Science.gov

Sample records for canistered waste forms

  1. Chemical compatibility of DWPF canistered waste forms. Revision 1

    SciTech Connect

    Harbour, J.R.

    1993-06-25

    The Waste Acceptance Preliminary Specifications (WAPS) require that the contents of the canistered waste form are compatible with one another and the stainless steel canister. The canistered waste form is a closed system comprised of a stainless steel vessel containing waste glass, air, and condensate. This system will experience a radiation field and an elevated temperature due to radionuclide decay. This report discusses possible chemical reactions, radiation interactions, and corrosive reactions within this system both under normal storage conditions and after exposure to temperatures up to the normal glass transition temperature, which for DWPF waste glass will be between 440 and 460{degrees}C. Specific conclusions regarding reactions and corrosion are provided. This document is based on the assumption that the period of interim storage prior to packaging at the federal repository may be as long as 50 years.

  2. Transportation considerations related to waste forms and canisters for Defense TRU wastes

    SciTech Connect

    Schneider, K.J.; Andrews, W.B.; Schreiber, A.M.; Rosenthal, L.J.; Odle, C.J.

    1981-09-01

    This report identifies and discusses the considerations imposed by transportation on waste forms and canisters for contact-handled, solid transuranic wastes from the US Department of Energy (DOE) activities. The report reviews (1) the existing raw waste forms and potential immobilized waste forms, (2) the existing and potential future DOE waste canisters and shipping containers, (3) regulations and regulatory trends for transporting commercial transuranic wastes on the ISA, (4) truck and rail carrier requirements and preferences for transporting the wastes, and (5) current and proposed Type B external packagings for transporting wastes.

  3. Description of Defense Waste Processing Facility reference waste form and canister. Revision 1

    SciTech Connect

    Baxter, R.G.

    1983-08-01

    The Defense Waste Processing Facility (DWPF) will be located at the Savannah River Plant in Aiken, SC, and is scheduled for construction authorization during FY-1984. The reference waste form is borosilicate glass containing approx. 28 wt % sludge oxides, with the balance glass frit. Borosilicate glass was chosen because of its high resistance to leaching by water, its relatively high solubility for nuclides found in the sludge, and its reasonably low melting temperature. The glass frit contains about 58% SiO/sub 2/ and 15% B/sub 2/O/sub 3/. Leachabilities of SRP waste glasses are expected to approach 10/sup -8/ g/m/sup 2/-day based upon 1000-day tests using glasses containing SRP radioactive waste. Tests were performed under a wide variety of conditions simulating repository environments. The canister is filled with 3260 lb of glass which occupies about 85% of the free canister volume. The filled canister will generate approx. 470 watts when filled with oxides from 5-year-old sludge and 15-year-old supernate from the sludge and supernate processes. The radionuclide content of the canister is about 177,000 ci, with a radiation level of 5500 rem/h at canister surface contact. The reference canister is fabricated of standard 24-in.-OD, Schedule 20, 304L stainless steel pipe with a dished bottom, domed head, and a combined lifting and welding flange on the head neck. The overall canister length is 9 ft 10 in. with a 3/8-in. wall thickness. The 3-m canister length was selected to reduce equipment cell height in the DWPF to a practical size. The canister diameter was selected as an optimum size from glass quality considerations, a logical size for repository handling and to ensure that a filled canister with its double containment shipping cask could be accommodated on a legal-weight truck. The overall dimensions and weight appear to be compatible with preliminary assessments of repository requirements. 10 references.

  4. Waste canister for storage of nuclear wastes

    DOEpatents

    Duffy, James B.

    1977-01-01

    A waste canister for storage of nuclear wastes in the form of a solidified glass includes fins supported from the center with the tips of the fins spaced away from the wall to conduct heat away from the center without producing unacceptable hot spots in the canister wall.

  5. The physical properties and chemical composition of the gas within the free volume of canistered waste forms

    SciTech Connect

    Harbour, J.R.; Miller, T.J.; Whitaker, M.J.

    1990-11-01

    The DWPF must meet Waste Acceptance Preliminary Specifications (WAPS) for acceptance of the DWPF canistered waste forms. A number of these specifications deal with the exclusion of non-wasteglass (or foreign) materials within the canistered waste forms. Those material which are specifically excluded include the following: Free Liquids, Free Gases, other than cover or radiogenic gases, Explosives, Pyrophorics and Combustibles, and Organics. This report documents the results obtained by carrying out an assigned task as described in three task plans. The task plans cover the determination of pressure, gas composition and relative humidity of SRL canistered waste forms; and organic and inorganic analysis of volatilized and condensed species within SRL canistered waste forms. These results provide evidence to demonstrate compliance with these specifications and will be included in the Waste Form Qualification Report (WQR). In all, four canistered waste forms, produced during the Scale Glass Melter (SGM) campaigns, were examined. The internal gas pressure, dewpoint temperature and gas composition were determined for each canistered waste form. The experience gained in these experiments will be used to generate procedures for obtaining the same information on canistered waste forms produced during the Integrated Cold Runs (ICR). 10 refs., 2 figs., 1 tab.

  6. Canister arrangement for storing radioactive waste

    DOEpatents

    Lorenzo, D.K.; Van Cleve, J.E. Jr.

    1980-04-23

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  7. Canister arrangement for storing radioactive waste

    DOEpatents

    Lorenzo, Donald K.; Van Cleve, Jr., John E.

    1982-01-01

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  8. Yucca Mountain project canister material corrosion studies as applied to the electrometallurgical treatment metallic waste form

    SciTech Connect

    Keiser, D.D.

    1996-11-01

    Yucca Mountain, Nevada is currently being evaluated as a potential site for a geologic repository. As part of the repository assessment activities, candidate materials are being tested for possible use as construction materials for waste package containers. A large portion of this testing effort is focused on determining the long range corrosion properties, in a Yucca Mountain environment, for those materials being considered. Along similar lines, Argonne National Laboratory is testing a metallic alloy waste form that also is scheduled for disposal in a geologic repository, like Yucca Mountain. Due to the fact that Argonne`s waste form will require performance testing for an environment similar to what Yucca Mountain canister materials will require, this report was constructed to focus on the types of tests that have been conducted on candidate Yucca Mountain canister materials along with some of the results from these tests. Additionally, this report will discuss testing of Argonne`s metal waste form in light of the Yucca Mountain activities.

  9. Initial results from the canistered waste forms produced during the first campaign of the DWPF Startup Test Program

    SciTech Connect

    Harbour, J.R.

    1995-01-01

    As part of the Defense Waste Processing Facility (DWPF) Startup Test Program, approximately 90 canisters will be filled with glass containing simulated radioactive waste during five separate campaigns. The first campaign is a facility acceptance test to demonstrate the operability of the facility and to collect initial data on the glass and the canistered waste forms. During the next four campaigns (the waste qualification campaigns) data will be obtained which will be used to demonstrate that the DWPF product meets DOE`s Waste Acceptance Product Specifications (WAPS). Currently 12 of the 16 canisters have been filled with glass during the first campaign (FA-13). This paper describes the tests that have been carried out on these 12 glass-filled canisters and presents the data with reference to the acceptance criteria of the WAPS. These tests include measurement of canister dimensions prior to and after glass filling. dew point, composition, and pressure of the gas within the free volume of the canister, fill height, free volume, weight, leak rates of welds and temporary seals, and weld parameters.

  10. Thermal Predictions of the Cooling of Waste Glass Canisters

    SciTech Connect

    Donna Post Guillen

    2014-11-01

    Radioactive liquid waste from five decades of weapons production is slated for vitrification at the Hanford site. The waste will be mixed with glass forming additives and heated to a high temperature, then poured into canisters within a pour cave where the glass will cool and solidify into a stable waste form for disposal. Computer simulations were performed to predict the heat rejected from the canisters and the temperatures within the glass during cooling. Four different waste glass compositions with different thermophysical properties were evaluated. Canister centerline temperatures and the total amount of heat transfer from the canisters to the surrounding air are reported.

  11. Decontamination of high-level waste canisters

    SciTech Connect

    Nesbitt, J.F.; Slate, S.C.; Fetrow, L.K.

    1980-12-01

    This report presents evaluations of several methods for the in-process decontamination of metallic canisters containing any one of a number of solidified high-level waste (HLW) forms. The use of steam-water, steam, abrasive blasting, electropolishing, liquid honing, vibratory finishing and soaking have been tested or evaluated as potential techniques to decontaminate the outer surfaces of HLW canisters. Either these techniques have been tested or available literature has been examined to assess their applicability to the decontamination of HLW canisters. Electropolishing has been found to be the most thorough method to remove radionuclides and other foreign material that may be deposited on or in the outer surface of a canister during any of the HLW processes. Steam or steam-water spraying techniques may be adequate for some applications but fail to remove all contaminated forms that could be present in some of the HLW processes. Liquid honing and abrasive blasting remove contamination and foreign material very quickly and effectively from small areas and components although these blasting techniques tend to disperse the material removed from the cleaned surfaces. Vibratory finishing is very capable of removing the bulk of contamination and foreign matter from a variety of materials. However, special vibratory finishing equipment would have to be designed and adapted for a remote process. Soaking techniques take long periods of time and may not remove all of the smearable contamination. If soaking involves pickling baths that use corrosive agents, these agents may cause erosion of grain boundaries that results in rough surfaces.

  12. Studies of waste-canister compatibility. [Waste forms: Al-Si and Pb-Sn matrix alloys, FUETAP, glass, Synroc D, and waste particles coated with carbon or carbon plus SiC

    SciTech Connect

    McCoy, H.E.

    1983-01-01

    Compatibility studies were conducted between 7 waste forms and 15 potential canister structural materials. The waste forms were Al-Si and Pb-Sn matrix alloys, FUETAP, glass, Synroc D, and waste particles coated with carbon or carbon plus silicon carbide. The canister materials included carbon steel (bare and with chromium or nickel coatings), copper, Monel, Cu-35% Ni, titanium (grades 2 and 12), several Inconels, aluminum alloy 5052, and two stainless steels. Tests of either 6888 or 8821 h were conducted at 100 and 300/sup 0/C, which bracket the low and high limits expected during storage. Glass and FUETAP evolved sulfur, which reacted preferentially with copper, nickel, and alloys of these metals. The Pb-Sn matrix alloy stuck to all samples and the carbon-coated particles to most samples at 300/sup 0/C, but the extent of chemical reaction was not determined. Testing for 0.5 h at 800/sup 0/C was included because it is representative of a transportation accident and is required of casks containing nuclear materials. During these tests (1) glass and FUETAP evolved sulfur, (2) FUETAP evolved large amounts of gas, (3) Synroc stuck to titanium alloys, (4) glass was molten, and (5) both matrix alloys were molten with considerable chemical interactions with many of the canister samples. If this test condition were imposed on waste canisters, it would be design limiting in many waste storage concepts.

  13. Characterization of materials for waste-canister compatibility studies

    SciTech Connect

    McCoy, H.E.; Mack, J.E.

    1981-10-01

    Sample materials of 7 waste forms and 15 potential canister materials were procured for compatibility tests. These materials were characterized before being placed in test, and the results are the main topic of this report. A test capsule was designed for the tests in which disks of a single waste form were contacted with duplicate samples of canister materials. The capsules are undergoing short-term tests at 800/sup 0/C and long-term tests at 100 and 300/sup 0/C.

  14. Decontamination processes for waste glass canisters

    SciTech Connect

    Rankin, W.N.

    1981-06-01

    The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO/sub 3/-HF and H/sub 2/C/sub 2/O/sub 4/ to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated.

  15. Defense Waste Processing Facility wasteform and canister description: Revision 2

    SciTech Connect

    Baxter, R.G.

    1988-12-01

    This document describes the reference wasteform and canister for the Defense Waste Processing Facility (DWPF). The principal changes include revised feed and glass product compositions, an estimate of glass product characteristics as a function of time after the start of vitrification, and additional data on glass leaching performance. The feed and glass product composition data are identical to that described in the DWPF Basic Data Report, Revision 90/91. The DWPF facility is located at the Savannah River Plant in Aiken, SC, and it is scheduled for construction completion during December 1989. The wasteform is borosilicate glass containing approximately 28 wt % sludge oxides, with the balance consisting of glass-forming chemicals, primarily glass frit. Borosilicate glass was chosen because of its stability toward reaction with potential repository groundwaters, its relatively high ability to incorporate nuclides found in the sludge into the solid matrix, and its reasonably low melting temperature. The glass frit contains approximately 71% SiO/sub 2/, 12% B/sub 2/O/sub 3/, and 10% Na/sub 2/O. Tests to quantify the stability of DWPF waste glass have been performed under a wide variety of conditions, including simulations of potential repository environments. Based on these tests, DWPF waste glass should easily meet repository criteria. The canister is filled with about 3700 lb of glass which occupies 85% of the free canister volume. The filled canister will generate approximately 690 watts when filled with oxides from 5-year-old sludge and precipitate from 15-year-old supernate. The radionuclide activity of the canister is about 233,000 curies, with an estimated radiation level of 5600 rad/hour at the canister surface. 14 figs., 28 tabs.

  16. DWPF (Defense Waste Processing Facility) canister impact testing and analyses for the Transportation Technology Center

    SciTech Connect

    Farnsworth, R.K.; Mishima, J.

    1988-12-01

    A legal weight truck cask design has been developed for the US Department of Energy by GA Technologies, Inc. The cask will be used to transport defense high-level waste canisters produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The development of the cask required the collection of impact data for the DWPF canisters. The Materials Characterization Center (MCC) performed this work under the guidance of the Transportation Technology Center (TTC) at Sandia National Laboratories. Two full-scale DWPF canisters filled with nonradioactive borosilicate glass were impacted under ''normal'' and ''hypothetical'' accident conditions. Two canisters, supplied by the DWPF, were tested. Each canister was vertically dropped on the bottom end from a height of either 0.3 m or 9.1 m (for normal or hypothetical accident conditions, respectively). The structural integrity of each canister was then examined using helium leak and dye penetrant testing. The canisters' diameters and heights, which had been previously measured, were then remeasured to determine how the canister dimensions had changed. Following structural integrity testing, the canisters were flaw leak tested. For transportation flaw leak testing, four holes were fabricated into the shell of canister A-27 (0.3 m drop height). The canister was then transported a total distance of 2069 miles. During transport, the waste form material that fell from each flaw was collected to determine the amount of size distribution of each flaw release. 2 refs., 8 figs., 12 tabs.

  17. Reference commercial high-level waste glass and canister definition.

    SciTech Connect

    Slate, S.C.; Ross, W.A.; Partain, W.L.

    1981-09-01

    This report presents technical data and performance characteristics of a high-level waste glass and canister intended for use in the design of a complete waste encapsulation package suitable for disposal in a geologic repository. The borosilicate glass contained in the stainless steel canister represents the probable type of high-level waste product that will be produced in a commercial nuclear-fuel reprocessing plant. Development history is summarized for high-level liquid waste compositions, waste glass composition and characteristics, and canister design. The decay histories of the fission products and actinides (plus daughters) calculated by the ORIGEN-II code are presented.

  18. Reference commercial high-level waste glass and canister definition

    NASA Astrophysics Data System (ADS)

    Slate, S. C.; Ross, W. A.; Partain, W. L.

    1981-09-01

    Technical data and performance characteristics of a high level waste glass and canister intended for use in the design of a complete waste encapsulation package suitable for disposal in a geologic repository are presented. The borosilicate glass contained in the stainless steel canister represents the probable type of high level waste product that is produced in a commercial nuclear-fuel reprocessing plant. Development history is summarized for high level liquid waste compositions, waste glass composition and characteristics, and canister design. The decay histories of the fission products and actinides (plus daughters) calculated by the ORIGEN-II code are presented.

  19. 4.5 Meter high level waste canister study

    SciTech Connect

    Calmus, R. B.

    1997-10-01

    The Tank Waste Remediation System (TWRS) Storage and Disposal Project has established the Immobilized High-Level Waste (IBLW) Storage Sub-Project to provide the capability to store Phase I and II BLW products generated by private vendors. A design/construction project, Project W-464, was established under the Sub-Project to provide the Phase I capability. Project W-464 will retrofit the Hanford Site Canister Storage Building (CSB) to accommodate the Phase I I-ILW products. Project W-464 conceptual design is currently being performed to interim store 3.0 m-long BLW stainless steel canisters with a 0.61 in diameter, DOE is considering using a 4.5 in canister of the same diameter to reduce permanent disposal costs. This study was performed to assess the impact of replacing the 3.0 in canister with the 4.5 in canister. The summary cost and schedule impacts are described.

  20. Examining the role of canister cooling conditions on the formation of nepheline from nuclear waste glasses

    SciTech Connect

    Christian, J. H.

    2015-09-01

    Nepheline (NaAlSiO₄) crystals can form during slow cooling of high-level waste (HLW) glass after it has been poured into a waste canister. Formation of these crystals can adversely affect the chemical durability of the glass. The tendency for nepheline crystallization to form in a HLW glass increases with increasing concentrations of Al₂O₃ and Na₂O.

  1. Method for predicting cracking in waste glass canisters

    SciTech Connect

    Faletti, D.W.; Ethridge, L.J.

    1986-08-01

    A correlation has been developed that predicts the surface area created by cracking to within the accuracy of the existing data. The correlation is a simple linear equation; the surface area can be computed from a knowledge of the steady-state radial temperature difference and the radial temperature difference when the glass centerline temperature was at 500/sup 0/C. This correlation should be easy to use for waste glass canister applications since, in many cases, a two-dimensional heat transfer analysis can be used to determine the radial temperature differences. Although the correlation is useful for scoping purposes, there is a need to validate the correlation against additional canister cracking data, particularly in the case of stainless steel canisters. The use of Fiberfrax liners deserves serious consideration for use in stainless steel waste glass canisters. The amount of cracking is reduced because the liner eliminates the metal-glass interactions that produce significant stresses in the glass. Another less obvious, but very important, advantage of using Fiberfrax is that thermal shocking during decontamination and post-fill operations is reduced because of the liner's insulating capacity. More extensive studies to verify these results are recommended; canisters should be produced, under identical cooling conditions, that differ only in the use of liners. The data for any canister type are extremely sparse, and there is considerable uncertainty about the accuracy of the different methods that have been used to obtain surface area estimates. The comparative roles played by batch and continuous filling of the canisters also need to be clarified. There is a need for accurate thermal data to validate computer codes for determining the temperature histories of canisters. Suggestions for future cracking studies are given.

  2. Effects of annular air gaps surrounding an emplaced nuclear waste canister in deep geologic storage

    SciTech Connect

    Lowry, W.E.; Davis, B.W.; Cheung, H.

    1980-06-05

    Annular air spaces surrounding an emplaced nuclear waste canister in deep geologic storage will have significant effects on the long-term performance of the waste form. Addressed specifically in this analysis is the influence of a gap on the thermal response of the waste package. Three dimensional numerical modeling predicts temperature effects for a series of parameter variations, including the influence of gap size, surface emissivities, initial thermal power generation of the canister, and the presence/absence of a sleeve. Particular emphasis is placed on determining the effects these variables have on the canister surface temperature. We have identified critical gap sizes at which the peak transient temperature occurs when gap widths are varied for a range of power levels. It is also shown that high emissivities for the heat exchanging surfaces are desirable, while that of the canister surface has the greatest influence. Gap effects are more pronounced, and therefore more effort should be devoted to optimal design, in situations where the absolute temperature of the near field medium is high. This occurs for higher power level emplacements and in geomedia with low thermal conductivities. Finally, loosely inserting a sleeve in the borehole effectively creates two gaps and drastically raises the canister peak temperature. It is possible to use these results in the design of an optimum package configuration which will maintain the canister at acceptable temperature levels. A discussion is provided which relates these findings to NRC regulatory considerations.

  3. Proper procedures are the key to welding radioactive waste canisters

    SciTech Connect

    Cannell, G.R.; Sessions, C.E.

    1997-08-01

    The Defense Waste Processing Facility (DWPF) at the US Department of Energy`s Savannah River site in Aiken, SC, processes and vitrifies radioactive liquid waste. The waste is incorporated in a borosilicate glass and poured into canisters where it is allowed to cool and solidify. The canisters, fabricated from 304L stainless steel, measuring 24 in. in diameter and 118 in. in length, are permanently sealed with a 1/2-in.-thick by 5-in.-diameter 304L stainless steel plug. The plug is resistance welded into the canister nozzle creating the closure weld. Resistance upset welding was chosen for making the closure weld because of its simplicity (facilitates remote operation) and ability to make high-integrity joints. Statistical process control (SPC) is used to monitor and provide ongoing status of the welding system. A difference in burst strength between production canister nozzle and test nozzle closure welds performed over the past few years was noted. Test nozzles serve at least two functions: (1) they are used for welding performance qualification, and (2) are destructively tested to assess performance of the DWPF welding system and to verify quality of production welds. This study includes data from three groups of nozzle closure welds. Group 1 consists of 11 test nozzles welded in conjunction with qualification of the DWPF welding procedure. Group 2 includes ten truncated canister nozzles taken from glass-pouring campaigns in which canisters were filled with nonradioactive glass, processed in the DWPF and closure welded. The third group (Group 3) is comprised of eight test nozzles associated with welder performance qualification performed subsequent to completion of Group 2.

  4. Sediment mechanical response due to emplacement of a waste canister

    SciTech Connect

    Karnes, C. H.; Dawson, P. R.; Silva, A. J.; Brown, W. T.

    1980-01-01

    Preliminary studies have been conducted to determine the interaction between a waste canister and seabed sediment during and after emplacement. Empirical and approximate methods for determining the depth reached by a freefall penetrator indicate that a boosted penetrator emplacement method may be necessary. Hole closure is necessary, but has not been verified because calculations and laboratory experiments show sensitivity to boundary conditions which control the degree of dynamic hole closure. Laboratory studies show that closure will take place by creep deformation but closure times in seabed environments are uncertain. For assumed thermomechanical properties of sediments, it is shown that a heat generating waste canister will probably not move a significant distancce during the heat generation period.

  5. Resistance Weld Qualification Analysis for Radioactive Waste Canisters

    SciTech Connect

    Gupta, N.K.; Gong, C.

    1995-01-10

    High level radioactive waste canisters are sealed by resistance upset welding to ensure leak tight closures. Resistance welding is fast, uniform, and can be performed remotely to minimize radiation exposure to the operators. Canisters are constructed in accordance with ASME Band PV Code, Section VIII, Division 1, however, the resistance welds are not used in Section VIII. The resistance welds are qualified by analysis using material properties obtained from the test coupons. Burst tests are performed on canister welds to meet ASME Section IX welder qualification requirements. Since burst tests are not used in Section IX for resistance weld qualification, finite element results of canister resistance welds are compared with the finite element analysis results of resistance weld tests in ASME Section IX, QW-196 to establish similarity between the two weld tests. Detailed analyses show that the primary mode of failure in both the tests is shear and, therefore, the use of burst test in place of shear test is acceptable. It is believed that the detailed analyses and results could help in establishing acceptance criteria for resistance upset welding in ASME B&PV Code, Sections VIII, and IX.

  6. Heat transfer analysis of the geologic disposal of spent fuel and high level waste storage canisters

    NASA Astrophysics Data System (ADS)

    Allen, G. K.

    1980-08-01

    Near-field temperatures resulting from the storage of high-level waste canisters and spent unreprocessed fuel assembly canisters in geologic formations were determined. Preliminary design of the repository was modeled for a heat transfer computer code, HEATING5, which used the finite difference method to evaluate transient heat transfer. The heat transfer system was evaluated with several two and three dimensional models which transfer heat by a combination of conduction, natural convention, and radiation. Physical properties of the materials in the model were based upon experimental values for the various geologic formations. The effects of canister spacing, fuel age, and use of an overpack were studied for the analysis of the spent fuel canisters; salt, granite, and basalt were considered as the storage media. The effects of canister diameter and use of an overpack were studied for the analysis of the high-level waste canisters; salt was considered as the only storage media for high-level waste canisters.

  7. Annular air space effects on nuclear waste canister temperatures in a deep geologic waste repository

    SciTech Connect

    Lowry, W.E.; Cheung, H.; Davis, B.W.

    1980-05-13

    Air spaces in a deep geologic repository for nuclear high level waste will have an important effect on the long-term performance of the waste package. The important temperature effects of an annular air gap surrounding a high level waste canister are determined through 3-D numerical modeling. Air gap properties and parameters specifically analyzed and presented are the air gap size, surfaces emissivity, presence of a sleeve, and initial thermal power generation rate; particular emphasis was placed on determining the effect of these variables have on the canister surface temperature. Finally a discussion based on modeling results is presented which specifically relates the results to NRC regulatory considerations.

  8. Inorganic analyses of volatilized and condensed species within prototypic Defense Waste Processing Facility (DWPF) canistered waste

    SciTech Connect

    Jantzen, C.M.

    1992-06-30

    The high-level radioactive waste currently stored in carbon steel tanks at the Savannah River Site (SRS) will be immobilized in a borosilicate glass in the Defense Waste Processing Facility (DWPF). The canistered waste will be sent to a geologic repository for final disposal. The Waste Acceptance Preliminary Specifications (WAPS) require the identification of any inorganic phases that may be present in the canister that may lead to internal corrosion of the canister or that could potentially adversely affect normal canister handling. During vitrification, volatilization of mixed (Na, K, Cs)Cl, (Na, K, Cs){sub 2}SO{sub 4}, (Na, K, Cs)BF{sub 4}, (Na, K){sub 2}B{sub 4}O{sub 7} and (Na,K)CrO{sub 4} species from glass melt condensed in the melter off-gas and in the cyclone separator in the canister pour spout vacuum line. A full-scale DWPF prototypic canister filled during Campaign 10 of the SRS Scale Glass Melter was sectioned and examined. Mixed (NaK)CI, (NaK){sub 2}SO{sub 4}, (NaK) borates, and a (Na,K) fluoride phase (either NaF or Na{sub 2}BF{sub 4}) were identified on the interior canister walls, neck, and shoulder above the melt pour surface. Similar deposits were found on the glass melt surface and on glass fracture surfaces. Chromates were not found. Spinel crystals were found associated with the glass pour surface. Reference amounts of the halides and sulfates were found retained in the glass and the glass chemistry, including the distribution of the halides and sulfates, was homogeneous. In all cases where rust was observed, heavy metals (Zn, Ti, Sn) from the cutting blade/fluid were present indicating that the rust was a reaction product of the cutting fluid with glass and heat sensitized canister or with carbon-steel contamination on canister interior. Only minimal water vapor is present so that internal corrosion of the canister, will not occur.

  9. Value Engineering Study for Closing Waste Packages Containing TAD Canisters

    SciTech Connect

    Colleen Shelton-Davis

    2005-11-01

    The Office of Civilian Radioactive Waste Management announced their intention to have the commercial utilities package spent nuclear fuel in shielded, transportable, ageable, and disposable containers prior to shipment to the Yucca Mountain repository. This will change the conditions used as a basis for the design of the waste package closure system. The environment is now expected to be a low radiation, low contamination area. A value engineering study was completed to evaluate possible modifications to the existing closure system using the revised requirements. Four alternatives were identified and evaluated against a set of weighted criteria. The alternatives are (1) a radiation-hardened, remote automated system (the current baseline design); (2) a nonradiation-hardened, remote automated system (with personnel intervention if necessary); (3) a nonradiation-hardened, semi-automated system with personnel access for routine manual operations; and (4) a nonradiation-hardened, fully manual system with full-time personnel access. Based on the study, the recommended design is Alternative 2, a nonradiation-hardened, remote automated system. It is less expensive and less complex than the current baseline system, because nonradiation-hardened equipment can be used and some contamination control equipment is no longer needed. In addition, the inclusion of remote automation ensures throughput requirements are met, provides a more reliable process, and provides greater protection for employees from industrial accidents and radiation exposure than the semi-automated or manual systems. Other items addressed during the value engineering study as requested by OCRWM include a comparison to industry canister closure systems and corresponding lessons learned; consideration of closing a transportable, ageable, and disposable canister; and an estimate of the time required to perform a demonstration of the recommended closure system.

  10. Thermal embrittlement of carbon steels in canistered waste disposal containers

    SciTech Connect

    Huang, J.S.

    1998-03-01

    It is known that fracture toughness in steels, especially in low steels, in severely reduced by exposure at the temperature range of 350-575{degrees}C through isothermal aging or slow cooling. It is also well recognized that segregation of impurities, such as Sb, P, Sn, As, along prior austenite grain boundaries is the main cause of thermal (temper) embrittlement. The most potent embrittling elements, in order of decreasing potency, are Sb, Sn, P, and As. However, Sb, Sn, and As are not generally present in steels. Therefore P is usually the most concerned element in steels. McMahon has concluded in his review that plain C steels containing less than 0.5 wt% Mn are not susceptible to temper embrittlement. However, he also noted the strong effect of Mn as an enhancement of the P aging of plain C-Mn steels, particularly high Mn contents, to disregard the possibility of thermal embrittlement. A516 plain carbon steels has been been proposed as a corrosion allowable material (CRM) for the outer barrier of canistered waste disposal containers. The expected peak temperature for a waste package container if as high as 200{degrees}C for many years. Therefore concern has been raised whether thermal embrittlement would occur in this steel after the long term temperature exposure expected in the current nuclear waste packages. The current report documents our recent analysis for this problem.

  11. Corrosion of high-level radioactive waste iron-canisters in contact with bentonite.

    PubMed

    Kaufhold, Stephan; Hassel, Achim Walter; Sanders, Daniel; Dohrmann, Reiner

    2015-03-21

    Several countries favor the encapsulation of high-level radioactive waste (HLRW) in iron or steel canisters surrounded by highly compacted bentonite. In the present study the corrosion of iron in contact with different bentonites was investigated. The corrosion product was a 1:1 Fe layer silicate already described in literature (sometimes referred to as berthierine). Seven exposition test series (60 °C, 5 months) showed slightly less corrosion for the Na-bentonites compared to the Ca-bentonites. Two independent exposition tests with iron pellets and 38 different bentonites clearly proved the role of the layer charge density of the swelling clay minerals (smectites). Bentonites with high charged smectites are less corrosive than bentonites dominated by low charged ones. The type of counterion is additionally important because it determines the density of the gel and hence the solid/liquid ratio at the contact to the canister. The present study proves that the integrity of the multibarrier-system is seriously affected by the choice of the bentonite buffer encasing the metal canisters in most of the concepts. In some tests the formation of a patina was observed consisting of Fe-silicate. Up to now it is not clear why and how the patina formed. It, however, may be relevant as a corrosion inhibitor.

  12. Commercial radioactive waste management system feasibility with the universal canister concept. Volume 1

    SciTech Connect

    Morissette, R.P.; Schneringer, P.E.; Lane, R.K.; Moore, R.L.; Young, K.A.

    1986-01-01

    A Program Research and Development Announcement (PRDA) was initiated by DOE to solicit from industry new and novel ideas for improvements in the nuclear waste management system. GA Technologies Inc. was contracted to study a system utilizing a universal canister which could be loaded at the reactor and used throughout the waste management system. The proposed canister was developed with the objective of meeting the mission requirements with maximum flexibility and at minimum cost. Canister criteria were selected from a thorough analysis of the spent fuel inventory, and canister concepts were evaluated along with the shipping and storage casks to determine the maximum payload. Engineering analyses were performed on various cask/canister combinations. One important criterion was the interchangeability of the canisters between truck and rail cask systems. A canister was selected which could hold three PWR intact fuel elements or up to eight consolidated PWR fuel elements. One canister could be shipped in an overweight truck cask or six in a rail cask. Economic analysis showed a cost savings of the reference system under consideration at that time.

  13. High-level waste canister storage final design, installation, and testing. Topical report

    SciTech Connect

    Connors, B.J.; Meigs, R.A.; Pezzimenti, D.M.; Vlad, P.M.

    1998-04-01

    This report is a description of the West Valley Demonstration Project`s radioactive waste storage facility, the Chemical Process Cell (CPC). This facility is currently being used to temporarily store vitrified waste in stainless steel canisters. These canisters are stacked two-high in a seismically designed rack system within the cell. Approximately 300 canisters will be produced during the Project`s vitrification campaign which began in June 1996. Following the completion of waste vitrification and solidification, these canisters will be transferred via rail or truck to a federal repository (when available) for permanent storage. All operations in the CPC are conducted remotely using various handling systems and equipment. Areas adjacent to or surrounding the cell provide capabilities for viewing, ventilation, and equipment/component access.

  14. Containment canister for capturing hazardous waste debris during piping modifications

    DOEpatents

    Dozier, Stanley B.

    2001-07-24

    The present invention relates to a capture and containment canister which reduces the risk of radiation and other biohazard exposure to workers, the need for a costly containment hut and the need for the extra manpower associated with the hut. The present invention includes the design of a canister having a specially designed magnetic ring that attracts and holds the top of the canister in place during modifications to gloveboxes and other types of radiological and biochemical hoods. The present invention also provides an improved hole saw that eliminates the need for a pilot bit.

  15. Development of a Universal Canister for Disposal of High-Level Waste in Deep Boreholes.

    SciTech Connect

    Price, Laura L.; Gomberg, Steve

    2015-11-01

    The mission of the United States Department of Energy’s Office of Environmental Management is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research. Some of the wastes that must be managed have been identified as good candidates for disposal in a deep borehole in crystalline rock. In particular, wastes that can be disposed of in a small package are good candidates for this disposal concept. A canister-based system that can be used for handling these wastes during the disposition process (i.e., storage, transfer, transportation, and disposal) could facilitate the eventual disposal of these wastes. Development of specifications for the universal canister system will consider the regulatory requirements that apply to storage, transportation, and disposal of the capsules, as well as operational requirements and limits that could affect the design of the canister (e.g., deep borehole diameter). In addition, there are risks and technical challenges that need to be recognized and addressed as Universal Canister system specifications are developed. This paper provides an approach to developing specifications for such a canister system that is integrated with the overall efforts of the DOE’s Used Fuel Disposition Campaign's Deep Borehole Field Test and compatible with planned storage of potential borehole-candidate wastes.

  16. The Nuclear Waste Technical Review Board`s views on the multipurpose canister

    SciTech Connect

    Price, D.L.

    1994-10-01

    This article presents the view of the Nuclear Waste Technical Review Board on the Multipurpose Canister (MPC). The Board believes that if developed properly the MPC has the potential for enhancing safety in the waste management system by substantially reducing handling, fostering a systems approach to the management of the nation`s spent nuclear fuel and high-level waste, and introducing a level of standardization into the system.

  17. Reevaluation of Vitrified High-Level Waste Form Criteria for Potential Cost Savings at the Defense Waste Processing Facility - 13598

    SciTech Connect

    Ray, J.W.; Marra, S.L.; Herman, C.C.

    2013-07-01

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form. (authors)

  18. Acceptance of canisters of consolidated spent nuclear fuel by the Federal Waste Management System

    SciTech Connect

    Not Available

    1990-03-01

    This report is one of a series of eight prepared by E. R. Johnson Associates, Inc. (JAI) under ORNL's contract with DOE's OCRWM Systems Integration Program and in support of the Annual Capacity Report (ACR) Issue Resolution Process. The report topics relate specifically to the list of high priority technical waste acceptance issues developed jointly by DOE and a utility-working group. JAI performed various analyses and studies on each topic to serve as starting points for further discussion and analysis leading eventually to finalizing the process by which DOE will accept spent fuel and waste into its waste management system. The eight reports are concerned with the conditions under which spent fuel and high level waste will be accepted in the following categories: failed fuel; consolidated fuel and associated structural parts; non-fuel-assembly hardware; fuel in metal storage casks; fuel in multi-element sealed canisters; inspection and testing requirements for wastes; canister criteria; spent fuel selection for deliver; and defense and commercial high-level waste packages. This document discusses canister standards and criteria. 12 refs., 7 figs., 28 tabs.

  19. Corrosion Behavior of Nuclear Waste Storage Canister Materials

    NASA Astrophysics Data System (ADS)

    Grant, John

    The nature of interaction of mild steel nuclear waste storage containers with technetium ions is not fully known. Technetium is formed during nuclear processing and some of this technetium has leaked at the Hanford nuclear waste storage site in Washington State. It is often found as highly oxidized pertechnetate (TeO4-) anions at these storage sites which also happen to be highly alkaline and contain a significant amount of nitrate. Theoretically, pertechnetate anions can act as electron acceptors and interact with the mild steel containers and accelerate the oxidation (corrosion) of steel. It is of interest to identify if pertechnetate anions pose a corrosion hazard to the mild steel nuclear waste storage tanks, under the conditions of the storage sites, as that can accelerate the degradation of the tanks and lead to further contamination. In this thesis, the interaction of two relevant container materials, namely, steel alloys A285 and A537 with a technetium surrogate, rhenium was studied. Perrhenate was used as an analog for pertechnetate. As all isotopes of technetium are radioactive, rhenium was chosen as the experimental surrogate due to its chemical similarity to technetium. Electrochemical behavior was evaluated using potentiodynamic polarization tests, and the surface morphology was studied using optical microscopy and scanning electron microscopy. Potentiodynamic polarization tests were conducted in 1.0M NaNO3 + 0.1M NaOH and 1.0M NaNO3 + 0.1M NaOH + 0.02M NaReO4. Tests were performed at three different temperatures, namely, (i) room temperature, (ii) 50°C and (iii) 80°C to study the effect of higher temperatures found in the storage sites. Corrosion current, corrosion potential, anodic and cathodic Tafel slopes, polarization resistance and corrosion rates were obtained from electrochemical testing and evaluated. Increasing temperatures was found to lead to increasing corrosion rates for all samples. The data also revealed increased corrosion from

  20. Waste disposal package

    DOEpatents

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  1. Densified waste form and method for forming

    DOEpatents

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    2016-05-17

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate the temperature sensitive waste material in a physically densified matrix.

  2. Densified waste form and method for forming

    SciTech Connect

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    2015-08-25

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate the temperature sensitive waste material in a physically densified matrix.

  3. Application of the Evacuated Canister System for Removing Residual Molten Glass From the West Valley Demonstration Project High-Level Waste Melter

    SciTech Connect

    May, Joseph J.; Dombrowski, David J.; Valenti, Paul J.; Houston, Helene M.

    2003-02-27

    The principal mission of the West Valley Demonstration Project (WVDP) is to meet a series of objectives defined in the West Valley Demonstration Project Act (Public Law 96-368). Chief among these is the objective to solidify liquid high-level waste (HLW) at the WVDP site into a form suitable for disposal in a federal geologic repository. In 1982, the Secretary of Energy formally selected vitrification as the technology to be used to solidify HLW at the WVDP. One of the first steps in meeting the HLW solidification objective involved designing, constructing and operating the Vitrification (Vit) Facility, the WVDP facility that houses the systems and subsystems used to process HLW into stainless steel canisters of borosilicate waste-glass that satisfy waste acceptance criteria (WAC) for disposal in a federal geologic repository. HLW processing and canister production began in 1996. The final step in meeting the HLW solidification objective involved ending Vit system operations and shut ting down the Vit Facility. This was accomplished by conducting a discrete series of activities to remove as much residual material as practical from the primary process vessels, components, and associated piping used in HLW canister production before declaring a formal end to Vit system operations. Flushing was the primary method used to remove residual radioactive material from the vitrification system. The inventory of radioactivity contained within the entire primary processing system diminished by conducting the flushing activities. At the completion of flushing activities, the composition of residual molten material remaining in the melter (the primary system component used in glass production) consisted of a small quantity of radioactive material and large quantities of glass former materials needed to produce borosilicate waste-glass. A special system developed during the pre-operational and testing phase of Vit Facility operation, the Evacuated Canister System (ECS), was

  4. Canister Model, Systems Analysis

    SciTech Connect

    Pincock, K. D.; Hamelin, R. D.

    1993-09-29

    This packges provides a computer simulation of a systems model for packaging nuclear waste and spent nuclear fuel in canisters. The canister model calculates overall programmatic cost, number of canisters, and fuel and waste inventories for the Idaho Chemical Processing Plant (other initial conditions can be entered).

  5. Acceptance of spent nuclear fuel in multiple element sealed canisters by the Federal Waste Management System

    SciTech Connect

    Not Available

    1990-03-01

    This report is one of a series of eight prepared by E.R. Johnson Associates, Inc. (JAI) under ORNL's contract with DOE's OCRWM Systems Integration Program and in support of the Annual Capacity Report (ACR) Issue Resolution Process. The report topics relate specifically to the list of high priority technical waste acceptance issues developed jointly by DOE and a utility-working group. JAI performed various analyses and studies on each topic to serve as starting points for further discussion and analysis leading eventually to finalizing the process by which DOE will accept spent fuel and waste into its waste management system. The eight reports are concerned with the conditions under which spent fuel and high level waste will be accepted in the following categories: (1) failed fuel; (2) consolidated fuel and associated structural parts; (3) non-fuel-assembly hardware; (4) fuel in metal storage casks; (5) fuel in multi-element sealed canisters; (6) inspection and testing requirements for wastes; (7) canister criteria; (8) spent fuel selection for delivery; and (9) defense and commercial high-level waste packages. 14 refs., 27 figs.

  6. DWPF waste form compliance plan (Draft Revision)

    SciTech Connect

    Plodinec, M.J.; Marra, S.L.

    1991-12-31

    The Department of Energy currently has over 100 million liters of high-level radioactive waste in storage at the Savannah River Site (SRS). In the late 1970`s, the Department of Energy recognized that there were significant safety and cost advantages associated with immobilizing the high-level waste in a stable solid form. Several alternative waste forms were evaluated in terms of product quality and reliability of fabrication. This evaluation led to a decision to build the Defense Waste Processing Facility (DWPF) at SRS to convert the easily dispersed liquid waste to borosilicate glass. In accordance with the NEPA (National Environmental Policy Act) process, an Environmental Impact Statement was prepared for the facility, as well as an Environmental Assessment of the alternative waste forms, and issuance of a Record of Decision (in December, 1982) on the waste form. The Department of Energy, recognizing that start-up of the DWPF would considerably precede licensing of a repository, instituted a Waste Acceptance Process to ensure that these canistered waste forms would be acceptable for eventual disposal at a federal repository. This report is a revision of the DWPF compliance plan.

  7. DWPF waste form compliance plan (Draft Revision)

    SciTech Connect

    Plodinec, M.J.; Marra, S.L.

    1991-01-01

    The Department of Energy currently has over 100 million liters of high-level radioactive waste in storage at the Savannah River Site (SRS). In the late 1970's, the Department of Energy recognized that there were significant safety and cost advantages associated with immobilizing the high-level waste in a stable solid form. Several alternative waste forms were evaluated in terms of product quality and reliability of fabrication. This evaluation led to a decision to build the Defense Waste Processing Facility (DWPF) at SRS to convert the easily dispersed liquid waste to borosilicate glass. In accordance with the NEPA (National Environmental Policy Act) process, an Environmental Impact Statement was prepared for the facility, as well as an Environmental Assessment of the alternative waste forms, and issuance of a Record of Decision (in December, 1982) on the waste form. The Department of Energy, recognizing that start-up of the DWPF would considerably precede licensing of a repository, instituted a Waste Acceptance Process to ensure that these canistered waste forms would be acceptable for eventual disposal at a federal repository. This report is a revision of the DWPF compliance plan.

  8. Requirements for characterization of DWPF canister welds and labels, and estimates of service life

    SciTech Connect

    Plodinec, M.J.; Harbour, J.R.; Marra, S.L.

    1993-01-11

    The Department of Energy has established specifications for the DWPF product, which require that the DWPF provide estimates of the service life of the canister label, provide assurance that the DWPF canister will be leaktight when shipped, demonstrate that the contents of the canistered waste form will not lead to internal corrosion of the canister. The DWPF has elected to meet these requirements, in part, by characterizing canisters produced in the facility during the Startup Test Program. This includes canisters filled on the pour turntable (normal conditions) and canisters filled on the drain turntable (credible upset conditions expected to be more severe due to higher temperatures). This document identifies the requirements for characterization of the canister fabrication welds and canister labels (characterization of canister closure welds is being performed by Equipment Engineering Section), and for estimation of their service life in DWPF`s Glass Waste Storage Building.

  9. Requirements for characterization of DWPF canister welds and labels, and estimates of service life

    SciTech Connect

    Plodinec, M.J.; Harbour, J.R.; Marra, S.L.

    1993-01-11

    The Department of Energy has established specifications for the DWPF product, which require that the DWPF provide estimates of the service life of the canister label, provide assurance that the DWPF canister will be leaktight when shipped, demonstrate that the contents of the canistered waste form will not lead to internal corrosion of the canister. The DWPF has elected to meet these requirements, in part, by characterizing canisters produced in the facility during the Startup Test Program. This includes canisters filled on the pour turntable (normal conditions) and canisters filled on the drain turntable (credible upset conditions expected to be more severe due to higher temperatures). This document identifies the requirements for characterization of the canister fabrication welds and canister labels (characterization of canister closure welds is being performed by Equipment Engineering Section), and for estimation of their service life in DWPF's Glass Waste Storage Building.

  10. Alternatives for high-level waste forms, containers, and container processing systems

    SciTech Connect

    Crawford, T.W.

    1995-09-22

    This study evaluates alternatives for high-level waste forms, containers, container processing systems, and onsite interim storage. Glass waste forms considered are cullet, marbles, gems, and monolithic glass. Small and large containers configured with several combinations of overpack confinement and shield casks are evaluated for these waste forms. Onsite interim storage concepts including canister storage building, bore holes, and storage pad were configured with various glass forms and canister alternatives. All favorable options include the monolithic glass production process as the waste form. Of the favorable options the unshielded 4- and 7-canister overpack options have the greatest technical assurance associated with their design concepts due to their process packaging and storage methods. These canisters are 0.68 m and 0.54 m in diameter respectively and 4.57 m tall. Life-cycle costs are not a discriminating factor in most cases, varying typically less than 15 percent.

  11. Secondary Waste Form Down-Selection Data Package—Fluidized Bed Steam Reforming Waste Form

    SciTech Connect

    Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.; Valenta, Michelle M.; Pires, Richard P.

    2011-09-12

    The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sent to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.

  12. Evaluation of canisters for measuring emissions of volatile organic air pollutants from hazardous waste incineration.

    PubMed

    Gholson, A R; Storm, J F; Jayanty, R K; Fuerst, R G; Logan, T J; Midgett, M R

    1989-09-01

    Regulation to control air emissions of toxic organic compounds require the collection and analysis of effluent gas from low level sources such as hazardous waste incinerators. The standard SW-846 Method specifies the use of Tenax and Tenax/charcoal adsorbent traps for collection of volatile organics from incinerators. This study evaluates passivated stainless steel canisters as an alternative to adsorbent traps to eliminate some of the problems associated with adsorbent sampling. Initially the stability of 18 nonpolar, volatile organic compounds was determined in Summa-treated stainless steel canisters with greater than 100 ppmv HCl and saturated with water vapor. All 18 components were stable for a two-week period; however, an interference caused a 10-fold increase in the FID response of trichloroethylene, toluene, and chlorobenzene. No interference of the ECD response was found for any of the 11 compounds detected with the ECD including trichloroethylene. A pilot scale incinerator was sampled using canisters, and the destruction efficiency of 1,1,1-trichloroethane was determined at a concentration of less than 0.5 ppbv while determining 1,1-dichloroethylene, the major product of incomplete combustion, at a concentration of 8000 ppbv from the same sample.

  13. Selection and evaluation of inner material candidates for Spanish high level radioactive waste canisters

    SciTech Connect

    Puig, Francesc; Dies, Javier; Sevilla, Manuel; Pablo, Joan de; Pueyo, Juan Jose; Miralles, Lourdes; Martinez-Esparza, Aurora

    2007-07-01

    This paper summarizes the work carried out to analyse different alternatives related to the inner material selection of the Spanish high level waste canister for long term storage. The preliminary repository design considers granitic or clay formations, compacted bentonite sealing, corrosion allowing steel canisters and glass bead filling between the fuel assemblies and canister walls. This filling material will have the primary role of avoiding the possibility of a criticality event, which becomes an issue of major importance once the container is finally breached by corrosion and flooded by groundwater. In the first place, a complete set of requirements have been devised as evaluation criteria for candidate materials examination and selection; resulting in a compilation of demands significantly deeper and more exhaustive than any other similar work found in literature, including over 20 requirements and some other general aspects that could involve improvements in repository performance. Secondly, eight materials or material families (cast iron or steel, borosilicate glass, spinel, depleted uranium, dehydrated zeolites, hematite, phosphates and olivine) have been chosen and examined in detail, extracting some relevant conclusions. Either cast iron, borosilicate glass, spinel or depleted uranium are considered to look quite promising for the mentioned purpose. (authors)

  14. Comparative assessment of TRU waste forms and processes. Volume I. Waste form and process evaluations

    SciTech Connect

    Ross, W.A.; Lokken, R.O.; May, R.P.; Roberts, F.P.; Timmerman, C.L.; Treat, R.L.; Westsik, J.H. Jr.

    1982-09-01

    This study provides an assesses seven waste forms and eight processes for immobilizing transuranic (TRU) wastes. The waste forms considered are cast cement, cold-pressed cement, FUETAP (formed under elevated temperature and pressure) cement, borosilicate glass, aluminosilicate glass, basalt glass-ceramic, and cold-pressed and sintered silicate ceramic. The waste-immobilization processes considered are in-can glass melting, joule-heated glass melting, glass marble forming, cement casting, cement cold-pressing, FUETAP cement processing, ceramic cold-pressing and sintering, basalt glass-ceramic processing. Properties considered included gas generation, chemical durability, mechanical strength, thermal stability, and radiation stability. The ceramic products demonstrated the best properties, except for plutonium release during leaching. The glass and ceramic products had similar properties. The cement products generally had poorer properties than the other forms, except for plutonium release during leaching. Calculations of the Pu release indicated that the waste forms met the proposed NRC release rate limit of 1 part in 10/sup 5/ per year in most test conditions. The cast-cement process had the lowest processing cost, followed closely by the cold-pressed and FUETAP cement processes. Joule-heated glass melting had the lower cost of the glass processes. In-can melting in a high-quality canister had the highest cost, and cold-pressed and sintered ceramic the second highest. Labor and canister costs for in-can melting were identified. The major contributor to costs of disposing of TRU wastes in a defense waste repository is waste processing costs. Repository costs could become the dominant cost for disposing of TRU wastes in a commercial repository. It is recommended that cast and FUETAP cement and borosilicate glass waste-form systems be considered. 13 figures, 16 tables.

  15. INITIAL WASTE PACKAGE PROBABILISTIC CRITICALITY ANALYSIS: MULTI-PURPOSE CANISTER WITH DISPOSAL CONTAINER (TBV)

    SciTech Connect

    J.R. Massari

    1995-10-06

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide an assessment of the present waste package design from a criticality risk standpoint. The specific objectives of this initial analysis are to: (1) Establish a process for determining the probability of waste package criticality as a function of time (in terms of a cumulative distribution function, probability distribution function, or expected number of criticalities in a specified time interval) for various waste package concepts; (2) Demonstrate the established process by estimating the probability of criticality as a function of time since emplacement for an intact multi-purpose canister waste package (MPC-WP) configuration; (3) Identify the dominant sequences leading to waste package criticality for subsequent detailed analysis. The purpose of this analysis is to document and demonstrate the developed process as it has been applied to the MPC-WP. This revision is performed to correct deficiencies in the previous revision and provide further detail on the calculations performed. This analysis is similar to that performed for the uncanistered fuel waste package (UCF-WP, B00000000-01717-2200-00079).

  16. Review of high-level waste form properties. [146 bibliographies

    SciTech Connect

    Rusin, J.M.

    1980-12-01

    This report is a review of waste form options for the immobilization of high-level-liquid wastes from the nuclear fuel cycle. This review covers the status of international research and development on waste forms as of May 1979. Although the emphasis in this report is on waste form properties, process parameters are discussed where they may affect final waste form properties. A summary table is provided listing properties of various nuclear waste form options. It is concluded that proposed waste forms have properties falling within a relatively narrow range. In regard to crystalline versus glass waste forms, the conclusion is that either glass of crystalline materials can be shown to have some advantage when a single property is considered; however, at this date no single waste form offers optimum properties over the entire range of characteristics investigated. A long-term effort has been applied to the development of glass and calcine waste forms. Several additional waste forms have enough promise to warrant continued research and development to bring their state of development up to that of glass and calcine. Synthetic minerals, the multibarrier approach with coated particles in a metal matrix, and high pressure-high temperature ceramics offer potential advantages and need further study. Although this report discusses waste form properties, the total waste management system should be considered in the final selection of a waste form option. Canister design, canister materials, overpacks, engineered barriers, and repository characteristics, as well as the waste form, affect the overall performance of a waste management system. These parameters were not considered in this comparison.

  17. Advanced Electrochemical Waste Forms

    SciTech Connect

    Riley, Brian J.; Crum, Jarrod V.; McCloy, John S.; Matyas, Josef

    2011-12-01

    This is a brief description of PNNL's efforts in FY2011 towards developing advanced electrochemical waste forms. This is a short section that will become part of a larger document being put together by INL.

  18. Statistical analysis of shard and canister glass correlation test

    SciTech Connect

    Pulsipher, B.

    1990-12-01

    The vitrification facility at West Valley, New York will be used to incorporate nuclear waste into a vitrified waste form. Waste Acceptance Preliminary Specifications (WAPS) will be used to determine the acceptability of the waste form product. These specifications require chemical characterization of the waste form produced. West Valley Nuclear Services (WVNS) intends to characterize canister contents by obtaining shard samples from the top of the canisters prior to final sealing. A study was conducted to determine whether shard samples taken from the top of canisters filled with vitrified nuclear waste could be considered representative and therefore used to characterize the elemental composition of the entire canister contents. Three canisters produced during the SF-12 melter run conducted at WVNS were thoroughly sampled by core drilling at several axial and radial locations and by obtaining shard samples from the top of the canisters. Chemical analyses were performed and the resulting data were statistically analyzed by Pacific Northwest Laboratory (PNL). If one can assume that the process controls employed by WVNS during the SF-12 run are representative of those to be employed during future melter runs, shard samples can be used to characterize the canister contents. However, if batch-to-batch variations cannot be controlled to the acceptable levels observed from the SF-12 data, the representativeness of shard samples will be in question. The estimates of process and within-canister variations provided herein will prove valuable in determining the required frequency and number of shard samples to meet waste form qualification objectives.

  19. Waste-form development

    SciTech Connect

    Neilson, R.M. Jr.; Colombo, P.

    1982-01-01

    Contemporary solidification agents are being investigated relative to their applications to major fuel cycle and non-fuel cycle low-level waste (LLW) streams. Work is being conducted to determine the range of conditions under which these solidification agents can be applied to specific LLW streams. These studies are directed primarily towards defining operating parameters for both improved solidification of problem wastes and solidification of new LLW streams generated from advanced volume reduction technologies. Work is being conducted to measure relevant waste form properties. These data will be compiled and evaluated to demonstrate compliance with waste form performance and shallow land burial acceptance criteria and transportation requirements (both as they exist and as they are modified with time).

  20. Plutonium Immobilization Canister Loading

    SciTech Connect

    Hamilton, E.L.

    1999-01-26

    This disposition of excess plutonium is determined by the Surplus Plutonium Disposition Environmental Impact Statement (SPD-EIS) being prepared by the Department of Energy. The disposition method (Known as ''can in canister'') combines cans of immobilized plutonium-ceramic disks (pucks) with vitrified high-level waste produced at the SRS Defense Waste Processing Facility (DWPF). This is intended to deter proliferation by making the plutonium unattractive for recovery or theft. The envisioned process remotely installs cans containing plutonium-ceramic pucks into storage magazines. Magazines are then remotely loaded into the DWPF canister through the canister neck with a robotic arm and locked into a storage rack inside the canister, which holds seven magazines. Finally, the canister is processed through DWPF and filled with high-level waste glass, thereby surrounding the product cans. This paper covers magazine and rack development and canister loading concepts.

  1. West Valley Demonstration Project full-scale canister impact tests

    SciTech Connect

    Whittington, K.F.; Lutz, C.E.

    1995-12-31

    Five West Valley Nuclear Services (WVNS) high-level waste (HLW) canisters were impact tested during 1994 to demonstrate compliance with the drop test requirements of the Waste Acceptance Product Specifications. The specifications state that the canistered waste form must be able to survive a 7-m (23 ft) drop unbreached. The 10-gauge stainless steel canisters were approximately 85% filled with simulated vitrified waste and weighed about 2100 kg (4600 lb). Each canister was dropped vertically from a height of 7 m (23 ft) onto an essentially unyielding surface. The integrity of the canister was determined by the application and analysis of strain circles, dimensional measurements, and helium leak testing. The canisters were also visually inspected before and after the drop for physical damage. After the impact, very little deformation of the canisters was observed. The strain circles deformed in the axial direction less than 3% and up to 7% in the hoop direction. The canisters on average showed a slight diameter increase of approximately 2% (1 to 2 cm) in the area nearest to the bottom head. The diameter only increased an average of 0.8% (0.5 cm) at the 76-cm elevation. The canister height decreased by an average of 0.4% (1.2 cm). Helium leak testing of each weld showed either no detectable leaks or very slight leaks much less than the acceptance criteria of 10{sup {minus}4} atm cc/sec. Each of the canisters passed the ``straightness`` test in which the canisters were fit into an inspection sleeve, a straight cylinder with a 63.5-cm (25 in) diameter, after the impact. The results of the impact test verify that the canisters survived the 7-m drops unbreached. Therefore, these results demonstrate that the reference canister meets the drop test specification of the Waste Acceptance Product Specification.

  2. Waste form product characteristics

    SciTech Connect

    Taylor, L.L.; Shikashio, R.

    1995-01-01

    The Department of Energy has operated nuclear facilities at the Idaho National Engineering Laboratory (INEL) to support national interests for several decades. Since 1953, it has supported the development of technologies for the storage and reprocessing of spent nuclear fuels (SNF) and the resultant wastes. However, the 1992 decision to discontinue reprocessing of SNF has left nearly 768 MT of SNF in storage at the INEL with unspecified plans for future dispositioning. Past reprocessing of these fuels for uranium and other resource recovery has resulted in the production of 3800 M{sup 3} calcine and a total inventory of 7600 M{sup 3} of radioactive liquids (1900 M{sup 3} destined for immediate calcination and the remaining sodium-bearing waste requiring further treatment before calcination). These issues, along with increased environmental compliance within DOE and its contractors, mandate operation of current and future facilities in an environmentally responsible manner. This will require satisfactory resolution of spent fuel and waste disposal issues resulting from the past activities. A national policy which identifies requirements for the disposal of SNF and high level wastes (HLW) has been established by the Nuclear Waste Policy Act (NWPA) Sec.8,(b) para(3)) [1982]. The materials have to be conditioned or treated, then packaged for disposal while meeting US Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) regulations. The spent fuel and HLW located at the INEL will have to be put into a form and package that meets these regulatory criteria. The emphasis of Idaho Chemical Processing Plant (ICPP) future operations has shifted toward investigating, testing, and selecting technologies to prepare current and future spent fuels and waste for final disposal. This preparation for disposal may include mechanical, physical and/or chemical processes, and may differ for each of the various fuels and wastes.

  3. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  4. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  5. Designing Advanced Ceramic Waste Forms for Electrochemical Processing Salt Waste

    SciTech Connect

    Ebert, W. L.; Snyder, C. T.; Frank, Steven; Riley, Brian

    2016-03-01

    the waste loading from about 12% to 10% on a mass basis, but this will not significantly impact the waste loading on a volume basis. It is likely that heat output will limit the amount of waste salt that can be accommodated in a waste canister rather than the salt loading in an ACWF, and that the increase from 8 mass% to about 10 mass% salt loadings in ACWF materials will be sufficient to optimize these waste forms. Although the waste salt composition used in this study contained a moderate amount of NaCl, the test results suggest waste salts with little or no NaCl can be accommodated in ACWF materials by using the new binder glass, albeit at waste loadings lower than 8 mass%. The higher glass contents that will be required for ACWF materials made with salt wastes that do not contain NaCl are expected to result in much lower porosities in those waste forms.

  6. West Valley Demonstration Project full-scale canister impact tests

    SciTech Connect

    Whittington, K.F.; Alzheimer, J.M.; Lutz, C.E.

    1995-09-01

    Five West Valley Nuclear Services (WVNS) high-level waste (HLW) canisters were impact tested during 1994 to demonstrate compliance with the drop test requirements of the Waste Acceptance Product Specifications. The specifications state that the canistered waste form must be able to survive a 7{minus}m (23 ft) drop unbreached. The 10-gauge (0.125 in. wall thickness) stainless steel canisters were approximately 85% filled with simulated vitrified waste and weighed about 2100 kg (4600 lb). Each canister was dropped vertically from a height of 7 m (23 ft) onto an essentially unyielding surface. The integrity of the canister was determined by the application and analysis of strain circles, dimensional measurements, and helium leak testing. The canisters were also visually inspected before and after the drop for physical damage. The results of the impact test verify that the canisters survived the 7{minus}m drops unbreached. Therefore, these results demonstrate that the reference canister meets the drop test specification of the Waste Acceptance Product Specification.

  7. Brine: a computer program to compute brine migration adjacent to a nuclear waste canister in a salt repository

    SciTech Connect

    Duckworth, G.D.; Fuller, M.E.

