Science.gov

Sample records for canker fungus fusarium

  1. Global distribution of the pitch canker fungus

    Treesearch

    L. David Dwinell

    1998-01-01

    The pitch canker fungus, Fusarium subglutinans f. sp. pini, causes diseases of pines in the United States, Haiti, Japan, Mexico, Spain, and South Africa. Pitch canker was first reported in Virginia pine in North Carolina in 1946. Although the disease was reported in Haitian pine in 1953, pitch canker was generally considered a...

  2. Contamination of Pine Seeds by the Pitch Canker Fungus

    Treesearch

    L. David Dwinell; S.W. Fraedrich

    1999-01-01

    The pitch canker fungus, Fusarium subglutinans f. sp. pini, has been identified as a significant problem in man pine seed orchards and nursuries in the South. THe fungus causes strobilus mortality, seed deterioation, and cankers on the main stem, branches, and shoots of pines Dwinell and others 1985). The pitche canker fungus...

  3. Genetic diversity and gene exchange in Pinus oocarpa, a Mesoamerican pine with resistance to the pitch canker fungus (Fusarium circinatum)

    Treesearch

    W.S. Dvorak; K.M. Potter

    2009-01-01

    Eleven highly polymorphic microsatellite markers were used to determine the genetic structure and levels of diversity in 51 natural populations of Pinus oocarpa across its geographic range of 3000 km in Mesoamerica. The study also included 17 populations of Pinus patula and Pinus tecunumanii chosen for their resistance or susceptibility to the pitch canker fungus based...

  4. Diseases of pines caused by the pitch canker fungus

    Treesearch

    L. David Dwinell; Stephen W. Fraedrich; D. Adams

    2001-01-01

    Fusarium subglutinans f. sp. pini, the pitch canker fungus, causes a number of serious diseases of Pinus species. The pathogen infects a variety of vegetative and reproductive pine structures at different stages of maturity and produces a diversity of symptoms. When the pathogen infects the woody vegetative...

  5. Association of the Pitch Canker Fungus with Cones and Seeds of Pines

    Treesearch

    L. David Dwinell

    1998-01-01

    The pitch canker fungus, Fusarium subglutinans f. sp.pini, causes the mortality of female flowers and mature cones, and can infect and destroy gametophyte tissues of seeds of several pine species in the southeastern U.S. The fungus can also be associated with the seed coats of apparently healthy, viable pine seeds. The pitch canker...

  6. Visualization of wound periderm and hyphal profiles in pine stems inoculated with the pitch canker fungus Fusarium circinatum.

    PubMed

    Kim, Ki Woo; Lee, In Jung; Thoungchaleun, Vilakon; Kim, Chang Soo; Lee, Don Koo; Park, Eun Woo

    2009-12-01

    Postpenetration behavior of Fusarium circinatum in stems of pine species was investigated with light and transmission electron microscopy. Two-year-old stems of Pinus rigida and P. densiflora were wound-inoculated with the fungal conidial suspension and subjected to 25 degrees C for up to 30 days. It was common to observe the formation of wound periderm on each pine species, recovering wounded sites with newly formed tissues. The outermost thick layer of wound periderm was pink to red colored with the phloroglucinol-EtOH staining, indicating heavy deposition of lignin in wound periderm. The cork layers in the wound periderm of the two pine species consisted of cells that were mostly devoid of cellular contents in cytoplasm. The cork cells showed convoluted cell walls with different electron density (lamellations), which was seemingly more prevalent in P. densiflora than P. rigida. Hyphae of F. circinatum appeared normal with typical eucaryotic cytoplasm in P. rigida on ultrathin sections. Meanwhile, hyphae in P. densiflora were found to possess highly vacuolated cytoplasm, implying hyphal weakening and disintegration. Hyphal cytoplasm appeared to be a thin layer between the vacuole and the plasma membrane surrounded by cell wall. In addition, intrahyphal hyphae and concentric bodies were observed in hyphal cytoplasm. These results suggest that the architecture of wound periderm may be responsible for different responses of pine species to the invasion of F. circinatum.

  7. Latent infection by Fusarium circinatum influences susceptibility of monterey pine seedlings to pitch canker

    Treesearch

    Cassandra L. Swett; Thomas R. Gordon

    2012-01-01

    Pitch canker, caused by Fusarium circinatum, is a serious disease affecting Pinus radiata D. Don (Monterey pine) in nurseries, landscapes, and native forests. A typical symptom of pitch canker is canopy dieback resulting from girdling lesions on terminal branches (Gordon et al. 2001). More extensive dieback can result from...

  8. Reclassification of the butternut canker fungus, Sirococcus clavigignenti-juglandacearum, into the genus Ophiognomonia.

    PubMed

    Broders, K D; Boland, G J

    2011-01-01

    Sirococcus clavigignenti-juglandacearum (Sc-j), which causes a canker disease on butternut, is largely responsible for the decline of this tree in the United States and Canada. The original description of the species was based on anamorphic characters because the teleomorph is unknown. Recent phylogenetic investigations have found that Sc-j is not a member of the genus Sirococcus, and accurate taxonomic classification is required. The objective of this study is to use sequence data to determine the phylogenetic placement of Sc-j within the Gnomoniaceae, Diaporthales. Isolates were recovered from infected Juglans ailantifolia var. cordiformis (heartnut), Juglans cinerea (butternut), and Juglans nigra (black walnut) in Ontario and the eastern United States. The genes coding for β-tubulin, actin, calmodulin, internal transcribed spacers 1 and 2, and the translation elongation factor 1-alpha from 28 isolates of Sc-j and representatives of the major lineages within the Gnomoniaceae were evaluated. There was no difference in the sequences of the five genes among the isolates of Sc-j studied, indicating a recent introduction followed by asexual reproduction and spread via conidia. The phylogenetic analyses demonstrate this fungus does not belong to the genus Sirococcus, and provides strong support (99% MP and 100% NJ bootstrap values, and 100% Bayesian posterior probabilities) for its inclusion in the genus Ophiognomonia, thereby supporting a reclassification of the butternut canker fungus to Ophiognomonia clavigignenti-juglandacearum. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  9. Adaptive potential of maritime pine (Pinus pinaster) populations to the emerging pitch canker pathogen, Fusarium circinatum.

    PubMed

    Elvira-Recuenco, Margarita; Iturritxa, Eugenia; Majada, Juan; Alia, Ricardo; Raposo, Rosa

    2014-01-01

    There is a concern on how emerging pests and diseases will affect the distribution range and adaptability of their host species, especially due to different conditions derived from climate change and growing globalization. Fusarium circinatum, which causes pitch canker disease in Pinus species, is an exotic pathogen of recent introduction in Spain that threatens its maritime pine (P. pinaster) stands. To predict the impact this disease will have on the species, we examine host resistance traits and their genetic architecture. Resistance phenotyping was done in a clonal provenance/progeny trial, using three-year-old cuttings artificially inoculated with the pathogen and maintained under controlled environmental conditions. A total number of 670 ramets were assessed, distributed in 10 populations, with a total of 47 families, 2 to 5 half-sibs per family, and 3-7 ramets per clone. High genetic variation was found at the three hierarchical levels studied: population, family and clone, being both additive and non-additive effects important. Narrow-sense and broad-sense heritability estimates were relatively high, with respective values of 0.43-0.58 and 0.51-0.8, depending on the resistance traits measured (lesion length, lesion length rate, time to wilting, and survival). These values suggest the species' high capacity of evolutionary response to the F. circinatum pathogen. A population originated in Northern Spain was the most resistant, while another from Morocco was the most susceptible. The total number of plants that did not show lesion development or presented a small lesion (length<30 mm) was 224 out of 670, indicating a high proportion of resistant trees in the offspring within the analyzed populations. We found large differences among populations and considerable genetic variation within populations, which should allow, through natural or artificial selection, the successful adaptation of maritime pine to pitch canker disease.

  10. Adaptive Potential of Maritime Pine (Pinus pinaster) Populations to the Emerging Pitch Canker Pathogen, Fusarium circinatum

    PubMed Central

    Elvira-Recuenco, Margarita; Iturritxa, Eugenia; Majada, Juan; Alia, Ricardo; Raposo, Rosa

    2014-01-01

    There is a concern on how emerging pests and diseases will affect the distribution range and adaptability of their host species, especially due to different conditions derived from climate change and growing globalization. Fusarium circinatum, which causes pitch canker disease in Pinus species, is an exotic pathogen of recent introduction in Spain that threatens its maritime pine (P. pinaster) stands. To predict the impact this disease will have on the species, we examine host resistance traits and their genetic architecture. Resistance phenotyping was done in a clonal provenance/progeny trial, using three-year-old cuttings artificially inoculated with the pathogen and maintained under controlled environmental conditions. A total number of 670 ramets were assessed, distributed in 10 populations, with a total of 47 families, 2 to 5 half-sibs per family, and 3–7 ramets per clone. High genetic variation was found at the three hierarchical levels studied: population, family and clone, being both additive and non-additive effects important. Narrow-sense and broad-sense heritability estimates were relatively high, with respective values of 0.43–0.58 and 0.51–0.8, depending on the resistance traits measured (lesion length, lesion length rate, time to wilting, and survival). These values suggest the species' high capacity of evolutionary response to the F. circinatum pathogen. A population originated in Northern Spain was the most resistant, while another from Morocco was the most susceptible. The total number of plants that did not show lesion development or presented a small lesion (length<30 mm) was 224 out of 670, indicating a high proportion of resistant trees in the offspring within the analyzed populations. We found large differences among populations and considerable genetic variation within populations, which should allow, through natural or artificial selection, the successful adaptation of maritime pine to pitch canker disease. PMID:25500822

  11. Genetic dissection of fusiform rust and pitch canker disease traits in loblolly pine

    Treesearch

    Gogce C. Kayihan; Dudley A. Huber; Alison M. Morse; Timothy L. White; John M. Davis

    2005-01-01

    Loblolly pine (Pinus taeda L.) exhibits genetic resistance to fusiforrn rust disease (incited by the biotrophic fungus, Cronartiurn quercuum f. sp. fusifom) and pitch canker disease (incited by the necrotrophic fungus, Fusarium circinatum). In this study, a total of 14,015 loblolly pine cuttings from 1,065 clones were screened in...

  12. Fusarium canker of bitternut hickory caused by Fusarium solani in the North-Central and Northeastern United States

    Treesearch

    J.-H. Park; J. Juzwik

    2012-01-01

    Multiple annual cankers were observed on the upper main stems of bitternut hickory (Carya cordiformis) exhibiting top dieback in Indiana, Iowa, Minnesota, New York, Ohio, and Wisconsin during a 2006 to 2008 survey of declining hickory. The top-killed trees had normal-sized, green leaves below and the cankers were oval, sunken, and bounded by heavy...

  13. Quantitative association of bark beetles with pitch canker fungus and effects of verbenone on their semiochemical communication in Monterey pine forests in Northern Spain.

    PubMed

    Romón, Pedro; Iturrondobeitia, Juan Carlos; Gibson, Ken; Lindgren, B Staffan; Goldarazena, Arturo

    2007-08-01

    The association between 11 species of bark beetles (Coleoptera: Scolytinae) and one weevil (Coleoptera: Entiminae) with the pitch canker fungus, Fusarium circinatum Nirenberg and O'Donnell, was determined by crushing beetles on selective medium and histone H3 gene sequencing. Pityophthorus pubescens (Marsham) (25.00%), Hylurgops palliatus (Gyllenhal) (11.96%), Ips sexdentatus (Börner) (8.57%), Hypothenemus eruditus Westwood (7.89%), Hylastes attenuatus Erichson (7.40%), and Orthotomicus erosus (Wollaston) (2.73%) were found to carry the inoculum. In addition, the root weevil Brachyderes incanus L. (14.28%) had the second highest frequency of occurrence of the fungus. The responses of the insects to a range of verbenone doses were tested in field bioassays using funnel traps. Catches of P. pubescens, a species colonizing branch tips of live trees, were significantly reduced in a log-linear dose-dependent relationship. Catches of I. sexdentatus, an opportunistic species normally attacking fresh dead host material, were also gradually reduced with increasing verbenone dose. Catches of Tomicus piniperda L., O. erosus, Dryocoetes autographus (Ratzeburg), H. eruditus, Xyleborus dryographus (Ratzeburg), Hylastes ater (Paykull), Hylurgus ligniperda (F.), H. attenuatus, and B. incanus were not significantly affected by verbenone. The effects of verbenone were consistent with differences in host-age preference. Semiochemical disruption by verbenone in P. pubescens and I. sexdentatus could represent an integrated pest management strategy for the prevention of the spread of pitch canker disease between different stands. However, several species associated with F. circinatum were unaffected by verbenone, not supporting this compound for prevention of the establishment of potential vectors in Northern Spain.

  14. A novel Fusarium species causes a canker disease of the critically endangered conifer, Torreya taxifolia

    USDA-ARS?s Scientific Manuscript database

    A canker disease of Florida torreya (Torreya taxifolia), here designated CDFT, has been implicated in the decline of this critically endangered species in its native range of northern Florida and southeastern Georgia. In our current surveys of eight Florida torreya sites, cankers were present on all...

