Science.gov

Sample records for canine kidney cells

  1. Three-dimensional imaging of cholesterol and sphingolipids within a Madin-Darby canine kidney cell

    SciTech Connect

    Yeager, Ashley N.; Weber, Peter K.; Kraft, Mary L.

    2016-01-08

    Metabolic stable isotope incorporation and secondary ion mass spectrometry(SIMS) depth profiling performed on a Cameca NanoSIMS 50 were used to image the 18O-cholesterol and 15N-sphingolipid distributions within a portion of a Madin-Darby canine kidney (MDCK) cell. Three-dimensional representations of the component-specific isotope distributions show clearly defined regions of 18O-cholesterol and 15N-sphingolipid enrichment that seem to be separate subcellular compartments. Furthermore, the low levels of nitrogen-containing secondary ions detected at the 18O-enriched regions suggest that these 18O-cholesterol-rich structures may be lipiddroplets, which have a core consisting of cholesterol esters and triacylglycerides.

  2. Three-dimensional imaging of cholesterol and sphingolipids within a Madin-Darby canine kidney cell

    DOE PAGES

    Yeager, Ashley N.; Weber, Peter K.; Kraft, Mary L.

    2016-01-08

    Metabolic stable isotope incorporation and secondary ion mass spectrometry(SIMS) depth profiling performed on a Cameca NanoSIMS 50 were used to image the 18O-cholesterol and 15N-sphingolipid distributions within a portion of a Madin-Darby canine kidney (MDCK) cell. Three-dimensional representations of the component-specific isotope distributions show clearly defined regions of 18O-cholesterol and 15N-sphingolipid enrichment that seem to be separate subcellular compartments. Furthermore, the low levels of nitrogen-containing secondary ions detected at the 18O-enriched regions suggest that these 18O-cholesterol-rich structures may be lipiddroplets, which have a core consisting of cholesterol esters and triacylglycerides.

  3. Regulated Synthesis and Functions of Laminin 5 in Polarized Madin-Darby Canine Kidney Epithelial Cells

    PubMed Central

    Mak, Grace Z.; Kavanaugh, Gina M.; Buschmann, Mary M.; Stickley, Shaun M.; Koch, Manuel; Goss, Kathleen Heppner; Waechter, Holly; Zuk, Anna

    2006-01-01

    Renal tubular epithelial cells synthesize laminin (LN)5 during regeneration of the epithelium after ischemic injury. LN5 is a truncated laminin isoform of particular importance in the epidermis, but it is also constitutively expressed in a number of other epithelia. To investigate the role of LN5 in morphogenesis of a simple renal epithelium, we examined the synthesis and function of LN5 in the spreading, proliferation, wound-edge migration, and apical–basal polarization of Madin-Darby canine kidney (MDCK) cells. MDCK cells synthesize LN5 only when subconfluent, and they degrade the existing LN5 matrix when confluent. Through the use of small-interfering RNA to knockdown the LN5 α3 subunit, we were able to demonstrate that LN5 is necessary for cell proliferation and efficient wound-edge migration, but not apical–basal polarization. Surprisingly, suppression of LN5 production caused cells to spread much more extensively than normal on uncoated surfaces, and exogenous keratinocyte LN5 was unable to rescue this phenotype. MDCK cells also synthesized laminin α5, a component of LN10, that independent studies suggest may form an assembled basal lamina important for polarization. Overall, our findings indicate that LN5 is likely to play an important role in regulating cell spreading, migration, and proliferation during reconstitution of a continuous epithelium. PMID:16775009

  4. Iterative sorting of apical and basolateral cargo in Madin–Darby canine kidney cells

    PubMed Central

    Treyer, Aleksandr; Pujato, Mario; Pechuan, Ximo; Müsch, Anne

    2016-01-01

    For several decades, the trans-Golgi network (TGN) was considered the most distal stop and hence the ultimate protein-sorting station for distinct apical and basolateral transport carriers that reach their respective surface domains in the direct trafficking pathway. However, recent reports of apical and basolateral cargoes traversing post-Golgi compartments accessible to endocytic ligands before their arrival at the cell surface and the post-TGN breakup of large pleomorphic membrane fragments that exit the Golgi region toward the surface raised the possibility that compartments distal to the TGN mediate or contribute to biosynthetic sorting. Here we describe the development of a novel assay that quantitatively distinguishes different cargo pairs by their degree of colocalization at the TGN and by the evolution of colocalization during their TGN-to-surface transport. Keys to the high resolution of our approach are 1) conversion of perinuclear organelle clustering into a two-dimensional microsomal spread and 2) identification of TGN and post-TGN cargo without the need for a TGN marker that universally cosegregates with all cargo. Using our assay, we provide the first evidence that apical NTRp75 and basolateral VSVG in Madin–Darby canine kidney cells still undergo progressive sorting after they exit the TGN toward the cell surface. PMID:27226480

  5. Transport pathways of solid lipid nanoparticles across Madin-Darby canine kidney epithelial cell monolayer.

    PubMed

    Chai, Gui-Hong; Hu, Fu-Qiang; Sun, Jihong; Du, Yong-Zhong; You, Jian; Yuan, Hong

    2014-10-06

    An understanding of drug delivery system transport across epithelial cell monolayer is very important for improving the absorption and bioavailability of the drug payload. The mechanisms of epithelial cell monolayer transport for various nanocarriers may differ significantly due to their variable components, surface properties, or diameter. Solid lipid nanoparticles (SLNs), conventionally formed by lipid materials, have gained increasing attention in recent years due to their excellent biocompatibility and high oral bioavailability. However, there have been few reports about the mechanisms of SLNs transport across epithelial cell monolayer. In this study, the molecular mechanisms utilized by SLNs of approximately 100 nm in diameter crossing intestinal epithelial monolayer were carefully studied using a simulative intestinal epithelial monolayer formed by Madin-Darby canine kidney (MDCK) epithelial cells. The results demonstrated that SLNs transportation did not induce a significant change on tight junction structure. We found that the endocytosis of SLNs into the epithelial cells was energy-dependent and was significantly greater than nanoparticle exocytosis. The endocytosis of SLNs was found to be rarely mediated via macropinocytosis, as confirmed by the addition of 5-(N-ethyl-N-isopropyl)amiloride (EIPA) as an inhibitory agent, and mainly depended on lipid raft/caveolae- and clathrin-mediated pathways. After SLNs was internalized into MDCK cells, lysosome was one of the main destinations for these nanoparticles. The exocytosis study indicated that the endoplasmic reticulum, Golgi complex, and microtubules played important roles in the transport of SLNs out of MDCK cells. The transcytosis study indicated that only approximately 2.5% of the total SLNs was transported from the apical side to the basolateral side. For SLNs transportation in MDCK cell monolayer, greater transport (approximately 4-fold) was observed to the apical side than to the basolateral side. Our

  6. [Adherent and single-cell suspension culture of Madin-Darby canine kidney cells in serum-free medium].

    PubMed

    Huang, Ding; Zhao, Liang; Tan, Wensong

    2011-04-01

    In recent years, there are tremendous economic and social losses across the world because of virus-related diseases. It is well known that Madin-Darby canine kidney (MDCK) cells are easily handled, quickly amplified and efficiently infected with influenza virus. Therefore, they are considered as one of the most important cell lines for the production of influenza vaccine. In this work, we first developed a serum-free adherent culture process for MDCK cells with an in-house prepared serum-free medium MDCK-SFM. Next, we derived a cell line named ssf-MDCK, which was amenable for single-cell suspension culture in the serum-free medium. We found that during serum-free batch culture of MDCK cells, the peak viable cell density and maximum specific growth rate were 3.81 x 10(6) cells/mL and 0.056 h(-1), respectively; 3.6- and 1.6-fold increase compared with those in serum-containing adherent batch culture. In addition, we compared growth and metabolic characteristics of MDCK cells in serum-containing adherent culture, serum-free adherent culture and serum-free single-cell suspension culture. We found that less metabolic by-products were produced in both serum-free cultures. In serum-free single-cell suspension batch culture, the viable cell density was highest. These results are critical for establishing large-scale suspension culture of MDCK cells as subsequent well as large-scale influenza vaccine production.

  7. The effects of parathyroid hormone and estradiol on cadmium accumulation by Madin-Darby canine kidney cells

    SciTech Connect

    Flanagan, J.L.

    1990-01-01

    Chronic exposure to the toxic metal cadmium causes osteomalacia, osteoporosis, increased serum parathyroid hormone, renal stone formation, hypercalciuria and renal tubular dysfunction, reflecting one or more disturbances of calcium homeostasis. Since renal cadmium (Cd[sup 2+]) transport proceeds in both proximal and distal tubules and parathyroid hormone (PTH) regulates calcium reabsorption at distal nephron sites, it was postulated that PTH may also stimulate Cd[sup 2+] transport in distal tubules. Madin-Darby canine kidney (MDCK) cells, which express a distal phenotype including PTH-sensitive adenylate cyclase and calcium transport, were used as the cell model for the present study. Cadmium uptake was measured using [[sup 109]Cd[sup 2+

  8. Laminin 511 partners with laminin 332 to mediate directional migration of Madin-Darby canine kidney epithelial cells.

    PubMed

    Greciano, Patricia G; Moyano, Jose V; Buschmann, Mary M; Tang, Jun; Lu, Yue; Rudnicki, Jean; Manninen, Aki; Matlin, Karl S

    2012-01-01

    Sustained directional migration of epithelial cells is essential for regeneration of injured epithelia. Front-rear polarity of migrating cells is determined by local activation of a signaling network involving Cdc42 and other factors in response to spatial cues from the environment, the nature of which are obscure. We examined the roles of laminin (LM)-511 and LM-332, two structurally different laminin isoforms, in the migration of Madin-Darby canine kidney cells by suppressing expression of their α subunits using RNA interference. We determined that knockdown of LM-511 inhibits directional migration and destabilizes cell-cell contacts, in part by disturbing the localization and activity of the polarization machinery. Suppression of integrin α3, a laminin receptor subunit, in cells synthesizing normal amounts of both laminins has a similar effect as knockdown of LM-511. Surprisingly, simultaneous suppression of both laminin α5 and laminin α3 restores directional migration and cell-cell contact stability, suggesting that cells recognize a haptotactic gradient formed by a combination of laminins.

  9. Control of microtubule nucleation and stability in Madin-Darby canine kidney cells: the occurrence of noncentrosomal, stable detyrosinated microtubules

    PubMed Central

    1987-01-01

    The microtubule-nucleating activity of centrosomes was analyzed in fibroblastic (Vero) and in epithelial cells (PtK2, Madin-Darby canine kidney [MDCK]) by double-immunofluorescence labeling with anti- centrosome and antitubulin antibodies. Most of the microtubules emanated from the centrosomes in Vero cells, whereas the microtubule network of MDCK cells appeared to be noncentrosome nucleated and randomly organized. The pattern of microtubule organization in PtK2 cells was intermediate to the patterns observed in the typical fibroblastic and epithelial cells. The two centriole cylinders were tightly associated and located close to the nucleus in Vero and PtK2 cells. In MDCK cells, however, they were clearly separated and electron microscopy revealed that they nucleated only a few microtubules. The stability of centrosomal and noncentrosomal microtubules was examined by treatment of these different cell lines with various concentrations of nocodazole. 1.6 microM nocodazole induced an almost complete depolymerization of microtubules in Vero cells; some centrosome nucleated microtubules remained in PtK2 cells, while many noncentrosomal microtubules resisted that treatment in MDCK cells. Centrosomal and noncentrosomal microtubules regrew in MDCK cells with similar kinetics after release from complete disassembly by high concentrations of nocodazole (33 microM). During regrowth, centrosomal microtubules became resistant to 1.6 microM nocodazole before the noncentrosomal ones, although the latter eventually predominate. We suggest that in MDCK cells, microtubules grow and shrink as proposed by the dynamic instability model but the presence of factors prevents them from complete depolymerization. This creates seeds for reelongation that compete with nucleation off the centrosome. By using specific antibodies, we have shown that the abundant subset of nocodazole- resistant microtubules in MDCK cells contained detyrosinated alpha- tubulin (glu tubulin). On the other hand

  10. Percolation analysis in electrical conductivity of Madin-Darby canine kidney and Caco-2 cells by permeation-enhancing agents.

    PubMed

    Washiyama, Makiko; Koizumi, Naoya; Fujii, Makiko; Kondoh, Masuo; Yagi, Kiyohito; Watanabe, Yoshiteru

    2013-01-01

    The control of permeability through the paracellular route has been paid great attention to for enhanced bioavailability of macromolecular and hydrophilic drugs. The paracellular permeability is controlled by tight junctions (TJ), and claudins are the major constituents of TJ. Despite numerous studies on TJ modulation, the dynamics is not well understood, although it could be crucial for clinical applications. Here, we studied the time (t) course of electrical conductivity (Σ) in a monolayer of Madin-Darby canine kidney (MDCK) and Caco-2 cells upon treatment with modulators, the C-terminus fragments of Clostridium perfringens enterotoxin (C-CPE) and sodium caprate (C10). For C-CPE treatment, Σ remains approximately constant, then starts increasing at t=tc (percolation threshold). For C10, on the other hand, Σ increases to 1.6-2.0 fold of the initial value, stays constant, and then starts increasing again for both MDCK and Caco-2 cells at t=tc. We find that this behavior can be explained within a framework of percolation, where Σ shows a logarithmic dependence on t-tc with the power of μ; μ denotes the critical exponent. We obtain μ=1.1-1.2 regardless of cell type or modulator. Notably, μ depends only on the dimensionality (d) of the system, and these values correspond to those for d=2. Percolation is thus the operative mechanism for the increase in Σ through TJ modulation. The findings provide fundamental knowledge, not only on controlled drug delivery, but also on bio-nanotechnologies including the fabrication of biological devices.

  11. The subcellular organization of Madin-Darby canine kidney cells during the formation of a polarized epithelium

    PubMed Central

    1989-01-01

    Studies of the developing trophectoderm in the mouse embryo have shown that extensive cellular remodeling occurs during epithelial formation. In this investigation, confocal immunofluorescence microscopy is used to examine the three-dimensional changes in cellular architecture that take place during the polarization of a terminally differentiated epithelial cell line. Madin-Darby canine kidney cells were plated at a low density on permeable filter supports. Antibodies that specifically recognize components of the tight junction, adherens junction, microtubules, centrosomes, and the Golgi complex were used to study the spatial remodeling of the cytoarchitecture during the formation of the polarized cell layer. The immunofluorescence data were correlated with establishment of functional tight junctions as measured by transepithelial resistance and back-exchange of the cell surface, labeled with metabolites of the fluorescent lipid analogue N-(7-[4- nitrobenzo-2-oxa-1,3-diazole]) aminocaproyl sphingosine. 1 d after plating, single cells had microtubules, radiating from a broad region, that contained the centrosomes and the Golgi complex. 2 d after plating, the cells had grown to confluence and had formed functional tight junctions close to the substratum. The centrioles had split and no longer organized the microtubules which were running above and below the nucleus. The Golgi complex had spread around the nucleus. By the fifth day after plating, the final polarized state had been achieved. The junctional complex had moved greater than 10 microns upward from its basal location. The centrioles were together below the apical membrane, and the Golgi complex formed a ribbon-like convoluted structure located in the apical region above the nucleus. The microtubules were organized in an apical web and in longitudinal microtubule bundles in the apical-basal axis of the columnar cell. The longitudinal microtubules were arranged with their minus ends spread over the apical

  12. PAR1b Promotes Cell–Cell Adhesion and Inhibits Dishevelled-mediated Transformation of Madin-Darby Canine Kidney Cells

    PubMed Central

    Elbert, Maya; Cohen, David

    2006-01-01

    Mammalian Par1 is a family of serine/threonine kinases comprised of four homologous isoforms that have been associated with tumor suppression and differentiation of epithelial and neuronal cells, yet little is known about their cellular functions. In polarizing kidney epithelial (Madin-Darby canine kidney [MDCK]) cells, the Par1 isoform Par1b/MARK2/EMK1 promotes the E-cadherin–dependent compaction, columnarization, and cytoskeletal organization characteristic of differentiated columnar epithelia. Here, we identify two functions of Par1b that likely contribute to its role as a tumor suppressor in epithelial cells. 1) The kinase promotes cell–cell adhesion and resistance of E-cadherin to extraction by nonionic detergents, a measure for the association of the E-cadherin cytoplasmic domain with the actin cytoskeleton, which is critical for E-cadherin function. 2) Par1b attenuates the effect of Dishevelled (Dvl) expression, an inducer of wnt signaling that causes transformation of epithelial cells. Although Dvl is a known Par1 substrate in vitro, we determined, after mapping the PAR1b-phosphorylation sites in Dvl, that PAR1b did not antagonize Dvl signaling by phosphorylating the wnt-signaling molecule. Instead, our data suggest that both proteins function antagonistically to regulate the assembly of functional E-cadherin–dependent adhesion complexes. PMID:16707567

  13. Apical sorting of ADAMTS13 in vascular endothelial cells and Madin-Darby canine kidney cells depends on the CUB domains and their association with lipid rafts

    PubMed Central

    Shang, Dezhi; Zheng, X. Wu; Niiya, Masami; Zheng, X. Long

    2006-01-01

    ADAMTS13 biosynthesis appeared to occur mainly in hepatic stellate cells, but detection of ADAMTS13 mRNA in many other tissues suggests that vascular endothelium may also produce ADAMTS13. We showed that ADAMTS13 mRNA and protein were detectable in human umbilical vein endothelial cells, aortic endothelial cells, and endothelium-derived cell line (ECV304). ADAMTS13 in cell lysate or serum-free conditioned medium cleaved von Willebrand factor (VWF) specifically. ADAMTS13 and VWF were localized to the distinct compartments of endothelial cells. Moreover, ADAMTS13 was preferentially sorted into apical domain of ECV304 and Madin-Darby canine kidney (MDCK) cells. Apical sorting of ADAMTS13 depended on the CUB domains and their association with lipid rafts. A mutation in the second CUB domain of ADAMTS13 (4143-4144insA), naturally occurring in patients with inherited thrombotic thrombocytopenic purpura, resulted in a significant reduction of ADAMTS13 secretion and a reversal of its polarity in MDCK cells. These data demonstrated that ADAMTS13 is synthesized and secreted from endothelial cells; the apically secreted ADAMTS13 from endothelial cells may contribute significantly to plasma ADAMTS13 proteases. The data also suggest a critical role of the CUB domains and a novel cargo-selective mechanism for apical sorting of a soluble ADAMTS protease in polarized cells. PMID:16597588

  14. Modulation of the expression of an apical plasma membrane protein of Madin-Darby canine kidney epithelial cells: cell-cell interactions control the appearance of a novel intracellular storage compartment

    PubMed Central

    1987-01-01

    Experimental conditions that abolish or reduce to a minimum intercellular contacts between Madin-Darby canine kidney epithelial cells result in the appearance of an intracellular storage compartment for apical membrane proteins. Subconfluent culture, incubation in 1-5 microM Ca++, or inclusion of dissociated cells within agarose or collagen gels all caused the intracellular accumulation of a 184-kD apical membrane protein within large (0.5-5 micron) vacuoles, rich in microvilli. Influenza virus hemagglutinin, an apically targeted viral glycoprotein, is concentrated within these structures but the basolateral glycoprotein G of vesicular stomatitis virus and a cellular basolateral 63-kD membrane protein of Madin-Darby canine kidney cells were excluded. This novel epithelial organelle (VAC), which we designate the vacuolar apical compartment, may play an as yet unrecognized role in the biogenesis of the apical plasma membrane during the differentiation of normal epithelia. PMID:3553208

  15. The ether lipid ET-18-OCH3 increases cytosolic Ca2+ concentrations in Madin Darby canine kidney cells.

    PubMed

    Jan, C R; Wu, S N; Tseng, C J

    1999-07-01

    The effect of the ether lipid 1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphorylcholine (ET-18-OCH3) on the intracellular free Ca2+ concentration ([Ca2+]i) in Madin Darby canine kidney (MDCK) cells was studied using fura-2 as the Ca2+ probe. In Ca2+ medium, ET-18-OCH3 induced a significant rise in [Ca2+]i at concentrations between 10-100 microM with a concentration-dependent delay of 45-175 s. The [Ca2+]i signal was composed of a gradual rise and a sustained plateau. In Ca2+-free medium, ET-18-OCH3 (10-100 microM) induced a Ca2+ release from internal Ca2+ stores with a concentration-dependent delay of 45-175 s. This discharge of internal Ca2+ triggered capacitative Ca2+ entry in a concentration-dependent manner. This capacitative Ca2+ entry was not inhibited by econazole (25 microM), 1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole hydrochloride (SKF96365; 50 microM), nifedipine (10 microM), verapamil (10 microM), diltiazem (10 microM) and cadmium (0.5 microM). Methyl 2-(phenylthio)ethyl-1,4-dihydro-2,4,6-trimethylpyridine-3,5-dicarboxylat e (PCA-4248), a platelet-activating factor (PAF) receptor antagonist, inhibited 25 microM ET-18-OCH3-induced [Ca2+]i rise in a concentration-dependent manner between 1-20 microM, with 20 microM exerting a complete block. The [Ca2+]i rise induced by ET-18-OCH3 (25 microM) was not altered when the production of inositol 1,4,5-trisphosphate (IP3) was suppressed by the phospholipase C inhibitor U73122 (2 microM), but was partly inhibited by the phospholipase D inhibitor propranolol (0.1 mM) or the phospholipase A2 inhibitor aristolochic acid (20-40 microM). In Ca2+-free medium, pretreatment with 25 microM ET-18-OCH3 completely depleted the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin-sensitive Ca2+ store. In contrast, pretreatment with thapsigargin abolished 0.1 mM ATP-induced [Ca2+]i rise without altering the ET-18-OCH3-induced [Ca2+]i rise. This suggests that ET-18-OCH3 depleted thapsigargin

  16. Apical sorting of a voltage- and Ca2+-activated K+ channel alpha -subunit in Madin-Darby canine kidney cells is independent of N-glycosylation.

    PubMed

    Bravo-Zehnder, M; Orio, P; Norambuena, A; Wallner, M; Meera, P; Toro, L; Latorre, R; González, A

    2000-11-21

    The voltage- and Ca(2+)-activated K(+) (K(V,Ca)) channel is expressed in a variety of polarized epithelial cells seemingly displaying a tissue-dependent apical-to-basolateral regionalization, as revealed by electrophysiology. Using domain-specific biotinylation and immunofluorescence we show that the human channel K(V,Ca) alpha-subunit (human Slowpoke channel, hSlo) is predominantly found in the apical plasma membrane domain of permanently transfected Madin-Darby canine kidney cells. Both the wild-type and a mutant hSlo protein lacking its only potential N-glycosylation site were efficiently transported to the cell surface and concentrated in the apical domain even when they were overexpressed to levels 200- to 300-fold higher than the density of intrinsic Slo channels. Furthermore, tunicamycin treatment did not prevent apical segregation of hSlo, indicating that endogenous glycosylated proteins (e.g., K(V,Ca) beta-subunits) were not required. hSlo seems to display properties for lipid-raft targeting, as judged by its buoyant distribution in sucrose gradients after extraction with either detergent or sodium carbonate. The evidence indicates that the hSlo protein possesses intrinsic information for transport to the apical cell surface through a mechanism that may involve association with lipid rafts and that is independent of glycosylation of the channel itself or an associated protein. Thus, this particular polytopic model protein shows that glycosylation-independent apical pathways exist for endogenous membrane proteins in Madin-Darby canine kidney cells.

  17. Myosin-1c regulates the dynamic stability of E-cadherin–based cell–cell contacts in polarized Madin–Darby canine kidney cells

    PubMed Central

    Tokuo, Hiroshi; Coluccio, Lynne M.

    2013-01-01

    Cooperation between cadherins and the actin cytoskeleton controls the formation and maintenance of cell–cell adhesions in epithelia. We find that the molecular motor protein myosin-1c (Myo1c) regulates the dynamic stability of E-cadherin–based cell–cell contacts. In Myo1c-depleted Madin–Darby canine kidney cells, E-cadherin localization was dis­organized and lateral membranes appeared less vertical with convoluted edges versus control cells. In polarized monolayers, Myo1c-knockdown (KD) cells were more sensitive to reduced calcium concentration. Myo1c separated in the same plasma membrane fractions as E-cadherin, and Myo1c KD caused a significant reduction in the amount of E-cadherin recovered in one peak fraction. Expression of green fluorescent protein (GFP)–Myo1c mutants revealed that the phosphatidylinositol-4,5-bisphosphate–binding site is necessary for its localization to cell–cell adhesions, and fluorescence recovery after photobleaching assays with GFP-Myo1c mutants revealed that motor function was important for Myo1c dynamics at these sites. At 18°C, which inhibits vesicle recycling, Myo1c-KD cells accumulated more E-cadherin–positive vesicles in their cytoplasm, suggesting that Myo1c affects E-cadherin endocytosis. Studies with photoactivatable GFP–E-cadherin showed that Myo1c KD reduced the stability of E-cadherin at cell–cell adhesions. We conclude that Myo1c stabilizes E-cadherin at adherens junctions in polarized epithelial cells and that the motor function and ability of Myo1c to bind membrane are critical. PMID:23864705

  18. ToF-SIMS and laser-SNMS analysis of Madin-Darby canine kidney II cells with silver nanoparticles using an argon cluster ion beam.

    PubMed

    Nees, Ricarda; Pelster, Andreas; Körsgen, Martin; Jungnickel, Harald; Luch, Andreas; Galla, Hans-Joachim; Arlinghaus, Heinrich F

    2015-06-15

    The use of nanoparticles is one of the fastest expanding fields in industrial as well as in medical applications, owing to their remarkable characteristics. Silver nanoparticles (AgNPs) are among the most-commercialized nanoparticles because of their antibacterial effects. Laser postionization secondary neutral mass spectrometry (laser-SNMS) and time-of-flight secondary ion mass spectrometry in combination with argon cluster ion sputtering was used for the first time to investigate the effects of AgNPs on Madin-Darby canine kidney (MDCK) II cells. Depth profiles and high-resolution three dimensional (3D) images of nanoparticles and organic compounds from cells were obtained using an Ar cluster ion beam for sputtering and Bi3 (+) primary ions for the analysis. The 3D distribution of AgNPs and other organic compounds in MDCK II cells could be readily detected with very high efficiency, sensitivity, and submicron lateral resolution. The argon cluster ion beam is well suited for the sputtering of biological samples. It enables a high sample removal rate along with low molecular degradation. The outer membrane, the cytoplasm, and the nuclei of the cells could be clearly visualized using the signals PO(+) and C3H8N(+) or CN(+) and C3H8N(+). The laser-SNMS images showed unambiguously that AgNPs are incorporated by MDCK II cells and often form silver aggregates with a diameter of a few micrometers, mainly close to the outside of the cell nuclei.

  19. A novel sorting motif in the glutamate transporter excitatory amino acid transporter 3 directs its targeting in Madin-Darby canine kidney cells and hippocampal neurons.

    PubMed

    Cheng, Chialin; Glover, Greta; Banker, Gary; Amara, Susan G

    2002-12-15

    The glutamate transporter excitatory amino acid transporter 3 (EAAT3) is polarized to the apical surface in epithelial cells and localized to the dendritic compartment in hippocampal neurons, where it is clustered adjacent to postsynaptic sites. In this study, we analyzed the sequences in EAAT3 that are responsible for its polarized localization in Madin-Darby canine kidney (MDCK) cells and neurons. Confocal microscopy and cell surface biotinylation assays demonstrated that deletion of the EAAT3 C terminus or replacement of the C terminus of EAAT3 with the analogous region in EAAT1 eliminated apical localization in MDCK cells. The C terminus of EAAT3 was sufficient to redirect the basolateral-preferring EAAT1 and the nonpolarized EAAT2 to the apical surface. Using alanine substitution mutants, we identified a short peptide motif in the cytoplasmic C-terminal region of EAAT3 that directs its apical localization in MDCK cells. Mutation of this sequence also impairs dendritic targeting of EAAT3 in hippocampal neurons but does not interfere with the clustering of EAAT3 on dendritic spines and filopodia. These data provide the first evidence that an identical cytoplasmic motif can direct apical targeting in epithelia and somatodendritic targeting in neurons. Moreover, our results demonstrate that the two fundamental features of the localization of EAAT3 in neurons, its restriction to the somatodendritic domain and its clustering near postsynaptic sites, are mediated by distinct molecular mechanisms.

  20. Perfusion characteristics of preserved canine kidneys subjected to warm ischaemia.

    PubMed

    Modgill, V K; Wiggins, P A; Giles, G R

    1978-02-01

    Canine kidneys were subjected to 0, 15 or 30 min of warm ischaemia followed by 24 hours preservation by perfusion. Changes in perfusate concentration of acid radicles, lactate, free fatty acid and lactice dehydrogenase were assessed at 1 hour and 24 hours. With the exception of LDH concentration at 1 hour, no single parameter was capable of detecting kidneys which were so damaged as to be non-life supporting.

  1. Effects of methyl-beta-cyclodextrin treatment on secretion profile of interferon-beta and zonula occuludin-1 architecture in Madin-Darby canine kidney cell monolayers.

    PubMed

    Maruyama, Masato; Ishida, Kayo; Watanabe, Yoshihiko; Nishikawa, Makiya; Takakura, Yoshinobu

    2009-05-01

    The interferon (IFN) is a paradigm of secretory protein. However, it has been poorly understood how its secretion is regulated in polarized epithelial cells. Recently, we had shown that exogenous IFNs transiently expressed in polarized monolayers were predominantly secreted to the side on which gene transfection had been performed, while stably expressed IFNs were secreted almost equally to the both cell sides. Since those modes of secretion did not affect each other, epithelial cell layers seemed to have at least two protein sorting/secretion pathways, one for transient expression and the other for stable expression, for identical secretory proteins. Furthermore, this dual secretion profile seemed to be mediated by distinct post-trans Golgi network vesicles, suggesting the involvement of lipid rafts in the sorting multiplicity. To address this issue, here we studied the effects of cholesterol depletion with methyl-beta-cyclodextrin (MbetaCD) on the secretion profile of IFN-beta exogenously expressed in Madin-Darby canine kidney (MDCK) cells. The MbetaCD-treatment, however, did not affect the profile in either transient or stable expression, although the architecture of zonula occuludin-1, which links to the tight junction, was substantially disrupted by the treatment. Further analysis of Triton X-100-insoluble cell extracts by sucrose density centrifugation demonstrated that IFN-beta was not apparently associated with lipid rafts in either transient or stable expression. These results suggest that lipid rafts may not be crucially involved in the regulation of secretion polarity of IFN-beta in the epithelial cells.

  2. Kidney cell electrophoresis

    NASA Technical Reports Server (NTRS)

    Todd, P.

    1979-01-01

    A kidney cell electrophoresis technique is described in four parts: (1) the development and testing of electrophoresis solutions; (2) optimization of freezing and thawing; (3) procedures for evaluation of separated kidney cells; and (4) electrophoretic mobility characteristics of kidney cells.

  3. Kidney cell electrophoresis

    NASA Technical Reports Server (NTRS)

    Todd, P.

    1980-01-01

    The following aspects of kidney cell electrophoresis are discussed: (1) the development and testing of electrophoresis solutions; (2) optimization of freezing and thawing; (3) procedures for evaluation of separated kidney cells; and (4) electrophoretic mobility characterization of kidney cells.

  4. Polarized delivery of viral glycoproteins to the apical and basolateral plasma membranes of Madin-Darby canine kidney cells infected with temperature-sensitive viruses

    PubMed Central

    1985-01-01

    The intracellular route followed by viral envelope glycoproteins in polarized Madin-Darby canine kidney cells was studied by using temperature-sensitive mutants of vesicular stomatitis virus (VSV) and influenza, in which, at the nonpermissive temperature (39.5 degrees C), the newly synthesized glycoproteins (G proteins) and hemagglutinin (HA), respectively, are not transported out of the endoplasmic reticulum. After infection with VSV and incubation at 39.5 degrees C for 4-5 h, synchronous transfer of G protein to the plasma membrane was initiated by shifting to the permissive temperature (32.5 degrees C). Immunoelectron microscopy showed that under these conditions the protein moved to the Golgi apparatus and from there directly to a region of the lateral plasma membrane near this organelle. G protein then seemed to diffuse progressively to basal regions of the cell surface and, only after it had accumulated in the basolateral domain, it began to appear on the apical surface near the intercellular junctions. The results of these experiments indicate that the VSV G protein must be sorted before its arrival at the cell surface, and suggest that passage to the apical domain occurs only late in infection when tight junctions are no longer an effective barrier. In complementary experiments, using the temperature-sensitive mutant of influenza, cultures were first shifted from the nonpermissive temperature (39.5 degrees C) to 18.5 degrees C, to allow entrance of the glycoprotein into the Golgi apparatus (see Matlin, K.S., and K. Simons, 1983, Cell, 34:233-243). Under these conditions HA accumulated in Golgi stacks and vesicles but did not reach the plasma membrane. When the temperature was subsequently shifted to 32.5 degrees C, HA rapidly appeared in discrete regions of the apical surface near, and often directly above, the Golgi elements, and later diffused throughout this surface. To ensure that the anti-HA antibodies had access to lateral domains, monolayers were

  5. Differential targeting of glucosylceramide and galactosylceramide analogues after synthesis but not during transcytosis in Madin-Darby canine kidney cells

    PubMed Central

    1995-01-01

    A short-chain analogue of galactosylceramide (6-NBD-amino-hexanoyl- galactosylceramide, C6-NBD-GalCer) was inserted into the apical or the basolateral surface of MDCK cells and transcytosis was monitored by depleting the opposite cell surface of the analogue with serum albumin. In MDCK I cells 32% of the analogue from the apical surface and 9% of the analogue from the basolateral surface transcytosed to the opposite surface per hour. These numbers were very similar to the flow of membrane as calculated from published data on the rate of fluid-phase transcytosis in these cells, demonstrating that C6-NBD-GalCer acted as a marker of bulk membrane flow. It was calculated that in MDCK I cells 155 microns membrane transcytosed per cell per hour in each direction. The fourfold higher percentage transported from the apical surface is explained by the apical to basolateral surface area ratio of 1:4. In MDCK II cells, with an apical to basolateral surface ratio of 1:1, transcytosis of C6-NBD-GalCer was 25% per hour in both directions. Similar numbers were obtained from measuring the fraction of endocytosed C6-NBD-GalCer that subsequently transcytosed. Under these conditions lipid leakage across the tight junction could be excluded, and the vesicular nature of lipid transcytosis was confirmed by the observation that the process was blocked at 17 degrees C. After insertion into one surface of MDCK II cells, the glucosylceramide analogue C6-NBD-GlcCer randomly equilibrated over the two surfaces in 8 h. C6-NBD-GalCer and -GlcCer transcytosed with identical kinetics. Thus no lipid selectivity in transcytosis was observed. Whereas the mechanism by which MDCK cells maintain the different lipid compositions of the two surface domains in the absence of lipid sorting along the transcytotic pathway is unclear, newly synthesized C6-NBD-GlcCer was preferentially delivered to the apical surface of MDCK II cells as compared with C6-NBD-GalCer. PMID:7593186

  6. Successful five-day perfusion preservation of the canine kidney.

    PubMed

    McAnulty, J F; Ploeg, R J; Southard, J H; Belzer, F O

    1989-01-01

    Over 20 years ago, successful 3-day-perfusion preservation of canine kidneys was obtained. Since then, consistent 5-day preservation has not been reported. In this study, we investigated how the perfusate calcium concentration affected both mitochondrial function and posttransplant viability in dog kidneys preserved for 5 days. Dog kidneys were preserved by machine perfusion (5 degrees C) using a hydroxyethyl starch-gluconate solution that contained either 0.0, 0.5, 1.5, or 5.0 mM calcium. Mitochondria isolated from preserved kidneys has a loss of respiratory control when either 0.0, 1.5, or 5.0 mM calcium were present. However, the use of a perfusate with 0.5 mM calcium preserved the mitochondrial function at levels equivalent to controls for 5 days. Transplantation of kidneys preserved for 5 days with 0.0 or 1.5 mM calcium yielded poor survival (0% and 17%, respectively). The use of a 0.5-mM calcium perfusate increased posttransplant survival to 63% (5 of 8 transplanted). Donor pretreatment of kidneys with chlorpromazine (2.5 mg/kg i.v.) did not improve the function of mitochondria isolated from preserved kidneys but did increase survival in the 1.5-mM calcium group to 67% (4 of 6 transplanted) and in the 0.5 mM calcium group to 100% (7 of 7 transplanted). This is the first report to document consistently successful 5-day preservation of canine kidneys and clearly shows the importance of the perfusate calcium concentration in long-term kidney preservation. The specific mechanism by which calcium or chlorpromazine exert their effect is not known, but it is apparent that excessively high or low concentrations of calcium are damaging to the preserved organ, and an optimal calcium concentration combined with metabolic inhibition of calcium-dependent pathways can significantly improve the function of organs preserved for extended time periods.

  7. Cell-permeable ceramides preferentially inhibit coated vesicle formation and exocytosis in Chinese hamster ovary compared with Madin-Darby canine kidney cells by preventing the membrane association of ADP-ribosylation factor.

    PubMed Central

    Abousalham, Abdelkarim; Hobman, Tom C; Dewald, Jay; Garbutt, Michael; Brindley, David N

    2002-01-01

    Differential effects of acetyl(C2-) ceramide (N-acetylsphingosine) were studied on coated vesicle formation from Golgi-enriched membranes of Chinese hamster ovary (CHO) and Madin-Darby canine kidney (MDCK) cells. C2-ceramide blocked the translocation of ADP-ribosylation factor-1 (ARF-1) and protein kinase C-alpha (PKC-alpha) to the membranes from CHO cells, but not those of MDCK cells. Consequently, C2-ceramide blocked the stimulation of phospholipase D1 (PLD1) by the cytosol and guanosine 5'-[gamma-thio]triphosphate (GTP[S]) in membranes from CHO cells. Basal specific activity of PLD1 and the concentration of ARF-1 were 3-4 times higher in Golgi-enriched membranes from MDCK cells compared with CHO cells. Moreover, PLD1 activity in MDCK cells was stimulated less by cytosol and GTP[S]. PLD2 was not detectable in the Golgi-enriched membranes. Incubation of intact CHO cells or their Golgi-enriched membranes with C2-ceramide also inhibited COP1 vesicle formation by membranes from CHO, but not MDCK, cells. Specificity was demonstrated, since dihydro-C2-ceramide had no significant effect on ARF-1 translocation, PLD1 activation or vesicle formation in membranes from both cell types. C2-ceramide also decreased the secretion of virus-like particles to a greater extent in CHO compared with MDCK cells, whereas dihydro-C2-ceramide had no significant effect. The results demonstrate a biological effect of C2-ceramide in CHO cells by decreasing ARF-1 and PKC-alpha binding to Golgi-enriched membranes, thereby preventing COP1 vesicle formation. PMID:11802796

  8. Kidney cell electrophoresis

    NASA Technical Reports Server (NTRS)

    Todd, P. W.

    1985-01-01

    Tasks were undertaken in support of two objectives. They are: (1) to carry out electrophoresis experiments on cells in microgravity; and (2) assess the feasibility of using purified kidney cells from embryonic kidney cultures as a source of important cell products. Investigations were carried out in the following areas: (1) ground based electrophoresis technology; (2) cell culture technology; (3) electrophoresis of cells; (4) urokinase assay research; (5) zero-g electrophoresis; and (6) flow cytometry.

  9. Effect of deoxyspergualin on vascular rejection in canine kidney transplantation.

    PubMed

    Tanabe, K; Takahashi, K; Nemoto, K; Okada, M; Yasuo, M; Hayasaka, Y; Toma, H; Ota, K

    1994-08-01

    Deoxyspergualin (DSG), an analogue of spergualin produced by Bacillus laterosporus, has a strong immunosuppressive effect in various transplantation models. In this study, we investigated the effect of DSG on vascular rejection in canine kidney transplantation. To enhance vascular rejection, donor-specific blood transfusion (DST) was carried out on days 28, 21 and 14 preceding kidney transplantation. After DST, the donor kidney was transplanted to the recipient iliac fossa. The recipient animals were divided into five groups: namely, Group 1 (n = 7), no treatment; Group 2 (n = 6), DST only; Group 3 (n = 5), DSG only (treated with DSG intravenously at 1.2 mg./kg./day for the first 3 days after transplantation, 1.0 mg./kg./day for the following 3 days and 0.8 mg./kg./day for the following 8 days); Group 4 (n = 6), DST and DSG treatment (same protocol as Group 3); and Group 5 (n = 5), DST and cyclosporine (CsA) (treated with CsA orally at 10 mg./kg./day for 14 days after transplantation). In Group 2, DST treatment significantly reduced kidney graft survival time (8.6 +/- 2.2 days) compared with Group 1 (14.1 +/- 5.5 days). Despite DST, DSG treatment (Group 4) significantly prolonged graft survival time (29.5 +/- 2.6 days), whereas treatment with CsA (Group 5) did not prolong survival time (14.1 +/- 5.5 days) (Group 4 versus 5, p < 0.01). The onset of rejection was significantly delayed in Group 4 (22.1 +/- 2.7 days) compared with Groups 2 (5.7 +/- 2.4 days) and 5 (13.0 +/- 5.7 days) (p < 0.01). In contrast, the interval between rejection onset and animal death was significantly reduced in Groups 2 (3.0 +/- 0.6 days) and 5 (2.4 +/- 1.0 days) compared with Group 4 (7.3 +/- 1.7 days) (p < 0.01). These findings suggest that DSG successfully prevented humoral-type (accelerated acute-type) rejections. Histologically, nonDST groups (Groups 1 and 3) showed minimum vascular rejection. In contrast, all recipients in Group 2 showed severe vascular rejection, as did 80% of Cs

  10. Canine pancreas and kidney transplantation following total-lymphoid irradiation

    SciTech Connect

    Williamson, P.; Allen, R.D.; Deane, S.A.; Ekberg, H.; Grierson, J.M.; Hawthorne, W.J.; Mears, D.C.; Tiver, K.; Little, J.M.; Stewart, G.J. )

    1990-10-01

    The effect of total-lymphoid irradiation on survival of canine pancreas and kidney allografts was studied. TLI had a marked immunosuppressive effect as measured by in vitro immune responses and reduced circulating leukocytes. Despite the changes, median graft survival times for animals treated with 800 cGy (9 days) or 1800 cGy (9.5 days) were not significantly different from untreated control animals (7 days). The addition of low-dose antithymocyte globulin (10 mg/kg/day) on post-transplant days 0, 2, 4, 6, 8, and 10 had no measurable synergistic effect. Similarly, median segmental pancreas allograft survival times after 1700-2200 cGy of TLI treatment (16.5 days) were only marginally longer than those of untreated controls (9 days). The only animal to maintain a graft for greater than 200 days was matched to the donor in mixed lymphocyte culture (MLC). This animal was able to reject a third-party skin graft after 8 days while a graft from the original donor was still surviving after 21 days when the pancreas graft failed from a chronic-type rejection. These results indicate that TLI alone or in combination with ATG will not be predictably effective as a method of prolonging allograft survival. The role of matching major histocompatibility complex antigens in TLI treatment requires clarification.

  11. Antiviral effect of lithium chloride on infection of cells by canine parvovirus.

    PubMed

    Zhou, Pei; Fu, Xinliang; Yan, Zhongshan; Fang, Bo; Huang, San; Fu, Cheng; Hong, Malin; Li, Shoujun

    2015-11-01

    Canine parvovirus type 2 causes significant viral disease in dogs, with high morbidity, high infectivity, and high mortality. Lithium chloride is a potential antiviral drug for viruses. We determined the antiviral effect of Lithium Chloride on canine parvovirus type 2 in feline kidney cells. The viral DNA and proteins of canine parvovirus were suppressed in a dose-dependent manner by lithium chloride. Further investigation verified that viral entry into cells was inhibited in a dose-dependent manner by lithium chloride. These results indicated that lithium chloride could be a potential antiviral drug for curing dogs with canine parvovirus infection. The specific steps of canine parvovirus entry into cells that are affected by lithium chloride and its antiviral effect in vivo should be explored in future studies.

  12. Kidney Cell Electrophoresis

    NASA Technical Reports Server (NTRS)

    Todd, P.

    1985-01-01

    Materials and procedures for microgravity electrophoresis of living human embryonic kidney cells were evaluated, ground support in the form of analytical cell electrophoresis and flow cytometry was provided and cells returned from space flight were analyzed. Preflight culture media, electrophoresis buffer, fraction collection media, temperature profiles, and urokinase assay procedures were tested prior to flight. Electrophoretic mobility distributions of aliquots of the cell population to be fractionated in flight were obtained. The protocol established and utilized is given.

  13. Raf-1 kinase possesses distinct binding domains for phosphatidylserine and phosphatidic acid. Phosphatidic acid regulates the translocation of Raf-1 in 12-O-tetradecanoylphorbol-13-acetate-stimulated Madin-Darby canine kidney cells.

    PubMed

    Ghosh, S; Strum, J C; Sciorra, V A; Daniel, L; Bell, R M

    1996-04-05

    Previous studies demonstrated that the cysteine-rich amino-terminal domain of Raf-1 kinase interacts selectively with phosphatidylserine (Ghosh, S., Xie, W. Q., Quest, A. F. G., Mabrouk, G. M., Strum, J. C., and Bell, R. M. (1994) J. Biol. Chem. 269, 10000-10007). Further analysis showed that full-length Raf-1 bound to both phosphatidylserine and phosphatidic acid (PA). Specifically, a carboxyl-terminal domain of Raf-1 kinase (RafC; residues 295 648 of human Raf-1) interacted strongly with phosphatidic acid. The binding of RafC to PA displayed positive cooperativity with Hill numbers between 3.3 and 6.2; the apparent Kd ranged from 4.9 +/- 0.6 to 7.8 +/- 0.9 mol % PA. The interaction of RafC with PA displayed a pH dependence distinct from the interaction between the cysteine-rich domain of Raf-1 and PA. Also, the RafC-PA interaction was unaffected at high ionic strength. Of all the lipids tested, only PA and cardiolipin exhibited high affinity binding; other acidic lipids were either ineffective or weakly effective. By deletion mutagenesis, the PA binding site within RafC was narrowed down to a 35-amino acid segment between residues 389 and 423. RafC did not bind phosphatidyl alcohols; also, inhibition of PA formation in Madin-Darby canine kidney cells by treatment with 1% ethanol significantly reduced the translocation of Raf-1 from the cytosol to the membrane following stimulation with 12-O-tetradecanoylphorbol-13-acetate. These results suggest a potential role of the lipid second messenger, PA, in the regulation of translocation and subsequent activation of Raf-1 in vivo.

  14. Canine visceral leishmaniasis: relationships between oxidative stress, liver and kidney variables, trace elements, and clinical status.

    PubMed

    Heidarpour, M; Soltani, S; Mohri, M; Khoshnegah, J

    2012-10-01

    The aim of this study was to investigate the role of oxidative stress in the pathology of canine visceral leishmaniasis (CVL). We therefore studied the relationships between oxidative stress markers, liver and kidney variables, trace elements, and clinical status in dogs naturally infected with Leishmania infantum. Two groups of Leishmania-infected dogs [asymptomatic (AD, n = 14) and symptomatic (SD, n = 16)] were assessed and compared with a group of non-infected control dogs (CD, n = 30). A significant decrease (p < 0.001) in serum total antioxidant status (TAS) and albumin concentration (p < 0.05) and a significant increase in serum malondialdehyde (MDA) and blood urea nitrogen (BUN) concentrations (p < 0.001), in the SD group, were observed when compared to CD and AD groups. Dogs of the AD group presented a significant decrease in copper (p < 0.01) and zinc (p < 0.001) concentrations, when compared to CD group, while the SD group presented a significant decrease (p < 0.001) in copper and zinc concentrations, when compared to CD and AD groups. Oxidative stress markers (MDA and TAS) showed significant correlations (p < 0.001) with trace elements (copper and zinc) and liver (alanine aminotransferase) and kidney (BUN and creatinine) variables. The results of the present study revealed that symptomatic dogs showed more severe oxidative stress than asymptomatic and non-infected dogs and enhanced lipid peroxidation may be linked to liver and kidney damage in canine visceral leishmaniasis.

  15. Functional and morphologic damage in the neonatally irradiated canine kidney

    SciTech Connect

    Peneyra, R.S.; Jaenke, R.S.

    1985-11-01

    Perinatal irradiation of the developing kidney results in progressive glomerulosclerosis (PGS) and renal failure. This syndrome may result from direct radiation damage to mature deep cortical nephrons and/or nephron functional adaptations resulting from outer cortical nephron ablation. Beagle dogs received single, whole-body exposures (330 R) to /sup 60/Co gamma radiation at 4 days of age (IR4) to study the combined effects of direct radiation damage and nephron loss, or at 30 days of age (IR30) to study the effects of renal irradiation alone. To study the effects of nephron loss alone, dogs underwent unilateral nephrectomy (UN4) or superficial hyperthermic renal ablation (HY4) at 4 days of age. Nephron loss due to irradiation (IR4) and partial renal ablation (UN4 and HY4) was associated with compensatory nephron hypertrophy and increased single nephron glomerular filtration rate (SNGFR), while irradiation at 30 days resulted in transitory decreased SNGFR. Similar degrees of PGS occurred in IR4 dogs which experienced both irradiation and loss of nephrons and UN4 and HY4 dogs which experienced only loss of nephrons. PGS of lesser severity also occurred in IR30 dogs. These findings indicate that PGS associated with perinatal renal irradiation results from direct radiation damage to deep cortical nephrons and compensatory functional changes occurring in response to loss of renal mass.

  16. Canine mammary tumour cell lines established in vitro.

    PubMed

    Hellmén, E

    1993-01-01

    Mammary tumours are the most common tumours in the female dog. The tumours have a complex histology and exist in epithelial, mixed and mesenchymal forms. To study the biology of canine mammary tumours, five cell lines have been established and characterized. The results indicate that canine mammary tumours might be derived from mammary stem cells and that the tumour growth is independent of oestrogens. The established canine mammary tumour cell lines will be valuable tools in further studies of the histogenesis and pathogenesis of these tumours.

  17. Gastrin receptors on isolated canine parietal cells

    SciTech Connect

    Soll, A.H.; Amirian, D.A.; Thomas, L.P.; Reedy, T.J.; Elashoff, J.D.

    1984-05-01

    The receptors in the fundic mucosa that mediate gastrin stimulation of acid secretion have been studied. Synthetic human gastrin-17-I (G17) with a leucine substitution in the 15th position ((Leu15)-G17) was iodinated by chloramine T; high saturable binding was found to enzyme-dispersed canine fundic mucosal cells. /sup 127/I-(Leu15)-G17, but not /sup 127/I-G17, retained binding potency and biological activity comparable with uniodinated G17. Fundic mucosal cells were separated by size by using an elutriator rotor, and specific /sup 125/I-(Leu-15)-G17 binding in the larger cell fractions was highly correlated with the distribution of parietal cells. There was, however, specific gastrin binding in the small cell fractions, not accounted for by parietal cells. Using sequential elutriation and stepwise density gradients, highly enriched parietal and chief cell fractions were prepared; /sup 125/I-(Leu15)-G17 binding correlated positively with the parietal cell (r . 0.98) and negatively with chief cell content (r . -0.96). In fractions enriched to 45-65% parietal cells, specific /sup 125/I-(Leu15)-G17 binding was rapid, reaching a steady state at 37 degrees C within 30 min. Dissociation was also rapid, with the rate similar after 100-fold dilution or dilution plus excess pentagastrin. At a tracer concentration from 10 to 30 pM, saturable binding was 7.8 +/- 0.8% per 10(6) cells (mean +/- SE) and binding in the presence of excess pentagastrin accounted for 11% of total binding. G17 and carboxyl terminal octapeptide of cholecystokinin (26-33) were equipotent in displacing tracer binding and in stimulating parietal cell function ((/sup 14/C)aminopyrine accumulation), whereas the tetrapeptide of gastrin (14-17) had a much lower potency. Proglumide inhibited gastrin binding and selectively inhibited gastrin stimulation of parietal cell function.

  18. Survivin expression in canine epidermis and in canine and human cutaneous squamous cell carcinomas.

    PubMed

    Bongiovanni, Laura; Colombi, Isabella; Fortunato, Carmine; Della Salda, Leonardo

    2009-10-01

    Survivin, a member of the inhibitor of apoptosis protein (IAP) family, is ubiquitously expressed during tissue development, undetectable in most normal tissues, but re-expressed in most cancers, including skin malignancies. Expression of survivin was evaluated retrospectively in 19 canine cutaneous squamous cell carcinomas (SCCs; one in situ; 16 well differentiated; one invasive, one lymph node metastasis) and 19 well differentiated SCCs from human beings. Seven specimens of normal canine skin were included. Immunohistochemical expression of full-length survivin was determined using a commercially available antibody. In addition, apoptotic rate [Terminal deoxynucleotidyl Transferase Biotin-dUTP Nick End Labelling index (TUNEL) index] and mitotic index (MI), counting mitoses in 10 high power fields (HPF), were determined. Scattered survivin positive nuclei were identified in the epidermal basal cell layer of normal canine skin. Nuclear survivin expression was identified in 18 of 19 human and in all canine SCCs, mainly along the base of the tumour cell population. Cytoplasmic survivin expression was rarely observed in human SCCs and in 84.2% of canine SCCs. The TUNEL index ranged from 0.1 to 2.6 in human beings and from 7.5 to 69.4 in dogs, while MIs ranged from 0 to 4 in human beings and dogs. No correlation was found between survivin expression and apoptotic or mitotic rates. Canine and human tumours showed similar nuclear survivin expression, indicating similar functions of the molecule. We demonstrated survivin expression in normal adult canine epidermis. Increased nuclear survivin expression in pre-neoplastic and neoplastic lesions demonstrates a possible association of survivin with development of SCCs in human beings and dogs.

  19. Mechanisms of cell death in canine parvovirus-infected cells provide intuitive insights to developing nanotools for medicine

    PubMed Central

    Nykky, Jonna; Tuusa, Jenni E; Kirjavainen, Sanna; Vuento, Matti; Gilbert, Leona

    2010-01-01

    Viruses have great potential as nanotools in medicine for gene transfer, targeted gene delivery, and oncolytic cancer virotherapy. Here we have studied cell death mechanisms of canine parvovirus (CPV) to increase the knowledge on the CPV life cycle in order to facilitate the development of better parvovirus vectors. Morphological studies of CPV-infected Norden laboratory feline kidney (NLFK) cells and canine fibroma cells (A72) displayed characteristic apoptotic events. Apoptosis was further confirmed by activation of caspases and cellular DNA damage. However, results from annexin V-propidium iodide (PI) labeling and membrane polarization assays indicated disruption of the plasma membrane uncommon to apoptosis. These results provide evidence that secondary necrosis followed apoptosis. In addition, two human cancer cell lines were found to be infected by CPV. This necrotic event over apoptotic cell death and infection in human cells provide insightful information when developing CPV as a nanotool for cancer treatments. PMID:20957163

  20. Mechanisms of cell death in canine parvovirus-infected cells provide intuitive insights to developing nanotools for medicine.

    PubMed

    Nykky, Jonna; Tuusa, Jenni E; Kirjavainen, Sanna; Vuento, Matti; Gilbert, Leona

    2010-08-09

    Viruses have great potential as nanotools in medicine for gene transfer, targeted gene delivery, and oncolytic cancer virotherapy. Here we have studied cell death mechanisms of canine parvovirus (CPV) to increase the knowledge on the CPV life cycle in order to facilitate the development of better parvovirus vectors. Morphological studies of CPV-infected Norden laboratory feline kidney (NLFK) cells and canine fibroma cells (A72) displayed characteristic apoptotic events. Apoptosis was further confirmed by activation of caspases and cellular DNA damage. However, results from annexin V-propidium iodide (PI) labeling and membrane polarization assays indicated disruption of the plasma membrane uncommon to apoptosis. These results provide evidence that secondary necrosis followed apoptosis. In addition, two human cancer cell lines were found to be infected by CPV. This necrotic event over apoptotic cell death and infection in human cells provide insightful information when developing CPV as a nanotool for cancer treatments.

  1. Drugs Approved for Kidney (Renal Cell) Cancer

    MedlinePlus

    ... Ask about Your Treatment Research Drugs Approved for Kidney (Renal Cell) Cancer This page lists cancer drugs ... that are not listed here. Drugs Approved for Kidney (Renal Cell) Cancer Afinitor (Everolimus) Aldesleukin Avastin (Bevacizumab) ...

  2. Myogenic Potential of Canine Craniofacial Satellite Cells

    PubMed Central

    La Rovere, Rita Maria Laura; Quattrocelli, Mattia; Pietrangelo, Tiziana; Di Filippo, Ester Sara; Maccatrozzo, Lisa; Cassano, Marco; Mascarello, Francesco; Barthélémy, Inès; Blot, Stephane; Sampaolesi, Maurilio; Fulle, Stefania

    2014-01-01

    The skeletal fibers have different embryological origin; the extraocular and jaw-closer muscles develop from prechordal mesoderm while the limb and trunk muscles from somites. These different origins characterize also the adult muscle stem cells, known as satellite cells (SCs) and responsible for the fiber growth and regeneration. The physiological properties of presomitic SCs and their epigenetics are poorly studied despite their peculiar characteristics to preserve muscle integrity during chronic muscle degeneration. Here, we isolated SCs from canine somitic [somite-derived muscle (SDM): vastus lateralis, rectus abdominis, gluteus superficialis, biceps femoris, psoas] and presomitic [pre-somite-derived muscle (PSDM): lateral rectus, temporalis, and retractor bulbi] muscles as myogenic progenitor cells from young and old animals. In addition, SDM and PSDM-SCs were obtained also from golden retrievers affected by muscular dystrophy (GRMD). We characterized the lifespan, the myogenic potential and functions, and oxidative stress of both somitic and presomitic SCs with the aim to reveal differences with aging and between healthy and dystrophic animals. The different proliferation rate was consistent with higher telomerase activity in PSDM-SCs compared to SDM-SCs, although restricted at early passages. SDM-SCs express early (Pax7, MyoD) and late (myosin heavy chain, myogenin) myogenic markers differently from PSDM-SCs resulting in a more efficient and faster cell differentiation. Taken together, our results showed that PSDM-SCs elicit a stronger stem cell phenotype compared to SDM ones. Finally, myomiR expression profile reveals a unique epigenetic signature in GRMD SCs and miR-206, highly expressed in dystrophic SCs, seems to play a critical role in muscle degeneration. Thus, miR-206 could represent a potential target for novel therapeutic approaches. PMID:24860499

  3. Canine kidney preservation: comparison of "intracellular", "extracellular," and high molecular weight dextran flushing solutions.

    PubMed

    Wintch, R; James, P M; Turner, C; Vargish, T; Anderson, B; Meredith, J H

    1977-12-01

    The effects of modified Collins-2 solution, adjusted lactated Ringer's solution, and a solution containing dextran 70 on kidney preservation and red blood cell (RBC) washout in dogs were evaluated. Excised kidneys were stored on ice for 24 hours and then reimplanted, at which time the contralateral kidney was removed. RBC washout from the preserved kidneys was measured at the time of initial cold flush. For 20 days after transplantation, serial measurements were made of serum creatinine, blood urea nitrogen, creatinine clearance, serum and urine osmolality, blood pH, and dog weight. No one solution cleared RBCs from the kidneys better than the other solutions. Renal function was significantly better in transplanted kidneys flushed and preserved with the Collins-2 solution than that in kidneys flushed and preserved with the other two solutions. There was generally no significant difference in function between kidneys preserved with dextran and those preserved with lactated Ringer's solution. Our findings suggest that the electrolyte composition of the flush solution may be more important than maintaining a high osmolality in the flush solution in the preservation of renal function during 24 hours' cold storage.

  4. Improvement of canine somatic cell nuclear transfer procedure.

    PubMed

    Jang, G; Oh, H J; Kim, M K; Fibrianto, Y H; Hossein, M S; Kim, H J; Kim, J J; Hong, S G; Park, J E; Kang, S K; Lee, B C

    2008-01-15

    The purpose of the present study on canine somatic cell nuclear transfer (SCNT) was to evaluate the effects of fusion strength, type of activation, culture media and site of transfer on developmental potential of SCNT embryos. We also examined the potential of enucleated bovine oocytes to serve as cytoplast recipients of canine somatic cells. Firstly, we evaluated the morphological characteristics of in vivo-matured canine oocytes collected by retrograde flushing of the oviducts 72 h after ovulation. Secondly, the effectiveness of three electrical strengths (1.8, 2.3 and 3.3 kV/cm), used twice for 20 micros, on fusion of canine cytoplasts with somatic cells were compared. Then, we compared: (1) chemical versus electrical activation (a) after parthenogenetic activation or (b) after reconstruction of canine oocytes with somatic cells; (2) culture of resulting intergeneric (IG) embryos in either (a) mSOF or (b) TCM-199. The exposure time to 6-DMAP was standardized by using bovine oocytes reconstructed with canine somatic cells. Bovine oocytes were used for SCNT after a 22 h in vitro maturation interval. The fusion rate was significantly higher in the 3.3 kV/cm group than in the 1.8 and 2.3 kV/cm treatment groups. After parthenogenesis or SCNT with chemical activation, 3.4 and 5.8%, respectively, of the embryos developed to the morula stage, as compared to none of the embryos produced using electrical activation. Later developmental stages (8-16 cells) were transferred to the uterine horn of eight recipients, but no pregnancy was detected. However, IG cloned embryos (bovine cytoplast/canine somatic cell) were capable of in vitro blastocyst development. In vitro developmental competence of IG cloned embryos was improved after exposure to 6-DMAP for 4 h as compared to 0, 2 or 6h exposure, although the increase was not significantly different among culture media. In summary, for production of canine SCNT embryos, we recommend fusion at 3.3 kV/cm, chemical activation

  5. Canine osteosarcoma cells exhibit resistance to aurora kinase inhibitors.

    PubMed

    Cannon, C M; Pozniak, J; Scott, M C; Ito, D; Gorden, B H; Graef, A J; Modiano, J F

    2015-03-01

    We evaluated the effect of Aurora kinase inhibitors AZD1152 and VX680 on canine osteosarcoma cells. Cytotoxicity was seen in all four cell lines; however, half-maximal inhibitory concentrations were significantly higher than in human leukaemia and canine lymphoma cells. AZD1152 reduced Aurora kinase B phosphorylation, indicating resistance was not because of failure of target recognition. Efflux mediated by ABCB1 and ABCG2 transporters is one known mechanism of resistance against these drugs and verapamil enhanced AZD1152-induced apoptosis; however, these transporters were only expressed by a small percentage of cells in each line and the effects of verapamil were modest, suggesting other mechanisms contribute to resistance. Our results indicate that canine osteosarcoma cells are resistant to Aurora kinase inhibitors and suggest that these compounds are unlikely to be useful as single agents for this disease. Further investigation of these resistance mechanisms and the potential utility of Aurora kinase inhibitors in multi-agent protocols is warranted.

  6. Stem cells in kidney diseases.

    PubMed

    Soler, María José; José Tomas, Ortiz-Pérez

    2012-01-01

    Circulating bone marrow-derived endothelial progenitor cells (EPCs) seem to play a crucial role in both vasculogenesis and vascular homeostasis. Chronic kidney disease is a state of endothelial dysfunction, accelerated progression of atherosclerosis and high cardiovascular risk. As a consequence, cardiovascular disorders are the main cause of death in end-stage renal disease (ESRD). It has been shown that patients with advanced renal failure have decreased number of bone marrow-derived endothelial progenitor cells and impaired EPCs function. Moreover, in kidney transplant patients, renal graft function significantly correlated with EPC number. The reduced number of EPCs in patients with ESRD has been ascribed to the uremia. Therefore, therapies that improve the uremic status in dialysis patients such as nocturnal hemodialysis are associated with restoration of impaired EPCs number and migratory function. In fact, some of the common treatments for patients with chronic kidney disease such as erythropoietin, statins and angiotensin II receptor antagonist increase the number of EPCs. Nowadays, there is growing evidence indicating that, under pathophysiological conditions, stem cells (SCs) derived from bone marrow are able to migrate in the injured kidney, and they seem to play a role in glomerular and tubular regeneration. After acute tubular renal injury, surviving tubular epithelial cells and putative renal stem cells proliferate and differentiate into tubular epithelial cells to promote structural and functional repair. Moreover, bone marrow stem cells, including hematopoietic stem cells and mesenchymal stem cells can also participate in the repair process by proliferation and differentiation into renal lineages. For instance, mesenchymal SCs have been shown to decrease inflammation and enhance renal regeneration. The administration of ex vivo expanded bone marrow-derived mesenchymal SCs have been proved to be beneficial in various experimental models of acute

  7. The anti-canine distemper virus activities of ex vivo-expanded canine natural killer cells.

    PubMed

    Park, Ji-Yun; Shin, Dong-Jun; Lee, Soo-Hyeon; Lee, Je-Jung; Suh, Guk-Hyun; Cho, Duck; Kim, Sang-Ki

    2015-04-17

    Natural killer (NK) cells play critical roles in induction of antiviral effects against various viruses of humans and animals. However, few data on NK cell activities during canine distemper virus (CDV) infections are available. Recently, we established a culture system allowing activation and expansion of canine non-B, non-T, large granular NK lymphocytes from PBMCs of normal dogs. In the present study, we explored the ability of such expanded NK cells to inhibit CDV infection in vitro. Cultured CD3-CD5-CD21- NK cells produced large amounts of IFN-γ, exhibited highly upregulated expression of mRNAs encoding NK-cell-associated receptors, and demonstrated strong natural killing activity against canine tumor cells. Although the expanded NK cells were dose-dependently cytotoxic to both normal and CDV-infected Vero cells, CDV infection rendered Vero cells more susceptible to NK cells. Pretreatment with anti-CDV serum from hyperimmunized dogs enhanced the antibody-dependent cellular cytotoxicity (ADCC) of NK cells against CDV-infected Vero cells. The culture supernatants of NK cells, added before or after infection, dose-dependently inhibited both CDV replication and development of CDV-induced cytopathic effects (CPEs) in Vero cells. Anti-IFN-γ antibody neutralized the inhibitory effects of NK cell culture supernatants on CDV replication and CPE induction in Vero cells. Such results emphasize the potential significance of NK cells in controlling CDV infection, and indicate that NK cells may play roles both during CDV infection and in combating such infections, under certain conditions.

  8. Kidney cell electrophoresis, continuing task

    NASA Technical Reports Server (NTRS)

    Todd, P. W.

    1985-01-01

    Materials and procedures for microgravity electrophoresis of living human embryonic kidney cells were evaluated to provide ground support in the form of analytical cell electrophoresis and flow cytometry. Preflight culture media, electrophoresis buffer, fraction collection media, temperature profiles, and urokinase assay procedures were tested prior to flight. Electrophoretic mobility distributions of aliquots of the cell population to be fractionated in flight were obtained. Cells were prepared in suspension prior to flight in electrophoresis buffer and 10% calf serum. Electrophoretic separation proceeded in electrophoresis buffer without serum in the Continuous Flow Electrophoretic Separator, and fractions were collected into sample bags containing culture medium and concentrated serum. Fractions that yielded enough progeny cells were analyzed for morphology and electrophoretic mobility distributions. It is noted that the lowest mobility fraction studied produced higher mobility progeny while the other fractions produced progeny cells with mobilities related to the fractions from which they were collected.

  9. Hedgehog signaling is activated in canine transitional cell carcinoma and contributes to cell proliferation and survival.

    PubMed

    Gustafson, T L; Kitchell, B E; Biller, B

    2017-03-01

    Transitional cell carcinoma (TCC) is the most commonly diagnosed tumor of the canine urinary system. Hedgehog (HH) signaling represents one possible novel therapeutic target, based on its recently identified central role in human urothelial carcinoma. The purpose of this study was to determine if HH mediators are expressed in canine TCC and the effect of inhibition of this pathway on cell growth and survival. HH pathway mediators were found to be expressed in five canine TCC cell lines. Indian HH was expressed in tumor cells in five canine bladder tumor tissues, but not in normal canine bladder tissue. Inhibition of HH signaling with cyclopamine and GANT61 led to significantly decreased cell proliferation but had a smaller effect on apoptosis. These results support future investigation of inhibitors of HH signaling in the treatment of canine TCC.

  10. Stem cell growth factor receptor in canine vs. feline osteosarcomas

    PubMed Central

    Wolfesberger, Birgitt; Fuchs-Baumgartinger, Andrea; Hlavaty, Juraj; Meyer, Florian R.; Hofer, Martin; Steinborn, Ralf; Gebhard, Christiane; Walter, Ingrid

    2016-01-01

    Osteosarcoma is considered the most common bone cancer in cats and dogs, with cats having a much better prognosis than dogs, since the great majority of dogs with osteosarcoma develop distant metastases. In search of a factor possibly contributing to this disparity, the stem cell growth factor receptor KIT was targeted, and the messenger (m)RNA and protein expression levels of KIT were compared in canine vs. feline osteosarcomas, as well as in normal bone. The mRNA expression of KIT was quantified by reverse transcription-quantitative polymerase chain reaction, and was observed to be significantly higher in canine (n=14) than in feline (n=5) osteosarcoma samples (P<0.001). KIT protein expression was evaluated by immunohistochemistry, which revealed that 21% of canine osteosarcoma samples did not exhibit KIT staining in their neoplastic cells, while in 14% of samples, a score of 1 (<10% positive tumour cells) was observed, and in 50% and 14% of samples, a score of 2 (10–50% positivity) and 3 (>50% positivity), respectively, was observed. By contrast, the cancer cells of all the feline bone tumour samples analysed were entirely negative for KIT. Notably, canine and feline osteocytes of healthy bone tissue lacked any KIT expression. These results could be the first evidence that KIT may be involved in the higher aggressiveness of canine osteosarcoma compared with feline osteosarcoma. PMID:27698817

  11. A critical synopsis: Continuous growth of proximal tubular kidney epithelial cells in hormone-supplemented serum-free medium

    NASA Technical Reports Server (NTRS)

    Chuman, L. M.; FINE; COHEN; Saier, M. H.

    1985-01-01

    The kidney forms urine and reabsorbs electrolytes and water. Kidney cell lines and hormone supplemented serum free medium were used for growth. The hormones were insulin, transferrin, vasopressin, cholesterol, prostaglandins, hydrocortisone, and triidothyronine. Epithelial cell lines are polar and form hemicysts. The Madin-Darby canine kidney(MDCK) cell line used is distal tubulelike. LLC-PK sub 1 cells are derived from pig kidneys and have the properties of different kidney segments. The LLC-PK sub 1 cells with proximal tubule properties were maintained in hormone-supplemented serum free medium. Seven factors (the aforementioned homrones and selenium) were needed for growth. Hormone-defined medium supported LLC-PK sub 1 cell growth, allowed transport (as seen by hemicyst formation), and influenced cell morphology. Vasopressin (used for growth and morphology) could be partially replaced by isobutylmethylxanthine or dibutyryl cAMP. The defined medium was used to isolate rabbit proximal tubule kidney epithelial cells free of fibroblasts.

  12. Cultivation and characterization of canine skin-derived mast cells.

    PubMed

    Kawarai, Shinpei; Masuda, Kenichi; Ohmori, Keitaro; Matsuura, Shinobu; Yasuda, Nobutaka; Nagata, Masahiko; Sakaguchi, Masahiro; Tsujimoto, Hajime

    2010-02-01

    It is essential to develop a technique to culture purified skin-derived mast cells (SMCs) to facilitate immunological research on allergic diseases in dogs. This study was performed to develop an efficient culture system for canine SMCs and to characterize the cells in comparison to canine bone marrow-derived mast cells (BMMCs). Enzymatically digested skin biopsy samples were cultivated in serum-free AIM-V medium supplemented with recombinant canine stem cell factor. Three to five weeks after the initiation of culture, mast cells were collected by a magnetic activated cell separation system using anti-c-Kit antibody. The collected cells were composed of a uniform population showing morphological characteristics of mast cells with a round or oval nucleus and abundant toluidine blue-positive metachromatic granules in the cytoplasm. The results of flow cytometric analysis for the presence of cell membrane c-Kit and Fc epsilon receptor I (FcepsilonRI) indicated that approximately 90% of the cells were mast cells. The cytoplasmic granules were positive for both tryptase and chymase. Apparent dose-dependent degranulation was induced by antibody-mediated cross-linking of immunoglobulin E (IgE) bound to the cells. These cytological and immunological characteristics observed in SMCs were mostly similar to those observed in BMMCs; however, IgE-mediated degranulation was significantly lower in SMCs than BMMCs. The culture system for canine SMCs developed in this study would be useful in understanding the pathophysiology and developing anti-allergic therapeutics in canine allergic dermatitis.

  13. T cells and autoimmune kidney disease.

    PubMed

    Suárez-Fueyo, Abel; Bradley, Sean J; Klatzmann, David; Tsokos, George C

    2017-03-13

    Glomerulonephritis is traditionally considered to result from the invasion of the kidney by autoantibodies and immune complexes from the circulation or following their formation in situ, and by cells of the innate and the adaptive immune system. The inflammatory response leads to the proliferation and dysfunction of cells of the glomerulus, and invasion of the interstitial space with immune cells, resulting in tubular cell malfunction and fibrosis. T cells are critical drivers of autoimmunity and related organ damage, by supporting B-cell differentiation and antibody production or by directly promoting inflammation and cytotoxicity against kidney resident cells. T cells might become activated by autoantigens in the periphery and become polarized to secrete inflammatory cytokines before entering the kidney where they have the opportunity to expand owing to the presence of costimulatory molecules and activating cytokines. Alternatively, naive T cells could enter the kidney where they become activated after encountering autoantigen and expand locally. As not all individuals with a peripheral autoimmune response to kidney antigens develop glomerulonephritis, the contribution of local kidney factors expressed or produced by kidney cells is probably of crucial importance. Improved understanding of the biochemistry and molecular biology of T cells in patients with glomerulonephritis offers unique opportunities for the recognition of treatment targets for autoimmune kidney disease.

  14. Generation of functional platelets from canine induced pluripotent stem cells.

    PubMed

    Nishimura, Toshiya; Hatoya, Shingo; Kanegi, Ryoji; Sugiura, Kikuya; Wijewardana, Viskam; Kuwamura, Mitsuru; Tanaka, Miyuu; Yamate, Jyoji; Izawa, Takeshi; Takahashi, Masahiro; Kawate, Noritoshi; Tamada, Hiromichi; Imai, Hiroshi; Inaba, Toshio

    2013-07-15

    Thrombocytopenia (TTP) is a blood disease common to canines and human beings. Currently, there is no valid therapy for this disease except blood transfusion. In this study, we report the generation of canine induced pluripotent stem cells (ciPSCs) from canine embryonic fibroblasts, and a novel protocol for creating mature megakaryocytes (MKs) and functional platelets from ciPSCs. The ciPSCs were generated using lentiviral vectors, and differentiated into MKs and platelets on OP9 stromal cells supplemented with growth factors. Our ciPSCs presented in a tightly domed shape and showed expression of a critical pluripotency marker, REX1, and normal karyotype. Additionally, ciPSCs differentiated into cells derived from three germ layers via the formation of an embryoid body. The MKs derived from ciPSCs had hyperploidy and transformed into proplatelets. The proplatelets released platelets early on that expressed specific MK and platelet marker CD41/61. Interestingly, these platelets, when activated with adenosine diphosphate or thrombin, bind to fibrinogen. Moreover, electron microscopy showed that the platelets had the same ultrastructure as peripheral platelets. Thus, we have demonstrated for the first time the generation of ciPSCs that are capable of differentiating into MKs and release functional platelets in vitro. Our system for differentiating ciPSCs into MKs and platelets promises a critical therapy for canine TTP and appears to be extensible in principle to resolve human TTP.

  15. De Novo Kidney Regeneration with Stem Cells

    PubMed Central

    Yokote, Shinya; Yamanaka, Shuichiro; Yokoo, Takashi

    2012-01-01

    Recent studies have reported on techniques to mobilize and activate endogenous stem-cells in injured kidneys or to introduce exogenous stem cells for tissue repair. Despite many recent advantages in renal regenerative therapy, chronic kidney disease (CKD) remains a major cause of morbidity and mortality and the number of CKD patients has been increasing. When the sophisticated structure of the kidneys is totally disrupted by end stage renal disease (ESRD), traditional stem cell-based therapy is unable to completely regenerate the damaged tissue. This suggests that whole organ regeneration may be a promising therapeutic approach to alleviate patients with uncured CKD. We summarize here the potential of stem-cell-based therapy for injured tissue repair and de novo whole kidney regeneration. In addition, we describe the hurdles that must be overcome and possible applications of this approach in kidney regeneration. PMID:23251079

  16. Expression and subcellular targeting of canine parvovirus capsid proteins in baculovirus-transduced NLFK cells.

    PubMed

    Gilbert, Leona; Välilehto, Outi; Kirjavainen, Sanna; Tikka, Päivi J; Mellett, Mark; Käpylä, Pirjo; Oker-Blom, Christian; Vuento, Matti

    2005-01-17

    A mammalian baculovirus delivery system was developed to study targeting in Norden Laboratories feline kidney (NLFK) cells of the capsid proteins of canine parvovirus (CPV), VP1 and VP2, or corresponding counterparts fused to EGFP. VP1 and VP2, when expressed alone, both had equal nuclear and cytoplasmic distribution. However, assembled form of VP2 had a predominantly cytoplasmic localization. When VP1 and VP2 were simultaneously present in cells, their nuclear localization increased. Thus, confocal immunofluorescence analysis of cells transduced with the different baculovirus constructs or combinations thereof in the absence or presence of infecting CPV revealed that the VP1 protein is a prerequisite for efficient targeting of VP2 to the nucleus. The baculovirus vectors were functional and the genes of interest efficiently introduced to this CPV susceptible mammalian cell line. Thus, we show evidence that the system could be utilized to study targeting of the CPV capsid proteins.