    1980-06-10

    This report presents a mathematical model used to predict brine migration toward a nuclear waste canister in a bedded salt repository. The mathematical model is implemented in a computer program called BRINE. The program is written in FORTRAN and executes in the batch mode on a CDC 7600. A description of the program input requirements and output available is included. Samples of input and output are given.

  8. Demonstration of a transmission nuclear resonance fluorescence measurement for a realistic radioactive waste canister scenario

    NASA Astrophysics Data System (ADS)

    Angell, C. T.; Hajima, R.; Hayakawa, T.; Shizuma, T.; Karwowski, H. J.; Silano, J.

    2015-03-01

    Transmission nuclear resonance fluorescence (NRF) is a promising method for precision non-destructive assay (NDA) of fissile isotopes-including 239Pu-in spent fuel while inside a storage canister. The assay, however, could be confounded by the presence of overlapping resonances from competing isotopes in the canister. A measurement is needed to demonstrate that transmission NRF is unaffected by the shielding material. To this end, we carried out a transmission NRF measurement using a mono-energetic γ-ray beam on a proxy target (Al) and absorbing material simulating a realistic spent fuel storage canister. Similar amounts of material as would be found in a possible spent fuel storage canister were placed upstream: concrete, stainless steel (SS 304), lead (as a proxy for U), and water. An Al absorption target was also used as a reference. These measurements demonstrated that the canister material should not significantly influence the non-destructive assay.

  9. SCOPING EVALUATION TO EXPLORE - ROCK FALL ACCIDENT CONDITION ANALYSIS ON MULTI-PURPOSE CANISTER WASTE PACKAGES CORRELATED FROM INTERLOCKING BASKET WASTE PACKAGE DESIGN ANALYSIS (SCPB: N/A)

    SciTech Connect

    Z, Ceylan

    1995-12-08

    The objective of this analysis is to correlate the results of a rock fall analysis performed for the 12 Pressurized Water Reactor (PWR) Fuel Assembly Interlocking Basket waste package (WP) in order to determine the size of rock that can strike the Multi-Purpose Canister (MPC) waste packages without breaching the containment barriers. The purpose of this analysis is to document the models and methods used in the calculations.

  10. Mixed Waste Focus Area -- Waste form initiative

    SciTech Connect

    Nakaoka, R.; Waters, R.; Pohl, P.; Roach, J.

    1998-07-01

    The mission of the US Department of Energy`s (DOE) Mixed Waste Focus Area (MWFA) is to provide acceptable technologies that enable implementation of mixed waste treatment systems which are developed in partnership with end-users, stakeholders, tribal governments, and regulators. To accomplish this mission, a technical baseline was established in 1996 and revised in 1997. The technical baseline forms the basis for determining which technology development activities will be supported by the MWFA. The primary attribute of the technical baseline is a set of prioritized technical deficiencies or roadblocks related to implementation of mixed waste treatment systems. The Waste Form Initiative (WFI) was established to address an identified technical deficiency related to waste form performance. The primary goal of the WFI was to ensure that the mixed low-level waste (MLLW) treatment technologies being developed, currently used, or planned for use by DOE would produce final waste forms that meet the waste acceptance criteria (WAC) of the existing and/or planned MLLW disposal facilities. The WFI was limited to an evaluation of the disposal requirements for the radioactive component of MLLW. Disposal requirements for the hazardous component are dictated by the Resource Conservation and Recovery Act (RCRA), and were not addressed. This paper summarizes the technical basis, strategy, and results of the activities performed as part of the WFI.

  11. CANISTER TRANSFER SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    B. Gorpani

    2000-06-23

    The Canister Transfer System receives transportation casks containing large and small disposable canisters, unloads the canisters from the casks, stores the canisters as required, loads them into disposal containers (DCs), and prepares the empty casks for re-shipment. Cask unloading begins with cask inspection, sampling, and lid bolt removal operations. The cask lids are removed and the canisters are unloaded. Small canisters are loaded directly into a DC, or are stored until enough canisters are available to fill a DC. Large canisters are loaded directly into a DC. Transportation casks and related components are decontaminated as required, and empty casks are prepared for re-shipment. One independent, remotely operated canister transfer line is provided in the Waste Handling Building System. The canister transfer line consists of a Cask Transport System, Cask Preparation System, Canister Handling System, Disposal Container Transport System, an off-normal canister handling cell with a transfer tunnel connecting the two cells, and Control and Tracking System. The Canister Transfer System operating sequence begins with moving transportation casks to the cask preparation area with the Cask Transport System. The Cask Preparation System prepares the cask for unloading and consists of cask preparation manipulator, cask inspection and sampling equipment, and decontamination equipment. The Canister Handling System unloads the canister(s) and places them into a DC. Handling equipment consists of a bridge crane hoist, DC loading manipulator, lifting fixtures, and small canister staging racks. Once the cask has been unloaded, the Cask Preparation System decontaminates the cask exterior and returns it to the Carrier/Cask Handling System via the Cask Transport System. After the DC is fully loaded, the Disposal Container Transport System moves the DC to the Disposal Container Handling System for welding. To handle off-normal canisters, a separate off-normal canister handling

  12. Canister Transfer System Description Document

    SciTech Connect

    2000-10-12

    The Canister Transfer System receives transportation casks containing large and small disposable canisters, unloads the canisters from the casks, stores the canisters as required, loads them into disposal containers (DCs), and prepares the empty casks for re-shipment. Cask unloading begins with cask inspection, sampling, and lid bolt removal operations. The cask lids are removed and the canisters are unloaded. Small canisters are loaded directly into a DC, or are stored until enough canisters are available to fill a DC. Large canisters are loaded directly into a DC. Transportation casks and related components are decontaminated as required, and empty casks are prepared for re-shipment. One independent, remotely operated canister transfer line is provided in the Waste Handling Building System. The canister transfer line consists of a Cask Transport System, Cask Preparation System, Canister Handling System, Disposal Container Transport System, an off-normal canister handling cell with a transfer tunnel connecting the two cells, and Control and Tracking System. The Canister Transfer System operating sequence begins with moving transportation casks to the cask preparation area with the Cask Transport System. The Cask Preparation System prepares the cask for unloading and consists of cask preparation manipulator, cask inspection and sampling equipment, and decontamination equipment. The Canister Handling System unloads the canister(s) and places them into a DC. Handling equipment consists of a bridge crane/hoist, DC loading manipulator, lifting fixtures, and small canister staging racks. Once the cask has been unloaded, the Cask Preparation System decontaminates the cask exterior and returns it to the Carrier/Cask Handling System via the Cask Transport System. After the DC is fully loaded, the Disposal Container Transport System moves the DC to the Disposal Container Handling System for welding. To handle off-normal canisters, a separate off-normal canister handling

  13. COMPUTER MODELING OF HIGH-LEVEL WASTE GLASS TEMPERATURES WITHIN DWPF CANISTERS DURING POURING AND COOL DOWN

    SciTech Connect

    Amoroso, J.

    2011-10-09

    This report describes the results of a computer simulation study to predict the temperature of the glass at any location inside a DWPF canister during pouring and subsequent cooling. These simulations are an integral part of a larger research focus aimed at developing methods to predict, evaluate, and ultimately suppress nepheline formation in HLW glasses. That larger research focus is centered on holistically understanding nepheline formation in HLW glass by exploring the fundamental thermal and chemical driving forces for nepheline crystallization with respect to realistic processing conditions. Through experimental work, the goal is to integrate nepheline crystallization potential in HLW glass with processing capability to ultimately optimize waste loading and throughput while maintaining an acceptable product with respect to durability. The results of this study indicated severe temperature gradients and prolonged temperature dwell times exist throughout different locations in the canister and that the time and temperatures that HLW glass is subjected to during processing is a function of pour rate. The simulations indicate that crystallization driving forces are not uniform throughout the glass volume in a DWPF (or DWPF-like) canister and illustrate the importance of considering overall kinetics (chemical and thermal driving forces) of nepheline formation when developing methods to predict and suppress its formation in HLW glasses. The intended path forward is to use the simulation data both as a driver for future experimental work and, as an investigative tool for evaluating the impact of experimental results. Simulation data will be used to develop laboratory experiments to more acutely evaluate nepheline formation in HLW glass by incorporating the simulated temperatures throughout the canister into the laboratory experiments. Concurrently, laboratory experiments will be performed to identify nepheline crystallization potential in HLW glass as a function of

  14. Tritium Packages and 17th RH Canister Categories of Transuranic Waste Stored Below Ground within Area G

    SciTech Connect

    Hargis, Kenneth Marshall

    2015-03-01

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is a settlement agreement between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Tritium Packages and 17th RH Canister categories; their physical and radiological characteristics; the results of the radioassays; and potential issues in retrieval and processing of the waste containers.

  15. Automated waste canister docking and emplacement using a sensor-based intelligent controller; Yucca Mountain Site Characterization Project

    SciTech Connect

    Drotning, W.D.

    1992-08-01

    A sensor-based intelligent control system is described that utilizes a multiple degree-of-freedom robotic system for the automated remote manipulation and precision docking of large payloads such as waste canisters. Computer vision and ultrasonic proximity sensing are used to control the automated precision docking of a large object with a passive target cavity. Real-time sensor processing and model-based analysis are used to control payload position to a precision of {plus_minus} 0.5 millimeter.

  16. Conceptual waste package interim product specifications and data requirements for disposal of borosilicate glass defense high-level waste forms in salt geologic repositories

    SciTech Connect

    Not Available

    1983-06-01

    The conceptual waste package interim product specifications and data requirements presented are applicable specifically to the normal borosilicate glass product of the Defense Waste Processing Facility (DWPF). They provide preliminary numerical values for the defense high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available.

  17. HLW Canister and Can-In-Canister Drop Calculation

    SciTech Connect

    H. Marr

    1999-09-15

    The purpose of this calculation is to evaluate the structural response of the standard high-level waste (HLW) canister and the HLW canister containing the cans of immobilized plutonium (''can-in-canister'' throughout this document) to the drop event during the handling operation. The objective of the calculation is to provide the structure parameter information to support the canister design and the waste handling facility design. Finite element solution is performed using the commercially available ANSYS Version (V) 5.4 finite element code. Two-dimensional (2-D) axisymmetric and three-dimensional (3-D) finite element representations for the standard HLW canister and the can-in-canister are developed and analyzed using the dynamic solver.

  18. Feasibility of using a high-level waste canister as an engineered barrier in disposal

    SciTech Connect

    Slate, S.C.; Pitman, S.G.; Nesbitt, J.F.; Partain, W.L.

    1982-08-01

    The objective of this report is to evaluate the feasibility of designing a process canister that could also serve as a barrier canister. To do this a general set of performance criteria is assumed and several metal alloys having a high probability of demonstrating high corrosion resistance under repository conditions are evaluated in a qualitative design assessment. This assessment encompasses canister manufacture, the glass-filling process, interim storage, transportation, and to a limited extent, disposal in a repository. A series of scoping tests were carried out on two titanium alloys and Inconel 625 to determine if the high temperature inherent in the glass-fill processing would seriously affect either the strength or corrosion resistance of these metals. This is a process-related concern unique to the barrier canister concept. The material properties were affected by the heat treatments which simulated both the joule-heated glass melter process (titanium alloys and Inconel 625) and the in-can melter (ICM) process (Inconel 625). However, changes in the material properties were generally within 20% of the original specimens. Accelerated corrosion testing of the heat treated coupons in a highly oxygenated brine showed basic corrosion resistance of titanium grade 12 and Inconel 625 to compare favorably with that of the untreated coupons. The titanium grade 2 coupons experienced severe corrosion pitting. These corrosion tests were of a scoping nature and suitable primarily for the detection of gross sensitivity to the heat treatment inherent in the glass-fill process. They are only suggstive of repository performance since the tests do not adequately model the wide range of repository conditions that could conceivably occur.

  19. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    SciTech Connect

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  20. Groundwork for Universal Canister System Development

    SciTech Connect

    Price, Laura L.; Gross, Mike; Prouty, Jeralyn L.; Rigali, Mark J.; Craig, Brian; Han, Zenghu; Lee, John Hok; Liu, Yung; Pope, Ron; Connolly, Kevin; Feldman, Matt; Jarrell, Josh; Radulescu, Georgeta; Scaglione, John; Wells, Alan

    2015-09-01

    The mission of the United States Department of Energy's Office of Environmental Management is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and go vernment - sponsored nuclear energy re search. S ome of the waste s that that must be managed have be en identified as good candidates for disposal in a deep borehole in crystalline rock (SNL 2014 a). In particular, wastes that can be disposed of in a small package are good candidates for this disposal concept. A canister - based system that can be used for handling these wastes during the disposition process (i.e., storage, transfers, transportation, and disposal) could facilitate the eventual disposal of these wastes. This report provides information for a program plan for developing specifications regarding a canister - based system that facilitates small waste form packaging and disposal and that is integrated with the overall efforts of the DOE's Office of Nuclear Energy Used Fuel Dis position Camp aign's Deep Borehole Field Test . Groundwork for Universal Ca nister System Development September 2015 ii W astes to be considered as candidates for the universal canister system include capsules containing cesium and strontium currently stored in pools at the Hanford Site, cesium to be processed using elutable or nonelutable resins at the Hanford Site, and calcine waste from Idaho National Laboratory. The initial emphasis will be on disposal of the cesium and strontium capsules in a deep borehole that has been drilled into crystalline rock. Specifications for a universal canister system are derived from operational, performance, and regulatory requirements for storage, transfers, transportation, and disposal of radioactive waste. Agreements between the Department of Energy and the States of Washington and Idaho, as well as the Deep Borehole Field Test plan provide schedule requirements for development of the universal canister system

  1. Analysis of heat and mass transport processes near an emplaced nuclear waste canister; Final report

    SciTech Connect

    Keller, C.

    1990-05-22

    A review has been performed of the models and experimental plans for evaluation of the spent fuel canister environment in a nuclear repository, e.g., the planned Yucca Mountain facilities. Special emphasis was placed on the relevance of the models and experiments to the 100 to 10,000 year prediction. The question was addressed whether one could justify testing in materials other than Yucca Mountain rock and obtain results in a relatively short time which would be relevant to the long time in Yucca Mountain. The paper discusses steam evolution in calculations and experiments, fracture models, possible measurements of relative permeability, and long time scale effects. 5 figs. (MB)

  2. Composite Bear Canister

    NASA Technical Reports Server (NTRS)

    Chung, W. Richard; Jara, Steve; Suffel, Susan

    2003-01-01

    To many national park campers and mountain climbers saving their foods in a safe and unbreakable storage container without worrying being attacked by a bear is a challenging task. In some parks, the park rangers have mandated that park visitors rent a bear canister for their food storage. Commercially available bear canisters are made of ABS plastic, weigh 2.8 pounds, and have a 180 cubic inch capacity for food storage. A new design with similar capacity was conducted in this study to reduce its weight and make it a stiffer and stronger canister. Two prototypes incorporating carbon prepreg with and without honeycomb constructions were manufactured using hand lay-up and vacuum bag forming techniques. A 6061-T6-aluminum ring was machined to dimensions in order to reinforce the opening area of the canister. Physical properties (weight and volume) along with mechanical properties (flexural strength and specific allowable moment) of the newly fabricated canisters are compared against the commercial ones. The composite canister weighs only 56% of the ABS one can withstand 9 times of the force greater. The advantages and limitations of using composite bear canisters will be discussed in the presentation.

  3. TRADITIONAL CANISTER-BASED OPEN WASTE MANAGEMENT SYSTEM VERSUS CLOSED SYSTEM: HAZARDOUS EXPOSURE PREVENTION AND OPERATING THEATRE STAFF SATISFACTION.

    PubMed

    Horn, M; Patel, N; MacLellan, D M; Millard, N

    2016-06-01

    Exposure to blood and body fluids is a major concern to health care professionals working in operating rooms (ORs). Thus, it is essential that hospitals use fluid waste management systems that minimise risk to staff, while maximising efficiency. The current study compared the utility of a 'closed' system with a traditional canister-based 'open' system in the OR in a private hospital setting. A total of 30 arthroscopy, urology, and orthopaedic cases were observed. The closed system was used in five, four, and six cases, respectively and the open system was used in nine, two, and four cases, respectively. The average number of opportunities for staff to be exposed to hazardous fluids were fewer for the closed system when compared to the open during arthroscopy and urology procedures. The open system required nearly 3.5 times as much staff time for set-up, maintenance during procedures, and post-procedure disposal of waste. Theatre staff expressed greater satisfaction with the closed system than with the open. In conclusion, compared with the open system, the closed system offers a less hazardous and more efficient method of disposing of fluid waste generated in the OR.

  4. Geological Disposal of Nuclear Waste: Investigating the Thermo-Hygro-Mechanical-Chemical (THMC) Coupled Processes at the Waste Canister- Bentonite Barrier Interface

    NASA Astrophysics Data System (ADS)

    Davies, C. W.; Davie, D. C.; Charles, D. A.

    2015-12-01

    Geological disposal of nuclear waste is being increasingly considered to deal with the growing volume of waste resulting from the nuclear legacy of numerous nations. Within the UK there is 650,000 cubic meters of waste safely stored and managed in near-surface interim facilities but with no conclusive permanent disposal route. A Geological Disposal Facility with incorporated Engineered Barrier Systems are currently being considered as a permanent waste management solution (Fig.1). This research focuses on the EBS bentonite buffer/waste canister interface, and experimentally replicates key environmental phases that would occur after canister emplacement. This progresses understanding of the temporal evolution of the EBS and the associated impact on its engineering, mineralogical and physicochemical state and considers any consequences for the EBS safety functions of containment and isolation. Correlation of engineering properties to the physicochemical state is the focus of this research. Changes to geotechnical properties such as Atterberg limits, swelling pressure and swelling kinetics are measured after laboratory exposure to THMC variables from interface and batch experiments. Factors affecting the barrier, post closure, include corrosion product interaction, precipitation of silica, near-field chemical environment, groundwater salinity and temperature. Results show that increasing groundwater salinity has a direct impact on the buffer, reducing swelling capacity and plasticity index by up to 80%. Similarly, thermal loading reduces swelling capacity by 23% and plasticity index by 5%. Bentonite/steel interaction studies show corrosion precipitates diffusing into compacted bentonite up to 3mm from the interface over a 4 month exposure (increasing with temperature), with reduction in swelling capacity in the affected zone, probably due to the development of poorly crystalline iron oxides. These results indicate that groundwater conditions, temperature and corrosion

  5. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    SciTech Connect

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  6. TSA waste stream and final waste form composition

    SciTech Connect

    Grandy, J.D.; Eddy, T.L.; Anderson, G.L.

    1993-01-01

    A final vitrified waste form composition, based upon the chemical compositions of the input waste streams, is recommended for the transuranic-contaminated waste stored at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The quantities of waste are large with a considerable uncertainty in the distribution of various waste materials. It is therefore impractical to mix the input waste streams into an ``average`` transuranic-contaminated waste. As a result, waste stream input to a melter could vary widely in composition, with the potential of affecting the composition and properties of the final waste form. This work examines the extent of the variation in the input waste streams, as well as the final waste form under conditions of adding different amounts of soil. Five prominent Rocky Flats Plant 740 waste streams are considered, as well as nonspecial metals and the ``average`` transuranic-contaminated waste streams. The metals waste stream is the most extreme variation and results indicate that if an average of approximately 60 wt% of the mixture is soil, the final waste form will be predominantly silica, alumina, alkaline earth oxides, and iron oxide. This composition will have consistent properties in the final waste form, including high leach resistance, irrespective of the variation in waste stream. For other waste streams, much less or no soil could be required to yield a leach resistant waste form but with varying properties.

  7. Nuclear waste forms for actinides.

    PubMed

    Ewing, R C

    1999-03-30

    The disposition of actinides, most recently 239Pu from dismantled nuclear weapons, requires effective containment of waste generated by the nuclear fuel cycle. Because actinides (e.g., 239Pu and 237Np) are long-lived, they have a major impact on risk assessments of geologic repositories. Thus, demonstrable, long-term chemical and mechanical durability are essential properties of waste forms for the immobilization of actinides. Mineralogic and geologic studies provide excellent candidate phases for immobilization and a unique database that cannot be duplicated by a purely materials science approach. The "mineralogic approach" is illustrated by a discussion of zircon as a phase for the immobilization of excess weapons plutonium.

  8. Coated particle waste form development

    SciTech Connect

    Oma, K.H.; Buckwalter, C.Q.; Chick, L.A.

    1981-12-01

    Coated particle waste forms have been developed as part of the multibarrier concept at Pacific Northwest Laboratory under the Alternative Waste Forms Program for the Department of Energy. Primary efforts were to coat simulated nuclear waste glass marbles and ceramic pellets with low-temperature pyrolytic carbon (LT-PyC) coatings via the process of chemical vapor deposition (CVD). Fluidized bed (FB) coaters, screw agitated coaters (SAC), and rotating tube coaters were used. Coating temperatures were reduced by using catalysts and plasma activation. In general, the LT-PyC coatings did not provide the expected high leach resistance as previously measured for carbon alone. The coatings were friable and often spalled off the substrate. A totally different concept, thermal spray coating, was investigated at PNL as an alternative to CVD coating. Flame spray, wire gun, and plasma gun systems were evaluated using glass, ceramic, and metallic coating materials. Metal plasma spray coatings (Al, Sn, Zn, Pb) provided a two to three orders-of-magnitude increase in chemical durability. Because the aluminum coatings were porous, the superior leach resistance must be due to either a chemical interaction or to a pH buffer effect. Because they are complex, coated waste form processes rank low in process feasibility. Of all the possible coated particle processes, plasma sprayed marbles have the best rating. Carbon coating of pellets by CVD ranked ninth when compared with ten other processes. The plasma-spray-coated marble process ranked sixth out of eleven processes.

  9. Plutonium Immobilization Project -- Robotic canister loading

    SciTech Connect

    Hamilton, R.L.

    2000-01-04

    The Plutonium Immobilization Program (PIP) is a joint venture between the Savannah River Site (SRS), Lawrence Livermore National Laboratory (LLNL), Argonne National Laboratory (ANL), and Pacific Northwest National Laboratory (PNNL). When operational in 2008, the PIP will fulfill the nation's nonproliferation commitment by placing surplus weapons-grade plutonium in a permanently stable ceramic form and making it unattractive for reuse. Since there are significant radiation and security concerns, the program team is developing novel and unique technology to remotely perform plutonium immobilization tasks. The remote task covered in this paper employs a jointed arm robot to load seven 3.5 inch diameter, 135-pound cylinders (magazines) through the 4 inch diameter neck of a stainless steel canister. Working through the narrow canister neck, the robot secures the magazines into a specially designed rack pre-installed in the canister. To provide the deterrent effect, the canisters are filled with a mixture of high-level waste and glass at the Defense Waste Processing Facility (DWPF).

  10. Nuclear waste forms for actinides

    PubMed Central

    Ewing, Rodney C.

    1999-01-01

    The disposition of actinides, most recently 239Pu from dismantled nuclear weapons, requires effective containment of waste generated by the nuclear fuel cycle. Because actinides (e.g., 239Pu and 237Np) are long-lived, they have a major impact on risk assessments of geologic repositories. Thus, demonstrable, long-term chemical and mechanical durability are essential properties of waste forms for the immobilization of actinides. Mineralogic and geologic studies provide excellent candidate phases for immobilization and a unique database that cannot be duplicated by a purely materials science approach. The “mineralogic approach” is illustrated by a discussion of zircon as a phase for the immobilization of excess weapons plutonium. PMID:10097054

  11. Preliminary Waste Form Compliance Plan for the Idaho National Engineering and Environmental Laboratory High-Level Waste

    SciTech Connect

    B. A. Staples; T. P. O'Holleran

    1999-05-01

    The Department of Energy (DOE) has specific technical and documentation requirements for high-level waste (HLW) that is to be placed in a federal repository. This document describes in general terms the strategy to be used at the Idaho National Engineering and Environmental Laboratory (INEEL) to demonstrate that vitrified HLW, if produced at the INEEL, meets these requirements. Waste form, canister, quality assurance, and documentation specifications are discussed. Compliance strategy is given, followed by an overview of how this strategy would be implemented for each specification.

  12. Identification of items and activities important to waste form acceptance by Westinghouse GoCo sites

    SciTech Connect

    Plodinec, M.J.; Marra, S.L.; Dempster, J.; Randklev, E.H.

    1993-10-12

    The Department of Energy has established specifications (Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms, or WAPS) for canistered waste forms produced at Hanford, Savannah River, and West Valley. Compliance with these specifications requires that each waste form producer identify the items and activities which must be controlled to ensure compliance. As part of quality assurance oversight activities, reviewers have tried to compare the methodologies used by the waste form producers to identify items and activities important to waste form acceptance. Due to the lack of a documented comparison of the methods used by each producer, confusion has resulted over whether the methods being used are consistent. This confusion has been exacerbated by different systems of nomenclature used by each producer, and the different stages of development of each project. The waste form producers have met three times in the last two years, most recently on June 28, 1993, to exchange information on each producer`s program. These meetings have been sponsored by the Westinghouse GoCo HLW Vitrification Committee. This document is the result of this most recent exchange. It fills the need for a documented comparison of the methodologies used to identify items and activities important to waste form acceptance. In this document, the methodology being used by each waste form producer is summarized, and the degree of consistency among the waste form producers is determined.

  13. CERAMIC WASTE FORM DATA PACKAGE

    SciTech Connect

    Amoroso, J.; Marra, J.

    2014-06-13

    The purpose of this data package is to provide information about simulated crystalline waste forms that can be used to select an appropriate composition for a Cold Crucible Induction Melter (CCIM) proof of principle demonstration. Melt processing, viscosity, electrical conductivity, and thermal analysis information was collected to assess the ability of two potential candidate ceramic compositions to be processed in the Idaho National Laboratory (INL) CCIM and to guide processing parameters for the CCIM operation. Given uncertainties in the CCIM capabilities to reach certain temperatures throughout the system, one waste form designated 'Fe-MP' was designed towards enabling processing and another, designated 'CAF-5%TM-MP' was designed towards optimized microstructure. Melt processing studies confirmed both compositions could be poured from a crucible at 1600{degrees}C although the CAF-5%TM-MP composition froze before pouring was complete due to rapid crystallization (upon cooling). X-ray diffraction measurements confirmed the crystalline nature and phase assemblages of the compositions. The kinetics of melting and crystallization appeared to vary significantly between the compositions. Impedance spectroscopy results indicated the electrical conductivity is acceptable with respect to processing in the CCIM. The success of processing either ceramic composition will depend on the thermal profiles throughout the CCIM. In particular, the working temperature of the pour spout relative to the bulk melter which can approach 1700{degrees}C. The Fe-MP composition is recommended to demonstrate proof of principle for crystalline simulated waste forms considering the current configuration of INL's CCIM. If proposed modifications to the CCIM can maintain a nominal temperature of 1600{degrees}C throughout the melter, drain, and pour spout, then the CAF-5%TM-MP composition should be considered for a proof of principle demonstration.

  14. Foreign programs for the storage of spent nuclear power plant fuels, high-level waste canisters and transuranic wastes

    SciTech Connect

    Harmon, K.M.; Johnson, A.B. Jr.

    1984-04-01

    The various national programs for developing and applying technology for the interim storage of spent fuel, high-level radioactive waste, and TRU wastes are summarized. Primary emphasis of the report is on dry storage techniques for uranium dioxide fuels, but data are also provided concerning pool storage.

  15. Remote automatic plasma arc-closure welding of a dry-storage canister for spent nuclear fuel and high-level radioactive waste

    SciTech Connect

    Sprecace, R.P.; Blankenship, W.P.

    1982-12-31

    A carbon steel storage canister has been designed for the dry encapsulation of spent nuclear fuel assemblies or of logs of vitrified high level radioactive waste. The canister design is in conformance with the requirements of the ASME Code, Section III, Division 1 for a Class 3 vessel. The canisters will be loaded and sealed as part of a completely remote process sequence to be performed in the hot bay of an experimental encapsulation facility at the Nevada Test Site. The final closure to be made is a full penetration butt weld between the canister body, a 12.75-in O.D. x 0.25-in wall pipe, and a mating semiellipsoidal closure lid. Due to a combination of design, application and facility constraints, the closure weld must be made in the 2G position (canister vertical). The plasma arc welding system is described, and the final welding procedure is described and discussed in detail. Several aspects and results of the procedure development activity, which are of both specific and general interest, are highlighted; these include: The critical welding torch features which must be exactly controlled to permit reproducible energy input to, and gas stream interaction with, the weld puddle. A comparison of results using automatic arc voltage control with those obtained using a mechanically fixed initial arc gap. The optimization of a keyhole initiation procedure. A comparison of results using an autogenous keyhole closure procedure with those obtained using a filler metal addition. The sensitivity of the welding process and procedure to variations in joint configuration and dimensions and to variations in base metal chemistry. Finally, the advantages and disadvantages of the plasma arc process for this application are summarized from the current viewpoint, and the applicability of this process to other similar applications is briefly indicated.

  16. Removal plan for Shippingport pressurized water reactor core 2 blanket fuel assemblies form T plant to the canister storage building

    SciTech Connect

    Lata

    1996-09-26

    This document presents the current strategy and path forward for removal of the Shippingport Pressurized Water Reactor Core 2 blanket fuel assemblies from their existing storage configuration (wet storage within the T Plant canyon) and transport to the Canister Storage Building (designed and managed by the Spent Nuclear Fuel. Division). The removal plan identifies all processes, equipment, facility interfaces, and documentation (safety, permitting, procedures, etc.) required to facilitate the PWR Core 2 assembly removal (from T Plant), transport (to the Canister storage Building), and storage to the Canister Storage Building. The plan also provides schedules, associated milestones, and cost estimates for all handling activities.

  17. 32-Week Holding-Time Study of SUMMA Polished Canisters and Triple Sorbent Traps Used To Sample Organic Constituents in Radioactive Waste Tank Vapor Headspace

    SciTech Connect

    Evans, John C. ); Huckaby, James L. ); Mitroshkov, Alexandre V. ); Julya, Janet L. ); Hayes, James C. ); Edwards, Jeffrey A.; Sasaki, Leela M.

    1997-11-01

    Two sampling methods[SUMMA polished canisters and triple sorbent traps (TSTs)] were compared for long-term storage of trace organic vapor samples collected from the headspaces of high-level radioactive waste tanks at the U.S. Department of Energy's Hanford Site in Washington State. Because safety, quality assurance, radiological controls, the long-term stability of the sampling media during storage needed to be addressed. Samples were analyzed with a gas chromatograph/mass spectrometer (GC/MS) using cryogenic reconcentration or thermal desorption sample introduction techniques. SUMMA canister samples were also analyzed for total non-methane organic compounds (TNMOC) by GC/flame ionization detector (FID) using EPA Compendium Method TO-12 . To verify the long-term stability of the sampling media, multiple samples were collected in parallel from a typical passively ventilated radioactive waste tank known to contain moderately high concentrations of both polar and nonpolar organic compounds. Analyses for organic analytes and TNMOC were conducted at increasing intervals over a 32-week period to determine whether any systematic degradation of sample integrity occurred. Analytes collected in the SUMMA polished canisters generally showed good stability over the full 32 weeks with recoveries at the 80% level or better for all compounds studied. The TST data showed some loss (50-80% recovery) for a few high-volatility compounds even in the refrigerated samples; losses for unrefrigerated samples were far more pronounced with recoveries as low as 20% observed in a few cases.

  18. Low temperature waste form process intensification

    SciTech Connect

    Fox, K. M.; Cozzi, A. D.; Hansen, E. K.; Hill, K. A.

    2015-09-30

    This study successfully demonstrated process intensification of low temperature waste form production. Modifications were made to the dry blend composition to enable a 50% increase in waste concentration, thus allowing for a significant reduction in disposal volume and associated costs. Properties measurements showed that the advanced waste form can be produced using existing equipment and processes. Performance of the waste form was equivalent or better than the current baseline, with approximately double the amount of waste incorporation. The results demonstrate the feasibility of significantly accelerating low level waste immobilization missions across the DOE complex and at environmental remediation sites worldwide.

  19. Performance Test on Polymer Waste Form - 12137

    SciTech Connect

    Lee, Se Yup

    2012-07-01

    Polymer solidification was attempted to produce stable waste form for the boric acid concentrates and the dewatered spent resins. The polymer mixture was directly injected into the mold or drum which was packed with the boric acid concentrates and the dewatered spent resins, respectively. The waste form was produced by entirely curing the polymer mixture. A series of performance tests was conducted including compressive strength test, water immersion test, leach test, thermal stability test, irradiation stability test and biodegradation stability test for the polymer waste forms. From the results of the performance tests for the polymer waste forms, it is believed that the polymer waste form is very stable and can satisfy the acceptance criteria for permanent disposal. At present, performance tests with full scale polymer waste forms are being carried out in order to obtain qualification certificate by the regulatory institute in Korea. Polymer waste forms were prepared with the surrogate of boric acid concentrates and the surrogate of spent ion exchange resins respectively. Waste forms were also made in lab scale and in full scale. Lab. scale waste forms were directly subjected to a series of the performance tests. In the case of full scale waste form, the test specimens for the performance test were taken from a part of waste form by coring. A series of performance tests was conducted including compressive strength test, thermal stability test, irradiation stability test and biodegradation stability test, water immersion test, leach test, and free standing water for the polymer waste forms. In addition, a fire resistance test was performed on the waste forms by the requirement of the regulatory institute in Korea. Every polymer waste forms containing the boric acid concentrates and the spent ion exchange resins had exhibited excellent structural integrity of more than 27.58 MPa (4,000 psi) of compressive strength. On thermal stability testing, biodegradation

  20. Miscellaneous Waste-Form FEPs

    SciTech Connect

    A. Schenker

    2000-12-08

    The US DOE must provide a reasonable assurance that the performance objectives for the Yucca Mountain Project (YMP) potential radioactive-waste repository can be achieved for a 10,000-year post-closure period. The guidance that mandates this direction is under the provisions of 10 CFR Part 63 and the US Department of Energy's ''Revised Interim Guidance Pending Issuance of New US Nuclear Regulatory Commission (NRC) Regulations (Revision 01, July 22, 1999), for Yucca Mountain, Nevada'' (Dyer 1999 and herein referred to as DOE's Interim Guidance). This assurance must be demonstrated in the form of a performance assessment that: (1) identifies the features, events, and processes (FEPs) that might affect the performance of the potential geologic repository; (2) examines the effects of such FEPs on the performance of the potential geologic repository; (3) estimates the expected annual dose to a specified receptor group; and (4) provides the technical basis for inclusion or exclusion of specific FEPs.

  1. Liquid secondary waste. Waste form formulation and qualification

    SciTech Connect

    Cozzi, A. D.; Dixon, K. L.; Hill, K. A.; King, W. D.; Nichols, R. L.

    2016-03-01

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during Site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the Integrated Disposal Facility IDF). Waste form testing to support this plan is composed of work in the near term to demonstrate the waste form will provide data as input to a performance assessment (PA) for Hanford’s IDF.

  2. Prototype pushing robot for emplacing vitrified waste canisters into horizontal disposal drifts

    SciTech Connect

    Londe, L.; Seidler, W.K.; Bosgiraud, J.M.; Guenin, J.J.; Devaux, P.

    2007-07-01

    Within the French Underground Disposal concept, as described in ANDRA's (Agence Nationale pour la Gestion des Dechets Radioactifs) Dossier 2005, the Pushing Robot is an application envisaged for the emplacement (and the potential retrieval) of 'Vitrified waste packages', also called 'C type packages'. ANDRA has developed a Prototype Pushing Robot within the framework of the ESDRED Project (Engineering Studies and Demonstration of Repository Design) which is co-funded by the European Commission as part of the sixth EURATOM Research and Training Framework Programme (FP6) on nuclear energy (2002 - 2006). The Rationale of the Pushing Robot technology comes from various considerations, including the need for (1) a simple and robust system, capable of moving (and potentially retrieving) on up to 40 metres (m), a 2 tonne C type package (mounted on ceramic sliding runners) inside the carbon steel sleeve constituting the liner (and rock support) of a horizontal disposal cell, (2) small annular clearances between the package and the liner, (3) compactness of the device to be transferred from surface to underground, jointly with the package, inside a shielding cask, and (4) remote controlled operations for the sake of radioprotection. The initial design, based on gripping supports, has been replaced by a 'technical variant' based on inflatable toric jacks. It was then possible, using a test bench, to check that the Pushing Robot worked properly. Steps as high as 7 mm were successfully cleared by a dummy package pushed by the Prototype.. Based on the lessons learned by ANDRA's regarding the Prototype Pushing Robot, a new Scope of Work is being written for the Contract concerning an Industrial Scale Demonstrator. The Industrial Scale Demonstration should be completed by the end of the second Quarter of 2008. (authors)

  3. Canister Transfer System Event Sequence Calculation

    SciTech Connect

    Richard Morissette

    2001-08-16

    The ''Department of Energy Spent Nuclear Fuel Canister, Transportation, and Monitored Geologic Repository Systems, Structures, and Components Performance Allocation Study'' (CRWMS M&O 2000b) allocated performance to both the canisters received at the Monitored Geologic Repository (MGR) and the MGR Canister Transfer System (CTS). The purpose of this calculation is to evaluate an assumed range of canister and CTS performance allocation failure probabilities and determine the effect of these failure probabilities on the frequency of a radionuclide release. Five canister types are addressed in this calculation; high-level radioactive waste (HLW) canisters containing vitrified borosilicate glass, HLW canisters containing immobilized plutonium surrounded by borosilicate glass (Pu/HLW canisters), Department of Energy (DOE) spent nuclear fuel (DSNF) standard canisters (4 sizes), DSNF multi-canister overpacks (MCOs) for N-reactor fuel and other selected DSNF, and naval spent nuclear fuel (SNF) canisters (2 sizes). The quality assurance program applies to this calculation, and the work is performed in accordance with procedure AP-3.12Q, ''Calculations''. The work done for this calculation was evaluated according to AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'' that determined this activity to be subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (DOE 2000a). This work was performed in accordance with the ''Technical Work Plan for: Department of Energy Nuclear Fuel Work Packages'' (CRWMS M&O 2000c) for this activity.

  4. A generalized definition for waste form durability.

    SciTech Connect

    Fanning, T. H.; Bauer, T. H.; Morris, E. E.; Wigeland, R. A.

    2002-06-26

    When evaluating waste form performance, the term ''durability'' often appears in casual discourse, but in the technical literature, the focus is often on waste form ''degradation'' in terms of mass lost per unit area per unit time. Waste form degradation plays a key role in developing models of the long-term performance in a repository environment, but other factors also influence waste form performance. These include waste form geometry; density, porosity, and cracking; the presence of cladding; in-package chemistry feedback; etc. The paper proposes a formal definition of waste form ''durability'' which accounts for these effects. Examples from simple systems as well as from complex models used in the Total System Performance Assessment of Yucca Mountain are provided. The application of ''durability'' in the selection of bounding models is also discussed.

  5. Combined Waste Form Cost Trade Study

    SciTech Connect

    Dirk Gombert; Steve Piet; Timothy Trickel; Joe Carter; John Vienna; Bill Ebert; Gretchen Matthern

    2008-11-01

    A new generation of aqueous nuclear fuel reprocessing, now in development under the auspices of the DOE Office of Nuclear Energy (NE), separates fuel into several fractions, thereby partitioning the wastes into groups of common chemistry. This technology advance enables development of waste management strategies that were not conceivable with simple PUREX reprocessing. Conventional wisdom suggests minimizing high level waste (HLW) volume is desirable, but logical extrapolation of this concept suggests that at some point the cost of reducing volume further will reach a point of diminishing return and may cease to be cost-effective. This report summarizes an evaluation considering three groupings of wastes in terms of cost-benefit for the reprocessing system. Internationally, the typical waste form for HLW from the PUREX process is borosilicate glass containing waste elements as oxides. Unfortunately several fission products (primarily Mo and the noble metals Ru, Rh, Pd) have limited solubility in glass, yielding relatively low waste loading, producing more glass, and greater disposal costs. Advanced separations allow matching the waste form to waste stream chemistry, allowing the disposal system to achieve more optimum waste loading with improved performance. Metals can be segregated from oxides and each can be stabilized in forms to minimize the HLW volume for repository disposal. Thus, a more efficient waste management system making the most effective use of advanced waste forms and disposal design for each waste is enabled by advanced separations and how the waste streams are combined. This trade-study was designed to juxtapose a combined waste form baseline waste treatment scheme with two options and to evaluate the cost-benefit using available data from the conceptual design studies supported by DOE-NE.

  6. Waste Form Evaluation Program. Final report

    SciTech Connect

    Franz, E.M.; Colombo, P.

    1985-09-01

    This report presents data that can be used to assess the acceptability of polyethylene and modified sulfur cement waste forms to meet the requirements of 10 CFR 61. The waste streams selected for this study include dry evaporator concentrate salts and incinerator ash as representative wastes which result from advanced volume reduction technologies and ion exchange resins which remain problematic for solidification using commercially available matrix materials. Property evaluation tests such as compressive strength, water immersion, thermal cycling, irradiation, biodegradation and leachability were conducted for polyethylene and sulfur cement waste forms over a range of waste-to-binder ratios. Based on the results of the tests, optimal waste loadings of 70 wt % sodium sulfate, 50 wt % boric acid, 40 wt % incinerator ash and 30 wt % ion exchange resins were established for polyethylene, although maximum loadings were considerably higher. For modified sulfur cement, optimal loadings of 40 wt % sodium sulfate, 40 wt % boric acid and 40 wt % incinerator ash are reported. Ion exchange resins are not recommended for incorporation into modified sulfur cement because of poor waste form performance even at very low waste concentrations. The results indicate that all waste forms tested within the range of optimal waste concentrations satisifed the requirements of the NRC Technical Position Paper on Waste Form.

  7. Qualifying radioactive waste forms for geologic disposal

    SciTech Connect

    Jardine, L.J.; Laidler, J.J.; McPheeters, C.C.

    1994-09-01

    We have developed a phased strategy that defines specific program-management activities and critical documentation for producing radioactive waste forms, from pyrochemical processing of spent nuclear fuel, that will be acceptable for geologic disposal by the US Department of Energy. The documentation of these waste forms begins with the decision to develop the pyroprocessing technology for spent fuel conditioning and ends with production of the last waste form for disposal. The need for this strategy is underscored by the fact that existing written guidance for establishing the acceptability for disposal of radioactive waste is largely limited to borosilicate glass forms generated from the treatment of aqueous reprocessing wastes. The existing guidance documents do not provide specific requirements and criteria for nonstandard waste forms such as those generated from pyrochemical processing operations.

  8. Closure Mechanism and Method for Spent Nuclear Fuel Canisters

    SciTech Connect

    Doman, Marvin J.

    2004-11-23

    A canister is provided for storing, transporting, and/or disposing of spent nuclear fuel. The canister includes a canister shell, a top shield plug disposed within the canister, and a leak-tight closure arrangement. The closure arrangement includes a shear ring which forms a containment boundary of the canister, and which is welded to the canister shell and top shield plug. An outer seal plate, forming an outer seal, is disposed above the shear ring and is welded to the shield plug and the canister.

  9. Radionuclide Retention in Concrete Waste Forms

    SciTech Connect

    Mattigod, Shas V.; Bovaird, Chase C.; Wellman, Dawn M.; Wood, Marcus I.

    2010-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how waste form performance is affected by the full range of environmental conditions within the disposal facility; the process of waste form aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of waste form aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the waste forms come in contact with groundwater. The information presented in the report provides data that 1) quantify radionuclide retention within concrete waste form materials similar to those used to encapsulate waste in the Low-Level Waste Burial Grounds (LLBG); 2) measure the effect of concrete waste form properties likely to influence radionuclide migration; and 3) quantify the stability of uranium-bearing solid phases of limited solubility in concrete.

  10. Properties of the West Valley waste form

    SciTech Connect

    Cadoff, L.H.; Pope, J.M.; Barnes, S.M.

    1990-10-01

    This paper reviews the physical and chemical properties of an envelope of West Valley waste form compositions that encompass the centroid composition and which fulfill criteria mandating high chemical durability and good processibility. Data are presented to demonstrate that full-scale process controls at West Valley are sufficiently good to produce acceptably durable non-radioactive glass waste forms.

  11. 32-week holding-time study of SUMMA polished canisters and triple sorbent traps used to sample organic constituents in radioactive waste tank vapor headspace

    SciTech Connect

    Evans, J.C.; Huckaby, J.L.; Mitroshkov, A.V.; Julya, J.L.; Hayes, J.C.; Edwards, J.A.; Sasaki, L.M.

    1998-11-01

    Two sampling methods [SUMMA polished canisters and triple sorbent traps (TSTs)] were compared for long-term storage of trace organic vapor samples collected from the headspaces of high-level radioactive waste tanks at the US Department of Energy`s Hanford Site in Washington State. The two methods were found to provide generally equivalent results. Because safety, quality assurance, radiological controls, and somewhat complex sample custody arrangements frequently precluded rapid analysis, the long-term stability of the sampling media during storage needed to be addressed. Samples were analyzed with a gas chromatograph/mass spectrometer (GC/MS) using cryogenic preconcentration or thermal desorption sample introduction techniques. SUMMA canister samples were also analyzed for total non-methane organic compounds (TNMOC) by GC/flame ionization detector (FID) using EPA Compendium Method TO-12. The 31 target organic analytes studied represented compounds with widely varying polarities and volatilities. To verify the long-term stability of the sampling media, multiple samples were collected in parallel from a typical passively ventilated radioactive waste tank known to contain moderately high concentrations of both polar and nonpolar organic compounds. Two sets of sorbent trap samples were collected to compare the effects of storage under refrigerated and room temperature conditions. Analyses for organic analytes and TNMOC were conducted at increasing intervals over a 32-week period to determine whether any systematic degradation of sample integrity occurred.

  12. Assessment of spent-fuel waste-form/stabilizer alternatives for geologic disposal

    SciTech Connect

    Einziger, R.E.; Himes, D.A.

    1982-06-01

    The Office of Nuclear Waste Isolation (ONWI) is studying the possibility of burying canisterized unreprocessed spent fuel in a deep geologic repository. One aspect of this study is an assessment of the possible spent fuel waste forms. The fuel performance portion of the Waste Form Assessment was to evaluate five candidate spent fuel waste forms for postemplacement performance with emphasis on their ability to retard the release of radionuclides to the repository geology. Spent fuel waste forms under general consideration were: (1) unaltered fuel assembly; (2) fuel assembly with end fittings removed to shorten the length; (3 rods vented to remove gases and resealed; (4) disassembled fuel bundles to close-pack the rods; and (5) rods chopped and fragments immobilized in a matrix material. Thirteen spent fuel waste forms, classified by generic stabilizer type, were analyzed for relative in-repository performance based on: (1) waste form/stabilizer support against lithostatic pressure; (2) long-term stability for radionuclide retention; (3) minimization of cladding degradation; (4) prevention of canister/repository breach due to pressurization; (5) stabilizer heat transfer; (6) the stabilizer as an independent barrier to radionuclide migration; and (7) prevention of criticality. The waste form candidates were ranked as follows: (1) the best waste form/stabilizer combination is the intact assembly, with or without end bells, vented (and resealed) or unvented, with a solid stabilizer; (2) a suitable alternative is the combination of bundled close-packed rods with a solid stabilizer around the outside of the bundle to resist lithostatic pressure; and (3) the other possible waste forms are of lower ranking with the worst waste form/stabilizer combination being the intact assembly with a gas stabilizer or the chopped fuel.

  13. Characterization of projected DWPF glasses heat treated to simulate canister centerline cooling

    SciTech Connect

    Marra, S.L.; Jantzen, C.M.

    1992-05-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Eventually these canistered waste forms will be sent to a geologic repository for final disposal. In order to assure acceptability by the repository, the Department of Energy has defined requirements which DWPF canistered waste forms must meet. These requirements are the Waste Acceptance Preliminary Specifications (WAPS). The WAPS require DWPF to identify the crystalline phases expected to be present in the final glass product. Knowledge of the thermal history of the borosilicate glass during filling and cooldown of the canister is necessary to determine the amount and type of crystalline phases present in the final glass product. Glass samples of seven projected DWPF compositions were cooled following the same temperature profile as that of glass at the centerline of the full-scale DWPF canister. The glasses were characterized by x-ray diffraction and scanning electron microscopy to identify the crystalline phases present The volume percents of each crystalline phase present were determined by quantitative x-ray diffraction. The Product Consistency Test (PCI) was used to determine the durability of the heat-treated glasses.

  14. Method for storage of solid waste

    DOEpatents

    Mecham, William J.

    1976-01-01

    Metal canisters for long-term storage of calcined highlevel radioactive wastes can be made self-sealing against a breach in the canister wall by the addition of powdered cement to the canister with the calcine before it is sealed for storage. Any breach in the canister wall will permit entry of water which will mix with the cement and harden to form a concrete patch, thus sealing the opening in the wall of the canister and preventing the release of radioactive material to the cooling water or atmosphere.

  15. Stainless steel-zirconium alloy waste forms

    SciTech Connect

    McDeavitt, S.M.; Abraham, D.P.; Keiser, D.D. Jr.; Park, J.Y.

    1996-07-01

    An electrometallurgical treatment process has been developed by Argonne National Laboratory to convert various types of spent nuclear fuels into stable storage forms and waste forms for repository disposal. The first application of this process will be to treat spent fuel alloys from the Experimental Breeder Reactor-II. Three distinct product streams emanate from the electrorefining process: (1) refined uranium; (2) fission products and actinides extracted from the electrolyte salt that are processed into a mineral waste form; and (3) metallic wastes left behind at the completion of the electrorefining step. The third product stream (i.e., the metal waste stream) is the subject of this paper. The metal waste stream contains components of the chopped spent fuel that are unaffected by the electrorefining process because of their electrochemically ``noble`` nature; this includes the cladding hulls, noble metal fission products (NMFP), and, in specific cases, zirconium from metal fuel alloys. The selected method for the consolidation and stabilization of the metal waste stream is melting and casting into a uniform, corrosion-resistant alloy. The waste form casting process will be carried out in a controlled-atmosphere furnace at high temperatures with a molten salt flux. Spent fuels with both stainless steel and Zircaloy cladding are being evaluated for treatment; thus, stainless steel-rich and Zircaloy-rich waste forms are being developed. Although the primary disposition option for the actinides is the mineral waste form, the concept of incorporating the TRU-bearing product into the metal waste form has enough potential to warrant investigation.

  16. Igneous Intrusion Impacts on Waste Packages and Waste Forms

    SciTech Connect

    P. Bernot

    2004-08-16

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The model is based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. This constitutes the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA (BSC 2003a) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2002a). The technical work plan is governed by the procedures of AP-SIII.10Q, Models. Any deviations from the technical work plan are documented in the TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model: (1) Impacts of magma intrusion on the components of engineered barrier system (e.g., drip shields and cladding) of emplacement drifts in Zone 1, and the fate of waste forms. (2) Impacts of conducting magma heat and diffusing magma gases on the drip shields, waste packages, and cladding in the Zone 2 emplacement drifts adjacent to the intruded drifts. (3) Impacts of intrusion on Zone 1 in-drift thermal and geochemical environments, including seepage hydrochemistry. The scope of this model only includes impacts to the components stated above, and does not include impacts to other engineered barrier system (EBS) components such as the invert and

  17. Mixed low-level waste form evaluation

    SciTech Connect

    Pohl, P.I.; Cheng, Wu-Ching; Wheeler, T.; Waters, R.D.

    1997-03-01

    A scoping level evaluation of polyethylene encapsulation and vitreous waste forms for safe storage of mixed low-level waste was performed. Maximum permissible radionuclide concentrations were estimated for 15 indicator radionuclides disposed of at the Hanford and Savannah River sites with respect to protection of the groundwater and inadvertent intruder pathways. Nominal performance improvements of polyethylene and glass waste forms relative to grout are reported. These improvements in maximum permissible radionuclide concentrations depend strongly on the radionuclide of concern and pathway. Recommendations for future research include improving the current understanding of the performance of polymer waste forms, particularly macroencapsulation. To provide context to these estimates, the concentrations of radionuclides in treated DOE waste should be compared with the results of this study to determine required performance.

  18. Advanced waste forms from spent nuclear fuel

    SciTech Connect

    Ackerman, J.P.; McPheeters, C.C.

    1995-12-31

    More than one hundred spent nuclear fuel types, having an aggregate mass of more than 5000 metric tons (2700 metric tons of heavy metal), are stored by the United States Department of Energy. This paper proposes a method for converting this wide variety of fuel types into two waste forms for geologic disposal. The method is based on a molten salt electrorefining technique that was developed for conditioning the sodium-bonded, metallic fuel from the Experimental Breeder Reactor-II (EBR-II) for geologic disposal. The electrorefining method produces two stable, optionally actinide-free, high-level waste forms: an alloy formed from stainless steel, zirconium, and noble metal fission products, and a ceramic waste form containing the reactive metal fission products. Electrorefining and its accompanying head-end process are briefly described, and methods for isolating fission products and fabricating waste forms are discussed.

  19. Iodine waste form summary report (FY 2007).

    SciTech Connect

    Krumhansl, James Lee; Nenoff, Tina Maria; McMahon, Kevin A.; Gao, Huizhen; Rajan, Ashwath Natech

    2007-11-01

    This new program at Sandia is focused on Iodine waste form development for GNEP cycle needs. Our research has a general theme of 'Waste Forms by Design' in which we are focused on silver loaded zeolite waste forms and related metal loaded zeolites that can be validated for chosen GNEP cycle designs. With that theme, we are interested in materials flexibility for iodine feed stream and sequestration material (in a sense, the ability to develop a universal material independent on the waste stream composition). We also are designing the flexibility to work in a variety of repository or storage scenarios. This is possible by studying the structure/property relationship of existing waste forms and optimizing them to our current needs. Furthermore, by understanding the properties of the waste and the storage forms we may be able to predict their long-term behavior and stability. Finally, we are working collaboratively with the Waste Form Development Campaign to ensure materials durability and stability testing.

  20. Stability of High-Level Waste Forms

    SciTech Connect

    Besmann, Theodore M.; Vienna, John D.

    2006-11-10

    The objective of the proposed effort is to use a new approach to develop solution models of complex waste glass systems and spent fuel that are predictive with regard to composition, phase separation, and volatility. The effort will also yield thermodynamic values for waste components that are fundamentally required for corrosion models used to predict the leaching/corrosion behavior for waste glass and spent fuel material. This basic information and understanding of chemical behavior can subsequently be used directly in computational models of leaching and transport in geologic media, in designing and engineering waste forms and barrier systems, and in prediction of chemical interactions.

  1. CRYSTALLINE CERAMIC WASTE FORMS: REFERENCE FORMULATION REPORT

    SciTech Connect

    Brinkman, K.; Fox, K.; Marra, J.

    2012-05-15

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be successfully produced from a melting and crystallization process. The objective of this report is to explain the design of ceramic host systems culminating in a reference ceramic formulation for use in subsequent studies on process optimization and melt property data assessment in support of FY13 melter demonstration testing. The waste stream used as the basis for the development and testing is a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. In addition to the combined CS/LN/TM High Mo waste stream, variants without Mo and without Mo and Zr were also evaluated. Based on the results of fabricating and characterizing several simulated ceramic waste forms, two reference ceramic waste form compositions are recommended in this report. The first composition targets the CS/LN/TM combined waste stream with and without Mo. The second composition targets

  2. Liquid Secondary Waste Grout Formulation and Waste Form Qualification

    SciTech Connect

    Um, Wooyong; Williams, B. D.; Snyder, Michelle M. V.; Wang, Guohui

    2016-05-23

    This report describes the results from liquid secondary waste (LSW) grout formulation and waste form qualification tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate new formulations for preparing a grout waste form with high-sulfate secondary waste simulants and the release of key constituents from these grout monoliths. Specific objectives of the LSW grout formulation and waste form qualification tests described in this report focused on five activities: 1.preparing new formulations for the LSW grout waste form with high-sulfate LSW simulants and solid characterization of the cured LSW grout waste form; 2.conducting the U.S. Environmental Protection Agency (EPA) Method 1313 leach test (EPA 2012) on the grout prepared with the new formulations, which solidify sulfate-rich Hanford Tank Waste Treatment and Immobilization Plant (WTP) off-gas condensate secondary waste simulant, using deionized water (DIW); 3.conducting the EPA Method 1315 leach tests (EPA 2013) on the grout monoliths made with the new dry blend formulations and three LSW simulants (242-A evaporator condensate, Environmental Restoration Disposal Facility (ERDF) leachate, and WTP off-gas condensate) using two leachants, DIW and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water (VZPW); 4.estimating the 99Tc desorption Kd (distribution coefficient) values for 99Tc transport in oxidizing conditions to support the IDF performance assessment (PA); 5.estimating the solubility of 99Tc(IV)-bearing solid phases for 99Tc transport in reducing conditions to support the IDF PA.

  3. SEPARATIONS AND WASTE FORMS CAMPAIGN IMPLEMENTATION PLAN

    SciTech Connect

    Vienna, John D.; Todd, Terry A.; Peterson, Mary E.

    2012-11-26

    This Separations and Waste Forms Campaign Implementation Plan provides summary level detail describing how the Campaign will achieve the objectives set-forth by the Fuel Cycle Reasearch and Development (FCRD) Program. This implementation plan will be maintained as a living document and will be updated as needed in response to changes or progress in separations and waste forms research and the FCRD Program priorities.

  4. Development of Alternative Technetium Waste Forms

    SciTech Connect

    Czerwinski, Kenneth

    2013-09-13

    The UREX+1 process is under consideration for the separation of transuranic elements from spent nuclear fuel. The first steps of this process extract the fission product technicium-99 ({sup 99}Tc) into an organic phase containing tributylphosphate together with uranium. Treatment of this stream requires the separation of Tc from U and placement into a suitable waste storage form. A potential candidate waste form involves immobilizing the Tc as an alloy with either excess metallic zirconium or stainless steel. Although Tc-Zr alloys seem to be promising waste forms, alternative materials must be investigated. Innovative studies related to the synthesis and behavior of a different class of Tc materials will increase the scientific knowledge related to development of Tc waste forms. These studies will also provide a better understanding of the behavior of {sup 99}Tc in repository conditions. A literature survey has selected promising alternative waste forms for further study: technetium metallic alloys, nitrides, oxides, sulfides, and pertechnetate salts. The goals of this project are to 1) synthesize and structurally characterize relevant technetium materials that may be considered as waste forms, 2) investigate material behavior in solution under different conditions of temperature, electrochemical potential, and radiation, and 3) predict the long-term behavior of these materials.

  5. IGNEOUS INTRUSION IMPACTS ON WASTE PACKAGES AND WASTE FORMS

    SciTech Connect

    P. Bernot

    2004-04-19

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The models are based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. The models described in this report constitute the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of LA (BSC 2004 [DIRS:167796]) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2003 [DIRS: 166296]). The technical work plan was prepared in accordance with AP-2.27Q, Planning for Science Activities. Any deviations from the technical work plan are documented in the following sections as they occur. The TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model assessments: (1) Mechanical and thermal impacts of basalt magma intrusion on the invert, waste packages and waste forms of the intersected emplacement drifts of Zone 1. (2) Temperature and pressure trends of basaltic magma intrusion intersecting Zone 1 and their potential effects on waste packages and waste forms in Zone 2 emplacement drifts. (3) Deleterious volatile gases, exsolving from the intruded basalt magma and their potential effects on waste packages of Zone 2 emplacement drifts. (4) Post-intrusive physical

  6. Alternative Waste Forms for Electro-Chemical Salt Waste

    SciTech Connect

    Crum, Jarrod V.; Sundaram, S. K.; Riley, Brian J.; Matyas, Josef; Arreguin, Shelly A.; Vienna, John D.

    2009-10-28

    This study was undertaken to examine alternate crystalline (ceramic/mineral) and glass waste forms for immobilizing spent salt from the Advanced Fuel Cycle Initiative (AFCI) electrochemical separations process. The AFCI is a program sponsored by U.S. Department of Energy (DOE) to develop and demonstrate a process for recycling spent nuclear fuel (SNF). The electrochemical process is a molten salt process for the reprocessing of spent nuclear fuel in an electrorefiner and generates spent salt that is contaminated with alkali, alkaline earths, and lanthanide fission products (FP) that must either be cleaned of fission products or eventually replaced with new salt to maintain separations efficiency. Currently, these spent salts are mixed with zeolite to form sodalite in a glass-bonded waste form. The focus of this study was to investigate alternate waste forms to immobilize spent salt. On a mole basis, the spent salt is dominated by alkali and Cl with minor amounts of alkaline earth and lanthanides. In the study reported here, we made an effort to explore glass systems that are more compatible with Cl and have not been previously considered for use as waste forms. In addition, alternate methods were explored with the hope of finding a way to produce a sodalite that is more accepting of as many FP present in the spent salt as possible. This study was done to investigate two different options: (1) alternate glass families that incorporate increased concentrations of Cl; and (2) alternate methods to produce a mineral waste form.

  7. A comparison of high-level waste form characteristics

    SciTech Connect

    Salmon, R.; Notz, K.J.

