1000 reactors

    SciTech Connect

    Titov, V.F.

    1995-02-01

    The first power-generating units at nuclear power plants with VVER-1000 reactors came on line in 1980. By August 1993 there were 19 such units (seven in Russia, ten in Ukraine, and two in Bulgaria). It was found that from the end of 1986 to 1991 the outlet ({open_quotes}cold{close_quotes}) coolant collectors of the PGV-1000 steam generators (1000 M) in these power-generating units contained damage in the form of cracks of corrosion-mechanical origin in the connections between the openings of the perforated zone. Damage appeared only at the cold collectors and only near the vertical axis, passing through the top of the unperforated wedge. The construction of the PGV-1000 steam generators is an elaboration of the structures of horizontal steam generators in nuclear power plants with VVER-440 reactors and is displayed.

  15. Core follow calculation with the nTRACER numerical reactor and verification using power reactor measurement data

    SciTech Connect

    Jung, Y. S.; Joo, H. G.; Yoon, J. I.

    2013-07-01

    The nTRACER direct whole core transport code employing the planar MOC solution based 3-D calculation method, the subgroup method for resonance treatment, the Krylov matrix exponential method for depletion, and a subchannel thermal/hydraulic calculation solver was developed for practical high-fidelity simulation of power reactors. Its accuracy and performance is verified by comparing with the measurement data obtained for three pressurized water reactor cores. It is demonstrated that accurate and detailed multi-physic simulation of power reactors is practically realizable without any prior calculations or adjustments. (authors)

  16. System aspects of a Space Nuclear Reactor Power System

    SciTech Connect

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Kia, T.; Nesmith, B.

    1988-01-01

    Selected systems aspects of a 300 kW nuclear reactor power system for spacecraft have been studied. The approach included examination of two candidate missions and their associated spacecraft, and a number of special topics dealing with the power system design and operation. The missions considered were a reusable orbital transfer vehicle and a space-based radar. The special topics included: power system configuration and scaling, launch vehicle integration, operating altitude, orbital storage, start-up, thawing, control, load following, procedures in case of malfunction, restart, thermal and nuclear radiation to other portions of the spacecraft, thermal stresses between subsystems, boom and cable designs, vibration modes, altitude control, reliability, and survivability. Among the findings are that the stowed length of the power system is important to mission design and that orbital storage for months to years may be needed for missions involving orbital assembly. The power system design evolved during the study and has continued to evolve; the current design differs somewhat from that examined in this paper.

  17. 10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Technical specifications on effluents from nuclear power...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors..., including expected occurrences, as low as is reasonably achievable, each licensee of a nuclear power reactor...

  18. 10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Technical specifications on effluents from nuclear power...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors..., including expected occurrences, as low as is reasonably achievable, each licensee of a nuclear power reactor...

  19. A preliminary investigation of the Topaz II reactor as a lunar surface power supply

    SciTech Connect

    Polansky, G.F.; Houts, M.G.

    1995-12-31

    Reactor power supplies offer many attractive characteristics for lunar surface applications. The Topaz II reactor resulted from an extensive development program in the former Soviet Union. Flight quality reactor units remain from this program and are currently under evaluation in the United States. This paper examines the potential for applying the Topaz II, originally developed to provide spacecraft power, as a lunar surface power supply.

  20. 10 CFR 50.60 - Acceptance criteria for fracture prevention measures for lightwater nuclear power reactors for...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... lightwater nuclear power reactors for normal operation. 50.60 Section 50.60 Energy NUCLEAR REGULATORY... lightwater nuclear power reactors for normal operation. (a) Except as provided in paragraph (b) of this section, all light-water nuclear power reactors, other than reactor facilities for which the...

  1. 10 CFR 50.60 - Acceptance criteria for fracture prevention measures for lightwater nuclear power reactors for...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... lightwater nuclear power reactors for normal operation. 50.60 Section 50.60 Energy NUCLEAR REGULATORY... lightwater nuclear power reactors for normal operation. (a) Except as provided in paragraph (b) of this section, all light-water nuclear power reactors, other than reactor facilities for which the...

  2. 10 CFR 50.60 - Acceptance criteria for fracture prevention measures for lightwater nuclear power reactors for...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... lightwater nuclear power reactors for normal operation. 50.60 Section 50.60 Energy NUCLEAR REGULATORY... lightwater nuclear power reactors for normal operation. (a) Except as provided in paragraph (b) of this section, all light-water nuclear power reactors, other than reactor facilities for which the...

  3. Test Results from a Direct Drive Gas Reactor Simulator Coupled to a Brayton Power Conversion Unit

    NASA Technical Reports Server (NTRS)

    Hervol, David S.; Briggs, Maxwell H.; Owen, Albert K.; Bragg-Sitton, Shannon M.; Godfroy, Thomas J.

    2010-01-01

    Component level testing of power conversion units proposed for use in fission surface power systems has typically been done using relatively simple electric heaters for thermal input. These heaters do not adequately represent the geometry or response of proposed reactors. As testing of fission surface power systems transitions from the component level to the system level it becomes necessary to more accurately replicate these reactors using reactor simulators. The Direct Drive Gas-Brayton Power Conversion Unit test activity at the NASA Glenn Research Center integrates a reactor simulator with an existing Brayton test rig. The response of the reactor simulator to a change in Brayton shaft speed is shown as well as the response of the Brayton to an insertion of reactivity, corresponding to a drum reconfiguration. The lessons learned from these tests can be used to improve the design of future reactor simulators which can be used in system level fission surface power tests.

  4. High-intensity power-resolved radiation imaging of an operational nuclear reactor

    PubMed Central

    Beaumont, Jonathan S.; Mellor, Matthew P.; Villa, Mario; Joyce, Malcolm J.

    2015-01-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors. PMID:26450669

  5. High-intensity power-resolved radiation imaging of an operational nuclear reactor

    NASA Astrophysics Data System (ADS)

    Beaumont, Jonathan S.; Mellor, Matthew P.; Villa, Mario; Joyce, Malcolm J.

    2015-10-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors.

  6. High-intensity power-resolved radiation imaging of an operational nuclear reactor.

    PubMed

    Beaumont, Jonathan S; Mellor, Matthew P; Villa, Mario; Joyce, Malcolm J

    2015-10-09

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors.

  7. Reactor/Brayton power systems for nuclear electric spacecraft

    NASA Technical Reports Server (NTRS)

    Layton, J. P.

    1980-01-01

    Studies are currently underway to assess the technological feasibility of a nuclear-reactor-powered spacecraft propelled by electric thrusters. This vehicle would be capable of performing detailed exploration of the outer planets of the solar system during the remainder of this century. The purpose of this study was to provide comparative information on a closed cycle gas turbine power conversion system. The results have shown that the performance is very competitive and that a 400 kWe space power system is dimensionally compatible with a single Space Shuttle launch. Performance parameters of system mass and radiator area were determined for systems from 100 to 1000 kWe. A 400 kWe reference system received primary attention. The components of this system were defined and a conceptual layout was developed with encouraging results. The preliminary mass determination for the complete power system was very close to the desired goal of 20 kg/kWe. Use of more advanced technology (higher turbine inlet temperature) will substantially improve system performance characteristics.

  8. Reactor/Brayton power systems for nuclear electric spacecraft

    NASA Technical Reports Server (NTRS)

    Layton, J. P.

    1980-01-01

    Studies are currently underway to assess the technological feasibility of a nuclear-reactor-powered spacecraft propelled by electric thrusters. This vehicle would be capable of performing detailed exploration of the outer planets of the solar system during the remainder of this century. The purpose of this study was to provide comparative information on a closed cycle gas turbine power conversion system. The results have shown that the performance is very competitive and that a 400 kWe space power system is dimensionally compatible with a single Space Shuttle launch. Performance parameters of system mass and radiator area were determined for systems from 100 to 1000 kWe. A 400 kWe reference system received primary attention. The components of this system were defined and a conceptual layout was developed with encouraging results. The preliminary mass determination for the complete power system was very close to the desired goal of 20 kg/kWe. Use of more advanced technology (higher turbine inlet temperature) will substantially improve system performance characteristics.

  9. Method of locating a leaking fuel element in a fast breeder power reactor

    DOEpatents

    Honekamp, John R.; Fryer, Richard M.

    1978-01-01

    Leaking fuel elements in a fast reactor are identified by measuring the ratio of .sup.134 Xe to .sup.133 Xe in the reactor cover gas following detection of a fuel element leak, this ratio being indicative of the power and burnup of the failed fuel element. This procedure can be used to identify leaking fuel elements in a power breeder reactor while continuing operation of the reactor since the ratio measured is that of the gases stored in the plenum of the failed fuel element. Thus, use of a cleanup system for the cover gas makes it possible to identify sequentially a multiplicity of leaking fuel elements without shutting the reactor down.

  10. Detector response in a CANDU low void reactivity core

    SciTech Connect

    Tsang, K. T.

    2006-07-01

    The response of the in-core flux detectors to the CANFLEX Low-Void-Reactivity Fuel (LVRF) [1] bundles for use in the CANDU reactor at Bruce nuclear generation station has been studied. The study was based on 2 detector types - platinum (Pt)-clad Inconel and pure Inconel detectors, and 2 fuel types - LVRF bundles and natural-uranium (NU) bundles. Both detectors show a decrease of thermal-neutron-flux to total-photon-flux ratio when NU fuel bundles are replaced by LVRF bundles in the reactor core (7% for Inconel and 9% for Pt-clad detectors). The ratio of the prompt component of the net electron current to the total net electron current (PFe) of the detectors however shows a different response. The use of LVRF bundles in place of NU fuel bundles in the reactor core did not change the PFe of the Pt-clad Inconel detector but increased the PFe of the pure Inconel detector by less than 2%. The study shows that the Inconel detector has a larger prompt-detector response than that of the platinum-clad detector; it reacts to the change of fluxes in the reactor core more readily. On the other hand, the Pt-clad detector is less sensitive to perturbations of the neutron-to-gamma ratio. Nevertheless the changes in an absolute sense are minimal; one does not anticipate a change of the flux-monitoring system if the NU fuel bundles are replaced with the CANFLEX LVRF bundles in the core of the Bruce nuclear generating station. (authors)

  11. Non-Power Reactor Operator Licensing Examiner Standards. Revision 1

    SciTech Connect

    1995-06-01

    The Non-Power Reactor Operator Licensing Examiner Standards provide policy and guidance to NRC examiners and establish the procedures and practices for examining and licensing of applicants for NRC operator licenses pursuant to Part 55 of Title 10 of the Code of Federal Regulations (10 CFR 55). They are intended to assist NRC examiners and facility licensees to understand the examination process better and to provide for equitable and consistent administration of examinations to all applicants by NRC examiners. These standards are not a substitute for the operator licensing regulations and are subject to revision or other internal operator examination licensing policy changes. As appropriate, these standards will be revised periodically to accommodate comments and reflect new information or experience.

  12. Thermoelectric converter for SP-100 space reactor power system

    NASA Technical Reports Server (NTRS)

    Terrill, W. R.; Haley, V. F.

    1986-01-01

    Conductively coupling the thermoelectric converter to the heat source and the radiator maximizes the utilization of the reactor and radiator temperatures and thereby minimizes the power system weight. This paper presents the design for the converter and the individual thermoelectric cells that are the building block modules for the converter. It also summarizes progress on the fabrication of initial cells and the results obtained from the preparation of a manufacturing plan. The design developed for the SP-100 system utilizes thermally conductive compliant pads that can absorb the displacement and distortion caused by the combinations of temperatures and thermal expansion coefficients. The converter and cell designs provided a 100 kWe system which met the system requirements. Initial cells were fabricated and tested.

  13. Thermoelectric converter for SP-100 space reactor power system

    NASA Technical Reports Server (NTRS)

    Terrill, W. R.; Haley, V. F.

    1986-01-01

    Conductively coupling the thermoelectric converter to the heat source and the radiator maximizes the utilization of the reactor and radiator temperatures and thereby minimizes the power system weight. This paper presents the design for the converter and the individual thermoelectric cells that are the building block modules for the converter. It also summarizes progress on the fabrication of initial cells and the results obtained from the preparation of a manufacturing plan. The design developed for the SP-100 system utilizes thermally conductive compliant pads that can absorb the displacement and distortion caused by the combinations of temperatures and thermal expansion coefficients. The converter and cell designs provided a 100 kWe system which met the system requirements. Initial cells were fabricated and tested.

  14. A Basic LEGO Reactor Design for the Provision of Lunar Surface Power

    SciTech Connect

    John Darrell Bess

    2008-06-01

    A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched with lunar shipments from Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, such as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides approximately 5 kWe. The overall envelope for a single subunit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. Six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network, subject to lunar base power demand. Improvements in reactor control methods, fuel form and matrix, shielding, as well as power conversion and heat rejection techniques can help generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for

  15. Irradiation Tests Supporting LEU Conversion of Very High Power Research Reactors in the US

    SciTech Connect

    Woolstenhulme, N. E.; Cole, J. I.; Glagolenko, I.; Holdaway, K. K.; Housley, G. K.; Rabin, B. H.

    2016-10-01

    The US fuel development team is developing a high density uranium-molybdenum alloy monolithic fuel to enable conversion of five high-power research reactors. Previous irradiation tests have demonstrated promising behavior for this fuel design. A series of future irradiation tests will enable selection of final fuel fabrication process and provide data to qualify the fuel at moderately-high power conditions for use in three of these five reactors. The remaining two reactors, namely the Advanced Test Reactor and High Flux Isotope Reactor, require additional irradiation tests to develop and demonstrate the fuel’s performance with even higher power conditions, complex design features, and other unique conditions. This paper reviews the program’s current irradiation testing plans for these moderately-high irradiation conditions and presents conceptual testing strategies to illustrate how subsequent irradiation tests will build upon this initial data package to enable conversion of these two very-high power research reactors.

  16. Power monitoring in space nuclear reactors using silicon carbide radiation detectors

    NASA Technical Reports Server (NTRS)

    Ruddy, Frank H.; Patel, Jagdish U.; Williams, John G.

    2005-01-01

    Space reactor power monitors based on silicon carbide (SiC) semiconductor neutron detectors are proposed. Detection of fast leakage neutrons using SiC detectors in ex-core locations could be used to determine reactor power: Neutron fluxes, gamma-ray dose rates and ambient temperatures have been calculated as a function of distance from the reactor core, and the feasibility of power monitoring with SiC detectors has been evaluated at several ex-core locations. Arrays of SiC diodes can be configured to provide the required count rates to monitor reactor power from startup to full power Due to their resistance to temperature and the effects of neutron and gamma-ray exposure, SiC detectors can be expected to provide power monitoring information for the fill mission of a space reactor.

  17. Power monitoring in space nuclear reactors using silicon carbide radiation detectors

    NASA Technical Reports Server (NTRS)

    Ruddy, Frank H.; Patel, Jagdish U.; Williams, John G.

    2005-01-01

    Space reactor power monitors based on silicon carbide (SiC) semiconductor neutron detectors are proposed. Detection of fast leakage neutrons using SiC detectors in ex-core locations could be used to determine reactor power: Neutron fluxes, gamma-ray dose rates and ambient temperatures have been calculated as a function of distance from the reactor core, and the feasibility of power monitoring with SiC detectors has been evaluated at several ex-core locations. Arrays of SiC diodes can be configured to provide the required count rates to monitor reactor power from startup to full power Due to their resistance to temperature and the effects of neutron and gamma-ray exposure, SiC detectors can be expected to provide power monitoring information for the fill mission of a space reactor.

  18. Square lattice honeycomb reactor for space power and propulsion

    NASA Astrophysics Data System (ADS)

    Gouw, Reza; Anghaie, Samim

    2000-01-01

    The most recent nuclear design study at the Innovative Nuclear Space Power and Propulsion Institute (INSPI) is the Moderated Square-Lattice Honeycomb (M-SLHC) reactor design utilizing the solid solution of ternary carbide fuels. The reactor is fueled with solid solution of 93% enriched (U,Zr,Nb)C. The square-lattice honeycomb design provides high strength and is amenable to the processing complexities of these ultrahigh temperature fuels. The optimum core configuration requires a balance between high specific impulse and thrust level performance, and maintaining the temperature and strength limits of the fuel. The M-SLHC design is based on a cylindrical core that has critical radius and length of 37 cm and 50 cm, respectively. This design utilized zirconium hydrate to act as moderator. The fuel sub-assemblies are designed as cylindrical tubes with 12 cm in diameter and 10 cm in length. Five fuel subassemblies are stacked up axially to form one complete fuel assembly. These fuel assemblies are then arranged in the circular arrangement to form two fuel regions. The first fuel region consists of six fuel assemblies, and 18 fuel assemblies for the second fuel region. A 10-cm radial beryllium reflector in addition to 10-cm top axial beryllium reflector is used to reduce neutron leakage from the system. To perform nuclear design analysis of the M-SLHC design, a series of neutron transport and diffusion codes are used. To optimize the system design, five axial regions are specified. In each axial region, temperature and fuel density are varied. The axial and radial power distributions for the system are calculated, as well as the axial and radial flux distributions. Temperature coefficients of the system are also calculated. A water submersion accident scenario is also analyzed for these systems. Results of the nuclear design analysis indicate that a compact core can be designed based on ternary uranium carbide square-lattice honeycomb fuel, which provides a relatively

  19. 3-D kinetics simulations of the NRU reactor using the DONJON code

    SciTech Connect

    Leung, T. C.; Atfield, M. D.; Koclas, J.

    2006-07-01

    The NRU reactor is highly heterogeneous, heavy-water cooled and moderated, with online refuelling capability. It is licensed to operate at a maximum power of 135 MW, with a peak thermal flux of approximately 4.0 x 10{sup 18} n.m{sup -2} . s{sup -1}. In support of the safe operation of NRU, three-dimensional kinetics calculations for reactor transients have been performed using the DONJON code. The code was initially designed to perform space-time kinetics calculations for the CANDU{sup R} power reactors. This paper describes how the DONJON code can be applied to perform neutronic simulations for the analysis of reactor transients in NRU, and presents calculation results for some transients. (authors)

  20. Monitoring the thermal power of nuclear reactors with a prototype cubic meter antineutrino detector

    NASA Astrophysics Data System (ADS)

    Bernstein, A.; Bowden, N. S.; Misner, A.; Palmer, T.

    2008-04-01

    In this paper, we estimate how quickly and how precisely a reactor's operational status and thermal power can be monitored over hour to month time scales, using the antineutrino rate as measured by a cubic meter scale detector. Our results are obtained from a detector we have deployed and operated at 25m standoff from a reactor core. This prototype can detect a prompt reactor shutdown within 5h and monitor relative thermal power to within 7days. Monitoring of short-term power changes in this way may be useful in the context of International Atomic Energy Agency's reactor safeguards regime or other cooperative monitoring regimes.

  1. BDDR, a new CEA technological and operating reactor database

    SciTech Connect

    Soldevilla, M.; Salmons, S.; Espinosa, B.

    2013-07-01

    The new application BDDR (Reactor database) has been developed at CEA in order to manage nuclear reactors technological and operating data. This application is a knowledge management tool which meets several internal needs: -) to facilitate scenario studies for any set of reactors, e.g. non-proliferation assessments; -) to make core physics studies easier, whatever the reactor design (PWR-Pressurized Water Reactor-, BWR-Boiling Water Reactor-, MAGNOX- Magnesium Oxide reactor-, CANDU - CANada Deuterium Uranium-, FBR - Fast Breeder Reactor -, etc.); -) to preserve the technological data of all reactors (past and present, power generating or experimental, naval propulsion,...) in a unique repository. Within the application database are enclosed location data and operating history data as well as a tree-like structure containing numerous technological data. These data address all kinds of reactors features and components. A few neutronics data are also included (neutrons fluxes). The BDDR application is based on open-source technologies and thin client/server architecture. The software architecture has been made flexible enough to allow for any change. (authors)

  2. The combined hybrid system: A symbiotic thermal reactor/fast reactor system for power generation and radioactive waste toxicity reduction

    SciTech Connect

    Hollaway, W.R.

    1991-08-01

    If there is to be a next generation of nuclear power in the United States, then the four fundamental obstacles confronting nuclear power technology must be overcome: safety, cost, waste management, and proliferation resistance. The Combined Hybrid System (CHS) is proposed as a possible solution to the problems preventing a vigorous resurgence of nuclear power. The CHS combines Thermal Reactors (for operability, safety, and cost) and Integral Fast Reactors (for waste treatment and actinide burning) in a symbiotic large scale system. The CHS addresses the safety and cost issues through the use of advanced reactor designs, the waste management issue through the use of actinide burning, and the proliferation resistance issue through the use of an integral fuel cycle with co-located components. There are nine major components in the Combined Hybrid System linked by nineteen nuclear material mass flow streams. A computer code, CHASM, is used to analyze the mass flow rates CHS, and the reactor support ratio (the ratio of thermal/fast reactors), IFR of the system. The primary advantages of the CHS are its essentially actinide-free high-level radioactive waste, plus improved reactor safety, uranium utilization, and widening of the option base. The primary disadvantages of the CHS are the large capacity of IFRs required (approximately one MW{sub e} IFR capacity for every three MW{sub e} Thermal Reactor) and the novel radioactive waste streams produced by the CHS. The capability of the IFR to burn pure transuranic fuel, a primary assumption of this study, has yet to be proven. The Combined Hybrid System represents an attractive option for future nuclear power development; that disposal of the essentially actinide-free radioactive waste produced by the CHS provides an excellent alternative to the disposal of intact actinide-bearing Light Water Reactor spent fuel (reducing the toxicity based lifetime of the waste from roughly 360,000 years to about 510 years).

  3. Computer simulation of magnetization-controlled shunt reactors for calculating electromagnetic transients in power systems

    SciTech Connect

    Karpov, A. S.

    2013-01-15

    A computer procedure for simulating magnetization-controlled dc shunt reactors is described, which enables the electromagnetic transients in electric power systems to be calculated. It is shown that, by taking technically simple measures in the control system, one can obtain high-speed reactors sufficient for many purposes, and dispense with the use of high-power devices for compensating higher harmonic components.

  4. Application of Molten Salt Reactor Technology to MMW In-Space NEP and Surface Power Missions

    NASA Technical Reports Server (NTRS)

    Patton, Bruce; Sorensen, Kirk; Rodgers, Stephen (Technical Monitor)

    2002-01-01

    Anticipated manned nuclear electric propulsion (NEP) and planetary surface power missions will require multimegawatt nuclear reactors that are lightweight, operationally robust, and scalable in power for widely varying scientific mission objectives. Molten salt reactor technology meets all of these requirements and offers an interesting alternative to traditional multimegawatt gas-cooled and liquid metal concepts.

  5. 10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... reactors. 50.36a Section 50.36a Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors..., including expected occurrences, as low as is reasonably achievable, each licensee of a nuclear power...

  6. Development of a Robust Tri-Carbide Fueled Reactor for Multimegawatt Space Power and Propulsion Applications

    SciTech Connect

    Samim Anghaie; Travis W. Knight; Johann Plancher; Reza Gouw

    2004-08-11

    An innovative reactor core design based on advanced, mixed carbide fuels was analyzed for nuclear space power applications. Solid solution, mixed carbide fuels such as (U,Zr,Nb)c and (U,Zr, Ta)C offer great promise as an advanced high temperature fuel for space power reactors.

  7. Application of Molten Salt Reactor Technology to MMW In-Space NEP and Surface Power Missions

    SciTech Connect

    Patton, Bruce; Sorensen, Kirk

    2002-07-01

    Anticipated manned nuclear electric propulsion (NEP) and planetary surface power missions will require multi-megawatt nuclear reactors that are lightweight, operationally robust, and sealable in power for widely varying scientific mission objectives. Molten salt reactor technology meets all of these requirements and offers an interesting alternative to traditional multi-megawatt gas-cooled and liquid metal concepts. (authors)

  8. 76 FR 74630 - Making Changes to Emergency Plans for Nuclear Power Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION 10 CFR Parts 50 and 52 RIN 3150-AI10 Making Changes to Emergency Plans for Nuclear Power Reactors... Emergency Plans for Nuclear Power Reactors.'' This guide describes a method that the NRC staff considers...

  9. Use of Th and U in CANDU-6 and ACR-700 on the once-through cycle: Burnup analyses, natural U requirement/saving and nuclear resource utilization

    NASA Astrophysics Data System (ADS)

    Türkmen, Mehmet; Zabunoğlu, Okan H.

    2012-10-01

    Use of U and U-Th fuels in CANDU type of reactors (CANDU-6 and ACR-700) on the once-through nuclear fuel cycle is investigated. Based on the unit-cell approximation with the homogeneous-bundle/core model, utilizing the MONTEBURNS code, burnup computations are performed; discharge burnups are determined and expressed as functions of 235U and Th fractions, when applicable. Natural Uranium Requirement (and Saving) and Nuclear Resource Utilization are calculated for varying fuel compositions. Results are analyzed to observe the effects of 235U and Th fractions, thus to reach conclusions about use of Th in CANDU-6 and ACR-700 on the once-through cycle.

  10. 77 FR 74697 - Meeting of the ACRS, Subcommittee on U.S. Evolutionary Power Reactor; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS, Subcommittee on U.S. Evolutionary Power Reactor; Notice of Meeting The ACRS Subcommittee on U.S. Evolutionary Power Reactor (U.S..., 2012. Antonio Dias, Technical Advisor, Advisory Committee on Reactor Safeguards. BILLING CODE 7590-01-P...

  11. A New Approach to Nuclear Power The Multi-Module Reactor (MMR) Concept

    SciTech Connect

    Vernon, Milton E.

    2002-07-01

    While fuel cost for nuclear power is incredibly low relative to fossil fuel, the capital investment needed to build today's nuclear power plant is substantial. Utilities are reluctant to build new nuclear power plants because of the long construction time and the associated uncertainty of investment recovery. This paper introduces a new modular reactor concept, the Multi-Module Reactor (MMR), that reduces both the construction cost and time in an attempt to renew commercial interest in nuclear power. (authors)

  12. Regulatory process for decommissioning nuclear power reactors. Final report

    SciTech Connect

    1998-03-01

    This report provides regulatory guidance for utilities consistent with the changes in the decommissioning rule, 10 CFR50.82 as revised in July 1996. The purpose of this report is to explain the new rule in the context of related industry experience and to provide practical guidance to licensees contemplating or implementing a shutdown. Because the regulatory process is still rapidly evolving, this report reflects only a current status of the acceptable methods and practices derived from a review of the current regulations, guidance documents and industry experience for decommissioning a nuclear power reactor. EPRI anticipates periodic updates of this document to incorporate various utility experiences with decommissioning, and also to reflect any regulatory changes. The report provides a summary of ongoing federal agency and industry activities and the regulatory requirements that are currently applicable, or no longer applicable, to nuclear power plants at the time of permanent shutdown through the early decommissioning stage. The report describes the major components of a typical decommissioning action plan, providing industry experience and guidance for licensees considering or implementing permanent shutdown.

  13. Development of Improved Burnable Poisons for Commercial Nuclear Power Reactors

    SciTech Connect

    Renier, J.A.

    2002-04-17

    Burnable poisons are used in all modern nuclear reactors to permit higher loading of fuel without the necessity of an overly large control rod system. This not only permits a longer core life but can also be used to level the power distribution. Commercial nuclear reactors commonly use B{sub 4}C in separate non-fueled rods and more recently, zirconium boride coatings on the fuel pellets or gadolinium oxide mixed with the fuel. Although the advantages are great, there are problems with using these materials. Boron, which is an effective neutron absorber, transmutes to lithium and helium upon absorption of a neutron. Helium is insoluble and is eventually released to the interior of the fuel rod, where it produces an internal pressure. When sufficiently high, this pressure stress could cause separation of the cladding from the fuel, causing overly high centerline temperatures. Gadolinium has several very strongly absorbing isotopes, but not all have large cross sections and result in residual burnable poison reactivity worth at the end of the fuel life. Even if the amount of this residual absorber is small and the penalty in operation small, the cost of this penalty, even if only several days, can be very high. The objective of this investigation was to study the performance of single isotopes in order to reduce the residual negative reactivity left over at the end of the fuel cycle. Since the behavior of burnable poisons can be strongly influenced by their configuration, four forms for the absorbers were studied: homogeneously mixed with the fuel, mixed with only the outer one-third of the fuel pellet, coated on the perimeter of the fuel pellets, and alloyed with the cladding. In addition, the numbers of fuel rods containing burnable poison were chosen as 8, 16, 64, and 104. Other configurations were chosen for a few special cases. An enrichment of 4.5 wt% {sup 235}U was chosen for most cases for study in order to achieve a 4-year fuel cycle. A standard pressurized

  14. Preapplication safety evaluation report for the Power Reactor Innovative Small Module (PRISM) liquid-metal reactor. Final report

    SciTech Connect

    Donoghue, J.E.; Donohew, J.N.; Golub, G.R.; Kenneally, R.M.; Moore, P.B.; Sands, S.P.; Throm, E.D.; Wetzel, B.A.