  17. Benidipine dilates both pre- and post-glomerular arteriole in the canine kidney.

    PubMed

    Yue, W; Kimura, S; Fujisawa, Y; Tian, R; Li, F; Rahman, M; Nishiyama, A; Fukui, T; Abe, Y

    2001-07-01

    The aim of the present study was to determine the effects of benidipine on renal function and whether benidipine may dilate the efferent arteriole as well as the afferent arteriole of the canine kidney. The effects of benidipine on the renal segmental vascular resistance were estimated using Gomez's formula with some modification. The renal hemodynamic action of benidipine was also compared with that of amlodipine. Intrarenal arterial injection of benidipine at a dose of 3 microg/kg resulted in a significant increase in renal blood flow (RBF), urine flow and urinary excretion of sodium, but not in glomerular filtration rate (GFR). Amlodipine at a dose of 300 microg/kg also increased RBF, urine flow and urinary excretion of sodium to a significant degree equivalent to that by benidipine. However, in contrast to benidipine, amlodipine significantly increased GFR. After the administration of benidipine, autoregulation of RBF and GFR was relatively maintained and the renal perfusion pressure (RPP)-RBF relation shifted upward; that is, RBFs at 75 and 50 mmHg were maintained at a higher level than those of the control. In contrast to benidipine, amlodipine diminished the autoregulation of RBF and GFR. RBFs at 75 and 50 mmHg were not different from those of the control. The afferent and efferent arteriolar resistance (Ra and Re) were calculated based on the RPP-RBF and RPP-GFR relations. Benidipine reduced both Ra and Re, but amlodipine selectively reduced Ra. Benidipine increased RBF but not GFR via the dilation of both afferent and efferent arterioles. Thus, benidipine has unique renal hemodynamic actions which differ from those by most calcium antagonists.

  18. Identification of the hepatic efflux transporters of organic anions using double-transfected Madin-Darby canine kidney II cells expressing human organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein.

    PubMed

    Matsushima, Soichiro; Maeda, Kazuya; Kondo, Chihiro; Hirano, Masaru; Sasaki, Makoto; Suzuki, Hiroshi; Sugiyama, Yuichi

    2005-09-01

    Until recently, it was generally believed that the transport of various organic anions across the bile canalicular membrane was mainly mediated by multidrug resistance-associated protein 2 (MRP2/ABCC2). However, a number of new reports have shown that some organic anions are also substrates of multidrug resistance 1 (MDR1/ABCB1) and/or breast cancer resistance protein (BCRP/ABCG2), implying MDR1 and BCRP could also be involved in the biliary excretion of organic anions in humans. In the present study, we constructed new double-transfected Madin-Darby canine kidney II (MDCKII) cells expressing organic anion-transporting polypeptide 1B1 (OATP1B1)/MDR1 and OATP1B1/BCRP, and we investigated the transcellular transport of four kinds of organic anions, estradiol-17beta-d-glucuronide (EG), estrone-3-sulfate (ES), pravastatin (PRA), and cerivastatin (CER), to identify which efflux transporters mediate the biliary excretion of compounds using double-transfected cells. We observed the vectorial transport of EG and ES in all the double transfectants. MRP2 showed the highest efflux clearance of EG among these efflux transporters, whereas BCRP-mediated clearance of ES was the highest in these double transfectants. In addition, two kinds of 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, CER and PRA, were also substrates of all these efflux transporters. The rank order of the efflux clearance of PRA mediated by each transporter was the same as that of EG, whereas the contribution of MDR1 to the efflux of CER was relatively greater than for PRA. This experimental system is very useful for identifying which transporters are involved in the biliary excretion of organic anions that cannot easily penetrate the plasma membrane.

  19. In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates.

    PubMed

    Solonenko, Michael; Cheung, Rex; Busch, Theresa M; Kachur, Alex; Griffin, Gregory M; Vulcan, Theodore; Zhu, Timothy C; Wang, Hsing-Wen; Hahn, Stephen M; Yodh, A G

    2002-03-21

    Motexafin lutetium (MLu) is a second-generation photosensitizer for photodynamic therapy (PDT) of cancer. We have developed and applied a diffuse optical reflectance spectrometer for in vivo measurement of MLu uptake, optical properties, haemoglobin concentration and haemoglobin oxygen saturation in normal canine large bowels, kidneys and prostates. The probe consists of a broadband fibre-optic-coupled light source and detector fibres placed at various distances from the source fibre to collect reflected light. An analysis based on the diffusion approximation of the photon transport equation was used to recover tissue optical properties from the reflectance measurements. The instrumentation and analysis methods were validated using measurements from homogeneous, highly scattering phantoms with known MLu concentrations. The same techniques were then used to estimate chromophore concentrations of normal canine large bowels, kidneys and prostates. We estimated (mean (standard deviation)) total haemoglobin concentrations of 119 (25), 340 (92) and 51 (11) microM in the large bowels, kidneys and prostates of four dogs, respectively; tissue blood oxygen saturations in these same organs were 75 (15), 76 (21) and 74 (16) per cent, respectively. Tissue MLu concentrations (mg l(-1)) were estimated from data taken 3.5 h after injection of a 2 mg kg(-1) injected dose; data from three dogs gave concentrations of 2.4 (0.4) in large bowels, 6.8 (1.3) in kidneys and 2.2 (1.1) in prostates. The reduced scattering coefficients, mu's, estimated for large bowels, kidneys and prostates at 730 nm were, respectively: 10.1 (1.3), 19.6 (4.0) and 12.7 (0.6) cm(-1). We observed significant variability in MLu uptake, tissue scattering and haemoglobin concentration between organs and even between the same organ in different dogs. This class of in situ optical property measurement may be desirable to individualize PDT drug and light delivery.

  20. Expression of Phosphorylated KIT in Canine Mast Cell Tumor.

    PubMed

    Halsey, C H C; Thamm, D H; Weishaar, K M; Burton, J H; Charles, J B; Gustafson, D L; Avery, A C; Ehrhart, E J

    2017-01-01

    Canine cutaneous mast cell tumor (MCT) is the most common canine skin tumor and exhibits variable biologic behavior. Signaling through the KIT receptor tyrosine kinase promotes cellular proliferation and survival and has been shown to play a role in MCT progression. Despite investigations into numerous biomarkers and the proposal of several grading schemas, no single marker or grading system can accurately predict outcome in canine MCT. The first aim of this study was to develop an immunohistochemical assay to measure phosphorylated KIT (pKIT) to investigate its association with 2 commonly used grading systems and other established prognostic markers for canine MCT. Thirty-four archived MCTs were evaluated for expression of pKIT and Ki-67, KIT localization, mitotic count, mutations in exons 8 and 11 in c-kit, and grading by the Patnaik and 2-tier systems. Expression of pKIT was significantly ( P < .05) correlated with the 2-tier grading scheme and c-kit mutation. Correlation approached significance ( P = .06) with Mitotic Index (MI) and Ki-67. An additional aim was to determine whether pKIT labeling provides a pharmacodynamic marker for predicting response to the receptor tyrosine kinase inhibitor toceranib (TOC). MCTs from 4 of 7 patients demonstrated a partial response to TOC. pKIT expression was assessed by immunohistochemistry in biopsies obtained before and 6 hours after the patients were treated with TOC. Reduced pKIT expression after TOC treatment was demonstrated in 3 of the 4 patients with a partial response compared to 1 of the 3 nonresponders. Collectively, these results demonstrate that immunohistochemical detection of pKIT may be a clinically relevant assay to evaluate the activation status of the major oncogenic pathway in canine MCT.

  1. Mast cells in canine cutaneous hemangioma, hemangiosarcoma and mammary tumors.

    PubMed

    Woldemeskel, Moges; Rajeev, Sreekumari

    2010-02-01

    Mast cell count (MCC) in 45 dogs with cutaneous hemangioma (HA, n = 12), hemangiosarcoma (HSA, n = 12), mammary adenoma (AD, n = 9) and mammary adenocarcinoma (AC, n = 12) was made using Toluidine blue stained sections. Antibodies against endothelial cell markers, Factor VIII and VEGF were used to visualize and determine the hot spot micro-vessel density (MVD). Total MCC and MCC along the invasive edges were significantly higher (p < 0.001) in canine mammary AC than in AD. The total MCC did not significantly differ (p > 0.05), in HSAs (8.6 +/- 3.3) than in HAs (5.5 +/- 2.8). There is a positive correlation (r = 0.14) between the hot spot MCC and MVD in mammary AC, although not significant (p = 0.3172), indicating that mast cells are associated with angiogenesis in canine mammary AC. This study suggests that mast cells may play an important role in neovascularization of canine cutaneous vascular and mammary neoplasms. Detailed studies encompassing correlation of MCC and MVD with clinical outcomes and prognosis in these neoplasms are recommended.

  2. Planar cell polarity of the kidney.

    PubMed

    Schnell, Ulrike; Carroll, Thomas J

    2016-05-01

    Planar cell polarity (PCP) or tissue polarity refers to the polarization of tissues perpendicular to the apical-basal axis. Most epithelia, including the vertebrate kidney, show signs of planar polarity. In the kidney, defects in planar polarity are attributed to several disease states including multiple forms of cystic kidney disease. Indeed, planar cell polarity has been shown to be essential for several cellular processes that appear to be necessary for establishing and maintaining tubule diameter. However, uncovering the genetic mechanisms underlying PCP in the kidney has been complicated as the roles of many of the main players are not conserved in flies and vice versa. Here, we review a number of cellular and molecular processes that can affect PCP of the kidney with a particular emphasis on the mechanisms that do not appear to be conserved in flies or that are not part of canonical determinants.

  3. Electrogene therapy with interleukin-12 in canine mast cell tumors

    PubMed Central

    Pavlin, Darja; Cemazar, Maja; Cör, Andrej; Sersa, Gregor; Pogacnik, Azra; Tozon, Natasa

    2011-01-01

    Background Mast cell tumors (MCT) are the most common malignant cutaneous tumors in dogs with extremely variable biological behaviour. Different treatment approaches can be used in canine cutaneous MCT, with surgical excision being the treatment of choice. In this study, electrogene therapy (EGT) as a new therapeutic approach to canine MCTs, was established. Materials and methods. Eight dogs with a total of eleven cutaneous MCTs were treated with intratumoral EGT using DNA plasmid encoding human interleukin-12 (IL-12). The local response to the therapy was evaluated by repeated measurements of tumor size and histological examination of treated tumors. A possible systemic response was assessed by determination of IL-12 and interferon- γ (IFN-γ) in patients’ sera. The occurence of side effects was monitored with weekly clinical examinations of treated animals and by performing basic bloodwork, consisting of the complete bloodcount and determination of selected biochemistry parameters. Results Intratumoral EGT with IL-12 elicits significant reduction of treated tumors’ size, ranging from 13% to 83% (median 50%) of the initial tumor volume. Additionally, a change in the histological structure of treated nodules was seen. There was a reduction in number of malignant mast cells and inflammatory cell infiltration of treated tumors. Systemic release of IL-12 in four patients was detected, without any noticeable local or systemic side effects. Conclusions These data suggest that intratumoral EGT with plasmid encoding IL-12 may be useful in the treatment of canine MCTs, exerting a local antitumor effect. PMID:22933932

  4. Planar cell polarity and the kidney.

    PubMed

    McNeill, Helen

    2009-10-01

    Planar cell polarity (PCP) is a form of spatial organization in tissue that was first described in Drosophila melanogaster. PCP plays a critical conserved role in several aspects of mammalian development. Exciting data implicate PCP in normal kidney development and suggest the loss of oriented cell division and convergent extension downstream of defective PCP signaling lead to cystic kidney disease in mouse models. In this review, I first cover the current knowledge of PCP signaling in invertebrate and vertebrate models and then explore how loss of PCP might underlie some forms of cystic kidney disease.

  5. Directed differentiation of pluripotent stem cells to kidney cells.

    PubMed

    Lam, Albert Q; Freedman, Benjamin S; Bonventre, Joseph V

    2014-07-01

    Regenerative medicine affords a promising therapeutic strategy for the treatment of patients with chronic kidney disease. Nephron progenitor cell populations exist only during embryonic kidney development. Understanding the mechanisms by which these populations arise and differentiate is integral to the challenge of generating new nephrons for therapeutic purposes. Pluripotent stem cells (PSCs), comprising embryonic stem cells, and induced pluripotent stem cells (iPSCs) derived from adults, have the potential to generate functional kidney cells and tissue. Studies in mouse and human PSCs have identified specific approaches to the addition of growth factors, including Wnt and fibroblast growth factor, that can induce PSC differentiation into cells with phenotypic characteristics of nephron progenitor populations with the capacity to form kidney-like structures. Although significant progress has been made, further studies are necessary to confirm the production of functional kidney cells and to promote their three-dimensional organization into bona fide kidney tissue. Human PSCs have been generated from patients with kidney diseases, including polycystic kidney disease, Alport syndrome, and Wilms tumor, and may be used to better understand phenotypic consequences of naturally occurring genetic mutations and to conduct "clinical trials in a dish". The capability to generate human kidney cells from PSCs has significant translational applications, including the bioengineering of functional kidney tissue, use in drug development to test compounds for efficacy and toxicity, and in vitro disease modeling.

  6. What Is Kidney Cancer (Renal Cell Carcinoma)?

    MedlinePlus

    ... Treatment? Kidney Cancer About Kidney Cancer What Is Kidney Cancer? Kidney cancer is a cancer that starts ... and spread, see What Is Cancer? About the kidneys To understand more about kidney cancer, it helps ...

  7. Proteomics profiling of Madin-Darby canine kidney plasma membranes reveals Wnt-5a involvement during oncogenic H-Ras/TGF-beta-mediated epithelial-mesenchymal transition.

    PubMed

    Chen, Yuan-Shou; Mathias, Rommel A; Mathivanan, Suresh; Kapp, Eugene A; Moritz, Robert L; Zhu, Hong-Jian; Simpson, Richard J

    2011-02-01

    Epithelial-mesenchymal transition (EMT) describes a process whereby polarized epithelial cells with restricted migration transform into elongated spindle-shaped mesenchymal cells with enhanced motility and invasiveness. Although there are some molecular markers for this process, including the down-regulation of E-cadherin, our understanding of plasma membrane (PM) and associated proteins involved in EMT is limited. To specifically explore molecular alterations occurring at the PM, we used the cationic colloidal silica isolation technique to purify PM fractions from epithelial Madin-Darby canine kidney cells during Ras/TGF-β-mediated EMT. Proteins in the isolated membrane fractions were separated by one-dimensional SDS-PAGE and subjected to nano-LC-MS/MS-based protein identification. In this study, the first membrane protein analysis of an EMT model, we identified 805 proteins and determined their differential expression using label-free spectral counting. These data reveal that Madin-Darby canine kidney cells switch from cadherin-mediated to integrin-mediated adhesion following Ras/TGF-β-mediated EMT. Thus, during the EMT process, E-cadherin, claudin 4, desmoplakin, desmoglein-2, and junctional adhesion molecule A were down-regulated, whereas integrins α6β1, α3β1, α2β1, α5β1, αVβ1, and αVβ3 along with their extracellular ligands collagens I and V and fibronectin had increased expression levels. Conspicuously, Wnt-5a expression was elevated in cells undergoing EMT, and transient Wnt-5a siRNA silencing attenuated both cell migration and invasion in these cells. Furthermore, Wnt-5a expression suppressed canonical Wnt signaling induced by Wnt-3a. Wnt-5a may act through the planar cell polarity pathway of the non-canonical Wnt signaling pathway as several of the components and modulators (Wnt-5a, -5b, frizzled 6, collagen triple helix repeat-containing protein 1, tyrosine-protein kinase 7, RhoA, Rac, and JNK) were found to be up-regulated during Ras

  8. Planar cell polarity and the kidney

    PubMed Central

    Papakrivopoulou, Eugenia; Dean, Charlotte H.; Copp, Andrew J.; Long, David A.

    2014-01-01

    Planar cell polarity (PCP) is the uniform orientation and alignment of a group of cells orthogonal to the apical–basal axis within a tissue. Originally described in insects, it is now known that PCP is required for many processes in vertebrates, including directional cell movement, polarized cell division, ciliary orientation, neural tube closure, heart development and lung branching. In this review, we outline the evidence implicating PCP in kidney development and disease focusing initially on the function of PCP in ureteric bud branching and elongation. We then describe how defects in PCP may lead to polycystic kidney disease and discuss a newly identified role for PCP in the kidney filtration barrier. PMID:24293657

  9. Nuclear morphometry in canine acanthomatous ameloblastomas and squamous cell carcinomas.

    PubMed

    Martano, M; Damiano, S; Restucci, B; Paciello, O; Russo, V; Maiolino, P

    2006-01-01

    The aim of this study was to evaluate whether morphometrical analysis can be of diagnostic value for canine acanthomatous ameloblastoma. We calculated, by means of an automated image analyser, some morphometric nuclear parameters, in particular: mean nuclear area (MNA), mean nuclear perimeter (MNP), maximum and minimum diameters (MDx and MDm) coefficient of variation of the nuclear area (NACV), largest to smallest dimension ratio (LS ratio), and form factor (FF), in 8 canine acanthomatous ameloblastomas, and we compared these morphometric data to those of 13 squamous cell carcinomas of canine gingiva. The results indicated a progressive increase of the MNA, NACV, MNP and MDm proceeding from acanthomatous ameloblastomas (MNA: 42.11+/-8.74; NACV: 28,36+/-7,23; MNP: 24.18+/- 2.68; MDm: 5.69+/-0.49) to squamous cell carcinomas (MNA:49,69+/-9,10; NACV: 30,89+/-7,75; MNP: 25.63+/-2.54; MDm: 6.64+/-0.73). On the contrary, the LS ratio and the FF resulted greater in acanthomatous ameloblastomas (LS ratio: 1,63+/-0,12; FF: 1,13+/-0,002) than in SCCs (LS ratio: 1,40+/-0,12; FF:0.91+/-0.38). Moreover, the MNA, MNP,MDx and MDm resulted similar (MNA: p=0.89; MNP: p=0,65; MDm: p=0,16; MDx: p=0,13) in a subset of four acanthomatous ameloblastomas with cellular atypia (MNA:49,01+/-6,88; MNP: 26,28+/-1,99; MDm: 6.08+/-0.41; MDx: 10.18+/-0.88) and in squamous cell carcinomas (MNA:49.69+/-9,10; MNP: 25.63+/-2.54; MDm: 6.64+/-0.73; MDx: 9.26+/-1.05). While the NACV values resulted higher in typical acanthomatous ameloblastoma (29,99+/-6,06) than in atypical acanthomatous ameloblastoma (26,74+/-8,84) and similar to those of the SCCs (30,89+/-7,75). These results seem to confirm that acanthomatous ameloblastoma is a malignant or potentially malignant lesion and emphasizes that nuclear morphometry analysis can be an useful diagnostic and prognostic method in canine oral pathology.

  10. Canine cutaneous epitheliotropic lymphoma (mycosis fungoides) is a proliferative disorder of CD8+ T cells.

    PubMed Central

    Moore, P. F.; Olivry, T.; Naydan, D.

    1994-01-01

    Canine epitheliotropic lymphoma (mycosis fungoides [MF]) is a spontaneous neoplasm of skin and mucous membranes that occurs in old dogs (mean age 11 years) and has no breed predilection. The lesions evolve from a patch-plaque stage with prominent epitheliotropism into a tumor stage in which distant metastasis is observed. Unlike human MF, epitheliotropism of the lymphoid infiltrate is still prominent in tumor stage lesions. Tropism of the lymphoid infiltrate for adnexal structures, especially hair follicles and apocrine sweat glands, was marked in all clinical stages of canine MF. Twenty-three cases of MF were subjected to extensive immunophenotypic analysis in which reagents specific for canine leukocyte antigens and fresh frozen tissue sections of the canine lesions were used. Canine MF proved to be a T cell lymphoma in which the epitheliotropic lymphocytes consistently expressed CD3 (22 cases) and CD8 (19 cases); CD3+CD4-CD8- lymphocytes predominated in the remaining 4 cases. In this regard, canine MF clearly differed from human MF in which a CD4 immunophenotype predominates in the T cell infiltrate. Lack of expression of CD45RA by epitheliotropic T cells and intense expression of a beta 1 integrin (VLA-4-like) suggested that T cells in canine MF belonged to the memory subpopulation, as has been suggested for T cells in human MF. Pan-T cell antigen loss or discordant expression also proved useful as phenotypic indicators of neoplasia in canine MF. Loss of CD5 was observed in epitheliotropic T cells in 63% of cases. Discordance of neoplastic T cell Thy-1 expression was frequently observed between epithelial and dermal or submucosal compartments. We conclude that canine MF still represents a useful spontaneous animal disease model of human cutaneous T cell lymphoma, despite the immunophenotypic differences, which may reflect operational differences between human and canine skin-associated lymphoid tissue. Images Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 Figure

  11. Four cases of cell cannibalism in highly malignant feline and canine tumors.

    PubMed

    Ferreira, Fernando Costa; Soares, Maria João; Carvalho, Sandra; Borralho, Liliana; Vicente, Gonçalo; Branco, Sandra; Correia, Jorge; Peleteiro, Maria Conceição

    2015-11-02

    Four cases of tumors in which cell internalization was frequently visualized are reported: one feline mammary carcinoma, one feline cutaneous squamous cell carcinoma, one canine pulmonary squamous cell carcinoma and one canine pleural mesothelioma. Cell internalization was observed by cytology in two of these cases (the feline mammary tumour and the pleural effusion in the canine mesothelioma) and by histopathology in all but the canine mesothelioma. Immunohistochemical staining for pancytokeratin was positive for both internalized and host cells, while E-cadherin expression was frequently absent, although internalized cells occasionally stained positive. This cell-to-cell interaction seems to be associated with tumors displaying a strong epithelial-mesenchymal transitional phenotype, in which cancer cells become engulfed by other cancer cells. Such event could be regarded as an important hallmark of very high malignancy.

  12. Cloning of the canine beta-glucuronidase cDNA, mutation identification in canine MPS VII, and retroviral vector-mediated correction of MPS VII cells.

    PubMed

    Ray, J; Bouvet, A; DeSanto, C; Fyfe, J C; Xu, D; Wolfe, J H; Aguirre, G D; Patterson, D F; Haskins, M E; Henthorn, P S

    1998-03-01

    Mucopolysaccharidosis type VII (MPS VII) is an inherited disease resulting from deficient activity of the lysosomal acid hydrolase beta-glucuronidase (GUSB) and has been reported in humans, mice, cats, and dogs. To characterize canine MPS VII, we have isolated and sequenced the canine GUSB cDNA from normal and affected animals. A single nucleotide substitution was detected in the GUSB cDNA derived from MPS VII dogs. This guanosine to adenine base change at nucleotide position 559 in the canine cDNA sequence causes an arginine to histidine substitution at amino acid position 166. Introduction of the G to A substitution at position 559 in a mammalian expression vector containing the normal canine GUSB cDNA nearly eliminated the GUSB enzymatic activity, demonstrating that this mutation is the cause of canine MPS VII. A retroviral vector expressing the full-length canine beta-glucuronidase cDNA corrected the deficiency in MPS VII cells.

  13. Canine distemper virus causes apoptosis of Vero cells.

    PubMed

    Guo, A; Lu, C

    2000-04-01

    Apoptosis of Vero cells infected with two canine distemper virus (CDV) vaccine strains was detected using TdT (terminal deoxynucleotidyl transferase)-mediated dUTP nick end-labelling (TUNEL), flow cytometric analysis, agarose gel electrophoresis and electron microscopy (EM). By TUNEL, apoptotic cells were found in CDV-Onderstepoort (CDV-Ond)-infected cells. DNA fragments isolated from infected cells were separated by agarose gel electrophoresis and a 'ladder' pattern appeared. EM observations demonstrated that the cells undergoing cytopathic effect (CPE) possessed morphological characteristics of apoptotic cells. Flow cytometric analysis indicated that CDV could induce apoptosis of Vero cells, but the percentages of the apoptotic cells were correlated with the CPE types. The strain showing the cell-rounding type of CPE produced a much higher percentage of apoptotic cells than CDV-Ond with the syncytium type of CPE (P < 0.01). It was concluded that CDV vaccine strains could induce apoptosis of Vero cells and the apoptosis was virus strain-dependent and cell-dependent. The mechanism remains to be studied.

  14. Isolation of canine mammary cells with stem cell properties and tumour-initiating potential.

    PubMed

    Cocola, C; Anastasi, P; Astigiano, S; Piscitelli, E; Pelucchi, P; Vilardo, L; Bertoli, G; Beccaglia, M; Veronesi, M C; Sanzone, S; Barbieri, O; Reinbold, R A; Luvoni, G C; Zucchi, I

    2009-07-01

    Recent data suggest that mammary carcinogenesis may be driven by cancer stem cells (CSCs) derived from mutated adult stem cells, which have acquired aberrant cell self-renewal or by progenitor cells that have acquired the capacity for cell self-renewal. Spontaneous mammary cancers in cats and dogs are important models for the understanding of human breast cancer and may represent alternative species model systems that can significantly contribute to the study of human oncogenesis. With the goal of identifying markers for isolating human breast CSCs, we have generated a canine model system to isolate and characterize normal and CSCs from dog mammary gland. Insight into the hierarchical organization of canine tumours may contribute to the development of universal concepts in oncogenesis by CSCs. Cells with stem cell properties were isolated from normal and tumoural canine breast tissue and propagated as mammospheres and tumourspheres in long-term non-adherent culture conditions. We showed that cells obtained from spheres that display self-renewing properties, have multi-lineage differentiation potential, could generate complex branched tubular structures in vitro and form tumours in NOD/SCID mice. We analysed these cells for the expression of human stem and CSC markers and are currently investigating the tumour-initiating properties of these cells and the hierarchical organization of normal and neoplastic canine mammary tissue.

  15. Kidney abnormalities in sickle cell disease.

    PubMed

    López Revuelta, K; Ricard Andrés, M P

    2011-01-01

    Patients with sickle cell disease exhibits numerous kidney structural and functional abnormalities, changes that are seen along the entire length of the nephron. Changes are most marked in patients with homozygous sickle cell anemia, but are also seen in those with compound heterozygous states and the sickle cell trait. The renal features of sickle cell disease include some of the most common reasons for referral to nephrologists, such as hematuria, proteinuria, tubular disturbances and chronic kidney disease. Therapy of these conditions requires specialized knowledge of their distinct pathogenic mechanisms. Spanish Haemathology and Hemotherapy Association has recently publicated their Clinical Practice Guidelines of SCD management. Renal chapter is reproduced in this article for Nefrología difussion.

  16. Mesenchymal stem cells with rhBMP-2 inhibits the growth of canine osteosarcoma cells

    PubMed Central

    2012-01-01

    Background The bone morphogenetic proteins (BMPs) belong to a unique group of proteins that includes the growth factor TGF-β. BMPs play important roles in cell differentiation, cell proliferation, and inhibition of cell growth. They also participate in the maturation of several cell types, depending on the microenvironment and interactions with other regulatory factors. Depending on their concentration gradient, the BMPs can attract various types of cells and act as chemotactic, mitogenic, or differentiation agents. BMPs can interfere with cell proliferation and the formation of cartilage and bone. In addition, BMPs can induce the differentiation of mesenchymal progenitor cells into various cell types, including chondroblasts and osteoblasts. The aim of this study was to analyze the effects of treatment with rhBMP-2 on the proliferation of canine mesenchymal stem cells (cMSCs) and the tumor suppression properties of rhBMP-2 in canine osteocarcoma (OST) cells. Osteosarcoma cell lines were isolated from biopsies and excisions of animals with osteosarcoma and were characterized by the Laboratory of Biochemistry and Biophysics, Butantan Institute. The mesenchymal stem cells were derived from the bone marrow of canine fetuses (cMSCs) and belong to the University of São Paulo, College of Veterinary Medicine (FMVZ-USP) stem cell bank. After expansion, the cells were cultured in a 12-well Transwell system; cells were treated with bone marrow mesenchymal stem cells associated with rhBMP2. Expression of the intracytoplasmic and nuclear markers such as Caspase-3, Bax, Bad, Bcl-2, Ki-67, p53, Oct3/4, Nanog, Stro-1 were performed by flow citometry. Results We evaluated the regenerative potential of in vitro treatment with rhBMP-2 and found that both osteogenic induction and tumor regression occur in stem cells from canine bone marrow. rhBMP-2 inhibits the proliferation capacity of OST cells by mechanisms of apoptosis and tumor suppression mediated by p53. Conclusion We

  17. Profiling of Host Cell Response to Successive Canine Parvovirus Infection Based on Kinetic Proteomic Change Identification

    PubMed Central

    Zhao, Hang; Cheng, Yuening; Wang, Jianke; Lin, Peng; Yi, Li; Sun, Yaru; Ren, Jingqiang; Tong, Mingwei; Cao, Zhigang; Li, Jiawei; Deng, Jinliang; Cheng, Shipeng

    2016-01-01

    Canine parvovirus (CPV) reproduces by co-opting the resources of host cells, inevitably causing cytotoxic effects to the host cells. Feline kidney F81 cells are sensitive to CPV infection and show disparate growing statuses at different time points post-infection. This study analysed the response of F81 cells to CPV infection at successive infection time points by iTRAQ-based quantitative proteomics. Differentially expressed proteins (DEPs) during 60 h of infection and at selected time points post-infection were identified by an analysis of variance test and a two-tailed unpaired t test, respectively. DEPs with similar quantitative changes were clustered by hierarchical clustering and analysed by gene ontology enrichment, revealing that 12 h and 60 h post-infection were the optimal times to analyse the autonomous parvovirus replication and apoptosis processes, respectively. Using the MetacoreTM database, 29 DEPs were enriched in a network involved in p53 regulation. Besides, a significantly enriched pathway suggests that the CPV-induced cytopathic effect was probably due to the deficiency of functional CFTR caused by CPV infection. This study uncovered the systemic changes in key cellular factors involved in CPV infection and help to understand the molecular mechanisms of the anti-cancer activity of CPV and the cytopathic effects induced by CPV infection. PMID:27406444

  18. Angiogenesis and expression of vascular endothelial growth factor, tumour necrosis factor-α and hypoxia inducible factor-1α in canine renal cell carcinoma.

    PubMed

    Yhee, J Y; Yu, C H; Kim, J H; Im, K S; Kim, N H; Brodersen, B W; Doster, A R; Sur, J-H

    2012-01-01

    The aim of the present study was to determine the distribution and characteristics of microvessels in various histological types of canine renal cell carcinoma (RCC). The study compared microvessel density (MVD) and distribution of blood vessels according to histological type and evaluated the presence of angiogenesis-related proteins. Nine archival samples of canine RCC were studied. MVD was calculated as the mean number of blood vessels per mm(2). The diameter of blood vessels was calculated by determining either the length of the long axis of blood vessels (diameter(max)) or the mean distance from the centre of each blood vessel to the tunica adventia (diameter(mean)). A significant difference in MVD was evident between RCCs and normal kidneys (46.6 ± 28.0 versus 8.4 ± 2.2 microvessels/mm(2)). Diameter(max) in canine RCCs (34.1 ± 14.7 μm) was also significantly different from normal canine kidney (23.2 ± 3.4 μm). Vascular endothelial growth factor (VEGF) was expressed by tumour cells and vascular endothelial cells and tumour necrosis factor (TNF)-α expression was observed in vascular endothelial cells in both neoplastic and normal kidney. Although VEGF is involved in angiogenesis and correlates with tumour stage of development, no correlation was found between VEGF expression and MVD. Tumour-associated macrophages expressing TNF-α and hypoxia inducible factor 1α were identified in peritumoural tissue and may play an important role in angiogenesis.

  19. NCR1 Expression Identifies Canine Natural Killer Cell Subsets with Phenotypic Similarity to Human Natural Killer Cells

    PubMed Central

    Foltz, Jennifer A.; Somanchi, Srinivas S.; Yang, Yanwen; Aquino-Lopez, Arianexys; Bishop, Erin E.; Lee, Dean A.

    2016-01-01

    Canines spontaneously develop many cancers similar to humans – including osteosarcoma, leukemia, and lymphoma – offering the opportunity to study immune therapies in a genetically heterogeneous and immunocompetent environment. However, a lack of antibodies recognizing canine NK cell markers has resulted in suboptimal characterization and unknown purity of NK cell products, hindering the development of canine models of NK cell adoptive immunotherapy. To this end, we generated a novel antibody to canine NCR1 (NKp46), the putative species-wide marker of NK cells, enabling purification of NK cells for further characterization. We demonstrate that CD3−/NKp46+ cells in healthy and osteosarcoma-bearing canines have phenotypic similarity to human CD3−/NKp46+ NK cells, expressing mRNA for CD16 and the natural cytotoxicity receptors NKp30, NKp44, and NKp80. Functionally, we demonstrate with the calcein release assay that canine CD3−/NKp46+ cells kill canine tumor cell lines without prior sensitization and secrete IFN-γ, TNF-α, IL-8, IL-10, and granulocyte-macrophage colony-stimulating factor as measured by Luminex. Similar to human NK cells, CD3−/NKp46+ cells expand rapidly on feeder cells expressing 4-1BBL and membrane-bound IL-21 (median = 20,283-fold in 21 days). Furthermore, we identify a minor Null population (CD3−/CD21−/CD14−/NKp46−) with reduced cytotoxicity against osteosarcoma cells, but similar cytokine secretion as CD3−/NKp46+ cells. Null cells in canines and humans have reduced expression of NKG2D, NKp44, and CD16 compared to NKp46+ NK cells and can be induced to express NKp46 with further expansion on feeder cells. In conclusion, we have identified and characterized canine NK cells, including an NKp46− subset of canine and human NK cells, using a novel anti-canine NKp46 antibody, and report robust ex vivo expansion of canine NK cells sufficient for adoptive immunotherapy. PMID:27933061

  20. Expression of CD61 (beta3 integrin subunit) on canine cells.

    PubMed

    Arce, C; Moreno, A; Pérez de la Lastra, J M; Garrido, J J; Barbancho, M; De Andrés, D F; Morera, L; Llanes, D

    2001-03-01

    A monoclonal antibody (JM2E5) specific for the integrin beta3 chain, or CD61 or GPIIIa subunit, has been employed to determine the expression of the canine homologue CD41/CD61 or CD51/CD61 complex on different canine cells in peripheral blood lymphocytes, monocytes, granulocytes, platelets, erythrocytes, lymph-node cells, spleen cells and breast tumour cells). The canine homologue CD41/CD61 or CD51/61 was present on peripheral blood lymphocytes, monocytes, granulocytes, breast tumour cells and spleen cells as well as on platelets and it was absent from erythrocytes and lymph-node cells. An antigen with components of molecular masses of 25/100/120 kDa (under reducing conditions) was immunoprecipitated from canine peripheral lymphocytes and platelets, but not from granulocytes or monocytes. Expression on canine lymphocytes of the canine homologue of the human beta3 integrin chain was unexpected, based on the expression pattern of this molecule in human tissue.

  1. Identification of a candidate therapeutic antibody for treatment of canine B-cell lymphoma.

    PubMed

    Rue, Sarah M; Eckelman, Brendan P; Efe, Jem A; Bloink, Kristin; Deveraux, Quinn L; Lowery, David; Nasoff, Marc

    2015-04-15

    B-cell lymphoma is one of the most frequently observed non-cutaneous neoplasms in dogs. For both human and canine BCL, the standard of care treatment typically involves a combination chemotherapy, e.g. "CHOP" therapy. Treatment for human lymphoma greatly benefited from the addition of anti-CD20 targeted biological therapeutics to these chemotherapy protocols; this type of therapeutic has not been available to the veterinary oncologist. Here, we describe the generation and characterization of a rituximab-like anti-CD20 antibody intended as a candidate treatment for canine B-cell lymphoma. A panel of anti-canine CD20 monoclonal antibodies was generated using a mouse hybridoma approach. Mouse monoclonal antibody 1E4 was selected for construction of a canine chimeric molecule based on its rank ordering in a flow cytometry-based affinity assay. 1E4 binds to approximately the same location in the extracellular domain of CD20 as rituximab, and 1E4-based chimeric antibodies co-stain canine B cells in flow cytometric analysis of canine leukocytes using an anti-canine CD21 antibody. We show that two of the four reported canine IgG subclasses (cIgGB and cIgGC) can bind to canine CD16a, a receptor involved in antibody-dependent cellular cytotoxicity (ADCC). Chimeric monoclonal antibodies were assembled using canine heavy chain constant regions that incorporated the appropriate effector function along with the mouse monoclonal 1E4 anti-canine CD20 variable regions, and expressed in CHO cells. We observed that 1E4-cIgGB and 1E4-cIgGC significantly deplete B-cell levels in healthy beagle dogs. The in vivo half-life of 1E4-cIgGB in a healthy dog was ∼14 days. The antibody 1E4-cIgGB has been selected for further testing and development as an agent for the treatment of canine B-cell lymphoma.

  2. Efficient isolation of wild strains of canine distemper virus in Vero cells expressing canine SLAM (CD150) and their adaptability to marmoset B95a cells.

    PubMed

    Seki, Fumio; Ono, Nobuyuki; Yamaguchi, Ryoji; Yanagi, Yusuke

    2003-09-01

    We have previously shown that canine signaling lymphocyte activation molecule (SLAM; also known as CD150) acts as a cellular receptor for canine distemper virus (CDV). In this study, we established Vero cells stably expressing canine SLAM (Vero.DogSLAMtag cells). Viruses were isolated in Vero.DogSLAMtag cells one day after inoculation with spleen samples from five out of seven dogs with distemper. By contrast, virus isolation with reportedly sensitive marmoset B95a cells was only successful from three diseased animals at 7 to 10 days after inoculation, and no virus was recovered from any dogs when Vero cells were used for isolation. The CDV strain isolated in Vero.DogSLAMtag cells did not cause cytopathic effects in B95a and human SLAM-expressing Vero cells, whereas the strain isolated in B95a cells from the same dog did so in canine or human SLAM-expressing Vero cells as well as B95a cells. There were two amino acid differences in the hemagglutinin sequence between these strains. Cell fusion analysis after expression of envelope proteins and vesicular stomatitis virus pseudotype assay showed that their hemagglutinins were responsible for the difference in cell tropism between them. Site-directed mutagenesis indicated that glutamic acid to lysine substitution at position 530 of the hemagglutinin was required for the adaptation to the usage of marmoset SLAM. Our results indicate that Vero cells stably expressing canine SLAM are highly sensitive to CDV in clinical specimens and that only a single amino acid substitution in the hemagglutinin can allow the virus to adapt to marmoset SLAM.

  3. Mechanisms of kidney cell injury from metals

    SciTech Connect

    Fowler, B.A. )

    1993-04-01

    The most environmentally abundant toxic metals/metalloids (arsenic, cadmium, lead, and mercury) are each known to produce cell injury in the kidney but the molecular mechanisms underlying these events are now being elucidated. It is clear that the nephrotoxicity of these agents is due, in part, to the fact that urinary elimination is a major route of excretion from the body. The role(s) of molecular factors such as metal-binding proteins, inclusion bodies, and cell-specific receptorlike proteins that appear to influence renal tubule cell expression, have attracted increased interest as determinants that modulate cell populations as special risk for toxicity and renal cancer. The future of mechanistic toxicology studies with regard to how and why only certain renal cell populations become targets for toxicity from these metals/metalloids and other less common inorganic nephrotoxicants must focus on the molecular handling of these agents by target cell populations. 90 refs.

  4. Human Kidney-Derived Cells Ameliorate Acute Kidney Injury Without Engrafting into Renal Tissue.

    PubMed

    Santeramo, Ilaria; Herrera Perez, Zeneida; Illera, Ana; Taylor, Arthur; Kenny, Simon; Murray, Patricia; Wilm, Bettina; Gretz, Norbert

    2017-04-04

    Previous studies have suggested that CD133(+) cells isolated from human kidney biopsies have the potential to ameliorate injury following intravenous (IV) administration in rodent models of kidney disease by integrating into damaged renal tissue and generating specialized renal cells. However, whether renal engraftment of CD133(+) cells is a prerequisite for ameliorating injury has not yet been unequivocally resolved. Here, we have established a cisplatin-induced nephropathy model in immunodeficient rats to assess the efficacy of CD133(+) human kidney cells in restoring renal health, and to determine the fate of these cells after systemic administration. Specifically, following IV administration, we evaluated the impact of the CD133(+) cells on renal function by undertaking longitudinal measurements of the glomerular filtration rate using a novel transcutaneous device. Using histological assays, we assessed whether the human kidney cells could promote renal regeneration, and if this was related to their ability to integrate into the damaged kidneys. Our results show that both CD133(+) and CD133(-) cells improve renal function and promote renal regeneration to a similar degree. However, this was not associated with engraftment of the cells into the kidneys. Instead, after IV administration, both cell types were exclusively located in the lungs, and had disappeared by 24 hours. Our data therefore indicate that renal repair is not mediated by CD133(+) cells homing to the kidneys and generating specialized renal cells. Instead, renal repair is likely to be mediated by paracrine or endocrine factors. © Stem Cells Translational Medicine 2017.

  5. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    SciTech Connect

    Webb, Carol F.; Ratliff, Michelle L.; Powell, Rebecca; Wirsig-Wiechmann, Celeste R.; Lakiza, Olga; Obara, Tomoko

    2015-08-07

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.

  6. Generation of kidney tubular organoids from human pluripotent stem cells

    PubMed Central

    Yamaguchi, Shintaro; Morizane, Ryuji; Homma, Koichiro; Monkawa, Toshiaki; Suzuki, Sayuri; Fujii, Shizuka; Koda, Muneaki; Hiratsuka, Ken; Yamashita, Maho; Yoshida, Tadashi; Wakino, Shu; Hayashi, Koichi; Sasaki, Junichi; Hori, Shingo; Itoh, Hiroshi

    2016-01-01

    Recent advances in stem cell research have resulted in methods to generate kidney organoids from human pluripotent stem cells (hPSCs), which contain cells of multiple lineages including nephron epithelial cells. Methods to purify specific types of cells from differentiated hPSCs, however, have not been established well. For bioengineering, cell transplantation, and disease modeling, it would be useful to establish those methods to obtain pure populations of specific types of kidney cells. Here, we report a simple two-step differentiation protocol to generate kidney tubular organoids from hPSCs with direct purification of KSP (kidney specific protein)-positive cells using anti-KSP antibody. We first differentiated hPSCs into mesoderm cells using a glycogen synthase kinase-3β inhibitor for 3 days, then cultured cells in renal epithelial growth medium to induce KSP+ cells. We purified KSP+ cells using flow cytometry with anti-KSP antibody, which exhibited characteristics of all segments of kidney tubular cells and cultured KSP+ cells in 3D Matrigel, which formed tubular organoids in vitro. The formation of tubular organoids by KSP+ cells induced the acquisition of functional kidney tubules. KSP+ cells also allowed for the generation of chimeric kidney cultures in which human cells self-assembled into 3D tubular structures in combination with mouse embryonic kidney cells. PMID:27982115

  7. Stage-specific embryonic antigen: determining expression in canine glioblastoma, melanoma, and mammary cancer cells.

    PubMed

    Lin, Weiming; Modiano, Jaime F; Ito, Daisuke

    2017-03-30

    The expression of stage-specific embryonic antigens (SSEAs) was determined in several types of canine cancer cells. Flow cytometry showed SSEA-1 expression in glioblastoma, melanoma, and mammary cancer cells, although none expressed SSEA-3 or SSEA-4. Expression of SSEA-1 was not detected in lymphoma, osteosarcoma, or hemangiosarcoma cell lines. Relatively stable SSEA-1 expression was observed between 24 and 72 h of culture. After 8 days in culture, sorted SSEA-1(-) and SSEA-1(+) cells re-established SSEA-1 expression to levels comparable to those observed in unsorted cells. Our results document, for the first time, the expression of SSEA-1 in several canine cancer cell lines.

  8. Detection of novel papillomaviruses in canine mucosal, cutaneous and in situ squamous cell carcinomas.

    PubMed

    Zaugg, N; Nespeca, G; Hauser, B; Ackermann, M; Favrot, C

    2005-10-01

    Papillomavirus (PV) DNA is frequently uncovered in samples of human skin squamous cell carcinomas (SCC). However, the role of these viruses in the development of such cancers in canine species remains controversial. While approximately 100 human PVs are known, only one single canine oral PV (COPV) has been identified and studied extensively. Therefore, we applied a narrow-range polymerase chain reaction (PCR) suitable for the detection of classical canine and feline PVs, as well as a broad-range PCR, which has been used for the detection of various novel PVs in humans, in order to analyse 42 paraffin-embedded samples, representing three different forms of canine SCCs. Ten samples of skin tissues with various non-neoplastic conditions served as controls. While none of the negative controls reacted positively, PV DNA was discovered in 21% of the tested SCC samples. Interestingly, the classical COPV was amplified from only one sample, while the other positive cases were associated with a variety of thus far unknown PVs. This study suggests that a fraction of canine SCC is infected with PVs and that a genetic variety of canine PVs exists. Therefore, these results will facilitate the future study of the role of PVs in the development of canine skin cancers.

  9. Use of RNA-seq to determine variation in canine cytochrome P450 mRNA expression between blood, liver, lung, kidney and duodenum in healthy beagles.

    PubMed

    Visser, M; Weber, K; Rincon, G; Merritt, D

    2017-03-19

    RNA sequencing (RNA-seq) is a powerful tool for the evaluation and quantification of transcriptomes and expression patterns in animals, tissues, or pathological conditions. The purpose of this study was to determine the physiologic expression of cytochrome P450 (CYP) mRNA transcripts in whole blood, kidney, duodenum, liver, and lung in healthy, adult male (n = 4) and female (n = 4) beagles via RNA-seq. mRNA expression was above background (transcripts per million) for 45 canine CYPs, with liver, duodenum, and lung expressing a high number of xenobiotic metabolizing CYPs, while prominent endogenous metabolizing CYP expression was present in blood and kidney. The relative expression pattern of CYP2A13, 2B11, 2C21, 2D15, 2E1, 3A12, and 27A1 in liver, lung, and duodenum was verified through qPCR. This is the first global profiling of physiologic CYP mRNA expression in multiple canine tissues, providing a platform for further studies characterizing canine CYPs and changes in gene expression in disease states.

  10. Polycystin-1 and Gα12 regulate the cleavage of E-cadherin in kidney epithelial cells.

    PubMed

    Xu, Jen X; Lu, Tzong-Shi; Li, Suyan; Wu, Yong; Ding, Lai; Denker, Bradley M; Bonventre, Joseph V; Kong, Tianqing

    2015-02-01

    Interaction of polycystin-1 (PC1) and Gα12 is important for development of kidney cysts in autosomal dominant polycystic kidney disease (ADPKD). The integrity of cell polarity and cell-cell adhesions (mainly E-cadherin-mediated adherens junction) is altered in the renal epithelial cells of ADPKD. However, the key signaling pathway for this alteration is not fully understood. Madin-Darby canine kidney (MDCK) cells maintain the normal integrity of epithelial cell polarity and adherens junctions. Here, we found that deletion of Pkd1 increased activation of Gα12, which then promoted the cystogenesis of MDCK cells. The morphology of these cells was altered after the activation of Gα12. By using liquid chromatography-mass spectrometry, we found several proteins that could be related this change in the extracellular milieu. E-cadherin was one of the most abundant peptides after active Gα12 was induced. Gα12 activation or Pkd1 deletion increased the shedding of E-cadherin, which was mediated via increased ADAM10 activity. The increased shedding of E-cadherin was blocked by knockdown of ADAM10 or specific ADAM10 inhibitor GI254023X. Pkd1 deletion or Gα12 activation also changed the distribution of E-cadherin in kidney epithelial cells and caused β-catenin to shift from cell membrane to nucleus. Finally, ADAM10 inhibitor, GI254023X, blocked the cystogenesis induced by PC1 knockdown or Gα12 activation in renal epithelial cells. Our results demonstrate that the E-cadherin/β-catenin signaling pathway is regulated by PC1 and Gα12 via ADAM10. Specific inhibition of this pathway, especially ADAM10 activity, could be a novel therapeutic regimen for ADPKD.

  11. Polycystin-1 and Gα12 regulate the cleavage of E-cadherin in kidney epithelial cells

    PubMed Central

    Xu, Jen X.; Lu, Tzong-Shi; Li, Suyan; Wu, Yong; Ding, Lai; Denker, Bradley M.; Bonventre, Joseph V.

    2014-01-01

    Interaction of polycystin-1 (PC1) and Gα12 is important for development of kidney cysts in autosomal dominant polycystic kidney disease (ADPKD). The integrity of cell polarity and cell-cell adhesions (mainly E-cadherin-mediated adherens junction) is altered in the renal epithelial cells of ADPKD. However, the key signaling pathway for this alteration is not fully understood. Madin-Darby canine kidney (MDCK) cells maintain the normal integrity of epithelial cell polarity and adherens junctions. Here, we found that deletion of Pkd1 increased activation of Gα12, which then promoted the cystogenesis of MDCK cells. The morphology of these cells was altered after the activation of Gα12. By using liquid chromatography-mass spectrometry, we found several proteins that could be related this change in the extracellular milieu. E-cadherin was one of the most abundant peptides after active Gα12 was induced. Gα12 activation or Pkd1 deletion increased the shedding of E-cadherin, which was mediated via increased ADAM10 activity. The increased shedding of E-cadherin was blocked by knockdown of ADAM10 or specific ADAM10 inhibitor GI254023X. Pkd1 deletion or Gα12 activation also changed the distribution of E-cadherin in kidney epithelial cells and caused β-catenin to shift from cell membrane to nucleus. Finally, ADAM10 inhibitor, GI254023X, blocked the cystogenesis induced by PC1 knockdown or Gα12 activation in renal epithelial cells. Our results demonstrate that the E-cadherin/β-catenin signaling pathway is regulated by PC1 and Gα12 via ADAM10. Specific inhibition of this pathway, especially ADAM10 activity, could be a novel therapeutic regimen for ADPKD. PMID:25492927

  12. Evaluation of the kinase domain of c-KIT in canine cutaneous mast cell tumors

    PubMed Central

    Webster, Joshua D; Kiupel, Matti; Yuzbasiyan-Gurkan, Vilma

    2006-01-01

    Background Mutations in the c-KIT proto-oncogene have been implicated in the progression of several neoplastic diseases, including gastrointestinal stromal tumors and mastocytosis in humans, and cutaneous mast cell tumors (MCTs) in canines. Mutations in human mastocytosis patients primarily occur in c-KIT exon 17, which encodes a portion of its kinase domain. In contrast, deletions and internal tandem duplication (ITD) mutations are found in the juxtamembrane domain of c-KIT in approximately 15% of canine MCTs. In addition, ITD c-KIT mutations are significantly associated with aberrant KIT protein localization in canine MCTs. However, some canine MCTs have aberrant KIT localization but lack ITD c-KIT mutations, suggesting that other mutations or other factors may be responsible for aberrant KIT localization in these tumors. Methods In order to characterize the prevalence of mutations in the phospho-transferase portion of c-KIT's kinase domain in canine MCTs exons 16–20 of 33 canine MCTs from 33 dogs were amplified and sequenced. Additionally, in order to determine if mutations in c-KIT exon 17 are responsible for aberrant KIT localization in MCTs that lack juxtamembrane domain c-KIT mutations, c-KIT exon 17 was amplified and sequenced from 18 canine MCTs that showed an aberrant KIT localization pattern but did not have ITD c-KIT mutations. Results No mutations or polymorphisms were identified in exons 16–20 of any of the MCTs examined. Conclusion In conclusion, mutations in the phospho-transferase portion of c-KIT's kinase domain do not play an important role in the progression of canine cutaneous MCTs, or in the aberrant localization of KIT in canine MCTs. PMID:16579858

  13. Canine Mammary Cancer Stem Cells are Radio- and Chemo- Resistant and Exhibit an Epithelial-Mesenchymal Transition Phenotype.

    PubMed

    Pang, Lisa Y; Cervantes-Arias, Alejandro; Else, Rod W; Argyle, David J

    2011-03-30

    Canine mammary carcinoma is the most common cancer among female dogs and is often fatal due to the development of distant metastases. In humans, solid tumors are made up of heterogeneous cell populations, which perform different roles in the tumor economy. A small subset of tumor cells can hold or acquire stem cell characteristics, enabling them to drive tumor growth, recurrence and metastasis. In veterinary medicine, the molecular drivers of canine mammary carcinoma are as yet undefined. Here we report that putative cancer stem cells (CSCs) can be isolated form a canine mammary carcinoma cell line, REM134. We show that these cells have an increased ability to form tumorspheres, a characteristic of stem cells, and that they express embryonic stem cell markers associated with pluripotency. Moreover, canine CSCs are relatively resistant to the cytotoxic effects of common chemotherapeutic drugs and ionizing radiation, indicating that failure of clinical therapy to eradicate canine mammary cancer may be due to the survival of CSCs. The epithelial to mesenchymal transition (EMT) has been associated with cancer invasion, metastasis, and the acquisition of stem cell characteristics. Our results show that canine CSCs predominantly express mesenchymal markers and are more invasive than parental cells, indicating that these cells have a mesenchymal phenotype. Furthermore, we show that canine mammary cancer cells can be induced to undergo EMT by TGFβ and that these cells have an increased ability to form tumorspheres. Our findings indicate that EMT induction can enrich for cells with CSC properties, and provide further insight into canine CSC biology.

  14. Microglial cell activation in demyelinating canine distemper lesions.

    PubMed

    Stein, Veronika M; Czub, Markus; Schreiner, Nicole; Moore, Peter F; Vandevelde, Marc; Zurbriggen, Andreas; Tipold, Andrea

    2004-08-01

    Microglia cells are the principal immune effector elements of the brain responding to any pathological event. To elucidate the possible role of microglia in initial non-inflammatory demyelination in canine distemper virus (CDV) infection, microglia from experimentally CDV infected dogs were isolated ex vivo by density gradient centrifugation and characterized immunophenotypically and functionally using flow cytometry. Results from dogs with demyelinating lesions were compared to results from recovered dogs and two healthy controls. CDV antigen could be detected in microglia of dogs with histopathologically confirmed demyelination. Microglia of these dogs showed marked upregulation of the surface molecules CD18, CD11b, CD11c, CD1c, MHC class I and MHC class II and a tendency for increased expression intensity of ICAM-1 (CD54), B7-1 (CD80), B7-2 (CD86), whereas no increased expression was found for CD44 and CD45. Functionally, microglia exhibited distinctly enhanced phagocytosis and generation of reactive oxygen species (ROS). It was concluded that in CDV infection, there is a clear association between microglial activation and demyelination. This strongly suggests that microglia contribute to acute myelin destruction in distemper.

  15. The expression of calretinin and cytokeratins in canine acanthomatous ameloblastoma and oral squamous cell carcinoma.

    PubMed

    Fulton, A; Arzi, B; Murphy, B; Naydan, D K; Verstraete, F J M

    2014-12-01

    Oral squamous cell carcinoma (OSCC) and canine acanthomatous ameloblastoma (CAA) represent two epithelium-derived neoplasms that affect the oral cavity of dogs. The expression of cytokeratins (CKs) and calretinin has been previously established in the canine tooth bud and odontogenic tumours. The aim of this study was to characterize the CK and calretinin expression profile of OSCC in comparison to CAA and canine tooth bud tissues. Samples from 15 OSCC and 15 CAA cases, as well as 6 tooth buds and 2 normal gingival tissues were examined. OSCC CK expression was consistent with the CK expression profile of CAA and canine tooth bud tissue. Calretinin was positively expressed in 10 of 15 OSCC cases, with 5 cases demonstrating high staining intensity. Only 2 of 15 CAA cases demonstrated mild-moderate staining intensity. The statistically significant difference in staining pattern and intensity of calretinin in OSCC and CAA can help distinguish between these two tumour types.

  16. In vitro development of canine somatic cell nuclear transfer embryos in different culture media.

    PubMed

    Kim, Dong-Hoon; No, Jin-Gu; Choi, Mi-Kyung; Yeom, Dong-Hyeon; Kim, Dong-Kyo; Yang, Byoung-Chul; Yoo, Jae Gyu; Kim, Min Kyu; Kim, Hong-Tea

    2015-01-01

    The objective of the present study was to investigate the effects of three different culture media on the development of canine somatic cell nuclear transfer (SCNT) embryos. Canine cloned embryos were cultured in modified synthetic oviductal fluid (mSOF), porcine zygote medium-3 (PZM-3), or G1/G2 sequential media. Our results showed that the G1/G2 media yielded significantly higher morula and blastocyst development in canine SCNT embryos (26.1% and 7.8%, respectively) compared to PZM-3 (8.5% and 0%or mSOF (2.3% and 0%) media. In conclusion, this study suggests that blastocysts can be produced more efficiently using G1/G2 media to culture canine SCNT embryos.

  17. Extracellular calcium and cholinergic stimulation of isolated canine parietal cells.

    PubMed Central

    Soll, A H

    1981-01-01

    The role of calcium gating in cholinergic stimulation of the function of parietal cells was studied using cells isolated from canine fundic mucosa by treatment with collagenase and EDTA and enriched by velocity separation in an elutriator rotor. Monitoring the accumulation of [14C[ aminopyrine as an index of parietal cell response, stimulation by carbachol, but not by histamine, was highly dependent upon the concentration of extracellular calcium. Incubation of parietal cells in 0-.1 mM calcium, rather than the usual 1.8 mM concentration, reduced the response to 100 microM carbachol by 92 +/- 2%, whereas histamine stimulation was impaired by 28 +/- 5%. A similar reduction in extracellular calcium suppressed the response to gastrin (100 nM) by 67 +/- 7%. The impairment of cholinergic stimulation found at low extracellular calcium concentrations was rapidly reversed with the readdition of calcium. Lanthanum, which blocks calcium movement across membranes, caused a similar pattern of effects on secretagogue stimulation of aminopyrine accumulation, with 100 microM lanthanum suppressing carbachol stimulation by 83 +/- 2%. This concentration of lanthanum suppressed gastrin stimulation by 40 +/- 7% and histamine stimulation by only 12 +/- 9%. Carbachol, but not histamine nor gastrin, stimulated 45Ca++ uptake. The magnitude of carbachol-stimulated calcium uptake correlated with the parietal cell content of the fractions examined (r = 0.88), and was dose responsive over carbachol concentrations from 1 microM to 1 mM. Atropine (100 nM) caused surmountable inhibition, and these effects of carbachol and atropine on calcium uptake correlated with their effects on oxygen consumption (r = 0.93) and [14C]-aminopyrine accumulation (r = 0.90). Cells preloaded with 45Ca++ lost cellular calcium in a time-dependent fashion; however, this rate of egress was not accelerated by treatment with histamine, gastrin, or carbachol, thus failing to implicate mobilization of intracellular calcium

  18. Production of transgenic canine embryos using interspecies somatic cell nuclear transfer.

    PubMed

    Hong, So Gun; Oh, Hyun Ju; Park, Jung Eun; Kim, Min Jung; Kim, Geon A; Koo, Ok Jae; Jang, Goo; Lee, Byeong Chun

    2012-02-01

    Somatic cell nuclear transfer (SCNT) has emerged as an important tool for producing transgenic animals and deriving transgenic embryonic stem cells. The process of SCNT involves fusion of in vitro matured oocytes with somatic cells to make embryos that are transgenic when the nuclear donor somatic cells carry 'foreign' DNA and are clones when all the donor cells are genetically identical. However, in canines, it is difficult to obtain enough mature oocytes for successful SCNT due to the very low efficiency of in vitro oocyte maturation in this species that hinders canine transgenic cloning. One solution is to use oocytes from a different species or even a different genus, such as bovine oocytes, that can be matured easily in vitro. Accordingly, the aim of this study was: (1) to establish a canine fetal fibroblast line transfected with the green fluorescent protein (GFP) gene; and (2) to investigate in vitro embryonic development of canine cloned embryos derived from transgenic and non-transgenic cell lines using bovine in vitro matured oocytes. Canine fetal fibroblasts were transfected with constructs containing the GFP and puromycin resistance genes using FuGENE 6®. Viability levels of these cells were determined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. Interspecies SCNT (iSCNT) embryos from normal or transfected cells were produced and cultured in vitro. The MTT measurement of GFP-transfected fetal fibroblasts (mean OD = 0.25) was not significantly different from non-transfected fetal fibroblasts (mean OD = 0.35). There was no difference between transgenic iSCNT versus non-transgenic iSCNT embryos in terms of fusion rates (73.1% and 75.7%, respectively), cleavage rates (69.7% vs. 73.8%) and development to the 8-16-cell stage (40.1% vs. 42.7%). Embryos derived from the transfected cells completely expressed GFP at the 2-cell, 4-cell, and 8-16-cell stages without mosaicism. In summary, our results demonstrated that

  19. Origin and fate of the regenerating cells of the kidney.

    PubMed

    Eymael, Jennifer; Smeets, Bart

    2016-11-05

    The kidney has the capacity to regenerate itself provided that the damage is limited and the structure of the kidney remains intact. Nevertheless, in disease conditions this potential may be compromised, leading to progression to chronic kidney disease. For development of new therapeutic strategies it is a prerequisite to understand the origin and regulation of the kidney regenerating cells and the processes that underlie maladaptive repair. Because of the complexity of the kidney consisting of a high number of different cell types, it is a complex task to unravel the origin and fate of cells responsible for regeneration. This review summarises the recent and most important advances in identifying regenerating cell populations of the kidney, and highlights the existing controversies.

  20. Inhibition of nitric oxide synthase enhances superoxide activity in canine kidney.

    PubMed

    Majid, Dewan S A; Nishiyama, Akira; Jackson, Keith E; Castillo, Alexander

    2004-07-01

    To evaluate the role of a potential interaction between superoxide anion (O(2)(-)) and nitric oxide (NO) in regulating kidney function, we examined the renal responses to intra-arterial infusion of a superoxide dismutase mimetic, tempol (0.5 mg.kg(-1).min(-1)), in anesthetized dogs treated with or without NO synthase inhibitor, N(omega)-nitro-l-arginine (NLA; 50 microg.kg(-1).min(-1)). In one group of dogs (n = 10), tempol infusion alone for 30 min before NLA infusion did not cause any significant changes in renal blood flow (RBF; 5.2 +/- 0.4 to 5.0 +/- 0.4 ml.min(-1).g(-1)), glomerular filtration rate (GFR; 0.79 +/- 0.04 to 0.77 +/- 0.04 ml.min(-1).g(-1)), urine flow (V; 13.6 +/- 2.1 to 13.9 +/- 2.5 microl.min(-1).g(-1)), or sodium excretion (U(Na)V; 2.4 +/- 0.3 to 2.2 +/- 0.3 micromol.min(-1).g(-1)). Interestingly, when tempol was infused in another group of dogs (n = 12) pretreated with NLA, it caused increases in V (4.4 +/- 0.4 to 9.7 +/- 1.4 microl.min(-1).g(-1)) and in U(Na)V (0.7 +/- 0.1 to 1.3 +/- 0.2 micromol.min(-1).g(-1)) without affecting RBF or GFR. Although NO inhibition caused usual qualitative responses in both groups of dogs, the antidiuretic (47 +/- 5 vs. 26 +/- 4%) and antinatriuretic (67 +/- 4 vs. 45 +/- 11%) responses to NLA were seen much less in dogs pretreated with tempol. NLA infusion alone increased urinary excretion of 8-isoprostane (13.9 +/- 2.7 to 22.8 +/- 3.6 pg.min(-1).g(-1); n = 7), which returned to the control levels (11.6 +/- 3.4 pg.min(-1).g(-1)) during coadministration of tempol. These data suggest that NO synthase inhibition causes enhancement of endogenous O(2)(-) levels and support the hypothesis that NO plays a protective role against the actions of O(2)(-) in the kidney.

  1. Expression of O(6)-methylguanine-DNA methyltransferase causes lomustine resistance in canine lymphoma cells.

    PubMed

    Kambayashi, Satoshi; Minami, Kouji; Ogawa, Yuka; Hamaji, Takehiro; Hwang, Chung Chew; Igase, Masaya; Hiraoka, Hiroko; Miyama, Takako Shimokawa; Noguchi, Shunsuke; Baba, Kenji; Mizuno, Takuya; Okuda, Masaru

    2015-07-01

    The DNA repair protein O (6)-methylguanine-DNA methyltransferase (MGMT) causes resistance to nitrosoureas in various human cancers. In this study, we analyzed the correlation between canine lymphomas and MGMT in vitro. Two of five canine lymphoma cell lines required higher concentrations of lomustine to inhibit cell growth by 50%, but their sensitivity to the drug increased when they were cultured with an MGMT inhibitor. Fluorometric oligonucleotide assay and real-time polymerase chain reaction of these cell lines revealed MGMT activity and high MGMT mRNA expression, respectively. We analyzed the methylation status of the CpG islands of the canine MGMT gene by the bisulfite-sequencing method. Unlike human cells, the canine lymphoma cell lines did not show significant correlation between methylation status and MGMT suppression levels. Our results suggest that in canine lymphoma MGMT activity may influence sensitivity to nitrosoureas; thus, inhibition of MGMT activity would benefit nitrosourea-resistant patients. Additional studies are necessary to elucidate the mechanism of regulation of MGMT expression.

  2. Increased release of norepinephrine and dopamine from canine kidney during bilateral carotid occlusion

    SciTech Connect

    Bradley, T.; Hjemdahl, P.; DiBona, G.F.

    1987-02-01

    The renal overflow of norepinephrine (NE) and dopamine (DA) to plasma from the innervated kidney was studied at rest and during sympathetic nervous system activation by bilateral carotid artery occlusion (BCO) in vagotomized dogs under barbiturate or barbiturate/nitrous oxide anesthesia. BCO elevated arterial pressure and the arterial plasma concentration of NE, DA, and epinephrine (Epi). Renal vascular resistance (renal arterial pressure kept constant) increased by 15 +/- 7% and the net renal venous outflows (renal veno-arterial concentration difference x renal plasma flow) of NE and DA were enhanced. To obtain more correct estimates of the renal contribution to the renal venous catecholamine outflow, they corrected for the renal extraction of arterial catecholamines, assessed as the extractions of (/sup 3/H)NE, (/sup 3/H)DA, or endogenous Epi. The (/sup 3/H)NE corrected renal NE overflow to plasma increased from 144 +/- 40 to 243 +/- 64 pmol-min/sup -1/ during BCO, which, when compared with a previous study of the (/sup 3/H)NE corrected renal NE overflow to plasma evoked by electrical renal nerve stimulation, corresponds to a 40% increase in nerve impulse frequency from approx. 0.6 Hz. If the renal catecholamine extraction was not taken into account the effect of BCO was underestimated. The renal DA overflow to plasma was about one-fifth of the NE overflow both at rest and during BCO, indicating that there was no preferential activation of noradrenergic or putative dopaminergic nerves by BCO.

  3. Characterization of the novel indolylmaleimides' PDA-66 and PDA-377 effect on canine lymphoma cells

    PubMed Central

    Schmidt, Laura C.; Roolf, Catrin; Pews-Davtyan, Anahit; Rütgen, Barbara C.; Hammer, Sabine; Willenbrock, Saskia; Sekora, Anett; Rolfs, Arndt; Beller, Matthias; Brenig, Bertram; Nolte, Ingo; Junghanss, Christian

    2016-01-01

    Protein kinase inhibitors are widely used in chemotherapeutic cancer regimens. Maleimide derivatives such as SB-216763 act as GSK-3 inhibitor targeting cell proliferation, cell death and cell cycle progression. Herein, the two arylindolylmaleimide derivatives PDA-66 and PDA-377 were evaluated as potential chemotherapeutic agents on canine B-cell lymphoma cell lines. Canine lymphoma represents a naturally occurring model closely resembling the human high-grade non-Hodgkin's lymphoma (NHL). PDA-66 showed more pronounced effects on both cell lines. Application of 2.5μM PDA-66 resulted in a significant induction of apoptosis (approx. 11 %), decrease of the metabolic activity (approx. 95 %), anti-proliferative effect (approx. 85 %) and cell death within 48h. Agent induced mode of action was characterized by whole transcriptome sequencing, 12 h and 24 h post-agent exposure. Key PDA-66-modulated pathways identified were cell cycle, DNA replication and p53 signaling. Expression analyses indicated that the drug acting mechanism is mediated through DNA replication and cycle arrest involving the spindle assembly checkpoint. In conclusion, both PDA derivatives displayed strong anti-proliferation activity in canine B-cell lymphoma cells. The cell and molecular PDA-induced effect characterization and the molecular characterization of the agent acting mechanism provides the basis for further evaluation of a potential drug for canine lymphoma serving as model for human NHL. PMID:27177088

  4. Aldehyde dehydrogenase activity in cancer stem cells from canine mammary carcinoma cell lines.

    PubMed

    Michishita, M; Akiyoshi, R; Suemizu, H; Nakagawa, T; Sasaki, N; Takemitsu, H; Arai, T; Takahashi, K

    2012-08-01

    Increasing evidence suggests that diverse solid tumours arise from a small population of cells known as cancer stem cells or tumour-initiating cells. Cancer stem cells in several solid tumours are enriched for aldehyde dehydrogenase (ALDH) activity. High levels of ALDH activity (ALDH(high)) were detected in four cell lines derived from canine mammary carcinomas. ALDH(high) cells were enriched in a CD44(+)CD24(-) population having self-renewal capacity. Xenotransplantation into immunodeficient mice demonstrated that 1×10(4) ALDH(high) cells were sufficient for tumour formation in all injected mice, whereas 1×10(4) ALDH(low) cells failed to initiate any tumours. ALDH(high)-derived tumours contained both ALDH(+) and ALDH(-) cells, indicating that these cells had cancer stem cell-like properties.

  5. p16 Immunostaining of Canine Squamous Cell Carcinomas Is Not Associated with Papillomaviral DNA

    PubMed Central

    Sabattini, Silvia; Savini, Federica; Gallina, Laura; Scagliarini, Alessandra; Bassi, Patrizia

    2016-01-01

    While papillomavirus (PVs) are an established cause of human cancer, few reports have supported a relationship between PV and canine squamous cell carcinomas (SCCs). Human oncogenic PVs lead to an increased expression of the p16 tumor suppressor protein, and the latter can be demonstrated immunohistochemically to support a likely causal relationship between tumor and PV infection. In the present study, archive samples of canine SCC from different anatomical locations were tested by polymerase chain reaction for the presence of PV DNA and by p16 immunohistochemistry. The aims were to investigate the relationship between p16 expression and presence of PV DNA, in order to assess the utility of p16 overexpression as a biomarker of PV infection in canine SCC. A total of 52 SCCs were included. Nine cases (17.3%) showed moderate p16 immunoreactivity, with no association with tumor degree of differentiation, histotype or mitotic activity. The canPVf/FAP64 primers amplified Canis familiaris PV-1 DNA from 3 out of 52 tumors (5.8%), one cutaneous, one oral and one tonsillar SCC. There was no association between PV presence and p16 immunostaining. These results do not support a significant role of PVs in the development of canine SCCs. Additionally, PV infection was apparently not the cause of the p16 immunostaining observed in a subset of canine SCCs. A better awareness of p16 level of expression and cellular function in canine cancer may help to define its diagnostic and prognostic role. PMID:27441555

  6. Characterization of spheres derived from canine mammary gland adenocarcinoma cell lines.

    PubMed

    Michishita, Masaki; Akiyoshi, Rui; Yoshimura, Hisashi; Katsumoto, Takuo; Ichikawa, Hitoshi; Ohkusu-Tsukada, Kozo; Nakagawa, Takayuki; Sasaki, Nobuo; Takahashi, Kimimasa

    2011-10-01

    There is increasing evidence for the presence of cancer stem cells in several solid tumors, and these cancer stem cells have a potential role in tumor initiation, aggression, and recurrence. The stem cell-like properties of spheres derived from canine mammary tumors remain largely elusive. We attempted to induce sphere formation using four cell lines of canine mammary adenocarcinoma, and characterized the spheres derived from a CHMp line in vitro and in vivo. The CHMp-derived spheres showed predominantly CD44+CD24- population, higher expression of stem cell-related genes, such as CD133, Notch3 and MDR, and higher resistance to doxorubicin compared with the CHMp-derived adherent cells. Xenograft transplantations in nude mice demonstrated that only 1 × 10(4)sphere cells were sufficient for tumor formation. Use of the sphere assay on these sphere-derived tumors showed that sphere-forming cells were present in the tumors, and were maintained in serial transplantation. We propose that spheres derived from canine mammary adenocarcinoma cell lines possess a potential characteristic of cancer stem cells. Spheres derived from canine mammary tumors could be a powerful tool with which to investigate novel therapeutic drugs and to elucidate the molecular and cellular mechanisms that underlie tumorigenesis.

  7. Cell cycle synchronization of canine ear fibroblasts for somatic cell nuclear transfer.

    PubMed

    Koo, Ok Jae; Hossein, Mohammad Shamim; Hong, So Gun; Martinez-Conejero, Jose A; Lee, Byeong Chun

    2009-02-01

    Cycle synchronization of donor cells in the G0/G1 stage is a crucial step for successful somatic cell nuclear transfer. In the present report, we evaluated the effects of contact inhibition, serum starvation and the reagents - dimethyl sulphoxide (DMSO), roscovitine and cycloheximide (CHX) - on synchronization of canine fibroblasts at the G0/G1 stage. Ear fibroblast cells were collected from a beagle dog, placed into culture and used for analysis at passages three to eight. The population doubling time was 36.5 h. The proportion of G0/G1 cells was significantly increased by contact inhibition (77.1%) as compared with cycling cells (70.1%); however, extending the duration of culture did not induce further synchronization. After 24 h of serum starvation, cells were effectively synchronized at G0/G1 (77.1%). Although synchronization was further increased gradually after 24 h and even showed significant difference after 72 h (82.8%) of starvation, the proportion of dead cells also significantly increased after 24 h. The percentage of cells at the G0/G1 phase was increased (as compared with controls) after 72 h treatment with DMSO (76.1%) and after 48 h treatment with CHX (73.0%) or roscovitine (72.5%). However, the rate of cell death was increased after 24 and 72 h of treatment with DMSO and CHX, respectively. Thus, we recommend the use of roscovitine for cell cycle synchronization of canine ear fibroblasts as a preparatory step for SCNT.

  8. Flow cytometric techniques for detection of candidate cancer stem cell subpopulations in canine tumour models.

    PubMed

    Blacking, T M; Waterfall, M; Samuel, K; Argyle, D J

    2012-12-01

    The cancer stem cell (CSC) hypothesis proposes that tumour growth is maintained by a distinct subpopulation of 'CSC'. This study applied flow cytometric methods, reported to detect CSC in both primary and cultured cancer cells of other species, to identify candidate canine subpopulations. Cell lines representing diverse canine malignancies, and cells derived from spontaneous canine tumours, were evaluated for expression of stem cell-associated surface markers (CD34, CD44, CD117 and CD133) and functional properties [Hoecsht 33342 efflux, aldehyde dehydrogenase (ALDH) activity]. No discrete marker-defined subsets were identified within established cell lines; cells derived directly from spontaneous tumours demonstrated more heterogeneity, although this diminished upon in vitro culture. Functional assays produced variable results, suggesting context-dependency. Flow cytometric methods may be adopted to identify putative canine CSC. Whilst cell lines are valuable in assay development, primary cells may provide a more rewarding model for studying tumour heterogeneity in the context of CSC. However, it will be essential to fully characterize any candidate subpopulations to ensure that they meet CSC criteria.

  9. Proliferation of canine bone marrow derived mesenchymal stem cells on different nanomaterial based thin film scaffolds.

    PubMed

    Das, Kinsuk; Mili, Bhabesh; A P, Madhusoodan; Saxena, Abhishek Chandra; Kumar, Ajay; Singh, Praveen; Verma, Med Ram; Sarkar, Mihir; Bag, Sadhan

    2017-04-01

    Stem cell niche research uses nanotechnologies to mimic the extra-cellular microenvironment to promote proliferation and differentiation. The aim of designing different scaffolds is to simulate the best structural and environmental pattern for extracellular matrix. This experiment was designed to study the proliferative behaviour of canine bone marrow deriver mesenchymal stem cells (MSCs) on different nanomaterial based thin film scaffolds of carbon nanotubes (CNT), chitosan and poly ε-caprolactone. Similar number of cells was seeded on the scaffolds and standard cell culture flask, taken as control. Cells were maintained on DMEM media and relative number of metabolically active cells was determined by MTT assay up to day six of culture. Cells proliferated on control and all the scaffolds as the days progressed. Although proliferation rate was slow but no decline of cell number was noticed on the scaffolds during the study period. Initially, the cell proliferation was lower on CNT but as time progressed no significant difference was observed compared to control. The result indicated that nanomaterial based scaffolds reduce the proliferation rate of canine MSCs. However, canine MSCs adapted and proliferated better on CNT substrate in vitro and may be used as a scaffold component in canine tissue engineering in future.

  10. Identification and characterization of cancer stem cells in canine mammary tumors.

    PubMed

    Rybicka, Agata; Król, Magdalena

    2016-12-19

    Cancer stem cells (CSC) represent a small subpopulation of cells in malignant tumors that possess the unique ability to self-renew, differentiate and resist chemo- and radiotherapy. These cells have been postulated to be the basis for some of the difficulties in treating cancer, and therefore, numerous approaches have been developed to specifically target and eliminate CSC in diverse types of cancer, including breast cancer. Spontaneously occurring mammary tumors in canines share clinical and molecular similarities with the human counterpart, making the dog a potentially powerful model for the study of human breast cancer and clinical trials. Studies focused on canine mammary CSC might therefore enhance our understanding of the biology and possible treatment of the disease in both dogs and humans. In this review, we discuss various approaches currently in use to isolate and characterize canine mammary CSC.