    1991-01-01

    There are currently about 1055 million curies of high-level waste with a thermal output of about 2950 kilowatts (KW) at four sites in the United States: West Valley Demonstration Project (WVDP), Savannah River Site (SRS), Hanford Site (HANF), and Idaho National Engineering Laboratory (INEL). These quantities are expected to increase to about 1200 million curies and 3570 kw by the end of year 2020. Under the Nuclear Waste Policy Act, this high-level waste must ultimately be disposed of in a geologic repository. Accordingly, canisters of high-level waste immobilized in borosilicate glass or glass-ceramic mixtures are to be produced at the four sites and stored there until a repository becomes available. Data on the estimated production schedules and on the physical, chemical, and radiological characteristics of the canisters of immobilized high-level waste have been collected in OCRWM's Waste Characteristics Data Base, including recent updates an revisions. Comparisons of some of these data for the four sites are presented in this report. 14 refs., 3 tabs.

  8. Reductive capacity measurement of waste forms for secondary radioactive wastes

    NASA Astrophysics Data System (ADS)

    Um, Wooyong; Yang, Jung-Seok; Serne, R. Jeffrey; Westsik, Joseph H.

    2015-12-01

    The reductive capacities of dry ingredients and final solid waste forms were measured using both the Cr(VI) and Ce(IV) methods and the results were compared. Blast furnace slag (BFS), sodium sulfide, SnF2, and SnCl2 used as dry ingredients to make various waste forms showed significantly higher reductive capacities compared to other ingredients regardless of which method was used. Although the BFS exhibits appreciable reductive capacity, it requires greater amounts of time to fully react. In almost all cases, the Ce(IV) method yielded larger reductive capacity values than those from the Cr(VI) method and can be used as an upper bound for the reductive capacity of the dry ingredients and waste forms, because the Ce(IV) method subjects the solids to a strong acid (low pH) condition that dissolves much more of the solids. Because the Cr(VI) method relies on a neutral pH condition, the Cr(VI) method can be used to estimate primarily the waste form surface-related and readily dissolvable reductive capacity. However, the Cr(VI) method does not measure the total reductive capacity of the waste form, the long-term reductive capacity afforded by very slowly dissolving solids, or the reductive capacity present in the interior pores and internal locations of the solids.

  9. Reductive capacity measurement of waste forms for secondary radioactive wastes

    SciTech Connect

    Um, Wooyong; Yang, Jung-Seok; Serne, R. Jeffrey; Westsik, Joseph H.

    2015-12-01

    The reductive capacities of dry ingredients and final solid waste forms were measured using both the Cr(VI) and Ce(IV) methods and the results were compared. Blast furnace slag (BFS), sodium sulfide, SnF2, and SnCl2 used as dry ingredients to make various waste forms showed significantly higher reductive capacities compared to other ingredients regardless of which method was used. Although the BFS exhibits appreciable reductive capacity, it requires greater amounts of time to fully react. In almost all cases, the Ce(IV) method yielded larger reductive capacity values than those from the Cr(VI) method and can be used as an upper bound for the reductive capacity of the dry ingredients and waste forms, because the Ce(IV) method subjects the solids to a strong acid (low pH) condition that dissolves much more of the solids. Because the Cr(VI) method relies on a neutral pH condition, the Cr(VI) method can be used to estimate primarily the waste form surface-related and readily dissolvable reductive capacity. However, the Cr(VI) method does not measure the total reductive capacity of the waste form, the long-term reductive capacity afforded by very slowly dissolving solids, or the reductive capacity present in the interior pores and internal locations of the solids.

  10. Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication

    SciTech Connect

    Steven Frank; Hwan Seo Park; Yung Zun Cho; William Ebert; Brian Riley

    2015-07-01

    This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea – ROK) and United States of America (US) ‘centric’ in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration between US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.

  11. Technetium Waste Form Development Progress Report

    SciTech Connect

    Buck, Edgar C.

    2010-02-26

    The approach being followed to evaluate the use of an iron-based alloy waste form to immobilize the Tc-bearing waste streams generated during the aqueous and electrochemical processing of used fuel that is being studied in the DOE Advanced Fuel Cycle Initiative (AFCI) is presented in this report. The objective is to develop an alloy waste form that provides high waste loading within waste form processing limitations, meets waste form performance requirements for durability and the long-term retention of radionuclides, and can be produced with consistent physical, chemical, and radiological properties that meet regulatory acceptance requirements for disposal. Microanalysis using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) was used to analyze non-radioactive Fe-Mo-Re samples. A sample was prepared for SEM; however, significant unforeseen instrument problems led to delays in conducting the detailed work. The TEM was not available for this particular sample and therefore only preliminary SEM work can be reported. The results are in agreement with previous studies [Ebert 2009]; however, a rhenium-rich region within the Re-Mo phase is clearly visible.

  12. Defense High Level Waste Disposal Container System Description Document

    SciTech Connect

    N. E. Pettit

    2001-07-13

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms [IPWF]) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. US Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as co-disposal. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister inserted in the center and/or one or more DOE SNF canisters displacing a HLW canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by

  13. Vitrification of waste with conitnuous filling and sequential melting

    DOEpatents

    Powell, James R.; Reich, Morris

    2001-09-04

    A method of filling a canister with vitrified waste starting with a waste, such as high-level radioactive waste, that is cooler than its melting point. Waste is added incrementally to a canister forming a column of waste capable of being separated into an upper zone and a lower zone. The minimum height of the column is defined such that the waste in the lower zone can be dried and melted while maintaining the waste in the upper zone below its melting point. The maximum height of the column is such that the upper zone remains porous enough to permit evolved gases from the lower zone to flow through the upper zone and out of the canister. Heat is applied to the waste in the lower zone to first dry then to raise and maintain its temperature to a target temperature above the melting point of the waste. Then the heat is applied to a new lower zone above the melted waste and the process of adding, drying and melting the waste continues upward in the canister until the entire canister is filled and the entire contents are melted and maintained at the target temperature for the desired period. Cooling of the melted waste takes place incrementally from the bottom of the canister to the top, or across the entire canister surface area, forming a vitrified product.

  14. Comparative risk assessments for the production and interim storage of glass and ceramic waste forms: defense waste processing facility

    SciTech Connect

    Huang, J C; Wright, W V

    1982-04-01

    The Defense Waste Processing Facility (DWPF) for immobilizing nuclear high level waste (HLW) is scheduled to be built at the Savannah River Plant (SRP). High level waste is produced when SRP reactor components are subjected to chemical separation operations. Two candidates for immobilizing this HLW are borosilicate glass and crystalline ceramic, either being contained in weld-sealed stainless steel canisters. A number of technical analyses are being conducted to support a selection between these two waste forms. The present document compares the risks associated with the manufacture and interim storage of these two forms in the DWPF. Process information used in the risk analysis was taken primarily from a DWPF processibility analysis. The DWPF environmental analysis provided much of the necessary environmental information. To perform the comparative risk assessments, consequences of the postulated accidents are calculated in terms of: (1) the maximum dose to an off-site individual; and (2) the dose to off-site population within 80 kilometers of the DWPF, both taken in terms of the 50-year inhalation dose commitment. The consequences are then multiplied by the estimated accident probabilities to obtain the risks. The analyses indicate that the maximum exposure risk to an individual resulting from the accidents postulated for both the production and interim storage of either waste form represents only an insignificant fraction of the natural background radiation of about 90 mrem per year per person in the local area. They also show that there is no disaster potential to the off-site population. Therefore, the risks from abnormal events in the production and the interim storage of the DWPF waste forms should not be considered as a dominant factor in the selection of the final waste form.

  15. Hydrothermal transformation and dissolution of hydroceramic waste forms for the INEEL calcined high-level nuclear waste

    NASA Astrophysics Data System (ADS)

    Olanrewaju, Johnson

    2002-09-01

    The two main objectives of this research were dictated by the chemical composition of the Idaho National Engineering and Environmental Laboratory (INEEL) calcined high-level nuclear waste. The first objective is to develop waste forms specifically to address the immobilization of INEEL sodium-containing calcined waste in order to identify a source material that would be compatible with the established processing requirements for the waste form. These selection criteria include no excessive water demand, proper mineralogical composition of the waste form, low leachability, waste loadings greater than 20 wt% calcine and also readily available to the Idaho National Engineering and Environmental Laboratory (INEEL) in large quantities once the pozzolan(s) selection is made. The primary objective aims at studying hydrothermal transformation and kinetics of dissolution of the waste forms. The chemical durability (dissolution) of the waste forms was established by subjecting the samples to modified Product Consistency Test (PCT) for 24 hours at 90°C. The conductivity, pH and species concentrations of the PCT solutions plotted as a function of time decreased nonlinearly with increasing processing time. This trend was observed in all hydroceramic host samples processed from 75 to 200°C. The host mixed with waste samples heat-treated from 75 to 150°C showed decreasing conductivity and pH trend and before reaching a steady state. The increasing trend observed in the 175 and 200°C samples is due to reverse chemical reactions that occur in those samples. From the data collected, it is recommended that a processing regimen be developed that utilizes the addition of calcined Troy clay with a waste loading of 30 wt% and processed between 175 to 200°C for 8 to 10 hours and 100% relative humidity. Based on the analytical concentrations of species measured in the PCT test solutions, hydroceramic waste forms are recommended to be stored/buried in Teflon-lined stainless steel

  16. Canister Transfer Facility Criticality Calculations

    SciTech Connect

    J.E. Monroe-Rammsy

    2000-10-13

    The objective of this calculation is to evaluate the criticality risk in the surface facility for design basis events (DBE) involving Department of Energy (DOE) Spent Nuclear Fuel (SNF) standardized canisters (Civilian Radioactive Waste Management System [CRWMS] Management and Operating Contractor [M&O] 2000a). Since some of the canisters will be stored in the surface facility before they are loaded in the waste package (WP), this calculation supports the demonstration of concept viability related to the Surface Facility environment. The scope of this calculation is limited to the consideration of three DOE SNF fuels, specifically Enrico Fermi SNF, Training Research Isotope General Atomic (TRIGA) SNF, and Mixed Oxide (MOX) Fast Flux Test Facility (FFTF) SNF.

  17. WRAP 2A Waste Form Qualification Plan

    SciTech Connect

    Burbank, D.A. Jr.

    1993-12-31

    WRAP Module 2A is a facility that will serve to treat retrieved, stored, and newly generated contact-handled mixed low level waste (MLLW) at the Department of Energy`s Hanford site near Richland, Washington. The treatment processes to be used are limited to non-thermal processes, defined as processes operating at a temperature less than 500{degree}F. In addition to waste pretreatment and conditioning processes including sorting, size reduction, and homogenization, the final treatment technologies will consist of immobilization, stabilization, and encapsulation to produce final waste forms that are suitable for disposal in compliance with all applicable regulatory requirements. The wide variety of chemical and physical characteristics exhibited by the WRAP 2A feed streams will necessitate the performance of a comprehensive waste form qualification (WFQ) testing program. The WFQ program will provide the technical basis supporting the process selection and will demonstrate that the selected treatment processes produce final waste forms that will meet all applicable regulatory requirements and performance specifications. This document describes the overall WRAP 2A WFQ program.

  18. Melt processed multiphase ceramic waste forms for nuclear waste immobilization

    NASA Astrophysics Data System (ADS)

    Amoroso, Jake; Marra, James C.; Tang, Ming; Lin, Ye; Chen, Fanglin; Su, Dong; Brinkman, Kyle S.

    2014-11-01

    Ceramic waste forms are promising hosts for nuclear waste immobilization as they have the potential for increased durability and waste loading compared with conventional borosilicate glass waste forms. Ceramics are generally processed using hot pressing, spark plasma sintering, and conventional solid-state reaction, however such methods can be prohibitively expensive or impractical at production scales. Recently, melt processing has been investigated as an alternative to solid-state sintering methods. Given that melter technology is currently in use for High Level Waste (HLW) vitrification in several countries, the technology readiness of melt processing appears to be advantageous over sintering methods. This work reports the development of candidate multi-phase ceramic compositions processed from a melt. Cr additions, developed to promote the formation and stability of a Cs containing hollandite phase were successfully incorporated into melt processed multi-phase ceramics. Control of the reduction-oxidation (Redox) conditions suppressed undesirable Cs-Mo containing phases, and additions of Al and Fe reduced the melting temperature.

  19. External Criticality Risk of Immobilized Plutonium Waste Form in a Geologic Repository

    SciTech Connect

    J. McClure

    2001-03-12

    This purpose of this technical report is to provide a comprehensive summary of the waste package (WP) external criticality-related risk of the Plutonium Disposition ceramic waste form, which is being developed and evaluated by the Office of Fissile Materials Disposition of the United States Department of Energy (DOE). Potential accumulation of the fissile materials, {sup 239}Pu and {sup 235}U, in rock formations having a favorable chemical environment for such actions, requires analysis because autocatalytic configurations, while unlikely to form, never-the-less have consequences which are undesirable and require evaluation. Secondly, the WP design has evolved necessitating a re-evaluation of the internal WP degradation scenarios that contribute to the external source terms. The scope of this study includes a summary of the revised WP degradation calculations, a summary of the accumulation mechanisms in fractures and lithophysae in the tuff beneath the WP footprint, and a summary of the criticality risk calculations from any accumulated fissile material. Accumulations of fissile material external to the WP sufficient to pose a potential criticality risk require a deposition mechanism operating over sufficient time to reach required levels. The transporting solution concentrations themselves are well below critical levels (CRWMS 2001e). The ceramic waste form consists of Pu immobilized in ceramic disks, which would be embedded in High-Level Waste (HLW) glass in the standard HLW glass disposal canister. The ceramic disks would occupy approximately 12% of the HLW canister volume, while most of the remaining 88% of the volume would be occupied by HLW glass.

  20. High-level waste-form-product performance evaluation. [Leaching; waste loading; mechanical stability

    SciTech Connect

    Bernadzikowski, T A; Allender, J S; Stone, J A; Gordon, D E; Gould, Jr, T H; Westberry, III, C F

    1982-01-01

    Seven candidate waste forms were evaluated for immobilization and geologic disposal of high-level radioactive wastes. The waste forms were compared on the basis of leach resistance, mechanical stability, and waste loading. All forms performed well at leaching temperatures of 40, 90, and 150/sup 0/C. Ceramic forms ranked highest, followed by glasses, a metal matrix form, and concrete. 11 tables.

  1. Waste Form Features, Events, and Processes

    SciTech Connect

    R. Schreiner

    2004-10-27

    The purpose of this report is to evaluate and document the inclusion or exclusion of the waste form features, events and processes (FEPs) with respect to modeling used to support the Total System Performance Assessment for License Application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical bases for screening decisions. This information is required by the Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs addressed in this report deal with the issues related to the degradation and potential failure of the waste form and the migration of the waste form colloids. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA, (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical bases for exclusion from TSPA-LA (i.e., why the FEP is excluded). This revision addresses the TSPA-LA FEP list (DTN: MO0407SEPFEPLA.000 [DIRS 170760]). The primary purpose of this report is to identify and document the analyses and resolution of the features, events, and processes (FEPs) associated with the waste form performance in the repository. Forty FEPs were identified that are associated with the waste form performance. This report has been prepared to document the screening methodology used in the process of FEP inclusion and exclusion. The analyses documented in this report are for the license application (LA) base case design (BSC 2004 [DIRS 168489]). In this design, a drip shield is placed over the waste package and no backfill is placed over the drip shield (BSC 2004 [DIRS 168489]). Each FEP may include one or more specific issues that are collectively described by a FEP name and a FEP description. The FEP description may encompass a single feature, process or event, or a few closely related or coupled processes if the entire FEP can be addressed by a single specific screening argument or TSPA-LA disposition. The FEPs are

  2. DuraLith Alkali-Aluminosilicate Geopolymer Waste Form Testing for Hanford Secondary Waste

    SciTech Connect

    Gong, W. L.; Lutz, Werner; Pegg, Ian L.

    2011-07-21

    The primary objective of the work reported here was to develop additional information regarding the DuraLith alkali aluminosilicate geopolymer as a waste form for liquid secondary waste to support selection of a final waste form for the Hanford Tank Waste Treatment and Immobilization Plant secondary liquid wastes to be disposed in the Integrated Disposal Facility on the Hanford Site. Testing focused on optimizing waste loading, improving waste form performance, and evaluating the robustness of the waste form with respect to waste variability.

  3. Estimates of radionuclide release from glass waste forms in a tuff repository and the effects on regulatory compliance

    SciTech Connect

    Aines, R.D.

    1986-04-01

    This paper discusses preliminary estimates of the release of radionuclides from waste packages containing glass-based waste forms under the expected conditions at Yucca Mountain. These estimates can be used to evaluate the contribution of waste package performance toward meeting repository regulatory restrictions on radionuclide release. Glass waste will be held in double stainless steel canisters. After failure of the container sometime after the 300 to 1000 year containment period, the open headspace in these cans will provide the only area where standing water can accumulate and react with the glass. A maximum release rate of 0.177 g/m{sup 2} x year or 1.3 grams per year was obtained. Normalized loss of 1.3 grams per year corresponds to 0.08 parts in 100,000 per year of the 1660 kg reference weight of DWPF glass.

  4. Evaluation of lead-iron-phosphate glass as a high-level waste form

    SciTech Connect

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-09-01

    The lead-iron-phosphate (Pb-Fe-P) glass developed at Oak Ridge National Laboratory was evaluated for its potential as an improvement over the current reference nuclear waste form, borosilicate (B-Si) glass. The evaluation was conducted as part of the Second Generation HLW Technology Subtask of the Nuclear Waste Treatment Program at Pacific Northwest Laboratory. The purpose of this work was to investigate possible alternatives to B-Si glass as second-generation waste forms. While vitreous Pb-Fe-P glass appears to have substantially better chemical durability than B-Si glass, severe crystallization or devitrification leading to deteriorated chemical durability would result if this glass were poured into large canisters as is the procedure with B-Si glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from B-Si glass. Therefore, to realize the potential performance advantages of the Pb-Fe-P material in a nuclear waste form, the processing method would have to cool the material rapidly to retain its vitreous structure.

  5. Preliminary formulation studies for a ``hydroceramic`` alternative waste form for INEEL HLW

    SciTech Connect

    Siemer, D.D.; Gougar, M.L.D.; Grutzeck, M.W.; Scheetz, B.E.

    1999-09-01

    Herein the authors discuss scoping studies performed to develop an efficient way to prepare the Idaho National Engineering and Environmental Laboratory (INEEL) nominally high-level ({approximately}40 W/m{sup 3}) calcined radioactive waste (HLW) and liquid metal (sodium) reactor coolants for disposal. The investigated approach implements the chemistry of Hanford`s cancrinite-making clay reaction process via Oak Ridge National Laboratory`s (ORNL`s) formed-under-elevated-temperatures-and-pressures concrete monolith-making technology to make hydroceramics (HCs). The HCs differ from conventional Portland cement/blast furnace slag (PC/BFS) grouts in that the binder minerals formed during the curing process are hydrated alkali-aluminosilicates (feldspathoids-sodalites, cancrinites, and zeolites) rather than hydrated calcium silicates (CSH). This is desirable because (a) US defense-type radioactive wastes generally contain much more sodium and aluminum than calcium; (b) sodalites/cancrinites do a much better job of retaining the anionic components of real radioactive waste (e.g., nitrate) than do calcium silicates; (c) natural feldspathoids form from glasses (and therefore are more stable) in that region of the United States where a repository for this sort of waste could be sited; and (d) if eventually deemed necessary, feldspathoid-type concrete wasteforms could be hot-isostatically-pressed into even more durable materials without removing them from their original canisters.

  6. Review of radiation effects in solid-nuclear-waste forms

    SciTech Connect

    Weber, W.J.

    1981-09-01

    Radiation effects on the stability of high-level nuclear waste (HLW) forms are an important consideration in the development of technology to immobilize high-level radioactive waste because such effects may significantly affect the containment of the radioactive waste. Since the required containment times are long (10/sup 3/ to 10/sup 6/ years), an understanding of the long-term cumulative effects of radiation damage on the waste forms is essential. Radiation damage of nuclear waste forms can result in changes in volume, leach rate, stored energy, structure/microstructure, and mechanical properties. Any one or combination of these changes might significantly affect the long-term stability of the nuclear waste forms. This report defines the general radiation damage problem in nuclear waste forms, describes the simulation techniques currently available for accelerated testing of nuclear waste forms, and reviews the available data on radiation effects in both glass and ceramic (primarily crystalline) waste forms. 76 references.

  7. DSNF and other waste form degradation abstraction

    SciTech Connect

    Thornton, Thomas A.

    2000-12-20

    The purpose of this analysis/model report (AMR) is to select and/or abstract conservative degradation models for DOE-(US. Department of Energy) owned spent nuclear fuel (DSNF) and the immobilized ceramic plutonium (Pu) disposition waste forms for application in the proposed monitored geologic repository (MGR) postclosure Total System Performance Assessment (TSPA). Application of the degradation models abstracted herein for purposes other than TSPA should take into consideration the fact that they are, in general, very conservative. Using these models, the forward reaction rate for the mobilization of radionuclides, as solutes or colloids, away from the waste fondwater interface by contact with repository groundwater can then be calculated. This forward reaction rate generally consists of the dissolution reaction at the surface of spent nuclear fuel (SNF) in contact with water, but the degradation models, in some cases, may also include and account for the physical disintegration of the SNF matrix. The models do not, however, account for retardation, precipitation, or inhibition of the migration of the mobilized radionuclides in the engineered barrier system (EBS). These models are based on the assumption that all components of the DSNF waste form are released congruently with the degradation of the matrix.

  8. Formulation and Analysis of Compliant Grouted Waste Forms for SHINE Waste Streams

    SciTech Connect

    Ebert, William; Pereira, Candido; Heltemes, Thad A.; Youker, Amanda; Makarashvili, Vakhtang; Vandegrift, George F.

    2014-01-01

    Optional grouted waste forms were formulated for waste streams generated during the production of 99Mo to be compliant with low-level radioactive waste regulations. The amounts and dose rates of the various waste form materials that would be generated annually were estimated and used to determine the effects of various waste processing options, such as the of number irradiation cycles between uranium recovery operations, different combinations of waste streams, and removal of Pu, Cs, and Sr from waste streams for separate disposition (which is not evaluated in this report). These calculations indicate that Class C-compliant grouted waste forms can be produced for all waste streams. More frequent uranium recovery results in the generation of more chemical waste, but this is balanced by the fact that waste forms for those waste streams can accommodate higher waste loadings, such that similar amounts of grouted waste forms are required regardless of the recovery schedule. Similar amounts of grouted waste form are likewise needed for the individual and combined waste streams. Removing Pu, Cs, and Sr from waste streams lowers the waste form dose significantly at times beyond about 1 year after irradiation, which may benefit handling and transport. Although these calculations should be revised after experimentally optimizing the grout formulations and waste loadings, they provide initial guidance for process development.

  9. Film Canister Science

    ERIC Educational Resources Information Center

    Ferstl, Andrew; Schneider, Jamie L.

    2007-01-01

    Opaque film canisters are readily available, cheap, and useful for scientific inquiry in the classroom. They can also be surprisingly versatile and useful as a tool for stimulating scientific inquiry. In this article, the authors describe inquiry activities using film canisters for preservice teachers, including a "black box" activity and several…

  10. Film Canister Science

    ERIC Educational Resources Information Center

    Ferstl, Andrew; Schneider, Jamie L.

    2007-01-01

    Opaque film canisters are readily available, cheap, and useful for scientific inquiry in the classroom. They can also be surprisingly versatile and useful as a tool for stimulating scientific inquiry. In this article, the authors describe inquiry activities using film canisters for preservice teachers, including a "black box" activity and several…

  11. Safeguards and retrievability from waste forms

    SciTech Connect

    Danker, W.

    1996-05-01

    This report describes issues discussed at a session from the PLutonium Stabilization and Immobilization Workshop related to safeguards and retrievability from waste forms. Throughout the discussion, the group probed the goals of disposition efforts, particularly an understanding of the {open_quotes}spent fuel standard{close_quotes}, since the disposition material form derives from these goals. The group felt strongly that not only the disposition goals but safeguards to meet these goals could affect the material form. Accordingly, the Department was encouraged to explore and apply safeguards as early in the implementation process as possible. It was emphasized that this was particularly true for any planned use of existing facilities. It is much easier to build safeguards approaches into the development of new facilities, than to backfit existing facilities. Accordingly, special safeguards challenges are likely to be encountered, given the cost and schedule advantages offered by use of existing facilities.

  12. Evaluation and selection of candidate high-level waste forms

    SciTech Connect

    Bernadzikowski, T. A.; Allender, J. S.; Butler, J. L.; Gordon, D. E.; Gould, Jr., T. H.; Stone, J. A.

    1982-03-01

    Seven candidate waste forms being developed under the direction of the Department of Energy's National High-Level Waste (HLW) Technology Program, were evaluated as potential media for the immobilization and geologic disposal of high-level nuclear wastes. The evaluation combined preliminary waste form evaluations conducted at DOE defense waste-sites and independent laboratories, peer review assessments, a product performance evaluation, and a processability analysis. Based on the combined results of these four inputs, two of the seven forms, borosilicate glass and a titanate based ceramic, SYNROC, were selected as the reference and alternative forms for continued development and evaluation in the National HLW Program. Both the glass and ceramic forms are viable candidates for use at each of the DOE defense waste-sites; they are also potential candidates for immobilization of commercial reprocessing wastes. This report describes the waste form screening process, and discusses each of the four major inputs considered in the selection of the two forms.

  13. Optimization studies on GCM for iodine waste forms

    SciTech Connect

    Nenoff, Tina Maria

    2014-09-01

    We are purusing an understand of the durability and materials processability of the low temperature sintering Bi-Si oxide Glass Composite Material (GCM)1 Waste Form for iodine capture materials. The chemical and physical controls over iodine release from candidate 129I waste forms must be quantified to predict long-term waste form effectiveness.

  14. Stability testing of low-level waste forms

    SciTech Connect

    Piciulo, P.L.; Shea, C.E.; Barletta, R.E.

    1983-01-01

    The NRC Technical Position on Waste Form identifies methods for thermal cycle testing and biodegradation testing of low-level waste forms. These tests were carried out on low-level waste forms to establish whether the tests are reasonable and can be achieved. The thermal-cycle test is believed adequate for demonstrating the thermal stability of solidified waste forms. The biodegradation tests are sufficient for distinguishing materials that are susceptible to biodegradation. However, failure of either of these tests should not be regarded of itself as an indication that the waste form will biodegrade to an extent that the form does not meet the stability requirements of 10 CFR Part 61.

  15. Waste form development for a DC arc furnace

    SciTech Connect

    Feng, X.; Bloomer, P.E.; Chantaraprachoom, N.; Gong, M.; Lamar, D.A.

    1996-09-01

    A laboratory crucible study was conducted to develop waste forms to treat nonradioactive simulated {sup 238}Pu heterogeneous debris waste from Savannah River, metal waste from the Idaho National Engineering Laboratory (INEL), and nominal waste also from INEL using DC arc melting. The preliminary results showed that the different waste form compositions had vastly different responses for each processing effect. The reducing condition of DC arc melting had no significant effects on the durability of some waste forms while it decreased the waste form durability from 300 to 700% for other waste forms, which resulted in the failure of some TCLP tests. The right formulations of waste can benefit from devitrification and showed an increase in durability by 40%. Some formulations showed no devitrification effects while others decreased durability by 200%. Increased waste loading also affected waste form behavior, decreasing durability for one waste, increasing durability by 240% for another, and showing no effect for the third waste. All of these responses to the processing and composition variations were dictated by the fundamental glass chemistry and can be adjusted to achieve maximal waste loading, acceptable durability, and desired processing characteristics if each waste formulation is designed for the result according to the glass chemistry.

  16. The Influence of Pre-oxidation on the Corrosion of Copper Nuclear Waste Canisters in Aqueous Anoxic Sulphide Solutions

    SciTech Connect

    Smith, J.M.; Qin, Z.; Wren, J.C.; Shoesmith, D.W.

    2007-07-01

    Scandinavian/Canadian high-level nuclear waste repository conditions are expected to evolve from initially warm and oxic to eventually cool and anoxic. During the warm, oxic period corrosion products will accumulate on the container surface. These deposits could impede the reaction of Cu with aqueous sulphide, the only reaction that could lead to the significant accumulation of additional corrosion damage under the long-term anoxic conditions. The kinetics of the reaction of Cu with aqueous sulphide solutions have been studied using electrochemical and surface analytical techniques. Corrosion potential measurements were used to follow the evolution of the surface as oxides/hydroxides were converted to sulphides in the sulphide concentration range 10{sup -5} to 10{sup -3} mol/L. Changes in composition were followed by in-situ Raman spectroscopy. Of critical importance is whether or not a period of pre-oxidation of a Cu container surface can prevent subsequent reaction of the surface with remotely produced sulphide. (authors)

  17. Consolidation process for producing ceramic waste forms

    DOEpatents

    Hash, Harry C.; Hash, Mark C.

    2000-01-01

    A process for the consolidation and containment of solid or semisolid hazardous waste, which process comprises closing an end of a circular hollow cylinder, filling the cylinder with the hazardous waste, and then cold working the cylinder to reduce its diameter while simultaneously compacting the waste. The open end of the cylinder can be sealed prior to or after the cold working process. The preferred method of cold working is to draw the sealed cylinder containing the hazardous waste through a plurality of dies to simultaneously reduce the diameter of the tube while compacting the waste. This process provides a quick continuous process for consolidating hazardous waste, including radioactive waste.

  18. Leaching behavior of phosphate-bonded ceramic waste forms

    SciTech Connect

    Singh, D.; Wagh, A.S.; Jeong, S.Y.; Dorf, M.

    1996-04-01

    Over the last few years, Argonne National Laboratory has been developing room-temperature-setting chemically bonded phosphate ceramics for solidifying and stabilizing low-level mixed wastes. This technology is crucial for stabilizing waste streams that contain volatile species and off-gas secondary waste streams generated by high-temperature treatment of such wastes. We have developed a magnesium phosphate ceramic to treat mixed wastes such as ash, salts, and cement sludges. Waste forms of surrogate waste streams were fabricated by acid-base reactions between the mixtures of magnesium oxide powders and the wastes, and phosphoric acid or acid phosphate solutions. Dense and hard ceramic waste forms are produced in this process. The principal advantage of this technology is that the contaminants are immobilized by both chemical stabilization and subsequent microencapsulation of the reaction products. This paper reports the results of durability studies conducted on waste forms made with ash waste streams spiked with hazardous and radioactive surrogates. Standard leaching tests such as ANS 16.1 and TCLP were conducted on the final waste forms. Fates of the contaminants in the final waste forms were established by electron microscopy. In addition, stability of the waste forms in aqueous environments was evaluated with long-term water-immersion tests.

  19. Equilibrium Temperature Profiles within Fission Product Waste Forms

    SciTech Connect

    Kaminski, Michael D.

    2016-10-01

    We studied waste form strategies for advanced fuel cycle schemes. Several options were considered for three waste streams with the following fission products: cesium and strontium, transition metals, and lanthanides. These three waste streams may be combined or disposed separately. The decay of several isotopes will generate heat that must be accommodated by the waste form, and this heat will affect the waste loadings. To help make an informed decision on the best option, we present computational data on the equilibrium temperature of glass waste forms containing a combination of these three streams.

  20. Advanced waste form and Melter development for treatment of troublesome high-level wastes

    SciTech Connect

    Marra, James; Kim, Dong -Sang; Maio, Vincent

    2015-10-01

    the as poured state and after being slowly cooled according to the canister centerline cooling (CCC) profile. Glass formulation development was also completed on other Hanford tank wastes that were identified to further challenge waste loading due to the presence of appreciable quantities (>750 g) of plutonium in the waste tanks. In addition to containing appreciable Pu quantities, the C-102 waste tank and the 244-TX waste tank contain high concentrations of aluminum and iron, respectively that will further challenge vitrification processing. Glass formulation testing also demonstrated that high waste loadings could be achieved with these tank compositions using the attributes afforded by the CCIM technology.

  1. CSNF WASTE FORM DEGRADATION: SUMMARY ABSTRACTION

    SciTech Connect

    J.C. CUNNANE

    2004-08-31

    The purpose of this model report is to describe the development and validation of models that can be used to calculate the release of radionuclides from commercial spent nuclear fuel (CSNF) following a hypothetical breach of the waste package and fuel cladding in the repository. The purpose also includes describing the uncertainties associated with modeling the radionuclide release for the range of CSNF types, exposure conditions, and durations for which the radionuclide release models are to be applied. This document was developed in accordance with Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package (BSC 2004 [DIRS 169944]). This document considers radionuclides to be released from CSNF when they are available for mobilization by gas-phase mass transport, or by dissolution or colloid formation in water that may contact the fuel. Because other reports address limitations on the dissolved and colloidal radionuclide concentrations (BSC 2004 [DIRS 169944], Table 2-1), this report does not address processes that control the extent to which the radionuclides released from CSNF are mobilized and transported away from the fuel either in the gas phase or in the aqueous phase as dissolved and colloidal species. The scope is limited to consideration of degradation of the CSNF rods following an initial breach of the cladding. It considers features of CSNF that limit the availability of individual radionuclides for release into the gaseous or aqueous phases that may contact the fuel and the processes and events expected to degrade these CSNF features. In short, the purpose is to describe the characteristics of breached fuel rods and the degradation processes expected to influence radionuclide release.

  2. Laboratory procedures for waste form testing

    SciTech Connect

    Mast, E.S.

    1994-09-19

    The 100 and 300 areas of the Hanford Site are included on the US Environmental Protection Agencies (EPA) National Priorities List under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Soil washing is a treatment process that is being considered for the remediation of the soil in these areas. Contaminated soil washing fines can be mixed or blended with cementations materials to produce stable waste forms that can be used for beneficial purposes in mixed or low-level waste landfills, burial trenches, environmental restoration sites, and other applications. This process has been termed co-disposal. The Co-Disposal Treatability Study Test Plan is designed to identify a range of cement-based formulations that could be used in disposal efforts in Hanford in co-disposal applications. The purpose of this document is to provide explicit procedural information for the testing of co-disposal formulations. This plan also provides a discussion of laboratory safety and quality assurance necessary to ensure safe, reproducible testing in the laboratory.

  3. Corrosion testing of stainless steel-zirconium metal waste form.

    SciTech Connect

    Abraham, D. P.

    1998-12-14

    Stainless steel-zirconium (SS-Zr) alloys are being considered as waste forms for the disposition of metallic waste generated during the electrometallurgical treatment of spent nuclear fuel. The waste forms contain irradiated cladding hulls, components of the alloy fuel, noble metal fission products, and actinide elements. The baseline waste form is a stainless steel-15 wt% zirconium (SS-15Zr) alloy. This article presents microstructure and some of the corrosion studies being conducted on the waste form alloys. Electrochemical corrosion, immersion corrosion, and vapor hydration tests have been performed on various alloy compositions to evaluate corrosion behavior and resistance to selective leaching of simulated fission products. The SS-Zr waste forms are successful at the immobilization and retention of fission products and show potential for acceptance as high-level nuclear waste forms.

  4. Waste forms, packages, and seals working group summary

    SciTech Connect

    Sridhar, N.; McNeil, M.B.

    1995-09-01

    This article is a summary of the proceedings of a group discussion which took place at the Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste in San Antonio, Texas on July 22-25, 1991. The working group concentrated on the subject of radioactive waste forms and packaging. Also included is a description of the use of natural analogs in waste packaging, container materials and waste forms.

  5. Frangible glass canisters

    NASA Technical Reports Server (NTRS)

    Seifert, R.

    1972-01-01

    The need for a canister that can release its contents without disturbing the contents dynamically is discussed. The solution of this problem by the use of a frangible glass canister is considered. The basic theory applicable to frangible glass and the method of initiating a command flaw are discussed. A brief description of the test program and the results of a flight test are presented.

  6. Criticality safety analysis for remote handled TRU waste at the Waste Isolation Pilot Plant

    SciTech Connect

    Not Available

    1988-07-01

    The Waste Isolation Pilot Plant (WIPP) is a facility designed to store transuranic (TRU) waste underground in a mined salt bed. All fissile nuclides except U/sup 235/ are considered TRU nuclides. This report presents the results of the nuclear criticality analysis for Remote-Handled (RH) TRU waste stored at the WIPP site. The RH waste material will be contained in steel canisters that are five feet or ten feet long. Each ten foot canister is capable of holding three 55 gallon drums of waste material. The five foot canisters are to be welded together to form one ten foot long canister. In general the fissile waste material is mainly surface contamination on clothing, wipes, wrappings, tools, etc., or mixed in a borosilicate glass matrix or concrete. Other fissile material may be contained in absorbent mixtures. As a result, the fissile material will typically be spread over a large fraction of the volume in most of the waste storage canisters. Typical isotopic content of the fissile/other radioactive material is shown in Table 1-1. This analysis will analyze the RH waste storage and handling configurations at the WIPP site to show that up to 600 grams of fissile material per ten foot canister can be received and stored at the site without criticality safety concerns. 6 refs., 14 figs., 1 tab.

  7. PASSIVATION LAYER STABILITY OF A METALLIC ALLOY WASTE FORM

    SciTech Connect

    Williamson, M.; Mickalonis, J.; Fisher, D.; Sindelar, R.

    2010-08-16

    Alloy waste form development under the Waste Forms Campaign of the DOE-NE Fuel Cycle Research & Development program includes the process development and characterization of an alloy system to incorporate metal species from the waste streams generated during nuclear fuel recycling. This report describes the tests and results from the FY10 activities to further investigate an Fe-based waste form that uses 300-series stainless steel as the base alloy in an induction furnace melt process to incorporate the waste species from a closed nuclear fuel recycle separations scheme. This report is focused on the initial activities to investigate the formation of oxyhydroxide layer(s) that would be expected to develop on the Fe-based waste form as it corrodes under aqueous repository conditions. Corrosion tests were used to evaluate the stability of the layer(s) that can act as a passivation layer against further corrosion and would affect waste form durability in a disposal environment.

  8. Multi-purpose canister project

    SciTech Connect

    Williams, J.R.; Clark, J.R.

    1995-12-01

    The U.S. Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) has investigated various container systems for handling, transporting, storing, and disposing of spent nuclear fuel (SNF) assemblies in its Civilian Radioactive Waste Management System (CRWMS). The primary goal of DOE`s investigations was to select a container technology that could integrate and standardize the handling of the vast majority of commercial SNF at a reasonable cost, while providing flexibility and ensuring the safety of the public and protecting the environment. Several alternative cask and canister concepts were evaluated for SNF assembly packaging to determine the most suitable concept. Of these alternative, the multi-purpose canister (MPC)-based subsystem, as depicted in Figure 1, was determined to be the most suitable. Based on the results of these evaluations, the decision was made to proceed with design and certification of the MPC subsystem. A decision whether to fabricate and deploy MPCs will be made after further studies and the preparation of an environmental impact statement. This presentation summarizes the status of the MPC Project and related activities that have occurred since the 1994 IHLWM.

  9. CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect

    C.E. Sanders

    2005-04-07

    This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the CHF and may not reflect the ongoing design evolution of the facility

  10. Performance Assessment and Sensitivity Analyses of Disposal of Plutonium as Can-in-Canister Ceramic

    SciTech Connect

    Rainer Senger

    2001-09-25

    The purpose of this analysis is to examine whether there is a justification for using high-level waste (HLW) as a surrogate for plutonium disposal in can-in-canister ceramic in the total-system performance assessment (TSPA) model for the Site Recommendation (SR). In the TSPA-SR model, the immobilized plutonium waste form is not explicitly represented, but is implicitly represented as an equal number of canisters of HLW. There are about 50 metric tons of plutonium in the U. S. Department of Energy inventory of surplus fissile material that could be disposed. Approximately 17 tons of this material contain significant quantities of impurities and are considered unsuitable for mixed-oxide (MOX) reactor fuel. This material has been designated for direct disposal by immobilization in a ceramic waste form and encapsulating this waste form in high-level waste (HLW). The remaining plutonium is suitable for incorporation into MOX fuel assemblies for commercial reactors (Shaw 1999, Section 2). In this analysis, two cases of immobilized plutonium disposal are analyzed, the 17-ton case and the 13-ton case (Shaw et al. 2001, Section 2.2). The MOX spent-fuel disposal is not analyzed in this report. In the TSPA-VA (CRWMS M&O 1998a, Appendix B, Section B-4), the calculated dose release from immobilized plutonium waste form (can-in-canister ceramic) did not exceed that from an equivalent amount of HLW glass. This indicates that the HLW could be used as a surrogate for the plutonium can-in-canister ceramic. Representation of can-in-canister ceramic as a surrogate is necessary to reduce the number of waste forms in the TSPA model. This reduction reduces the complexity and running time of the TSPA model and makes the analyses tractable. This document was developed under a Technical Work Plan (CRWMS M&O 2000a), and is compliant with that plan. The application of the Quality Assurance (QA) program to the development of that plan (CRWMS M&O 2000a) and of this Analysis is described in

  11. Immobilization of Technetium in a Metallic Waste Form

    SciTech Connect

    S.M. Frank; D. D. Keiser, Jr.; K. C. Marsden

    2007-09-01

    Fission-product technetium accumulated during treatment of spent nuclear fuel will ultimately be disposed of in a geological repository. The exact form of Tc for disposal has yet to be determined; however, a reasonable solution is to incorporate elemental Tc into a metallic waste form similar to the waste form produced during the pyrochemical treatment of spent, sodium-bonded fuel. This metal waste form, produced at the Idaho National Laboratory, has undergone extensive qualification examination and testing for acceptance to the Yucca Mountain geological repository. It is from this extensive qualification effort that the behavior of Tc and other fission products in the waste form has been elucidated, and that the metal waste form is extremely robust in the retention of fission products, such as Tc, in repository like conditions. This manuscript will describe the metal waste form, the behavior of Tc in the waste form; and current research aimed at determining the maximum possible loading of Tc into the metal waste and subsequent determination of the performance of high Tc loaded metal waste forms.

  12. SOURCE TERMS FOR HLW GLASS CANISTERS

    SciTech Connect

    J.S. Tang

    2000-08-15

    This calculation is prepared by the Monitored Geologic Repository (MGR) Waste Package Design Section. The objective of this calculation is to determine the source terms that include radionuclide inventory, decay heat, and radiation sources due to gamma rays and neutrons for the high-level radioactive waste (HLW) from the, West Valley Demonstration Project (WVDP), Savannah River Site (SRS), Hanford Site (HS), and Idaho National Engineering and Environmental Laboratory (INEEL). This calculation also determines the source terms of the canister containing the SRS HLW glass and immobilized plutonium. The scope of this calculation is limited to source terms for a time period out to one million years. The results of this calculation may be used to carry out performance assessment of the potential repository and to evaluate radiation environments surrounding the waste packages (WPs). This calculation was performed in accordance with the Development Plan ''Source Terms for HLW Glass Canisters'' (Ref. 7.24).

  13. Ceramic waste form qualification using results from witness tubes.

    SciTech Connect

    O'Holleran, T. P.; Johnson, S. G.; Bateman, K. J.; Nuclear Technology

    2002-01-01

    A ceramic waste form has been developed to immobilize the salt waste stream from electrometallurgical treatment of spent nuclear fuel. The ceramic waste form is prepared in a hot isostatic press (HIP). The use of small, easily fabricated HIP capsules called witness tubes has been proposed as a practical way to obtain representative samples of ceramic waste form material for process monitoring, waste form qualification, and archiving. Witness tubes are filled with the same material used to fill the corresponding HIP can, and are HIPed along with the HIP can. Relevant physical, chemical, and performance (leach test) data are analyzed and compared. Differences between witness tube and HIP can materials are shown to be statistically insignificant, demonstrating that witness tubes do provide ceramic waste form material representative of the material in the corresponding HIP can.

  14. Secondary waste form testing : ceramicrete phosphate bonded ceramics.

    SciTech Connect

    Singh, D.; Ganga, R.; Gaviria, J.; Yusufoglu, Y.

    2011-06-21

    The cleanup activities of the Hanford tank wastes require stabilization and solidification of the secondary waste streams generated from the processing of the tank wastes. The treatment of these tank wastes to produce glass waste forms will generate secondary wastes, including routine solid wastes and liquid process effluents. Liquid wastes may include process condensates and scrubber/off-gas treatment liquids from the thermal waste treatment. The current baseline for solidification of the secondary wastes is a cement-based waste form. However, alternative secondary waste forms are being considered. In this regard, Ceramicrete technology, developed at Argonne National Laboratory, is being explored as an option to solidify and stabilize the secondary wastes. The Ceramicrete process has been demonstrated on four secondary waste formulations: baseline, cluster 1, cluster 2, and mixed waste streams. Based on the recipes provided by Pacific Northwest National Laboratory, the four waste simulants were prepared in-house. Waste forms were fabricated with three filler materials: Class C fly ash, CaSiO{sub 3}, and Class C fly ash + slag. Optimum waste loadings were as high as 20 wt.% for the fly ash and CaSiO{sub 3}, and 15 wt.% for fly ash + slag filler. Waste forms for physical characterizations were fabricated with no additives, hazardous contaminants, and radionuclide surrogates. Physical property characterizations (density, compressive strength, and 90-day water immersion test) showed that the waste forms were stable and durable. Compressive strengths were >2,500 psi, and the strengths remained high after the 90-day water immersion test. Fly ash and CaSiO{sub 3} filler waste forms appeared to be superior to the waste forms with fly ash + slag as a filler. Waste form weight loss was {approx}5-14 wt.% over the 90-day immersion test. The majority of the weight loss occurred during the initial phase of the immersion test, indicative of washing off of residual unreacted

  15. Advanced method for making vitreous waste forms

    SciTech Connect

    Pope, J.M.; Harrison, D.E.

    1980-01-01

    A process is described for making waste glass that circumvents the problems of dissolving nuclear waste in molten glass at high temperatures. Because the reactive mixing process is independent of the inherent viscosity of the melt, any glass composition can be prepared with equal facility. Separation of the mixing and melting operations permits novel glass fabrication methods to be employed.

  16. MIIT: International in-situ testing of simulated HLW forms--preliminary analyses of SRL 165/TDS waste glass and metal systems

    SciTech Connect

    Wicks, G.G. ); Lodding, A.R. ); Macedo, P.B. . Vitreous State Lab.); Clark, D.E. ); Molecke, M.A. )

    1989-01-01

    The first in-situ tests involving burial of simulated high-level waste (HLW) forms conducted in the United States were started on July 22, 1986. This effort, called the Materials Interface Interactions Tests (MIIT), comprises the largest, most cooperative field testing venture in the international waste management community. Included in the study are over 900 waste form samples comprising 15 different systems supplied by seven countries. Also included are almost 300 potential canister or overpack metal samples of 11 different metals along with more than 500 geologic and backfill specimens. There are a total of 1926 relevant interactions that characterize this effort which is being conducted in the bedded salt site at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico.

  17. MIIT: International in-situ testing of simulated HLW forms--preliminary analyses of SRL 165/TDS waste glass and metal systems

    SciTech Connect

    Wicks, G.G.; Lodding, A.R.; Macedo, P.B.; Clark, D.E.; Molecke, M.A.

    1989-12-31

    The first in-situ tests involving burial of simulated high-level waste (HLW) forms conducted in the United States were started on July 22, 1986. This effort, called the Materials Interface Interactions Tests (MIIT), comprises the largest, most cooperative field testing venture in the international waste management community. Included in the study are over 900 waste form samples comprising 15 different systems supplied by seven countries. Also included are almost 300 potential canister or overpack metal samples of 11 different metals along with more than 500 geologic and backfill specimens. There are a total of 1926 relevant interactions that characterize this effort which is being conducted in the bedded salt site at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico.

  18. DSNF AND OTHER WASTE FORM DEGRADATION ABSTRACTION

    SciTech Connect

    J. CUNNANE

    2004-11-19

    Several hundred distinct types of DOE-owned spent nuclear fuel (DSNF) may potentially be disposed in the Yucca Mountain repository. These fuel types represent many more types than can be viably individually examined for their effect on the Total System Performance Assessment for the License Application (TSPA-LA). Additionally, for most of these fuel types, there is no known direct experimental test data for the degradation and dissolution of the waste form in repository groundwaters. The approach used in the TSPA-LA model is, therefore, to assess available information on each of 11 groups of DSNF, and to identify a model that can be used in the TSPA-LA model without differentiating between individual codisposal waste packages containing different DSNF types. The purpose of this report is to examine the available data and information concerning the dissolution kinetics of DSNF matrices for the purpose of abstracting a degradation model suitable for use in describing degradation of the DSNF inventory in the Total System Performance Assessment for the License Application. The data and information and associated degradation models were examined for the following types of DSNF: Group 1--Naval spent nuclear fuel; Group 2--Plutonium/uranium alloy (Fermi 1 SNF); Group 3--Plutonium/uranium carbide (Fast Flux Test Facility-Test Fuel Assembly SNF); Group 4--Mixed oxide and plutonium oxide (Fast Flux Test Facility-Demonstration Fuel Assembly/Fast Flux Test Facility-Test Demonstration Fuel Assembly SNF); Group 5--Thorium/uranium carbide (Fort St. Vrain SNF); Group 6--Thorium/uranium oxide (Shippingport light water breeder reactor SNF); Group 7--Uranium metal (N Reactor SNF); Group 8--Uranium oxide (Three Mile Island-2 core debris); Group 9--Aluminum-based SNF (Foreign Research Reactor SNF); Group 10--Miscellaneous Fuel; and Group 11--Uranium-zirconium hydride (Training Research Isotopes-General Atomics SNF). The analyses contained in this document provide an ''upper-limit'' (i

  19. Glassy slags as novel waste forms for remediating mixed wastes with high metal contents

    SciTech Connect

    Feng, X.; Wronkiewicz, D.J.; Bates, J.K.; Brown, N.R.; Buck, E.C.; Gong, M.; Ebert, W.L.

    1994-03-01

    Argonne National Laboratory (ANL) is developing a glassy slag final waste form for the remediation of low-level radioactive and mixed wastes with high metal contents. This waste form is composed of various crystalline and metal oxide phases embedded in a silicate glass phase. This work indicates that glassy slag shows promise as final waste form because (1) it has similar or better chemical durability than high-level nuclear waste (HLW) glasses, (2) it can incorporate large amounts of metal wastes, (3) it can incorporate waste streams having low contents of flux components (boron and alkalis), (4) it has less stringent processing requirements (e.g., viscosity and electric conductivity) than glass waste forms, (5) its production can require little or no purchased additives, which can result in greater reduction in waste volume and overall treatment costs. By using glassy slag waste forms, minimum additive waste stabilization approach can be applied to a much wider range of waste streams than those amenable only to glass waste forms.

  20. Final report on cermet high-level waste forms

    SciTech Connect

    Kobisk, E.H.; Quinby, T.C.; Aaron, W.S.

    1981-08-01

    Cermets are being developed as an alternate method for the fixation of defense and commercial high level radioactive waste in a terminal disposal form. Following initial feasibility assessments of this waste form, consisting of ceramic particles dispersed in an iron-nickel base alloy, significantly improved processing methods were developed. The characterization of cermets has continued through property determinations on samples prepared by various methods from a variety of simulated and actual high-level wastes. This report describes the status of development of the cermet waste form as it has evolved since 1977. 6 tables, 18 figures.

  1. Crystalline Ceramic Waste Forms: Comparison Of Reference Process For Ceramic Waste Form Fabrication

    SciTech Connect

    Brinkman, K. S.; Marra, J. C.; Amoroso, J.; Tang, M.

    2013-08-22

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be produced from a melting and crystallization process. The objective of this report is to explore the phase formation and microstructural differences between lab scale melt processing in varying gas environments with alternative densification processes such as Hot Pressing (HP) and Spark Plasma Sintering (SPS). The waste stream used as the basis for the development and testing is a simulant derived from a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. Melt processing as well as solid state sintering routes SPS and HP demonstrated the formation of the targeted phases; however differences in microstructure and elemental partitioning were observed. In SPS and HP samples, hollandite, pervoskite/pyrochlore, zirconolite, metallic alloy and TiO{sub 2} and Al{sub 2}O{sub 3} were observed distributed in a network of fine grains with small residual pores

  2. Preliminary evaluation of alternative waste form solidification processes. Volume I. Identification of the processes.

    SciTech Connect

    Treat, R.L.; Nesbitt, J.F.; Blair, H.T.; Carter, J.G.; Gorton, P.S.; Partain, W.L.; Timmerman, C.L.

    1980-04-01

    This document contains preconceptual design data on 11 processes for the solidification and isolation of nuclear high-level liquid wastes (HLLW). The processes are: in-can glass melting (ICGM) process, joule-heated glass melting (JHGM) process, glass-ceramic (GC) process, marbles-in-lead (MIL) matrix process, supercalcine pellets-in-metal (SCPIM) matrix process, pyrolytic-carbon coated pellets-in-metal (PCCPIM) matrix process, supercalcine hot-isostatic-pressing (SCHIP) process, SYNROC hot-isostatic-pressing (SYNROC HIP) process, titanate process, concrete process, and cermet process. For the purposes of this study, it was assumed that each of the solidification processes is capable of handling similar amounts of HLLW generated in a production-sized fuel reprocessing plant. It was also assumed that each of the processes would be enclosed in a shielded canyon or cells within a waste facility located at the fuel reprocessing plant. Finally, it was assumed that all of the processes would be subject to the same set of regulations, codes and standards. Each of the solidification processes converts waste into forms that may be acceptable for geological disposal. Each process begins with the receipt of HLLW from the fuel reprocessing plant. In this study, it was assumed that the original composition of the HLLW would be the same for each process. The process ends when the different waste forms are enclosed in canisters or containers that are acceptable for interim storage. Overviews of each of the 11 processes and the bases used for their identification are presented in the first part of this report. Each process, including its equipment and its requirements, is covered in more detail in Appendices A through K. Pertinent information on the current state of the art and the research and development required for the implementation of each process are also noted in the appendices.

  3. LEACHING BOUNDARY MOVEMENT IN SOLIDIFIED/STABILIZED WASTE FORMS

    EPA Science Inventory

    Investigation of the leaching of cement-based waste forms in acetic acid solutions found that acids attacked the waste form from the surface toward the center. A sharp leaching boundary was identified in every leached sample, using pH color indica- tors. The movement of the leach...

  4. LEACHING BOUNDARY MOVEMENT IN SOLIDIFIED/STABILIZED WASTE FORMS

    EPA Science Inventory

    Investigation of the leaching of cement-based waste forms in acetic acid solutions found that acids attacked the waste form from the surface toward the center. A sharp leaching boundary was identified in every leached sample, using pH color indica- tors. The movement of the leach...

  5. Secondary Waste Form Down Selection Data Package – Ceramicrete

    SciTech Connect

    Cantrell, Kirk J.; Westsik, Joseph H.

    2011-08-31

    As part of high-level waste pretreatment and immobilized low activity waste processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed in the Integrated Disposal Facility. Currently, four waste forms are being considered for stabilization and solidification of the liquid secondary wastes. These waste forms are Cast Stone, Ceramicrete, DuraLith, and Fluidized Bed Steam Reformer. The preferred alternative will be down selected from these four waste forms. Pacific Northwest National Laboratory is developing data packages to support the down selection process. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilization and solidification of the liquid secondary wastes. The information included will be based on information available in the open literature and from data obtained from testing currently underway. This data package is for the Ceramicrete waste form. Ceramicrete is a relatively new engineering material developed at Argonne National Laboratory to treat radioactive and hazardous waste streams (e.g., Wagh 2004; Wagh et al. 1999a, 2003; Singh et al. 2000). This cement-like waste form can be used to treat solids, liquids, and sludges by chemical immobilization, microencapsulation, and/or macroencapsulation. The Ceramicrete technology is based on chemical reaction between phosphate anions and metal cations to form a strong, dense, durable, low porosity matrix that immobilizes hazardous and radioactive contaminants as insoluble phosphates and microencapsulates insoluble radioactive components and other constituents that do not form phosphates. Ceramicrete is a type of phosphate-bonded ceramic, which are also known as chemically bonded phosphate ceramics. The Ceramicrete

  6. Talc-silicon glass-ceramic waste forms for immobilization of high- level calcined waste

    SciTech Connect

    Vinjamuri, K.

    1993-06-01

    Talc-silicon glass-ceramic waste forms are being evaluated as candidates for immobilization of the high level calcined waste stored onsite at the Idaho Chemical Processing Plant. These glass-ceramic waste forms were prepared by hot isostatically pressing a mixture of simulated nonradioactive high level calcined waste, talc, silicon and aluminum metal additives. The waste forms were characterized for density, chemical durability, and glass and crystalline phase compositions. The results indicate improved density and chemical durability as the silicon content is increased.

  7. Secondary Waste Cementitious Waste Form Data Package for the Integrated Disposal Facility Performance Assessment

    SciTech Connect

    Cantrell, Kirk J.; Westsik, Joseph H.; Serne, R Jeffrey; Um, Wooyong; Cozzi, Alex D.

    2016-05-16

    A review of the most up-to-date and relevant data currently available was conducted to develop a set of recommended values for use in the Integrated Disposal Facility (IDF) performance assessment (PA) to model contaminant release from a cementitious waste form for aqueous wastes treated at the Hanford Effluent Treatment Facility (ETF). This data package relies primarily upon recent data collected on Cast Stone formulations fabricated with simulants of low-activity waste (LAW) and liquid secondary wastes expected to be produced at Hanford. These data were supplemented, when necessary, with data developed for saltstone (a similar grout waste form used at the Savannah River Site). Work is currently underway to collect data on cementitious waste forms that are similar to Cast Stone and saltstone but are tailored to the characteristics of ETF-treated liquid secondary wastes. Recommended values for key parameters to conduct PA modeling of contaminant release from ETF-treated liquid waste are provided.

  8. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    SciTech Connect

    Choi, Jongkwon; Um, Wooyong; Choung, Sungwook

    2014-05-09

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4,136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

  9. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    NASA Astrophysics Data System (ADS)

    Choi, Jongkwon; Um, Wooyong; Choung, Sungwook

    2014-09-01

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

  10. Challenges in Modeling the Degradation of Ceramic Waste Forms

    SciTech Connect

    Devanathan, Ramaswami; Gao, Fei; Sun, Xin

    2011-09-01

    We identify the state of the art, gaps in current understanding, and key research needs in the area of modeling the long-term degradation of ceramic waste forms for nuclear waste disposition. The directed purpose of this report is to define a roadmap for Waste IPSC needs to extend capabilities of waste degradation to ceramic waste forms, which overlaps with the needs of the subconsinuum scale of FMM interests. The key knowledge gaps are in the areas of (i) methodology for developing reliable interatomic potentials to model the complex atomic-level interactions in waste forms; (ii) characterization of water interactions at ceramic surfaces and interfaces; and (iii) extension of atomic-level insights to the long time and distance scales relevant to the problem of actinide and fission product immobilization.

  11. EVALUATION OF REQUIREMENTS FOR THE DWPF HIGHER CAPACITY CANISTER

    SciTech Connect

    Miller, D.; Estochen, E.; Jordan, J.; Kesterson, M.; Mckeel, C.

    2014-08-05

    The Defense Waste Processing Facility (DWPF) is considering the option to increase canister glass capacity by reducing the wall thickness of the current production canister. This design has been designated as the DWPF Higher Capacity Canister (HCC). A significant decrease in the number of canisters processed during the life of the facility would be achieved if the HCC were implemented leading to a reduced overall reduction in life cycle costs. Prior to implementation of the change, Savannah River National Laboratory (SRNL) was requested to conduct an evaluation of the potential impacts. The specific areas of interest included loading and deformation of the canister during the filling process. Additionally, the effect of the reduced wall thickness on corrosion and material compatibility needed to be addressed. Finally the integrity of the canister during decontamination and other handling steps needed to be determined. The initial request regarding canister fabrication was later addressed in an alternate study. A preliminary review of canister requirements and previous testing was conducted prior to determining the testing approach. Thermal and stress models were developed to predict the forces on the canister during the pouring and cooling process. The thermal model shows the HCC increasing and decreasing in temperature at a slightly faster rate than the original. The HCC is shown to have a 3°F ΔT between the internal and outer surfaces versus a 5°F ΔT for the original design. The stress model indicates strain values ranging from 1.9% to 2.9% for the standard canister and 2.5% to 3.1% for the HCC. These values are dependent on the glass level relative to the thickness transition between the top head and the canister wall. This information, along with field readings, was used to set up environmental test conditions for corrosion studies. Small 304-L canisters were filled with glass and subjected to accelerated environmental testing for 3 months. No evidence of

  12. A Film Canister Colorimeter.

    ERIC Educational Resources Information Center

    Gordon, James; James, Alan; Harman, Stephanie; Weiss, Kristen

    2002-01-01

    A low-cost, low-tech colorimeter was constructed from a film canister. The student-constructed colorimeter was used to show the Beer-Lambert relationship between absorbance and concentration and to calculate the value of the molar absorptivity for permanganate at the wavelength emission maximum for an LED. Makes comparisons between this instrument…

  13. Coating crystalline nuclear waste forms to improve inertness

    SciTech Connect

    Stinton, D.P.; Angelini, P.; Caputo, A.J.; Lackey, W.J.