  15. Fusarium torreyae sp. nov., a pathogen causing canker disease of Florida torreya (Torreya taxifolia), a critically endangered conifer restricted to northern Florida and southwestern Georgia

    USDA-ARS?s Scientific Manuscript database

    During a survey for pathogens of Florida torreya (Torreya taxifolia) conducted in 2009, a novel Fusarium species was isolated from cankers affecting this critically endangered conifer whose current range is restricted to northern Florida and southwestern Georgia. Published multilocus molecular phylo...

  16. Population structure of the butternut canker fungus, Ophiognomonia clavigignenti-juglandacearum, in North American forests

    PubMed Central

    Broders, K D; Boraks, A; Sanchez, A M; Boland, G J

    2012-01-01

    The occurrence of multiple introduction events, or sudden emergence from a host jump, of forest pathogens may be an important factor in successful establishment in a novel environment or on a new host; however, few studies have focused on the introduction and emergence of fungal pathogens in forest ecosystems. While Ophiognomonia clavigignenti-juglandacearum (Oc-j), the butternut canker fungus, has caused range-wide mortality of butternut trees in North America since its first observation in 1967, the history of its emergence and spread across the United States and Canada remains unresolved. Using 17 single nucleotide polymorphic loci, we investigated the genetic population structure of 101 isolates of Oc-j from across North America. Clustering analysis revealed that the Oc-j population in North America is made up of three differentiated genetic clusters of isolates, and these genetic clusters were found to have a strong clonal structure. These results, in combination with the geographic distribution of the populations, suggest that Oc-j was introduced or has emerged in North America on more than one occasion, and these clonal lineages have since proliferated across much of the range of butternut. No evidence of genetic recombination was observed in the linkage analysis, and conservation of the distinct genetic clusters in regions where isolates from two or more genetic clusters are present, would indicate a very minimal or non-existent role of sexual recombination in populations of Oc-j in North America. PMID:23139872

  17. Population structure of the butternut canker fungus, Ophiognomonia clavigignenti-juglandacearum, in North American forests.

    PubMed

    Broders, K D; Boraks, A; Sanchez, A M; Boland, G J

    2012-09-01

    The occurrence of multiple introduction events, or sudden emergence from a host jump, of forest pathogens may be an important factor in successful establishment in a novel environment or on a new host; however, few studies have focused on the introduction and emergence of fungal pathogens in forest ecosystems. While Ophiognomonia clavigignenti-juglandacearum (Oc-j), the butternut canker fungus, has caused range-wide mortality of butternut trees in North America since its first observation in 1967, the history of its emergence and spread across the United States and Canada remains unresolved. Using 17 single nucleotide polymorphic loci, we investigated the genetic population structure of 101 isolates of Oc-j from across North America. Clustering analysis revealed that the Oc-j population in North America is made up of three differentiated genetic clusters of isolates, and these genetic clusters were found to have a strong clonal structure. These results, in combination with the geographic distribution of the populations, suggest that Oc-j was introduced or has emerged in North America on more than one occasion, and these clonal lineages have since proliferated across much of the range of butternut. No evidence of genetic recombination was observed in the linkage analysis, and conservation of the distinct genetic clusters in regions where isolates from two or more genetic clusters are present, would indicate a very minimal or non-existent role of sexual recombination in populations of Oc-j in North America.

  18. Bioactive compounds from the endophytic fungus Fusarium proliferatum.

    PubMed

    Dame, Zerihun T; Silima, Beauty; Gryzenhout, Marieka; van Ree, Teunis

    2016-06-01

    The crude extract of an endophytic fungus isolated from Syzygium cordatum and identified as Fusarium proliferatum showed 100% cytotoxicity against the brine shrimp Artemia salina at 100 μg/mL. Seven coloured, biologically active metabolites - including ergosta-5,7,22-trien-3β-ol, nectriafurone-8-methyl ether, 9-O-methyl fusarubin, bostrycoidin, bostrycoidin-9-methyl ether and 8-hydroxy-5,6-dimethoxy-2-methyl-3-(2-oxo-propyl)-1,4-naphthoquinone- were isolated from the extract.

  19. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum

    SciTech Connect

    Basavaraja, S.; Balaji, S.D.; Lagashetty, Arunkumar; Rajasab, A.H.; Venkataraman, A.

    2008-05-06

    Development of environmental friendly procedures for the synthesis of metal nanoparticles through biological processes is evolving into an important branch of nanobiotechnology. In this paper, we report on the use of fungus 'Fusarium semitectum' for the extracellular synthesis of silver nanoparticles from silver nitrate solution (i.e. through the reduction of Ag{sup +} to Ag{sup 0}). Highly stable and crystalline silver nanoparticles are produced in solution by treating the filtrate of the fungus F. semitectum with the aqueous silver nitrate solution. The formations of nanoparticles are understood from the UV-vis and X-ray diffraction studies. Transmission electron microscopy of the silver particles indicated that they ranged in size from 10 to 60 nm and are mostly spherical in shape. Interestingly the colloidal suspensions of silver nanoparticles are stable for many weeks. Possible medicinal applications of these silver nanoparticles are envisaged.

  20. Npc1 is involved in sterol trafficking in the filamentous fungus Fusarium graminearum

    USDA-ARS?s Scientific Manuscript database

    The ortholog of the human gene NPC1 was identified in the plant pathogenic, filamentous fungus Fusarium graminearum by shared amino acid sequence, protein domain structure and cellular localization of the mature fungal protein. The Fusarium Npc1 gene shares 34% amino acid sequence identity and 51% s...

  1. Complete Genome Sequence of a Novel Hypovirus from the Phytopathogenic Fungus Fusarium langsethiae

    PubMed Central

    Li, Pengfei; Chen, Xiaoguang; He, Hao; Qiu, Dewen

    2017-01-01

    ABSTRACT We describe a novel positive single-stranded RNA virus, termed Fusarium langsethiae hypovirus 1 (FlHV1), from the isolate AH32 of the phytopathogenic fungus Fusarium langsethiae. The properties of FlHV1 permit assignment to the genus Alphahypovirus in the family Hypoviridae. This is the first report of a mycovirus identified in F. langsethiae. PMID:28254984

  2. Hypoxylon Canker of Aspen

    Treesearch

    Ralph L. Anderson; Gerald W. Anderson; Arthur L. Jr. Schipper

    1979-01-01

    Hypoxylon canker, caused by the fungus Hypoxylon mammatum (Wahl.) Mill. (formerly H. pruinatum (Klot.) Cke.), is one of the most important killing diseases of aspen in eastern North America. In Michigan, Minnesota, and Wisconsin, the total impact of Hypoxylon canker has been estimated to be 30 percent of the annual net growth of aspen; in 1972, trees worth more than $4...

  3. BIOTRANSFORMATION OF 2,4,6-TRINITROTOLUENE (TNT) BY A PLANT-ASSOCIATED FUNGUS FUSARIUM OXYSPORUM

    EPA Science Inventory

    The capability of a plant-associated fungus, Fusarium oxyvorum, to transform TNT in liquid cultures was investigated. TNT was transformed into 2-amino-4, 6-dinitrotoluene (2-A-DNT), 4-amino-2, 6-dinitrotoluene (4-A- DNT), and 2, 4-diamino-6-nitrotoluene (2, 4-DAT) via 2- and 4-hy...

  4. BIOTRANSFORMATION OF 2,4,6-TRINITROTOLUENE (TNT) BY A PLANT-ASSOCIATED FUNGUS FUSARIUM OXYSPORUM

    EPA Science Inventory

    The capability of a plant-associated fungus, Fusarium oxyvorum, to transform TNT in liquid cultures was investigated. TNT was transformed into 2-amino-4, 6-dinitrotoluene (2-A-DNT), 4-amino-2, 6-dinitrotoluene (4-A- DNT), and 2, 4-diamino-6-nitrotoluene (2, 4-DAT) via 2- and 4-hy...

  5. Functional characterization of candidate effector proteins identified from the wheat scab fungus Fusarium graminearum

    USDA-ARS?s Scientific Manuscript database

    Fungal pathogens often produce certain small secreted cysteine-rich proteins (SSCPs) during pathogenesis that may function in triggering resistance or susceptibility in specific host plants. We have recently identified a total of 190 SSCPs encoded in the genome of the wheat scab fungus Fusarium gra...

  6. Comparative genomic analysis in the fungus Fusarium for production of toxins of concern to food safety

    USDA-ARS?s Scientific Manuscript database

    SUMMARY Comparative analysis of 207 genomes representing 159 species of the fungus Fusarium detected 9403 known and putative secondary metabolite (SM) biosynthetic gene clusters. The clusters included those responsible for synthesis of mycotoxins, plant hormones and pigments, and varied in distribut...

  7. Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum

    USDA-ARS?s Scientific Manuscript database

    As in many other eukaryotes, protein kinases play major regulatory roles in filamentous fungi. Although the genomes of numerous plant pathogenic fungi have been sequenced, systematic characterization of their kinomes has not been reported. The wheat scab fungus Fusarium graminearum has 116 putative ...

  8. Draft Genome Sequence of the Phytopathogenic Fungus Fusarium euwallaceae, the Causal Agent of Fusarium Dieback

    PubMed Central

    Sánchez-Rangel, Diana; Hernández-Domínguez, Eric; Pérez-Torres, Claudia-Anahí; Ortiz-Castro, Randy; Villafán, Emanuel; Alonso-Sánchez, Alexandro; Rodríguez-Haas, Benjamín; López-Buenfil, Abel; García-Avila, Clemente; Ramírez-Pool, José-Abrahán

    2017-01-01

    ABSTRACT Here, we report the genome of Fusarium euwallaceae strain HFEW-16-IV-019, an isolate obtained from Kuroshio shot hole borer (a Euwallacea sp.). These beetles were collected in Tijuana, Mexico, from elm trees showing typical symptoms of Fusarium dieback. The final assembly consists of 287 scaffolds spanning 48,274,071 bp and 13,777 genes. PMID:28860245

  9. Compartmentalized gene regulatory network of the pathogenic fungus Fusarium graminearum

    USDA-ARS?s Scientific Manuscript database

    Head blight caused by Fusarium graminearum (Fg) is a major limiting factor of wheat production with both yield loss and mycotoxin contamination. Here we report a model for global Fg gene regulatory networks (GRNs) inferred from a large collection of transcriptomic data using a machine-learning appro...

  10. Characterization and host range of the symbiotic fungus Fusarium euwallaceae sp. nov., vectored by the invasive ambrosia beetle Euwallacea sp.

    USDA-ARS?s Scientific Manuscript database

    A novel symbiotic Fusarium euwallaceae fungus that serves as a specific nutritional source for the invasive Asian ambrosia beetle Euwallacea sp. (Coleoptera, Scolytinae, Xyleborini) is farmed in the galleries of host plants. This beetle-fungus complex, which has invaded Israel and California, is clo...

  11. The distribution and host range of the banana Fusarium wilt fungus, Fusarium oxysporum f. sp. cubense, in Asia

    PubMed Central

    Molina, Agustin B.; Daniells, Jeff; Fourie, Gerda; Hermanto, Catur; Chao, Chih-Ping; Fabregar, Emily; Sinohin, Vida G.; Masdek, Nik; Thangavelu, Raman; Li, Chunyu; Yi, Ganyun; Mostert, Lizel; Viljoen, Altus

    2017-01-01

    Fusarium oxysporum formae specialis cubense (Foc) is a soil-borne fungus that causes Fusarium wilt, which is considered to be the most destructive disease of bananas. The fungus is believed to have evolved with its host in the Indo-Malayan region, and from there it was spread to other banana-growing areas with infected planting material. The diversity and distribution of Foc in Asia was investigated. A total of 594 F. oxysporum isolates collected in ten Asian countries were identified by vegetative compatibility groups (VCGs) analysis. To simplify the identification process, the isolates were first divided into DNA lineages using PCR-RFLP analysis. Six lineages and 14 VCGs, representing three Foc races, were identified in this study. The VCG complex 0124/5 was most common in the Indian subcontinent, Vietnam and Cambodia; whereas the VCG complex 01213/16 dominated in the rest of Asia. Sixty-nine F. oxysporum isolates in this study did not match any of the known VCG tester strains. In this study, Foc VCG diversity in Bangladesh, Cambodia and Sri Lanka was determined for the first time and VCGs 01221 and 01222 were first reported from Cambodia and Vietnam. New associations of Foc VCGs and banana cultivars were recorded in all the countries where the fungus was collected. Information obtained in this study could help Asian countries to develop and implement regulatory measures to prevent the incursion of Foc into areas where it does not yet occur. It could also facilitate the deployment of disease resistant banana varieties in infested areas. PMID:28719631

  12. Butternut Canker Pest Alert

    Treesearch

    Northeastern Area, State and Private Forestry

    1995-01-01

    Butternut Canker is caused by a fungus known as Siroccoccus clavigignent-jjuglandacearum which is killing butternut (Juglans cinerea) throughout its range in North America. Butternut is closely related to black walnut (Juglans nigra), which is not naturally susceptible to the disease.