  11. Monoclonal Antibodies 13A4 and AC133 Do Not Recognize the Canine Ortholog of Mouse and Human Stem Cell Antigen Prominin-1 (CD133)

    PubMed Central

    Thamm, Kristina; Graupner, Sylvi; Werner, Carsten; Huttner, Wieland B.; Corbeil, Denis

    2016-01-01

    The pentaspan membrane glycoprotein prominin-1 (CD133) is widely used in medicine as a cell surface marker of stem and cancer stem cells. It has opened new avenues in stem cell-based regenerative therapy and oncology. This molecule is largely used with human samples or the mouse model, and consequently most biological tools including antibodies are directed against human and murine prominin-1. Although the general structure of prominin-1 including its membrane topology is conserved throughout the animal kingdom, its primary sequence is poorly conserved. Thus, it is unclear if anti-human and -mouse prominin-1 antibodies cross-react with their orthologs in other species, especially dog. Answering this issue is imperative in light of the growing number of studies using canine prominin-1 as an antigenic marker. Here, we address this issue by cloning the canine prominin-1 and use its overexpression as a green fluorescent protein fusion protein in Madin-Darby canine kidney cells to determine its immunoreactivity with antibodies against human or mouse prominin-1. We used immunocytochemistry, flow cytometry and immunoblotting techniques and surprisingly found no cross-species immunoreactivity. These results raise some caution in data interpretation when anti-prominin-1 antibodies are used in interspecies studies. PMID:27701459

  12. Nestin(+) kidney resident mesenchymal stem cells for the treatment of acute kidney ischemia injury.

    PubMed

    Jiang, Mei Hua; Li, Guilan; Liu, Junfeng; Liu, Longshan; Wu, Bingyuan; Huang, Weijun; He, Wen; Deng, Chunhua; Wang, Dong; Li, Chunling; Lahn, Bruce T; Shi, Chenggang; Xiang, Andy Peng

    2015-05-01

    Renal resident mesenchymal stem cells (MSCs) are important regulators of kidney homeostasis, repair or regeneration. However, natural distribution and the starting population properties of these cells remain elusive because of the lack of specific markers. Here, we identified post-natal kidney derived Nestin(+) cells that fulfilled all of the criteria as a mesenchymal stem cell. These isolated Nestin(+) cells expressed the typical cell-surface marker of MSC, including Sca-1, CD44, CD106, NG2 and PDGFR-α. They were capable of self-renewal, possessed high clonogenic potential and extensive proliferation for more than 30 passages. Under appropriate differentiation conditions, these cells could differentiate into adipocytes, osteocytes, chondrocytes and podocytes. After intravenous injection into acute kidney injury mice, Nestin(+) cells contributed to functional improvement by significantly decreasing the peak level of serum creatinine and BUN, and reducing the damaged cell apoptosis. Furthermore, conditioned medium from Nestin(+) cells could protect against ischemic acute renal failure partially through paracrine factor VEGF. Taken together, our findings indicate that renal resident Nestin(+) MSCs can be derived, propagated, differentiated, and repair the acute kidney injury, which may shed new light on understanding MSCs biology and developing cell replacement therapies for kidney disease.

  13. Kidney stem cells in development, regeneration and cancer.

    PubMed

    Dziedzic, Klaudyna; Pleniceanu, Oren; Dekel, Benjamin

    2014-12-01

    The generation of nephrons during development depends on differentiation via a mesenchymal to epithelial transition (MET) of self-renewing, tissue-specific stem cells confined to a specific anatomic niche of the nephrogenic cortex. These cells may transform to generate oncogenic stem cells and drive pediatric renal cancer. Once nephron epithelia are formed the view of post-MET tissue renal growth and maintenance by adult tissue-specific epithelial stem cells becomes controversial. Recently, genetic lineage tracing that followed clonal evolution of single kidney cells showed that the need for new cells is constantly driven by fate-restricted unipotent clonal expansions in varying kidney segments arguing against a multipotent adult stem cell model. Lineage-restriction was similarly maintained in kidney organoids grown in culture. Importantly, kidney cells in which Wnt was activated were traced to give significant clonal progeny indicating a clonogenic hierarchy. In vivo nephron epithelia may be endowed with the capacity akin to that of unipotent epithelial stem/progenitor such that under specific stimuli can clonally expand/self renew by local proliferation of mature differentiated cells. Finding ways to ex vivo preserve and expand the observed in vivo kidney-forming capacity inherent to both the fetal and adult kidneys is crucial for taking renal regenerative medicine forward. Some of the strategies used to achieve this are sorting human fetal nephron stem/progenitor cells, growing adult nephrospheres or reprogramming differentiated kidney cells toward expandable renal progenitors.

  14. Potential Use of Stem Cells for Kidney Regeneration

    PubMed Central

    Yokoo, Takashi; Matsumoto, Kei; Yokote, Shinya

    2011-01-01

    Significant advances have been made in stem cell research over the past decade. A number of nonhematopoietic sources of stem cells (or progenitor cells) have been identified, including endothelial stem cells and neural stem cells. These discoveries have been a major step toward the use of stem cells for potential clinical applications of organ regeneration. Accordingly, kidney regeneration is currently gaining considerable attention to replace kidney dialysis as the ultimate therapeutic strategy for renal failure. However, due to anatomic complications, the kidney is believed to be the hardest organ to regenerate; it is virtually impossible to imagine such a complicated organ being completely rebuilt from pluripotent stem cells by gene or chemical manipulation. Nevertheless, several groups are taking on this big challenge. In this manuscript, current advances in renal stem cell research are reviewed and their usefulness for kidney regeneration discussed. We also reviewed the current knowledge of the emerging field of renal stem cell biology. PMID:21603103

  15. BMI1 Is Expressed in Canine Osteosarcoma and Contributes to Cell Growth and Chemotherapy Resistance

    PubMed Central

    Gandour-Edwards, Regina; Withers, Sita S.; Holt, Roseline; Rebhun, Robert B.

    2015-01-01

    BMI1, a stem cell factor and member of the polycomb group of genes, has been shown to contribute to growth and chemoresistance of several human malignancies including primary osteosarcoma (OSA). Naturally occurring OSA in the dog represents a large animal model of human OSA, however the potential role of BMI1 in canine primary and metastatic OSA has not been examined. Immunohistochemical staining of canine primary and metastatic OSA tumors revealed strong nuclear expression of BMI1. An identical staining pattern was found in both primary and metastatic human OSA tissues. Canine OSA cell lines (Abrams, Moresco, and D17) expressed high levels of BMI1 compared with canine osteoblasts and knockdown or inhibition of BMI1 by siRNA or by small molecule BMI1-inhibitor PTC-209 demonstrated a role for BMI1 in canine OSA cell growth and resistance to carboplatin and doxorubicin chemotherapy. These findings suggest that inhibition of BMI1 in primary or metastatic OSA may improve response to chemotherapy and that the dog may serve as a large animal model to evaluate such therapy. PMID:26110620

  16. Genomic characterisation of canine papillomavirus type 17, a possible rare cause of canine oral squamous cell carcinoma.

    PubMed

    Munday, John S; Dunowska, Magda; Laurie, Rebecca E; Hills, Simon

    2016-01-01

    Squamous cell carcinomas (SCCs) are the second most common cancer of the canine oral cavity resulting in significant morbidity and mortality. Recently a dog with multiple oral SCCs that contained a novel papillomavirus (PV) was reported. The aim of the present study was to determine the genome of this novel PV. To do this a short section of PV DNA was amplified from an oral SCC and 'back-to-back' primers were designed. Due to the circular nature of PV DNA, these primers were then used to amplify the remainder of the genome by inverse PCR. The PCR product was sequenced using next generation sequencing and the full genome of the PV, consisting of 8007 bp, was assembled and analysed. As this is the seventeenth PV identified from the domestic dog, the novel PV was designated Canis familiaris papillomavirus (CPV) type 17. Similar to other CPV types, the putative coding regions of CPV-17 were predicted to produce 5 early and 2 late proteins. Phylogenetic analysis of ORF L1 revealed greater than 70% similarity to CPV-2 and CPV-7 and we propose that CPV-17 also be classified as a Taupapillomavirus 1. While it appears CPV-17 is only rarely present in canine oral SCCs, evidence suggests that this PV could influence the development of oral SCCs in this species.

  17. Canine and feline host ranges of canine parvovirus and feline panleukopenia virus: distinct host cell tropisms of each virus in vitro and in vivo.

    PubMed Central

    Truyen, U; Parrish, C R

    1992-01-01

    Canine parvovirus (CPV) emerged as an apparently new virus during the mid-1970s. The origin of CPV is unknown, but a variation from feline panleukopenia virus (FPV) or another closely related parvovirus is suspected. Here we examine the in vitro and in vivo canine and feline host ranges of CPV and FPV. Examination of three canine and six feline cell lines and mitogen-stimulated canine and feline peripheral blood lymphocytes revealed that CPV replicates in both canine and feline cells, whereas FPV replicates efficiently only in feline cells. The in vivo host ranges were unexpectedly complex and distinct from the in vitro host ranges. Inoculation of dogs with FPV revealed efficient replication in the thymus and, to some degree, in the bone marrow, as shown by virus isolation, viral DNA recovery, and Southern blotting and by strand-specific in situ hybridization. FPV replication could not be demonstrated in mesenteric lymph nodes or in the small intestine, which are important target tissues in CPV infection. Although CPV replicated well in all the feline cells tested in vitro, it did not replicate in any tissue of cats after intramuscular or intravenous inoculation. These results indicate that these viruses have complex and overlapping host ranges and that distinct tissue tropisms exist in the homologous and heterologous hosts. Images PMID:1323703

  18. Mechanism of insulin production in canine bone marrow derived mesenchymal stem cells.

    PubMed

    Takemitsu, Hiroshi; Zhao, Dongwei; Ishikawa, Shingo; Michishita, Masaki; Arai, Toshiro; Yamamoto, Ichiro

    2013-08-01

    Insulin is a critical hormone in the regulation of blood glucose levels and is produced exclusively by pancreatic islet beta-cells. Insulin deficiency due to reduced pancreatic islet beta-cell number underlies the progression of diabetes mellitus, prompting efforts to develop beta-cell replacement therapies. However, precise information on beta-cell replacement and differentiation in canines is limited. In this study, we established insulin-producing cells from bone marrow derived mesenchymal stem cells transiently expressing canine pancreatic and duodenal homeobox 1 (Pdx1), beta cell transactivator 2 (Beta2) and V-maf avian musculoaponeurotic fibrosarcoma oncogene homolog A (Mafa) using a gene transfer technique. Real-time PCR analysis revealed an increase in insulin mRNA expression of transfected cells. And ELISA revealed that insulin protein expressed was detected in cytoplasmic fraction. Insulin immunostaining analysis was performed and observed in cytoplasmic fraction. These results suggest that co-transfection of Pdx1, Beta2 and Mafa induce insulin production in canine BMSCs. Our findings provide a clue to basic research into the mechanisms underlying insulin production in the canines.

  19. Mesenchymal stem cells in kidney inflammation and repair.

    PubMed

    Wise, Andrea F; Ricardo, Sharon D

    2012-01-01

    Mesenchymal stem cells are a heterogeneous population of fibroblast-like stromal cells that have been isolated from the bone marrow and a number of organs and tissues including the kidney. They have multipotent and self-renewing properties and can differentiate into cells of the mesodermal lineage. Following their administration in vivo, mesenchymal stem cells migrate to damaged kidney tissue where they produce an array of anti-inflammatory cytokines and chemokines that can alter the course of injury. Mesenchymal stem cells are thought to elicit repair through paracrine and/or endocrine mechanisms that modulate the immune response resulting in tissue repair and cellular replacement. This review will discuss the features of mesenchymal stem cells and the factors they release that protect against kidney injury; the mechanisms of homing and engraftment to sites of inflammation; and further elucidate the immunomodulatory effect of mesenchymal stem cells and their ability to alter macrophage phenotype in a setting of kidney damage and repair.

  20. Acute kidney injury and bilateral symmetrical enlargement of the kidneys as first presentation of B-cell lymphoblastic lymphoma.

    PubMed

    Shi, Su-fang; Zhou, Fu-de; Zou, Wan-zhong; Wang, Hai-yan

    2012-12-01

    Lymphoblastic lymphoma is an uncommon subtype of lymphoid neoplasm in adults. Acute kidney injury at initial presentation due to lymphoblastic lymphoma infiltration of the kidneys has rarely been described. We report a 19-year-old woman who presented with acute kidney injury due to massive lymphomatous infiltration of the kidneys. The diagnosis of B-cell lymphoblastic lymphoma was established by immunohistochemical study of the biopsied kidney. The patient had an excellent response to the VDCLP protocol (vincristine, daunomycin, cyclophosphamide, asparaginase, and dexamethasone) with sustained remission. We recommend that lymphomatous infiltration be considered in patients presenting with unexplained acute kidney injury and enlarged kidneys.

  1. Expression of PD-L1 on Canine Tumor Cells and Enhancement of IFN-γ Production from Tumor-Infiltrating Cells by PD-L1 Blockade

    PubMed Central

    Maekawa, Naoya; Konnai, Satoru; Ikebuchi, Ryoyo; Okagawa, Tomohiro; Adachi, Mami; Takagi, Satoshi; Kagawa, Yumiko; Nakajima, Chie; Suzuki, Yasuhiko; Murata, Shiro; Ohashi, Kazuhiko

    2014-01-01

    Programmed death 1 (PD-1), an immunoinhibitory receptor, and programmed death ligand 1 (PD-L1), its ligand, together induce the “exhausted” status in antigen-specific lymphocytes and are thus involved in the immune evasion of tumor cells. In this study, canine PD-1 and PD-L1 were molecularly characterized, and their potential as therapeutic targets for canine tumors was discussed. The canine PD-1 and PD-L1 genes were conserved among canine breeds. Based on the sequence information obtained, the recombinant canine PD-1 and PD-L1 proteins were constructed; they were confirmed to bind each other. Antibovine PD-L1 monoclonal antibody effectively blocked the binding of recombinant PD-1 with PD-L1–expressing cells in a dose-dependent manner. Canine melanoma, mastocytoma, renal cell carcinoma, and other types of tumors examined expressed PD-L1, whereas some did not. Interestingly, anti-PD-L1 antibody treatment enhanced IFN-γ production from tumor-infiltrating cells. These results showed that the canine PD-1/PD-L1 pathway is also associated with T-cell exhaustion in canine tumors and that its blockade with antibody could be a new therapeutic strategy for canine tumors. Further investigations are needed to confirm the ability of anti-PD-L1 antibody to reactivate canine antitumor immunity in vivo, and its therapeutic potential has to be further discussed. PMID:24915569

  2. Expression of PD-L1 on canine tumor cells and enhancement of IFN-γ production from tumor-infiltrating cells by PD-L1 blockade.

    PubMed

    Maekawa, Naoya; Konnai, Satoru; Ikebuchi, Ryoyo; Okagawa, Tomohiro; Adachi, Mami; Takagi, Satoshi; Kagawa, Yumiko; Nakajima, Chie; Suzuki, Yasuhiko; Murata, Shiro; Ohashi, Kazuhiko

    2014-01-01

    Programmed death 1 (PD-1), an immunoinhibitory receptor, and programmed death ligand 1 (PD-L1), its ligand, together induce the "exhausted" status in antigen-specific lymphocytes and are thus involved in the immune evasion of tumor cells. In this study, canine PD-1 and PD-L1 were molecularly characterized, and their potential as therapeutic targets for canine tumors was discussed. The canine PD-1 and PD-L1 genes were conserved among canine breeds. Based on the sequence information obtained, the recombinant canine PD-1 and PD-L1 proteins were constructed; they were confirmed to bind each other. Antibovine PD-L1 monoclonal antibody effectively blocked the binding of recombinant PD-1 with PD-L1-expressing cells in a dose-dependent manner. Canine melanoma, mastocytoma, renal cell carcinoma, and other types of tumors examined expressed PD-L1, whereas some did not. Interestingly, anti-PD-L1 antibody treatment enhanced IFN-γ production from tumor-infiltrating cells. These results showed that the canine PD-1/PD-L1 pathway is also associated with T-cell exhaustion in canine tumors and that its blockade with antibody could be a new therapeutic strategy for canine tumors. Further investigations are needed to confirm the ability of anti-PD-L1 antibody to reactivate canine antitumor immunity in vivo, and its therapeutic potential has to be further discussed.

  3. Electrophoretic separation of kidney and pituitary cells on STS-8

    NASA Technical Reports Server (NTRS)

    Morrison, D. R.; Nachtwey, D. S.; Barlow, G. H.; Cleveland, C.; Lanham, J. W.; Farrington, M. A.; Hatfield, J. M.; Hymer, W. C.; Grindeland, R.; Lewis, M. L.

    1984-01-01

    Specific secretory cells were separated from suspensions of cultured primary human embryonic cells and rat pituitary cells in microgravity conditions, with an objective of isolating the subfractions of kidney cells that produce the largest amount of urakinase, and the subfractions of rat pituitary cells that secrete growth hormones (GH), prolactin (PRL), and other hormones. It is inferred from the experimental observations that the surface charge distributions of the GH-containing cells differ from those of the PRL-containing cells, which is explained by the presence of secretory products on the surface of pituitary cells. For kidney cells, the electrophoretic mobility distributions in flight experiments were spread more than the ground controls.

  4. Toward immunotherapy with redirected T cells in a large animal model: ex vivo activation, expansion, and genetic modification of canine T cells.

    PubMed

    Mata, Melinda; Vera, Juan F; Gerken, Claudia; Rooney, Cliona M; Miller, Tasha; Pfent, Catherine; Wang, Lisa L; Wilson-Robles, Heather M; Gottschalk, Stephen

    2014-10-01

    Adoptive transfer of T cells expressing chimeric antigen receptors (CARs) has shown promising antitumor activity in early phase clinical studies, especially for hematological malignancies. However, most preclinical models do not reliably mimic human disease. We reasoned that developing an adoptive T-cell therapy approach for spontaneous osteosarcoma (OS) occurring in dogs would more closely reproduce the condition in human cancer. To generate CAR-expressing canine T cells, we developed expansion and transduction protocols that allow for the generation of sufficient numbers of CAR-expressing canine T cells for future clinical studies in dogs within 2 weeks of ex vivo culture. To evaluate the functionality of CAR-expressing canine T cells, we targeted HER2(+) OS. We demonstrate that canine OS is positive for HER2, and that canine T cells expressing a HER2-specific CAR with human-derived transmembrane and CD28.ζ signaling domains recognize and kill HER2(+) canine OS cell lines in an antigen-dependent manner. To reduce the potential immunogenicity of the CAR, we evaluated a CAR with canine-derived transmembrane and signaling domains, and found no functional difference between human and canine CARs. Hence, we have successfully developed a strategy to generate CAR-expressing canine T cells for future preclinical studies in dogs. Testing T-cell therapies in an immunocompetent, outbred animal model may improve our ability to predict their safety and efficacy before conducting studies in humans.

  5. Regenerative medicine for the kidney: stem cell prospects & challenges

    PubMed Central

    2013-01-01

    The kidney has key roles in maintaining human health. There is an escalating medical crisis in nephrology as growing numbers of patients suffer from kidney diseases that culminate in organ failure. While dialysis and transplantation provide life-saving treatments, these therapies are rife with limitations and place significant burdens on patients and healthcare systems. It has become imperative to find alternative ways to treat existing kidney conditions and preemptive means to stave off renal dysfunction. The creation of innovative medical approaches that utilize stem cells has received growing research attention. In this review, we discuss the regenerative and maladaptive cellular responses that occur during acute and chronic kidney disease, the emerging evidence about renal stem cells, and some of the issues that lie ahead in bridging the gap between basic stem cell biology and regenerative medicine for the kidney. PMID:23688352

  6. Isolation and Characterization of Multipotent Mesenchymal Stem Cells Adhering to Adipocytes in Canine Bone Marrow.

    PubMed

    Lin, Hsing-Yi; Fujita, Naoki; Endo, Kentaro; Morita, Maresuke; Takeda, Tae; Nakagawa, Takayuki; Nishimura, Ryohei

    2017-03-15

    The ceiling culture method has been used to isolate mature adipocytes from adipose tissue that can be dedifferentiated into fibroblastic cells, also known as dedifferentiated fat (DFAT) cells that self-renew and are multipotent, with much higher homogeneity and colony-forming efficiency than those of adipose tissue-derived mesenchymal stem cells. We cultured adipocytes from canine bone marrow using this technique, with the expectation of obtaining DFAT cells. However, contrary to our expectations, continuous monitoring of ceiling cultures by time-lapse microscopy revealed many small cells adhering to adipocytes that proliferated rapidly into cells with a fibroblastic morphology and without any dedifferentiation from adipocytes. We named these cells bone marrow peri-adipocyte cells (BM-PACs) and demonstrated the multipotent properties of BM-PACs compared to that of conventionally cultured canine bone marrow mesenchymal stem cells (BMMSCs). BM-PACs showed significantly greater clonogenicity and proliferation ability than BMMSCs. An in vitro trilineage differentiation assay revealed that BM-PACs possess adipogenic, osteogenic, and chondrogenic capacities superior to those of BMMSCs. Flow cytometric analysis revealed that the expression of CD73, which plays an important role in cell growth and differentiation, was significantly higher in BM-PACs than in BMMSCs. These results indicate that canine BM-PACs have stem cell characteristics that are superior to those of BMMSCs, and that these mesenchymal stem cells (MSCs) appear to be a feasible source for cell-based therapies in dogs.

  7. A role of ghrelin in canine mammary carcinoma cells proliferation, apoptosis and migration

    PubMed Central

    2012-01-01

    Background Ghrelin is a natural ligand of the growth hormone secretagogue receptor (GHS-R). They are often co-expressed in multiple human tumors and related cancer cell lines what can indicate that the ghrelin/GHS-R axis may have an important role in tumor growth and progression. However, a role of ghrelin in canine tumors remains unknown. Thus, the aim of our study was two-fold: (1) to assess expression of ghrelin and its receptor in canine mammary cancer and (2) to examine the effect of ghrelin on carcinoma cells proliferation, apoptosis, migration and invasion. The expression of ghrelin and its receptor in canine mammary cancer tissues and cell lines (isolated from primary tumors and their metastases) was examined using Real-time qPCR and immunohistochemistry. For apoptosis analysis the Annexin V and propidium iodide dual staining was applied whereas cell proliferation was evaluated by MTT assay and BrdU incorporation test. The influence of ghrelin on cancer cells migration and invasion was assessed using Boyden chamber assays and wound healing assay. Results The highest expression of ghrelin was observed in metastatic cancers whereas the lowest expression of ghrelin receptor was detected in tumors of the 3rd grade of malignancy. Higher expression of ghrelin and its receptor was detected in cancer cell lines isolated from metastases than in cell lines isolated from primary tumors. In vitro experiments demonstrated that exposure to low doses of ghrelin stimulates cellular proliferation, inhibits apoptosis and promotes motility and invasion of canine mammary cancer cells. Growth hormone secretagogue receptor inhibitor ([D-Lys3]-GHRP6) as well as RNA interference enhances early apoptosis. Conclusion The presence of ghrelin and GHS-R in all of the examined canine mammary tumors may indicate their biological role in cancer growth and development. Our experiments conducted in vitro confirmed that ghrelin promotes cancer development and metastasis. PMID:22999388

  8. CD117 immunoexpression in canine mast cell tumours: correlations with pathological variables and proliferation markers

    PubMed Central

    Gil da Costa, Rui M; Matos, Eduarda; Rema, Alexandra; Lopes, Célia; Pires, Maria A; Gärtner, Fátima

    2007-01-01

    Background Cutaneous mast cell tumours are one of the most common neoplasms in dogs and show a highly variable biologic behaviour. Several prognosis tools have been proposed for canine mast cell tumours, including histological grading and cell proliferation markers. CD117 is a receptor tyrosine kinase thought to play a key role in human and canine mast cell neoplasms. Normal (membrane-associated) and aberrant (cytoplasmic, focal or diffuse) CD117 immunoexpression patterns have been identified in canine mast cell tumours. Cytoplasmic CD117 expression has been found to correlate with higher histological grade and with a worsened post-surgical prognosis. This study addresses the role of CD117 in canine mast cell tumours by studying the correlations between CD117 immunoexpression patterns, two proliferation markers (Ki67 and AgNORs) histological grade, and several other pathological variables. Results Highly significant (p < 0,001) correlations were found between CD117 immunostaining patterns and histological grade, cell proliferation markers (Ki67, AgNORs) and tumoral necrosis. Highly significant (p < 0,001) correlations were also established between the two cellular proliferation markers and histological grade, tumour necrosis and epidermal ulceration. A significant correlation (p = 0.035) was observed between CD117 expression patterns and epidermal ulceration. No differences were observed between focal and diffuse cytoplasmic CD117 staining patterns concerning any of the variables studied. Conclusion These findings highlight the key role of CD117 in the biopathology of canine MCTs and confirm the relationship between aberrant CD117 expression and increased cell proliferation and higher histological grade. Further studies are needed to unravel the cellular mechanisms underlying focal and diffuse cytoplasmic CD117 staining patterns, and their respective biopathologic relevance. PMID:17711582

  9. CHEMOKINE RECEPTOR 7 (CCR7)-EXPRESSION AND IFNγ PRODUCTION DEFINE VACCINE-SPECIFIC CANINE T CELL SUBSETS

    PubMed Central

    Hartley, Ashley N.; Tarleton, Rick L.

    2015-01-01

    Canines suffer from and serve as strong translational animals models for many immunological disorders and infectious diseases. Routine vaccination has been a mainstay of protecting dogs through the stimulation of robust antibody responses and expansion of memory T cell populations. Commercially available reagents and described techniques are limited for identifying and characterizing canine T cell subsets and evaluating T cell-specific effector function. To define reagents for delineating naïve versus activated T cells and identify antigen-specific T cells, we tested anti-human and anti-bovine T-cell specific cell surface marker reagents for cross-reactivity with canine peripheral blood mononuclear cells (PBMCs. Both CD4+ and CD8+ T cells from healthy canine donors showed reactivity to CCL19-Ig, a CCR7 ligand, and coexpression with CD62L. An in vitro stimulation with concanavalin A validated downregulation of CCR7 and CD62L expression on stimulated healthy control PBMCs, consistent with an activated T cell phenotype. Anti-IFNγ antibodies identified antigen-specific IFNγ-producing CD4+ and CD8+ T cells upon in vitro vaccine antigen PBMC stimulation. PBMC isolation within 24 hours of sample collection allowed for efficient cell recovery and accurate T cell effector function characterization. These data provide a reagent and techniques platform via flow cytometry for identifying canine T cell subsets and characterizing circulating antigen-specific canine T cells for potential use in diagnostic and field settings. PMID:25758065

  10. The Role of c-KIT in Tumorigenesis: Evaluation in Canine Cutaneous Mast Cell Tumors1

    PubMed Central

    Webster, Joshua D; Yuzbasiyan-Gurkan, Vilma; Kaneene, John B; Miller, RoseAnn; Resau, James H; Kiupel, Matti

    2006-01-01

    Abstract The c-KIT proto-oncogene has been implicated in the pathogenesis of several neoplastic diseases, including gastrointestinal stromal tumors and mastocytosis in humans, and mast cell tumors (MCTs) in canines. Cutaneous MCTs are common neoplasms in dogs and have a variable biologic behavior. The goal of this study was to define the prognostic significance of c-KIT mutations identified in canine MCTs and the associations between c-KIT mutations, KIT localization, and KIT expression levels. Microdissection and polymerase chain reaction were performed on 60 MCTs to identify c-KIT mutations. Anti-KIT antibodies were used for immunohistochemical evaluation of KIT localization. Forty-two MCTs were included in a tissue microarray, and KIT expression was quantified using immunofluorescence. Canine MCTs with c-KIT mutations were significantly associated with an increased incidence of recurrent disease and death. c-KIT mutations were also significantly associated with aberrant protein localization; however, the level of KIT expression did not correlate with either c-KIT mutations or changes in protein localization. Considering the high prevalence of canine MCTs and the central role of c-KIT in the tumorigenesis of certain tumors, canine MCTs are an excellent model for characterizing the role of c-KIT in neoplastic diseases and is a potential target for novel therapeutic agents in clinical trials. PMID:16611403

  11. The role of c-KIT in tumorigenesis: evaluation in canine cutaneous mast cell tumors.

    PubMed

    Webster, Joshua D; Yuzbasiyan-Gurkan, Vilma; Kaneene, John B; Miller, RoseAnn; Resau, James H; Kiupel, Matti

    2006-02-01

    The c-KIT proto-oncogene has been implicated in the pathogenesis of several neoplastic diseases, including gastrointestinal stromal tumors and mastocytosis in humans, and mast cell tumors (MCTs) in canines. Cutaneous MCTs are common neoplasms in dogs and have a variable biologic behavior. The goal of this study was to define the prognostic significance of c-KIT mutations identified in canine MCTs and the associations between c-KIT mutations, KIT localization, and KIT expression levels. Microdissection and polymerase chain reaction were performed on 60 MCTs to identify c-KIT mutations. Anti-KIT antibodies were used for immunohistochemical evaluation of KIT localization. Forty-two MCTs were included in a tissue microarray, and KIT expression was quantified using immunofluorescence. Canine MCTs with c-KIT mutations were significantly associated with an increased incidence of recurrent disease and death. c-KIT mutations were also significantly associated with aberrant protein localization; however, the level of KIT expression did not correlate with either c-KIT mutations or changes in protein localization. Considering the high prevalence of canine MCTs and the central role of c-KIT in the tumorigenesis of certain tumors, canine MCTs are an excellent model for characterizing the role of c-KIT in neoplastic diseases and is a potential target for novel therapeutic agents in clinical trials.

  12. Canine Distemper Viral Inclusions in Blood Cells of Four Vaccinated Dogs

    PubMed Central

    McLaughlin, Bruce G.; Adams, Pamela S.; Cornell, William D.; Elkins, A. Darrel

    1985-01-01

    Four cases of canine distemper were detected by the presence of numerous cytoplasmic inclusions in various circulating blood cells. Fluorescent antibody techniques and electron microscopy confirmed the identity of the viral inclusions. The cases occurred in the same geographic area and within a short time span. All four dogs had been vaccinated against canine distemper, but stress or other factors may have compromised their immune status. The possibility of an unusually virulent virus strain was also considered. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5. PMID:17422596

  13. Insights into kidney stem cell development and regeneration using zebrafish

    PubMed Central

    Drummond, Bridgette E; Wingert, Rebecca A

    2016-01-01

    Kidney disease is an escalating global health problem, for which the formulation of therapeutic approaches using stem cells has received increasing research attention. The complexity of kidney anatomy and function, which includes the diversity of renal cell types, poses formidable challenges in the identification of methods to generate replacement structures. Recent work using the zebrafish has revealed their high capacity to regenerate the integral working units of the kidney, known as nephrons, following acute injury. Here, we discuss these findings and explore the ways that zebrafish can be further utilized to gain a deeper molecular appreciation of renal stem cell biology, which may uncover important clues for regenerative medicine. PMID:26981168

  14. Expression of SART-1 mRNA in canine squamous cell carcinomas.

    PubMed

    Takaishi, Yumi; Yoshida, Yukari; Nakagaki, Kazuhide; Fujita, Michio; Taniguchi, Akiko; Orima, Hiromitsu

    2008-12-01

    SART-1, a squamous cell carcinoma (SCC) antigen recognized by cytotoxic T lymphocytes, has been useful in human cancer therapy. The SART-1(259) peptide is a potential candidate for vaccine. The present study examined an orthologue of the mRNA coding this peptide in canine SCCs. Specimens were obtained from seven canine patients with SCC, and the mRNA was isolated from the samples. The SART-1 and beta-actin genes were amplified by reverse-transcription polymerase chain reaction, using the isolated mRNA as a template. Canine SART-1 was amplified in six of the seven specimens, while beta-actin was detected in all the samples. In dogs, carcinomas expressing SART-1 could be a target for cytotoxic T lymphocyte mediated immunotherapy.

  15. Anti-influenza neuraminidase inhibitor oseltamivir phosphate induces canine mammary cancer cell aggressiveness.

    PubMed

    de Oliveira, Joana T; Santos, Ana L; Gomes, Catarina; Barros, Rita; Ribeiro, Cláudia; Mendes, Nuno; de Matos, Augusto J; Vasconcelos, M Helena; Oliveira, Maria José; Reis, Celso A; Gärtner, Fátima

    2015-01-01

    Oseltamivir phosphate is a widely used anti-influenza sialidase inhibitor. Sialylation, governed by sialyltransferases and sialidases, is strongly implicated in the oncogenesis and progression of breast cancer. In this study we evaluated the biological behavior of canine mammary tumor cells upon oseltamivir phosphate treatment (a sialidase inhibitor) in vitro and in vivo. Our in vitro results showed that oseltamivir phosphate impairs sialidase activity leading to increased sialylation in CMA07 and CMT-U27 canine mammary cancer cells. Surprisingly, oseltamivir phosphate stimulated, CMT-U27 cell migration and invasion capacity in vitro, in a dose-dependent manner. CMT-U27 tumors xenograft of oseltamivir phosphate-treated nude mice showed increased sialylation, namely α2,6 terminal structures and SLe(x) expression. Remarkably, a trend towards increased lung metastases was observed in oseltamivir phosphate-treated nude mice. Taken together, our findings revealed that oseltamivir impairs canine mammary cancer cell sialidase activity, altering the sialylation pattern of canine mammary tumors, and leading, surprisingly, to in vitro and in vivo increased mammary tumor aggressiveness.

  16. Immunohistochemical detection of COX-2 in feline and canine actinic keratoses and cutaneous squamous cell carcinoma.

    PubMed

    Bardagí, M; Fondevila, D; Ferrer, L

    2012-01-01

    Cyclooxygenase-2 (COX-2) overexpression and its causal role in epidermal carcinogenesis have been demonstrated in human actinic keratoses (AK) and cutaneous squamous cell carcinoma (SCC). The aim of this study was to determine immunohistochemically the level of expression of COX-2 in feline and canine AK (n=18), SCC (n=36) and inflammatory dermatoses (n=24). COX-2 immunoreactivity was detected in all feline and canine SCC. In all specimens, labelled basal and suprabasal neoplastic keratinocytes were localized within and below areas of superficial erosion or ulceration and only scattered deeper tumour cells were positively labelled. In most cases, positive immunoreactivity of keratinocytes was associated with the presence of granulocytes. COX-2 expression was detected in 3/9 canine and 4/9 feline cases of AK and in only one case was associated with inflammation. Inflammatory dermatoses were characterized by positively labelled epidermal and follicular basal and suprabasal keratinocytes that were always associated with granulocyte exocytosis. These results indicate that further study of the effect of using COX-2 inhibitors in the management and prevention of feline and canine cutaneous SCC is warranted. The association between inflammatory cells and COX-2 expressing epidermal cells opens a new line of research regarding the role of COX-2 in SCC oncogenesis. Moreover, further studies should investigate the role of COX-2 in the pathogenesis and management of AK in animals.

  17. Anti-Influenza Neuraminidase Inhibitor Oseltamivir Phosphate Induces Canine Mammary Cancer Cell Aggressiveness

    PubMed Central

    de Oliveira, Joana T.; Santos, Ana L.; Gomes, Catarina; Barros, Rita; Ribeiro, Cláudia; Mendes, Nuno; de Matos, Augusto J.; Vasconcelos, M. Helena; Oliveira, Maria José; Reis, Celso A.; Gärtner, Fátima

    2015-01-01

    Oseltamivir phosphate is a widely used anti-influenza sialidase inhibitor. Sialylation, governed by sialyltransferases and sialidases, is strongly implicated in the oncogenesis and progression of breast cancer. In this study we evaluated the biological behavior of canine mammary tumor cells upon oseltamivir phosphate treatment (a sialidase inhibitor) in vitro and in vivo. Our in vitro results showed that oseltamivir phosphate impairs sialidase activity leading to increased sialylation in CMA07 and CMT-U27 canine mammary cancer cells. Surprisingly, oseltamivir phosphate stimulated, CMT-U27 cell migration and invasion capacity in vitro, in a dose-dependent manner. CMT-U27 tumors xenograft of oseltamivir phosphate-treated nude mice showed increased sialylation, namely α2,6 terminal structures and SLe(x) expression. Remarkably, a trend towards increased lung metastases was observed in oseltamivir phosphate-treated nude mice. Taken together, our findings revealed that oseltamivir impairs canine mammary cancer cell sialidase activity, altering the sialylation pattern of canine mammary tumors, and leading, surprisingly, to in vitro and in vivo increased mammary tumor aggressiveness. PMID:25850034

  18. Stage-specific embryonic antigen: determining expression in canine glioblastoma, melanoma, and mammary cancer cells

    PubMed Central

    Ito, Daisuke

    2017-01-01

    The expression of stage-specific embryonic antigens (SSEAs) was determined in several types of canine cancer cells. Flow cytometry showed SSEA-1 expression in glioblastoma, melanoma, and mammary cancer cells, although none expressed SSEA-3 or SSEA-4. Expression of SSEA-1 was not detected in lymphoma, osteosarcoma, or hemangiosarcoma cell lines. Relatively stable SSEA-1 expression was observed between 24 and 72 h of culture. After 8 days in culture, sorted SSEA-1− and SSEA-1+ cells re-established SSEA-1 expression to levels comparable to those observed in unsorted cells. Our results document, for the first time, the expression of SSEA-1 in several canine cancer cell lines. PMID:27456773

  19. Regulatory T cells in kidney disease and transplantation.

    PubMed

    Hu, Min; Wang, Yuan Min; Wang, Yiping; Zhang, Geoff Y; Zheng, Guoping; Yi, Shounan; O'Connell, Philip J; Harris, David C H; Alexander, Stephen I

    2016-09-01

    Regulatory T cells (Tregs) have been shown to be important in maintaining immune homeostasis and preventing autoimmune disease, including autoimmune kidney disease. It is also likely that they play a role in limiting kidney transplant rejection and potentially in promoting transplant tolerance. Although other subsets of Tregs exist, the most potent and well-defined Tregs are the Foxp3 expressing CD4(+) Tregs derived from the thymus or generated peripherally. These CD4(+)Foxp3(+) Tregs limit autoimmune renal disease in animal models, especially chronic kidney disease, and kidney transplantation. Furthermore, other subsets of Tregs, including CD8 Tregs, may play a role in immunosuppression in kidney disease. The development and protective mechanisms of Tregs in kidney disease and kidney transplantation involve multiple mechanisms of suppression. Here we review the development and function of CD4(+)Foxp3(+) Tregs. We discuss the specific application of Tregs as a therapeutic strategy to prevent kidney disease and to limit kidney transplant rejection and detail clinical trials in this area of transplantation.

  20. In vitro anti-tubulin effects of mebendazole and fenbendazole on canine glioma cells.

    PubMed

    Lai, S R; Castello, S A; Robinson, A C; Koehler, J W

    2017-01-12

    Benzimidazole anthelmintics have reported anti-neoplastic effects both in vitro and in vivo. The purpose of this study was to evaluate the in vitro chemosensitivity of three canine glioma cell lines to mebendazole and fenbendazole. The mean inhibitory concentration (IC50 ) (±SD) obtained from performing the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay after treating J3T, G06-A, and SDT-3G cells for 72 h with mebendazole were 0.030 ± 0.003, 0.080 ± 0.015 and 0.030 ± 0.006 μM respectively, while those for fenbendazole were 0.550  ± 0.015, 1.530 ± 0.159 and 0.690 ± 0.095 μM; treatment of primary canine fibroblasts for 72 h at IC50 showed no significant effect. Immunofluorescence studies showed disruption of tubulin after treatment. Mebendazole and fenbendazole are cytotoxic in canine glioma cell lines in vitro and may be good candidates for treatment of canine gliomas. Further in vivo studies are required.

  1. Distribution of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in canines after intracerebroventricular injection.

    PubMed

    Park, Sang Eon; Jung, Na-Yeon; Lee, Na Kyung; Lee, Jeongmin; Hyung, Brian; Myeong, Su Hyeon; Kim, Hyeong Seop; Suh, Yeon-Lim; Lee, Jung-Il; Cho, Kyung Rae; Kim, Do Hyung; Choi, Soo Jin; Chang, Jong Wook; Na, Duk L

    2016-11-01

    In this study, we investigated the distribution of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) administered via intracerebroventricular (ICV) injection in a canine model. Ten beagles (11-13 kg per beagle) each received an injection of 1 × 10(6) cells into the right lateral ventricle and were sacrificed 7 days after administration. Based on immunohistochemical analysis, hUCB-MSCs were observed in the brain parenchyma, especially along the lateral ventricular walls. Detected as far as 3.5 mm from the cortical surface, these cells migrated from the lateral ventricle toward the cortex. We also observed hUCB-MSCs in the hippocampus and the cervical spinal cord. According to real-time polymerase chain reaction results, most of the hUCB-MSCs were found distributed in the brain and the cervical spinal cord but not in the lungs, heart, kidneys, spleen, and liver. ICV administered hUCB-MSCs also enhanced the endogenous neural stem cell population in the subventricular zone. These results highlighted the ICV delivery route as an optimal route to be performed in stem cell-based clinical therapies for neurodegenerative diseases.

  2. Global gene expression profiles of canine macrophages and canine mammary cancer cells grown as a co-culture in vitro

    PubMed Central

    2012-01-01

    Background Solid tumours comprise various cells, including cancer cells, resident stromal cells, migratory haemopoietic cells and other. These cells regulate tumour growth and metastasis. Macrophages constitute probably the most important element of all interactions within the tumour microenvironment. However, the molecular mechanism, that guides tumour environment, still remains unknown. Exploring the underlying molecular mechanisms that orchestrate these phenomena has been the aim of our study. A co-culture of canine mammary cancer cells and macrophages was established and maintained for 72 hrs. Having sorted the cells, gene expression in cancer cells and macrophages, using DNA microarrays, was examined. The results were confirmed using real-time qPCR and confocal microscopy. Moreover, their ability for migration and invasion has been assessed. Results Microarray analysis showed that the up-regulated genes in the cancer cell lines are involved in 15 highly over-manifested pathways. The pathways that drew our diligent attention included: the inflammation pathway mediated by chemokine and cytokine, the Toll receptor signalling pathway and the B cell activation. The up-regulated genes in the macrophages were involved in only 18 significantly over-manifested pathways: the angiogenesis, the p53 pathway feedback loops2 and the Wnt signalling pathway. The microarray analysis revealed that co-culturing of cancer cells with macrophages initiated the myeloid-specific antigen expression in cancer cells, as well as cytokine/chemokine genes expression. This finding was confirmed at mRNA and protein level. Moreover, we showed that macrophages increase cancer migration and invasion. Conclusions The presence of macrophages in the cancer environment induces acquisition of the macrophage phenotype (specific antigens and chemokines/cytokines expression) in cancer cells. We presumed that cancer cells also acquire other myeloid features, such as: capabilities of cell rolling

  3. Adoptive T-cell therapy improves treatment of canine non–Hodgkin lymphoma post chemotherapy

    PubMed Central

    O'Connor, Colleen M.; Sheppard, Sabina; Hartline, Cassie A.; Huls, Helen; Johnson, Mark; Palla, Shana L.; Maiti, Sourindra; Ma, Wencai; Davis, R. Eric; Craig, Suzanne; Lee, Dean A.; Champlin, Richard; Wilson, Heather; Cooper, Laurence J. N.

    2012-01-01

    Clinical observations reveal that an augmented pace of T-cell recovery after chemotherapy correlates with improved tumor-free survival, suggesting the add-back of T cells after chemotherapy may improve outcomes. To evaluate adoptive immunotherapy treatment for B-lineage non-Hodgkin lymphoma (NHL), we expanded T cells from client-owned canines diagnosed with NHL on artificial antigen presenting cells (aAPC) in the presence of human interleukin (IL)-2 and IL-21. Graded doses of autologous T cells were infused after CHOP chemotherapy and persisted for 49 days, homed to tumor, and significantly improved survival. Serum thymidine kinase changes predicted T-cell engraftment, while anti-tumor effects correlated with neutrophil-to-lymphocyte ratios and granzyme B expression in manufactured T cells. Therefore, chemotherapy can be used to modulate infused T-cell responses to enhance anti-tumor effects. The companion canine model has translational implications for human immunotherapy which can be readily exploited since clinical-grade canine and human T cells are propagated using identical approaches. PMID:22355761

  4. Generation of LIF-independent induced pluripotent stem cells from canine fetal fibroblasts.

    PubMed

    Gonçalves, N J N; Bressan, F F; Roballo, K C S; Meirelles, F V; Xavier, P L P; Fukumasu, H; Williams, C; Breen, M; Koh, S; Sper, R; Piedrahita, J; Ambrósio, C E

    2017-04-01

    Takahashi and Yamanaka established the first technique in which transcription factors related to pluripotency are incorporated into the genome of somatic cells to enable reprogramming of these cells. The expression of these transcription factors enables a differentiated somatic cell to reverse its phenotype to an embryonic state, generating induced pluripotent stem cells (iPSCs). iPSCs from canine fetal fibroblasts were produced through lentiviral polycistronic human and mouse vectors (hOSKM/mOSKM), aiming to obtain pluripotent stem cells with similar features to embryonic stem cells (ESC) in this animal model. The cell lines obtained in this study were independent of LIF or any other supplemental inhibitors, resistant to enzymatic procedure (TrypLE Express Enzyme), and dependent on bFGF. Clonal lines were obtained from slightly different protocols with maximum reprogramming efficiency of 0.001%. All colonies were positive for alkaline phosphatase, embryoid body formation, and spontaneous differentiation and expressed high levels of endogenous OCT4 and SOX2. Canine iPSCs developed tumors at 120 days post-injection in vivo. Preliminary chromosomal evaluations were performed by FISH hybridization, revealing no chromosomal abnormality. To the best of our knowledge, this report is the first to describe the ability to reprogram canine somatic cells via lentiviral vectors without supplementation and with resistance to enzymatic action, thereby demonstrating the pluripotency of these cell lines.

  5. Embryonic stem cell gene expression signatures in the canine mammary tumor: a bioinformatics approach.

    PubMed

    Zamani-Ahmadmahmudi, Mohamad

    2016-08-01

    Canine breast cancer was considered as an ideal model of comparative oncology for the human breast cancer, as there is significant overlap between biological and clinical characteristics of the human and canine breast cancer. We attempt to clarify expression profile of the embryonic stem cell (ES) gene signatures in canine breast cancer. Using microarray datasets (GSE22516 and GSE20718), expression of the three major ES gene signatures (modules or gene-sets), including Myc, ESC-like, and PRC modules, was primarily analyzed through Gene-Set Enrichment Analysis (GSEA) method in tumor and healthy datasets. For confirmation of the primary results, an additional 13 ES gene-sets which were categorized into four groups including ES expressed (ES exp1 and ES exp2), NOS targets (Nanog targets, Oct4 targets, Sox2 targets, NOS targets, and NOS TFs), Polycomb targets (Suz12 targets, Eed targets, H3K27 bound, and PRC2 targets), and Myc targets (Myc targets1, and Myc targets2) were tested in the tumor and healthy datasets. Our results revealed that there is a valuable overlap between canine and human breast cancer ES gene-sets expression profile, where Myc and ESC-like modules were up-regulated and PRC module was down-regulated in metastatic canine mammary gland tumors. Further analysis of the secondary gene-sets indicated overexpression of the ES expressed, NOS targets (Nanog targets, Oct4 targets, Sox2 targets, and NOS targets), and Myc targets and underexpression of the Polycomb targets in metastatic canine breast cancer.

  6. Antiproliferative effect of berberine on canine mammary gland cancer cell culture.

    PubMed

    Sefidabi, Reyhaneh; Mortazavi, Pejman; Hosseini, Saeed

    2017-01-01

    Canine mammary gland tumors are the most frequent cause of cancer in female dogs. Numerous studies using cancer cell lines and clinical trials have indicated that various natural products and antioxidants reduce or possibly prevent the development of cancer. Berberine (BBR), the most important alkaloid in the Berberidaceae, which exerts a wide range of pharmacological and biochemical effects, has drawn much attention due to its particularly high antitumor activity in vitro and in animal studies. The aim of the present study was to investigate the antiproliferative effect of BBR against a canine mammary gland carcinoma cell line (CF41.Mg) in vitro. CF41.Mg cells were cultured in RPMI-1640 medium containing 10% heat inactived fetal bovine serum (FBS) and 100 mg/ml peniciline-streptomycin. Subsequently the cells were treated with different concentrations of BBR chloride (10, 25, 50, 100 and 200 µM) at a density of 12,000 cells/well in 96-well plates. Following treatment, the MTT assay was used to detect cell viability after 24-, 48- and 72-h incubations at 37°C with 5% CO2. The results indicated that BBR inhibited proliferation of canine mammary gland carcinoma cells, as treatment with 100 µM BBR for 24 h resulted in a significant decrease in cell viability (P<0.005). As the present study demonstrated that BBR (10-200 µM) induced cancer cell death, it is proposed that BBR may serve as a candidate agent against canine mammary tumor cells via its antiproliferative activity.

  7. Characterization of HOX gene expression in canine mammary tumour cell lines from spontaneous tumours.

    PubMed

    DeInnocentes, P; Perry, A L; Graff, E C; Lutful Kabir, F M; Curtis Bird, R

    2015-09-01

    Spatial/temporal controls of development are regulated by the homeotic (HOX) gene complex and require integration with oncogenes and tumour suppressors regulating cell cycle exit. Spontaneously derived neoplastic canine mammary carcinoma cell models were investigated to determine if HOX expression profiles were associated with neoplasia as HOX genes promote neoplastic potential in human cancers. Comparative assessment of human and canine breast cancer expression profiles revealed remarkable similarity for all four paralogous HOX gene clusters and several unlinked HOX genes. Five canine HOX genes were overexpressed with expression profiles consistent with oncogene-like character (HOXA1, HOXA13, HOXD4, HOXD9 and SIX1) and three HOX genes with underexpressed profiles (HOXA11, HOXC8 and HOXC9) were also identified as was an apparent nonsense mutation in HOXC6. This data, as well as a comparative analysis of similar data from human breast cancers suggested expression of selected HOX genes in canine mammary carcinoma could be contributing to the neoplastic phenotype.

  8. Dog nectin-4 is an epithelial cell receptor for canine distemper virus that facilitates virus entry and syncytia formation.

    PubMed

    Noyce, Ryan S; Delpeut, Sebastien; Richardson, Christopher D

    2013-02-05

    Canine distemper virus (CDV) was shown to use dog nectin-4 as a receptor to gain entry into epithelial cells. RNA from dog placenta or MDCK kidney cells was isolated and cDNAs were prepared. Two splice variants of dog nectin-4 were identified. A deletion of 25 amino acids was found in the cytoplasmic domain of dog nectin-4 from MDCK cells, corresponding to a splice variant that is also seen in murine nectin-4, and did not affect its role as a receptor. Both dog nectin-4 and human nectin-4 could function as an entry factor for CDV containing an EGFP reporter gene. Inhibition of dog nectin-4 expression by RNAi or nectin-4 antibodies decreased CDV titers and EGFP fluorescence. Finally, dog nectin-4 also promotes syncytia formation, which could be inhibited by siRNA treatment. These data confirm that dog nectin-4 can be used by CDV to gain entry into epithelial cells, and facilitate virus spread.

  9. Immunohistochemical study of expression of immunoglobulins in canine B-cell lymphomas.

    PubMed

    Sokołowska, J; Micuń, J; Zabielska, K; Malicka, E; Lechowski, R

    2010-01-01

    Nineteen canine lymphomas were included in this study. Tumors were classified according to the updated Kiel classification adapted for canine lymphomas by Fournel-Fleury et al. Immunoglobulin light chains (kappa and lambda) and IgM and IgG expression were determined by immunohistochemical method. In all examined cases neoplastic cells were positive for one of the immunoglobulin light chains. Expression of lambda light chains and kappa light chains was observed in 18/19 and 1/19 tumors, respectively. In the majority of neoplastic cells in each examined specimen this reaction had a membranous pattern (skappa/slambda). In all examined cases the presence of immunoglobulin light chains was also observed in the cytoplasm of some neoplastic cells (ckappa/clambda). These cells were usally rare and never constituted a dominant population. The expression of immunoglobulin was found in 13/19 cases. Most lymphomas were sIgM positive (11/13 cases). In one case expression of IgG was found, and in another lymphoma two populations of neoplastic cells with different expression of examined immunoglobulins (cells with IgM+ and IgG+ phenotypes) were observed. The reaction also had a membranous pattern. The cells containing cytoplasmic immunoglobulins were rare, and in most cases were of the same type as the surface immunoglobulins. Our study has confirmed that canine lymphomas are a monoclonal proliferation of B-cells usually expressing immunoglobulin lambda light chains and that the vast majority of tumors deriving from B-cells express IgM. Our study also indicates a possibility of occurence of biclonal lymphomas in canine species.

  10. Inhibition of Survivin Influences the Biological Activities of Canine Histiocytic Sarcoma Cell Lines

    PubMed Central

    Hoshino, Yuki; Hosoya, Kenji; Okumura, Masahiro

    2013-01-01

    Canine histiocytic sarcoma (CHS) is an aggressive malignant neoplasm that originates from histiocytic lineage cells, including dendritic cells and macrophages, and is characterized by progressive local infiltration and a very high metastatic potential. Survivin is as an apoptotic inhibitory factor that has major functions in cell proliferation, including inhibition of apoptosis and regulation of cell division, and is expressed in most types of human and canine malignant neoplasms, including melanoma and osteosarcoma. To investigate whether survivin was expressed at high levels in CHS and whether its expression was correlated with the aggressive biological behavior of CHS, we assessed relation between survivin expression and CHS progression, as well as the effects of survivin inhibition on the biological activities of CHS cells. We comparatively analyzed the expression of 6 selected anti-apoptotic genes, including survivin, in specimens from 30 dogs with histiocytic sarcoma and performed annexin V staining to evaluate apoptosis, methylthiazole tetrazolium assays to assess cell viability and chemosensitivity, and latex bead assays to measure changes in phagocytic activities in 4 CHS cell lines and normal canine fibroblasts transfected with survivin siRNA. Survivin gene expression levels in 30 specimens were significantly higher than those of the other 6 genes. After transfection with survivin siRNA, apoptosis, cell growth inhibition, enhanced chemosensitivity, and weakened phagocytic activities were observed in all CHS cell lines. In contrast, normal canine fibroblasts were not significantly affected by survivin knockdown. These results suggested that survivin expression may mediate the aggressive biological activities of CHS and that survivin may be an effective therapeutic target for the treatment of CHS. PMID:24260303

  11. Two Canine Papillomaviruses Associated With Metastatic Squamous Cell Carcinoma in Two Related Basenji Dogs.

    PubMed

    Luff, J; Rowland, P; Mader, M; Orr, C; Yuan, H

    2016-11-01

    Papillomaviruses (PV) are associated with benign mucosal and cutaneous epithelial proliferations. In dogs, PV-associated pigmented plaques and papillomas can undergo malignant transformation, but this is rare, and most cases of canine squamous cell carcinoma do not arise from PV-induced precursor lesions. We describe herein the progression of pigmented plaques to invasive and metastatic squamous cell carcinoma associated with 2 canine papillomaviruses (CPV) in 2 related Basenji dogs. Immunohistochemistry for PV antigen revealed strong nuclear immunoreactivity within keratinocytes from pigmented plaques from both dogs, consistent with a productive viral infection. Polymerase chain reaction (PCR) using degenerate primers for the L1 gene revealed PV DNA sequences from 2 different CPVs. In situ hybridization for CPV revealed strong hybridization signals within the pigmented plaques and neoplastic squamous epithelial cells from both dogs. We report here progression of PV-associated pigmented plaques to metastatic squamous cell carcinoma within 2 Basenji dogs associated with 2 different CPVs.

  12. Masitinib as a chemosensitizer of canine tumor cell lines: a proof of concept study.

    PubMed

    Thamm, D H; Rose, B; Kow, K; Humbert, M; Mansfield, C D; Moussy, A; Hermine, O; Dubreuil, P

    2012-01-01

    Masitinib, a selective tyrosine kinase inhibitor, has previously been shown to enhance the antiproliferative effects of gemcitabine in human pancreatic cancer, demonstrating potential as a chemosensitizer. This exploratory study investigated the ability of masitinib to sensitize various canine cancer cell lines to doxorubicin, vinblastine, and gemcitabine. Masitinib strongly sensitized histiocytic sarcoma cells to vinblastine (>70-fold reduction in IC(50) at 5 μM masitinib), as well as osteosarcoma and mammary carcinoma cells to gemcitabine (>70-fold reduction at 5-10 μM). In addition, several cell lines were sensitized to doxorubicin (2-10-fold reduction at 10 μM). These data establish proof-of-concept that masitinib in combination with chemotherapeutic agents can generate synergistic growth inhibition in various canine cancers, possibly through chemosensitization. The findings justify further investigation into those combinations that may potentially yield therapeutic benefit.

  13. Density gradient electrophoresis of cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Giranda, V.; Todd, P. W.

    1985-01-01

    Ground based confirmation of the electrophoretic heterogeneity of human embryonic kidney cell cultures, the general characterization of their electrophoretic migration, and observations on the general properties of cultures derived from electrophoretic subpopulations were studied. Cell migration in a density gradient electrophoresis column and cell electrophoretic mobility was determined. The mobility and heterogeneity of cultured human embryonic kidney cells with those of fixed rat erythrocytes as model test particle was compared. Electrophoretically separated cell subpopulations with respect to size, viability, and culture characteristics were examined.

  14. In vitro regeneration of kidney from pluripotent stem cells

    SciTech Connect

    Osafune, Kenji

    2010-10-01

    Although renal transplantation has proved a successful treatment for the patients with end-stage renal failure, the therapy is hampered by the problem of serious shortage of donor organs. Regenerative medicine using stem cells, including cell transplantation therapy, needs to be developed to solve the problem. We previously identified the multipotent progenitor cells in the embryonic mouse kidney that can give rise to several kinds of epithelial cells found in adult kidney, such as glomerular podocytes and renal tubular epithelia. Establishing the method to generate the progenitors from human pluripotent stem cells that have the capacity to indefinitely proliferate in vitro is required for the development of kidney regeneration strategy. We review the current status of the research on the differentiation of pluripotent stem cells into renal lineages and describe cues to promote this research field.

  15. Neurogenesis and precursor cell differences in the dorsal and ventral adult canine hippocampus.

    PubMed

    Lowe, Aileen; Dalton, Marshall; Sidhu, Kuldip; Sachdev, Perminder; Reynolds, Brent; Valenzuela, Michael

    2015-04-23

    During evolution a unique anterior-posterior flexure posited the canine dentate gyrus in two distinct dorsal and ventral positions. We therefore sought to explore neurogenesis and neurogenic cell-related difference along the canine hippocampal dorsal-ventral axis. Post mortem histological analysis revealed 49.1% greater doublecortin (DCX)-positive cells and a 158.5% greater percentage of double labeled DCX-positive/neuronal nuclei (NeuN) positive cells in the dorsal subgranular zone compared to the ventral. We then show neural precursor cells isolated from fresh hippocampal tissue are capable of proliferating long term, and after differentiation, express neuronal and glial markers. Dorsal hippocampal isolates produced a 120.0% higher frequency of sphere-forming neural precursor cells compared to ventral hippocampal tissue. Histological DCX and neurosphere assay results were highly correlated. Overall, we provide the first evidence that the dorsal canine hippocampus has a markedly higher rate of adult neurogenesis than the ventral hippocampus, possibly related to a greater frequency of contributory neural precursor cells.

  16. Simvastatin exhibits antiproliferative effects on spheres derived from canine mammary carcinoma cells.

    PubMed

    Torres, Cristian G; Olivares, Araceli; Stoore, Caroll

    2015-05-01

    Mammary cancer is the most frequent type of tumor in the female canine. Treatments are mainly limited to surgery and chemotherapy; however, these tumors may develop clinical recurrence, metastasis and chemoresistance. The existence of a subpopulation of cancer cells with stemness features called cancer stem-like cells, may explain in part these characteristics of tumor progression. The statins, potent blockers of cholesterol synthesis, have also shown antitumor effects on cancer mammary cells, changes mediated by a decrease in the isoprenylation of specific proteins. Few studies have shown that simvastatin, a lipophilic statin, sensitizes cancer stem-like cells eliminating drug resistance. The aim of the present study was to evaluate the effects of simvastatin on spheres derived from CF41.Mg canine mammary tumor cells, which were characterized by phenotypic and functional analyses. Spheres exhibited characteristics of stemness, primarily expressing a CD44⁺/CD24⁻/low phenotype, displaying auto-renewal and relative chemoresistance. Exposure to simvastatin induced a decrease in the sphere-forming capacity and cell viability, accompanied by a concentration- and time-dependent increase in caspase-3/7 activity. In addition, modulation of β-catenin and p53 expression was observed. Simvastatin triggered a synergistic effect with doxorubicin, sensitizing the spheres to the cytotoxic effect exerted by the drug. Invasiveness of spheres was decreased in response to simvastatin and this effect was counteracted by the presence of geranylgeranyl pyrophosphate. Our results suggest that simvastatin targets canine mammary cancer stem-like cells, supporting its therapeutical application as a novel agent to treat canine mammary cancer.

  17. Electrophoretic separation of kidney and pituitary cells on STS-8

    NASA Astrophysics Data System (ADS)

    Morrison, D. R.; Nachtwey, D. S.; Barlow, G. H.; Cleveland, C.; Lanham, J. W.; Farrington, M. A.; Hatfield, J. M.; Hymer, W. C.; Todd, P.; Wilfinger, W.; Grindeland, R.; Lewis, M. L.

    A Continuous Flow Electrophoresis System (CFES) was used on Space Shuttle flight STS-8 to separate specific secretory cells from suspensions of cultured primary human embryonic kidney cells and rat pituitary cells. The objectives were to isolate the subfractions of kidney cells that produce the largest amounts of urokinase (plasminogen activator), and to isolate the subfractions of rat pituitary cells that secrete growth hormone, prolactin, and other hormones. Kidney cells were separated into more than 32 fractions in each of two electrophoretic runs. Electrophoretic mobility distributions in flight experiments were spread more than the ground controls. Multiple assay methods confirmed that all cultured kidney cell fractions produced some urokinase, and five to six fractions produced significantly more urokinase than the other fractions. Several fractions also produced tissue plasminogen activator. The pituitary cells were separated into 48 fractions in each of the two electrophoretic runs, and the amounts of growth hormone (GH) and prolactin (PRL) released into the medium for each cell fraction were determined. Cell fractions were grouped into eight mobility classes and immunocytochemically assayed for the presence of GH, PRL, ACTH, LH, TSH, and FSH. The patterns of hormone distribution indicate that the specialized cells producing GH and PRL are isolatable due to the differences in electrophoretic mobilities.

  18. Nectin4 is an epithelial cell receptor for canine distemper virus and involved in neurovirulence.

    PubMed

    Pratakpiriya, Watanyoo; Seki, Fumio; Otsuki, Noriyuki; Sakai, Kouji; Fukuhara, Hideo; Katamoto, Hiromu; Hirai, Takuya; Maenaka, Katsumi; Techangamsuwan, Somporn; Lan, Nguyen Thi; Takeda, Makoto; Yamaguchi, Ryoji

    2012-09-01

    Canine distemper virus (CDV) uses signaling lymphocyte activation molecule (SLAM), expressed on immune cells, as a receptor. However, epithelial and neural cells are also affected by CDV in vivo. Wild-type CDV strains showed efficient replication with syncytia in Vero cells expressing dog nectin4, and the infection was blocked by an anti-nectin4 antibody. In dogs with distemper, CDV antigen was preferentially detected in nectin4-positive neurons and epithelial cells, suggesting that nectin4 is an epithelial cell receptor for CDV and also involved in its neurovirulence.

  19. Nectin4 Is an Epithelial Cell Receptor for Canine Distemper Virus and Involved in Neurovirulence

    PubMed Central

    Pratakpiriya, Watanyoo; Seki, Fumio; Otsuki, Noriyuki; Sakai, Kouji; Fukuhara, Hideo; Katamoto, Hiromu; Hirai, Takuya; Maenaka, Katsumi; Techangamsuwan, Somporn; Lan, Nguyen Thi; Takeda, Makoto

    2012-01-01

    Canine distemper virus (CDV) uses signaling lymphocyte activation molecule (SLAM), expressed on immune cells, as a receptor. However, epithelial and neural cells are also affected by CDV in vivo. Wild-type CDV strains showed efficient replication with syncytia in Vero cells expressing dog nectin4, and the infection was blocked by an anti-nectin4 antibody. In dogs with distemper, CDV antigen was preferentially detected in nectin4-positive neurons and epithelial cells, suggesting that nectin4 is an epithelial cell receptor for CDV and also involved in its neurovirulence. PMID:22761370

  20. Regenerative medicine for the kidney: renotropic factors, renal stem/progenitor cells, and stem cell therapy.

    PubMed

    Maeshima, Akito; Nakasatomi, Masao; Nojima, Yoshihisa

    2014-01-01

    The kidney has the capacity for regeneration and repair after a variety of insults. Over the past few decades, factors that promote repair of the injured kidney have been extensively investigated. By using kidney injury animal models, the role of intrinsic and extrinsic growth factors, transcription factors, and extracellular matrix in this process has been examined. The identification of renal stem cells in the adult kidney as well as in the embryonic kidney is an active area of research. Cell populations expressing putative stem cell markers or possessing stem cell properties have been found in the tubules, interstitium, and glomeruli of the normal kidney. Cell therapies with bone marrow-derived hematopoietic stem cells, mesenchymal stem cells, endothelial progenitor cells, and amniotic fluid-derived stem cells have been highly effective for the treatment of acute or chronic renal failure in animals. Embryonic stem cells and induced pluripotent stem cells are also utilized for the construction of artificial kidneys or renal components. In this review, we highlight the advances in regenerative medicine for the kidney from the perspective of renotropic factors, renal stem/progenitor cells, and stem cell therapies and discuss the issues to be solved to realize regenerative therapy for kidney diseases in humans.

  1. Efficient lentiviral gene transfer to canine repopulating cells using an overnight transduction protocol.

    PubMed

    Horn, Peter A; Keyser, Kirsten A; Peterson, Laura J; Neff, Tobias; Thomasson, Bobbie M; Thompson, Jesse; Kiem, Hans-Peter

    2004-05-15

    The use of lentiviral vectors for the transduction of hematopoietic stem cells has evoked much interest owing to their ability to stably integrate into the genome of nondividing cells. However, published large animal studies have reported highly variable gene transfer rates of typically less than 1%. Here we report the use of lentiviral vectors for the transduction of canine CD34(+) hematopoietic repopulating cells using a very short, 18-hour transduction protocol. We compared lentiviral transduction of hematopoietic repopulating cells from either stem cell factor (SCF)- and granulocyte-colony stimulating factor (G-CSF)-primed marrow or mobilized peripheral blood in a competitive repopulation assay in 3 dogs. All dogs engrafted rapidly within 9 days. Transgene expression was detected in all lineages (B cells, T cells, granulocytes, and red blood cells as well as platelets) indicating multilineage engraftment of transduced cells, with overall long-term marking levels of up to 12%. Gene transfer levels in mobilized peripheral blood cells were slightly higher than in primed marrow cells. In conclusion, we show efficient lentiviral transduction of canine repopulating cells using an overnight transduction protocol. These results have important implications for the design of stem cell gene therapy protocols, especially for those diseases in which the maintenance of stem cells in culture is a major limitation.

  2. Regulation of P-selectin expression by inflammatory mediators in canine jugular endothelial cells.

    PubMed

    Doré, M; Sirois, J

    1996-11-01

    Canine endothelial cells express the adhesion molecule P-selectin to mediate the initial attachment of leukocytes to the vessel wall. Although it is known that agents like histamine and thrombin stimulate the surface expression of P-selectin, the effect of inflammatory mediators and cytokines such as lipopolysaccharides (LPS), tumor necrosis factor-alpha (TNF-alpha), and interleukin-1 beta (IL-1 beta) on canine P-selectin expression has not been investigated. Therefore, the objective of this study was to analyze the regulation of P-selectin messenger RNA (mRNA) and protein by these cytokines in canine endothelial cells isolated from jugular veins. Analyses of cytoplasmic RNA by Northern blotting showed that stimulation of culture endothelial cells with either LPS (100 ng/ml) or recombinant human TNF-alpha (30 U/ml) for 3 or 6 hours significantly increased (P < 0.05) steady-state levels of mRNA for P-selectin (3.8- +/- 1.0- and 3.0- +/- 0.4-fold increase for LPS at 3 and 6 hours, respectively, and 2.5- +/- 0.8- and 2.7- +/- 0.9-fold increase for TNF-alpha at 3 and 6 hours, respectively). P-selectin mRNA had decreased by 48 hours to levels found in unstimulated cells. In contrast, human IL-1 beta had no effect on P-selectin mRNA. Increased levels of mRNA with LPS stimulation were associated with the synthesis of new protein, as demonstrated by the positive staining in LPS-stimulated cells using immunocytochemistry with a monoclonal antibody against canine P-selectin (MD3). These results reveal that important inflammatory mediators and cytokines such as LPS and TNF-alpha induce the synthesis of new P-selectin and suggest that this process could represent a means of sustaining local leukocyte recruitment for several hours during an acute inflammatory reaction.

  3. 6-Bromoindirubin-3′oxime (BIO) decreases proliferation and migration of canine melanoma cell lines

    PubMed Central

    Chon, Esther; Flanagan, Brandi; de Sá Rodrigues, Lucas Campos; Piskun, Caroline; Stein, Timothy J.

    2014-01-01

    Despite recent therapeutic advances, malignant melanoma is an aggressive tumor in dogs and is associated with a poor outcome. Novel, targeted agents are necessary to improve survival. In this study, 6-bromoindirubin-3′-oxime (BIO), a serine/threonine kinase inhibitor with reported specificity for glycogen synthase kinase-3 beta (GSK-3β) inhibition, was evaluated in vitro in three canine melanoma cell lines (CML-10C2, UCDK9M2, and UCDK9M3) for β-catenin-mediated transcriptional activity, Axin2 gene and protein expression levels, cell proliferation, chemotoxicity, migration and invasion assays. BIO treatment of canine malignant melanoma cell lines at 5 µM for 72 h enhanced β-catenin-mediated transcriptional activity, suggesting GSK-3β inhibition, and reduced cell proliferation and migration. There were no significant effects on invasion, chemotoxicity, or apoptosis. The results suggest that serine/ threonine kinases may be viable therapeutic targets for the treatment of canine malignant melanoma. PMID:25130776

  4. The effect of autologous bone marrow stromal cells differentiated on scaffolds for canine tibial bone reconstruction.

    PubMed

    Özdal-Kurt, F; Tuğlu, I; Vatansever, H S; Tong, S; Deliloğlu-Gürhan, S I

    2015-01-01

    Bone marrow contains mesenchymal stem cells that form many tissues. Various scaffolds are available for bone reconstruction by tissue engineering. Osteoblastic differentiated bone marrow stromal cells (BMSC) promote osteogenesis on scaffolds and stimulate bone regeneration. We investigated the use of cultured autologous BMSC on different scaffolds for healing defects in tibias of adult male canines. BMSC were isolated from canine humerus bone marrow, differentiated into osteoblasts in culture and loaded onto porous ceramic scaffolds including hydroxyapatite 1, hydroxyapatite gel and calcium phosphate. Osteoblast differentiation was verified by osteonectine and osteocalcine immunocytochemistry. The scaffolds with stromal cells were implanted in the tibial defect. Scaffolds without stromal cells were used as controls. Sections from the defects were processed for histological, ultrastructural, immunohistochemical and histomorphometric analyses to analyze the healing of the defects. BMSC were spread, allowed to proliferate and differentiate to osteoblasts as shown by alizarin red histochemistry, and osteocalcine and osteonectine immunostaining. Scanning electron microscopy showed that BMSC on the scaffolds were more active and adhesive to the calcium phosphate scaffold compared to the others. Macroscopic bone formation was observed in all groups, but scaffolds with stromal cells produced significantly better results. Bone healing occurred earlier and faster with stromal cells on the calcium phosphate scaffold and produced more callus compared to other scaffolds. Tissue healing and osteoblastic marker expression also were better with stromal cells on the scaffolds. Increased trabecula formation, cell density and decreased fibrosis were observed in the calcium phosphate scaffold with stromal cells. Autologous cultured stromal cells on the scaffolds were useful for healing of canine tibial bone defects. The calcium phosphate scaffold was the best for both cell

  5. Isolation, genetic manipulation, and transplantation of canine spermatogonial stem cells: progress toward transgenesis through the male germ-line.

    PubMed

    Harkey, Michael A; Asano, Atsushi; Zoulas, Mary Ellen; Torok-Storb, Beverly; Nagashima, Jennifer; Travis, Alexander

    2013-07-01

    The dog is recognized as a highly predictive model for preclinical research. Its size, life span, physiology, and genetics more closely match human parameters than do those of the mouse model. Investigations of the genetic basis of disease and of new regenerative treatments have frequently taken advantage of canine models. However, full utility of this model has not been realized because of the lack of easy transgenesis. Blastocyst-mediated transgenic technology developed in mice has been very slow to translate to larger animals, and somatic cell nuclear transfer remains technically challenging, expensive, and low yield. Spermatogonial stem cell (SSC) transplantation, which does not involve manipulation of ova or blastocysts, has proven to be an effective alternative approach for generating transgenic offspring in rodents and in some large animals. Our recent demonstration that canine testis cells can engraft in a host testis, and generate donor-derived sperm, suggests that SSC transplantation may offer a similar avenue to transgenesis in the canine model. Here, we explore the potential of SSC transplantation in dogs as a means of generating canine transgenic models for preclinical models of genetic diseases. Specifically, we i) established markers for identification and tracking canine spermatogonial cells; ii) established methods for enrichment and genetic manipulation of these cells; iii) described their behavior in culture; and iv) demonstrated engraftment of genetically manipulated SSC and production of transgenic sperm. These findings help to set the stage for generation of transgenic canine models via SSC transplantation.

  6. Control of renin secretion from kidneys with renin cell hyperplasia.

    PubMed

    Kurt, Birgül; Karger, Christian; Wagner, Charlotte; Kurtz, Armin

    2014-02-01

    In states of loss-of-function mutations of the renin-angiotensin-aldosterone system, kidneys develop a strong hyperplasia of renin-producing cells. Those additional renin cells are located outside the classic juxtaglomerular areas, mainly in the walls of preglomerular vessels and most prominently in multilayers surrounding afferent arterioles. Since the functional behavior of those ectopic renin cells is yet unknown, we aimed to characterize the control of renin secretion from kidneys with renin cell hyperplasia. As a model, we used kidneys from mice lacking aldosterone synthase (AS⁻/⁻ mice), which displayed 10-fold elevations of renin mRNA and plasma renin concentrations. On the absolute level, renin secretion from isolated AS⁻/⁻ kidneys was more than 10-fold increased over wild-type kidneys. On the relative level, the stimulation of renin secretion by the β-adrenergic activator isoproterenol or by lowering of the concentration of extracellular Ca²⁺ was very similar between the two genotypes. In addition, the inhibitory effects of ANG II and of perfusion pressure were similar between the two genotypes. Deletion of connexin40 blunted the pressure dependency of renin secretion and the stimulatory effect of low extracellular Ca²⁺ on renin secretion in the same manner in kidneys of AS⁻/⁻ mice as in wild-type mice. Our findings suggest a high degree of functional similarity between renin cells originating during development and located at different positions in the adult kidney. They also suggest a high similarity in the expression of membrane proteins relevant for the control of renin secretion, such as β₁-adrenergic receptors, ANG II type 1 receptors, and connexin40.

  7. Canine distemper virus induces apoptosis in cervical tumor derived cell lines.

    PubMed

    Del Puerto, Helen L; Martins, Almir S; Milsted, Amy; Souza-Fagundes, Elaine M; Braz, Gissandra F; Hissa, Barbara; Andrade, Luciana O; Alves, Fabiana; Rajão, Daniela S; Leite, Rômulo C; Vasconcelos, Anilton C

    2011-06-30

    Apoptosis can be induced or inhibited by viral proteins, it can form part of the host defense against virus infection, or it can be a mechanism for viral spread to neighboring cells. Canine distemper virus (CDV) induces apoptotic cells in lymphoid tissues and in the cerebellum of dogs naturally infected. CDV also produces a cytopathologic effect, leading to apoptosis in Vero cells in tissue culture. We tested canine distemper virus, a member of the Paramyxoviridae family, for the ability to trigger apoptosis in HeLa cells, derived from cervical cancer cells resistant to apoptosis. To study the effect of CDV infection in HeLa cells, we examined apoptotic markers 24 h post infection (pi), by flow cytometry assay for DNA fragmentation, real-time PCR assay for caspase-3 and caspase-8 mRNA expression, and by caspase-3 and -8 immunocytochemistry. Flow cytometry showed that DNA fragmentation was induced in HeLa cells infected by CDV, and immunocytochemistry revealed a significant increase in the levels of the cleaved active form of caspase-3 protein, but did not show any difference in expression of caspase-8, indicating an intrinsic apoptotic pathway. Confirming this observation, expression of caspase-3 mRNA was higher in CDV infected HeLa cells than control cells; however, there was no statistically significant change in caspase-8 mRNA expression profile. Our data suggest that canine distemper virus induced apoptosis in HeLa cells, triggering apoptosis by the intrinsic pathway, with no participation of the initiator caspase -8 from the extrinsic pathway. In conclusion, the cellular stress caused by CDV infection of HeLa cells, leading to apoptosis, can be used as a tool in future research for cervical cancer treatment and control.

  8. Current Cell-Based Strategies for Whole Kidney Regeneration.

    PubMed

    Poornejad, Nafiseh; Schaumann, Lara B; Buckmiller, Evan M; Roeder, Beverly L; Cook, Alonzo D

    2016-10-01

    Chronic kidney diseases affect thousands of people worldwide. Although hemodialysis alleviates the situation by filtering the patient's blood, it does not replace other kidney functions such as hormone release or homeostasis regulation. Consequently, orthotopic transplantation of donor organs is the ultimate treatment for patients suffering from end-stage renal failure. Unfortunately, the number of patients on the waiting list far exceeds the number of donors. In addition, recipients must remain on immunosuppressive medications for the remainder of their lives, which increases the risk of morbidity due to their weakened immune system. Despite recent advancements in whole organ transplantation, 40% of recipients will face rejection of implanted organs with a life expectancy of only 10 years. Bioengineered patient-specific kidneys could be an inexhaustible source of healthy kidneys without the risk of immune rejection. The purpose of this article is to review the pros and cons of several bioengineering strategies used in recent years and their unresolved issues. These strategies include repopulation of natural scaffolds with a patient's cells, de-novo generation of kidneys using patient-induced pluripotent stem cells combined with stepwise differentiation, and the creation of a patient's kidney in the embryos of other mammalian species.

  9. Controversial results of therapy with mesenchymal stem cells in the acute phase of canine distemper disease.

    PubMed

    Pinheiro, A O; Cardoso, M T; Vidane, A S; Casals, J B; Passarelli, D; Alencar, A L F; Sousa, R L M; Fantinato-Neto, P; Oliveira, V C; Lara, V M; Ambrósio, C E

    2016-05-23

    Distemper disease is an infectious disease reported in several species of domestic and wild carnivores. The high mortality rate of animals infected with canine distemper virus (CDV) treated with currently available therapies has driven the study of new efficacious treatments. Mesenchymal stem cell (MSC)-based therapy is a promising therapeutic option for many degenerative, hereditary, and inflammatory diseases. Therefore, the aim of this study was to characterize stem cells derived from the canine fetal olfactory epithelium and to assess the systemic response of animals infected with CDV to symptomatic therapy and treatment with MSCs. Eight domestic mongrel dogs (N = 8) were divided into two groups: support group (SG) (N = 5) and support group + cell therapy (SGCT) (N = 3), which were monitored over 15 days. Blood samples were collected on days 0, 6, 9, 12, and 15 to assess blood count and serum biochemistry (urea, creatinine, alanine transferase, alkaline phosphatase, gamma-glutamyl transferase, total protein, albumin, and globulin), and urine samples were obtained on days 0 and 15 for urinary evaluation (urine I). The results showed a high mortality rate (SG = 4 and SGCT = 2), providing inadequate data on the clinical course of CDV infection. MSC therapy resulted in no significant improvement when administered during the acute phase of canine distemper disease, and a prevalence of animals with high mortality rate was found in both groups due to the severity of symptoms.