    1981-01-01

    Crystalline waste forms of high simulated waste loading were successfully coated with layers of pyrolytic carbon and silicon carbide. Sol-gel technology was used to produce microspheres that contained simulated waste. A separate process for cesium immobilization was developed, which loads 5 wt % Cs onto zeolite particles for subsequent coating. The chemical vapor deposition process was developed for depositing thin layers of carbon and silicon carbide onto particles in a fluidized-bed coater. Pyrolytic carbon-coated particles were extremely inert in numerous leach tests. Aqueous leach test results of coated waste forms were below detection limits of such sensitive analytical techniques as atomic absorption and inductively coupled plasma atomic emission.

  14. Waste Acceptance Testing of Secondary Waste Forms: Cast Stone, Ceramicrete and DuraLith

    SciTech Connect

    Mattigod, Shas V.; Westsik, Joseph H.; Chung, Chul-Woo; Lindberg, Michael J.; Parker, Kent E.

    2011-08-12

    To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions has initiated secondary-waste-form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is conducting tests on four candidate waste forms to evaluate their ability to meet potential waste acceptance criteria for immobilized secondary wastes that would be placed in the IDF. All three waste forms demonstrated compressive strengths above the minimum 3.45 MPa (500 psi) set as a target for cement-based waste forms. Further, none of the waste forms showed any significant degradation in compressive strength after undergoing thermal cycling (30 cycles in a 10 day period) between -40 C and 60 C or water immersion for 90 days. The three leach test methods are intended to measure the diffusion rates of contaminants from the waste forms. Results are reported in terms of diffusion coefficients and a leachability index (LI) calculated based on the diffusion coefficients. A smaller diffusion coefficient and a larger LI are desired. The NRC, in its Waste Form Technical Position (NRC 1991), provides recommendations and guidance regarding methods to demonstrate waste stability for land disposal of radioactive waste. Included is a recommendation to conduct leach tests using the ANS 16.1 method. The resulting leachability index (LI) should be greater than 6.0. For Hanford secondary wastes, the LI > 6.0 criterion applies to sodium leached from the waste form. For technetium and iodine, higher targets of LI > 9 for Tc and LI > 11 for iodine have been set based on early waste-disposal risk and performance assessment analyses. The results of these three leach tests conducted for a total time between 11days (ASTM C1308) to 90 days (ANS 16.1) showed: (1) Technetium diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that

  15. Waste Form Development for the Solidification of PDCF/MOX Liquid Waste Streams

    SciTech Connect

    COZZI, ALEX

    2004-02-18

    At the Savannah River Site, part of the Department of Energy's nuclear materials complex located in South Carolina, cementation has been selected as the solidification method for high-alpha and low-activity waste streams generated in the planned plutonium disposition facilities. A Waste Solidification Building (WSB) that will be used to treat and solidify three radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility) and the Mixed Oxide Fuel Fabrication Facility is in the preliminary design stage. The WSB is expected to treat a transuranic (TRU) waste stream composed primarily of americium and two low-level waste (LLW) streams. The acidic wastes will be concentrated in the WSB evaporator and neutralized in a cement head tank prior to solidification. A series of TRU mixes were prepared to produce waste forms exhibiting a range of processing and cured properties. The LLW mixes were prepared using the premix from the preferred TRU waste form. All of the waste forms tested passed the Toxicity Characteristic Leaching Procedure. After processing in the WSB, current plans are to dispose of the solidified TRU waste at the Waste Isolation Pilot Plant in New Mexico and the solidified LLW waste at an approved low-level waste disposal facility.

  16. Conversion of radioactive waste materials into solid form

    SciTech Connect

    Bustard, T.S.; Pohl, C.S.

    1980-10-28

    Radioactive waste materials are converted into solid form by mixing the radioactive waste with a novel polymeric formulation which, when solidified, forms a solid, substantially rigid matrix that contains and entraps the radioactive waste. The polymeric formulation comprises, in certain significant proportions by weight, urea-formaldehyde; methylated urea-formaldehyde; urea and a plasticizer. A defoaming agent may also be incorporated into the polymeric composition. In the practice of the invention, radioactive waste, in the form of a liquid or slurry, is mixed with the polymeric formulation, with this mixture then being treated with an acidic catalyzing agent, such as sulfuric acid. This mixture is then preferably passed to a disposable container so that, upon solidification, the radioactive waste, entrapped within the matrix formed by the polymeric formulation, may be safely and effectively stored or disposed of.

  17. Corrosion behavior of stainless steel-zirconium alloy waste forms.

    SciTech Connect

    Abraham, D. P.

    1999-01-13

    Stainless steel-zirconium (SS-Zr) alloys are being considered as waste forms for the disposal of metallic waste generated during the electrometallurgical treatment of spent nuclear fuel. The baseline waste form for spent fuels from the EBR-II reactor is a stainless steel-15 wt.% zirconium (SS-15Zr) alloy. This article briefly reviews the microstructure of various SS-Zr waste form alloys and presents results of immersion corrosion and electrochemical corrosion tests performed on these alloys. The electrochemical tests show that the corrosion behavior of SS-Zr alloys is comparable to those of other alloys being considered for the Yucca Mountain geologic repository. The immersion tests demonstrate that the SS-Zr alloys are resistant to selective leaching of fission product elements and, hence, suitable as candidates for high-level nuclear waste forms.

  18. Testing protocols for evaluating monolithic waste forms containing mixed wastes

    SciTech Connect

    Gilliam, T.M.; Sams, T.L.; Pitt, W.W.

    1986-01-01

    Test protocols have been presented which can be used as a guide in cement-based grout formulation development studies. Based on experience at ORNL, these six tests are generally sufficient to develop a grout product which will meet all applicable DOE, NRC, and EPA performance criteria. As such, these tests can be used to minimize the time required to tailor a grout to be compatible with both the waste stream and the process disposal scenario. 9 refs.

  19. Defining a metal-based waste form for IFR pyroprocessing wastes

    SciTech Connect

    McDeavitt, S.M.; Park, J.Y.; Ackerman, J.P.

    1994-01-01

    Pyrochemical electrorefining to recover actinides from metal nuclear fuel is a key element of the Integral Fast Reactor (IFR) fuel cycle. The process separates the radioactive fission products from the long-lived actinides in a molten LiCl-KCl salt, and it generates a lower waste volume with significantly less long-term toxicity as compared to spent nuclear fuel. The process waste forms include a mineral-based waste form that will contain fission products removed from an electrolyte salt and a metal-based waste form that will contain metallic fission products and the fuel cladding and process materials. Two concepts for the metal-based waste form are being investigated: (1) encapsulating the metal constituents in a Cu-Al alloy and (2) alloying the metal constituents into a uniform stainless steel-based waste form. Results are given from our recent studies of these two concepts.

  20. Nuclear characteristics of vitrified high-level waste at the West Valley Demonstration Project

    SciTech Connect

    Arakali, V.S.; Barnes, S.M. )

    1991-11-01

    High-level liquid nuclear waste stored in underground tanks at West Valley, New York, will be vitrified as borosilicate glass and stored in stainless steel canisters prior to disposal at a waste repository. The nuclear characteristics of the vitrified waste must meet certain repository design specifications. This paper presents an evaluation of the waste form produced at West Valley with respect to its compliance to the repository specifications of heat and gas generation rates and neutron and gamma dose rates. The method consists of analyzing the composition of liquid nuclear waste in underground tanks and estimating the amount of other chemicals needed to encapsulate radionuclides in glass matrices. The number of waste canisters and the composition of each batch of canistered waste are determined from the vitrification process flow sheet. This data is used in computer codes to evaluate the waste form against repository specifications.

  1. Feasibility study for a DOE research and production fuel multipurpose canister

    SciTech Connect

    Lopez, D.A.; Abbott, D.G.

    1994-02-01

    This is a report of the feasibility of multipurpose canisters for transporting, storing, and sing of Department of Energy research and production spent nuclear fuel. Six representative Department of Energy fuel assemblies were selected, and preconceptual canister designs were developed to accommodate these assemblies. The study considered physical interface, structural adequacy, criticality safety, shielding capability, thermal performance of the canisters, and fuel storage site infrastructure. The external envelope of the canisters was designed to fit within the overpack casks for commercial canisters being developed for the Department of Energy Office of Civilian Radioactive Waste Management. The budgetary cost of canisters to handle all fuel considered is estimated at $170.8M. One large conceptual boiling water reactor canister design, developed for the Office of Civilian Radioactive Waste Management, and two new canister designs can accommodate at least 85% of the volume of the Department of Energy fuel considered. Canister use minimizes public radiation exposure and is cost effective compared with bare fuel handling. Results suggest the need for additional study of issues affecting canister use and for conceptual design development of the three canisters.

  2. USING CENTER HOLE HEAT TRANSFER TO REDUCE FORMATION TIMES FOR CERAMIC WASTE FORMS FROM PYROPROCESSING

    SciTech Connect

    Kenneth J. Bateman; Charles W. Solbrig

    2006-07-01

    The waste produced from processing spent fuel from the EBR II reactor must be processed into a waste form suitable for long term storage in Yucca Mountain. The method chosen produces zeolite granules mixed with glass frit, which must then be converted into a solid. This is accomplished by loading it into a can and heating to 900 C in a furnace regulated at 915 C. During heatup to 900 C, the zeolite and glass frit react and consolidate to produce a sodalite monolith. The resultant ceramic waste form (CWF) is then cooled. The waste is 52 cm in diameter and initially 300 cm long but consolidates to 150 cm long during the heating process. After cooling it is then inserted in a 5-DHLW/DOE SNF Long Canister. Without intervention, the waste takes 82 hours to heat up to 900 C in a furnace designed to geometrically fit the cylindrical waste form. This paper investigates the reduction in heating times possible with four different methods of additional heating through a center hole. The hole size is kept small to maximize the amount of CWF that is processed in a single run. A hole radius of 1.82 cm was selected which removes only 1% of the CWF. A reference computation was done with a specified inner hole surface temperature of 915 C to provide a benchmark for the amount of improvement which can be made. It showed that the heatup time can potentially be reduced to 43 hours with center hole heating. The first method, simply pouring high temperature liquid aluminum into the hole, did not produce any noticeable effect on reducing heat up times. The second method, flowing liquid aluminum through the hole, works well as long as the velocity is high enough (2.5 cm/sec) to prevent solidification of the aluminum during the initial front movement of the aluminum into the center hole. The velocity can be reduced to 1 cm/sec after the initial front has traversed the ceramic. This procedure reduces the formation time to near that of the reference case. The third method, flowing a gas

  3. Viscosity-based high temperature waste form compositions

    SciTech Connect

    Reimann, G.A.

    1994-12-31

    High-temperature waste forms such as iron-enriched basalt are proposed to immobilize and stabilize a variety of low-level wastes stored at the Idaho National Engineering Laboratory. The combination of waste and soil anticipated for the waste form results in high SiO{sub 2} + Al{sub 2}O{sub 3} producing a viscous melt in an arc furnace. Adding a flux such as CaO to adjust the basicity ratio (the molar ratio of basic to acid oxides) enables tapping the furnace without resorting to extreme temperatures, but adds to the waste volume. Improved characterization of wastes will permit adjusting the basicity ratio to between 0.7 and 1.0 by blending of wastes and/or changing the waste-soil ratio. This minimizes waste form volume. Also, lower pouring temperatures will decrease electrode and refractory attrition, reduce vaporization from the melt, and, with suitable flux, facilitate crystallization. Results of laboratory tests were favorable and pilot-scale melts are planned; however, samples have not yet been subjected to leach testing.

  4. Method for forming microspheres for encapsulation of nuclear waste

    DOEpatents

    Angelini, Peter; Caputo, Anthony J.; Hutchens, Richard E.; Lackey, Walter J.; Stinton, David P.

    1984-01-01

    Microspheres for nuclear waste storage are formed by gelling droplets containing the waste in a gelation fluid, transferring the gelled droplets to a furnace without the washing step previously used, and heating the unwashed gelled droplets in the furnace under temperature or humidity conditions that result in a substantially linear rate of removal of volatile components therefrom.

  5. Waste form development program. Annual report, October 1982-September 1983

    SciTech Connect

    Colombo, P.; Kalb, P.D.; Fuhrmann, M.

    1983-09-01

    This report provides a summary of the work conducted for the Waste Form Development/Test Program at Brookhaven National Laboratory in FY 1983 under the sponsorship of the US Department of Energy's Low-Level Waste Management Program. The primary focus of this work is the investigation of new solidification agents which will provide improved immobilization of low-level radioactive wastes in an efficient, cost-effective manner. A working set of preliminary waste form evaluation criteria which could impact upon the movement of radionuclides in the disposal environment was developed. The selection of potential solidification agents for further investigation is described. Two thermoplastic materials, low-density polyethylene and a modified sulfur cement were chosen as primary candidates for further study. Three waste types were selected for solidification process development and waste form property evaluation studies which represent both new volume reduction wastes (dried evaporator concentrates and incinerator ash) and current problem wastes (ion exchange resins). Preliminary process development scoping studies were conducted to verify the compatibility of selected solidification agents and waste types and the potential for improved solidification. Waste loadings of 60 wt % Na/sub 2/SO/sub 4/, 25 wt % H/sub 3/BO/sub 3/, 25 wt % incinerator ash and 50 wt % dry ion exchange resin were achieved using low density polyethylene as a matrix material. Samples incorporating 65 wt % Na/sub 2/SO/sub 4/, 40 wt % H/sub 3/BO/sub 3/, 20 wt % incinerator ash and 40 wt % dry ion exchange resin were successfully solidified in modified sulfur cement. Additional improvements are expected for both matrix materials as process parameters are optimized. Several preliminary property evaluation studies were performed to provide the basis for an initial assessment of waste form acceptability. These included a two-week water immersion test and compressive load testing.

  6. Phase Stability Determinations of DWPF Waste Glasses

    SciTech Connect

    Marra, S.L.

    1999-10-22

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. To fulfill this requirement, glass samples were heat treated at various times and temperatures. These results will provide guidance to the repository program about conditions to be avoided during shipping, handling and storage of DWPF canistered waste forms.

  7. Transuranic contaminated waste form characterization and data base

    SciTech Connect

    McArthur, W.C.; Kniazewycz, B.G.

    1980-07-01

    This report outlines the sources, quantities, characteristics and treatment of transuranic wastes in the United States. This document serves as part of the data base necessary to complete preparation and initiate implementation of transuranic wastes, waste forms, waste container and packaging standards and criteria suitable for inclusion in the present NRC waste management program. No attempt is made to evaluate or analyze the suitability of one technology over another. Indeed, by the nature of this report, there is little critical evaluation or analysis of technologies because such analysis is only appropriate when evaluating a particular application or transuranic waste streams. Due to fiscal restriction, the data base is developed from a myriad of technical sources and does not necessarily contain operating experience and the current status of all technologies. Such an effort was beyond the scope of this report.

  8. Immobilization and Waste Form Product Acceptance for Low Level and TRU Waste Forms

    SciTech Connect

    Holtzscheiter, E.W.; Harbour, J.R.

    1998-05-01

    The Tanks Focus Area is supporting technology development in immobilization of both High Level (HLW) and Low Level (LLW) radioactive wastes. The HLW process development at Hanford and Idaho is patterned closely after that of the Savannah River (Defense Waste Processing Facility) and West Valley Sites (West Valley Demonstration Project). However, the development and options open to addressing Low Level Waste are diverse and often site specific. To start, it is important to understand the breadth of Low Level Wastes categories.

  9. Process for immobilizing plutonium into vitreous ceramic waste forms

    DOEpatents

    Feng, Xiangdong; Einziger, Robert E.

    1997-01-01

    Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.

  10. Process for immobilizing plutonium into vitreous ceramic waste forms

    DOEpatents

    Feng, X.; Einziger, R.E.

    1997-08-12

    Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.

  11. Process for immobilizing plutonium into vitreous ceramic waste forms

    DOEpatents

    Feng, X.; Einziger, R.E.

    1997-01-28

    Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.

  12. CANISTER HANDLING FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect

    D.T. Dexheimer

    2004-02-27

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Canister Handling Facility (CHF) performing operations to receive transportation casks, transfer wastes, prepare waste packages, perform associated equipment maintenance. The specific scope of work contained in this calculation covers individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation. The results of this calculation will be used to support the design of the CHF and provide occupational dose estimates for the License Application.

  13. Waste Form Qualification Compliance Strategy for Bulk Vitrification

    SciTech Connect

    Bagaasen, Larry M.; Westsik, Joseph H.; Brouns, Thomas M.

    2005-01-03

    The Bulk Vitrification System is being pursued to assist in immobilizing the low-activity tank waste from the 53 million gallons of radioactive waste in the 177 underground storage tanks on the Hanford Site. To demonstrate the effectiveness of the bulk vitrification process, a research and development facility known as the Demonstration Bulk Vitrification System (DBVS) is being built to demonstrate the technology. Specific performance requirements for the final packaged bulk vitrification waste form have been identified. In addition to the specific product-performance requirements, performance targets/goals have been identified that are necessary to qualify the waste form but do not lend themselves to specifications that are easily verified through short-term testing. Collectively, these form the product requirements for the DBVS. This waste-form qualification (WFQ) strategy document outlines the general strategies for achieving and demonstrating compliance with the BVS product requirements. The specific objectives of the WFQ activities are discussed, the bulk vitrification process and product control strategy is outlined, and the test strategy to meet the WFQ objectives is described. The DBVS product performance targets/goals and strategies to address those targets/goals are described. The DBVS product-performance requirements are compared to the Waste Treatment and Immobilization Plant immobilized low-activity waste product specifications. The strategies for demonstrating compliance with the bulk vitrification product requirements are presented.

  14. Forming artificial soils from waste materials for mine site rehabilitation

    NASA Astrophysics Data System (ADS)

    Yellishetty, Mohan; Wong, Vanessa; Taylor, Michael; Li, Johnson

    2014-05-01

    Surface mining activities often produce large volumes of solid wastes which invariably requires the removal of significant quantities of waste rock (overburden). As mines expand, larger volumes of waste rock need to be moved which also require extensive areas for their safe disposal and containment. The erosion of these dumps may result in landform instability, which in turn may result in exposure of contaminants such as trace metals, elevated sediment delivery in adjacent waterways, and the subsequent degradation of downstream water quality. The management of solid waste materials from industrial operations is also a key component for a sustainable economy. For example, in addition to overburden, coal mines produce large amounts of waste in the form of fly ash while sewage treatment plants require disposal of large amounts of compost. Similarly, paper mills produce large volumes of alkaline rejected wood chip waste which is usually disposed of in landfill. These materials, therefore, presents a challenge in their use, and re-use in the rehabilitation of mine sites and provides a number of opportunities for innovative waste disposal. The combination of solid wastes sourced from mines, which are frequently nutrient poor and acidic, with nutrient-rich composted material produced from sewage treatment and alkaline wood chip waste has the potential to lead to a soil suitable for mine rehabilitation and successful seed germination and plant growth. This paper presents findings from two pilot projects which investigated the potential of artificial soils to support plant growth for mine site rehabilitation. We found that pH increased in all the artificial soil mixtures and were able to support plant establishment. Plant growth was greatest in those soils with the greatest proportion of compost due to the higher nutrient content. These pot trials suggest that the use of different waste streams to form an artificial soil can potentially be used in mine site rehabilitation

  15. Comparative assessment of TRU waste forms and processes. Volume II. Waste form data, process descriptions, and costs.

    SciTech Connect

    Ross, W.A.; Lokken, R.O.; May, R.P.; Roberts, F.P.; Thornhill, R.E.; Timmerman, C.L.; Treat, R.L.; Westsik, J.H. Jr.

    1982-09-01

    This volume contains supporting information for the comparative assessment of the transuranic waste forms and processes summarized in Volume I. Detailed data on the characterization of the waste forms selected for the assessment, process descriptions, and cost information are provided. The purpose of this volume is to provide additional information that may be useful when using the data in Volume I and to provide greater detail on particular waste forms and processes. Volume II is divided into two sections and two appendixes. The first section provides information on the preparation of the waste form specimens used in this study and additional characterization data in support of that in Volume I. The second section includes detailed process descriptions for the eight processes evaluated. Appendix A lists the results of MCC-1 leach test and Appendix B lists additional cost data. 56 figures, 12 tables.

  16. Characteristics of metal waste forms containing technetium and uranium

    SciTech Connect

    Fortner, J.A.; Kropf, A.J.; Ebert, W.L.

    2013-07-01

    2 prototype alloys: RAW-1(Tc) and RAW-2(UTc) suitable for a wide range of waste stream compositions are being evaluated to support development of a waste form degradation model that can be used to calculate radionuclide source terms for a range of waste form compositions and disposal environments. Tests and analyses to support formulation of waste forms and development of the degradation model include detailed characterizations of the constituent phases using SEM/EDS and TEM, electrochemical tests to quantify the oxidation behavior and kinetics of the individual and coupled phases under a wide range of environmental conditions, and corrosion tests to measure the gross release kinetics of radionuclides under aggressive test conditions.

  17. Low-level radioactive waste form qualification testing

    SciTech Connect

    Sohal, M.S.; Akers, D.W.

    1998-06-01

    This report summarizes activities that have already been completed as well as yet to be performed by the Idaho National Engineering and Environmental Laboratory (INEEL) to develop a plan to quantify the behavior of radioactive low-level waste forms. It briefly describes the status of various tasks, including DOE approval of the proposed work, several regulatory and environmental related documents, tests to qualify the waste form, preliminary schedule, and approximate cost. It is anticipated that INEEL and Brookhaven National Laboratory will perform the majority of the tests. For some tests, services of other testing organizations may be used. It should take approximately nine months to provide the final report on the results of tests on a waste form prepared for qualification. It is anticipated that the overall cost of the waste quantifying service is approximately $150,000. The following tests are planned: compression, thermal cycling, irradiation, biodegradation, leaching, immersion, free-standing liquid tests, and full-scale testing.

  18. Data quality objectives for K West canister sludge sampling

    SciTech Connect

    Makenas, B.J., Westinghouse Hanford

    1996-12-11

    Data Quality Objectives have been developed for a limited campaign of sampling K Basin canister sludge. Specifically, samples will be taken from the sealed K West Basin fuel canisters. Characterization of the sludge in these canisters will address the needs of fuel retrieval which are to collect and transport sludge which is currently in the canisters. Data will be gathered on physical properties (such as viscosity, particle size, density, etc.) as well as on chemical and radionuclide constituents and radiation levels of sludge. The primary emphasis will be on determining radionuclide concentrations to be deposited on Ion Exchange Modules (IXMS) during canister opening and fuel retrieval. The data will also be useful in determining whether K West Basin sludge meets the waste acceptance criteria for Hanford waste tanks as a backup disposal concept and these data will also supply information on the properties of sludge material which will1403 accompany fuel elements in the Multi-Canister Overpacks (MCOS) as envisioned in the Integrated Process Strategy (IPS).

  19. Effect of Concrete Waste Form Properties on Radionuclide Migration

    SciTech Connect

    Mattigod, Shas V.; Bovaird, Chase C.; Wellman, Dawn M.; Skinner, De'Chauna J.; Cordova, Elsa A.; Wood, Marcus I.

    2009-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation) the mechanism of contaminant release, the significance of contaminant release pathways, how waste form performance is affected by the full range of environmental conditions within the disposal facility, the process of waste form aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility, the effect of waste form aging on chemical, physical, and radiological properties and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the waste forms come in contact with groundwater. Numerous sets of tests were initiated in fiscal years (FY) 2006-2009 to evaluate (1) diffusion of iodine (I) and technetium (Tc) from concrete into uncontaminated soil after 1 and 2 years, (2) I and rhenium (Re) diffusion from contaminated soil into fractured concrete, (3) I and Re (set 1) and Tc (set 2) diffusion from fractured concrete into uncontaminated soil, (4) evaluate the moisture distribution profile within the sediment half-cell, (5) the reactivity and speciation of uranium (VI) (U(VI)) compounds in concrete porewaters, (6) the rate of dissolution of concrete monoliths, and (7) the diffusion of simulated tank waste into concrete.

  20. Treatability study of absorbent polymer waste form for mixed waste treatment

    SciTech Connect

    Herrmann, S. D.; Lehto, M. A.; Stewart, N. A.; Croft, A. D.; Kern, P. W.

    2000-02-10

    A treatability study was performed to develop and characterize an absorbent polymer waste form for application to low level (LLW) and mixed low level (MLLW) aqueous wastes at Argonne National Laboratory-West (ANL-W). In this study absorbent polymers proved effective at immobilizing aqueous liquid wastes in order to meet Land Disposal Restrictions for subsurface waste disposal. Treatment of aqueous waste with absorbent polymers provides an alternative to liquid waste solidification via high-shear mixing with clays and cements. Significant advantages of absorbent polymer use over clays and cements include ease of operations and waste volume minimization. Absorbent polymers do not require high-shear mixing as do clays and cements. Granulated absorbent polymer is poured into aqueous solutions and forms a gel which passes the paint filter test as a non-liquid. Pouring versus mixing of a solidification agent not only eliminates the need for a mixing station, but also lessens exposure to personnel and the potential for spread of contamination from treatment of radioactive wastes. Waste minimization is achieved as significantly less mass addition and volume increase is required of and results from absorbent polymer use than that of clays and cements. Operational ease and waste minimization translate into overall cost savings for LLW and MLLW treatment.

  1. A Film Canister Colorimeter

    NASA Astrophysics Data System (ADS)

    Gordon, James; James, Alan; Harman, Stephanie; Weiss, Kristen

    2002-08-01

    A low-cost, low-tech colorimeter was constructed from a film canister. The light source and filter monochromator was an interchangeable LED. The detector for this system was a voltage-divider circuit composed of a photoresistor in series with a fixed resistor. The student-constructed colorimeter was used to show the Beer–Lambert relationship between absorbance and concentration and to calculate the value of the molar absorptivity for permanganate at the wavelength emission maximum for the LED. Comparisons were made between this instrument and three commercial spectrometers and colorimeters.

  2. Solidification of EPICOR-II resin waste forms

    SciTech Connect

    Neilson, Jr, R M; McConnell, Jr, J W

    1984-08-01

    One goal of the EPICOR-II Research and Disposition Program is to investigate methods of immobilizing ion exchange resin wastes by solidification. Formulations were developed for the solidification of EPICOR-II prefilter wastes from Three Mile Island Unit-2 using Portland type I-II cement and vinyl ester-styrene. In developing formulations, ion exchange resins and zeolite simulating those in EPICOR-II prefilters were used. Once suitable formulations were defined, radioactive wastes from EPICOR-II prefilters PF-7 (organic ion exchange resins) and PF-24 (organic ion exchange resins with zeolite) were solidified. A total of 267 radioactive waste form specimens were prepared in hot cell solidification operations. That total includes 136 Portland cement specimens (72 incorporating prefilter PF-7 waste and 64 with prefilter PF-24 waste) and 131 vinyl ester-styrene specimens (71 incorporating prefilter PF-7 waste and 60 with prefilter PF-24 waste). The methodologies used and products produced are described and evaluated in this report.

  3. Consolidated waste forms: glass marbles and ceramic pellets

    SciTech Connect

    Treat, R.L.; Rusin, J.M.

    1982-05-01

    Glass marbles and ceramic pellets have been developed at Pacific Northwest Laboratory as part of the multibarrier concept for immobilizing high-level radioactive waste. These consolidated waste forms served as substrates for the application of various inert coatings and as ideal-sized particles for encapsulation in protective matrices. Marble and pellet formulations were based on existing defense wastes at Savannah River Plant and proposed commercial wastes. To produce marbles, glass is poured from a melter in a continuous stream into a marble-making device. Marbles were produced at PNL on a vibratory marble machine at rates as high as 60 kg/h. Other marble-making concepts were also investigated. The marble process, including a lead-encapsulation step, was judged as one of the more feasible processes for immobilizing high-level wastes. To produce ceramic pellets, a series of processing steps are required, which include: spray calcining - to dry liquid wastes to a powder; disc pelletizing - to convert waste powders to spherical pellets; sintering - to densify pellets and cause desired crystal formation. These processing steps are quite complex, and thereby render the ceramic pellet process as one of the least feasible processes for immobilizing high-level wastes.

  4. Final Report - Gas Generation Testing of Uranium Metal in Simulated K Basin Sludge and in Grouted Sludge Waste Forms

    SciTech Connect

    Delegard, Calvin H.; Schmidt, Andrew J.; Sell, Rachel L.; Sinkov, Sergei I.; Bryan, Samuel A.; Gano, Sue; Thornton, Brenda M.

    2004-08-19

    The Waste Isolation Pilot Plant (WIPP) is being considered for the disposal of K Basin sludge as RH-TRU. Because the hydrogen gas concentration in the 55-gallon RH-TRU sealed drums to be transported to WIPP is limited by flammability safety, the number of containers and shipments likely will be driven by the rate of hydrogen generated by the uranium metal-water reaction (U + 2 H{sub 2}O {yields} UO{sub 2} + 2 H{sub 2}) in combination with the hydrogen generated from water and organic radiolysis. Gas generation testing was conducted with uranium metal particles of known surface area, in simulated K West (KW) Basin canister sludge and immobilized in candidate grout solidification matrices. This study evaluated potential for Portland cement and magnesium phosphate grouts to inhibit the reaction of water with uranium metal in the sludge and thereby permit higher sludge loading to the disposed waste form. The best of the grouted waste forms decreased the uranium metal-water reaction by a factor of four.

  5. Test plan for formulation and evaluation of grouted waste forms with shine process wastes

    SciTech Connect

    Ebert, W. L.; Jerden, J. L.

    2015-09-01

    The objective of this experimental project is to demonstrate that waste streams generated during the production of Mo99 by the SHINE Medical Technologies (SHINE) process can be immobilized in cement-based grouted waste forms having physical, chemical, and radiological stabilities that meet regulatory requirements for handling, storage, transport, and disposal.

  6. A human factors approach to waste form design

    SciTech Connect

    Rodriguez, M.A.

    1994-04-01

    The current study consist of two experiments and an example of a revised waste form to demonstrate the necessity of careful form design and provide guidance in obtaining accurate information through written solicitation of any kind. In Experiment 1, two differently designed forms were used to solicit the same list of specific information. The data suggest that the more clearly designed form significantly produced more of the specific information required than the form that just listed the questions. Experiment 2, which is to be conducted during the spring semester 1994, is designed to address three specific aspects of form design. The results of this Experiment 2 will be interpreted and presented at the 1994 International High-Level Radioactive Waste Management Conference, May 22--26. Guidelines and examples of form design are given.

  7. Defense High Level Waste Disposal Container System Description

    SciTech Connect

    2000-10-12

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms (IPWF)) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as 'co-disposal'. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by which to identify the disposal container and its contents. Different materials

  8. New Fission-Product Waste Forms: Development and Characterization

    SciTech Connect

    Alexandra Navrotsky

    2010-07-30

    Research performed on the program “New Fission Product Waste Forms: Development and Characterization,” in the last three years has fulfilled the objectives of the proposal which were to 1) establish ceramic waste forms for disposing of Cs, Sr and minor actinides, 2) fully characterize the phase relationships, structures and thermodynamic and kinetic stabilities of promising waste forms, 3) establish a sound technical basis for understanding key waste form properties, such as melting temperatures and aqueous durability, based on an in-depth understanding of waste form structures and thermochemistry, and 4) establish synthesis, testing, scaleup and commercialization routes for wasteform implementation through out in-kind collaborations. In addition, since Cs and Sr form new elements by radioactive decay, the behavior and thermodynamics of waste forms containing different proportions of Cs, Sr and their decay products were discovered using non-radioactive analogues. Collaborations among researchers from three institutions, UC Davis, Sandia National Laboratories, and Shott Inc., were formed to perform the primary work on the program. The unique expertise of each of the members in the areas of waste form development, structure/property relationships, hydrothermal and high temperature synthesis, crystal/glass production, and thermochemistry was critical to program success. In addition, collaborations with the Brigham Young Univeristy, Ben Gurion University, and Los Alamos National Laboratory, were established for standard entropies of ceramic waste forms, sol-gel synthesis, and high temperature synthesis. This work has had a significant impact in a number of areas. First, the studies of the thermodynamic stability of the mineral analogues provided an important technical foundation for assessment the viability of multicomponent oxide phases for Cs and Sr removal. Moreover, the thermodynamic data discovered in this program established information on the reaction

  9. Technetium Waste Form Development - Progress Report

    SciTech Connect

    Gelles, David S.; Ermi, Ruby M.; Buck, Edgar C.; Seffens, Rob J.; Chamberlin, Clyde E.

    2009-01-07

    Analytical electron microscopy using SEM and TEM has been used to analyze a ~5 g. ingot with composition 71.3 wt% 316SS-5.3 wt% Zr-13.2 wt% Mo-4.0 wt% Rh-6.2 wt% Re prepared at the Idaho National Laboratory. Four phase fields have been identified two of which are lamellar eutectics, with a fifth possibly present. A Zr rich phase was found distributed as fine precipitate, ~10µm in diameter, often coating large cavities. A Mo-Fe-Re-Cr lamellar eutectic phase field appears as blocky regions ~30µm in diameter, surrounded by a Fe-Mo-Cr lamellar eutectic phase field, and that in turn is surrounded by a Zr-Fe-Rh-Mo-Ni phase field. The eutectic phase separation reactions are different. The Mo-Fe-Re-Cr lamellar eutectic appears a result of austenitic steel forming at lower volume fraction within an Mo-Fe-Re intermetallic phase, whereas the Fe-Mo-Cr lamellar eutectic may be a result of the same intermetallic phase forming within a ferritic steel phase. Cavitation may have arisen either as a result of bubbles, or from loss of equiaxed particles during specimen preparation.

  10. Reference Alloy Waste Form Fabrication and Initiation of Reducing Atmosphere and Reductive Additives Study on Alloy Waste Form Fabrication

    SciTech Connect

    S.M. Frank; T.P. O'Holleran; P.A. Hahn

    2011-09-01

    This report describes the fabrication of two reference alloy waste forms, RAW-1(Re) and RAW-(Tc) using an optimized loading and heating method. The composition of the alloy materials was based on a generalized formulation to process various proposed feed streams resulting from the processing of used fuel. Waste elements are introduced into molten steel during alloy fabrication and, upon solidification, become incorporated into durable iron-based intermetallic phases of the alloy waste form. The first alloy ingot contained surrogate (non-radioactive), transition-metal fission products with rhenium acting as a surrogate for technetium. The second alloy ingot contained the same components as the first ingot, but included radioactive Tc-99 instead of rhenium. Understanding technetium behavior in the waste form is of particular importance due the longevity of Tc-99 and its mobility in the biosphere in the oxide form. RAW-1(Re) and RAW-1(Tc) are currently being used as test specimens in the comprehensive testing program investigating the corrosion and radionuclide release mechanisms of the representative alloy waste form. Also described in this report is the experimental plan to study the effects of reducing atmospheres and reducing additives to the alloy material during fabrication in an attempt to maximize the oxide content of waste streams that can be accommodated in the alloy waste form. Activities described in the experimental plan will be performed in FY12. The first aspect of the experimental plan is to study oxide formation on the alloy by introducing O2 impurities in the melt cover gas or from added oxide impurities in the feed materials. Reducing atmospheres will then be introduced to the melt cover gas in an attempt to minimize oxide formation during alloy fabrication. The second phase of the experimental plan is to investigate melting parameters associated with alloy fabrication to allow the separation of slag and alloy components of the melt.

  11. Waste form development for use with ORNL waste treatment facility sludge

    SciTech Connect

    Abotsi, G.M.K.; Bostick, W.D.

    1996-05-01

    A sludge that simulates Water Softening Sludge number 5 (WSS number 5 filtercake) at Oak Ridge National Laboratory was prepared and evaluated for its thermal behavior, volume reduction, stabilization, surface area and compressive strength properties. Compaction of the surrogate waste and the calcium oxide (produced by calcination) in the presence of paraffin resulted in cylindrical molds with various degrees of stability. This work has demonstrated that surrogate WSS number 5 at ORNL can be successfully stabilized by blending it with about 35 percent paraffin and compacting the mixture at 8000 psi. This compressive strength of the waste form is sufficient for temporary storage of the waste while long-term storage waste forms are developed. Considering the remarkable similarity between the surrogate and the actual filtercake, the findings of this project should be useful for treating the sludge generated by the waste treatment facility at ORNL.

  12. Technical area status report for low-level mixed waste final waste forms. Volume 2, Appendices

    SciTech Connect

    Mayberry, J.L.; Huebner, T.L.; Ross, W.; Nakaoka, R.; Schumacher, R.; Cunnane, J.; Singh, D.; Darnell, R.; Greenhalgh, W.

    1993-08-01

    This report presents information on low-level mixed waste forms.The descriptions of the low-level mixed waste (LLMW) streams that are considered by the Mixed Waste Integrated Program (MWIP) are given in Appendix A. This information was taken from descriptions generated by the Mixed Waste Treatment Program (MWTP). Appendix B provides a list of characteristic properties initially considered by the Final Waste Form (FWF) Working Group (WG). A description of facilities available to test the various FWFs discussed in Volume I of DOE/MWIP-3 are given in Appendix C. Appendix D provides a summary of numerous articles that were reviewed on testing of FWFS. Information that was collected by the tests on the characteristic properties considered in this report are documented in Appendix D. The articles reviewed are not a comprehensive list, but are provided to give an indication of the data that are available.

  13. Transuranic waste form characterization and data base. Executive summary

    SciTech Connect

    Not Available

    1980-09-30

    The Transuranic Waste Form Characterization and Data Base (Volume 1) provides a wide range of information from which a comprehensive data base can be established and from which standards and criteria can be developed for the present NRC waste management program. Supplementary information on each of the areas discussed in Volume 1 is presented in Appendices A through K (Volumes 2 and 3). The structure of the study (Volume 1) is outlined and appendices of Volumes 2 and 3 correlate with each main section of the report. The Executive Summary reviews the sources, quantities, characteristics and treatment of transuranic wastes in the United States. Due to the variety of potential treatment processes for transuranic wastes, the end products for long-term storage may have corresponding variations in quantities and characteristics.

  14. Ceramic waste forms for fuel-containing masses at Chernobyl

    SciTech Connect

    Oversby, V.M.

    1994-05-01

    The fuel materials originally in the core of the Chernobyl Unit 4 reactor are now present within the Ukrytie in three major forms: (1) very fine particles of fuel dispersed as dust (about 10 tonnes), (2) fragments of the destroyed core, and (3) lavas containing fuel, cladding, and other materials. All of these materials will need to be immobilized into waste forms suitable for final disposal. We propose a ceramic waste form system that could accommodate all three waste types with a single set of processing equipment. The waste form would include the mineral zirconolite for immobilization of actinide materials (including uranium), perovskite, nepheline, spinel, and other phases as dictated by the chemistry of the lava masses. Waste loadings as high as 50% U can be achieved if pyrochlore, a close relative of zirconolite, is used as the U host. The ceramic immobilization could be achieved with low additions of inert chemicals to minimize the final disposal volume while ensuring a durable product. The sequence of processing would be to collect and immobilize the fuel dust first. This material will require minimal preprocessing and will provide experience in the handling of the fuel materials. Core fragments would be processed next, using a cryogenic crushing stage to reduce the size prior to adding ceramic additives. The lavas would be processed last, which is compatible with the likely sequence of availability of materials and with the complexity of the operations. The lavas will require more adjustment of chemical additive composition than the other streams to ensure that the desired phases are produced in the waste form.

  15. Results of field testing of waste forms using lysimeters

    SciTech Connect

    McConnell, J.W., Jr.; Rogers, R.D.

    1988-01-01

    The purpose of the field testing task, using lysimeter arrays, is to expose samples of solidified resin waste to the actual physical, chemical, and microbiological conditions of disposal enviroment. Wastes used in the experiment include a mixture of synthetic organic ion exchange resins and a mixture of organic exchange resins and an inorganic zeolite. Solidification agents used to produce the 4.8-by 7.6-cm cylindrical waste forms used in the study were Portland Type I-II cement and Dow vinyl ester-styrene. Seven of these waste forms were stacked end-to-end and inserted into each lysimeter to provide a 1-L volume. There are 10 lysimeters, 5 at ORNL and 5 at ANL-E. Lysimeters used in this study were designed to be self-contained units which will be disposed at the termination of the 20-year study. Each is a 0.91-by 3.12-m right-circular cylinder divided into an upper compartment, which contains fill material, waste forms, and instrumentation, and an empty lower compartment, which collects leachate. Four lysimeters at each site are filled with soil, while a fifth (used as a control) is filled with inert silica oxide sand. Instrumentation within each lysimeter includes porous cup soil-water samplers and soil moisture/temperature probes. The probes are connected to an on-site data acquisition and storage system (DAS) which also collects data from a field meteorological station located at each site. 9 refs.

  16. The Ceramic Waste Form Process at Idaho National Laboratory

    SciTech Connect

    Stephen Priebe

    2007-05-01

    The treatment of spent nuclear fuel for disposition using an electrometallurgical technique results in two high-level waste forms: a ceramic waste form (CWF) and a metal waste form. Reactive metal fuel constituents, including all the transuranic metals and the majority of the fission products remain in the salt as chlorides and are processed into the CWF. The solidified salt is containerized and transferred to the CWF process where it is ground in an argon atmosphere. Zeolite 4A is ground and then dried in a mechanically-fluidized dryer. The salt and zeolite are mixed in a V-mixer and heated to 500°C to occlude the salt into the structure of the zeolite. The salt-loaded zeolite is cooled, mixed with borosilicate glass frit, and transferred to a crucible, which is placed in a furnace and heated to 925°C. During this process, known as pressureless consolidation, the zeolite is converted to the final sodalite form and the glass thoroughly encapsulates the sodalite, producing a dense, leach-resistant final waste form.

  17. COMSOL MULTIPHYSICS MODEL FOR DWPF CANISTER FILLING

    SciTech Connect

    Kesterson, M.

    2011-03-31

    The purpose of this work was to develop a model that can be used to predict temperatures of the glass in the Defense Waste Processing Facility (DWPF) canisters during filling and cooldown. Past attempts to model these processes resulted in large (>200K) differences in predicted temperatures compared to experimentally measured temperatures. This work was therefore intended to also generate a model capable of reproducing the experimentally measured trends of the glass/canister temperature during filling and subsequent cooldown of DWPF canisters. To accomplish this, a simplified model was created using the finite element modeling software COMSOL Multiphysics which accepts user defined constants or expressions to describe material properties. The model results were compared to existing experimental data for validation. A COMSOL Multiphysics model was developed to predict temperatures of the glass within DWPF canisters during filling and cooldown. The model simulations and experimental data were in good agreement. The largest temperature deviations were {approx}40 C for the 87inch thermocouple location at 3000 minutes and during the initial cooldown at the 51 inch location occurring at approximately 600 minutes. Additionally, the model described in this report predicts the general trends in temperatures during filling and cooling observed experimentally. However, the model was developed using parameters designed to fit a single set of experimental data. Therefore, Q-loss is not currently a function of pour rate and pour temperature. Future work utilizing the existing model should include modifying the Q-loss term to be variable based on flow rate and pour temperature. Further enhancements could include eliminating the Q-loss term for a user defined convection where Navier-Stokes does not need to be solved in order to have convection heat transfer.

  18. Degradation modeling of the ANL ceramic waste form

    SciTech Connect

    Fanning, T. H.; Morss, L. R.

    2000-03-28

    A ceramic waste form composed of glass-bonded sodalite is being developed at Argonne National Laboratory (ANL) for immobilization and disposition of the molten salt waste stream from the electrometallurgical treatment process for metallic DOE spent nuclear fuel. As part of the spent fuel treatment program at ANL, a model is being developed to predict the long-term release of radionuclides under repository conditions. Dissolution tests using dilute, pH-buffered solutions have been conducted at 40, 70, and 90 C to determine the temperature and pH dependence of the dissolution rate. Parameter values measured in these tests have been incorporated into the model, and preliminary repository performance assessment modeling has been completed. Results indicate that the ceramic waste form should be acceptable in a repository environment.

  19. Status of the Multipurpose Canister (MPC) Project

    SciTech Connect

    Hopper, J.P.

    1996-03-01

    The multipurpose canister (MPC) project represents a cornerstone of the current U.S. Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM) program for handling spent nuclear fuel. The MPC and associated support equipment is being designed to accommodate the requirements for not only storage and transport but also for the specified disposal requirements of the mined geologic repository system. The phase 1 design effort for the MPC system, being performed by the Westinghouse team on behalf of TRW Environmental Safety Systems (TESS), the OCRWM management & operating (M&O) contractor, is on schedule for delivery of completed safety analysis reports (SARs) in April 1996.

  20. LEACHING BOUNDARY IN CEMENT-BASED WASTE FORMS

    EPA Science Inventory

    Cement-based fixation systems are among the most commonly employed stabilization/solidification techniques. These cement haste mixtures, however, are vulnerable to ardic leaching solutions. Leaching of cement-based waste forms in acetic acid solutions with different acidic streng...

  1. Method of making nanostructured glass-ceramic waste forms

    SciTech Connect

    Gao, Huizhen; Wang, Yifeng; Rodriguez, Mark A.; Bencoe, Denise N.

    2014-07-08

    A waste form for and a method of rendering hazardous materials less dangerous is disclosed that includes fixing the hazardous material in nanopores of a nanoporous material, reacting the trapped hazardous material to render it less volatile/soluble, and vitrifying the nanoporous material containing the less volatile/soluble hazardous material.

  2. LEACHING BOUNDARY IN CEMENT-BASED WASTE FORMS

    EPA Science Inventory

    Cement-based fixation systems are among the most commonly employed stabilization/solidification techniques. These cement haste mixtures, however, are vulnerable to ardic leaching solutions. Leaching of cement-based waste forms in acetic acid solutions with different acidic streng...

  3. Getters for improved technetium containment in cementitious waste forms.

    PubMed

    Asmussen, R Matthew; Pearce, Carolyn I; Miller, Brian W; Lawter, Amanda R; Neeway, James J; Lukens, Wayne W; Bowden, Mark E; Miller, Micah A; Buck, Edgar C; Serne, R Jeffery; Qafoku, Nikolla P

    2018-01-05

    A cementitious waste form, Cast Stone, is a possible candidate technology for the immobilization of low activity nuclear waste (LAW) at the Hanford site. This work focuses on the addition of getter materials to Cast Stone that can sequester Tc from the LAW, and in turn, lower Tc release from the Cast Stone. Two getters which produce different products upon sequestering Tc from LAW were tested: Sn(II) apatite (Sn-A) that removes Tc as a Tc(IV)-oxide and potassium metal sulfide (KMS-2) that removes Tc as a Tc(IV)-sulfide species, allowing for a comparison of stability of the form of Tc upon entering the waste form. The Cast Stone with KMS-2 getter had the best performance with addition equivalent to ∼0.08wt% of the total waste form mass. The observed diffusion (Dobs) of Tc decreased from 4.6±0.2×10(-12)cm(2)/s for Cast Stone that did not contain a getter to 5.4±0.4×10(-13)cm(2)/s for KMS-2 containing Cast Stone. It was found that Tc-sulfide species are more stable against re-oxidation within getter containing Cast Stone compared with Tc-oxide and is the origin of the decrease in Tc Dobs when using the KMS-2. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Performance of NDA techniques on a vitrified waste form

    SciTech Connect

    Hurd, J.R.; Veazey, G.W.; Prettyman, T.H.; Mercer, D.J.; Ricketts, T.E.; Nakaoka, R.K.

    1997-11-01

    Rocky Flats Environmental Technology Site (RFETS) is currently considering the use of vitrified transuranic (TRU)-waste forms for the final disposition of several waste materials. To date, however, little nondestructive assay (NDA) data have been acquired in the general NDA community to assist in this endeavor. This paper describes the efforts to determine constraints and operating parameters for using NDA instrumentation on vitrified waste. The present study was conducted on a sample composed of a plutonium-contaminated ash, similar to that found in the RFETS inventory, and a borosilicate-based glass. The vitrified waste item was fabricated at Los Alamos National Laboratory (LANL) using methods and equipment similar to those being proposed by RFETS to treat their ash material. The focus of this study centered on the segmented gamma scanner (SGS) with 1/2-inch collimation, a technique that is presently available at RFETS. The accuracy and precision of SGS technology was evaluated, with particular attention to bias issues involving matrix geometry, homogeneity, and attenuation. Tomographic gamma scanning was utilized in the determination of the waste form homogeneity. A thermal neutron technique was also investigated and comparisons made with the gamma results.

  5. OCRWM Bulletin: Westinghouse begins designing multi-purpose canister

    SciTech Connect

    1995-09-01

    This publication consists of two parts: OCRWM (Office of Civilian Radioactive Waste Management) Bulletin; and Of Mountains & Science which has articles on the Yucca Mountain project. The OCRWM provides information about OCRWM activities and in this issue has articles on multi-purpose canister design, and transportation cask trailer.

  6. Desludging of N Reactor fuel canisters: Analysis, Test, and data requirements

    SciTech Connect

    Johnson, A.B. Jr.

    1996-01-01

    The N Reactor fuel is currently stored in canisters in the K East (KE) and K West (KW) Basins. In KE, the canisters have open tops; in KW, the cans have sealed lids, but are vented to release gases. Corrosion products have formed on exposed uranium metal fuel, on carbon steel basin component surfaces, and on aluminum alloy canister surfaces. Much of the corrosion product is retained on the corroding surfaces; however, large inventories of particulates have been released. Some of the corrosion product particulates form sludge on the basin floors; some particulates are retained within the canisters. The floor sludge inventories are much greater in the KE Basin than in the KW Basin because KE Basin operated longer and its water chemistry was less controlled. Another important factor is the absence of lids on the KE canisters, allowing uranium corrosion products to escape and water-borne species, principally iron oxides, to settle in the canisters. The inventories of corrosion products, including those released as particulates inside the canisters, are only beginning to be characterized for the closed canisters in KW Basin. The dominant species in the KE floor sludge are oxides of aluminum, iron, and uranium. A large fraction of the aluminum and uranium floor sludge particulates may have been released during a major fuel segregation campaign in the 1980s, when fuel was emptied from 4990 canisters. Handling and jarring of the fuel and aluminum canisters seems likely to have released particulates from the heavily corroded surfaces. Four candidate methods are discussed for dealing with canister sludge emerged in the N Reactor fuel path forward: place fuel in multi-canister overpacks (MCOs) without desludging; drill holes in canisters and drain; drill holes in canisters and flush with water; and remove sludge and repackage the fuel.

  7. Ceramic waste form for residues from molten salt oxidation of mixed wastes

    SciTech Connect

    Van Konynenburg, R.A.; Hopper, R.W.; Rard, J.A.

    1995-11-01

    A ceramic waste form based on Synroc-D is under development for the incorporation of the mineral residues from molten salt oxidation treatment of mixed low-level wastes. Samples containing as many as 32 chemical elements have been fabricated, characterized, and leach-tested. Universal Treatment Standards have been satisfied for all regulated elements except and two (lead and vanadium). Efforts are underway to further improve chemical durability.

  8. Status of ceramic waste form degradation and radionuclide release modeling.

    SciTech Connect

    Fanning, T. H.; Ebert, W. L.; Frank, S. M.; Hash, M. C.; Morris, E. E.; Morss, L. R.; O'Holleran, T. P.; Wigeland, R. A.

    2003-02-26

    As part of the spent fuel treatment program at Argonne National Laboratory (ANL), a ceramic waste form is being developed for disposition of the salt waste stream generated during the treatment process. Ceramic waste form (CWF) degradation and radionuclide release modeling is being carried out for the purpose of estimating the impact of the CWF on the performance of the proposed repository at Yucca Mountain. The CWF is composed of approximately 75 wt% salt-loaded sodalite encapsulated in 25 wt% glass binder. Most radionuclides are present as small inclusion phases in the glass. Since the release of radionuclides can only occur as the glass and sodalite phases dissolve, the dissolution rates of the glass and sodalite phases are modeled to provide an upper bound to radionuclide release rates from the CWF. Transition-state theory for the dissolution of aluminosilicate minerals provides a mechanistic basis for the CWF degradation model, while model parameters are obtained by experimental measurements. Performance assessment calculations are carried out using the engineered barrier system model from the Total System Performance Assessment--Viability Assessment (TSPA-VA) for the proposed repository at Yucca Mountain. The analysis presented herein suggests that the CWF will perform in the repository environment in a manner that is similar to other waste forms destined for the repository.

  9. Polyethylene encapsulatin of nitrate salt wastes: Waste form stability, process scale-up, and economics

    SciTech Connect

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1991-07-01

    A polyethylene encapsulation system for treatment of low-level radioactive, hazardous, and mixed wastes has been developed at Brookhaven National Laboratory. Polyethylene has several advantages compared with conventional solidification/stabilization materials such as hydraulic cements. Waste can be encapsulated with greater efficiency and with better waste form performance than is possible with hydraulic cement. The properties of polyethylene relevant to its long-term durability in storage and disposal environments are reviewed. Response to specific potential failure mechanisms including biodegradation, radiation, chemical attack, flammability, environmental stress cracking, and photodegradation are examined. These data are supported by results from extensive waste form performance testing including compressive yield strength, water immersion, thermal cycling, leachability of radioactive and hazardous species, irradiation, biodegradation, and flammability. The bench-scale process has been successfully tested for application with a number of specific problem'' waste streams. Quality assurance and performance testing of the resulting waste form confirmed scale-up feasibility. Use of this system at Rocky Flats Plant can result in over 70% fewer drums processed and shipped for disposal, compared with optimal cement formulations. Based on the current Rocky Flats production of nitrate salt per year, polyethylene encapsulation can yield an estimated annual savings between $1.5 million and $2.7 million, compared with conventional hydraulic cement systems. 72 refs., 23 figs., 16 tabs.

  10. Demonstration of a Solution Film Leak Test Technique and Equipment for the S00645 Canister Closure

    SciTech Connect

    Cannell, G.R.

    1999-10-07

    The purpose of this effort was to demonstrate that the SFT technique, when adapted to a DWPF canister nozzle, is capable of detecting leaks not meeting the Waste Acceptance Product Specifications (WAPS) acceptance criterion.

  11. Characterization of the Defense Waste Processing Facility (DWPF) Environmental Assessment (EA) glass Standard Reference Material. Revision 1

    SciTech Connect

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Crawford, C.L.; Pickett, M.A.

    1993-06-01

    Liquid high-level nuclear waste at the Savannah River Site (SRS) will be immobilized by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Other waste form producers, such as West Valley Nuclear Services (WVNS) and the Hanford Waste Vitrification Project (HWVP), will also immobilize high-level radioactive waste in borosilicate glass. The canistered waste will be stored temporarily at each facility for eventual permanent disposal in a geologic repository. The Department of Energy has defined a set of requirements for the canistered waste forms, the Waste Acceptance Product Specifications (WAPS). The current Waste Acceptance Primary Specification (WAPS) 1.3, the product consistency specification, requires the waste form producers to demonstrate control of the consistency of the final waste form using a crushed glass durability test, the Product Consistency Test (PCI). In order to be acceptable, a waste glass must be more durable during PCT analysis than the waste glass identified in the DWPF Environmental Assessment (EA). In order to supply all the waste form producers with the same standard benchmark glass, 1000 pounds of the EA glass was fabricated. The chemical analyses and characterization of the benchmark EA glass are reported. This material is now available to act as a durability and/or redox Standard Reference Material (SRM) for all waste form producers.

  12. Electrochemical Corrosion Studies for Modeling Metallic Waste Form Release Rates

    SciTech Connect

    Poineau, Frederic; Tamalis, Dimitri

    2016-08-01

    The isotope 99Tc is an important fission product generated from nuclear power production. Because of its long half-life (t1/2 = 2.13 ∙ 105 years) and beta-radiotoxicity (β⁻ = 292 keV), it is a major concern in the long-term management of spent nuclear fuel. In the spent nuclear fuel, Tc is present as an alloy with Mo, Ru, Rh, and Pd called the epsilon-phase, the relative amount of which increases with fuel burn-up. In some separation schemes for spent nuclear fuel, Tc would be separated from the spent fuel and disposed of in a durable waste form. Technetium waste forms under consideration include metallic alloys, oxide ceramics and borosilicate glass. In the development of a metallic waste form, after separation from the spent fuel, Tc would be converted to the metal, incorporated into an alloy and the resulting waste form stored in a repository. Metallic alloys under consideration include Tc–Zr alloys, Tc–stainless steel alloys and Tc–Inconel alloys (Inconel is an alloy of Ni, Cr and iron which is resistant to corrosion). To predict the long-term behavior of the metallic Tc waste form, understanding the corrosion properties of Tc metal and Tc alloys in various chemical environments is needed, but efforts to model the behavior of Tc metallic alloys are limited. One parameter that should also be considered in predicting the long-term behavior of the Tc waste form is the ingrowth of stable Ru that occurs from the radioactive decay of 99Tc (99Tc → 99Ru + β⁻). After a geological period of time, significant amounts of Ru will be present in the Tc and may affect its corrosion properties. Studying the effect of Ru on the corrosion behavior of Tc is also of importance. In this context, we studied the electrochemical behavior of Tc metal, Tc-Ni alloys (to model Tc-Inconel alloy) and Tc-Ru alloys in acidic media. The study of Tc-U alloys has also been performed in order to better understand the

  13. Integrated Waste Management Strategy and Radioactive Waste Forms for the 21st Century

    SciTech Connect

    Dirk Gombert; Jay Roach

    2007-03-01

    The U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP) was announced in 2006. As currently envisioned, GNEP will be the basis for growth of nuclear energy worldwide, using a closed proliferation-resistant fuel cycle. The Integrated Waste Management Strategy (IWMS) is designed to ensure that all wastes generated by fuel fabrication and recycling will have a routine disposition path making the most of feedback to fuel and recycling operations to eliminate or minimize byproducts and wastes. If waste must be generated, processes will be designed with waste treatment in mind to reduce use of reagents that complicate stabilization and minimize volume. The IWMS will address three distinct levels of technology investigation and systems analyses and will provide a cogent path from (1) research and development (R&D) and engineering scale demonstration, (Level I); to (2) full scale domestic deployment (Level II); and finally to (3) establishing an integrated global nuclear energy infrastructure (Level III). The near-term focus of GNEP is on achieving a basis for large-scale commercial deployment (Level II), including the R&D and engineering scale activities in Level I that are necessary to support such an accomplishment. Throughout these levels is the need for innovative thinking to simplify, including regulations, separations and waste forms to minimize the burden of safe disposition of wastes on the fuel cycle.

  14. Crystallization behavior during melt-processing of ceramic waste forms

    NASA Astrophysics Data System (ADS)

    Tumurugoti, Priyatham; Sundaram, S. K.; Misture, Scott T.; Marra, James C.; Amoroso, Jake

    2016-05-01

    Multiphase ceramic waste forms based on natural mineral analogs are of great interest for their high chemical durability, radiation resistance, and thermodynamic stability. Melt-processed ceramic waste forms that leverage existing melter technologies will broaden the available disposal options for high-level nuclear waste. This work reports on the crystallization behavior in selected melt-processed ceramics for waste immobilization. The phase assemblage and evolution of hollandite, zirconolite, pyrochlore, and perovskite type structures during melt processing were studied using thermal analysis, x-ray diffraction, and electron microscopy. Samples prepared by melting followed by annealing and quenching were analyzed to determine and measure the progression of the phase assemblage. Samples were melted at 1500 °C and heat-treated at crystallization temperatures of 1285 °C and 1325 °C corresponding to exothermic events identified from differential scanning calorimetry measurements. Results indicate that the selected multiphase composition partially melts at 1500 °C with hollandite coexisting as crystalline phase. Perovskite and zirconolite phases crystallized from the residual melt at temperatures below 1350 °C. Depending on their respective thermal histories, different quenched samples were found to have different phase assemblages including phases such as perovskite, zirconolite and TiO2.

  15. Preliminary waste form characteristics report Version 1.0. Revision 1

    SciTech Connect

    Stout, R.B.; Leider, H.R.

    1991-10-11

    This report focuses on radioactive waste form characteristics that will be used to design a waste package and an engineered barrier system (EBS) for a suitable repository as part of the Yucca Mountain Project. The term waste form refers to irradiated reactor fuel, other high-level waste (HLW) in various physical forms, and other radioactive materials (other than HLW) which are received for emplacement in a geologic repository. Any encapsulating of stabilizing matrix is also referred to as a waste form.

  16. Low sintering temperature glass waste forms for sequestering radioactive iodine

    DOEpatents

    Nenoff, Tina M.; Krumhansl, James L.; Garino, Terry J.; Ockwig, Nathan W.

    2012-09-11

    Materials and methods of making low-sintering-temperature glass waste forms that sequester radioactive iodine in a strong and durable structure. First, the iodine is captured by an adsorbant, which forms an iodine-loaded material, e.g., AgI, AgI-zeolite, AgI-mordenite, Ag-silica aerogel, ZnI.sub.2, CuI, or Bi.sub.5O.sub.7I. Next, particles of the iodine-loaded material are mixed with powdered frits of low-sintering-temperature glasses (comprising various oxides of Si, B, Bi, Pb, and Zn), and then sintered at a relatively low temperature, ranging from 425.degree. C. to 550.degree. C. The sintering converts the mixed powders into a solid block of a glassy waste form, having low iodine leaching rates. The vitrified glassy waste form can contain as much as 60 wt % AgI. A preferred glass, having a sintering temperature of 500.degree. C. (below the silver iodide sublimation temperature of 500.degree. C.) was identified that contains oxides of boron, bismuth, and zinc, while containing essentially no lead or silicon.