  13. Canker Sores

    MedlinePlus

    ... them is to keep an ulcer diary. By writing down when you have outbreaks of canker sores, ... of Canker Sores” Prepared by the AAOM Web Writing Group Updated 31 December 2007 Japanese Translation - 日本語訳 ...

  14. Draft genome sequence of diaporthe aspalathi isolate ms-ssc91 a fungus causing stem canker in soybean

    USDA-ARS?s Scientific Manuscript database

    Diaporthe aspalathi (formerly D. phaseolorum var. meridionalis) is the causal agent of the southern stem canker disease in soybean. This disease can kill plants from the middle to the end of the growing season resulting in severe yield loss. The mechanisms of disease development and pathogen invasi...

  15. Efficacy of female Culex quinquefasciatus with entomopathogenic fungus Fusarium pallidoroseum.

    PubMed

    Mohanty, Suman Sundar; Raghavendra, Kamaraju; Rai, Usha; Dash, Aditya Prasad

    2008-06-01

    This study was conducted to isolate and identify natural entomopathogenic fungi from female Culex quinquefasciatus and to test their adulticidal activity. Field-collected female C. quinquefasciatus died early and were placed on a Saboraud's dextrose agar plates for growth and isolation of natural entomopathogenic fungi. The plates were maintained in an incubator at 24+/-2 degrees C for 3 days. Four fungal species were isolated in two genera namely, Aspergillus and Fusarium. The identified fungal species were A. niger, A. flavus, A. nidulans var acristatus (ITCC-6327.04), and F. pallidoroseum (ITCC-6324.06). Adult bioassays were carried out using spore-impregnated paper in WHO-holding tubes. F. pallidoroseum was found to be more effective than the others. Exposure of C. quinquefasciatus to spores of A. flavus and A. niger for 4 h caused 5.53% and 5.51% mortality in the mosquitoes within a week, respectively. All the female C. quinquefasciatus were killed within 4 days of exposure to F. pallidoroseum at a concentration of 1.11 x 10(10) conidia per m2. Significant difference of longevity was observed between the F. pallidoroseum-treated C. quinquefasciatus and control mosquitoes. The LT50 of F. pallidoroseum was 2.08 days for 4 h exposure to C. quinquefasciatus. Results of the present study confirm that F. pallidoroseum is one of the alternative biological control agents of adult mosquitoes.

  16. Scleroderris Canker of Northern Conifers

    Treesearch

    Darroll D. Skilling; James T. O' Brien; James A. Bell

    1979-01-01

    Scleroderris canker, caused by the fungus Gremmeniella abietina-Scleroderris lagerbergii (Lagerb.) Morelet, has caused extensive mortality in conifer plantations and forest nurseries in the northeast and north central United States and eastern Canada. Two strains of the fungus are known in North America. The Lake States strain, present throughout northeastern North...

  17. Molecular phylogenetic, morphological, and mycotoxin data support reidentification of the Quorn mycoprotein fungus as Fusarium venenatum.

    PubMed

    O'Donnell, K; Cigelnik, E; Casper, H H

    1998-02-01

    Molecular phylogenetic, morphological, and mycotoxin data were obtained in order to investigate the relationships and identity of the Quorn mycoprotein fungus within Fusarium and to examine Quorn strains and commercial Quorn food products for trichothecene mycotoxins. Phylogenetic analyses of aligned DNA sequences obtained via the polymerase chain reaction from the nuclear 28S ribosomal DNA, nuclear ribosomal internal transcribed spacer region, and beta-tubulin gene exons and introns indicate that the Quorn fungus is Fusarium venenatum, rather than F. graminearum as previously reported. All of the Quorn strains examined were morphologically degenerate aconidial colonial mutants except for NRRL 25139, which produced chlamydospores in recurved terminal chains together with mostly 5-septate sporodochial conidia on doliform monophialides diagnostic of F. venenatum. Bootstrap and decay analyses provide strong support for a monophyletic lineage containing F. venenatum and several other type A trichothecene-producing species, while reference strains of F. graminearum were nested in a separate clade of species that produce type B trichothecenes and/or zearalenone. Analysis of mycotoxins from rice cultures inoculated with Quorn strain NRRL 25416 revealed that four type A trichothecenes are produced, but at low levels relative to strain NRRL 22198 of F. venenatum. No trichothecene mycotoxins, however, were detected from the analysis of three commercial Quorn products marketed for human consumption in England.

  18. The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum.

    PubMed

    Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto

    2013-12-01

    The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. © 2013 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  19. The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum

    PubMed Central

    Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto

    2013-01-01

    The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. PMID:24311557

  20. The role of a dark septate endophytic fungus, Veronaeopsis simplex Y34, in Fusarium disease suppression in Chinese cabbage.

    PubMed

    Khastini, Rida O; Ohta, Hiroyuki; Narisawa, Kazuhiko

    2012-08-01

    The soil-inhabiting fungal pathogen Fusarium oxysporum has been an increasing threat to Chinese cabbage (Brassica campestris L.). A dark septate endophytic fungus, Veronaeopsis simplex Y34, isolated from Yaku Island, Japan, was evaluated in vitro for the ability to suppress Fusarium disease. Seedlings grown in the presence of the endophyte showed a 71% reduction in Fusarium wilt disease and still had good growth. The disease control was achieved through a synergetic effect involving a mechanical resistance created by a dense network of V. simplex Y34 hyphae, which colonized the host root, and siderophore production acting indirectly to induce a resistance mechanism in the plant. Changes in the relative abundance of the fungal communities in the soil as determined by fluorescently labelled T-RFs (terminal restriction fragments), appeared 3 weeks after application of the fungus. Results showed the dominance of V. simplex Y34, which became established in the rhizosphere and out-competed F. oxysporum.

  1. Hypoxylon canker

    Treesearch

    Michael E. Ostry

    2013-01-01

    Entoleuca mammata (Wahlenb.) J.D. Rogers & Y.M. Ju (syn. Hypoxylon mammatum (Wahlenb.) P. Karst.) causes the most damaging canker disease of quaking aspen (Populus tremuloides Michx.) - Hypoxylon canker - in many areas of North America. A study by Anderson (1964) in the Lake States (Michigan, Minnesota and...

  2. Two new polyhydroxysterols produced by Fusarium solani, an endophytic fungus from Chloranthus multistachys.

    PubMed

    Shen, W Y; Bai, R; Wang, A R; He, J Y; Wang, H; Zhang, Y; Zhao, X F; Dong, J Y

    2016-10-01

    A highly antagonistic endophytic fungus, designated strain CL39, was originated from the leaves of Chloranthus multistachys collected in Wulong of Chongqing municipality of China in November 2015. The strain was identified as Fusarium solani based on morphological characteristics, 5.8S gene and internal transcribed spacer sequence analysis. Two new compounds, 2β, 9α-dihydroxy-5α-methoxyergosta-7, 22-diene (1), 2β, 6β-dihydroxy-5α-methoxyergosta-7, 22-diene (2) have been isolated from the culture broth of the strain. Structures of the new compounds were elucidated by detailed analysis of their spectroscopic data aided by the comparison with reported data of related derivatives, and found to belong to the polyhydroxylated steroids with a hydroxyl at C-2 instead of C-3, a rare structure among the steroids. The extract of this strain and all isolated compounds were evaluated for their antagonistic activities.

  3. Molecular characterization of a novel hypovirus from the plant pathogenic fungus Fusarium graminearum.

    PubMed

    Li, Pengfei; Zhang, Hailong; Chen, Xiaoguang; Qiu, Dewen; Guo, Lihua

    2015-07-01

    A novel mycovirus, termed Fusarium graminearum Hypovirus 2 (FgHV2/JS16), isolated from a plant pathogenic fungus, Fusarium graminearum strain JS16, was molecularly and biologically characterized. The genome of FgHV2/JS16 is 12,800 nucleotides (nts) long, excluding the poly (A) tail. This genome has only one large putative open reading frame, which encodes a polyprotein containing three normal functional domains, papain-like protease, RNA-dependent RNA polymerase, RNA helicase, and a novel domain with homologous bacterial SMC (structural maintenance of chromosomes) chromosome segregation proteins. A defective RNA segment that is 4553-nts long, excluding the poly (A) tail, was also detected in strain JS16. The polyprotein shared significant aa identities with Cryphonectria hypovirus 1 (CHV1) (16.8%) and CHV2 (16.2%). Phylogenetic analyses based on multiple alignments of the polyprotein clearly divided the members of Hypoviridae into two major groups, suggesting that FgHV2/JS16 was a novel hypovirus of a newly proposed genus-Alphahypovirus-composed of the members of Group 1, including CHV1, CHV2, FgHV1 and Sclerotinia sclerotiorum hypovirus 2. FgHV2/JS16 was shown to be associated with hypovirulence phenotypes according to comparisons of the biological properties shared between FgHV2/JS16-infected and FgHV2/JS16-free isogenic strains. Furthermore, we demonstrated that FgHV2/JS16 infection activated the RNA interference pathway in Fusarium graminearum by relative quantitative real time RT-PCR.

  4. Knock down of chitosanase expression in phytopathogenic fungus Fusarium solani and its effect on pathogenicity.

    PubMed

    Liu, Huaiwei; Zhang, Bo; Li, Changsong; Bao, Xiaoming

    2010-06-01

    Chitosanases are lytic enzymes involved in the degradation of chitosan, a component of fungal cell walls. The phytopathogenic fungus Fusarium solani produces an extracellular chitosanase, CSN1, the role of which in the physiology and virulence of the fungus remains to be expounded. Here, we studied the expression of the CSN1 gene through gene silencing and examined its effect on fungal pathogenicity. A vector construct encoding a hairpin RNA (hpRNA) of CSN1 was constructed and introduced into the F. solani 0114 strain. The results revealed that majority of the transformants exhibited a significant reduction in chitosanase activity compared with the wild-type strain. Further, transformants with silenced CSN1 exhibited no change in mycelial growth and spore formation. However, pea pod and seedling bioassays indicated that transformants with silenced CSN1 were more virulent compared with the wild-type strain, and in sharp contrast to strains in which overexpression of the CSN1 gene resulted in virulence reduction. Although the mechanism remains unclear, our findings did suggest that F. solani chitosanase has a negative effect on fungal pathogenicity.

  5. Fusaroside, a unique glycolipid from Fusarium sp., an endophytic fungus isolated from Melia azedarach.

    PubMed

    Yang, Sheng-Xiang; Wang, Hong-Peng; Gao, Jin-Ming; Zhang, Qiang; Laatsch, Hartmut; Kuang, Yi

    2012-01-28

    Fusaroside (1), a unique trehalose-containing glycolipid composed of the 4-hydroxyl group of a trehalose unit attached to the carboxylic carbon of a long-chain fatty acid, was isolated from the organic extract of fermentation broths of an endophytic fungus, Fusarium sp. LN-11 isolated from the leaves of Melia azedarach. Six known compounds, phalluside (2), (9R*,10R*,7E)-6, 9,10-trihydroxyoctadec-7-enoic acid (3), porrigenic acid (4), (9Z)-2,3-dihydroxypropyl octadeca-9-enoate (5), cerevisterol (6) and ergokonin B (7), were also isolated from this fungus. The glycolipid contains a rare branched long-chain fatty acid (C(20:4)) with a conjugated diene moiety and a conjugated ketone moiety. The structure of the new compound 1 was elucidated by spectroscopic methods (1D and 2D NMR experiments, MS) and chemical degradations. The metabolites 1-5 were shown to have moderate to weak active against the brine shrimp larvae. To our knowledge, this is the first report of isolation of the first representative of a new family of glycolipids from natural sources.

  6. Thousand cankers disease: Geosmithia morbida spores isolated from a weevil

    Treesearch

    Michele Warmund; Jerry. Van Sambeek

    2014-01-01

    Recently, Geosmithia morbida, the canker-causing fungus associated with thousand cankers disease, was isolated from Stenomimus pallidus weevils found on two stressed black walnut trees in Yellowwood State Forest near Nashville, Indiana. This is the first report of Geosmithia fungus occurring on an insect other than the walnut twig beetle (Pityophthorus juglandis)....

  7. Antibacterial secondary metabolites from an endophytic fungus, Fusarium solani JK10.

    PubMed

    Kyekyeku, James Oppong; Kusari, Souvik; Adosraku, Reimmel Kwame; Bullach, Anke; Golz, Christopher; Strohmann, Carsten; Spiteller, Michael

    2017-06-01

    Extensive chemical investigation of the endophytic fungus, Fusarium solani JK10, harbored in the root of the Ghanaian medicinal plant Chlorophora regia, using the OSMAC (One Strain Many Compounds) approach resulted in the isolation of seven new 7-desmethyl fusarin C derivatives (1-7), together with five known compounds (8-12). The structures of the new compounds were elucidated by analysis of their spectroscopic data including 1D, 2D NMR, HRESI-MS(n) and IR data. The relative configuration of compounds 1/2 was deduced by comparison of their experimental electronic circular dichroism (ECD) and optical rotation data with those reported in literature. The absolute configuration of solaniol (10), a known compound with undefined absolute stereochemistry, was established for the first time by X-ray diffraction analysis of a single-crystal structure using Cu-Kα radiation. The antibacterial activities of the crude fungal extract and the compounds isolated from the fungus were evaluated against some clinically important bacterial strains such as Staphylococcus aureus and Bacillus subtilis, as well as an environmental strain of Escherichia coli and the soil bacterium Acinetobacter sp. BD4. Compounds 3/4 and 6 exhibited antibacterial efficacies against the soil bacterium Acinetobacter sp., comparable to the reference standard streptomycin. All the tested compounds (1-9) demonstrated antibacterial activity against the environmental strain of E. coli, whereas no antibacterial activity was observed against S. aureus and B. subtilis. The antibacterial activity of the isolated compounds typically against E. coli and Acinetobacter sp. provides further insight into the possible involvement of root-borne endophytes in chemical defense of their host plants in selected ecological niches. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Pitch canker disease of pines.