    1994-02-01

    This preapplication safety evaluation report (PSER) presents the results of the preapplication desip review for die Power Reactor Innovative Small Module (PRISM) liquid-mew (sodium)-cooled reactor, Nuclear Regulatory Commission (NRC) Project No. 674. The PRISM conceptual desip was submitted by the US Department of Energy in accordance with the NRC`s ``Statement of Policy for the Regulation of Advanced Nuclear Power Plants`` (51 Federal Register 24643). This policy provides for the early Commission review and interaction with designers and licensees. The PRISM reactor desip is a small, modular, pool-type, liquid-mew (sodium)-cooled reactor. The standard plant design consists of dim identical power blocks with a total electrical output rating of 1395 MWe- Each power block comprises three reactor modules, each with a thermal rating of 471 MWt. Each module is located in its own below-grade silo and is co to its own intermediate heat transport system and steam generator system. The reactors utilize a metallic-type fuel, a ternary alloy of U-Pu-Zr. The design includes passive reactor shutdown and passive decay heat removal features. The PSER is the NRC`s preliminary evaluation of the safety features in the PRISM design, including the projected research and development programs required to support the design and the proposed testing needs. Because the NRC review was based on a conceptual design, the PSER did not result in an approval of the design. Instead it identified certain key safety issues, provided some guidance on applicable licensing criteria, assessed the adequacy of the preapplicant`s research and development programs, and concluded that no obvious impediments to licensing the PRISM design had been identified.

  15. Underground nuclear power plant with the VK-300 reactor as a substituting power source for Zheleznogorsk, Russia

    SciTech Connect

    Adamov, E.O.; Lebedev, V.A.; Kuznetsov, Yu.N.; Samarkin, A.A.; Tokarev, Yu.I.

    1996-07-01

    Zheleznogorsk is situated near the territorial center -- Krasnoyarsk on the Yenisei river. Mining and chemical complex is the main industrial enterprise of the town, which has been constructed for generation and used for isolation of weapons-grade plutonium. Heat supply to the chemical complex and town at the moment is largely provided by nuclear co-generation plant (NCGP) on the basis of the ADEh-2 dual-purpose reactor, generating 430 Gcal/h of heat and, partially, by coal backup peak-load boiler houses. NCGP also provides 73% of electric power consumed. In line with agreements between Russia and USA on strategic arms reduction and phasing out of weapons-grade plutonium production, decommissioning of the ADEh-2 reactor by 2000 is planned. Thus, a problem arises relative to compensation for electric and thermal power generation for the needs of the town and industrial enterprises, which is now supplied by the reactor. A nuclear power plant constructed on the same site as a substituting power source should be considered as the most practical option. Basic requirements to the reactor of substituting nuclear power plant are as follows. It is to be a new generation reactor on the basis of verified technologies, having an operating prototype optimal for underground siting and permitting utmost utilization of the available mining workings and those being disengaged. NCGP with the reactor is to be constructed in the time period required and is to become competitive with other possible power sources. Analysis has shown that the VK-300 simplified vessel-type boiling reactor meets the requirements made in the maximum extent. Its design is based on the experience of the VK-50 reactor operation for a period of 30 years in Dimitrovgrad (Russia) and allows for experience in the development of the SBWR type reactors. The design of the reactor is discussed.

  16. Benchmark Evaluation of the Medium-Power Reactor Experiment Program Critical Configurations

    SciTech Connect

    Margaret A. Marshall; John D. Bess

    2013-02-01

    A series of small, compact critical assembly (SCCA) experiments were performed in 1962-1965 at the Oak Ridge National Laboratory Critical Experiments Facility (ORCEF) for the Medium-Power Reactor Experiment (MPRE) program. The MPRE was a stainless-steel clad, highly enriched uranium (HEU)-O2 fuelled, BeO reflected reactor design to provide electrical power to space vehicles. Cooling and heat transfer were to be achieved by boiling potassium in the reactor core and passing vapor directly through a turbine. Graphite- and beryllium-reflected assemblies were constructed at ORCEF to verify the critical mass, power distribution, and other reactor physics measurements needed to validate reactor calculations and reactor physics methods. The experimental series was broken into three parts, with the third portion of the experiments representing the beryllium-reflected measurements. The latter experiments are of interest for validating current reactor design efforts for a fission surface power reactor. The entire series has been evaluated as acceptable benchmark experiments and submitted for publication in the International Handbook of Evaluated Criticality Safety Benchmark Experiments and in the International Handbook of Evaluated Reactor Physics Benchmark Experiments.

  17. 10 CFR 50.83 - Release of part of a power reactor facility or site for unrestricted use.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Release of part of a power reactor facility or site for... of a power reactor facility or site for unrestricted use. (a) Prior written NRC approval is required... release. Nuclear power reactor licensees seeking NRC approval shall— (1) Evaluate the effect of...

  18. Determination of Cl impurities and {sup 36}Cl instant release from used CANDU fuels

    SciTech Connect

    Tait, J.C.; McConnell, J.; Wilkin, D.L.; Cornett, R.J.J.; Chant, L.A.; Jirovec, J.

    1997-12-31

    Chlorine-36 has been identified as a potential source of radiological risk in the disposal of nuclear fuel waste. The radioisotope {sup 36}Cl (t{sub 1/2} = 3 {times} 10{sup 5} a) is produced by neutron activation of Cl impurities in UO{sub 2} fuel. The total average Cl impurity level in four unirradiated CANDU UO{sub 2} fuel samples was 2.3 {+-} 1.1 ppm. ORIGEN-S calculations using a 5 ppm Cl impurity in a CANDU fuel resulted in a {sup 36}Cl activity comparable to the activity of {sup 129}I and {sup 14}C produced in the fuel thus requiring {sup 36}Cl to be considered in disposal risk assessments. The instant release of {sup 365}Cl from the gap and grain boundary regions of the fuel to solution was measured by leaching both clad fuel and fuel samples crushed to grain-sized particles. The {sup 36}Cl releases from fuel samples taken from 8 different fuel bundles ranged from 0.5% to 20.4% of the total {sup 36}Cl inventory over a leaching period of 32 days. The {sup 36}Cl released was found to correlate with the stable Xe gas release, the fuel burnup and the linear power rating (LPR). For a typical CANDU fuel with an LPR of {approximately}42 kW/m, the instant release of {sup 36}Cl would be about 5% of the total inventory.

  19. UWTOR-M, a conceptual design study of a modular stellarator power reactor

    SciTech Connect

    Sviatoslasky, I.N.; Van Sciver, S.W.; Kulcinski, G.L.

    1981-01-01

    A preliminary design of a 5500 MW/sub th/ modular stellarator power reactor, UW-TOR-M, is presented the parametric considerations which led to the UWTOR-M reference design point are briefly describe. A unique blanket design is proposed which minimized tritium inventory in the reactor. Finally, sine maintainability is a prime consideration, a scheme for is described servcing the first wall/blanket and other reactor components.

  20. Thermophotovoltaic Energy Conversion in Space Nuclear Reactor Power Systems

    DTIC Science & Technology

    2004-12-01

    Franklin Chang-Diaz of NASA Johnson’s Advanced Space Propulsion Laboratory led me pursue this topic when he asked about the best way to get megawatts of...wise to remember the words of ADM Hyman G. Rickover, the first Director of Naval Nuclear Propulsion . An academic reactor or reactor plant almost always

  1. A facility for testing 10- to 100-kWe space power reactors

    SciTech Connect

    Carlson, W F; Bitten, E J

    1992-06-01

    This paper describes an existing facility that could be used in a cost-effective manner to test space power reactors in the 10 to 100-kWe range before launch. The facility has been designed to conduct full power tests of 100-kWe SP-100 reactor systems and already has the structural feature that would be required for lower power testing. The paper describes a reasonable scenario starting with the acceptance at the test site of the unfueled reactor assembly and the separately shipped nuclear fuel. After fueling the reactor and installing it in the facility, cold critical tests are performed, and the reactor is then shipped to the launch site. The availability of this facility represents a cost-effective means of performing the required prelaunch test program.

  2. Developing the European Center of Competence on VVER-Type Nuclear Power Reactors

    ERIC Educational Resources Information Center

    Geraskin, Nikolay; Pironkov, Lyubomir; Kulikov, Evgeny; Glebov, Vasily

    2017-01-01

    This paper presents the results of the European educational projects CORONA and CORONA-II which are dedicated to preserving and further developing nuclear knowledge and competencies in the area of VVER-type nuclear power reactors technologies (Water-Water Energetic Reactor, WWER or VVER). The development of the European Center of Competence for…

  3. 75 FR 17786 - Advisory Committee on Reactor Safeguards; Meeting of the ACRS Subcommittee on Power Uprates...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ...@nrc.gov ). Dated: April 1, 2010. Antonio F. Dias, Branch Chief, Reactor Safety Branch B, Advisory... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards; Meeting of the ACRS Subcommittee on Power Uprates...

  4. Heat pipe cooled reactors for multi-kilowatt space power supplies

    NASA Astrophysics Data System (ADS)

    Ranken, W. A.; Houts, M. G.

    Three nuclear reactor space power system designs are described that demonstrate how the use of high temperature heat pipes for reactor heat transport, combined with direct conversion of heat to electricity, can result in eliminating pumped heat transport loops for both primary reactor cooling and heat rejection. The result is a significant reduction in system complexity that leads to very low mass systems with high reliability, especially in the power range of 1 to 20 kWe. In addition to removing heat exchangers, electromagnetic pumps, and coolant expansion chambers, the heat pipe/direct conversion combination provides such capabilities as startup from the frozen state, automatic rejection of reactor decay heat in the event of emergency or accidental reactor shutdown, and the elimination of single point failures in the reactor cooling system. The power system designs described include a thermoelectric system that can produce 1 to 2 kWe, a bimodal modification of this system to increase its power level to 5 kWe and incorporate high temperature hydrogen propulsion capability, and a moderated thermionic reactor concept with 5 to 20 kWe power output that is based on beryllium modules that thermally couple cylindrical thermionic fuel elements (TFE's) to radiator heat pipes.

  5. Digital computer study of nuclear reactor thermal transients during startup of 60-kWe Brayton power conversion system

    NASA Technical Reports Server (NTRS)

    Jefferies, K. S.; Tew, R. C.

    1974-01-01

    A digital computer study was made of reactor thermal transients during startup of the Brayton power conversion loop of a 60-kWe reactor Brayton power system. A startup procedure requiring the least Brayton system complication was tried first; this procedure caused violations of design limits on key reactor variables. Several modifications of this procedure were then found which caused no design limit violations. These modifications involved: (1) using a slower rate of increase in gas flow; (2) increasing the initial reactor power level to make the reactor respond faster; and (3) appropriate reactor control drum manipulation during the startup transient.

  6. Limitations of power conversion systems under transient loads and impact on the pulsed tokamak power reactor

    NASA Astrophysics Data System (ADS)

    Sager, G. T.; Wong, C. P. C.; Kapich, D. D.; McDonald, C. F.; Schleicher, R. W.

    1993-11-01

    The impact of cyclic loading of the power conversion system of a helium-cooled, pulsed tokamak power plant is assessed. Design limits of key components of heat transport systems employing Rankine and Brayton thermodynamic cycles are quantified based on experience in gas-cooled fission reactor design and operation. Cyclic loads due to pulsed tokamak operation are estimated. Expected performance of the steam generator is shown to be incompatible with pulsed tokamak operation without load leveling thermal energy storage. The close cycle gas turbine is evaluated qualitatively based on performance of existing industrial and aeroderivative gas turbines. Advances in key technologies which significantly improve prospects for operation with tokamak fusion plants are reviewed.

  7. Limitations of power conversion systems under transient loads and impact on the pulsed tokamak power reactor

    SciTech Connect

    Sager, G.T.; Wong, C.P.C.; Kapich, D.D.; McDonald, C.F.; Schleicher, R.W.

    1993-11-01

    The impact of cyclic loading of the power conversion system of a helium-cooled, pulsed tokamak power plant is assessed. Design limits of key components of heat transport systems employing Rankie and Brayton thermodynamic cycles are quantified based on experience in gas-cooled fission reactor design and operation. Cyclic loads due to pulsed tokamak operation are estimated. Expected performance of the steam generator is shown to be incompatible with pulsed tokamak operation without load leveling thermal energy storage. The close cycle gas turbine is evaluated qualitatively based on performance of existing industrial and aeroderivative gas turbines. Advances in key technologies which significantly improve prospects for operation with tokamak fusion plants are reviewed.

  8. Progress in space nuclear reactor power systems technology development - The SP-100 program

    NASA Technical Reports Server (NTRS)

    Davis, H. S.

    1984-01-01

    Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.

  9. Progress in space nuclear reactor power systems technology development - The SP-100 program

    NASA Technical Reports Server (NTRS)

    Davis, H. S.

    1984-01-01

    Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.

  10. Water chemistry of the secondary circuit at a nuclear power station with a VVER power reactor

    NASA Astrophysics Data System (ADS)

    Tyapkov, V. F.; Erpyleva, S. F.

    2017-05-01

    Results of implementation of the secondary circuit organic amine water chemistry at Russian nuclear power plant (NPP) with VVER-1000 reactors are presented. The requirements for improving the reliability, safety, and efficiency of NPPs and for prolonging the service life of main equipment items necessitate the implementation of new technologies, such as new water chemistries. Data are analyzed on the chemical control of power unit coolant for quality after the changeover to operation with the feed of higher amines, such as morpholine and ethanolamine. Power units having equipment containing copper alloy components were converted from the all-volatile water chemistry to the ethanolamine or morpholine water chemistry with no increase in pH of the steam generator feedwater. This enables the iron content in the steam generator feedwater to be decreased from 6-12 to 2.0-2.5 μg/dm3. It is demonstrated that pH of high-temperature water is among the basic factors controlling erosion and corrosion wear of the piping and the ingress of corrosion products into NPP steam generators. For NPP power units having equipment whose construction material does not include copper alloys, the water chemistries with elevated pH of the secondary coolant are adopted. Stable dosing of correction chemicals at these power units maintains pH25 of 9.5 to 9.7 in the steam generator feedwater with a maximum iron content of 2 μg/dm3 in the steam generator feedwater.

  11. Gravity Scaling of a Power Reactor Water Shield

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.; Pearson, J. Boise

    2007-01-01

    A similarity analysis on a water-based reactor shield examined the effect of gravity on free convection between a reactor shield inner and outer vessel boundaries. Two approaches established similarity between operation on the Earth and the Moon: 1) direct scaling of Rayleigh number equating gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant. Nusselt number for natural convection (laminar and turbulent) is assumed of form Nu = CRa(sup n).

  12. Hot zero power reactor calculations using the Insilico code

    NASA Astrophysics Data System (ADS)

    Hamilton, Steven P.; Evans, Thomas M.; Davidson, Gregory G.; Johnson, Seth R.; Pandya, Tara M.; Godfrey, Andrew T.

    2016-06-01

    In this paper we describe the reactor physics simulation capabilities of the Insilico code. A description of the various capabilities of the code is provided, including detailed discussion of the geometry, meshing, cross section processing, and neutron transport options. Numerical results demonstrate that Insilico using an SPN solver with pin-homogenized cross section generation is capable of delivering highly accurate full-core simulation of various pressurized water reactor problems. Comparison to both Monte Carlo calculations and measured plant data is provided.

  13. Advanced-power-reactor design concepts and performance characteristics

    NASA Technical Reports Server (NTRS)

    Davison, H. W.; Kirchgessner, T. A.; Springborn, R. H.; Yacobucci, H. G.

    1974-01-01

    Five reactor cooling concepts which allow continued reactor operation following a single rupture of the coolant system are presented for application with the APR. These concepts incorporate convective cooling, double containment, or heat pipes to ensure operation after a coolant line rupture. Based on an evaluation of several control system concepts, a molybdenum clad, beryllium oxide sliding reflector located outside the pressure vessel is recommended.

  14. Low-power lead-cooled fast reactor loaded with MOX-fuel

    NASA Astrophysics Data System (ADS)

    Sitdikov, E. R.; Terekhova, A. M.

    2017-01-01

    Fast reactor for the purpose of implementation of research, education of undergraduate and doctoral students in handling innovative fast reactors and training specialists for atomic research centers and nuclear power plants (BRUTs) was considered. Hard neutron spectrum achieved in the fast reactor with compact core and lead coolant. Possibility of prompt neutron runaway of the reactor is excluded due to the low reactivity margin which is less than the effective fraction of delayed neutrons. The possibility of using MOX fuel in the BRUTs reactor was examined. The effect of Keff growth connected with replacement of natural lead coolant to 208Pb coolant was evaluated. The calculations and reactor core model were performed using the Serpent Monte Carlo code.

  15. Feature of high flux engineering test reactor and its role in nuclear power development

    SciTech Connect

    Guangquan, L.

    1988-01-01

    The High Flux Engineering Test Reactor (HFETR) designed and built by China own efforts reached to its initial criticality on Dec. 27, 1979, and then achieved high power operation on Dec. 16, 1980. Until Nov. 11, 1986, the reactor had been operated for thirteen cycles. The paper presents briefly main feature of HFETR and its utilization during past years. The paper also deals with its role in nuclear power development. Finally, author gives his opinion on comprehensive utilization of HFETR.

  16. Space reactor/Stirling cycle systems for high power Lunar applications

    SciTech Connect

    Schmitz, P.D.; Mason, L.S.

    1994-09-01

    NASA`s Space Exploration Initiative (SEI) has proposed the use of high power nuclear power systems on the lunar surface as a necessary alternative to solar power. Because of the long lunar night ({approximately} 14 earth days) solar powered systems with the requisite energy storage in the form of regenerative fuel cells or batteries becomes prohibitively heavy at high power levels ({approximately} 100 kWe). At these high power levels nuclear power systems become an enabling technology for variety of missions. One way of producing power on the lunar surface is with an SP-100 class reactor coupled with Stirling power converters. In this study, analysis and characterization of the SP-100 class reactor coupled with Free Piston Stirling Power Conversion (FPSPC) system will be performed. Comparison of results with previous studies of other systems, particularly Brayton and Thermionic, are made.

  17. Compilation of corrosion data on CAN-DECON. Volume 1. General, galvanic, crevice, and pitting corrosion data from CANDU and BWR tests. Final report

    SciTech Connect

    Michalko, J.P.; Bonnici, P.J.; Smee, J.L.

    1985-10-01

    Nuclear power station ALARA radiation exposure criteria require, in many cases, decontamination of specific equipment or systems before maintenance, inspection, or work in an adjacent high radiation area. Chemical decontamination, which can be performed away from the high radiation fields, can often best satisfy these ALARA exposure criteria. CAN-DECON, a dilute chemical decontamination process was developed to meet the needs of the Canadian CANDU reactors. It was found to be effective in dissolving BWR oxide films that contain the entrapped radioactive species contributing to high radiation fields. During the development phase of the process and during subsequent field application, CAN-DECON has undergone extensive testing to determine the extent of oxide film dissolution and the degree of corrosion of materials used in construction of reactor components. This has been accomplished on many of the various materials of construction found in the components of the systems decontaminated. Materials tested include carbon steels with range of carbon content 0.1 to 0.4 wt %, 300 series, 400 series, and specialty stainless steels, low alloy steels, and gasket and seal materials. CAN-DECON caused little or no significant corrosion or deterioration on any of the materials tested when applied under conditions appropriate to that class of material. 2 figs., 63 tabs.

  18. Wide-range structurally optimized channel for monitoring the certified power of small-core reactors

    SciTech Connect

    Koshelev, A. S. Kovshov, K. N.; Ovchinnikov, M. A.; Pikulina, G. N.; Sokolov, A. B.

    2016-12-15

    The results of tests of a prototype version of a channel for monitoring the certified power of small-core reactors performed at the BR-K1 reactor at the All-Russian Scientific Research Institute of Experimental Physics are reported. An SNM-11 counter and commercial KNK-4 and KNK-3 compensated ion chambers were used as neutron detectors in the tested channel, and certified NCMM and CCMM measurement modules controlled by a PC with specialized software were used as measuring instruments. The specifics of metrological assurance of calibration of the channel in the framework of reactor power monitoring are discussed.

  19. Setting limits on the power of a geo-reactor with KamLAND detector

    NASA Astrophysics Data System (ADS)

    Maricic, Jelena

    The Earth's magnetic field has existed for at least 3 billion years with high and on average stable intensity, though with many fluctuations and reversals. One of the models, albeit rather controversial, proposed as the energy source of the Earth's magnetic field is a natural nuclear reactor inside the Earth's core [1] and [2]. This author maintains that this is the only model that generates sufficient power to energize the geo-magnetic field for 3 billion years. Even more, the reactor's ability to produce variable power levels including stops and restarts in its operations, provides a viable explanation, according to [2], for the random reversals of the geo-magnetic field that have been recorded numerous times during the Earth's history. In this study, Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) is used to set limits on the power of the putative geo-reactor. KamLAND is designed to detect anti-neutrinos from reactors around Japan, and thus can make a direct measurement of the anti-neutrino rates coming from the geo-reactor for the first time in history, if one exists. From measurements of bounds on the geo-reactor anti-neutrino rate, the thermal power of the geo-reactor may be estimated. Fortunately, the power reactor rate varies with time and this provides a powerful search tool. Based on a total of 776 ton-year exposure of KamLAND to anti-neutrinos, the best fit for the geo-reactor thermal power is ( 5.9+6.4-5.9 ) TW. This result is more than 1sigma level above zero expected geo-reactor power, giving a hint for its existence. Also, this result is consistent with the model prediction of expected heat flow from the Earth's core of 3--10 TW. Although, 21 TW 90% C.L. upper limit for the geo-reactor is rather high, it is comparable to the lower limit for the overall expected radiogenic heat of 19--31 TW. The sum of radiogenic heat (19--31 TW) and reactor heat ( 5.9+6.4-5.9 ) TW is compatible with the direct heat flow measurements which are between 31

  20. Wide-range structurally optimized channel for monitoring the certified power of small-core reactors

    NASA Astrophysics Data System (ADS)

    Koshelev, A. S.; Kovshov, K. N.; Ovchinnikov, M. A.; Pikulina, G. N.; Sokolov, A. B.

    2016-12-01

    The results of tests of a prototype version of a channel for monitoring the certified power of small-core reactors performed at the BR-K1 reactor at the All-Russian Scientific Research Institute of Experimental Physics are reported. An SNM-11 counter and commercial KNK-4 and KNK-3 compensated ion chambers were used as neutron detectors in the tested channel, and certified NCMM and CCMM measurement modules controlled by a PC with specialized software were used as measuring instruments. The specifics of metrological assurance of calibration of the channel in the framework of reactor power monitoring are discussed.

  1. AECL/US INERI - Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in Power Reactors -- Fuel Requirements and Down-Select Report

    SciTech Connect

    William Carmack; Randy D. Lee; Pavel Medvedev; Mitch Meyer; Michael Todosow; Holly B. Hamilton; Juan Nino; Simon Philpot; James Tulenko

    2005-06-01

    potential advantage for more efficient destruction of plutonium and minor actinides (MA) relative to MOX fuel. Greater efficiency in plutonium reduction results in greater flexibility in managing plutonium inventories and in developing strategies for disposition of MA, as well as a potential for fuel cycle cost savings. Because fabrication of plutonium-bearing (and MA-bearing) fuel is expensive relative to UO{sub 2} in terms of both capital and production, cost benefit can be realized through a reduction in the number of plutonium-bearing elements required for a given burn rate. In addition, the choice of matrix material may be manipulated either to facilitate fuel recycling or to make plutonium recovery extremely difficult. In addition to plutonium/actinide management, an inert matrix fuel having high thermal conductivity may have operational and safety benefits; lower fuel temperatures could be used to increase operating and safety margins, uprate reactor power, or a combination of both. The CANDU reactor offers flexibility in plutonium management and MA burning by virtue of online refueling, a simple bundle design, and good neutron economy. A full core of inert matrix fuel containing either plutonium or a plutonium-actinide mix can be utilized, with plutonium destruction efficiencies greater than 90%, and high (>60%) actinide destruction efficiencies. The Advanced CANDU Reactor (ACR) could allow additional possibilities in the design of an IMF bundle, since the tighter lattice pitch and light-water coolant reduce or eliminate the need to suppress coolant void reactivity, allowing the center region of the bundle to include additional fissile material and to improve actinide burning. The ACR would provide flexibility for management of plutonium and MA from the existing LWR fleet, and would be complementary to the AFCI program in the U.S. Many of the fundamental principles concerning the use of IMF are nearly identical in LWRs and the ACR, including fuel

  2. Underground nuclear power station using self-regulating heat-pipe controlled reactors

    DOEpatents

    Hampel, Viktor E.

    1989-01-01

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.

  3. An underground nuclear power station using self-regulating heat-pipe controlled reactors

    DOEpatents

    Hampel, V.E.

    1988-05-17

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.

  4. Ajustement du rechargement et des mecanismes de reactivite des reacteurs CANDU pour les cycles de combustible avances

    NASA Astrophysics Data System (ADS)

    St-Aubin, Emmanuel

    This research project main objectives are to set up and apply a methodology that can determine the potential of advanced thorium-based fuel cycles in CANDU reactors and that is able to adjust reactivity devices, in such a way as to maintain their reference efficiency for these new fuels. In order to select these fuel cycles, a large alternative fuel envelope is submitted to several discriminating criteria. A coarse parametric core modeling, that takes into account standard reactivity devices, is first used to highlight candidates presenting the best economical performances and to eliminate non viable options. Then, for the best candidates, the neutronic modeling is optimized before considering reactivity devices adjustment. For every reactivity device managed by the reactor regulating system, innovative generic optimization methods are used to achieve specific objectives for every fuel cycle, all of them being based on the reference natural uranium cycle behavior. Specific optimization objectives are assessed by simulating advanced fuel cycle for specific operating conditions, including : normal on-power refueling period, spurious reactor trip and fueling machine unavailibility. Unlike the generalized perturbative approach proposed in the OPTEX code, we have successfully implemented a multi-step method able to maximize both the energy extracted from the fuel using an equilibrium refueling optimization, and the reactivity devices adequacy. We also propose new reactivity device supercell models that provides accurate reactor databases for a fraction of the computing cost usually needed using a full model with a similar spatial discretization. Our approach is verified by comparing our simulation results with results published in the literature for the reference fuel cycle. The methodology developed identified advanced fuel cycles, containing up to 60%v. thorium, thereby increasing resources utilization by more than 50% and multiplying the fuel average exit burn-up by

  5. Sodium coolant purification systems for a nuclear power station equipped with a BN-1200 reactor

    NASA Astrophysics Data System (ADS)

    Alekseev, V. V.; Kovalev, Yu. P.; Kalyakin, S. G.; Kozlov, F. A.; Kumaev, V. Ya.; Kondrat'ev, A. S.; Matyukhin, V. V.; Pirogov, E. P.; Sergeev, G. P.; Sorokin, A. P.; Torbenkova, I. Yu.

    2013-05-01

    Both traditional coolant purification methods (by means of traps and sorbents for removing cesium), the use of which supported successful operation of nuclear power installations equipped with fast-neutron reactors with a sodium coolant, and the possibility of removing oxygen from sodium through the use of hot traps are analyzed in substantiating the purification system for a nuclear power station equipped with a BN-1200 reactor. It is shown that a cold trap built into the reactor vessel must be a mandatory component of the reactor plant primary coolant circuit's purification system. The use of hot traps allows oxygen to be removed from the sodium coolant down to permissible concentrations when the nuclear power station operates in its rated mode. The main lines of works aimed at improving the performance characteristics of cold traps are suggested based on the results of performed investigations.

  6. Power distributions in fresh and depleted LEU and HEU cores of the MITR reactor.

    SciTech Connect

    Wilson, E.H.; Horelik, N.E.; Dunn, F.E.; Newton, T.H., Jr.; Hu, L.; Stevens, J.G.