  10. Dendritic Cells and Macrophages: Sentinels in the Kidney

    PubMed Central

    Weisheit, Christina K.; Engel, Daniel R.

    2015-01-01

    The mononuclear phagocytes (dendritic cells and macrophages) are closely related immune cells with central roles in anti-infectious defense and maintenance of organ integrity. The canonical function of dendritic cells is the activation of T cells, whereas macrophages remove apoptotic cells and microbes by phagocytosis. In the kidney, these cell types form an intricate system of mononuclear phagocytes that surveys against injury and infection and contributes to organ homeostasis and tissue repair but may also promote progression of CKD. This review summarizes the general functions and classification of dendritic cells and macrophages in the immune system and recapitulates why overlapping definitions and historically separate research have created controversy about their tasks. Their roles in acute kidney disease, CKD, and renal transplantation are described, and therapeutic strategy to modify these cells for therapeutic purposes is discussed. PMID:25568218

  11. Heat shock proteins expression in canine intracutaneous cornifying epithelioma and squamous cell carcinoma.

    PubMed

    Romanucci, Mariarita; Bongiovanni, Laura; Marruchella, Giuseppe; Marà, Marino; di Guardo, Giovanni; Preziosi, Rosario; della Salda, Leonardo

    2005-04-01

    Heat shock proteins (HSPs) are strongly implicated in the control of cell growth, differentiation and biological behaviour of many human cutaneous neoplasms. To our knowledge, no data have been published in the veterinary literature concerning either normal or neoplastic skin. In this study, the immunohistochemical expression of Hsp27, Hsp72 and Hsp73 was evaluated in normal canine skin, 14 intracutaneous cornifying epitheliomas (ICE), 10 well-differentiated and 5 moderately differentiated squamous cell carcinomas (SCC). Expression was correlated with the histological degree of keratinocyte differentiation and proliferation, and investigated as to its usefulness in the differential diagnosis of these canine tumours. In normal epidermis, Hsp27 exhibited cytoplasmic labelling in the spinous and granular layers, whereas in neoplastic tissues it was detected particularly in those areas showing squamous differentiation. Hsp72 immunoreactivity was more intense in ICE and well-differentiated SCC than in normal skin; however, reduced immunolabelling was observed in moderately differentiated SCC. Unlike Hsp72, Hsp73 showed less intense labelling in ICE and well-differentiated SCC than in normal epithelium and an increased positivity in moderately differentiated SCC. These results indicate that HSP immunoreactivity differs between normal and neoplastic canine skin. Hsp27 expression seems to correlate directly with cellular differentiation; by contrast, the involvement of Hsp72/73 in proliferation and differentiation of tumour cells remains controversial. The pattern and intensity of immunolabelling of each investigated HSP did not show, however, significant differences between ICE and SCC; therefore, they do not seem to be useful in the differential diagnosis of these two canine tumours.

  12. Clinical-Grade Isolated Human Kidney Perivascular Stromal Cells as an Organotypic Cell Source for Kidney Regenerative Medicine.

    PubMed

    Leuning, Daniëlle G; Reinders, Marlies E J; Li, Joan; Peired, Anna J; Lievers, Ellen; de Boer, Hetty C; Fibbe, Willem E; Romagnani, Paola; van Kooten, Cees; Little, Melissa H; Engelse, Marten A; Rabelink, Ton J

    2017-02-01

    Mesenchymal stromal cells (MSCs) are immunomodulatory and tissue homeostatic cells that have shown beneficial effects in kidney diseases and transplantation. Perivascular stromal cells (PSCs) identified within several different organs share characteristics of bone marrow-derived MSCs (BM-MSCs). These PSCs may also possess tissue-specific properties and play a role in local tissue homeostasis. We hypothesized that human kidney-derived PSCs (hkPSCs) would elicit improved kidney repair in comparison with BM-MSCs. Here we introduce a novel, clinical-grade isolation method of hkPSCs from cadaveric kidneys by enriching for the perivascular marker, NG2. hkPSCs show strong transcriptional similarities to BM-MSCs but also show organotypic expression signatures, including the HoxD10 and HoxD11 nephrogenic transcription factors. Comparable to BM-MSCs, hkPSCs showed immunosuppressive potential and, when cocultured with endothelial cells, vascular plexus formation was supported, which was specifically in the hkPSCs accompanied by an increased NG2 expression. hkPSCs did not undergo myofibroblast transformation after exposure to transforming growth factor-β, further corroborating their potential regulatory role in tissue homeostasis. This was further supported by the observation that hkPSCs induced accelerated repair in a tubular epithelial wound scratch assay, which was mediated through hepatocyte growth factor release. In vivo, in a neonatal kidney injection model, hkPSCs reintegrated and survived in the interstitial compartment, whereas BM-MSCs did not show this potential. Moreover, hkPSCs gave protection against the development of acute kidney injury in vivo in a model of rhabdomyolysis-mediated nephrotoxicity. Overall, this suggests a superior therapeutic potential for the use of hkPSCs and their secretome in the treatment of kidney diseases. Stem Cells Translational Medicine 2017;6:405-418.

  13. Foam Cells and the Pathogenesis of Kidney Disease

    PubMed Central

    Eom, Minseob; Hudkins, Kelly L.; Alpers, Charles E.

    2015-01-01

    Purpose of review Foam cells in human glomeruli can be encountered in various renal diseases including focal segmental glomerulosclerosis and diabetic nephropathy. Although foam cells are a key participant in atherosclerosis, surprisingly little is known about their pathogenicity in the kidney. We review our understanding (or lack thereof) of foam cells in the kidney as well as insights gained in studies of foam cells and macrophages involved in atherosclerosis, to suggest areas of investigation that will allow better characterization of the role of these cells in renal disease. Recent findings There is a general dearth of animal models of disease with renal foam cell accumulation, limiting progress in our understanding of the pathobiology of these cells. Recent genetic modifications of hyperlipidemic mice have resulted in some new disease models with renal foam cell accumulation. Recent studies have challenged older paradigms by findings that indicate many tissue macrophages are derived from cells permanently residing in the tissue from birth rather than circulating monocytes. Summary Renal foam cells remain an enigma. Extrapolating from studies of atherosclerosis suggests that therapeutics targeting mitochondrial ROS production or modulating cholesterol and lipoprotein uptake or egress from these cells may prove beneficial for kidney diseases in which foam cells are present. PMID:25887903

  14. Synaptically-competent neurons derived from canine embryonic stem cells by lineage selection with EGF and Noggin.

    PubMed

    Wilcox, Jared T; Lai, Jonathan K Y; Semple, Esther; Brisson, Brigitte A; Gartley, Cathy; Armstrong, John N; Betts, Dean H

    2011-01-01

    Pluripotent stem cell lines have been generated in several domestic animal species; however, these lines traditionally show poor self-renewal and differentiation. Using canine embryonic stem cell (cESC) lines previously shown to have sufficient self-renewal capacity and potency, we generated and compared canine neural stem cell (cNSC) lines derived by lineage selection with epidermal growth factor (EGF) or Noggin along the neural default differentiation pathway, or by directed differentiation with retinoic acid (RA)-induced floating sphere assay. Lineage selection produced large populations of SOX2+ neural stem/progenitor cell populations and neuronal derivatives while directed differentiation produced few and improper neuronal derivatives. Primary canine neural lines were generated from fetal tissue and used as a positive control for differentiation and electrophysiology. Differentiation of EGF- and Noggin-directed cNSC lines in N2B27 with low-dose growth factors (BDNF/NT-3 or PDGFαα) produced phenotypes equivalent to primary canine neural cells including 3CB2+ radial progenitors, MOSP+ glia restricted precursors, VIM+/GFAP+ astrocytes, and TUBB3+/MAP2+/NFH+/SYN+ neurons. Conversely, induction with RA and neuronal differentiation produced inadequate putative neurons for further study, even though appropriate neuronal gene expression profiles were observed by RT-PCR (including Nestin, TUBB3, PSD95, STX1A, SYNPR, MAP2). Co-culture of cESC-derived neurons with primary canine fetal cells on canine astrocytes was used to test functional maturity of putative neurons. Canine ESC-derived neurons received functional GABA(A)- and AMPA-receptor mediated synaptic input, but only when co-cultured with primary neurons. This study presents established neural stem/progenitor cell populations and functional neural derivatives in the dog, providing the proof-of-concept required to translate stem cell transplantation strategies into a clinically relevant animal model.

  15. CD44+/CD24- Cancer Stem Cells Are Associated With Higher Grade of Canine Mammary Carcinomas.

    PubMed

    Im, K S; Jang, Y G; Shin, J I; Kim, N H; Lim, H Y; Lee, S M; Kim, J H; Sur, J H

    2015-11-01

    The CD44+/CD24- phenotype identifies cancer stem cell (CSC) properties in canine mammary carcinoma (MC); however, the histopathological features associated with this phenotype remain to be elucidated. Here, we determined whether the CD44+/CD24- phenotype was associated with hormonal receptor (HR; estrogen receptor [ER] and/or progesterone receptor [PR]) status and/or triple (ER, PR, and human epithelial growth factor receptor 2)-negative (TN) subtype; conventional histological evaluation was also performed. We found that, as single markers, both CD44+ and CD24+ were associated with less aggressive histological types, low grade, and a non-TN subtype; both markers were associated with HR positivity. On the other hand, a CD44+/CD24- phenotype was associated with higher grade of carcinoma. Therefore, our results suggest that immunohistochemical phenotyping for CD44/CD24 is useful for the evaluation of tumor behavior as well as CSC-like properties in canine MCs.

  16. Mast cells in Canine parvovirus-2-associated enteritis with crypt abscess.

    PubMed

    Woldemeskel, M W; Saliki, J T; Blas-Machado, U; Whittington, L

    2013-11-01

    The role of mast cells (MCs) in allergic reactions and parasitic infections is well established. Their involvement in host immune response against bacterial and viral infections is reported. In this study, investigation is made to determine if MCs are associated with Canine parvovirus-2 (CPV-2)-induced enteritis with crypt abscess (ECA). Mast cell count (MCC) was made on toluidine blue-stained intestinal sections from a total of 34 dogs. These included 16 dogs exhibiting ECA positive for CPV-2 and negative for Canine distemper virus and Canine coronavirus by immunohistochemistry and fluorescent antibody test, 12 dogs with inflammatory bowel disease (IBD), and 6 non-ECA/non-IBD (control) dogs. The average total MCC per high-power field in ECA (40.8 ± 2.2) and IBD (24.7 ± 2.1) was significantly higher (P < .05) than in the control (3.4 ± 0.6). Although not significant (P > .05), MCC was also higher in ECA than in IBD. The present study for the first time has documented significantly increased MCs in CPV-2-associated ECA as was previously reported for IBD, showing that MCs may also play an important role in CPV-2-associated ECA. Further studies involving more CPV-infected dogs are recommended to substantiate the findings.

  17. Urine excretion strategy for stem cell-generated embryonic kidneys.

    PubMed

    Yokote, Shinya; Matsunari, Hitomi; Iwai, Satomi; Yamanaka, Shuichiro; Uchikura, Ayuko; Fujimoto, Eisuke; Matsumoto, Kei; Nagashima, Hiroshi; Kobayashi, Eiji; Yokoo, Takashi

    2015-10-20

    There have been several recent attempts to generate, de novo, a functional whole kidney from stem cells using the organogenic niche or blastocyst complementation methods. However, none of these attempts succeeded in constructing a urinary excretion pathway for the stem cell-generated embryonic kidney. First, we transplanted metanephroi from cloned pig fetuses into gilts; the metanephroi grew to about 3 cm and produced urine, although hydronephrosis eventually was observed because of the lack of an excretion pathway. Second, we demonstrated the construction of urine excretion pathways in rats. Rat metanephroi or metanephroi with bladders (developed from cloacas) were transplanted into host rats. Histopathologic analysis showed that tubular lumina dilation and interstitial fibrosis were reduced in kidneys developed from cloacal transplants compared with metanephroi transplantation. Then we connected the host animal's ureter to the cloacal-developed bladder, a technique we called the "stepwise peristaltic ureter" (SWPU) system. The application of the SWPU system avoided hydronephrosis and permitted the cloacas to differentiate well, with cloacal urine being excreted persistently through the recipient ureter. Finally, we demonstrated a viable preclinical application of the SWPU system in cloned pigs. The SWPU system also inhibited hydronephrosis in the pig study. To our knowledge, this is the first report showing that the SWPU system may resolve two important problems in the generation of kidneys from stem cells: construction of a urine excretion pathway and continued growth of the newly generated kidney.

  18. Urine excretion strategy for stem cell-generated embryonic kidneys

    PubMed Central

    Yokote, Shinya; Matsunari, Hitomi; Iwai, Satomi; Yamanaka, Shuichiro; Uchikura, Ayuko; Fujimoto, Eisuke; Matsumoto, Kei; Nagashima, Hiroshi; Kobayashi, Eiji; Yokoo, Takashi

    2015-01-01

    There have been several recent attempts to generate, de novo, a functional whole kidney from stem cells using the organogenic niche or blastocyst complementation methods. However, none of these attempts succeeded in constructing a urinary excretion pathway for the stem cell-generated embryonic kidney. First, we transplanted metanephroi from cloned pig fetuses into gilts; the metanephroi grew to about 3 cm and produced urine, although hydronephrosis eventually was observed because of the lack of an excretion pathway. Second, we demonstrated the construction of urine excretion pathways in rats. Rat metanephroi or metanephroi with bladders (developed from cloacas) were transplanted into host rats. Histopathologic analysis showed that tubular lumina dilation and interstitial fibrosis were reduced in kidneys developed from cloacal transplants compared with metanephroi transplantation. Then we connected the host animal’s ureter to the cloacal-developed bladder, a technique we called the “stepwise peristaltic ureter” (SWPU) system. The application of the SWPU system avoided hydronephrosis and permitted the cloacas to differentiate well, with cloacal urine being excreted persistently through the recipient ureter. Finally, we demonstrated a viable preclinical application of the SWPU system in cloned pigs. The SWPU system also inhibited hydronephrosis in the pig study. To our knowledge, this is the first report showing that the SWPU system may resolve two important problems in the generation of kidneys from stem cells: construction of a urine excretion pathway and continued growth of the newly generated kidney. PMID:26392557

  19. Canine distemper virus epithelial cell infection is required for clinical disease but not for immunosuppression.

    PubMed

    Sawatsky, Bevan; Wong, Xiao-Xiang; Hinkelmann, Sarah; Cattaneo, Roberto; von Messling, Veronika

    2012-04-01

    To characterize the importance of infection of epithelial cells for morbillivirus pathogenesis, we took advantage of the severe disease caused by canine distemper virus (CDV) in ferrets. To obtain a CDV that was unable to enter epithelial cells but retained the ability to enter immune cells, we transferred to its attachment (H) protein two mutations shown to interfere with the interaction of measles virus H with its epithelial receptor, human nectin-4. As expected for an epithelial receptor (EpR)-blind CDV, this virus infected dog and ferret epithelial cells inefficiently and did not cause cell fusion or syncytium formation. On the other hand, the EpR-blind CDV replicated in cells expressing canine signaling lymphocyte activation molecule (SLAM), the morbillivirus immune cell receptor, with similar kinetics to those of wild-type CDV. While ferrets infected with wild-type CDV died within 12 days after infection, after developing severe rash and fever, animals infected with the EpR-blind virus showed no clinical signs of disease. Nevertheless, both viruses spread rapidly and efficiently in immune cells, causing similar levels of leukopenia and inhibition of lymphocyte proliferation activity, two indicators of morbillivirus immunosuppression. Infection was documented for airway epithelia of ferrets infected with wild-type CDV but not for those of animals infected with the EpR-blind virus, and only animals infected with wild-type CDV shed virus. Thus, epithelial cell infection is necessary for clinical disease and efficient virus shedding but not for immunosuppression.

  20. Modeling Kidney Disease with iPS Cells.

    PubMed

    Freedman, Benjamin S

    2015-01-01

    Induced pluripotent stem cells (iPSCs) are somatic cells that have been transcriptionally reprogrammed to an embryonic stem cell (ESC)-like state. iPSCs are a renewable source of diverse somatic cell types and tissues matching the original patient, including nephron-like kidney organoids. iPSCs have been derived representing several kidney disorders, such as ADPKD, ARPKD, Alport syndrome, and lupus nephritis, with the goals of generating replacement tissue and 'disease in a dish' laboratory models. Cellular defects in iPSCs and derived kidney organoids provide functional, personalized biomarkers, which can be correlated with genetic and clinical information. In proof of principle, disease-specific phenotypes have been described in iPSCs and ESCs with mutations linked to polycystic kidney disease or focal segmental glomerulosclerosis. In addition, these cells can be used to model nephrotoxic chemical injury. Recent advances in directed differentiation and CRISPR genome editing enable more specific iPSC models and present new possibilities for diagnostics, disease modeling, therapeutic screens, and tissue regeneration using human cells. This review outlines growth opportunities and design strategies for this rapidly expanding and evolving field.

  1. Modeling Kidney Disease with iPS Cells

    PubMed Central

    Freedman, Benjamin S.

    2015-01-01

    Induced pluripotent stem cells (iPSCs) are somatic cells that have been transcriptionally reprogrammed to an embryonic stem cell (ESC)-like state. iPSCs are a renewable source of diverse somatic cell types and tissues matching the original patient, including nephron-like kidney organoids. iPSCs have been derived representing several kidney disorders, such as ADPKD, ARPKD, Alport syndrome, and lupus nephritis, with the goals of generating replacement tissue and ‘disease in a dish’ laboratory models. Cellular defects in iPSCs and derived kidney organoids provide functional, personalized biomarkers, which can be correlated with genetic and clinical information. In proof of principle, disease-specific phenotypes have been described in iPSCs and ESCs with mutations linked to polycystic kidney disease or focal segmental glomerulosclerosis. In addition, these cells can be used to model nephrotoxic chemical injury. Recent advances in directed differentiation and CRISPR genome editing enable more specific iPSC models and present new possibilities for diagnostics, disease modeling, therapeutic screens, and tissue regeneration using human cells. This review outlines growth opportunities and design strategies for this rapidly expanding and evolving field. PMID:26740740

  2. Kidney Transplantation From a Donor With Sickle Cell Disease.

    PubMed

    Rossidis, A; Lim, M A; Palmer, M; Levine, M H; Naji, A; Bloom, R D; Abt, P L

    2017-02-01

    In the United States, >100 000 patients are waiting for a kidney transplant. Given the paucity of organs available for transplant, expansion of eligibility criteria for deceased donation is of substantial interest. Sickle cell disease (SCD) is viewed as a contraindication to kidney donation, perhaps because SCD substantially alters renal structure and function and thus has the potential to adversely affect multiple physiological processes of the kidney. To our knowledge, transplantation from a donor with SCD has never been described in the literature. In this paper, we report the successful transplantation of two kidneys from a 37-year-old woman with SCD who died from an intracranial hemorrhage. Nearly 4 mo after transplant, both recipients are doing well and are off dialysis. The extent to which kidneys from donors with SCD can be safely transplanted with acceptable outcomes is unknown; however, this report should provide support for the careful expansion of kidneys from donors with SCD without evidence of renal dysfunction and with normal tissue architecture on preimplantation biopsies.

  3. Ligand-Independent Canonical Wnt Activity in Canine Mammary Tumor Cell Lines Associated with Aberrant LEF1 Expression

    PubMed Central

    van Wolferen, Monique E.; Rao, Nagesha A. S.; Grizelj, Juraj; Vince, Silvijo; Hellmen, Eva; Mol, Jan A.

    2014-01-01

    Pet dogs very frequently develop spontaneous mammary tumors and have been suggested as a good model organism for breast cancer research. In order to obtain an insight into underlying signaling mechanisms during canine mammary tumorigenesis, in this study we assessed the incidence and the mechanism of canonical Wnt activation in a panel of 12 canine mammary tumor cell lines. We show that a subset of canine mammary cell lines exhibit a moderate canonical Wnt activity that is dependent on Wnt ligands, similar to what has been described in human breast cancer cell lines. In addition, three of the tested canine mammary cell lines have a high canonical Wnt activity that is not responsive to inhibitors of Wnt ligand secretion. Tumor cell lines with highly active canonical Wnt signaling often carry mutations in key members of the Wnt signaling cascade. These cell lines, however, carry no mutations in the coding regions of intracellular Wnt pathway components (APC, β-catenin, GSK3β, CK1α and Axin1) and have a functional β-catenin destruction complex. Interestingly, however, the cell lines with high canonical Wnt activity specifically overexpress LEF1 mRNA and the knock-down of LEF1 significantly inhibits TCF-reporter activity. In addition, LEF1 is overexpressed in a subset of canine mammary carcinomas, implicating LEF1 in ligand-independent activation of canonical Wnt signaling in canine mammary tumors. We conclude that canonical Wnt activation may be a frequent event in canine mammary tumors both through Wnt ligand-dependent and novel ligand–independent mechanisms. PMID:24887235

  4. Transplantation of a cell line derived from a canine benign mixed mammary tumour into nude mice.

    PubMed

    Priosoeryanto, B P; Tateyama, S; Yamaguchi, R; Uchida, K

    1995-11-01

    The MCM-B2 canine mammary cell line was serially transplanted into nude mice. The tumour masses consisted of elongated pleomorphic cells of varying size in the first to third passages; oval cells, becoming rounder, in the sixth to eighth passages; and cord-like, glandular and duct-like structures with compact radiating projections in the ninth and tenth passages. Ultrastructural and immunohistochemical examination of round cells confirmed their epithelial cell nature, but the morphology of the elongated and oval cells was identical with that of the original cell line. The findings suggest that the MCM-B2 cell line is a multipotential stem cell or is derived from glandular differentiation of mammary gland.

  5. Preclinical Evaluation of the Novel BTK Inhibitor Acalabrutinib in Canine Models of B-Cell Non-Hodgkin Lymphoma

    PubMed Central

    Gardner, Heather L.; Izumi, Raquel; Hamdy, Ahmed; Rothbaum, Wayne; Coombes, Kevin R.; Covey, Todd; Kaptein, Allard; Gulrajani, Michael; Van Lith, Bart; Krejsa, Cecile; Coss, Christopher C.; Russell, Duncan S.; Zhang, Xiaoli; Urie, Bridget K.; London, Cheryl A.; Byrd, John C.; Johnson, Amy J.; Kisseberth, William C.

    2016-01-01

    Acalabrutinib (ACP-196) is a second-generation inhibitor of Bruton agammaglobulinemia tyrosine kinase (BTK) with increased target selectivity and potency compared to ibrutinib. In this study, we evaluated acalabrutinib in spontaneously occurring canine lymphoma, a model of B-cell malignancy similar to human diffuse large B-cell lymphoma (DLBCL). First, we demonstrated that acalabrutinib potently inhibited BTK activity and downstream effectors in CLBL1, a canine B-cell lymphoma cell line, and primary canine lymphoma cells. Acalabrutinib also inhibited proliferation in CLBL1 cells. Twenty dogs were enrolled in the clinical trial and treated with acalabrutinib at dosages of 2.5 to 20mg/kg every 12 or 24 hours. Acalabrutinib was generally well tolerated, with adverse events consisting primarily of grade 1 or 2 anorexia, weight loss, vomiting, diarrhea and lethargy. Overall response rate (ORR) was 25% (5/20) with a median progression free survival (PFS) of 22.5 days. Clinical benefit was observed in 30% (6/20) of dogs. These findings suggest that acalabrutinib is safe and exhibits activity in canine B-cell lymphoma patients and support the use of canine lymphoma as a relevant model for human non-Hodgkin lymphoma (NHL). PMID:27434128

  6. Preclinical Evaluation of the Novel BTK Inhibitor Acalabrutinib in Canine Models of B-Cell Non-Hodgkin Lymphoma.

    PubMed

    Harrington, Bonnie K; Gardner, Heather L; Izumi, Raquel; Hamdy, Ahmed; Rothbaum, Wayne; Coombes, Kevin R; Covey, Todd; Kaptein, Allard; Gulrajani, Michael; Van Lith, Bart; Krejsa, Cecile; Coss, Christopher C; Russell, Duncan S; Zhang, Xiaoli; Urie, Bridget K; London, Cheryl A; Byrd, John C; Johnson, Amy J; Kisseberth, William C

    2016-01-01

    Acalabrutinib (ACP-196) is a second-generation inhibitor of Bruton agammaglobulinemia tyrosine kinase (BTK) with increased target selectivity and potency compared to ibrutinib. In this study, we evaluated acalabrutinib in spontaneously occurring canine lymphoma, a model of B-cell malignancy similar to human diffuse large B-cell lymphoma (DLBCL). First, we demonstrated that acalabrutinib potently inhibited BTK activity and downstream effectors in CLBL1, a canine B-cell lymphoma cell line, and primary canine lymphoma cells. Acalabrutinib also inhibited proliferation in CLBL1 cells. Twenty dogs were enrolled in the clinical trial and treated with acalabrutinib at dosages of 2.5 to 20mg/kg every 12 or 24 hours. Acalabrutinib was generally well tolerated, with adverse events consisting primarily of grade 1 or 2 anorexia, weight loss, vomiting, diarrhea and lethargy. Overall response rate (ORR) was 25% (5/20) with a median progression free survival (PFS) of 22.5 days. Clinical benefit was observed in 30% (6/20) of dogs. These findings suggest that acalabrutinib is safe and exhibits activity in canine B-cell lymphoma patients and support the use of canine lymphoma as a relevant model for human non-Hodgkin lymphoma (NHL).

  7. Citrate and celecoxib induce apoptosis and decrease necrosis in synergistic manner in canine mammary tumor cells.

    PubMed

    Vahidi, R; Safi, S; Farsinejad, A; Panahi, N

    2015-10-16

    Celecoxib and citrate have been shown to possess antitumor activity in a variety of cancer cells. However, the antitumor activities of these agents in canine mammary tumors have not been well demonstrated. The aim of our study was to investigate the apoptotic and antiproliferative effects of citrate and celecoxib, individually and in combination, on canine mammary tumor cell line CF41—Mg. MTT assay was performed to determine cell viability, and Annexin—PI test was performed to evaluate apoptosis induction. MTT assay results revealed that compared with the control groups, treatment groups, as both single and combined treatments, showed significant inhibition of tumor growth in a dose—dependent manner. IC50 concentrations of citrate and celecoxib were defined 26mM and 22μM, respectively. In another set of experiment, significant increase in cell apoptosis was observed at IC50 concentrations of citrate and celecoxib after 48h incubation. In spite of that, simultaneous treatment of cells with citrate and celecoxib eventuated with meaningful toxicity augmentation and induction of apoptosis at lower concentrations. Also necrotic cells were decreased by coadministration of the two agents. In conclusion, the present study indicates significant cytotoxic and apoptotic effects of citrate and celecoxib coadministration on CF41—Mg cells, and proposes new strategies for counteracting cancer cells proliferation and overcoming chemo resistance.

  8. Frequency of IFNγ-producing T cells correlates with seroreactivity and activated T cells during canine Trypanosoma cruzi infection

    PubMed Central

    2014-01-01

    Vaccines to prevent Trypanosoma cruzi infection in humans or animals are not available, and in many settings, dogs are an important source of domestic infection for the insect vector. Identification of infected canines is crucial for evaluating peridomestic transmission dynamics and parasite control strategies. As immune control of T. cruzi infection is dependent on humoral and cell-mediated immune responses, we aimed to define a serodiagnostic assay and T cell phenotypic markers for identifying infected dogs and studying the canine T. cruzi-specific immune response. Plasma samples and peripheral blood mononuclear cells (PBMCs) were obtained from forty-two dogs living in a T. cruzi-endemic region. Twenty dogs were known to be seropositive and nine seronegative by conventional serologic tests two years prior to our study. To determine canine seroreactivity, we tested sera or plasma samples in a multiplex bead array against eleven recombinant T. cruzi proteins. Ninety-four percent (17/18) of dogs positive by multiplex serology were initially positive by conventional serology. The frequency of IFNγ-producing cells in PBMCs responding to T. cruzi correlated to serological status, identifying 95% of multiplex seropositive dogs. Intracellular staining identified CD4+ and CD8+ T cell populations as the sources of T. cruzi lysate-induced IFNγ. Low expression of CCR7 and CD62L on CD4+ and CD8+ T cells suggested a predominance of effector/effector memory T cells in seropositive canines. These results are the first, to our knowledge, to correlate T. cruzi-specific antibody responses with T cell responses in naturally infected dogs and validate these methods for identifying dogs exposed to T. cruzi. PMID:24456537

  9. Effect of serum starvation and chemical inhibitors on cell cycle synchronization of canine dermal fibroblasts.

    PubMed

    Khammanit, R; Chantakru, S; Kitiyanant, Y; Saikhun, J

    2008-07-01

    The cell cycle stage of donor cells and the method of cell cycle synchronization are important factors influencing the success of somatic cell nuclear transfer. In this study, we examined the effects of serum starvation, culture to confluence, and treatment with chemical inhibitors (roscovitine, aphidicolin, and colchicine) on cell cycle characteristics of canine dermal fibroblast cells. The effect of the various methods of cell cycle synchronization was determined by flow cytometry. Short periods of serum starvation (24-72 h) increased (P<0.05) the proportion of cells at the G0/G1 phase (88.4-90.9%) as compared to the control group (73.6%). A similar increase in the percentage of G0/G1 (P<0.05) cells were obtained in the culture to confluency group (91.8%). Treatment with various concentrations of roscovitine did not increase the proportion of G0/G1 cells; conversely, at concentrations of 30 and 45 microM, it increased (P<0.05) the percentage of cells that underwent apoptosis. The use of aphidicolin led to increase percentages of cells at the S phase in a dose-dependent manner, without increasing apoptosis. Colchicine, at a concentration of 0.1 microg/mL, increased the proportion of cells at the G2/M phase (38.5%, P<0.05); conversely, it decreased the proportions of G0/G1 cells (51.4%, P<0.05). Concentrations of colchicines >0.1 microg/mL did not increase the percentage of G2/M phase cells. The effects of chemical inhibitors were fully reversible; their removal led to a rapid progression in the cell cycle. In conclusion, canine dermal fibroblasts were effectively synchronized at various stages of the cell cycle, which could have benefits for somatic cell nuclear transfer in this species.

  10. Evolving technology: creating kidney organoids from stem cells

    PubMed Central

    Drummond, Bridgette E.; Wingert, Rebecca A.

    2016-01-01

    The kidney is a complex organ whose excretory and regulatory functions are vital for maintaining homeostasis. Previous techniques used to study the kidney, including various animal models and 2D cell culture systems to investigate the mechanisms of renal development and regeneration have many benefits but also possess inherent shortcomings. Some of those limitations can be addressed using the emerging technology of 3D organoids. An organoid is a 3D cluster of differentiated cells that are developed ex vivo by addition of various growth factors that result in a miniature organ containing structures present in the tissue of origin. Here, we discuss renal organoids, their development, and how they can be employed to further understand kidney development and disease.

  11. Identification and isolation of kidney-derived stem cells from transgenic rats with diphtheria toxin-induced kidney damage

    PubMed Central

    Liu, Qing-Zhen; Chen, Xu-Dong; Liu, Gang; Guan, Guang-Ju

    2016-01-01

    Adult stem cells have been well characterized in numerous organs, with the exception of the kidneys. Therefore, the present study aimed to identify and isolate kidney-derived stem cells. A total of 12 Fischer 344 transgenic rats expressing the human diphtheria toxin receptor in podocyte cells of the kidney, were used in the present study. The rats were administered 5-bromo-2′-deoxyuridine (BrdU) in order to detect cellular proliferation. After 60 days, the rats were treated with the diphtheria toxin (DT), in order to induce kidney injury. Immunohistochemical analysis indicated that the number of BrdU-positive cells were increased following DT treatment. In addition, the expression of octamer-binding transcription factor 4 (Oct-4), a stem cell marker, was detected and suggested that kidney-specific stem cells were present in the DT-treated tissue samples. Furthermore, tissue samples exhibited repair of the DT-induced injury. Further cellular culturing was conducted in order to isolate the kidney-specific stem cells. After 5 weeks of culture, the majority of the cells were non-viable, with the exception of certain specialized, unique cell types, which were monomorphic and spindle-shaped in appearance. The unique cells were isolated and subjected to immunostaining and reverse transcription-polymerase chain reaction analyses in order to reconfirm the expression of Oct-4 and to detect the expression of Paired box 2 (Pax-2), which is necessary for the formation of kidney structures. The unique cells were positive for Oct-4 and Pax-2; thus suggesting that the identified cells were kidney-derived stem cells. The results of the present study suggested that the unique cell type identified in the kidneys of the DT-treated rats were kidney-specific stem cells that may have been involved in the repair of DT-induced tissue injury. In addition, these cells may provide a useful cell line for studying the fundamental characteristics of kidney stem cells, as well as identifying

  12. Expression of different phenotypes in cell lines from canine mammary spindle-cell tumours and osteosarcomas indicating a pluripotent mammary stem cell origin.

    PubMed

    Hellmén, E; Moller, M; Blankenstein, M A; Andersson, L; Westermark, B

    2000-06-01

    Mammary spindle-cell tumours and sarcomas seem to be restricted to dogs and humans. Two cell lines from spontaneous primary canine mammary spindle-cell tumours (CMT-U304 and CMT-U309) and two cell lines from spontaneous primary canine mammary osteosarcomas (CMT-U334 and CMT-U335) were established to study the mesenchymal phenotypes of mammary tumours in the female dog. The cells from the spindle-cell tumours expressed cytokeratin, vimentin and smooth muscle actin filaments. When these cells were inoculated subcutaneously into female and male nude mice they formed different types of mesenchymal tumours such as spindle-cell tumours, fibroma and rhabdomyoid tumours (n = 6/8). The cells from the osteosarcomas expressed vimentin filaments and also formed different types of mesenchymal tumours such as chondroid, rhabdomyoid, smooth muscle-like and spindle-cell tumours (n = 6/10). The cell lines CMT-U304, CMT-U309 and CMT-U335 had receptors for progesterone but none of the four cell lines had receptors for estrogen. All four cell lines and their corresponding primary tumours showed identical allelic patterns in microsatellite analysis. By in situ hybridization with genomic DNA we could verify that all formed tumours but one were of canine origin. Our results support the hypothesis that canine mammary tumours are derived from pluripotent stem cells.

  13. Intravenous Renal Cell Transplantation for Polycystic Kidney Disease

    DTIC Science & Technology

    2014-06-01

    improves renal function and structure in other models of renal failure: CKD due to cisplatin-mediated injury (4), diabetic nephropathy (Am J Physiol...cells prevents progression of chronic renal failure in rats with ischemic- diabetic nephropathy . Am J Physiol. Renal. 305:F1804- F1812 6. Mason SB...successful long-term kidney cell engraftment and renal regeneration in diabetic nephropathy and also cell auto-transplants (9). We used adult

  14. Blocking Signaling at the Level of GLI Regulates Downstream Gene Expression and Inhibits Proliferation of Canine Osteosarcoma Cells

    PubMed Central

    Shahi, Mehdi Hayat; Holt, Roseline; Rebhun, Robert B.

    2014-01-01

    The Hedgehog-GLI signaling pathway is active in a variety of human malignancies and is known to contribute to the growth and survival of human osteosarcoma cells. In this study, we examined the expression and regulation of GLI transcription factors in multiple canine osteosarcoma cell lines and analyzed the effects of inhibiting GLI with GANT61, a GLI-specific inhibitor. Compared with normal canine osteoblasts, real-time PCR showed that GLI1 and GLI2 were highly expressed in two out of three cell lines and correlated with downstream target gene expression of PTCH1and PAX6. Treatment of canine osteosarcoma cells with GANT61 resulted in decreased expression of GLI1, GLI2, PTCH1, and PAX6. Furthermore, GANT61 inhibited proliferation and colony formation in all three canine osteosarcoma cell lines. The finding that GLI signaling activity is present and active in canine osteosarcoma cells suggests that spontaneously arising osteosarcoma in dogs might serve as a good model for future preclinical testing of GLI inhibitors. PMID:24810746

  15. Effects of tacrolimus on action potential configuration and transmembrane ion currents in canine ventricular cells.

    PubMed

    Szabó, László; Szentandrássy, Norbert; Kistamás, Kornél; Hegyi, Bence; Ruzsnavszky, Ferenc; Váczi, Krisztina; Horváth, Balázs; Magyar, János; Bányász, Tamás; Pál, Balázs; Nánási, Péter P

    2013-03-01

    Tacrolimus is a commonly used immunosuppressive agent which causes cardiovascular complications, e.g., hypertension and hypertrophic cardiomyopathy. In spite of it, there is little information on the cellular cardiac effects of the immunosuppressive agent tacrolimus in larger mammals. In the present study, therefore, the concentration-dependent effects of tacrolimus on action potential morphology and the underlying ion currents were studied in canine ventricular cardiomyocytes. Standard microelectrode, conventional whole cell patch clamp, and action potential voltage clamp techniques were applied in myocytes enzymatically dispersed from canine ventricular myocardium. Tacrolimus (3-30 μM) caused a concentration-dependent reduction of maximum velocity of depolarization and repolarization, action potential amplitude, phase-1 repolarization, action potential duration, and plateau potential, while no significant change in the resting membrane potential was observed. Conventional voltage clamp experiments revealed that tacrolimus concentrations ≥3 μM blocked a variety of ion currents, including I(Ca), I(to), I(K1), I(Kr), and I(Ks). Similar results were obtained under action potential voltage clamp conditions. These effects of tacrolimus developed rapidly and were fully reversible upon washout. The blockade of inward currents with the concomitant shortening of action potential duration in canine myocytes is the opposite of those observed previously with tacrolimus in small rodents. It is concluded that although tacrolimus blocks several ion channels at higher concentrations, there is no risk of direct interaction with cardiac ion channels when applying tacrolimus in therapeutic concentrations.

  16. Expression of cell adhesion molecules and doublecortin in canine anaplastic meningiomas.

    PubMed

    Ide, T; Uchida, K; Suzuki, K; Kagawa, Y; Nakayama, H

    2011-01-01

    Tumor cell invasion into the surrounding nervous tissue is one of the histologic hallmarks of anaplastic meningiomas. To identify other possible markers for aggression in canine meningiomas, the relationship between histologic features and the expression of molecules involved in cell adhesion, cell proliferation, and invasion was examined. Immunohistochemistry for epithelial cadherin (E-cadherin), neural cadherin (N-cadherin), β-catenin, doublecortin (DCX), and Ki-67 was performed for 55 cases of canine meningioma. DCX was preferentially expressed in tumor cells invading the brain parenchyma (12 of 14 cases), suggesting its involvement in the invasion process. Regardless of the histologic type, E-cadherin and N-cadherin expression was observed in 31 of 55 and 44 of 55 cases, respectively. There was a significant positive correlation between DCX and N-cadherin expression and a significant negative correlation between E-cadherin and N-cadherin expression, suggesting that decreased E-cadherin and increased N-cadherin expression induce DCX expression. Typical membranous β-catenin expression was observed in 10 of 55 cases, whereas nuclear translocation was observed in 33 cases. Nuclear β-catenin expression was frequently found in anaplastic meningiomas (12 of 14 cases). The Ki-67 labeling indices were significantly higher in anaplastic meningiomas than in other types. These findings indicate that the expression of N-cadherin and DCX and the nuclear translocation of β-catenin are closely associated with the presence of invasion and anaplasia in canine meningiomas. Notably, granular cell meningiomas were negative for almost all the molecules examined, suggesting that they have a different tumor biology than other meningiomas.

  17. Polycystin-1, the product of the polycystic kidney disease 1 gene, co-localizes with desmosomes in MDCK cells.

    PubMed

    Scheffers, M S; van der Bent, P; Prins, F; Spruit, L; Breuning, M H; Litvinov, S V; de Heer, E; Peters, D J

    2000-11-01

    Polycystin-1 is a novel protein predicted to be a large membrane-spanning glycoprotein with an extracellular N-terminus and an intracellular C-terminus, harboring several structural motifs. To study the subcellular localization, antibodies raised against various domains of polycystin-1 and against specific adhesion complex proteins were used for two-color immunofluorescence staining. In Madine Darby canine kidney (MDCK) cells, polycystin-1 was detected in the cytoplasm as well as co-localizing with desmosomes, but not with tight or adherens junctions. Using confocal laser scanning and immunoelectron microscopy we confirmed the desmosomal localization. By performing a calcium switch experiment, we demonstrated the sequential reassembly of tight junctions, subsequently adherens junctions and finally desmosomes. Polycystin-1 only stained the membrane after incorporation of desmoplakin into the desmosomes, suggesting that membrane-bound polycystin-1 may be important for cellular signaling or cell adhesion, but not for the assembly of adhesion complexes.

  18. Canine distemper virus induces apoptosis through caspase-3 and -8 activation in vero cells.

    PubMed

    Kajita, M; Katayama, H; Murata, T; Kai, C; Hori, M; Ozaki, H

    2006-08-01

    We investigated the signal-transduction pathway of canine distemper virus-Onderstepoort (CDV-Ond) vaccine strain-mediated apoptosis in Vero cells. Canine distemper virus-Onderstepoort at a multiplicity of infection (MOI) of 0.1 induced DNA fragmentation 48 h after infection. Immunofluorescence staining revealed that 57% +/- 4% of the CDV-N-protein-positive cells were terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive, and all TUNEL-positive cells were CDV-N-protein-positive, indicating that CDV-Ond induced apoptosis only in the infected cells. We also found that CDV-Ond infection induced activation of caspase-3 and caspase-8. In the semi-quantitative reverse transcription-polymerase chain reaction assay for apoptosis-related genes, the expression of mRNA of the death receptor, Fas, was also increased in CDV-Ond-infected cells. In contrast, the expressions of Bcl-2 and Bax, regulators for intrinsic apoptotic signaling through the mitochondria, did not change. These results suggest that CDV-Ond induced apoptosis by activating caspase-3, possibly through caspase-8 signaling rather than through p53/Bax-mediated, mitochondrial signaling in the infected cells.

  19. Variations in cell morphology in the canine cruciate ligament complex.

    PubMed

    Smith, K D; Vaughan-Thomas, A; Spiller, D G; Clegg, P D; Innes, J F; Comerford, E J

    2012-08-01

    Cell morphology may reflect the mechanical environment of tissues and influence tissue physiology and response to injury. Normal cruciate ligaments (CLs) from disease-free stifle joints were harvested from dog breeds with a high (Labrador retriever) and low (Greyhound) risk of cranial cruciate ligament (CCL) rupture. Antibodies against the cytoskeletal components vimentin and alpha tubulin were used to analyse cell morphology; nuclei were stained with 4',6-diamidino-2-phenylindole, and images were collected using conventional and confocal microscopy. Both cranial and caudal CLs contained cells of heterogenous morphologies. Cells were arranged between collagen bundles and frequently had cytoplasmic processes. Some of these processes were long (type A cells), others were shorter, thicker and more branched (type B cells), and some had no processes (type C cells). Processes were frequently shown to contact other cells, extending longitudinally and transversely through the CLs. Cells with longer processes had fusiform nuclei, and those with no processes had rounded nuclei and were more frequent in the mid-substance of both CLs. Cells with long processes were more commonly noted in the CLs of the Greyhound. As contact between cells may facilitate direct communication, variances in cell morphology between breeds at a differing risk of CCL rupture may reflect differences in CL physiology.

  20. SiRNA knockdown of the DEK nuclear protein mRNA enhances apoptosis and chemosensitivity of canine transitional cell carcinoma cells.

    PubMed

    Yamazaki, Hiroki; Iwano, Tomomi; Otsuka, Saori; Kagawa, Yumiko; Hoshino, Yuki; Hosoya, Kenji; Okumura, Masahiro; Takagi, Satoshi

    2015-04-01

    Transitional cell carcinoma (TCC) in dogs is an aggressive malignant neoplasm, originating in the epithelium of the urinary bladder. The DEK nuclear protein is overexpressed in several types of human bladder cancer, where it is involved in chromatin reconstruction, gene transcription and apoptosis. Since DEK represents a potential therapeutic target for canine TCC, this study was designed to investigate DEK expression in canine TCC and to determine the effects of DEK mRNA silencing on TCC cells in vitro. The gene expression profiles of seven selected cancer-associated genes was assessed in four canine TCC cell lines and expression of DEK protein was evaluated in bladder tissue biopsies from healthy dogs and those affected with cystitis or TCC. After transfection of four canine TCC cell lines with DEK-specific or scrambled siRNA, annexin V staining was performed to evaluate apoptosis, and methylthiazole tetrazolium assays were performed to assess both cell viability and sensitivity to carboplatin. DEK mRNA expression was relatively high in canine TCC cells and expression of the DEK protein was significantly greater in TCC tumours compared with the other tissue samples. After transfection with DEK-specific siRNA, apoptosis, cell growth inhibition, and enhanced sensitivity to carboplatin were observed in all TCC cells assessed. These research findings suggest that DEK could be a potential therapeutic target for canine TCC.

  1. Cell therapy in kidney disease: cautious optimism... but optimism nonetheless.

    PubMed

    Zenovich, Andrey G; Taylor, Doris A

    2007-06-01

    The recently discovered therapeutic potential of stem or progenitor cells has initiated development of novel treatments in a number of diseases-treatments that could not only improve patients' quality of life, but also halt or even prevent disease progression. Hypertension; fluctuations in glycemia, electrolytes, nutrient levels, and circulating volume; and frequent infections and the associated inflammation all greatly impair the endothelium in patients undergoing peritoneal dialysis. As our understanding of the regulatory function of the endothelium advances, focus is increasingly being placed on endothelial repair in acute and chronic renal failure and after renal transplantation. The potential of progenitor cells to repair damaged endothelium and to reduce inflammation in patients with renal failure remains unexamined; however, a successful cell therapy could reduce morbidity and mortality in kidney disease. Important contributions have been made in identifying progenitor cell populations in the kidney, and further investigations into the relationships of these cells with the pathophysiology of the disease are underway. As the kidney disease field prepares for the first human trials of progenitor cell therapies, we deemed it important to review representative original research, and to share our perspectives and lessons learned from clinical trials of progenitor cell-based therapies that have commenced in patients with cardiovascular disease.

  2. Urokinase production by electrophoretically separated cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.; Plank, L. D.; Giranda, V.; Sedor, K.; Todd, P. W.

    1985-01-01

    Urokinase is a plasminogen activator found in urine. Relatively pure preparations have been tested in Europe, Japan and the United States for the treatment of deep vein thrombosis and other dangerous blood clots. Human embryonic kidney cell cultures have been found to produce urokinase at much higher concentrations, but less than 5% of the cells in typical cultures are producers. Since human diploid cells become senescent in culture the selection of clones derived from single cells will not provide enough material to be useful, so a bulk purification method is needed for the isolation of urokinase producing cell populations. Preparative cell electrophoresis was chosen as the method, since evidence exists that human embryonic cell cultures are richly heterogeneous with respect to electrophoretic mobility, and preliminary electrophoretic separations on the Apollo-Soyuz space flight produced cell populations that were rich in urokinase production. Similarly, erythropoietin is useful in the treatment of certain anemias and is a kidney cell duct, and electrophoretically enriched cell populations producing this product have been reported. Thus, there is a clear need for diploid human cells that produce these products, and there is evidence that such cells should be separable by free-flow cell electrophoresis.

  3. Nearby clusters of hemagglutinin residues sustain SLAM-dependent canine distemper virus entry in peripheral blood mononuclear cells.

    PubMed

    von Messling, Veronika; Oezguen, Numan; Zheng, Qi; Vongpunsawad, Sompong; Braun, Werner; Cattaneo, Roberto

    2005-05-01

    Signaling lymphocytic activation molecule (SLAM, CD150) is the universal morbillivirus receptor. Based on the identification of measles virus (MV) hemagglutinin (H) amino acids supporting human SLAM-dependent cell entry, we mutated canine distemper virus (CDV) H and identified residues necessary for efficient canine SLAM-dependent membrane fusion. These residues are located in two nearby clusters in a new CDV H structural model. To completely abolish SLAM-dependent fusion, combinations of mutations were necessary. We rescued a SLAM-blind recombinant CDV with six mutations that did not infect ferret peripheral blood mononuclear cells while retaining full infectivity in epithelial cells.

  4. The natural antioxidants, pomegranate extract and soy isoflavones, favourably modulate canine endothelial cell function.

    PubMed

    Baumgartner-Parzer, Sabina M; Waldenberger, Ferdinand Rudolf; Freudenthaler, Angelika; Ginouvès-Guerdoux, Amandine; McGahie, David; Gatto, Hugues

    2012-01-01

    Cardiovascular disease, preceded by vascular endothelial dysfunction, is a prominent cause of death in dogs. L-carnitine and taurine, well known for their antioxidative capacity, beneficially affect cardiovascular disease as well as certain dog cardiomyopathies. It is well established that vascular endothelial dysfunction precedes cardiovascular disease and that "vasoprotective factors" (NO and antioxidants) prevent apoptosis, whereas "risk factors" such as oxidized LDL, hyperglycemia, and free fatty acids trigger it in cultured human vascular endothelial cells. Whereas human vascular cell in vitro models are widely established and used for the characterisation of potential vasoprotective substances, such models are not available for canine endothelial cells. In the present study we therefore developed an in vitro model, which allows the testing of the effects of different substances on proliferation and apoptosis in canine aortic endothelial cells. This model was used to test L-carnitine, taurine, pomegranate extract, and Soy Isoflavones in comparison to reference substances (glutathione and pioglitazone) previously shown to modulate human endothelial cell function. L-carnitine and taurine neither exhibited antiproliferative nor antiapoptotic activities in the context of this study. However extracts from pomegranate and soy isoflavones dramatically reduced proliferation and apoptosis in a dose dependent fashion, being in line with a vasoprotective activity in dogs.

  5. Immunohistochemical expression of vascular endothelial growth factor in canine oral squamous cell carcinomas

    PubMed Central

    MARTANO, MANUELA; RESTUCCI, BRUNELLA; CECCARELLI, DORA MARIA; LO MUZIO, LORENZO; MAIOLINO, PAOLA

    2016-01-01

    Angiogenesis is crucial for the growth and metastasis of malignant tumours, and various proangiogenic factors promote this process. One of these factors is vascular endothelial growth factor (VEGF), which appears to play a key role in tumour angiogenesis. The aim of the present study was to assess whether VEGF expression is associated with angiogenesis, disease progression and neoplastic proliferation in canine oral squamous cell carcinoma (OSCC) tissue. VEGF immunoreactivity was quantified by immunohistochemistry in 30 specimens, including normal oral mucosa and OSCC tissues graded as well, moderately or poorly differentiated. VEGF expression was correlated with tumour cell proliferation, as assessed using the proliferating cell nuclear antigen (PCNA) marker and microvessel density (data already published). The present results revealed that VEGF and PCNA expression increased significantly between normal oral tissue and neoplastic tissue, and between well and moderately/poorly differentiated tumours. In addition, VEGF expression was strongly correlated with PCNA expression and microvessel density. It was concluded that VEGF may promote angiogenesis through a paracrine pathway, stimulating endothelial cell proliferation and, similarly, may induce tumour cell proliferation through an autocrine pathway. The present results suggest that the evaluation of VEGF may be a useful additional criterion for estimating malignancy and growth potential in canine OSCCs. PMID:26870224

  6. The Natural Antioxidants, Pomegranate Extract and Soy Isoflavones, Favourably Modulate Canine Endothelial Cell Function

    PubMed Central

    Baumgartner-Parzer, Sabina M.; Waldenberger, Ferdinand Rudolf; Freudenthaler, Angelika; Ginouvès-Guerdoux, Amandine; McGahie, David; Gatto, Hugues

    2012-01-01

    Cardiovascular disease, preceded by vascular endothelial dysfunction, is a prominent cause of death in dogs. L-carnitine and taurine, well known for their antioxidative capacity, beneficially affect cardiovascular disease as well as certain dog cardiomyopathies. It is well established that vascular endothelial dysfunction precedes cardiovascular disease and that “vasoprotective factors” (NO and antioxidants) prevent apoptosis, whereas “risk factors” such as oxidized LDL, hyperglycemia, and free fatty acids trigger it in cultured human vascular endothelial cells. Whereas human vascular cell in vitro models are widely established and used for the characterisation of potential vasoprotective substances, such models are not available for canine endothelial cells. In the present study we therefore developed an in vitro model, which allows the testing of the effects of different substances on proliferation and apoptosis in canine aortic endothelial cells. This model was used to test L-carnitine, taurine, pomegranate extract, and Soy Isoflavones in comparison to reference substances (glutathione and pioglitazone) previously shown to modulate human endothelial cell function. L-carnitine and taurine neither exhibited antiproliferative nor antiapoptotic activities in the context of this study. However extracts from pomegranate and soy isoflavones dramatically reduced proliferation and apoptosis in a dose dependent fashion, being in line with a vasoprotective activity in dogs. PMID:23762588

  7. Congenital hepatic fibrosis, liver cell carcinoma and adult polycystic kidneys.

    PubMed

    Manes, J L; Kissane, J M; Valdes, A J

    1977-06-01

    In reviewing the literature, we found no liver cell carcinoma (LCC) or well-documented adult polycystic kidneys (APK) associated with congenital hepatic fibrosis (CHF). We report a 69-year-old man with CHF, LCC, APK, duplication cyst of distal portion of stomach, two calcified splenic artery aneurysms, myocardial fibrosis and muscular hypertrophy of esophagus. The LCC was grossly predunculated and microscopically showed prominent fibrosis and hyaline intracytoplasmic inclusions in the tumor cells.

  8. Intravenous Renal Cell Transplantation for Polycystic Kidney Disease

    DTIC Science & Technology

    2013-10-01

    failure: CKD due to cisplatin-mediated injury (4), diabetic nephropathy (Am J Physiol. Renal in press) and in PKD (figure 1). 6    Figure 3...with SAA1 positive cells prevents progression of chronic renal failure in rats with ischemic- diabetic nephropathy . Am J Physiol. Renal, in press 6...survival and kidney function in diverse models of renal 5    Figure 2. The power of cytotherapy: When compared to no cell (C) groups, treatment of

  9. Cell-Surface Integrins and CAR Are Both Essential for Adenovirus Type 5 Transduction of Canine Cells of Lymphocytic Origin.

    PubMed

    Agarwal, Payal; Gammon, Elizabeth A; Sajib, Abdul Mohin; Sandey, Maninder; Smith, Bruce F

    2017-01-01

    Adenoviruses are the most widely used vectors in cancer gene therapy. Adenoviruses vectors are well characterized and are easily manipulated. Adenovirus serotype 5 (Ad5) is the most commonly used human serotype. Ad5 internalization into host cells is a combined effect of binding of Ad5 fiber knob with the coxsackie virus and adenovirus receptor (CAR) and binding of RGD motifs in viral penton to cell surface integrins (αvβ3, αvβ5). Ad5's wide range of host-cell transduction and lack of integration into the host genome have made it an excellent choice for cancer therapeutics. However, Ad5 has limited ability to transduce cells of hematopoietic origin. It has been previously reported that low or no expression of CAR is a potential obstacle to Ad5 infection in hematopoietic origin cells. In addition, we have previously reported that low levels of cell surface integrins (αvβ3, αvβ5) may inhibit Ad5 infection in canine lymphoma cell lines. In the current report we have examined the ability of an Ad5 vector to infect human (HEK293) and canine non-cancerous (NCF and PBMC), canine non-hematopoietic origin cancer (CMT28, CML7, and CML10), and canine hematopoietic origin cancer (DH82, 17-71, OSW, MPT-1, and BR) cells. In addition, we have quantified CAR, αvβ3 and αvβ5 integrin transcript expression in these cells by using quantitative reverse transcriptase PCR (q-RT-PCR). Low levels of integrins were present in MPT1, 17-71, OSW, and PBMC cells in comparison to CMT28, DH82, and BR cells. CAR mRNA levels were comparatively higher in MPT1, 17-71, OSW, and PBMC cells. This report confirms and expands the finding that low or absent expression of cell surface integrins may be the primary reason for the inability of Ad5-based vectors to transduce cells of lymphocytic origin and some myeloid cells but this is not true for all hematopoietic origin cells. For efficient use of Ad5-based therapeutic vectors in cancers of lymphocytic origin, it is important to address the

  10. Cell-Surface Integrins and CAR Are Both Essential for Adenovirus Type 5 Transduction of Canine Cells of Lymphocytic Origin

    PubMed Central

    Gammon, Elizabeth A.; Sajib, Abdul Mohin; Sandey, Maninder; Smith, Bruce F.

    2017-01-01

    Adenoviruses are the most widely used vectors in cancer gene therapy. Adenoviruses vectors are well characterized and are easily manipulated. Adenovirus serotype 5 (Ad5) is the most commonly used human serotype. Ad5 internalization into host cells is a combined effect of binding of Ad5 fiber knob with the coxsackie virus and adenovirus receptor (CAR) and binding of RGD motifs in viral penton to cell surface integrins (αvβ3, αvβ5). Ad5’s wide range of host-cell transduction and lack of integration into the host genome have made it an excellent choice for cancer therapeutics. However, Ad5 has limited ability to transduce cells of hematopoietic origin. It has been previously reported that low or no expression of CAR is a potential obstacle to Ad5 infection in hematopoietic origin cells. In addition, we have previously reported that low levels of cell surface integrins (αvβ3, αvβ5) may inhibit Ad5 infection in canine lymphoma cell lines. In the current report we have examined the ability of an Ad5 vector to infect human (HEK293) and canine non-cancerous (NCF and PBMC), canine non-hematopoietic origin cancer (CMT28, CML7, and CML10), and canine hematopoietic origin cancer (DH82, 17–71, OSW, MPT-1, and BR) cells. In addition, we have quantified CAR, αvβ3 and αvβ5 integrin transcript expression in these cells by using quantitative reverse transcriptase PCR (q-RT-PCR). Low levels of integrins were present in MPT1, 17–71, OSW, and PBMC cells in comparison to CMT28, DH82, and BR cells. CAR mRNA levels were comparatively higher in MPT1, 17–71, OSW, and PBMC cells. This report confirms and expands the finding that low or absent expression of cell surface integrins may be the primary reason for the inability of Ad5-based vectors to transduce cells of lymphocytic origin and some myeloid cells but this is not true for all hematopoietic origin cells. For efficient use of Ad5-based therapeutic vectors in cancers of lymphocytic origin, it is important to address

  11. THE SUSCEPTIBILITY OF BABOON (PAPIO DOGUERA) KIDNEY CELLS TO HUMAN ENTEROVIRUSES

    DTIC Science & Technology

    Studies were made to learn if baboon kidney cells are as susceptible as monkey kidney cells to human enteroviruses . Since the baboon (Papio doguera...kidney cells showed high susceptibility to most human enteroviruses . Their usefulness is inhanced in that they indicated the presence of contaminating SV40 virus. (Author)

  12. Canine mammary tumors contain cancer stem-like cells and form spheroids with an embryonic stem cell signature.

    PubMed

    Ferletta, Maria; Grawé, Jan; Hellmén, Eva

    2011-01-01

    We have investigated the presence of tentative stem-like cells in the canine mammary tumor cell line CMT-U229. This cell line is established from an atypical benign mixed mammary tumor, which has the property of forming duct-like structures in collagen gels. Stem cells in mammary glands are located in the epithelium; therefore we thought that the CMT-U229 cell line would be suitable for detection of tentative cancer stem-like cells. Side population (SP) analyses by flow cytometry were performed with cells that formed spheroids and with cells that did not. Flow cytometric, single sorted cells were expanded and re-cultured as spheroids. The spheroids were paraffin embedded and characterized by immunohistochemistry. SP analyses showed that spheroid forming cells (retenate) as well as single cells (filtrate) contained SP cells. Sca1 positive cells were single cell sorted and thereafter the SP population increased with repeated SP analyses. The SP cells were positively labeled with the cell surface-markers CD44 and CD49f (integrin alpha6); however the expression of CD24 was low or negative. The spheroids expressed the transcription factor and stem cell marker Sox2, as well as Oct4. Interestingly, only peripheral cells of the spheroids and single cells were positive for Oct4 expression. SP cells are suggested to correspond to stem cells and in this study, we have enriched for tentative tumor stem-like cells derived from a canine mammary tumor. All the used markers indicate that the studied CMT-U229 cell line contains SP cells, which in particular have cancer stem-like cell characteristics.

  13. Bone Morphogenetic Protein-2, But Not Mesenchymal Stromal Cells, Exert Regenerative Effects on Canine and Human Nucleus Pulposus Cells.

    PubMed

    Bach, Frances C; Miranda-Bedate, Alberto; van Heel, Ferdi W M; Riemers, Frank M; Müller, Margot C M E; Creemers, Laura B; Ito, Keita; Benz, Karin; Meij, Björn P; Tryfonidou, Marianna A

    2017-03-01

    Chronic back pain is related to intervertebral disc (IVD) degeneration and dogs are employed as animal models to develop growth factor- and cell-based regenerative treatments. In this respect, the differential effects of transforming growth factor beta-1 (TGF-β1) and bone morphogenetic protein-2 (BMP2) on canine and human chondrocyte-like cells (CLCs) derived from the nucleus pulposus of degenerated IVDs were studied. Human and canine CLCs were cultured in 3D microaggregates in basal culture medium supplemented with/without TGF-β1 (10 ng/mL) or BMP2 (100 or 250 ng/mL). Both TGF-β1 and BMP2 increased proliferation and glycosaminoglycan (GAG) deposition of human and canine CLCs. TGF-β1 induced collagen type I deposition and fibrotic (re)differentiation, whereas BMP2 induced more collagen type II deposition. In dogs, TGF-β1 induced Smad1 and Smad2 signaling, whereas in humans, it only tended to induce Smad2 signaling. BMP2 supplementation increased Smad1 signaling in both species. This altogether indicates that Smad1 signaling was associated with collagen type II production, whereas Smad2 signaling was associated with fibrotic CLC (re)differentiation. As a step toward preclinical translation, treatment with BMP2 alone and combined with mesenchymal stromal cells (MSCs) was further investigated. Canine male CLCs were seeded in albumin-based hydrogels with/without female bone marrow-derived MSCs (50:50) in basal or 250 ng/mL BMP2-supplemented culture medium. Although the results indicate that a sufficient amount of MSCs survived the culture period, total GAG production was not increased and GAG production per cell was even decreased by the addition of MSCs, implying that MSCs did not exert additive regenerative effects on the CLCs.

  14. Human hepatocyte and kidney cell metabolism of 2-acetylaminofluorene and comparison to the respective rat cells.

    PubMed

    Langenbach, R; Rudo, K

    1988-12-01

    The metabolism and mutagenic activation of 2-acetylaminofluorene by human and rat hepatocytes and kidney cells were measured. High performance liquid chromatography was used to separate the 2-acetylaminofluorene metabolites, and a cell-mediated Salmonella typhimurium mutagenesis assay was used to detect mutagenic intermediates. Rat and human differences were observed with cells from both organs and levels of metabolism and mutagenesis were higher in human cells. Within a species, liver and kidney cell differences were also evident, with levels of hepatocyte-mediated metabolism and mutagenesis being greater than kidney cells. Human inter-individual variation was apparent with cells from both organs, but the variation observed was significantly greater in hepatocytes than kidney cells. A knowledge of such differences, including an understanding that they may vary with the chemical being studied, should be useful in the extrapolation of rodent carcinogenesis data to humans.

  15. Development of a Vaccine Incorporating Killed Virus of Canine Origin for the Prevention of Canine Parvovirus Infection

    PubMed Central

    Povey, C.

    1982-01-01

    A parvovirus of canine origin, cultured in a feline kidney cell line, was inactivated with formalin. Three pilot serials were produced and three forms of finished vaccine (nonadjuvanted, single adjuvanted and double adjuvanted) were tested in vaccination and challenge trials. A comparison was also made with two inactivated feline panleukopenia virus vaccines, one of which has official approval for use in dogs. The inactivated canine vaccine in nonadjuvanted, adjuvanted or double adjuvanted form was immunogenic in 20 of 20 vaccinated dogs. The double adjuvanted vaccine is selected as the one of choice on the basis of best and most persistent seriological response. PMID:7039811

  16. Expression of lumbosacral HOX genes, crucial in kidney organogenesis, is systematically deregulated in clear cell kidney cancers.

    PubMed

    Cantile, Monica; Schiavo, Giulia; Franco, Renato; Cindolo, Luca; Procino, Alfredo; D'Armiento, Maria; Facchini, Gaetano; Terracciano, Luigi; Botti, Gerardo; Cillo, Clemente

    2011-06-01

    Homeobox-containing genes are involved in different stages of kidney organogenesis, from the early events in intermediate mesoderm to terminal differentiation of glomerular and tubular epithelia. The HOX genes show a unique genomic network organization and regulate normal development. The targeted disruption of paralogous group 11 HOX genes (HOX A11, HOX C11 and HOX D11) results in a complete loss of metanephric kidney induction. Despite a large amount of data are related to the early events in the kidney development, not much is known about HOX genes in advanced kidney organogenesis and carcinogenesis. Here, we compare the expression of the whole HOX gene network in late-stage human foetal kidney development with the same patterns detected in 25 pairs of normal clear cell renal carcinomas (RCCs) and 15 isolated RCC biopsy samples. In the majority of RCCs tested, HOX C11 is upregulated, whereas HOX D11, after an early involvement becomes active again at the 23rd week of the foetal kidney development, is always expressed in normal adult kidneys and is deregulated, together with HOX A11 and lumbosacral locus D HOX genes. Thus, through its function of regulating phenotype cell identity, the HOX network plays an important role in kidney carcinogenesis. Lumbosacral HOX genes are involved in the molecular alterations associated with clear cell kidney cancers and represent, through their deregulation, a molecular mark of tubular epithelial dedifferentiation occurring along tumour evolution, with the restoration of genetic programs associated with kidney organogenesis. The deregulation of lumbosacral HOX genes in RCCs supports (i) the consideration of the HOX gene transcriptome as the potential prognostic tool in kidney carcinogenesis and (ii) the possibility to foresee clinical trials with the purpose of targeting these genes to achieve a therapeutic effect in RCC patients.

  17. Characterization and therapeutic application of canine adipose mesenchymal stem cells to treat elbow osteoarthritis.

    PubMed

    Kriston-Pál, Éva; Czibula, Ágnes; Gyuris, Zoltán; Balka, Gyula; Seregi, Antal; Sükösd, Farkas; Süth, Miklós; Kiss-Tóth, Endre; Haracska, Lajos; Uher, Ferenc; Monostori, Éva

    2017-01-01

    Visceral adipose tissue (AT) obtained from surgical waste during routine ovariectomies was used as a source for isolating canine mesenchymal stem cells (MSCs). As determined by cytofluorimetry, passage 2 cells expressed MSC markers CD44 and CD90 and were negative for lineage-specific markers CD34 and CD45. The cells differentiated toward osteogenic, adipogenic, and chondrogenic directions. With therapeutic aims, 30 dogs (39 joints) suffering from elbow dysplasia (ED) and osteoarthritis (OA) were intra-articularly transplanted with allogeneic MSCs suspended in 0.5% hyaluronic acid (HA). A highly significant improvement was achieved without any medication as demonstrated by the degree of lameness during the follow-up period of 1 y. Control arthroscopy of 1 transplanted dog indicated that the cartilage had regenerated. Histological analysis of the cartilage biopsy confirmed that the regenerated cartilage was of hyaline type. These results demonstrate that transplantation of allogeneic adipose tissue-derived mesenchymal stem cells (AT-MSCs) is a novel, noninvasive, and highly effective therapeutic tool in treating canine elbow dysplasia.

  18. Radiation-induced DNA damage in canine hemopoietic cells and stromal cells as measured by the comet assay

    SciTech Connect

    Kreja, L.; Selig, C.; Plappert, U.; Nothdurft, W.

    1996-12-31

    Stromal cell progenitors (fibroblastoid colony-forming unit; CFU-Fs) are representative of the progenitor cell population of the hemopoietic microenvironment in bone marrow (BM). Previous studies of the radiation dose-effect relationships for colony formation have shown that canine CFU-Fs are relatively radioresistant as characterized by a D{sub 0} value of about 2.4 Gy. In contrast, hemopoietic progenitors are particularly radiosensitive (D{sub 0} values = 0.12-0.60 Gy). In the present study, the alkaline single-cell gel electrophoresis technique for the in situ quantitation of DNA strand breaks and alkalilabile site was employed. Canine buffy coat cells from BM aspirates and cells harvested from CFU-F colonies or from mixed populations of adherent BM stromal cell (SC) layers were exposed to increasing doses of X-rays, embedded in agarose gel on slides, lysed with detergents, and placed in an electric field. DNA migrating from single cells in the gel was made visible as {open_quotes}comets{close_quotes} by ethidium bromide staining. Immediate DNA damage was much less in cultured stromal cells than in hemopoietic cells in BM aspirates. These results suggest that the observed differences in clonogenic survival could be partly due to differences in the type of the initial DNA damage between stromal cells and hemopoietic cells. 37 refs., 2 figs., 1 tab.

  19. Claudin-4 forms a paracellular barrier, revealing the interdependence of claudin expression in the loose epithelial cell culture model opossum kidney cells.

    PubMed

    Borovac, Jelena; Barker, Reid S; Rievaj, Juraj; Rasmussen, Andrew; Pan, Wanling; Wevrick, Rachel; Alexander, R Todd

    2012-12-15

    The effect of claudins on paracellular fluxes has been predominantly studied in either Madin-Darby canine kidney (MDCK) or LLCPK cells. Neither model system has a very low transepithelial resistance (TER) as observed in leaky epithelia. Moreover, results from one model system are not always consistent with another. Opossum kidney (OK) cells form tight junctions yet have a very low TER. We therefore set out to characterize the paracellular transport properties of this cell culture model. Ussing chamber dilution potential measurements revealed that OK cells exhibit a very low TER (11.7 ± 1.4 Ω·cm(2)), slight cation selectivity (P(Na)/P(Cl) = 1.10 ± 0.01), and the Eisenman permeability sequence IV; the permeability of monovalent cations ranking K(+) > Cs(+) > Rb(+) > Na(+) > Li(+). Quantitative real-time PCR studies found that OK cells endogenously express claudin-4 > -1 > -6 > -20 > -9 > -12 > -11 > -15. Overexpression of claudin-4 significantly increased TER, decreased Na(+) and Cl(-) permeability, and increased levels of claudin-1, -6, and -9 mRNA. Knockdown of claudin-4 in the overexpressing cells significantly decreased TER without altering claudin expression; thus claudin-4 forms a barrier in OK cells. Knockdown of endogenous claudin-4 decreased claudin-1, -9, and -12 expression without altering TER. Claudin-2 overexpression decreased TER, significantly increased Na(+) and Cl(-) permeability, and decreased claudin-12 and -6 expression. Together these results demonstrate that claudin expression is tightly coupled in OK cells.

  20. Efficient decellularization of whole porcine kidneys improves reseeded cell behavior.

    PubMed

    Poornejad, Nafiseh; Momtahan, Nima; Salehi, Amin S M; Scott, Daniel R; Fronk, Cory A; Roeder, Beverly L; Reynolds, Paul R; Bundy, Bradley C; Cook, Alonzo D

    2016-03-10

    Combining patient-specific cells with the appropriate scaffold to create functional kidneys is a promising technology to provide immunocompatible kidneys for the 100,000+ patients on the organ waiting list. For proper recellularization to occur, the scaffold must possess the critical microstructure and an intact vascular network. Detergent perfusion through the vasculature of a kidney is the preferred method of decellularization; however, harsh detergents could be damaging to the microstructure of the renal tissue and may undesirably solubilize the endogenous growth and signaling factors. In this study, automated decellularization of whole porcine kidneys was performed using an improved method that combined physical and chemical steps to efficiently remove cellular materials while producing minimal damage to the collagenous extracellular matrix (ECM). Freezing/thawing, incremental increases in flow rate under constant pressure, applying osmotic shock to the cellular membranes, and low concentrations of the detergent sodium dodecyl sulfate (SDS) were factors used to decrease SDS exposure time during the decellularization process from 36 to 5 h, which preserved the microstructure while still removing 99% of the DNA. The well-preserved glycosaminoglycans (GAGs) and collagen fibers enhanced cell-ECM interactions. Human renal cortical tubular epithelium (RCTE) cells grew more rapidly when cultured on the ECM obtained from the improved decellularization process and also demonstrated more in vivo-like gene expression patterns. The optimized, automated process that resulted from this work is now used routinely in our laboratory to rapidly decellularize porcine kidneys and could be adapted to other large organs (e.g. heart, liver, and lung).

  1. Antiviral and antiproliferative effects of canine interferon-λ1.

    PubMed

    Ichihashi, Tomonori; Asano, Atsushi; Usui, Tatsufumi; Takeuchi, Takashi; Watanabe, Yasuko; Yamano, Yoshiaki

    2013-11-15

    Interferon (IFN)-λs, members of the type III IFN group, were recently identified in several vertebrates. Although IFN-λs have the potential to be utilized as antiviral and antitumor agents in veterinary medicine, the biological properties of IFN-λs have not yet been studied in companion animals. In this study, we analyzed the expression of canine IFN-λs and their receptors, produced a recombinant canine IFN-λ1 protein, and investigated its antiviral and antiproliferative activities using a canine kidney epithelial cell line, MDCK cells. MDCK cells were found to express type III IFN molecules, IFN-λ1 and IFN-λ3, and the receptors, IFNλR1 and IL10R2. IFN-λ1 was induced faster than IFN-λ3 by stimulation with poly (I:C). His-tagged IFN-λ1 protein expressed in Escherichia coli inhibited cytolytic plaque formation by influenza A virus infection, and induced the expression of interferon-stimulated genes, Mx1 and OAS1, in MDCK cells. In addition, recombinant IFN-λ1 inhibited the proliferation of MDCK cells slightly. These effects were observed in a dose-dependent manner. These results indicate that canine IFN-λ1 has antiviral effect, and suggest the potential applicability of canine IFN-λ1 as a therapeutic agent.

  2. Influence of persistent canine distemper virus infection on expression of RECK, matrix-metalloproteinases and their inhibitors in a canine macrophage/monocytic tumour cell line (DH82).

    PubMed

    Puff, Christina; Krudewig, Christiane; Imbschweiler, Ilka; Baumgärtner, Wolfgang; Alldinger, Susanne

    2009-10-01

    A morbillivirus infection of tumour cells is known to exert oncolytic activity, but the mechanism of this inhibitory action has not been well defined. Matrix metalloproteinases (MMPs) are important enzymes degrading the extracellular matrix and are often upregulated in malignant neoplasms. Recent studies have demonstrated that RECK may potently suppress MMP-2 and -9 activity, thus inhibiting angiogenesis and metastasis. In this study, real time quantitative polymerase chain reaction (RT-qPCR) was used to determine the effect of persistent infection with canine distemper virus (CDV) infection on the expression of MMPs and their inhibitors (TIMPS) in a canine macrophage/monocytic tumour cell line (DH82). The activity of proMMP-2 and proMMP-9 was also verified zymographically. Following CDV infection, MMP-2, TIMP-1 and TIMP-2 were down-regulated, while RECK was upregulated. These findings suggest that CDV infection restores RECK expression in tumour cells and may interfere with the intracellular processing of MMPs and TIMPs, thus possibly influencing tumour cell behaviour beneficially for the host. However, this needs to be verified in in vivo studies.

  3. Propagation of Asian isolates of canine distemper virus (CDV) in hamster cell lines

    PubMed Central

    Sultan, Serageldeen; Lan, Nguyen Thi; Ueda, Toshiki; Yamaguchi, Ryoji; Maeda, Ken; Kai, Kazushige

    2009-01-01

    Backgrounds The aim of this study was to confirm the propagation of various canine distemper viruses (CDV) in hamster cell lines of HmLu and BHK, since only a little is known about the possibility of propagation of CDV in rodent cells irrespective of their epidemiological importance. Methods The growth of CDV in hamster cell lines was monitored by titration using Vero.dogSLAMtag (Vero-DST) cells that had been proven to be susceptible to almost all field isolates of CDV, with the preparations of cell-free and cell-associated virus from the cultures infected with recent Asian isolates of CDV (13 strains) and by observing the development of cytopathic effect (CPE) in infected cultures of hamster cell lines. Results Eleven of 13 strains grew in HmLu cells, and 12 of 13 strains grew in BHK cells with apparent CPE of cell fusion in the late stage of infection. Two strains and a strain of Asia 1 group could not grow in HmLu cells and BHK cells, respectively. Conclusion The present study demonstrates at the first time that hamster cell lines can propagate the majority of Asian field isolates of CDV. The usage of two hamster cell lines suggested to be useful to characterize the field isolates biologically. PMID:19835588

  4. Cytoprotection of kidney epithelial cells by compounds that target amino acid gated chloride channels.

    PubMed

    Venkatachalam, M A; Weinberg, J M; Patel, Y; Saikumar, P; Dong, Z

    1996-02-01

    Glycine, strychnine and certain chloride channel blockers were reported to protect cells against lethal cell injury. These effects have been attributed to interactions with membrane proteins related to CNS glycine gated chloride channel receptors. We have investigated the pharmacology of these actions. Madin-Darby canine kidney (MDCK) epithelial cells were depleted of adenosine triphosphate (ATP) by incubation in glucose free medium containing a mitochondrial uncoupler. Medium Ca2+ was adjusted to 100 nM in the presence of an ionophore such that intracellular Ca2+ did not increase, and Ca(2+)-related injury mechanisms were inhibited. This permitted more sensitive quantitation of protection against cell injury attributable to glycine or other agents whose actions might be related to those of the amino acid. Two classes of compounds showed cytoprotective activity in this system: (1) ligands at chloride channel receptors, such as glycine, strychnine and avermectin B1a; (2) chloride channel blockers, including cyanotriphenylboron and niflumic acid, both of which are known to bind to channel domains of CNS glycine receptors. Morphological and functional studies showed that the compounds preserved plasma membrane integrity, but permitted cell swelling. Substitution of medium chloride by gluconate, or chloride salts by sucrose, did not substantially modify lethal damage or its prevention by glycine or other drugs. The compounds did not modify ATP declines. At least for some compounds, cytoprotection appeared to be specific to structural features on the molecules. These observations are consistent with the hypothesis that a plasma membrane protein related to glycine-gated chloride channel receptors plays a significant role in cell injury, but indicate that the mechanisms of injury and protection by compounds active in this system are not related to chloride fluxes.