    PubMed

    Gordon, T R

    2006-06-01

    ABSTRACT Pitch canker, caused by Fusarium circinatum, is a disease affecting pines in many locations throughout the world. The pathosystem was originally described in the southeastern (SE) United States and was identified in California in 1986. Limited vegetative compatibility group (VCG) diversity in the California population of F. circinatum, relative to the SE United States, suggests the former is a recently established and clonally propagating population. Although the much greater VCG diversity found in the SE United States is suggestive of out-crossing, molecular markers indicate that many vegetatively incompatible isolates are clonally related. This implies that VCG diversity may derive, at least in part, from somatic mutations rather than sexual reproduction. Pitch canker is damaging to many pine species and one at particular risk is Monterey pine (Pinus radiata), which is widely grown in plantations and is highly susceptible to pitch canker. However, some Monterey pines are resistant to pitch canker and some severely diseased trees have been observed to recover. The absence of new infections on these trees reflects the operation of systemic induced resistance, apparently in response to repeated infection by the pitch canker pathogen.

  9. Taxol production by an endophytic fungus, Fusarium redolens, isolated from Himalayan yew.

    PubMed

    Garyali, Sanjog; Kumar, Anil; Reddy, M Sudhakara

    2013-10-28

    Different endophytic fungi isolated from Himalayan Yew plants were tested for their ability to produce taxol. The BAPT gene (C-13 phenylpropanoid side chain-CoA acetyl transferase) involved in the taxol biosynthetic pathway was used as a molecular marker to screen taxol-producing endophytic fungi. Taxol extracted from fungal strain TBPJ-B was identified by HPLC and MS analysis. Strain TBPJ-B was identified as Fusarium redolens based on the morphology and internal transcribed spacer region of nrDNA analysis. HPLC quantification of fungal taxol showed that F. redolens was capable of producing 66 μg/l of taxol in fermentation broth. The antitumour activity of the fungal taxol was tested by potato disc tumor induction assay using Agrobacterium tumefaciens as the tumor induction agent. The present study results showed that PCR amplification of genes involved in taxol biosynthesis is an efficient and reliable method for prescreening taxol-producing fungi. We are reporting for the first time the production of taxol by F. redolens from Taxus baccata L. subsp. wallichiana (Zucc.) Pilger. This study offers important information and a new source for the production of the important anticancer drug taxol by endophytic fungus fermentation.

  10. First record of Fusarium verticillioides as an entomopathogenic fungus of grasshoppers.

    PubMed

    Pelizza, S A; Stenglein, S A; Cabello, M N; Dinolfo, M I; Lange, C E

    2011-01-01

    Fusarium verticillioides (Saccardo) Nirenberg (Ascomycota: Hypocreales) is the most common fungus reported on infected corn kernels and vegetative tissues, but has not yet been documented as being entomopathogenic for grasshoppers. Grasshoppers and locusts represent a large group of insects that cause economic damage to forage and crops. Tropidacris collaris (Stoll) (Orthoptera: Acridoidea: Romaleidae) is a large and voracious grasshopper that in recent years has become an increasingly recurrent and widespread pest in progressively more greatly extended areas of some of in Argentina's northern provinces, with chemical insecticides being currently the only means of control. During February and March of 2008-09, nymphs and adults of T. collaris were collected with sweep nets in dense woodland vegetation at a site near Tres Estacas in western Chaco Province, Argentina, and kept in screened cages. F. verticillioides was isolated from insects that died within 10 days and was cultured in PGA medium. Pathogenicity tests were conducted and positive results recorded. Using traditional and molecular-biological methods, an isolate of F. verticillioides was obtained from T. collaris, and its pathogenecity in the laboratory was shown against another harmful grasshopper, Ronderosia bergi (Stål) (Acridoidea: Acrididae: Melanoplinae). The mortality caused by F. verticillioides on R. bergi reached 58 ± 6.53% by 10 days after inoculation. This is the first record of natural infection caused by F. verticillioides in grasshoppers.

  11. First Record of Fusarium verticillioides as an Entomopathogenic Fungus of Grasshoppers

    PubMed Central

    Pelizza, SA; Stenglein, SA; Cabello, MN; Dinolfo, MI; Lange, CE

    2011-01-01

    Fusarium verticillioides (Saccardo) Nirenberg (Ascomycota: Hypocreales) is the most common fungus reported on infected corn kernels and vegetative tissues, but has not yet been documented as being entomopathogenic for grasshoppers. Grasshoppers and locusts represent a large group of insects that cause economic damage to forage and crops. Tropidacris collaris (Stoll) (Orthoptera: Acridoidea: Romaleidae) is a large and voracious grasshopper that in recent years has become an increasingly recurrent and widespread pest in progressively more greatly extended areas of some of in Argentina's northern provinces, with chemical insecticides being currently the only means of control. During February and March of 2008–09, nymphs and adults of T. collaris were collected with sweep nets in dense woodland vegetation at a site near Tres Estacas in western Chaco Province, Argentina, and kept in screened cages. F. verticillioides was isolated from insects that died within 10 days and was cultured in PGA medium. Pathogenicity tests were conducted and positive results recorded. Using traditional and molecular-biological methods, an isolate of F. verticillioides was obtained from T. collaris, and its pathogenecity in the laboratory was shown against another harmful grasshopper, Ronderosia bergi (Stål) (Acridoidea: Acrididae: Melanoplinae). The mortality caused by F. verticillioides on R. bergi reached 58 ± 6.53% by 10 days after inoculation. This is the first record of natural infection caused by F. verticillioides in grasshoppers. PMID:21867437

  12. Genetic diversity and gene exchange in Pinus oocarpa, a Mesoamerican Pine with resistance to the pitch canker fungus (Fusarium circinatum)

    Treesearch

    William S. Dvorak; Kevin M. Potter; Valerie D. Hipkins; Gary R. Hodge

    2009-01-01

    Eleven highly polymorphic microsatellite markers were used to determine the genetic structure and levels of diversity in 51 natural populations of Pinus oocarpa across its geographic range of 3000 km in Mesoamerica. The study also included 17 populations of Pinus patula and Pinus tecunumanii chosen for...

  13. Canker Stain Affects Delaware Sycamores Pest Alert

    Treesearch

    Alan Iskra; Gary Schwetz; Michael Valenti

    2001-01-01

    An often fatal disease of American sycamore (Platanus occidentalis), known as canker stain, is caused by the fungus, Ceratocystis fimbriata f.sp. platani. This fungus, indigenous to the United States, occurs in urban and forested areas from New Jersey to Georgia and west to Missouri and Louisiana. Other trees affected are the Oriental plane (Platanus orientalis) and...

  14. Canker Sores

    MedlinePlus

    Canker sores are small, round sores in your mouth. They can be on the inside of your cheek, under your tongue, or in the back of your throat. They usually have a red edge and a gray center. They can be quite painful. They are ...

  15. Canker Sore

    MedlinePlus

    ... or baking soda rinse (dissolve 1 teaspoon of baking soda in 1/2 cup warm water). Dab a small amount of milk of magnesia on your canker sore a few times a day. Avoid abrasive, acidic or spicy foods that can cause further ...

  16. Dynamics of Cryphonectria hypovirus infection in chestnut blight cankers.

    PubMed

    Bryner, Sarah Franziska; Prospero, Simone; Rigling, Daniel

    2014-09-01

    Virulent strains of the chestnut blight fungus Cryphonectria parasitica cause lethal bark cankers on chestnut trees. Infection of C. parasitica with Cryphonectria hypovirus 1 in Europe biologically controls this disease, leading to nonlethal and inactive cankers. Unexpectedly, virus-free C. parasitica strains have been isolated from inactive cankers. In this study, we compared the virulence of virus-infected and virus-free C. parasitica strains isolated from either inactive or active cankers on chestnut seedlings and sprouts. In the seedling experiment, we assessed canker growth and seedling mortality. In the sprout experiment, we also assessed canker growth and made fungal reisolations to determine virus infection and immigration of foreign vegetative compatibility (vc) types over a period of 13 years in a coppice forest. Overall, the virulence of virus-free C. parasitica strains isolated from inactive versus active cankers did not differ. Significant differences were only attributed to virus infection. Virus infection and fungal strain composition in cankers changed over time. Foreign vc types immigrated into cankers and virus-free cankers became virus-infected within a few years. Most of the cankers were callused over time and became inactive. However, we observed that the virus did not always persist in these cankers. This study demonstrates that virus spread occurs effectively in European chestnut forests and that this biocontrol system is highly dynamic.

  17. Two novel Fusarium species that cause canker disease of Sichuan pepper (Zanthoxylum bungeanum Maxim.) in northern China form a novel clade with F. torreyae

    USDA-ARS?s Scientific Manuscript database

    Canker disease of prickly ash (Zanthoxylum bungeanum) has caused a decline in the production of this economically important spice in northern China in the past 25 y. To identify the etiological agent, 38 fungal isolates were recovered from symptomatic tissues from trees in five provinces in China. T...

  18. The Predicted Secretome of the Plant Pathogenic Fungus Fusarium graminearum: A Refined Comparative Analysis

    PubMed Central

    Brown, Neil A.; Antoniw, John; Hammond-Kosack, Kim E.

    2012-01-01

    The fungus Fusarium graminearum forms an intimate association with the host species wheat whilst infecting the floral tissues at anthesis. During the prolonged latent period of infection, extracellular communication between live pathogen and host cells must occur, implying a role for secreted fungal proteins. The wheat cells in contact with fungal hyphae subsequently die and intracellular hyphal colonisation results in the development of visible disease symptoms. Since the original genome annotation analysis was done in 2007, which predicted the secretome using TargetP, the F. graminearum gene call has changed considerably through the combined efforts of the BROAD and MIPS institutes. As a result of the modifications to the genome and the recent findings that suggested a role for secreted proteins in virulence, the F. graminearum secretome was revisited. In the current study, a refined F. graminearum secretome was predicted by combining several bioinformatic approaches. This strategy increased the probability of identifying truly secreted proteins. A secretome of 574 proteins was predicted of which 99% was supported by transcriptional evidence. The function of the annotated and unannotated secreted proteins was explored. The potential role(s) of the annotated proteins including, putative enzymes, phytotoxins and antifungals are discussed. Characterisation of the unannotated proteins included the analysis of Pfam domains and features associated with known fungal effectors, for example, small size, cysteine-rich and containing internal amino acid repeats. A comprehensive comparative genomic analysis involving 57 fungal and oomycete genomes revealed that only a small number of the predicted F. graminearum secreted proteins can be considered to be either species or sequenced strain specific. PMID:22493673

  19. Detoxification of the Fusarium toxin fusaric acid by the soil fungus Aspergillus

    USDA-ARS?s Scientific Manuscript database

    The fungal pathogen Fusarium oxysporum f. sp. vasinfectum (Fov) causes Fusarium wilt in cotton (Gossypium hirsutum L.) and produces the toxin fusaric acid (FA). Previous research indicates that in the high producing strains of Fov, FA plays an important role in virulence. To address the problems o...

  20. Acid and neutral trehalase activities in mutants of the corn rot fungus Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Fusarium verticillioides is a fungal pathogen known to cause corn rot and other plant diseases and to contaminate grain with toxic metabolites. We are characterizing trehalose metabolism in F. verticillioides with the hope that this pathway might serve as a target for controlling Fusarium disease. T...

  1. Biological control of Cucurbita pepo var texana (Texas gourd) in cotton (Gossypium hirsutum) with the fungus Fusarium solani f sp Cucurbitae

    USDA-ARS?s Scientific Manuscript database

    Experiments were conducted to evaluate various formulations and application methods of the fungus Fusarium solani f. sp. cucurbitae (FSC) for controlling Texas gourd (Cucurbita pepo var. texana) in cotton (Gosssypium hirsutum). In greenhouse tests, Texas gourd was controlled 93% and 96%, respective...

  2. The genome of the of the generalist plant pathogenic fungus Fusarium avenaceum is enriched with genes involved in redox, signaling and secondary metabolism

    USDA-ARS?s Scientific Manuscript database

    Fusarium avenaceum is a fungus commonly isolated from soil and with a wide range of host plants. We present here three genome sequences of F. avenaceum, one isolated from barley in Finland and two from spring and winter wheat in Canada. The physical sizes of the three genomes range from 41.6-43.2 MB...