    2012-04-04

    The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. It delivers a neutron flux comparable to current LWR power reactors in a compact 6 MW core using Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context, most research and test reactors both domestic and international have started a program of conversion to the use of Low Enriched Uranium (LEU) fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (UMo) is expected to allow the conversion of U.S. domestic high performance reactors like the MITR-II reactor. Toward this goal, core geometry and power distributions are presented. Distributions of power are calculated for LEU cores depleted with MCODE using an MCNP5 Monte Carlo model. The MCNP5 HEU and LEU MITR models were previously compared to experimental benchmark data for the MITR-II. This same model was used with a finer spatial depletion in order to generate power distributions for the LEU cores. The objective of this work is to generate and characterize a series of fresh and depleted core peak power distributions, and provide a thermal hydraulic evaluation of the geometry which should be considered for subsequent thermal hydraulic safety analyses.

  7. Thermonuclear inverse magnetic pumping power cycle for stellarator reactor

    DOEpatents

    Ho, Darwin D.; Kulsrud, Russell M.

    1991-01-01

    The plasma column in a stellarator is compressed and expanded alternatively in minor radius. First a plasma in thermal balance is compressed adiabatically. The volume of the compressed plasma is maintained until the plasma reaches a new thermal equilibrium. The plasma is then expanded to its original volume. As a result of the way a stellarator works, the plasma pressure during compression is less than the corresponding pressure during expansion. Therefore, negative work is done on the plasma over a complete cycle. This work manifests itself as a back-voltage in the toroidal field coils. Direct electrical energy is obtained from this voltage. Alternatively, after the compression step, the plasma can be expanded at constant pressure. The cycle can be made self-sustaining by operating a system of two stellarator reactors in tandem. Part of the energy derived from the expansion phase of a first stellarator reactor is used to compress the plasma in a second stellarator reactor.

  8. Hot zero power reactor calculations using the Insilico code

    SciTech Connect

    Hamilton, Steven P. Evans, Thomas M. Davidson, Gregory G. Johnson, Seth R. Pandya, Tara M. Godfrey, Andrew T.

    2016-06-01

    In this paper we describe the reactor physics simulation capabilities of the Insilico code. A description of the various capabilities of the code is provided, including detailed discussion of the geometry, meshing, cross section processing, and neutron transport options. Numerical results demonstrate that Insilico using an SP{sub N} solver with pin-homogenized cross section generation is capable of delivering highly accurate full-core simulation of various pressurized water reactor problems. Comparison to both Monte Carlo calculations and measured plant data is provided.

  9. Underground collocation of nuclear power plant reactors and repository to facilitate the post-renaissance expansion of nuclear power

    SciTech Connect

    Myers, Carl W; Elkins, Ned Z

    2008-01-01

    Underground collocation of nuclear power reactors and the nuclear waste management facilities supporting those reactors, termed an underground nuclear park (UNP), appears to have several advantages compared to the conventional approach to siting reactors and waste management facilities. These advantages include the potential to lower reactor capital and operating cost, lower nuclear waste management cost, and increase margins of physical security and safety. Envirorunental impacts related to worker health, facility accidents, waste transportation, and sabotage and terrorism appear to be lower for UNPs compared to the current approach. In-place decommissioning ofUNP reactors appears to have cost, safety, envirorunental and waste disposal advantages. The UNP approach has the potential to lead to greater public acceptance for the deployment of new power reactors. Use of the UNP during the post-nuclear renaissance time frame has the potential to enable a greater expansion of U.S. nuclear power generation than might otherwise result. Technical and economic aspects of the UNP concept need more study to determine the viability of the concept.

  10. Power and power-to-flow reactivity transfer functions in EBR-II (Experimental Breeder Reactor II) fuel

    SciTech Connect

    Grimm, K.N.; Meneghetti, D. )

    1989-11-01

    Reactivity transfer functions are important in determining the reactivity history during a power transient. Overall nodal transfer functions have been calculated for different subassembly types in the Experimental Breeder Reactor II (EBR-II). Steady-state calculations for temperature changes and, hence, reactivities for power changes have been separated into power and power-to-flow-dependent terms. Axial nodal transfer functions separated into power and power-to-flow-dependent components are reported in this paper for a typical EBR-II fuel pin. This provides an improved understanding of the time dependence of these components in transient situations.

  11. Tritium production, releases and population doses at nuclear power reactors

    SciTech Connect

    Peterson, H.T.; Baker, D.A.

    1985-09-01

    Tritium is produced in light-water-cooled reactors as a product of ternary fission and by nuclear reactions with the coolant and with neutron-absorbing materials used for reactor control. Pressurized water reactors (PWRs) have greater amounts of tritium produced in or released into the coolant than boiling water reactors (BWRs). Consequently, tritium releases to the environment from PWRs (29 GBq/MW(e)-y (0.78 Ci/MW(e)-y)/sup 0/ are about 6 1/2 times greater than from BWRs (4.4 GBq/MW(e)-y (0.12 Ci/MW(e)-y)/sup 0/. Most of the tritium released from PWRs appears in the liquid effluent (about 85%), whereas 75% of the tritium released from BWRs is as airborne effluents. Radiation doses from these tritium releases are small; the average site collective (population) dose in 1981 was less than 0.002 person-sieverts per year (0.2 person-rem/ year). The total collective dose from all tritium releases was 0.08 personsieverts (8 person-rem).

  12. DynMo: Dynamic Simulation Model for Space Reactor Power Systems

    SciTech Connect

    El-Genk, Mohamed; Tournier, Jean-Michel

    2005-02-06

    A Dynamic simulation Model (DynMo) for space reactor power systems is developed using the SIMULINK registered platform. DynMo is modular and could be applied to power systems with different types of reactors, energy conversion, and heat pipe radiators. This paper presents a general description of DynMo-TE for a space power system powered by a Sectored Compact Reactor (SCoRe) and that employs off-the-shelf SiGe thermoelectric converters. SCoRe is liquid metal cooled and designed for avoidance of a single point failure. The reactor core is divided into six equal sectors that are neutronically, but not thermal-hydraulically, coupled. To avoid a single point failure in the power system, each reactor sector has its own primary and secondary loops, and each loop is equipped with an electromagnetic (EM) pump. A Power Conversion assembly (PCA) and a Thermoelectric Conversion Assembly (TCA) of the primary and secondary EM pumps thermally couple each pair of a primary and a secondary loop. The secondary loop transports the heat rejected by the PCA and the pumps TCA to a rubidium heat pipes radiator panel. The primary loops transport the thermal power from the reactor sector to the PCAs for supplying a total of 145-152 kWe to the load at 441-452 VDC, depending on the selections of the primary and secondary liquid metal coolants. The primary and secondary coolant combinations investigated are lithium (Li)/Li, Li/sodium (Na), Na-Na, Li/NaK-78 and Na/NaK-78, for which the reactor exit temperature is kept below 1250 K. The results of a startup transient of the system from an initial temperature of 500 K are compared and discussed.

  13. Design and Development of a Robotic Crawler for CANDU Fuel Channel Inspection

    NASA Astrophysics Data System (ADS)

    Shukla, Shivam

    For the design of a new robotic crawler drive unit for CANDU fuel channel inspection, a complete design and screening process was done in order to fulfil the objective of this research. A brief explanation of CANDU reactors is provided along with a discussion of the inspection systems that are currently in use. A study of some existing inspection systems is presented which was used for the development of the new robotic crawler design. A number of concepts were generated which underwent a screening process with the help of two design tools. With the help of these tools, a concept was chosen as the final design and details of it are presented. To demonstrate a proof-of-concept, the physical prototype of the robotic crawler was manufactured and assembled. A speed controller was implemented in the final design of the robotic crawler. A set of test procedures were performed on the final design and the results are discussed. Some improvements that can be done on the final design of the robotic crawler are also discussed in the final section of this thesis.

  14. Method of and apparatus for measuring the power distribution in nuclear reactor cores

    SciTech Connect

    Leyse, R.H.

    1983-07-12

    The invention disclosed is the method of exact calibration of gamma ray detectors called gamma thermometers prior to acceptance for installation into a nuclear reactor core. This exact calibration increases the accuracy of determining the power distribution in the nuclear reactor core. The calibration by electric resistance heating of the gamma thermometer consists of applying an electric current along the controlled heat path of the gamma thermometer and then measuring the temperature difference along this controlled heat path as a function of the amount of power generated by the electric resistance heating. Then, after the gamma thermometer is installed into the nuclear reactor core and the reactor core is operating at power producing conditions, the gamma ray heating of the detector produces a temperature difference along the controlled heat path. With the knowledge of this temperature difference, the calibration characteristic determined by the prior electric resistance heating is employed to accurately determine the local rate of gamma ray heating. The accurate measurement of the gamma heating rate at each location of a set of locations throughout the nuclear reactor core is the basis for accurately determining the power distribution within the nuclear reactor core.

  15. SVBR-100 module-type fast reactor of the IV generation for regional power industry

    NASA Astrophysics Data System (ADS)

    Zrodnikov, A. V.; Toshinsky, G. I.; Komlev, O. G.; Stepanov, V. S.; Klimov, N. N.

    2011-08-01

    In the report the following is presented: basic conceptual provisions of the innovative nuclear power technology (NPT) based on modular fast reactors (FR) SVBR-100, summarized results of calculations of the reactor, analysis of the opportunities of multi-purpose application of such reactor facilities (RF) including export potentials with due account of nonproliferation requirements. The most important features of the proposed NPT analyzed in the report are as follows: (1) integral (monoblock) arrangement of the primary circuit equipment with entire elimination of the primary circuit pipelines and valves that considerably reduces the construction and assembly works period and coupling with high boiling point of lead-bismuth coolant (LBC) deterministically eliminates accidents of the LOCA type, (2) option for 100 MWe power and dimensions of the reactor provide: on the one hand, an opportunity to transport the reactor monoblock in factory-readiness by railway as well as other kinds of transport, on the other hand, core breeding ratio (CBR) exceeds 1 while MOX-fuel is used. The preferable area of application of RF SVBR-100 is regional and small power requiring power-units of electric power in a range of (100-600) MW, which could be used for cogeneration-based district heating while locating them nearby cities as well as for generation of electric power in a mode of load tracking in the regions with low network systems.

  16. Evaluation of Launch Accident Safety Options for Low-Power Surface Reactors

    SciTech Connect

    Fung Poon, Cindy; Poston, David I.

    2006-01-20

    Safety options for surface reactors of less than 800 kW (thermal power) are analyzed. The concepts under consideration are heat pipe cooled reactors fueled with either uranium nitride or uranium dioxide. This study investigates the impact of launch accident criteria on the system mass, while ensuring the mechanical integrity and reliability of the system through launch accident scenarios. The four criticality scenarios analyzed for shutdown determination are dry sand surround with reflectors stripped, water submersion on concrete, water submersion with all control drums in, and the nominal shutdown reactor condition. Additionally the following two operational criteria are analyzed: reactor is warm and swelled, and reactor is warm and swelled with one drum in (where swelled includes both thermal mechanical expansion and irradiation induced swelling of the fuel)

  17. Evaluation of Launch Accident Safety Options for Low-Power Surface Reactors

    NASA Astrophysics Data System (ADS)

    Fung Poon, Cindy; Poston, David I.

    2006-01-01

    Safety options for surface reactors of less than 800 kW (thermal power) are analyzed. The concepts under consideration are heat pipe cooled reactors fueled with either uranium nitride or uranium dioxide. This study investigates the impact of launch accident criteria on the system mass, while ensuring the mechanical integrity and reliability of the system through launch accident scenarios. The four criticality scenarios analyzed for shutdown determination are dry sand surround with reflectors stripped, water submersion on concrete, water submersion with all control drums in, and the nominal shutdown reactor condition. Additionally the following two operational criteria are analyzed: reactor is warm and swelled, and reactor is warm and swelled with one drum in (where swelled includes both thermal mechanical expansion and irradiation induced swelling of the fuel).

  18. Simulation and Design of an Automatic Controller for a Fast Breeder Nuclear Reactor Power Plant.

    DTIC Science & Technology

    BREEDER REACTORS, *REACTOR CONTROL, *REACTOR REACTIVITY, COMPUTER PROGRAMMING, NEUTRON TRANSPORT THEORY, REACTOR FUELS, REACTOR FUEL CLADDING , HEAT TRANSFER, COMPUTER PROGRAMS, LOGIC CIRCUITS, THESES.

  19. Optimisation de la gestion du combustible dans les reacteurs CANDU refroidis a l'eau legere

    NASA Astrophysics Data System (ADS)

    Chambon, Richard

    This research has two main goals. First, we wanted to introduce optimization tools in the diffusion code DONJON, mostly for fuel management. The second objective is more practical. The optimization capabilities are applied to the fuel management problem for different CANDU reactors at refueling equilibrium state. Two kinds of approaches are considered and implemented in this study to solve optimization problems in the code DONJON. The first methods are based on gradients and on the quasi-linear mathematical programming. The method initially developed in the code OPTEX is implemented as a reference approach for the gradient based methods. However, this approach has a major drawback. Indeed, the starting point has to be a feasible point. Then, several approaches have been developed to be more general and not limited by the initial point choice. Among the different methods we developed, two were found to be very efficient: the multi-step method and the mixte method. The second kind of approach are the meta-heuristic methods. We implemented the tabu search method. Initially, it was designed to optimize combinatory variable problems. However, we successfully used it for continuous variables. The major advantage of the tabu method over the gradient methods is the capability to exit from local minima. Optimisation of the average exit burnup has been performed for CANDU-6 and ACR-700 reactors. The fresh fuel enrichment has also been optimized for ACR-700. Results match very well what the reactor physics can predict. Moreover, a comparison of the two totally different types of optimization methods validated the results we obtained.

  20. 76 FR 7883 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ...'s evaluation of the Point Beach Units 1 and 2 Extended Power Uprate application. The Subcommittee will hear presentations by and hold discussions with the NRC staff, NextEra Energy Point Beach LLC, and... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Power Uprates...

  1. Canadian reactor delays add to agency's troubles

    NASA Astrophysics Data System (ADS)

    Howell, Elizabeth

    2009-08-01

    A plan to replace two aging nuclear reactors in Ontario, Canada, with Advanced CANDU Reactors (ACR) has been rejected by the provincial government due to concerns over ballooning costs. The rejected bid, which was made by the state-owned Atomic Energy of Canada Limited (AECL), adds to the woes of an agency that is already facing rumoured privatization of its business to build and maintain nuclear reactors.

  2. Threshold self-powered gamma detector for use as a monitor of power in a nuclear reactor

    DOEpatents

    LeVert, Francis E.; Cox, Samson A.

    1978-01-01

    A self-powered gamma monitor for placement near the core of a nuclear reactor comprises a lead prism surrounded by a coaxial thin nickel sheet, the combination forming a collector. A coaxial polyethylene electron barrier encloses the collector and is separated from the nickel sheet by a vacuum region. The electron barrier is enclosed by a coaxial stainless steel emitter which, in turn, is enclosed within a lead casing. When the detector is placed in a flux of gamma rays, a measure of the current flow in an external circuit between emitter and collector provides a measure of the power level of the reactor.

  3. Utilization of the Cornell University research reactors in support of the Nuclear Power Industry

    SciTech Connect

    Aderhold, A.C. )

    1993-01-01

    Cornell University is licensed to operate two research reactor facilities on its main campus in Ithaca, New York: a 500-kW pulsing TRIGA and a 100-W zero-power reactor (ZPR). The initial criticality of both reactors took place in 1962, and the utilization of each has been, and continues to be, dedicated to the teaching and research programs of Cornell's many academic departments. As the nation's nuclear power industry grew, the demand for services at research and test reactors increased. As a result, and in large part because of special design features of the TRIGA, Cornell responded to a few requests for reactor testing services while maintaining the policy that these services would not interfere with teaching and research programs. The frequency of service requests suddenly mushroomed in November of 1989, when the nation's major testing reactor was shut down for repairs. In spite of a small staff of two full-time reactor operators, a decision was made to support the nuclear industry to the fullest extent possible without jeopardizing Cornell's teaching and research programs. This turned into a monumental task of tight scheduling and meeting precise deadlines. It could only be accomplished by working late evenings and weekends and, on a number of occasions, staying at the facility for up to 5 days continuously.

  4. Materials technology for an advanced space power nuclear reactor concept: Program summary

    NASA Technical Reports Server (NTRS)

    Gluyas, R. E.; Watson, G. K.

    1975-01-01

    The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).

  5. UWTOR-M - a conceptual design study of a modular stellarator power reactor

    SciTech Connect

    Sviatoslavsky, I.; Van Sciver, S.W.; Kulcinski, G.L.; Anderson, D.T.; Bailey, A.W.; Callen, J.D.; Derr, J.A.; Emmert, G.A.; El-Guebaly, L.; Khalil, A.; Shohet, J.L.; Sze, D.K.; Sanders, R.C.; Tataronis, J.A.

    1981-12-01

    A preliminary design of a 5500 MW/sub th/ modular stellarator power reactor, UWTOR-M, is presented. Discrete twisted coils are used in an l.3 configuration with maintainability as a prime consideration. The natural stellarator divertor is used for impurity control in conjunction with innovative high performance divertor targets. A unique blanket design is proposed which minimizes the overall tritium inventory in the reactor. Finally, a scheme for maintaining the first wall/blanket and other reactor components is discussed. 17 refs.

  6. Movable-molybdenum-reflector reactivity experiments for control studies of compact space power reactor concepts

    NASA Technical Reports Server (NTRS)

    Fox, T. A.

    1973-01-01

    An experimental reflector reactivity study was made with a compact cylindrical reactor using a uranyl fluoride - water fuel solution. The reactor was axially unreflected and radially reflected with segments of molybdenum. The reflector segments were displaced incrementally in both the axial and radial dimensions, and the shutdown of each configuration was measured by using the pulsed-neutron source technique. The reactivity effects for axial and radial displacement of reflector segments are tabulated separately and compared. The experiments provide data for control-system studies of compact-space-power-reactor concepts.

  7. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    NASA Technical Reports Server (NTRS)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  8. Discharge Characteristics of Series Surface/Packed-Bed Discharge Reactor Diven by Bipolar Pulsed Power

    NASA Astrophysics Data System (ADS)

    Hu, Jian; Jiang, Nan; Li, Jie; Shang, Kefeng; Lu, Na; Wu, Yan; Mizuno, Akira

    2016-03-01

    The discharge characteristics of the series surface/packed-bed discharge (SSPBD) reactor driven by bipolar pulse power were systemically investigated in this study. In order to evaluate the advantages of the SSPBD reactor, it was compared with traditional surface discharge (SD) reactor and packed-bed discharge (PBD) reactor in terms of the discharge voltage, discharge current, and ozone formation. The SSPBD reactor exhibited a faster rising time and lower tail voltage than the SD and PBD reactors. The distribution of the active species generated in different discharge regions of the SSPBD reactor was analyzed by optical emission spectra and ozone analysis. It was found that the packed-bed discharge region (3.5 mg/L), rather than the surface discharge region (1.3 mg/L) in the SSPBD reactor played a more important role in ozone generation. The optical emission spectroscopy analysis indicated that more intense peaks of the active species (e.g. N2 and OI) in the optical emission spectra were observed in the packed-bed region. supported by National Natural Science Foundation of China (No. 51177007), the Joint Funds of National Natural Science Foundation of China (No. U1462105), and Dalian University of Technology Fundamental Research Fund of China (No. DUT15RC(3)030)

  9. Analysis of N-16 concentration in primary cooling system of AP1000 power reactor

    SciTech Connect

    Rohanda, Anis; Waris, Abdul

    2015-04-16

    Nitrogen-16 (N-16) is one of the radiation safety parameter on the primary reactor system. The activation product, N-16, is the predominant contributor to the activity in the reactor coolant system during reactor operation. N-16 is activation product derived from activation of O-16 with fast neutron based on {sup 16}O(n,p){sup 16}N reaction. Thus study is needed and it performs to determine N-16 concentration in reactor coolant (primary coolant) in supporting radiation safety. One of the way is using analytical methode based on activation and redecay princip to obtain N-16 concentration. The analysis was performed on the configuration basis and operational of Westinghouse AP1000 power reactor in several monitoring points at coolant reactor system. The results of the calculation of N-16 concentration at the core outlet, reactor vessel outlet, pressurizer line, inlet and outlet of steam generators, primary pumps, reactor vessels inlet and core inlet are: 281, 257, 255, 250, 145, 142, 129 and 112 µCi/gram respectively. The results of analysis compared with AP1000 design control document as standard values. The verification showed very high accuracy comparation between analytical results and standard values.

  10. Analysis of N-16 concentration in primary cooling system of AP1000 power reactor

    NASA Astrophysics Data System (ADS)

    Rohanda, Anis; Waris, Abdul

    2015-04-01

    Nitrogen-16 (N-16) is one of the radiation safety parameter on the primary reactor system. The activation product, N-16, is the predominant contributor to the activity in the reactor coolant system during reactor operation. N-16 is activation product derived from activation of O-16 with fast neutron based on 16O(n,p)16N reaction. Thus study is needed and it performs to determine N-16 concentration in reactor coolant (primary coolant) in supporting radiation safety. One of the way is using analytical methode based on activation and redecay princip to obtain N-16 concentration. The analysis was performed on the configuration basis and operational of Westinghouse AP1000 power reactor in several monitoring points at coolant reactor system. The results of the calculation of N-16 concentration at the core outlet, reactor vessel outlet, pressurizer line, inlet and outlet of steam generators, primary pumps, reactor vessels inlet and core inlet are: 281, 257, 255, 250, 145, 142, 129 and 112 µCi/gram respectively. The results of analysis compared with AP1000 design control document as standard values. The verification showed very high accuracy comparation between analytical results and standard values.

  11. UWTOR-M, a stellarator power reactor utilizing modular coils

    SciTech Connect

    Sviatoslavsky, I.N.; Van Sciver, S.W.; Kulcinski, G.L.

    1981-10-01

    We briefly describe the parametric considerations which led to the UWTOR-M reference design point. The design has 18 twisted coils utilizing a multipolarity of 3, a major radius of 24 m, a coil radius of 4.77 m and a plasma aspect ratio of 14. An assumed ..beta.. of 5% was used. This configuration leads to a rotational transform on the edge of 1.125 giving favorable plasma physics conditions. The natural stellarator divertor is used for impurity control in conjunction with innovative high performance divertor targets. A unique blanket design is proposed which minimizes tritium inventory in the reactor. Finally, since maintainability is a prime consideration, we describe a scheme for servicing the first wall/blanket and other reactor components.

  12. Fuel supply of nuclear power industry with the introduction of fast reactors

    NASA Astrophysics Data System (ADS)

    Muraviev, E. V.

    2014-12-01

    The results of studies conducted for the validation of the updated development strategy for nuclear power industry in Russia in the 21st century are presented. Scenarios with different options for the reprocessing of spent fuel of thermal reactors and large-scale growth of nuclear power industry based on fast reactors of inherent safety with a breeding ratio of ˜1 in a closed nuclear fuel cycle are considered. The possibility of enhanced fuel breeding in fast reactors is also taken into account in the analysis. The potential to establish a large-scale nuclear power industry that covers 100% of the increase in electric power requirements in Russia is demonstrated. This power industry may be built by the end of the century through the introduction of fast reactors (replacing thermal ones) with a gross uranium consumption of up to ˜1 million t and the termination of uranium mining even if the reprocessing of spent fuel of thermal reactors is stopped or suffers a long-term delay.

  13. Hot zero power reactor calculations using the Insilico code

    DOE PAGES

    Hamilton, Steven P.; Evans, Thomas M.; Davidson, Gregory G.; ...

    2016-03-18

    In this paper we describe the reactor physics simulation capabilities of the insilico code. A description of the various capabilities of the code is provided, including detailed discussion of the geometry, meshing, cross section processing, and neutron transport options. Numerical results demonstrate that the insilico SPN solver with pin-homogenized cross section generation is capable of delivering highly accurate full-core simulation of various PWR problems. Comparison to both Monte Carlo calculations and measured plant data is provided.

  14. Civilian nuclear power on the drawing board: the development of Experimental Breeder Reactor-II.

    SciTech Connect

    Westfall, C.

    2003-02-20

    On September 28, 2001 a symposium was held at Argonne National Laboratory as part of the festivities to mark the 100th birthday of Enrico Fermi. The symposium celebrated Fermi's ''contribution to the development of nuclear power'' and focused on one particular ''line of development'' resulting from Fermi's interest in power reactors: Argonne's fast reactor program. Symposium participants made many references to the ways in which the program was linked to Fermi, who led the team which created the world's first self-sustaining nuclear chain reaction. For example, one presentation featured an April, 1944 memo that described a meeting attended by Fermi and others. The memo came from the time when research on plutonium and the nuclear chain reaction at Chicago's WWII Metallurgical Laboratory was nearing its end. Even as other parts of the Manhattan Engineering Project were building on this effort to create the bombs that would end the war, Fermi and his colleagues were taking the first steps to plan the use of nuclear energy in the postwar era. After noting that Fermi ''viewed the use of [nuclear] power for the heating of cities with sympathy,'' the group outlined several power reactor designs. In the course of discussion, Fermi and his colleagues took the first steps in conjuring the vision that would later be brought to life with Experimental Breeder Reactor I (EBR-I) and Experimental Breeder Reactor II (EBR-II), the celebrated achievements of the Argonne fast reactor program. Group members considered various schemes for a breeder reactor in which the relatively abundant U-238 would be placed near a core of fissionable material. The reactor would be a fast reactor; that is, neutrons would not be moderated, as were most wartime reactors. Thus, the large number of neutrons emitted in fast neutron fission would hit the U-238 and create ''extra'' fissionable material, that is, more than ''invested,'' and at the same time produce power. The group identified the problem of

  15. 78 FR 64029 - Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... COMMISSION Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors AGENCY... Systems for Light-Water-Cooled Nuclear Power Reactors,'' in which the NRC made editorial corrections and... analysis for liquid and gaseous radwaste system components for light water nuclear power...

  16. Analysis and evaluation of ZPPR (Zero Power Physics Reactor) critical experiments for a 100 kilowatt-electric space reactor

    SciTech Connect

    McFarlane, H.F.; Collins, P.J.; Carpenter, S.G.; Olsen, D.N.; Smith, D.M.; Schaefer, R.W. ); Doncals, R.A.; Andre, S.V.; Porter, C.A. ); Cowan, C.L; Stewart, S.L.; Protsik, R. . Astro Space Div.)

    1990-01-01

    ZPPR critical experiments were used for physics testing the reactor design of the SP-100, a 100-kW thermoelectric LMR that is being developed to provide electrical power for space applications. These tests validated all key physics characteristics of the design, including the ultimate safety in the event of a launch or re-entry accident. Both the experiments and the analysis required the use of techniques not previously applied to fast reactor designs. A few significant discrepancies between the experimental and calculated results leave opportunities for further optimization. An initial investigation has been made into application of the ZPPR-20 results, along with those of other relevant integral data, to the SP-100 design. 13 refs., 5 figs., 7 tabs.

  17. Power generation from nuclear reactors in aerospace applications

    SciTech Connect

    English, R.E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  18. Power Generation from Nuclear Reactors in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    English, Robert E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere; a program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  19. Nuclear Reactors for Space Power, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Corliss, William R.

    The historical development of rocketry and nuclear technology includes a specific description of Systems for Nuclear Auxiliary Power (SNAP) programs. Solar cells and fuel cells are considered as alternative power supplies for space use. Construction and operation of space power plants must include considerations of the transfer of heat energy to…

  20. Thermionic reactor power system: Effects of radiation on integration with Manned Space Station

    NASA Technical Reports Server (NTRS)

    Gietzen, A. J.; Heath, C. A.; Perry, L. W.

    1972-01-01

    The application of a thermionic reactor power system to the modular space station is described. The nominal net power is 40 kWe, with the power system designed to be applicable over the power range from 25 to 60 kWe. The power system is designed to be launched by the space shuttle. Radiation protection is provided by LiH neutron shielding and W gamma shielding in a shaped 4 pion configuration, i.e., the reactor is shielded on all sides but not to equal extent. Isodose contours are presented for the region around the modular space station. Levels and spectral distribution of radiation are given for later evaluation of effects on space station experiments. Parametric data on the effects of separation distance on power system mass are presented.