  17. Estimation of centerline temperature of the waste form for the rare earth waste generated from pyrochemical process

    NASA Astrophysics Data System (ADS)

    Choi, Jung-Hoon; Eun, Hee-Chul; Lee, Tae-Kyo; Lee, Ki-Rak; Han, Seung-Youb; Jeon, Min-Ku; Park, Hwan-Seo; Ahn, Do-Hee

    2017-01-01

    Estimation of centerline temperature of nuclear glass waste form for each waste stream is very essential in the period of storage because the centerline temperature being over its glass transition temperature results in the increase of leaching rate of radioactive nuclides due to the devitrification of glass waste form. Here, to verify the effects of waste form diameter and transuranic element content in the rare earth waste on the centerline temperature of the waste form, the surrogate rare earth glass waste generated from pyrochemical process was immobilized with SiO2sbnd Al2O3sbnd B2O3 glass frit system, and thermal properties of the rare earth glass waste form were determined by thermomechanical analysis and thermal conductivity analysis. The estimation of centerline temperature was carried out using the experimental thermal data and steady-state conduction equation in a long and solid cylinder type waste form. It was revealed that thermal stability of waste form in case of 0.3 m diameter was not affected by the TRU content even in the case of 80% TRU recovery ratio in the electrowinning process, meaning that the waste form of 0.3 m diameter is thermally stable due to the low centerline temperature relative to its glass transition temperature of the rare earth glass waste form.

  18. Cost analysis for recycling of contaminated stainless steel for use as HLW canisters

    SciTech Connect

    Rizkalla, E.J.; Bailey, M.; Moore, R.S.; D`Ambrosia, J.

    1997-12-31

    The US Department of Energy (DOE) Office of Waste Management evaluated the relative costs of utilizing radioactively contaminated stainless steel (RCSS) from out-of-service heat exchangers to fabricate high-level waste (HLW) canisters for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). DOE-SRS, Oak Ridge Operations (ORO), the Office of Science and Technology, and the Office of Environmental Restoration participated in and/or assisted the cost analysis effort. The analysis focused on the relative costs to the overall EM Program of two options which have been identified as plausible under this scenario: (1) disposal of the heat exchangers as low-level waste (LLW) in the E-Area vaults at Savannah River and purchase of non-RCSS canisters for DWPF; and (2) processing the heat exchangers into HLW canisters. Two alternatives within Option 2 were considered, one using the current HLW canister design and one using a new, two-plate design. The results of this cost analysis indicate that it is reasonable to expect that the total cost to DOE of utilizing SS heat exchangers from Savannah River to fabricate HLW canisters for DWPF may be less than or equal to the total cost of procuring HLW canisters fabricated from Virgin SS and disposing of the heat exchangers as LLW. On this basis, it would appear reasonable for DOE to pursue obtaining vendor bids for supplying RCSS HLW canisters in order to determine the best-value approach for DOE.

  19. COMSOL Multiphysics Model for HLW Canister Filling

    SciTech Connect

    Kesterson, M. R.

    2016-04-11

    The U.S. Department of Energy (DOE) is building a Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is being temporarily stored in 177 underground tanks. Efforts are being made to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. Wastes containing high concentrations of Al2O3 and Na2O can contribute to nepheline (generally NaAlSiO4) crystallization, which can sharply reduce the chemical durability of high level waste (HLW) glass. Nepheline crystallization can occur during slow cooling of the glass within the stainless steel canister. The purpose of this work was to develop a model that can be used to predict temperatures of the glass in a WTP HLW canister during filling and cooling. The intent of the model is to support scoping work in the laboratory. It is not intended to provide precise predictions of temperature profiles, but rather to provide a simplified representation of glass cooling profiles within a full scale, WTP HLW canister under various glass pouring rates. These data will be used to support laboratory studies for an improved understanding of the mechanisms of nepheline crystallization. The model was created using COMSOL Multiphysics, a commercially available software. The model results were compared to available experimental data, TRR-PLT-080, and were found to yield sufficient results for the scoping nature of the study. The simulated temperatures were within 60 ºC for the centerline, 0.0762m (3 inch) from centerline, and 0.2286m (9 inch) from centerline thermocouples once the thermocouples were covered with glass. The temperature difference between the experimental and simulated values reduced to 40 ºC, 4 hours after the thermocouple was covered, and down to 20 ºC, 6 hours after the thermocouple was covered

  20. Technical viability and development needs for waste forms and facilities

    SciTech Connect

    Pegg, I.; Gould, T.

    1996-05-01

    The objective of this breakout session was to provide a forum to discuss technical issues relating to plutonium-bearing waste forms and their disposal facilities. Specific topics for discussion included the technical viability and development needs associated with the waste forms and/or disposal facilities. The expected end result of the session was an in-depth (so far as the limited time would allow) discussion of key issues by the session participants. The session chairs expressed allowance for, and encouragement of, alternative points of view, as well as encouragement for discussion of any relevant topics not addressed in the paper presentations. It was not the intent of this session to recommend or advocate any one technology over another.

  1. Cesium incorporation in hollandite-rich multiphasic ceramic waste forms

    NASA Astrophysics Data System (ADS)

    Tumurugoti, P.; Clark, B. M.; Edwards, D. J.; Amoroso, Jake; Sundaram, S. K.

    2017-02-01

    Hollandite-rich multiphase waste form compositions processed by melt-solidification and spark plasma sintering (SPS) were characterized, compared, and validated for nuclear waste incorporation. Phase identification by x-ray diffraction (XRD) and electron back-scattered diffraction (EBSD) confirmed hollandite as the major phase present in these samples along with perovskite, pyrochlore and zirconolite. Distribution of selected elements observed by wavelength dispersive spectroscopy (WDS) maps indicated that Cs formed a secondary phase during SPS processing, which was considered undesirable. On the other hand, Cs partitioned into the hollandite phase in melt-processed samples. Further analysis of hollandite structure in melt-processed composition by selected area electron diffraction (SAED) revealed ordered arrangement of tunnel ions (Ba/Cs) and vacancies, suggesting efficient Cs incorporation into the lattice.

  2. Material Recover and Waste Form Development--2016 Accomplishments

    SciTech Connect

    Todd, Terry A.; Vienna, John; Paviet, Patricia

    2016-12-01

    The Material Recovery and Waste Form Development (MRWFD) Campaign under the U.S. Department of Energy (DOE) Fuel Cycle Technologies (FCT) Program is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress (April 2010). This MRWFD accomplishments report summarizes the results of the research and development (R&D) efforts performed within MRWFD in Fiscal Year (FY) 2016. Each section of the report contains an overview of the activities, results, technical point of contact, applicable references, and documents produced during the FY. This report briefly outlines campaign management and integration activities but primarily focuses on the many technical accomplishments of FY 2016. The campaign continued to use an engineering-driven, science-based approach to maintain relevance and focus.

  3. Technical area status report for low-level mixed waste final waste forms. Volume 1

    SciTech Connect

    Mayberry, J.L.; DeWitt, L.M.; Darnell, R.

    1993-08-01

    The Final Waste Forms (FWF) Technical Area Status Report (TASR) Working Group, the Vitrification Working Group (WG), and the Performance Standards Working Group were established as subgroups to the FWF Technical Support Group (TSG). The FWF TASR WG is comprised of technical representatives from most of the major DOE sites, the Nuclear Regulatory Commission (NRC), the EPA Office of Solid Waste, and the EPA`s Risk Reduction Engineering Laboratory (RREL). The primary activity of the FWF TASR Working Group was to investigate and report on the current status of FWFs for LLNM in this TASR. The FWF TASR Working Group determined the current status of the development of various waste forms described above by reviewing selected articles and technical reports, summarizing data, and establishing an initial set of FWF characteristics to be used in evaluating candidate FWFS; these characteristics are summarized in Section 2. After an initial review of available information, the FWF TASR Working Group chose to study the following groups of final waste forms: hydraulic cement, sulfur polymer cement, glass, ceramic, and organic binders. The organic binders included polyethylene, bitumen, vinyl ester styrene, epoxy, and urea formaldehyde. Section 3 provides a description of each final waste form. Based on the literature review, the gaps and deficiencies in information were summarized, and conclusions and recommendations were established. The information and data presented in this TASR are intended to assist the FWF Production and Assessment TSG in evaluating the Technical Task Plans (TTPs) submitted to DOE EM-50, and thus provide DOE with the necessary information for their FWF decision-making process. This FWF TASR will also assist the DOE and the MWIP in establishing the most acceptable final waste forms for the various LLMW streams stored at DOE facilities.

  4. Transuranic contaminated waste form characterization and data base

    SciTech Connect

    Kniazewycz, B.G.; McArthur, W.C.

    1980-07-01

    This volume contains 5 appendices. Title listing are: technologies for recovery of transuranics; nondestructive assay of TRU contaminated wastes; miscellaneous waste characteristics; acceptance criteria for TRU waste; and TRU waste treatment technologies.

  5. Preparation of plutonium waste forms with ICPP calcined high-level waste

    SciTech Connect

    Staples, B.A.; Knecht, D.A.; O`Holleran, T.P.

    1997-05-01

    Glass and glass-ceramic forms developed for the immobilization of calcined high-level wastes generated by Idaho Chemical Processing Plant (ICPP) fuel reprocessing activities have been investigated for ability to immobilize plutonium and to simultaneously incorporate calcined waste as an anti-proliferation barrier. Within the forms investigated, crystallization of host phases result in an increased loading of plutonium as well as its incorporation into potentially more durable phases than the glass. The host phases were initially formed and characterized with cerium (Ce{sup +4}) as a surrogate for plutonium (Pu{sup +4}) and samarium as a neutron absorber for criticality control. Verification of the surrogate testing results were then performed replacing cerium with plutonium. All testing was performed with surrogate calcined high-level waste. The results of these tests indicated that a potentially useful host phase, based on zirconia, can be formed either by devitrification or solid state reaction in the glass studied. This phase incorporates plutonium as well as samarium and the calcined waste becomes part of the matrix. Its ease of formation makes it potentially useful in excess plutonium dispositioning. Other durable host phases for plutonium and samarium, including zirconolite and zircon have been formed from zirconia or alumina calcine through cold press-sintering techniques and hot isostatic pressing. Host phase formation experiments conducted through vitrification or by cold press-sintering techniques are described and the results discussed. Recommendations are given for future work that extends the results of this study.

  6. Summary Report For The Analysis Of The Sludge Batch 7b (Macrobatch 9) DWPF Pour Stream Glass Sample For Canister S04023

    SciTech Connect

    Johnson, F. C.

    2013-11-18

    In order to comply with the Defense Waste Processing Facility (DWPF) Waste Form Compliance Plan for Sluldge Batch 7b, Savannah River National Laboratory (SRNL) personnel characterized the Defense Waste Processing Facility (DWPF) pour stream (PS) glass sample collected while filling canister S04023. This report summarizes the results of the compositional analysis for reportable oxides and radionuclides and the normalized Product Consistency Test (PCT) results. The PCT responses indicate that the DWPF produced glass that is significantly more durable than the Environmental Assessment glass.

  7. Support for DOE program in mineral waste-form development

    SciTech Connect

    Palmour, H. III; Hare, T.M.; Russ, J.C.; Batchelor, A.D.; Paisley, M.J.; Freed, L.E.

    1982-09-01

    This research investigation relates to sintered simulation ceramic waste forms of the generic SYNROC compositional type. Though they have been formulated with simulated wastes only, they serve as prototypes for potential hot, processed, crystalline waste forms whose combined thermodynamic stability and physical integrity are considered to render them capable of long-term imobilization of high-level radwastes under deep geologic disposal conditions. The problems involved are nontrivial, largely because of the very complex nature of the radwastes: a typical waste stream would contain more than 31 cation species. When the stabilizing matrix constituents are included, the final batch composition must successfully account (and find substitutional homes for some 35 different cation species. One of the important objectives of this study thus has been to develop a computer-based method for simulating these complex ion substitutions, and for calculating the resultant phase demands and batch formulations. Primary goals of the study have been (1) use of that computer simulation capability to incorporate rationally the radwaste ions from a specific waste stream (PW-7a) into the available SYNROC lattice sites and (2) utilization of existing ceramic processing and sintering methodologies to assure (and to understand) the attainment of high density, fine microstructure, full phase development and other features of the sintered product which are known to relate directly to its integrity and leach resistance. Though improved resistance to leaching has been a continuing goal, time and budget constraints have precluded initiation of any leachability studies of these new compositions during this contract period. 27 references, 15 figures, 6 tables.

  8. The Ceramic Waste Form Process at the Idaho National Laboratory

    SciTech Connect

    Ken Bateman; Stephen Priebe

    2006-08-01

    The treatment of spent nuclear fuel for disposition using an electrometallurgical technique results in two high-level waste forms: a ceramic waste form (CWF) and a metal waste form (MWF). The CWF is a composite of sodalite and glass, which stabilizes the active fission products (alkali, alkaline earths, and rare earths) and transuranic (TRU) elements. Reactive metal fuel constituents, including all the TRU metals and the majority of the fission products remain in the salt as chlorides and are processed into the CWF. The solidified salt is containerized and transferred to the CWF process where it is ground in an argon atmosphere. Zeolite 4A is dried in a mechanically-fluidized dryer to about 0.1 wt% moisture and ground to a particle-size range of 45µ to 250µ. The salt and zeolite are mixed in a V-mixer and heated to 500°C for about 18 hours. During this process, the salt occludes into the structure of the zeolite. The salt-loaded zeolite (SLZ) is cooled and then mixed with borosilicate glass frit with a comparable particle-size range. The SLZ/glass mixture is transferred to a crucible, which is placed in a furnace and heated to 925°C. During this process, known as pressureless consolidation, the zeolite is converted to the final sodalite form and the glass thoroughly encapsulates the sodalite, producing a dense, leach-resistant final waste form. During the last several years, changes have occurred to the process, including: particle size of input materials and conversion from hot isostatic pressing to pressureless consolidation, This paper is intended to provide the current status of the CWF process focusing on the adaptation to pressureless consolidation. Discussions will include impacts of particle size on final waste form and the pressureless consolidation cycle. A model will be presented that shows the heating and cooling cycles and the effect of radioactive decay heat on the amount of fission products that can be incorporated into the CWF.

  9. INITIAL CHARACTERIZATION AND PERFORMANCE EVALUATION OF A ZIRCONIUM-BASED METALLIC WASTE FORM

    SciTech Connect

    Kane, M; Robert Sindelar, R

    2008-09-30

    A metallic waste form or alloy system for immobilization of Zircaloy cladding hulls, Undissolved Solids (UDS), Technicium (Tc) metal and Transition Metal Fission Products (TMFP) waste stream materials from separations processes for commercial spent nuclear fuel has been developed, and initial characterization of the phase assemblage and composition, and corrosion testing under aqueous conditions has been completed for the waste form with various levels of surrogate waste species. The waste stream materials are those from processes being developed as part of the Separations Campaign under the Department of Energy's (DOE's) Global Nuclear Energy Partnership (GNEP) program. The development of waste forms for these materials is under the Waste Form Campaign.

  10. Immobilization of fission products in phosphate ceramic waste forms

    SciTech Connect

    Singh, D.; Wagh, A.

    1997-10-01

    Chemically bonded phosphate ceramics (CBPCs) have several advantages that make them ideal candidates for containing radioactive and hazardous wastes. In general, phosphates have high solid-solution capacities for incorporating radionuclides, as evidenced by several phosphates (e.g., monazites and apatites) that are natural analogs of radioactive and rare-earth elements. The phosphates have high radiation stability, are refractory, and will not degrade in the presence of internal heating by fission products. Dense and hard CBPCs can be fabricated inexpensively and at low temperature by acid-base reactions between an inorganic oxide/hydroxide powder and either phosphoric acid or an acid-phosphate solution. The resulting phosphates are extremely insoluble in aqueous media and have excellent long-term durability. CBPCs offer the dual stabilization mechanisms of chemical fixation and physical encapsulation, resulting in superior waste forms. The goal of this task is develop and demonstrate the feasibility of CBPCs for S/S of wastes containing fission products. The focus of this work is to develop a low-temperature CBPC immobilization system for eluted {sup 99}Tc wastes from sorption processes.

  11. Preliminary Transportation, Aging and Disposal Canister System Performance Specification

    SciTech Connect

    C.A Kouts

    2006-11-22

    This document provides specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system. A list of system specified components and ancillary components are included in Section 1.2. The TAD canister, in conjunction with specialized overpacks will accomplish a number of functions in the management and disposal of spent nuclear fuel. Some of these functions will be accomplished at purchaser sites where commercial spent nuclear fuel (CSNF) is stored, and some will be performed within the Office of Civilian Radioactive Waste Management (OCRWM) transportation and disposal system. This document contains only those requirements unique to applications within Department of Energy's (DOE's) system. DOE recognizes that TAD canisters may have to perform similar functions at purchaser sites. Requirements to meet reactor functions, such as on-site dry storage, handling, and loading for transportation, are expected to be similar to commercially available canister-based systems. This document is intended to be referenced in the license application for the Monitored Geologic Repository (MGR). As such, the requirements cited herein are needed for TAD system use in OCRWM's disposal system. This document contains specifications for the TAD canister, transportation overpack and aging overpack. The remaining components and equipment that are unique to the OCRWM system or for similar purchaser applications will be supplied by others.

  12. Waste Form Qualification Experience at the West Valley Demonstration Project

    SciTech Connect

    Palmer, R.A.; Misercola, A.J.

    2003-02-24

    Since 1996, the West Valley Demonstration Project (WVDP) has operated a slurry-fed ceramic melter to vitrify high-level nuclear waste (HLW) for the U.S. Department of Energy (DOE). More than 65 batches of HLW were mixed with glass-forming chemicals between June 1996 and August 2002 to make a ''qualified'' HLW form. The nuances of this procedure and the lessons learned from the application of the process will be provided in this paper to guide future producers of immobilized HLW.

  13. Tests with ceramic waste form materials made by pressureless consolidation.

    SciTech Connect

    Lewis, M. A.; Hash, M. C.; Hebden, A. S.; Ebert, W. L.

    2002-12-02

    A multiphase waste form referred to as the ceramic waste form (CWF) will be used to immobilize radioactively contaminated salt wastes recovered after the electrometallurgical treatment of spent sodium-bonded nuclear fuel. The CWF is made by first occluding salt in zeolite and then encapsulating the zeolite in a borosilicate binder glass. A variety of surrogate CWF materials were made using pressureless consolidation (PC) methods for comparison with CWF consolidated using a hot isostatic press (HIP) method and to study the effects of glass/zeolite batching ratio and processing conditions on the physical and chemical properties of the resulting materials. The data summarized in this report will also be used to support qualification of the PC CWF for disposal in the proposed federal high-level radioactive waste repository at Yucca Mountain. The phase composition and microstructure of HIP CWF and PC CWF are essentially identical: both are composed of about 70% sodalite, 25% binder glass, and a 5% total of inclusion phases (halite, nepheline, and various oxides and silicates). The primary difference is that PC CWF materials have higher porosities than HIP CWFs. The product consistency test (PCT) that was initially developed to monitor homogeneous glass waste forms was used to measure the chemical durabilities of the CWF materials. Series of replicate tests with several PC CWF materials indicate that the PCT can be conducted with the same precision with CWF materials as with borosilicate glasses. Short-term (7-day) PCTs were used to evaluate the repeatability of making the PC CWF and the effects of the glass/zeolite mass ratio, process temperature, and processing time on the chemical durability. Long-term (up to 1 year) PCTs were used to compare the durabilities of HIP and PC CWFs and to estimate the apparent solubility limit for the PC CWF that is needed for modeling. The PC and HIP CWF materials had similar disabilities, based on the release of silicon in long

  14. Dilute condition corrosion behavior of glass-ceramic waste form

    SciTech Connect

    Crum, Jarrod V.; Neeway, James J.; Riley, Brian J.; Zhu, Zihua; Olszta, Matthew J.; Tang, Ming

    2016-08-11

    Borosilicate glass-ceramics are being developed to immobilize high-level waste generated by aqueous reprocessing into a stable waste form. The corrosion behavior of this multiphase waste form is expected to be complicated by multiple phases and crystal-glass interfaces. A modified single-pass flow-through test was performed on polished monolithic coupons at a neutral pH (25 °C) and 90 °C for 33 d. The measured glass corrosion rates by micro analysis in the samples ranged from 0.019 to 0.29 g m-2 d-1 at a flow rate per surface area = 1.73 × 10-6 m s-1. The crystal phases (oxyapatite and Ca-rich powellite) corroded below quantifiable rates, by micro analysis. While, Ba-rich powellite corroded considerably in O10 sample. The corrosion rates of C1 and its replicate C20 were elevated an order of magnitude by mechanical stresses at crystal-glass interface caused by thermal expansion mismatch during cooling and unique morphology (oxyapatite clustering).

  15. Dilute condition corrosion behavior of glass-ceramic waste form

    DOE PAGES

    Crum, Jarrod V.; Neeway, James J.; Riley, Brian J.; ...

    2016-08-11

    Borosilicate glass-ceramics are being developed to immobilize high-level waste generated by aqueous reprocessing into a stable waste form. The corrosion behavior of this multiphase waste form is expected to be complicated by multiple phases and crystal-glass interfaces. A modified single-pass flow-through test was performed on polished monolithic coupons at a neutral pH (25 °C) and 90 °C for 33 d. The measured glass corrosion rates by micro analysis in the samples ranged from 0.019 to 0.29 g m-2 d-1 at a flow rate per surface area = 1.73 × 10-6 m s-1. The crystal phases (oxyapatite and Ca-rich powellite) corrodedmore » below quantifiable rates, by micro analysis. While, Ba-rich powellite corroded considerably in O10 sample. The corrosion rates of C1 and its replicate C20 were elevated an order of magnitude by mechanical stresses at crystal-glass interface caused by thermal expansion mismatch during cooling and unique morphology (oxyapatite clustering).« less

  16. Dilute condition corrosion behavior of glass-ceramic waste form

    NASA Astrophysics Data System (ADS)

    Crum, Jarrod V.; Neeway, James J.; Riley, Brian J.; Zhu, Zihua; Olszta, Matthew J.; Tang, Ming

    2016-12-01

    Borosilicate glass-ceramics are being developed to immobilize high-level waste generated by aqueous reprocessing into a stable waste form. The corrosion behavior of this multiphase waste form is expected to be complicated by multiple phases and crystal-glass interfaces. A modified single-pass flow-through test was performed on polished monolithic coupons at a neutral pH (25 °C) and 90 °C for 33 d. The measured glass corrosion rates by micro analysis in the samples ranged from 0.019 to 0.29 g m-2 d-1 at a flow rate per surface area = 1.73 × 10-6 m s-1. The crystal phases (oxyapatite and Ca-rich powellite) corroded below quantifiable rates, by micro analysis. While, Ba-rich powellite corroded considerably in O10 sample. The corrosion rates of C1 and its replicate C20 were elevated an order of magnitude by mechanical stresses at crystal-glass interface caused by thermal expansion mismatch during cooling and unique morphology (oxyapatite clustering).

  17. Crystalline ceramics: Waste forms for the disposal of weapons plutonium

    SciTech Connect

    Ewing, R.C.; Lutze, W.; Weber, W.J.

    1995-05-01

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (i) incorporation, partial burn-up and direct disposal of MOX-fuel; (ii) vitrification with defense waste and disposal as glass ``logs``; (iii) deep borehole disposal (National Academy of Sciences Report, 1994). The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

  18. Colloid formation during waste form reaction: implications for nuclear waste disposal

    USGS Publications Warehouse

    Bates, J. K.; Bradley, J.; Teetsov, A.; Bradley, C. R.; ten Brink, Marilyn Buchholtz

    1992-01-01

    Insoluble plutonium- and americium-bearing colloidal particles formed during simulated weathering of a high-level nuclear waste glass. Nearly 100 percent of the total plutonium and americium in test ground water was concentrated in these submicrometer particles. These results indicate that models of actinide mobility and repository integrity, which assume complete solubility of actinides in ground water, underestimate the potential for radionuclide release into the environment. A colloid-trapping mechanism may be necessary for a waste repository to meet long-term performance specifications.

  19. Colloid formation during waste form reaction: Implications for nuclear waste disposal

    USGS Publications Warehouse

    Bates, J. K.; Bradley, J.; Teetsov, A.; Bradley, C. R.; ten Brink, Marilyn Buchholtz

    1992-01-01

    Insoluble plutonium- and americium-bearing colloidal particles formed during simulated weathering of a high-level nuclear waste glass. Nearly 100 percent of the total plutonium and americium in test ground water was concentrated in these submicrometer particles. These results indicate that models of actinide mobility and repository integrity, which assume complete solubility of actinides in ground water, underestimate the potential for radionuclide release into the environment. A colloid-trapping mechanism may be necessary for a waste repository to meet long-term performance specifications.

  20. Fundamental Science-Based Simulation of Nuclear Waste Forms

    SciTech Connect

    Devanathan, Ramaswami; Gao, Fei; Sun, Xin; Khaleel, Mohammad A.

    2010-10-04

    This report presents a hierarchical multiscale modeling scheme based on two-way information exchange. To account for all essential phenomena in waste forms over geological time scales, the models have to span length scales from nanometer to kilometer and time scales from picoseconds to millenia. A single model cannot cover this wide range and a multi-scale approach that integrates a number of different at-scale models is called for. The approach outlined here involves integration of quantum mechanical calculations, classical molecular dynamics simulations, kinetic Monte Carlo and phase field methods at the mesoscale, and continuum models. The ultimate aim is to provide science-based input in the form of constitutive equations to integrated codes. The atomistic component of this scheme is demonstrated in the promising waste form xenotime. Density functional theory calculations have yielded valuable information about defect formation energies. This data can be used to develop interatomic potentials for molecular dynamics simulations of radiation damage. Potentials developed in the present work show a good match for the equilibrium lattice constants, elastic constants and thermal expansion of xenotime. In novel waste forms, such as xenotime, a considerable amount of data needed to validate the models is not available. Integration of multiscale modeling with experimental work is essential to generate missing data needed to validate the modeling scheme and the individual models. Density functional theory can also be used to fill knowledge gaps. Key challenges lie in the areas of uncertainty quantification, verification and validation, which must be performed at each level of the multiscale model and across scales. The approach used to exchange information between different levels must also be rigorously validated. The outlook for multiscale modeling of wasteforms is quite promising.

  1. Solid radioactive waste management facility design for managing CANDU{sup R} 600 MW nuclear generating station re-tube/refurbishment Waste Streams

    SciTech Connect

    Pontikakis, N.; Hopkins, J.; Scott, D.; Bajaj, V.; Nosella, L.

    2007-07-01

    The main design features of the re-tube canisters, waste handling equipment and waste containers designed by Atomic Energy of Canada Limited (AECL{sup R}) and implemented in support of the re-tube/refurbishment activities for Candu 600 MW nuclear generating stations are described in this paper. The re-tube/refurbishment waste characterization and the waste management principles, which form the basis of the design activities, are also briefly outlined. (authors)

  2. Engineering-Scale Demonstration of DuraLith and Ceramicrete Waste Forms

    SciTech Connect

    Josephson, Gary B.; Westsik, Joseph H.; Pires, Richard P.; Bickford, Jody; Foote, Martin W.

    2011-09-23

    To support the selection of a waste form for the liquid secondary wastes from the Hanford Waste Immobilization and Treatment Plant, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing on four candidate waste forms. Two of the candidate waste forms have not been developed to scale as the more mature waste forms. This work describes engineering-scale demonstrations conducted on Ceramicrete and DuraLith candidate waste forms. Both candidate waste forms were successfully demonstrated at an engineering scale. A preliminary conceptual design could be prepared for full-scale production of the candidate waste forms. However, both waste forms are still too immature to support a detailed design. Formulations for each candidate waste form need to be developed so that the material has a longer working time after mixing the liquid and solid constituents together. Formulations optimized based on previous lab studies did not have sufficient working time to support large-scale testing. The engineering-scale testing was successfully completed using modified formulations. Further lab development and parametric studies are needed to optimize formulations with adequate working time and assess the effects of changes in raw materials and process parameters on the final product performance. Studies on effects of mixing intensity on the initial set time of the waste forms are also needed.

  3. Leaching behavior of glass ceramic nuclear waste forms

    SciTech Connect

    Lokken, R.O.

    1981-11-01

    Glass ceramic waste forms have been investigated as alternatives to borosilicate glasses for the immobilization of high-level radioactive waste at Pacific Northwest Laboratory (PNL). Three glass ceramic systems were investigated, including basalt, celsian, and fresnoite, each containing 20 wt % simulated high-level waste calcine. Static leach tests were performed on seven glass ceramic materials and one parent glass (before recrystallization). Samples were leached at 90/sup 0/C for 3 to 28 days in deionized water and silicate water. The results, expressed in normalized elemental mass loss, (g/m/sup 2/), show comparable releases from celsian and fresnoite glass ceramics. Basalt glass ceramics demonstrated the lowest normalized elemental losses with a nominal release less than 2 g/m/sup 2/ when leached in polypropylene containers. The releases from basalt glass ceramics when leached in silicate water were nearly identical with those in deionized water. The overall leachability of celsian and fresnoite glass ceramics was improved when silicate water was used as the leachant.

  4. Production of sodalite waste forms by addition of glass

    SciTech Connect

    Pereira, C.

    1995-05-01

    Spent nuclear fuel can be treated in a molten salt electrorefiner for conversion into metal and mineral waste forms for geologic disposal. Sodalite is one of the mineral waste forms under study. Fission products in the molten salt are ion-exchanged into zeolite A, which is converted to sodalite and consolidated. Sodalite can be formed directly from mixtures of salt and zeolite A at temperatures above 975 K; however, nepheline is usually produced as a secondary phase. Addition of small amounts of glass frit to the mixture reduced nepheline formation significantly. Loss of fission products was not observed for reaction below 1000 K. Hot-pressing of the sodalite powders yielded dense pellets ({approximately}2.3 g/cm{sup 3}) without any loss of fission product species. Normalized release rates were below 1 g/m{sup 2}{center_dot}day for pre-washed samples in 28-day leach tests based on standard MCC-1 tests but increased with the presence of free salt on the sodalite.

  5. Leachability of decontamination reagents from cement waste forms

    SciTech Connect

    Piciulo, P.L.; Davis, M.S.; Adams, J.W.

    1984-11-26

    Brookhaven National Laboratory, in order to provide technical information needed by the US Nuclear Regulatory Commission to evaluate the adequacy of near-surface disposal of decontamination wstes, has begun to study the leachability of organic reagents from solidified simulated decontamination wastes. Laboratory-scale cement waste forms containing EDTA, picolinic acid or simulated LOMI decontamination reagent were leach tested. Samples containing an organic reagent on either mixed bed ion-exchange resins or anion exchange resins were tested. A fixed interval leach procedure was used, as well as the standard procedure ANS 16.1. The leachability indices measured for the release of the acid from resin/cement composites are: 10.1 for EDTA on mixed bed resins; 9.1 for picolinic acid on mixed bed resins; 9.2 for picolinic acid on anion exchange resins; 8.8 for picolinic acid in forms containing simulated low oxidation metallic ion (LOMI) reagent on mixed bed resins and 8.7 for picolinic acid in forms containing simulated LOMI reagent on anion exchange resins. The leachability indices measured varied with leach time and the data indicate that the release mechanism may not be simply diffusion controlled. 5 references, 2 tables.

  6. Proposed research and development plan for mixed low-level waste forms

    SciTech Connect

    O`Holleran, T.O.; Feng, X.; Kalb, P.

    1996-12-01

    The objective of this report is to recommend a waste form program plan that addresses waste form issues for mixed low-level waste (MLLW). The report compares the suitability of proposed waste forms for immobilizing MLLW in preparation for permanent near-surface disposal and relates them to their impact on the U.S. Department of Energy`s mixed waste mission. Waste forms are classified into four categories: high-temperature waste forms, hydraulic cements, encapsulants, and specialty waste forms. Waste forms are evaluated concerning their ability to immobilize MLLW under certain test conditions established by regulatory agencies and research institutions. The tests focused mainly on leach rate and compressive strength. Results indicate that all of the waste forms considered can be tailored to give satisfactory performance immobilizing large fractions of the Department`s MLLW inventory. Final waste form selection will ultimately be determined by the interaction of other, often nontechnical factors, such as economics and politics. As a result of this report, three top-level programmatic needs have been identified: (1) a basic set of requirements for waste package performance and disposal; (2) standardized tests for determining waste form performance and suitability for disposal; and (3) engineering experience operating production-scale treatment and disposal systems for MLLW.

  7. Improvement of Leaching Resistance of Low-level Waste Form in Korea

    SciTech Connect

    Kim, J.Y.; Lee, B.C.; Kim, C.L.

    2006-07-01

    Low-level liquid concentrate wastes including boric acid have been immobilized with paraffin wax using concentrate waste drying system in Korean nuclear power plants since 1995. Small amount of low density polyethylene (LDPE) was added to increase the leaching resistance of the existing paraffin waste form and the influence of LDPE on the leaching behavior of waste form was investigated. It was observed that the leaching of nuclides immobilized within paraffin waste form remarkably reduced as the content of LDPE increased. The acceptance criteria of paraffin waste form associated with leachability index and compressive strength after the leaching test were successfully satisfied with the help of LDPE. (authors)

  8. Naturally occurring crystalline phases: analogues for radioactive waste forms

    SciTech Connect

    Haaker, R.F.; Ewing, R.C.

    1981-01-01

    Naturally occurring mineral analogues to crystalline phases that are constituents of crystalline radioactive waste forms provide a basis for comparison by which the long-term stability of these phases may be estimated. The crystal structures and the crystal chemistry of the following natural analogues are presented: baddeleyite, hematite, nepheline; pollucite, scheelite;sodalite, spinel, apatite, monazite, uraninite, hollandite-priderite, perovskite, and zirconolite. For each phase in geochemistry, occurrence, alteration and radiation effects are described. A selected bibliography for each phase is included.

  9. Chromium speciation in hazardous, cement-based waste forms

    NASA Astrophysics Data System (ADS)

    Lee, J. F.; Bajt, S.; Clark, S. B.; Lamble, G. M.; Langton, C. A.; Oji, L.

    1995-02-01

    XANES and EXAFS techniques were used to determine the oxidation states and local structural environment of Cr in cement-based waste forms. Results show that Cr in untreated Portland cement formulations remains as toxic Cr 6+, while slag additives to the cement reduce Cr 6+ to the less toxic, less mobile Cr 3+ species. EXAFS analysis suggests that the Cr 6+ species is surrounded by four nearest oxygen atoms, while the reduced Cr 3+ sp ecies is surrounded by six oxygen atoms. The fitted CrO bond lengths for Cr 6+ and Cr 3+ species are around 1.66 and 1.98 Å, respectively.

  10. Round Robin Testing of the Ceramic Waste Form (CWF)

    SciTech Connect

    Herman, C.C.

    2001-10-02

    The Savannah River Technology Center (SRTC) has participated in a round robin testing program, which was conducted under the auspices of the Department of Energy's Tanks Focus Area (TFA) for Immobilization. The round robin, lead by Argonne National Laboratory (ANL), focused on leach testing data of the Ceramic Waste Form (CWF) using the Product Consistency Test (PCT) (ASTM C 1285) and the ANL developed Rapid Water Soluble (RWS) procedure. The CWF is a heterogeneous material comprised of about 70 percent sodalite, 25 percent borosilicate glass binder, 3 percent halite, and 2 percent mixed rare earth and actinide oxides, by mass.

  11. Remote Handled WIPP Canisters at Los Alamos National Laboratory Characterized for Retrieval

    SciTech Connect

    Griffin, J.; Gonzales, W.

    2007-07-01

    The Los Alamos National Laboratory (LANL) is pursuing retrieval, transportation, and disposal of 16 remote handled transuranic waste canisters stored below ground in shafts since 1994. These canisters were retrievably stored in the shafts to await Nuclear Regulatory Commission certification of the Model Number RH-TRU 72B transportation cask and authorization of the Waste Isolation Pilot Plant (WIPP) to accept the canisters for disposal. Retrieval planning included radiological characterization and visual inspection of the canisters to confirm historical records, verify container integrity, determine proper personnel protection for the retrieval operations, provide radiological dose and exposure rate data for retrieval operations, and to provide exterior radiological contamination data. The radiological characterization and visual inspection of the canisters was performed in May 2006. The effort required the development of remote techniques and equipment due to the potential for personnel exposure to radiological doses approaching 300 R/hr. Innovations included the use of two nested 1.5 meter (m) (5-feet [ft]) long concrete culvert pipes (1.1-m [42 inch (in.)] and 1.5-m [60-in] diameter, respectively) as radiological shielding and collapsible electrostatic dusting wands to collect radiological swipe samples from the annular space between the canister and shaft wall. Visual inspection indicated that the canisters are in good condition with little or no rust, the welded seams are intact, and ten of the canisters include hydrogen gas sampling equipment on the pintle that will have to be removed prior to retrieval. The visual inspection also provided six canister identification numbers that matched historical storage records. The exterior radiological data indicated alpha and beta contamination below LANL release criteria and radiological dose and exposure rates lower than expected based upon historical data and modeling of the canister contents. (authors)

  12. Development of Polymeric Waste Forms for the Encapsulation of Toxic Wastes Using an Emulsion-Encapsulation Based Process

    SciTech Connect

    Evans, R.; Quach, A.; Birnie, D. P.; Saez, A. E.; Ela, W. P.; Zeliniski, B. J. J.; Xia, G.; Smith, H.

    2003-01-01

    Developed technologies in vitrification, cement, and polymeric materials manufactured using flammable organic solvents have been used to encapsulate solid wastes, including low-level radioactive materials, but are impractical for high salt-content waste streams (Maio, 1998). In this work, we investigate an emulsification process for producing an aqueous-based polymeric waste form as a preliminary step towards fabricating hybrid organic/inorganic polyceram matrices. The material developed incorporates epoxy resin and polystyrene-butadiene (PSB) latex to produce a waste form that is non-flammable, light weight, of relatively low cost, and that can be loaded to a relatively high weight content of waste materials. Sodium nitrate was used as a model for the salt waste. Small-scale samples were manufactured and analyzed using leach tests designed to measure the diffusion coefficient and leachability index for the fastest diffusing species in the waste form, the salt ions. The microstructure and composition of the samples were probed using SEM/EDS techniques. The results show that some portion of the salt migrates towards the exterior surfaces of the waste forms during the curing process. A portion of the salt in the interior of the sample is contained in polymer corpuscles or sacs. These sacs are embedded in a polymer matrix phase that contains fine, well-dispersed salt crystals. The diffusion behavior observed in sections of the waste forms indicates that samples prepared using this emulsion process meet or exceed the leachability criteria suggested for low level radioactivity waste forms.

  13. Stability of High-Level Radioactive Waste Forms

    SciTech Connect

    Besmann, T.M.

    2001-06-22

    High-level waste (HLW) glass compositions, processing schemes, limits on waste content, and corrosion/dissolution release models are dependent on an accurate knowledge of melting temperatures and thermochemical values. Unfortunately, existing models for predicting these temperatures are empirically-based, depending on extrapolations of experimental information. In addition, present models of leaching behavior of glass waste forms use simplistic assumptions or experimentally measured values obtained under non-realistic conditions. There is thus a critical need for both more accurate and more widely applicable models for HLW glass behavior, which this project addressed. Significant progress was made in this project on modeling HLW glass. Borosilicate glass was accurately represented along with the additional important components that contain iron, lithium, potassium, magnesium, and calcium. The formation of crystalline inclusions in the glass, an issue in Hanford HLW formulations, was modeled and shown to be predictive. Thus the results of this work have already demonstrated practical benefits with the ability to map compositional regions where crystalline material forms, and therefore avoid that detrimental effect. With regard to a fundamental understanding, added insights on the behavior of the components of glass have been obtained, including the potential formation of molecular clusters. The EMSP project had very significant effects beyond the confines of Environmental Management. The models developed for glass have been used to solve a very costly problem in the corrosion of refractories for glass production. The effort resulted in another laboratory, Sandia National Laboratories-Livermore, to become conversant in the techniques and to apply those through a DOE Office of Industrial Technologies project joint with PPG Industries. The glass industry as a whole is now cognizant of these capabilities, and there is a Glass Manufacturer's Research Institute proposal

  14. Canister storage building trade study. Final report

    SciTech Connect

    Swenson, C.E.

    1995-05-01

    This study was performed to evaluate the impact of several technical issues related to the usage of the Canister Storage Building (CSB) to safely stage and store N-Reactor spent fuel currently located at K-Basin 100KW and 100KE. Each technical issue formed the basis for an individual trade study used to develop the ROM cost and schedule estimates. The study used concept 2D from the Fluor prepared ``Staging and Storage Facility (SSF) Feasibility Report`` as the basis for development of the individual trade studies.

  15. Radiation damage of hollandite in multiphase ceramic waste forms

    NASA Astrophysics Data System (ADS)

    Clark, Braeden M.; Tumurgoti, Priyatham; Sundaram, S. K.; Amoroso, Jake W.; Marra, James C.; Shutthanandan, Vaithiyalingam; Tang, Ming

    2017-10-01

    Radiation damage was simulated in multiphase titanate-based ceramic waste forms using an ion accelerator to generate high energy alpha particles (He+) and an ion implanter to generate 7 MeV gold (Au3+) particles. X-ray diffraction and transmission electron microscopy were used to characterize the damaged surfaces and nearby regions. Simulated multiphase ceramic waste forms were prepared using two processing methods: spark plasma sintering and melt-processing. Both processing methods produced ceramics with similar phase assemblages consisting of hollandite-, zirconolite/pyrochlore-, and perovskite-type phases. The measured heavy ion (Au3+) penetration depth was less in spark plasma sintered samples than in melt-processed samples. Structural breakdown of the hollandite phase occurred under He+ irradiation indicated by the presence of x-ray diffraction peaks belonging to TiO2, BaTiO5, and other hollandite related phases (Ba2Ti9O20). The composition of the constituent hollandite phase affected the extent of damage induced by Au3+ ions.

  16. Material Recovery and Waste Form Development FY 2015 Accomplishments Report

    SciTech Connect

    Todd, Terry Allen; Braase, Lori Ann

    2015-11-01

    The Material Recovery and Waste Form Development (MRWFD) Campaign under the U.S. Department of Energy (DOE) Fuel Cycle Technologies (FCT) Program is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The FY 2015 Accomplishments Report provides a highlight of the results of the research and development (R&D) efforts performed within the MRWFD Campaign in FY-14. Each section contains a high-level overview of the activities, results, technical point of contact, applicable references, and documents produced during the fiscal year. This report briefly outlines campaign management and integration activities, but primarily focuses on the many technical accomplishments made during FY-15. The campaign continued to utilize an engineering driven-science-based approach to maintain relevance and focus. There was increased emphasis on development of technologies that support near-term applications that are relevant to the current once-through fuel cycle.

  17. Candidate waste forms for immobilisation of waste chloride salt from pyroprocessing of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Vance, E. R.; Davis, J.; Olufson, K.; Chironi, I.; Karatchevtseva, I.; Farnan, I.

    2012-01-01

    Sodalite/glass bodies prepared by hot isostatic pressing (HIPing) at ˜850 °C/100 MPa are candidates for immobilising fission product-bearing waste KCl-LiCl pyroprocessing salts. To study the capacity of sodalite to structurally incorporate such pyroprocessing salts, K, Li, Cs, Sr, Ba and La were individually targeted for substitution in a Na site in sodalite (Na vacancies targeted as charge compensators for alkaline and rare earths) and studied by X-ray diffraction and scanning electron microscopy after sintering in the range of 800-1000 °C. K and Li appeared to enter the sodalite, but Cs, Sr and Ba formed aluminosilicate phases and La formed an oxyapatite phase. However these non-sodalite phases have reasonable resistance to water leaching. Pure chlorapatite gives superior leach resistance to sodalite, and alkalis, alkaline and rare earth ions are generally known to enter chlorapatite, but attempts to incorporate simulated waste salt formulations into HIPed chlorapatite-based preparations or to substitute Cs alone into the structure of Ca-based chlorapatite were not successful on the basis of scanning electron microscopy. The materials exhibited severe water leachability, mainly in regard to Cs release. Attempts to substitute Cs into Ba- and Sr-based chlorapatites also did not look encouraging. Consequently the use of apatite alone to retain fission product-bearing waste pyroprocessing salts from electrolytic nuclear fuel reprocessing is problematical, but chlorapatite glass-ceramics may be feasible, albeit with reduced waste loadings. Spodiosite, Ca 2(PO 4)Cl, does not appear to be suitable for incorporation of Cl-bearing waste containing fission products.

  18. Summary of Preliminary Criticality Analysis for Peach Bottom Fuel in the DOE Standardized Spent Nuclear Fuel Canister

    SciTech Connect

    Henrikson, D.J.

    1999-09-01

    The Department of Energy's (DOE's) National Spent Nuclear Fuel Program is developing a standardized set of canisters for DOE spent nuclear fuel (SNF). These canisters will be used for DOE SNF handling, interim storage, transportation, and disposal in the national repository. Several fuels are being examined in conjunction with the DOE SNF canisters. This report summarizes the preliminary criticality safety analysis that addresses general fissile loading limits for Peach Bottom graphite fuel in the DOE SNF canister. The canister is considered both alone and inside the 5-HLW/DOE Long Spent Fuel Co-disposal Waste Package, and in intact and degraded conditions. Results are appropriate for a single DOE SNF canister. Specific facilities, equipment, canister internal structures, and scenarios for handling, storage, and transportation have not yet been defined and are not evaluated in this analysis. The analysis assumes that the DOE SNF canister is designed so that it maintains reasonable geometric integrity. Parameters important to the results are the canister outer diameter, inner diameter, and wall thickness. These parameters are assumed to have nominal dimensions of 45.7-cm (18.0-in.), 43.815-cm (17.25-in), and 0.953-cm (0.375-in.), respectively. Based on the analysis results, the recommended fissile loading for the DOE SNF canister is 13 Peach Bottom fuel elements if no internal steel is present, and 15 Peach Bottom fuel elements if credit is taken for internal steel.

  19. High-level waste qualification: Managing uncertainty

    SciTech Connect

    Pulsipher, B.A.

    1993-09-01

    A vitrification facility is being developed by the U.S. Department of Energy (DOE) at the West Valley Demonstration Plant (WVDP) near Buffalo, New York, where approximately 300 canisters of high-level nuclear waste glass will be produced. To assure that the produced waste form is acceptable, uncertainty must be managed. Statistical issues arise due to sampling, waste variations, processing uncertainties, and analytical variations. This paper presents elements of a strategy to characterize and manage the uncertainties associated with demonstrating that an acceptable waste form product is achieved. Specific examples are provided within the context of statistical work performed by Pacific Northwest Laboratory (PNL).

  20. Improved Consolidation Process for Producing Ceramic Waste forms

    SciTech Connect

    Hash, Harry C.; Hash, Mark C.

    1998-07-24

    A process for the consolidation and containment of solid or semisolid hazardous waste, which process comprises closing an end of a circular hollow cylinder, filling the cylinder with the hazardous waste, and then cold working the cylinder to reduce its diameter while simultaneously compacting the waste. The open end of the cylinder can be sealed prior to or after the cold working process. The preferred method of cold working is to draw the sealed cylinder containing the hazardous waste through a plurality of dies to simultaneously reduce the diameter of the tube while compacting the waste. This process provides a quick continuous process for consolidating hazardous waste, including radioactive waste.

  1. Effects of aqueous environment on long-term durability of phosphate-bonded ceramic waste forms

    SciTech Connect

    Singh, D.; Wagh, A.S.; Jeong, S.Y.

    1996-03-01

    Over the last few years, Argonne National Laboratory has been developing room-temperature-setting chemically-bonded phosphate ceramics for solidifying and stabilizing low-level mixed wastes. This technology is crucial for stabilizing waste streams that contain volatile species and off-gas secondary waste streams generated by high-temperature treatment of such wastes. Magnesium phosphate ceramic has been developed to treat mixed wastes such as ash, salts, and cement sludges. Waste forms of surrogate waste streams were fabricated by acid-base reactions between the mixtures of magnesium oxide powders and the wastes, and phosphoric acid or acid phosphate solutions. Dense and hard ceramic waste forms are produced in this process. The principal advantage of this technology is that the contaminants are immobilized by both chemical stabilization and subsequent microencapsulation of the reaction products. This paper reports the results of durability studies conducted on waste forms made with ash waste streams spiked with hazardous and radioactive surrogates. Standard leaching tests such as ANS 16.1 and TCLP were conducted on the final waste forms. Fates of the contaminants in the final waste forms were established by electron microscopy. In addition, stability of the waste forms in aqueous environments was evaluated with long-term water-immersion tests.

  2. Parametric studies of phase change thermal energy storage canisters for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.

    1991-01-01

    Phase Change Materials (PCM) canister parametric studies are discussed wherein the thermal-structural effects of changing various canister dimensions and contained PCM mass values are examined. With the aim of improving performance, 11 modified canister designs are analyzed and judged relative to a baseline design using five quantitative performance indicators. Consideration is also given to qualitative factors such as fabrication/inspection, canister mass production, and PCM containment redundancy. Canister thermal analyses are performed using the finite-difference based computer program NUCAM-2DV. Thermal-stresses are calculated using closed-form solutions and simplifying assumptions. Canister wall thickness, outer radius, length, and contained PCM mass are the parameters considered for this study. Results show that singular canister design modifications can offer improvements on one or two performance indicators. Yet, improvement in one indicator is often realized at the expense of another. This confirms that the baseline canister is well designed. However, two alternative canister designs, which incorporate multiple modifications, are presented that offer modest improvements in mass or thermal performance, respectively.

  3. The durability of single, dual, and multiphase titanate ceramic waste forms for nuclear waste immobilization

    NASA Astrophysics Data System (ADS)

    Harkins, Devin J. H.

    A significant amount of the energy used in the United States comes from nuclear power, which produces a large amount of waste materials. Recycling nuclear waste is possible, but requires a way to permanently fix the unusable radionuclides remaining from the recycling process in a stable, leach resistant structure. Multiphase titanate ceramic waste forms are one promising option under consideration. However, there is insufficient work on the long term corrosion of the individual phases, as well as the multiphase systems of these ceramics. These multiphase titanate ceramic waste forms have three targeted phases: hollandite, pyrochlore, and zirconolite. Hollandite is a promising candidate for the incorporation of Cs, while pyrochlore is readily formed with lanthanides, such as Nd, the most prevalent lanthanide in the waste stream. The third targeted phase, zirconolite, is for the incorporation of zirconium and the actinides. This work looks into the formation of single phase systems of lanthanide titanates, formation of dual phase systems of Ga doped Ba hollandites and Nd titanate, durability of single phase hollandites and multiphase model systems using Vapor Hydration Testing (ASTM C 1663-09), dissolution of dual phase systems of Ga doped Ba hollandites and Nd titanate using Product Consistency Testing (ASTM C 1285-02), as well investigating how grain size affects amount of alterative phases formed using Vapor Hydration Testing. The dual phase systems of hollandites and Nd titanate show significant amounts of secondary phases forming, heavily influenced by the composition of hollandite used in the systems. The most significant phase present was BaNd2Ti5O14. This phase proves to be problematic due to the degradation to the hollandite structure. Using Vapor Hydration Testing to investigate single and multiphase systems presented many some possible alteration phases that could occur in the long term aging of these ceramics. Most notably, Cs rich phases were found in

  4. Glass temperatures in free-standing canisters

    SciTech Connect

    Hardy, B.J.; Hensel, S.J.

    1993-12-31

    The waste-forms produced by the Defense Waste Processing Facility (DWPF) are subject to the requirements of the Waste Acceptance Product Specifications (WAPS). The WAPS sets the maximum post cooldown temperature of the waste-form glass at 400{degrees}C. This criterion must be satisfied for the ambient conditions and heat generation rates expected for the waste-forms. As part of the work described in task plan, WSRC-RP-93-1177, Rev. 0, a computer model was used to calculate the maximum glass temperatures in free standing wasteforms for a variety of ambient temperatures and heat generation rates.

  5. Vitrification and testing of a Hanford high-level waste sample. Part 2: Phase identification and waste form leachability

    NASA Astrophysics Data System (ADS)

    Hrma, P.; Crum, J. V.; Bredt, P. R.; Greenwood, L. R.; Arey, B. W.; Smith, H. D.

    2005-10-01

    A sample of Hanford high-level radioactive waste from Tank AZ-101 was vitrified into borosilicate glass and tested to demonstrate its compliance with regulatory requirements. Compositional aspects of this study were reported in Part 1 of this paper. This second and last part presents results of crystallinity and leachability testing. Crystallinity was quantified in a glass sample heat treated according to the calculated cooling curve of glass at the centerline of a Hanford Waste Treatment Plant canister. By quantitative X-ray diffraction analysis and image analysis applied to scanning electron microscopy micrographs, the sample contained 7 mass% of spinel, a solid solution of franklinite, trevorite, and other minor spinels. Glass leachability was measured with the product consistency test and the toxicity characteristic leaching procedure. Measured data and model estimates were in reasonable agreement. Leachability results were close to those obtained for the non-radioactive simulant. Models were used to elucidate the effects of glass composition of spinel formation and to estimate effects of spinel formation on glass leachability.

  6. Iron oxide waste form for stabilizing 99Tc

    NASA Astrophysics Data System (ADS)

    Um, Wooyong; Chang, Hyunshik; Icenhower, Jonathan P.; Lukens, Wayne W.; Jeffrey Serne, R.; Qafoku, Nik; Kukkadapu, Ravi K.; Westsik, Joseph H.

    2012-10-01

    Crystals of goethite were synthesized with reduced technetium [99Tc(IV)] incorporated within the solid lattice. The presence of 99Tc(IV) as a substituting cation in the matrix and "armoring" by an additional layer of precipitated goethite isolated the reduced 99Tc(IV) from oxidizing agents. These products were used to make monolithic pellets to quantify an effective diffusion coefficient for 99Tc from goethite waste form contacted with a synthetic Hanford IDF (Integrated Disposal Facility) pore water solution (pH = 7.2 and I = 0.05 M) at room temperature for up to 120 days in static reactors. XANES analysis of the goethite solids recovered post-run demonstrated that the 99Tc in the goethite crystals remains in the reduced 99Tc(IV) state. The slow release of pertechnetate concentration with time in the static experiments with the monolith followed a square root of time dependence, consistent with diffusion control for 99Tc release. An apparent diffusion coefficient of 6.15 × 10-11 cm2/s was calculated for the 99Tc-goethite pellet sample and the corresponding leaching index (LI) was 10.2. The results of this study indicate that technetium can be immobilized in a stable, low-cost Fe oxide matrix that is easy to fabricate and these findings can be useful in designing long-term solutions for nuclear waste disposal.

  7. Iron Oxide Waste Form for Stabilizing 99Tc

    SciTech Connect

    Um, Wooyong; Chang, Hyun-Shik; Icenhower, Jonathan P.; Lukens, Wayne W.; Serne, R. Jeffrey; Qafoku, Nikolla; Kukkadapu, Ravi K.; Westsik, Joseph H.

    2012-06-09

    Crystals of goethite were synthesized with reduced technetium [{sup 99}Tc(IV)] incorporated within the solid lattice. The presence of {sup 99}Tc(IV) as a substituting cation in the matrix and 'armoring' by an additional layer of precipitated goethite isolated the reduced {sup 99}Tc(IV) from oxidizing agents. These products were used to make monolithic pellets to quantify an effective diffusion coefficient for {sup 99}Tc from goethite waste form contacted with a synthetic Hanford IDF (integrated disposal facility) pore water solution (pH = 7.2, I = 0.05 M) at room temperature for up to 120 days in static reactors. XANES analysis of the goethite solids recovered post-run demonstrated that the {sup 99}Tc in the goethite crystals remains in the reduced {sup 99}Tc(IV) state. The slow release of pertechnetate concentration with time in the static experiments with the monolith followed a square root of time dependence, consistent with diffusion control for {sup 99}Tc release. An apparent diffusion coefficient of 6.15 x 10{sup -11} cm{sup 2}/s was calculated for the {sup 99}Tc-goethite pellet sample and the corresponding leaching index (LI) was 10.2. The results of this study indicate that technetium can be immobilized in a stable, low-cost Fe oxide matrix that is easy to fabricate and these findings can be useful in designing long-term solutions for nuclear waste disposal.

  8. Impeding 99Tc(IV) mobility in novel waste forms

    NASA Astrophysics Data System (ADS)

    Lee, Mal-Soon; Um, Wooyong; Wang, Guohui; Kruger, Albert A.; Lukens, Wayne W.; Rousseau, Roger; Glezakou, Vassiliki-Alexandra

    2016-06-01

    Technetium (99Tc) is an abundant, long-lived radioactive fission product whose mobility in the subsurface is largely governed by its oxidation state. Tc immobilization is crucial for radioactive waste management and environmental remediation. Tc(IV) incorporation in spinels has been proposed as a novel method to increase Tc retention in glass waste forms during vitrification. However, experiments under high-temperature and oxic conditions show reoxidation of Tc(IV) to volatile pertechnetate, Tc(VII). Here we examine this problem with ab initio molecular dynamics simulations and propose that, at elevated temperatures, doping with first row transition metal can significantly enhance Tc retention in magnetite in the order Co>Zn>Ni. Experiments with doped spinels at 700 °C provide quantitative confirmation of the theoretical predictions in the same order. This work highlights the power of modern, state-of-the-art simulations to provide essential insights and generate theory-inspired design criteria of complex materials at elevated temperatures.

  9. Impeding 99Tc(IV) mobility in novel waste forms

    DOE PAGES

    Lee, Mal-Soon; Um, Wooyong; Wang, Guohui; ...

    2016-06-30

    Technetium (99Tc) is a long-lived radioactive fission product whose mobility in the subsurface is largely governed by its oxidation state1. Immobilization of Tc in mineral substrates is crucial for radioactive waste management and environmental remediation. Tc(IV) incorporation in spinels2, 3 has been proposed as a novel method to increase Tc retention in glass waste forms. However, experiments with Tc-magnetite under high temperature and oxic conditions showed re-oxidation of Tc(IV) to volatile pertechnetate Tc(VII)O4-.4, 5 Here we address this problem with large-scale ab initio molecular dynamics simulations and propose that elevated temperatures, 1st row transition metal dopants can significantly enhance Tcmore » retention in the order Co > Zn > Ni. Experiments with doped spinels at T=700 ºC provided quantitative confirmation of increased Tc retention in the same order predicted by theory. This work highlights the power of modern state-of-the-art simulations to provide essential insights and generate bottom-up design criteria of complex oxide materials at elevated temperatures.« less

  10. Impeding 99Tc(IV) mobility in novel waste forms

    PubMed Central

    Lee, Mal-Soon; Um, Wooyong; Wang, Guohui; Kruger, Albert A.; Lukens, Wayne W.; Rousseau, Roger; Glezakou, Vassiliki-Alexandra

    2016-01-01

    Technetium (99Tc) is an abundant, long-lived radioactive fission product whose mobility in the subsurface is largely governed by its oxidation state. Tc immobilization is crucial for radioactive waste management and environmental remediation. Tc(IV) incorporation in spinels has been proposed as a novel method to increase Tc retention in glass waste forms during vitrification. However, experiments under high-temperature and oxic conditions show reoxidation of Tc(IV) to volatile pertechnetate, Tc(VII). Here we examine this problem with ab initio molecular dynamics simulations and propose that, at elevated temperatures, doping with first row transition metal can significantly enhance Tc retention in magnetite in the order Co>Zn>Ni. Experiments with doped spinels at 700 °C provide quantitative confirmation of the theoretical predictions in the same order. This work highlights the power of modern, state-of-the-art simulations to provide essential insights and generate theory-inspired design criteria of complex materials at elevated temperatures. PMID:27357121

  11. Development of a sampling method for qualification of a ceramic high-level waste form.

    SciTech Connect

    O'Holleran, T. P.

    2002-07-02

    A ceramic waste form has been developed to immobilize the salt waste stream from electrometallurgical treatment of spent nuclear fuel. The ceramic waste form was originally prepared in a hot isostatic press (HIP). Small HIP capsules called witness tubes were used to obtain representative samples of material for process monitoring, waste form qualification, and archiving. Since installation of a full-scale HIP in existing facilities proved impractical, a new fabrication process was developed. This process fabricates waste forms inside a stainless steel container using a conventional furnace. Progress in developing a new method of obtaining representative samples is reported.

  12. Alternative Electrochemical Salt Waste Forms, Summary of FY2010 Results

    SciTech Connect

    Riley, Brian J.; Rieck, Bennett T.; Crum, Jarrod V.; Matyas, Josef; McCloy, John S.; Sundaram, S. K.; Vienna, John D.