  3. Utilization of high performance liquid chromatography coupled to tandem mass spectrometry for characterization of 8-O-methylbostrycoidin production by species of the fungus Fusarium

    USDA-ARS?s Scientific Manuscript database

    The pigment, 8-O-methylbostrycoidin is a polyketide metabolite produced by multiple species of the fungus Fusarium that infects plant crops, including maize. A technique was developed for the analysis of 8-O-methylbostrycoidin by high performance liquid chromatography coupled to electrospray ionizat...

  4. Widespread occurrence of diverse human pathogenic types of the fungus Fusarium detected in plumbing drains.

    PubMed

    Short, Dylan P G; O'Donnell, Kerry; Zhang, Ning; Juba, Jean H; Geiser, David M

    2011-12-01

    It has been proposed that plumbing systems might serve as a significant environmental reservoir of human-pathogenic isolates of Fusarium. We tested this hypothesis by performing the first extensive multilocus sequence typing (MLST) survey of plumbing drain-associated Fusarium isolates and comparing the diversity observed to the known diversity of clinical Fusarium isolates. We sampled 471 drains, mostly in bathroom sinks, from 131 buildings in the United States using a swabbing method. We found that 66% of sinks and 80% of buildings surveyed yielded at least one Fusarium culture. A total of 297 isolates of Fusarium collected were subjected to MLST to identify the phylogenetic species and sequence types (STs) of these isolates. Our survey revealed that the six most common STs in sinks were identical to the six most frequently associated with human infections. We speculate that the most prevalent STs, by virtue of their ability to form and grow in biofilms, are well adapted to plumbing systems. Six major Fusarium STs were frequently isolated from plumbing drains within a broad geographic area and were identical to STs frequently associated with human infections.

  5. The fibrinolytic activity of a novel protease derived from a tempeh producing fungus, Fusarium sp. BLB.

    PubMed

    Sugimoto, Satoshi; Fujii, Tadashi; Morimiya, Tatsuo; Johdo, Osamu; Nakamura, Takumi

    2007-09-01

    Tempeh is a traditional Indonesian soybean-fermented food produced by filamentous fungi, Rhizopus sp. and Fusarium sp. We isolated and sequenced the genomic gene and a cDNA clone encoding a novel protease (FP) from Fusarium sp. BLB. The genomic gene was 856 bp in length and contained two introns. An isolated cDNA clone encoded a protein of 250 amino acids. The predicted amino acid sequence of FP showed highest homology, of 76%, with that of trypsin from Fusarium oxysporum. The hydrolysis activity of FP toward synthetic peptide was higher than that of any other protease tested, including Nattokinases. Furthermore, the thrombolytic activity of FP was about 2.1-fold higher than that of Nattokinase when the concentration of plasminogen was 24 units/ml. These results suggest that FP is superior to Nattokinases in dissolving fibrin when absorbed into the blood.

  6. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab.

    PubMed

    O'Donnell, K; Kistler, H C; Tacke, B K; Casper, H H

    2000-07-05

    During the past decade, the plant disease called scab or Fusarium head blight of wheat and barley has reached epidemic proportions in North America and elsewhere in the world. Scab is an economically devastating plant disease, not only because it causes significant reduction in seed yields and quality, but also because infested seeds are often contaminated with trichothecene and estrogenic mycotoxins that pose a serious threat to animal health and food safety. To test whether the primary etiological agent of scab, the fungus Fusarium graminearum, is panmictic throughout its range, allelic genealogies were constructed from six single-copy nuclear genes from strains selected to represent the global genetic diversity of this pathogen. Excluding one hybrid strain, all six genealogies recovered the same seven biogeographically structured lineages, suggesting that they represent phylogenetically distinct species among which gene flow has been very limited during their evolutionary history. Parsimony analysis of the combined data set comprising 7,120 aligned nucleotide characters resolved most relationships among the seven lineages of the F. graminearum clade and related fusaria included in the study. Phylogenetic evidence is also presented for introgressive hybridization and intragenic recombination among lineages of the F. graminearum clade in nature.

  7. Progress report on a contemporary survey of the Fusarium wilt fungus in the United States

    USDA-ARS?s Scientific Manuscript database

    Knowledge of the genetic and pathogenic diversity present in a pathogen population is required to effectively deploy resistant cultivars. The only pathogenic survey of Fusarium oxysporum f. sp. vasinfectum in the U.S. was conducted in 1983. Since then, new distributions of races 3, 4, and 8, and fou...

  8. Draft Genome Sequence of Phytopathogenic Fungus Fusarium fujikuroi CF-295141, Isolated from Pinus sylvestris

    PubMed Central

    Bertoni-Mann, Michele; Sánchez-Hidalgo, Marina; González-Menéndez, Victor

    2016-01-01

    Here, we report the draft genome sequence of a new strain of Fusarium fujikuroi, isolated from Pinus sylvestris, which was also found to produce the mycotoxin beauvericin. The Illumina-based sequence analysis revealed an approximate genome size of 44.2 Mbp, containing 164 secondary metabolite biosynthetic clusters. PMID:27795279

  9. Cloning and expression of a beta-xylosidase from the fungus Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    In silico analysis of the genome of Fusarium verticillioides, an endophyte and pathogen of maize, revealed several genes with potential use in the hydrolysis of hemicelluloses. We have cloned a gene, FVEG_05677.3, with putative xylosidase and arabinofuranosidase activities. The gene was expressed ...

  10. Progress report on a contemporary survey of the Fusarium wilt fungus in the United States

    USDA-ARS?s Scientific Manuscript database

    The last survey of Fusarium oxysporum f. sp. vasinfectum in the U.S. was conducted in 1985. Since that time, race 4, previously thought to occur only in Asia, appeared in California in 2001, causing significant problems for the San Joaquin Valley cotton industry. Also, the presence of race 8 has bee...

  11. Genome sequence of Fusarium oxysporum f. sp. melonis, a fungus causing wilt disease on melon

    USDA-ARS?s Scientific Manuscript database

    This manuscript reports the genome sequence of F. oxysporum f. sp. melonis, a fungal pathogen that causes Fusarium wilt disease on melon (Cucumis melo). The project is part of a large comparative study designed to explore the genetic composition and evolutionary origin of this group of horizontally ...

  12. Genome Sequence of Fusarium oxysporum f. sp. melonis, a fungus causing wilt disease on melon

    USDA-ARS?s Scientific Manuscript database

    This manuscript reports the genome sequence of F. oxysporum f. sp. melonis, a fungal pathogen that causes Fusarium wilt disease on melon (Cucumis melo). The project is part of a large comparative study designed to explore the genetic composition and evolutionary origin of this group of horizontally ...

  13. Detoxification of the fusarium toxin fusaric acid by the soil fungus aspergillus tubingensis

    USDA-ARS?s Scientific Manuscript database

    The fungal pathogen Fusarium oxysporum f. sp. vasinfectum (F.o.v.) causes cotton wilt and produces the toxin fusaric acid (FA). Previous research indicates that in the high producing strains of F.o.v., FA plays an important role in virulence. To address the problems of emerging virulent isolates su...

  14. FgFlbD regulates hyphal differentiation required for sexual and asexual reproduction in the ascomycete fungus Fusarium graminearum.

    PubMed

    Son, Hokyoung; Kim, Myung-Gu; Chae, Suhn-Kee; Lee, Yin-Won

    2014-11-01

    Fusarium graminearum is a filamentous fungal plant pathogen that infects major cereal crops. The fungus produces both sexual and asexual spores in order to endure unfavorable environmental conditions and increase their numbers and distribution across plants. In a model filamentous fungus, Aspergillus nidulans, early induction of conidiogenesis is orchestrated by the fluffy genes. The objectives of this study were to characterize fluffy gene homologs involved in conidiogenesis and their mechanism of action in F. graminearum. We characterized five fluffy gene homologs in F. graminearum and found that FlbD is the only conserved regulator for conidiogenesis in A. nidulans and F. graminearum. Deletion of fgflbD prevented hyphal differentiation and the formation of perithecia. Successful interspecies complementation using A. nidulans flbD demonstrated that the molecular mechanisms responsible for FlbD functions are conserved in F. graminearum. Moreover, abaA-wetA pathway is positively regulated by FgFlbD during conidiogenesis in F. graminearum. Deleting fgflbD abolished morphological effects of abaA overexpression, which suggests that additional factors for FgFlbD or an AbaA-independent pathway for conidiogenesis are required for F. graminearum conidiation. Importantly, this study led to the construction of a genetic pathway of F. graminearum conidiogenesis and provides new insights into the genetics of conidiogenesis in fungi.

  15. Plant tissue colonization by the fungus race 1.2 of Fusarium oxysporum f.sp. melonis in resistant melon genotypes.

    PubMed

    Chikh-Rouhou, H; González-Torres, R; Alvarez, M

    2009-01-01

    Four melon accessions; 'Shiroubi Okayoma', 'C-211', 'K.N.M' and 'BG-5384', resistant to race 1.2 of Fusarium oxysporum f.sp. melonis and a susceptible one 'Piel de Sapo' were tested to see which hypocotyl regions were invaded by the fungus, and to examine the relationship between resistance and presence of the pathogen in the plant tissue. While the fungus was shown to colonize all stem segments (either the upper, middle, or lower hypocotyl) of the susceptible and resistant plant accession, colonization was markedly lower in the resistant plants.

  16. The role of strigolactones during plant interactions with the pathogenic fungus Fusarium oxysporum.

    PubMed

    Foo, Eloise; Blake, Sara N; Fisher, Brendan J; Smith, Jason A; Reid, James B

    2016-06-01

    Strigolactones (SLs) do not influence spore germination or hyphal growth of Fusarium oxysporum. Mutant studies revealed no role for SLs but a role for ethylene signalling in defence against this pathogen in pea. Strigolactones (SLs) play important roles both inside the plant as a hormone and outside the plant as a rhizosphere signal in interactions with mycorrhizal fungi and parasitic weeds. What is less well understood is any potential role SLs may play in interactions with disease causing microbes such as pathogenic fungi. In this paper we investigate the influence of SLs on the hemibiotrophic pathogen Fusarium oxysporum f.sp. pisi both directly via their effects on fungal growth and inside the plant through the use of a mutant deficient in SL. Given that various stereoisomers of synthetic and naturally occuring SLs can display different biological activities, we used (+)-GR24, (-)-GR24 and the naturally occurring SL, (+)-strigol, as well as a racemic mixture of 5-deoxystrigol. As a positive control, we examined the influence of a plant mutant with altered ethylene signalling, ein2, on disease development. We found no evidence that SLs influence spore germination or hyphal growth of Fusarium oxysporum and that, while ethylene signalling influences pea susceptibility to this pathogen, SLs do not.

  17. The Wor1-like Protein Fgp1 Regulates Pathogenicity, Toxin Synthesis and Reproduction in the Phytopathogenic Fungus Fusarium graminearum

    PubMed Central

    Jonkers, Wilfried; Dong, Yanhong; Broz, Karen; Corby Kistler, H.

    2012-01-01

    WOR1 is a gene for a conserved fungal regulatory protein controlling the dimorphic switch and pathogenicity determents in Candida albicans and its ortholog in the plant pathogen Fusarium oxysporum, called SGE1, is required for pathogenicity and expression of key plant effector proteins. F. graminearum, an important pathogen of cereals, is not known to employ switching and no effector proteins from F. graminearum have been found to date that are required for infection. In this study, the potential role of the WOR1-like gene in pathogenesis was tested in this toxigenic fungus. Deletion of the WOR1 ortholog (called FGP1) in F. graminearum results in greatly reduced pathogenicity and loss of trichothecene toxin accumulation in infected wheat plants and in vitro. The loss of toxin accumulation alone may be sufficient to explain the loss of pathogenicity to wheat. Under toxin-inducing conditions, expression of genes for trichothecene biosynthesis and many other genes are not detected or detected at lower levels in Δfgp1 strains. FGP1 is also involved in the developmental processes of conidium formation and sexual reproduction and modulates a morphological change that accompanies mycotoxin production in vitro. The Wor1-like proteins in Fusarium species have highly conserved N-terminal regions and remarkably divergent C-termini. Interchanging the N- and C- terminal portions of proteins from F. oxysporum and F. graminearum resulted in partial to complete loss of function. Wor1-like proteins are conserved but have evolved to regulate pathogenicity in a range of fungi, likely by adaptations to the C-terminal portion of the protein. PMID:22693448

  18. Hexacyclopeptides secreted by an endophytic fungus Fusarium solani N06 act as crosstalk molecules in Narcissus tazetta.