  1. Lunar electric power systems utilizing the SP-100 reactor coupled to dynamic conversion systems

    NASA Astrophysics Data System (ADS)

    Harty, Richard B.; Johnson, Gregory A.

    1992-01-01

    An integration study was performed by Rocketdyne coupling an SP-100 reactor to either a Brayton, Stirling, or K-Rankine power conversion system. The application was for a surface power system to supply power requirements to a lunar base. A power level of 550 kWe was selected based on the National Aeronautics and Space Administration (NASA) Space Exploration Initiative 90-day study. Reliability studies were initially performed to determine optimum power conversion redundancy. This study resulted in selecting three operating engines and one standby unit. Integration design studies indicated that either of the three power conversion systems could be integrated with the SP-100 reactor. From a performance consideration, the Brayton and Stirling mass was approximately 45% higher than the K-Rankine. The K-Rankine radiator area was 45% of the Stirling, which in turn was about 40% of the Brayton.

  2. 10 CFR 50.64 - Limitations on the use of highly enriched uranium (HEU) in domestic non-power reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... domestic non-power reactors. 50.64 Section 50.64 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... Director of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, Washington, DC... Director of the Office of Nuclear Reactor Regulation a written proposal for meeting the requirements of...

  3. 10 CFR 50.64 - Limitations on the use of highly enriched uranium (HEU) in domestic non-power reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... domestic non-power reactors. 50.64 Section 50.64 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... Director of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, Washington, DC... Director of the Office of Nuclear Reactor Regulation a written proposal for meeting the requirements of...

  4. 10 CFR 50.64 - Limitations on the use of highly enriched uranium (HEU) in domestic non-power reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... domestic non-power reactors. 50.64 Section 50.64 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... Director of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, Washington, DC... Director of the Office of Nuclear Reactor Regulation a written proposal for meeting the requirements of...

  5. 10 CFR 50.64 - Limitations on the use of highly enriched uranium (HEU) in domestic non-power reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... domestic non-power reactors. 50.64 Section 50.64 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... Director of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, Washington, DC... Director of the Office of Nuclear Reactor Regulation a written proposal for meeting the requirements of...

  6. 10 CFR 50.64 - Limitations on the use of highly enriched uranium (HEU) in domestic non-power reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... domestic non-power reactors. 50.64 Section 50.64 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... Director of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, Washington, DC... Director of the Office of Nuclear Reactor Regulation a written proposal for meeting the requirements of...

  7. Shelding analysis for a manned Mars rover powered by an Sp-100 type reactor

    SciTech Connect

    Morley, N.J.; El-Genk, M.S. )

    1991-01-01

    Shield design is one of the most crucial tasks in the integration of a nuclear reactor power system to a manned Mars rover. A multilayered W and LiH shield is found to minimize the shield mass and satisfy the dose rate limit of 30 rem/y to the rover crew. The effect on dose rate of tungsten layers thicknesses and position within the lithium hydride shields is investigated. Due to the large cross section for the W (n,{gamma}) reaction, secondary gammas become a significant radiation source. The man-rated shield mass for the Mars rover vehicle is correlated to the reactor thermal power. The correlation fits to within 9% of the calculated shield mass and results in an uncertainty of {lt}4% in the overall rover mass. The shield mass varied from 8600 kg to 20580 kg for a reactor thermal power of 100 to 1000 kW{sub t}, respectively.

  8. Shielding analysis for a manned Mars rover powered by an SP-100 type reactor

    NASA Technical Reports Server (NTRS)

    Morley, Nicholas J.; El-Genk, Mohamed S.

    1991-01-01

    Shield design is one of the most crucial tasks in the integration of a nuclear reactor power system to a manned Mars rover. A multilayered W and LiH shield is found to minimize the shield mass and satisfy the dose rate limit of 30 rem/y to the rover crew. The effect on dose rate of tungsten layers thicknesses and position within the lithium hydride shields is investigated. Due to the large cross section for the W (n,gamma) reaction, secondary gammas become a significant radiation source. The man-rated shield mass for the Mars rover vehicle is correlated to the reactor thermal power. The correlation fits to within 9 percent of the calculated shield mass and results in an uncertainty of below 4 percent in the overall rover mass. The shield mass varied from 8600 kg to 20580 kg for a reactor thermal power of 100 to 1000 kW(t), respectively.

  9. Multi-reactor power system configurations for multimegawatt nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.

    1991-01-01

    A modular, multi-reactor power system and vehicle configuration for piloted nuclear electric propulsion (NEP) missions to Mars is presented. Such a design could provide enhanced system and mission reliability, allowing a comfortable safety margin for early manned flights, and would allow a range of piloted and cargo missions to be performed with a single power system design. Early use of common power modules for cargo missions would also provide progressive flight experience and validation of standardized systems for use in later piloted applications. System and mission analysis are presented to compare single and multi-reactor configurations for piloted Mars missions. A conceptual design for the Hydra modular multi-reactor NEP vehicle is presented.

  10. Direct Estimation of Power Distribution in Reactors for Nuclear Thermal Space Propulsion

    SciTech Connect

    Aldemir, Tunc; Miller, Don W.; Burghelea, Andrei

    2004-02-04

    A recently proposed constant temperature power sensor (CTPS) has the capability to directly measure the local power deposition rate in nuclear reactor cores proposed for space thermal propulsion. Such a capability reduces the uncertainties in the estimated power peaking factors and hence increases the reliability of the nuclear engine. The CTPS operation is sensitive to the changes in the local thermal conditions. A procedure is described for the automatic on-line calibration of the sensor through estimation of changes in thermal conditions.

  11. Calculated power distribution of a thermionic, beryllium oxide reflected, fast-spectrum reactor

    NASA Technical Reports Server (NTRS)

    Mayo, W.; Lantz, E.

    1973-01-01

    A procedure is developed and used to calculate the detailed power distribution in the fuel elements next to a beryllium oxide reflector of a fast-spectrum, thermionic reactor. The results of the calculations show that, although the average power density in these outer fuel elements is not far from the core average, the power density at the very edge of the fuel closest to the beryllium oxide is about 1.8 times the core avearge.

  12. REACTOR

    DOEpatents

    Szilard, L.

    1963-09-10

    A breeder reactor is described, including a mass of fissionable material that is less than critical with respect to unmoderated neutrons and greater than critical with respect to neutrons of average energies substantially greater than thermal, a coolant selected from sodium or sodium--potassium alloys, a control liquid selected from lead or lead--bismuth alloys, and means for varying the quantity of control liquid in the reactor. (AEC)

  13. REACTOR

    DOEpatents

    Christy, R.F.

    1961-07-25

    A means is described for co-relating the essential physical requirements of a fission chain reaction in order that practical, compact, and easily controllable reactors can be built. These objects are obtained by employing a composition of fissionsble isotope and moderator in fluid form in which the amount of fissionsble isotcpe present governs the reaction. The size of the reactor is no longer a critical factor, the new criterion being the concentration of the fissionable isotope.

  14. Design Study of Modular Nuclear Power Plant with Small Long Life Gas Cooled Fast Reactors Utilizing MOX Fuel

    NASA Astrophysics Data System (ADS)

    Ilham, Muhammad; Su'ud, Zaki

    2017-01-01

    Growing energy needed due to increasing of the world’s population encourages development of technology and science of nuclear power plant in its safety and security. In this research, it will be explained about design study of modular fast reactor with helium gas cooling (GCFR) small long life reactor, which can be operated over 20 years. It had been conducted about neutronic design GCFR with Mixed Oxide (UO2-PuO2) fuel in range of 100-200 MWth NPPs of power and 50-60% of fuel fraction variation with cylindrical pin cell and cylindrical balance of reactor core geometry. Calculation method used SRAC-CITATION code. The obtained results are the effective multiplication factor and density value of core reactor power (with geometry optimalization) to obtain optimum design core reactor power, whereas the obtained of optimum core reactor power is 200 MWth with 55% of fuel fraction and 9-13% of percentages.

  15. A search for axions at a power reactor

    NASA Astrophysics Data System (ADS)

    Cavaignac, J. F.; Hoummada, A.; Koang, D. H.; Ost, B.; Vignon, B.; Wilson, R.; Declais, Y.; Girardi, G.; de Kerret, H.; Pessard, H.; Thenard, J. M.

    1983-01-01

    A search has been conducted for the axion at the Bugey reactor which is owned and operated by Electricité de France. The axion production should be proportional to the magnetic transition of np capture, and be detectable by its decay into 2γ rays. No signal was observed in this measurement. Also no axion signal was seen from a single proton magnetic transition of 97Nb. Using those two results, the axion can be excluded with a mass up to 1 MeV in the Peccei-Quinn formalism.

  16. Hot zero power reactor calculations using the Insilico code

    SciTech Connect

    Hamilton, Steven P.; Evans, Thomas M.; Davidson, Gregory G.; Johnson, Seth R.; Pandya, Tara M.; Godfrey, Andrew T.

    2016-03-18

    In this paper we describe the reactor physics simulation capabilities of the insilico code. A description of the various capabilities of the code is provided, including detailed discussion of the geometry, meshing, cross section processing, and neutron transport options. Numerical results demonstrate that the insilico SPN solver with pin-homogenized cross section generation is capable of delivering highly accurate full-core simulation of various PWR problems. Comparison to both Monte Carlo calculations and measured plant data is provided.

  17. Shield materials recommended for space power nuclear reactors

    NASA Technical Reports Server (NTRS)

    Kaszubinski, L. J.

    1973-01-01

    Lithium hydride is recommended for neutron attenuation and depleted uranium is recommended for gamma ray attenuation. For minimum shield weights these materials must be arranged in alternate layers to attenuate the secondary gamma rays efficiently. In the regions of the shield near the reactor, where excessive fissioning occurs in the uranium, a tungsten alloy is used instead. Alloys of uranium such as either the U-0.5Ti or U-8Mo are available to accommodate structural requirements. The zone-cooled casting process is recommended for lithium hydride fabrication. Internal honeycomb reinforcement to control cracks in the lithium hydride is recommended.

  18. The role of actinide burning and the Integral Fast Reactor in the future of nuclear power

    SciTech Connect

    Hollaway, W.R.; Lidsky, L.M.; Miller, M.M.

    1990-12-01

    A preliminary assessment is made of the potential role of actinide burning and the Integral Fast Reactor (IFR) in the future of nuclear power. The development of a usable actinide burning strategy could be an important factor in the acceptance and implementation of a next generation of nuclear power. First, the need for nuclear generating capacity is established through the analysis of energy and electricity demand forecasting models which cover the spectrum of bias from anti-nuclear to pro-nuclear. The analyses take into account the issues of global warming and the potential for technological advances in energy efficiency. We conclude, as do many others, that there will almost certainly be a need for substantial nuclear power capacity in the 2000--2030 time frame. We point out also that any reprocessing scheme will open up proliferation-related questions which can only be assessed in very specific contexts. The focus of this report is on the fuel cycle impacts of actinide burning. Scenarios are developed for the deployment of future nuclear generating capacity which exploit the advantages of actinide partitioning and actinide burning. Three alternative reactor designs are utilized in these future scenarios: The Light Water Reactor (LWR); the Modular Gas-Cooled Reactor (MGR); and the Integral Fast Reactor (FR). Each of these alternative reactor designs is described in some detail, with specific emphasis on their spent fuel streams and the back-end of the nuclear fuel cycle. Four separation and partitioning processes are utilized in building the future nuclear power scenarios: Thermal reactor spent fuel preprocessing to reduce the ceramic oxide spent fuel to metallic form, the conventional PUREX process, the TRUEX process, and pyrometallurgical reprocessing.

  19. Design Concept for a Nuclear Reactor-Powered Mars Rover

    NASA Technical Reports Server (NTRS)

    Elliott, John; Poston, Dave; Lipinski, Ron

    2007-01-01

    A report presents a design concept for an instrumented robotic vehicle (rover) to be used on a future mission of exploration of the planet Mars. The design incorporates a nuclear fission power system to provide long range, long life, and high power capabilities unachievable through the use of alternative solar or radioisotope power systems. The concept described in the report draws on previous rover designs developed for the 2009 Mars Science laboratory (MSL) mission to minimize the need for new technology developments.

  20. Expert system driven fuzzy control application to power reactors

    SciTech Connect

    Tsoukalas, L.H.; Berkan, R.C.; Upadhyaya, B.R.; Uhrig, R.E.

    1990-12-31

    For the purpose of nonlinear control and uncertainty/imprecision handling, fuzzy controllers have recently reached acclaim and increasing commercial application. The fuzzy control algorithms often require a ``supervisory`` routine that provides necessary heuristics for interface, adaptation, mode selection and other implementation issues. Performance characteristics of an on-line fuzzy controller depend strictly on the ability of such supervisory routines to manipulate the fuzzy control algorithm and enhance its control capabilities. This paper describes an expert system driven fuzzy control design application to nuclear reactor control, for the automated start-up control of the Experimental Breeder Reactor-II. The methodology is verified through computer simulations using a valid nonlinear model. The necessary heuristic decisions are identified that are vitally important for the implemention of fuzzy control in the actual plant. An expert system structure incorporating the necessary supervisory routines is discussed. The discussion also includes the possibility of synthesizing the fuzzy, exact and combined reasoning to include both inexact concepts, uncertainty and fuzziness, within the same environment.

  1. Rotating-bed reactor as a power source for EM gun applications

    SciTech Connect

    Powell, J.; Botts, T.; Stickley, C.M.; Meth, S.

    1980-01-01

    Electromagnetic gun applications of the Rotating Bed Reactor (RBR) are examined. The RBR is a compact (approx. 1 m/sup 3/), (up to several thousand MW(th)), high-power reactor concept, capable of producing a high-temperature (up to approx. 300/sup 0/K) gas stream with a MHD generator coupled to it, the RBR can generate electric power (up to approx. 1000 MW(e)) in the pulsed or cw modes. Three EM gun applications are investigated: a rail gun thruster for orbit transfer, a rapid-fire EM gun for point defense, and a direct ground-to-space launch. The RBR appears suitable for all applications.

  2. Lunar in-core thermionic nuclear reactor power system conceptual design

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Schmitz, Paul C.; Gallup, Donald R.

    1991-01-01

    This paper presents a conceptual design of a lunar in-core thermionic reactor power system. The concept consists of a thermionic reactor located in a lunar excavation with surface mounted waste heat radiators. The system was integrated with a proposed lunar base concept representative of recent NASA Space Exploration Initiative studies. The reference mission is a permanently-inhabited lunar base requiring a 550 kWe, 7 year life central power station. Performance parameters and assumptions were based on the Thermionic Fuel Element (TFE) Verification Program. Five design cases were analyzed ranging from conservative to advanced. The cases were selected to provide sensitivity effects on the achievement of TFE program goals.

  3. Lunar in-core thermionic nuclear reactor power system conceptual design

    SciTech Connect

    Mason, L.S. ); Schmitz, P.C. ); Gallup, D.R. )

    1991-01-05

    This paper presents a conceptual design of a lunar in-core thermionic reactor power system. The concept consists of a thermionic reactor located in a lunar excavation with surface mounted waste heat radiators. The system was integrated with a proposed lunar base concept representative of recent NASA Space Explortion Initiative studies. The reference mission is a permanently-inhabited lunar base requiring a 550 kWe, 7 year life central power station. Performance parameters and assumptions were based on the Thermionic Fuel Element (TFE) Verification Program. Five design cases were analyzed ranging from conservative to advanced. The cases were selected to provide sensitivity effects on the achievement of TFE program goals.

  4. Lunar in-core thermionic nuclear reactor power system conceptual design

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Schmitz, Paul C.; Gallup, Donald R.

    1991-01-01

    This paper presents a conceptual design of a lunar in-core thermionic reactor power system. The concept consists of a thermionic reactor located in a lunar excavation with surface mounted waste heat radiators. The system was integrated with a proposed lunar base concept representative of recent NASA Space Exploration Initiative studies. The reference mission is a permanently-inhabited lunar base requiring a 550 kWe, 7 year life central power station. Performance parameters and assumptions were based on the Thermionic Fuel Element (TFE) Verification Program. Five design cases were analyzed ranging from conservative to advanced. The cases were selected to provide sensitivity effects on the achievement of TFE program goals.

  5. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    SciTech Connect

    Massimino, R.J.; Williams, D.A.

    1983-05-01

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core.

  6. Assessment and mitigation of power quality problems for PUSPATI TRIGA Reactor (RTP)

    NASA Astrophysics Data System (ADS)

    Zakaria, Mohd Fazli; Ramachandaramurthy, Vigna K.

    2017-01-01

    An electrical power systems are exposed to different types of power quality disturbances. Investigation and monitoring of power quality are necessary to maintain accurate operation of sensitive equipment especially for nuclear installations. This paper will discuss the power quality problems observed at the electrical sources of PUSPATI TRIGA Reactor (RTP). Assessment of power quality requires the identification of any anomalous behavior on a power system, which adversely affects the normal operation of electrical or electronic equipment. A power quality assessment involves gathering data resources; analyzing the data (with reference to power quality standards) then, if problems exist, recommendation of mitigation techniques must be considered. Field power quality data is collected by power quality recorder and analyzed with reference to power quality standards. Normally the electrical power is supplied to the RTP via two sources in order to keep a good reliability where each of them is designed to carry the full load. The assessment of power quality during reactor operation was performed for both electrical sources. There were several disturbances such as voltage harmonics and flicker that exceeded the thresholds. To reduce these disturbances, mitigation techniques have been proposed, such as to install passive harmonic filters to reduce harmonic distortion, dynamic voltage restorer (DVR) to reduce voltage disturbances and isolate all sensitive and critical loads.

  7. The Development of Radiation Embrittlement Models for U. S. Power Reactor Pressure Vessel Steels

    SciTech Connect

    Wang, Jy-An John; Rao, Nageswara S; Konduri, Savanthi

    2007-01-01

    A new approach of utilizing information fusion technique is developed to predict the radiation embrittlement of reactor pressure vessel steels. The Charpy transition temperature shift data contained in the Power Reactor Embrittlement Database is used in this study. Six parameters {Cu, Ni, P, neutron fluence, irradiation time, and irradiation temperature {are used in the embrittlement prediction models. The results indicate that this new embrittlement predictor achieved reductions of about 49.5% and 52% in the uncertainties for plate and weld data, respectively, for pressurized water reactor and boiling water reactor data, compared with the Nuclear Regulatory Commission Regulatory Guide 1.99, Rev. 2. The implications of dose-rate effect and irradiation temperature effects for the development of radiation embrittlement models are also discussed.

  8. High Efficiency Nuclear Power Plants using Liquid Fluoride Thorium Reactor Technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Rarick, Richard A.; Rangarajan, Rajmohan

    2009-01-01

    An overall system analysis approach is used to propose potential conceptual designs of advanced terrestrial nuclear power plants based on Oak Ridge National Laboratory (ORNL) Molten Salt Reactor (MSR) experience and utilizing Closed Cycle Gas Turbine (CCGT) thermal-to-electric energy conversion technology. In particular conceptual designs for an advanced 1 GWe power plant with turbine reheat and compressor intercooling at a 950 K turbine inlet temperature (TIT), as well as near term 100 MWe demonstration plants with TITS of 950 K and 1200 K are presented. Power plant performance data were obtained for TITS ranging from 650 to 1300 K by use of a Closed Brayton Cycle (CBC) systems code which considered the interaction between major sub-systems, including the Liquid Fluoride Thorium Reactor (LFTR), heat source and heat sink heat exchangers, turbo -generator machinery, and an electric power generation and transmission system. Optional off-shore submarine installation of the power plant is a major consideration.

  9. High Efficiency Nuclear Power Plants Using Liquid Fluoride Thorium Reactor Technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Rarick, Richard A.; Rangarajan, Rajmohan

    2009-01-01

    An overall system analysis approach is used to propose potential conceptual designs of advanced terrestrial nuclear power plants based on Oak Ridge National Laboratory (ORNL) Molten Salt Reactor (MSR) experience and utilizing Closed Cycle Gas Turbine (CCGT) thermal-to-electric energy conversion technology. In particular conceptual designs for an advanced 1 GWe power plant with turbine reheat and compressor intercooling at a 950 K turbine inlet temperature (TIT), as well as near term 100 MWe demonstration plants with TITs of 950 and 1200 K are presented. Power plant performance data were obtained for TITs ranging from 650 to 1300 K by use of a Closed Brayton Cycle (CBC) systems code which considered the interaction between major sub-systems, including the Liquid Fluoride Thorium Reactor (LFTR), heat source and heat sink heat exchangers, turbo-generator machinery, and an electric power generation and transmission system. Optional off-shore submarine installation of the power plant is a major consideration.

  10. Solid-Core, Gas-Cooled Reactor for Space and Surface Power

    SciTech Connect

    King, Jeffrey C.; El-Genk, Mohamed S.

    2006-01-20

    The solid-core, gas-cooled, Submersion-Subcritical Safe Space (S and 4) reactor is developed for future space power applications and avoidance of single point failures. The Mo-14%Re reactor core is loaded with uranium nitride fuel in enclosed cavities, cooled by He-30%Xe, and sized to provide 550 kWth for seven years of equivalent full power operation. The beryllium oxide reflector disassembles upon impact on water or soil. In addition to decreasing the reactor and shadow shield mass, Spectral Shift Absorber (SSA) materials added to the reactor core ensure that it remains subcritical in the worst-case submersion accident. With a 0.1 mm thick boron carbide coating on the outside surface of the core block and 0.25 mm thick iridium sleeves around the fuel stacks, the reflector outer diameter is 43.5 cm and the combined reactor and shadow shield mass is 935.1 kg. With 12.5 atom% gadolinium-155 added to the fuel, 2.0 mm diameter gadolinium-155 sesquioxide intersititial pins, and a 0.1 mm thick gadolinium-155 sesquioxide coating, the S and 4 reactor has a slightly smaller reflector outer diameter of 43.0 cm, and a total reactor and shield mass of 901.7 kg. With 8.0 atom% europium-151 added to the fuel, 2.0 mm diameter europium-151 sesquioxide interstitial pins, and a 0.1 mm thick europium-151 sesquioxide coating, the reflector's outer diameter and the total reactor and shield mass are further reduced to 41.5 cm and 869.2 kg, respect0011ive.

  11. Advanced Power Conversion Efficiency in Inventive Plasma for Hybrid Toroidal Reactor

    NASA Astrophysics Data System (ADS)

    Hançerlioğullari, Aybaba; Cini, Mesut; Güdal, Murat

    2013-08-01

    Apex hybrid reactor has a good potential to utilize uranium and thorium fuels in the future. This toroidal reactor is a type of system that facilitates the occurrence of the nuclear fusion and fission events together. The most important feature of hybrid reactor is that the first wall surrounding the plasma is liquid. The advantages of utilizing a liquid wall are high power density capacity good power transformation productivity, the magnitude of the reactor's operational duration, low failure percentage, short maintenance time and the inclusion of the system's simple technology and material. The analysis has been made using the MCNP Monte Carlo code and ENDF/B-V-VI nuclear data. Around the fusion chamber, molten salts Flibe (LI2BeF4), lead-lithium (PbLi), Li-Sn, thin-lityum (Li20Sn80) have used as cooling materials. APEX reactor has modeled in the torus form by adding nuclear materials of low significance in the specified percentages between 0 and 12 % to the molten salts. In this study, the neutronic performance of the APEX fusion reactor using various molten salts has been investigated. The nuclear parameters of Apex reactor has been searched for Flibe (LI2BeF4) and Li-Sn, for blanket layers. In case of usage of the Flibe (LI2BeF4), PbLi, and thin-lityum (Li20Sn80) salt solutions at APEX toroidal reactors, fissile material production per source neutron, tritium production speed, total fission rate, energy reproduction factor has been calculated, the results obtained for both salt solutions are compared.

  12. SUSEE: A Compact, Lightweight Space Nuclear Power System Using Present Water Reactor Technology

    SciTech Connect

    Maise, George; Powell, James; Paniagua, John

    2006-01-20

    The SUSEE space reactor system uses existing nuclear fuels and the standard steam cycle to generate electrical and thermal power for a wide range of in-space and surface applications, including manned bases, sub-surface mobile probes to explore thick ice deposits on Mars and the Jovian moons, and mobile rovers. SUSEE cycle efficiency, thermal to electric, ranges from {approx}20 to 24%, depending on operating parameters. Rejection of waste heat is by a lightweight condensing radiator that can be launched as a compact rolled-up package and deployed into flat panels when appropriate. The 50 centimeter diameter SUSEE reactor can provide power over the range of 10 kW(e) to 1 MW(e) for a period of 10 years. Higher power outputs are possible using slightly larger reactors. System specific weight (reactor, turbine, generator, piping, and radiator) is {approx}3 kg/kW(e). Two SUSEE reactor options are described, based on the existing Zr/O2 cermet and the UH3/ZrH2 TRIGA nuclear fuels.

  13. Delayed Neutrons Effect on Power Reactor with Variation of Fluid Fuel Velocity at MSR Fuji-12

    NASA Astrophysics Data System (ADS)

    Kuncoro Aji, Indarta; Pramuditya, Syeilendra; Novitrian; Irwanto, Dwi; Waris, Abdul

    2017-01-01

    As the nuclear reactor operate with liquid fuel, controlling velocity of the fuel flow on the Molten salt reactor very influence on the neutron kinetics in that reactor system. The effect of the pace fuel changes to the populations number of neutrons and power density on vertical direction (1 dimension) from the first until fifth year reactor operating had been analyzed on this research. This research had been conducted on MSR Fuji-12 with a two meters core high, and LiF-BeF2-ThF4-233UF4 as fuel composition respectively 71.78%-16%-11.86%-0.36%. Data of reactivity, neutron flux, and the macroscopic fission cross section obtained from ouput of SRAC (neutronic calculation code has been developed by JAEA, with JENDL-4.0 as data library on the SRAC calculation) was being used for the calculation process of this research. The calculation process of this research had been performed numerically by SOR (successive over relaxation) and finite difference methode, as well as using C programing language. From the calculation, regarding to the value of power density resulting from delayed neutrons, concluded that 20 m/s is the optimum fuel flow velocity in all the years reactor had operated. Where the increases number of power are inversely proportional with the fuel flow speed.

  14. SUSEE: A Compact, Lightweight Space Nuclear Power System Using Present Water Reactor Technology

    NASA Astrophysics Data System (ADS)

    Maise, George; Powell, James; Paniagua, John

    2006-01-01

    The SUSEE space reactor system uses existing nuclear fuels and the standard steam cycle to generate electrical and thermal power for a wide range of in-space and surface applications, including manned bases, sub-surface mobile probes to explore thick ice deposits on Mars and the Jovian moons, and mobile rovers. SUSEE cycle efficiency, thermal to electric, ranges from ~20 to 24%, depending on operating parameters. Rejection of waste heat is by a lightweight condensing radiator that can be launched as a compact rolled-up package and deployed into flat panels when appropriate. The 50 centimeter diameter SUSEE reactor can provide power over the range of 10 kW(e) to 1 MW(e) for a period of 10 years. Higher power outputs are possible using slightly larger reactors. System specific weight (reactor, turbine, generator, piping, and radiator is ~3 kg/kW(e). Two SUSEE reactor options are described, based on the existing Zr/O2 cermet and the UH3/ZrH2 TRIGA nuclear fuels.

  15. Novel, Integrated Reactor / Power Conversion System (LMR-AMTEC)

    SciTech Connect

    Pablo Rubiolo, Principal Investigator

    2003-03-21

    The main features of this project were the development of a long life (up to 10 years) Liquid Metal Reactor (LMR) and a static conversion subsystem comprising an Alkali Metal Thermal-to-Electric (AMTEC) topping cycle and a ThermoElectric (TE) Bottom cycle. Various coupling options of the LMR with the energy conversion subsystem were explored and, base in the performances found in this analysis, an Indirect Coupling (IC) between the LMR and the AMTEC/TE converters with Alkali Metal Boilers (AMB) was chosen as the reference design. The performance model of the fully integrated sodium-and potassium-AMTEC/TE converters shows that a combined conversion efficiency in excess of 30% could be achieved by the plant. (B204)

  16. Partial site release at a power reactor facility.

    PubMed

    Darman, Joseph; Whitney, Michael; Dubiel, Richard

    2004-01-01

    U.S. NRC licensed facilities undergoing decommissioning may wish to remove portions of their site from the jurisdiction of their license, prior to final license termination. The method of partial site release, relevant to radiological conditions, described herein employs NUREG-1505 methodology for demonstrating indistinguishability from background. The partial site release process was also informed by NRC Regulatory Issue Summary 2000-19 "Partial Release of Reactor Site for Unrestricted Use Before NRC Approval of the License Termination Plan." However, the focus of this discussion is the radiological aspects of partial site release, relevant to the implementation of NUREG-1505 methodology for demonstrating indistinguishability from background, based on the 137Cs concentrations at the site and a suitable background reference area. This type of approach was found acceptable by the NRC, and the partial site release was granted.