  5. Kidney Problems

    MedlinePlus

    ... our e-newsletter! Aging & Health A to Z Kidney Problems Basic Facts & Information The kidneys are two ... the production of red blood cells. What are Kidney Diseases? For about one-third of older people, ...

  6. Giant kidney worms in a patient with renal cell carcinoma.

    PubMed

    Kuehn, Jemima; Lombardo, Lindsay; Janda, William M; Hollowell, Courtney M P

    2016-03-07

    Dioctophyma renale (D. renale), or giant kidney worms, are the largest nematodes that infect mammals. Approximately 20 cases of human infection have been reported. We present a case of a 71-year-old man with a recent history of unintentional weight loss and painless haematuria, passing elongated erythematous tissue via his urethra. CT revealed a left renal mass with pulmonary nodules and hepatic lesions. On microscopy, the erythematous tissue passed was identified as D. renale. On subsequent renal biopsy, pathology was consistent with renal cell carcinoma. This is the first reported case of concomitant D. renale infection and renal cell carcinoma, and the second reported case of D. renale infection of the left kidney alone.

  7. Proliferative lesions of intra-epidermal cytokeratin CAM5.2-positive cells in canine nipples.

    PubMed

    Yasuno, K; Nishiyama, S; Kobayashi, R; Yoshimura, H; Takahashi, K; Omachi, T; Kamiie, J; Shirota, K

    2014-01-01

    Non-keratinocyte cells with clear or vacuolated cytoplasm are frequently observed in the epidermis of canine nipples. Most of these cells express cytokeratin (CK) CAM5.2, a marker of luminal epithelial cells. The morphological and immunohistochemical characteristics of these clear cells were investigated. Nipple tissue from 36 dogs of both sexes was collected and labelled immunohistochemically for CAM5.2, CK7, CK14, CK18, CK20, α-smooth muscle actin, p63, melan-A, E-cadherin, epidermal growth factor receptor and oestrogen receptor (OR). The intra-epidermal CAM5.2(+) clear cells were present singly or as small clusters, mostly within the basal layer, in 22 dogs (61%). These cells also expressed CK7, CK18, E-cadherin and OR. Electron microscopy revealed that some of these cells had surface microvilli. Multifocal proliferative lesions consisting of these cells were observed in the nipples of four dogs. In these lesions, proliferating cells formed bilayered tubules with CAM5.2(+) inner and CK14/p63(+) outer cells. This is the first report describing intra-epidermal CAM5.2(+) clear cells, distinct from melanocytes and Merkel cells in dog nipples. These cells might arise from the luminal epithelium of the papillary duct.

  8. Cystine and dibasic amino acid uptake by opossum kidney cells

    SciTech Connect

    States, B.; Segal, S. )

    1990-06-01

    The characteristics of the uptake of L-cystine by the continuous opossum kidney cell line, OK, were examined. Uptake of cystine is rapid and, in contrast to other continuous cultured cell lines, these cells retain the cystine/dibasic amino acid transport system which is found in vivo and in freshly isolated kidney tissue. Confluent monolayers of cells also fail to show the presence of the cystine/glutamate transport system present in LLC-PK1 cells, fibroblasts, and cultured hepatocytes. Uptake of cystine occurs via a high-affinity saturable process which is independent of medium sodium concentration. The predominant site of cystine transport is across the apical cell membrane. The intracellular concentration of GSH far exceeds that of cystine with a ratio greater than 100:1 for GSH:cysteine. Incubation of cells for 5 minutes with a physiological level of labelled cystine resulted in the labelling of 66% and 5% of the total intracellular cysteine and glutathione, respectively. The ability of these cells to reflect the shared cystine/dibasic amino acid transport system makes them a suitable model for investigation of the cystine carrier which is altered in human cystinuria.

  9. Increased osmolarity and cell clustering preserve canine notochordal cell phenotype in culture.

    PubMed

    Spillekom, Sandra; Smolders, Lucas A; Grinwis, Guy C M; Arkesteijn, Irene T M; Ito, Keita; Meij, Björn P; Tryfonidou, Marianna A

    2014-08-01

    Degeneration of the intervertebral disc (IVD) is associated with a loss of notochordal cells (NCs) from the nucleus pulposus (NP) and their replacement by chondrocyte-like cells. NCs are known to maintain extracellular matrix quality and stimulate the chondrocyte-like NP cells, making NCs attractive for designing new tissue engineering approaches for IVD regeneration. However, optimal conditions, such as osmolarity and other characteristics of the culture media, for long-term culture of NCs are not known. The purpose of this study was to investigate the effects of different culture media and osmolarity on the physiology of NCs in vitro. NC clusters isolated from canine IVDs were suspended in alginate beads and cultured at 37°C under normoxic conditions for 28 days. Three different culture conditions were investigated; (1) Dulbecco's modified Eagle's medium (DMEM)/F12 (300 mOsm/L), (2) α-MEM (300 mOsm/L), and (3) α-MEM adjusted to 400 mOsm/L to mimic a hyperosmolar environment. NC morphology, expression of genes related to NC markers, matrix production and remodeling, and DNA- and glycosaminoglycan (GAG) analyses were performed on 1, 7, 14, and 28 days in culture. Large, vesicle-containing cells organized in clusters, characterized as NCs, remained present during 28 days for all culture conditions. However, the proportion of the NC clusters decreased over time, whereas the proportion of spindle-shaped cells increased. Gene expression profiling at 7, 14, and 28 days in culture compared to day 1 indicated a initial loss of NC phenotype followed by some recovery of brachyury and aggrecan gene expression after 28 days of culture supporting a potential recovery of NC phenotype. NCs cultured in α-MEM adjusted to 400 mOsm/L showed the highest gene expression of brachyury, cytokeratin 18, and aggrecan, the highest GAG production, and the lowest collagen 1α1 gene expression. In conclusion, NCs cultured in alginate in native cell clusters, partially retained their

  10. Peroxynitrite induces apoptosis in canine cerebral vascular muscle cells: possible relation to neurodegenerative diseases and strokes.

    PubMed

    Li, Jianfeng; Su, Jialin; Li, Wenyan; Liu, Weimin; Altura, Bella T; Altura, Burton M

    2003-10-30

    Considerable evidence is accumulating to suggest that in vivo formation of free radicals in the brain, such as peroxynitrite (ONOO-), and programmed cell death (i.e. apoptosis) play important roles in neurodegeneration and stroke. However, it is not known whether ONOO- can induce apoptosis in cerebral vascular smooth muscle cells (CVSMCs). The present study was designed to determine whether or not canine CVSMCs undergo apoptosis following treatment with ONOO-. Direct exposure of canine CVSMCs to ONOO- induced apoptosis in a concentration-dependent manner, as confirmed by means of fluorescence staining, TdT-mediated dUTP nick-end labeling and comet assays. Peroxynitrite treatment resulted in an elevation of [Ca2+]i in the CVSMCs. Peroxynitrite-induced apoptosis may thus be brought about by activation of Ca2+-dependent endonucleases. Although the precise mechanisms by which peroxynitrite induces apoptosis need to be further investigated, the present findings could be used to suggest that ONOO- formation in the brain may play important roles in neurodegenerative processes and strokes via detrimental actions on cerebral microvessels and blood flow.

  11. Repair of orbital bone defects in canines using grafts of enriched autologous bone marrow stromal cells

    PubMed Central

    2014-01-01

    Backgroud Bone tissue engineering is a new approach for the repair of orbital defects. The aim of the present study was to explore the feasibility of tissue-engineered bone constructed using bone marrow stromal cells (BMSCs) that were rapidly isolated and concentrated from bone marrow (BM) by the red cell lysis method, then combined with β-tricalcium phosphate (β-TCP) to create grafts used to restore orbital bone defects in canines. Methods In the experimental group, grafts were constructed using BMSCs obtained by red cell lysis from 20 ml bone marrow, combined with β-TCP and BM via the custom-made stem cell-scaffold device, then used to repair 10 mm diameter medial orbital wall bony defects in canines. Results were compared with those in groups grafted with BM/β-TCP or β-TCP alone, or with defects left untreated as controls. The enrichment of BMSCs and nucleated cells (NCs) in the graft was calculated from the number in untreated bone marrow and in suspensions after red cell lysis. Spiral computed tomography (CT) scans were performed 1, 4, 12 and 24 weeks after implantation in all groups. Gross examination, micro-CT and histological measurements were performed 24 weeks after surgery. The results were analyzed to evaluate the efficacy of bone repair. Results The number of NCs and of colony-forming units within the scaffolds were increased 54.8 times and 53.4 times, respectively, compared with untreated bone marrow. In the BMSC-BM/β-TCP group, CT examination revealed that the scaffolds were gradually absorbed and the bony defects were restored. Micro-CT and histological examination confirmed that the implantations led to good repair of the defects, with 6 out 8 orbital defects completely restored in the experimental group, while by contrast, the grafts in the control groups did not fully repair the bony defects, a difference which was statistically significant (p < 0.05). Conclusions Tissue-engineered bone, constructed using BMSCs isolated by red cell

  12. Tumour-associated macrophages influence canine mammary cancer stem-like cells enhancing their pro-angiogenic properties.

    PubMed

    Rybicka, A; Eyileten, C; Taciak, B; Mucha, J; Majchrzak, K; Hellmen, E; Krol, M

    2016-08-01

    Cancer stem-like cells as cells with ability to self-renewal and potential to differentiate into various types of cells are known to be responsible for tumour initiation, recurrence and drug resistance. Hence a comprehensive research is concentrated on discovering cancer stem-like cells biology and interdependence between them and other cells. The aim of our study was to evaluate the impact of macrophages on cancer stem-like cells in canine mammary carcinomas. As recent studies indicated presence of macrophages in cancer environment stimulates cancer cells into more motile and invasive cells by acquisition of macrophage phenotypes. From two canine mammary tumour cell lines, CMT-U27 and P114 cancer stem-like cells were stained with Sca1, CD44 and EpCAM monoclonal antibodies and isolated. Those cells were next co-cultured with macrophages for 5 days and used for further experiments. Canine Gene Expression Microarray revealed 29 different expressed transcripts in cancer stem-like cells co-cultured with macrophages compared to those in mono-culture. Up-regulation of C-C motif chemokine 2 was considered as the most interesting for further investigation. Additionally, those cells showed overexpression of genes involved in non-canonical Wnt pathway. The results of 3D tubule formation in endothelial cells induced by cancer stem-like cells co-cultured with macrophages compared to cancer stem-like cells from mono-cultures and with addition of Recombinant Canine CCL2/MCP-1 revealed the same stimulating effect. Based on those results we can conclude that macrophages have an impact on cancer stem-like cells increasing secretion of pro-angiogenic factors.

  13. Evaluation of prognostic markers for canine mast cell tumors treated with vinblastine and prednisone

    PubMed Central

    Webster, Joshua D; Yuzbasiyan-Gurkan, Vilma; Thamm, Douglas H; Hamilton, Elizabeth; Kiupel, Matti

    2008-01-01

    Background Canine cutaneous mast cell tumor (MCT) is a common neoplastic disease associated with a variable biologic behavior. Surgery remains the primary treatment for canine MCT; however, radiation therapy (RT) and chemotherapy are commonly used to treat aggressive MCT. The goals of this study were to evaluate the prognostic utility of histologic grade, c-KIT mutations, KIT staining patterns, and the proliferation markers Ki67 and AgNORs in dogs postoperatively treated with vinblastine and prednisone +/- RT, and to compare the outcome of dogs treated with post-operative chemotherapy +/- RT to that of a prognostically matched group treated with surgery alone. Associations between prognostic markers and survival were evaluated. Disease-free intervals (DFI) and overall survival times (OS) of dogs with similar pretreatment prognostic indices postoperatively treated with chemotherapy were compared to dogs treated with surgery alone. Results Histologic grade 3 MCTs, MCTs with c-KIT mutations, MCTs with increased cytoplasmic KIT, and MCTs with increased Ki67 and AgNOR values were associated with decreased DFI and OS. Dogs with histologic grade 3 MCT had significantly increased DFI and OS when treated with chemotherapy vs. surgery alone. Although not statistically significant due to small sample sizes, MCTs with c-KIT mutations had increased DFI and OS when treated with chemotherapy vs. surgery alone. Conclusion and clinical importance This study confirms the prognostic value of histologic grade, c-KIT mutations, KIT staining patterns, and proliferation analyses for canine MCT. Additionally, the results of this study further define the benefit of postoperative vinblastine and prednisone for histologic grade 3 MCTs. PMID:18700956

  14. Expression of claudin-5 in canine pancreatic acinar cell carcinoma - An immunohistochemical study.

    PubMed

    Jakab, Csaba; Rusvai, Miklós; Gálfi, Péter; Halász, Judit; Kulka, Janina

    2011-03-01

    Claudin-5 is an endothelium-specific tight junction protein. The aim of the present study was to detect the expression pattern of this molecule in intact pancreatic tissues and in well-differentiated and poorly differentiated pancreatic acinar cell carcinomas from dogs by the use of cross-reactive humanised anticlaudin-5 antibody. The necropsy samples taken from dogs included 10 nonneoplastic pancreatic tissues, 10 well-differentiated pancreatic acinar cell carcinomas, 10 poorly differentiated pancreatic acinar cell carcinomas, 5 intrahepatic metastases of well-differentiated and 5 intrahepatic metastases of poorly differentiated acinar cell carcinomas. A strong lateral membrane claudin-5 positivity was detected in exocrine cells in all intact pancreas samples. The endocrine cells of the islets of Langerhans and the epithelial cells of the ducts were negative for claudin-5. The endothelial cells of vessels and lymphatic channels in the stroma of the intact pancreas showed strong membrane positivity for this claudin. All well-differentiated exocrine pancreas carcinomas and all poorly-differentiated pancreatic acinar cell carcinoma samples showed a diffuse loss of claudin-5 expression. The claudin-5-positive peritumoural vessels and lymphatic channels facilitated the detection of vascular invasion of the claudin-5-negative cancer cells. In liver metastasis samples, the pancreatic carcinomas were negative for claudin-5. It seems that the loss of expression of claudin-5 may lead to carcinogenesis in canine exocrine pancreatic cells.

  15. Stem cells in the canine pituitary gland and in pituitary adenomas.

    PubMed

    van Rijn, Sarah J; Tryfonidou, Marianna A; Hanson, Jeanette M; Penning, Louis C; Meij, Björn P

    2013-12-01

    Cushing's disease (CD) or pituitary-dependent hypercortisolism is a common endocrinopathy in dogs, with an estimated prevalence of 1 or 2 in 1000 dogs per year. It is caused by an adrenocorticotropic hormone secreting adenoma in the pars distalis or pars intermedia of the pituitary gland. The pituitary gland is a small endocrine gland located in the pituitary fossa. In the postnatal individual, the hypothalamus-pituitary axis plays a central role in maintaining homeostatic functions, like control of metabolism, reproduction, and growth. Stem cells are suggested to play a role in the homeostatic adaptations of the adult pituitary gland, such as the rapid specific cell-type expansion in response to pregnancy or lactation. Several cell populations have been suggested as pituitary stem cells, such as Side Population cells and cells expressing Sox2 or Nestin. These cell populations are discussed in this review. Also, stem and progenitor cells are thought to play a role in pituitary tumorigenesis, such as the development of pituitary adenomas in dogs. There are limited reports on the role of stem cells in pituitary adenomas, especially in dogs. Further studies are needed to identify and characterize this cell population and to develop specific cell targeting therapeutic strategies as a new way of treating canine CD.

  16. Potential Use of Autologous Renal Cells from Diseased Kidneys for the Treatment of Renal Failure

    PubMed Central

    George, Sunil K.; Abolbashari, Mehran; Jackson, John D.; Aboushwareb, Tamer; Atala, Anthony; Yoo, James J.

    2016-01-01

    Chronic kidney disease (CKD) occurs when certain conditions cause the kidneys to gradually lose function. For patients with CKD, renal transplantation is the only treatment option that restores kidney function. In this study, we evaluated primary renal cells obtained from diseased kidneys to determine whether their normal phenotypic and functional characteristics are retained, and could be used for cell therapy. Primary renal cells isolated from both normal kidneys (NK) and diseased kidneys (CKD) showed similar phenotypic characteristics and growth kinetics. The expression levels of renal tubular cell markers, Aquaporin-1 and E-Cadherin, and podocyte-specific markers, WT-1 and Nephrin, were similar in both NK and CKD kidney derived cells. Using fluorescence- activated cell sorting (FACS), specific renal cell populations were identified and included proximal tubular cells (83.1% from NK and 80.3% from CKD kidneys); distal tubular cells (11.03% from NK and 10.9% from CKD kidneys); and podocytes (1.91% from NK and 1.78% from CKD kidneys). Ultra-structural analysis using scanning electron microscopy (SEM) revealed microvilli on the apical surface of cultured cells from NK and CKD samples. Moreover, transmission electron microscopy (TEM) analysis showed a similar organization of tight junctions, desmosomes, and other intracellular structures. The Na+ uptake characteristics of NK and CKD derived renal cells were also similar (24.4 mmol/L and 25 mmol/L, respectively) and no significant differences were observed in the protein uptake and transport characteristics of these two cell isolates. These results show that primary renal cells derived from diseased kidneys such as CKD have similar structural and functional characteristics to their counterparts from a normal healthy kidney (NK) when grown in vitro. This study suggests that cells derived from diseased kidney may be used as an autologous cell source for renal cell therapy, particularly in patients with CKD or end

  17. Potential Use of Autologous Renal Cells from Diseased Kidneys for the Treatment of Renal Failure.

    PubMed

    George, Sunil K; Abolbashari, Mehran; Jackson, John D; Aboushwareb, Tamer; Atala, Anthony; Yoo, James J

    2016-01-01

    Chronic kidney disease (CKD) occurs when certain conditions cause the kidneys to gradually lose function. For patients with CKD, renal transplantation is the only treatment option that restores kidney function. In this study, we evaluated primary renal cells obtained from diseased kidneys to determine whether their normal phenotypic and functional characteristics are retained, and could be used for cell therapy. Primary renal cells isolated from both normal kidneys (NK) and diseased kidneys (CKD) showed similar phenotypic characteristics and growth kinetics. The expression levels of renal tubular cell markers, Aquaporin-1 and E-Cadherin, and podocyte-specific markers, WT-1 and Nephrin, were similar in both NK and CKD kidney derived cells. Using fluorescence- activated cell sorting (FACS), specific renal cell populations were identified and included proximal tubular cells (83.1% from NK and 80.3% from CKD kidneys); distal tubular cells (11.03% from NK and 10.9% from CKD kidneys); and podocytes (1.91% from NK and 1.78% from CKD kidneys). Ultra-structural analysis using scanning electron microscopy (SEM) revealed microvilli on the apical surface of cultured cells from NK and CKD samples. Moreover, transmission electron microscopy (TEM) analysis showed a similar organization of tight junctions, desmosomes, and other intracellular structures. The Na+ uptake characteristics of NK and CKD derived renal cells were also similar (24.4 mmol/L and 25 mmol/L, respectively) and no significant differences were observed in the protein uptake and transport characteristics of these two cell isolates. These results show that primary renal cells derived from diseased kidneys such as CKD have similar structural and functional characteristics to their counterparts from a normal healthy kidney (NK) when grown in vitro. This study suggests that cells derived from diseased kidney may be used as an autologous cell source for renal cell therapy, particularly in patients with CKD or end

  18. Tumourigenic canine osteosarcoma cell lines associated with frizzled-6 up-regulation and enhanced side population cell frequency

    PubMed Central

    de Sá Rodrigues, L. C.; Holmes, K. E.; Thompson, V.; Newton, M. A.; Stein, T. J.

    2016-01-01

    An increased serum alkaline phosphatase concentration is known to be associated with a negative prognosis in canine and human osteosarcoma. To expand upon previous studies regarding the biological relevance of increased serum alkaline phosphatase as a negative prognostic factor, xenogeneic heterotopic transplants were performed using six canine primary osteosarcoma cell lines generated from patients with differing serum alkaline phosphatase concentrations (three normal and three increased). Three of the six cell lines were capable of generating tumours and tumour formation was independent of the serum alkaline phosphatase status of the cell line. Microarray analysis identified 379 genes as being differentially expressed between the tumourigenic and non-tumourigenic cell lines. Frizzled-6 was upregulated to the greatest extent (7.78-fold) in tumourigenic cell lines compared with non-tumourigenic cell lines. Frizzled-6, a co-receptor for Wnt ligands has been associated with enhanced tumour-initiating cells and poor prognosis for other tumours. The increased expression of frizzled-6 was confirmed by quantitative reverse transcription polymerase chain reaction (QPCR) and Western blot analysis. Additionally, the tumourigenic cell lines also had an increase in the percentage of side population cells compared with non-tumourigenic cell lines (5.89% versus 1.58%, respectively). There were no differences in tumourigenicity, frizzled-6 or percentage of side population cells noted between osteosarcoma cell lines generated from patients of differing serum alkaline phosphatase concentration. However, to our knowledge this is the first study to identified frizzled-6 as a possible marker of osteosarcoma cell populations with enhanced tumourigenicity and side population cells. Future work will focus on defining the role of frizzled-6 in osteosarcoma tumourigenesis and tumour-initiating cells. PMID:25689105

  19. Tumourigenic canine osteosarcoma cell lines associated with frizzled-6 up-regulation and enhanced side population cell frequency.

    PubMed

    de Sá Rodrigues, L C; Holmes, K E; Thompson, V; Newton, M A; Stein, T J

    2017-03-01

    An increased serum alkaline phosphatase concentration is known to be associated with a negative prognosis in canine and human osteosarcoma. To expand upon previous studies regarding the biological relevance of increased serum alkaline phosphatase as a negative prognostic factor, xenogeneic heterotopic transplants were performed using six canine primary osteosarcoma cell lines generated from patients with differing serum alkaline phosphatase concentrations (three normal and three increased). Three of the six cell lines were capable of generating tumours and tumour formation was independent of the serum alkaline phosphatase status of the cell line. Microarray analysis identified 379 genes as being differentially expressed between the tumourigenic and non-tumourigenic cell lines. Frizzled-6 was upregulated to the greatest extent (7.78-fold) in tumourigenic cell lines compared with non-tumourigenic cell lines. Frizzled-6, a co-receptor for Wnt ligands has been associated with enhanced tumour-initiating cells and poor prognosis for other tumours. The increased expression of frizzled-6 was confirmed by quantitative reverse transcription polymerase chain reaction (QPCR) and Western blot analysis. Additionally, the tumourigenic cell lines also had an increase in the percentage of side population cells compared with non-tumourigenic cell lines (5.89% versus 1.58%, respectively). There were no differences in tumourigenicity, frizzled-6 or percentage of side population cells noted between osteosarcoma cell lines generated from patients of differing serum alkaline phosphatase concentration. However, to our knowledge this is the first study to identified frizzled-6 as a possible marker of osteosarcoma cell populations with enhanced tumourigenicity and side population cells. Future work will focus on defining the role of frizzled-6 in osteosarcoma tumourigenesis and tumour-initiating cells.

  20. Humoral and cell-mediated immune responses in DNA immunized mink challenged with wild-type canine distemper virus.

    PubMed

    Nielsen, Line; Søgaard, Mette; Karlskov-Mortensen, Peter; Jensen, Trine Hammer; Jensen, Tove Dannemann; Aasted, Bent; Blixenkrone-Møller, Merete

    2009-07-30

    The aim of the study was to investigate the different phases of the immune response after DNA immunization with the hemagglutinin and nucleoprotein genes from canine distemper virus (CDV). Although attenuated live CDV vaccines have effectively reduced the incidence of disease, canine distemper is still a problem worldwide. The broad host range of CDV creates a constant viral reservoir among wildlife animals. Our results demonstrated early humoral and cell-mediated immune responses (IFN-gamma) in DNA vaccinated mink compared to mock-vaccinated mink after challenge with a Danish wild-type CDV. The DNA vaccine-induced immunity protected the natural host against disease development.

  1. Molecular and immunohistochemical studies do not support a role for papillomaviruses in canine oral squamous cell carcinoma development.

    PubMed

    Munday, John S; French, Adrienne; Harvey, Catherine J

    2015-05-01

    Oral squamous cell carcinomas (OSCCs) are common neoplasms of dogs and are of unknown cause. Whereas papillomaviruses (PVs) are an established cause of human OSCCs, few studies have investigated canine OSCCs for a PV aetiology. In humans, a PV aetiology can be determined by detecting PV DNA and PV-induced increased p16(CDKN2A) protein (p16) within the OSCC. In this study, PCR, using four different primer sets and p16 immunohistochemistry, was used to evaluate 28 canine OSCCs for a possible PV aetiology. None of the primers amplified PV DNA from any of the OSCCs although four neoplasms contained intense p16 immunostaining. Intense p16 immunostaining would indicate a PV aetiology in a human OSCC but the absence of PV DNA suggests that the increase in p16 was not due to PV infection. Overall the results indicated that PVs are not a significant cause of canine OSCCs.

  2. Characterization of protamine uptake by opossum kidney epithelial cells.

    PubMed

    Nagai, Junya; Komeda, Takuji; Katagiri, Yuki; Yumoto, Ryoko; Takano, Mikihisa

    2013-01-01

    Protamine, a mixture of polypeptides that is rich in arginine, has been used clinically as an antidote to heparin overdoses and a complexing agent in a long-acting insulin preparation. When protamine is administered intravenously, its abundant accumulation in the kidneys has been reported. However, the renal uptake mechanism for protamine is not clear. In this study, we examined the transport mechanism for protamine in opossum kidney (OK) cells, a suitable in vitro model for renal proximal tubular epithelial cells. Flow cytometric analysis revealed that the association of fluorescein isothiocyanate (FITC)-labeled protamine from salmon (FITC-protamine) by OK cells was inhibited by unlabeled protamine in a concentration-dependent manner. The association of FITC-protamine was temperature- and energy-dependent. Confocal microscopy analysis showed that the fluorescence was localized in the cytoplasm and nucleus of OK cells. In addition, FITC-protamine association was inhibited by cationic drugs such as polycationic gentamicin and polymixin B, but it was increased by a basic amino acid, arginine. Inhibitors for clathrin- and caveolin-dependent endocytosis showed inhibitory effects on FITC-protamine association. Pretreatment with heparinase III partially but significantly decreased the association of FITC-protamine. These results suggest that protamine may be taken up by OK cells via receptor-mediated endocytosis, which may result in its localization in the cytoplasm and nucleus of the cells.

  3. Apoptosis of rat kidney cells after 241-americium administration.

    PubMed

    Labéjof, L; Berry, J P; Duchambon, P; Poncy, J L; Galle, P

    1998-01-01

    Tumors induction by americium is well known but there are no data on the biological effects of this radionucleide at subcellular level. In order to study the possible ultrastructural lesions induced by this element, a group of rats were injected with 241-Americium-citrate (9 kBq), once a week for five weeks and sacrificed 7 days after the last injection. We describe the alterations observed in the cortex kidney using cytochemical (TUNEL reaction) and histochemical (PAS staining) methods for light microscopy as well as electron microscopy techniques. Various types of lesions were detected: condensation of nuclear chromatine, fragmentation of the nuclei, swollen mitochondria, disappearance of mitochondrial crests and skrinking of the cytoplasm. This study clearly demonstrated the induction of apoptosis by americium in rat cortex kidney cells.

  4. Canine distemper virus infects canine keratinocytes and immune cells by using overlapping and distinct regions located on one side of the attachment protein.

    PubMed

    Langedijk, Johannes P M; Janda, Jozef; Origgi, Francesco C; Örvell, Claes; Vandevelde, Marc; Zurbriggen, Andreas; Plattet, Philippe

    2011-11-01

    The morbilliviruses measles virus (MeV) and canine distemper virus (CDV) both rely on two surface glycoproteins, the attachment (H) and fusion proteins, to promote fusion activity for viral cell entry. Growing evidence suggests that morbilliviruses infect multiple cell types by binding to distinct host cell surface receptors. Currently, the only known in vivo receptor used by morbilliviruses is CD150/SLAM, a molecule expressed in certain immune cells. Here we investigated the usage of multiple receptors by the highly virulent and demyelinating CDV strain A75/17. We based our study on the assumption that CDV-H may interact with receptors similar to those for MeV, and we conducted systematic alanine-scanning mutagenesis on CDV-H throughout one side of the β-propeller documented in MeV-H to contain multiple receptor-binding sites. Functional and biochemical assays performed with SLAM-expressing cells and primary canine epithelial keratinocytes identified 11 residues mutation of which selectively abrogated fusion in keratinocytes. Among these, four were identical to amino acids identified in MeV-H as residues contacting a putative receptor expressed in polarized epithelial cells. Strikingly, when mapped on a CDV-H structural model, all residues clustered in or around a recessed groove located on one side of CDV-H. In contrast, reported CDV-H mutants with SLAM-dependent fusion deficiencies were characterized by additional impairments to the promotion of fusion in keratinocytes. Furthermore, upon transfer of residues that selectively impaired fusion induction in keratinocytes into the CDV-H of the vaccine strain, fusion remained largely unaltered. Taken together, our results suggest that a restricted region on one side of CDV-H contains distinct and overlapping sites that control functional interaction with multiple receptors.

  5. Canine Distemper Virus Infects Canine Keratinocytes and Immune Cells by Using Overlapping and Distinct Regions Located on One Side of the Attachment Protein▿

    PubMed Central

    Langedijk, Johannes P. M.; Janda, Jozef; Origgi, Francesco C.; Örvell, Claes; Vandevelde, Marc; Zurbriggen, Andreas; Plattet, Philippe

    2011-01-01

    The morbilliviruses measles virus (MeV) and canine distemper virus (CDV) both rely on two surface glycoproteins, the attachment (H) and fusion proteins, to promote fusion activity for viral cell entry. Growing evidence suggests that morbilliviruses infect multiple cell types by binding to distinct host cell surface receptors. Currently, the only known in vivo receptor used by morbilliviruses is CD150/SLAM, a molecule expressed in certain immune cells. Here we investigated the usage of multiple receptors by the highly virulent and demyelinating CDV strain A75/17. We based our study on the assumption that CDV-H may interact with receptors similar to those for MeV, and we conducted systematic alanine-scanning mutagenesis on CDV-H throughout one side of the β-propeller documented in MeV-H to contain multiple receptor-binding sites. Functional and biochemical assays performed with SLAM-expressing cells and primary canine epithelial keratinocytes identified 11 residues mutation of which selectively abrogated fusion in keratinocytes. Among these, four were identical to amino acids identified in MeV-H as residues contacting a putative receptor expressed in polarized epithelial cells. Strikingly, when mapped on a CDV-H structural model, all residues clustered in or around a recessed groove located on one side of CDV-H. In contrast, reported CDV-H mutants with SLAM-dependent fusion deficiencies were characterized by additional impairments to the promotion of fusion in keratinocytes. Furthermore, upon transfer of residues that selectively impaired fusion induction in keratinocytes into the CDV-H of the vaccine strain, fusion remained largely unaltered. Taken together, our results suggest that a restricted region on one side of CDV-H contains distinct and overlapping sites that control functional interaction with multiple receptors. PMID:21849439

  6. Characterization and Immunomodulatory Effects of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells

    PubMed Central

    Russell, Keith A.; Chow, Natalie H. C.; Dukoff, David; Gibson, Thomas W. G.; LaMarre, Jonathan; Betts, Dean H.; Koch, Thomas G.

    2016-01-01

    Background Mesenchymal stromal cells (MSC) hold promise for both cell replacement and immune modulation strategies owing to their progenitor and non-progenitor functions, respectively. Characterization of MSC from different sources is an important and necessary step before clinical use of these cells is widely adopted. Little is known about the biology and function of canine MSC compared to their mouse or human counterparts. This knowledge-gap impedes development of canine evidence-based MSC technologies. Hypothesis and Objectives We hypothesized that canine adipose tissue (AT) and bone marrow (BM) MSC (derived from the same dogs) will have similar differentiation and immune modulatory profiles. Our objectives were to evaluate progenitor and non-progenitor functions as well as other characteristics of AT- and BM-MSC including 1) proliferation rate, 2) cell surface marker expression, 3) DNA methylation levels, 4) potential for trilineage differentiation towards osteogenic, adipogenic, and chondrogenic cell fates, and 5) immunomodulatory potency in vitro. Results 1) AT-MSC proliferated at more than double the rate of BM-MSC (population doubling times in days) for passage (P) 2, AT: 1.69, BM: 3.81; P3, AT: 1.80, BM: 4.06; P4, AT: 2.37, BM: 5.34; P5, AT: 3.20, BM: 7.21). 2) Canine MSC, regardless of source, strongly expressed cell surface markers MHC I, CD29, CD44, and CD90, and were negative for MHC II and CD45. They also showed moderate expression of CD8 and CD73 and mild expression of CD14. Minor differences were found in expression of CD4 and CD34. 3) Global DNA methylation levels were significantly lower in BM-MSC compared to AT-MSC. 4) Little difference was found between AT- and BM-MSC in their potential for adipogenesis and osteogenesis. Chondrogenesis was poor to absent for both sources in spite of adding varying levels of bone-morphogenic protein to our standard transforming growth factor (TGF-β3)-based induction medium. 5) Immunomodulatory capacity was equal

  7. Canine distemper virus utilizes different receptors to infect chicken embryo fibroblasts and vero cells.

    PubMed

    Chen, Jun; Liang, Xiu; Chen, Pei-fu

    2011-04-01

    Inducing animal viruses to adapt to chicken embryos or chicken embryo fibroblasts (CEF) is a common method to develop attenuated live vaccines with full security. Canine distemper virus (CDV) also does this, but the mechanisms and particular receptors remain unclear. Virus overlay protein blot assays were carried out on CEF membrane proteins, which were extracted respectively with a Mem-PER™ kit, a radioimmunoprecipitation assay buffer or a modified co-immunoprecipitation method, and revealed a common 57 kDa positive band that differed from the 42-kDa positive band in Vero cells and also from those receptors reported in lymphocytes and 293 cells, indicating a receptor diversity of CDV and the possibility of the 57-kDa protein acting as a receptor that is involved in adaptive infection of CDV Kunming strain to CEF.

  8. PCNA and grade in 13 canine oral squamous cell carcinomas: association with prognosis.

    PubMed

    Mestrinho, L A; Faísca, P; Peleteiro, M C; Niza, M M R E

    2017-03-01

    This study evaluated the prognosis factors of age, tumour size, anatomic location, histological grade and proliferating cell nuclear antigen (PCNA) expression in 13 dogs with oral squamous cell carcinoma (OSCC) with bone invasion and without signs of lymph node or distant metastasis. All animals were treated with radical excision performed with at least 1 cm margin, based on computed tomography images. In the 2-year follow-up, median disease-free survival was 138 days for dogs with grade 3 tumours and was not reached for those with grade 2 tumours. Grade 3 tumours and PCNA labelling index ≥65% were related with a shorter disease-free survival time and consequently poor prognosis (p = 0.003 and p = 0.034, respectively). Mean PCNA labelling index was significantly higher in recurrent cases (p = 0.011). Histological grade and PCNA expression may be important prognosis factors in canine OSCC.

  9. A novel clonality assay for the assessment of canine T cell proliferations.

    PubMed

    Keller, Stefan M; Moore, Peter F

    2012-01-15

    Polymerase chain reaction (PCR) based clonality assays are an important tool to differentiate neoplastic from reactive lymphocyte populations. A recent description of the canine T cell receptor γ locus identified a large number of formerly unknown genes, and determined the locus topology consisting of 8 cassettes with up to 3 variable (V) genes, 2 joining (J) genes and one constant (C) gene each. Given that these data were not available when existing canine T cell clonality assays were developed, it is likely that they will fail to detect a subset of clonal lymphocyte populations. The objective of this study was to gauge the potential of canine T cell clonality assays to detect all rearranged T cell receptor γ genes and to develop an improved clonality assay. The primer sequences of existing clonality assays were aligned to the reference sequences of all rearranged genes and genes were scored as to the likelihood of being recognized by a primer. All four assays likely recognized subgroup Vγ2 and Vγ6 genes but 3 out of 4 assays were unlikely to detect subgroup Vγ3 and Vγ7 genes. All assays likely recognized Jγx-2 genes, but only two assays were likely to detect most Jγx-1 genes. Two assays had forward primers located as close as four nucleotides to the junctional region. A new multiplex PCR was designed with all primers combined in a single tube. An alternative primer set allowed identification of variable gene usage through gene specific forward primers. The coverage of all rearranged genes facilitated the detection of multiple clonal rearrangements per neoplastic sample. The new assay detected clonal DNA at a concentration of 5% within polyclonal background but detection thresholds were dependent on the gene usage of clonal rearrangements as well as the position of the clonal peak in respect to the polyclonal background. The new multiplex assay recognized 12/12 (100%) of confirmed neoplastic samples as compared to 2/12 (17%) by an existing assay. On a

  10. CD9, a tetraspan transmembrane protein, renders cells susceptible to canine distemper virus.

    PubMed Central

    Löffler, S; Lottspeich, F; Lanza, F; Azorsa, D O; ter Meulen, V; Schneider-Schaulies, J

    1997-01-01

    Canine distemper virus (CDV), a lymphotropic and neurotropic negative-stranded RNA virus of the Morbillivirus genus, causes a life-threatening disease in several carnivores, including domestic dogs. To identify the cellular receptor(s) involved in the uptake of CDV by susceptible cells, we isolated a monoclonal antibody (MAb K41) which binds to the cell surface and inhibits the CDV infection of several cell lines from various species. Pretreatment of cells with MAb K41 reduces the number of infectious centers and the size of the syncytia. Using affinity chromatography with MAb K41, we purified from HeLa and Vero cell extracts a 26-kDa protein which contained the amino acid sequence TKDEPQRETLK of human CD9, a member of the tetraspan transmembrane or transmembrane 4 superfamily of cell surface proteins. Transfection of NIH 3T3 or MDBK cells with a CD9 expression plasmid rendered these cells permissive for viral infection and raised virus production by a factor of 10 to 100. The mechanism involved is still unclear, since we were unable to detect direct binding of CDV to CD9 by using immunoprecipitation and a virus overlay protein binding assay. These findings indicate that human CD9 and its homologs in other species are necessary factors for the uptake of CDV by target cells, the formation of syncytia, and the production of progeny virus. PMID:8985321

  11. Concise review: Kidney stem/progenitor cells: differentiate, sort out, or reprogram?

    PubMed

    Pleniceanu, Oren; Harari-Steinberg, Orit; Dekel, Benjamin

    2010-09-01

    End-stage renal disease (ESRD) is defined as the inability of the kidneys to remove waste products and excess fluid from the blood. ESRD progresses from earlier stages of chronic kidney disease (CKD) and occurs when the glomerular filtration rate (GFR) is below 15 ml/minute/1.73 m(2). CKD and ESRD are dramatically rising due to increasing aging population, population demographics, and the growing rate of diabetes and hypertension. Identification of multipotential stem/progenitor populations in mammalian tissues is important for therapeutic applications and for understanding developmental processes and tissue homeostasis. Progenitor populations are ideal targets for gene therapy, cell transplantation, and tissue engineering. The demand for kidney progenitors is increasing due to severe shortage of donor organs. Because dialysis and transplantation are currently the only successful therapies for ESRD, cell therapy offers an alternative approach for kidney diseases. However, this approach may be relevant only in earlier stages of CKD, when kidney function and histology are still preserved, allowing for the integration of cells and/or for their paracrine effects, but not when small and fibrotic end-stage kidneys develop. Although blood- and bone marrow-derived stem cells hold a therapeutic promise, they are devoid of nephrogenic potential, emphasizing the need to seek kidney stem cells beyond known extrarenal sources. Moreover, controversies regarding the existence of a true adult kidney stem cell highlight the importance of studying cell-based therapies using pluripotent cells, progenitor cells from fetal kidney, or dedifferentiated/reprogrammed adult kidney cells.

  12. Molecular imaging of cyclooxygenase-2 in canine transitional cell carcinomas in vitro and in vivo.

    PubMed

    Cekanova, Maria; Uddin, Md Jashim; Bartges, Joseph W; Callens, Amanda; Legendre, Alfred M; Rathore, Kusum; Wright, Laura; Carter, Amanda; Marnett, Lawrence J

    2013-05-01

    The enzyme COX-2 is induced at high levels in tumors but not in surrounding normal tissues, which makes it an attractive target for molecular imaging of cancer. We evaluated the ability of novel optical imaging agent, fluorocoxib A to detect urinary bladder canine transitional cell carcinomas (K9TCC). Here, we show that fluorocoxib A uptake overlapped with COX-2 expression in primary K9TCC cells in vitro. Using subcutaneously implanted primary K9TCC in athymic mice, we show specific uptake of fluorocoxib A by COX-2-expressing K9TCC xenograft tumors in vivo. Fluorocoxib A uptake by COX-2-expressing xenograft tumors was blocked by 70% (P < 0.005) when pretreated with the COX-2 selective inhibitor, celecoxib (10 mg/kg), 4 hours before intravenous administration of fluorocoxib A (1 mg/kg). Fluorocoxib A was taken up by COX-2-expressing tumors but not by COX-2-negative human UMUC-3 xenograft tumors. UMUC-3 xenograft tumors with no expression of COX-2 showed no uptake of fluorocoxib A. In addition, fluorocoxib A uptake was evaluated in five dogs diagnosed with TCC. Fluorocoxib A specifically detected COX-2-expressing K9TCC during cystoscopy in vivo but was not detected in normal urothelium. Taken together, our findings show that fluorocoxib A selectively bound to COX-2-expressing primary K9TCC cells in vitro, COX-2-expressing K9TCC xenografts tumors in nude mice, and heterogeneous canine TCC during cystoscopy in vivo. Spontaneous cancers in companion animals offer a unique translational model for evaluation of novel imaging and therapeutic agents using primary cancer cells in vitro and in heterogeneous cancers in vivo.

  13. Gossypol inhibits human chorionic gonadotropin-stimulated testosterone production by cultured canine testicular interstitial cells.

    PubMed

    Mushtaq, M; Kulp, S; Chang, W; Lin, Y C

    1996-03-01

    Gossypol (GP) is a natural polyphenolic compound that possesses antifertility and antisteroidogenic activities in both males and females. The dog is highly sensitive to GP toxicity, yet GP's effect on canine testicular steroidogenesis has never been reported. Thus, the present study examines GP's effects on human chorionic gonadotropin (hCG)-induced testosterone (T) production by primary cultured canine testicular interstitial cells. After decapsulation and enzymatic dissociation of canine testes in Dulbecco's Modified Eagle Medium with Ham's Nutrient Mixture F-12 (1:1; DME/F-12) containing 0.1% collagenase, 0.1% BSA, and 10 micrograms/ml DNase 1 (37 degrees C, 20 min), interstitial cells were isolated by sedimentation and filtration (140 microns) and then cultured in supplemented DME/F-12 medium (5 micrograms/ml insulin, 5 micrograms/ml transferrin, 5 ng/ml sodium selenite; DME/F-12/S) containing 0.1% fetal bovine serum (FBS). FBS was used to enhance cell attachment during the first 24 hours of culture. After 24 hours, the medium was replaced with serum-free DME/F-12/S and the cells were cultured for an additional 24 hours. Thereafter, cells were treated with hCG (0.1 IU/ml) alone and in combination with GP (0.05, 0.5, 2.5 and 5.0 microM). Media were collected for T radioimmunoassay and cells for protein estimation after 8, 16 and 24 hours of treatment. Treatment with hCG significantly (p < 0.05) stimulated T production over that of controls at all treatment times examined. At 8, 16 and 24 hours, T secretion was elevated from 0.91 +/- 0.25, 1.32 +/- 0.42, and 1.41 +/- 0.40 pg/microgram protein to 2.36 +/- 0.50, 2.84 +/- 0.60, and 2.82 +/- 0.43 pg/microgram protein, respectively. At 0.5, 2.5 and 5.0 microM, GP significantly (p < 0.05) reduced hCG-induced T secretion at 16 and 24 hours of treatment to 1.79 +/- 0.50, 1.62 +/- 0.12, 1.34 +/- 0.16 (16 hr), and 1.53 +/- 0.38, 1.43 +/- 0.11, 1.42 +/- 0.32 (24 hr) pg/microgram protein, respectively. At 8 hours, T

  14. Isolation, purification, culture and characterisation of myoepithelial cells from normal and neoplastic canine mammary glands using a magnetic-activated cell sorting separation system.

    PubMed

    Sánchez-Céspedes, R; Maniscalco, L; Iussich, S; Martignani, E; Guil-Luna, S; De Maria, R; Martín de Las Mulas, J; Millán, Y

    2013-08-01

    Mammary gland tumours, the most common malignant neoplasm in bitches, often display myoepithelial (ME) cell proliferation. The aim of this study was to isolate, purify, culture and characterise ME cells from normal and neoplastic canine mammary glands. Monodispersed cells from three normal canine mammary glands and five canine mammary tumours were incubated with an anti-Thy1 antibody and isolated by magnetic-activated cell sorting (MACS). Cells isolated from two normal glands (cell lines CmME-N1 and CmME-N2) and four tumours (cell lines CmME-K1 from a complex carcinoma, CmME-K2 from a simple tubulopapillary carcinoma, and CmME-K3 and CmME-K4 from two carcinomas within benign tumours) were cultured in supplemented DMEM/F12 media for 40days. Cell purity was >90%. Tumour-derived ME cell lines exhibited heterogeneous morphology, growth patterns and immunocytochemical expression of cytokeratins, whereas cell lines from normal glands retained their morphology and levels of cytokeratin expression during culture. Cell lines from normal glands and carcinomas within benign tumours grew more slowly than those from simple and complex carcinomas. This methodology has the potential to be used for in vitro analysis of the role of ME cells in the growth and progression of canine mammary tumours.

  15. Larger late sodium conductance in M cells contributes to electrical heterogeneity in canine ventricle.

    PubMed

    Zygmunt, A C; Eddlestone, G T; Thomas, G P; Nesterenko, V V; Antzelevitch, C

    2001-08-01

    Action potentials and whole cell sodium current were recorded in canine epicardial, midmyocardial, and endocardial myocytes in normal sodium at 37 degrees C. Tetrodotoxin (TTX) reduced the action potential duration of midmyocardial cells to a greater degree than either epicardial or endocardial cells. Whole cell recordings in potassium-free and very-low-chloride solutions revealed a slowly decaying current that was completely inhibited by 5 microM TTX or replacement of external and internal sodium with the impermeant cation N-methyl-D-glucamine. Late sodium current density at 0 mV was 47% greater in midmyocardial cells and averaged -0.532 +/- 0.058 pA/pF in endocardial, -0.463 +/- 0.068 pA/pF in epicardial, and -0.785 +/- 0.070 pA/pF in midmyocardial cells. Neither the frequency dependence of late sodium current nor its recovery from inactivation exhibited transmural differences. After a 4.5-s pulse to -30 mV, late sodium current recovered with a single time constant of 140 ms. We conclude that a larger late sodium conductance in midmyocardial cells will favor longer action potentials in these cells. More importantly, drugs that slow inactivation of sodium channels will produce a nonuniform response across the ventricular wall that is proarrhythmic.

  16. Suppression of Canine Dendritic Cell Activation/Maturation and Inflammatory Cytokine Release by Mesenchymal Stem Cells Occurs Through Multiple Distinct Biochemical Pathways.

    PubMed

    Wheat, William H; Chow, Lyndah; Kurihara, Jade N; Regan, Daniel P; Coy, Jonathan W; Webb, Tracy L; Dow, Steven W

    2017-02-15

    Mesenchymal stem cells (MSC) represent a readily accessible source of cells with potent immune modulatory activity. MSC can suppress ongoing inflammatory responses by suppressing T cell function, while fewer studies have examined the impact of MSC on dendritic cell (DC) function. The dog spontaneous disease model represents an important animal model with which to evaluate the safety and effectiveness of cellular therapy with MSC. This study evaluated the effects of canine MSC on the activation and maturation of canine monocyte-derived DC, as well as mechanisms underlying these effects. Adipose-derived canine MSC were cocultured with canine DC, and the MSC effects on DC maturation and activation were assessed by flow cytometry, cytokine ELISA, and confocal microscopy. We found that canine MSC significantly suppressed lipopolysaccharide (LPS)-stimulated upregulation of DC activation markers such as major histocompatibility class II (MHCII), CD86, and CD40. Furthermore, pretreatment of MSC with interferon gamma (IFNγ) augmented this suppressive activity. IFNγ-activated MSC also significantly reduced LPS-elicited DC secretion of tumor necrosis factor alpha without reducing secretion of interleukin-10. The suppressive effect of IFNγ-treated MSC on LPS-induced DC activation was mediated by soluble factors secreted by both MSC and DC. Pathways of DC functional suppression included programmed death ligand-1 expression and secretion of nitrous oxide, prostaglandin E2, and adenosine by activated MSC. Coculture of DC with IFNγ-treated MSC maintained DC in an immature state and prolonged DC antigen uptake during LPS maturation stimulus. Taken together, canine MSC are capable of potently suppressing DC function in a potentially inflammatory microenvironment through several separate immunological pathways and confirm the potential for immune therapy with MSC in canine immune-mediated disease models.

  17. Raman spectroscopic study of a genetically altered kidney cell

    NASA Astrophysics Data System (ADS)

    Joshi, Joel; Garcia, Francisco; Centeno, Silvia P.; Joshi, N. V.

    2008-02-01

    A Raman spectroscopic investigation of a genetically altered Human Embryonic Kidney Cell (HEK293) along with a pathologically normal cell has been carried out by a conventional method. The genetic alteration was carried out with a standard protocol by using a Green Fluorescence Protein (GFP). Raman spectra show that there are dramatic differences between the spectrum obtained from a genetically altered cell and that obtained from a pathologically normal cell. The former shows three broad bands; meanwhile the latter shows several sharp peaks corresponding to the ring vibrational modes of Phen, GFP and DNA. The present analysis provides an indication that the force field near Phen located at 64, 65 and 66 was altered during the genetic transformation. The Raman spectrum could be a direct experimental evidence for substantial modifications triggered due to the expression of specific genes.

  18. Canine Dal Blood Type: A Red Cell Antigen Lacking in Some Dalmatians

    PubMed Central

    Blais, Marie-Claude; Berman, Lisa; Oakley, Donna A.; Giger, Urs

    2011-01-01

    Background Based upon alloantibodies produced after sensitizing dogs with transfused blood, more than a dozen blood group systems have been recognized thus far, and some have been classified as dog erythrocyte antigens (DEA). Hypothesis A new canine red cell antigen was suspected, based on the development of specific alloantibodies in a Dalmatian previously sensitized by blood transfusions. Animals Twenty-six Dalmatians (including 1 Dalmatian in need of blood compatibility studies); 55 canine blood donors. Methods Serologic tests, including blood typing, crossmatching, and direct Coombs’ test were performed by standard tube techniques and a novel gel column technology adapted from human blood banking. Results By day 40 after transfusion of an anemic Dalmatian, all major crossmatch tests to 55 non-Dalmatian dogs were incompatible. The 2 initial donors, who were compatible before transfusion, were also now incompatible, suggesting the development of an alloantibody to a common red cell antigen. No siblings were available, but 4 of 25 unrelated Dalmatians were crossmatch compatible, suggesting that they were missing the same red cell antigen. The patient was blood typed DEA 1.1, 3, 4, and 5 positive, but DEA 7 negative. Further blood typing and crossmatching results did not support an association to any of these known blood types. The alloantibodies produced were determined to be of the immunoglobulin G class. Conclusions and Clinical Importance Based upon the identification of an acquired alloantibody in a Dalmatian, a presumably new common blood type named Dal was identified. Dalmatians lacking the Dal antigen are likely at risk of delayed and acute hemolytic transfusion reactions. PMID:17427389

  19. Exenatide Treatment Alone Improves β-Cell Function in a Canine Model of Pre-Diabetes

    PubMed Central

    Mkrtchyan, Hasmik J.; Stefanovski, Darko; Kabir, Morvarid; Iyer, Malini S.; Liu, Huiwen; Castro, Ana V. B.; Wu, Qiang; Broussard, Josiane L.; Kolka, Cathryn M.; Asare-Bediako, Isaac; Bergman, Richard N.

    2016-01-01

    Background Exenatide’s effects on glucose metabolism have been studied extensively in diabetes but not in pre-diabetes. Objective We examined the chronic effects of exenatide alone on glucose metabolism in pre-diabetic canines. Design and Methods After 10 weeks of high-fat diet (HFD), adult dogs received one injection of streptozotocin (STZ, 18.5 mg/kg). After induction of pre-diabetes, while maintained on HFD, animals were randomized to receive either exenatide (n = 7) or placebo (n = 7) for 12 weeks. β-Cell function was calculated from the intravenous glucose tolerance test (IVGTT, expressed as the acute insulin response, AIRG), the oral glucose tolerance test (OGTT, insulinogenic index) and the graded-hyperglycemic clamp (clamp insulinogenic index). Whole-body insulin sensitivity was assessed by the IVGTT. At the end of the study, pancreatic islets were isolated to assess β-cell function in vitro. Results OGTT: STZ caused an increase in glycemia at 120 min by 22.0% (interquartile range, IQR, 31.5%) (P = 0.011). IVGTT: This protocol also showed a reduction in glucose tolerance by 48.8% (IQR, 36.9%) (P = 0.002). AIRG decreased by 54.0% (IQR, 40.7%) (P = 0.010), leading to mild fasting hyperglycemia (P = 0.039). Exenatide, compared with placebo, decreased body weight (P<0.001) without altering food intake, fasting glycemia, insulinemia, glycated hemoglobin A1c, or glucose tolerance. Exenatide, compared with placebo, increased both OGTT- (P = 0.040) and clamp-based insulinogenic indexes (P = 0.016), improved insulin secretion in vitro (P = 0.041), but had no noticeable effect on insulin sensitivity (P = 0.405). Conclusions In pre-diabetic canines, 12-week exenatide treatment improved β-cell function but not glucose tolerance or insulin sensitivity. These findings demonstrate partial beneficial metabolic effects of exenatide alone on an animal model of pre-diabetes. PMID:27398720

  20. Canine articular cartilage regeneration using mesenchymal stem cells seeded on platelet rich fibrin

    PubMed Central

    Shams Asenjan, K.; Dehdilani, N.; Parsa, H.

    2017-01-01

    Objectives Mesenchymal stem cells have the ability to differentiate into various cell types, and thus have emerged as promising alternatives to chondrocytes in cell-based cartilage repair methods. The aim of this experimental study was to investigate the effect of bone marrow derived mesenchymal stem cells combined with platelet rich fibrin on osteochondral defect repair and articular cartilage regeneration in a canine model. Methods Osteochondral defects were created on the medial femoral condyles of 12 adult male mixed breed dogs. They were either treated with stem cells seeded on platelet rich fibrin or left empty. Macroscopic and histological evaluation of the repair tissue was conducted after four, 16 and 24 weeks using the International Cartilage Repair Society macroscopic and the O’Driscoll histological grading systems. Results were reported as mean and standard deviation (sd) and compared at different time points between the two groups using the Mann-Whitney U test, with a value < 0.05 considered statistically significant. Results Higher cumulative macroscopic and histological scores were observed in stem cell treated defects throughout the study period with significant differences noted at four and 24 weeks (9.25, sd 0.5 vs 7.25, sd 0.95, and 10, sd 0.81 vs 7.5, sd 0.57; p < 0.05) and 16 weeks (16.5, sd 4.04 vs 11, sd 1.15; p < 0.05), respectively. Superior gross and histological characteristics were also observed in stem cell treated defects. Conclusion The use of autologous culture expanded bone marrow derived mesenchymal stem cells on platelet rich fibrin is a novel method for articular cartilage regeneration. It is postulated that platelet rich fibrin creates a suitable environment for proliferation and differentiation of stem cells by releasing endogenous growth factors resulting in creation of a hyaline-like reparative tissue. Cite this article: D. Kazemi, K. Shams Asenjan, N. Dehdilani, H. Parsa. Canine articular cartilage regeneration using

  1. Bupivacaine induces apoptosis through caspase-dependent and -independent pathways in canine mammary tumor cells.

    PubMed

    Chiu, Yi-Shu; Cheng, Yeong-Hsiang; Lin, Sui-Wen; Chang, Te-Sheng; Liou, Chian-Jiun; Lai, Yu-Shen

    2015-06-01

    Local anesthetics have been reported to induce apoptosis in various cell lines. In this study, we showed that bupivacaine also induced apoptosis in DTK-SME cells, a vimentin(+)/AE1(+)/CK7(+)/HSP27(+), tumorigenic, immortalized, canine mammary tumor cell line. Bupivacaine induced apoptosis in DTK-SME cells in a time- and concentration-dependent manner. Apoptosis-associated morphological changes, including cell shrinkage and rounding, chromatin condensation, and formation of apoptotic bodies, were observed in the bupivacaine-treated DTK-SME cells. Apoptosis was further confirmed with annexin V staining, TUNEL staining, and DNA laddering assays. At the molecular level, the activation of caspases-3, -8, and -9 corresponded well to the degree of DNA fragmentation triggered by bupivacaine. We also demonstrated that the pan-caspase inhibitor, z-VAD-fmk, only partially inhibited the apoptosis induced by bupivacaine. Moreover, treated cells increased expression of endonuclease G, a death effector that acts independently of caspases. Our data suggested that bupivacaine-induced apoptosis occurs through both caspase-dependent and caspase-independent apoptotic pathways.

  2. Feasibility Study of Canine Epidermal Neural Crest Stem Cell Transplantation in the Spinal Cords of Dogs

    PubMed Central

    McMahill, Barbara G.; Spriet, Mathieu; Sisó, Sílvia; Manzer, Michael D.; Mitchell, Gaela; McGee, Jeannine; Garcia, Tanya C.; Borjesson, Dori L.; Sieber-Blum, Maya; Nolta, Jan A.

    2015-01-01

    This pilot feasibility study aimed to determine the outcome of canine epidermal neural crest stem cell (cEPI-NCSC) grafts in the normal spinal cords of healthy bred-for-research dogs. This included developing novel protocols for (a) the ex vivo expansion of cEPI-NCSCs, (b) the delivery of cEPI-NCSCs into the spinal cord, and (c) the labeling of the cells and subsequent tracing of the graft in the live animal by magnetic resonance imaging. A total of four million cEPI-NCSCs were injected into the spinal cord divided in two locations. Differences in locomotion at baseline and post-treatment were evaluated by gait analysis and compared with neurological outcome and behavioral exams. Histopathological analyses of the spinal cords and cEPI-NCSC grafts were performed at 3 weeks post-transplantation. Neurological and gait parameters were minimally affected by the stem cell injection. cEPI-NCSCs survived in the canine spinal cord for the entire period of investigation and did not migrate or proliferate. Subsets of cEPI-NCSCs expressed the neural crest stem cell marker Sox10. There was no detectable expression of markers for glial cells or neurons. The tissue reaction to the cell graft was predominantly vascular in addition to a degree of reactive astrogliosis and microglial activation. In the present study, we demonstrated that cEPI-NCSC grafts survive in the spinal cords of healthy dogs without major adverse effects. They persist locally in the normal spinal cord, may promote angiogenesis and tissue remodeling, and elicit a tissue response that may be beneficial in patients with spinal cord injury. Significance It has been established that mouse and human epidermal neural crest stem cells are somatic multipotent stem cells with proved innovative potential in a mouse model of spinal cord injury (SCI) offering promise of a valid treatment for SCI. Traumatic SCI is a common neurological problem in dogs with marked similarities, clinically and pathologically, to the syndrome

  3. Different effects of endothelin-1 on calcium and potassium currents in canine ventricular cells.

    PubMed

    Bányász, T; Magyar, J; Körtvély, A; Szigeti, G; Szigligeti, P; Papp, Z; Mohácsi, A; Kovács, L; Nánási, P P

    2001-04-01

    Effects of endothelin-1 (ET-1) on the L-type calcium current (ICa) and delayed rectifier potassium current (IK) were studied in isolated canine ventricular cardiomyocytes using the whole-cell configuration of the patch-clamp technique. ET-1 (8 nM) was applied in three experimental arrangements: untreated cells, in the presence of 50 nM isoproterenol, and in the presence of 250 microM 8-bromo-cAMP. In untreated cells, ET-1 significantly decreased the peak amplitude of ICa by 32.3+/-4.8% at +5 mV (P<0.05) without changing activation or inactivation characteristics of ICa. ET-1 had no effect on the amplitude of IK, Ito (transient outward current) or IK1 (inward rectifier K current) in untreated cells; however, the time course of recovery from inactivation of Ito was significantly increased by ET-1 (from 26.5+/-4.6 ms to 59.5+/- 1.8 ms, P < 0.05). Amplitude and time course of intracellular calcium transients, recorded in voltage-clamped cells previously loaded with the fluorescent calcium indicator dye Fura-2, were not affected by ET-1. ET-1 had no effect on force of contraction in canine ventricular trabeculae. Isoproterenol increased the amplitude of ICa to 263+/-29% of control. ET-1 reduced ICa also in isoproterenol-treated cells by 17.8+/-2% (P<0.05); this inhibition was significantly less than obtained in untreated cells. IK was increased by isoproterenol to 213+/-18% of control. This effect of isoproterenol on IK was reduced by 31.8+/-4.8% if the cells were pretreated with ET-1. Similarly, in isoproterenol-treated cells ET-1 decreased IK by 16.2+/-1.5% (P<0.05). Maximal activation of protein kinase A (PKA) was achieved by application of 8-bromo-cAMP in the pipette solution. In the presence of 8-bromo-cAMP ET-1 failed to alter ICa or IK It was concluded that differences in effects of ET-1 on ICa and IK may be related to differences in cAMP sensitivity of the currents.

  4. Clinical outcome of partial cystectomy for transitional cell carcinoma of the canine bladder.

    PubMed

    Marvel, S J; Séguin, B; Dailey, D D; Thamm, D H

    2017-02-20

    Canine transitional cell carcinoma (TCC) of the bladder has historically been treated with a combination of chemotherapy, cyclooxygenase inhibitors and radiation therapy. While surgery has been used to treat TCC of the bladder, its efficacy has yet to be established. Thirty-seven client owned dogs that underwent partial cystectomy +/- various nonsurgical treatments for TCC were retrospectively evaluated. The overall median progression-free interval (PFI) was 235 days and the median survival time (ST) was 348 days. Prognostic factors identified on univariate analysis significant for ST were age, tumor location, full thickness excision and frequency of piroxicam administration. Prognostic factors significant for PFI were full thickness excision and frequency of piroxicam administration. The median ST with partial cystectomy and daily piroxicam therapy, with or without chemotherapy, was 772 days. Dogs with non-trigonal bladder TCC treated with full thickness partial cystectomy and daily piroxicam (+/- chemotherapy) may have improved outcome compared to dogs treated with medical therapy.

  5. Display of neutralizing epitopes of Canine parvovirus and a T-cell epitope of the fusion protein of Canine distemper virus on chimeric tymovirus-like particles and its use as a vaccine candidate both against Canine parvo and Canine distemper.

    PubMed

    Chandran, Dev; Shahana, Pallichera Vijayan; Rani, Gudavelli Sudha; Sugumar, Parthasarthy; Shankar, Chinchkar Ramchandra; Srinivasan, Villuppanoor Alwar

    2009-12-10

    Expression of Physalis mottle tymovirus coat protein in Escherichia coli was earlier shown to self-assemble into empty capsids that were nearly identical to the capsids formed in vivo. Amino acid substitutions were made at the N-terminus of wild-type Physalis mottle virus coat protein with neutralizing epitopes of Canine parvovirus containing the antigenic sites 1-2, 4 and 6-7 and T-cell epitope of the fusion protein of Canine distemper virus in various combinations to yield PhMV1, PhMV2, PhMV3, PhMV4 and PhMV5. These constructs were cloned and expressed in E. coli. The chimeric proteins self-assembled into chimeric tymovirus-like particles (TVLPs) as determined by electron microscopy. The TVLPs were purified by ultracentrifugation and injected into guinea pigs and dogs to determine their immunogenicity. Initial immunogenicity studies in guinea pigs indicated that PhMV3 gave a higher response in comparison to the other TVLPs for both CPV and CDV and hence all further experiments in dogs were done with PhMV3. HI was done against different isolates obtained from various parts of the country. Protective titres indicated the broad spectrum of the vaccine. In conclusion the study indicated that the above chimeric VLP based vaccine could be used in dogs to generate a protective immune response against diseases caused by both Canine parvo and Canine distemper virus.

  6. Stability of canine distemper virus (CDV) after 20 passages in Vero-DST cells expressing the receptor protein for CDV.

    PubMed

    Lan, N T; Yamaguchi, R; Kawabata, A; Uchida, K; Kai, K; Sugano, S; Tateyama, S

    2006-12-20

    Isolates 007Lm, S124C and Ac96I and a Vero cell-adapted Onderstepoort strain of canine distemper viruses (CDV) were examined for stability after passages in Vero cells expressing the canine signaling lymphocyte activation molecule (dogSLAM, the intrinsic receptor to CDV). These viruses passage once in Vero cells expressing dogSLAM (Vero-DST) cells (original) and after 20 passages (20p) were compared by using sequence analyses and growth characteristics. All four strains of 20p grew well and were slightly better than their originals. The 20p viruses developed a cytopathic effect slightly lower than the original strains. A few changes in amino acids in the H gene were between the 20p and the original viruses, but the sites of changes were not specific. Fragments of P, M and L genes of all strains showed no nucleotide changes after the passages. These results showed that: (1) passages of CDVs in Vero-DST cells induced amino acid changes only in the H gene, not in the P, M and L genes, unlike in a previous study with Vero cells; (2) passages did not markedly affect the growth characteristics of every viral strain. These results indicate that Vero cells expressing canine SLAM allow the isolation and passaging of CDV without major changes in viral genes.

  7. The diverging roles of dendritic cells in kidney allotransplantation.

    PubMed

    Podestà, Manuel Alfredo; Cucchiari, David; Ponticelli, Claudio

    2015-07-01

    Dendritic cells (DCs) are a family of antigen presenting cells that play a paramount role in bridging innate and adaptive immunity. In murine models several subtypes of DCs have been identified, including classical DCs, monocyte-derived DCs, and plasmacytoid DCs. Quiescent, immature DCs and some subtypes of plasmacytoid cells favor the expression of regulatory T cells, but in an inflammatory milieu DCs become mature and after intercepting the antigen migrate to lymphatic system where they present the antigen to naïve T cells. Transplant rejection largely depends on the phenotype and maturation of DCs. The ischemia-reperfusion injury causes the release of endogenous molecules that are recognized as danger signals by the pattern recognition receptor of the innate immunity with subsequent activation of inflammatory cells and mediators. In this environment DCs become mature and migrate to lymphonodes where they present the alloantigen to T cells and direct their differentiation towards Th1 and Th17 effector cells. On the other hand, manipulation of DCs may favor T cell differentiation towards tolerant Th2 and T regulators (Treg). Experimental studies in murine models showed the possibility of inducing an operational tolerance by injecting immature tolerogenic DCs. Recently, such a possibility has been also confirmed in primates. Although manipulation of DCs may represent an important step ahead in kidney transplantation, a number of technical and ethical issues should be solved before its clinical application.

  8. Characterization of the Canine MHC Class I DLA-88*50101 Peptide Binding Motif as a Prerequisite for Canine T Cell Immunotherapy

    PubMed Central

    Barth, Sharon M.; Schreitmüller, Christian M.; Proehl, Franziska; Oehl, Kathrin; Lumpp, Leonie M.; Kowalewski, Daniel J.; Di Marco, Moreno; Sturm, Theo; Backert, Linus; Schuster, Heiko; Stevanović, Stefan; Rammensee, Hans-Georg; Planz, Oliver

    2016-01-01

    There are limitations in pre-clinical settings using mice as a basis for clinical development in humans. In cancer, similarities exist between humans and dogs; thus, the dog patient can be a link in the transition from laboratory research on mouse models to clinical trials in humans. Knowledge of the peptides presented on MHC molecules is fundamental for the development of highly specific T cell-based immunotherapies. This information is available for human MHC molecules but is absent for the canine MHC. In the present study, we characterized the binding motif of dog leukocyte antigen (DLA) class I allele DLA-88*50101, using human C1R and K562 transfected cells expressing the DLA-88*50101 heavy chain. MHC class I immunoaffinity-purification revealed 3720 DLA-88*50101 derived peptides, which enabled the determination of major anchor positions. The characterized binding motif of DLA-88*50101 was similar to HLA-A*02:01. Peptide binding analyses on HLA-A*02:01 and DLA-88*50101 via flow cytometry showed weak binding of DLA-88*50101 derived peptides to HLA-A*02:01, and vice versa. Our results present for the first time a detailed peptide binding motif of the canine MHC class I allelic product DLA-88*50101. These data support the goal of establishing dogs as a suitable animal model for the evaluation and development of T cell-based cancer immunotherapies, benefiting both dog and human patients. PMID:27893789

  9. Establishment and characterization of a new cell line of canine inflammatory mammary cancer: IPC-366.

    PubMed

    Caceres, Sara; Peña, Laura; de Andres, Paloma J; Illera, Maria J; Lopez, Mirtha S; Woodward, Wendy A; Reuben, James M; Illera, Juan C

    2015-01-01

    Canine inflammatory mammary cancer (IMC) shares epidemiologic, histopathological and clinical characteristics with the disease in humans and has been proposed as a natural model for human inflammatory breast cancer (IBC). The aim of this study was to characterize a new cell line from IMC (IPC-366) for the comparative study of both IMC and IBC. Tumors cells from a female dog with clinical IMC were collected. The cells were grown under adherent conditions. The growth, cytological, ultrastructural and immunohistochemical (IHC) characteristics of IPC-366 were evaluated. Ten female Balb/SCID mice were inoculated with IPC-366 cells to assess their tumorigenicity and metastatic potential. Chromosome aberration test and Karyotype revealed the presence of structural aberration, numerical and neutral rearrangements, demonstrating a chromosomal instability. Microscopic examination of tumor revealed an epithelial morphology with marked anysocytosis. Cytological and histological examination of smears and ultrathin sections by electron microscopy revealed that IPC-366 is formed by highly malignant large round or polygonal cells characterized by marked atypia and prominent nucleoli and frequent multinucleated cells. Some cells had cytoplasmic empty spaces covered by cytoplasmic membrane resembling capillary endothelial cells, a phenomenon that has been related to s vasculogenic mimicry. IHC characterization of IPC-366 was basal-like: epithelial cells (AE1/AE3+, CK14+, vimentin+, actin-, p63-, ER-, PR-, HER-2, E-cadherin, overexpressed COX-2 and high Ki-67 proliferation index (87.15 %). At 2 weeks after inoculating the IPC-366 cells, a tumor mass was found in 100 % of mice. At 4 weeks metastases in lung and lymph nodes were found. Xenograph tumors maintained the original IHC characteristics of the female dog tumor. In summary, the cell line IPC-366 is a fast growing malignant triple negative cell line model of inflammatory mammary carcinoma that can be used for the comparative

  10. Establishment and Characterization of a New Cell Line of Canine Inflammatory Mammary Cancer: IPC-366

    PubMed Central

    Caceres, Sara; Peña, Laura; de Andres, Paloma J.; Illera, Maria J.; Lopez, Mirtha S.; Woodward, Wendy A.; Reuben, James M.; Illera, Juan C.

    2015-01-01

    Canine inflammatory mammary cancer (IMC) shares epidemiologic, histopathological and clinical characteristics with the disease in humans and has been proposed as a natural model for human inflammatory breast cancer (IBC). The aim of this study was to characterize a new cell line from IMC (IPC-366) for the comparative study of both IMC and IBC. Tumors cells from a female dog with clinical IMC were collected. The cells were grown under adherent conditions. The growth, cytological, ultrastructural and immunohistochemical (IHC) characteristics of IPC-366 were evaluated. Ten female Balb/SCID mice were inoculated with IPC-366 cells to assess their tumorigenicity and metastatic potential. Chromosome aberration test and Karyotype revealed the presence of structural aberration, numerical and neutral rearrangements, demonstrating a chromosomal instability. Microscopic examination of tumor revealed an epithelial morphology with marked anysocytosis. Cytological and histological examination of smears and ultrathin sections by electron microscopy revealed that IPC-366 is formed by highly malignant large round or polygonal cells characterized by marked atypia and prominent nucleoli and frequent multinucleated cells. Some cells had cytoplasmic empty spaces covered by cytoplasmic membrane resembling capillary endothelial cells, a phenomenon that has been related to s vasculogenic mimicry. IHC characterization of IPC-366 was basal-like: epithelial cells (AE1/AE3+, CK14+, vimentin+, actin-, p63-, ER-, PR-, HER-2, E-cadherin, overexpressed COX-2 and high Ki-67 proliferation index (87.15 %). At 2 weeks after inoculating the IPC-366 cells, a tumor mass was found in 100 % of mice. At 4 weeks metastases in lung and lymph nodes were found. Xenograph tumors maintained the original IHC characteristics of the female dog tumor. In summary, the cell line IPC-366 is a fast growing malignant triple negative cell line model of inflammatory mammary carcinoma that can be used for the comparative

  11. Characterization of ionic currents of circular smooth muscle cells of the canine pyloric sphincter.

    PubMed

    Vogalis, F; Sanders, K M

    1991-05-01

    1. The ionic currents of circular muscle cells from canine pyloric sphincter were characterized using the whole-cell patch clamp technique. 2. Subpopulations of circular muscle cells from the myenteric and submucosal halves of the circular layer were isolated and studied separately to determine whether differences in the currents expressed by these cells could explain differences in electrical behaviour observed in situ. 3. Resting potentials of isolated cells were about 20 mV positive to cells in intact muscles. Polarization under current clamp to the level of tissue resting potentials caused spontaneous discharge of action potentials in many cells. 4. Outward current measured under voltage clamp could be divided into a voltage-dependent component and a voltage- and Ca(2+)-dependent component. The latter was affected by manipulations of external [Ca2+], nifedipine and dialysis of cells with EGTA. 5. A few cells exhibited a channel that was activated with hyperpolarization. These channels produced inward current at potentials positive to the potassium reversal potential, EK, and reversed at -13 mV. 6. Inward currents, recorded from Cs(+)-loaded cells, were characterized by a transient phase and a sustained phase that persisted throughout the test depolarization. The inward current was reduced by nifedipine but in some cells a nifedipine-resistant component was observed. 7. There were no fundamental differences in the ionic currents recorded from circular muscle cells from the myenteric and submucosal regions, suggesting that the electrical activity of the tissue must be dependent upon structural characteristics (i.e. electrical coupling, fibre bundle dimensions, etc.) of the tissue. 8. The ionic conductance characterized can be related to many of the excitable events recorded from pyloric muscles.

  12. α2C-Adrenoceptors modulate L-DOPA uptake in opossum kidney cells and in the mouse kidney.

    PubMed

    Moura, Eduardo; Silva, Elisabete; Serrão, Maria Paula; Afonso, Joana; Kozmus, Carina Esteves Pinto; Vieira-Coelho, Maria Augusta

    2012-10-01

    Targeted deletion or selective pharmacological inhibition of α(2C)-adrenoceptors in mice results in increased brain tissue levels of dopamine and its precursor l-3,4-dihydroxyphenylalanine (l-DOPA), without significant changes in l-DOPA synthesis. l-DOPA uptake is considered the rate-limiting step in dopamine synthesis in the kidney. Since α(2C)-adrenoceptors may influence the transport of l-DOPA, we investigated the effect of α(2C)-adrenoceptor activation on l-DOPA uptake in a kidney cell line (opossum kidney cells). l-DOPA and dopamine kidney tissue levels in α(2C)-adrenoceptor knockout (α(2C)KO) mice and in mice treated with the selective α(2C)-adrenoceptor antagonist JP-1302 were also evaluated. The α(2)-adrenoceptor agonist medetomidine (0.1-1,000 nM) produced a concentration-dependent decrease in l-DOPA uptake in opossum kidney cells (IC(50): 2.5 ± 0.5 nM and maximal effect: 28 ± 5% of inhibition). This effect was abolished by a preincubation with JP-1302 (300 nM). Furthermore, the effect of medetomidine (100 nM) was abolished by a preincubation with U-0126 (10 μM), a MEK1/2 inhibitor. Kidney tissue levels of l-DOPA were significantly higher in α(2C)KO mice compared with wild-type mice (wild-type mice: 58 ± 2 pmol/g tissue and α(2C)KO mice: 81 ± 15 pmol/g tissue, P < 0.05) and in mice treated with JP-1302 (3 μmol/kg body wt) compared with control mice (control mice: 62 ± 2 pmol/g tissue and JP-1302-treated mice: 75 ± 1 pmol/g tissue, P < 0.05), both without significant changes in dopamine kidney tissue levels. However, mice treated with JP-1302 on a high-salt diet presented significantly higher dopamine levels in the kidney and urine compared with control animals on a high-salt diet. In conclusion, in a kidney cell line, α(2C)-adrenoceptor activation inhibits l-DOPA uptake, and in mice, deletion or blockade of α(2C)-adrenoceptors increases l-DOPA kidney tissue levels.

  13. Remodeling of the tight junction during recovery from exposure to hydrogen peroxide in kidney epithelial cells

    PubMed Central

    Gonzalez, Jeannette E.; DiGeronimo, Robert J.; Arthur, D’Ann E.; King, Jonathan M.