    PubMed

    Wang, Wen-Xuan; Kusari, Souvik; Sezgin, Selahaddin; Lamshöft, Marc; Kusari, Parijat; Kayser, Oliver; Spiteller, Michael

    2015-09-01

    The basis of chemical crosstalk in plants and associated endophytes lies in certain so-called communication molecules that are responsible for plant-microbe and microbe-microbe interactions. Consequently, elucidating the factors that affect the nature, distribution, and amount of these molecules and how they impact the interaction among endophytes and associated organisms is essential to understand the true potential of endophytes. In the present study, we report the discovery of nine hexacyclopeptides from an endophytic fungus, Fusarium solani, isolated from the bulb of Narcissus tazetta, and their selective accumulation by an endophytic bacterium, Achromobacter xylosoxidans isolated from the same tissue. We used matrix-assisted laser desorption ionization imaging high-resolution mass spectrometry (MALDI-imaging-HRMS) to firstly identify and visualize the spatial distribution of the hexacyclopeptides produced by endophytic F. solani. After culture condition optimization, their sequence was identified to be cyclo((Hyp or Dhp)-Xle-Xle-(Ala or Val)-Thr-Xle) (Dhp: dehydroproline) by the characteristic a, b, or y ions using liquid chromatography tandem mass spectrometry (LC-HRMS(n)). These hexacyclopeptides were confirmed to be fungal biosynthetic products by deuterium labeling experiments. Finally, in order to understand the plausible ecological relevance of one or more of the discovered hexacyclopeptides within the contexts of microbial "neighbor communication," we devised a dual-culture setup to visualize using MALDI-imaging-HRMS how the hexacyclopeptides released by the endophytic fungus are accumulated by another endophytic bacterium, A. xylosoxidans, isolated from the same bulb tissue. This work exemplifies the relevance of cyclopeptides in endophyte-endophyte interspecies neighbor communication occurring in nature. Such communication strategies are evolved by coexisting endophytes to survive and function in their distinct ecological niches.

  19. Enhancement of diosgenin production in Dioscorea zingiberensis cell cultures by oligosaccharides from its endophytic fungus Fusarium oxysporum Dzf17.

    PubMed

    Li, Peiqin; Mao, Ziling; Lou, Jingfeng; Li, Yan; Mou, Yan; Lu, Shiqiong; Peng, Youliang; Zhou, Ligang

    2011-12-19

    The effects of the oligosaccharides from the endophytic fungus Fusarium oxysporum Dzf17 as elicitors on diosgenin production in cell suspension cultures of its host Dioscorea zingiberensis were investigated. Three oligosaccharides, DP4, DP7 and DP10, were purified from the oligosaccharide fractions DP2-5, DP5-8 and DP8-12, respectively, which were prepared from the water-extracted mycelial polysaccharide of the endophytic fungus F. oxysporum Dzf17. When the cell cultures were treated with fraction DP5-8 at 20 mg/L on day 26 and harvested on day 32, the maximum diosgenin yield (2.187 mg/L) was achieved, which was 5.65-fold of control (0.387 mg/L). When oligosaccharides DP4, DP7 and DP10 were individually added to 26-day-old D. zingiberensis cell cultures at concentrations of 2, 4, 6, 8 and 10 mg/L in medium, DP7 at 6 mg/L was found to significantly enhance diosgenin production, with a yield of 3.202 mg/L, which was 8.27-fold of control. When the cell cultures were treated with DP7 twice on days 24 and 26, and harvested on day 30, both diosgenin content and yield were significantly increased and reached the maximums of 1.159 mg/g dw and 4.843 mg/L, both of which were higher than those of single elicitation, and were 9.19- and 12.38-fold of control, respectively.

  20. Fungus mediated biosynthesis of WO3 nanoparticles using Fusarium solani extract

    NASA Astrophysics Data System (ADS)

    Kavitha, N. S.; Venkatesh, K. S.; Palani, N. S.; Ilangovan, R.

    2017-05-01

    Currently nanoparticles were synthesized by emphasis bioremediation process due to less hazardous, eco-friendly and imperative applications on biogenic process. Fungus mediated biosynthesis strategy has been developed to prepare tungsten oxide nanoflakes (WO3, NFs) using the plant pathogenic fungus F.solani. The powder XRD pattern revealed the monoclinic crystal structure with improved crystalline nature of the synthesized WO3 nanoparticles. FESEM images showed the flake-like morphology of WO3, with average thickness and length around 40 nm and 300 nm respectively. The Raman spectrum of WO3 NFs showed their characteristic vibration modes that revealed the defect free nature of the WO3 NFs. Further, the elemental analysis indicated the stoichiometric composition of WO3 phase.

  1. Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts

    PubMed Central

    Ishida, Kelly; Cipriano, Talita Ferreira; Rocha, Gustavo Miranda; Weissmüller, Gilberto; Gomes, Fabio; Miranda, Kildare; Rozental, Sonia

    2013-01-01

    The microbial synthesis of nanoparticles is a green chemistry approach that combines nanotechnology and microbial biotechnology. The aim of this study was to obtain silver nanoparticles (SNPs) using aqueous extract from the filamentous fungus Fusarium oxysporum as an alternative to chemical procedures and to evaluate its antifungal activity. SNPs production increased in a concentration-dependent way up to 1 mM silver nitrate until 30 days of reaction. Monodispersed and spherical SNPs were predominantly produced. After 60 days, it was possible to observe degenerated SNPs with in additional needle morphology. The SNPs showed a high antifungal activity against Candida and Cryptococcus , with minimum inhibitory concentration values ≤ 1.68 µg/mL for both genera. Morphological alterations of Cryptococcus neoformans treated with SNPs were observed such as disruption of the cell wall and cytoplasmic membrane and lost of the cytoplasm content. This work revealed that SNPs can be easily produced by F. oxysporum aqueous extracts and may be a feasible, low-cost, environmentally friendly method for generating stable and uniformly sized SNPs. Finally, we have demonstrated that these SNPs are active against pathogenic fungi, such as Candida and Cryptococcus . PMID:24714966

  2. Isolation, Purification and Characterization of Vinblastine and Vincristine from Endophytic Fungus Fusarium oxysporum Isolated from Catharanthus roseus

    PubMed Central

    Kumar, Ashutosh; Patil, Deepak; Rajamohanan, Pattuparambil Ramanpillai; Ahmad, Absar

    2013-01-01

    Endophytic fungi reside in a symbiotic fashion inside their host plants, mimic their chemistry and interestingly, produce the same natural products as their hosts and are thus being screened for the production of valuable compounds like taxol, camptothecin, podophyllotoxin, etc. Vinblastine and vincristine are excellent anti-cancer drugs but their current production using plants is non-abundant and expensive. In order to make these drugs readily available to the patients at affordable prices, we isolated the endophytic fungi from Catharanthus roseus plant and found a fungus AA-CRL-6 which produces vinblastine and vincristine in appreciable amounts. These drugs were purified by TLC and HPLC and characterized using UV-Vis spectroscopy, ESI-MS, MS/MS and 1H NMR. One liter of culture filtrate yielded 76 µg and 67 µg of vinblastine and vincristine respectively. This endophytic fungal strain was identified as Fusarium oxysporum based upon its cultural and morphological characteristics and internal transcribed spacer (ITS) sequence analysis. PMID:24066024

  3. Extraction optimization of water-extracted mycelial polysaccharide from endophytic fungus Fusarium oxysporum Dzf17 by response surface methodology.

    PubMed

    Li, Peiqin; Lu, Shiqiong; Shan, Tijiang; Mou, Yan; Li, Yan; Sun, Weibo; Zhou, Ligang

    2012-01-01

    Water-extracted mycelial polysaccharide (WPS) from the endophytic fungus Fusarium oxysporum Dzf17 isolated from Dioscorea zingiberensis was found to be an efficient elicitor to enhance diosgenin accumulation in D. zingigerensis cultures, and also demonstrated antioxidant activity. In this study, response surface methodology (RSM) was employed to optimize the extraction process of WPS from F. oxysporum Dzf17 using Box-Behnken design (BBD). The ranges of the factors investigated were 1-3 h for extraction time (X(1)), 80-100 °C for extraction temperature (X(2)), and 20-40 (v/w) for ratio of water volume (mL) to raw material weight (g) (X(3)). The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis. Statistical analysis showed that the polynomial regression model was in good agreement with the experimental results with the determination coefficient (R(2)) of 0.9978. By solving the regression equation and analyzing the response surface contour plots, the extraction parameters were optimized as 1.7 h for extraction time, 95 °C for extraction temperature, 39 (v/w) for ratio of water volume (mL) to raw material weight (g), and with 2 extractions. The maximum value (10.862%) of WPS yield was obtained when the WPS extraction process was conducted under the optimal conditions.

  4. Extraction Optimization of Water-Extracted Mycelial Polysaccharide from Endophytic Fungus Fusarium oxysporum Dzf17 by Response Surface Methodology

    PubMed Central

    Li, Peiqin; Lu, Shiqiong; Shan, Tijiang; Mou, Yan; Li, Yan; Sun, Weibo; Zhou, Ligang

    2012-01-01

    Water-extracted mycelial polysaccharide (WPS) from the endophytic fungus Fusarium oxysporum Dzf17 isolated from Dioscorea zingiberensis was found to be an efficient elicitor to enhance diosgenin accumulation in D. zingigerensis cultures, and also demonstrated antioxidant activity. In this study, response surface methodology (RSM) was employed to optimize the extraction process of WPS from F. oxysporum Dzf17 using Box-Behnken design (BBD). The ranges of the factors investigated were 1–3 h for extraction time (X1), 80–100 °C for extraction temperature (X2), and 20–40 (v/w) for ratio of water volume (mL) to raw material weight (g) (X3). The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis. Statistical analysis showed that the polynomial regression model was in good agreement with the experimental results with the determination coefficient (R2) of 0.9978. By solving the regression equation and analyzing the response surface contour plots, the extraction parameters were optimized as 1.7 h for extraction time, 95 °C for extraction temperature, 39 (v/w) for ratio of water volume (mL) to raw material weight (g), and with 2 extractions. The maximum value (10.862%) of WPS yield was obtained when the WPS extraction process was conducted under the optimal conditions. PMID:22754306

  5. Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity

    NASA Astrophysics Data System (ADS)

    Syed, Asad; Ahmad, Absar

    2013-04-01

    The growing demand for semiconductor [quantum dots (Q-dots)] nanoparticles has fuelled significant research in developing strategies for their synthesis and characterization. They are extensively investigated by the chemical route; on the other hand, use of microbial sources for biosynthesis witnessed the highly stable, water dispersible nanoparticles formation. Here we report, for the first time, an efficient fungal-mediated synthesis of highly fluorescent CdTe quantum dots at ambient conditions by the fungus Fusarium oxysporum when reacted with a mixture of CdCl2 and TeCl4. Characterization of these biosynthesized nanoparticles was carried out by different techniques such as Ultraviolet-visible (UV-Vis) spectroscopy, Photoluminescence (PL), X-ray Diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), Transmission Electron Microscopy (TEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. CdTe nanoparticles shows antibacterial activity against Gram positive and Gram negative bacteria. The fungal based fabrication provides an economical, green chemistry approach for production of highly fluorescent CdTe quantum dots.

  6. A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis.

    PubMed

    Di Pietro, A; García-MacEira, F I; Méglecz, E; Roncero, M I

    2001-03-01

    The soil-borne vascular wilt fungus Fusarium oxysporum infects a wide variety of plant species by directly penetrating roots, invading the cortex and colonizing the vascular tissue. We have identified fmk1, encoding a mitogen-activated protein kinase (MAPK) of F. oxysporum that belongs to the yeast and fungal extracellular signal-regulated kinase (YERK1) subfamily. Targeted mutants of F. oxysporum f. sp. lycopersici carrying an inactivated copy of fmk1 have lost pathogenicity on tomato plants but show normal vegetative growth and conidiation in culture. Colonies of the fmk1 mutants are easily wettable, and hyphae are impaired in breaching the liquid-air interface, suggesting defects in surface hydrophobicity. Fmk1 mutants also show reduced invasive growth on tomato fruit tissue and drastically reduced transcript levels of pl1 encoding the cell wall-degrading enzyme pectate lyase. Conidia of the mutants germinating in the tomato rhizosphere fail to differentiate penetration hyphae, resulting in greatly impaired root attachment. The orthologous MAPK gene Pmk1 from the rice leaf pathogen Magnaporthe grisea complements invasive growth and partially restores surface hydrophobicity, root attachment and pathogenicity in an fmk1 mutant. These results demonstrate that FMK1 controls several key steps in the pathogenesis of F. oxysporum and suggest a fundamentally conserved role for the corresponding MAPK pathway in soil-borne and foliar plant pathogens.

  7. Transcriptomic profiling to identify genes involved in Fusarium mycotoxin Deoxynivalenol and Zearalenone tolerance in the mycoparasitic fungus Clonostachys rosea.