  17. 77 FR 60039 - Non-Power Reactor License Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ... contemplated rulemaking also recommends conforming changes to address technical issues in existing non-power... describes the agency's overall objectives, conceptual approaches, potential solutions, integration with... request, including staffing and contract funding needs, to formalize the review process changes...

  18. REACTORS

    DOEpatents

    Spitzer, L. Jr.

    1961-10-01

    Thermonuclear reactors, methods, and apparatus are described for controlling and confining high temperature plasma. Main axial confining coils in combination with helical windings provide a rotational transform that avoids the necessity of a figure-eight shaped reactor tube. The helical windings provide a multipolar helical magnetic field transverse to the axis of the main axial confining coils so as to improve the effectiveness of the confining field by counteracting the tendency of the more central lines of force in the stellarator tube to exchange positions with the magnetic lines of force nearer the walls of the tube. (AEC)

  19. Manned mars rover powered by a nuclear reactor; Radiation shield analysis

    SciTech Connect

    Morley, N.J.; El-Genk, M. . Dept. of Chemical and Nuclear Engineering)

    1992-08-01

    This paper discusses a key element in the conceptual design of a nuclear reactor power system for a manned Mars rover is the analysis, design, and integration of the radiation shield. A shield analysis is carried out to characterize the thickness and spacing of shield layers to provide the minimum mass configuration that meets a dose rate requirement of 300 mSv/yr. The analysis utilizes a two-dimensional transport code to model the reactor and to provide a source term that is subsequently used to calculate dose rates as a function of reactor power level and shield layer thickness. Results show that a multilayered tungsten and lithium hydride (LiH) shield would satisfy the dose rate limit of 300 mSv/yr (30 rem/yr) to the rover crew. The position of two tungsten and LiH layers is varied to minimize secondary gamma-ray production and to optimize shield mass.

  20. Non-invasive liquid level and density gauge for nuclear power reactor pressure vessels

    SciTech Connect

    Baratta, A.J.; Jester, W.A.; Kenney, E.S.; Mc Master, I.B.; Schultz, M.A.

    1987-01-27

    A method is described of non-invasively determining the liquid coolant level and density in a nuclear power reactor pressure vessel comprising the steps: positioning at least three neutron detector fission chambers externally of the reactor pressure vessel at multiple spaced positions along the side of the fuel core. One of the neutron detectors is positioned at the side near the bottom of the fuel core. The multiple spaced positions along the side remove any ambiguity as to whether the liquid level is decreasing or increasing: shielding the neutron detector fission chamber from thermal neutrons to avoid the noise associated therewith, and eliminating the effects of gamma radiation from the detected signals; monitoring the detected neutron level signals to determine to coolant liquid level and density in the nuclear power reactor pressure vessel.

  1. Insights from Investigations of In-Vessel Retention for High Powered Reactors

    SciTech Connect

    Joy L. Rempe

    2005-10-01

    In a three-year U.S. - Korean International Nuclear Energy Research Initiative (INERI), state-of-the-art analytical tools and key U.S. and Korean experimental facilities were used to explore two options, enhanced ERVC performance and the use of internal core catchers, that have the potential to increase the margin for in-vessel retention (IVR) in high power reactors (up to 1500 MWe). This increased margin has the potential to improve plant economics (owing to reduced regulatory requirements) and increase public acceptance (owing to reduced plant risk). Although this program focused upon the Korean Advanced Power Reactor -- 1400 MWe (APR 1400) design, recommentations were developed so that they can easily be applied to a wide range of existing and advanced reactor designs. This paper summarizes new data gained for evaluating the margin associated with various options investigated in this program. Insights from analyses completed with this data are also highlighted.

  2. [The irradiation of the personnel of industrial and power-generating atomic reactors].

    PubMed

    Buldakov, L A; Vorob'ev, A M; Kopaev, V V; Koshurnikova, N A; Lyznov, A F; Simakov, A V; Chistokhin, V M

    1991-01-01

    The authors represent the time course of irradiation of the personnel of uran-graphite reactors in the period of starting up the first one in 1947 up to 1988 and atomic power stations of various types over the period of 1978-1987. Irradiation of the personnel of industrial reactors was continually on the decrease. While in 1949 over 99% of the personnel were exposed to a dose exceeding the then maximum permissible dose of 15 cSv, in 1957 the average annual dose of external radiation was decreased to 5 cSv. Beginning from 1974 cases of irradiation of the personnel over the existing MPD in normal operation of reactors were practically ruled out. The improvement of working conditions at nuclear power stations provided rather low exposure doses for the personnel (an average of 0.2-0.8 cSv annually).

  3. Estimates of the financial consequences of nuclear-power-reactor accidents

    SciTech Connect

    Strip, D.R.

    1982-09-01

    This report develops preliminary techniques for estimating the financial consequences of potential nuclear power reactor accidents. Offsite cost estimates are based on CRAC2 calculations. Costs are assigned to health effects as well as property damage. Onsite costs are estimated for worker health effects, replacement power, and cleanup costs. Several classes of costs are not included, such as indirect costs, socio-economic costs, and health care costs. Present value discounting is explained and then used to calculate the life cycle cost of the risks of potential reactor accidents. Results of the financial consequence estimates for 156 reactor-site combinations are summarized, and detailed estimates are provided in an appendix. The results indicate that, in general, onsite costs dominate the consequences of potential accidents.

  4. Safety and Environment aspects of Tokamak- type Fusion Power Reactor- An Overview

    NASA Astrophysics Data System (ADS)

    Doshi, Bharat; Reddy, D. Chenna

    2017-04-01

    Naturally occurring thermonuclear fusion reaction (of light atoms to form a heavier nucleus) in the sun and every star in the universe, releases incredible amounts of energy. Demonstrating the controlled and sustained reaction of deuterium-tritium plasma should enable the development of fusion as an energy source here on Earth. The promising fusion power reactors could be operated on the deuterium-tritium fuel cycle with fuel self-sufficiency. The potential impact of fusion power on the environment and the possible risks associated with operating large-scale fusion power plants is being studied by different countries. The results show that fusion can be a very safe and sustainable energy source. A fusion power plant possesses not only intrinsic advantages with respect to safety compared to other sources of energy, but also a negligible long term impact on the environment provided certain precautions are taken in its design. One of the important considerations is in the selection of low activation structural materials for reactor vessel. Selection of the materials for first wall and breeding blanket components is also important from safety issues. It is possible to fully benefit from the advantages of fusion energy if safety and environmental concerns are taken into account when considering the conceptual studies of a reactor design. The significant safety hazards are due to the tritium inventory and energetic neutron fluence induced activity in the reactor vessel, first wall components, blanket system etc. The potential of release of radioactivity under operational and accident conditions needs attention while designing the fusion reactor. Appropriate safety analysis for the quantification of the risk shall be done following different methods such as FFMEA (Functional Failure Modes and Effects Analysis) and HAZOP (Hazards and operability). Level of safety and safety classification such as nuclear safety and non-nuclear safety is very important for the FPR (Fusion

  5. Space and Terrestrial Power System Integration Optimization Code BRMAPS for Gas Turbine Space Power Plants With Nuclear Reactor Heat Sources

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2007-01-01

    In view of the difficult times the US and global economies are experiencing today, funds for the development of advanced fission reactors nuclear power systems for space propulsion and planetary surface applications are currently not available. However, according to the Energy Policy Act of 2005 the U.S. needs to invest in developing fission reactor technology for ground based terrestrial power plants. Such plants would make a significant contribution toward drastic reduction of worldwide greenhouse gas emissions and associated global warming. To accomplish this goal the Next Generation Nuclear Plant Project (NGNP) has been established by DOE under the Generation IV Nuclear Systems Initiative. Idaho National Laboratory (INL) was designated as the lead in the development of VHTR (Very High Temperature Reactor) and HTGR (High Temperature Gas Reactor) technology to be integrated with MMW (multi-megawatt) helium gas turbine driven electric power AC generators. However, the advantages of transmitting power in high voltage DC form over large distances are also explored in the seminar lecture series. As an attractive alternate heat source the Liquid Fluoride Reactor (LFR), pioneered at ORNL (Oak Ridge National Laboratory) in the mid 1960's, would offer much higher energy yields than current nuclear plants by using an inherently safe energy conversion scheme based on the Thorium --> U233 fuel cycle and a fission process with a negative temperature coefficient of reactivity. The power plants are to be sized to meet electric power demand during peak periods and also for providing thermal energy for hydrogen (H2) production during "off peak" periods. This approach will both supply electric power by using environmentally clean nuclear heat which does not generate green house gases, and also provide a clean fuel H2 for the future, when, due to increased global demand and the decline in discovering new deposits, our supply of liquid fossil fuels will have been used up. This is

  6. 76 FR 8383 - Office of New Reactors; Interim Staff Guidance on Impacts of Construction of New Nuclear Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... COMMISSION Office of New Reactors; Interim Staff Guidance on Impacts of Construction of New Nuclear Power..., ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants (SRP),'' Chapter 1..., Office of New Reactors, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001; telephone at 301...

  7. Power flattening on modified CANDLE small long life gas-cooled fast reactor

    SciTech Connect

    Monado, Fiber; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Ariani, Menik; Sekimoto, Hiroshi

    2014-09-30

    Gas-cooled Fast Reactor (GFR) is one of the candidates of next generation Nuclear Power Plants (NPPs) that expected to be operated commercially after 2030. In this research conceptual design study of long life 350 MWt GFR with natural uranium metallic fuel as fuel cycle input has been performed. Modified CANDLE burn-up strategy with first and second regions located near the last region (type B) has been applied. This reactor can be operated for 10 years without refuelling and fuel shuffling. Power peaking reduction is conducted by arranging the core radial direction into three regions with respectively uses fuel volume fraction 62.5%, 64% and 67.5%. The average power density in the modified core is about 82 Watt/cc and the power peaking factor decreased from 4.03 to 3.43.

  8. Power flattening on modified CANDLE small long life gas-cooled fast reactor

    NASA Astrophysics Data System (ADS)

    Monado, Fiber; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Ariani, Menik; Sekimoto, Hiroshi

    2014-09-01

    Gas-cooled Fast Reactor (GFR) is one of the candidates of next generation Nuclear Power Plants (NPPs) that expected to be operated commercially after 2030. In this research conceptual design study of long life 350 MWt GFR with natural uranium metallic fuel as fuel cycle input has been performed. Modified CANDLE burn-up strategy with first and second regions located near the last region (type B) has been applied. This reactor can be operated for 10 years without refuelling and fuel shuffling. Power peaking reduction is conducted by arranging the core radial direction into three regions with respectively uses fuel volume fraction 62.5%, 64% and 67.5%. The average power density in the modified core is about 82 Watt/cc and the power peaking factor decreased from 4.03 to 3.43.

  9. JPRS Report Science & Technology China: Energy 5MW Low Power Reactor

    DTIC Science & Technology

    2007-11-02

    monocrystalline silicon neutron irradiation doping, molybdenum- technetium isotope production, irradia- tion coloring of gemstones, and so on. Key terms: 5MW low...power reactor, unloaded fuel ele- ments, element damage monitoring, irradiation, monoc- rystalline silicon, molybdenum- technetium isotopes. I...comprehensive use of the LPR, and undertake monocrystalline silicon neutron irradiation doping, molybdenum- technetium isotope production, irradiation color

  10. Thermal-hydraulics and safety analysis of sectored compact reactor for lunar surface power

    SciTech Connect

    Schriener, T. M.; El-Genk, M. S.

    2012-07-01

    The liquid NaK-cooled, fast-neutron spectrum, Sectored Compact Reactor (SCoRe-N 5) concept has been developed at the Univ. of New Mexico for lunar surface power applications. It is loaded with highly enriched UN fuel pins in a triangular lattice, and nominally operates at exit and inlet coolant temperatures of 850 K and 900 K. This long-life reactor generates up to 1 MWth continuously for {>=} 20 years. To avoid a single point failure in reactor cooling, the core is divided into 6 sectors that are neutronically and thermally coupled, but hydraulically independent. This paper performs a 3-D the thermal-hydraulic analysis of SCoRe--N 5 at nominal operation temperatures and a power level of 1 MWth. In addition, the paper investigates the potential of continuing reactor operation at a lower power in the unlikely event that one sector in the core experiences a loss of coolant (LOC). Redesigning the core with a contiguous steel matrix enhances the cooling of the sector experiencing a LOC. Results show that with a core sector experiencing a LOC, SCORE-N 5 could continue operating safely at a reduced power of 166.6 kWth. (authors)

  11. Gaseous-fuel nuclear reactor research for multimegawatt power in space

    NASA Technical Reports Server (NTRS)

    Thom, K.; Schneider, R. T.; Helmick, H. H.

    1977-01-01

    In the gaseous-fuel reactor concept, the fissile material is contained in a moderator-reflector cavity and exists in the form of a flowing gas or plasma separated from the cavity walls by means of fluid mechanical forces. Temperatures in excess of structural limitations are possible for low-specific-mass power and high-specific-impulse propulsion in space. Experiments have been conducted with a canister filled with enriched UF6 inserted into a beryllium-reflected cavity. A theoretically predicted critical mass of 6 kg was measured. The UF6 was also circulated through this cavity, demonstrating stable reactor operation with the fuel in motion. Because the flowing gaseous fuel can be continuously processed, the radioactive waste in this type of reactor can be kept small. Another potential of fissioning gases is the possibility of converting the kinetic energy of fission fragments directly into coherent electromagnetic radiation, the nuclear pumping of lasers. Numerous nuclear laser experiments indicate the possibility of transmitting power in space directly from fission energy. The estimated specific mass of a multimegawatt gaseous-fuel reactor power system is from 1 to 5 kg/kW while the companion laser-power receiver station would be much lower in specific mass.

  12. Nuclear reactor power as applied to a space-based radar mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    A space-based radar mission and spacecraft are examined to determine system requirements for a 300 kWe space nuclear reactor power system. The spacecraft configuration and its orbit, launch vehicle, and propulsion are described. Mission profiles are addressed, and storage in assembly orbit is considered. Dynamics and attitude control and the problems of nuclear and thermal radiation are examined.

  13. Gaseous-fuel nuclear reactor research for multimegawatt power in space

    NASA Technical Reports Server (NTRS)

    Thom, K.; Schneider, R. T.; Helmick, H. H.

    1977-01-01

    In the gaseous-fuel reactor concept, the fissile material is contained in a moderator-reflector cavity and exists in the form of a flowing gas or plasma separated from the cavity walls by means of fluid mechanical forces. Temperatures in excess of structural limitations are possible for low-specific-mass power and high-specific-impulse propulsion in space. Experiments have been conducted with a canister filled with enriched UF6 inserted into a beryllium-reflected cavity. A theoretically predicted critical mass of 6 kg was measured. The UF6 was also circulated through this cavity, demonstrating stable reactor operation with the fuel in motion. Because the flowing gaseous fuel can be continuously processed, the radioactive waste in this type of reactor can be kept small. Another potential of fissioning gases is the possibility of converting the kinetic energy of fission fragments directly into coherent electromagnetic radiation, the nuclear pumping of lasers. Numerous nuclear laser experiments indicate the possibility of transmitting power in space directly from fission energy. The estimated specific mass of a multimegawatt gaseous-fuel reactor power system is from 1 to 5 kg/kW while the companion laser-power receiver station would be much lower in specific mass.

  14. Oxygen transport membrane reactor based method and system for generating electric power

    DOEpatents

    Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan

    2017-02-07

    A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.

  15. Progress in modular-stellarator fusion-power-reactor conceptual designs

    SciTech Connect

    Sviatoslavsky, I.N.; Van Sciver, S.W.; Kulcinski, G.L.

    1982-01-01

    Recent encouraging experimental results on stellarators/torsatrons/heliotrons (S/T/H) have revived interest in these concepts as possible fusion power reactors. The use of modular coils to generate the stellarator topology has added impetus to this renewed interest. Studies of the modular coil approach to stellarators by UW-Madison and Los Alamos National Laboratory are summarized in this paper.

  16. Introduction to Nuclear Fusion Power and the Design of Fusion Reactors. An Issue-Oriented Module.

    ERIC Educational Resources Information Center

    Fillo, J. A.

    This three-part module focuses on the principles of nuclear fusion and on the likely nature and components of a controlled-fusion power reactor. The physical conditions for a net energy release from fusion and two approaches (magnetic and inertial confinement) which are being developed to achieve this goal are described. Safety issues associated…

  17. Introduction to Nuclear Fusion Power and the Design of Fusion Reactors. An Issue-Oriented Module.

    ERIC Educational Resources Information Center

    Fillo, J. A.

    This three-part module focuses on the principles of nuclear fusion and on the likely nature and components of a controlled-fusion power reactor. The physical conditions for a net energy release from fusion and two approaches (magnetic and inertial confinement) which are being developed to achieve this goal are described. Safety issues associated…

  18. Nuclear reactor power as applied to a space-based radar mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    A space-based radar mission and spacecraft are examined to determine system requirements for a 300 kWe space nuclear reactor power system. The spacecraft configuration and its orbit, launch vehicle, and propulsion are described. Mission profiles are addressed, and storage in assembly orbit is considered. Dynamics and attitude control and the problems of nuclear and thermal radiation are examined.

  19. Lightweight power bus for a baseload nuclear reactor in space

    NASA Astrophysics Data System (ADS)

    Massie, Lowell D.; Hoffman, Dennis J.; Oberly, Charles E.

    Metallic superconductors requiring refrigeration in the range of 4 to 10 K are of no benefit to the baseload space power system bus because the refrigeration and insulation constraints are too severe. The ceramic superconductors that can operate in the range of 20 to 100 K alleviate a great deal of the refrigeration problem and can compete with conventional hot bus distribution systems on the basis of mass for a bus exceeding a few meters in length. The ultimate benefit of the superconducting bus to the space power system will not be the mass savings. The great benefit of the superconducting bus will be the enormous reduction in bus voltage requirements due to the zero voltage drop along the bus. Low bus voltage (less than 100 Vdc) will permit a conventional dielectric insulation technology to be utilized as baseload powers are forced above 10 kW on spacecraft.

  20. Global radioxenon emission inventory based on nuclear power reactor reports.

    PubMed

    Kalinowski, Martin B; Tuma, Matthias P

    2009-01-01

    Atmospheric radioactivity is monitored for the verification of the Comprehensive Nuclear-Test-Ban Treaty, with xenon isotopes 131mXe, 133Xe, 133mXe and 135Xe serving as important indicators of nuclear explosions. The treaty-relevant interpretation of atmospheric concentrations of radioxenon is enhanced by quantifying radioxenon emissions released from civilian facilities. This paper presents the first global radioxenon emission inventory for nuclear power plants, based on North American and European emission reports for the years 1995-2005. Estimations were made for all power plant sites for which emission data were unavailable. According to this inventory, a total of 1.3PBq of radioxenon isotopes are released by nuclear power plants as continuous or pulsed emissions in a generic year.

  1. Study of reactor Brayton power systems for nuclear electric spacecraft

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility of using Brayton power systems for nuclear electric spacecraft was investigated. The primary performance parameters of systems mass and radiator area were determined for systems from 100 to 1000 kW sub e. Mathematical models of all system components were used to determine masses and volumes. Two completely independent systems provide propulsion power so that no single-point failure can jeopardize a mission. The waste heat radiators utilize armored heat pipes to limit meteorite puncture. The armor thickness was statistically determined to achieve the required probability of survival. A 400 kW sub e reference system received primary attention as required by the contract. The components of this system were defined and a conceptual layout was developed with encouraging results. An arrangement with redundant Brayton power systems having a 1500 K (2240 F) turbine inlet temperature was shown to be compatible with the dimensions of the space shuttle orbiter payload bay.

  2. A modular gas-cooled cermet reactor system for planetary base power

    SciTech Connect

    Jahshan, S.N.; Borkowski, J.A. )

    1993-01-15

    Fission nuclear power is foreseen as the source for electricity in planetary colonization and exploration. A six module gas-cooled, cermet-fueled reactor is proposed that can meet the design objectives. The highly enriched core is compact and can operate at high temperature for a long life. The helium coolant powers six modular Brayton cycles that compare favorably with the SP-100-based Brayton cycle.

  3. Nuclear reactor power as applied to a space-based radar mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Kia, T.; Nesmith, B.

    1988-01-01

    The SP-100 Project was established to develop and demonstrate feasibility of a space reactor power system (SRPS) at power levels of 10's of kilowatts to a megawatt. To help determine systems requirements for the SRPS, a mission and spacecraft were examined which utilize this power system for a space-based radar to observe moving objects. Aspects of the mission and spacecraft bearing on the power system were the primary objectives of this study; performance of the radar itself was not within the scope. The study was carried out by the Systems Design Audit Team of the SP-100 Project.

  4. Nuclear reactors using fine-particulate fuel for primary power in space

    SciTech Connect

    Botts, T.E.; Powell, J.R.; Usher, J.L.; Horn, F.L.

    1982-01-01

    Large future power requirements in space, include power beaming to earth, airplanes, and solar-powered satellites in eclipse; industrial processing; and space colonies. The Rotating Bed Nuclear Reactor (RBR) and Fixed Bed Reactor (FBR) are multi-megawatt power systems which are light, compact and suited to operation in space. Both are cavity reactors, with an annular fuel region (e.g., a bed of 500 ..mu.. HTGR fuel particulates made of UC with ceramic coating) surrounded by a reflector that moderates fast neutrons from the /sup 235/U fuel. A porous metal drum holds the fuel. In the RBR, rotation of the drum allows the particulate fuel bed to fluidize as cooling gas passes through. In the FBR, an inner porous carbon drum holds the packed fuel bed, which is not fluidized. The RBR and FBR have many important features for space nuclear power: very high power density (up to thousands of MW(th)/m/sup 3/ of fuel); very small size and weight, excellent thermal shock and fatigue resistance; short start/stop times (sec); high gas outlet temperatures (to 3000/sup 0/K), good neutron economy, low critical mass; and simple/reliable construction.

  5. Nuclear Power: Outlook for New U.S. Reactors

    DTIC Science & Technology

    2007-03-09

    MD) 4Q 2007 Areva EPR 1 Nine Mile Point (NY) 1st half 2008 Areva EPR 1 Not specified 4Q 2008 Areva EPR 3 Dominion North Anna (VA) Nov. 2007 GE ESBWR...Secretary Samuel Bodman. 51 Lovell, David L., Wisconsin Legislative Council Staff , State Statutes Limiting the Construction of Nuclear Power Plants

  6. Efficiency and accuracy of the perturbation response coefficient generation method for whole core comet calculations in BWR and CANDU configurations

    SciTech Connect

    Zhang, D.; Rahnema, F.

    2013-07-01

    The coarse mesh transport method (COMET) is a highly accurate and efficient computational tool which predicts whole-core neutronics behaviors for heterogeneous reactor cores via a pre-computed eigenvalue-dependent response coefficient (function) library. Recently, a high order perturbation method was developed to significantly improve the efficiency of the library generation method. In that work, the method's accuracy and efficiency was tested in a small PWR benchmark problem. This paper extends the application of the perturbation method to include problems typical of the other water reactor cores such as BWR and CANDU bundles. It is found that the response coefficients predicted by the perturbation method for typical BWR bundles agree very well with those directly computed by the Monte Carlo method. The average and maximum relative errors in the surface-to-surface response coefficients are 0.02%-0.05% and 0.06%-0.25%, respectively. For CANDU bundles, the corresponding quantities are 0.01%-0.05% and 0.04% -0.15%. It is concluded that the perturbation method is highly accurate and efficient with a wide range of applicability. (authors)

  7. Space power reactor in-core thermionic multicell evolutionary (S-prime) design

    SciTech Connect

    Determan, W.R. ); Van Hagan, T.H. )

    1993-01-20

    A 5- to 40-kWe moderated in-core thermionic space nuclear power system (TI-SNPS) concept was developed to address the TI-SNPS program requirements. The 40-kWe baseline design uses multicell Thermionic Fuel Elements (TFEs) in a zirconium hydride moderated reactor to achieve a specific mass of 18.2 We/kg and a net end-of-mission (EOM) efficiency of 8.2%. The reactor is cooled with a single NaK-78 pumped loop, which rejects the heat through a 24 m[sup 2] heat pipe space radiator.

  8. NASA's Kilopower Reactor Development and the Path to Higher Power Missions

    NASA Technical Reports Server (NTRS)

    Gibson, Marc A.; Oleson, Steven R.; Poston, David I.; McClure, Patrick

    2017-01-01

    The development of NASAs Kilopower fission reactor is taking large strides toward flight development with several successful tests completed during its technology demonstration trials. The Kilopower reactors are designed to provide 1-10 kW of electrical power to a spacecraft which could be used for additional science instruments as well as the ability to power electric propulsion systems. Power rich nuclear missions have been excluded from NASA proposals because of the lack of radioisotope fuel and the absence of a flight qualified fission system. NASA has partnered with the Department of Energy's National Nuclear Security Administration to develop the Kilopower reactor using existing facilities and infrastructure to determine if the design is ready for flight development. The 3-year Kilopower project started in 2015 with a challenging goal of building and testing a full-scale flight prototypic nuclear reactor by the end of 2017. As the date approaches, the engineering team shares information on the progress of the technology as well as the enabling capabilities it provides for science and human exploration.

  9. Experimental power density distribution benchmark in the TRIGA Mark II reactor

    SciTech Connect

    Snoj, L.; Stancar, Z.; Radulovic, V.; Podvratnik, M.; Zerovnik, G.; Trkov, A.; Barbot, L.; Domergue, C.; Destouches, C.

    2012-07-01

    In order to improve the power calibration process and to benchmark the existing computational model of the TRIGA Mark II reactor at the Josef Stefan Inst. (JSI), a bilateral project was started as part of the agreement between the French Commissariat a l'energie atomique et aux energies alternatives (CEA) and the Ministry of higher education, science and technology of Slovenia. One of the objectives of the project was to analyze and improve the power calibration process of the JSI TRIGA reactor (procedural improvement and uncertainty reduction) by using absolutely calibrated CEA fission chambers (FCs). This is one of the few available power density distribution benchmarks for testing not only the fission rate distribution but also the absolute values of the fission rates. Our preliminary calculations indicate that the total experimental uncertainty of the measured reaction rate is sufficiently low that the experiments could be considered as benchmark experiments. (authors)

  10. 14C content in vegetation in the vicinities of Brazilian nuclear power reactors.

    PubMed

    Dias, Cíntia Melazo; Santos, Roberto Ventura; Stenström, Kristina; Nícoli, Iêda Gomes; Skog, Göran; da Silveira Corrêa, Rosangela

    2008-07-01

    (14)C specific activities were measured in grass samples collected around Brazilian nuclear power reactors. The specific activity values varied between 227 and 299 Bq/kg C. Except for two samples which showed (14)C specific activities 22% above background values, half of the samples showed background specific activities, and the other half had a (14)C excess of 1-18%. The highest specific activities were found close to the nuclear power plants and along the main wind directions (NE and NNE). The activity values were found to decrease with increasing distance from the reactors. The unexpectedly high (14)C excess values found in two samples were related to the local topography, which favors (14)C accumulation and limits the dispersion of the plume. The results indicate a clear (14)C anthropogenic signal within 5 km around the nuclear power plants which is most prominent along northeastwards, the prevailing wind direction.

  11. Diverse methods of analyzing neutron detector signal for power monitoring in commercial fast reactors

    SciTech Connect

    Sivaramakrishna, M.; Nagaraj, C. P.; Madhusoodanan, K.