    2009-01-01

    Renal ischemia-reperfusion injury results in oxidative stress-induced alterations in barrier function. Activation of the mitogen-activated protein (MAP) kinase pathway during recovery from oxidative stress may be an effector of oxidant-induced tight junction reorganization. We hypothesized that tight junction composition and barrier function would be perturbed during recovery from oxidative stress. We developed a model of short-term H2O2 exposure followed by recovery using Madin Darby Canine Kidney cells (MDCK II). H2O2 perturbs barrier function without a significant cytotoxic effect except in significant doses. ERK-1/2 and p38, both enzymes of the MAP kinase pathway, were activated within minutes of exposure to H2O2. Transient exposure to H2O2 produced a biphasic response in transepithelial electrical resistance (TER). An initial drop in TER at 6 hours was followed by a significant increase at 24 hours. Inhibition of ERK-1/2 activation attenuated the increase in TER observed at 24 hours. Expression of occludin initially decreased followed by partial recovery at 24 hours. In contrast, claudin-1 levels decreased and failed to recover at 24 hours. Claudin-2 levels markedly decreased at 24 hours; however, inhibition of ERK-1/2 activation was protective. Occludin and claudin-1 localization at the apical membrane on immunofluorescent images was fragmented at 6 hours after H2O2 exposure with subsequent recovery of appropriate localization by 24 hours. MDCK II cell recovery after H2O2 exposure is associated with functional and structural modification of the tight junction that are mediated in part by activation of the MAP kinase enzymes, ERK-1/2 and p38. PMID:19733232

  14. Cell-Free DNA and Active Rejection in Kidney Allografts.

    PubMed

    Bloom, Roy D; Bromberg, Jonathan S; Poggio, Emilio D; Bunnapradist, Suphamai; Langone, Anthony J; Sood, Puneet; Matas, Arthur J; Mehta, Shikha; Mannon, Roslyn B; Sharfuddin, Asif; Fischbach, Bernard; Narayanan, Mohanram; Jordan, Stanley C; Cohen, David; Weir, Matthew R; Hiller, David; Prasad, Preethi; Woodward, Robert N; Grskovic, Marica; Sninsky, John J; Yee, James P; Brennan, Daniel C

    2017-03-09

    Histologic analysis of the allograft biopsy specimen is the standard method used to differentiate rejection from other injury in kidney transplants. Donor-derived cell-free DNA (dd-cfDNA) is a noninvasive test of allograft injury that may enable more frequent, quantitative, and safer assessment of allograft rejection and injury status. To investigate this possibility, we prospectively collected blood specimens at scheduled intervals and at the time of clinically indicated biopsies. In 102 kidney recipients, we measured plasma levels of dd-cfDNA and correlated the levels with allograft rejection status ascertained by histology in 107 biopsy specimens. The dd-cfDNA level discriminated between biopsy specimens showing any rejection (T cell-mediated rejection or antibody-mediated rejection [ABMR]) and controls (no rejection histologically), P<0.001 (receiver operating characteristic area under the curve [AUC], 0.74; 95% confidence interval [95% CI], 0.61 to 0.86). Positive and negative predictive values for active rejection at a cutoff of 1.0% dd-cfDNA were 61% and 84%, respectively. The AUC for discriminating ABMR from samples without ABMR was 0.87 (95% CI, 0.75 to 0.97). Positive and negative predictive values for ABMR at a cutoff of 1.0% dd-cfDNA were 44% and 96%, respectively. Median dd-cfDNA was 2.9% (ABMR), 1.2% (T cell-mediated types ≥IB), 0.2% (T cell-mediated type IA), and 0.3% in controls (P=0.05 for T cell-mediated rejection types ≥IB versus controls). Thus, dd-cfDNA may be used to assess allograft rejection and injury; dd-cfDNA levels <1% reflect the absence of active rejection (T cell-mediated type ≥IB or ABMR) and levels >1% indicate a probability of active rejection.

  15. Tumour necrosis factor-alpha-induced protein 8 (TNFAIP8) expression associated with cell survival and death in cancer cell lines infected with canine distemper virus.

    PubMed

    Garcia, J A; Ferreira, H L; Vieira, F V; Gameiro, R; Andrade, A L; Eugênio, F R; Flores, E F; Cardoso, T C

    2015-09-16

    Oncolytic virotherapy is a novel strategy for treatment of cancer in humans and companion animals as well. Canine distemper virus (CDV), a paramyxovirus, has proven to be oncolytic through induction of apoptosis in canine-derived tumour cells, yet the mechanism behind this inhibitory action is poorly understood. In this study, three human mammary tumour cell lines and one canine-derived adenofibrosarcoma cell line were tested regarding to their susceptibility to CDV infection, cell proliferation, apoptosis, mitochondrial membrane potential and expression of tumour necrosis factor-alpha-induced protein 8 (TNFAIP8). CDV replication-induced cytopathic effect, decrease of cell proliferation rates, and >45% of infected cells were considered death and/or under late apoptosis/necrosis. TNFAIP8 and CDVM gene expression were positively correlated in all cell lines. In addition, mitochondrial membrane depolarization was associated with increase in virus titres (p < 0.005). Thus, these results strongly suggest that both human and canine mammary tumour cells are potential candidates for studies concerning CDV-induced cancer therapy.

  16. Canine distemper virus infection of primary hippocampal cells induces increase in extracellular glutamate and neurodegeneration.

    PubMed

    Brunner, Jean-Marc; Plattet, Philippe; Majcherczyk, Paul; Zurbriggen, Andreas; Wittek, Riccardo; Hirling, Harald

    2007-11-01

    The canine distemper virus (CDV) belongs to the Morbillivirus genus which includes important human pathogens like the closely related measles virus. CDV infection can reach the nervous system where it causes serious malfunctions. Although this pathology is well described, the molecular events in brain infection are still poorly understood. Here we studied infection in vitro by CDV using a model of dissociated cell cultures from newborn rat hippocampus. We used a recombinant CDV closely related to the neurovirulent A75/17 which also expresses the enhanced green fluorescent protein. We found that infected neurons and astrocytes could be clearly detected, and that infection spreads only slowly to neighboring cells. Interestingly, this infection causes a massive cell death of neurons, which includes also non-infected neurons. Antagonists of NMDA-type or alpha-amino-3-hydroxy-5-methylisoxazole-4-propinate (AMPA)-type glutamate receptors could slow down this neuron loss, indicating an involvement of the glutamatergic system in the induction of cell death in infected and non-infected cells. Finally, we show that, following CDV infection, there is a steady increase in extracellular glutamate in infected cultures. These results indicate that CDV infection induces excitotoxic insults on neurons via glutamatergic signaling.

  17. The V protein of canine distemper virus is required for virus replication in human epithelial cells.

    PubMed

    Otsuki, Noriyuki; Nakatsu, Yuichiro; Kubota, Toru; Sekizuka, Tsuyoshi; Seki, Fumio; Sakai, Kouji; Kuroda, Makoto; Yamaguchi, Ryoji; Takeda, Makoto

    2013-01-01

    Canine distemper virus (CDV) becomes able to use human receptors through a single amino acid substitution in the H protein. In addition, CDV strains possessing an intact C protein replicate well in human epithelial H358 cells. The present study showed that CDV strain 007Lm, which was isolated from lymph node tissue of a dog with distemper, failed to replicate in H358 cells, although it possessed an intact C protein. Sequence analyses suggested that a cysteine-to-tyrosine substitution at position 267 of the V protein caused this growth defect. Analyses using H358 cells constitutively expressing the CDV V protein showed that the V protein with a cysteine, but not that with a tyrosine, at this position effectively blocked the interferon-stimulated signal transduction pathway, and supported virus replication of 007Lm in H358 cells. Thus, the V protein as well as the C protein appears to be functional and essential for CDV replication in human epithelial cells.

  18. Carbamoylcholine and gastrin induce inositol lipid turnover in canine gastric parietal cells

    SciTech Connect

    Chiba, T.; Fisher, S.K.; Park, J.; Seguin, E.B.; Agranoff, B.W.; Yamada, Tadataka )

    1988-07-01

    The potential role of inositol phospholipid turnover in mediating acid secretion was examined in a preparation enriched for isolated canine gastric parietal cells. The stimulatory effects of carbamoylcholine (carbachol) and gastrin on parietal cell uptake of ({sup 14}C)aminopyrine were linked to dose- and time-dependent selective reduction in cellular phosphatidylinositol content, although the specific fatty acid composition of the phosphoinositides was not altered. Analysis of ({sup 3}H)inositol phosphates accumulated in cells prelabeled with ({sup 3}H)inositol revealed an increase in labeled inositol trisphosphate by 5 min of incubation with either carbachol or gastrin. Furthermore, after preincubation of parietal cells in medium containing ({sup 32}P)orthophosphate, the two secretagogues elicited a time-dependent decrease in {sup 32}P labeling of phosphatidylinositol 4,5-bisphosphate and concomitant increase in labeling of phosphatidic acid. These data demonstrate that the acid secretagogue actions of carbachol and gastrin are correlated with turnover of cellular inositol phospholipids in a preparation consisting predominantly of parietal cells.

  19. Antagonism of serotonin receptor 1B decreases viability and promotes apoptosis in the COS canine osteosarcoma cell line.

    PubMed

    Viall, A K; Goodall, C P; Stang, B; Marley, K; Chappell, P E; Bracha, S

    2016-06-01

    Serotonin receptor 1B (5HTR1B) traditionally exhibits anti-proliferative activity in osteoblasts. We examined the expression and function of 5HTR1B in the COS canine osteosarcoma cell line and normal canine osteoblasts. Equal levels of 5HTR1B gene and protein expression were found between normal and malignant osteoblasts. Treatment with serotonin enhanced viability of osteosarcoma cells but not normal osteoblasts. Challenge with the 5HTR1B agonist anpirtoline caused no change in cell viability. Rather incubation with the specific receptor antagonist SB224289 caused reduction in osteoblast viability, with this effect more substantial in osteosarcoma cells. Investigation of this inhibitory activity showed 5HTR1B antagonism induces apoptosis in malignant cells. Evaluation of phosphorylated levels of CREB and ERK, transcriptional regulators associated with serotonin receptor signalling in osteoblasts, revealed aberrant 5HTR1B signalling in COS. Our results confirm the presence of 5HTR1B in a canine osteosarcoma cell line and highlight this receptor as a possible novel therapeutic target.

  20. Characterization of ascorbic acid uptake by isolated rat kidney cells

    SciTech Connect

    Bowers-Komro, D.M.; McCormick, D.B. )

    1991-01-01

    Isolated kidney cells accumulated L(1-14C)ascorbic acid in a time-dependent manner and reached a steady state after 15 min at 37 degrees C. Initial velocity for uptake was over 300 pmol/mg protein per min when cells were separated from the bathing solution using a density gradient established during centrifugation. The uptake process was saturable with an apparent concentration at half maximal uptake of 36 mumols/L. Ascorbate uptake was reduced by metabolic inhibitors and was temperature dependent. Although ascorbic acid is an acid anion at pH 7.4, uptake did not appear to be inhibited by other acid anions such as p-aminohippurate and probenecid; however, involvement of the ion gradient established by Na+, H(+)-adenosine triphosphatase could not be confirmed. Replacing the sodium ion with other monovalent ions reduced the accumulation of ascorbate significantly. Isoascorbic and dehydroascorbic acids inhibited ascorbate uptake (34 and 13 mmol/L, respectively), whereas high concentrations of glucose showed some stimulation. These findings indicated that ascorbic acid is reabsorbed by the kidney in a sodium-dependent active transport process that is not common to other acid anions and has some specificity for the ascorbic acid structure.

  1. Generating kidney organoids from human pluripotent stem cells

    PubMed Central

    Takasato, Minoru; Er, Pei X; Chiu, Han S; Little, Melissa H

    2016-01-01

    The human kidney develops from four progenitor populations; nephron progenitors, ureteric epithelial progenitors, renal interstitial progenitors and endothelial progenitors; resulting in the formation of maximally 2 million nephrons. Until recently, methods differentiating human pluripotent stem cells (hPSCs) into either nephron progenitor or ureteric epithelial progenitor had been reported, consequently forming only nephrons or collecting ducts, respectively. Here, we detail a protocol that simultaneously induces all four progenitors to generate kidney organoids within which segmented nephrons are connected to collecting ducts and surrounded by renal interstitial cells and an endothelial network. As evidence of functional maturity, proximal tubules within organoids display megalin-mediated and cubilin-mediated endocytosis, and respond to a nephrotoxicant to undergo apoptosis. This protocol consists of 7 days of monolayer culture for intermediate mesoderm induction followed by 18 days of three-dimensional culture to facilitate self-organising renogenic events leading to organoid formation. Personnel experienced in culturing hPSCs are required to conduct this protocol. PMID:27560173

  2. Comparative capacitative calcium entry mechanisms in canine pulmonary and renal arterial smooth muscle cells

    PubMed Central

    Wilson, Sean M; Mason, Helen S; Smith, Gregory D; Nicholson, Neil; Johnston, Louise; Janiak, Robert; Hume, Joseph R

    2002-01-01

    Experiments were performed to determine whether capacitative Ca2+ entry (CCE) can be activated in canine pulmonary and renal arterial smooth muscle cells (ASMCs) and whether activation of CCE parallels the different functional structure of the sarcoplasmic reticulum (SR) in these two cell types. The cytosolic [Ca2+] was measured by imaging fura-2-loaded individual cells. Increases in the cytosolic [Ca2+] due to store depletion in pulmonary ASMCs required simultaneous depletion of both the inositol 1,4,5-trisphosphate (InsP3)- and ryanodine (RY)-sensitive SR Ca2+ stores. In contrast, the cytosolic [Ca2+] rises in renal ASMCs occurred when the SR stores were depleted through either the InsP3 or RY pathways. The increase in the cytosolic [Ca2+] due to store depletion in both pulmonary and renal ASMCs was present in cells that were voltage clamped and was abolished when cells were perfused with a Ca2+-free bathing solution. Rapid quenching of the fura-2 signal by 100 μM Mn2+ following SR store depletion indicated that extracellular Ca2+ entry increased in both cell types and also verified that activation of CCE in pulmonary ASMCs required the simultaneous depletion of the InsP3- and RY-sensitive SR Ca2+ stores, while CCE could be activated in renal ASMCs by the depletion of either of the InsP3- or RY-sensitive SR stores. Store depletion Ca2+ entry in both pulmonary and renal ASMCs was strongly inhibited by Ni2+ (0.1–10 mM), slightly inhibited by Cd2+ (200–500 μM), but was not significantly affected by the voltage-gated Ca2+ channel (VGCC) blocker nisoldipine (10 μM). The non-selective cation channel blocker Gd3+ (100 μM) inhibited a portion of the Ca2+ entry in 6 of 18 renal but not pulmonary ASMCs. These results provide evidence that SR Ca2+ store depletion activates CCE in parallel with the organization of intracellular Ca2+ stores in canine pulmonary and renal ASMCs. PMID:12231648

  3. Steviol retards renal cyst growth through reduction of CFTR expression and inhibition of epithelial cell proliferation in a mouse model of polycystic kidney disease.

    PubMed

    Yuajit, Chaowalit; Muanprasat, Chatchai; Gallagher, Anna-Rachel; Fedeles, Sorin V; Kittayaruksakul, Suticha; Homvisasevongsa, Sureeporn; Somlo, Stefan; Chatsudthipong, Varanuj

    2014-04-01

    Cyst enlargement in autosomal dominant polycystic kidney disease (ADPKD) is associated with cAMP-activated proliferation of cyst-lining epithelial cells and transepithelial fluid secretion into the cyst lumen via cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel leading to renal failure for which no effective treatment is currently available. We previously reported that steviol retards Madin-Darby canine kidney (MDCK) cyst enlargement by inhibiting CFTR channel activity and promoting proteasomal-mediated CFTR degradation. It is imperative to examine the effect of steviol in animal models of ADPKD. Therefore, we examined the effect of steviol on renal cyst growth in an orthologous mouse model of human ADPKD (Pkd1(flox/flox):Pkhd1-Cre). The results showed that daily treatment with both 200mg/kg BW of steviol and 1000mg/kg BW of stevioside for 14 days markedly decreased kidney weight and cystic index in these mice. However, only steviol markedly reduced blood urea nitrogen and creatinine values. Steviol also reduced cell proliferation but had no effect on cell apoptosis. In addition, steviol suppressed CFTR and mTOR/S6K expression in renal cyst-lining epithelial cells. Interestingly, steviol was found to stimulate AMP-activated protein kinase (AMPK). Our findings indicate that steviol slows cyst progression in ADPKD mouse model, in part, through the activation of AMPK which subsequently inhibits CFTR chloride channel expression and inhibits renal epithelial cell proliferation via mTOR/S6K pathway. Most importantly, steviol could markedly improve kidney function in a mouse model of ADPKD. Steviol thus has potential application for further development as a therapeutic compound for the treatment of polycystic kidney disease.

  4. Hypermethylation of the death-associated protein kinase CpG island in canine B-cell lymphoid tumors.

    PubMed

    Sato, Masahiko; Mochizuki, Hiroyuki; Goto-Koshino, Yuko; Fujiwara-Igarashi, Aki; Takahashi, Masashi; Fujino, Yasuhito; Ohno, Koichi; Tsujimoto, Hajime

    2014-10-15

    Death-associated protein kinase (DAPK) is a 160-kD serine/threonine kinase known as a key molecule in interferon-γ (IFN-γ)-induced apoptosis and tumor suppression. Hypermethylation of the CpG island in DAPK inactivates the gene in a variety of human malignancies. This study aimed to detect the inactivation of DAPK in canine lymphoid tumor cells. The sequence of canine DAPK cDNA was obtained from normal dog peripheral blood mononuclear cells after reverse transcription polymerase chain reaction (RT-PCR). By rapid amplification of 5'-cDNA ends, the transcription initiation site of the DAPK gene was identified. The CpG island located upstream of the translation initiation site was identified by using a search algorithm. The methylation status of the CpG island was examined using bisulfite sequence analysis and methylation-specific PCR (MSP). The inactivation of DAPK gene was examined in 3 canine lymphoid tumor cell lines, GL-1 (B-cell leukemia), CLBL-1 (B-cell lymphoma), and CL-1 (T-cell lymphoma). DAPK mRNA expression was measured by real-time RT-PCR. IFN-γ-induced apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay. The influence of demethylation was examined with 5-aza-2'-deoxycytidine (5-aza-dC). The methylation status in 14 dogs with various lymphoid tumors was screened by MSP. A 1926-bp CpG island containing 280 CpG repeats was identified upstream of the translation start site of canine DAPK. Bisulfate sequence analysis and MSP revealed hypermethylation of the CpG island in GL-1 cells, but not in CLBL-1 or CL-1 cells. The amount of DAPK mRNA was significantly smaller in GL-1 cells than CLBL-1 and CL-1 cells. IFN-γ-induced apoptosis was detected in CLBL-1 and CL-1 cells but not in GL-1 cells. Treatment with 5-aza-dC significantly increased the amount of DAPK mRNA and IFN-γ-induced apoptosis in GL-1 cells. These results revealed the inactivation of DAPK through methylation of its CpG island in GL-1 cells. MSP

  5. Canine adenovirus type 1 in a fennec fox (Vulpes zerda).

    PubMed

    Choi, Jeong-Won; Lee, Hyun-Kyoung; Kim, Seong-Hee; Kim, Yeon-Hee; Lee, Kyoung-Ki; Lee, Myoung-Heon; Oem, Jae-Ku

    2014-12-01

    A 10-mo-old female fennec fox (Vulpes zerda) with drooling suddenly died and was examined postmortem. Histologic examination of different tissue samples was performed. Vacuolar degeneration and diffuse fatty change were observed in the liver. Several diagnostic methods were used to screen for canine parvovirus, canine distemper virus, canine influenza virus, canine coronavirus, canine parainfluenza virus, and canine adenovirus (CAdV). Only CAdV type 1 (CAdV-1) was detected in several organs (liver, lung, brain, kidney, spleen, and heart), and other viruses were not found. CAdV-1 was confirmed by virus isolation and nucleotide sequencing.

  6. Longitudinal Claudin Gene Expression Analyses in Canine Mammary Tissues and Thereof Derived Primary Cultures and Cell Lines

    PubMed Central

    Hammer, Susanne C.; Becker, Annegret; Rateitschak, Katja; Mohr, Annika; Lüder Ripoli, Florenza; Hennecke, Silvia; Junginger, Johannes; Hewicker-Trautwein, Marion; Brenig, Bertram; Ngezahayo, Anaclet; Nolte, Ingo; Murua Escobar, Hugo

    2016-01-01

    Human and canine mammary tumours show partial claudin expression deregulations. Further, claudins have been used for directed therapeutic approaches. However, the development of claudin targeting approaches requires stable claudin expressing cell lines. This study reports the establishment and characterisation of canine mammary tissue derived cell lines, analysing longitudinally the claudin-1, -3, -4 and -7 expressions in original tissue samples, primary cultures and developed cell lines. Primary cultures were derived from 17 canine mammary tissues: healthy, lobular hyperplasia, simple adenoma, complex adenoma, simple tubular carcinoma, complex carcinoma, carcinoma arising in a benign mixed tumour and benign mixed tissue. Cultivation was performed, if possible, until passage 30. Claudin mRNA and protein expressions were analysed by PCR, QuantiGene Plex Assay, immunocytochemistry and immunofluorescence. Further, cytokeratin expression was analysed immunocytochemically. Cultivation resulted in 11 established cell lines, eight showing epithelial character. In five of the early passages the claudin expressions decreased compared to the original tissues. In general, claudin expressions were diminished during cultivation. Three cell lines kept longitudinally claudin, as well as epithelial marker expressions, representing valuable tools for the development of claudin targeted anti-tumour therapies. PMID:27690019

  7. Canine cell line, IPC-366, as a good model for the study of inflammatory breast cancer.

    PubMed

    Caceres, S; Peña, L; Lacerda, L; Illera, M J; de Andres, P J; Larson, R A; Gao, H; Debeb, B G; Woodward, W A; Reuben, J M; Illera, J C

    2016-05-05

    Inflammatory breast cancer (IBC) is an aggressive type of cancer with poor survival in women. Inflammatory mammary cancer (IMC) in dogs is very similar to human IBC and it has been proposed as a good surrogate model for study the human disease. The aim was to determine if IPC-366 shared characteristics with the IBC cell line SUM149. The comparison was conducted in terms of ability to grow (adherent and nonadherent conditions), stem cell markers expression using flow cytometry, protein production using western blot and tumorigenic capacity. Our results revealed that both are capable of forming long-term mammospheres with a grape-like morphology. Adherent and nonadherent cultures exhibited fast growth in vivo. Stem cell markers expressions showed that IPC-366 and SUM149 in adherent and nonadherent conditions has mesenchymal-like characteristics, E-cadherin and N-cadherin, was higher in adherent than in nonadherent cultures. Therefore, this study determines that both cell lines are similar and IPC-366 is a good model for the human and canine disease.

  8. Canine Adipose Derived Mesenchymal Stem Cells Transcriptome Composition Alterations: A Step towards Standardizing Therapeutic

    PubMed Central

    Šimić, Ivana; Lojkić, Ivana; Bedeković, Tomislav

    2017-01-01

    Although canine adipose derived stem cells (cASCs) morphology characteristics and differentiation ability are well documented, transcriptome alterations of undifferentiated cASCs during ex vivo cultivation remain unknown. Here we demonstrate, for the first time, the transcriptome composition of isolated cASCs in undifferentiated state originating from six donors. Transcriptome changes were monitored during ex vivo cultivation between passage 3 (P3) and P5, which are mostly used in therapy. Influence of donors' age in given passage number on transcriptome composition was also investigated. Cultivation from P3 to P5 resulted in 16 differentially expressed genes with cooverexpression of pluripotency and self-renewal transcription factors genes SOX2 and POU5F1 dominant in old donors' cells. Furthermore, cASCs demonstrated upregulation of IL-6 in young and old donors' cells. In addition, ex vivo cultivation of cASCs revealed well-known morphological alterations accompanied with decrease in expression of CD90 and CD44 markers in P4 and higher monitored by flow cytometry and successful osteo- and chondrodifferentiation but inefficient adipodifferentiation in P3. Our results revealed the impact of ex vivo cultivation on nature of cells. Correlation of transcriptome changes with secretome composition is needed and its further impact on therapeutic potential of cASCs remains to be evaluated in clinical trials. PMID:28246532

  9. Histopathology, parasite density and cell phenotypes of the popliteal lymph node in canine visceral leishmaniasis.

    PubMed

    Giunchetti, Rodolfo Cordeiro; Martins-Filho, Olindo Assis; Carneiro, Cláudia Martins; Mayrink, Wilson; Marques, Marcos José; Tafuri, Washington Luiz; Corrêa-Oliveira, Rodrigo; Reis, Alexandre Barbosa

    2008-01-15

    While enlargement of popliteal lymph nodes (LN) is frequently described in canine visceral leishmaniasis (CVL), there are few histopathologic studies of lymph nodes during this chronic immunopathological condition. Besides a detailed histopathologic analysis, we have characterized the parasite load and major immunophenotypic features of the LN in Leishmania (Leishmania) chagasi-infected dogs. Our major histopathological findings highlight that hypertrophy/hyperplasia of LN cortical and medullary zones was the principal characteristic observed in asymptomatic dogs (AD), whereas atrophy of LN cortical zone was predominant in symptomatic animals (SD). The LN parasite density detected by anti-Leishmania immunohistochemical assay or expressed as Leishman Donovan Units was also highly correlated with the skin parasitism, the most reliable parameter to decode the clinical status of CVL. The major LN immunophenotypic changes during ongoing CVL were an increased frequency of T-lymphocytes, particularly CD8+ T-cells, up-regulation of MHC-II expression by lymphocytes and decreased levels of CD21+ B-cells. Our findings further demonstrated that changes in the LN B-lymphocyte compartment exhibited a negative correlation with the skin parasite load. Conversely, we also showed evidence for a positive association between skin parasitism and LN T-cell-mediated immunity, suggesting that T-cells, especially CD8+ lymphocytes, may have a Type-2 immunological profile in this lymphoid tissue in response to CVL.

  10. In vitro assessment of the allergenicity of novel MF59-adjuvanted pandemic H1N1 influenza vaccine produced in dog kidney cells.

    PubMed

    Bencharitiwong, Ramon; Leonard, Stephanie; Tsai, Theodore; Nowak-Węgrzyn, Anna

    2012-07-01

    A licensed inactivated MF59-adjuvanted seasonal influenza vaccine (Optaflu) produced in canine kidney cells (MDCK 33016-PF) contained no egg proteins and did not trigger degranulation in rat basophilic leukemia (RBL) cells passively sensitized with human anti-dog IgE, supporting its safe use in dog-allergic individuals. The cell-derived pandemic H1N1 influenza vaccine was also adjuvanted with the emulsion adjuvant MF59, and support for its similar safe use was sought. We sought to evaluate in vitro allergenicity of the MF59-adjuvanted cell-derived pandemic H1N1 influenza vaccine in subjects with dog allergy, with a mediator release assay. RBL-2H3 cells transfected with human Fcε receptor type 1 were sensitized with sera from adult dog-allergic subjects and stimulated with serial dilutions of pandemic H1N1 influenza vaccine and dog dander extract. β-N-hexosaminidase release (NHR) was used as a marker of RBL degranulation.. Median dog dander-specific IgE in 30 dog-allergic subjects was 27.7 kU(A)/L (range 10.1; > 100); and in 5 dog non-allergic subjects was < 0.35 kU(A)/L (UniCAP system). Median (range) maximum NHR in dog-allergic subjects was: pandemic H1N1 influenza vaccine 1.1% (0; 4.4) and dog dander 6.9% (0.7; 37.3), P < 0.001. In conclusion, MF59-adjuvanted pandemic H1N1 influenza vaccine produced in continuous canine kidney cells did not trigger degranulation in RBL cells passively sensitized with human anti-dog IgE, supporting its safe use in dog-allergic individuals.

  11. Establishment of a cell line (MCM-B2) from a benign mixed tumour of canine mammary gland.

    PubMed

    Priosoeryanto, B P; Tateyama, S; Yamaguchi, R; Uchida, K

    1995-05-01

    A cell line was established from a benign mixed tumour of the canine mammary gland. Light microscopy of the cells cultured on plastic dishes revealed monolayer colonies. Cells that grew within the collagen gel matrix formed large three-dimensional colonies with a branching pattern. Immunohistochemically, these cells reacted intensely with anti-vimentin antiserum and mildly with anti-desmin antiserum. Ultrastructural examination revealed a large nucleus, intracytoplasmic organelles and intermediate filaments, which varied among cells. The cells possessed an abnormal chromosome number, an average of 80 per cell. Histologically, the xenografted tumour of cultured cells was similar to anaplastic carcinoma and reacted strongly with anti-vimentin antiserum, mildly with anti-desmin antiserum, and weakly with anti-keratin antiserum. The average chromosome number of cells form the xenografted tumour was the same as that of the original cultured cells. These findings suggest that the cell line might be derived from stem cells or atypical cells, and that it should be useful as model for the study of cell differentiation and proliferation in canine mammary tumours.

  12. Synchronous Renal Neoplasm: Clear Cell Renal Cell Carcinoma and Papillary Urothelial Carcinoma in the Same Kidney.

    PubMed

    Benavides-Huerto, Miguel Armando; Chávez-Valencia, Venice; Lagunas-Rangel, Francisco Alejandro

    2017-02-01

    Abdominal computed tomography in a 64 year-old male presenting hematuria showed two malignant tumors in the left kidney, thus radical nephrectomy was realized. In histological preparations a clear cell renal cell carcinoma and a papillary urothelial carcinoma were identified occurring synchronously, which is a rare occurrence having only about 50 cases reported in the literature.

  13. Biological characterization of sheep kidney-derived mesenchymal stem cells

    PubMed Central

    Ji, Meng; Bai, Chunyu; Li, Lu; Fan, Ya'Nan; Ma, Caiyun; Li, Xiangchen; Guan, Weijun

    2016-01-01

    The aim of the present study was to isolate, culture and characterize sheep metanephric mesenchymal stem cells (MMSCs). The MMSCs were isolated from the kidney tissue of six-week-old sheep fetus. This study investigated whether primary MMSCs could be grown for 26 passages and expressed Oct-4, which is involved in the self-renewal of undifferentiated pluripotent stem cells. The MMSCs also expressed the renal lineage marker gene PAX2, and mesenchymal cell marker genes CD44, FN1 and VIM. Expression of these genes was detected using immunofluorescence and reverse transcription-polymerase chain reaction assays. Additionally, we observed that the MMSCs are able to differentiate into adipocyte, hepatocyte and chondrocyte cells. Karyotype analyses showed that these cells were 95% diploid and thus differentiated. These results indicate that the MMSCs obtained from sheep fetuses possessed certain characteristics of multipotent stem cells. Therefore, MMSCs may potentially offer utility for tissue engineering and cellular transplantation therapy, and further studies are required to investigate these uses. PMID:28105130

  14. A novel derivative of doxorubicin, AD198, inhibits canine transitional cell carcinoma and osteosarcoma cells in vitro

    PubMed Central

    Rathore, Kusum; Cekanova, Maria

    2015-01-01

    Doxorubicin (DOX) is one of the most commonly used chemotherapeutic treatments for a wide range of cancers. N-benzyladriamycin-14-valerate (AD198) is a lipophilic anthracycline that has been shown to target conventional and novel isoforms of protein kinase C (PKC) in cytoplasm of cells. Because of the adverse effects of DOX, including hair loss, nausea, vomiting, liver dysfunction, and cardiotoxicity, novel derivatives of DOX have been synthesized and validated. In this study, we evaluated the effects of DOX and its derivative, AD198, on cell viability of three canine transitional cell carcinoma (K9TCC) (K9TCC#1-Lillie, K9TCC#2-Dakota, K9TCC#4-Molly) and three canine osteosarcoma (K9OSA) (K9OSA#1-Zoe, K9OSA#2-Nashville, K9OSA#3-JJ) primary cancer cell lines. DOX and AD198 significantly inhibited cell proliferation in all tested K9TCC and K9OSA cell lines in a dose-dependent manner. AD198 inhibited cell viability of tested K9TCC and K9OSA cell lines more efficiently as compared to DOX at the same concentration using MTS (3-(4,5-dimethyl-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2h-tetrazolium) assay. AD198 had lower IC50 values as compared to DOX for all tested K9TCC and K9OSA cell lines. In addition, AD198 increased apoptosis in all tested K9TCC and K9OSA cell lines. AD198 increased the caspase activity in tested K9TCC and K9OSA cell lines, which was confirmed by caspase-3/7 assay, and cleavage of poly (ADP-ribose) polymerase (PARP) was confirmed by Western blotting analysis. In addition, AD198 cleaved PKC-δ, which subsequently activated the p38 signaling pathway, resulting in the apoptosis of tested K9TCC and K9OSA cell lines. Inhibition of the p38 signaling pathway by SB203580 rescued DOX- and AD198-induced apoptosis in tested K9TCC and K9OSA cell lines. Our in vitro results suggest that AD198 might be considered as a new treatment option for K9TCC and K9OSA cell lines cancers in vivo. PMID:26451087

  15. Canine cutaneous mast cell tumors: A combined clinical and pathologic approach to diagnosis, prognosis, and treatment selection.

    PubMed

    Sledge, Dodd G; Webster, Joshua; Kiupel, Matti

    2016-09-01

    In view of the varied biologic behavior and the costs of treatment for canine cutaneous mast cell tumors, development of appropriate treatment plans for individual affected dogs can be difficult, but decisions regarding treatment should be made using a systematic, evidence-based approach. This manuscript reviews the current state of diagnostics and prognostication of canine cutaneous mast cell tumors, and suggests a combined approach based on clinical and pathologic assessment for decision making regarding treatment choices. The current state of histologic grading, evaluation of proliferation indices, evaluation of mutations in the c-kit gene and KIT expression, evaluation of excision and clinical staging are examined. On the basis of the current understanding of prognostication and treatment response, algorithms for selection of local and systemic therapy are presented.

  16. Injectable alginate-microencapsulated canine adipose tissue-derived mesenchymal stem cells for enhanced viable cell retention

    PubMed Central

    KOH, Eunji; JUNG, Yun Chan; WOO, Heung-Myong; KANG, Byung-Jae

    2017-01-01

    The purpose of this study was to establish an optimized protocol for the production of alginate-encapsulated canine adipose-derived mesenchymal stem cells (cASCs) and evaluate their suitability for clinical use, including viability, proliferation and in vivo cell retention. Alginate microbeads were formed by vibrational technology and the production of injectable microbeads was performed using various parameters with standard methodology. Microbead toxicity was tested in an animal model. Encapsulated cASCs were evaluated for viability and proliferation in vitro. HEK-293 cells, with or without microencapsulation, were injected into the subcutaneous tissue of mice and were tracked using in vivo bioluminescent imaging to evaluate the retention of transplanted cells. The optimized injectable microbeads were of uniform size and approximately 250 µm in diameter. There was no strong evidence of in vivo toxicity for the alginate beads. The cells remained viable after encapsulation, and there was evidence of in vitro proliferation within the microcapsules. In vivo bioluminescent imaging showed that alginate encapsulation improved the retention of transplanted cells and the encapsulated cells remained viable in vivo for 7 days. Encapsulation enhances the retention of viable cells in vivo and might represent a potential strategy to increase the therapeutic potency and efficacy of stem cells. PMID:28070061

  17. Mechanism of reduction of virus release and cell-cell fusion in persistent canine distemper virus infection.

    PubMed

    Meertens, Nadine; Stoffel, Michael H; Cherpillod, Pascal; Wittek, Riccardo; Vandevelde, Marc; Zurbriggen, Andreas

    2003-10-01

    Canine distemper virus (CDV), a mobillivirus related to measles virus causes a chronic progressive demyelinating disease, associated with persistence of the virus in the central nervous system (CNS). CNS persistence of morbilliviruses has been associated with cell-to-cell spread, thereby limiting immune detection. The mechanism of cell-to-cell spread remains uncertain. In the present study we studied viral spread comparing a cytolytic (non-persistent) and a persistent CDV strain in cell cultures. Cytolytic CDV spread in a compact concentric manner with extensive cell fusion and destruction of the monolayer. Persistent CDV exhibited a heterogeneous cell-to-cell pattern of spread without cell fusion and 100-fold reduction of infectious viral titers in supernatants as compared to the cytolytic strain. Ultrastructurally, low infectious titers correlated with limited budding of persistent CDV as compared to the cytolytic strain, which shed large numbers of viral particles. The pattern of heterogeneous cell-to-cell viral spread can be explained by low production of infectious viral particles in only few areas of the cell membrane. In this way persistent CDV only spreads to a small proportion of the cells surrounding an infected one. Our studies suggest that both cell-to-cell spread and limited production of infectious virus are related to reduced expression of fusogenic complexes in the cell membrane. Such complexes consist of a synergistic configuration of the attachment (H) and fusion (F) proteins on the cell surface. F und H proteins exhibited a marked degree of colocalization in cytolytic CDV infection but not in persistent CDV as seen by confocal laser microscopy. In addition, analysis of CDV F protein expression using vaccinia constructs of both strains revealed an additional large fraction of uncleaved fusion protein in the persistent strain. This suggests that the paucity of active fusion complexes is due to restricted intracellular processing of the viral fusion

  18. Improved Structure and Function in Autosomal Recessive Polycystic Rat Kidneys with Renal Tubular Cell Therapy.

    PubMed

    Kelly, K J; Zhang, Jizhong; Han, Ling; Kamocka, Malgorzata; Miller, Caroline; Gattone, Vincent H; Dominguez, Jesus H

    2015-01-01

    Autosomal recessive polycystic kidney disease is a truly catastrophic monogenetic disease, causing death and end stage renal disease in neonates and children. Using PCK female rats, an orthologous model of autosomal recessive polycystic kidney disease harboring mutant Pkhd1, we tested the hypothesis that intravenous renal cell transplantation with normal Sprague Dawley male kidney cells would improve the polycystic kidney disease phenotype. Cytotherapy with renal cells expressing wild type Pkhd1 and tubulogenic serum amyloid A1 had powerful and sustained beneficial effects on renal function and structure in the polycystic kidney disease model. Donor cell engraftment and both mutant and wild type Pkhd1 were found in treated but not control PCK kidneys 15 weeks after the final cell infusion. To examine the mechanisms of global protection with a small number of transplanted cells, we tested the hypothesis that exosomes derived from normal Sprague Dawley cells can limit the cystic phenotype of PCK recipient cells. We found that renal exosomes originating from normal Sprague Dawley cells carried and transferred wild type Pkhd1 mRNA to PCK cells in vivo and in vitro and restricted cyst formation by cultured PCK cells. The results indicate that transplantation with renal cells containing wild type Pkhd1 improves renal structure and function in autosomal recessive polycystic kidney disease and may provide an intra-renal supply of normal Pkhd1 mRNA.

  19. The effect of different implant biomaterials on the behavior of canine bone marrow stromal cells during their differentiation into osteoblasts.

    PubMed

    Özdal-Kurt, F; Tuğlu, I; Vatansever, H S; Tong, S; Şen, B H; Deliloğlu-Gürhan, S I

    2016-08-01

    We investigated the effects of different implant biomaterials on cultured canine bone marrow stromal cells (BMSC) undergoing differentiation into osteoblasts (dBMSC). BMSC were isolated from canine humerus by marrow aspiration, cultured and differentiated on calcium phosphate scaffold (CPS), hydroxyapatite, hydroxyapatite in gel form and titanium mesh. We used the MTT method to determine the effects of osteogenic media on proliferation. The characteristics of dBMSC were assessed using alizarin red (AR), immunocytochemistry and osteoblastic markers including alkaline phosphatase/von Kossa (ALP/VK), osteocalcin (OC) and osteonectin (ON), and ELISA. The morphology of dBMSC on the biomaterials was investigated using inverted phase contrast microscopy and scanning electron microscopy. We detected expression of ALP/VK, AR, OC and ON by day 7 of culture; expression increased from day 14 until day 21. CPS supported the best adhesion, cell spreading, proliferation and differentiation of BMSCs. The effects of the biomaterials depended on their surface properties. Expression of osteoblastic markers showed that canine dBMSCs became functional osteoblasts. Tissue engineered stem cells can be useful clinically for autologous implants for treating bone wounds.

  20. Generation of induced pluripotent stem cells from human kidney mesangial cells.

    PubMed

    Song, Bi; Niclis, Jonathan C; Alikhan, Maliha A; Sakkal, Samy; Sylvain, Aude; Kerr, Peter G; Laslett, Andrew L; Bernard, Claude A; Ricardo, Sharon D

    2011-07-01

    Glomerular injury and podocyte loss leads to secondary tubulointerstitial damage and the development of fibrosis. The possibility of genetically reprogramming adult cells, termed induced pluripotent stem cells (iPS), may pave the way for patient-specific stem-cell-based therapies. Here, we reprogrammed normal human mesangial cells to pluripotency by retroviral transduction using defined factors (OCT4, SOX2, KLF4 and c-Myc). The kidney iPS (kiPS) cells resembled human embryonic stem-cell-like colonies in morphology and gene expression: They were alkaline phosphatase-positive; expressed OCT3/4, TRA-1 to 60 and TRA-1 to 81 proteins; and showed downregulation of mesangial cell markers. Quantitative (qPCR) showed that kiPS cells expressed genes analogous to embryonic stem cells and exhibited silencing of the retroviral transgenes by the fourth passage of differentiation. Furthermore, kiPS cells formed embryoid bodies and expressed markers of all three germ layers. The injection of undifferentiated kiPS colonies into immunodeficient mice formed teratomas, thereby demonstrating pluripotency. These results suggest that reprogrammed kidney induced pluripotent stem cells may aid the study of genetic kidney diseases and lead to the development of novel therapies.

  1. Stem cell-derived kidney cells and organoids: Recent breakthroughs and emerging applications.

    PubMed

    Chuah, Jacqueline Kai Chin; Zink, Daniele

    The global rise in the numbers of kidney patients and the shortage in transplantable organs have led to an increasing interest in kidney-specific regenerative therapies, renal disease modelling and bioartificial kidneys. Sources for large quantities of high-quality renal cells and tissues would be required, also for applications in in vitro platforms for compound safety and efficacy screening. Stem cell-based approaches for the generation of renal-like cells and tissues would be most attractive, but such methods were not available until recently. This situation has drastically changed since 2013, and various protocols for the generation of renal-like cells and precursors from pluripotent stem cells (PSC) have been established. The most recent breakthroughs were related to the establishment of various protocols for the generation of PSC-derived kidney organoids. In combination with recent advances in genome editing, bioprinting and the establishment of predictive renal screening platforms this results in exciting new possibilities. This review will give a comprehensive overview over current PSC-based protocols for the generation of renal-like cells, precursors and organoids, and their current and potential applications in regenerative medicine, compound screening, disease modelling and bioartificial organs.

  2. Kidney Transplant in a 26-Year-Old Nigerian Patient with Sickle Cell Nephropathy

    PubMed Central

    Okafor, U. H.; Wachukwu, C.; Emem-Chioma, P.; Wokoma, F. S.

    2012-01-01

    Sickle cell nephropathy (SCN) is a common complication of sickle cell disease (SCD). It has variable presentation, ranging from hyposthenuria to end-stage renal disease (ESRD). Management of ESRD in SCD patients is froth with multiple challenges which has potential to impact negatively the outcome of the patient. Kidney transplant is the preferred renal replacement therapy in these patients. The objective of this case study is to report kidney transplant in a Nigerian young man with sickle cell nephropathy and to highlight the outcome and the challenges to kidney transplant in this patient. The index case is a 26-years-old sickle cell disease patient with ESRD complicated with cardiovascular, pulmonary, immunological, and infective challenges. These conditions were controlled, and the patient had a successful live-related kidney transplant. Kidney transplant is a viable option for sickle cell disease patients with ESRD. PMID:24555134

  3. Cell-based polymerase chain reaction for canine transmissible venereal tumor (CTVT) diagnosis

    PubMed Central

    SETTHAWONGSIN, Chanokchon; TECHANGAMSUWAN, Somporn; TANGKAWATTANA, Sirikachorn; RUNGSIPIPAT, Anudep

    2016-01-01

    Canine transmissible venereal tumor (CTVT) is the only naturally contagious tumor that is transmitted during coitus or social behaviors. Based on the tumor’s location, the diagnosis of genital TVT (GTVT) is comparably easier than those in the extragenital area (ETVT) that are more easily incorrectly diagnosed. Fortunately, CTVT cells contain a specific long interspersed nuclear elements (LINE), inserted upstream of the myc gene, allowing a diagnostic polymerase chain reaction (PCR) based detection assay. The objectives of this study were aimed to improve the diagnostic accuracy by applying the diagnostic LINE1-c-myc PCR assay and fine needle aspiration (FNA) collection in direct comparison with standard cytological and histopathological analyses. Seventy-four dogs, comprised of 41 and 31 dogs with tumor masses at their external genitalia and extragenital areas (e.g. skin and nasal cavity), respectively, were included in this study. The signalment of these 65 dogs and clinical history of 20 client-owned dogs were collected. Samples were taken by biopsy for both histopathological examination and FNA for cytological examination and diagnostic PCR. The PCR products from 10 apparently CTVT samples were purified and sequenced. Sixty-one CTVT cases were diagnosed by cytological and histological analyses, but 65 were positive by the PCR assay. Overall, the PCR assay improved the accuracy of diagnostic CTVT results, especially for the more difficult ETVT tumors. Moreover, this PCR-based approach can facilitate the decision as to discontinue chemotherapy by discrimination between residual tumor cell masses and fibrotic tissue. PMID:27075116

  4. Slow delayed rectifier current and repolarization in canine cardiac Purkinje cells.

    PubMed

    Han, W; Wang, Z; Nattel, S

    2001-03-01

    Although cardiac Purkinje cells (PCs) are believed to be the source of early afterdepolarizations generating ventricular tachyarrhythmias in long Q-T syndromes (LQTS), the ionic determinants of PC repolarization are incompletely known. To evaluate the role of the slow delayed rectifier current (I(Ks)) in PC repolarization, we studied PCs from canine ventricular false tendons with whole cell patch clamp (37 degrees C). Typical I(Ks) voltage- and time-dependent properties were noted. Isoproterenol enhanced I(Ks) in a concentration-dependent fashion (EC(50) approximately 30 nM), negatively shifted I(Ks) activation voltage dependence, and accelerated I(Ks) activation. Block of I(Ks) with 293B did not alter PC action potential duration (APD) in the absence of isoproterenol; however, in the presence of isoproterenol, 293B significantly prolonged APD. We conclude that, without beta-adrenergic stimulation, I(Ks) contributes little to PC repolarization; however, beta-adrenergic stimulation increases the contribution of I(Ks) by increasing current amplitude, accelerating I(Ks) activation, and shifting activation voltage toward the PC plateau voltage range. I(Ks) may therefore provide an important "braking" function to limit PC APD prolongation in the presence of beta-adrenergic stimulation.

  5. Nonapoptotic cell death in acute kidney injury and transplantation.

    PubMed

    Linkermann, Andreas

    2016-01-01

    Acute tubular necrosis causes a loss of renal function, which clinically presents as acute kidney failure (AKI). The biochemical signaling pathways that trigger necrosis have been investigated in detail over the past 5 years. It is now clear that necrosis (regulated necrosis, RN) represents a genetically driven process that contributes to the pathophysiology of AKI. RN pathways such as necroptosis, ferroptosis, parthanatos, and mitochondrial permeability transition-induced regulated necrosis (MPT-RN) may be mechanistically distinct, and the relative contributions to overall organ damage during AKI in living organisms largely remain elusive. In a synchronized manner, some necrotic programs induce the breakdown of tubular segments and multicellular functional units, whereas others are limited to killing single cells in the tubular compartment. Importantly, the means by which a renal cell dies may have implications for the subsequent inflammatory response. In this review, the recent advances in the field of renal cell death in AKI and key enzymes that might serve as novel therapeutic targets will be discussed. As a consequence of the interference with RN, the immunogenicity of dying cells in AKI in renal transplants will be diminished, rendering inhibitors of RN indirect immunosuppressive agents.

  6. Antiproliferative Effects of Oxytocin and Desmopressin on Canine Mammary Cancer Cells

    PubMed Central

    Benavente, Micaela Andrea; Bianchi, Carolina Paula; Imperiale, Fernanda; Aba, Marcelo Alfredo

    2016-01-01

    Neoplasms of the mammary gland represent the most frequent tumor type in the female dog, and according to the histologic criteria, approximately 50% of them are malignant. In the most aggressive cases of mammary cancer, surgery is not enough to warrant a favorable outcome, and adjuvant therapies are needed to improve the patient’s overall survival. The aim of the present study was to evaluate the effects of two peptides on proliferation of a canine mammary cancer cell line derived from a simple carcinoma. The cell line CMT-U27 was grown in 96-well plates, at two cell densities (4 × 103 and 8 × 103 cells/well). Cultures were treated with oxytocin (OT) or desmopressin at five concentrations (10, 50, 100, 500, and 1000 nM). After 72 h of incubation, cell proliferation was determined by the MTT assay. Results showed that with 4 × 103 cells/well, OT at 50, 500, and 1000 nM was growth inhibitory for the cells, being statistically significant at 1000 nM. On the contrary, no antiproliferative effect was observed with 10 or 100 nM. At 8 × 103 cells/well, OT showed a significant antiproliferative effect only with the highest concentration (1000 nM). Desmopressin at 4 × 103 cells/well decreased cell viability at concentrations of 50, 100, 500, and 1000 nM (statistically significant with the highest concentration), while no effect was observed with 10 nM. With 8 × 103 cells/well, this peptide reduced cell growth at 100, 500, and 1000 nM. In conclusion, we suggest that these peptides may be potential and promising compounds for the treatment of dogs with simple carcinomas of the mammary gland. In vivo studies are required to confirm this hypothesis. PMID:28083539

  7. Functional genetic targeting of embryonic kidney progenitor cells ex vivo.

    PubMed

    Junttila, Sanna; Saarela, Ulla; Halt, Kimmo; Manninen, Aki; Pärssinen, Heikki; Lecca, M Rita; Brändli, André W; Sims-Lucas, Sunder; Skovorodkin, Ilya; Vainio, Seppo J

    2015-05-01

    The embryonic mammalian metanephric mesenchyme (MM) is a unique tissue because it is competent to generate the nephrons in response to Wnt signaling. An ex vivo culture in which the MM is separated from the ureteric bud (UB), the natural inducer, can be used as a classic tubule induction model for studying nephrogenesis. However, technological restrictions currently prevent using this model to study the molecular genetic details before or during tubule induction. Using nephron segment-specific markers, we now show that tubule induction in the MM ex vivo also leads to the assembly of highly segmented nephrons. This induction capacity was reconstituted when MM tissue was dissociated into a cell suspension and then reaggregated (drMM) in the presence of human recombinant bone morphogenetic protein 7/human recombinant fibroblast growth factor 2 for 24 hours before induction. Growth factor-treated drMM also recovered the capacity for organogenesis when recombined with the UB. Cell tracking and time-lapse imaging of chimeric drMM cultures indicated that the nephron is not derived from a single progenitor cell. Furthermore, viral vector-mediated transduction of green fluorescent protein was much more efficient in dissociated MM cells than in intact mesenchyme, and the nephrogenic competence of transduced drMM progenitor cells was preserved. Moreover, drMM cells transduced with viral vectors mediating Lhx1 knockdown were excluded from the nephric tubules, whereas cells transduced with control vectors were incorporated. In summary, these techniques allow reproducible cellular and molecular examinations of the mechanisms behind nephrogenesis and kidney organogenesis in an ex vivo organ culture/organoid setting.

  8. Expression of Stem Cell Markers in the Human Fetal Kidney

    PubMed Central

    Metsuyanim, Sally; Harari-Steinberg, Orit; Buzhor, Ella; Omer, Dorit; Pode-Shakked, Naomi; Ben-Hur, Herzl; Halperin, Reuvit; Schneider, David; Dekel, Benjamin

    2009-01-01

    In the human fetal kidney (HFK) self-renewing stem cells residing in the metanephric mesenchyme (MM)/blastema are induced to form all cell types of the nephron till 34th week of gestation. Definition of useful markers is crucial for the identification of HFK stem cells. Because wilms' tumor, a pediatric renal cancer, initiates from retention of renal stem cells, we hypothesized that surface antigens previously up-regulated in microarrays of both HFK and blastema-enriched stem-like wilms' tumor xenografts (NCAM, ACVRIIB, DLK1/PREF, GPR39, FZD7, FZD2, NTRK2) are likely to be relevant markers. Comprehensive profiling of these putative and of additional stem cell markers (CD34, CD133, c-Kit, CD90, CD105, CD24) in mid-gestation HFK was performed using immunostaining and FACS in conjunction with EpCAM, an epithelial surface marker that is absent from the MM and increases along nephron differentiation and hence can be separated into negative, dim or bright fractions. No marker was specifically localized to the MM. Nevertheless, FZD7 and NTRK2 were preferentially localized to the MM and emerging tubules (<10% of HFK cells) and were mostly present within the EpCAMneg and EpCAMdim fractions, indicating putative stem/progenitor markers. In contrast, single markers such as CD24 and CD133 as well as double-positive CD24+CD133+ cells comprise >50% of HFK cells and predominantly co-express EpCAMbright, indicating they are mostly markers of differentiation. Furthermore, localization of NCAM exclusively in the MM and in its nephron progenitor derivatives but also in stroma and the expression pattern of significantly elevated renal stem/progenitor genes Six2, Wt1, Cited1, and Sall1 in NCAM+EpCAM- and to a lesser extent in NCAM+EpCAM+ fractions confirmed regional identity of cells and assisted us in pinpointing the presence of subpopulations that are putative MM-derived progenitor cells (NCAM+EpCAM+FZD7+), MM stem cells (NCAM+EpCAM-FZD7+) or both (NCAM+FZD7+). These results and

  9. Synergistic inhibition in cell-cell fusion mediated by the matrix and nucleocapsid protein of canine distemper virus.

    PubMed

    Wiener, Dominique; Plattet, Philippe; Cherpillod, Pascal; Zipperle, Ljerka; Doherr, Marcus G; Vandevelde, Marc; Zurbriggen, Andreas

    2007-11-01

    Canine distemper virus (CDV) causes a chronic, demyelinating, progressive or relapsing neurological disease in dogs, because CDV persists in the CNS. Persistence of virulent CDV, such as the A75/17 strain has been reproduced in cell cultures where it is associated with a non-cytolytic infection with very limited cell-cell fusion. This is in sharp contrast to attenuated CDV infection in cell cultures, such as the Onderstepoort (OP) CDV strain, which produces extensive fusion activity and cytolysis. Fusion efficiency may be determined by the structure of the viral fusion protein per se but also by its interaction with other structural proteins of CDV. This was studied by combining genes derived from persistent and non-persistent CDV strains in transient transfection experiments. It was found that fusion efficiency was markedly attenuated by the structure of the fusion protein of the neurovirulent A75/17-CDV. Moreover, we showed that the interaction of the surface glycoproteins with the M protein of the persistent strain greatly influenced fusion activity. Site directed mutagenesis showed that the c-terminus of the M protein is of particular importance in this respect. Interestingly, although the nucleocapsid protein alone did not affect F/H-induced cell-cell fusion, maximal inhibition occurred when the latter was added to combined glycoproteins with matrix protein. Thus, the present study suggests that very limited fusogenicity in virulent CDV infection, which favours persistence by limiting cell destruction involves complex interactions between all viral structural proteins.

  10. Canine adipose tissue-derived mesenchymal stem cells ameliorate severe acute pancreatitis by regulating T cells in rats

    PubMed Central

    Kim, Hyun-Wook; Song, Woo-Jin; Li, Qiang; Han, Sei-Myoung; Jeon, Kee-Ok; Park, Sang-Chul; Ryu, Min-Ok; Chae, Hyung-Kyu; Kyeong, Kweon

    2016-01-01

    Severe acute pancreatitis (SAP) is associated with systemic complications and high mortality rate in dogs. Mesenchymal stem cells (MSCs) have been investigated for their therapeutic potential in several inflammation models. In the present study, the effects of canine adipose tissue-derived (cAT)-MSCs in a rat model of SAP induced by retrograde injection of 3% sodium taurocholate solution into the pancreatic duct were investigated. cAT-MSCs labeled with dioctadecyl-3,3,3′-tetramethylindo-carbocyanine perchlorate (1 × 107 cells/kg) were systemically administered to rats and pancreatic tissue was collected three days later for histopathological, quantitative real-time polymerase chain reaction, and immunocytochemical analyses. Greater numbers of infused cAT-MSCs were detected in the pancreas of SAP relative to sham-operated rats. cAT-MSC infusion reduced pancreatic edema, inflammatory cell infiltration, and acinar cell necrosis, and decreased pancreatic expression of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-1β, -6, -12, -17, and -23 and interferon-γ, while stimulating expression of the anti-inflammatory cytokines IL-4 and IL-10 in SAP rats. Moreover, cAT-MSCs decreased the number of clusters of differentiation 3-positive T cells and increased that of forkhead box P3-positive T cells in the injured pancreas. These results indicate that cAT-MSCs can be effective as a cell-based therapeutic strategy for treatment of SAP in dogs. PMID:27297425

  11. Detection of circulating tumor cells using GeneScan analysis for antigen receptor gene rearrangements in canine lymphoma patients

    PubMed Central

    HIYOSHI-KANEMOTO, Saaya; GOTO-KOSHINO, Yuko; FUKUSHIMA, Kenjiro; TAKAHASHI, Masashi; KANEMOTO, Hideyuki; UCHIDA, Kazuyuki; FUJINO, Yasuhito; OHNO, Koichi; TSUJIMOTO, Hajime

    2016-01-01

    The presence of circulating tumor cells (CTCs) serves as a prognostic marker and indicator of disease relapse, as well as a means of evaluating treatment efficacy in human and canine lymphoma patients. As an extension of our previous study for the construction of clinically useful GeneScan system, we utilized the GeneScan system for detecting CTCs in canine lymphoma patients. Samples from the primary lesion and peripheral blood mononuclear cells (PBMCs) were obtained from 32 dogs with lymphoma at initial diagnosis. All samples were subjected to polymerase chain reaction (PCR) for antigen receptor gene rearrangements (PARR) followed by GeneScan analysis. Common clonal rearrangements with identical amplified fragments were detected in both the primary lesion and PBMCs in 19 of the 32 dogs (59.4%). However, the detection rate of CTCs varied among the anatomical classification of lymphoma studied. GeneScan analysis following PARR would facilitate studies on determining the clinical significance of CTCs in canine lymphoma patients. PMID:26888583

  12. VH1-44 gene usage defines a subset of canine B-cell lymphomas associated with better patient survival.

    PubMed

    Chen, Hsiao-Wei; Small, George W; Motsinger-Reif, Alison; Suter, Steven E; Richards, Kristy L

    2014-02-15

    The use of specific immunoglobulin heavy chain variable region (VH) genes has been associated with increased patient survival in human B-cell lymphomas (hBCL). Given the similarity of human and canine BCL (cBCL) in morphology and clinical treatment, we examined the choice of VH in cBCL and determined whether VH gene selection was a distinct feature associated with survival time in dogs. VH gene selection and mutational status in 52 cBCL, including 29 diffuse large B-cell lymphomas (cDLBCL, the most common subtype of cBCL), were analyzed by comparison with the 80 published canine germline VH gene sequences. We further examined the prognostic impact of the subgroups defined by these features on canine survival. We found that VH1-44 was preferentially expressed in the majority of the 52 cBCLs (60%) as well as in the majority of the cDLBCL subset (59%). VH1-44 gene expression was associated with a statistically better overall survival (p=0.039) in cBCL patients, as well as in the cDLBCL subset of patients (p=0.038). These findings suggest that VH gene selection in cBCL is not random and may therefore have functional implications for cBCL lymphomagenesis, in addition to being a useful prognostic biomarker.

  13. The radiosensitizing effect of the aurora kinase inhibitors, ENMD-2076, on canine mast cell tumours in vitro.

    PubMed

    Shiomitsu, K; Sajo, E; Rubin, C; Sehgal, I

    2016-03-01

    ENMD-2076 is an aurora kinase inhibitor that also has multi-target tyrosine kinase inhibitor properties. In this study, the mRNA and the protein expression of aurora-A and aurora-B were evaluated in three canine mast cell tumour cell lines. Dose-dependent cytotoxicity was seen in the cells treated, and it affected the cell cycle with cells in the G2/M phase being selectively killed. The cells were also evaluated for radiosensitivity with/without ENMD-2076, and radiosensitization was seen after 3 Gy and 6 Gy exposures with ENMD-2076 for 48 h. Protein expression of caspase-3 was gradually increased, and the expression intensity was highest at 24 h post irradiation in cells without ENMD-2076 treatment, which indicates that radiation exposure with ENMD-2076-induced cell death faster than radiation treatment alone. Our study results suggest the potential usefulness of treating canine mast cell tumours with aurora kinase inhibitors alone or in conjunction with radiation therapy.

  14. Injectable microcryogels reinforced alginate encapsulation of mesenchymal stromal cells for leak-proof delivery and alleviation of canine disc degeneration.

    PubMed

    Zeng, Yang; Chen, Chun; Liu, Wei; Fu, Qinyouen; Han, Zhihua; Li, Yaqian; Feng, Siyu; Li, Xiaokang; Qi, Chunxiao; Wu, Jianhong; Wang, Deli; Corbett, Christopher; Chan, Barbara P; Ruan, Dike; Du, Yanan

    2015-08-01

    In situ crosslinked thermo-responsive hydrogel applied for minimally invasive treatment of intervertebral disc degeneration (IVDD) may not prevent extrusion of cell suspension from injection site due to high internal pressure of intervertebral disc (IVD), causing treatment failure or osteophyte formation. In this study, mesenchymal stromal cells (MSCs) were encapsulated in alginate precursor and loaded into previously developed macroporous PGEDA-derived microcryogels (PMs) to form three-dimensional (3D) microscale cellular niches, enabling non-thermo-responsive alginate hydrogel to be injectable. The PMs reinforced alginate hydrogel showed superior elasticity compared to alginate hydrogel alone and could well protect encapsulated cells through injection. Chondrogenic committed MSCs in the injectable microniches expressed higher level of nucleus pulposus (NP) cell markers compared to 2D cultured cells. In an ex vivo organ culture model, injection of MSCs-laden PMs into NP tissue prevented cell leakage, improved cell retention and survival compared to free cell injection. In canine IVDD models, alleviated degeneration was observed in MSCs-laden PMs treated group after six months which was superior to other treated groups. Our results provide in-depth demonstration of injectable alginate hydrogel reinforced by PMs as a leak-proof cell delivery system for augmented regenerative therapy of IVDD in canine models.

  15. Specific cytotoxic T cells are found in the nonrejected kidneys of blood-transfused rats

    SciTech Connect

    Dallman, M.J.; Wood, K.J.; Morris, P.J.

    1987-02-01

    Preoperative, donor-specific blood transfusion leads to indefinite survival of rat renal allografts in the strain combinations used. /sup 51/Cr-release assays have shown that the level of specific cytotoxic effector activity in the grafts of transfused (nonrejected kidney) animals is very high and may equal or exceed that seen in the grafts of untreated (rejected kidney) recipients. Such cytotoxicity demonstrates specificity for the alloantigens of the kidney, is T cell-mediated, and may persist within the transplant.

  16. Serendipitous finding of transitional cell carcinoma of the kidney on bone and gallium imaging

    SciTech Connect

    Moreno, A.J.; Toney, M.A.; Griffith, J.C.; Rodriguez, A.A.; Turnbull, G.L. )

    1991-03-01

    A 50-year-old woman presented with low back pain. Bone scintigraphy showed a focus of increased activity in the upper pole of the left kidney. Subsequent Ga-67 citrate scintigraphy demonstrated this same abnormal focus as a region of increased activity. Ultrasonography showed a renal mass in the upper pole of the left kidney. At surgery a transitional cell carcinoma of the upper pole of the left kidney was found.

  17. Identification and quantitation of morphological cell types in electrophoretically separated human embryonic kidney cell cultures

    NASA Technical Reports Server (NTRS)

    Williams, K. B.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    Four major cell types were identified by phase microscopy in early passage human embryonic kidney cell cultures. They are small and large epithelioid, domed, and fenestrated cells. Fibroblasts are also present in some explants. The percent of each cell type changes with passage number as any given culture grows. As a general rule, the fraction of small epithelioid cells increases, while the fraction of fenestrated cells, always small, decreases further. When fibroblasts are present, they always increase in percentage of the total cell population. Electrophoretic separation of early passage cells showed that the domed cells have the highest electrophoretic mobility, fibroblasts have an intermediate high mobility, small epithelioid cells have a low mobility, broadly distributed, and fenestrated cells have the lowest mobility. All cell types were broadly distributed among electrophoretic subfractions, which were never pure but only enriched with respect to a given cell type.

  18. Establishment of a surgically induced cryptorchidism canine recipient model for spermatogonial stem cell transplantation

    PubMed Central

    Lee, Won-Young; Lee, Ran; Song, Hyuk; Hur, Tai-Young; Lee, Seunghoon; Ahn, Jiyun

    2016-01-01

    Transplantation of spermatogonial stem cells (SSCs) in experimental animal models has been used to study germ line stem cell biology and to produce transgenic animals. The species-specific recipient model preparation is important for the characterization of SSCs and the production of offspring. Here, we investigated the effects of surgically induced cryptorchidism in dog as a new recipient model for spermatogonial stem cell transplantation. Artificially unilateral or bilateral cryptorchidism was induced in ten mature male dogs by surgically returning the testis and epididymis to the abdominal cavity. The testes and epididymides were collected every week after the induction of artificial cryptorchidism (surgery) for one month. To determine the effect of surgical cryptorchidism, the seminiferous tubule diameter was measured and immunohistochemistry using PGP9.5 and GATA4 antibodies was analyzed. The diameters of the seminiferous tubules of abdominal testes were significantly reduced compared to those of the scrotal testes. Immunohistochemistry results showed that PGP9.5 positive undifferentiated spermatogonia were significantly reduced after surgical cryptorchidism induction, but there were no significant changes in GATA-4 positive sertoli cells. To evaluate the testis function recovery rate, orchiopexy was performed on two dogs after 30 days of bilateral cryptorchidism. In the orchiopexy group, SCP3 positive spermatocytes were detected, and spermatogenesis was recovered 8 weeks after orchiopexy. In this study, we provided optimum experimental conditions and time for surgical preparation of a recipient canine model for SSC transplantation. Additionally, our data will contribute to recipient preparation by using surgically induced cryptorchidism in non-rodent species. PMID:28053620

  19. Genomic copy number variation associated with clinical outcome in canine cutaneous mast cell tumors.

    PubMed

    Jark, Paulo C; Mundin, Deborah B P; de Carvalho, Marcio; Ferioli, Raquel B; Anai, Letícia A; Marchi, Fabio A; Rogatto, Silvia R; Laufer-Amorim, Renee; Tinucci-Costa, Mirela

    2017-04-01

    Mast cell tumors are the most common malignant cutaneous tumors in dogs. Although there are several prognostic factors involved, the clinical and biological behavior of this type of tumor varies greatly, making the best choice of treatment challenging. Molecular techniques can be used to evaluate a large number of genes involved in the neoplastic process and aid in the selection of candidate genes related to prognostic and predicting factors. Identification of the genes associated with tumor development and progression can be performed through the analysis of numerical and structural changes in DNA isolated from tumor cells by array comparative genomic hybridization (aCGH). The aim of this study was to compare copy number variations (CNVs) in cutaneous mast cell tumors of dogs that survived less than six (ST<6) and >12months (ST>12) from the date of diagnosis. Ten animals were used: four from Group ST>12 and six from Group ST<6. Genomic DNA was extracted, and aCGH was performed using Agilent Canine Genome CGH Microarray 4×180 (ID-252 552 - Agilent, USA). Data analysis was carried out using Nexus program version 5.0 (Biodiscovery, USA). The group ST>12 presented 11±3.3 CNVs, while the ST<6 group presented 85±38.5 CNVs. Regions of loss in PTEN and FAS as well as regions of gains in MAPK3, WNT5B, FGF, FOXM1 and RAD51 were detected in mast cell tumors with shorter survival times, and thus, worst prognoses, allowing for the identification of potential candidate genes for more detailed studies.

  20. Establishing the flow cytometric assessment of myeloid cells in kidney ischemia/reperfusion injury.

    PubMed

    Williams, Timothy M; Wise, Andrea F; Alikhan, Maliha A; Layton, Daniel S; Ricardo, Sharon D

    2014-03-01

    Polychromatic flow cytometry is a powerful tool for assessing populations of cells in the kidney through times of homeostasis, disease and tissue remodeling. In particular, macrophages have been identified as having central roles in these three settings. However, because of the plasticity of myeloid cells it has been difficult to define a specific immunophenotype for these cells in the kidney. This study developed a gating strategy for identifying and assessing monocyte and macrophage subpopulations, along with neutrophils and epithelial cells in the healthy kidney and following ischemia/reperfusion (IR) injury in mice, using antibodies against CD45, CD11b, CD11c, Ly6C, Ly6G, F4/80, CSF-1R (CD115), MHC class II, mannose receptor (MR or CD206), an alternatively activated macrophage marker, and the epithelial cell adhesion marker (EpCAM or CD326). Backgating analysis and assessment of autofluorescence was used to extend the knowledge of various cell types and the changes that occur in the kidney at various time-points post-IR injury. In addition, the impact of enzymatic digestion of kidneys on cell surface markers and cell viability was assessed. Comparisons of kidney myeloid populations were also made with those in the spleen. These results provide a useful reference for future analyses of therapies aimed at modulating inflammation and enhancing endogenous remodeling following kidney injury.

  1. In vitro safety assessment of food ingredients in canine renal proximal tubule cells.

    PubMed

    Koči, J; Jeffery, B; Riviere, J E; Monteiro-Riviere, N A

    2015-03-01

    In vitro models are useful tools to initially assess the toxicological safety hazards of food ingredients. Toxicities of cinnamaldehyde (CINA), cinnamon bark oil, lemongrass oil (LGO), thymol, thyme oil (TO), clove leaf oil, eugenol, ginger root extract (GRE), citric acid, guanosine monophosphate, inosine monophosphate and sorbose (SORB) were assessed in canine renal proximal tubule cells (CPTC) using viability assay and renal injury markers. At LC50, CINA was the most toxic (0.012mg/ml), while SORB the least toxic (>100mg/ml). Toxicities (LC50) of positive controls were as follows: 4-aminophenol (0.15mg/ml in CPTC and 0.083mg/ml in human PTC), neomycin (28.6mg/ml in CPTC and 27.1mg/ml in human PTC). XYL displayed lowest cytotoxic potency (LC50=82.7mg/ml in CPTC). In vivo renal injury markers in CPTC were not significantly different from controls. The LGO toxicity mechanism was analyzed using qPCR and electron microscopy. Out of 370 genes, 57 genes (15.4%) were significantly up (34, 9.1%) or down (23, 6.2%) regulated, with the most upregulated gene gsta3 (∼200-fold) and the most affected pathway being oxidative stress. LGO induced damage of mitochondria, phospholipid accumulation and lack of a brush border. Viability assays along with mechanistic studies in the CPTC model may serve as a valuable in vitro toxicity screening tool.

  2. Expression of Fibroblast Activating Protein and Correlation with Histological Grade, Mitotic Index and Ki67 Expression in Canine Mast Cell Tumours.

    PubMed

    Giuliano, A; Dos Santos Horta, R; Constantino-Casas, F; Hoather, T; Dobson, J

    2017-01-01

    Fibroblast activating protein (FAP) is a membrane serine protease expressed by activated fibroblasts, particularly tumour associated fibroblasts (TAFs). FAP expression has not been reported in canine mast cell tumours (MCTs). The objective of this study was to evaluate the expression of FAP in TAFs and its correlation with histological grade, mitotic index and Ki67 expression in canine MCTs. FAP expression was evaluated by immunohistochemistry (IHC) in 30 canine MCTs. Twenty-eight (90%) of the MCTs expressed FAP in the stroma, 16 cases showed low to intermediate FAP score and 14 cases had a high FAP score. FAP was correlated positively with both Patnaik (P = 0.007) and Kiupel (P = 0.008) grading systems, mitotic index (P = 0.0008) and Ki67 expression (P = 0.009). High stromal FAP expression could be a potential negative prognostic factor in canine MCTs.

  3. Radiosensitivity and capacity for radiation-induced sublethal damage repair of canine transitional cell carcinoma (TCC) cell lines.

    PubMed

    Parfitt, S L; Milner, R J; Salute, M E; Hintenlang, D E; Farese, J P; Bacon, N J; Bova, F J; Rajon, D A; Lurie, D M

    2011-09-01

    Understanding the inherent radiosensitivity and repair capacity of canine transitional cell carcinoma (TCC) can aid in optimizing radiation protocols to treat this disease. The objective of this study was to evaluate the parameters surviving fraction at 2 Gy (SF(2) ), α/β ratio and capacity for sublethal damage repair (SLDR) in response to radiation. Dose-response and split-dose studies were performed using the clonogenic assay. The mean SF(2) for three established TCC cell lines was high at 0.61. All the three cell lines exhibited a low to moderate α/β ratio, with the mean being 3.27. Two cell lines exhibited statistically increased survival at 4 and 24 h in the dose-response assay. Overall, our results indicate that the cell lines are moderately radioresistant, have a high repair capacity and behave similarly to a late-responding normal tissue. These findings indicate that the radiation protocols utilizing higher doses with less fractionation may be more effective for treating TCC.

  4. Just Look! Intravital Microscopy as the Best Means to Study Kidney Cell Death Dynamics.

    PubMed

    Schießl, Ina Maria; Hammer, Anna; Riquier-Brison, Anne; Peti-Peterdi, Janos

    2016-05-01

    Kidney cell death plays a key role in the progression of life-threatening renal diseases, such as acute kidney injury and chronic kidney disease. Injured and dying epithelial and endothelial cells take part in complex communication with the innate immune system, which drives the progression of cell death and the decrease in renal function. To improve our understanding of kidney cell death dynamics and its impact on renal disease, a study approach is needed that facilitates the visualization of renal function and morphology in real time. Intravital multiphoton microscopy of the kidney has been used for more than a decade and made substantial contributions to our understanding of kidney physiology and pathophysiology. It is a unique tool that relates renal structure and function in a time- and spatial-dependent manner. Basic renal function, such as microvascular blood flow regulation and glomerular filtration, can be determined in real time and homeostatic alterations, which are linked inevitably to cell death and can be depicted down to the subcellular level. This review provides an overview of the available techniques to study kidney dysfunction and inflammation in terms of cell death in vivo, and addresses how this novel approach can be used to improve our understanding of cell death dynamics in renal disease.

  5. The potential role of COX-2 in cancer stem cell-mediated canine mammary tumor initiation: an immunohistochemical study.

    PubMed

    Huang, Jian; Zhang, Di; Xie, Fuqiang; Lin, Degui

    2015-01-01

    Increasing evidence suggests that cancer stem cells (CSCs) are responsible for tumor initiation and maintenance. Additionally, it is becoming apparent that cyclooxygenase (COX) signaling is associated with canine mammary tumor development. The goals of the present study were to investigate COX-2 expression patterns and their effect on CSC-mediated tumor initiation in primary canine mammary tissues and tumorsphere models using immunohistochemistry. Patterns of COX-2, CD44, octamer-binding transcription factor (Oct)-3/4, and epidermal growth factor receptor (EGFR) expression were examined in malignant mammary tumor (MMT) samples and analyzed in terms of clinicopathological characteristics. COX-2 and Oct-3/4 expression was higher in MMTs compared to other histological samples with heterogeneous patterns. In MMTs, COX-2 expression correlated with tumor malignancy features. Significant associations between COX-2, CD44, and EGFR were observed in low-differentiated MMTs. Comparative analysis showed that the levels of COX-2, CD44, and Oct-3/4 expression varied significantly among TSs of three histological grades. Enhanced COX-2 staining was consistently observed in TSs. Similar levels of staining intensity were found for CD44 and Oct-3/4, but EGFR expression was weak. Our findings indicate the potential role of COX-2 in CSC-mediated tumor initiation, and suggest that COX-2 inhibition may help treat canine mammary tumors by targeting CSCs.

  6. Dynamic changes of Foxp3(+) regulatory T cells in spleen and brain of canine distemper virus-infected dogs.

    PubMed

    Qeska, V; Barthel, Y; Iseringhausen, M; Tipold, A; Stein, V M; Khan, M A; Baumgärtner, W; Beineke, A

    2013-12-15

    Canine distemper virus (CDV) infection causes immunosuppression and demyelinating leukoencephalitis in dogs. In viral diseases, an ambiguous function of regulatory T cells (Treg), with both beneficial effects by reducing immunopathology and detrimental effects by inhibiting antiviral immunity, has been described. However, the role of Treg in the pathogenesis of canine distemper remains unknown. In order to determine the effect of CDV upon immune homeostasis, the amount of Foxp3(+) Treg in spleen and brain of naturally infected dogs has been determined by immunohistochemistry. In addition, splenic cytokine expression has been quantified by reverse transcriptase polymerase chain reaction. Splenic depletion of Foxp3(+) Treg was associated with an increased mRNA-expression of tumor necrosis factor and decreased transcription of interleukin-2 in the acute disease phase, indicative of disturbed immunological counter regulation in peripheral lymphoid organs. In the brain, a lack of Foxp3(+) Treg in predemyelinating and early demyelinating lesions and significantly increased infiltrations of Foxp3(+) Treg in chronic demyelinating lesions were observed. In conclusion, disturbed peripheral and CNS immune regulation associated with a reduction of Treg represents a potential prerequisite for excessive neuroinflammation and early lesion development in canine distemper leukoencephalitis.

  7. Novel diabetes mellitus treatment: mature canine insulin production by canine striated muscle through gene therapy.

    PubMed

    Niessen, S J M; Fernandez-Fuente, M; Mahmoud, A; Campbell, S C; Aldibbiat, A; Huggins, C; Brown, A E; Holder, A; Piercy, R J; Catchpole, B; Shaw, J A M; Church, D B

    2012-07-01

    Muscle-targeted gene therapy using insulin genes has the potential to provide an inexpensive, low maintenance alternative or adjunctive treatment method for canine diabetes mellitus. A canine skeletal muscle cell line was established through primary culture, as well as through transdifferentiation of canine fibroblasts after infection with a myo-differentiation gene containing adenovirus vector. A novel mutant furin-cleavable canine preproinsulin gene insert (cppI4) was designed and created through de novo gene synthesis. Various cell lines, including the generated canine muscle cell line, were transfected with nonviral plasmids containing cppI4. Insulin and desmin immunostaining were used to prove insulin production by muscle cells and specific canine insulin ELISA to prove mature insulin secretion into the medium. The canine myoblast cultures proved positive on desmin immunostaining. All cells tolerated transfection with cppI4-containing plasmid, and double immunostaining for insulin and desmin proved present in the canine cells. Canine insulin ELISA assessment of medium of cppI4-transfected murine myoblasts and canine myoblast and fibroblast mixture proved presence of mature fully processed canine insulin, 24 and 48 h after transfection. The present study provides proof of principle that canine muscle cells can be induced to produce and secrete canine insulin on transfection with nonviral plasmid DNA containing a novel mutant canine preproinsulin gene that produces furin-cleavable canine preproinsulin. This technology could be developed to provide an alternative canine diabetes mellitus treatment option or to provide a constant source for background insulin, as well as C-peptide, alongside current treatment options.