    PubMed

    Kosawang, Chatchai; Karlsson, Magnus; Jensen, Dan Funck; Dilokpimol, Adiphol; Collinge, David B

    2014-01-22

    Clonostachys rosea strain IK726 is a mycoparasitic fungus capable of controlling mycotoxin-producing Fusarium species, including F. graminearum and F. culmorum, known to produce Zearalenone (ZEA) and Deoxynivalenol (DON). DON is a type B trichothecene known to interfere with protein synthesis in eukaryotes. ZEA is a estrogenic-mimicing mycotoxin that exhibits antifungal growth. C. rosea produces the enzyme zearalenone hydrolase (ZHD101), which degrades ZEA. However, the molecular basis of resistance to DON in C. rosea is not understood. We have exploited a genome-wide transcriptomic approach to identify genes induced by DON and ZEA in order to investigate the molecular basis of mycotoxin resistance C. rosea. We generated DON- and ZEA-induced cDNA libraries based on suppression subtractive hybridization. A total of 443 and 446 sequenced clones (corresponding to 58 and 65 genes) from the DON- and ZEA-induced library, respectively, were analysed. DON-induced transcripts represented genes encoding metabolic enzymes such as cytochrome P450, cytochrome c oxidase and stress response proteins. In contrast, transcripts encoding the ZEA-detoxifying enzyme ZHD101 and those encoding a number of ATP-Binding Cassette (ABC) transporter transcripts were highly frequent in the ZEA-induced library. Subsequent bioinformatics analysis predicted that all transcripts with similarity to ABC transporters could be ascribed to only 2 ABC transporters genes, and phylogenetic analysis of the predicted ABC transporters suggested that they belong to group G (pleiotropic drug transporters) of the fungal ABC transporter gene family. This is the first report suggesting involvement of ABC transporters in ZEA tolerance. Expression patterns of a selected set of DON- and ZEA-induced genes were validated by the use of quantitative RT-PCR after exposure to the toxins. The qRT-PCR results obtained confirm the expression patterns suggested from the EST redundancy data. The present study identifies a

  8. Transcriptomic profiling to identify genes involved in Fusarium mycotoxin Deoxynivalenol and Zearalenone tolerance in the mycoparasitic fungus Clonostachys rosea

    PubMed Central

    2014-01-01

    Background Clonostachys rosea strain IK726 is a mycoparasitic fungus capable of controlling mycotoxin-producing Fusarium species, including F. graminearum and F. culmorum, known to produce Zearalenone (ZEA) and Deoxynivalenol (DON). DON is a type B trichothecene known to interfere with protein synthesis in eukaryotes. ZEA is a estrogenic-mimicing mycotoxin that exhibits antifungal growth. C. rosea produces the enzyme zearalenone hydrolase (ZHD101), which degrades ZEA. However, the molecular basis of resistance to DON in C. rosea is not understood. We have exploited a genome-wide transcriptomic approach to identify genes induced by DON and ZEA in order to investigate the molecular basis of mycotoxin resistance C. rosea. Results We generated DON- and ZEA-induced cDNA libraries based on suppression subtractive hybridization. A total of 443 and 446 sequenced clones (corresponding to 58 and 65 genes) from the DON- and ZEA-induced library, respectively, were analysed. DON-induced transcripts represented genes encoding metabolic enzymes such as cytochrome P450, cytochrome c oxidase and stress response proteins. In contrast, transcripts encoding the ZEA-detoxifying enzyme ZHD101 and those encoding a number of ATP-Binding Cassette (ABC) transporter transcripts were highly frequent in the ZEA-induced library. Subsequent bioinformatics analysis predicted that all transcripts with similarity to ABC transporters could be ascribed to only 2 ABC transporters genes, and phylogenetic analysis of the predicted ABC transporters suggested that they belong to group G (pleiotropic drug transporters) of the fungal ABC transporter gene family. This is the first report suggesting involvement of ABC transporters in ZEA tolerance. Expression patterns of a selected set of DON- and ZEA-induced genes were validated by the use of quantitative RT-PCR after exposure to the toxins. The qRT-PCR results obtained confirm the expression patterns suggested from the EST redundancy data. Conclusion The

  9. Mechanistic Characterisation of Two Sesquiterpene Cyclases from the Plant Pathogenic Fungus Fusarium fujikuroi.

    PubMed

    Burkhardt, Immo; Siemon, Thomas; Henrot, Matthias; Studt, Lena; Rösler, Sarah; Tudzynski, Bettina; Christmann, Mathias; Dickschat, Jeroen S

    2016-07-18

    Two sesquiterpene cyclases from Fusarium fujikuroi were expressed in Escherichia coli and purified. The first enzyme was inactive because of a critical mutation, but activity was restored by sequence correction through site-directed mutagenesis. The mutated enzyme and two naturally functional homologues from other fusaria converted farnesyl diphosphate into guaia-6,10(14)-diene. The second enzyme produced eremophilene. The absolute configuration of guaia-6,10(14)-diene was elucidated by enantioselective synthesis, while that of eremophilene was evident from the sign of its optical rotation and is opposite to that in plants but the same as in Sorangium cellulosum. The mechanisms of both terpene cyclases were studied with various (13) C- and (2) H-labelled FPP isotopomers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. RNA-seq Transcriptome Response of Flax (Linum usitatissimum L.) to the Pathogenic Fungus Fusarium oxysporum f. sp. lini

    PubMed Central

    Galindo-González, Leonardo; Deyholos, Michael K.

    2016-01-01

    Fusarium oxysporum f. sp. lini is a hemibiotrophic fungus that causes wilt in flax. Along with rust, fusarium wilt has become an important factor in flax production worldwide. Resistant flax cultivars have been used to manage the disease, but the resistance varies, depending on the interactions between specific cultivars and isolates of the pathogen. This interaction has a strong molecular basis, but no genomic information is available on how the plant responds to attempted infection, to inform breeding programs on potential candidate genes to evaluate or improve resistance across cultivars. In the current study, disease progression in two flax cultivars [Crop Development Center (CDC) Bethune and Lutea], showed earlier disease symptoms and higher susceptibility in the later cultivar. Chitinase gene expression was also divergent and demonstrated and earlier molecular response in Lutea. The most resistant cultivar (CDC Bethune) was used for a full RNA-seq transcriptome study through a time course at 2, 4, 8, and 18 days post-inoculation (DPI). While over 100 genes were significantly differentially expressed at both 4 and 8 DPI, the broadest deployment of plant defense responses was evident at 18 DPI with transcripts of more than 1,000 genes responding to the treatment. These genes evidenced a reception and transduction of pathogen signals, a large transcriptional reprogramming, induction of hormone signaling, activation of pathogenesis-related genes, and changes in secondary metabolism. Among these, several key genes that consistently appear in studies of plant-pathogen interactions, had increased transcript abundance in our study, and constitute suitable candidates for resistance breeding programs. These included: an induced RPMI-induced protein kinase; transcription factors WRKY3, WRKY70, WRKY75, MYB113, and MYB108; the ethylene response factors ERF1 and ERF14; two genes involved in auxin/glucosinolate precursor synthesis (CYP79B2 and CYP79B3); the flavonoid

  11. How Phytohormones Shape Interactions between Plants and the Soil-Borne Fungus Fusarium oxysporum

    PubMed Central

    Di, Xiaotang; Takken, Frank L. W.; Tintor, Nico

    2016-01-01

    Plants interact with a huge variety of soil microbes, ranging from pathogenic to mutualistic. The Fusarium oxysporum (Fo) species complex consists of ubiquitous soil inhabiting fungi that can infect and cause disease in over 120 different plant species including tomato, banana, cotton, and Arabidopsis. However, in many cases Fo colonization remains symptomless or even has beneficial effects on plant growth and/or stress tolerance. Also in pathogenic interactions a lengthy asymptomatic phase usually precedes disease development. All this indicates a sophisticated and fine-tuned interaction between Fo and its host. The molecular mechanisms underlying this balance are poorly understood. Plant hormone signaling networks emerge as key regulators of plant-microbe interactions in general. In this review we summarize the effects of the major phytohormones on the interaction between Fo and its diverse hosts. Generally, Salicylic Acid (SA) signaling reduces plant susceptibility, whereas Jasmonic Acid (JA), Ethylene (ET), Abscisic Acid (ABA), and auxin have complex effects, and are potentially hijacked by Fo for host manipulation. Finally, we discuss how plant hormones and Fo effectors balance the interaction from beneficial to pathogenic and vice versa. PMID:26909099

  12. Transposition of the autonomous Fot1 element in the filamentous fungus Fusarium oxysporum.

    PubMed Central

    Migheli, Q; Laugé, R; Davière, J M; Gerlinger, C; Kaper, F; Langin, T; Daboussi, M J

    1999-01-01

    Autonomous mobility of different copies of the Fot1 element was determined for several strains of the fungal plant pathogen Fusarium oxysporum to develop a transposon tagging system. Two Fot1 copies inserted into the third intron of the nitrate reductase structural gene (niaD) were separately introduced into two genetic backgrounds devoid of endogenous Fot1 elements. Mobility of these copies was observed through a phenotypic assay for excision based on the restoration of nitrate reductase activity. Inactivation of the Fot1 transposase open reading frame (frameshift, deletion, or disruption) prevented excision in strains free of Fot1 elements. Molecular analysis of the Nia+ revertant strains showed that the Fot1 element reintegrated frequently into new genomic sites after excision and that it can transpose from the introduced niaD gene into a different chromosome. Sequence analysis of several Fot1 excision sites revealed the so-called footprint left by this transposable element. Three reinserted Fot1 elements were cloned and the DNA sequences flanking the transposon were determined using inverse polymerase chain reaction. In all cases, the transposon was inserted into a TA dinucleotide and created the characteristic TA target site duplication. The availability of autonomous Fot1 copies will now permit the development of an efficient two-component transposon tagging system comprising a trans-activator element supplying transposase and a cis-responsive marked element. PMID:10049918

  13. Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum.

    PubMed

    Paper, Janet M; Scott-Craig, John S; Adhikari, Neil D; Cuomo, Christina A; Walton, Jonathan D

    2007-09-01

    High-throughput MS/MS was used to identify proteins secreted by Fusarium graminearum (Gibberella zeae) during growth on 13 media in vitro and in planta during infection of wheat heads. In vitro secreted proteins were collected from the culture filtrates, and in planta proteins were collected by vacuum infiltration. A total of 289 proteins (229 in vitro and 120 in planta) were identified with high statistical confidence. Forty-nine of the in planta proteins were not found in any of the in vitro conditions. The majority (91-100%) of the in vitro proteins had predicted signal peptides, but only 56% of the in planta proteins. At least 13 of the nonsecreted proteins found only in planta were single-copy housekeeping enzymes, including enolase, triose phosphate isomerase, phosphoglucomutase, calmodulin, aconitase, and malate dehydrogenase. The presence of these proteins in the in planta but not in vitro secretome might indicate that significant fungal lysis occurs during pathogenesis. On the other hand, several of the proteins lacking signal peptides that were found in planta have been reported to be potent immunogens secreted by animal pathogenic fungi, and therefore could be important in the interaction between F. graminearum and its host plants.

  14. WetA Is Required for Conidiogenesis and Conidium Maturation in the Ascomycete Fungus Fusarium graminearum

    PubMed Central

    Son, Hokyoung; Kim, Myung-Gu; Min, Kyunghun; Lim, Jae Yun; Choi, Gyung Ja; Kim, Jin-Cheol; Chae, Suhn-Kee

    2014-01-01

    Fusarium graminearum, a prominent fungal pathogen that infects major cereal crops, primarily utilizes asexual spores to spread disease. To understand the molecular mechanisms underlying conidiogenesis in F. graminearum, we functionally characterized the F. graminearum ortholog of Aspergillus nidulans wetA, which has been shown to be involved in conidiogenesis and conidium maturation. Deletion of F. graminearum wetA did not alter mycelial growth, sexual development, or virulence, but the wetA deletion mutants produced longer conidia with fewer septa, and the conidia were sensitive to acute stresses, such as oxidative stress and heat stress. Furthermore, the survival rate of aged conidia from the F. graminearum wetA deletion mutants was reduced. The wetA deletion resulted in vigorous generation of single-celled conidia through autophagy-dependent microcycle conidiation, indicating that WetA functions to maintain conidial dormancy by suppressing microcycle conidiation in F. graminearum. Transcriptome analyses demonstrated that most of the putative conidiation-related genes are expressed constitutively and that only a few genes are specifically involved in F. graminearum conidiogenesis. The conserved and distinct roles identified for WetA in F. graminearum provide new insights into the genetics of conidiation in filamentous fungi. PMID:24186953

  15. Biosynthesis of Gold Nanoparticles Using Fusarium oxysporum f. sp. cubense JT1, a Plant Pathogenic Fungus

    PubMed Central

    Thakker, Janki N.; Dalwadi, Pranay; Dhandhukia, Pinakin C.