    2010-08-01

    In FY2009, PNNL performed scoping studies to qualify two waste form candidates, tellurite (TeO2-based) glasses and halide minerals, for the electrochemical waste stream for further investigation. Both candidates showed promise with acceptable PCT release rates and effective incorporation of the 10% fission product waste stream. Both candidates received reprisal for FY2010 and were further investigated. At the beginning of FY2010, an in-depth literature review kicked off the tellurite glasses study. The review was aimed at ascertaining the state-of-the-art for chemical durability testing and mixed chloride incorporation for tellurite glasses. The literature review led the authors to 4 unique binary and 1 unique ternary systems for further investigation which include TeO2 plus the following: PbO, Al2O3-B2O3, WO3, P2O5, and ZnO. Each system was studied with and without a mixed chloride simulated electrochemical waste stream and the literature review provided the starting points for the baseline compositions as well as starting points for melting temperature, compatible crucible types, etc. The most promising glasses in each system were scaled up in production and were analyzed with the Product Consistency Test, a chemical durability test. Baseline and PCT glasses were analyzed to determine their state, i.e., amorphous, crystalline, phase separated, had undissolved material within the bulk, etc. Conclusions were made as well as the proposed direction for FY2011 plans. Sodalite was successfully synthesized by the sol-gel method. The vast majority of the dried sol-gel consisted of sodalite with small amounts of alumino-silicates and unreacted salt. Upon firing the powders made by sol-gel, the primary phase observed was sodalite with the addition of varying amounts of nepheline, carnegieite, lithium silicate, and lanthanide oxide. The amount of sodalite, nepheline, and carnegieite as well as the bulk density of the fired pellets varied with firing temperature, sol

  13. MODELING SOLIDIFICATION-INDUCED STRESSES IN CERAMIC WASTE FORMS CONTAINING NUCLEAR WASTES

    SciTech Connect

    Charles W. Solbrig; Kenneth J. Bateman

    2010-11-01

    The goal of this work is to produce a ceramic waste form (CWF) that permanently occludes radioactive waste. This is accomplished by absorbing radioactive salts into zeolite, mixing with glass frit, heating to a molten state 915 C to form a sodalite glass matrix, and solidifying for long-term storage. Less long term leaching is expected if the solidifying cooling rate doesn’t cause cracking. In addition to thermal stress, this paper proposes that a stress is formed during solidification which is very large for fast cooling rates during solidification and can cause severe cracking. A solidifying glass or ceramic cylinder forms a dome on the cylinder top end. The temperature distribution at the time of solidification causes the stress and the dome. The dome height, “the length deficit,” produces an axial stress when the solid returns to room temperature with the inherent outer region in compression, the inner in tension. Large tensions will cause cracking of the specimen. The temperature deficit, derived by dividing the length deficit by the coefficient of thermal expansion, allows solidification stress theory to be extended to the circumferential stress. This paper derives the solidification stress theory, gives examples, explains how to induce beneficial stresses, and compares theory to experimental data.

  14. DuraLith geopolymer waste form for Hanford secondary waste: correlating setting behavior to hydration heat evolution.

    PubMed

    Xu, Hui; Gong, Weiliang; Syltebo, Larry; Lutze, Werner; Pegg, Ian L

    2014-08-15

    The binary furnace slag-metakaolin DuraLith geopolymer waste form, which has been considered as one of the candidate waste forms for immobilization of certain Hanford secondary wastes (HSW) from the vitrification of nuclear wastes at the Hanford Site, Washington, was extended to a ternary fly ash-furnace slag-metakaolin system to improve workability, reduce hydration heat, and evaluate high HSW waste loading. A concentrated HSW simulant, consisting of more than 20 chemicals with a sodium concentration of 5 mol/L, was employed to prepare the alkaline activating solution. Fly ash was incorporated at up to 60 wt% into the binder materials, whereas metakaolin was kept constant at 26 wt%. The fresh waste form pastes were subjected to isothermal calorimetry and setting time measurement, and the cured samples were further characterized by compressive strength and TCLP leach tests. This study has firstly established quantitative linear relationships between both initial and final setting times and hydration heat, which were never discovered in scientific literature for any cementitious waste form or geopolymeric material. The successful establishment of the correlations between setting times and hydration heat may make it possible to efficiently design and optimize cementitious waste forms and industrial wastes based geopolymers using limited testing results.

  15. Radionuclide Incorporation and Long Term Performance of Apatite Waste Forms

    SciTech Connect

    Wang, Jianwei; Lian, Jie; Gao, Fei

    2016-01-04

    This project aims to combines state-of-the-art experimental and characterization techniques with atomistic simulations based on density functional theory (DFT) and molecular dynamics (MD) simulations. With an initial focus on long-lived I-129 and other radionuclides such as Cs, Sr in apatite structure, specific research objectives include the atomic scale understanding of: (1) incorporation behavior of the radionuclides and their effects on the crystal chemistry and phase stability; (2) stability and microstructure evolution of designed waste forms under coupled temperature and radiation environments; (3) incorporation and migration energetics of radionuclides and release behaviors as probed by DFT and molecular dynamics (MD) simulations; and (4) chemical durability as measured in dissolution experiments for long term performance evaluation and model validation.

  16. Waste form characteristics report, revision 1.3

    SciTech Connect

    Leider, H.R.; Stout, R.B.

    1998-07-01

    This Waste Form Characteristics Report (WFCR) update, Version 1.3, incorporates substantial additions and changes to following 10 sections of the WFCR: 2.1.3.1 Cladding Degradation; 2.1.3.2 UO2 Oxidation in Fuel; 2.1.3.5 Dissolution Release from UO{sub 2}; 2.2.1.5 Fracture /Fragmentation Studies of Glass; 2.2.2.2 Dissolution Radionuclide Release from Glass; 2.2.2.3 Soluble-Precipitated/Colloidal Species from Glass; 3.2.2 Spent-Fuel Oxidation Models; 3.4.2 Spent-Fuel Dissolution Models; 3.5.1 Glass Dissolution Experimental Parameters; and 3.5.2 Glass Dissolution Models.

  17. Progress in forming bottom barriers under waste sites

    SciTech Connect

    Carter, E.E.

    1997-12-31

    The paper describes an new method for the construction, verification, and maintenance of underground vaults to isolate and contain radioactive burial sites without excavation or drilling in contaminated areas. The paper begins with a discussion of previous full-scale field tests of horizontal barrier tools which utilized high pressure jetting technology. This is followed by a discussion of the TECT process, which cuts with an abrasive cable instead of high pressure jets. The new method is potentially applicable to more soil types than previous methods and can form very thick barriers. Both processes are performed from the perimeter of a site and require no penetration or disturbance of the active waste area. The paper also describes long-term verification methods to monitor barrier integrity passively.

  18. SNF Interim Storage Canister Corrosion and Surface Environment Investigations

    SciTech Connect

    Bryan, Charles R.; Enos, David G.

    2015-09-01

    This progress report describes work being done at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. In order for SCC to occur, three criteria must be met. A corrosive environment must be present on the canister surface, the metal must susceptible to SCC, and sufficient tensile stress to support SCC must be present through the entire thickness of the canister wall. SNL is currently evaluating the potential for each of these criteria to be met.

  19. Nuclear waste management technical support in the development of nuclear waste form criteria for the NRC. Task 1. Waste package overview

    SciTech Connect

    Dayal, R.; Lee, B.S.; Wilke, R.J.; Swyler, K.J.; Soo, P.; Ahn, T.M.; McIntyre, N.S.; Veakis, E.

    1982-02-01

    In this report the current state of waste package development for high level waste, transuranic waste, and spent fuel in the US and abroad has been assessed. Specifically, reviewed are recent and on-going research on various waste forms, container materials and backfills and tentatively identified those which are likely to perform most satisfactorily in the repository environment. Radiation effects on the waste package components have been reviewed and the magnitude of these effects has been identified. Areas requiring further research have been identified. The important variables affecting radionuclide release from the waste package have been described and an evaluation of regulatory criteria for high level waste and spent fuel is presented. Finally, for spent fuel, high level, and TRU waste, components which could be used to construct a waste package having potential to meet NRC performance requirements have been described and identified.

  20. Material Recovery and Waste Form Development FY 2014 Accomplishments Report

    SciTech Connect

    Braase, Lori

    2014-11-01

    Develop advanced nuclear fuel cycle separation and waste management technologies that improve current fuel cycle performance and enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion.

  1. Immobilization of fission products in phosphate ceramic waste forms

    SciTech Connect

    Singh, D.

    1996-10-01

    The goal of this project is to develop and demonstrate the feasibility of a novel low-temperature solidification/stabilization (S/S) technology for immobilizing waste streams containing fission products such as cesium, strontium, and technetium in a chemically bonded phosphate ceramic. This technology can immobilize partitioned tank wastes and decontaminate waste streams containing volatile fission products.

  2. Method of encapsulating solid radioactive waste material for storage

    DOEpatents

    Bunnell, Lee Roy; Bates, J. Lambert

    1976-01-01

    High-level radioactive wastes are encapsulated in vitreous carbon for long-term storage by mixing the wastes as finely divided solids with a suitable resin, formed into an appropriate shape and cured. The cured resin is carbonized by heating under a vacuum to form vitreous carbon. The vitreous carbon shapes may be further protected for storage by encasement in a canister containing a low melting temperature matrix material such as aluminum to increase impact resistance and improve heat dissipation.

  3. Waste form development and characterization in pyrometallurgical treatment of spent nuclear fuel.

    SciTech Connect

    Ackerman, J.

    1998-04-16

    Electrometallurgical treatment is a compact, inexpensive method that is being developed at Argonne National Laboratory to deal with spent nuclear fuel, primarily metallic and oxide fuels. In this method, metallic nuclear fuel constituents are electrorefined in a molten salt to separate uranium from the rest of the spent fuel. Oxide and other fuels are subjected to appropriate head end steps to convert them to metallic form prior to electrorefining. The treatment process generates two kinds of high-level waste--a metallic and a ceramic waste. Isolation of these wastes has been developed as an integral part of the process. The wastes arise directly from the electrorefiner, and waste streams do not contain large quantities of solvent or other process fluids. Consequently, waste volumes are small and waste isolation processes can be compact and rapid. This paper briefly summarizes waste isolation processes then describes development and characterization of the two waste forms in more detail.

  4. Electron Microscopy Characterization of Tc-Bearing Metallic Waste Forms- Final Report FY10

    SciTech Connect

    Buck, Edgar C.; Neiner, Doinita

    2010-09-30

    The DOE Fuel Cycle Research & Development (FCR&D) Program is developing aqueous and electrochemical approaches to the processing of used nuclear fuel that will generate technetium-bearing waste streams. This final report presents Pacific Northwest National Laboratory (PNNL) research in FY10 to evaluate an iron-based alloy waste form for Tc that provides high waste loading within waste form processing limitations, meets waste form performance requirements for durability and the long-term retention of radionuclides and can be produced with consistent physical, chemical, and radiological properties that meet regulatory acceptance requirements for disposal.

  5. MINERALIZATION OF RADIOACTIVE WASTES BY FLUIDIZED BED STEAM REFORMING (FBSR): COMPARISONS TO VITREOUS WASTE FORMS, AND PERTINENT DURABILITY TESTING

    SciTech Connect

    Jantzen, C

    2008-12-26

    The Savannah River National Laboratory (SRNL) was requested to generate a document for the Washington State Department of Ecology and the U.S. Environmental Protection Agency that would cover the following topics: (1) A description of the mineral structures produced by Fluidized Bed Steam Reforming (FBSR) of Hanford type Low Activity Waste (LAW including LAWR which is LAW melter recycle waste) waste, especially the cage structured minerals and how they are formed. (2) How the cage structured minerals contain some contaminants, while others become part of the mineral structure (Note that all contaminants become part of the mineral structure and this will be described in the subsequent sections of this report). (3) Possible contaminant release mechanisms from the mineral structures. (4) Appropriate analyses to evaluate these release mechanisms. (5) Why the appropriate analyses are comparable to the existing Hanford glass dataset. In order to discuss the mineral structures and how they bond contaminants a brief description of the structures of both mineral (ceramic) and vitreous waste forms will be given to show their similarities. By demonstrating the similarities of mineral and vitreous waste forms on atomic level, the contaminant release mechanisms of the crystalline (mineral) and amorphous (glass) waste forms can be compared. This will then logically lead to the discussion of why many of the analyses used to evaluate vitreous waste forms and glass-ceramics (also known as glass composite materials) are appropriate for determining the release mechanisms of LAW/LAWR mineral waste forms and how the durability data on LAW/LAWR mineral waste forms relate to the durability data for LAW/LAWR glasses. The text will discuss the LAW mineral waste form made by FBSR. The nanoscale mechanism by which the minerals form will be also be described in the text. The appropriate analyses to evaluate contaminant release mechanisms will be discussed, as will the FBSR test results to

  6. Nuclear hazardous waste cost control management

    SciTech Connect

    Selg, R.A.

    1991-05-09

    The effects of the waste content of glass waste forms on Savannah River high-level waste disposal costs are currently under study to adjust the glass frit content to optimize the glass waste loadings and therefore significantly reduce the overall waste disposal cost. Changes in waste content affect onsite Defense Waste Changes in waste contents affect onsite Defense Waste Processing Facility (DWPF) costs as well as offsite shipping and repository emplacement charges. A nominal 1% increase over the 28 wt% waste loading of DWPF glass would reduce disposal costs by about $50 million for Savannah River wastes generated to the year 2000. Optimization of the glass waste forms to be produced in the SWPF is being supported by economic evaluations of the impact of the forms on waste disposal costs. Glass compositions are specified for acceptable melt processing and durability characteristics, with economic effects tracked by the number of waste canisters produced. This paper presents an evaluation of the effects of variations in waste content of the glass waste forms on the overall cost of the disposal, including offsite shipment and repository emplacement, of the Savannah River high-level wastes.

  7. Determination of the Rate of Formation of Hydroceramic Waste Forms made with INEEL Calcined Wastes

    SciTech Connect

    Barry Scheetz; Johnson Olanrewaju

    2001-10-15

    The formulation, synthesis, characterization and hydration kinetics of hydroceramic waste forms designed as potential hosts for existing INEEL calcine high-level wastes have been established as functions of temperature and processing time. Initial experimentations were conducted with several aluminosilicate pozzolanic materials, ranging from fly ash obtained from various power generating coal and other combustion industries to reactive alumina, natural clays and ground bottled glass powders. The final selection criteria were based on the ease of processing, excellent physical properties and chemical durability (low-leaching) determined from the PCT test produced in hydroceramic. The formulation contains vermiculite, Sr(NO32), CsC1, NaOH, thermally altered (calcined natural clay) and INEEL simulated calcine high-level nuclear wastes and 30 weight percent of fluorinel blend calcine and zirconia calcine. Syntheses were carried out at 75-200 degree C at autogeneous water pressure (100% relative humidity) at various time intervals. The resulting monolithic compact products were hard and resisted breaking when dropped from a 5 ft height. Hydroceramic host mixed with fluorinel blend calcine and processed at 75 degree C crumbled into rice hull-side grains or developed scaly flakes. However, the samples equally possessed the same chemical durability as their unbroken counterparts. Phase identification by XRD revealed that hydroceramic host crystallized type zeolite at 75-150 degree C and NaP1 at 175-200 degree C in addition to the presence of quartz phase originating from the clay reactant. Hydroceramic host mixed with either fluorinel blend calcine or zirconia calcine crystallized type A zeolite at 75-95 degree C, formed a mixture of type A zeolite and hydroxysodalite at 125-150 degree C and hydroxysodalite at 175-200 degree C. Quartz, calcium fluoride and zirconia phases from the clay reactant and the two calcine wastes were also detected. The PCT test solution

  8. Annual report on the development and characterization of solidified forms for nuclear wastes, 1979

    SciTech Connect

    Chick, L.A.; McVay, G.L.; Mellinger, G.B.; Roberts, F.P.

    1980-12-01

    Development and characterization of solidified nuclear waste forms is a major continuing effort at Pacific Northwest Laboratory. Contributions from seven programs directed at understanding chemical composition, process conditions, and long-term behaviors of various nuclear waste forms are included in this report. The major findings of the report are included in extended figure captions that can be read as brief technical summaries of the research, with additional information included in a traditional narrative format. Waste form development proceeded on crystalline and glass materials for high-level and transuranic (TRU) wastes. Leaching studies emphasized new areas of research aimed at more basic understanding of waste form/aqueous solution interactions. Phase behavior and thermal effects research included studies on crystal phases in defense and TRU waste glasses and on liquid-liquid phase separation in borosilicate waste glasses. Radiation damage effects in crystals and glasses from alpha decay and from transmutation are reported.

  9. Nuclear waste form risk assessment for US defense waste at Savannah River Plant. Annual report fiscal year 1980

    SciTech Connect

    Cheung, H.; Jackson, D.D.; Revelli, M.A.

    1981-07-01

    Waste form dissolution studies and preliminary performance analyses were carried out to contribute a part of the data needed for the selection of a waste form for the disposal of Savannah River Plant defense waste in a deep geologic repository. The first portion of this work provides descriptions of the chemical interactions between the waste form and the geologic environment. We reviewed critically the dissolution/leaching data for borosilicate glass and SYNROC. Both chemical kinetic and thermodynamic models were developed to describe the dissolution process of these candidate waste forms so as to establish a fundamental basis for interpretation of experimental data and to provide directions for future experiments. The complementary second portion of this work is an assessment of the impacts of alternate waste forms upon the consequences of disposal in various proposed geological media. Employing systems analysis methodology, we began to evaluate the performance of a generic waste form for the case of a high risk scenario for a bedded salt repository. Results of sensitivity analysis, uncertainty analyses, and sensitivity to uncertainty analysis are presented.

  10. Summary of INEL research on the iron-enriched basalt waste form

    SciTech Connect

    Reimann, G.A.; Grandy, J.D.; Eddy, T.L.; Anderson, G.L.

    1992-01-01

    This report summarizes the knowledge base on the iron-enriched basalt (IEB) waste form developed at the Idaho National Engineering Laboratory (INEL) during 1979--1982. The results presented discuss the applicability of IEB in converting retrieved transuranic (TRU) waste from INEL's Radioactive Waste Management Complex (RWMC) into a vitreous/ceramic (glassy/rock) stable waste form suitable for permanent disposal in an appropriate repository, such as the Waste Isolation Pilot Plant (WIPP) in New Mexico. Borosilicate glass (BSG), the approved high-level waste form, appears unsuited for this application. Melting the average waste-soil mix from the RWMC produces the IEB composition and attempting to convert IEB to the BSG composition would require additions of substantial B{sub 2}0{sub 3}, Na, and SiO{sub 2} (glass frit). IEB requires processing temperatures of 1400 to 1600{degrees}C, depending upon the waste composition. Production of the IEB waste form, using Joule heated melters, has proved difficult in the past because of electrode and refractory corrosion problems associated with the high temperature melts. Higher temperature electric melters (arc and plasma) are available to produce this final waste form. Past research focused on extensive slag property measurements, waste form leachability tests, mechanical, composition, and microstructure evaluations, as well as a host of experiments to improve production of the waste form. Past INEL studies indicated that the IEB glass-ceramic is a material that will accommodate and stabilize a wide range of heterogeneous waste materials, including long lived radionuclides and scrap metals, while maintaining a superior level of chemical and physical performance characteristics. Controlled cooling of the molten IEB and subsequent heat treatment will produce a glass-ceramic waste form with superior leach resistance.

  11. Summary of INEL research on the iron-enriched basalt waste form

    SciTech Connect

    Reimann, G.A.; Grandy, J.D.; Eddy, T.L.; Anderson, G.L.

    1992-01-01

    This report summarizes the knowledge base on the iron-enriched basalt (IEB) waste form developed at the Idaho National Engineering Laboratory (INEL) during 1979--1982. The results presented discuss the applicability of IEB in converting retrieved transuranic (TRU) waste from INEL`s Radioactive Waste Management Complex (RWMC) into a vitreous/ceramic (glassy/rock) stable waste form suitable for permanent disposal in an appropriate repository, such as the Waste Isolation Pilot Plant (WIPP) in New Mexico. Borosilicate glass (BSG), the approved high-level waste form, appears unsuited for this application. Melting the average waste-soil mix from the RWMC produces the IEB composition and attempting to convert IEB to the BSG composition would require additions of substantial B{sub 2}0{sub 3}, Na, and SiO{sub 2} (glass frit). IEB requires processing temperatures of 1400 to 1600{degrees}C, depending upon the waste composition. Production of the IEB waste form, using Joule heated melters, has proved difficult in the past because of electrode and refractory corrosion problems associated with the high temperature melts. Higher temperature electric melters (arc and plasma) are available to produce this final waste form. Past research focused on extensive slag property measurements, waste form leachability tests, mechanical, composition, and microstructure evaluations, as well as a host of experiments to improve production of the waste form. Past INEL studies indicated that the IEB glass-ceramic is a material that will accommodate and stabilize a wide range of heterogeneous waste materials, including long lived radionuclides and scrap metals, while maintaining a superior level of chemical and physical performance characteristics. Controlled cooling of the molten IEB and subsequent heat treatment will produce a glass-ceramic waste form with superior leach resistance.

  12. Secondary Waste Form Development and Optimization—Cast Stone

    SciTech Connect

    Sundaram, S. K.; Parker, Kent E.; Valenta, Michelle M.; Pitman, Stan G.; Chun, Jaehun; Chung, Chul-Woo; Kimura, Marcia L.; Burns, Carolyn A.; Um, Wooyong; Westsik, Joseph H.

    2011-07-14

    Washington River Protection Services is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF is a Resource Conservation and Recovery Act-permitted, multi-waste, treatment and storage unit and can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid wastes generated during operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The STU to ETF will provide the additional capacity needed for ETF to process the increased volume of secondary wastes expected to be produced by WTP.

  13. Durability and degradation of HT9 based alloy waste forms with variable Ni and Cr content

    SciTech Connect

    Olson, L.

    2016-12-31

    Short-term electrochemical and long-term hybrid electrochemical corrosion tests were performed on alloy waste forms in reference aqueous solutions that bound postulated repository conditions. The alloy waste forms investigated represent candidate formulations that can be produced with advanced electrochemical treatment of used nuclear fuel. The studies helped to better understand the alloy waste form durability with differing concentrations of nickel and chromium, species that can be added to alloy waste forms to potentially increase their durability and decrease radionuclide release into the environment.

  14. Spent fuel treatment and mineral waste form development at Argonne National Laboratory-West

    SciTech Connect

    Goff, K.M.; Benedict, R.W.; Bateman, K.; Lewis, M.A.; Pereira, C.; Musick, C.A.

    1996-07-01

    At Argonne National Laboratory-West (ANL-West) there are several thousand kilograms of metallic spent nuclear fuel containing bond sodium. This fuel will be treated in the Fuel Conditioning Facility (FCF) at ANL-West to produce stable waste forms for storage and disposal. Both mineral and metal high-level waste forms will be produced. The mineral waste form will contain the active metal fission products and the transuranics. Cold small-scale waste form testing has been on-going at Argonne in Illinois. Large-scale testing is commencing at ANL-West.

  15. Experiment close out of lysimeter testing of low-level radioactive waste forms

    SciTech Connect

    McConnell, J.W. Jr.; Rogers, R.D.; Jastrow, J.D.; Cline, S.R.; Sullivan, T.M.; Reed, P.

    1997-12-31

    The program is obtaining information on the performance of radioactive waste forms (WFs). These experiments were recently shut down and the contents of the lysimeters have been examined in accordance with a detailed waste form and soil sampling plan. Ion-exchange resins from a commercial nuclear power station were solidified into waste forms using portland cement and vinyl ester-styrene. These waste forms were tested to (a) obtain information on performance of waste forms in typical disposal environments, (b) compare field results with bench leach studies, (c) develop a low-level waste data base for use in performance assessment source term calculations, and (d) apply the DUST computer code to compare predicted cumulative release to actual field data. The program includes observed radionuclide releases from waste forms in field lysimeters at two test sites over 10 years of successful operation. The purpose of this paper is to present the results of the examination of waste forms and soils of the two lysimeter arrays after shut down. During this examination, the waste forms were characterized after removal from the lysimeters and the results compared to the findings of the original characterizations. Vertical soil cores were taken from the soil columns and analyzed with radiochemistry to define movement of radionuclides in the soils after release from the waste forms. A comparison is made of the DUST code predictions of releases using recently developed partition coefficients to actual radionuclide movement through the soil columns as determined from these core analyses. This paper discusses soil and waste form sampling in which vertical cores were removed from the lysimeter soil columns for laboratory characterization. Those samples will be analyzed for radionuclide movement from the waste forms and through the soil columns.

  16. Solidification of low-level radioactive wastes in masonry cement. [Masonry cement-boric acid waste forms

    SciTech Connect

    Zhou, H.; Colombo, P.

    1987-03-01

    Portland cements are widely used as solidification agents for low-level radioactive wastes. However, it is known that boric acid wastes, as generated at pressurized water reactors (PWR's) are difficult to solidify using ordinary portland cements. Waste containing as little as 5 wt % boric acid inhibits the curing of the cement. For this purpose, the suitability of masonry cement was investigated. Masonry cement, in the US consists of 50 wt % slaked lime (CaOH/sub 2/) and 50 wt % of portland type I cement. Addition of boric acid in molar concentrations equal to or less than the molar concentration of the alkali in the cement eliminates any inhibiting effects. Accordingly, 15 wt % boric acid can be satisfactorily incorporated into masonry cement. The suitability of masonry cement for the solidification of sodium sulfate wastes produced at boiling water reactors (BWR's) was also investigated. It was observed that although sodium sulfate - masonry cement waste forms containing as much as 40 wt % Na/sub 2/SO/sub 4/ can be prepared, waste forms with more than 7 wt % sodium sulfate undergo catastrophic failure when exposed to an aqueous environment. It was determined by x-ray diffraction that in the presence of water, the sulfate reacts with hydrated calcium aluminate to form calcium aluminum sulfate hydrate (ettringite). This reaction involves a volume increase resulting in failure of the waste form. Formulation data were identified to maximize volumetric efficiency for the solidification of boric acid and sodium sulfate wastes. Measurement of some of the waste form properties relevant to evaluating the potential for the release of radionuclides to the environment included leachability, compression strengths and chemical interactions between the waste components and masonry cement. 15 refs., 19 figs., 9 tabs.

  17. Multi-purpose canister system evaluation: A systems engineering approach

    SciTech Connect

    1994-09-01

    This report summarizes Department of Energy (DOE) efforts to investigate various container systems for handling, transporting, storing, and disposing of spent nuclear fuel (SNF) assemblies in the Civilian Radioactive Waste Management System (CRWMS). The primary goal of DOE`s investigations was to select a container technology that could handle the vast majority of commercial SNF at a reasonable cost, while ensuring the safety of the public and protecting the environment. Several alternative cask and canister concepts were evaluated for SNF assembly packaging to determine the most suitable concept. Of these alternatives, the multi-purpose canister (MPC) system was determined to be the most suitable. Based on the results of these evaluations, the decision was made to proceed with design and certification of the MPC system. A decision to fabricate and deploy MPCs will be made after further studies and preparation of an environmental impact statement.

  18. Evaluation of sulfur polymer cement as a waste form for the immobilization of low-level radioactive or mixed waste

    SciTech Connect

    Mattus, C.H.; Mattus, A.J.

    1994-03-01

    Sulfur polymer cement (SPC), also called modified sulphur cements, is a relatively new material in the waste immobilization field, although it was developed in the late seventies by the Bureau of Mines. The physical and chemical properties of SPC are interesting (e.g., development of high mechanical strength in a short time and high resistance to many corrosive environments). Because of its very low permeability and porosity, SPC is especially impervious to water, which, in turn, has led to its consideration for immobilization of hazardous or radioactive waste. Because it is a thermosetting process, the waste is encapsulated by the sulfur matrix; therefore, very little interaction occurs between the waste species and the sulfur (as there can be when waste prevents the set of portland cement-based waste forms).

  19. Modeling corrosion and constituent release from a metal waste form.

    SciTech Connect

    Bauer, T. H.; Fink, J. K.; Abraham, D. P.; Johnson, I.; Johnson, S. G.; Wigeland, R. A.

    2000-12-04

    Several ANL ongoing experimental programs have measured metal waste form (MWF) corrosion and constituent release. Analysis of this data has initiated development of a consistent and quantitative phenomenology of uniform aqueous MWF corrosion. The effort so far has produced a preliminary fission product and actinide release model based on measured corrosion rates and calibrated by immersion test data for a 90 C J-13 and concentrated J-13 solution environment over 1-2 year exposure times. Ongoing immersion tests of irradiated and unirradiated MWF samples using more aggressive test conditions and improved tracking of actinides will serve to further validate, modify, and expand the application base of the preliminary model-including effects of other corrosion mechanisms. Sample examination using both mechanical and spectrographic techniques will better define both the nature and durability of the protective barrier layer. It is particularly important to assess whether the observations made with J-13 solution at 900 C persist under more aggressive conditions. For example, all the multiplicative factors in Table 1 implicitly assume the presence of protective barriers. Under sufficiently aggressive test conditions, such protective barriers may very well be altered or even eliminated.

  20. Waste Form Release Data Package for the 2001 Immobilized Low-Activity Waste Performance Assessment

    SciTech Connect

    McGrail, B. Peter; Icenhower, Jonathan P.; Martin, Paul F.; Schaef, Herbert T.; O'Hara, Matthew J.; Rodriguez, Eugenio; Steele, Jackie L.

    2001-02-01

    This data package documents the experimentally derived input data on the representative waste glasses LAWABP1 and HLP-31 that will be used for simulations of the immobilized lowactivity waste disposal system with the Subsurface Transport Over Reactive Multiphases (STORM) code. The STORM code will be used to provide the near-field radionuclide release source term for a performance assessment to be issued in March of 2001. Documented in this data package are data related to 1) kinetic rate law parameters for glass dissolution, 2) alkali-H ion exchange rate, 3) chemical reaction network of secondary phases that form in accelerated weathering tests, and 4) thermodynamic equilibrium constants assigned to these secondary phases. The kinetic rate law and Na+-H+ ion exchange rate were determined from single-pass flow-through experiments. Pressurized unsaturated flow and vapor hydration experiments were used for accelerated weathering or aging of the glasses. The majority of the thermodynamic data were extracted from the thermodynamic database package shipped with the geochemical code EQ3/6. However, several secondary reaction products identified from laboratory tests with prototypical LAW glasses were not included in this database, nor are the thermodynamic data available in the open literature. One of these phases, herschelite, was determined to have a potentially significant impact on the release calculations and so a solubility product was estimated using a polymer structure model developed for zeolites. Although this data package is relatively complete, final selection of ILAW glass compositions has not been done by the waste treatment plant contractor. Consequently, revisions to this data package to address new ILAW glass formulations are to be regularly expected.

  1. A novel waste form for disposal of spent-nuclear-fuel reprocessing waste: A vitrifiable cement

    SciTech Connect

    Gougar, M.L.D.; Scheetz, B.E.; Siemer, D.D.

    1999-01-01

    A cement capable of being hot isostatically pressed into a glass ceramic has been proposed as the waste form for spent-nuclear-fuel reprocessing wastes at the Idaho National Engineering and Environmental Laboratory (INEEL). This intermediate cement, with a composition based on that of common glasses, has been designed and tested. The cement formulations included mixed INEEL wastes, blast furnace slag, reactive silica, and INEEL soil or vermiculite, which were activated with potassium or sodium hydroxide. Following autoclave processing, the cements were characterized. X-ray diffraction analysis revealed three notable crystalline phases: quartz, calcite, and fluorite. Results of compressive strength testing ranged from 1452 and 4163 psi, exceeding the US Nuclear Regulatory Commission (NRC)-suggested standard of >500 psi. From American National Standards Institute/American Nuclear Society 16.1-1986 leach testing, effective diffusivities for Cs were determined to be on the order of 10{sup {minus}11} to 10{sup {minus}10} cm{sup 2}/s and for Sr were 10{sup {minus}12} cm{sup 2}/s, which are four orders of magnitude less than diffusivities in some other radwaste materials. Average leach indices (LI) were 9.6 and 11.9 for Cs and Sr, respectively, meeting the NRC Standard of LI > 6. The 28-day Materials Characterization Center-1 leach testing resulted in normalized elemental mass losses between 0.63 and 28 g/(m{sup 2}{center_dot}day) for Cs and between 0.34 and 0.70 g/(m{sup 2}{center_dot}day) industry-accepted standard while Cs losses indicate a process sensitive parameter.

  2. International program to study subseabed disposal of high-level radioactive wastes

    SciTech Connect

    Carlin, E.M.; Hinga, K.R.; Knauss, J.A.

    1984-01-01

    This report provides an overview of the international program to study seabed disposal of nuclear wastes. Its purpose is to inform legislators, other policy makers, and the general public as to the history of the program, technological requirements necessary for feasibility assessment, legal questions involved, international coordination of research, national policies, and research and development activities. Each of these major aspects of the program is presented in a separate section. The objective of seabed burial, similar to its continental counterparts, is to contain and to isolate the wastes. The subseabed option should not be confuesed with past practices of ocean dumping which have introduced wastes into ocean waters. Seabed disposal refers to the emplacement of solidified high-level radioactive waste (with or without reprocessing) in certain geologically stable sediments of the deep ocean floor. Specially designed surface ships would transport waste canisters from a port facility to the disposal site. Canisters would be buried from a few tens to a few hundreds of meters below the surface of ocean bottom sediments, and hence would not be in contact with the overlying ocean water. The concept is a multi-barrier approach for disposal. Barriers, including waste form, canister, ad deep ocean sediments, will separate wastes from the ocean environment. High-level wastes (HLW) would be stabilized by conversion into a leach-resistant solid form such as glass. This solid would be placed inside a metallic canister or other type of package which represents a second barrier. The deep ocean sediments, a third barrier, are discussed in the Feasibility Assessment section. The waste form and canister would provide a barrier for several hundred years, and the sediments would be relied upon as a barrier for thousands of years. 62 references, 3 figures, 2 tables.

  3. Transuranic contaminated waste form characterization and data base

    SciTech Connect

    Kniazewycz, B.G.; McArthur, W.C.

    1980-07-01

    This volume contains appendices A to F. The properties of transuranium (TRU) radionuclides are described. Immobilization of TRU wastes by bituminization, urea-formaldehyde polymers, and cements is discussed. Research programs at DOE facilities engaged in TRU waste characterization and management studies are described.

  4. Radioactive Bench-scale Steam Reformer Demonstration of a Monolithic Steam Reformed Mineralized Waste Form for Hanford Waste Treatment Plant Secondary Waste - 12306

    SciTech Connect

    Evans, Brent; Olson, Arlin; Mason, J. Bradley; Ryan, Kevin; Jantzen, Carol; Crawford, Charles

    2012-07-01

    Hanford currently has 212,000 m{sup 3} (56 million gallons) of highly radioactive mixed waste stored in the Hanford tank farm. This waste will be processed to produce both high-level and low-level activity fractions, both of which are to be vitrified. Supplemental treatment options have been under evaluation for treating portions of the low-activity waste, as well as the liquid secondary waste from the low-activity waste vitrification process. One technology under consideration has been the THOR{sup R} fluidized bed steam reforming process offered by THOR Treatment Technologies, LLC (TTT). As a follow-on effort to TTT's 2008 pilot plant FBSR non-radioactive demonstration for treating low-activity waste and waste treatment plant secondary waste, TTT, in conjunction with Savannah River National Laboratory, has completed a bench scale evaluation of this same technology on a chemically adjusted radioactive surrogate of Hanford's waste treatment plant secondary waste stream. This test generated a granular product that was subsequently formed into monoliths, using a geo-polymer as the binding agent, that were subjected to compressibility testing, the Product Consistency Test and other leachability tests, and chemical composition analyses. This testing has demonstrated that the mineralized waste form, produced by co-processing waste with kaolin clay using the TTT process, is as durable as low-activity waste glass. Testing has shown the resulting monolith waste form is durable, leach resistant, and chemically stable, and has the added benefit of capturing and retaining the majority of Tc-99, I-129, and other target species at high levels. (authors)

  5. Nuclear waste-form risk assessment for US Defense waste at Savannah River Plant. Annual report FY 1981

    SciTech Connect

    Cheung, H.; Edwards, L.L.; Harvey, T.F.; Jackson, D.D.; Revelli, M.A.

    1981-12-01

    Savannah River Plant has been supporting the Lawrence Livermore National Laboratory in its present effort to perform risk assessments of alternative waste forms for defense waste. This effort relates to choosing a suitable combination of solid form and geologic medium on the basis of risk of exposure to future generations; therefore, the focus is on post-closure considerations of deep geologic repositories. The waste forms being investigated include borosilicate glass, SYNROC, and others. Geologic media under consideration are bedded salt, basalt, and tuff. The results of our work during FY 1981 are presented in this, our second annual report. The two complementary tasks that comprise our program, analysis of waste-form dissolution and risk assessment, are described.

  6. Permitting plan for the high-level waste interim storage

    SciTech Connect

    Deffenbaugh, M.L.

    1997-04-23

    This document addresses the environmental permitting requirements for the transportation and interim storage of solidified high-level waste (HLW) produced during Phase 1 of the Hanford Site privatization effort. Solidified HLW consists of canisters containing vitrified HLW (glass) and containers that hold cesium separated during low-level waste pretreatment. The glass canisters and cesium containers will be transported to the Canister Storage Building (CSB) in a U.S. Department of Energy (DOE)-provided transportation cask via diesel-powered tractor trailer. Tri-Party Agreement (TPA) Milestone M-90 establishes a new major milestone, and associated interim milestones and target dates, governing acquisition and/or modification of facilities necessary for: (1) interim storage of Tank Waste Remediation Systems (TWRS) immobilized HLW (IHLW) and other canistered high-level waste forms; and (2) interim storage and disposal of TWRS immobilized low-activity tank waste (ILAW). An environmental requirements checklist and narrative was developed to identify the permitting path forward for the HLW interim storage (HLWIS) project (See Appendix B). This permitting plan will follow the permitting logic developed in that checklist.

  7. Special waste-form lysimeters-arid: Three-year monitoring report

    SciTech Connect

    Jones, T.L.; Serne, R.J.; Toste, A.P.

    1988-04-01

    Regulations governing the disposal of commercial low-level waste require all liquid waste to be solidified before burial. Most waste must be solidified into a rigid matrix such as cement or plastic to prevent waste consolidation and site slumping after burial. These solidification processes affect the rate at which radionuclides and other solutes are released into the soil. In 1983, a program was initiated at Pacific Northwest Laboratory to study the release of waste from samples of low-level radioactive waste that had been commercially solidified. The primary method used by this program is to bury sample waste forms in field lysimeters and monitor leachate composition from the release and transport of solutes. The lysimeter facility consists of 10 lysimeters, each containing one sample of solidified waste. Five different waste forms are being tested, allowing duplicate samples of each one to be evaluated. The samples were obtained from operating nuclear power plants and are actual waste forms routinely generated at these facilities. All solidification was accomplished by commercial processes. Sample size is a partially filled 210-L drum. All containers were removed prior to burial leaving the bare waste form in contact with the lysimeter soil. 11 refs., 14 figs., 16 tabs.

  8. White Paper: Multi-purpose canister (MPC) for DOE-owned spent nuclear fuel (SNF)

    SciTech Connect

    Knecht, D.A.

    1994-04-01

    The paper examines the issue, What are the advantages, disadvantages, and other considerations for using the MPC concept as part of the strategy for interim storage and disposal of DOE-owned SNF? The paper is based in part on the results of an evaluation made for the DOE National Spent Fuel Program by the Waste Form Barrier/Canister Team, which is composed of knowledgeable DOE and DOE-contractor personnel. The paper reviews the MPC and DOE SNF status, provides criteria and other considerations applicable to the issue, and presents an evaluation, conclusions, and recommendations. The primary conclusion is that while most of DOE SNF is not currently sufficiently characterized to be sealed into an MPC, the advantages of standardized packages in handling, reduced radiation exposure, and improved human factors should be considered in DOE SNF program planning. While the design of MPCs for DOE SNF are likely premature at this time, the use of canisters should be considered which are consistent with interim storage options and the MPC design envelope.

  9. Molecular Environmental Science Using Synchrotron Radiation: Chemistry and Physics of Waste Form Materials

    SciTech Connect

    Lindle, Dennis W.

    2011-04-21

    Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization. Specially formulated glass compositions and ceramics such as pyrochlores and apatites are the main candidates for these wastes. An important consideration linked to the durability of waste-form materials is the local structure around the waste components. Equally important is the local structure of constituents of the glass and ceramic host matrix. Knowledge of the structure in the waste-form host matrices is essential, prior to and subsequent to waste incorporation, to evaluate and develop improved waste-form compositions based on scientific considerations. This project used the soft-x-ray synchrotron-radiation-based technique of near-edge x-ray-absorption fine structure (NEXAFS) as a unique method for investigating oxidation states and structures of low-Z elemental constituents forming the backbones of glass and ceramic host matrices for waste-form materials. In addition, light metal ions in ceramic hosts, such as titanium, are also ideal for investigation by NEXAFS in the soft-x-ray region. Thus, one of the main objectives was to understand outstanding issues in waste-form science via NEXAFS investigations and to translate this understanding into better waste-form materials, followed by eventual capability to investigate “real” waste-form materials by the same methodology. We conducted several detailed structural investigations of both pyrochlore ceramic and borosilicate-glass materials during the project and developed improved capabilities at Beamline 6.3.1 of the Advanced Light Source (ALS) to perform the studies.

  10. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    SciTech Connect

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  11. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    SciTech Connect

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  12. An experimental survey of the factors that affect leaching from low-level radioactive waste forms

    SciTech Connect

    Dougherty, D.R.; Pietrzak, R.F.; Fuhrmann, M.; Colombo, P.

    1988-09-01

    This report represents the results of an experimental survey of the factors that affect leaching from several types of solidified low-level radioactive waste forms. The goal of these investigations was to determine those factors that accelerate leaching without changing its mechanism(s). Typically, although not in every case,the accelerating factors include: increased temperature, increased waste loading (i.e., increased waste to binder ratio), and decreased size (i.e., decreased waste form volume to surface area ratio). Additional factors that were studied were: increased leachant volume to waste form surface area ratio, pH, leachant composition (groundwaters, natural and synthetic chelating agents), leachant flow rate or replacement frequency and waste form porosity and surface condition. Other potential factors, including the radiation environment and pressure, were omitted based on a survey of the literature. 82 refs., 236 figs., 13 tabs.

  13. XAF/XANES studies of plutonium-loaded sodalite/glass composite waste forms.

    SciTech Connect

    Aase, S. B.; Kropf, A. J.; Lewis, M. A.; Reed, D. T.; Richmann, M. K.

    1999-07-14

    A sodalite/glass ceramic waste form has been developed to immobilize highly radioactive nuclear wastes in chloride form, as part of an electrochemical cleanup process. Simulated waste forms have been fabricated which contain plutonium and are representative of the salt from the electrometallurgical process to recover uranium from spent nuclear fuel. X-ray absorption fine structure spectroscopy (XAFS) and x-ray absorption near-edge spectroscopy (XANES) studies were performed to determine the location, oxidation state and form of the plutonium within these waste forms. Plutonium, in the non-fission-element case, was found to segregate as plutonium(IV) oxide with a crystallite size of at least 20 nm. With fission elements present, the crystallite size was about 2 nm. No plutonium was observed within the sodalite or glass in the waste form.

  14. A Method to Evaluate Additional Waste Forms to Optimize Performance of the HLW Repository

    SciTech Connect

    D. Gombert; L. Lauerhass

    2006-02-01

    The DOE high-level waste (HLW) disposal system is based on decisions made in the 1970s. The de facto Yucca Mountain WAC for HLW, contained in the Waste Acceptance System Requirements Document (WASRD), and the DOE-EM Waste Acceptance Product Specification for Vitrified High Level Waste Forms (WAPS) tentatively describes waste forms to be interred in the repository, and limits them to borosilicate glass (BSG). It is known that many developed waste forms are as durable as or better than environmental assessment or “EA”-glass. Among them are the salt-ceramic and metallic waste forms developed at ANL-W. Also, iron phosphate glasses developed at University of Missouri show promise in stabilizing the most refractory materials in Hanford HLW. However, for any of this science to contribute, the current Total System Performance Assessment model must be able to evaluate the additional waste form to determine potential impacts on repository performance. The results can then support the technical bases required in the repository license application. A methodology is proposed to use existing analysis models to evaluate potential additional waste forms for disposal without gathering costly material specific degradation data. The concept is to analyze the potential impacts of waste form chemical makeup on repository performance assuming instantaneous waste matrix dissolution. This assumption obviates the need for material specific degradation models and is based on the relatively modest fractional contribution DOE HLW makes to the repository radionuclide and hazardous metals inventory. The existing analysis models, with appropriate data modifications, are used to evaluate geochemical interactions and material transport through the repository. This methodology would support early screening of proposed waste forms through simplified evaluation of disposal performance, and would provide preliminary guidance for repository license amendment in the future.

  15. Requirements for canisters used for delivery of spent nuclear fuel and associated materials to DOE (Department of Energy) under standard disposal contracts

    SciTech Connect

    Not Available

    1990-06-01

    The Department of Energy (DOE) is studying prospective changes to the waste acceptance criteria contained in the Standard Contract which involve consideration of the possible acceptance of failed fuel, consolidated fuel rods, compacted structural parts resulting from at reactor consolidation operations, and other non-fuel bearing materials on the same scheduling basis as used for standard fuel under the existing Standard Contract. During the course of these studies it has become clear that all such forms of spent fuel and related wastes would have to be delivered to DOE (and stored at the reactor) in a container having an envelope about the same as the fuel assemblies from which the fuel forms originated. Thus, the first objective of the DOE effort has been to develop draft requirements for canisters to be used by utilities (and others) to deliver the foregoing forms of spent fuel and related wastes. These draft requirements have been completed and are included in this paper.

  16. Fluidized bed steam reformed mineral waste form performance testing to support Hanford Supplemental Low Activity Waste Immobilization Technology Selection

    SciTech Connect

    Jantzen, C. M.; Pierce, E. M.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Crawford, C. L.; Daniel, W. E.; Fox, K. M.; Herman, C. C.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.; Brown, C. F.; Qafoku, N. P.; Neeway, J. J.; Valenta, M. M.; Gill, G. A.; Swanberg, D. J.; Robbins, R. A.; Thompson, L. E.

    2015-10-01

    This report describes the benchscale testing with simulant and radioactive Hanford Tank Blends, mineral product characterization and testing, and monolith testing and characterization. These projects were funded by DOE EM-31 Technology Development & Deployment (TDD) Program Technical Task Plan WP-5.2.1-2010-001 and are entitled “Fluidized Bed Steam Reformer Low-Level Waste Form Qualification”, Inter-Entity Work Order (IEWO) M0SRV00054 with Washington River Protection Solutions (WRPS) entitled “Fluidized Bed Steam Reforming Treatability Studies Using Savannah River Site (SRS) Low Activity Waste and Hanford Low Activity Waste Tank Samples”, and IEWO M0SRV00080, “Fluidized Bed Steam Reforming Waste Form Qualification Testing Using SRS Low Activity Waste and Hanford Low Activity Waste Tank Samples”. This was a multi-organizational program that included Savannah River National Laboratory (SRNL), THOR® Treatment Technologies (TTT), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Office of River Protection (ORP), and Washington River Protection Solutions (WRPS). The SRNL testing of the non-radioactive pilot-scale Fluidized Bed Steam Reformer (FBSR) products made by TTT, subsequent SRNL monolith formulation and testing and studies of these products, and SRNL Waste Treatment Plant Secondary Waste (WTP-SW) radioactive campaign were funded by DOE Advanced Remediation Technologies (ART) Phase 2 Project in connection with a Work-For-Others (WFO) between SRNL and TTT.

  17. Heat of Hydration of Low Activity Cementitious Waste Forms

    SciTech Connect

    Nasol, D.

    2015-07-23

    During the curing of secondary waste grout, the hydraulic materials in the dry mix react exothermally with the water in the secondary low-activity waste (LAW). The heat released, called the heat of hydration, can be measured using a TAM Air Isothermal Calorimeter. By holding temperature constant in the instrument, the heat of hydration during the curing process can be determined. This will provide information that can be used in the design of a waste solidification facility. At the Savannah River National Laboratory (SRNL), the heat of hydration and other physical properties are being collected on grout prepared using three simulants of liquid secondary waste generated at the Hanford Site. From this study it was found that both the simulant and dry mix each had an effect on the heat of hydration. It was also concluded that the higher the cement content in the dry materials mix, the greater the heat of hydration during the curing of grout.

  18. Some Trends in Radioactive Waste Form Behavior Revealed in Long-Term Field Tests

    SciTech Connect

    Ojovan, M. I.; Ojovan, N. V.; Startceva, I. V.; Barinov, A. S.

    2002-02-25

    Results from long-term field tests with borosilicate glass, cement and bitumen waste forms containing actual intermediate-level radioactive waste are summarized and discussed in the paper. Leaching behavior of the waste forms was evaluated by monitoring the contamination of contacting water. Measured leach rates of the three waste-form materials were in a narrow range in shallow subsurface repositories, but varied in a wide range at an open testing site owing to weathering of bitumen and cement materials. The repositories were opened after 12-year testing for visual examination, sampling and analysis. All retrieved waste forms were in good physical condition. The study has not revealed any negative changes in the waste glass. Some ageing processes were detected in cement and bitumen waste forms, which can positively (bitumen) or negatively (cement) affect physical and containment properties of these waste materials. It has been established that a significant proportion of the radioactive inventory in the bitumen waste form became associated with the bitumen phase. Phase separation of this radioactive bitumen has shown, than the asphaltene fraction is responsible for the major part of the radioactivity retained by the bitumen.

  19. Glass binder development for a glass-bonded sodalite ceramic waste form

    DOE PAGES

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.; ...

    2017-06-01

    This paper discusses work to develop Na2O-B2O3-SiO2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. In this paper, five new glasses with ~20 mass% Na2O were designed to generate waste forms with high sodalite. The glasses were then used to produce ceramic waste forms with a surrogate salt waste. The waste forms made using these new glasses were formulated to generate more sodalite than those made with previous baseline glasses for this type of waste. The coefficients of thermal expansion for the glass phase in themore » glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature than previous binder glasses used. Finally, these improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability.« less

  20. Glass binder development for a glass-bonded sodalite ceramic waste form

    NASA Astrophysics Data System (ADS)

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.; Kroll, Jared O.; Peterson, Jacob A.; Canfield, Nathan L.; Zhu, Zihua; Zhang, Jiandong; Kruska, Karen; Schreiber, Daniel K.; Crum, Jarrod V.

    2017-06-01

    This paper discusses work to develop Na2O-B2O3-SiO2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. Here, five new glasses with ∼20 mass% Na2O were designed to generate waste forms with high sodalite. The glasses were then used to produce ceramic waste forms with a surrogate salt waste. The waste forms made using these new glasses were formulated to generate more sodalite than those made with previous baseline glasses for this type of waste. The coefficients of thermal expansion for the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature than previous binder glasses used. These improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability.

  1. Alternative Electrochemical Salt Waste Forms, Summary of FY/CY2011 Results

    SciTech Connect

    Riley, Brian J.; McCloy, John S.; Crum, Jarrod V.; Rodriguez, Carmen P.; Windisch, Charles F.; Lepry, William C.; Matyas, Josef; Westman, Matthew P.; Rieck, Bennett T.; Lang, Jesse B.; Pierce, David A.

    2011-12-01

    This report summarizes the 2011 fiscal+calendar year efforts for developing waste forms for a spent salt generated in reprocessing nuclear fuel with an electrochemical separations process. The two waste forms are tellurite (TeO2-based) glasses and sol-gel-derived high-halide mineral analogs to stable minerals found in nature.

  2. Experiment close out of lysimeter field testing of low-level radioactive waste forms

    SciTech Connect

    McConnell, J.W. Jr.; Rogers, R.D.; Jastrow, J.D.

    1998-03-01

    The Field Lysimeter Investigations: Low-Level Waste Data Base Development Program is obtaining information on the performance of radioactive waste forms. These experiments were recently shut down and the contents of the lysimeters have been examined in accordance with a detailed waste form and soil sampling plan. Ion-exchange resins from a commercial nuclear power station were solidified into waste forms using portland cement and vinyl ester-styrene. These waste forms were tested to (a) obtain information on performance of waste forms in typical disposal environments, (b) compare field results with bench leach studies, (c) develop a low-level waste data base for use in performance assessment source term calculations, and (d) apply the DUST computer code to compare predicted cumulative release to actual field data. The program, funded by the Nuclear Regulatory Commission (NRC), includes observed radio nuclide releases from waste forms in field lysimeters at two test sites over 10 years of successful operation. The purpose of this paper is to present the results of the examination of waste forms and soils of the two lysimeter arrays after shut down. During this examination, the waste forms were characterized after removal from the lysimeters and the results compared to the findings of the original characterizations. Vertical soil cores were taken from the soil columns and analyzed with radiochemistry to define movement of radionuclides in the soils after release from the waste forms. A comparison is made of the DUST and BLT code predictions of releases and movement, using recently developed partition coefficients and leachate measurements, to actual radio nuclide movement through the soil columns as determined from these core analyses.

  3. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    SciTech Connect

    G. Radulesscu; J.S. Tang

    2000-06-07

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container along with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this analysis is to

  4. Mineral assemblage transformation of a metakaolin-based waste form after geopolymer encapsulation

    DOE PAGES

    Williams, Benjamin D.; Neeway, James J.; Snyder, Michelle M. V.; ...

    2015-12-23

    We can improve mitigation of hazardous and radioactive waste through conversion of existing waste to a more chemically stable and physically robust waste form. One option for waste conversion is the fluidized bed steam reforming (FBSR) process. The resulting FBSR granular material was encapsulated in a geopolymer matrix referred to here as Geo-7. This provides mechanical strength for ease in transport and disposal. But, it is necessary to understand the phase assemblage evolution as a result of geopolymer encapsulation. In this study, we examine the mineral assemblages formed during the synthesis of the multiphase ceramic waste form. The FBSR granularmore » samples were created from waste simulant that was chemically adjusted to resemble Hanford tank waste. Another set of samples was created using Savannah River Site Tank 50 waste simulant in order to mimic a blend of waste collected from 68 Hanford tank. Waste form performance tests were conducted using the product consistency test (PCT), the Toxicity Characteristic Leaching Procedure (TCLP), and the single-pass flow-through (SPFT) test. Finally, X-ray diffraction analyses revealed the structure of a previously unreported NAS phase and indicate that monolith creation may lead to a reduction in crystallinity as compared to the primary FBSR granular product.« less

  5. Mineral assemblage transformation of a metakaolin-based waste form after geopolymer encapsulation

    SciTech Connect

    Williams, Benjamin D.; Neeway, James J.; Snyder, Michelle M. V.; Bowden, Mark E.; Amonette, James E.; Arey, Bruce W.; Pierce, Eric M.; Brown, Christopher F.; Qafoku, Nikolla P.

    2015-12-23

    We can improve mitigation of hazardous and radioactive waste through conversion of existing waste to a more chemically stable and physically robust waste form. One option for waste conversion is the fluidized bed steam reforming (FBSR) process. The resulting FBSR granular material was encapsulated in a geopolymer matrix referred to here as Geo-7. This provides mechanical strength for ease in transport and disposal. But, it is necessary to understand the phase assemblage evolution as a result of geopolymer encapsulation. In this study, we examine the mineral assemblages formed during the synthesis of the multiphase ceramic waste form. The FBSR granular samples were created from waste simulant that was chemically adjusted to resemble Hanford tank waste. Another set of samples was created using Savannah River Site Tank 50 waste simulant in order to mimic a blend of waste collected from 68 Hanford tank. Waste form performance tests were conducted using the product consistency test (PCT), the Toxicity Characteristic Leaching Procedure (TCLP), and the single-pass flow-through (SPFT) test. Finally, X-ray diffraction analyses revealed the structure of a previously unreported NAS phase and indicate that monolith creation may lead to a reduction in crystallinity as compared to the primary FBSR granular product.

  6. Mineral assemblage transformation of a metakaolin-based waste form after geopolymer encapsulation

    NASA Astrophysics Data System (ADS)

    Williams, Benjamin D.; Neeway, James J.; Snyder, Michelle M. V.; Bowden, Mark E.; Amonette, James E.; Arey, Bruce W.; Pierce, Eric M.; Brown, Christopher F.; Qafoku, Nikolla P.

    2016-05-01

    Mitigation of hazardous and radioactive waste can be improved through conversion of existing waste to a more chemically stable and physically robust waste form. One option for waste conversion is the fluidized bed steam reforming (FBSR) process. The resulting FBSR granular material was encapsulated in a geopolymer matrix referred to here as Geo-7. This provides mechanical strength for ease in transport and disposal. However, it is necessary to understand the phase assemblage evolution as a result of geopolymer encapsulation. In this study, we examine the mineral assemblages formed during the synthesis of the multiphase ceramic waste form. The FBSR granular samples were created from waste simulant that was chemically adjusted to resemble Hanford tank waste. Another set of samples was created using Savannah River Site Tank 50 waste simulant in order to mimic a blend of waste collected from 68 Hanford tank. Waste form performance tests were conducted using the product consistency test (PCT), the Toxicity Characteristic Leaching Procedure (TCLP), and the single-pass flow-through (SPFT) test. X-ray diffraction analyses revealed the structure of a previously unreported NAS phase and indicate that monolith creation may lead to a reduction in crystallinity as compared to the primary FBSR granular product.

  7. MIIT: International in-situ testing of simulated HLW forms - performance of SRS simulated waste glass after 6 mos. , 1 yr. , 2 yrs. and 5 yrs. of burial at WIPP

    SciTech Connect

    Wicks, G.G. ); Lodding, A.R. ); Macedo, P.B. ); Clark, D.E. )

    1991-01-01

    The first field test, involving burial of simulated high-level waste (HLW) forms and package components, to be conducted in the United States, was begun in July of 1986. This program, called the Materials Interface Interactions Test or MIIT, comprises the largest cooperative field-testing venture in the international waste management community. Included in the study are over 900 waste form samples comprising 15 different systems supplied by 7 countries. Also included are about 300 potential canister or overpack metal samples along with more than 500 geologic and backfill specimens. There are almost 2000 relevant interactions that characterize this effort which is being conducted in the bedded salt site at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. The MIIT program represents a joint effort managed by Sandia National Laboratories in Albuquerque, N.M., and Savannah River Laboratory in Aiken, S.C. and sponsored by the US Department of Energy. Also involved in MIIT are participants from various laboratories and universities in France, Germany, Belgium, Canada, Japan, Sweden, the United Kingdom, and the United States. In July of 1991, the experimental portion of the 5-yr. MIIT program was completed. Although only about 5% of all MIIT samples have been assessed thus far, there are already interesting findings that have emerged. The present paper will discuss results obtained for SRS 165/TDS waste glass after burial of 6 mo., 1 yr. and 2 yrs., along with initial analyses of 5 yr. samples.

  8. Leaching characteristics of the metal waste form from the electrometallurgical treatment process: Product consistency testing

    SciTech Connect

    Johnson, S. G.; Keiser, D. D.; Frank, S. M.; DiSanto, T.; Noy, M.

    1999-11-11

    Argonne National Laboratory is developing an electrometallurgical treatment for spent fuel from the experimental breeder reactor II. A product of this treatment process is a metal waste form that incorporates the stainless steel cladding hulls, zirconium from the fuel and the fission products that are noble to the process, i.e., Tc, Ru, Nb, Pd, Rh, Ag. The nominal composition of this waste form is stainless steel/15 wt% zirconium/1--4 wt% noble metal fission products/1--2 wt % U. Leaching results are presented from several tests and sample types: (1) 2 week monolithic immersion tests on actual metal waste forms produced from irradiated cladding hulls, (2) long term (>2 years) pulsed flow tests on samples containing technetium and uranium and (3) crushed sample immersion tests on cold simulated metal waste form samples. The test results will be compared and their relevance for waste form product consistency testing discussed.

  9. Microstructure and leaching characteristics of a technetium containing metal waste form.

    SciTech Connect

    Johnson, S. G.

    1998-12-16

    Argonne National Laboratory is developing an electrometallurgical treatment for spent fuel from the experimental breeder reactor II. A product of this treatment process is a metal waste form that incorporates the stainless steel cladding hulls, zirconium from the fuel and the fission products that are noble to the process, i.e., Tc, Ru, Pd, Rh, Ag. The nominal composition of this waste form is stainless steel/15 wt% zirconium 1-4 wt% noble metal fission products. The behavior of technetium is of particular importance from a disposal point of view for this waste form due to its long half life, 2. 14E5 years, and its mobility in groundwater. To address these concerns a limited number of spiked metal waste forms were produced containing Tc. These surrogate waste forms were then studied using scanning electron microscopy and selected leaching tests.

  10. Relating structural parameters to leachability in a glass-bonded ceramic waste form.

    SciTech Connect

    Frank, S. M.; Johnson, S. G.; Moschetti, T. L.