    2011-07-01

    In a fast reactor, the measurement of instantaneous power, accurately at any point of time is of prime importance. To control the reactor power within its design limit for safe operation, measurement of power and safety functions operated by different systems based on power is required. This is done with neutron detectors from which signal come as current pulses in random following Poisson distribution. Due to heavy overlap, individual pulse counting is extremely difficult beyond certain frequency. So to count pulses in the detector output in a given length of time, which will be measure of power in the reactor, indirect method of signal processing is applied here. After applying signal processing methods on the detector output, linear relation is established between maximum amplitude of absolute of FFT (Fast Fourier Transform) of the signal and no of pulses in a given length of time of the signal i.e. rate of arrival of pulses to the detector. This linear relation is verified in different ways i.e. with simulated fixed rate of arrival of the pulses, random rate of arrival of the pulses and with neutron detector simulator output. The paper explains various stages of development and testing. (authors)

  12. Vital area identification for U.S. Nuclear Regulatory Commission nuclear power reactor licensees and new reactor applicants.

    SciTech Connect

    Whitehead, Donnie Wayne; Varnado, G. Bruce

    2008-09-01

    U.S. Nuclear Regulatory Commission nuclear power plant licensees and new reactor applicants are required to provide protection of their plants against radiological sabotage, including the placement of vital equipment in vital areas. This document describes a systematic process for the identification of the minimum set of areas that must be designated as vital areas in order to ensure that all radiological sabotage scenarios are prevented. Vital area identification involves the use of logic models to systematically identify all of the malicious acts or combinations of malicious acts that could lead to radiological sabotage. The models available in the plant probabilistic risk assessment and other safety analyses provide a great deal of the information and basic model structure needed for the sabotage logic model. Once the sabotage logic model is developed, the events (or malicious acts) in the model are replaced with the areas in which the events can be accomplished. This sabotage area logic model is then analyzed to identify the target sets (combinations of areas the adversary must visit to cause radiological sabotage) and the candidate vital area sets (combinations of areas that must be protected against adversary access to prevent radiological sabotage). Any one of the candidate vital area sets can be selected for protection. Appropriate selection criteria will allow the licensee or new reactor applicant to minimize the impacts of vital area protection measures on plant safety, cost, operations, or other factors of concern.

  13. Applicability of 100kWe-class of space reactor power systems to NASA manned space station missions

    NASA Technical Reports Server (NTRS)

    Silverman, S. W.; Willenberg, H. J.; Robertson, C.

    1985-01-01

    An assessment is made of a manned space station operating with sufficiently high power demands to require a multihundred kilowatt range electrical power system. The nuclear reactor is a competitor for supplying this power level. Load levels were selected at 150kWe and 300kWe. Interactions among the reactor electrical power system, the manned space station, the space transportation system, and the mission were evaluated. The reactor shield and the conversion equipment were assumed to be in different positions with respect to the station; on board, tethered, and on a free flyer platform. Mission analyses showed that the free flyer concept resulted in unacceptable costs and technical problems. The tethered reactor providing power to an electrolyzer for regenerative fuel cells on the space station, results in a minimum weight shield and can be designed to release the reactor power section so that it moves to a high altitude orbit where the decay period is at least 300 years. Placing the reactor on the station, on a structural boom is an attractive design, but heavier than the long tethered reactor design because of the shield weight for manned activity near the reactor.

  14. Neutronic design studies for an unattended, low power reactor

    SciTech Connect

    Palmer, R.G.; Durkee, J.W. Jr.

    1986-01-01

    The Los Alamos National Laboratory is involved in the design and demonstrations of a small, long-lived nuclear heat and electric power source for potential applications at remote sites where alternate fossil energy systems would not be cost effective. This paper describes the neutronic design analysis that was performed to arrive at two conceptual designs, one using thermoelectric conversion, the other using an organic Rankine cycle. To meet the design objectives and constraints a number of scoping and optimization studies were carried out. The results of calculations of control worths, temperature coefficients of reactivity and fuel depletion effects are reported.

  15. Calculation of kinetic spatial weighting factors in power reactors

    SciTech Connect

    Sweeney, F.J.; Renier, J.P.

    1982-01-01

    Ex-core neutron detector kinetic (frequency-dependent) spatial sensitivities (weighting factors) for in-core neutron sources were determined by performing space-dependent, transport and diffusion theory, kinetic detector adjoint calculations in which both source propagation through fission processes and the frequency dependence of the reactivity-to-power transfer function were considered. This study was pursued to overcome the shortcomings of previous calculations of ex-core detector weighting factors for in-core neutron sources using discrete-ordinate shielding or point kernel techniques.

  16. Mars, the Moon, and the Ends of the Earth: Autonomy for Small Reactor Power Systems

    SciTech Connect

    Wood, Richard Thomas

    2008-01-01

    In recent years, the National Aeronautics and Space Administration (NASA) has been considering deep space missions that utilize a small-reactor power system (SRPS) to provide energy for propulsion and spacecraft power. Additionally, application of SRPS modules as a planetary power source is being investigated to enable a continuous human presence for nonpolar lunar sites and on Mars. A SRPS can supply high-sustained power for space and surface applications that is both reliable and mass efficient. The use of small nuclear reactors for deep space or planetary missions presents some unique challenges regarding the operations and control of the power system. Current-generation terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of a SRPS employed for deep space missions must be able to accommodate unattended operations due to communications delays and periods of planetary occlusion while adapting to evolving or degraded conditions with no opportunity for repair or refurbishment. While surface power systems for planetary outposts face less extreme delays and periods of isolation and may benefit from limited maintenance capabilities, considerations such as human safety, resource limitations and usage priorities, and economics favor minimizing direct, continuous human interaction with the SRPS for online, dedicated power system management. Thus, a SRPS control system for space or planetary missions must provide capabilities for operational autonomy. For terrestrial reactors, large-scale power plants remain the preferred near-term option for nuclear power generation. However, the desire to reduce reliance on carbon-emitting power sources in developing countries may lead to increased consideration of SRPS modules for local power generation in remote regions that are characterized by emerging, less established infrastructures

  17. The performance of hafnium and gadolinium self powered neutron detectors in the TREAT reactor

    NASA Astrophysics Data System (ADS)

    Imel, G. R.; Hart, P. R.

    1996-05-01

    The use of gadolinium and hafnium self powered neutron detectors in a transient reactor is described in this paper. The detectors were calibrated to the fission rate of U-235 using calibrated fission chambers; the calibration factors were tested in two reactors in steady state and found to be consistent. Calibration of the detectors in transient reactor conditions was done by using uranium wires that were analyzed by radiochemistry techniques to determine total fissions during the transient. This was correlated to the time-integrated current of the detectors during the transient. A temperature correction factor was derived to account for self-shielding effects in the hafnium and gadolinium detectors. The dynamic response of the detectors under transient conditions was studied, and found to be excellent.

  18. Fast-spectrum space-power-reactor concepts using boron control devices

    NASA Technical Reports Server (NTRS)

    Mayo, W.

    1973-01-01

    Several fast-spectrum space power reactor concepts that use boron carbide control devices were examined to determine the neutronic feasibility of the designs. The designs considered were (1) a 199-fuel-pin, 12-poison-reflector-control-drum reactor; (2) a 232-fuel-pin reactor with 12 reflector drums and three in-core control rods; (3) a 337-fuel-pin design with 12 incore control rods; and a 181-fuel-pin design with six drums closely coupled to the core to increase reactivity per drum. Adequate reactivity control and excess reactivity could be obtained for each concept, and the goals of 50,000 hours at 2.17 thermal megawatts with a lithium-7 coolant outlet temperature of 1222 K could be met without exceeding the 1-percent-clad-creep criterion. Heating rates in the boron carbide were calculated, but a heat transfer analysis was not done.

  19. Data bases for rapid response to power reactor problems

    SciTech Connect

    Maskewitz, B.F.

    1980-01-01

    The urgency of the TMI-2 incident demanded prompt answers to an imperious situation. In responding to these challenging circumstances, both government and industry recognized deficiencies in both availability of essential retrievable data and calculational capabilities designed to respond immediately to actual abnormal events. Each responded by initiating new programs to provide a remedy for the deficiencies and to generally improve all safety measures in the nuclear power industry. Many data bases and information centers offer generic data and other technology resources which are generally useful in support of nuclear safety programs. A few centers can offer rapid access to calculational methods and associated data and more will make an effort to do so. As a beneficial spin-off from the lessons learned from TMI-2, more technical effort and financial resources will be devoted to the prevention of accidents, and to improvement of safety measures in the immediate future and for long term R and D programs by both government and the nuclear power industry.

  20. The Information Fusion Embrittlement Models for U.S. Power Reactor Pressure Vessel Steels

    SciTech Connect

    Wang, Jy-An John; Rao, Nageswara S; Konduri, Savanthi

    2007-01-01

    The complex nonlinear dependencies observed in typical reactor pressure vessel (RPV) material embrittlement data, as well as the inherent large uncertainties and scatter in the radiation embrittlement data, make prediction of radiation embrittlement a difficult task. Conventional statistical and deterministic approaches have only resulted in rather large uncertainties, in part because they do not fully exploit domain-specific mechanisms. The domain models built by researchers in the field, on the other hand, do not fully exploit the statistical and information content of the data. As evidenced in previous studies, it is unlikely that a single method, whether statistical, nonlinear, or domain model, will outperform all others. More generally, considering the complexity of the embrittlement prediction problem, it is highly unlikely that a single best method exists and is tractable, even in theory. In this paper, we propose to combine a number of complementary methods including domain models, neural networks, and nearest neighbor regressions (NNRs). Such a combination of methods has become possible because of recent developments in measurement-based optimal fusers in the area of information fusion. The information fusion technique is used to develop radiation embrittlement prediction models for reactor RPV steels from U.S. power reactors, including boiling water reactors and pressurized water reactors. The Charpy transition temperature-shift data is used as the primary index of RPV radiation embrittlement in this study. Six Cu, Ni, P, neutron fluence, irradiation time, and irradiation-parameters are used in the embrittlement prediction models. The results-temperature indicate that this new embrittlement predictor achieved reductions of about 49.5% and 52% in the uncertainties for plate and weld data, respectively, for pressurized water reactor and boiling water reactor data, compared with the Nuclear Regulatory Commission Regulatory Guide 1.99, Rev. 2. The

  1. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    NASA Astrophysics Data System (ADS)

    Fic, Adam; Składzień, Jan; Gabriel, Michał

    2015-03-01

    Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle), which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle). The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  2. A comparative risk assessment for the Russian V213 power reactor

    SciTech Connect

    Marshall, T.D.; Hockenbury, R.W.; Honey, J.A.; Cadwallader, L.C.

    1996-04-01

    Probabilistic risk assessment methodology is applied to generate an evaluation of the relative likelihood of safe recovery following selected pressurized water reactor (PWR) design basis accidents for a Russian V213 nuclear power reactor. US-designed PWRs similar to the V213 are used for reference and comparison. This V213 risk assessment is based on comparison analyses of the following aspects: accident progression event tree success paths for typical PWR accident initiating events, safety aspects in reactor design, and perceived performance of reactor safety systems. The four initiating events considered here are: loss of offsite power with station blackout, large-break loss-of-coolant accident (LOCA), medium-break LOCA, and small-break LOCA. The success probabilities for the V213 reaching a non-core-damage state after the onset of the selected initiating events are calculated for two scenarios: (a) using actual component reliability data from US PWRs and (b) assuming common component reliability data. US PWR component reliability data are used based of the unavailability of such data for the V213 at the time of the analyses. While the use of US PWR data in this risk assessment of the V213 does strongly infer V213 comparability to US plants, the risk assessment using common component reliability does not have such a stringent limitation and is thus a separate scoping assessment of the V213 engineered safety systems. The results of the analyses suggest that the V213 has certain design features that significantly improve the reactor`s safety margin for the selected initiating events and that the V213 design has a relative risk of core damage for selected initiating events that is at least comparable to US PWRs. It is important to realize that these analyses are of a scoping nature and may be significantly influenced by important risk factors such as V213 operator training, quality control, and maintenance procedures.

  3. A gas-cooled cermet reactor system for planetary base power

    SciTech Connect

    Jahshan, S.N.; Borkowski, J.A.

    1992-08-01

    Fission nuclear power is foreseen as the source for electricity in colonization exploration. A gas-cooled, cermet-fueled reactor is proposed that can meet many of the design objectives. The highly enriched core is compact and can operate at high temperature for a long life. The helium coolant powers a Brayton cycle that compares well with the SP-100-based Brayton cycle. The power cycle can be upgraded further under certain siting-related conditions by the addition of a low temperature Rankine cycle.

  4. A gas-cooled cermet reactor system for planetary base power

    SciTech Connect

    Jahshan, S.N.; Borkowski, J.A.

    1992-01-01

    Fission nuclear power is foreseen as the source for electricity in colonization exploration. A gas-cooled, cermet-fueled reactor is proposed that can meet many of the design objectives. The highly enriched core is compact and can operate at high temperature for a long life. The helium coolant powers a Brayton cycle that compares well with the SP-100-based Brayton cycle. The power cycle can be upgraded further under certain siting-related conditions by the addition of a low temperature Rankine cycle.

  5. 2240-MW(th) high-temperature reactor core power density study

    SciTech Connect

    Vondy, D.R.

    1984-09-01

    This study was done to estimate the effects of reducing the design power density of a 2240-MW(t) high-temperature gas-cooled reactor. Core history and thermal hydraulics calculations were performed for average power densities of 5.8 and 7.2 W/cm/sup 3/ and the use of highly enriched fuel was considered. The fuel temperature conditions for the higher power density were found to be only moderately elevated at normal operating conditions. Economic considerations associated with changes in core performance, core size, and coolant pumping requirements were assessed.

  6. Testing of Passive Safety System Performance for Higher Power Advanced Reactors

    SciTech Connect

    brian G. Woods; Jose Reyes, Jr.; John Woods; John Groome; Richard Wright

    2004-12-31

    This report describes the results of NERI research on the testing of advanced passive safety performance for the Westinghouse AP1000 design. The objectives of this research were: (a) to assess the AP1000 passive safety system core cooling performance under high decay power conditions for a spectrum of breaks located at a variety of locations, (b) to compare advanced thermal hydraulic computer code predictions to the APEX high decay power test data and (c) to develop new passive safety system concepts that could be used for Generation IV higher power reactors.

  7. ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT

    SciTech Connect

    M. G. McKellar; E. A. Harvego; A. M. Gandrik

    2010-11-01

    An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

  8. Power beaming to space using a nuclear reactor-pumped laser

    SciTech Connect

    Lipinski, R.J.; Monroe, D.K.; Pickard, P.S.

    1993-10-01

    The present political and environmental climate may slow the inevitable direct utilization of nuclear power in space. In the meantime, there is another approach for using nuclear energy for space power. That approach is to let nuclear energy generate a laser beam in a ground-based nuclear reactor-pumped laser (RPL), and then beam the optical energy into space. Potential space applications for a ground-based RPL include (1) illuminating geosynchronous communication satellites in the earth`s shadow to extend their lives, (2) beaming power to orbital transfer vehicles, (3) providing power (from earth) to a lunar base during the long lunar night, and (4) removing space debris. FALCON is a high-power, steady-state, nuclear reactor-pumped laser (RPL) concept that is being developed by the Department of Energy with Sandia National Laboratories as the lead laboratory. The FALCON program has experimentally demonstrated reactor-pumped lasing in various mixtures of xenon, argon, neon, and helium at wavelengths of 0.585, 0.703, 0.725, 1.271, 1.733, 1.792, 2.032, 2.63, 2.65, and 3.37 {mu}m with intrinsic efficiency as high as 2.5%. Frequency-doubling the 1.733{minus}{mu}m line would yield a good match for photovoltaic arrays at 0.867 {mu}m. Preliminary designs of an RPL suitable for power beaming have been completed. The MWclass laser is fairly simple in construction, self-powered, closed-cycle (no exhaust gases), and modular. This paper describes the FALCON program accomplishments and power-beaming applications.

  9. SiC Semiconductor Detector Power Monitors for Space Nuclear Reactors

    SciTech Connect

    Reisi Fard, Mehdi; Blue, Thomas E.; Miller, Don W.

    2004-02-04

    As a part of a Department of Energy-Nuclear Engineering Research Initiative (NERI) Project, we are investigating SiC semiconductor detectors as power monitors for Generation IV power reactors. SiC detectors are well-suited as power monitors for reactors for space nuclear propulsion, due to their characteristics of small size, mass, and power consumption; mechanical ruggedness; radiation hardness; capability for high temperature operation; and potential for pulse mode operation at high count rates, which may allow for a reduction in the complexity of the reactor instrumentation and control system, as well as allow for verification of detector sensitivity, verification of channel operability, and channel self-repair. In this paper, a mathematical model of a SiC detector is presented. The model includes a description of the formation of electron-hole pairs in a SiC diode detector, using the computer code TRIM. The TRIM results are used as input to a MATLAB simulation of detector current output pulse formation, the results of which are intended for use as the input to a model of the detector channel as a whole.

  10. Apparatus and method for closed-loop control of reactor power in minimum time

    DOEpatents

    Bernard, Jr., John A.

    1988-11-01

    Closed-loop control law for altering the power level of nuclear reactors in a safe manner and without overshoot and in minimum time. Apparatus is provided for moving a fast-acting control element such as a control rod or a control drum for altering the nuclear reactor power level. A computer computes at short time intervals either the function: .rho.=(.beta.-.rho.).omega.-.lambda..sub.e '.rho.-.SIGMA..beta..sub.i (.lambda..sub.i -.lambda..sub.e ')+l* .omega.+l* [.omega..sup.2 +.lambda..sub.e '.omega.] or the function: .rho.=(.beta.-.rho.).omega.-.lambda..sub.e .rho.-(.lambda..sub.e /.lambda..sub.e)(.beta.-.rho.)+l* .omega.+l* [.omega..sup.2 +.lambda..sub.e .omega.-(.lambda..sub.e /.lambda..sub.e).omega.] These functions each specify the rate of change of reactivity that is necessary to achieve a specified rate of change of reactor power. The direction and speed of motion of the control element is altered so as to provide the rate of reactivity change calculated using either or both of these functions thereby resulting in the attainment of a new power level without overshoot and in minimum time. These functions are computed at intervals of approximately 0.01-1.0 seconds depending on the specific application.

  11. An evaluation of the ecological consequences of partial-power operation of the K Reactor, SRS

    SciTech Connect

    Gladden, J.B.; Mackey, H.E.; Paller, M.H.; Specht, W.L.; Wike, L.D.; Wilde, E.W.

    1991-06-01

    The K Reactor at the Savannah River Site (SRS) shut-down in spring 1988 for maintenance and safety upgrades. Since that time the receiving stream for thermal effluent, Indian Grave Branch and Pen Branch, have undergone a pattern of post-thermal recovery that is typical of other SRS streams following removal of thermal stress. Divesity of fish and aquatic macroinvertebrate communities has increased and available habitats have been colonized by numerous species of herbaceous and woody plants. K Reactor is scheduled to resume operation in 1991 and operate through 1992 without a cooling tower to cool the discharge. It is likely that the reactor will operate at approximately one-third to one-half of full power (800--1200 MW thermal) during this period and effluent temperatures will be substantially lower than earlier operation at full power. Monthly average discharge temperatures at half-power operation will range from approximately 42{degrees}C in winter to 49{degrees}C in summer. The volume of water discharged will not be affected by altered power levels and will average approximately 10--11 m{sup 3}/s. The ecological consequences of this mode of operation on the Indian Grave/Pen Branch stream system have been evaluated.

  12. Testing of an Integrated Reactor Core Simulator and Power Conversion System with Simulated Reactivity Feedback

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.

    2009-01-01

    A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, OH. This is a closed-cycle system that incorporates an electrically heated reactor core module, turbo alternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.

  13. Testing of an Integrated Reactor Core Simulator and Power Conversion System with Simulated Reactivity Feedback

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.

    2010-01-01

    A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, Ohio. This is a closed-cycle system that incorporates an electrically heated reactor core module, turboalternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.

  14. Decay heat power of spent nuclear fuel of power reactors with high burnup at long-term storage

    NASA Astrophysics Data System (ADS)

    Ternovykh, Mikhail; Tikhomirov, Georgy; Saldikov, Ivan; Gerasimov, Alexander

    2017-09-01

    Decay heat power of actinides and fission products from spent nuclear fuel of power VVER-1000 type reactors at long-term storage is calculated. Two modes of storage are considered: mode in which single portion of actinides or fission products is loaded in storage facility, and mode in which actinides or fission products from spent fuel of one VVER reactor are added every year in storage facility during 30 years and then accumulated nuclides are stored without addition new nuclides. Two values of fuel burnup 40 and 70 MW·d/kg are considered for the mode of storage of single fuel unloading. For the mode of accumulation of spent fuel with subsequent storage, one value of burnup of 70 MW·d/kg is considered. Very long time of storage 105 years accepted in calculations allows to simulate final geological disposal of radioactive wastes. Heat power of fission products decreases quickly after 50-100 years of storage. The power of actinides decreases very slow. In passing from 40 to 70 MW·d/kg, power of actinides increases due to accumulation of higher fraction of 244Cm. These data are important in the back end of fuel cycle when improved cooling system of the storage facility will be required along with stronger radiation protection during storage, transportation and processing.

  15. Advanced Fusion Reactors for Space Propulsion and Power Systems

    SciTech Connect

    Chapman, John J.

    2011-06-15

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  16. TFTR (Tokamak Fusion Test Reactor) neutral beam injected power measurement

    SciTech Connect

    Kamperschroer, J.H.; Grisham, L.R.; Dudek, L.E.; Gammel, G.M.; Johnson, G.A.; Kugel, H.W.; Lagin, L.; O'Connor, T.E.; Shah, P.A.; Sichta, P.

    1989-05-01

    Energy flow within TFTR neutral beamlines is measured with a waterfall calorimetry system capable of simultaneously measuring the energy deposited within four heating beamlines (three ion sources each), or of measuring the energy deposited in a separate neutral beam test stand. Of the energy extracted from the ion source in the well instrumented test stand, 99.5 +- 3.5% can be accounted for. When the ion deflection magnet is energized, however, 6.5% of the extracted energy is lost. This loss is attributed to a spray of devious particles onto unmonitored surfaces. A 30% discrepancy is also observed between energy measurements on the internal beamline calorimeter and energy measurements on a calorimeter located in the test stand target chamber. Particle reflection from the flat plate calorimeter in the target chamber, which the incident beam strikes at a near-grazing angle of 12/degree/, is the primary loss of this energy. A slight improvement in energy accountability is observed as the beam pulse length is increased. This improvement is attributed to systematic error in the sensitivity of the energy measurement to small fluctuations on the supply water temperature. An overall accuracy of 15% is estimated for the total power injected into TFTR. Contributions to this error are uncertainties in the beam neutralization efficiency, reionization and beam scrape-off in the drift duct, and fluctuations in the temperature of the supply water. 28 refs., 9 figs., 1 tab.

  17. Advanced Fusion Reactors for Space Propulsion and Power Systems

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    2011-01-01

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  18. Applying and adapting the Swedish regulatory system for decommissioning to nuclear power reactors - The regulator's perspective.

    PubMed

    Amft, Martin; Leisvik, Mathias; Carroll, Simon

    2017-03-16

    Half of the original 13 Swedish nuclear power reactors will be shut down by 2020. The decommissioning of these reactors is a challenge for all parties involved, including the licensees, the waste management system, the financing system, and the Swedish Radiation Safety Authority (SSM). This paper presents an overview of the Swedish regulations for decommissioning of nuclear facilities. It describes some of the experiences that SSM has gained from the application of these regulations. The focus of the present paper is on administrative aspects of decommissioning, such as SSM's guidelines, the definition of fundamental concepts in the regulatory framework, and a proposed revision of the licensing process according to the Environmental Act. These improvements will help to streamline the administration of the commercial nuclear power plant decommissioning projects that are anticipated to commence in Sweden in the near future.

  19. Technical overview: CANDU MOX fuel dual irradiation experiment

    SciTech Connect

    Dimayuga, F.C.; M.R. Floyd, M.R.; Schankula, M.H.; Sullivan, J.D.

    1996-02-01

    This Technical Overview describes: the technical objectives and rational for the choice of MOX fuel fabrication parameters that are to be investigated; the pre-irradiation fuel characterization plan; the NRU irradiation plan; the post-irradiation examination plan; and a summary of the evaluations that can be extracted from the Parallex data. This Technical Overview is based on the 37-element reference CANDU MOX fuel design established in the 1994 Pu Dispositioning Study. An extension to this study is currently underway, aimed at increasing the Pu disposition rates of the mission. The results of this new study will likely specify a higher Pu loading for the CANDU MOX fuel. If confirmed, this Technical Overview document will be revised and the Parallex test matrix could be modified accordingly.

  20. Self powered neutron detectors as in-core detectors for Sodium-cooled Fast Reactors

    NASA Astrophysics Data System (ADS)

    Verma, V.; Barbot, L.; Filliatre, P.; Hellesen, C.; Jammes, C.; Svärd, S. Jacobsson

    2017-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor. Diverse possibilities of detector system installation must be studied for various locations in the reactor vessel in order to detect any perturbations in the core. Results from a previous paper indicated that it is possible to detect changes in neutron source distribution initiated by an inadvertent withdrawal of outer control rod with in-vessel fission chambers located azimuthally around the core. It is, however, not possible to follow inner control rod withdrawal and precisely know the location of the perturbation in the core. Hence the use of complimentary in-core detectors coupled with the peripheral fission chambers is proposed to enable robust core monitoring across the radial direction. In this paper, we assess the feasibility of using self-powered neutron detectors (SPNDs) as in-core detectors in fast reactors for detecting local changes in the power distribution when the reactor is operated at nominal power. We study the neutron and gamma contributions to the total output current of the detector modelled with Platinum as the emitter material. It is shown that this SPND placed in an SFR-like environment would give a sufficiently measurable prompt neutron induced current of the order of 600 nA/m. The corresponding induced current in the connecting cable is two orders of magnitude lower and can be neglected. This means that the SPND can follow in-core power fluctuations. This validates the operability of an SPND in an SFR-like environment.

  1. Removal of toxic uranium from synthetic nuclear power reactor effluents using uranyl ion imprinted polymer particles.

    PubMed

    Preetha, Chandrika Ravindran; Gladis, Joseph Mary; Rao, Talasila Prasada; Venkateswaran, Gopala

    2006-05-01

    Major quantities of uranium find use as nuclear fuel in nuclear power reactors. In view of the extreme toxicity of uranium and consequent stringent limits fixed by WHO and various national governments, it is essential to remove uranium from nuclear power reactor effluents before discharge into environment. Ion imprinted polymer (IIP) materials have traditionally been used for the recovery of uranium from dilute aqueous solutions prior to detection or from seawater. We now describe the use of IIP materials for selective removal of uranium from a typical synthetic nuclear power reactor effluent. The IIP materials were prepared for uranyl ion (imprint ion) by forming binary salicylaldoxime (SALO) or 4-vinylpyridine (VP) or ternary SALO-VP complexes in 2-methoxyethanol (porogen) and copolymerizing in the presence of styrene (monomer), divinylbenzene (cross-linking monomer), and 2,2'-azobisisobutyronitrile (initiator). The resulting materials were then ground and sieved to obtain unleached polymer particles. Leached IIP particles were obtained by leaching the imprint ions with 6.0 M HCl. Control polymer particles were also prepared analogously without the imprint ion. The IIP particles obtained with ternary complex alone gave quantitative removal of uranyl ion in the pH range 3.5-5.0 with as low as 0.08 g. The retention capacity of uranyl IIP particles was found to be 98.50 mg/g of polymer. The present study successfully demonstrates the feasibility of removing uranyl ions selectively in the range 5 microg - 300 mg present in 500 mL of synthetic nuclear power reactor effluent containing a host of other inorganic species.

  2. Design and Build of Reactor Simulator for Fission Surface Power Technology Demonstrator Unit

    NASA Astrophysics Data System (ADS)

    Godfroy, T.; Dickens, R.; Houts, M.; Pearson, B.; Webster, K.; Gibson, M.; Qualls, L.; Poston, D.; Werner, J.; Radel, R.