  8. Electrophoretic characterization of aldehyde-fixed red blood cells, kidney cells, lynphocytes and chamber coatings

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Ground-based electrokinetic data on the electrophoresis flight experiment to be flown on the Apollo-Soyuz Test Project experiment MA-011 are stipulated. Aldehyde-fixed red blood cells, embryonic kidney cells and lymphocytes were evaluated by analytical particle electrophoresis. The results which aided in the interpretation of the final analysis of the MA-011 experiment are documented. The electrophoresis chamber surface modifications, the buffer, and the material used in the column system are also discussed.

  9. Autosomal mutants of proton-exposed kidney cells display frequent loss of heterozygosity on nonselected chromosomes.

    PubMed

    Grygoryev, Dmytro; Dan, Cristian; Gauny, Stacey; Eckelmann, Bradley; Ohlrich, Anna P; Connolly, Marissa; Lasarev, Michael; Grossi, Gianfranco; Kronenberg, Amy; Turker, Mitchell S

    2014-05-01

    High-energy protons found in the space environment can induce mutations and cancer, which are inextricably linked. We hypothesized that some mutants isolated from proton-exposed kidneys arose through a genome-wide incident that causes loss of heterozygosity (LOH)-generating mutations on multiple chromosomes (termed here genomic LOH). To test this hypothesis, we examined 11 pairs of nonselected chromosomes for LOH events in mutant cells isolated from the kidneys of mice exposed to 4 or 5 Gy of 1 GeV protons. The mutant kidney cells were selected for loss of expression of the chromosome 8-encoded Aprt gene. Genomic LOH events were also assessed in Aprt mutants isolated from isogenic cultured kidney epithelial cells exposed to 5 Gy of protons in vitro. Control groups were spontaneous Aprt mutants and clones isolated without selection from the proton-exposed kidneys or cultures. The in vivo results showed significant increases in genomic LOH events in the Aprt mutants from proton-exposed kidneys when compared with spontaneous Aprt mutants and when compared with nonmutant (i.e., nonselected) clones from the proton-exposed kidneys. A bias for LOH events affecting chromosome 14 was observed in the proton-induced Aprt mutants, though LOH for this chromosome did not confer increased radiation resistance. Genomic LOH events were observed in Aprt mutants isolated from proton-exposed cultured kidney cells; however the incidence was fivefold lower than in Aprt mutants isolated from exposed intact kidneys, suggesting a more permissive environment in the intact organ and/or the evolution of kidney clones prior to their isolation from the tissue. We conclude that proton exposure creates a subset of viable cells with LOH events on multiple chromosomes, that these cells form and persist in vivo, and that they can be isolated from an intact tissue by selection for a mutation on a single chromosome.

  10. Quantitative Three-Dimensional Tissue Cytometry to Study Kidney Tissue and Resident Immune Cells.

    PubMed

    Winfree, Seth; Khan, Shehnaz; Micanovic, Radmila; Eadon, Michael T; Kelly, Katherine J; Sutton, Timothy A; Phillips, Carrie L; Dunn, Kenneth W; El-Achkar, Tarek M

    2017-02-02

    Analysis of the immune system in the kidney relies predominantly on flow cytometry. Although powerful, the process of tissue homogenization necessary for flow cytometry analysis introduces bias and results in the loss of morphologic landmarks needed to determine the spatial distribution of immune cells. An ideal approach would support three-dimensional (3D) tissue cytometry: an automated quantitation of immune cells and associated spatial parameters in 3D image volumes collected from intact kidney tissue. However, widespread application of this approach is limited by the lack of accessible software tools for digital analysis of large 3D microscopy data. Here, we describe Volumetric Tissue Exploration and Analysis (VTEA) image analysis software designed for efficient exploration and quantitative analysis of large, complex 3D microscopy datasets. In analyses of images collected from fixed kidney tissue, VTEA replicated the results of flow cytometry while providing detailed analysis of the spatial distribution of immune cells in different regions of the kidney and in relation to specific renal structures. Unbiased exploration with VTEA enabled us to discover a population of tubular epithelial cells that expresses CD11C, a marker typically expressed on dendritic cells. Finally, we show the use of VTEA for large-scale quantitation of immune cells in entire human kidney biopsies. In summary, we show that VTEA is a simple and effective tool that supports unique digital interrogation and analysis of kidney tissue from animal models or biobanked human kidney biopsies. We have made VTEA freely available to interested investigators via electronic download.

  11. Microchimeric fetal cells are recruited to maternal kidney following injury and activate collagen type I transcription.

    PubMed

    Bou-Gharios, George; Amin, Farhana; Hill, Peter; Nakamura, Hiroyuki; Maxwell, Patrick; Fisk, Nicholas M

    2011-01-01

    Fetal cells enter the maternal circulation from the early first trimester of pregnancy, where they persist in tissue decades later. We investigated in mice whether fetal microchimeric cells (FMCs) can be detected in maternal kidney, and whether they play a role in kidney homeostasis. FMCs were identified in vivo in two models: one an adaptive model following unilateral nephrectomy, the other an injury via unilateral renal ischaemia reperfusion. Both models were carried out in mothers that had been mated with transgenic mice expressing luciferase transgene under the control of collagen type I, and had given birth to either 1 or 3 litters. FMCs were detected by Y-probe fluorescent in situ hybridization (FISH) and bioluminescence, and the cell number quantified by real-time polymerase chain reaction. In the adaptive model, the remaining kidney showed more cells by all 3 parameters compared with the nephrectomized kidney, while ischaemia reperfusion resulted in higher levels of FMC participation in injured compared to contralateral kidneys. Bioluminescence showed that FMCs switch on collagen type I transcription implicating mesenchymal lineage cells. After injury, Y-probe in situ hydridization was found mainly in the tubular epithelial network. Finally, we compared FMCs with bone marrow cells and found similar dynamics but altered distribution within the kidney. We conclude that FMCs (1) are long-term sequelae of pregnancy and (2) are recruited to the kidney as a result of injury or adaptation, where they activate the transcriptional machinery of matrix proteins.

  12. Cloning missy: obtaining multiple offspring of a specific canine genotype by somatic cell nuclear transfer.

    PubMed

    Hossein, Mohammad Shamim; Jeong, Yeon Woo; Park, Sun Woo; Kim, Joung Joo; Lee, Eugine; Ko, Kyeong Hee; Kim, Huen Suk; Kim, Yeun Wook; Hyun, Sang Hwan; Shin, Taeyoung; Hawthorne, Lou; Hwang, Woo Suk

    2009-03-01

    The present study was undertaken to evaluate two activation methods for somatic cell nuclear transfer (SCNT), namely, fusion and simultaneous activation (FSA, fusion medium contains calcium), versus fusion followed by chemical activation (F+CA, fusion medium does not contain calcium), and to evaluate the effects of parity of recipient dogs on the success of SCNT. Oocytes retrieved from outbred dogs were reconstructed with adult somatic cells collected from an 11-year-old female dog named Missy. In the FSA method, oocytes were fused and activated at the same time using two DC pulses of 1.75 kV/cm for 15 microsec. In the F+CA method, oocytes were fused with two DC pulses of 1.75 kV/cm for 15 microsec, and then activated 1 h after fusion by 10 microM calcium ionophore for 4 m and cultured for 4 h in 1.9 mM 6-dimethylaminopurine for postactivation. Activation method had a significant impact on the production efficiency of cloned dogs. There was a significant difference in full-term pregnancy rate and percentage of live puppies between the two methods (6.3% and 38.5% for FSA and F+CA, respectively). In our study, four out of five live offspring produced by F+CA survived versus FSA, which did not result in any surviving puppies. Overall, as few as 14 dogs and 54 reconstructed embryos were needed to produce a cloned puppy. In addition, the parity of recipient bitches had no effect on the success of SCNT in canine species. Both the nullipara and multipara bitches produced live puppies following SCNT-ET.

  13. The antagonist activity of lipid IVa on the stimulation by lipid A of TNF-alpha production from canine blood mononuclear cells.

    PubMed

    Takasawa, Kenji; Kano, Rui; Maruyama, Haruhiko; Hasegawa, Atsuhiko; Kamata, Hiroshi

    2011-09-15

    Lipid A, the active component of lipopolysaccharide (LPS), exists in the outer membrane of Gram-negative bacteria and binds to the Toll-like receptor 4 (TLR4) and MD-2 complex. On the other hand, the synthetic precursor of Escherichia coli lipid A, tetraacylated lipid IVa, is an agonist for TLR4 and MD-2 complex in murine, equine and feline cells but is an antagonist for lipid A in human cells. The aim of the study was to examine the function of canine Toll-like receptor 4 (TLR4) and MD-2 complex on canine blood mononuclear cells (BMC), by analyzing lipid A- or lipid IVa-induction of TNF-α production from these cells in order to understand canine innate immune system. After 5-h culture of canine BMC with lipid A (lipid A culture) or lipid IVa (lipid IVa culture), the TNF-α, as determined by ELISA, had increased in the supernatants of the lipid A cultures in a dose-dependent manner, whereas the TNF-α was undetectable in supernatant of lipid IVa-treated cultures. The TNF-α was statistically significantly different between the lipid A and lipid IVa cultures (100 and 1000 ng/ml). TNF-α production from canine BMC was inhibited, in a lipid IVa-dose-dependent manner, when the BMC were pre-cultured with lipid IVa for 60 min and then cultured with lipid A for 5h, while in control BMC cultures production if TNF-α was unchanged. These results indicate that the TNF-α production stimulated by lipid A was competed out by pre-exposing the BMC to lipid IVa. Thus, lipid A is an agonist for TNF-α production in canine BMC, whereas lipid IVa appears to be an antagonist against this lipid A stimulation of canine BMC.

  14. Plant recombinant erythropoietin attenuates inflammatory kidney cell injury.

    PubMed

    Conley, Andrew J; Mohib, Kanishka; Jevnikar, Anthony M; Brandle, Jim E

    2009-02-01

    Human erythropoietin (EPO) is a pleiotropic cytokine with remarkable tissue-protective activities in addition to its well-established role in red blood cell production. Unfortunately, conventional mammalian cell cultures are unlikely to meet the anticipated market demands for recombinant EPO because of limited capacity and high production costs. Plant expression systems may address these limitations to enable practical, cost-effective delivery of EPO in tissue injury prevention therapeutics. In this study, we produced human EPO in tobacco and demonstrated that plant-derived EPO had tissue-protective activity. Our results indicated that targeting to the endoplasmic reticulum (ER) provided the highest accumulation levels of EPO, with a yield approaching 0.05% of total soluble protein in tobacco leaves. The codon optimization of the human EPO gene for plant expression had no clear advantage; furthermore, the human EPO signal peptide performed better than a tobacco signal peptide. In addition, we found that glycosylation was essential for the stability of plant recombinant EPO, whereas the presence of an elastin-like polypeptide fusion had a limited positive impact on the level of EPO accumulation. Confocal microscopy showed that apoplast and ER-targeted EPO were correctly localized, and N-glycan analysis demonstrated that complex plant glycans existed on apoplast-targeted EPO, but not on ER-targeted EPO. Importantly, plant-derived EPO had enhanced receptor-binding affinity and was able to protect kidney epithelial cells from cytokine-induced death in vitro. These findings demonstrate that tobacco plants may be an attractive alternative for the production of large amounts of biologically active EPO.

  15. The V domain of dog PVRL4 (nectin-4) mediates canine distemper virus entry and virus cell-to-cell spread

    SciTech Connect

    Delpeut, Sebastien; Noyce, Ryan S.; Richardson, Christopher D.

    2014-04-15

    The entry of canine distemper virus (CDV) is a multistep process that involves the attachment of CDV hemagglutinin (H) to its cellular receptor, followed by fusion between virus and cell membranes. Our laboratory recently identified PVRL4 (nectin-4) to be the epithelial receptor for measles and canine distemper viruses. In this study, we demonstrate that the V domain of PVRL4 is critical for CDV entry and virus cell-to-cell spread. Furthermore, four key amino acid residues within the V domain of dog PVRL4 and two within the CDV hemagglutinin were shown to be essential for receptor-mediated virus entry. - Highlights: • PVRL4 (nectin-4) is the epithelial cell receptor for measles and canine distemper viruses. • V domain of PVRL4 is critical for CDV entry, cell-to-cell spread, and syncytia formation. • Chimeric PVRL1 backbone substituted with the V domain of PVRL4 can function as a receptor. • Amino acids (F132/P133/A134/G135) within the V domain are essential for PVRL4 receptor activity. • Amino acids (P493/Y539) within CDV H protein are essential for PVRL4 receptor interaction.

  16. Canine cutaneous histiocytoma is an epidermotropic Langerhans cell histiocytosis that expresses CD1 and specific beta 2-integrin molecules.

    PubMed Central

    Moore, P. F.; Schrenzel, M. D.; Affolter, V. K.; Olivry, T.; Naydan, D.

    1996-01-01

    Canine cutaneous histiocytoma (CCH) is a common, benign neoplasm of the dog. Histiocytomas most commonly occur as solitary lesions that undergo spontaneous regression. The age-specific incidence rate for histiocytomas drops precipitously after 3 years, although histiocytomas occur in dogs of all ages. Langerhans cells (LCs) in humans and dogs express abundant major histocompatibility complex class II molecules and a variety of leukocyte antigens characteristic of dendritic cell differentiation including CD1a, CD1b, CD1c, and CD11c. The immunophenotype of CCH resembled that of cutaneous LCs by virtue of the expression of CD1 molecules (CD1a, -b, and -c), CD11c, and major histocompatibility complex class II. Furthermore, histiocytoma cells had a tropism for epidermis, which was also consistent with an epidermal LC lineage. The expression of adhesion molecules such as CD11b (variable), CD44, CD54 (ICAM-1), and CD49d (VLA-4) in CCH indicated that the infiltrating cells had some of the characteristics of activated LCs, as these molecules are not expressed by normal, resting canine epidermal LCs. CCH did not express Thy-1 or CD4. Thy-1 expression is a characteristic of human and canine dermal dendrocytes, which are perivascular dendritic antigen-presenting cells closely related to epidermal LCs. CD4 expression is prevalent in human LC histiocytosis, and in this respect CCH differed from human LC histiocytosis. Here we demonstrate that CCH is a localized form of self-limiting LC histiocytosis, which predominantly expresses an epidermal LC phenotype. CCH occurs as solitary or, less commonly, as multiple cutaneous nodules or plaques, which rarely may extend beyond the skin to local lymph nodes. Regression of CCH occurs spontaneously in the vast majority of cases in primary and secondary sites, and is mediated by CD8+ alpha beta T cells. The high frequency of CCH within the general canine population offers the potential that the dog may provide an interesting model system to

  17. Apoptosis induced by hematoporphyrin monomethyl ether combined with He-Ne laser irradiation in vitro on canine breast cancer cells.

    PubMed

    Liu, Yun; Ma, Xing Q; Jin, Peng; Li, Hua T; Zhang, Rong R; Ren, Xiao L; Wang, Hong B; Tang, Damu; Tian, Wen R

    2011-06-01

    Hematoporphyrin monomethyl ether (HMME) is a novel and promising porphyrin-related photosensitizer for photodynamic therapy (PDT). The aim of this study was to investigate HMME-induced apoptosis in CHMm cells, a canine breast cancer cell line. CHMm cells were treated with HMME and a He-Ne laser at a wavelength of 632.8 nm. Cell viability was determined using the trypan blue exclusion assay. Apoptosis was analyzed using Hoechst 33258, AO/EB, Annexin V/PI staining and single-cell gel electrophoresis (comet assay). Apoptotic morphology was further confirmed by Giemsa staining and transmission electron microscopy. Rates of apoptosis increased following PDT-HMME treatment in a time-dependent manner. Taken together, these results demonstrated that apoptosis plays a major role in PDT-HMME-induced reduction in the viability of CHMm cells.

  18. Acute Kidney Injury in Hematopoietic Stem Cell Transplantation: A Review

    PubMed Central

    Gupta, Mohit; Manu, Gurusidda; Kwatra, Shivani; Owusu, Osei-Tutu

    2016-01-01

    Hematopoietic stem cell transplantation (HSCT) is a highly effective treatment strategy for lymphoproliferative disorders and bone marrow failure states including aplastic anemia and thalassemia. However, its use has been limited by the increased treatment related complications, including acute kidney injury (AKI) with an incidence ranging from 20% to 73%. AKI after HSCT has been associated with an increased risk of mortality. The incidence of AKI reported in recipients of myeloablative allogeneic transplant is considerably higher in comparison to other subclasses mainly due to use of cyclosporine and development of graft-versus-host disease (GVHD) in allogeneic groups. Acute GVHD is by itself a major independent risk factor for the development of AKI in HSCT recipients. The other major risk factors are sepsis, nephrotoxic medications (amphotericin B, acyclovir, aminoglycosides, and cyclosporine), hepatic sinusoidal obstruction syndrome (SOS), thrombotic microangiopathy (TMA), marrow infusion toxicity, and tumor lysis syndrome. The mainstay of management of AKI in these patients is avoidance of risk factors contributing to AKI, including use of reduced intensity-conditioning regimen, close monitoring of nephrotoxic medications, and use of alternative antifungals for prophylaxis against infection. Also, early identification and effective management of sepsis, tumor lysis syndrome, marrow infusion toxicity, and hepatic SOS help in reducing the incidence of AKI in HSCT recipients. PMID:27885340

  19. Morphology of human embryonic kidney cells in culture after space flight

    NASA Technical Reports Server (NTRS)

    Todd, P.; Kunze, M. E.; Williams, K.; Morrison, D. R.; Lewis, M. L.; Barlow, G. H.

    1985-01-01

    The ability of human embyronic kidney cells to differentiate into small epithelioid, large epithelioid, domed, and fenestrated morphological cell types following space flight is examined. Kidney cells exposed to 1 day at 1 g, then 1 day in orbit, and a 12 minute passage through the electrophoretic separator are compared with control cultures. The data reveal that 70 percent of small epithelioid, 16 percent of large epithelioid, 9 percent of dome-forming, and 5 percent of fenestrated cells formed in the space exposed cells; the distributions correlate well with control data. The formation of domed cells from cells cultured from low electrophoretic mobility fractions and small epithelioid cells from high mobility fractions is unaffected by space flight conditions. It is concluded that storage under microgravity conditions does not influence the morphological differentiation of human embryonic kidney cells in low-passage culture.

  20. Thimerosal induces apoptotic and fibrotic changes to kidney epithelial cells in vitro.

    PubMed

    Carneiro, Maria Fernanda Hornos; Morais, Christudas; Small, David M; Vesey, David A; Barbosa, Fernando; Gobe, Glenda C

    2015-12-01

    Thimerosal is an ethyl mercury-containing compound used mainly in vaccines as a bactericide. Although the kidney is a key target for mercury toxicity, thimerosal nephrotoxicity has not received the same attention as other mercury species. The aim of this study was to determine the potential cytotoxic mechanisms of thimerosal on human kidney cells. Human kidney proximal tubular epithelial (HK2) cells were exposed for 24 h to thimerosal (0-2 µM), and assessed for cell viability, apoptosis, and cell proliferation; expression of proteins Bax, nuclear factor-κB subunits, and transforming growth factor-β1 (TGFβ1); mitochondrial health (JC-1, MitoTracker Red CMXRos); and fibronectin levels (enzyme-linked immunosorbent assay). Thimerosal diminished HK2 cell viability and mitosis, promoted apoptosis, impaired the mitochondrial permeability transition, enhanced Bax and TGFβ1 expression, and augmented fibronectin secretion. This is the first report about kidney cell death and pro-fibrotic mechanisms promoted by thimerosal. Collectively, these in vitro results demonstrate that (1) thimerosal induces kidney epithelial cell apoptosis via upregulating Bax and the mitochondrial apoptotic pathway, and (2) thimerosal is a potential pro-fibrotic agent in human kidney cells. We suggest that new evidence on toxicity as well as continuous surveillance in terms of fibrogenesis is required concerning thimerosal use.

  1. Development of high-content assays for kidney progenitor cell expansion in transgenic zebrafish.

    PubMed

    Sanker, Subramaniam; Cirio, Maria Cecilia; Vollmer, Laura L; Goldberg, Natasha D; McDermott, Lee A; Hukriede, Neil A; Vogt, Andreas

    2013-12-01

    Reactivation of genes normally expressed during organogenesis is a characteristic of kidney regeneration. Enhancing this reactivation could potentially be a therapeutic target to augment kidney regeneration. The inductive events that drive kidney organogenesis in zebrafish are similar to the initial steps in mammalian kidney organogenesis. Therefore, quantifying embryonic signals that drive zebrafish kidney development is an attractive strategy for the discovery of potential novel therapeutic modalities that accelerate kidney regeneration. The Lim1 homeobox protein, Lhx1, is a marker of kidney development that is also expressed in the regenerating kidneys after injury. Using a fluorescent Lhx1a-EGFP transgene whose phenotype faithfully recapitulates that of the endogenous protein, we developed a high-content assay for Lhx1a-EGFP expression in transgenic zebrafish embryos employing an artificial intelligence-based image analysis method termed cognition network technology (CNT). Implementation of the CNT assay on high-content readers enabled automated real-time in vivo time-course, dose-response, and variability studies in the developing embryo. The Lhx1a assay was complemented with a kidney-specific secondary CNT assay that enables direct measurements of the embryonic renal tubule cell population. The integration of fluorescent transgenic zebrafish embryos with automated imaging and artificial intelligence-based image analysis provides an in vivo analysis system for structure-activity relationship studies and de novo discovery of novel agents that augment innate regenerative processes.

  2. Expression of claudins, occludin, junction adhesion molecule A and zona occludens 1 in canine organs

    PubMed Central

    Ahn, Changhwan; Shin, Da-Hye; Lee, Dongoh; Kang, Su-Myung; Seok, Ju-Hyung; Kang, Hee Young; Jeung, Eui-Bae

    2016-01-01

    Tight junctions are the outermost structures of intercellular junctions and are classified as transmembrane proteins. These factors form selective permeability barriers between cells, act as paracellular transporters and regulate structural and functional polarity of cells. Although tight junctions have been previously studied, comparison of the transcriptional-translational levels of these molecules in canine organs remains to be investigated. In the present study, organ-specific expression of the tight junction proteins, claudin, occludin, junction adhesion molecule A and zona occludens 1 was examined in the canine duodenum, lung, liver and kidney. Results of immunohistochemistry analysis demonstrated that the tight junctions were localized in intestinal villi and glands of the duodenum, bronchiolar epithelia and alveolar walls of the lung, endometrium and myometrium of the hepatocytes, and the distal tubules and glomeruli of the kidney. These results suggest that tight junctions are differently expressed in organs, and therefore may be involved in organ-specific functions to maintain physiological homeostasis. PMID:27600198

  3. Immunophenotypical characterization of canine mesenchymal stem cells from perivisceral and subcutaneous adipose tissue by a species-specific panel of antibodies.

    PubMed

    Ivanovska, Ana; Grolli, Stefano; Borghetti, Paolo; Ravanetti, Francesca; Conti, Virna; De Angelis, Elena; Macchi, Francesca; Ramoni, Roberto; Martelli, Paolo; Gazza, Ferdinando; Cacchioli, Antonio

    2017-02-27

    Immunophenotypical characterization of mesenchymal stem cells is fundamental for the design and execution of sound experimental and clinical studies. The scarce availability of species-specific antibodies for canine antigens has hampered the immunophenotypical characterization of canine mesenchymal stem cells (MSC). The aim of this study was to select a panel of species-specific direct antibodies readily useful for canine mesenchymal stem cells characterization. They were isolated from perivisceral and subcutaneous adipose tissue samples collected during regular surgeries from 8 dogs. Single color flow cytometric analysis of mesenchymal stem cells (P3) deriving from subcutaneous and perivisceral adipose tissue with a panel of 7 direct anti-canine antibodies revealed two largely homogenous cell populations with a similar pattern: CD29(+), CD44(+), CD73(+), CD90(+), CD34(-), CD45(-) and MHC-II(-) with no statistically significant differences among them. Antibody reactivity was demonstrated on canine peripheral blood mononuclear cells. The similarities are reinforced by their in vitro cell morphology, trilineage differentiation ability and RT-PCR analysis (CD90(+), CD73(+), CD105(+), CD44(+), CD13(+), CD29(+), Oct-4(+) gene and CD31(-) and CD45(-) expression). Our results report for the first time a comparison between the immunophenotypic profile of canine MSC deriving from perivisceral and subcutaneous adipose tissue. The substantial equivalence between the two populations has practical implication on clinical applications, giving the opportunity to choose the source depending on the patient needs. The results contribute to routine characterization of MSC populations grown in vitro, a mandatory process for the definition of solid and reproducible laboratory and therapeutic procedures.

  4. Intracellular calcium in canine cultured tracheal smooth muscle cells is regulated by M3 muscarinic receptors.

    PubMed Central

    Yang, C. M.; Yo, Y. L.; Wang, Y. Y.

    1993-01-01

    1. The regulation of cytosolic Ca2+ concentrations ([Ca2+]i) during exposure to carbachol was measured directly in canine cultured tracheal smooth muscle cells (TSMCs) loaded with fura-2. Stimulation of muscarinic cholinoceptors (muscarinic AChRs) by carbachol produced a dose-dependent rise in [Ca2+]i which was followed by a stable plateau phase. The EC50 values of carbachol for the peak and sustained plateau responses were 0.34 and 0.33 microM, respectively. 2. Atropine (10 microM) prevented all the responses to carbachol, and when added during a response to carbachol, significantly, but not completely decreased [Ca2+]i within 5 s. Therefore, the changes in [Ca2+]i by carbachol were mediated through the muscarinic AChRs. 3. AF-DX 116 (a selective M2 antagonist) and 4-diphenylacetoxy-N-methylpiperidine (4-DAMP, a selective M3 antagonist) inhibited the carbachol-stimulated increase in [Ca2+]i with pKB values of 6.4 and 9.4, respectively, corresponding to low affinity for AF-DX 119 and high affinity for 4-DAMP in antagonizing this response. 4. The plateau elevation of [Ca2+]i was dependent on the presence of external Ca2+. Removal of Ca2+ by the addition of 2 mM EGTA caused the [Ca2+]i to decline rapidly to the resting level. In the absence of external Ca2+, only an initial transient peak of [Ca2+]i was seen which then declined to the resting level; the sustained elevation of [Ca2+]i could then be evoked by the addition of Ca2+ (1.8 mM) in the continued presence of carbachol.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8298822

  5. FGF2 and EGF Are Required for Self-Renewal and Organoid Formation of Canine Normal and Tumor Breast Stem Cells.

    PubMed

    Cocola, Cinzia; Molgora, Stefano; Piscitelli, Eleonora; Veronesi, Maria Cristina; Greco, Marianna; Bragato, Cinzia; Moro, Monica; Crosti, Mariacristina; Gray, Brian; Milanesi, Luciano; Grieco, Valeria; Luvoni, Gaia Cecilia; Kehler, James; Bellipanni, Gianfranco; Reinbold, Rolland; Zucchi, Ileana; Giordano, Antonio

    2017-03-01

    Recent studies suggest that human tumors are generated from cancer cells with stem cell (SC) properties. Spontaneously occurring cancers in dogs contain a diversity of cells that like for human tumors suggest that certain canine tumors are also generated from cancer stem cells (CSCs). CSCs, like normal SCs, have the capacity for self-renewal as mammospheres in suspension cultures. To understand how cells with SC properties contribute to canine mammary gland tumor development and progression, comparative analysis between normal SCs and CSCs, obtained from the same individual, is essential. We have utilized the property of sphere formation to develop culture conditions for propagating stem/progenitor cells from canine normal and tumor tissue. We show that cells from dissociated mammospheres retain sphere reformation capacity for several serial passages and have the capacity to generate organoid structures ex situ. Utilizing various culture conditions for passaging SCs and CSCs, fibroblast growth factor 2 (FGF2) and epidermal growth factor (EGF) were found to positively or negatively regulate mammosphere regeneration, organoid formation, and multi-lineage differentiation potential. The response of FGF2 and EGF on SCs and CSCs was different, with increased FGF2 and EGF self-renewal promoted in SCs and repressed in CSCs. Our protocol for propagating SCs from normal and tumor canine breast tissue will provide new opportunities in comparative mammary gland stem cell analysis between species and anticancer treatment and therapies for dogs. J. Cell. Biochem. 118: 570-584, 2017. © 2016 Wiley Periodicals, Inc.

  6. Canine Distemper

    MedlinePlus

    ... and, often, the nervous systems of puppies and dogs. The virus also infects wild canids (e.g. ... How is Canine Distemper virus spread? Puppies and dogs usually become infected through airborne exposure to the ...

  7. Canine lymphoma.

    PubMed

    Madewell, B R

    1985-07-01

    This article presents an overview of the literature regarding canine malignant lymphoma. It includes a discussion of etiology, classification, systemic manifestations of disease, therapy, and supportive care for patient management.

  8. Results of computer calculations for a simulated distribution of kidney cells

    NASA Technical Reports Server (NTRS)

    Micale, F. J.

    1985-01-01

    The results of computer calculations for a simulated distribution of kidney cells are given. The calculations were made for different values of electroosmotic flow, U sub o, and the ratio of sample diameter to channel diameter, R.

  9. Calcium oxalate calculi-induced clusterin expression in kidney.

    PubMed

    Li, Jin-Yi; Liu, Junjiang; Jiang, Junyi; Pumill, Chris; Elaiho, Cordelia; Zhang, Yunxia; Li, Shoubin; Zhou, Tie

    2015-10-01

    The aim of the study was to investigate clusterin expression in the kidney and evaluate the urine clusterin level in the kidney stone formers. (1) In vitro, we treated the Madin-Darby canine kidney (MDCK) cell line with different concentrations of calcium oxalate (CaOx), and then the clusterin protein expression in the cells was evaluated by Western blotting. (2) Kidney stone patients who received percutaneous nephrolithotomy were enrolled in our study. Urine samples were collected before surgery, the kidney punctured to obtain kidney tissue guided by ultrasound intraoperatively. Clusterin expression in the human kidney tissue was evaluated by immunochemistry. The urine clusterin level was determined by enzyme-linked immunosorbent assay. Non-kidney disease subjects were chosen as controls. In vitro, the clusterin expression was up-regulated in the MDCK cells induced by CaOx. The study included 49 patients and 41 non-kidney disease subjects. All calculi were composed of calcium oxalate monohydrate or calcium oxalate dihydrate and a few also contained protein or uric acid. Mean ± SD urine clusterin level was 17.47 ± 18.61 μg/ml in patients, and 3.31 ± 5.42 μg/ml in non-kidney disease subjects, respectively (p < 0.001). Immunohistochemistry revealed the clusterin was located in the cytoplasm of the renal distal and collecting tubular epithelial cells. Also the tissue clusterin expression increased significantly in the kidney stone formers compared to the control groups (p = 0.001). CaOx could induce clusterin expression in renal tubular cells, and increase clusterin levels in the kidney and urine from the kidney stone formers.

  10. Canine and feline parvoviruses preferentially recognize the non-human cell surface sialic acid N-glycolylneuraminic acid

    SciTech Connect

    Löfling, Jonas; Michael Lyi, Sangbom; Parrish, Colin R.; Varki, Ajit

    2013-05-25

    Feline panleukopenia virus (FPV) is a pathogen whose canine-adapted form (canine parvovirus (CPV)) emerged in 1978. These viruses infect by binding host transferrin receptor type-1 (TfR), but also hemagglutinate erythrocytes. We show that hemagglutination involves selective recognition of the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc) but not N-acetylneuraminic acid (Neu5Ac), which differs by only one oxygen atom from Neu5Gc. Overexpression of α2-6 sialyltransferase did not change binding, indicating that both α2-3 and α2-6 linkages are recognized. However, Neu5Gc expression on target cells did not enhance CPV or FPV infection in vitro. Thus, the conserved Neu5Gc-binding preference of these viruses likely plays a role in the natural history of the virus in vivo. Further studies must clarify relationships between virus infection and host Neu5Gc expression. As a first step, we show that transcripts of CMAH (which generates Neu5Gc from Neu5Ac) are at very low levels in Western dog breed cells. - Highlights: ► Feline and canine parvoviruses recognize Neu5Gc but not Neu5Ac, which differ by one oxygen atom. ► The underlying linkage of these sialic acids does not affect recognition. ► Induced Neu5Gc expression on target cells that normally express Neu5Ac did not enhance infection. ► Thus, the conserved binding preference plays an important yet unknown role in in vivo infections. ► Population and breed variations in Neu5Gc expression occur, likely by regulating the gene CMAH.

  11. Human skin carcinoma arising from kidney transplant-derived tumor cells.

    PubMed

    Verneuil, Laurence; Varna, Mariana; Ratajczak, Philippe; Leboeuf, Christophe; Plassa, Louis-François; Elbouchtaoui, Morad; Schneider, Pierre; Sandid, Wissam; Lebbé, Celeste; Peraldi, Marie-Noelle; Sigaux, François; de Thé, Hugues; Janin, Anne

    2013-09-01

    Tumor cells with donor genotype have been identified in human skin cancer after allogeneic transplantation; however, the donor contribution to the malignant epithelium has not been established. Kidney transplant recipients have an increased risk of invasive skin squamous cell carcinoma (SCC), which is associated with accumulation of the tumor suppressor p53 and TP53 mutations. In 21 skin SCCs from kidney transplant recipients, we systematically assessed p53 expression and donor/recipient origin in laser-microdissected p53+ tumor cells. In one patient, molecular analyses demonstrated that skin tumor cells had the donor genotype and harbored a TP53 mutation in codon 175. In a kidney graft biopsy performed 7 years before the skin SCC diagnosis, we found p53+ cells in the renal tubules. We identified the same TP53 mutation in these p53+ epithelial cells from the kidney transplant. These findings provide evidence for a donor epithelial cell contribution to the malignant skin epithelium in the recipient in the setting of allogeneic kidney transplantation. This finding has theoretical implications for cancer initiation and progression and clinical implications in the context of prolonged immunosuppression and longer survival of kidney transplant patients.

  12. Human skin carcinoma arising from kidney transplant–derived tumor cells

    PubMed Central

    Verneuil, Laurence; Varna, Mariana; Ratajczak, Philippe; Leboeuf, Christophe; Plassa, Louis-François; Elbouchtaoui, Morad; Schneider, Pierre; Sandid, Wissam; Lebbé, Celeste; Peraldi, Marie-Noelle; Sigaux, François; de Thé, Hugues; Janin, Anne

    2013-01-01

    Tumor cells with donor genotype have been identified in human skin cancer after allogeneic transplantation; however, the donor contribution to the malignant epithelium has not been established. Kidney transplant recipients have an increased risk of invasive skin squamous cell carcinoma (SCC), which is associated with accumulation of the tumor suppressor p53 and TP53 mutations. In 21 skin SCCs from kidney transplant recipients, we systematically assessed p53 expression and donor/recipient origin in laser-microdissected p53+ tumor cells. In one patient, molecular analyses demonstrated that skin tumor cells had the donor genotype and harbored a TP53 mutation in codon 175. In a kidney graft biopsy performed 7 years before the skin SCC diagnosis, we found p53+ cells in the renal tubules. We identified the same TP53 mutation in these p53+ epithelial cells from the kidney transplant. These findings provide evidence for a donor epithelial cell contribution to the malignant skin epithelium in the recipient in the setting of allogeneic kidney transplantation. This finding has theoretical implications for cancer initiation and progression and clinical implications in the context of prolonged immunosuppression and longer survival of kidney transplant patients. PMID:23979160

  13. Interspecies somatic cell nucleus transfer with porcine oocytes as recipients: A novel bioassay system for assessing the competence of canine somatic cells to develop into embryos.

    PubMed

    Sugimura, S; Narita, K; Yamashiro, H; Sugawara, A; Shoji, T; Terashita, Y; Nishimori, K; Konno, T; Yoshida, M; Sato, E

    2009-09-01

    Interspecies somatic cell nucleus transfer (iSCNT) could be a useful bioassay system for assessing the ability of mammalian somatic cells to develop into embryos. To examine this possibility, we performed canine iSCNT using porcine oocytes, allowed to mature in vitro, as recipients. Canine fibroblasts from the tail tips and dewclaws of a female poodle (Fp) and a male poodle (Mp) were used as donors. We demonstrated that the use of porcine oocytes induced blastocyst formation in the iSCNT embryos cultured in porcine zygote medium-3. In Fp and Mp, the rate of blastocyst formation from cleaved embryos (Fp: 6.3% vs. 22.4%; and Mp: 26.1% vs. 52.4%) and the number of cells at the blastocyst stage (Fp: 30.7 vs. 60.0; and Mp: 27.2 vs. 40.1) were higher in the embryos derived from dewclaw cells than in those derived from tail-tip cells (P<0.05). The use of donor cells of any type in later passages decreased the rate of blastocyst formation. Treatment with trichostatin-A did not improve the rate of blastocyst formation from cleaved dewclaw cell-derived embryos but did so in the embryos derived from the tail-tip cells of Fp. Only blastocysts derived from dewclaw cells of Mp developed outgrowths. However, outgrowth formation was retrieved in the embryos derived from dewclaw cells of Fp by aggregation at the 4-cell stage. We inferred that iSCNT performed using porcine oocytes as recipients could represent a novel bioassay system for evaluating the developmental competence of canine somatic cells.

  14. Kidney Dysplasia

    MedlinePlus

    ... Disease Ectopic Kidney Medullary Sponge Kidney Kidney Dysplasia Kidney Dysplasia What is kidney dysplasia? Kidney dysplasia is a condition in which ... Kidney dysplasia in one kidney What are the kidneys and what do they do? The kidneys are ...

  15. Renal cell carcinoma in kidney allografts: histologic types, including biphasic papillary carcinoma.

    PubMed

    Troxell, Megan L; Higgins, John P

    2016-11-01

    Kidney transplant recipients are at increased risk for malignancy, with about 5% incidence of cancer in native end-stage kidneys. Carcinoma in the renal allograft is far less common. Prior studies have demonstrated a propensity for renal cell carcinomas (RCCs) of papillary subtypes in end-stage kidneys, and perhaps in allograft kidneys, but most allograft studies lack detailed pathologic review and predate the current classification system. We reviewed our experience with renal carcinoma in kidney allografts at 2 academic centers applying the International Society of Urological Pathology classification, informed by immunohistochemistry. The incidence of renal allograft carcinoma was about 0.26% in our population. Of 12 allograft carcinomas, 6 were papillary (50%), 4 were clear cell (33%), 1 was clear cell (tubulo)papillary, and 1 chromophobe. Two of the papillary carcinomas had distinctive biphasic glomeruloid architecture matching the newly named "biphasic squamoid alveolar" pattern and were difficult to classify on core biopsies. The 2 cell types had different immunophenotypes in our hands (eosinophilic cells: RCC-/CK34betaE12+ weight keratin +/cyclin D1+; clear cells: RCC+/cytokeratin high molecular weight negative to weak/cyclin D1-). None of the patients experienced cancer recurrences or metastasis. Our study confirms the predilection for papillary RCCs in kidney allografts and highlights the occurrence of rare morphologic variants. Larger studies are needed with careful pathologic review, which has been lacking in the literature.

  16. Follicular T helper cells and humoral reactivity in kidney transplant patients

    PubMed Central

    de Graav, G N; Dieterich, M; Hesselink, D A; Boer, K; Clahsen-van Groningen, M C; Kraaijeveld, R; Litjens, N H R; Bouamar, R; Vanderlocht, J; Tilanus, M; Houba, I; Boonstra, A; Roelen, D L; Claas, F H J; Betjes, M G H; Weimar, W; Baan, C C

    2015-01-01

    Memory B cells play a pivotal role in alloreactivity in kidney transplantation. Follicular T helper (Tfh) cells play an important role in the differentiation of B cells into immunoglobulin-producing plasmablasts [through interleukin (IL)-21]. It is unclear to what extent this T cell subset regulates humoral alloreactivity in kidney transplant patients, therefore we investigated the absolute numbers and function of peripheral Tfh cells (CD4POSCXCR5POS T cells) in patients before and after transplantation. In addition, we studied their relationship with the presence of donor-specific anti-human leucocyte antigen (HLA) antibodies (DSA), and the presence of Tfh cells in rejection biopsies. After transplantation peripheral Tfh cell numbers remained stable, while their IL-21-producing capacity decreased under immunosuppression. When isolated after transplantation, peripheral Tfh cells still had the capacity to induce B cell differentiation and immunoglobulin production, which could be inhibited by an IL-21-receptor-antagonist. After transplantation the quantity of Tfh cells was the highest in patients with pre-existent DSA. In kidney biopsies taken during rejection, Tfh cells co-localized with B cells and immunoglobulins in follicular-like structures. Our data on Tfh cells in kidney transplantation demonstrate that Tfh cells may mediate humoral alloreactivity, which is also seen in the immunosuppressed milieu. PMID:25557528

  17. Canine thymoma.

    PubMed

    Aronsohn, M

    1985-07-01

    Thymoma is an uncommon canine neoplasm of thymic epithelial cells. It is seen in various breeds but may occur more frequently in German Shepherd Dogs. Middle-aged or older dogs can be affected and no sex predilection exists. A paraneoplastic syndrome of myasthenia gravis, nonthymic malignant tumors, and/or polymyositis occurs in a significant number of dogs with thymoma. Clinical signs are variable and are related to a space-occupying cranial mediastinal mass and/or manifestations of the paraneo-plastic syndrome. Dyspnea is the most common presenting clinical sign. Thoracic radiographs usually show a cranial mediastinal mass. Lymphoma is the main differential diagnosis. A definitive diagnosis may be made by closed biopsy but is more likely to be confirmed by thoracotomy. Thymomas may be completely contained within the thymic capsule or may spread by local invasion or metastasis. A staging system allows for an accurate prognosis and a therapeutic plan. Surgical removal of encapsulated thymomas may result in long-term survival or cure. Invasive or metastatic thymomas carry a guarded prognosis. Manifestations of the paraneoplastic syndrome complicate treatment. Adjuvant radiation and chemotherapy may be of value for advanced cases; however, adequate clinical trials have not been done in the dog.

  18. Kidney cell electrophoresis in space flight: Rationale, methods, results and flow cytometry applications

    NASA Technical Reports Server (NTRS)

    Todd, P.; Morrison, Dennis R.; Barlow, Grant H.; Lewis, Marian L.; Lanham, J. W.; Cleveland, C.; Williams, K.; Kunze, M. E.; Goolsby, C. L.

    1988-01-01

    Cultures of human embryonic kidney cells consistently contain an electrophoretically separable subpopulation of cells that produce high levels of urokinase and have an electrophoretic mobility about 85 percent as high as that of the most mobile human embryonic kidney cells. This subpopulation is rich in large epithelioid cells that have relatively little internal structure. When resolution and throughput are adequate, free fluid electrophoresis can be used to isolate a broad band of low mobility cells which also produces high levels of plasminogen activators (PAs). In the course of performing this, it was discovered that all electrophoretic subpopulations of cultured human embryonic kidney cells produce some PAs and that separate subpopulations produce high quantities of different types of PA's. This information and the development of sensitive assays for this project have provided new insights into cell secretion mechanisms related to fibrinolysis. These advances would probably not have been made without the NASA program to explore fundamental questions of free fluid electrophoresis in space.

  19. Recellularization of Well-Preserved Acellular Kidney Scaffold Using Embryonic Stem Cells

    PubMed Central

    Bonandrini, Barbara; Figliuzzi, Marina; Papadimou, Evangelia; Morigi, Marina; Perico, Norberto; Casiraghi, Federica; Sangalli, Fabio; Conti, Sara; Benigni, Ariela; Remuzzi, Giuseppe

    2014-01-01

    For chronic kidney diseases, there is little chance that the vast majority of world's population will have access to renal replacement therapy with dialysis or transplantation. Tissue engineering would help to address this shortcoming by regeneration of damaged kidney using naturally occurring scaffolds seeded with precursor renal cells. The aims of the present study were to optimize the production of three-dimensional (3D) rat whole-kidney scaffolds by shortening the duration of organ decellularization process using detergents that avoid nonionic compounds, to investigate integrity of extracellular matrix (ECM) structure and to enhance the efficacy of scaffold cellularization using physiological perfusion method. Intact rat kidneys were successfully decellularized after 17 h perfusion with sodium dodecyl sulfate. The whole-kidney scaffolds preserved the 3D architecture of blood vessels, glomeruli, and tubuli as shown by transmission and scanning electron microscopy. Micro-computerized tomography (micro-CT) scan confirmed integrity, patency, and connection of the vascular network. Collagen IV, laminin, and fibronectin staining of decellularized scaffolds were similar to those of native kidney tissues. After infusion of whole-kidney scaffolds with murine embryonic stem (mES) cells through the renal artery, and pressure-controlled perfusion with recirculating cell medium for 24 and 72 h, seeded cells were almost completely retained into the organ and uniformly distributed in the vascular network and glomerular capillaries without major signs of apoptosis. Occasionally, mES cells reached peritubular capillary and tubular compartment. We observed the loss of cell pluripotency and the start of differentiation toward meso-endodermal lineage. Our findings indicate that, with the proposed optimized protocol, rat kidneys can be efficiently decellularized to produce renal ECM scaffolds in a relatively short time, and rapid recellularization of vascular structures and

  20. Global Gene Expression Analysis of Canine Cutaneous Mast Cell Tumor: Could Molecular Profiling Be Useful for Subtype Classification and Prognostication?

    PubMed Central

    Baratto, Chiara; Marconato, Laura; Vascellari, Marta; Morello, Emanuela M.; Vercelli, Antonella; Mutinelli, Franco; Dacasto, Mauro

    2014-01-01

    Prognosis and therapeutic management of dogs with cutaneous mast cell tumors (MCTs) depend on clinical stage and histological grade. However, the prognostic value of this latter is still questionable. In the present study, MCT transcriptome was analyzed to identify a set of candidate genes potentially useful for predicting the biological behavior of MCTs. Fifty-one canine MCT biopsies were analyzed. Isolated and purified total RNAs were individually hybridized to the Agilent Canine V2 4x44k DNA microarray. The comparison of reference differentiated and undifferentiated MCT transcriptome revealed a total of 597 differentially expressed genes (147 down-regulated and 450 up-regulated). The functional analysis of this set of genes provided evidence that they were mainly involved in cell cycle, DNA replication, p53 signaling pathway, nucleotide excision repair and pyrimidine metabolism. Class prediction analysis identified 13 transcripts providing the greatest accuracy of class prediction and divided samples into two categories (differentiated and undifferentiated), harboring a different prognosis. The Principal Component Analysis of all samples, made by using the selected 13 markers, confirmed MCT classification. The first three components accounted for 99.924% of the total variance. This molecular classification significantly correlated with survival time (p = 0.0026). Furthermore, among all marker genes, a significant association was found between mRNA expression and MCT-related mortality for FOXM1, GSN, FEN1 and KPNA2 (p<0.05). Finally, marker genes mRNA expression was evaluated in a cohort of 22 independent samples. Data obtained enabled to identify MCT cases with different prognosis. Overall, the molecular characterization of canine MCT transcriptome allowed the identification of a set of 13 transcripts that clearly separated differentiated from undifferentiated MCTs, thus predicting outcome regardless of the histological grade. These results may have clinical

  1. Acute kidney injury in children with sickle cell disease-compounding a chronic problem.

    PubMed

    Mammen, Cherry; Bissonnette, Mei Lin; Matsell, Douglas G

    2017-03-28

    In an article recently published in Pediatric Nephrology, Baddam and colleagues discuss the relatively underreported clinical problem of repeated episodes of acute kidney injury (AKI) in children with sickle cell disease (SCD). Their report is a cautionary note about the importance of repeated kidney injury on the background of underlying chronic kidney injury and its potential implications on long-term kidney outcome. In children and adults with SCD, this includes the effects of repeated vaso-occlusive crises and the management of these painful episodes with non-steroidal anti-inflammatory drugs. Here we review the scope of kidney involvement in SCD in children and discuss the potential short- and long-term consequences of AKI in children with SCD.

  2. Erythrophagocytosis Enhances Heme-Dependent Cytotoxicity of Antimalarial Drugs in Canine Histiocytic Sarcoma Cell Line DH82

    PubMed Central

    CHIKAZAWA, Seishiro; KITAHARA, Yasunori; ANDO, Erika; HORI, Yasutomo; HOSHI, Fumio; KANAI, Kazutaka; ITO, Naoyuki; HIGUCHI, Seiichi

    2013-01-01

    ABSTRACT Antimalarial drugs, dihydroartemisinin (DHA) and artesunate (ATS), exhibit iron-dependent cytotoxicity in tumor cells. We hypothesized that erythrophagocytic uptake of heme-iron enhances the cytotoxicity of DHA and ATS. Erythrophagocytic (EP) treatment of the canine histiocytic sarcoma cell line DH82 markedly increased the cytotoxicity of DHA and ATS compared to controls. Succinyl acetone, an inhibitor of intracellular heme synthesis, decreased the cytotoxicity of DHA and ATS in normal cells, but this change was not observed in EP cells. These results suggest that exogenous heme derived from erythrocytes can enhance the cytotoxicity of DHA and ATS. Furthermore, our study suggests that heme could be a novel component of tumor treatment in veterinary medicine. PMID:24065080

  3. In Vivo MR Imaging of Intraarterially Delivered Magnetically Labeled Mesenchymal Stem Cells in a Canine Stroke Model

    PubMed Central

    Zu, Qing-quan; Xu, Xiao-quan; Yu, Jing; Wang, Jian-wei; Zhang, Yu; Shi, Hai-bin

    2013-01-01

    Background This study aimed to evaluate the feasibility of intraarterial (IA) delivery and in vivo MR imaging of superparamagnetic iron oxide (SPIO)-labeled mesenchymal stem cells (MSCs) in a canine stroke model. Methodology MSCs harvested from beagles’ bone marrow were labeled with home-synthesized SPIO. Adult beagle dogs (n = 12) were subjected to left proximal middle cerebral artery (MCA) occlusion by autologous thrombus, followed by two-hour left internal carotid artery (ICA) occlusion with 5 French vertebral catheter. One week later, dogs were classified as three groups before transplantation: group A: complete MCA recanalization, group B: incomplete MCA recanalization, group C: no MCA recanalization. 3×106 labeled-MSCs were delivered through left ICA. Series in vivo MRI images were obtained before cell grafting, one and 24 hours after transplantation and weekly thereafter until four weeks. MRI findings were compared with histological studies at the time point of 24 hours and four weeks. Principal Findings Home-synthesized SPIO was useful to label MSCs without cell viability compromise. MSCs scattered widely in the left cerebral hemisphere in group A, while fewer grafted cells were observed in group B and no cell was detected in group C at one hour after transplantation. A larger infarction on the day of cell transplantation was associated with more grafted cells in the brain. Grafted MSCs could be tracked effectively by MRI within four weeks and were found in peri-infarction area by Prussian blue staining. Conclusion It is feasible of IA MSCs transplantation in a canine stroke model. Both the ipsilateral MCA condition and infarction volume before transplantation may affect the amount of grafted cells in target brain. In vivo MR imaging is useful for tracking IA delivered MSCs after SPIO labeling. PMID:23408953

  4. Berberine slows cell growth in autosomal dominant polycystic kidney disease cells

    SciTech Connect

    Bonon, Anna; Mangolini, Alessandra; Pinton, Paolo; Senno, Laura del; Aguiari, Gianluca

    2013-11-22

    Highlights: •Berberine at appropriate doses slows cell proliferation in ADPKD cystic cells. •Reduction of cell growth by berberine occurs by inhibition of ERK and p70-S6 kinase. •Higher doses of berberine cause an overall cytotoxic effect. •Berberine overdose induces apoptotic bodies formation and DNA fragmentation. •Antiproliferative properties of this drug make it a new candidate for ADPKD therapy. -- Abstract: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary monogenic disorder characterized by development and enlargement of kidney cysts that lead to loss of renal function. It is caused by mutations in two genes (PKD1 and PKD2) encoding for polycystin-1 and polycystin-2 proteins which regulate different signals including cAMP, mTOR and EGFR pathways. Abnormal activation of these signals following PC1 or PC2 loss of function causes an increased cell proliferation which is a typical hallmark of this disease. Despite the promising findings obtained in animal models with targeted inhibitors able to reduce cystic cell growth, currently, no specific approved therapy for ADPKD is available. Therefore, the research of new more effective molecules could be crucial for the treatment of this severe pathology. In this regard, we have studied the effect of berberine, an isoquinoline quaternary alkaloid, on cell proliferation and apoptosis in human and mouse ADPKD cystic cell lines. Berberine treatment slows cell proliferation of ADPKD cystic cells in a dose-dependent manner and at high doses (100 μg/mL) it induces cell death in cystic cells as well as in normal kidney tubule cells. However, at 10 μg/mL, berberine reduces cell growth in ADPKD cystic cells only enhancing G{sub 0}/G{sub 1} phase of cell cycle and inhibiting ERK and p70-S6 kinases. Our results indicate that berberine shows a selected antiproliferative activity in cellular models for ADPKD, suggesting that this molecule and similar natural compounds could open new

  5. Toxicological effects of pet food ingredients on canine bone marrow-derived mesenchymal stem cells and enterocyte-like cells.

    PubMed

    Ortega, M T; Jeffery, B; Riviere, J E; Monteiro-Riviere, N A

    2016-02-01

    We developed an in vitro method to assess pet food ingredients safety. Canine bone marrow-derived mesenchymal stem cells (BMSC) were differentiated into enterocyte-like cells (ELC) to assess toxicity in cells representing similar patterns of exposure in vivo. The toxicological profile of clove leave oil, eugenol, guanosine monophosphate (GMP), GMP + inosine monophosphate, sorbose, ginger root extract, cinnamon bark oil, cinnamaldehyde, thyme oil, thymol and citric acid was assessed in BMSC and ELC. The LC50 for GMP + inosine monophosphate was 59.42 ± 0.90 and 56.7 ± 3.5 mg ml(-1) for BMSC and ELC; 56.84 ± 0.95 and 53.66 ± 1.36 mg ml(-1) for GMP; 0.02 ± 0.001 and 1.25 ± 0.47 mg ml(-1) for citric acid; 0.077 ± 0.002 and 0.037 ± 0.01 mg ml(-1) for cinnamaldehyde; 0.002 ± 0.0001 and 0.002 ± 0.0008 mg ml(-1) for thymol; 0.080 ± 0.003 and 0.059 ± 0.001 mg ml(-1) for thyme oil; 0.111 ± 0.002 and 0.054 ± 0.01 mg ml(-1) for cinnamon bark oil; 0.119 ± 0.0004 and 0.099 ± 0.011 mg ml(-1) for clove leave oil; 0.04 ± 0.001 and 0.028 ± 0.002 mg ml(-1) for eugenol; 2.80 ± 0.11 and 1.75 ± 0.51 mg ml(-1) for ginger root extract; > 200 and 116.78 ± 7.35 mg ml(-1) for sorbose. Lemon grass oil was evaluated at 0.003-0.9 in BMSC and .03-0.9 mg ml(-1) in ELC and its mechanistic effect was investigated. The gene toxicology studies showed regulation of 61% genes in CYP450 pathway, 37% in cholestasis and 33% in immunotoxicity pathways for BMSC. For ELC, 80% for heat shock response, 69% for beta-oxidation and 65% for mitochondrial energy metabolism. In conclusion, these studies provide a baseline against which differential toxicity of dietary feed ingredients can be assessed in vitro for direct effects on canine cells and demonstrate differential toxicity in differentiated cells that represent gastrointestinal epithelial cells.

  6. Synergistic growth inhibitory effect of deracoxib with doxorubicin against a canine mammary tumor cell line, CMT-U27

    PubMed Central

    BAKIREL, Tülay; ALKAN, Fulya Üstün; ÜSTÜNER, Oya; ÇINAR, Suzan; YILDIRIM, Funda; ERTEN, Gaye; BAKIREL, Utku

    2016-01-01

    Cyclooxygenase (COX) inhibitors have been shown to exert anti-angiogenic and anti-tumor activities on many types of malignant tumors. These anticancer properties make it worthwhile to examine the possible benefit of combining COX inhibitors with other anti-cancer agents. In the present study, we evaluated the potential of deracoxib (DER) in potentiating antitumor activity of doxorubicin (DOX) in canine mammary carcinoma cells (CMT-U27). DER (50–250 µM) enhanced the antiproliferative activity of DOX by reducing the IC50 (approximately 3- to 3.5 fold). Interaction analysis of the data showed that combinations of DOX at 0.9 µM with DER (100–250 µM) produced synergism in the CMT-U27 cell line, with a ratio index ranging from 1.98 to 2.33. In additional studies identifying the mechanism of observed synergistic effect, we found that DER strongly potentiated DOX-caused G0/G1 arrest in cell cycle progression. Also, DER (100–250 µM) augmented apoptosis induction with approximately 1.35- and 1.37- fold increases in apoptotic response caused by DOX in the cells. DER enhanced the antiproliferative effect of DOX in conjunction with induction of apoptosis by modulation of Bcl-2 expression and changes in the cell cycle of the CMT-U27 cell line. Although the exact molecular mechanism of the alterations in the cell cycle and apoptosis observed with DER and DOX combinations require further investigations, the results suggest that the synergistic effect of DOX and DER combinations in CMT therapy may be achieved at relatively lower doses of DOX with lesser side effects. Therefore, combining DER with DOX may prove beneficial in the clinical treatment of canine mammary cancer. PMID:26822118

  7. Caffeine inhibits InsP3 responses and capacitative calcium entry in canine pulmonary arterial smooth muscle cells.

    PubMed

    Hume, Joseph R; McAllister, Claire E; Wilson, Sean M

    2009-01-01

    Caffeine is a well described and characterized ryanodine receptor (RyR) activator. Previous evidence from independent research studies also indicate caffeine inhibits InsP3 receptor functionality, which is important to activation of capacitative Ca2+ entry (CCE) in some cell types. In addition, RyR activation elicits excitatory-coupled Ca2+ entry (ECCE) in skeletal muscle myotubes. Recent studies by our group show that canine pulmonary arterial smooth muscle cells (PASMCs) have functional InsP3 receptors as well as RyRs, and that CCE is dependent on InsP3 receptor activity. The potential for caffeine to activate ECCE as well as inhibit InsP3 receptor function and CCE was examined using fura-2 fluorescent imaging in canine PASMCs. The data show caffeine causes transient as well as sustained cytosolic Ca2+ increases, though this is not due to CCE or ECCE activity as evidenced by a lack of an increase in Mn2+ quench of fura-2. The experiments also show caffeine reversibly inhibits 5-HT elicited-InsP3 mediated Ca2+ responses with an IC50 of 6.87x10(-4) M and 10 mM caffeine fully inhibits CCE. These studies provide the first evidence that caffeine is an inhibitor of InsP3 generated Ca2+ signals and CCE in PASMCs.

  8. Canine and feline parvoviruses preferentially recognize the non-human cell surface sialic acid N-glycolylneuraminic acid.

    PubMed

    Löfling, Jonas; Lyi, Sangbom Michael; Parrish, Colin R; Varki, Ajit

    2013-05-25

    Feline panleukopenia virus (FPV) is a pathogen whose canine-adapted form (canine parvovirus (CPV)) emerged in 1978. These viruses infect by binding host transferrin receptor type-1 (TfR), but also hemagglutinate erythrocytes. We show that hemagglutination involves selective recognition of the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc) but not N-acetylneuraminic acid (Neu5Ac), which differs by only one oxygen atom from Neu5Gc. Overexpression of α2-6 sialyltransferase did not change binding, indicating that both α2-3 and α2-6 linkages are recognized. However, Neu5Gc expression on target cells did not enhance CPV or FPV infection in vitro. Thus, the conserved Neu5Gc-binding preference of these viruses likely plays a role in the natural history of the virus in vivo. Further studies must clarify relationships between virus infection and host Neu5Gc expression. As a first step, we show that transcripts of CMAH (which generates Neu5Gc from Neu5Ac) are at very low levels in Western dog breed cells.

  9. Therapeutic potential of mesenchymal stem cells in acute kidney injury is affected by administration timing.

    PubMed

    Liu, Xiaoyan; Cai, Jieru; Jiao, Xiaoyan; Yu, Xiaofang; Ding, Xiaoqiang

    2017-03-10

    Mesenchymal stem cell (MSC) transplantation is a promising therapy for acute kidney injury; however, the efficacy is limited due to poor survival after transplantation. In this study, we investigated how MSC transplantation timing affected the survival and therapeutic potential of MSCs in the kidney ischemia-reperfusion (I/R) injury model. After kidney I/R injury, the inflammatory process and tissue damage were characterized over 1 week post-I/R, we found that inflammation peaked at 12-24 h post-I/R (h.p.i.), and urine  neutrophil gelatinase-associated lipocalin (NGAL) measurements correlated highly with measures of inflammation. We cultured MSCs with supernatants from I/R injured kidney tissue homogenates collected at different time points and found that kidney homogenates from 12 and 24 h.p.i. were most toxic to MSCs, whereas homogenates from 1 h.p.i. were not as cytotoxic as those from 12 and 24 h.p.i. Compared with MSCs administered at 12, or 24 h.p.i., cells administered immediately after ischemia or 1 h.p.i. yielded the highest renoprotective and anti-inflammatory effects. Our findings indicate that MSC treatment for acute kidney injury is most effective when applied prior to the development of a potent inflammatory microenvironment, and urine NGAL may be helpful for detecting inflammation and selecting MSC transplantation timing in I/R kidney injury.

  10. Effect of culture medium type on canine adipose-derived mesenchymal stem cells and developmental competence of interspecies cloned embryos.

    PubMed

    Kim, Geon A; Oh, Hyun Ju; Lee, Tae Hee; Lee, Ji Hyun; Oh, Sang Hwan; Lee, Ju Hyun; Kim, Jin Wook; Kim, Se Woon; Lee, Byeong Chun

    2014-01-15

    Canine adipose-derived mesenchymal stem cells (ASCs) are promising as donor cells for somatic cell nuclear transfer (SCNT). It has been suggested that different cell cultures possess different capacities to support pre-implantation development of SCNT embryos. The aim of this study is to investigate whether two culture medium (RCMEP, Dulbecco's modified Eagle's medium [DMEM]) affect gene expression of ASCs, subsequent development of interspecies SCNT (iSCNT) and gene expression of cloned embryos. The RCMEP-cultured cells contained significantly greater amounts of SOX2, NANOG, OCT4, DNMT1, and MeCP2 than DMEM-cultured cells (P < 0.05). In iSCNT, the use of DMEM medium for culturing cells resulted in similar development to the blastocyst stage than those derived from RCMEP cultured cells (4.5% and 3.2%, respectively; P > 0.05). The expression of all transcripts except for DNMT1 in cloned blastocysts from RCMEP cultured cells followed those of cloned blastocysts derived from DMEM cultured cells. The alteration of gene expression in ASCs by culture medium was not manifested in the iSCNT embryos derived from these cells. Although the culture medium can induce changes of gene expression by ASCs, such alterations in donor cells did not affect the developmental competence or gene expression patterns of iSCNT embryos.

  11. Persistent Mullerian Duct Syndrome with Embryonal Cell Carcinoma along with Ectopic Cross Fused Kidney

    PubMed Central

    Bharath, NR Manju; Narayana, V; Raja, V Om Pramod Kumar; Jambula, Pranav Reddy

    2016-01-01

    Persistent Mullerian Duct Syndrome (PMDS) is a form of internal male pseudohermaphroditism, where there is normal development of male secondary sexual characters, along with the presence of bilateral fallopian tubes and uterus. Majority of these cases go undetected and some cases are accidentally diagnosed while investigating for other problems. Cross fused renal ectopia is a condition where one kidney lies in the opposite side, fused to the other kidney. We present an extremely rare case of a phenotypical male presenting with mass per abdomen and bilateral cryptorchidism, turned out to have uterus with bilateral fallopian tubes, ectopic cross fused right kidney and Embryonal cell carcinoma of left undescended testis. PMID:26894123

  12. A population of mitochondrion-rich cells in the pars recta of mouse kidney.

    PubMed

    Forbes, M S; Thornhill, B A; Galarreta, C I; Chevalier, R L

    2016-03-01

    Following perfusion of adult mouse kidney with a solution of nitroblue tetrazolium (NBT), certain epithelial cells in the pars recta (S3) segments of proximal tubules react to form cytoplasmic deposits of blue diformazan particles. Such cells are characterized by dark cytoplasm, small and often elliptical nuclei, elaborate, process-bearing profiles, and abundant mitochondria. The atypical epithelial cells display the additional characteristic of immunoreactivity for a wide spectrum of antigens, including mesenchymal proteins such as vimentin. Though present in kidneys of untreated or sham-operated animals, they are particularly evident under experimental conditions such as unilateral ureteral obstruction (UUO), appearing in both contralateral and obstructed kidneys over the course of a week's duration, but disappearing from the obstructed kidney as it undergoes the profound atrophy attributable to deterioration of the population of its proximal tubules. The cells do not appear in neonatal kidneys, even those undergoing UUO, but begin to be recognizable soon after weaning (28 days). It is possible that diformazan-positive cells in the mouse S3 tubular segment constitute a resident population of cells that can replenish or augment the tubule. Although somewhat similar cells, with dark cytoplasm and vimentin expression, have been described in human, rat, and transgenic mouse kidney (Smeets et al. in J Pathol 229: 645-659, 2013; Berger et al. in Proc Natl Acad Sci U S A 111: 1533-1538, 2014), those cells-known as "scattered tubule cells" or "proximal tubule rare cells"- differ from the S3-specific cells in that they are present throughout the entire proximal tubule, often lack a brush border, and have only a few mitochondria.

  13. DNA measurement and immunohistochemical characterization of epithelial and mesenchymal cells in canine mixed mammary tumours: putative evidence for a common histogenesis.

    PubMed

    Gärtner, F; Geraldes, M; Cassali, G; Rema, A; Schmitt, F

    1999-07-01

    DNA measurement by image cytometry, and a detailed immunohistochemical study using monoclonal antibodies directed against different human cytokeratin types, muscle-specific actin, vimentin and S100 protein were carried out on normal canine mammary tissue (n =4), benign canine mammary mixed tumours (n =20) and malignant canine mammary mixed tumours (n =13). The results showed that ductal and alveolar luminal cells in normal and neoplastic tissue were immunoreactive with CAM5.2 and AE1/AE3 antibodies recognizing human keratins.Basal/myoepithelial cells were clearly differentiated from ductal and alveolar epithelial cells, since the latter only expressed cytokeratins, whereas the former also expressed vimentin and muscle-specific actin. This immunohistochemical study showed that there is loss of expression of muscle-specific actin and cytokeratins in areas of myoepithelial proliferation, and enhanced expression of vimentin and S100 protein in proliferative areas with osseous and/or chondroid metaplasia. The ploidy studies revealed that 20% (4/20) of benign and 54% (7/13) of malignant mixed tumours of canine mammary gland were aneuploid and that the epithelial and myoepithelial components of the mixed tumours had identical DNA content. Our results reinforce the role of myoepithelial cells in mesenchymal metaplasia in mixed mammary tumours and suggest the possibility of a common origin of both components from a totipotential stem cell with capacity for divergent differentiation.

  14. Generation of Functional Kidney Organoids In Vivo Starting from a Single-Cell Suspension.

    PubMed

    Benedetti, Valentina; Brizi, Valerio; Xinaris, Christodoulos

    2016-08-19

    Novel methods in developmental biology and stem cell research have made it possible to generate complex kidney tissues in vitro that resemble whole organs and are termed organoids. In this chapter we describe a technique using suspensions of fully dissociated mouse kidney cells to yield organoids that can become vascularized in vivo and mature and display physiological functions. This system can be used to produce fine-grained human-mouse chimeric organoids in which the renal differentiation potential of human cells can be assessed. It can also be an excellent method for growing chimeric organoids in vivo using human stem cells, which can differentiate into specialized kidney cells and exert nephron-specific functions. We provide detailed methods, a brief discussion of critical points, and describe some successfully implemented examples of the system.

  15. The influence of static magnetic fields on canine and equine mesenchymal stem cells derived from adipose tissue.

    PubMed

    Marędziak, Monika; Marycz, Krzysztof; Smieszek, Agnieszka; Lewandowski, Daniel; Toker, Nezir Yaşar

    2014-06-01

    The aim of this study was to evaluate the proliferation rate and morphological changes of adipose-derived mesenchymal stem cells of canine and equine origin (Eq- and CaAdMSC). Investigated cells were exposed to a static magnetic field (MF) with the intensity of 0.5 T. Proliferation activity of cells was determined with the Alamar Blue assay. Obtained results, normalized in respect to the control culture, showed that EqAdMSC exposed to MF maintained a high proliferation status, whereas proliferation activity of CaAdMSC cultured in the presence of MF was decreased. Estimations of population doubling time (PDT) also revealed that EqAdMSCs exposed to static MF achieved a twofold increase in the total number of cells in a shorter amount of time than the control culture. The PDT value obtained for investigated CaAdMSCs indicated that MF exposure resulted in the prolongation of population doubling time. Morphology of cells and cellular composition was investigated using a light inverted microscope and a fluorescent microscope. A scanning electron microscope was used for microvesicles (MVs) imaging. Obtained results showed that both cell types maintained fibroblastic morphology and did not reveal signs of apoptosis or necrosis. However, the MF had an influence on the MVs secretion. While EqAdMSCs propagated in the presence of MF were characterized by the abundant MVs presence, CaAdMSCs revealed poor secretory activity. The approach presented provides complex analysis, which enables one to determine changes in equine and canine cytophysiology.

  16. Lipopolysaccharide-pretreated plasmacytoid dendritic cells ameliorate experimental chronic kidney disease.

    PubMed

    Zheng, Dong; Cao, Qi; Lee, Vincent W S; Wang, Ya; Zheng, Guoping; Wang, YuanMin; Tan, Thian Kui; Wang, Changqi; Alexander, Stephen I; Harris, David C H; Wang, Yiping

    2012-05-01

    Plasmacytoid dendritic cells play important roles in inducing immune tolerance, preventing allograft rejection, and regulating immune responses in both autoimmune disease and graft-versus-host disease. In order to evaluate a possible protective effect of plasmacytoid dendritic cells against renal inflammation and injury, we purified these cells from mouse spleens and adoptively transferred lipopolysaccharide (LPS)-treated cells, modified ex vivo, into mice with adriamycin nephropathy. These LPS-treated cells localized to the kidney cortex and the lymph nodes draining the kidney, and protected the kidney from injury during adriamycin nephropathy. Glomerulosclerosis, tubular atrophy, interstitial expansion, proteinuria, and creatinine clearance were significantly reduced in mice with adriamycin nephropathy subsequently treated with LPS-activated plasmacytoid dendritic cells as compared to the kidney injury in mice given naive plasmacytoid dendritic cells. In addition, LPS-pretreated cells, but not naive plasmacytoid dendritic cells, convert CD4+CD25- T cells into Foxp3+ regulatory T cells and suppress the proinflammatory cytokine production of endogenous renal macrophages. This may explain their ability to protect against renal injury in adriamycin nephropathy.

  17. Polycystin-1 promotes PKC{alpha}-mediated NF-{kappa}B activation in kidney cells

    SciTech Connect

    Banzi, Manuela; Aguiari, Gianluca; Trimi, Viky; Mangolini, Alessandra; Pinton, Paolo; Witzgall, Ralph; Rizzuto, Rosario; Senno, Laura del . E-mail: sen@unife.it

    2006-11-17

    Polycystin-1 (PC1), the PKD1 gene product, is a membrane receptor which regulates many cell functions, including cell proliferation and apoptosis, both typically increased in cyst lining cells in autosomal dominant polycystic kidney disease. Here we show that PC1 upregulates the NF-{kappa}B signalling pathway in kidney cells to prevent cell death. Human embryonic kidney cell lines (HEK293{sup CTT}), stably expressing a PC1 cytoplasmic terminal tail (CTT), presented increased NF-{kappa}B nuclear levels and NF-{kappa}B-mediated luciferase promoter activity. This, consistently, was reduced in HEK293 cells in which the endogenous PC1 was depleted by RNA interference. CTT-dependent NF-{kappa}B promoter activation was mediated by PKC{alpha} because it was blocked by its specific inhibitor Ro-320432. Furthermore, it was observed that apoptosis, which was increased in PC1-depleted cells, was reduced in HEK293{sup CTT} cells and in porcine kidney LtTA cells expressing a doxycycline-regulated CTT. Staurosporine, a PKC inhibitor, and parthenolide, a NF-{kappa}B inhibitor, significantly reduced the CTT-dependent antiapoptotic effect. These data reveal, therefore, a novel pathway by which polycystin-1 activates a PKC{alpha}-mediated NF-{kappa}B signalling and cell survival.

  18. Comparison of dendritic cell-mediated immune responses among canine malignant cells.

    PubMed

    Tamura, Kyoichi; Arai, Hiroyoshi; Ueno, Emi; Saito, Chie; Yagihara, Hiroko; Isotani, Mayu; Ono, Kenichiro; Washizu, Tsukimi; Bonkobara, Makoto

    2007-09-01

    Dendritic cell (DC) vaccination is one of the most attractive immunotherapies for malignancies in dogs. To examine the differences in DC-mediated immune responses from different types of malignancies in dogs, we vaccinated dogs using autologous DCs pulsed with keyhole limpet hemocyanin (KLH) and cell lysate prepared from squamous cell carcinoma SCC2/88 (SCC-KLH-DC), histiocytic sarcoma CHS-5 (CHS-KLH-DC), or B cell leukemia GL-1 (GL-KLH-DC) in vitro. In vivo inductions of immune responses against these tumor cells were compared by the delayed-type hypersensitivity (DTH) skin test. The DTH response against SCC2/88 cells were observed in dogs vaccinated with autologous SCC-KLH-DC, while the response was undetectable against CHS-5 and GL-1 cells in dogs vaccinated with autologous CHS-KLH-DC and GL-KLH-DC. Skin biopsies taken from DTH challenge sites were then examined for immunohistochemistry, and recruitment of CD8 and CD4 T cells was detected at the site where SCC2/88 cells were inoculated in dogs vaccinated with SCC-KLH-DC. By contrast, neither CD8 nor CD4 T cell infiltration was found at the DTH challenge site in the dogs vaccinated with CHS-KLH-DC or GL-KLH-DC. These findings may reflect that the efficacy of immune induction by DC vaccination varies among tumor types and that immune responses could be inducible in squamous cell carcinoma. Our results encouraged further investigation of therapeutic vaccination for dogs with advanced squamous cell carcinoma in clinical trials.

  19. Kidney specific protein-positive cells derived from embryonic stem cells reproduce tubular structures in vitro and differentiate into renal tubular cells.

    PubMed

    Morizane, Ryuji; Monkawa, Toshiaki; Fujii, Shizuka; Yamaguchi, Shintaro; Homma, Koichiro; Matsuzaki, Yumi; Okano, Hideyuki; Itoh, Hiroshi

    2014-01-01

    Embryonic stem cells and induced pluripotent stem cells have the ability to differentiate into various organs and tissues, and are regarded as new tools for the elucidation of disease mechanisms as well as sources for regenerative therapies. However, a method of inducing organ-specific cells from pluripotent stem cells is urgently needed. Although many scientists have been developing methods to induce various organ-specific cells from pluripotent stem cells, renal lineage cells have yet to be induced in vitro because of the complexity of kidney structures and the diversity of kidney-component cells. Here, we describe a method of inducing renal tubular cells from mouse embryonic stem cells via the cell purification of kidney specific protein (KSP)-positive cells using an anti-KSP antibody. The global gene expression profiles of KSP-positive cells derived from ES cells exhibited characteristics similar to those of cells in the developing kidney, and KSP-positive cells had the capacity to form tubular structures resembling renal tubular cells when grown in a 3D culture in Matrigel. Moreover, our results indicated that KSP-positive cells acquired the characteristics of each segment of renal tubular cells through tubular formation when stimulated with Wnt4. This method is an important step toward kidney disease research using pluripotent stem cells, and the development of kidney regeneration therapies.

  20. Canine gastritis.

    PubMed

    Webb, Craig; Twedt, David C

    2003-09-01

    Gastritis--inflammation of the stomach--is a frequently cited differential yet rarely characterized diagnosis in cases of canine anorexia and vomiting. Although the list of rule-outs for acute or chronic gastritis is extensive, a review of the veterinary literature reveals fewer than 15 articles that have focused on clinical cases of canine gastritis over the last 25 years. The dog frequently appears in the human literature as an experimentally manipulated model for the study of endoscopic techniques or the effect of medications on gastric mucosa. In the veterinary patient, cases of acute gastritis are rarely pursued with the complete diagnostic armamentarium, and cases of chronic gastritis are rarely found to occur as an entity isolated from the rest of the gastrointestinal tract. This article focuses on those findings most clinically relevant to cases of canine gastritis in veterinary medicine.

  1. Downregulation of T cell receptor expression by CD8(+) lymphocytes in kidney allografts.

    PubMed Central

    Mannon, R B; Kotzin, B L; Nataraj, C; Ferri, K; Roper, E; Kurlander, R J; Coffman, T M

    1998-01-01

    Allospecific CD8(+) T lymphocytes are an important component of the cellular response in allograft rejection. These cells recognize and engage MHC class I antigens, leading to allospecific cytolytic responses and graft rejection. In mouse kidney allografts that survive to 3 wk after transplantation, we noted that the majority of CD8(+) cells do not express surface alpha/beta T cell receptor alpha/beta(TCR), gamma/deltaTCR, or CD3. However, these CD8(+)TCR- cells did express surface markers characteristic of T cells, including Thy1.2, CD2, and CD5. In addition, the CD8(+)TCR- cells expressed mRNA for TCR Vbeta gene families, and nearly half stained positive for cytoplasmic Vbeta8 protein, suggesting that they are T cells that have downregulated alpha/betaTCR protein expression from their cell surfaces. When these surface TCR- cells were isolated from kidney allografts by flow cytometry and cultured in the presence of either allogeneic or syngeneic stimulators, nearly 100% of cells reacquired normal levels of alpha/betaTCR expression with disproportionate usage of Vbeta8 chains. After recovery of their surface TCR expression, the CD8(+)TCR- population demonstrated strong alloreactivity in culture. These results suggest that the substantial number of CD8(+)TCR- cells found in long-term surviving mouse kidney allografts are alpha/beta-T cells that have downregulated their cell surface expression of TCR. While in other systems this phenotype may identify cells that have engaged antigen, our results indicate that loss of TCR expression by CD8(+) kidney graft-infiltrating cells may not depend on antigen engagement and that elements in the microenvironment of the kidney graft play a key role in this process. Factors that modulate expression of TCR by graft-infiltrating lymphocytes may have an important role in regulating rejection responses. PMID:9616223

  2. A Genetically Engineered Adenovirus Vector Targeted to CD40 Mediates Transduction of Canine Dendritic Cells and Promotes Antigen-Specific Immune Responses In Vivo

    PubMed Central

    Thacker, Erin E.; Nakayama, Masaharu; Smith, Bruce F.; Bird, R. Curtis; Muminova, Zhanat; Strong, Theresa; Timares, Laura; Korokhov, Nikolay; O'Neill, Ann Marie; de Gruijl, Tanja D.; Glasgow, Joel N.; Tani, Kenzaburo; Curiel, David T.