    1998-05-08

    Lattice parameters for a crystalline material can be obtained by several methods, notably by analyzing x-ray powder diffraction patterns. By utilizing a computer program to fit a pattern, one can follow the evolution or subtle changes in a structure of a crystalline species in different environments. This work involves such a study for an essential component of the ceramic waste form that is under development at Argonne National Laboratory. Zeolite 4A and zeolite 5A are used to produce two different types of waste forms: a glass-bonded sodalite and a glass-bonded zeolite, respectively. Changes in structure during production of the waste forms are discussed. Specific salt-loadings in the sodalite waste form are related to relative peak intensities of certain reflections in the XRD patterns. Structural parameters for the final waste forms will also be given and related to leachability under standard conditions.

  11. Characterization of high cesium containing glass-bonded ceramic waste forms.

    SciTech Connect

    Lambregts, M. J.; Frank, S. M.

    2003-10-03

    High cesium containing glass-bonded ceramic waste form samples were prepared and characterized to identify possible cesium phases present in glass-bonded ceramic waste forms developed for the containment of fission product bearing salts. Major phases of the waste forms are sodalite and glass. A combination of powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and nuclear magnetic resonance spectroscopy (NMR) were used to study the multiphase nature of these waste forms. Cesium was found to be present in the higher loaded waste forms in a cesium aluminosilicate phase with an analcime structure and a 1:1 Si:Al ratio, a pollucite phase, and also in the glass phase. The glass phase contains the majority of the cesium at lower loadings, however some pollucite also remains. Cesium was not detected in the sodalite phase of any of the samples.

  12. Radioactive waste material melter apparatus

    DOEpatents

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  13. Radioactive waste material melter apparatus

    DOEpatents

    Newman, Darrell F.; Ross, Wayne A.

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

  14. In-Drift Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Form

    SciTech Connect

    H.W> Stockman; S. LeStrange

    2000-09-28

    The objective of this calculation is to provide estimates of the amount of fissile material flowing out of the waste package (source term) and the accumulation of fissile elements (U and Pu) in a crushed-tuff invert. These calculations provide input for the analysis of repository impacts of the Pu-ceramic waste forms. In particular, the source term results are used as input to the far-field accumulation calculation reported in Ref. 51, and the in-drift accumulation results are used as inputs for the criticality calculations reported in Ref. 2. The results are also summarized and interpreted in Ref. 52. The scope of this calculation is the waste package (WP) Viability Assessment (VA) design, which consists of an outer corrosion-allowance material (CAM) and an inner corrosion-resistant material (CRM). This design is used in this calculation in order to be consistent with earlier Pu-ceramic degradation calculations (Ref. 15). The impact of the new Enhanced Design Alternative-I1 (EDA-11) design on the results will be addressed in a subsequent report. The design of the invert (a leveling foundation, which creates a level surface of the drift floor and supports the WP mounting structure) is consistent with the EDA-I1 design. The invert will be composed of crushed stone and a steel support structure (Ref. 17). The scope of this calculation is also defined by the nominal degradation scenario, which involves the breach of the WP (Section 10.5.1.2, Ref. 48), followed by the influx of water. Water in the WP may, in time, gradually leach the fissile components and neutron absorbers out of the ceramic waste forms. Thus, the water in the WP may become laden with dissolved actinides (e.g., Pu and U), and may eventually overflow or leak from the WP. Once the water leaves the WP, it may encounter the invert, in which the actinides may reprecipitate. Several factors could induce reprecipitation; these factors include: the high surface area of the crushed stone, and the presence of

  15. Effect of Canister Movement on Water Turbidity

    SciTech Connect

    TRIMBLE, D.J.

    2000-08-24

    Requirements for evaluating the adherence characteristics of sludge on the fuel stored in the K East Basin and the effect of canister movement on basin water turbidity are documented in Briggs (1996). The results of the sludge adherence testing have been documented (Bergmann 1996). This report documents the results of the canister movement tests. The purpose of the canister movement tests was to characterize water turbidity under controlled canister movements (Briggs 1996). The tests were designed to evaluate methods for minimizing the plumes and controlling water turbidity during fuel movements leading to multi-canister overpack (MCO) loading. It was expected that the test data would provide qualitative visual information for use in the design of the fuel retrieval and water treatment systems. Video recordings of the tests were to be the only information collected.

  16. Evaluation of interim and final waste forms for the newly generated liquid low-level waste flowsheet

    SciTech Connect

    Abotsi, G.M.K.; Bostick, D.T.; Beck, D.E.

    1996-05-01

    The purpose of this review is to evaluate the final forms that have been proposed for radioactive-containing solid wastes and to determine their application to the solid wastes that will result from the treatment of newly generated liquid low-level waste (NGLLLW) and Melton Valley Storage Tank (MVST) supernate at the Oak Ridge National Laboratory (ORNL). Since cesium and strontium are the predominant radionuclides in NGLLLW and MVST supernate, this review is focused on the stabilization and solidification of solid wastes containing these radionuclides in cement, glass, and polymeric materials-the principal waste forms that have been tested with these types of wastes. Several studies have shown that both cesium and strontium are leached by distilled water from solidified cement, although the leachabilities of cesium are generally higher than those of strontium under similar conditions. The situation is exacerbated by the presence of sulfates in the solution, as manifested by cracking of the grout. Additives such as bentonite, blast-furnace slag, fly ash, montmorillonite, pottery clay, silica, and zeolites generally decrease the cesium and strontium release rates. Longer cement curing times (>28 d) and high ionic strengths of the leachates, such as those that occur in seawater, also decrease the leach rates of these radionuclides. Lower cesium leach rates are observed from vitrified wastes than from grout waste forms. However, significant quantities of cesium are volatilized due to the elevated temperatures required to vitrify the waste. Hence, vitrification will generally require the use of cleanup systems for the off-gases to prevent their release into the atmosphere.

  17. Development of long-term performance models for radioactive waste forms

    SciTech Connect

    Bacon, Diana H.; Pierce, Eric M.

    2011-03-22

    The long-term performance of solid radioactive waste is measured by the release rate of radionuclides into the environment, which depends on corrosion or weathering rates of the solid waste form. The reactions involved depend on the characteristics of the solid matrix containing the radioactive waste, the radionuclides of interest, and their interaction with surrounding geologic materials. This chapter describes thermo-hydro-mechanical and reactive transport models related to the long-term performance of solid radioactive waste forms, including metal, ceramic, glass, steam reformer and cement. Future trends involving Monte-Carlo simulations and coupled/multi-scale process modeling are also discussed.

  18. Fracture toughness measurements on a glass bonded sodalite high-level waste form.

    SciTech Connect

    DiSanto, T.; Goff, K. M.; Johnson, S. G.; O'Holleran, T. P.

    1999-05-19

    The electrometallurgical treatment of metallic spent nuclear fuel produces two high-level waste streams; cladding hulls and chloride salt. Argonne National Laboratory is developing a glass bonded sodalite waste form to immobilize the salt waste stream. The waste form consists of 75 Vol.% crystalline sodalite (containing the salt) with 25 Vol.% of an ''intergranular'' glassy phase. Microindentation fracture toughness measurements were performed on representative samples of this material using a Vickers indenter. Palmqvist cracking was confirmed by post-indentation polishing of a test sample. Young's modulus was measured by an acoustic technique. Fracture toughness, microhardness, and Young's modulus values are reported, along with results from scanning electron microscopy studies.

  19. Final Report: Characterization of Canister Mockup Weld Residual Stresses

    SciTech Connect

    Enos, David; Bryan, Charles R.

    2016-12-01

    Stress corrosion cracking (SCC) of interim storage containers has been indicated as a high priority data gap by the Department of Energy (DOE) (Hanson et al., 2012), the Electric Power Research Institute (EPRI, 2011), the Nuclear Waste Technical Review Board (NWTRB, 2010a), and the Nuclear Regulatory Commission (NRC, 2012a, 2012b). Uncertainties exist in terms of the environmental conditions that prevail on the surface of the storage containers, the stress state within the container walls associated both with weldments as well as within the base metal itself, and the electrochemical properties of the storage containers themselves. The goal of the work described in this document is to determine the stress states that exists at various locations within a typical storage canister by evaluating the properties of a full-diameter cylindrical mockup of an interim storage canister. This mockup has been produced using the same manufacturing procedures as the majority of the fielded spent nuclear fuel interim storage canisters. This document describes the design and procurement of the mockup and the characterization of the stress state associated with various portions of the container. It also describes the cutting of the mockup into sections for further analyses, and a discussion of the potential impact of the results from the stress characterization effort.

  20. Test report for the Sample Transfer Canister system

    SciTech Connect

    Flanagan, B.D.

    1998-03-04

    The Sample Transfer Canister will be used by the Waste Receiving and Processing Facility (WRAP) for the transport of small quantity liquid samples that meet the definition of a limited quantity radioactive material, and may also be corrosive and/or flammable. Transport of the system will typically be north of the Wye Barricade between WRAP and the 222-S Laboratory. The samples are intended to conform to the US Department of Transportation (DOT) regulation 49 CFR 1 73.4, ``Exceptions for small quantities.`` The regulations require prototype testing of the package to demonstrate the effectiveness of the packaging system. The test procedure consisted of one 24-hour compression test and five drop tests of various orientations onto an unyielding drop pad. The testing of the Sample Transfer Canister System was performed between February 16, 1998 and February 25, 1998. The results of the testing concluded that the Sample Transfer Canister System successfully met the testing requirements with certain modifications to the original system. The modifications included replacing the original eight flange screws which were cold rolled 316 stainless steel with greater strength grade 8 high carbon-carbon steel screws, replacing the initial two glass receptacles with a better performing single glass receptacle which proved not to leak during testing, and adding more bubble wrap as extra padding.

  1. Analysis of K west basin canister gas

    SciTech Connect

    Trimble, D.J., Fluor Daniel Hanford

    1997-03-06

    Gas and Liquid samples have been collected from a selection of the approximately 3,820 spent fuel storage canisters in the K West Basin. The samples were taken to characterize the contents of the gas and water in the canisters providing source term information for two subprojects of the Spent Nuclear Fuel Project (SNFP) (Fulton 1994): the K Basins Integrated Water Treatment System Subproject (Ball 1996) and the K Basins Fuel Retrieval System Subproject (Waymire 1996). The barrels of ten canisters were sampled for gas and liquid in 1995, and 50 canisters were sampled in a second campaign in 1996. The analysis results from the first campaign have been reported (Trimble 1995a, 1995b, 1996a, 1996b). The analysis results from the second campaign liquid samples have been documented (Trimble and Welsh 1997; Trimble 1997). This report documents the results for the gas samples from the second campaign and evaluates all gas data in terms of expected releases when opening the canisters for SNFP activities. The fuel storage canisters consist of two closed and sealed barrels, each with a gas trap. The barrels are attached at a trunion to make a canister, but are otherwise independent (Figure 1). Each barrel contains up to seven N Reactor fuel element assemblies. A gas space of nitrogen was established in the top 2.2 to 2.5 inches (5.6 to 6.4 cm) of each barrel. Many of the fuel elements were damaged allowing the metallic uranium fuel to be corroded by the canister water. The corrosion releases fission products and generates hydrogen gas. The released gas mixes with the gas-space gas and excess gas passes through the gas trap into the basin water. The canister design does not allow canister water to be exchanged with basin water.

  2. Evaluation of weldment sensitization on Type 304 and 304L stainless steel spent-fuel canisters

    SciTech Connect

    Filippio, A.M.

    1980-01-01

    Sensitization was evaluated on welded Type 304 and 304L stainless steel canisters produced for the Commercial Waste Spent Fuel Packaging Program (CWSFPP) and the Nevada Nuclear Waste Storage Program (NNWSP). The canister weldments which were made under conditions having the greatest potential for causing sensitization were examined using metallographic and corrosion test practices described in Specification ASTM A-262, and also by exposure to hypothetical conditions simulating continuous boiling water immersion at the storage sites. When tested to ASTM A-262, the Type 304 weldments displayed classical evidence of sensitization; i.e., loss of corrosion resistance at heat affected zones, but no evidence of sensitizations was uncovered on the Type 304L weldments. Both the Type 304 and 304L weldments were totally unaffected by exposure for 1500 hours under conditions of continuous boiling water immersion, indicating that the CWSFPP and NNWSP canisters have adequate corrosion resistance for the intended applications.

  3. FY-87 packing fabrication techniques (commercial waste form) results

    SciTech Connect

    Werry, E.V.; Gates, T.E.; Cabbage, K.S.; Eklund, J.D.

    1988-04-01

    This report covers the investigation of fabrication techniques associated with the development of suitable materials and methods to provide a prefabricated packing for waste packages for the Basalt Waste Isolation Project (BWIP). The principal functions of the packing are to minimize container corrosion during the 300 to 1000 years following repository closure and provide long-term control of the release of radionuclides from the waste package. The investigative work, discussed in this report, was specifically conceived to develop the design criteria for production of full-scale prototypical packing rings. The investigative work included the preparation of procedures, the preparation of fabrication materials, physical properties, and the determination of the engineering properties. The principal activities were the preparation of the materials and the determination of the physical properties. 21 refs., 20 figs., 14 tabs.

  4. Data Package for Secondary Waste Form Down-Selection—Cast Stone

    SciTech Connect

    Serne, R. Jeffrey; Westsik, Joseph H.

    2011-09-05

    Available literature on Cast Stone and Saltstone was reviewed with an emphasis on determining how Cast Stone and related grout waste forms performed in relationship to various criteria that will be used to decide whether a specific type of waste form meets acceptance criteria for disposal in the Integrated Disposal Facility (IDF) at Hanford. After the critical review of the Cast Stone/Saltstone literature, we conclude that Cast Stone is a good candidate waste form for further consideration. Cast stone meets the target IDF acceptance criteria for compressive strength, no free liquids, TCLP leachate are below the UTS permissible concentrations and leach rates for Na and Tc-99 are suiteably low. The cost of starting ingredients and equipment necessary to generate Cast Stone waste forms with secondary waste streams are low and the Cast Stone dry blend formulation can be tailored to accommodate variations in liquid waste stream compositions. The database for Cast Stone short-term performance is quite extensive compared to the other three candidate waste solidification processes. The solidification of liquid wastes in Cast Stone is a mature process in comparison to the other three candidates. Successful production of Cast Stone or Saltstone has been demonstrated from lab-scale monoliths with volumes of cm3 through m3 sized blocks to 210-liter sized drums all the way to the large pours into vaults at Savannah River. To date over 9 million gallons of low activity liquid waste has been solidified and disposed in concrete vaults at Savannah River.

  5. Characteristics of potential repository wastes. Volume 3, Appendix 3A, ORIGEN2 decay tables for immobilized high-level waste; Appendix 3B, Interim high-level waste forms

    SciTech Connect

    Not Available

    1992-07-01

    This appendix presents the results of decay calculations using the ORIGEN2 code to determine the radiological properties of canisters of immobilized high-level waste as a function of decay time for decay times up to one million years. These calculations were made for the four HLW sites (West Valley Demonstration Project, Savannah River Site, Hanford Site, and Idaho National Engineering Laboratory) using the composition data discussed in the HLW section of this report. Calculated ({alpha},n) neutron production rates are also shown.

  6. CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT

    SciTech Connect

    J.F. Beesley

    2005-04-21

    The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.

  7. Application of the TEMPEST computer code to canister-filling heat transfer problems

    SciTech Connect

    Farnsworth, R.K.; Faletti, D.W.; Budden, M.J.

    1988-03-01

    Pacific Northwest Laboratory (PNL) researchers used the TEMPEST computer code to simulate thermal cooldown behavior of nuclear waste glass after it was poured into steel canisters for long-term storage. The objective of this work was to determine the accuracy and applicability of the TEMPEST code when used to compute canister thermal histories. First, experimental data were obtained to provide the basis for comparing TEMPEST-generated predictions. Five canisters were instrumented with appropriately located radial and axial thermocouples. The canister were filled using the pilot-scale ceramic melter (PSCM) at PNL. Each canister was filled in either a continous or a batch filling mode. One of the canisters was also filled within a turntable simulant (a group of cylindrical shells with heat transfer resistances similar to those in an actual melter turntable). This was necessary to provide a basis for assessing the ability of the TEMPEST code to also model the transient cooling of canisters in a melter turntable. The continous-fill model, Version M, was found to predict temperatures with more accuracy. The turntable simulant experiment demonstrated that TEMPEST can adequately model the asymmetric temperature field caused by the turntable geometry. Further, TEMPEST can acceptably predict the canister cooling history within a turntable, despite code limitations in computing simultaneous radiation and convection heat transfer between shells, along with uncertainty in stainless-steel surface emissivities. Based on the successful performance of TEMPEST Version M, development was initiated to incorporate 1) full viscous glass convection, 2) a dynamically adaptive grid that automatically follows the glass/air interface throughout the transient, and 3) a full enclosure radiation model to allow radiation heat transfer to non-nearest neighbor cells. 5 refs., 47 figs., 17 tabs.

  8. NNWSI waste form testing at Argonne National Laboratory; Semiannual report: January-June 1987

    SciTech Connect

    Bates, J.K.; Gerding, T.J.; Abrajano, T.A. Jr.; Ebert, W.L.; Mazer, J.J.

    1988-11-01

    The Nevada Nuclear Waste Storage Investigation (NNWSI) Project is investigating the tuff beds of Yucca Mountain, Nevada, as a potential location for a high-level radioactive waste repository. As part of the waste package development portion of this project, experiments are being performed by the Chemical Technology Division of Argonne National Laboratory to study the behavior of the waste form under anticipated repository conditions. These experiments include the development and performance of a test to measure waste form behavior in unsaturated conditions and the performance of experiments designed to study the behavior of waste package components in an irradiated environment. Previous reports document developments in these areas through 1986. This report summarizes progress during the period January--June 1987, 19 refs., 17 figs., 20 tabs.

  9. Frequent Questions about the Hazardous Waste Manifest Form

    EPA Pesticide Factsheets

    FAQs including Are generators required to use all six copies of the manifest? How will state-only waste manifests be affected by the new rule? Where must the importer and foreign generator’s information be entered in the generator identification block?

  10. State-of-the-art review of materials properties of nuclear waste forms.

    SciTech Connect

    Mendel, J. E.; Nelson, R. D.; Turcotte, R. P.; Gray, W. J.; Merz, M. D.; Roberts, F. P.; Weber, W. J.; Westsik, Jr., J. H.; Clark, D. E.

    1981-04-01

    The Materials Characterization Center (MCC) was established at the Pacific Northwest Laboratory to assemble a standardized nuclear waste materials data base for use in research, systems and facility design, safety analyses, and waste management decisions. This centralized data base will be provided through the means of a Nuclear Waste Materials Handbook. The first issue of the Handbook will be published in the fall of 1981 in looseleaf format so that it can be updated as additional information becomes available. To ensure utmost reliability, all materials data appearing in the Handbook will be obtained by standard procedures defined in the Handbook and approved by an independent Materials Review Board (MRB) comprised of materials experts from Department of Energy laboratories and from universities and industry. In the interim before publication of the Handbook there is need for a report summarizing the existing materials data on nuclear waste forms. This review summarizes materials property data for the nuclear waste forms that are being developed for immobilization of high-level radioactive waste. It is intended to be a good representation of the knowledge concerning the properties of HLW forms as of March 1981. The table of contents lists the following topics: introduction which covers waste-form categories, and important waste-form materials properties; physical properties; mechanical properties; chemical durability; vaporization; radiation effects; and thermal phase stability.

  11. Canister, sealing method and composition for sealing a borehole

    SciTech Connect

    Brown, Donald W.; Wagh, Arun S.

    2003-05-13

    Canister, sealing method and composition for sealing a borehole. The canister includes a container with slurry inside the container, one or more slurry exits at one end of the container, a pump at the other end of the container, and a piston inside that pushes the slurry though the slurry exit(s), out of the container, and into a borehole. An inflatable packer outside the container provides stabilization in the borehole. A borehole sealing material is made by combining an oxide or hydroxide and a phosphate with water to form a slurry which then sets to form a high strength, minimally porous material which binds well to itself, underground formations, steel and ceramics.

  12. Advanced waste form and melter development for treatment of troublesome high-level wastes

    SciTech Connect

    Marra, James; Kim, Dong -Sang; Maio, Vincent

    2015-09-02

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these "troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approached to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.

  13. Tellurite glass as a waste form for a simulated mixed chloride waste stream: Candidate materials selection and initial testing

    SciTech Connect

    Riley, Brian J.; Rieck, Bennett T.; McCloy, John S.; Crum, Jarrod V.; Sundaram, S. K.; Vienna, John D.

    2012-02-02

    Tellurite glasses have been researched widely for the last 60 years since they were first introduced by Stanworth. These glasses have been primarily used in research applications as glass host materials for lasers and as non-linear optical materials, though many other uses exist in the literature. Tellurite glasses have long since been used as hosts for various, and even sometimes mixed, halogens (i.e., multiple chlorides or even chlorides and iodides). Thus, it was reasonable to expect that these types of glasses could be used as a waste form to immobilize a combination of mixed chlorides present in the electrochemical separations process involved with fuel separations and processing from nuclear reactors. Many of the properties related to waste forms (e.g., chemical durability, maximum chloride loading) for these materials are unknown and thus, in this study, several different types of tellurite glasses were made and their properties studied to determine if such a candidate waste form could be fabricated with these glasses. One of the formulations studied was a lead tellurite glass, which had a low sodium release and is on-par with high-level waste silicate glass waste forms.

  14. Sensitivity tests of the waste-form-alone design for the low-activity-waste disposal system

    SciTech Connect

    Fayer, M.J.; White, M.D.; Kincaid, C.T.

    1997-09-01

    Computer simulations were performed to assess the performance of the waste-form-alone (WFA) design for the low-activity-waste (LAW) disposal system. In FY 1997, PNNL performed additional simulations for Lockheed Martin Hanford Company (LMHC) to address specific questions about the disposal. LMHC manages the Glass Performance Assessment Project for DOE. The objectives of the additional simulations were to demonstrate the impact of grid resolution, diffusion, fracture flow within the waste form, and consumption of water by the waste form. It was assumed that the waste form would be the only part of the engineered disposal system that inhibits radionuclide release, referred to as WFA assumption. All calculations were performed with the latest version of the STOMP (Subsurface Transport Over Multiple Phases) simulator. Multiple simulations of the WFA disposal were performed to identify parameter and conceptual model sensitivities. The corrosion rate, recharge rate, well interception factor, hydraulic properties, and hydraulic and retardation models were shown to be important. Diffusion was shown to be important for the gravel model of glass but not the soil model. The impact of temperature changes was discussed and determined to be negligible. Water consumption during corrosion was evaluated and found to have a minimal effect on the dose calculations. Fracture flow within the glass was evaluated and found to have only a minimal effect on the dose calculations.

  15. FY16 Annual Accomplishments - Waste Form Development and Performance: Evaluation Of Ceramic Waste Forms - Comparison Of Hot Isostatic Pressed And Melt Processed Fabrication Methods

    SciTech Connect

    Amoroso, J.; Dandeneau, C.

    2016-10-13

    FY16 efforts were focused on direct comparison of multi-phase ceramic waste forms produced via melt processing and HIP methods. Based on promising waste form compositions previously devised at SRNL, simulant material was prepared at SRNL and a portion was sent to the Australian Nuclear Science and Technology Organization (ANSTO) for HIP treatments, while the remainder of the material was melt processed at SRNL. The microstructure, phase formation, elemental speciation, and leach behavior, and radiation stability of the fabricated ceramics was performed. In addition, melt-processed ceramics designed with different fractions of hollandite, zirconolite, perovskite, and pyrochlore phases were investigated. for performance and properties.

  16. Development of a biofilm formation method for waste forms stability evaluation.

    PubMed

    Idachaba, M A; Nyavor, K; Egiebor, N O; Rogers, R D

    2000-10-02

    The development of an accurate assessment protocol is critical for the prediction of long-term performance of waste disposal systems under field conditions. In this study, the development of a biofilm formation method for the evaluation of waste forms stability to microbially induced degradation (MID) is reported. The development process involved significant modifications to the existing Nuclear Regulatory Commission (NRC) approach. In the biofilm formation method, the control media and fermenter broths are designed to be of similar pH to avoid overestimation of the microbe's capability to degrade the waste forms. In the NRC approach, the pH values are different. The existing one-stage process of the NRC approach is also replaced with a two-stage process in the biofilm formation method. This is to ensure full evaluation of the microbe's involvement in waste forms degradation. The first stage of the two-stage process is for biofilm formation and the second is for biofilm evaluation. The use of a two-stage process eliminates the possibility of substrate limitation, resulting in values of degradation indices that are about two times higher than those obtained using the single-stage NRC approach. Two waste forms (100% Tuskegee cement and 21% cobalt chloride/79% cement) were used in the development of the biofilm formation method. Both waste forms showed evidence of biofilm formation. The formation of biofilm on the cobalt-containing waste form indicates a lack of anti-microbial capability of cobalt.

  17. SPENT NUCLEAR FUEL NUMBER DENSITIES FOR MULTI-PURPOSE CANISTER CRITICALITY CALCULATIONS

    SciTech Connect

    D. A. Thomas

    1996-01-12

    The purpose of this analysis is to calculate the number densities for spent nuclear fuel (SNF) to be used in criticality evaluations of the Multi-Purpose Canister (MPC) waste packages. The objective of this analysis is to provide material number density information which will be referenced by future MPC criticality design analyses, such as for those supporting the Conceptual Design Report.

  18. Stability of high-level waste forms. 1998 annual progress report

    SciTech Connect

    Besmann, T.M.; Beahm, E.C.; Spear, K.E.

    1998-06-01

    'The objective of this program is to identify new waste forms and disposal strategies specific to crystalline silicotitanate (CST) secondary waste that is generated from Cs and Sr ion exchange processes. In particular, in-situ heat treatment of CSTs to produce an alternate waste form is being examined. Waste forms that are developed in this work will offer an alternative to current disposal plans which call for recombining the separated Cs, Sr-loaded CST into the high activity waste streams then dissolving it in borosilicate glass. The goals of the program are to reduce the costs associated with CST waste disposal, to minimize the risk of contamination to the environment during CST processing, and to provide DOE with technical alternatives for CST disposal. Because there is uncertainty in repository availability and in waste acceptance criteria, it is likely that Cs and Sr loaded ion exchangers will require short term storage at Hanford or that new scenarios for long term storage or disposal of nuclides with relatively short half lives (such as {sup 137}Cs and {sup 90}Sr) will arise. Research activities in this program will generate information on the durabilities and stabilities of thermally consolidated CSTs so that the potential of these options as viable storage or disposal scenarios can be evaluated. The technical objectives of the proposed work are to fully characterize the phase relationships, structures and thermodynamic and kinetic stabilities of crystalline silicotitanate waste forms and to establish a sound technical basis for understanding key waste form properties, such as melting temperatures and aqueous durability, based on an in-depth understanding of waste form structures and thermochemistry. This report summarizes work after seven months of a three year program.'

  19. Molecular environmental science using synchrotron radiation:Chemistry and physics of waste form materials

    SciTech Connect

    Lindle, Dennis W.; Shuh, David K.

    2005-02-28

    Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization [1]. Specially formulated glass compositions, many of which have been derived from glass developed for commercial purposes, and ceramics such as pyrochlores and apatites, will be the main recipients for these wastes. The performance characteristics of waste-form glasses and ceramics are largely determined by the loading capacity for the waste constituents (radioactive and non-radioactive) and the resultant chemical and radiation resistance of the waste-form package to leaching (durability). There are unique opportunities for the use of near-edge soft-x-ray absorption fine structure (NEXAFS) spectroscopy to investigate speciation of low-Z elements forming the backbone of waste-form glasses and ceramics. Although nuclear magnetic resonance (NMR) is the primary technique employed to obtain speciation information from low-Z elements in waste forms, NMR is incompatible with the metallic impurities contained in real waste and is thus limited to studies of idealized model systems. In contrast, NEXAFS can yield element-specific speciation information from glass constituents without sensitivity to paramagnetic species. Development and use of NEXAFS for eventual studies of real waste glasses has significant implications, especially for the low-Z elements comprising glass matrices [5-7]. The NEXAFS measurements were performed at Beamline 6.3.1, an entrance-slitless bend-magnet beamline operating from 200 eV to 2000 eV with a Hettrick-Underwood varied-line-space (VLS) grating monochromator, of the Advanced Light Source (ALS) at LBNL. Complete characterization and optimization of this beamline was conducted to enable high-performance measurements.

  20. U.S. Food Loss and Waste 2030 Champions Activity Form

    EPA Pesticide Factsheets

    To join the U.S. Food Loss and Waste 2030 Champions, organizations complete and submit the 2030 Champions form, in which they commit to reduce food loss and waste in their own operations and periodically report their progress on their website.

  1. Waste vitrification: prediction of acceptable compositions in a lime-soda-silica glass-forming system

    SciTech Connect

    Gilliam, T.M.; Jantzen, C.M.

    1996-10-01

    A model is presented based upon calculated bridging oxygens which allows the prediction of the region of acceptable glass compositions for a lime-soda-silica glass-forming system containing mixed waste. The model can be used to guide glass formulation studies (e.g., treatability studies) or assess the applicability of vitrification to candidate waste streams.

  2. 40 CFR 761.345 - Form of the waste to be sampled.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Form of the waste to be sampled. 761.345 Section 761.345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC..., AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes...

  3. 40 CFR 761.345 - Form of the waste to be sampled.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Form of the waste to be sampled. 761.345 Section 761.345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC..., AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes...

  4. 40 CFR 761.345 - Form of the waste to be sampled.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Form of the waste to be sampled. 761.345 Section 761.345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC..., AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes...

  5. 40 CFR 761.345 - Form of the waste to be sampled.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Form of the waste to be sampled. 761.345 Section 761.345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC..., AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes...

  6. Process simulation and statistical approaches for validating waste form qualification models

    SciTech Connect

    Kuhn, W.L.; Toland, M.R.; Pulsipher, B.A.

    1989-05-01

    This report describes recent progress toward one of the principal objectives of the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory (PNL): to establish relationships between vitrification process control and glass product quality. during testing of a vitrification system, it is important to show that departures affecting the product quality can be sufficiently detected through process measurements to prevent an unacceptable canister from being produced. Meeting this goal is a practical definition of a successful sampling, data analysis, and process control strategy. A simulation model has been developed and preliminarily tested by applying it to approximate operation of the West Valley Demonstration Project (WVDP) vitrification system at West Valley, New York. Multivariate statistical techniques have been identified and described that can be applied to analyze large sets of process measurements. Information on components, tanks, and time is then combined to create a single statistic through which all of the information can be used at once to determine whether the process has shifted away from a normal condition.

  7. Development and testing of matrices for the encapsulation of glass and ceramic nuclear waste forms.

    SciTech Connect

    Wald, J.W.; Brite, D.W.; Gurwell, W.E.; Buckwalter, C.Q.; Bunnell, L.R.; Gray, W.J.; Blair, H.T.; Rusin, J.M.

    1982-02-01

    This report details the results of research on the matrix encapsulation of high level wastes at PML over the past few years. The demonstrations and tests described were designed to illustrate how the waste materials are effected when encapsulated in an inert matrix. Candidate materials evaluated for potential use as matrices for encapslation of pelletized ceramics or glass marbles were categorized into four groups: metals, glasses, ceramics, and graphite. Two processing techniques, casting and hot pressing, were investigated as the most promising methods of formation or densification of the matrices. The major results reported deal with the development aspects. However, chemical durability tests (leach tests) of the matrix materials themselves and matrix-waste form composites are also reported. Matrix waste forms can provide a low porosity, waste-free barrier resulting in increased leach protection, higher impact strength and improved thermal conductivity compared to unencapsulated glass or ceramic waste materials. Glass marbles encapsulated in a lead matrix offer the most significant improvement in waste form stability of all combinations evaluated. This form represents a readily demonstrable process that provides high thermal conductivity, mechanical shock resistance, radiation shielding and increased chemical durability through both a chemical passivation mechanism and as a physical barrier. Other durable matrix waste forms evaluated, applicable primarily to ceramic pellets, involved hot-pressed titanium or TiO/sub 2/ materials. In the processing of these forms, near 100% dense matrices were obtained. The matrix materials had excellent compatibility with the waste materials and superior potential chemical durability. Cracking of the hot-pressed ceramic matrix forms, in general, prevented the realization of their optimum properties.

  8. Summary of Uranium Solubility Studies in Concrete Waste Forms and Vadose Zone Environments

    SciTech Connect

    Golovich, Elizabeth C.; Wellman, Dawn M.; Serne, R. Jeffrey; Bovaird, Chase C.

    2011-09-30

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Concrete encasement would contain and isolate the waste packages from the hydrologic environment and act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expected to have a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. This report presents the results of investigations elucidating the uranium mineral phases controlling the long-term fate of uranium within concrete waste forms and the solubility of these phases in concrete pore waters and alkaline, circum-neutral vadose zone environments.

  9. Physical properties of an alumino-silicate waste form for cesium and strontium.

    SciTech Connect

    Kaminski, M.; Mertz, C.; Ferrandon, M.; Dietz, N.; Sandi-Tapia, G.

    2009-08-01

    Nuclear fuel reprocessing will be required to sustain nuclear power as a baseload energy supplier for the world. New reprocessing schemes offer an opportunity to develop a better strategy for recycling elements in the fuel and preparing stable waste forms. Advanced strategies could create a waste stream of cesium, strontium, rubidium, and barium. Some physical properties of a waste form containing these elements sintered into bentonite clay were evaluated. We prepared samples loaded to 27% by mass to a density of approximately 3 g/cm{sup 3}. Sintering temperatures of up to 1000 C did not result in volatility of cesium. Instead, the crystallinity noticeably increased in the waste form as temperatures increased from 600 to 1000 C. Assemblages of silicates were formed. Significant water evolved at approximately 600 C but no other gases were generated at higher temperatures.

  10. Physical properties of an alumino-silicate waste form for cesium and strontium

    NASA Astrophysics Data System (ADS)

    Kaminski, M. D.; Mertz, C. J.; Ferrandon, M.; Dietz, N. L.; Sandi, G.

    2009-08-01

    Nuclear fuel reprocessing will be required to sustain nuclear power as a baseload energy supplier for the world. New reprocessing schemes offer an opportunity to develop a better strategy for recycling elements in the fuel and preparing stable waste forms. Advanced strategies could create a waste stream of cesium, strontium, rubidium, and barium. Some physical properties of a waste form containing these elements sintered into bentonite clay were evaluated. We prepared samples loaded to 27% by mass to a density of approximately 3 g/cm 3. Sintering temperatures of up to 1000 °C did not result in volatility of cesium. Instead, the crystallinity noticeably increased in the waste form as temperatures increased from 600 to 1000 °C. Assemblages of silicates were formed. Significant water evolved at approximately 600 °C but no other gases were generated at higher temperatures.

  11. Chemical and Charge Imbalance Induced by Radionuclide Decay: Effects on Waste Form Structure

    SciTech Connect

    Van Ginhoven, Renee M.; Jaffe, John E.; Jiang, Weilin; Strachan, Denis M.

    2011-04-01

    This is a milestone document covering the activities to validate theoretical calculations with experimental data for the effect of the decay of 90Sr to 90Zr on materials properties. This was done for a surragate waste form strontium titanate.

  12. Preliminary studies of the disposition of cerium in a glass-bonded sodalite waste form.

    SciTech Connect

    Lambregts, M. J.; Frank, S. M.

    2001-12-18

    Argonne National Laboratory has developed an electrometallurgical treatment for DOE spent metallic nuclear fuel. Fission products are immobilized in a durable glass bonded sodalite ceramic waste form (CWF) suitable for long term storage in a geological repository. Cesium is estimated to be in the waste form at approximately 0.1 wt.%. The exact disposition of cesium was uncertain and it was believed to be uniformly distributed throughout the waste form. A correlation of X-ray diffractometry (XRD), electron microscopy (EM), and nuclear magnetic resonance spectroscopy (NMR) performed on surrogate ceramic waste forms with high cesium loadings found a high cesium content in the glass phase and in several non-sodalite aluminosilicate phases. Cesium was not detected in the sodalite phase.

  13. Coupling of Nuclear Waste Form Corrosion and Radionuclide Transports in Presence of Relevant Repository Sediments

    SciTech Connect

    Wall, Nathalie A.; Neeway, James J.; Qafoku, Nikolla P.; Ryan, Joseph V.

    2015-09-30

    Assessments of waste form and disposal options start with the degradation of the waste forms and consequent mobilization of radionuclides. Long-term static tests, single-pass flow-through tests, and the pressurized unsaturated flow test are often employed to study the durability of potential waste forms and to help create models that predict their durability throughout the lifespan of the disposal site. These tests involve the corrosion of the material in the presence of various leachants, with different experimental designs yielding desired information about the behavior of the material. Though these tests have proved instrumental in elucidating various mechanisms responsible for material corrosion, the chemical environment to which the material is subject is often not representative of a potential radioactive waste repository where factors such as pH and leachant composition will be controlled by the near-field environment. Near-field materials include, but are not limited to, the original engineered barriers, their resulting corrosion products, backfill materials, and the natural host rock. For an accurate performance assessment of a nuclear waste repository, realistic waste corrosion experimental data ought to be modeled to allow for a better understanding of waste form corrosion mechanisms and the effect of immediate geochemical environment on these mechanisms. Additionally, the migration of radionuclides in the resulting chemical environment during and after waste form corrosion must be quantified and mechanisms responsible for migrations understood. The goal of this research was to understand the mechanisms responsible for waste form corrosion in the presence of relevant repository sediments to allow for accurate radionuclide migration quantifications. The rationale for this work is that a better understanding of waste form corrosion in relevant systems will enable increased reliance on waste form performance in repository environments and potentially

  14. Comparison of mechanical properties of glass-bonded sodalite and borosilicate glass high-level waste forms

    SciTech Connect

    O'Holleran, T. P.; DiSanto, T.; Johnson, S. G.; Goff, K. M.

    2000-05-09

    Argonne National Laboratory has developed a glass-bonded sodalite waste form to immobilize the salt waste stream from electrometallurgical treatment of spent nuclear fuel. The waste form consists of 75 vol.% crystalline sodalite and 25 vol.% glass. Microindentation fracture toughness measurements were performed on this material and borosilicate glass from the Defense Waste Processing Facility using a Vickers indenter. Palmqvist cracking was confined for the glass-bonded sodalite waste form, while median-radial cracking occurred in the borosilicate glass. The elastic modulus was measured by an acoustic technique. Fracture toughness, microhardness, and elastic modulus values are reported for both waste forms.

  15. Canister storage building natural phenomena design loads

    SciTech Connect

    Tallman, A.M.

    1996-02-01

    This document presents natural phenomena hazard (NPH) loads for use in the design and construction of the Canister Storage Building (CSB), which will be located in the 200 East Area of the Hanford Site.

  16. Inspecting a Canister and Sample Collector

    NASA Image and Video Library

    2006-01-20

    Investigators from University of Washington, Johnson Space Center, and Lockheed Martin Missiles and Space, Denver, Colorado, inspect a canister and sample collector soon after opening a container with Stardust material in a laboratory at the JSC.

  17. DEVELOPMENT QUALIFICATION AND DISPOSAL OF AN ALTERNATIVE IMMOBILIZED LOW-ACTIVITY WASTE FORM AT THE HANFORD SITE

    SciTech Connect

    SAMS TL; EDGE JA; SWANBERG DJ; ROBBINS RA

    2011-01-13

    Demonstrating that a waste form produced by a given immobilization process is chemically and physically durable as well as compliant with disposal facility acceptance criteria is critical to the success of a waste treatment program, and must be pursued in conjunction with the maturation of the waste processing technology. Testing of waste forms produced using differing scales of processing units and classes of feeds (simulants versus actual waste) is the crux of the waste form qualification process. Testing is typically focused on leachability of constituents of concern (COCs), as well as chemical and physical durability of the waste form. A principal challenge regarding testing immobilized low-activity waste (ILAW) forms is the absence of a standard test suite or set of mandatory parameters against which waste forms may be tested, compared, and qualified for acceptance in existing and proposed nuclear waste disposal sites at Hanford and across the Department of Energy (DOE) complex. A coherent and widely applicable compliance strategy to support characterization and disposal of new waste forms is essential to enhance and accelerate the remediation of DOE tank waste. This paper provides a background summary of important entities, regulations, and considerations for nuclear waste form qualification and disposal. Against this backdrop, this paper describes a strategy for meeting and demonstrating compliance with disposal requirements emphasizing the River Protection Project (RPP) Integrated Disposal Facility (IDF) at the Hanford Site and the fluidized bed steam reforming (FBSR) mineralized low-activity waste (LAW) product stream.

  18. 42 CFR 84.1153 - Dust, fume, mist, and smoke tests; canister bench tests; gas masks canisters containing filters...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Dust, fume, mist, and smoke tests; canister bench..., fume, mist, and smoke tests; canister bench tests; gas masks canisters containing filters; minimum requirements. (a) Gas mask canisters containing filters for protection against dusts, fumes, mists, and smokes...

  19. 42 CFR 84.1153 - Dust, fume, mist, and smoke tests; canister bench tests; gas masks canisters containing filters...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Dust, fume, mist, and smoke tests; canister bench..., fume, mist, and smoke tests; canister bench tests; gas masks canisters containing filters; minimum requirements. (a) Gas mask canisters containing filters for protection against dusts, fumes, mists, and...

  20. 42 CFR 84.1153 - Dust, fume, mist, and smoke tests; canister bench tests; gas masks canisters containing filters...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Dust, fume, mist, and smoke tests; canister bench..., fume, mist, and smoke tests; canister bench tests; gas masks canisters containing filters; minimum requirements. (a) Gas mask canisters containing filters for protection against dusts, fumes, mists, and...

  1. 42 CFR 84.1153 - Dust, fume, mist, and smoke tests; canister bench tests; gas masks canisters containing filters...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Dust, fume, mist, and smoke tests; canister bench..., fume, mist, and smoke tests; canister bench tests; gas masks canisters containing filters; minimum requirements. (a) Gas mask canisters containing filters for protection against dusts, fumes, mists, and...

  2. Materials Characterization Center meeting on impact testing of waste forms. Summary report

    SciTech Connect

    Merz, M.D.; Atteridge, D.; Dudder, G.

    1981-10-01

    A meeting was held on March 25-26, 1981 to discuss impact test methods for waste form materials to be used in nuclear waste repositories. The purpose of the meeting was to obtain guidance for the Materials Characterization Center (MCC) in preparing the MCC-10 Impact Test Method to be approved by the Materials Review Board. The meeting focused on two essential aspects of the test method, namely the mechanical process, or impact, used to effect rapid fracture of a waste form and the analysis technique(s) used to characterize particulates generated by the impact.

  3. Equipping a glovebox for waste form testing and characterization of plutonium bearing materials

    SciTech Connect

    Noy, M.; Johnson, S.G.; Musick, C.A.; Moschetti, T.L.

    1997-09-01

    The recent decision by the Department of Energy to pursue a hybrid option for the disposition of weapons plutonium has created the need for additional facilities that can examine and characterize waste forms that contain Pu. This hybrid option consists of the placement of plutonium into stable waste forms and also into mixed oxide fuel for commercial reactors. Glass and glass-ceramic waste forms have a long history of being effective hosts for containing radionuclides, including plutonium. The types of tests necessary to characterize the performance of candidate waste forms include: static leaching experiments on both monolithic and crushed waste forms, microscopic examination, and density determination. Frequently, the respective candidate waste forms must first be produced using elevated temperatures and/or high pressures. The desired operations in the glovebox include, but are not limited to the following: (1) production of vitrified/sintered samples, (2) sampling of glass from crucibles or other vessels, (3) preparing samples for microscopic inspection and monolithic and crushed static leach tests, and (4) performing and analyzing leach tests in situ. This paper will describe the essential equipment and modifications that are necessary to successfully accomplish the goal of outfitting a glovebox for these functions.

  4. Far-Field Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Form

    SciTech Connect

    J.P. Nicot

    2000-09-29

    The objective of this calculation is to estimate the quantity of fissile material that could accumulate in fractures in the rock beneath plutonium-ceramic (Pu-ceramic) and Mixed-Oxide (MOX) waste packages (WPs) as they degrade in the potential monitored geologic repository at Yucca Mountain. This calculation is to feed another calculation (Ref. 31) computing the probability of criticality in the systems described in Section 6 and then ultimately to a more general report on the impact of plutonium on the performance of the proposed repository (Ref. 32), both developed concurrently to this work. This calculation is done in accordance with the development plan TDP-DDC-MD-000001 (Ref. 9), item 5. The original document described in item 5 has been split into two documents: this calculation and Ref. 4. The scope of the calculation is limited to only very low flow rates because they lead to the most conservative cases for Pu accumulation and more generally are consistent with the way the effluent from the WP (called source term in this calculation) was calculated (Ref. 4). Ref. 4 (''In-Drift Accumulation of Fissile Material from WPs Containing Plutonium Disposition Waste Forms'') details the evolution through time (breach time is initial time) of the chemical composition of the solution inside the WP as degradation of the fuel and other materials proceed. It is the chemical solution used as a source term in this calculation. Ref. 4 takes that same source term and reacts it with the invert; this calculation reacts it with the rock. In addition to reactions with the rock minerals (that release Si and Ca), the basic mechanisms for actinide precipitation are dilution and mixing with resident water as explained in Section 2.1.4. No other potential mechanism such as flow through a reducing zone is investigated in this calculation. No attempt was made to use the effluent water from the bottom of the invert instead of using directly the effluent water from the WP. This

  5. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    SciTech Connect

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02

    (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

  6. FLUIDIZED BED STEAM REFORMED MINERAL WASTE FORMS: CHARACTERIZATION AND DURABILITY TESTING

    SciTech Connect

    Jantzen, C; Troy Lorier, T; John Pareizs, J; James Marra, J

    2007-03-31

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium low activity wastes (LAW) such as those existing at the Hanford site, at the Idaho National Laboratory (INL), and the Savannah River Site (SRS). The addition of clay, charcoal, and a catalyst as co-reactants with the waste denitrates the aqueous wastes and forms a granular mineral waste form that can subsequently be made into a monolith for disposal if necessary. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage and ring structures and iron bearing spinel minerals. The mineralization occurs at moderate temperatures between 650-750 C in the presence of superheated steam. The cage and ring structured feldspathoid minerals atomically bond radionuclides like Tc-99 and Cs-137 and anions such as SO4, I, F, and Cl. The spinel minerals stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium bearing waste (SBW) in pilot scale facilities at the Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The results of the SPFT testing and the activation energies for dissolution are discussed in this study.

  7. FLUIDIZED BED STEAM REFORMED MINERAL WASTE FORMS: CHARACTERIZATION AND DURABILITY TESTING

    SciTech Connect

    Jantzen, C; Troy Lorier, T; John Pareizs, J; James Marra, J

    2006-12-06

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium low activity wastes (LAW) such as those existing at the Hanford site, at the Idaho National Laboratory (INL), and the Savannah River Site (SRS). The addition of clay, charcoal, and a catalyst as co-reactants with the waste denitrates the aqueous wastes and forms a granular mineral waste form that can subsequently be made into a monolith for disposal if necessary. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage and ring structures and iron bearing spinel minerals. The mineralization occurs at moderate temperatures between 650-750 C in the presence of superheated steam. The cage and ring structured feldspathoid minerals atomically bond radionuclides like Tc-99 and Cs-137 and anions such as SO{sub 4}, I, F, and Cl. The spinel minerals stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium bearing waste (SBW) in pilot scale facilities at the Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The results of the SPFT testing and the activation energies for dissolution are discussed in this study.

  8. Transuranic and Low-Level Boxed Waste Form Nondestructive Assay Technology Overview and Assessment

    SciTech Connect

    G. Becker; M. Connolly; M. McIlwain

    1999-02-01

    The Mixed Waste Focus Area (MWFA) identified the need to perform an assessment of the functionality and performance of existing nondestructive assay (NDA) techniques relative to the low-level and transuranic waste inventory packaged in large-volume box-type containers. The primary objectives of this assessment were to: (1) determine the capability of existing boxed waste form NDA technology to comply with applicable waste radiological characterization requirements, (2) determine deficiencies associated with existing boxed waste assay technology implementation strategies, and (3) recommend a path forward for future technology development activities, if required. Based on this assessment, it is recommended that a boxed waste NDA development and demonstration project that expands the existing boxed waste NDA capability to accommodate the indicated deficiency set be implemented. To ensure that technology will be commercially available in a timely fashion, it is recommended this development and demonstration project be directed to the private sector. It is further recommended that the box NDA technology be of an innovative design incorporating sufficient NDA modalities, e.g., passive neutron, gamma, etc., to address the majority of the boxed waste inventory. The overall design should be modular such that subsets of the overall NDA system can be combined in optimal configurations tailored to differing waste types.

  9. Epsilon Metal Waste Form for Immobilization of Noble Metals from Used Nuclear Fuel

    SciTech Connect

    Crum, Jarrod V.; Strachan, Denis M.; Rohatgi, Aashish; Zumhoff, Mac R.

    2013-10-01

    Epsilon metal (ε-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass and thus the processing problems related there insolubility in glass. This work focused on the processing aspects of the epsilon metal waste form development. Epsilon metal is comprised of refractory metals resulting in high reaction temperatures to form the alloy, expected to be 1500 - 2000°C making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).

  10. Computational Efficient Upscaling Methodology for Predicting Thermal Conductivity of Nuclear Waste forms

    SciTech Connect

    Li, Dongsheng; Sun, Xin; Khaleel, Mohammad A.

    2011-09-28

    This study evaluated different upscaling methods to predict thermal conductivity in loaded nuclear waste form, a heterogeneous material system. The efficiency and accuracy of these methods were compared. Thermal conductivity in loaded nuclear waste form is an important property specific to scientific researchers, in waste form Integrated performance and safety code (IPSC). The effective thermal conductivity obtained from microstructure information and local thermal conductivity of different components is critical in predicting the life and performance of waste form during storage. How the heat generated during storage is directly related to thermal conductivity, which in turn determining the mechanical deformation behavior, corrosion resistance and aging performance. Several methods, including the Taylor model, Sachs model, self-consistent model, and statistical upscaling models were developed and implemented. Due to the absence of experimental data, prediction results from finite element method (FEM) were used as reference to determine the accuracy of different upscaling models. Micrographs from different loading of nuclear waste were used in the prediction of thermal conductivity. Prediction results demonstrated that in term of efficiency, boundary models (Taylor and Sachs model) are better than self consistent model, statistical upscaling method and FEM. Balancing the computation resource and accuracy, statistical upscaling is a computational efficient method in predicting effective thermal conductivity for nuclear waste form.

  11. Extended Development Work to Validate a HLW Calcine Waste Form via INL's Cold Crucible Induction Melter

    SciTech Connect

    James A. King; Vince Maio

    2011-09-01

    To accomplish calcine treatment objectives, the Idaho Clean-up Project contractor, CWI, has chosen to immobilize the calcine in a glass-ceramic via the use of a Hot-Isostatic-Press (HIP); a treatment selection formally documented in a 2010 Record of Decision (ROD). Even though the HIP process may prove suitable for the calcine as specified in the ROD and validated in a number of past value engineering sessions, DOE is evaluating back-up treatment methods for the calcine as a result of the technical, schedule, and cost risk associated with the HIPing process. Consequently DOE HQ has requested DOE ID to make INL's bench-scale cold-crucible induction melter (CCIM) available for investigating its viability as a process alternate to calcine treatment. The waste form is the key component of immobilization of radioactive waste. Providing a solid, stable, and durable material that can be easily be stored is the rationale for immobilization of radioactive waste material in glass, ceramic, or glass-ceramics. Ceramic waste forms offer an alternative to traditional borosilicate glass waste forms. Ceramics can usually accommodate higher waste loadings than borosilicate glass, leading to smaller intermediate and long-term storage facilities. Many ceramic phases are known to possess superior chemical durability as compared to borosilicate glass. However, ceramics are generally multiphase systems containing many minor phase that make characterization and prediction of performance within a repository challenging. Additionally, the technologies employed in ceramic manufacture are typically more complex and expensive. Thus, many have proposed using glass-ceramics as compromise between in the more inexpensive, easier to characterize glass waste forms and the more durable ceramic waste forms. Glass-ceramics have several advantages over traditional borosilicate glasses as a waste form. Borosilicate glasses can inadvertently devitrify, leading to a less durable product that could crack

  12. Special waste-form lysimeters - arid: 1984--1992 data summary and preliminary interpretation

    SciTech Connect

    Jones, T.L.; Serne, R.J.

    1994-10-01

    A lysimeter facility constructed at the Hanford Site in south-central Washington State has been used since 1984 to monitor the leaching of buried waste forms under natural conditions. The facility is generating data that are useful in evaluating source-term models used in radioactive waste transport analyses. The facility includes ten bare-soil lysimeters (183 cm diameter by 305 cm depth) containing buried waste forms generated at nuclear reactors in the United States and solidified with Portland M cement, masonry cement, bitumen, and vinyl-ester styrene. The waste forms contained in the lysimeters have been leached under natural, semiarid conditions. In spite of the semiarid conditions, from 1984 through 1992, an average of 45 cm of water leached through the lysimeters, representing 27% of area precipitation. Leachate samples have been routinely collected and analyzed for radionuclide and chemical content. To date, tritium, cobalt-60, and cesium-137 have been identified in the lysimeter leachate samples. From 1984 through 1992, over 4000 {mu}Ci of tritium, representing 76 and 71 % of inventory (not decay corrected), have been leached from the two waste forms containing tritium. Cobalt-60 has been found in the leachate from all six of the waste forms that originally contained > 1 mCi of inventory. The leached amounts of cobalt-60 represent < 0.1 % of original cobalt inventories. Mobile cobalt is believed to be chelated with organic compounds, such as ethylenediaminetetraacetic acid (EDTA), that are present in the waste. Trace amounts of cesium-137 have occasionally been identified in leachate from two waste forms since 1991. Qualitatively, the field leaching results confirm laboratory studies suggesting that tritium is readily leached from cement, and that cobalt-60 is generally leached more easily from cement than from vinyl-ester styrene.

  13. Sol-gel technology applied to crystalline ceramic nuclear waste forms

    SciTech Connect

    Angelini, P.; Bond, W.D.; Caputo, A.J.; Mack, J.E.; Lackey, W.J.; Lee, D.A.; Stinton, D.P.

    1980-01-01

    The sol-gel process is being developed for the solidification and isolation of high-level nuclear fuel waste. Three gelation methods are being developed for producing alternative waste forms. These include internal gelation for producing spheres of up to 1 mm diam suitable for coating, external gelation, and water extraction methods for producing material suitable for alternate ceramic processing. In this study internal gelation has been used to produce ceramic spheres of various alternative nuclear waste compositions. A gelation system capable of producing 100-g batches has been assembled and used for development. Waste forms containing up to 70 wt % simulated Savannah River Plant waste have been produced. Dopants such as Cs, Sr, Nd, Ru, and Mo were used in some experiments to observe side waste streams and sintering effects. Synroc microspheres were coated with both low-density carbon, high-density impermeable carbon, high-temperature dense SiC, and SiC deposited at temperatures near 900/sup 0/C. Other gelation methods and other alternative waste forms are being developed.

  14. Evaluation of final waste forms and recommendations for baseline alternatives to group and glass

    SciTech Connect

    Bleier, A.

    1997-09-01

    An assessment of final waste forms was made as part of the Federal Facilities Compliance Agreement/Development, Demonstration, Testing, and Evaluation (FFCA/DDT&E) Program because supplemental waste-form technologies are needed for the hazardous, radioactive, and mixed wastes of concern to the Department of Energy and the problematic wastes on the Oak Ridge Reservation. The principal objective was to identify a primary waste-form candidate as an alternative to grout (cement) and glass. The effort principally comprised a literature search, the goal of which was to establish a knowledge base regarding four areas: (1) the waste-form technologies based on grout and glass, (2) candidate alternatives, (3) the wastes that need to be immobilized, and (4) the technical and regulatory constraints on the waste-from technologies. This report serves, in part, to meet this goal. Six families of materials emerged as relevant; inorganic, organic, vitrified, devitrified, ceramic, and metallic matrices. Multiple members of each family were assessed, emphasizing the materials-oriented factors and accounting for the fact that the two most prevalent types of wastes for the FFCA/DDT&E Program are aqueous liquids and inorganic sludges and solids. Presently, no individual matrix is sufficiently developed to permit its immediate implementation as a baseline alternative. Three thermoplastic materials, sulfur-polymer cement (inorganic), bitumen (organic), and polyethylene (organic), are the most technologically developed candidates. Each warrants further study, emphasizing the engineering and economic factors, but each also has limitations that regulate it to a status of short-term alternative. The crystallinity and flexible processing of sulfur provide sulfur-polymer cement with the highest potential for short-term success via encapsulation. Long-term immobilization demands chemical stabilization, which the thermoplastic matrices do not offer. Among the properties of the remaining

  15. I-NERI-2007-004-K, DEVELOPMENT AND CHARACTERIZATION OF NEW HIGH-LEVEL WASTE FORMS FOR ACHIEVING WASTE MINIMIZATION FROM PYROPROCESSING

    SciTech Connect

    S.M. Frank

    2011-09-01

    Work describe in this report represents the final year activities for the 3-year International Nuclear Energy Research Initiative (I-NERI) project: Development and Characterization of New High-Level Waste Forms for Achieving Waste Minimization from Pyroprocessing. Used electrorefiner salt that contained actinide chlorides and was highly loaded with surrogate fission products was processed into three candidate waste forms. The first waste form, a high-loaded ceramic waste form is a variant to the CWF produced during the treatment of Experimental Breeder Reactor-II used fuel at the Idaho National Laboratory (INL). The two other waste forms were developed by researchers at the Korean Atomic Energy Research Institute (KAERI). These materials are based on a silica-alumina-phosphate matrix and a zinc/titanium oxide matrix. The proposed waste forms, and the processes to fabricate them, were designed to immobilize spent electrorefiner chloride salts containing alkali, alkaline earth, lanthanide, and halide fission products that accumulate in the salt during the processing of used nuclear fuel. This aspect of the I-NERI project was to demonstrate 'hot cell' fabrication and characterization of the proposed waste forms. The outline of the report includes the processing of the spent electrorefiner salt and the fabrication of each of the three waste forms. Also described is the characterization of the waste forms, and chemical durability testing of the material. While waste form fabrication and sample preparation for characterization must be accomplished in a radiological hot cell facility due to hazardous radioactivity levels, smaller quantities of each waste form were removed from the hot cell to perform various analyses. Characterization included density measurement, elemental analysis, x-ray diffraction, scanning electron microscopy and the Product Consistency Test, which is a leaching method to measure chemical durability. Favorable results from this demonstration project

  16. Determination of the Structure of Vitrified Hydroceramic/CBC Waste Form Glasses Manufactured from DOE Reprocessing Waste

    SciTech Connect

    Scheetz, B.E.; White, W. B.; Chesleigh, M.; Portanova, A.; Olanrewaju, J.

    2005-05-31

    The selection of a glass-making option for the solidification of nuclear waste has dominated DOE waste form programs since the early 1980's. Both West Valley and Savannah River are routinely manufacturing glass logs from the high level waste inventory in tank sludges. However, for some wastes, direct conversion to glass is clearly not the optimum strategy for immobilization. INEEL, for example, has approximately 4400 m{sup 3} of calcined high level waste with an activity that produces approximately 45 watts/m{sup 3}, a rather low concentration of radioactive constituents. For these wastes, there is value in seeking alternatives to glass. An alternative approach has been developed and the efficacy of the process demonstrated that offers a significant savings in both human health and safety exposures and also a lower cost relative to the vitrification option. The alternative approach utilizes the intrinsic chemical reactivity of the highly alkaline waste with the addition of aluminosilicate admixtures in the appropriate proportions to form zeolites. The process is one in which a chemically bonded ceramic is produced. The driving force for reaction is derived from the chemical system itself at very modest temperatures and yet forms predominantly crystalline phases. Because the chemically bonded ceramic requires an aqueous medium to serve as a vehicle for the chemical reaction, the proposed zeolite-containing waste form can more adequately be described as a hydroceramic. The hydrated crystalline materials are then subject to hot isostatic pressing (HIP) which partially melts the material to form a glass ceramic. The scientific advantages of the hydroceramic/CBC approach are: (1) Low temperature processing; (2) High waste loading and thus only modest volumetric bulking from the addition of admixtures; (3) Ability to immobilize sodium; (4) Ability to handle low levels of nitrate (2-3% NO{sub 3}{sup -}); (5) The flexibility of a vitrifiable waste; and (6) A process that

  17. Effect of electric signal frequency and form on physical-chemical oxidation of organic wastes

    NASA Astrophysics Data System (ADS)

    Morozov, Yegor; Tikhomirov, Alexander A.; Trifonov, Sergey V.; Kudenko, D.. Yurii A.