    The Nuclear Systems Team at Marshall Space Flight Center (MSFC) focuses on technology development for state of the art capability in non-nuclear testing of nuclear system and Space Nuclear Power for fission reactor systems for lunar and mars surface power generation as well as radioisotope power systems for both spacecraft and surface applications. Currently being designed and developed is a reactor simulator (RxSim) for incorporation into the Technology Demonstrator Unit (TDU) for the Fission Surface Power System (FSPS) Program which is supported by multiple national laboratories and NASA centers. The ultimate purpose of the RxSim is to provide heated NaK to a pair of Stirling engines in the TDU. The RxSim includes many different systems, components, and instrumentation that have been developed at MSFC while working with pumped NaK systems and in partnership with the national laboratories and NASA centers. The main components of the RxSim are a core, a pump, a heat exchanger (to mimic the thermal load of the Stirling engines), and a flow meter when being tested at MSFC. When tested at GRC the heat exchanger will be replaced with a Stirling power conversion engine. Additional components include storage reservoirs, expansion volumes, overflow catch tanks, safety and support hardware, instrumenta- tion (temperature, pressure, flow) data collection, and power supplies. This paper will discuss the design and current build status of the RxSim for delivery to GRC in early 2012.

  3. Lunar electric power systems utilizing the SP-100 reactor coupled to dynamic conversion systems

    NASA Technical Reports Server (NTRS)

    Harty, Richard B.; Durand, Richard E.

    1993-01-01

    An integration study was performed by Rocketdyne under contract to NASA-LeRC. The study was concerned with coupling an SP-0100 reactor to either a Brayton or Stirling power conversion system. The application was for a surface power system to supply power requirements to a lunar base. A power level of 550 kWe was selected based on the NASA Space Exploration Initiative 90-day study. Reliability studies were initially performed to determine optimum power conversion redundancy. This study resulted in selecting three operating engines and one stand-by unit. Integration design studies indicated that either the Brayton or Stirling power conversion systems could be integrated with the PS-100 reactor. The Stirling system had an integration advantage because of smaller piping size and fewer components. The Stirling engine, however, is more complex and heavier than the Brayton rotating unit, which tends to off-set the Stirling integration advantage. From a performance consideration, the Brayton had a 9 percent mass advantage, and the Stirling had a 50 percent radiator advantage.

  4. Lunar electric power systems utilizing the SP-100 reactor coupled to dynamic conversion systems

    NASA Astrophysics Data System (ADS)

    Harty, Richard B.; Durand, Richard E.

    1993-03-01

    An integration study was performed by Rocketdyne under contract to NASA-LeRC. The study was concerned with coupling an SP-0100 reactor to either a Brayton or Stirling power conversion system. The application was for a surface power system to supply power requirements to a lunar base. A power level of 550 kWe was selected based on the NASA Space Exploration Initiative 90-day study. Reliability studies were initially performed to determine optimum power conversion redundancy. This study resulted in selecting three operating engines and one stand-by unit. Integration design studies indicated that either the Brayton or Stirling power conversion systems could be integrated with the PS-100 reactor. The Stirling system had an integration advantage because of smaller piping size and fewer components. The Stirling engine, however, is more complex and heavier than the Brayton rotating unit, which tends to off-set the Stirling integration advantage. From a performance consideration, the Brayton had a 9 percent mass advantage, and the Stirling had a 50 percent radiator advantage.

  5. Design and Build of Reactor Simulator for Fission Surface Power Technology Demonstrator Unit

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas; Dickens, Ricky; Houts, Michael; Pearson, Boise; Webster, Kenny; Gibson, Marc; Qualls, Lou; Poston, Dave; Werner, Jim; Radel, Ross

    2011-01-01

    The Nuclear Systems Team at NASA Marshall Space Flight Center (MSFC) focuses on technology development for state of the art capability in non-nuclear testing of nuclear system and Space Nuclear Power for fission reactor systems for lunar and Mars surface power generation as well as radioisotope power systems for both spacecraft and surface applications. Currently being designed and developed is a reactor simulator (RxSim) for incorporation into the Technology Demonstrator Unit (TDU) for the Fission Surface Power System (FSPS) Program, which is supported by multiple national laboratories and NASA centers. The ultimate purpose of the RxSim is to provide heated NaK to a pair of Stirling engines in the TDU. The RxSim includes many different systems, components, and instrumentation that have been developed at MSFC while working with pumped NaK systems and in partnership with the national laboratories and NASA centers. The main components of the RxSim are a core, a pump, a heat exchanger (to mimic the thermal load of the Stirling engines), and a flow meter for tests at MSFC. When tested at NASA Glenn Research Center (GRC) the heat exchanger will be replaced with a Stirling power conversion engine. Additional components include storage reservoirs, expansion volumes, overflow catch tanks, safety and support hardware, instrumentation (temperature, pressure, flow) for data collection, and power supplies. This paper will discuss the design and current build status of the RxSim for delivery to GRC in early 2012.

  6. Analysis of closed cycle megawatt class space power systems with nuclear reactor heat sources

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.; Jones, B. I.

    1987-01-01

    The analysis and integration studies of multimegawatt nuclear power conversion systems for potential SDI applications is presented. A study is summarized which considered 3 separate types of power conversion systems for steady state power generation with a duty requirement of 1 yr at full power. The systems considered are based on the following conversion cycles: direct and indirect Brayton gas turbine, direct and indirect liquid metal Rankine, and in core thermionic. A complete mass analysis was performed for each system at power levels ranging from 1 to 25 MWe for both heat pipe and liquid droplet radiator options. In the modeling of common subsystems, reactor and shield calculations were based on multiparameter correlation and an in-house analysis for the heat rejection and other subsystems.

  7. Analysis of closed cycle megawatt class space power systems with nuclear reactor heat sources

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.; Jones, B. I.

    1987-01-01

    The analysis and integration studies of multimegawatt nuclear power conversion systems for potential SDI applications is presented. A study is summarized which considered 3 separate types of power conversion systems for steady state power generation with a duty requirement of 1 yr at full power. The systems considered are based on the following conversion cycles: direct and indirect Brayton gas turbine, direct and indirect liquid metal Rankine, and in core thermionic. A complete mass analysis was performed for each system at power levels ranging from 1 to 25 MWe for both heat pipe and liquid droplet radiator options. In the modeling of common subsystems, reactor and shield calculations were based on multiparameter correlation and an in-house analysis for the heat rejection and other subsystems.

  8. Reactor

    DOEpatents

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  9. Conceptual Design of HP-STMCs Space Reactor Power System for 110 kWe

    SciTech Connect

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2004-02-04

    A conceptual design of a Heat Pipe-Segmented Thermoelectric Module Converters (HP-STMCs) space reactor power system (SRPS) for a net power of 110 kWe is developed. The parametric analysis changed the number of radiator's potassium heat pipes from 224 to 336 and calculated the effects on the operation parameters and total mass of the system. The reactor has a hexagonal core comprised of 126 heat pipe modules, each consists of three UN, 1.5 cm OD fuel pins brazed to a central lithium heat pipe of identical diameter. The Re cladding of the fuel pins is brazed along the active core length to the lithium heat pipe using 6 Re tri-cusps. The reactor control is accomplished using 12 B4C/BeO control drums, a large diameter one on each side of the hexagonal core and a small diameter one at each corner. The control drums are placed within the radial BeO reflector (7.1-9.1 cm thick). The fuel pin peak-to-average power ratio in the reactor core is 1.12-1.19. Despite its very high density and fabrication challenge, using rhenium structure in the reactor core is necessary for three main reasons: (a) the high reactor temperature ({>=} 1500 K); (b) excellent compatibility with the UN fuel and lithium; (c) to cause a spectrum shift that ensures having sufficient negative reactivity margin during a water submersion accident. The reference HP-STMC system with 324, 2.42-3.03 cm OD potassium heat pipes in the radiator is 9.60 m long and has a cone angle of 30 deg. The nominal operation of the reactor's lithium heat pipes and of the radiator's potassium heat pipes is at or below {approx} 45% of the prevailing wicking and sonic limit, respectively. The masses of the reactor and radiation shadow shield are 753.7 kg and 999.5 kg, respectively; the average heat pipes temperature in the reactor is 1513 K; the mass of the reactor's lithium heat pipes with a C-C finned condenser that is 1.5 m long is 516.1 kg; the mass of the radiator is 557.5 kg, with an outer surface area of 87 m2 (6.41 kg/m2

  10. Thermal and neutron-physical features of the nuclear reactor for a power pulsation plant for space applications

    NASA Astrophysics Data System (ADS)

    Gordeev, É. G.; Kaminskii, A. S.; Konyukhov, G. V.; Pavshuk, V. A.; Turbina, T. A.

    2012-05-01

    We have explored the possibility of creating small-size reactors with a high power output with the provision of thermal stability and nuclear safety under standard operating conditions and in emergency situations. The neutron-physical features of such a reactor have been considered and variants of its designs preserving the main principles and approaches of nuclear rocket engine technology are presented.

  11. Blue Ribbon Commission, Yucca Mountain Closure, Court Actions - Future of Decommissioned Reactors, Operating Reactors and Nuclear Power - 13249

    SciTech Connect

    Devgun, Jas S.

    2013-07-01

    Issues related to back-end of the nuclear fuel cycle continue to be difficult for the commercial nuclear power industry and for the decision makers at the national and international level. In the US, the 1982 NWPA required DOE to develop geological repositories for SNF and HLW but in spite of extensive site characterization efforts and over ten billion dollars spent, a repository opening is nowhere in sight. There has been constant litigation against the DOE by the nuclear utilities for breach of the 'standard contract' they signed with the DOE under the NWPA. The SNF inventory continues to rise both in the US and globally and the nuclear industry has turned to dry storage facilities at reactor locations. In US, the Blue Ribbon Commission on America's Nuclear Future issued its report in January 2012 and among other items, it recommends a new, consent-based approach to siting of facilities, prompt efforts to develop one or more geologic disposal facilities, and prompt efforts to develop one or more consolidated storage facilities. In addition, the March 2011 Fukushima Daiichi accident had a severe impact on the future growth of nuclear power. The nuclear industry is focusing on mitigation strategies for beyond design basis events and in the US, the industry is in the process of implementing the recommendations from NRC's Near Term Task Force. (authors)

  12. Experimental Evaluation of a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson, J. Boise; Reid, Robert S.

    2006-01-01

    As part of the Vision for Space Exploration the end of the next decade will bring man back to the surface of the moon. One of the most critical issues for the establishment of human presence on the moon will be the availability of compact power sources. The establishment of man on the moon will require power from greater than 10's of kWt's in follow on years. Nuclear reactors are extremely we11 suited to meet the needs for power generation on the lunar or Martian surface. reactor system. Several competing concepts exist for lightweight, safe, robust shielding systems such as a water shield, lithium hydride (LiH), Boron Carbide, and others. Water offers several potential advantages, including reduced cost, reduced technical risk, and reduced mass. Water has not typically been considered for space reactor applications because of the need for gravity to remove the potential for radiation streaming paths. The water shield concept relies on predictions of passive circulation of the shield water by natural convection to adequately cool the shield. This prediction needs to be experimentally evaluated, especially for shields with complex geometries. MSFC has developed the experience and fac necessary to do this evaluation in the Early Flight Fission - Test Facility (EFF-TF).

  13. Preliminary Evaluation of Convective Heat Transfer in a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson J. Boise; Reid, Robert S.

    2007-01-01

    As part of the Vision for Space Exploration, the end of the next decade will bring man back to the surface of the moon. A crucial issue for the establishment of human presence on the moon will be the availability of compact power sources. This presence could require greater than 10's of kWt's in follow on years. Nuclear reactors are well suited to meet the needs for power generation on the lunar or Martian surface. Radiation shielding is a key component of any surface power reactor system. Several competing concepts exist for lightweight, safe, robust shielding systems such as a water shield, lithium hydride (LiH), and boron carbide. Water offers several potential advantages, including reduced cost, reduced technical risk, and reduced mass. Water has not typically been considered for space reactor applications because of the need for gravity to fix the location of any vapor that could form radiation streaming paths. The water shield concept relies on the predictions of passive circulation of the shield water by natural convection to adequately cool the shield. This prediction needs to be experimentally evaluated, especially for shields with complex geometries. NASA Marshall Space Flight Center has developed the experience and facilities necessary to do this evaluation in its Early Flight Fission - Test Facility (EFF-TF).

  14. Design of a full scale model fuel assembly for full power production reactor flow excursion experiments

    SciTech Connect

    Nash, C.A. ); Blake, J.E.; Rush, G.C. )

    1990-01-01

    A novel full scale production reactor fuel assembly model was designed and built to study thermal-hydraulic effects of postulated Savannah River Site (SRS) nuclear reactor accidents. The electrically heated model was constructed to simulate the unique annular concentric tube geometry of fuel assemblies in SRS nuclear production reactors. Several major design challenges were overcome in order to produce the prototypic geometry and thermal-hydraulic conditions. The two concentric heater tubes (total power over 6 MW and maximum heat flux of 3.5 MW/m{sup 2}) (1.1E+6 BTU/(ft{sup 2}hr)) were designed to closely simulate the thermal characteristics of SRS uranium-aluminum nuclear fuel. The paper discusses the design of the model fuel assembly, which met requirements of maintaining prototypic geometric and hydraulic characteristics, and approximate thermal similarity. The model had a cosine axial power profile and the electrical resistance was compatible with the existing power supply. The model fuel assembly was equipped with a set of instruments useful for code analysis, and durable enough to survive a number of LOCA transients. These instruments were sufficiently responsive to record the response of the fuel assembly to the imposed transient.

  15. Design of a full scale model fuel assembly for full power production reactor flow excursion experiments

    SciTech Connect

    Nash, C.A.; Blake, J.E.; Rush, G.C.

    1990-12-31

    A novel full scale production reactor fuel assembly model was designed and built to study thermal-hydraulic effects of postulated Savannah River Site (SRS) nuclear reactor accidents. The electrically heated model was constructed to simulate the unique annular concentric tube geometry of fuel assemblies in SRS nuclear production reactors. Several major design challenges were overcome in order to produce the prototypic geometry and thermal-hydraulic conditions. The two concentric heater tubes (total power over 6 MW and maximum heat flux of 3.5 MW/m{sup 2}) (1.1E+6 BTU/(ft{sup 2}hr)) were designed to closely simulate the thermal characteristics of SRS uranium-aluminum nuclear fuel. The paper discusses the design of the model fuel assembly, which met requirements of maintaining prototypic geometric and hydraulic characteristics, and approximate thermal similarity. The model had a cosine axial power profile and the electrical resistance was compatible with the existing power supply. The model fuel assembly was equipped with a set of instruments useful for code analysis, and durable enough to survive a number of LOCA transients. These instruments were sufficiently responsive to record the response of the fuel assembly to the imposed transient.

  16. Transmutation behaviour of Eurofer under irradiation in the IFMIF test facility and fusion power reactors

    NASA Astrophysics Data System (ADS)

    Fischer, U.; Simakov, S. P.; Wilson, P. P. H.

    2004-08-01

    The transmutation behaviour of the low activation steel Eurofer was analysed for irradiation simulations in the high flux test module (HFTM) of the International Fusion Material Irradiation Facility (IFMIF) neutron source and the first wall of a typical fusion power reactor (FPR) employing helium cooled lithium lead (HCLL) and pebble bed (HCPB) blankets. The transmutation calculations were conducted with the analytical and laplacian adaptive radioactivity analysis (ALARA) code and IEAF-2001 data for the IFMIF and the EASY-2003 system for the fusion power reactor (FPR) irradiations. The analyses showed that the transmutation of the main constituents of Eurofer, including iron and chromium, is not significant. Minor constituents such as Ti, V and Mn increase by 5-15% per irradiation year in the FPR and by 10-35% in the IFMIF HFTM. Other minor constituents such as B, Ta, and W show a different transmutation behaviour resulting in different elemental compositions of the Eurofer steel after high fluence irradiations in IFMIF and fusion power reactors.

  17. Development of fast breeder reactor fuel reprocessing technology at the Power Reactor and Nuclear Fuel Development Corporation

    SciTech Connect

    Kawata, T.; Takeda, H.; Togashi, A.; Hayashi, S. . Tokai Works); Stradley, J.G. )

    1991-01-01

    For the past two decades, a broad range of research development (R D) programs to establish fast breeder reactor (FBR) system and its associated fuel cycle technology have been pursued by the Power Reactor and Nuclear Fuel Development Corporation (PNC). Developmental activities for FBR fuel reprocessing technology have been primarily conducted at PNC Tokai Works where many important R D facilities for nuclear fuel cycle are located. These include cold and uranium tests for process equipment development in the Engineering Demonstration Facilities (EDF)-I and II, and laboratory-scale hot tests in the Chemical Processing Facility (CPF) where fuel dissolution and solvent extraction characteristics are being investigated with irradiated FBR fuel pins whose burn-up ranges up to 100,000 MWd/t. An extensive effort has also been made at EDF-III to develop advanced remote technology which enables to increase plant availability and to decrease radiation exposures to the workers in future reprocessing plants. The PNC and the United States Department of Energy (USDOE) entered into the joint collaboration in which the US shares the R Ds to support FBR fuel reprocessing program at the PNC. Several important R Ds on advanced process equipment such as a rotary dissolver and a centrifugal contactor system are in progress in a joint effort with the Oak Ridge National Laboratory (ORNL) Consolidated Fuel Reprocessing Program (CFRP). In order to facilitate hot testing on advanced processes and equipment, the design of a new engineering-scale hot test facility is now in progress aiming at the start of hot operation in late 90's. 31 refs., 2 tabs.

  18. Development of Liquid-Vapor Core Reactors with MHD Generator for Space Power and Propulsion Applications

    SciTech Connect

    Samim Anghaie

    2002-08-13

    Any reactor that utilizes fuel consisting of a fissile material in a gaseous state may be referred to as a gaseous core reactor (GCR). Studies on GCRs have primarily been limited to the conceptual phase, mostly due to budget cuts and program cancellations in the early 1970's. A few scientific experiments have been conducted on candidate concepts, primarily of static pressure fissile gas filling a cylindrical or spherical cavity surrounded by a moderating shell, such as beryllium, heavy water, or graphite. The main interest in this area of nuclear power generation is for space applications. The interest in space applications has developed due to the promise of significant enhancement in fuel utilization, safety, plant efficiency, special high-performance features, load-following capabilities, power conversion optimization, and other key aspects of nuclear power generation. The design of a successful GCR adapted for use in space is complicated. The fissile material studied in the pa st has been in a fluorine compound, either a tetrafluoride or a hexafluoride. Both of these molecules have an impact on the structural material used in the making of a GCR. Uranium hexafluoride as a fuel allows for a lower operating temperature, but at temperatures greater than 900K becomes essentially impossible to contain. This difficulty with the use of UF6 has caused engineers and scientists to use uranium tetrafluoride, which is a more stable molecule but has the disadvantage of requiring significantly higher operating temperatures. Gas core reactors have traditionally been studied in a steady state configuration. In this manner a fissile gas and working fluid are introduced into the core, called a cavity, that is surrounded by a reflector constructed of materials such as Be or BeO. These reactors have often been described as cavity reactors because the density of the fissile gas is low and criticality is achieved only by means of the reflector to reduce neutron leakage from the core

  19. Power Distribution Analysis for the ORNL High Flux Isotope Reactor Critical Experiment 3

    SciTech Connect

    Chandler, David; Primm, Trent; Maldonado, G Ivan

    2010-01-01

    The mission of the Reduced Enrichment for Research and Test Reactors Program is to minimize and, to the extent possible, eliminate the use of highly enriched uranium (HEU) in civilian nuclear applications by working to convert research and test reactors, as well as radioisotope production processes, to low-enriched uranium (LEU) fuel and targets. Oak Ridge National Laboratory (ORNL) is currently reviewing the design bases and key operating criteria including fuel operating parameters, enrichment-related safety analyses, fuel performance, and fuel fabrication in regard to converting the fuel of the High Flux Isotope Reactor (HFIR) from HEU to LEU. The purpose of this study is to validate Monte Carlo methods currently in use for conversion analyses. The methods have been validated for the prediction offlux values in the reactor target, reflector, and beam tubes, but this study focuses on the prediction of the power density profile in the core. Power distributions were calculated in the fuel elements of the HFIR, a research reactor at ORNL, via MCNP and were compared to experimentally obtained data. This study was performed to validate Monte Carlo methods for power density calculations and to observe biases. A current three-dimensional MCNP model was modified to replicate the 1965 HFIR Critical Experiment 3 (HFIRCE-3). In this experiment, the power profile was determined by counting the gamma activity at selected locations in the core. 'Foils' (chunks of fuel meat and clad) were punched out of the fuel elements in HFIRCE-3 following irradiation, and experimental relative power densities were obtained by measuring the activity of these foils and comparing each foil's activity to the activity of a normalizing foil. This analysis consisted of calculating corresponding activities by inserting volume tallies into the modified MCNP model to represent the punchings. The average fission density was calculated for each foil location and then normalized to the reference foil

  20. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    SciTech Connect

    Sheryl Morton; Carl Baily; Tom Hill; Jim Werner

    2006-02-01

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a lowtemperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.

  1. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    SciTech Connect

    Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.; Werner, James E.

    2006-01-20

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.

  2. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    NASA Astrophysics Data System (ADS)

    Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.; Werner, James E.

    2006-01-01

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.

  3. Formulation and experimental evaluation of closed-form control laws for the rapid maneuvering of reactor neutronic power

    SciTech Connect

    Bernard, J.A. . Nuclear Reactor Lab.)

    1989-09-01

    This report describes both the theoretical development and the experimental evaluation of a novel, robust methodology for the time-optimal adjustment of a reactor's neutronic power under conditions of closed-loop digital control. Central to the approach are the MIT-SNL Period-Generated Minimum Time Control Laws' which determine the rate at which reactivity should be changed in order to cause a reactor's neutronic power to conform to a specified trajectory. Using these laws, reactor power can be safely raised by five to seven orders of magnitude in a few seconds. The MIT-SNL laws were developed to facilitate rapid increases of neutronic power on spacecraft reactors operating in an SDI environment. However, these laws are generic and have other applications including the rapid recovery of research and test reactors subsequent to an unanticipated shutdown, power increases following the achievement of criticality on commercial reactors, power adjustments on commercial reactors so as to minimize thermal stress, and automated startups. The work reported here was performed by the Massachusetts Institute of Technology under contract to the Sandia National Laboratories. Support was also provided by the US Department of Energy's Division of University and Industry Programs. The work described in this report is significant in that a novel solution to the problem of time-optimal control of neutronic power was identified, in that a rigorous description of a reactor's dynamics was derived in that the rate of change of reactivity was recognized as the proper control signal, and in that extensive experimental trials were conducted of these newly developed concepts on actual nuclear reactors. 43 refs., 118 figs., 11 tabs.

  4. [A new correction method for radionuclide formation in neutron activation analysis using a reactor power meter coupled with a microcomputer].

    PubMed

    Hirai, S; Yoshino, Y; Suzuki, S; Horiuchi, N

    1982-05-01

    Neutron flux and irradiation time should be accurately known in neutron activation analysis using very short lived nuclides in which conventional monitoring methods i.e., a comparator method, flux monitor method and so on cannot be used satisfactorily. Especially, fluctuation of neutron flux has not been corrected. We noted a change of reactor power at a pneumatic operation, and found out a new correction method for its correction in activation analysis. In our small nuclear reactor, TRIGA-II, the reactor power increased rapidly a few % when a pneumatic-operated capsule arrived at a core of the reactor, and decreased when the capsule left from the core. If the duration between these two changes of the reactor power is equal to the irradiation time, and that the reactor power is proportional to the neutron flux, we can regard an activity formation as a time integration of the reactor power. Then, the correction system was made of a reactor power meter, a V-F converter (voltage to frequency converter), a clock time, a counter, a microcomputer, electric circuits and so on. The signal of the reactor power during the irradiation was counted through the V-F converter, and was accumulated in a memory of the microcomputer. The neutron fluence was calculated in this microcomputer. This method was examined by means of activation of copper and selenium standard samples by 9-11 sec irradiations. The observed activity involved +/- 10% error. However, the error in the corrected activity was decreased to a few % using this correction method. As a result, we found that this method can be used to obtain accurate value for radionuclide formation.

  5. High Temperature Water Heat Pipes Radiator for a Brayton Space Reactor Power System

    SciTech Connect

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2006-01-20

    A high temperature water heat pipes radiator design is developed for a space power system with a sectored gas-cooled reactor and three Closed Brayton Cycle (CBC) engines, for avoidance of single point failures in reactor cooling and energy conversion and rejection. The CBC engines operate at turbine inlet and exit temperatures of 1144 K and 952 K. They have a net efficiency of 19.4% and each provides 30.5 kWe of net electrical power to the load. A He-Xe gas mixture serves as the turbine working fluid and cools the reactor core, entering at 904 K and exiting at 1149 K. Each CBC loop is coupled to a reactor sector, which is neutronically and thermally coupled, but hydraulically decoupled to the other two sectors, and to a NaK-78 secondary loop with two water heat pipes radiator panels. The segmented panels each consist of a forward fixed segment and two rear deployable segments, operating hydraulically in parallel. The deployed radiator has an effective surface area of 203 m2, and when the rear segments are folded, the stowed power system fits in the launch bay of the DELTA-IV Heavy launch vehicle. For enhanced reliability, the water heat pipes operate below 50% of their wicking limit; the sonic limit is not a concern because of the water, high vapor pressure at the temperatures of interest (384 - 491 K). The rejected power by the radiator peaks when the ratio of the lengths of evaporator sections of the longest and shortest heat pipes is the same as that of the major and minor widths of the segments. The shortest and hottest heat pipes in the rear segments operate at 491 K and 2.24 MPa, and each rejects 154 W. The longest heat pipes operate cooler (427 K and 0.52 MPa) and because they are 69% longer, reject more power (200 W each). The longest and hottest heat pipes in the forward segments reject the largest power (320 W each) while operating at {approx} 46% of capillary limit. The vapor temperature and pressure in these heat pipes are 485 K and 1.97 MPa. By

  6. Review of the Tri-Agency Space Nuclear Reactor Power System Technology Program

    NASA Technical Reports Server (NTRS)

    Ambrus, J. H.; Wright, W. E.; Bunch, D. F.

    1984-01-01

    The Space Nuclear Reactor Power System Technology Program designated SP-100 was created in 1983 by NASA, the U.S. Department of Defense, and the Defense Advanced Research Projects Agency. Attention is presently given to the development history of SP-100 over the course of its first year, in which it has been engaged in program objectives' definition, the analysis of civil and military missions, nuclear power system functional requirements' definition, concept definition studies, the selection of primary concepts for technology feasibility validation, and the acquisition of initial experimental and analytical results.

  7. Review of the Tri-Agency Space Nuclear Reactor Power System Technology Program

    NASA Technical Reports Server (NTRS)

    Ambrus, J. H.; Wright, W. E.; Bunch, D. F.

    1984-01-01

    The Space Nuclear Reactor Power System Technology Program designated SP-100 was created in 1983 by NASA, the U.S. Department of Defense, and the Defense Advanced Research Projects Agency. Attention is presently given to the development history of SP-100 over the course of its first year, in which it has been engaged in program objectives' definition, the analysis of civil and military missions, nuclear power system functional requirements' definition, concept definition studies, the selection of primary concepts for technology feasibility validation, and the acquisition of initial experimental and analytical results.

  8. High Temperature Water Heat Pipes Radiator for a Brayton Space Reactor Power System

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2006-01-01

    A high temperature water heat pipes radiator design is developed for a space power system with a sectored gas-cooled reactor and three Closed Brayton Cycle (CBC) engines, for avoidance of single point failures in reactor cooling and energy conversion and rejection. The CBC engines operate at turbine inlet and exit temperatures of 1144 K and 952 K. They have a net efficiency of 19.4% and each provides 30.5 kWe of net electrical power to the load. A He-Xe gas mixture serves as the turbine working fluid and cools the reactor core, entering at 904 K and exiting at 1149 K. Each CBC loop is coupled to a reactor sector, which is neutronically and thermally coupled, but hydraulically decoupled to the other two sectors, and to a NaK-78 secondary loop with two water heat pipes radiator panels. The segmented panels each consist of a forward fixed segment and two rear deployable segments, operating hydraulically in parallel. The deployed radiator has an effective surface area of 203 m2, and when the rear segments are folded, the stowed power system fits in the launch bay of the DELTA-IV Heavy launch vehicle. For enhanced reliability, the water heat pipes operate below 50% of their wicking limit; the sonic limit is not a concern because of the water, high vapor pressure at the temperatures of interest (384 - 491 K). The rejected power by the radiator peaks when the ratio of the lengths of evaporator sections of the longest and shortest heat pipes is the same as that of the major and minor widths of the segments. The shortest and hottest heat pipes in the rear segments operate at 491 K and 2.24 MPa, and each rejects 154 W. The longest heat pipes operate cooler (427 K and 0.52 MPa) and because they are 69% longer, reject more power (200 W each). The longest and hottest heat pipes in the forward segments reject the largest power (320 W each) while operating at ~ 46% of capillary limit. The vapor temperature and pressure in these heat pipes are 485 K and 1.97 MPa. By contrast, the

  9. An RF-powered micro-reactor for the detection of astrobiological target molecules on planetary bodies.

    PubMed

    Scott, Valerie J; Tse, Margaret; Shearn, Michael J; Siegel, Peter H; Amashukeli, Xenia

    2012-08-01

    We describe a sample-processing micro-reactor that utilizes 60 GHz RF radiation with approximately 730 mW of output power. The instrument design and performance characterization are described and then illustrated with modeling and experimental studies. The micro-reactor's efficiency on affecting hydrolysis of chemical bonds similar to those within large complex molecules was demonstrated: a disaccharide-sucrose-was hydrolyzed completely under micro-reactor conditions. The products of the micro-reactor-facilitated hydrolysis were analyzed using mass spectroscopy and proton nuclear magnetic resonance analytical techniques.