    2009-01-01

    Targeting viral vectors encoding tumor-associated antigens to dendritic cells (DCs) in vivo is likely to enhance the effectiveness of immunotherapeutic cancer vaccines. We have previously shown that genetic modification of adenovirus (Ad) 5 to incorporate CD40 ligand (CD40L) rather than native fiber allows selective transduction and activation of DCs in vitro. Here, we examine the capacity of this targeted vector to induce immune responses to the tumor antigen CEA in a stringent in vivo canine model. CD40-targeted Ad5 transduced canine DCs via the CD40-CD40L pathway in vitro, and following vaccination of healthy dogs, CD40-targeted Ad5 induced strong anti-CEA cellular and humoral responses. These data validate the canine model for future translational studies and suggest targeting of Ad5 vectors to CD40 for in vivo delivery of tumor antigens to DCs is a feasible approach for successful cancer therapy. PMID:19786146

  3. Podoplanin Expression in Canine Melanoma.

    PubMed

    Ogasawara, Satoshi; Honma, Ryusuke; Kaneko, Mika K; Fujii, Yuki; Kagawa, Yumiko; Konnai, Satoru; Kato, Yukinari

    2016-12-01

    A type I transmembrane protein, podoplanin (PDPN), is expressed in several normal cells such as lymphatic endothelial cells or pulmonary type I alveolar cells. We recently demonstrated that anticanine PDPN monoclonal antibody (mAb), PMab-38, recognizes canine PDPN of squamous cell carcinomas, but does not react with lymphatic endothelial cells. Herein, we investigated whether PMab-38 reacts with canine melanoma. PMab-38 reacted with 90% of melanoma cells (9/10 cases) using immunohistochemistry. Of interest, PMab-38 stained the lymphatic endothelial cells and cancer-associated fibroblasts in melanoma tissues, although it did not stain any lymphatic endothelial cells in normal tissues. PMab-38 could be useful for uncovering the function of PDPN in canine melanomas.

  4. Podoplanin Expression in Canine Melanoma

    PubMed Central

    Ogasawara, Satoshi; Honma, Ryusuke; Kaneko, Mika K.; Fujii, Yuki; Kagawa, Yumiko; Konnai, Satoru

    2016-01-01

    A type I transmembrane protein, podoplanin (PDPN), is expressed in several normal cells such as lymphatic endothelial cells or pulmonary type I alveolar cells. We recently demonstrated that anticanine PDPN monoclonal antibody (mAb), PMab-38, recognizes canine PDPN of squamous cell carcinomas, but does not react with lymphatic endothelial cells. Herein, we investigated whether PMab-38 reacts with canine melanoma. PMab-38 reacted with 90% of melanoma cells (9/10 cases) using immunohistochemistry. Of interest, PMab-38 stained the lymphatic endothelial cells and cancer-associated fibroblasts in melanoma tissues, although it did not stain any lymphatic endothelial cells in normal tissues. PMab-38 could be useful for uncovering the function of PDPN in canine melanomas. PMID:27918691

  5. Injured kidney endothelium is only marginally repopulated by cells of extrarenal origin.

    PubMed

    Schirutschke, Holger; Vogelbacher, Regina; Stief, Andrea; Parmentier, Simon; Daniel, Christoph; Hugo, Christian

    2013-10-01

    The role of bone marrow marrow-derived cells after kidney endothelial injury is controversial. In this study, we investigated if and to what extent extrarenal cells incorporate into kidney endothelium after acute as well as during chronic endothelial injury. Fischer F-344wt (wild type) rat kidney grafts were transplanted into R26-hPAP (human placental alkaline phosphatase) transgenic Fischer F-344 recipient rats to allow identification of extrarenal cells by specific antibody staining. A severe model of renal thrombotic microangiopathy was induced via graft perfusion with antiglomerular endothelial cell (GEN) antibody and resulted in eradication of 85% of the glomerular and 69% of the peritubular endothelium (GEN group). At week 4 after injury, renal endothelial healing as well as recovery of the kidney function was seen. Endothelial chimerism was evaluated by double staining for hPAP and endothelial markers RECA-1 or JG-12. Just 0.25% of the glomerular and 0.1% of the peritubular endothelium was recipient derived. In a second experiment, chronic endothelial injury was induced by combination of kidney transplantation with 5/6 nephrectomy (5/6 Nx group). After 14 wk, only 0.86% of the peritubular and 0.05% of the glomerular endothelium was of recipient origin. In summary, despite demonstration of extensive damage and loss as well as excellent regeneration, just a minority of extrarenal cells were incorporated into kidney endothelium in rat models of acute and chronic renal endothelial cell injury. Our results highlight that kidney endothelial regeneration after specific and severe injury is almost exclusively of renal origin.

  6. Human embryonic mesenchymal stem cell-derived conditioned medium rescues kidney function in rats with established chronic kidney disease.

    PubMed

    van Koppen, Arianne; Joles, Jaap A; van Balkom, Bas W M; Lim, Sai Kiang; de Kleijn, Dominique; Giles, Rachel H; Verhaar, Marianne C

    2012-01-01

    Chronic kidney disease (CKD) is a major health care problem, affecting more than 35% of the elderly population worldwide. New interventions to slow or prevent disease progression are urgently needed. Beneficial effects of mesenchymal stem cells (MSC) have been described, however it is unclear whether the MSCs themselves or their secretome is required. We hypothesized that MSC-derived conditioned medium (CM) reduces progression of CKD and studied functional and structural effects in a rat model of established CKD. CKD was induced by 5/6 nephrectomy (SNX) combined with L-NNA and 6% NaCl diet in Lewis rats. Six weeks after SNX, CKD rats received either 50 µg CM or 50 µg non-CM (NCM) twice daily intravenously for four consecutive days. Six weeks after treatment CM administration was functionally effective: glomerular filtration rate (inulin clearance) and effective renal plasma flow (PAH clearance) were significantly higher in CM vs. NCM-treatment. Systolic blood pressure was lower in CM compared to NCM. Proteinuria tended to be lower after CM. Tubular and glomerular damage were reduced and more glomerular endothelial cells were found after CM. DNA damage repair was increased after CM. MSC-CM derived exosomes, tested in the same experimental setting, showed no protective effect on the kidney. In a rat model of established CKD, we demonstrated that administration of MSC-CM has a long-lasting therapeutic rescue function shown by decreased progression of CKD and reduced hypertension and glomerular injury.

  7. Vaccines for Canine Leishmaniasis

    PubMed Central

    Palatnik-de-Sousa, Clarisa B.

    2012-01-01

    Leishmaniasis is the third most important vector-borne disease worldwide. Visceral leishmaniasis (VL) is a severe and frequently lethal protozoan disease of increasing incidence and severity due to infected human and dog migration, new geographical distribution of the insect due to global warming, coinfection with immunosuppressive diseases, and poverty. The disease is an anthroponosis in India and Central Africa and a canid zoonosis (ZVL) in the Americas, the Middle East, Central Asia, China, and the Mediterranean. The ZVL epidemic has been controlled by one or more measures including the culling of infected dogs, treatment of human cases, and insecticidal treatment of homes and dogs. However, the use of vaccines is considered the most cost–effective control tool for human and canine disease. Since the severity of the disease is related to the generation of T-cell immunosuppression, effective vaccines should be capable of sustaining or enhancing the T-cell immunity. In this review we summarize the clinical and parasitological characteristics of ZVL with special focus on the cellular and humoral canine immune response and review state-of-the-art vaccine development against human and canine VL. Experimental vaccination against leishmaniasis has evolved from the practice of leishmanization with living parasites to vaccination with crude lysates, native parasite extracts to recombinant and DNA vaccination. Although more than 30 defined vaccines have been studied in laboratory models no human formulation has been licensed so far; however three second-generation canine vaccines have already been registered. As expected for a zoonotic disease, the recent preventive vaccination of dogs in Brazil has led to a reduction in the incidence of canine and human disease. The recent identification of several Leishmania proteins with T-cell epitopes anticipates development of a multiprotein vaccine that will be capable of protecting both humans and dogs against VL. PMID:22566950

  8. Antibodies to CD9, a tetraspan transmembrane protein, inhibit canine distemper virus-induced cell-cell fusion but not virus-cell fusion.

    PubMed

    Schmid, E; Zurbriggen, A; Gassen, U; Rima, B; ter Meulen, V; Schneider-Schaulies, J

    2000-08-01

    Canine distemper virus (CDV) causes a life-threatening disease in several carnivores including domestic dogs. Recently, we identified a molecule, CD9, a member of the tetraspan transmembrane protein family, which facilitates, and antibodies to which inhibit, the infection of tissue culture cells with CDV (strain Onderstepoort). Here we describe that an anti-CD9 monoclonal antibody (MAb K41) did not interfere with binding of CDV to cells and uptake of virus. In addition, in single-step growth experiments, MAb K41 did not induce differences in the levels of viral mRNA and proteins. However, the virus release of syncytium-forming strains of CDV, the virus-induced cell-cell fusion in lytically infected cultures, and the cell-cell fusion of uninfected with persistently CDV-infected HeLa cells were strongly inhibited by MAb K41. These data indicate that anti-CD9 antibodies selectively block virus-induced cell-cell fusion, whereas virus-cell fusion is not affected.

  9. Correction of the disease phenotype in canine leukocyte adhesion deficiency using ex vivo hematopoietic stem cell gene therapy

    PubMed Central

    Bauer, Thomas R.; Hai, Mehreen; Tuschong, Laura M.; Burkholder, Tanya H.; Gu, Yu-chen; Sokolic, Robert A.; Ferguson, Cole; Dunbar, Cynthia E.; Hickstein, Dennis D.

    2006-01-01

    Canine leukocyte adhesion deficiency (CLAD) represents the canine counter-part of the human disease leukocyte adhesion deficiency (LAD). Defects in the leukocyte integrin CD18 adhesion molecule in both CLAD and LAD lead to recurrent, life-threatening bacterial infections. We evaluated ex vivo retroviral-mediated gene therapy in CLAD using 2 nonmyeloablative conditioning regimens—200 cGy total body irradiation (TBI) or 10 mg/kg busulfan—with or without posttransplantation immunosuppression. In 6 of 11 treated CLAD dogs, therapeutic levels of CD18+ leukocytes were achieved. Conditioning with either TBI or busulfan allowed long-term engraftment, and immunosuppression was not required for efficacy. The percentage of CD18+ leukocytes in the peripheral blood progressively increased over 6 to 8 months after infusion to levels ranging from 1.26% to 8.37% at 1-year follow-up in the 6 dogs. These levels resulted in reversal or moderation of the severe CLAD phenotype. Linear amplification–mediated polymerase chain reaction assays indicated polyclonality of insertion sites. These results describe ex vivo hematopoietic stem cell gene transfer in a disease-specific, large animal model using 2 clinically applicable conditioning regimens, and they provide support for the use of nonmyeloablative conditioning regimens in preclinical protocols of retroviral-mediated gene transfer for nonmalignant hematopoietic diseases such as LAD. PMID:16868255

  10. Rate Dependence and Regulation of Action Potential and Calcium Transient in a Canine Cardiac Ventricular Cell Model

    PubMed Central

    Hund, Thomas J.; Rudy, Yoram

    2007-01-01

    Background Computational biology is a powerful tool for elucidating arrhythmogenic mechanisms at the cellular level, where complex interactions between ionic processes determine behavior. A novel theoretical model of the canine ventricular epicardial action potential and calcium cycling was developed and used to investigate ionic mechanisms underlying Ca2+ transient (CaT) and action potential duration (APD) rate dependence. Methods and Results The Ca2+/calmodulin-dependent protein kinase (CaMKII) regulatory pathway was integrated into the model, which included a novel Ca2+-release formulation, Ca2+ subspace, dynamic chloride handling, and formulations for major ion currents based on canine ventricular data. Decreasing pacing cycle length from 8000 to 300 ms shortened APD primarily because of ICa(L) reduction, with additional contributions from Ito1, INaK, and late INa. CaT amplitude increased as cycle length decreased from 8000 to 500 ms. This positive rate–dependent property depended on CaMKII activity. Conclusions CaMKII is an important determinant of the rate dependence of CaT but not of APD, which depends on ion-channel kinetics. The model of CaMKII regulation may serve as a paradigm for modeling effects of other regulatory pathways on cell function. PMID:15505083

  11. Receptor binding and cell-mediated metabolism of (/sup 125/I)monoiodoglucagon by isolated canine hepatocytes

    SciTech Connect

    Hagopian, W.A.; Tager, H.S.

    1984-07-25

    A reverse-phase HPLC method has been developed to purify /sup 125/I-labeled products resulting from the chloramine-T-based iodination of glucagon. In addition the products ((/sup 125/I)iodoTyr/sup 10/ /sup 13/)glucagon, ((/sup 125/I)iodoTyr/sup 13/)glucagon, and ((/sup 125/I)iodoTyr/sup 10/)glucagon) have been used to study the receptor binding of glucagon and the cell-mediated metabolism of the hormone by isolated canine hepatocytes. It was concluded that (a) not withstanding apparent differences in affinities exhibited by the three peptides, the interactions with the glucagon receptor are functionally equivalent, and (b) the cell-mediated metabolism of receptor-bound glucagon involves the formation of hormone-derived peptides in which the biologically important NH/sub 2/-terminal region of the hormone has been modified by limited proteolytic cleavage.

  12. Properties of electrophoretic fractions of human embryonic kidney cells separated on space shuttle flight STS-8

    NASA Technical Reports Server (NTRS)

    Morrison, D. R.; Lewis, M. L.; Barlow, G. H.; Todd, P. W.; Kunze, M. E.; Sarnoff, B. E.; Li, Z. K.

    1985-01-01

    Suspensions of cultured primary human embryonic kidney cells were subjected to continuous flow electrophoresis on Space Shuttle flight STS-8. The objectives of the experiments were to obtain electrophoretically separated fractions of the original cell populations and to test these fractions for the amount and kind of urokinase (a kidney plasminogen activator that is used medically for digesting blood clots), the morphologies of cells in the individual fractions, and their cellular electrophoretic mobilities after separation and subsequent proliferation. Individual fractions were successfully cultured after return from orbit, and they were found to differ substantially from one another and from the starting sample with respect to all of these properties.

  13. Analytical study of electrophoretic characterization of kidney cells. [conducted during the Apollo Soyuz Test Project

    NASA Technical Reports Server (NTRS)

    Knox, R. J.

    1978-01-01

    Embryonic kidney cells were studied as a follow-up to the MA-011 Electrophoresis Technology Experiment which was conducted during the Apollo Soyuz Test Project (ASTP). The postflight analysis of the performance of the ASTP zone electrophoresis experiment involving embryonic kidney cells is reported. The feasibility of producing standard particles for electrophoresis was also studied. This work was undertaken in response to a need for standardization of methods for producing, calibrating, and storing electrophoretic particle standards which could be employed in performance tests of various types of electrophoresis equipment. Promising procedures were tested for their suitability in the production of standard test particles from red blood cells.

  14. Stearidonic acid, a plant-based dietary fatty acid, enhances the chemosensitivity of canine lymphoid tumor cells.

    PubMed

    Pondugula, Satyanarayana R; Ferniany, Glennie; Ashraf, Farah; Abbott, Kodye L; Smith, Bruce F; Coleman, Elaine S; Mansour, Mahmoud; Bird, R Curtis; Smith, Annette N; Karthikeyan, Chandrabose; Trivedi, Piyush; Tiwari, Amit K

    2015-05-15

    Lymphoma is the most common hematopoietic tumor in dogs and humans, with similar pathogenesis and therapeutic responses. Anticancer drugs like vincristine (VCR) and doxorubicin (DOX) are often used in treating lymphoma. However, the cure rate is generally poor due to chemoresistance. Here, we sought to determine whether stearidonic acid (SDA), a plant-based dietary fatty acid, sensitizes chemoresistant canine lymphoid-tumor cells. GL-1 B-cell lymphoid-tumor cells were found to be highly sensitive to the antitumor-activity of VCR and DOX, while OSW T-cell and 17-71 B-cell lymphoid-tumor cells were moderately and fully resistant, respectively. SDA, at its non-toxic concentrations, significantly promoted the antitumor action of VCR and DOX in both OSW and 17-71 cells. SDA-mediated chemosensitization was associated with SDA inhibition of P-glycoprotein (P-gp) function. This was confirmed in HEK293 cells stably expressing P-gp as well as by increased binding-affinity of SDA to P-gp in P-gp docking analysis. SDA at its chemosensitizing concentrations did not affect the viability of healthy dog peripheral blood mononuclear cells, suggesting that SDA is non-toxic to normal dog peripheral blood leucocytes at its chemosensitizing concentrations. Our study identifies a novel dietary fatty acid that may be used as a dietary supplement in combination with chemotherapy to promote the antitumor efficacy of the chemotherapy drugs in dogs and possibly in humans with chemoresistant lymphoma.

  15. Change in expression of cyclin G2 in kidney cancer cell and its significance.

    PubMed

    Cui, D W; Sun, G G; Cheng, Y J

    2014-04-01

    This study aims to analyze the expression and clinical significance of cyclin G2 (CCNG2) in kidney carcinoma, and the biological effect in its cell line by CCNG2 overexpression. Immunohistochemistry and western blot were used to analyze CCNG2 protein expression in 63 cases of kidney cancer and normal tissues to study the relationship between CCNG2 expression and clinical factors. CCNG2 lentiviral vector and empty vector were respectively transfected into kidney ACHN cell line. During immunohistochemistry, the level of CCNG2 protein expression was found to be significantly lower in kidney cancer tissue than normal tissues (P < 0.05). After Western blot, the relative amount of CCNG2 protein in kidney cancer tissue was respectively found to be significantly lower than in normal tissues (P < 0.05). The level of CCNG2 protein expression was not correlated with gender, age, tumor size, and pathological types (P > 0.05), but it was correlated with lymph node metastasis, clinic stage, and histological grade (P < 0.05). Loss of CCNG2 expression correlated significantly with poor overall survival time by Kaplan-Meier analysis (P < 0.05). The result of biological function show that ACHN cell-transfected CCNG2 had a lower survival fraction, higher percentage of the G0/G1 phases, and lower CDK2 protein expression compared with ACHN cell-untransfected CCNG2 (P < 0.05). CCNG2 expression decreased in kidney cancer and correlated significantly with lymph node metastasis, clinical stage, histological grade, and poor overall survival, suggesting that CCNG2 may play important roles as a negative regulator to kidney cancer ACHN cell by promoting degradation of CDK2.

  16. CCR6 Recruits Regulatory T Cells and Th17 Cells to the Kidney in Glomerulonephritis

    PubMed Central

    Turner, Jan-Eric; Paust, Hans-Joachim; Steinmetz, Oliver M.; Peters, Anett; Riedel, Jan-Hendrik; Erhardt, Annette; Wegscheid, Claudia; Velden, Joachim; Fehr, Susanne; Mittrücker, Hans-Willi; Tiegs, Gisa; Stahl, Rolf A.K.

    2010-01-01

    T cells recruited to the kidney contribute to tissue damage in crescentic and proliferative glomerulonephritides. Chemokines and their receptors regulate T cell trafficking, but the expression profile and functional importance of chemokine receptors for renal CD4+ T cell subsets are incompletely understood. In this study, we observed that renal FoxP3+CD4+ regulatory T cells (Tregs) and IL-17–producing CD4+ T (Th17) cells express the chemokine receptor CCR6, whereas IFNγ-producing Th1 cells are CCR6−. Induction of experimental glomerulonephritis (nephrotoxic nephritis) in mice resulted in upregulation of the only CCR6 ligand, CCL20, followed by T cell recruitment, renal tissue injury, albuminuria, and loss of renal function. CCR6 deficiency aggravated renal injury and increased mortality (from uremia) among nephritic mice. Compared with wild-type (WT) mice, CCR6 deficiency reduced infiltration of Tregs and Th17 cells but did not affect recruitment of Th1 cells in the setting of glomerulonephritis. Adoptive transfer of WT but not CCR6-deficient Tregs attenuated morphologic and functional renal injury in nephritic mice. Furthermore, reconstitution with WT Tregs protected CCR6−/− mice from aggravated nephritis. Taken together, these data suggest that CCR6 mediates renal recruitment of both Tregs and Th17 cells and that the reduction of anti-inflammatory Tregs in the presence of a fully functional Th1 response aggravates experimental glomerulonephritis. PMID:20299360

  17. Hematuria and decreased kidney function as initial signs of acute B-cell lymphoblastic leukemia.

    PubMed

    Seo-Mayer, Patricia; Kenney, Barton; McNamara, Joseph; Stein, Jeffrey; Moeckel, Gilbert W

    2010-11-01

    We report the case of a 14-year-old boy who presented with hematuria and decreased kidney function as initial manifestations of acute lymphoblastic leukemia (ALL). Computed tomography of the abdomen showed extensive retroperitoneal lymphadenopathy and bilateral nephromegaly. The patient's kidney biopsy specimen showed a dense monomorphous interstitial infiltrate of small round blue cells with significant nuclear atypia. Immunohistochemical workup showed positive staining for CD20, CD10, and terminal deoxynucleotidyl transferase (TdT), consistent with ALL. The patient underwent induction chemotherapy, attained remission 4 weeks after induction, and presently is stable in the consolidation phase of chemotherapy. This is an unusual case of ALL involving both kidneys with initial presenting signs of hematuria and decreased kidney function.

  18. Apoptosis in canine distemper.

    PubMed

    Moro, L; de Sousa Martins, A; de Moraes Alves, C; de Araújo Santos, F G; dos Santos Nunes, J E; Carneiro, R A; Carvalho, R; Vasconcelos, A C

    2003-01-01

    Canine distemper is a systemic viral disease characterized by immunosuppression followed by secondary infections. Apoptosis is observed in several immunosuppressive diseases and its occurrence on canine distemper in vivo has not been published. In this study, the occurrence of apoptosis was determined in lymphoid tissues of thirteen naturally infected dogs and nine experimentally inoculated puppies. Healthy dogs were used as negative controls. Samples of lymph nodes, thymus, spleen and brain were collected for histopathological purposes. Sections, 5 microm thick, of retropharingeal lymph nodes were stained by HE, Shorr, Methyl Green-Pyronin and TUNEL reaction. Shorr stained sections were further evaluated by morphometry. Canine distemper virus nucleoprotein was detected by immunohistochemistry. Retropharingeal lymph nodes of naturally and experimentally infected dogs had more apoptotic cells per field than controls. In addition, DNA from thymus of infected dogs were more fragmented than controls. Therefore, apoptosis is increased in lymphoid depletion induced by canine distemper virus and consequently play a role in the immunosuppression seen in this disease.

  19. CD61 promotes the differentiation of canine ADMSCs into PGC-like cells through modulation of TGF-β signaling

    PubMed Central

    Fang, Jia; Wei, Yudong; Lv, Changrong; Peng, Sha; Zhao, Shanting; Hua, Jinlian

    2017-01-01

    Previous studies have shown that CD61 (integrin-β3) promotes the differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) into germ-like cells. However, the mechanism remains unclear. In this study, we showed that overexpression of CD61 in canine adipose-derived mesenchymal stem cells (cADMSCs) promotes their differentiation into primordial germ cell (PGC)-like cells. Quantitative real-time PCR, immunocytochemistry and western blot detected higher levels of PGC-specific markers in CD61-overexpressed cADMSCs compared with those in control cells. Moreover, phosphorylation of Smad2, a downstream mediator of transforming growth factor beta (TGF-β), was increased in CD61-overexpressed cADMSCs than that in control cells. However, the expression of PGC-specific markers was downregulated in cADMSCs treated with a TGF-β inhibitor. These results suggested that CD61 could induce cADMSCs to differentiate into PGC-like cells by relying on the activation of TGF-β pathway. ADMSCs possess a considerable potential in treating the infertility of rare animal species. PMID:28256590

  20. Effects of steroid hormones on differentiated glandular epithelial and stromal cells in a three dimensional cell culture model of the canine endometrium

    PubMed Central

    2013-01-01

    Background Oestrogens and progesterone have a significant impact on the endometrium during the canine oestrous cycle. Their receptors mediate plasma steroid hormone levels and are expressed in several endometrial cell types. Altered steroid receptor expression patterns are involved in serious uterine diseases; however the mechanisms of hormone action during pathogenesis in these tissues remain unclear. The development of 3D culture systems of canine endometrial cells provides an opportunity for the effects of steroid hormones to be quantitatively assessed in a more in vivo-like setting. The present study aimed to determine the effects of the steroid hormones 17β-estradiol (E) and progesterone (P) on the expression of the oestrogen and progesterone receptors (ER and PR), and on proliferative activity, in a 3D co-culture system of canine uterine origin, comprising differentiated endometrial glands, and stromal cells (SCs). Results Morphology, differentiation, and apical-basolateral polarity of cultured glandular epithelial cells (GECs) were comparable to those in native uterine tissue as assessed by immunohistochemistry using differentiation markers (β-catenin, laminin), lectin histochemistry, and transmission electron microscopy. Supplementation of our 3D-culture system with E (at 15, 30 and 100 pg/mL) resulted in constant levels of ER expression in GECs, but reduced expression levels in SCs. PR expression was reduced in both GECs and SCs following treatment with E. 3 ng/mL P resulted in increased ER expression in GECs, but a decrease in SCs. PR expression in GECs increased in all P-treated groups, whereas PRs in SCs decreased with the lowest and highest doses, but increased with the middle dose of treatment. Proliferative activity, assessed by Ki67 staining, remained below 1% in all assays and cell types. Conclusions The present study demonstrates the applicability of our 3D organotypic canine endometrium-derived culture system for cellular-level studies. 3D

  1. The potential role of regucalcin in kidney cell regulation: Involvement in renal failure (Review).

    PubMed

    Yamaguchi, Masayoshi

    2015-11-01

    The kidneys play a physiologic role in the regulation of urine formation and nutrient reabsorption in the proximal tubule epithelial cells. Kidney development has been shown to be regulated through calcium (Ca2+) signaling processes that are present through numerous steps of tubulogenesis and nephron induction during embryonic development of the kidneys. Ca2+-binding proteins, such as calbindin-D28k and regucalcin are important proteins that are commonly used as biomarkers in pronephric tubules, and the ureteric bud and metanephric mesenchyme. Previous research on regucalcin focused on Ca2+ sensors that are involved in renal organogenesis and the link between Ca2+-dependent signals and polycystins. Moreover, regucalcin has been highlighted to play a multifunctional role in kidney cell regulation. The regucalcin gene, which is localized on the X chromosome, is regulated through various transcription factors. Regucalcin has been found to regulate intracellular Ca2+ homeostasis in kidney proximal tubule epithelial cells. Regucalcin has been demonstrated to regulate the activity of various enzymes that are involved in intracellular signaling pathways. It has been noted that regucalcin suppresses DNA synthesis and regulates the gene expression of various proteins related to mineral transport, transcription factors, cell proliferation and apoptosis. The overexpression of regucalcin has been shown to exert suppressive effects on cell proliferation and apoptotic cell death, which are stimulated by various stimulatory factors. Moreover, regucalcin gene expression was found to to be involved in various pathophysiological states, including renal failure. This review discusses recent findings concerning the potential role of regucalcin as a regulatory protein in the kidney proximal tubule epithelial cells.

  2. Postembryonic Nephrogenesis and Persistence of Six2-Expressing Nephron Progenitor Cells in the Reptilian Kidney

    PubMed Central

    Camarata, Troy; Howard, Alexis; Elsey, Ruth M.; Raza, Sarah; O’Connor, Alice; Beatty, Brian; Conrad, Jack; Solounias, Nikos; Chow, Priscilla; Mukta, Saima; Vasilyev, Aleksandr

    2016-01-01

    New nephron formation (nephrogenesis) ceases in mammals around birth and is completely absent in adults. In contrast, postembryonic nephrogenesis is well documented in the mesonephric kidneys of fishes and amphibians. The transient mesonephros in reptiles (including birds) and mammals is replaced by the metanephros during embryogenesis. Thus, one may speculate that postembryonic nephrogenesis is restricted to the mesonephric kidney. Previous reports have suggested the metanephros of non-avian reptiles (hereafter reptiles) may continually form nephrons throughout life. We investigated the presence of adult nephrogenesis in reptiles by examining adult kidneys from several species including Trachemys scripta, Chrysemys picta, Boa constrictor, Tupinambis tegu, Anolis carolinensis, and Alligator mississipiensis among others. We found that all major reptilian groups (Testudines, Crocodylia, and Squamates) showed the presence of adult nephrogenesis. The total amount of nephrogenesis varied greatly between species with turtles displaying the highest density of nephrogenesis. In contrast, we were unable to detect adult nephrogenesis in monotremes, and in the iguanid A. carolinensis. Nephron progenitor cells express the transcription factor Six2, which in mammals, becomes downregulated as the progenitor cell population is exhausted and nephrogenesis ends. Using the alligator as a model, we were able to detect Six2-positive cap mesenchyme cells in the adult kidney, which spatially correlated with areas of nephrogenesis. These results suggest that the metanephric kidney of reptiles has maintained the ability to continually grow new nephrons during postembryonic life, a process lost early in mammalian evolution, likely due to the persistence of a Six2-expressing progenitor cell population. PMID:27144443

  3. Postembryonic Nephrogenesis and Persistence of Six2-Expressing Nephron Progenitor Cells in the Reptilian Kidney.

    PubMed

    Camarata, Troy; Howard, Alexis; Elsey, Ruth M; Raza, Sarah; O'Connor, Alice; Beatty, Brian; Conrad, Jack; Solounias, Nikos; Chow, Priscilla; Mukta, Saima; Vasilyev, Aleksandr

    2016-01-01

    New nephron formation (nephrogenesis) ceases in mammals around birth and is completely absent in adults. In contrast, postembryonic nephrogenesis is well documented in the mesonephric kidneys of fishes and amphibians. The transient mesonephros in reptiles (including birds) and mammals is replaced by the metanephros during embryogenesis. Thus, one may speculate that postembryonic nephrogenesis is restricted to the mesonephric kidney. Previous reports have suggested the metanephros of non-avian reptiles (hereafter reptiles) may continually form nephrons throughout life. We investigated the presence of adult nephrogenesis in reptiles by examining adult kidneys from several species including Trachemys scripta, Chrysemys picta, Boa constrictor, Tupinambis tegu, Anolis carolinensis, and Alligator mississipiensis among others. We found that all major reptilian groups (Testudines, Crocodylia, and Squamates) showed the presence of adult nephrogenesis. The total amount of nephrogenesis varied greatly between species with turtles displaying the highest density of nephrogenesis. In contrast, we were unable to detect adult nephrogenesis in monotremes, and in the iguanid A. carolinensis. Nephron progenitor cells express the transcription factor Six2, which in mammals, becomes downregulated as the progenitor cell population is exhausted and nephrogenesis ends. Using the alligator as a model, we were able to detect Six2-positive cap mesenchyme cells in the adult kidney, which spatially correlated with areas of nephrogenesis. These results suggest that the metanephric kidney of reptiles has maintained the ability to continually grow new nephrons during postembryonic life, a process lost early in mammalian evolution, likely due to the persistence of a Six2-expressing progenitor cell population.

  4. Serum starvation and thymidine double blocking achieved efficient cell cycle synchronization and altered the expression of p27, p53, bcl-2 in canine breast cancer cells.

    PubMed

    Tong, Jinjin; Sun, Dongdong; Yang, Chao; Wang, Yingxue; Sun, Sichao; Li, Qing; Bao, Jun; Liu, Yun

    2016-04-01

    Cell synchronization is an approach to obtain cell populations of the same stage, which is a prerequisite to studying the regulation of cell cycle progression in vivo. Serum starvation and thymidine double blocking (TdR) are two important practices in studying cell cycle synchronization. However, their effects on canine cancer cells as well as the regulatory mechanisms by these two methods are poorly understood. In this study, we determined the optimum conditions of serum starvation and TdR and their effects on cell cycle synchronization. We further explored the involvement of PI3K/Akt signaling pathway in the cell cycle synchronization by investigating the expression of three key genes (p27, p53 and bcl-2). Serum starvation resulted in a reversible cell cycle arrest and synchronously progress through G0/G1. The highest percentage of CHMm cells (87.47%) in G0/G1 stage was obtained after 42 h incubation with 0.5% fetal bovine serum (FBS). TdR double blocking could arrest 98.9% of CHMm cells in G1/S phase (0 h of release), and could arrest 93.74% of CHMm cells in S phase after 4h of release. We also found that the p27, p53, bcl-2 genes were most highly expressed in G0/G1 phase. Our current work revealed that serum starvation and TdR methods could achieve sufficient synchronization of CHMm cells. Moreover, the expression of p27, p53 and bcl-2 genes was related to cyclical movements and apoptosis. Our results will provide a new insight into cell cycle regulation and reprogramming of canine cancer cells induced by serum starvation and TdR blocking.

  5. Effect of passage number on electrophoretic mobility distributions of cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.

    1985-01-01

    A systematic investigation was undertaken to characterize population shifts that occur in cultured human embryonic kidney cells as a function of passage number in vitro after original explantation. This approach to cell population shift analysis follows the suggestion of Mehreshi, Klein and Revesz that perturbed cell populations can be characterized by electrophoretic mobility distributions if they contain subpopulations with different electrophoretic mobilities. It was shown that this is the case with early passage cultured human embryo cells.

  6. Electrophoretic mobilities of cultured human embryonic kidney cells in various buffers

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Data on the electrophoretic mobility distributions of cells in the new D-1 buffer and the interlaboratory standardization of urokinase assay methods are presented. A table of cell strains and recent data on cell dispersal methods are also included. It was decided that glycerol in A-1 electrophoretic mobility data on cultured human embryonic kidney cells subjected to electrophoresis in this buffer. The buffer composition is presented.

  7. Effect of monensin on Mayaro virus replication in monkey kidney and Aedes albopictus cells.

    PubMed

    De Campos, R M; Ferreira, D F; Da Veiga, V F; Rebello, M A; Rebello, M C S

    2003-01-01

    The effect of a cationic ionophore, monensin, on the replication of Mayaro virus in monkey kidney TC7 and Aedes albopictus cells has been studied. Treatment of these cells with 1 micromol/l monensin during infection did not affect the virus protein synthesis but inhibited severely the virus replication. Electron microscopy of the cells infected with Mayaro virus and treated with monensin revealed that the morphogenesis of Mayaro virus was impaired in TC7 but not in A. albopictus cells.

  8. Prediction of cellular radiosensitivity from DNA damage induced by gamma-rays and carbon ion irradiation in canine tumor cells.

    PubMed

    Wada, Seiichi; Van Khoa, Tran; Kobayashi, Yasuhiko; Funayama, Tomoo; Ogihara, Kikumi; Ueno, Shunji; Ito, Nobuhiko

    2005-11-01

    Diseases of companion animals are shifting from infectious diseases to neoplasms (cancer), and since radiation therapy is one of the effective choices available for cancer treatment, the application of radiotherapy in veterinary medicine is likely to increase. However tumor tissues have different radiosensitivities, and therefore it is important to determine the intrinsic radiosensitivity of tumors in individual patients in advance of radiotherapy. We have studied the relationship between the surviving cell fraction measured by a clonogenic assay and DNA double strand breaks detected by a comet assay under neutral conditions in three canine tumor cell lines, after gamma-ray and carbon ion irradiation. In all the cell lines, cell death assessed by the clonogenic assay was much higher following irradiation with carbon ions than with gamma-rays. The initial and residual (4 hr) DNA damage due to gamma-ray and carbon ion irradiation were higher in a radiosensitive cell line than in a radioresistant cell line. The surviving cell fraction at 2 Gy (SF2) showed a tendency for correlation with both the initial and residual DNA damage. In particular, the residual damage per Gy was significantly correlated with SF2, regardless of the type of radiation. This indicates that cellular radiosensitivity can be predicted by detection of radiation-induced residual DNA damage.

  9. Establishment of a canine mammary gland tumor cell line and characterization of its miRNA expression

    PubMed Central

    Sunden, Yuji; Sugiyama, Akihiko; Azuma, Kazuo; Murahata, Yusuke; Tsuka, Takeshi; Ito, Norihiko; Imagawa, Tomohiro; Okamoto, Yoshiharu

    2016-01-01

    Canine mammary gland tumors (CMGTs), which are the most common neoplasms in sexually intact female dogs, have been suggested as a model for studying human breast cancer because of several similarities, including relative age of onset, risk factors, incidence, histological and molecular features, biological behavior, metastatic pattern, and responses to therapy. In the present study, we established a new cell line, the SNP cell line, from a CMGT. A tumor formed in each NOD.CB17-Prkdcscid/J mouse at the site of subcutaneous SNP cell injection. SNP cells are characterized by proliferation in a tubulopapillary pattern and are vimentin positive. Moreover, we examined miRNA expression in the cultured cells and found that the expression values of miRNA-143 and miRNA-138a showed the greatest increase and decrease, respectively, of all miRNAs observed, indicating that these miRNAs might play a significant role in the malignancy of SNP cells. Overall, the results of this study indicate that SNP cells might serve as a model for future genetic analysis and clinical treatments of human breast tumors. PMID:26726024

  10. Protective Role of Selenium Compounds on the Proliferation, Apoptosis, and Angiogenesis of a Canine Breast Cancer Cell Line.

    PubMed

    Liu, Yuzhi; Li, Wenyu; Guo, Mengyao; Li, Chengye; Qiu, Changwei

    2016-01-01

    We herein examined the effects of different doses, forms, and compatibilities of selenium on a canine mammary gland tumor cell line, CTM1211, and explored the related mechanisms. Three selenium compounds, sodium selenite (SSE), methylseleninic acid (MSA), and methylselenocysteine (MSC), were selected for these experiments, and cyclophosphamide (CTX) served as a positive control. In the cell viability assay, the cell viability of each group at 48/72 h decreased significantly compared with the control group (p < 0.05), and the cell viability of the CTX + MSA group was lower than that of CTX and MSA groups (p < 0.05). Moreover, the inhibitory effect of selenium on cell proliferation was time-dependent but not concentration-dependent. In the cell apoptosis assay, the apoptosis values of each group increased significantly compared with the control group, and the apoptosis values of the CTX + MSA group increased the most significantly (p < 0.01). The protein and mRNA expression levels of vascular endothelial growth factor-alpha (VEGF-alpha), angiopoietin-2 (Ang-2), and hypoxia inducible factor-1 alpha (HIF-1 alpha) were downregulated in each group, while that of phosphatase and tensin homolog (PTEN) were upregulated (p < 0.05). In conclusion, these three selenium compounds, especially MSA, could significantly inhibit the viability and growth of the CTM1211 cell line, which is partly due to the induction of apoptosis and regulation of tumor angiogenesis.

  11. Extracellular divalent and trivalent cation effects on sodium current kinetics in single canine cardiac Purkinje cells.

    PubMed Central

    Hanck, D A; Sheets, M F

    1992-01-01

    1. The effects of the extracellular divalent cations barium, calcium, cadmium, cobalt, magnesium, manganese, nickel and zinc and the trivalent cation lanthanum on macroscopic sodium current (INa) were characterized in enzymatically isolated single canine cardiac Purkinje cells under voltage clamp at 9-14 degrees C. 2. All di(tri)valent cations produced depolarizing shifts in the conductance-voltage relationship. The order of efficacy, taken as the concentration required to produce a 5 mV shift in the mid-point of peak INa conductance, from least to most effective was (mM): Ca2+ (2.97) approximately Mg2+ (2.67) approximately Ba2+ (1.93) > CO2+ (1.02) approximately Mn2+ (0.88) > Ni2+ (0.54) > La3+ (0.095) approximately Cd2+ (0.083) approximately Zn2+ (0.076). 3. Addition of di(tri)valent cations also produced depolarizing shifts in voltage-dependent availability. The order of efficacy from the least to most effective was (mM): Cd2+ (7.70) approximately Mg2+ (6.86) approximately Ba2+ (4.50) > Ca2+ (2.47) approximately CO2+ (1.87) approximately Mn2+ (1.24) approximately Ni2+ (1.20) > Zn2+ (0.300) > La3+ (0.060). 4. The Gouy-Chapman-Stern equations were used to evaluate di(tri)valent cation efficacy in binding to surface charges. Surface charge density was estimated as 0.72 sites nm-2, and it was assumed that Mg2+, the divalent cation that produced the smallest shift, screened but did not bind to surface charges. Based on voltage-dependent availability, KD from lowest to highest affinity were (mM): Ba2+ (2500) > CO2+ (1670) approximately Mn2+ (1430) approximately Ca2+ = Cd2+ = Ni2+ (1200) > Zn2+ (250) > La3+ (30). 5. All di(tri)valent cations also produced a concentration-dependent acceleration of INa tail current relaxation. The addition of Ca2+ and La3+ produced acceleration of tail current relaxations that could be accounted for by the surface charge effects predicted from the shift in voltage-dependent availability. Cd2+, which produced almost no change in voltage

  12. B cell translocation gene 1 reduces the biological outcome of kidney cancer through induction of cell proliferation, cell cycle arrest, cell apoptosis and cell metastasis.

    PubMed

    Sun, Guogui; Liu, Qing; Cheng, Yunjie; Hu, Wanning

    2015-03-01

    The aim of the present study was to determine the expression and function of B cell translocation gene 1 (BTG1) in kidney carcinoma. Kidney samples were obtained from cancer lesions (n=85) and the adjacent normal tissue (n=40) in kidney cancer patients immediately following endoscopic biopsy. The effect of BTG1 overexpression was examined in vitro utilizing a human kidney cancer cell line, ACHN, stably transfected with a recombinant lentivirus (LeBTG1 cells) and compared to empty vector‑transfected controls (LeEmpty). BTG1 protein expression was significantly lower in kidney cancer tissue biopsies compared to normal tissue, as measured by immunohistochemistry (34.1 vs. 77.8% of tissues; P<0.05) and western blotting (0.481±0.051 vs. 0.857±0.081; P<0.05). In vitro analyses revealed that LeBTG1 cells had a reduced survival fraction compared to control LeEmpty cells, with higher rates of apoptosis (16.6±2.5 vs. 6.1±0.7%; P<0.05). The proportion of LeBTG1 cells in G(0)/G(1) stage and S phase was also significantly different from LeEmpty cells (66.8±5.3 and 22.2±1.5% vs. 44.4±3.1 and 34.5±2.3%, respectively; P<0.05), and the migration and invasion of LeBTG1 cells was significantly impaired with respect to LeEmpty cells (74.0±9.0 and 53.0±7.0 vs. 118.0±15.0 and 103.0±13.0, respectively; P<0.05). These effects were accompanied by decreased protein expression of cyclin D1, B‑cell lymphoma 2 and matrix metalloproteinase 9 in LeBTG1 cells (0.118±0.018, 0.169±0.015 and 0.207±0.027, respectively) compared to control LeEmpty cells (0.632±0.061, 0.651±0.063 and 0.443±0.042, respectively; P<0.05). Reduced BTG1 expression is associated with increased disease severity, suggesting it is a negative regulator of kidney cancer and can serve as a prognostic indicator. The results of the present study show that BTG1 protein levels were significantly reduced in kidney cancer biopsy specimens and were associated with disease progression and prognosis.

  13. Elimination of etimicin in rat kidneys and alterations of its cytotoxicity to tubular epithelial cells.

    PubMed

    Li, Z-D; Zhang, X-L; Yi, N; Zhang, F-C

    2015-05-01

    Etimicin (ETM) can accumulate in kidneys and cause tubular epithelial cell cytotoxicity. This article aims to study ETM elimination in kidneys and its nephrotoxicity, apoptosis, and histopathological insults of renal tubular epithelial cells, after repeated administration. A total of 36 rats were randomly divided into ETM-treated group and vehicle control group. Rats in ETM-treated group were treated intraperitoneally (i.p.) with 100 mg/kg/day ETM and rats in control group received physiological saline (i.p.) for 5 consecutive days. Determination of ETM concentrations accumulated in rat kidneys was carried out by high-performance liquid chromatography on the basis of derivatization with o-phthalaldehyde and by ultraviolet detector. Apoptotic renal tubular epithelial cells were identified by a terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling assay. Histopathological insults in kidneys were evaluated by hematoxylin and eosin staining. On day 1 after cessation of ETM administration, the accumulation concentration was 347.50 ± 193.30 μg/g tissue; on day 15, ETM concentration became 16.71 ± 9.99 μg/g tissue. Elimination half-life of ETM in rat kidney was about 3.05 days. Apoptotic renal tubular epithelial cells induced by etimicin was recovered gradually from 1544 ± 138 n/mm(2) on day 1 to 716 ± 208 n/mm(2) on day 15. Histopathological damage was also gradually recovered from vacuolation of tubular epithelial cells as well as renal tubular edema on days 1, 3, and 7 to nearly normal on day 15. From these results, we concluded that renal tubular epithelial cell cytotoxicity induced by ETM can gradually restore with its decreasing concentration in rat kidneys.

  14. HSP32 and HSP90 Immunoexpression, in Relation to Kit Pattern, Grading, and Mitotic Count in Canine Cutaneous Mast Cell Tumors.

    PubMed

    Romanucci, M; Massimini, M; Ciccarelli, A; Malatesta, D; Bongiovanni, L; Gasbarre, A; Della Salda, L

    2017-03-01

    Literature data indicate heat shock protein (Hsp) 32 and 90 as potential molecular targets in canine neoplastic mast cells (MCs). However, their immunoexpression patterns in canine mast cell tumors (MCTs) have not been investigated. Thus, the aim of this study was to evaluate the immunohistochemical expression of Hsp32 and Hsp90 in 22 canine cutaneous MCTs, in relation to KIT immunolabeling pattern, histological grade, and mitotic count. All cases showed cytoplasmic labeling of Hsp90, variably associated with nuclear and/or membranous labeling. Relationships of Hsp90 or Hsp32 immunolabeling with KIT pattern, mitotic count, and tumor grade were not observed. However, the reduced Hsp32 immunoexpression observed in most grade III/high-grade MCTs suggests a tendency toward a loss of immunosignal in poorly differentiated MCs. The great heterogeneity in extent and distribution of Hsp90 immunoexpression among the different MCT cases may also partially explain the difficulties in predicting the in vivo biologic activity of Hsp90 inhibitors on canine MCTs.

  15. Challenges and opportunities for stem cell therapy in patients with chronic kidney disease

    PubMed Central

    Hickson, LaTonya J.; Eirin, Alfonso; Lerman, Lilach O.

    2016-01-01

    Chronic kidney disease (CKD) is a global healthcare burden affecting billions of individuals worldwide. The kidney has limited regenerative capacity from chronic insults, and for the most common causes of CKD, no effective treatment exists to prevent progression to end-stage kidney failure. Therefore, novel interventions, such as regenerative cell-based therapies, need to be developed for CKD. Given the risk of allosensitization, autologous transplantation of cells to boost regenerative potential is preferred. Therefore, verification of cell function and vitality in CKD patients is imperative. Two cell types have been most commonly applied in regenerative medicine. Endothelial progenitor cells contribute to neovasculogenesis primarily through paracrine angiogenic activity and partly by differentiation into mature endothelial cells in situ. Mesenchymal stem cells also exert paracrine effects, including pro-angiogenic, anti-inflammatory, and anti-fibrotic activity. However, in CKD, multiple factors may contribute to reduced cell function, including older age, coexisting cardiovascular disease, diabetes, chronic inflammatory states, and uremia, which may limit the effectiveness of an autologous cell-based therapy approach. This review highlights current knowledge on stem and progenitor cell function and vitality, aspects of the uremic milieu that may serve as a barrier to therapy, and novel methods to improve stem cell function for potential transplantation. PMID:26924058

  16. The directed differentiation of human iPS cells into kidney podocytes.

    PubMed

    Song, Bi; Smink, Alexandra M; Jones, Christina V; Callaghan, Judy M; Firth, Stephen D; Bernard, Claude A; Laslett, Andrew L; Kerr, Peter G; Ricardo, Sharon D

    2012-01-01

    The loss of glomerular podocytes is a key event in the progression of chronic kidney disease resulting in proteinuria and declining function. Podocytes are slow cycling cells that are considered terminally differentiated. Here we provide the first report of the directed differentiation of induced pluripotent stem (iPS) cells to generate kidney cells with podocyte features. The iPS-derived podocytes share a morphological phenotype analogous with cultured human podocytes. Following 10 days of directed differentiation, iPS podocytes had an up-regulated expression of mRNA and protein localization for podocyte markers including synaptopodin, nephrin and Wilm's tumour protein (WT1), combined with a down-regulation of the stem cell marker OCT3/4. In contrast to human podocytes that become quiescent in culture, iPS-derived cells maintain a proliferative capacity suggestive of a more immature phenotype. The transduction of iPS podocytes with fluorescent labeled-talin that were immunostained with podocin showed a cytoplasmic contractile response to angiotensin II (AII). A permeability assay provided functional evidence of albumin uptake in the cytoplasm of iPS podocytes comparable to human podocytes. Moreover, labeled iPS-derived podocytes were found to integrate into reaggregated metanephric kidney explants where they incorporated into developing glomeruli and co-expressed WT1. This study establishes the differentiation of iPS cells to kidney podocytes that will be useful for screening new treatments, understanding podocyte pathogenesis, and offering possibilities for regenerative medicine.

  17. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function

    PubMed Central

    Pattaro, Cristian; Teumer, Alexander; Gorski, Mathias; Chu, Audrey Y.; Li, Man; Mijatovic, Vladan; Garnaas, Maija; Tin, Adrienne; Sorice, Rossella; Li, Yong; Taliun, Daniel; Olden, Matthias; Foster, Meredith; Yang, Qiong; Chen, Ming-Huei; Pers, Tune H.; Johnson, Andrew D.; Ko, Yi-An; Fuchsberger, Christian; Tayo, Bamidele; Nalls, Michael; Feitosa, Mary F.; Isaacs, Aaron; Dehghan, Abbas; d'Adamo, Pio; Adeyemo, Adebowale; Dieffenbach, Aida Karina; Zonderman, Alan B.; Nolte, Ilja M.; van der Most, Peter J.; Wright, Alan F.; Shuldiner, Alan R.; Morrison, Alanna C.; Hofman, Albert; Smith, Albert V.; Dreisbach, Albert W.; Franke, Andre; Uitterlinden, Andre G.; Metspalu, Andres; Tonjes, Anke; Lupo, Antonio; Robino, Antonietta; Johansson, Åsa; Demirkan, Ayse; Kollerits, Barbara; Freedman, Barry I.; Ponte, Belen; Oostra, Ben A.; Paulweber, Bernhard; Krämer, Bernhard K.; Mitchell, Braxton D.; Buckley, Brendan M.; Peralta, Carmen A.; Hayward, Caroline; Helmer, Catherine; Rotimi, Charles N.; Shaffer, Christian M.; Müller, Christian; Sala, Cinzia; van Duijn, Cornelia M.; Saint-Pierre, Aude; Ackermann, Daniel; Shriner, Daniel; Ruggiero, Daniela; Toniolo, Daniela; Lu, Yingchang; Cusi, Daniele; Czamara, Darina; Ellinghaus, David; Siscovick, David S.; Ruderfer, Douglas; Gieger, Christian; Grallert, Harald; Rochtchina, Elena; Atkinson, Elizabeth J.; Holliday, Elizabeth G.; Boerwinkle, Eric; Salvi, Erika; Bottinger, Erwin P.; Murgia, Federico; Rivadeneira, Fernando; Ernst, Florian; Kronenberg, Florian; Hu, Frank B.; Navis, Gerjan J.; Curhan, Gary C.; Ehret, George B.; Homuth, Georg; Coassin, Stefan; Thun, Gian-Andri; Pistis, Giorgio; Gambaro, Giovanni; Malerba, Giovanni; Montgomery, Grant W.; Eiriksdottir, Gudny; Jacobs, Gunnar; Li, Guo; Wichmann, H-Erich; Campbell, Harry; Schmidt, Helena; Wallaschofski, Henri; Völzke, Henry; Brenner, Hermann; Kroemer, Heyo K.; Kramer, Holly; Lin, Honghuang; Leach, I. Mateo; Ford, Ian; Guessous, Idris; Rudan, Igor; Prokopenko, Inga; Borecki, Ingrid; Heid, Iris M.; Kolcic, Ivana; Persico, Ivana; Jukema, J. Wouter; Wilson, James F.; Felix, Janine F.; Divers, Jasmin; Lambert, Jean-Charles; Stafford, Jeanette M.; Gaspoz, Jean-Michel; Smith, Jennifer A.; Faul, Jessica D.; Wang, Jie Jin; Ding, Jingzhong; Hirschhorn, Joel N.; Attia, John; Whitfield, John B.; Chalmers, John; Viikari, Jorma; Coresh, Josef; Denny, Joshua C.; Karjalainen, Juha; Fernandes, Jyotika K.; Endlich, Karlhans; Butterbach, Katja; Keene, Keith L.; Lohman, Kurt; Portas, Laura; Launer, Lenore J.; Lyytikäinen, Leo-Pekka; Yengo, Loic; Franke, Lude; Ferrucci, Luigi; Rose, Lynda M.; Kedenko, Lyudmyla; Rao, Madhumathi; Struchalin, Maksim; Kleber, Marcus E.; Cavalieri, Margherita; Haun, Margot; Cornelis, Marilyn C.; Ciullo, Marina; Pirastu, Mario; de Andrade, Mariza; McEvoy, Mark A.; Woodward, Mark; Adam, Martin; Cocca, Massimiliano; Nauck, Matthias; Imboden, Medea; Waldenberger, Melanie; Pruijm, Menno; Metzger, Marie; Stumvoll, Michael; Evans, Michele K.; Sale, Michele M.; Kähönen, Mika; Boban, Mladen; Bochud, Murielle; Rheinberger, Myriam; Verweij, Niek; Bouatia-Naji, Nabila; Martin, Nicholas G.; Hastie, Nick; Probst-Hensch, Nicole; Soranzo, Nicole; Devuyst, Olivier; Raitakari, Olli; Gottesman, Omri; Franco, Oscar H.; Polasek, Ozren; Gasparini, Paolo; Munroe, Patricia B.; Ridker, Paul M.; Mitchell, Paul; Muntner, Paul; Meisinger, Christa; Smit, Johannes H.; Abecasis, Goncalo R.; Adair, Linda S.; Alexander, Myriam; Altshuler, David; Amin, Najaf; Arking, Dan E.; Arora, Pankaj; Aulchenko, Yurii; Bakker, Stephan J. L.; Bandinelli, Stefania; Barroso, Ines; Beckmann, Jacques S.; Beilby, John P.; Bergman, Richard N.; Bergmann, Sven; Bis, Joshua C.; Boehnke, Michael; Bonnycastle, Lori L.; Bornstein, Stefan R.; Bots, Michiel L.; Bragg-Gresham, Jennifer L.; Brand, Stefan-Martin; Brand, Eva; Braund, Peter S.; Brown, Morris J.; Burton, Paul R.; Casas, Juan P.; Caulfield, Mark J.; Chakravarti, Aravinda; Chambers, John C.; Chandak, Giriraj R.; Chang, Yen-Pei C.; Charchar, Fadi J.; Chaturvedi, Nish; Shin Cho, Yoon; Clarke, Robert; Collins, Francis S.; Collins, Rory; Connell, John M.; Cooper, Jackie A.; Cooper, Matthew N.; Cooper, Richard S.; Corsi, Anna Maria; Dörr, Marcus; Dahgam, Santosh; Danesh, John; Smith, George Davey; Day, Ian N. M.; Deloukas, Panos; Denniff, Matthew; Dominiczak, Anna F.; Dong, Yanbin; Doumatey, Ayo; Elliott, Paul; Elosua, Roberto; Erdmann, Jeanette; Eyheramendy, Susana; Farrall, Martin; Fava, Cristiano; Forrester, Terrence; Fowkes, F. Gerald R.; Fox, Ervin R.; Frayling, Timothy M.; Galan, Pilar; Ganesh, Santhi K.; Garcia, Melissa; Gaunt, Tom R.; Glazer, Nicole L.; Go, Min Jin; Goel, Anuj; Grässler, Jürgen; Grobbee, Diederick E.; Groop, Leif; Guarrera, Simonetta; Guo, Xiuqing; Hadley, David; Hamsten, Anders; Han, Bok-Ghee; Hardy, Rebecca; Hartikainen, Anna-Liisa; Heath, Simon; Heckbert, Susan R.; Hedblad, Bo; Hercberg, Serge; Hernandez, Dena; Hicks, Andrew A.; Hilton, Gina; Hingorani, Aroon D.; Bolton, Judith A Hoffman; Hopewell, Jemma C.; Howard, Philip; Humphries, Steve E.; Hunt, Steven C.; Hveem, Kristian; Ikram, M. Arfan; Islam, Muhammad; Iwai, Naoharu; Jarvelin, Marjo-Riitta; Jackson, Anne U.; Jafar, Tazeen H.; Janipalli, Charles S.; Johnson, Toby; Kathiresan, Sekar; Khaw, Kay-Tee; Kim, Hyung-Lae; Kinra, Sanjay; Kita, Yoshikuni; Kivimaki, Mika; Kooner, Jaspal S.; Kumar, M. J. Kranthi; Kuh, Diana; Kulkarni, Smita R.; Kumari, Meena; Kuusisto, Johanna; Kuznetsova, Tatiana; Laakso, Markku; Laan, Maris; Laitinen, Jaana; Lakatta, Edward G.; Langefeld, Carl D.; Larson, Martin G.; Lathrop, Mark; Lawlor, Debbie A.; Lawrence, Robert W.; Lee, Jong-Young; Lee, Nanette R.; Levy, Daniel; Li, Yali; Longstreth, Will T.; Luan, Jian'an; Lucas, Gavin; Ludwig, Barbara; Mangino, Massimo; Mani, K. Radha; Marmot, Michael G.; Mattace-Raso, Francesco U. S.; Matullo, Giuseppe; McArdle, Wendy L.; McKenzie, Colin A.; Meitinger, Thomas; Melander, Olle; Meneton, Pierre; Meschia, James F.; Miki, Tetsuro; Milaneschi, Yuri; Mohlke, Karen L.; Mooser, Vincent; Morken, Mario A.; Morris, Richard W.; Mosley, Thomas H.; Najjar, Samer; Narisu, Narisu; Newton-Cheh, Christopher; Nguyen, Khanh-Dung Hoang; Nilsson, Peter; Nyberg, Fredrik; O'Donnell, Christopher J.; Ogihara, Toshio; Ohkubo, Takayoshi; Okamura, Tomonori; Ong, RickTwee-Hee; Ongen, Halit; Onland-Moret, N. Charlotte; O'Reilly, Paul F.; Org, Elin; Orru, Marco; Palmas, Walter; Palmen, Jutta; Palmer, Lyle J.; Palmer, Nicholette D.; Parker, Alex N.; Peden, John F.; Peltonen, Leena; Perola, Markus; Pihur, Vasyl; Platou, Carl G. P.; Plump, Andrew; Prabhakaran, Dorairajan; Psaty, Bruce M.; Raffel, Leslie J.; Rao, Dabeeru C.; Rasheed, Asif; Ricceri, Fulvio; Rice, Kenneth M.; Rosengren, Annika; Rotter, Jerome I.; Rudock, Megan E.; Sõber, Siim; Salako, Tunde; Saleheen, Danish; Salomaa, Veikko; Samani, Nilesh J.; Schwartz, Steven M.; Schwarz, Peter E. H.; Scott, Laura J.; Scott, James; Scuteri, Angelo; Sehmi, Joban S.; Seielstad, Mark; Seshadri, Sudha; Sharma, Pankaj; Shaw-Hawkins, Sue; Shi, Gang; Shrine, Nick R. G.; Sijbrands, Eric J. G.; Sim, Xueling; Singleton, Andrew; Sjögren, Marketa; Smith, Nicholas L.; Artigas, Maria Soler; Spector, Tim D.; Staessen, Jan A.; Stancakova, Alena; Steinle, Nanette I.; Strachan, David P.; Stringham, Heather M.; Sun, Yan V.; Swift, Amy J.; Tabara, Yasuharu; Tai, E-Shyong; Talmud, Philippa J.; Taylor, Andrew; Terzic, Janos; Thelle, Dag S.; Tobin, Martin D.; Tomaszewski, Maciej; Tripathy, Vikal; Tuomilehto, Jaakko; Tzoulaki, Ioanna; Uda, Manuela; Ueshima, Hirotsugu; Uiterwaal, Cuno S. P. M.; Umemura, Satoshi; van der Harst, Pim; van der Schouw, Yvonne T.; van Gilst, Wiek H.; Vartiainen, Erkki; Vasan, Ramachandran S.; Veldre, Gudrun; Verwoert, Germaine C.; Viigimaa, Margus; Vinay, D. G.; Vineis, Paolo; Voight, Benjamin F.; Vollenweider, Peter; Wagenknecht, Lynne E.; Wain, Louise V.; Wang, Xiaoling; Wang, Thomas J.; Wareham, Nicholas J.; Watkins, Hugh; Weder, Alan B.; Whincup, Peter H.; Wiggins, Kerri L.; Witteman, Jacqueline C. M.; Wong, Andrew; Wu, Ying; Yajnik, Chittaranjan S.; Yao, Jie; Young, J. H.; Zelenika, Diana; Zhai, Guangju; Zhang, Weihua; Zhang, Feng; Zhao, Jing Hua; Zhu, Haidong; Zhu, Xiaofeng; Zitting, Paavo; Zukowska-Szczechowska, Ewa; Okada, Yukinori; Wu, Jer-Yuarn; Gu, Dongfeng; Takeuchi, Fumihiko; Takahashi, Atsushi; Maeda, Shiro; Tsunoda, Tatsuhiko; Chen, Peng; Lim, Su-Chi; Wong, Tien-Yin; Liu, Jianjun; Young, Terri L.; Aung, Tin; Teo, Yik-Ying; Kim, Young Jin; Kang, Daehee; Chen, Chien-Hsiun; Tsai, Fuu-Jen; Chang, Li-Ching; Fann, S. -J. Cathy; Mei, Hao; Hixson, James E.; Chen, Shufeng; Katsuya, Tomohiro; Isono, Masato; Albrecht, Eva; Yamamoto, Kazuhiko; Kubo, Michiaki; Nakamura, Yusuke; Kamatani, Naoyuki; Kato, Norihiro; He, Jiang; Chen, Yuan-Tsong; Tanaka, Toshihiro; Reilly, Muredach P; Schunkert, Heribert; Assimes, Themistocles L.; Hall, Alistair; Hengstenberg, Christian; König, Inke R.; Laaksonen, Reijo; McPherson, Ruth; Thompson, John R.; Thorsteinsdottir, Unnur; Ziegler, Andreas; Absher, Devin; Chen, Li; Cupples13, L. Adrienne; Halperin, Eran; Li, Mingyao; Musunuru, Kiran; Preuss, Michael; Schillert, Arne; Thorleifsson, Gudmar; Wells, George A.; Holm, Hilma; Roberts, Robert; Stewart, Alexandre F. R.; Fortmann, Stephen; Go, Alan; Hlatky, Mark; Iribarren, Carlos; Knowles, Joshua; Myers, Richard; Quertermous, Thomas; Sidney, Steven; Risch, Neil; Tang, Hua; Blankenberg, Stefan; Schnabel, Renate; Sinning, Christoph; Lackner, Karl J.; Tiret, Laurence; Nicaud, Viviane; Cambien, Francois; Bickel, Christoph; Rupprecht, Hans J.; Perret, Claire; Proust, Carole; Münzel, Thomas F.; Barbalic, Maja; Chen, Ida Yii-Der; Demissie-Banjaw, Serkalem; Folsom, Aaron; Lumley, Thomas; Marciante, Kristin; Taylor, Kent D.; Volcik, Kelly; Gretarsdottir, Solveig; Gulcher, Jeffrey R.; Kong, Augustine; Stefansson, Kari; Thorgeirsson, Gudmundur; Andersen, Karl; Fischer, Marcus; Grosshennig, Anika; Linsel-Nitschke, Patrick; Stark, Klaus; Schreiber, Stefan; Aherrahrou, Zouhair; Bruse, Petra; Doering, Angela; Klopp, Norman; Diemert, Patrick; Loley, Christina; Medack, Anja; Nahrstedt, Janja; Peters, Annette; Wagner, Arnika K.; Willenborg, Christina; Böhm, Bernhard O.; Dobnig, Harald; Grammer, Tanja B.; Hoffmann, Michael M.; Meinitzer, Andreas; Winkelmann, Bernhard R.; Pilz, Stefan; Renner, Wilfried; Scharnagl, Hubert; Stojakovic, Tatjana; Tomaschitz, Andreas; Winkler, Karl; Guiducci, Candace; Burtt, Noel; Gabriel, Stacey B.; Dandona, Sonny; Jarinova, Olga; Qu, Liming; Wilensky, Robert; Matthai, William; Hakonarson, Hakon H.; Devaney, Joe; Burnett, Mary Susan; Pichard, Augusto D.; Kent, Kenneth M.; Satler, Lowell; Lindsay, Joseph M.; Waksman, Ron; Knouff, Christopher W.; Waterworth, Dawn M.; Walker, Max C.; Epstein, Stephen E.; Rader, Daniel J.; Nelson, Christopher P.; Wright, Benjamin J.; Balmforth, Anthony J.; Ball, Stephen G.; Loehr, Laura R.; Rosamond, Wayne D.; Benjamin, Emelia; Haritunians, Talin; Couper, David; Murabito, Joanne; Wang, Ying A.; Stricker, Bruno H.; Chang, Patricia P.; Willerson, James T.; Felix, Stephan B.; Watzinger, Norbert; Aragam, Jayashri; Zweiker, Robert; Lind, Lars; Rodeheffer, Richard J.; Greiser, Karin Halina; Deckers, Jaap W.; Stritzke, Jan; Ingelsson, Erik; Kullo, Iftikhar; Haerting, Johannes; Reffelmann, Thorsten; Redfield, Margaret M.; Werdan, Karl; Mitchell, Gary F.; Arnett, Donna K.; Gottdiener, John S.; Blettner, Maria; Friedrich, Nele; Kovacs, Peter; Wild, Philipp S.; Froguel, Philippe; Rettig, Rainer; Mägi, Reedik; Biffar, Reiner; Schmidt, Reinhold; Middelberg, Rita P. S.; Carroll, Robert J.; Penninx, Brenda W.; Scott, Rodney J.; Katz, Ronit; Sedaghat, Sanaz; Wild, Sarah H.; Kardia, Sharon L. R.; Ulivi, Sheila; Hwang, Shih-Jen; Enroth, Stefan; Kloiber, Stefan; Trompet, Stella; Stengel, Benedicte; Hancock, Stephen J.; Turner, Stephen T.; Rosas, Sylvia E.; Stracke, Sylvia; Harris, Tamara B.; Zeller, Tanja; Zemunik, Tatijana; Lehtimäki, Terho; Illig, Thomas; Aspelund, Thor; Nikopensius, Tiit; Esko, Tonu; Tanaka, Toshiko; Gyllensten, Ulf; Völker, Uwe; Emilsson, Valur; Vitart, Veronique; Aalto, Ville; Gudnason, Vilmundur; Chouraki, Vincent; Chen, Wei-Min; Igl, Wilmar; März, Winfried; Koenig, Wolfgang; Lieb, Wolfgang; Loos, Ruth J. F.; Liu, Yongmei; Snieder, Harold; Pramstaller, Peter P.; Parsa, Afshin; O'Connell, Jeffrey R.; Susztak, Katalin; Hamet, Pavel; Tremblay, Johanne; de Boer, Ian H.; Böger, Carsten A.; Goessling, Wolfram; Chasman, Daniel I.; Köttgen, Anna; Kao, W. H. Linda; Fox, Caroline S.

    2016-01-01

    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways. PMID:26831199

  18. Angiogenin Mediates Cell-Autonomous Translational Control under Endoplasmic Reticulum Stress and Attenuates Kidney Injury.

    PubMed

    Mami, Iadh; Bouvier, Nicolas; El Karoui, Khalil; Gallazzini, Morgan; Rabant, Marion; Laurent-Puig, Pierre; Li, Shuping; Tharaux, Pierre-Louis; Beaune, Philippe; Thervet, Eric; Chevet, Eric; Hu, Guo-Fu; Pallet, Nicolas

    2016-03-01

    Endoplasmic reticulum (ER) stress is involved in the pathophysiology of kidney disease and aging, but the molecular bases underlying the biologic outcomes on the evolution of renal disease remain mostly unknown. Angiogenin (ANG) is a ribonuclease that promotes cellular adaptation under stress but its contribution to ER stress signaling remains elusive. In this study, we investigated the ANG-mediated contribution to the signaling and biologic outcomes of ER stress in kidney injury. ANG expression was significantly higher in samples from injured human kidneys than in samples from normal human kidneys, and in mouse and rat kidneys, ANG expression was specifically induced under ER stress. In human renal epithelial cells, ER stress induced ANG expression in a manner dependent on the activity of transcription factor XBP1, and ANG promoted cellular adaptation to ER stress through induction of stress granules and inhibition of translation. Moreover, the severity of renal lesions induced by ER stress was dramatically greater in ANG knockout mice (Ang(-/-)) mice than in wild-type mice. These results indicate that ANG is a critical mediator of tissue adaptation to kidney injury and reveal a physiologically relevant ER stress-mediated adaptive translational control mechanism.

  19. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    PubMed

    Pattaro, Cristian; Teumer, Alexander; Gorski, Mathias; Chu, Audrey Y; Li, Man; Mijatovic, Vladan; Garnaas, Maija; Tin, Adrienne; Sorice, Rossella; Li, Yong; Taliun, Daniel; Olden, Matthias; Foster, Meredith; Yang, Qiong; Chen, Ming-Huei; Pers, Tune H; Johnson, Andrew D; Ko, Yi-An; Fuchsberger, Christian; Tayo, Bamidele; Nalls, Michael; Feitosa, Mary F; Isaacs, Aaron; Dehghan, Abbas; d'Adamo, Pio; Adeyemo, Adebowale; Dieffenbach, Aida Karina; Zonderman, Alan B; Nolte, Ilja M; van der Most, Peter J; Wright, Alan F; Shuldiner, Alan R; Morrison, Alanna C; Hofman, Albert; Smith, Albert V; Dreisbach, Albert W; Franke, Andre; Uitterlinden, Andre G; Metspalu, Andres; Tonjes, Anke; Lupo, Antonio; Robino, Antonietta; Johansson, Åsa; Demirkan, Ayse; Kollerits, Barbara; Freedman, Barry I; Ponte, Belen; Oostra, Ben A; Paulweber, Bernhard; Krämer, Bernhard K; Mitchell, Braxton D; Buckley, Brendan M; Peralta, Carmen A; Hayward, Caroline; Helmer, Catherine; Rotimi, Charles N; Shaffer, Christian M; Müller, Christian; Sala, Cinzia; van Duijn, Cornelia M; Saint-Pierre, Aude; Ackermann, Daniel; Shriner, Daniel; Ruggiero, Daniela; Toniolo, Daniela; Lu, Yingchang; Cusi, Daniele; Czamara, Darina; Ellinghaus, David; Siscovick, David S; Ruderfer, Douglas; Gieger, Christian; Grallert, Harald; Rochtchina, Elena; Atkinson, Elizabeth J; Holliday, Elizabeth G; Boerwinkle, Eric; Salvi, Erika; Bottinger, Erwin P; Murgia, Federico; Rivadeneira, Fernando; Ernst, Florian; Kronenberg, Florian; Hu, Frank B; Navis, Gerjan J; Curhan, Gary C; Ehret, George B; Homuth, Georg; Coassin, Stefan; Thun, Gian-Andri; Pistis, Giorgio; Gambaro, Giovanni; Malerba, Giovanni; Montgomery, Grant W; Eiriksdottir, Gudny; Jacobs, Gunnar; Li, Guo; Wichmann, H-Erich; Campbell, Harry; Schmidt, Helena; Wallaschofski, Henri; Völzke, Henry; Brenner, Hermann; Kroemer, Heyo K; Kramer, Holly; Lin, Honghuang; Leach, I Mateo; Ford, Ian; Guessous, Idris; Rudan, Igor; Prokopenko, Inga; Borecki, Ingrid; Heid, Iris M; Kolcic, Ivana; Persico, Ivana; Jukema, J Wouter; Wilson, James F; Felix, Janine F; Divers, Jasmin; Lambert, Jean-Charles; Stafford, Jeanette M; Gaspoz, Jean-Michel; Smith, Jennifer A; Faul, Jessica D; Wang, Jie Jin; Ding, Jingzhong; Hirschhorn, Joel N; Attia, John; Whitfield, John B; Chalmers, John; Viikari, Jorma; Coresh, Josef; Denny, Joshua C; Karjalainen, Juha; Fernandes, Jyotika K; Endlich, Karlhans; Butterbach, Katja; Keene, Keith L; Lohman, Kurt; Portas, Laura; Launer, Lenore J; Lyytikäinen, Leo-Pekka; Yengo, Loic; Franke, Lude; Ferrucci, Luigi; Rose, Lynda M; Kedenko, Lyudmyla; Rao, Madhumathi; Struchalin, Maksim; Kleber, Marcus E; Cavalieri, Margherita; Haun, Margot; Cornelis, Marilyn C; Ciullo, Marina; Pirastu, Mario; de Andrade, Mariza; McEvoy, Mark A; Woodward, Mark; Adam, Martin; Cocca, Massimiliano; Nauck, Matthias; Imboden, Medea; Waldenberger, Melanie; Pruijm, Menno; Metzger, Marie; Stumvoll, Michael; Evans, Michele K; Sale, Michele M; Kähönen, Mika; Boban, Mladen; Bochud, Murielle; Rheinberger, Myriam; Verweij, Niek; Bouatia-Naji, Nabila; Martin, Nicholas G; Hastie, Nick; Probst-Hensch, Nicole; Soranzo, Nicole; Devuyst, Olivier; Raitakari, Olli; Gottesman, Omri; Franco, Oscar H; Polasek, Ozren; Gasparini, Paolo; Munroe, Patricia B; Ridker, Paul M; Mitchell, Paul; Muntner, Paul; Meisinger, Christa; Smit, Johannes H; Kovacs, Peter; Wild, Philipp S; Froguel, Philippe; Rettig, Rainer; Mägi, Reedik; Biffar, Reiner; Schmidt, Reinhold; Middelberg, Rita P S; Carroll, Robert J; Penninx, Brenda W; Scott, Rodney J; Katz, Ronit; Sedaghat, Sanaz; Wild, Sarah H; Kardia, Sharon L R; Ulivi, Sheila; Hwang, Shih-Jen; Enroth, Stefan; Kloiber, Stefan; Trompet, Stella; Stengel, Benedicte; Hancock, Stephen J; Turner, Stephen T; Rosas, Sylvia E; Stracke, Sylvia; Harris, Tamara B; Zeller, Tanja; Zemunik, Tatijana; Lehtimäki, Terho; Illig, Thomas; Aspelund, Thor; Nikopensius, Tiit; Esko, Tonu; Tanaka, Toshiko; Gyllensten, Ulf; Völker, Uwe; Emilsson, Valur; Vitart, Veronique; Aalto, Ville; Gudnason, Vilmundur; Chouraki, Vincent; Chen, Wei-Min; Igl, Wilmar; März, Winfried; Koenig, Wolfgang; Lieb, Wolfgang; Loos, Ruth J F; Liu, Yongmei; Snieder, Harold; Pramstaller, Peter P; Parsa, Afshin; O'Connell, Jeffrey R; Susztak, Katalin; Hamet, Pavel; Tremblay, Johanne; de Boer, Ian H; Böger, Carsten A; Goessling, Wolfram; Chasman, Daniel I; Köttgen, Anna; Kao, W H Linda; Fox, Caroline S

    2016-01-21

    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways.

  20. Fibronectin Binding Proteins SpsD and SpsL Both Support Invasion of Canine Epithelial Cells by Staphylococcus pseudintermedius

    PubMed Central

    Pietrocola, Giampiero; Gianotti, Valentina; Richards, Amy; Nobile, Giulia; Geoghegan, Joan A.; Rindi, Simonetta; Monk, Ian R.; Bordt, Andrea S.; Foster, Timothy J.; Fitzgerald, J. Ross

    2015-01-01

    In this study, we investigated the cell wall-anchored fibronectin-binding proteins SpsD and SpsL from the canine commensal and pathogen Staphylococcus pseudintermedius for their role in promoting bacterial invasion of canine progenitor epidermal keratinocytes (CPEK). Invasion was examined by the gentamicin protection assay and fluorescence microscopy. An ΔspsD ΔspsL mutant of strain ED99 had a dramatically reduced capacity to invade CPEK monolayers, while no difference in the invasion level was observed with single mutants. Lactococcus lactis transformed with plasmids expressing SpsD and SpsL promoted invasion, showing that both proteins are important. Soluble fibronectin was required for invasion, and an RGD-containing peptide or antibodies recognizing the integrin α5β1 markedly reduced invasion, suggesting an important role for the integrin in this process. Src kinase inhibitors effectively blocked internalization, suggesting a functional role for the kinase in invasion. In order to identify the minimal fibronectin-binding region of SpsD and SpsL involved in the internalization process, recombinant fragments of both proteins were produced. The SpsD520–846 and SpsL538–823 regions harboring the major fibronectin-binding sites inhibited S. pseudintermedius internalization. Finally, the effects of staphylococcal invasion on the integrity of different cell lines were examined. Because SpsD and SpsL are critical factors for adhesion and invasion, blocking these processes could provide a strategy for future approaches to treating infections. PMID:26238710