    The behavior conditions of physical-chemical reactions securing organic wastes’ oxidation in H _{2}O _{2} aqueous medium aimed at an increase of mass exchange processes in a life support system (LSS) for a space purpose have been under study. The character of dependence of organic wastes oxidation rate in H _{2}O _{2} aqueous medium, activated with alternating current of different frequency and form have been considered. Ways of those parameters optimization for the purpose to efficiently increase the physical-chemical decomposition of organic wastes in LSS have been proposed. Specifically, power consumption and reaction time of wastes mineralization have been determined to reduce more than twice. Involvement ways of mineralized organic wastes received in intrasystem mass exchange have been shown. Application feasibility of the obtained results both for space and terrestrial purpose has been discussed. Key words: life support sustem, mineralization, turnover, frequency, organic wastes

  18. Glass as a waste form for the immobilization of plutonium

    SciTech Connect

    Bates, J.K.; Ellison, A.J.G.; Emery, J.W.; Hoh, J.C.

    1995-12-31

    Several alternatives for disposal of surplus plutonium are being considered. One method is incorporating Pu into glass and in this paper we discuss the development and corrosion behavior of an alkali-tin-silicate glass and update results in testing Pu doped Defense Waste Processing Facility (DWPF) reference glasses. The alkali-tin-silicate glass was engineered to accommodate a high Pu loading and to be durable under conditions likely to accelerate glass reaction. The glass dissolves about 7 wt% Pu together with the neutron absorber Gd, and under test conditions expected to accelerate the glass reaction with water, is resistant to corrosion. The Pu and the Gd are released from the glass at nearly the same rate in static corrosion tests in water, and are not segregated into surface alteration phases when the glass is reacted in water vapor. Similar results for the behavior of Pu and Gd are found for the DWPF reference glasses, although the long-term rate of reaction for the reference glasses is more rapid than for the alkali-tin-silicate glass.

  19. Correlation of /sup 137/Cs leachability from small-scale to large-scale waste forms

    SciTech Connect

    Morcos, N.; Dayal, R.; Milian, L.; Weiss, A.J.

    1982-01-01

    A study correlating the leachability of /sup 137/Cs from small-scale to large-scale cement forms was performed. The waste forms consisted of (a) organic ion exchange resins incorporated in Portland I cement, with a waste-to-cement ratio of 0.6 and a water-to-cement ratio of 0.4 (as free water) and (b) boric acid waste (12% solution) incorporated in Portland III cement, with a waste-to-cement ratio of 0.7. /sup 137/Cs was added to both waste types prior to solidification. The sample dimensions varied from 1 in. x 1 in. to 22 in. x 22 in. (diameter x height). Leach data extending over a period of 260 days were obtained using a modified IAEA leach test. A method based on semi-infinite plane source diffusion model was applied to interpret the leach data. A derived mathematical expression allows prediction of the amount of /sup 137/Cs leached from the forms as a function of leaching time and waste form dimensions. A reasonably good agreement between the experimental and calculated data was obtained. 4 figures, 6 tables.

  20. Epsilon metal waste form for immobilization of noble metals from used nuclear fuel

    NASA Astrophysics Data System (ADS)

    Crum, Jarrod V.; Strachan, Denis; Rohatgi, Aashish; Zumhoff, Mac

    2013-10-01

    Epsilon metal (ɛ-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass, thus the processing problems related to their insolubility in glass. This work focused on the processing aspects of the epsilon metal waste form development. Epsilon metal is comprised of refractory metals resulting in high alloying temperatures, expected to be 1500-2000 °C, making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).

  1. Waste Form Release Calculations for the 2005 Integrated Disposal Facility Performance Assessment

    SciTech Connect

    Bacon, Diana H.; McGrail, B PETER.

    2005-07-26

    A set of reactive chemical transport calculations was conducted with the Subsurface Transport Over Reactive Multiphases (STORM) code to evaluate the long-term performance of a representative low-activity waste glass in a shallow subsurface disposal system located on the Hanford Site. Two-dimensional simulations were run until the waste form release rates reached a quasi-stationary-state, usually after 2,000 to 4,000 yr. The primary difference between the waste form release simulations for the 2001 ILAW PA, and the simulations described herein, is the number of different materials considered. Whereas the previous PA considered only LAWABP1 glass, the current PA also describes radionuclide release from three different WTP glasses (LAWA44, LAWB45 and LAWC22), two different bulk vitrification glasses (6-tank composite and S-109), and three different grout waste forms (containing Silver Iodide, Barium Iodide and Barium Iodate). All WTP and bulk vitrification glasses perform well. However, the radionuclide release from the salt in the cast refractory surrounding the bulk vitrification waste packages is 2 to 170 times higher than the glass release rate, depending on the water recharge rate. Iodine-129 release from grouted waste forms is highly sensitive to the solubility of the iodine compound contained in the grout. The normalized iodine release rate from grout containing barium iodate is a factor of 10 higher than what the normalized release rate would be if the iodine were contained in LAWA44 glass.

  2. Continuing the Validation of CCIM Processability for Glass Ceramic HLLW Forms: Plan for Test AFY14CCIM-GC1

    SciTech Connect

    Vince Maio

    2014-04-01

    This test plan covers test AFY14CCIM-GC1which is the first of two scheduled FY-2014 test runs involving glass ceramic waste forms in the Idaho National Laboratory’s Cold Crucible Induction Melter Pilot Plant. The test plan is based on the successes and challenges of previous tests performed in FY-2012 and FY-2013. The purpose of this test is to continue to collect data for validating the glass ceramic High Level Liquid Waste form processability advantages using Cold Crucible Induction Melter technology. The major objective of AFYCCIM-GC1 is to complete additional proposed crucible pouring and post tapping controlled cooling experiments not completed during previous tests due to crucible drain failure. This is necessary to qualify that no heat treatments in standard waste disposal canisters are necessary for the operational scale production of glass ceramic waste forms. Other objectives include the production and post-test analysis of surrogate waste forms made from separate pours into the same graphite mold canister, testing the robustness of an upgraded crucible bottom drain and drain heater assembly, testing the effectiveness of inductive melt initiation using a resistive starter ring with a square wave configuration, and observing the tapped molten flow behavior in pans with areas identical to standard High Level Waste disposal canisters. Testing conditions, the surrogate waste composition, key testing steps, testing parameters, and sampling and analysis requirements are defined.

  3. Waste-Form Development Program. Annual progress report, October 1981-September 1982

    SciTech Connect

    Neilson, R.M. Jr.; Colombo, P.

    1982-09-01

    Low-level wastes (LLW) at nuclear facilities have traditionally been solidified using portland cement (with and without additives). Urea-formaldehyde has been used for LLW solidification while bitumen (asphalt) and thermosetting polymers will be applied to domestic wastes in the near future. Operational difficulties have been observed with each of these solidification agents. Such difficulties include incompatibility with waste constitutents inhibiting solidification, premature setting, free standing water and fires. Some specific waste types have proven difficult to solidify with one or more of the contemporary agents. Similar problems are also anticipated for the solidification of new wastes, which are generated using advanced volume reduction technologies, and with the application of additional agents which may be introduced in the near future for the solidification of LLW. In the Waste Form Development program, contemporary solidification agents are being investigated relative to their potential applications to major fuel cycle and non-fuel cycle LLW streams. The range of conditions under which these solidification agents can be satisfactorily applied to specific LLW streams is being determined. These studies are primarily directed towards defining operating parameters for both improved solidification of problem wastes such as ion exchange resins, organic liquids and oils for which prevailing processes, as currently employed, appear to be inadequate, and solidification of new LLW streams including high solids content evaporator concentrates, dry solids, and incinerator ash generated from advanced volume reduction technologies. Solidified waste forms are tested and evaluated to demonstrate compliance with waste form performance and shallow land burial (SLB) acceptance criteria and transportation requirements (both as they currently exist and as they are anticipated to be modified with time).

  4. Waste form development. [Hydraulic cements, hydraulic cements with additives, polymer modified gypsum cement, thermosetting polymers

    SciTech Connect

    Neilson, R.M. Jr.; Colombo, P.

    1982-01-01

    In this program, contemporary solidification agents are being investigated relative to their applications to major fuel cycle and non-fuel cycle low-level waste (LLW) streams. Work is being conducted to determine the range of conditions under which these solidification agents can be applied to specific LLW streams. These studies are directed primarily towards defining operating parameters for both improved solidification of problem wastes and solidification of new LLW streams generated from advanced volume reduction technologies. Work is being conducted to measure relevant waste form properties. These data will be compiled and evaluated to demonstrate compliance with waste form performance and shallow land burial acceptance criteria and transportation requirements (both as they exist and as they are modified with time). 6 tables.

  5. Property and process correlations for iron-enriched basalt waste forms

    SciTech Connect

    Grandy, J.D.; Eddy, T.L.; Anderson, G.L.

    1993-02-01

    Correlations of thermodynamic properties and process parameters of high-temperature slag for a range of compositions of iron-enriched basalt are presented. The quantification of the properties of this complex mixture can assist in the design and monitoring of high-temperature melting systems for the treatment of radioactive and hazardous wastes at the Idaho National Engineering Laboratory. The buried and stored wastes at the INEL Radioactive Waste Management Complex have a similar composition to iron-enriched basalt after oxidation of organics. The properties correlated are the viscosity, electrical conductivity, refractory corrosion, and recrystallization temperature. The correlations are expressed as a function of input waste-soil mixture composition, alkali concentration, and slag temperature. An application to determine the effect of alkali flux on slag temperature, leach rate, and volume reduction is presented. Though the correlations are for mixtures of soil and waste with average transuranic-contaminated waste compositions, it appears that good approximations for other waste streams and glass-ceramic waste forms can be obtained because of similarities in composition.

  6. Radionuclide Retention Mechanisms in Secondary Waste-Form Testing: Phase II

    SciTech Connect

    Um, Wooyong; Valenta, Michelle M.; Chung, Chul-Woo; Yang, Jungseok; Engelhard, Mark H.; Serne, R. Jeffrey; Parker, Kent E.; Wang, Guohui; Cantrell, Kirk J.; Westsik, Joseph H.

    2011-09-26

    This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate candidate stabilization technologies that have the potential to successfully treat liquid secondary waste stream effluents produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). WRPS is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF, a multi-waste, treatment-and-storage unit that has been permitted under the Resource Conservation and Recovery Act (RCRA), can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid waste generated during operation of the WTP. The STU will provide the additional capacity needed for ETF to process the increased volume of secondary waste expected to be produced by WTP. This report on radionuclide retention mechanisms describes the testing and characterization results that improve understanding of radionuclide retention mechanisms, especially for pertechnetate, {sup 99}TcO{sub 4}{sup -} in four different waste forms: Cast Stone, DuraLith alkali aluminosilicate geopolymer, encapsulated fluidized bed steam reforming (FBSR) product, and Ceramicrete phosphate bonded ceramic. These data and results will be used to fill existing data gaps on the candidate technologies to support a decision-making process that will identify a subset of the candidate waste forms that are most promising and should undergo further performance testing.

  7. Final waste forms project: Performance criteria for phase I treatability studies

    SciTech Connect

    Gilliam, T.M.; Hutchins, D.A.; Chodak, P. III

    1994-06-01

    This document defines the product performance criteria to be used in Phase I of the Final Waste Forms Project. In Phase I, treatability studies will be performed to provide {open_quotes}proof-of-principle{close_quotes} data to establish the viability of stabilization/solidification (S/S) technologies. This information is required by March 1995. In Phase II, further treatability studies, some at the pilot scale, will be performed to provide sufficient data to allow treatment alternatives identified in Phase I to be more fully developed and evaluated, as well as to reduce performance uncertainties for those methods chosen to treat a specific waste. Three main factors influence the development and selection of an optimum waste form formulation and hence affect selection of performance criteria. These factors are regulatory, process-specific, and site-specific waste form standards or requirements. Clearly, the optimum waste form formulation will require consideration of performance criteria constraints from each of the three categories. Phase I will focus only on the regulatory criteria. These criteria may be considered the minimum criteria for an acceptable waste form. In other words, a S/S technology is considered viable only if it meet applicable regulatory criteria. The criteria to be utilized in the Phase I treatability studies were primarily taken from Environmental Protection Agency regulations addressed in 40 CFR 260 through 265 and 268; and Nuclear Regulatory Commission regulations addressed in 10 CFR 61. Thus the majority of the identified criteria are independent of waste form matrix composition (i.e., applicable to cement, glass, organic binders etc.).

  8. Method for forming microspheres for encapsulation of nuclear waste. [Patent application

    SciTech Connect

    Angelini, P.; Caputo, A.J.; Hutchens, R.E.; Lackey, W.J.; Stinton, D.P.

    1982-01-29

    Microspheres for nuclear waste storage are formed by gelling droplets containing the waste in a gelation fluid, transferring the gelled droplets to a furnace without the washing step previously used, and heating the unwashed gelled droplets in the furnace under temperature or humidity conditions that result in a substantially linear rate of removal of volatile components therefrom. Fuel particles were also produced using this method.

  9. COMSOL MULTIPHYSICS MODEL FOR DWPF CANISTER FILLING, REVISION 1

    SciTech Connect

    Kesterson, M.

    2011-09-08

    This revision is an extension of the COMSOL Multiphysics model previously developed and documented to simulate the temperatures of the glass during pouring a Defense Waste Processing Facility (DWPF) canister. In that report the COMSOL Multiphysics model used a lumped heat loss term derived from experimental thermocouple data based on a nominal pour rate of 228 lbs./hr. As such, the model developed using the lumped heat loss term had limited application without additional experimental data. Therefore, the COMSOL Multiphysics model was modified to simulate glass pouring and subsequent heat input which, replaced the heat loss term in the initial model. This new model allowed for changes in flow geometry based on pour rate as well as the ability to increase and decrease flow and stop and restart flow to simulate varying process conditions. A revised COMSOL Multiphysics model was developed to predict temperatures of the glass within DWPF canisters during filling and cooldown. The model simulations and experimental data were in good agreement. The largest temperature deviations were {approx} 40 C for the 87 inch thermocouple location at 3000 minutes and during the initial cool down at the 51 inch location occurring at approximately 600 minutes. Additionally, the model described in this report predicts the general temperature trends during filling and cooling as observed experimentally. The revised model incorporates a heat flow region corresponding to the glass pouring down the centerline of the canister. The geometry of this region is dependent on the flow rate of the glass and can therefore be used to see temperature variations for various pour rates. The equations used for this model were developed by comparing simulation output to experimental data from a single pour rate. Use of the model will predict temperature profiles for other pour rates but the accuracy of the simulations is unknown due to only a single flow rate comparison.

  10. Drop Testing Representative Multi-Canister Overpacks

    SciTech Connect

    Snow, Spencer D.; Morton, Dana K.

    2015-06-01

    The objective of the work reported herein was to determine the ability of the Multi- Canister Overpack (MCO) canister design to maintain its containment boundary after an accidental drop event. Two test MCO canisters were assembled at Hanford, prepared for testing at the Idaho National Engineering and Environmental Laboratory (INEEL), drop tested at Sandia National Laboratories, and evaluated back at the INEEL. In addition to the actual testing efforts, finite element plastic analysis techniques were used to make both pre-test and post-test predictions of the test MCOs structural deformations. The completed effort has demonstrated that the canister design is capable of maintaining a 50 psig pressure boundary after drop testing. Based on helium leak testing methods, one test MCO was determined to have a leakage rate not greater than 1x10-5 std cc/sec (prior internal helium presence prevented a more rigorous test) and the remaining test MCO had a measured leakage rate less than 1x10-7 std cc/sec (i.e., a leaktight containment) after the drop test. The effort has also demonstrated the capability of finite element methods using plastic analysis techniques to accurately predict the structural deformations of canisters subjected to an accidental drop event.

  11. Finite element analysis of ion transport in solid state nuclear waste form materials

    NASA Astrophysics Data System (ADS)

    Rabbi, F.; Brinkman, K.; Amoroso, J.; Reifsnider, K.

    2017-09-01

    Release of nuclear species from spent fuel ceramic waste form storage depends on the individual constituent properties as well as their internal morphology, heterogeneity and boundary conditions. Predicting the release rate is essential for designing a ceramic waste form, which is capable of effectively storing the spent fuel without contaminating the surrounding environment for a longer period of time. To predict the release rate, in the present work a conformal finite element model is developed based on the Nernst Planck Equation. The equation describes charged species transport through different media by convection, diffusion, or migration. And the transport can be driven by chemical/electrical potentials or velocity fields. The model calculates species flux in the waste form with different diffusion coefficient for each species in each constituent phase. In the work reported, a 2D approach is taken to investigate the contributions of different basic parameters in a waste form design, i.e., volume fraction, phase dispersion, phase surface area variation, phase diffusion co-efficient, boundary concentration etc. The analytical approach with preliminary results is discussed. The method is postulated to be a foundation for conformal analysis based design of heterogeneous waste form materials.

  12. Alternative Electrochemical Salt Waste Forms, Summary of FY11-FY12 Results

    SciTech Connect

    Riley, Brian J.; Mccloy, John S.; Crum, Jarrod V.; Lepry, William C.; Rodriguez, Carmen P.; Windisch, Charles F.; Matyas, Josef; Westman, Matthew P.; Rieck, Bennett T.; Lang, Jesse B.; Olszta, Matthew J.; Pierce, David A.

    2014-01-17

    The Fuel Cycle Research and Development Program, sponsored by the U.S. Department of Energy Office of Nuclear Energy, is currently investigating alternative waste forms for wastes generated from nuclear fuel processing. One such waste results from an electrochemical separations process, called the “Echem” process. The Echem process utilizes a molten KCl-LiCl salt to dissolve the fuel. This process results in a spent salt containing alkali, alkaline earth, lanthanide halides and small quantities of actinide halides, where the primary halide is chloride with a minor iodide fraction. Pacific Northwest National Laboratory (PNNL) is concurrently investigating two candidate waste forms for the Echem spent-salt: high-halide minerals (i.e., sodalite and cancrinite) and tellurite (TeO2)-based glasses. Both of these candidates showed promise in fiscal year (FY) 2009 and FY2010 with a simplified nonradioactive simulant of the Echem waste. Further testing was performed on these waste forms in FY2011 and FY2012 to assess the possibility of their use in a sustainable fuel cycle. This report summarizes the combined results from FY2011 and FY2012 efforts.

  13. Nuclear waste-form risk assessment for US defense waste at Savannah River Plant. Annual report FY, 1982

    SciTech Connect

    Cheung, H.; Edwards, L.L.; Harvey, T.F.

    1982-08-09

    A network model was developed to simulate the hydrological flow and the transport of radionuclides from a deep geological repository to the biosphere subsequent to closure. By means of very efficient computational methods for solving the fundamental differential equations, a code was developed to treat in great detail the effects of waste form characteristics and of repository designs on the repository risks. It is possible to examine near field effects heretofore not attempted. Without sacrificing the essential details of description, the code can also be applied to perform probabilistic risk analyses to high confidence levels. Analytical results showed: (1) for waste form release rates greater than approximately 5 x 10/sup -7//yr, dose to man is insensitive to release rate and release rate uncertainty; (2) significant reduction in dose can be achieved through simple design modifications; (3) a basalt repository generally does not perform as well as a salt repository; and (4) disruptive events are relatively unimportant for repository safety. 82 references.

  14. Secondary Waste Form Screening Test Results—Cast Stone and Alkali Alumino-Silicate Geopolymer

    SciTech Connect

    Pierce, Eric M.; Cantrell, Kirk J.; Westsik, Joseph H.; Parker, Kent E.; Um, Wooyong; Valenta, Michelle M.; Serne, R. Jeffrey

    2010-06-28

    PNNL is conducting screening tests on the candidate waste forms to provide a basis for comparison and to resolve the formulation and data needs identified in the literature review. This report documents the screening test results on the Cast Stone cementitious waste form and the Geopolymer waste form. Test results suggest that both the Cast Stone and Geopolymer appear to be viable waste forms for the solidification of the secondary liquid wastes to be treated in the ETF. The diffusivity for technetium from the Cast Stone monoliths was in the range of 1.2 × 10-11 to 2.3 × 10-13 cm2/s during the 63 days of testing. The diffusivity for technetium from the Geopolymer was in the range of 1.7 × 10-10 to 3.8 × 10-12 cm2/s through the 63 days of the test. These values compare with a target of 1 × 10-9 cm2/s or less. The Geopolymer continues to show some fabrication issues with the diffusivities ranging from 1.7 × 10-10 to 3.8 × 10-12 cm2/s for the better-performing batch to from 1.2 × 10-9 to 1.8 × 10-11 cm2/s for the poorer-performing batch. In the future more comprehensive and longer term performance testing will be conducted, to further evaluate whether or not these waste forms will meet the regulation and performance criteria needed to cost-effectively dispose of secondary wastes.

  15. Bentonite-Clay Waste Form for the Immobilization of Cesium and Strontium from Fuel Processing Waste Streams

    SciTech Connect

    Kaminski, Michael D.; Mertz, Carol J.

    2016-01-01

    The physical properties of a surrogate waste form containing cesium, strontium, rubidium, and barium sintered into bentonite clay were evaluated for several simulant feed streams: chlorinated cobalt dicarbollide/polyethylene glycol (CCD-PEG) strip solution, nitrate salt, and chloride salt feeds. We sintered bentonite clay samples with a loading of 30 mass% of cesium, strontium, rubidium, and barium to a density of approximately 3 g/cm3. Sintering temperatures of up to 1000°C did not result in volatility of cesium. Instead, there was an increase in crystallinity of the waste form upon sintering to 1000ºC for chloride- and nitrate-salt loaded clays. The nitrate salt feed produced various cesium pollucite phases, while the chloride salt feed did not produce these familiar phases. In fact, many of the x-ray diffraction peaks could not be matched to known phases. Assemblages of silicates were formed that incorporated the Sr, Rb, and Ba ions. Gas evolution during sintering to 1000°C was significant (35% weight loss for the CCD-PEG waste-loaded clay), with significant water being evolved at approximately 600°C.

  16. Secondary Waste Form Screening Test Results—THOR® Fluidized Bed Steam Reforming Product in a Geopolymer Matrix

    SciTech Connect

    Pires, Richard P.; Westsik, Joseph H.; Serne, R. Jeffrey; Mattigod, Shas V.; Golovich, Elizabeth C.; Valenta, Michelle M.; Parker, Kent E.

    2011-07-14

    Screening tests are being conducted to evaluate waste forms for immobilizing secondary liquid wastes from the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Plans are underway to add a stabilization treatment unit to the Effluent Treatment Facility to provide the needed capacity for treating these wastes from WTP. The current baseline is to use a Cast Stone cementitious waste form to solidify the wastes. Through a literature survey, DuraLith alkali-aluminosilicate geopolymer, fluidized-bed steam reformation (FBSR) granular product encapsulated in a geopolymer matrix, and a Ceramicrete phosphate-bonded ceramic were identified both as candidate waste forms and alternatives to the baseline. These waste forms have been shown to meet waste disposal acceptance criteria, including compressive strength and universal treatment standards for Resource Conservation and Recovery Act (RCRA) metals (as measured by the toxicity characteristic leaching procedure [TCLP]). Thus, these non-cementitious waste forms should also be acceptable for land disposal. Information is needed on all four waste forms with respect to their capability to minimize the release of technetium. Technetium is a radionuclide predicted to be in the secondary liquid wastes in small quantities, but the Integrated Disposal Facility (IDF) risk assessment analyses show that technetium, even at low mass, produces the largest contribution to the estimated IDF disposal impacts to groundwater.

  17. Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms

    SciTech Connect

    Weber, William J.; Zhang, Yanwen

    2016-09-20

    This is the final report of the NEUP project “Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms.” This project started on July 1, 2012 and was successfully completed on June 30, 2016. This report provides an overview of the main achievements, results and findings through the duration of the project. Additional details can be found in the main body of this report and in the individual Quarterly Reports and associated Deliverables of this project, which have been uploaded in PICS-NE. The objective of this research was to advance understanding and develop validated models on the effects of self-radiation from beta and alpha decay on the response of used nuclear fuel and nuclear waste forms during high-temperature interim storage and long-term permanent disposition. To achieve this objective, model used-fuel materials and model waste form materials were identified, fabricated, and studied.

  18. X-ray diffraction of slag-based sodium salt waste forms

    SciTech Connect

    Langton, C. A.; Missimer, D. M.

    2014-09-30

    The attached report documents sample preparation and x-ray diffraction results for a series of cement and blended cement matrices prepared with either water or a 4.4 M Na salt solution. The objective of the study was to provide initial phase characterization for the Cementitious Barriers Partnership reference case cementitious salt waste form. This information can be used to: 1) generate a base line for the evolution of the waste form as a function of time and conditions, 2) potentially to design new binders based on mineralogy of the binder, 3) understand and predict anion and cation leaching behavior of contaminants of concern, and 4) predict performance of the waste forms for which phase solubility and thermodynamic data are available.

  19. Corrosion behavior of a glass-bonded sodalite ceramic waste form and its constituents.

    SciTech Connect

    Lewis, M. A.; Ebert, W. L.; Morss, L.

    1999-06-18

    A ceramic waste form (CWF) of glass bonded sodalite is being developed as a waste form for the long-term immobilization of fission products and transuranic elements from the U.S. Department of Energy's activities on spent nuclear fuel conditioning. A durable waste form was prepared by hot isostatic pressing (HIP) a mixture of salt-loaded zeolite powders and glass frit. During HIP the zeolite is converted to sodalite, and the resultant CWF is been completed for durations of up to 182 days. Four dissolution modes were identified: dissolution of free salt, dissolution of the aluminosilicate matrix of sodalite and the accompanying dissolution of occluded salt, dissolution of the boroaluminosilicate matrix of the glass, and ion exchange. Synergies inherent to the CWF were identified by comparing the results of the tests with pure glass and sodalite with those of the composite CWF.

  20. Chemical stability of seven years aged cement-PET composite waste form containing radioactive borate waste simulates

    NASA Astrophysics Data System (ADS)

    Saleh, H. M.; Tawfik, M. E.; Bayoumi, T. A.

    2011-04-01

    Different samples of radioactive borate waste simulate [originating from pressurized water reactors (PWR)] have been prepared and solidified after mixing with cement-water extended polyester composite (CPC). The polymer-cement composite samples were prepared from recycled poly (ethylene terephthalate) (PET) waste and cement paste (water/cement ratio of 40%). The prepared samples were left to set at room temperature (25 °C ± 5) under humid conditions. After 28 days curing time the obtained specimens were kept in their molds to age for 7 years under ambient conditions. Cement-polymer composite waste form specimens (CPCW) have been subjected to leach tests for both 137Cs and 60Co radionuclides according to the method proposed by the International Atomic Energy Agency (IAEA). Leaching tests were justified under various factors that may exist within the disposal site (e.g. type of leachant, surrounding temperature, leachant behavior, the leachant volume to CPCW surface area…). The obtained data after 260 days of leaching revealed that after 7 years of aging the candidate cement-polymer composite (CPC) containing radioactive borate waste samples are characterized by adequate chemical stability required for the long-term disposal process.

  1. Materials characterization center workshop on the irradiation effects in nuclear waste forms

    SciTech Connect

    Roberts, F.P.; Turcotte, R.P.; Weber, W.J.

    1981-01-01

    The Workshop on Irradiation Effects in Nuclear Waste Forms sponsored by the Materials Characterization Center (MCC) brought together experts in radiation damage in materials and waste-management technology to review the problems associated with irradiation effects on waste-form integrity and to evaluate standard methods for generating data to be included in the Nuclear Waste Materials Handbook. The workshop reached the following conclusions: the concept of Standard Test for the Effects of Alpha-Decay in Nuclear Waste Solids, (MCC-6) for evaluating the effects of alpha decay is valid and useful, and as a result of the workshop, modifications to the proposed procedure will be incorpoated in a revised version of MCC-6; the MCC-6 test is not applicable to the evaluation of radiation damage in spent fuel; plutonium-238 is recommended as the dopant for transuranic and defense high-level waste forms, and when high doses are required, as in the case of commercial high-level waste forms, /sup 244/Cm can be used; among the important property changes caused by irradiation are those that lead to greater leachability, and additionally, radiolysis of the leachant may increase leach rates; research is needed in this area; ionization-induced changes in physical properties can be as important as displacement damage in some materials, and a synergism is also likely to exist from the combined effects of ionization and displacement damage; and the effect of changing the temperature and dose rates on property changes induced by radiation damage needs to be determined.

  2. Assessment of the Cast Stone Low-Temperature Waste Form Technology Coupled with Technetium Removal - 14379

    SciTech Connect

    Brown, Christopher F.; Rapko, Brian M.; Serne, R. Jeffrey; Westsik, Joseph H.; Cozzi, Alex; Fox, Kevin M.; Mccabe, Daniel J.; Nash, C. A.; Wilmarth, William R.

    2014-03-03

    The U.S. Department of Energy Office of Environmental Management (EM) is engaging the national laboratories to provide the scientific and technological rigor to support EM program and project planning, technology development and deployment, project execution, and assessment of program outcomes. As an early demonstration of this new responsibility, Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) were chartered to implement a science and technology program addressing low-temperature waste forms for immobilization of DOE aqueous waste streams, including technetium removal as an implementing technology. As a first step, the laboratories examined the technical risks and uncertainties associated with the Cast Stone waste immobilization and technetium removal projects at Hanford. Science and technology gaps were identified for work associated with 1) conducting performance assessments and risk assessments of waste form and disposal system performance, and 2) technetium chemistry in tank wastes and separation of technetium from waste processing streams. Technical approaches to address the science and technology gaps were identified and an initial sequencing priority was suggested. A subset of research was initiated in 2013 to begin addressing the most significant science and technology gaps. The purpose of this paper is to report progress made towards closing these gaps and provide notable highlights of results achieved to date.

  3. Radiation stability test on multiphase glass ceramic and crystalline ceramic waste forms

    NASA Astrophysics Data System (ADS)

    Tang, Ming; Kossoy, Anna; Jarvinen, Gordon; Crum, Jarrod; Turo, Laura; Riley, Brian; Brinkman, Kyle; Fox, Kevin; Amoroso, Jake; Marra, James

    2014-05-01

    A radiation stability study was performed on glass ceramic and crystalline ceramic waste forms. These materials are candidate host materials for immobilizing alkali/alkaline earth (Cs/Sr-CS) + lanthanide (LN) + transition metal (TM) fission product waste streams from nuclear fuel reprocessing. In this study, glass ceramics were fabricated using a borosilicate glass as a matrix in which to incorporate CS/LN/TM combined waste streams. The major phases in these multiphase materials are powellite, oxyaptite, pollucite, celsian, and durable residual glass phases. Al2O3 and TiO2 were combined with these waste components to produce multiphase crystalline ceramics containing hollandite-type phases, perovskites, pyrochlores and other minor metal titanate phases. For the radiation stability test, selected glass ceramic and crystalline ceramic samples were exposed to different irradiation environments including low fluxes of high-energy (∼1-5 MeV) protons and alpha particles generated by an ion accelerator, high fluxes of low-energy (hundreds of keV) krypton particles generated by an ion implanter, and in-situ electron irradiations in a transmission electron microscope. These irradiation experiments were performed to simulate self-radiation effects in a waste form. Ion irradiation-induced microstructural modifications were examined using X-ray diffraction and transmission electron microscopy. Our preliminary results reveal different radiation tolerance in different crystalline phases under various radiation damage environments. However, their stability may be rate dependent which may limit the waste loading that can be achieved.

  4. SOURCE TERMS FOR AVERAGE DOE SNF CANISTERS

    SciTech Connect

    K. L. Goluoglu

    2000-06-09

    The objective of this calculation is to generate source terms for each type of Department of Energy (DOE) spent nuclear fuel (SNF) canister that may be disposed of at the potential repository at Yucca Mountain. The scope of this calculation is limited to generating source terms for average DOE SNF canisters, and is not intended to be used for subsequent calculations requiring bounding source terms. This calculation is to be used in future Performance Assessment calculations, or other shielding or thermal calculations requiring average source terms.

  5. Setting and Stiffening of Cementitious Components in Cast Stone Waste Form for Disposal of Secondary Wastes from the Hanford waste treatment and immobilization plant

    SciTech Connect

    Chung, Chul-Woo; Chun, Jaehun; Um, Wooyong; Sundaram, S. K.; Westsik, Joseph H.

    2013-04-01

    Cast stone is a cementitious waste form, a viable option to immobilize secondary nuclear liquid wastes generated from Hanford vitrification plant. While the strength and radioactive technetium leaching of different waste form candidates have been reported, no study has been performed to understand the flow and stiffening behavior of Cast Stone, which is essential to ensure the proper workability, especially considering necessary safety as a nuclear waste form in a field scale application. The rheological and ultrasonic wave reflection (UWR) measurements were used to understand the setting and stiffening Cast Stone batches. X-ray diffraction (XRD) was used to find the correlation between specific phase formation and the stiffening of the paste. Our results showed good correlation between rheological properties of the fresh Cast Stone mixture and phase formation during hydration of Cast Stone. Secondary gypsum formation originating from blast furnace slag was observed in Cast Stone made with low concentration simulants. The formation of gypsum was suppressed in high concentration simulants. It was found that the stiffening of Cast Stone was strongly dependent on the concentration of simulant. A threshold concentration for the drastic change in stiffening was found at 1.56 M Na concentration.

  6. Waste form development/test. [Low-density polyethylene and modified sulfur cement as solidification agents

    SciTech Connect

    Kalb, P.D.; Colombo, P.

    1983-01-01

    The main objective of this study is to investigate new solidification agents relative to their potential application to wastes generated by advanced high volume reduction technologies, e.g., incinerator ash, dry solids, and ion exchange resins. Candidate materials selected for the solidification of these wastes include a modified sulfur cement and low-density polyethylene, neither of which are currently employed commerically for the solidification of low-level waste (LLW). As both the modified sulfur cement and the polyethylene are thermoplastic materials, a heated screw type extruder is utilized in the production of waste form samples for testing and evaluation. In this regard, work is being conducted to determine the range of conditions under which these solidification agents can be satisfactorily applied to the specific LLW streams and to provide information relevant to operating parameters and process control.

  7. Chemical durability and degradation mechanisms of HT9 based alloy waste forms with variable Zr content

    SciTech Connect

    Olson, L. N.

    2015-10-30

    In Corrosion studies were undertaken on alloy waste forms that can result from advanced electrometallurgical processing techniques to better classify their durability and degradation mechanisms. The waste forms were based on the RAW3-(URe) composition, consisting primarily of HT9 steel and other elemental additions to simulate nuclear fuel reprocessing byproducts. The solution conditions of the corrosion studies were taken from an electrochemical testing protocol, and meant to simulate conditions in a repository. The alloys durability was examined in alkaline and acidic brines.

  8. Feasibility of metallurgical waste encapsulation in a clay formed matrix

    NASA Astrophysics Data System (ADS)

    Juhnevica, I.; Kucinska, J.; Sardiko, A.; Mezinskis, G.

    2011-12-01

    As a result of Joint Stock Company "Liepajas Metalurgs" production process there are produced certain quantity of substances that are harmful for environment and have to be encapsulated into stable structures. Company's target is modification of these substances into products that form stable compounds in order to avoid metal release in environment. Geopolymers can be synthesized from many materials with a high concentration of aluminosilicates such as metakaolin or fly ash. Heavy metal immobilization in geopolymeric structures is not thought to be caused by physical encapsulation alone, but also through adsorption of the metal ions into the geopolymer structure and possibly even bonding of the metal ions into the structure. All samples have been analyzed with X-Ray, FTIR spectroscopy; chemical analysis and compressive strength tests have been performed. Chemical analysis of geopolymeric samples shows that the main component leached from samples during the boiling in water is Na2O that can be explained by more alkaline components nature - Na2SiO3, NaOH, and SO3. Fe2O3 and ZnO are not detected in water extracts at all samples.

  9. Summary Report: Glass-Ceramic Waste Forms for Combined Fission Products

    SciTech Connect

    Crum, Jarrod V.; Riley, Brian J.; Turo, Laura A.; Tang, Ming; Kossoy, Anna

    2011-09-23

    Glass-ceramic waste form development began in FY 2010 examining two combined waste stream options: (1) alkaline earth (CS) + lanthanide (Ln), and (2) + transition metal (TM) fission-product waste streams generated by the uranium extraction (UREX+) separations process. Glass-ceramics were successfully developed for both options however; Option 2 was selected over Option 1, at the conclusion of 2010, because Option 2 immobilized all three waste streams with only a minimal decrease in waste loading. During the first year, a series of three glass (Option 2) were fabricated that varied waste loading-WL (42, 45, and 50 mass%) at fixed molar ratios of CaO/MoO{sub 3} and B{sub 2}O{sub 3}/alkali both at 1.75. These glass-ceramics were slow cooled and characterized in terms of phase assemblage and preliminary irradiation stability. This fiscal year, further characterization was performed on the FY 2010 Option 2 glass-ceramics in terms of: static leach testing, phase analysis by transmission electron microscopy (TEM), and irradiation stability (electron and ion). Also, a new series of glass-ceramics were developed for Option 2 that varied the additives: Al{sub 2}O{sub 3} (0-6 mass%), molar ratio of CaO/MoO{sub 3} and B{sub 2}O{sub 3}/alkali (1.75 to 2.25) and waste loading (50, 55, and 60 mass%). Lastly, phase pure powellite and oxyapatite were synthesized for irradiation studies. Results of this fiscal year studies showed compositional flexibility, chemical stability, and radiation stability in the current glass-ceramic system. First, the phase assemblages and microstructure of all of the FY 2010 and 2011 glass-ceramics are very similar once subjected to the slow cool heat treatment. The phases identified in these glass-ceramics were oxyapatite, powellite, cerianite, and ln-borosilicate. This shows that variations in waste loading or additives can be accommodated without drastically changing the phase assemblage of the waste form, thus making the processing and performance

  10. Hanford Waste Vitrification Plant Quality Assurance Program description for high-level waste form development and qualification. Revision 3, Part 2

    SciTech Connect

    Not Available

    1993-08-01

    The Hanford Waste Vitrification Plant Project has been established to convert the high-level radioactive waste associated with nuclear defense production at the Hanford Site into a waste form suitable for disposal in a deep geologic repository. The Hanford Waste Vitrification Plant will mix processed radioactive waste with borosilicate material, then heat the mixture to its melting point (vitrification) to forin a glass-like substance that traps the radionuclides in the glass matrix upon cooling. The Hanford Waste Vitrification Plant Quality Assurance Program has been established to support the mission of the Hanford Waste Vitrification Plant. This Quality Assurance Program Description has been written to document the Hanford Waste Vitrification Plant Quality Assurance Program.

  11. Characterisation of the recalcitrant organic compounds in leachates formed during the anaerobic biodegradation of waste.

    PubMed

    Yunus, Anika; Smallman, David J; Stringfellow, Anne; Beaven, Richard; Powrie, William

    2011-01-01

    This study investigates the use of UV absorption and fluorescence spectroscopy to assess the early development of recalcitrant organic compounds in leachates formed during the anaerobic biodegradation of municipal solid waste. Biochemical methane potential tests were carried out on fresh waste (FW) and composted waste (CW) over a period of 150 days and leachates produced from the degradation of two wastes were analysed for humic-like (H-L) and fulvic-like (F-L) structures by UV spectroscopy and fluorescence excitation-emission-matrix analyses. During anaerobic biodegradation, the synthesis and utilization of H-L and F-L structures in the leachates over time was indicative of the generation of the recalcitrant organic compounds. The results obtained from UV absorption and fluorescence spectroscopy suggested that CW leachates resulted in a higher concentration and more condensed form of recalcitrant H-L and F-L molecules than FW leachates. These findings demonstrate how fluorescence and UV absorption spectroscopy can be used as an indicator for monitoring the evolution of recalcitrant organic compounds (H-L and F-L substances) in leachates formed at different stages of waste biodegradation.

  12. DEVELOPMENT OF CERAMIC WASTE FORMS FOR AN ADVANCED NUCLEAR FUEL CYCLE

    SciTech Connect

    Marra, J.; Billings, A.; Brinkman, K.; Fox, K.

    2010-11-30

    A series of ceramic waste forms were developed and characterized for the immobilization of a Cesium/Lanthanide (CS/LN) waste stream anticipated to result from nuclear fuel reprocessing. Simple raw materials, including Al{sub 2}O{sub 3} and TiO{sub 2} were combined with simulated waste components to produce multiphase ceramics containing hollandite-type phases, perovskites (particularly BaTiO{sub 3}), pyrochlores and other minor metal titanate phases. Three fabrication methodologies were used, including melting and crystallizing, pressing and sintering, and Spark Plasma Sintering (SPS), with the intent of studying phase evolution under various sintering conditions. X-Ray Diffraction (XRD) and Scanning Electron Microscopy coupled with Energy Dispersive Spectroscopy (SEM/EDS) results showed that the partitioning of the waste elements in the sintered materials was very similar, despite varying stoichiometry of the phases formed. Identification of excess Al{sub 2}O{sub 3} via XRD and SEM/EDS in the first series of compositions led to a Phase II study, with significantly reduced Al{sub 2}O{sub 3} concentrations and increased waste loadings. The Phase II compositions generally contained a reduced amount of unreacted Al{sub 2}O{sub 3} as identified by XRD. Chemical composition measurements showed no significant issues with meeting the target compositions. However, volatilization of Cs and Mo was identified, particularly during melting, since sintering of the pressed pellets and SPS were performed at lower temperatures. Partitioning of some of the waste components was difficult to determine via XRD. SEM/EDS mapping showed that those elements, which were generally present in small concentrations, were well distributed throughout the waste forms.

  13. Long-term high-level waste technology

    NASA Astrophysics Data System (ADS)

    Corman, W. R.

    1981-08-01

    Work performed at sites to immobilize high-level radioactive wastes is described. Program management and support with subtasks of management and budget, environmental and safety assessments, waste preparation, storage or disposal; waste retrieval, separation and concentration are discussed. Waste fixation and characterization, process and equipment development, final handling, canister development and characterization and onsite storage or disposal are also reported. Event trees defining possible accidents were completed in a safety assessment of continued in-tank storage of high-level waste. Two low-cost waste forms (tailored concrete and bitumen) were investigated as candidate immobilization forms. Comparative impact tests and leaching tests were also conducted on glasses, ceramics, and concretes. A process design description was written for the tailored ceramic process.

  14. Plutonium-238 alpha-decay damage study of the ceramic waste form.

    SciTech Connect

    Frank, S M; Barber, T L; Cummings, D G; DiSanto, T; Esh, D W; Giglio, J J; Goff, K M; Johnson, S G; Kennedy, J R; Jue, J-F; Noy, M; O'Holleran, T P; Sinkler, W

    2006-03-27

    An accelerated alpha-decay damage study of a glass-bonded sodalite ceramic waste form has recently been completed. The purpose of this study was to investigate the physical and chemical durability of the waste form after significant exposure to alpha decay. This accelerated alpha-decay study was performed by doping the ceramic waste form with {sup 238}Pu which has a much greater specific activity than {sup 239}Pu that is normally present in the waste form. The alpha-decay dose at the end of the four year study was approximately 1 x 10{sup 18} alpha-decays/gram of material. An equivalent time period for a similar dose of {sup 239}Pu would require approximately 1100 years. After four years of exposure to {sup 238}Pu alpha decay, the investigation observed little change to the physical or chemical durability of the ceramic waste form (CWF). Specifically, the {sup 238}Pu-loaded CWF maintained it's physical integrity, namely that the density remained constant and no cracking or phase de-bonding was observed. The materials chemical durability and phase stability also did not change significantly over the duration of the study. The only significant measured change was an increase of the unit-cell lattice parameters of the plutonium oxide and sodalite phases of the material and an increase in the release of salt components and plutonium of the waste form during leaching tests, but, as mentioned, these did not lead to any overall loss of waste form durability. The principal findings from this study are: (1) {sup 238}Pu-loaded CWF is similar in microstructure and phase composition to referenced waste form. (2) Pu was observed primarily as oxide comprised of aggregates of nano crystals with aggregates ranging in size from submicron to twenty microns in diameter. (3) Pu phases were primarily found in the intergranular glassy regions. (4) PuO phase shows expected unit cell volume expansion due to alpha decay damage of approximately 0.7%, and the sodalite phase unit cell volume

  15. Solution-Derived, Chloride-Containing Minerals as a Waste Form for Alkali Chlorides

    SciTech Connect

    Riley, Brian J.; Crum, Jarrod V.; Matyas, Josef; McCloy, John S.; Lepry, William C.

    2012-10-01

    Sodalite [Na8(AlSiO4)6Cl2] and cancrinite [(Na,K)6Ca2Al6Si6O24Cl4] are environmentally stable, chloride-containing minerals and are a logical waste form option for the mixed alkali chloride salt waste stream that is generated from a proposed electrochemical separations process during nuclear fuel reprocessing. Due to the volatility of chloride salts at moderate temperatures, the ideal processing route for these salts is a low-temperature approach such as the sol-gel process. The sodalite structure can be easily synthesized by the sol-gel process; however, it is produced in the form of a fine powder with particle sizes on the order of 1–10 µm. Due to the small particle size, these powders require additional treatment to form a monolith. In this study, the sol-gel powders were pressed into pellets and fired to achieve > 90% of theoretical density. The cancrinite structure, identified as the best candidate mineral form in terms of waste loading capacity, was only produced on a limited basis following the sol-gel process and converted to sodalite upon firing. Here we discuss the sol-gel process specifics, chemical durability of select waste forms, and the steps taken to maximize chloride-containing phases, decrease chloride loss during pellet firing, and increase pellet densities.

  16. USGS Coal Desorption Equipment and a Spreadsheet for Analysis of Lost and Total Gas from Canister Desorption Measurements

    USGS Publications Warehouse

    Barker, Charles E.; Dallegge, Todd A.; Clark, Arthur C.

    2002-01-01

    We have updated a simple polyvinyl chloride plastic canister design by adding internal headspace temperature measurement, and redesigned it so it is made with mostly off-the-shelf components for ease of construction. Using self-closing quick connects, this basic canister is mated to a zero-head manometer to make a simple coalbed methane desorption system that is easily transported in small aircraft to remote localities. This equipment is used to gather timed measurements of pressure, volume and temperature data that are corrected to standard pressure and temperature (STP) and graphically analyzed using an Excel(tm)-based spreadsheet. Used together these elements form an effective, practical canister desorption method.

  17. Overview of mineral waste form development for the electrometallurgical treatment of spent nuclear fuel

    SciTech Connect

    Pereira, C.; Lewis, M.A.; Ackerman, J.P.

    1996-05-01

    Argonne is developing a method to treat spent nuclear fuel in a molten salt electrorefiner. Wastes from this treatment will be converted into metal and mineral forms for geologic disposal. A glass-bonded zeolite is being developed to serve as the mineral waste form that will contain the fission products that accumulate in the electrorefiner salt. Fission products are ion exchanged from the salt into the zeolite A structure. The crystal structure of the zeolite after ion exchange is filled with salt ions. The salt-loaded zeolite A is mixed with glass frit and hot pressed. During hot pressing, the zeolite A may be converted to sodalite which also retains the waste salt. The glass-bonded zeolite is leach resistant. MCC-1 testing has shown that it has a release rate below 1 g/(m{sup 2}day) for all elements.

  18. Topical safety analysis report for the transportation of the NUHOMS{reg_sign} dry shielded canister. Volume 1

    SciTech Connect

    1993-08-01

    This Topical Safety Analysis Report (SAR) describes the design and the generic transportation licensing basis for utilizing the NUTECH HORIZONTAL MODULAR STORAGE (NUHOMS{reg_sign}) system dry shielded canister (DSC) containing twenty-four pressurized water reactor (PWR) spent fuel assemblies (SFA) in conjunction with a conceptually designed Transportation Cask. This SAR documents the design qualification of the NUHOMS{reg_sign} DSC as an integral part of a 10CFR71 Fissile Material Class III, Type B(M) Transportation Package. The package consists of the canister and a conceptual transportation cask (NUHOMS{reg_sign} Transportation Cask) with impact limiters. Engineering analysis is performed for the canister to confirm that the existing canister design complies with 10CFR71 transportation requirements. Evaluations and/or analyses is performed for criticality safety, shielding, structural, and thermal performance. Detailed engineering analysis for the transportation cask will be submitted in a future SAR requesting 10CFR71 certification of the complete waste package. Transportation operational considerations describe various operational aspects of the canister/transportation cask system. operational sequences are developed for canister transfer from storage to the transportation cask and interfaces with the cask auxiliary equipment for on- and off-site transport.

  19. IBHVG2: Mortar Simulation With Interior Propellant Canister

    DTIC Science & Technology

    2006-03-01

    pressure igniter canister. The application allows initial pressurization of the canister until interior pressure reaches a force high enough to rupture... Pressure versus time curves from appendices A, B, D, and F.........................................8 Figure 3. Projectile velocity versus time...curves from appendices A, B, D, and F. ........................9 Figure 4. Canister interior pressures

  20. Multi-Canister overpack dual pressure rating

    SciTech Connect

    SMITH, K.E.

    1998-11-03

    The SNF Project will change the Multi-Canister Overpack (MCO) design pressure rating in the mechanical closure configuration to 150 psig to permit substitution of 304L/304 stainless steel for the higher cost XM-19 in the MCO collar. The 450 psig pressure rating for the final welded MCO will remain unchanged.

  1. Poindexter and Yamazaki with LIOH Canisters

    NASA Image and Video Library

    2010-04-13

    S131-E-009607 (13 April 2010) --- NASA astronaut Alan Poindexter, STS-131 commander; and Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, mission specialist, work with lithium hydroxide (LiOH) canisters on space shuttle Discovery’s middeck while docked with the International Space Station.

  2. Poindexter and Yamazaki with LIOH Canisters

    NASA Image and Video Library

    2010-04-13

    S131-E-009609 (13 April 2010) --- NASA astronaut Alan Poindexter, STS-131 commander; and Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, mission specialist, work with lithium hydroxide (LiOH) canisters on space shuttle Discovery’s middeck while docked with the International Space Station.

  3. Rehearsal: Sample Canister in Cleanroom (Animation)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Click on the image for Rehearsal: Sample Canister in Cleanroom animation

    This movie shows rehearsal of the initial processing of the sample return capsule when it is taken to a temporary cleanroom at Utah's Test and Training Range.

  4. On-line Technology Information System (OTIS): Solid Waste Management Technology Information Form (SWM TIF)

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Boulanger, Richard; Hogan, John A.; Rodriguez, Luis

    2003-01-01

    Contents include the following: What is OTIS? OTIS use. Proposed implementation method. Development history of the Solid Waste Management (SWM) Technology Information Form (TIF) and OTIS. Current development state of the SWM TIF and OTIS. Data collection approach. Information categories. Critiques/questions/feedback.

  5. On-line Technology Information System (OTIS): Solid Waste Management Technology Information Form (SWM TIF)

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Boulanger, Richard; Hogan, John A.; Rodriguez, Luis

    2003-01-01

    Contents include the following: What is OTIS? OTIS use. Proposed implementation method. Development history of the Solid Waste Management (SWM) Technology Information Form (TIF) and OTIS. Current development state of the SWM TIF and OTIS. Data collection approach. Information categories. Critiques/questions/feedback.

  6. Leachability of radionuclides from cement-solidified waste form produced at Korean nuclear power plant.

    PubMed

    Lee, Jae Min; Whang, Jooho; Kim, Chang Lak; Park, Joo Wan

    2002-01-01

    The leach test of radionuclide in cement-solidified waste form was performed. After leach test, compressive strength of waste form was measured. Cement-solidified waste form produced at Korean nuclear power plant, Kori (PWR) was chosen for the leach test. Specimens were cored out from a full-scale waste form (2001 drum size). The leach test procedure used for this study was ANSI/ANS 16.1 procedure. The leach ability indexes for cesium and cobalt isotopes were determined. Semi-infinite model was used for analysis of the controlling mechanism in the release of isotopes. Release mechanism of cesium was dominated by diffusion but release of cobalt behaved somewhat differently from the diffusion controlled release. Averaged leachability indexes were 8.6 for cesium and 11.4 for cobalt. Compressive strength after leach/ immersion test was 7.34 MPa for the sample immersed in simulated seawater and 8.34MPa for the sample immersed in deionized water.

  7. Performance testing of grout-based waste forms for the solidification of anion exchange resins

    SciTech Connect

    Morgan, I.L.; Bostick, W.D.

    1990-10-01

    The solidification of spent ion exchanges resins in a grout matrix as a means of disposing of spent organic resins produced in the nuclear fuel cycle has many advantages in terms of process simplicity and economy, but associated with the process is the potential for water/cement/resins to interact and degrade the integrity of the waste form solidified. Described in this paper is one possible solution to preserving the integrity of these solidified waste forms: the encapsulation of beaded anion exchange resins in grout formulations containing ground granulated blast furnace slag, Type I-II (mixed) portland cement, and additives (clays, amorphous silica, silica fume, and fly ash). The results of the study reported herein show the cured waste form tested has a low leach rate for nitrate ion from the resin (and a low leach rate is inferred for Tc-99) and acceptable durability as assessed by the water immersion and freezing/thawing test protocols. The results also suggest a tested surrogate waste form prepared in vinyl ester styrene binder performs satisfactorily against the wetting/drying criterion, and it should offer additional insight into future work on the solidification of spent organic resins. 26 refs., 4 figs., 5 tabs.

  8. A simplified method for estimation of jarosite and acid-forming sulfates in acid mine wastes.

    PubMed

    Li, Jun; Smart, Roger St C; Schumann, Russell C; Gerson, Andrea R; Levay, George

    2007-02-01

    In acid base accounting (ABA) estimates of acid mine wastes, the acid potential (AP) estimate can be improved by using the net carbonate value (NCV) reactive sulfide S method rather than total S assay methods but this does not give recovery of potentially acid producing ferrous and ferric sulfates present in many wastes. For more accurate estimation of AP, an effective, site-specific method to quantify acid sulfate salts, such as jarosite and melanterite, in waste rocks has been developed and tested on synthetic and real wastes. The SPOCAS (acid sulfate soils) methods have been modified to an effective, rapid method to speciate sulfate forms in different synthetic waste samples. A three-step sequential extraction procedure has been established. These steps are: (1) argon-purged water extraction (3 min) to extract soluble Fe(II) salts (particularly melanterite), epsomite and gypsum (<10 wt.%), (2) roasting at 550 degrees C (1 h) to remove sulfur from pyrite and other reactive sulfides, (3) HCl extraction (4 M, 30 min) for determination of jarosites. Products (solid and aqueous) have been characterized at each step including the jarosite decomposition process in Step 2 where temperature control is critical to avoid S loss. The sequential extraction procedure was used to quantitatively determine melanterite, epsomite, gypsum, pyrite and jarosite concentrations in a synthetic waste sample containing these mineral phases at 5 wt.% in quartz, and also tested using a tailings waste sample to quantitatively determine epsomite, gypsum and jarosite contents. The method is applicable to most waste samples including those with non-pyrite sulfides but for samples containing significant amounts of sulfur (>1 wt.% S) as copper sulfides, the second step of roasting needs to be excluded from the procedure with an increased time of 4 M HCl extraction to 16 h for jarosite determination.

  9. Aqueous-Based Latex Systems for Producing Durable Waste Forms-Initial Characterization

    SciTech Connect

    Terry, Troy N.; Russell, Renee L. ); Smith, Harry D. ); Liang, Liang ); Smith, Gary L. )

    2000-11-01

    The overall objective of this project is to identify and successfully demonstrate a water-based polyceram system suitable for producing an environmentally stable waste form highly loaded with salt wastes. The backbone for this idea is the development of aqueous based sol-gel technology. Most interest in sol-gel synthesis of ceramics in recent years has concentrated on the hydrolysis of metal alkoxides in organic media, but the alternative sol-gel process in aqueous media may offer acceptable results without the need for hazardous precursors or waste products. To accomplish this, water micelle (like an emulsion) systems will be substituted for the organic based systems already identified. Preliminary tests show that emulsions such as Styrene/Butadiene and Acrylic latex are good candidates for the aqueous media. Both of these materials when mixed with a percentage of natural latex have been shown to effectively immobilize salt wastes with loadings over 10 wt%. The low cost, availability, and ease of preparation (low temperature of cure) of these products makes them strong contenders as a waste form. Techniques for improving both chemical and physical properties, such as adding cross-linking agents and fine-tuning the curing process, are currently in development at Pacific Northwest National Laboratories along with collaboration with staff from the University of Arizona.

  10. SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS

    SciTech Connect

    Matthew C. Morrison; Kenneth J. Bateman; Michael F. Simpson

    2010-11-01

    ABSTRACT SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS Matthew C. Morrison, Kenneth J. Bateman, Michael F. Simpson Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 The ceramic waste process is the intended method for disposing of waste salt electrolyte, which contains fission products from the fuel-processing electrorefiners (ER) at the INL. When mixed and processed with other materials, the waste salt can be stored in a durable ceramic waste form (CWF). The development of the CWF has recently progressed from small-scale testing and characterization to full-scale implementation and experimentation using surrogate materials in lieu of the ER electrolyte. Two full-scale (378 kg and 383 kg) CWF test runs have been successfully completed with final densities of 2.2 g/cm3 and 2.1 g/cm3, respectively. The purpose of the first CWF was to establish material preparation parameters. The emphasis of the second pre-qualification test run was to evaluate a preliminary multi-section CWF container design. Other considerations were to finalize material preparation parameters, measure the material height as it consolidates in the furnace, and identify when cracking occurs during the CWF cooldown process.

  11. Solution exchange corrosion testing with the glass-zeolite ceramic waste form in demineralized water at 90{degree}C.

    SciTech Connect

    Simpson, L. J.

    1998-05-19

    A ceramic waste form of glass-bonded zeolite is being developed for the long-term disposition of fission products and transuranic elements in wastes from the U.S. Department of Energy's spent nuclear fuel conditioning activities. Solution exchange corrosion tests were performed on the ceramic waste form and its potential base constituents of glass, zeolite 5A, and sodalite as part of an effort to qualify the ceramic waste form for acceptance into the Civilian Radioactive Waste Management System. Solution exchange tests were performed at 90 C by replacing 80 to 90% of the leachate with fresh demineralized water after set time intervals. The results from these tests provide information about corrosion mechanisms and the ability of the ceramic waste form and its constituent materials to retain waste components. The results from solution exchange tests indicate that radionuclides will be preferentially retained in the zeolites without the glass matrix and in the ceramic waste form, with respect to cations like Li, K, and Na. Release results have been compared for simulated waste from candidate ceramic waste forms with zeolite 5A and its constituent materials to determine the corrosion behavior of each component.

  12. Development of a Waste Treatment Process to Deactivate Reactive Uranium Metal and Produce a Stable Waste Form

    SciTech Connect

    Gates-Anderson, D D; Laue, C A; Fitch, T E

    2002-01-17

    This paper highlights the results of initial investigations conducted to support the development of an integrated treatment process to convert pyrophoric metallic uranium wastes to a non-pyrophoric waste that is acceptable for land disposal. Several dissolution systems were evaluated to determine their suitability to dissolve uranium metal and that yield a final waste form containing uranium specie(s) amenable to precipitation, stabilization, adsorption, or ion exchange. During initial studies, one gram aliquots of uranium metal or the uranium alloy U-2%Mo were treated with 5 to 60 mL of selected reagents. Treatment systems screened included acids, acid mixtures, and bases with and without addition of oxidants. Reagents used included hydrochloric, sulfuric, nitric, and phosphoric acids, sodium hypochlorite, sodium hydroxide and hydrogen peroxide. Complete dissolution of the uranium turnings was achieved with the H{sub 3}PO{sub 4}/HCI system at room temperature within minutes. The sodium hydroxide/hydrogen peroxide, and sodium hypochlorite systems achieved complete dissolution but required elevated temperatures and longer reaction times. A ranking system based on criteria, such as corrosiveness, temperature, dissolution time, off-gas type and amount, and liquid to solid ratio, was designed to determine the treatment systems that should be developed further for a full-scale process. The highest-ranking systems, nitric acid/sulfuric acid and hydrochloric acid/phosphoric acid, were given priority in our follow-on investigations.

  13. Materials Characterization Center. Second workshop on irradiation effects in nuclear waste forms. Summary report

    SciTech Connect

    Weber, W.J.; Turcotte, R.P.

    1982-01-01

    The purpose of this second workshop on irradiations effects was to continue the discussions initiated at the first workshop and to obtain guidance for the Materials Characterization Center in developing test methods. The following major conclusions were reached: Ion or neutron irradiations are not substitutes for the actinide-doping technique, as described by the MCC-6 Method for Preparation and Characterization of Actinide-Doped Waste Forms, in the final evaluation of any waste form with respect to the radiation effects from actinide decay. Ion or neutron irradiations may be useful for screening tests or more fundamental studies. The use of these simulation techniques as screening tests for actinide decay requires that a correlation between ion or neutron irradiations and actinide decay be established. Such a correlation has not yet been established and experimental programs in this area are highly recommended. There is a need for more fundamental studies on dose-rate effects, temperature dependence, and the nature and importance of alpha-particle effects relative to the recoil nucleus in actinide decay. There are insufficient data presently available to evaluate the potential for damage from ionizing radiation in nuclear waste forms. No additional test methods were recommended for using ion or neutron irradiations to simulate actinide decay or for testing ionization damage in nuclear waste forms. It was recognized that additional test methods may be required and developed as more data become available. An American Society for Testing and Materials (ASTM) Task Group on the Simulation of Radiation Effects in Nuclear Waste Forms (E 10.08.03) was organized to act as a continuing vehicle for discussions and development of procedures, particularly with regard to ion irradiations.