  10. ORNL R and D on advanced small and medium power reactors: Selected topics

    SciTech Connect

    White, J.D.; Trauger, D.B.

    1988-01-01

    From 1984-1985, ORNL studied several innovative small and medium power nuclear concepts with respect to viability. Criteria for assessment of market attractiveness were developed and are described here. Using these criteria and descriptions of selected advanced reactor concepts, and assessment of their projected market viability in the time period 2000-2010 was made. All of these selected concepts could be considered as having the potential for meeting the criteria but, in most cases, considerable RandD would be required to reduce uncertainties. This work and later studies of safety and licensing of advanced, passively safe reactor concepts by ORNL are described. The results of these studies are taken into account in most of the current (FY 1989) work at ORNL on advanced reactors. A brief outline of this current work is given. One of the current RandD efforts at ORNL which addresses the operability and safety of advanced reactors is the Advanced Controls Program. Selected topics from this Program are described. 13 refs., 1 fig.

  11. Environmental and safety assessment of LIBRA-SP: A light ion fusion power reactor design

    SciTech Connect

    Khater, H.Y.; Wittenberg, L.J.

    1996-12-31

    LIBRA-SP is a 1000 MWe light ion beam power reactor design study. The reactor structure is made of a low activation ferritic steel and uses LiPb as a breeder. The total activities in the blanket and reflector at shutdown are 721 MCi and 924 MCi, respectively. Hands-on maintenance is impossible anywhere inside the reactor chamber. The biological dose rates near the diode are too high at all times following shutdown allowing only for remote maintenance. The blanket and reflector could qualify for disposal as Class C low level waste. The dose to the maximally exposed individual in the vicinity of the reactor site due to the routine release of tritium is about 2.39 mrem/yr. Ten hours after a loss of coolant accident, the reflector produces a whole body (WB) early dose at the site boundary of 253 mrem. The blanket would produce a WB early dose of 8.91 rem. The potential off-site dose produced by the mobilization of LiPb during an accident is 142 mrem. A 100% release of the vulnerable tritium inventory present in the containment at any moment results in a WB early dose of 459 mrem. Release of the vulnerable tritium inventories present in the target factory and fuel reprocessing facility during an accident would result in WB early doses of 1.3 and 0.95 rem, respectively. 8 refs., 1 fig., 4 tabs.

  12. 76 FR 71610 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Power Uprates...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... with the staff's review of the Turkey Point Units 3 and 4 extended power uprate application. The... COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Power Uprates; Notice of Meeting The ACRS Subcommittee on Power Uprates will hold a meeting on December 14, 2011, Room T...

  13. EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR

    SciTech Connect

    REID, ROBERT S.; PEARSON, J. BOSIE; STEWART, ERIC T.

    2007-01-16

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

  14. Experimental Evaluation of the Thermal Performance of a Water Shield for a Surface Power Reactor

    SciTech Connect

    Pearson, J. Boise; Stewart, Eric T.; Reid, Robert S.

    2007-01-30

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 deg. C. The CFD model with 1/6-g predicts a maximum water temperature of 88 deg. C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

  15. Nuclear reactor power for a space-based radar. SP-100 project

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey; Heller, Jack; Jaffe, Leonard; Beatty, Richard; Bhandari, Pradeep; Chow, Edwin; Deininger, William; Ewell, Richard; Fujita, Toshio; Grossman, Merlin

    1986-01-01

    A space-based radar mission and spacecraft, using a 300 kWe nuclear reactor power system, has been examined, with emphasis on aspects affecting the power system. The radar antenna is a horizontal planar array, 32 X 64 m. The orbit is at 61 deg, 1088 km. The mass of the antenna with support structure is 42,000 kg; of the nuclear reactor power system, 8,300 kg; of the whole spacecraft about 51,000 kg, necessitating multiple launches and orbital assembly. The assembly orbit is at 57 deg, 400 km, high enough to provide the orbital lifetime needed for orbital assembly. The selected scenario uses six Shuttle launches to bring the spacecraft and a Centaur G upper-stage vehicle to assembly orbit. After assembly, the Centaur places the spacecraft in operational orbit, where it is deployed on radio command, the power system started, and the spacecraft becomes operational. Electric propulsion is an alternative and allows deployment in assembly orbit, but introduces a question of nuclear safety.

  16. Nuclear reactor power for a space-based radar. SP-100 project

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey; Heller, Jack; Jaffe, Leonard; Beatty, Richard; Bhandari, Pradeep; Chow, Edwin; Deininger, William; Ewell, Richard; Fujita, Toshio; Grossman, Merlin

    1986-01-01

    A space-based radar mission and spacecraft, using a 300 kWe nuclear reactor power system, has been examined, with emphasis on aspects affecting the power system. The radar antenna is a horizontal planar array, 32 X 64 m. The orbit is at 61 deg, 1088 km. The mass of the antenna with support structure is 42,000 kg; of the nuclear reactor power system, 8,300 kg; of the whole spacecraft about 51,000 kg, necessitating multiple launches and orbital assembly. The assembly orbit is at 57 deg, 400 km, high enough to provide the orbital lifetime needed for orbital assembly. The selected scenario uses six Shuttle launches to bring the spacecraft and a Centaur G upper-stage vehicle to assembly orbit. After assembly, the Centaur places the spacecraft in operational orbit, where it is deployed on radio command, the power system started, and the spacecraft becomes operational. Electric propulsion is an alternative and allows deployment in assembly orbit, but introduces a question of nuclear safety.

  17. Design of a Low Power, Fast-Spectrum, Liquid-Metal Cooled Surface Reactor System

    SciTech Connect

    Marcille, T. F.; Poston, D. I.; Kapernick, R. J.; Dixon, D. D.; Fischer, G. A.; Doherty, S. P.

    2006-01-20

    In the current 2005 US budget environment, competition for fiscal resources make funding for comprehensive space reactor development programs difficult to justify and accommodate. Simultaneously, the need to develop these systems to provide planetary and deep space-enabling power systems is increasing. Given that environment, designs intended to satisfy reasonable near-term surface missions, using affordable technology-ready materials and processes warrant serious consideration. An initial lunar application design incorporating a stainless structure, 880 K pumped NaK coolant system and a stainless/UO2 fuel system can be designed, fabricated and tested for a fraction of the cost of recent high-profile reactor programs (JIMO, SP-100). Along with the cost reductions associated with the use of qualified materials and processes, this design offers a low-risk, high-reliability implementation associated with mission specific low temperature, low burnup, five year operating lifetime requirements.

  18. Investigation of applications for high-power, self-critical fissioning uranium plasma reactors

    NASA Technical Reports Server (NTRS)

    Rodgers, R. J.; Latham, T. S.; Krascella, N. L.

    1976-01-01

    Analytical studies were conducted to investigate potentially attractive applications for gaseous nuclear cavity reactors fueled by uranium hexafluoride and its decomposition products at temperatures of 2000 to 6000 K and total pressures of a few hundred atmospheres. Approximate operating conditions and performance levels for a class of nuclear reactors in which fission energy removal is accomplished principally by radiant heat transfer from the high temperature gaseous nuclear fuel to surrounding absorbing media were determined. The results show the radiant energy deposited in the absorbing media may be efficiently utilized in energy conversion system applications which include (1) a primary energy source for high thrust, high specific impulse space propulsion, (2) an energy source for highly efficient generation of electricity, and (3) a source of high intensity photon flux for heating working fluid gases for hydrogen production or MHD power extraction.

  19. Power output and load following in a fuel cell fueled by membrane reactor hydrogen

    NASA Astrophysics Data System (ADS)

    Buxbaum, Robert; Lei, Hanwei

    Hydrogen for current polymer electrolyte membrane (PEM) and alkaline fuel cells must be supplied with not more than a few tens of ppm of CO or CO 2, respectively. If the hydrogen is generated, as it is used, it must be produced efficiently over a broad fuel cell demand range, and follow load changes on the order of seconds. We generated hydrogen for a broad variety of demands from a 1.09/1 molar mix of methanol/water using a commercial water-gas shift catalyst and a membrane reactor. The reactor output hydrogen was fed directly into a PEM fuel cell. Demand was varied between 0 and 0.9 A/cm 2, both in flow through operation and in dead-end operation. We found power densities virtually identical to those with bottled gas. We also demonstrated inherent load following on a time scale ≤2000 μs.

  20. Fabrication and testing of uranium nitride fuel for space power reactors

    NASA Astrophysics Data System (ADS)

    Matthews, R. B.; Chidester, K. M.; Hoth, C. W.; Mason, R. E.; Petty, R. L.

    1988-02-01

    Uranium nitride fuel was selected for previous space power reactors because of its attractive thermal and physical properties; however, all UN fabrication and testing activities were terminated over ten years ago. An accelerated irradiation test, SP-1, was designed to demonstrate the irradiation performance of Nb-1 Zr clad UN fuel pins for the SP-100 program. A carbothermic-reduction/nitriding process was developed to synthesize UN powders. These powders were fabricated into fuel pellets by conventional cold-pressing and sintering. The pellets were loaded into Nb-1 Zr cladding tubes, irradiated in a fast-test reactor, and destructively examined after 0.8 at% burnup. Preliminary postirradiation examination (PIE) results show that the fuel pins behaved as designed. Fuel swelling, fission-gas release, and microstructural data are presented, and suggestions to enhance the reliability of UN fuel pins are discussed.

  1. A Techno-Economic Optimization of the Power Conversion System of a Very High Temperature Reactor

    SciTech Connect

    Mansilla, Christine; Dumas, Michel; Werkoff, Francois

    2006-07-01

    Generation IV nuclear reactors will not be implemented unless they enable lower production costs than with the current systems. In such a context a techno-economic optimization method was developed and then applied to the power conversion system of a very high temperature reactor. Techno-economic optimization consists in minimizing an objective function that depends on technical variables and economic ones. The advantage of the techno-economic optimization is that it can take into account both investment costs and operating costs. A techno-economic model was implemented in a specific optimization software named Vizir, which is based on genetic algorithms. The calculation of the thermodynamic cycle is performed by a software named Tugaz. The results are the values of the decision variables that lead to a minimum cost, according to the model. The total production cost is evaluated. The influence of the various variables and constraints is also pointed out. (authors)

  2. 10 CFR Appendix J to Part 50 - Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... their normal mode, and need not be vented. Systems that are normally filled with water and operating... returning the reactor to an operating mode requiring containment integrity. For primary reactor containment... surfaces of the containment structures and components shall be performed prior to any Type A test...

  3. Xenon-induced power oscillations in a generic small modular reactor

    NASA Astrophysics Data System (ADS)

    Kitcher, Evans Damenortey

    As world demand for energy continues to grow at unprecedented rates, the world energy portfolio of the future will inevitably include a nuclear energy contribution. It has been suggested that the Small Modular Reactor (SMR) could play a significant role in the spread of civilian nuclear technology to nations previously without nuclear energy. As part of the design process, the SMR design must be assessed for the threat to operations posed by xenon-induced power oscillations. In this research, a generic SMR design was analyzed with respect to just such a threat. In order to do so, a multi-physics coupling routine was developed with MCNP/MCNPX as the neutronics solver. Thermal hydraulic assessments were performed using a single channel analysis tool developed in Python. Fuel and coolant temperature profiles were implemented in the form of temperature dependent fuel cross sections generated using the SIGACE code and reactor core coolant densities. The Power Axial Offset (PAO) and Xenon Axial Offset (XAO) parameters were chosen to quantify any oscillatory behavior observed. The methodology was benchmarked against results from literature of startup tests performed at a four-loop PWR in Korea. The developed benchmark model replicated the pertinent features of the reactor within ten percent of the literature values. The results of the benchmark demonstrated that the developed methodology captured the desired phenomena accurately. Subsequently, a high fidelity SMR core model was developed and assessed. Results of the analysis revealed an inherently stable SMR design at beginning of core life and end of core life under full-power and half-power conditions. The effect of axial discretization, stochastic noise and convergence of the Monte Carlo tallies in the calculations of the PAO and XAO parameters was investigated. All were found to be quite small and the inherently stable nature of the core design with respect to xenon-induced power oscillations was confirmed. Finally, a

  4. Detailed axial power profiles in a MOX fuel experiment in the Advanced Test Reactor

    SciTech Connect

    Chang, G.; Ryskamp, J.M.

    1998-12-31

    The US Department of Energy (DOE) has chosen two options to dispose of surplus weapons-grade (WG) plutonium (WGPu). One option is to burn the WGPu in mixed-oxide (MOX) fuel in light water reactors. An average power test (<10 kW/ft) of WG-MOX fuel was inserted in the Advanced Test Reactor (ATR) in February 1998. A high power test (<15 kW/ft) of WG-MOX fuel in ATR will follow the average-power test. The ability to accurately predict fuel power is essential in the high-power WG-MOX fuel capsule design for the test in ATR. Detailed fission power and temperature profiles may influence gallium migration in WG-MOX fuel pins. Most of the fission heat generated in the MOX fuel capsules will transfer radially to the water coolant. However, because of the short length (15.24 cm) of the MOX fuel pellet stacks, some of the fission heat will transfer through the end pellets axially. Compounded with peak fission power local-to-average ratios (LTAR) at the ends of MOX fuel stacks, the hot spot created may exceed the design limit. Therefore, the prediction of the axial fission power profiles over the MOX fuel stacks at the beginning of life (BOL) and end of life (EOL) are important for MOX fuel performance analysis and capsule design for testing in ATR. Continuous-energy MCNP linked with ORIGEN2 can generate the burnup-dependent cross sections and fission power distribution for fuel burnup analysis while accurately including the effects of self-shielding. This approach is very important for the prediction of plutonium content and LTAR in MOX fuel pellet stacks with HfO{sub 2} ends. MCWO can accurately determine fuel pin power distributions in the ATR experiment when the MOX fuel and HfO{sub 2} are depleted simultaneously. This is significant because the authors quickly provided the customer with the required detailed power distributions within the MOX pins using the new approach. The MOX fuel pin with HfO{sub 2} can flatten the axial power profiles from BOL to EOL and meet the MOX

  5. Feasibility study of the University of Utah TRIGA reactor power upgrade in respect to control rod system

    NASA Astrophysics Data System (ADS)

    Cutic, Avdo

    The objectives of this thesis are twofold: to determine the highest achievable power levels of the current University of Utah TRIG Reactor (UUTR) core configuration with the existing three control rods, and to design the core for higher reactor power by optimizing the control rod worth. For the current core configuration, the maximum reactor power, eigenvalue keff, shutdown margin, and excess reactivity have been measured and calculated. These calculated estimates resulted from thermal power calibrations, and the control rod worth measurements at various power levels. The results were then used as a benchmark to verify the MCNP5 core simulations for the current core and then to design a core for higher reactor power. This study showed that the maximum achievable power with the current core configuration and control rod system is 150kW, which is 50kW higher than the licensed power of the UUTR. The maximum achievable UUTR core power with the existing fuel is determined by optimizing the core configuration and control rod worth, showing that a power upgrade of 500 kW is achievable. However, it requires a new control rod system consisting of a total of four control rods. The cost of such an upgrade is $115,000.

  6. A 48-month extended fuel cycle for the B and W mPower{sup TM} small modular nuclear reactor

    SciTech Connect

    Erighin, M. A.

    2012-07-01

    The B and W mPower{sup TM} reactor is a small, rail-shippable pressurized water reactor (PWR) with an integral once-through steam generator and an electric power output of 150 MW, which is intended to replace aging fossil power plants of similar output. The core is composed of 69 reduced-height, but otherwise standard, PWR assemblies with the familiar 17 x 17 fuel rod array on a 21.5 cm inter-assembly pitch. The B and W mPower core design and cycle management plan, which were performed using the Studsvik core design code suite, follow the pattern of a typical nuclear reactor fuel cycle design and analysis performed by most nuclear fuel management organizations, such as fuel vendors and utilities. However, B and W is offering a core loading and cycle management plan for four years of continuous power operations without refueling and without the hurdles of chemical shim. (authors)

  7. An alternative strategy for low specific power reactors to power interplanetary spacecraft, based on exploiting lasers and lunar resources

    SciTech Connect

    Logan, B.G.

    1989-02-02

    A key requirement setting the minimum electric propulsion performance (specific power ..cap alpha../sub e/ = kW/sub e//kg) for manned missions to Mars is the maximum allowable radiation dose to the crew during the long transits between Earth and Mars. Penetrating galactic cosmic rays and secondary neutron showers give about 0.1-rem/day dose, which only massive shielding (e.g., a meter of concrete) can reduce significantly. With a humane allowance for cabin space, the shielding mass becomes so large that it prohibitively escalates the propellant consumption required for reasonable trip times. This paper covers various proposed methods for using reactor power to propel spacecraft. 7 refs., 6 figs., 1 tab.

  8. Post 9-11 Security Issues for Non-Power Reactor Facilities

    SciTech Connect

    Zaffuts, P. J.

    2003-02-25

    This paper addresses the legal and practical issues arising out of the design and implementation of a security-enhancement program for non power reactor nuclear facilities. The security enhancements discussed are derived from the commercial nuclear power industry's approach to security. The nuclear power industry's long and successful experience with protecting highly sensitive assets provides a wealth of information and lessons that should be examined by other industries contemplating security improvements, including, but not limited to facilities using or disposing of nuclear materials. This paper describes the nuclear industry's approach to security, the advantages and disadvantages of its constituent elements, and the legal issues that facilities will need to address when adopting some or all of these elements in the absence of statutory or regulatory requirements to do so.

  9. Fusion power demonstration - a baseline for the mirror engineering test reactor

    SciTech Connect

    Henning, C.D.; Logan, B.G.; Neef, W.S.; Dorn, D.; Clarkson, I.R.; Carpenter, T.; Gordon, J.D.; Campbell, R.B.; Hsu, P.; Nelson, D.

    1983-12-02

    Developing a definition of an engineering test reactor (ETR) is a current goal of the Office of Fusion Energy (OFE). As a baseline for the mirror ETR, the Fusion Power Demonstration (FPD) concept has been pursued at Lawrence Livermore National Laboratory (LLNL) in cooperation with Grumman Aerospace, TRW, and the Idaho National Engineering Laboratory. Envisioned as an intermediate step to fusion power applications, the FPD would achieve DT ignition in the central cell, after which blankets and power conversion would be added to produce net power. To achieve ignition, a minimum central cell length of 67.5 m is needed to supply the ion and alpha particles radial drift pumping losses in the transition region. The resulting fusion power is 360 MW. Low electron-cyclotron heating power of 12 MW, ion-cyclotron heating of 2.5 MW, and a sloshing ion beam power of 1.0 MW result in a net plasma Q of 22. A primary technological challenge is the 24-T, 45-cm bore choke coil, comprising a copper hybrid insert within a 15 to 18 T superconducting coil.

  10. Performance Analyses of 38 kWe Turbo-Machine Unit for Space Reactor Power Systems

    SciTech Connect

    Gallo, Bruno M.; El-Genk, Mohamed S.

    2008-01-21

    This paper developed a design and investigated the performance of 38 kWe turbo-machine unit for space nuclear reactor power systems with Closed Brayton Cycle (CBC) energy conversion. The compressor and turbine of this unit are scaled versions of the NASA's BRU developed in the sixties and seventies. The performance results of turbo-machine unit are calculated for rotational speed up to 45 krpm, variable reactor thermal power and system pressure, and fixed turbine and compressor inlet temperatures of 1144 K and 400 K. The analyses used a detailed turbo-machine model developed at University of New Mexico that accounts for the various energy losses in the compressor and turbine and the effect of compressibility of the He-Xe (40 mole/g) working fluid with increased flow rate. The model also accounts for the changes in the physical and transport properties of the working fluid with temperature and pressure. Results show that a unit efficiency of 24.5% is achievable at rotation speed of 45 krpm and system pressure of 0.75 MPa, assuming shaft and electrical generator efficiencies of 86.7% and 90%. The corresponding net electric power output of the unit is 38.5 kWe, the flow rate of the working fluid is 1.667 kg/s, the pressure ratio and polytropic efficiency for the compressor are 1.60 and 83.1%, and 1.51 and 88.3% for the turbine.

  11. Performance Analyses of 38 kWe Turbo-Machine Unit for Space Reactor Power Systems

    NASA Astrophysics Data System (ADS)

    Gallo, Bruno M.; El-Genk, Mohamed S.

    2008-01-01

    This paper developed a design and investigated the performance of 38 kWe turbo-machine unit for space nuclear reactor power systems with Closed Brayton Cycle (CBC) energy conversion. The compressor and turbine of this unit are scaled versions of the NASA's BRU developed in the sixties and seventies. The performance results of turbo-machine unit are calculated for rotational speed up to 45 krpm, variable reactor thermal power and system pressure, and fixed turbine and compressor inlet temperatures of 1144 K and 400 K. The analyses used a detailed turbo-machine model developed at the University of New Mexico that accounts for the various energy losses in the compressor and turbine and the effect of compressibility of the He-Xe (40 mole/g) working fluid with increased flow rate. The model also accounts for the changes in the physical and transport properties of the working fluid with temperature and pressure. Results show that a unit efficiency of 24.5% is achievable at rotation speed of 45 krpm and system pressure of 0.75 MPa, assuming shaft and electrical generator efficiencies of 86.7% and 90%. The corresponding net electric power output of the unit is 38.5 kWe, the flow rate of the working fluid is 1.667 kg/s, the pressure ratio and polytropic efficiency for the compressor are 1.60 and 83.1%, and 1.51 and 88.3% for the turbine.

  12. A fission matrix based validation protocol for computed power distributions in the advanced test reactor

    SciTech Connect

    Nielsen, J. W.; Nigg, D. W.; LaPorta, A. W.

    2013-07-01

    The Idaho National Laboratory (INL) has been engaged in a significant multi year effort to modernize the computational reactor physics tools and validation procedures used to support operations of the Advanced Test Reactor (ATR) and its companion critical facility (ATRC). Several new protocols for validation of computed neutron flux distributions and spectra as well as for validation of computed fission power distributions, based on new experiments and well-recognized least-squares statistical analysis techniques, have been under development. In the case of power distributions, estimates of the a priori ATR-specific fuel element-to-element fission power correlation and covariance matrices are required for validation analysis. A practical method for generating these matrices using the element-to-element fission matrix is presented, along with a high-order scheme for estimating the underlying fission matrix itself. The proposed methodology is illustrated using the MCNP5 neutron transport code for the required neutronics calculations. The general approach is readily adaptable for implementation using any multidimensional stochastic or deterministic transport code that offers the required level of spatial, angular, and energy resolution in the computed solution for the neutron flux and fission source. (authors)

  13. Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect

    E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

    2008-08-01

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating-current, AC, to direct-current, DC, conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%.

  14. Vibration behavior of fuel-element vibration suppressors for the advanced power reactor

    NASA Technical Reports Server (NTRS)

    Adams, D. W.; Fiero, I. B.

    1973-01-01

    Preliminary shock and vibration tests were performed on vibration suppressors for the advanced power reactor for space application. These suppressors position the fuel pellets in a pin type fuel element. The test determined the effect of varying axial clearance on the behavior of the suppressors when subjected to shock and vibratory loading. The full-size suppressor was tested in a mockup model of fuel and clad which required scaling of test conditions. The test data were correlated with theoretical predictions for suppressor failure. Good agreement was obtained. The maximum difference with damping neglected was about 30 percent. Neglecting damping would result in a conservative design.

  15. Source-term reevaluation for US commercial nuclear power reactors: a status report

    SciTech Connect

    Herzenberg, C.L.; Ball, J.R.; Ramaswami, D.

    1984-12-01

    Only results that had been discussed publicly, had been published in the open literature, or were available in preliminary reports as of September 30, 1984, are included here. More than 20 organizations are participating in source-term programs, which have been undertaken to examine severe accident phenomena in light-water power reactors (including the chemical and physical behavior of fission products under accident conditions), update and reevaluate source terms, and resolve differences between predictions and observations of radiation releases and related phenomena. Results from these source-term activities have been documented in over 100 publications to date.

  16. Assessments of Longevity of Equipment Metal of Nuclear Power Plants equipped with Reactors VVER-1000

    SciTech Connect

    Gorbatykh, V.P.; Al Kassem, S.N.

    2004-07-01

    Characteristics of damage processes of metal of coffer-dams of steam generators collectors at nuclear power plants (NPPs) equipped with reactors VVER-1000 have been mentioned; principles of construction of longevity function has been cited and new approach has been shown while solving the problem of the longevity of the metal resource by substantiating the technological actions with new mode characteristics, performed with the help of specially developed equations and formulae, where practically all damage processes and all influencing factors can be accounted. (authors)

  17. Compatibility tests of materials for a lithium-cooled space power reactor concept

    NASA Technical Reports Server (NTRS)

    Sinclair, J. H.

    1973-01-01

    Materials for a lithium-cooled space power reactor concept must be chemically compatible for up to 50,000 hr at high temperature. Capsule tests at 1040 C (1900 F) were made of material combinations of prime interest: T-111 in direct contact with uranium mononitride (UN), Un in vacuum separated from T-111 by tungsten wire, UN with various oxygen impurity levels enclosed in tungsten wire lithium-filled T-111 capsules, and TZM and lithium together in T-111 capsules. All combinations were compatible for over 2800 hr except for T-111 in direct contact with UN.

  18. Startup thaw concept for the SP-100 space reactor power system

    NASA Technical Reports Server (NTRS)

    Kirpich, A.; Das, A.; Choe, H.; Mcnamara, E.; Switick, D.; Bhandari, P.

    1990-01-01

    A thaw concept for a space reactor power system which employs lithium as a circulant for both the heat-transport and the heat-rejection fluid loops is presented. An exemplary thermal analysis for a 100-kWe (i.e., SP-100) system is performed. It is shown that the design of the thaw system requires a thorough knowledge of the various physical states of the circulant throughout the system, both spatially and temporally, and that the design has to provide adequate margins for the system to avoid a structural or thermally induced damage.

  19. Power reactor and critical experiment heterogeneity effects assessment for bias factors definition

    SciTech Connect

    Salvatores, M.; Soule, R.; Carta, M.

    1988-09-01

    Heterogeneity effects are compared in a power reactor subassembly of the Superphenix type and in the lattices of the critical experiments performed in the Masurca critical facility. Both the fuel in heterogeneity and the structure tube heterogeneity are evaluated with a two-step method based on the subgroup technique for self-shielding effect evaluation and on the Benoist method for streaming effect evaluation (the DHARMA method). Besides validation with reference calculations for simple geometries, experimental evidence confirms the good performance of the method proposed.

  20. Modeling of boron control during power transients in a pressurized water reactor

    SciTech Connect

    Mathieu, P.; Distexhe, E.

    1986-02-01

    Accurate control instructions in a reactor control aid computer are included in order to realize the boron makeup throughput, which is required to obtain the boron concentration in the primary coolant loop, predicted by a neutronic code. A modeling of the transfer function between the makeup and the primary loop is proposed. The chemical and volumetric control system, the pressurizer, and the primary loop are modeled as instantaneous diffusion cells. The pipes are modeled as time lag lines. The model provides the unstationary boron distributions in the different elements of the setup. A numerical code is developed to calculate the time evolutions of the makeup throughput during power transients.