    2013-01-01

    The development of reliable processes for the synthesis of gold nanoparticles is an important aspect of current nanotechnology research. Recently, reports are published on the extracellular as well as intracellular biosynthesis of gold nanoparticles using microorganisms. However, these methods of synthesis are rather slow. In present study, rapid and extracellular synthesis of gold nanoparticles using a plant pathogenic fungus F. oxysporum f. sp. cubense JT1 (FocJT1) is reported. Incubation of FocJT1 mycelium with auric chloride solution produces gold nanoparticles in 60 min. Gold nanoparticles were characterized by UV-Vis spectroscopy, FTIR, and particle size analysis. The particles synthesized were of 22 nm sized, capped by proteins, and posed antimicrobial activity against Pseudomonas sp. PMID:25969773

  16. Exploring microRNA-like small RNAs in the filamentous fungus Fusarium oxysporum.

    PubMed

    Chen, Rui; Jiang, Nan; Jiang, Qiyan; Sun, Xianjun; Wang, Yong; Zhang, Hui; Hu, Zheng

    2014-01-01

    RNA silencing such as quelling and meiotic silencing by unpaired DNA (MSUD) and several other classes of special small RNAs have been discovered in filamentous fungi recently. More than four different mechanisms of microRNA-like RNAs (milRNAs) production have been illustrated in the model fungus Neurospora crassa including a dicer-independent pathway. To date, very little work focusing on small RNAs in fungi has been reported and no universal or particular characteristic of milRNAs were defined clearly. In this study, small RNA and degradome libraries were constructed and subsequently deep sequenced for investigating milRNAs and their potential cleavage targets on the genome level in the filamentous fungus F. oxysporum f. sp. lycopersici. As a result, there is no intersection of conserved miRNAs found by BLASTing against the miRBase. Further analysis showed that the small RNA population of F. oxysporum shared many common features with the small RNAs from N. crassa and other fungi. According to the known standards of miRNA prediction in plants and animals, milRNA candidates from 8 families (comprising 19 members) were screened out and identified. However, none of them could trigger target cleavage based on the degradome data. Moreover, most major signals of cleavage in transcripts could not match appropriate complementary small RNAs, suggesting that other predominant modes for milRNA-mediated gene regulation could exist in F. oxysporum. In addition, the PAREsnip program was utilized for comprehensive analysis and 3 families of small RNAs leading to transcript cleavage were experimentally validated. Altogether, our findings provided valuable information and important hints for better understanding the functions of the small RNAs and milRNAs in the fungal kingdom.

  17. Genome-wide exonic small interference RNA-mediated gene silencing regulates sexual reproduction in the homothallic fungus Fusarium graminearum

    PubMed Central

    Park, Ae Ran; Lim, Jae Yun; Shin, Chanseok

    2017-01-01

    Various ascomycete fungi possess sex-specific molecular mechanisms, such as repeat-induced point mutations, meiotic silencing by unpaired DNA, and unusual adenosine-to-inosine RNA editing, for genome defense or gene regulation. Using a combined analysis of functional genetics and deep sequencing of small noncoding RNA (sRNA), mRNA, and the degradome, we found that the sex-specifically induced exonic small interference RNA (ex-siRNA)-mediated RNA interference (RNAi) mechanism has an important role in fine-tuning the transcriptome during ascospore formation in the head blight fungus Fusarium graminearum. Approximately one-third of the total sRNAs were produced from the gene region, and sRNAs with an antisense direction or 5′-U were involved in post-transcriptional gene regulation by reducing the stability of the corresponding gene transcripts. Although both Dicers and Argonautes partially share their functions, the sex-specific RNAi pathway is primarily mediated by FgDicer1 and FgAgo2, while the constitutively expressed RNAi components FgDicer2 and FgAgo1 are responsible for hairpin-induced RNAi. Based on our results, we concluded that F. graminearum primarily utilizes ex-siRNA-mediated RNAi for ascosporogenesis but not for genome defenses and other developmental stages. Each fungal species appears to have evolved RNAi-based gene regulation for specific developmental stages or stress responses. This study provides new insights into the regulatory role of sRNAs in fungi and other lower eukaryotes. PMID:28146558

  18. Insights from the Fungus Fusarium oxysporum Point to High Affinity Glucose Transporters as Targets for Enhancing Ethanol Production from Lignocellulose

    PubMed Central

    Ali, Shahin S.; Nugent, Brian; Mullins, Ewen; Doohan, Fiona M.

    2013-01-01

    Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt) from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km(glucose) was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing. PMID:23382943

  19. Insights from the fungus Fusarium oxysporum point to high affinity glucose transporters as targets for enhancing ethanol production from lignocellulose.

    PubMed

    Ali, Shahin S; Nugent, Brian; Mullins, Ewen; Doohan, Fiona M

    2013-01-01

    Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt) from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km((glucose)) was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing.

  20. The completed genome sequence of the pathogenic ascomycete fungus Fusarium graminearum.

    PubMed

    King, Robert; Urban, Martin; Hammond-Kosack, Michael C U; Hassani-Pak, Keywan; Hammond-Kosack, Kim E

    2015-07-22

    Accurate genome assembly and gene model annotation are critical for comparative species and gene functional analyses. Here we present the completed genome sequence and annotation of the reference strain PH-1 of Fusarium graminearum, the causal agent of head scab disease of small grain cereals which threatens global food security. Completion was achieved by combining (a) the BROAD Sanger sequenced draft, with (b) the gene predictions from Munich Information Services for Protein Sequences (MIPS) v3.2, with (c) de novo whole-genome shotgun re-sequencing, (d) re-annotation of the gene models using RNA-seq evidence and Fgenesh, Snap, GeneMark and Augustus prediction algorithms, followed by (e) manual curation. We have comprehensively completed the genomic 36,563,796 bp sequence by replacing unknown bases, placing supercontigs within their correct loci, correcting assembly errors, and inserting new sequences which include for the first time complete AT rich sequences such as centromere sequences, subtelomeric regions and the telomeres. Each of the four F. graminearium chromosomes was found to be submetacentric with respect to centromere positioning. The position of a potential neocentromere was also defined. A preferentially higher frequency of genetic recombination was observed at the end of the longer arm of each chromosome. Within the genome 1529 gene models have been modified and 412 new gene models predicted, with a total gene call of 14,164. The re-annotation impacts upon 69 entries held within the Pathogen-Host Interactions database (PHI-base) which stores information on genes for which mutant phenotypes in pathogen-host interactions have been experimentally tested, of which 59 are putative transcription factors, 8 kinases, 1 ATP citrate lyase (ACL1), and 1 syntaxin-like SNARE gene (GzSYN1). Although the completed F. graminearum contains very few transposon sequences, a previously unrecognised and potentially active gypsy-type long-terminal-repeat (LTR

  1. Host extract modulates metabolism and fumonisin biosynthesis by the plant-pathogenic fungus Fusarium proliferatum.

    PubMed

    Stępień, Łukasz; Waśkiewicz, Agnieszka; Wilman, Karolina

    2015-01-16

    Fusarium proliferatum is a common pathogen able to infect a broad range of agriculturally important crops. Recently, some evidence for genetic variance among the species genotypes in relation to their plant origin has been reported. Mycotoxin contamination of plant tissues is the most important threat caused by F. proliferatum and fumonisins B (FBs) are the principal mycotoxins synthesized. The toxigenic potential of the pathogen genotypes is variable and also the reaction of different host plant species on the infection by pathogen is different. The objective of present study was to evaluate the impact of the extracts on the growth and fumonisin biosynthesis by 32 F. proliferatum strains originating from different host species (A-asparagus, M-maize, G-garlic, PS-pea and P-pineapple), and how it changes the secondary metabolism measured by fumonisin biosynthesis. The average strain dry weight was 65.2 mg for control conditions and it reached 180.7 mg, 100.5 mg, 76.6 mg, 126.2 mg and 51.1 mg when pineapple, asparagus, maize, garlic and pea extracts were added, respectively. In the second experiment the extracts were added after 5 days of culturing of the representative group of strains, displaying diverse reaction to the extract presence. Also, the influence of stationary vs. shaken culture was examined. Mean biomass amounts for shaken cultures of 15 chosen strains were as follows: 37.4 mg of dry weight for control culture (C), 219.6 mg (P), 113 mg (A), 93.6 mg (M), 62 mg (G) and 48 mg (PS), respectively. For stationary cultures, the means were as follows: C-57.4 mg, P-355.6 mg, A-291.6 mg, M-191.1 mg, G-171.1 mg and PS-58.9 mg. Few strains showed differential growth when stationary/shaken culture conditions were applied. Almost all strains synthesized moderate amounts of fumonisins in control conditions-less than 10 ng/μL, regardless of the origin and host species. Few strains were able to produce over 100 ng/μL of FBs when pineapple extract was added, twelve

  2. Studies on the management of root-knot nematode, Meloidogyne incognita-wilt fungus, Fusarium oxysporum disease complex of green gram, Vigna radiata cv ML-1108

    PubMed Central

    Haseeb, Akhtar; Sharma, Anita; Shukla, Prabhat Kuma

    2005-01-01

    Studies were conducted under pot conditions to determine the comparative efficacy of carbofuran at 1 mg a.i./kg soil, bavistin at 1 mg a.i./kg soil, neem (Azadirachta indica) seed powder at 50 mg/kg soil, green mould (Trichoderma harzianum) at 50.0 ml/kg soil, rhizobacteria (Pseudomonas fluorescens) at 50.0 ml/kg soil against root-knot nematode, Meloidogyne incognita–wilt fungus, Fusarium oxysporum disease complex on green gram, Vigna radiata cv ML-1108. All the treatments significantly improved the growth of the plants as compared to untreated inoculated plants. Analysis of data showed that carbofuran and A. indica seed powder increased plant growth and yield significantly more in comparison to bavistin and P. fluorescens. Carbofuran was highly effective against nematode, bavistin against fungus, A. indica seed powder against both the pathogens and both the bioagents were moderately effective against both the pathogens. PMID:16052706

  3. Association of Nematodes and Dogwood Cankers

    PubMed Central

    Self, Louann H.; Bernard, Ernest C.

    1994-01-01

    Dogwood canker is a serious production problem of unknown etiology. From May 1985 through April 1989, cankers from 290 flowering dogwood trees in 15 separate nurseries were sampled for nematodes. Seventy-three percent (213) of the cankers contained nematodes. Panagrolaimus rigidus (Schneider) Thorne (115/290) and Aphelenchoides spp. (91/290) were the most frequently collected taxa. Panagrolaimus rigidus was reared on 2% water agar with unidentified bacteria as the food source. Aphelenchoides spp. were reared in antibiotic-amended agar culture with the fungus Glomerella cingulata (Stoneman) Spauld. &Schrenk as a food source. Repeated attempts to culture Aphelenchoides spp. on dogwood callus tissue were unsuccessful. Artificially created stem wounds inoculated with combinations of Aphelenchoides spp. and P. rigidus callused completely in 60 days with no indication of canker development. Very low numbers of nematodes were recovered from inoculated trees, but P. rigidus and one Aphelenchoides sp. were efficient dispersers and occurred in treatments other than those in which they were inoculated. PMID:19279869

  4. Association of nematodes and dogwood cankers.

    PubMed

    Self, L H; Bernard, E C

    1994-03-01

    Dogwood canker is a serious production problem of unknown etiology. From May 1985 through April 1989, cankers from 290 flowering dogwood trees in 15 separate nurseries were sampled for nematodes. Seventy-three percent (213) of the cankers contained nematodes. Panagrolaimus rigidus (Schneider) Thorne (115/290) and Aphelenchoides spp. (91/290) were the most frequently collected taxa. Panagrolaimus rigidus was reared on 2% water agar with unidentified bacteria as the food source. Aphelenchoides spp. were reared in antibiotic-amended agar culture with the fungus Glomerella cingulata (Stoneman) Spauld. &Schrenk as a food source. Repeated attempts to culture Aphelenchoides spp. on dogwood callus tissue were unsuccessful. Artificially created stem wounds inoculated with combinations of Aphelenchoides spp. and P. rigidus callused completely in 60 days with no indication of canker development. Very low numbers of nematodes were recovered from inoculated trees, but P. rigidus and one Aphelenchoides sp. were efficient dispersers and occurred in treatments other than those in which they were inoculated.

  5. Genome Sequence of Fusarium oxysporum f. sp. melonis Strain NRRL 26406, a Fungus Causing Wilt Disease on Melon

    PubMed Central

    Shea, Terrance; Young, Sarah; Zeng, Qiandong; Kistler, H. Corby

    2014-01-01

    Horizontal chromosome transfer introduces host-specific pathogenicity among members of the Fusarium oxysporum species complex and is responsible for some of the most destructive and intractable plant diseases. This paper reports the genome sequence of F. oxysporum f. sp. melonis (NRRL 26406), a causal agent of Fusarium wilt disease on melon. PMID:25081257

  6. One Fungus, One Name: Defining the genus Fusarium in a scientifically robust way that preserves longstanding use

    USDA-ARS?s Scientific Manuscript database

    In this letter, we advocate recognizing the genus Fusarium as the sole name for a group that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine and basic research. This phylogenetically-guided circumscription will free scientists from any obligation to...

  7. 76 FR 81359 - European Larch Canker; Expansion of Regulated Areas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ...), Lachnellula willkommi (Dasycypha), is a serious plant disease caused by a fungus that can kill mature and... Agricultural commodities, Plant diseases and pests, Quarantine, Reporting and recordkeeping requirements... Animal and Plant Health Inspection Service 7 CFR Part 301 European Larch Canker; Expansion of Regulated...

  8. TaFROG Encodes a Pooideae Orphan Protein That Interacts with SnRK1 and Enhances Resistance to the Mycotoxigenic Fungus Fusarium graminearum.

    PubMed

    Perochon, Alexandre; Jianguang, Jia; Kahla, Amal; Arunachalam, Chanemougasoundharam; Scofield, Steven R; Bowden, Sarah; Wallington, Emma; Doohan, Fiona M

    2015-12-01

    All genomes encode taxonomically restricted orphan genes, and the vast majority are of unknown function. There is growing evidence that such genes play an important role in the environmental adaptation of taxa. We report the functional characterization of an orphan gene (Triticum aestivum Fusarium Resistance Orphan Gene [TaFROG]) as a component of resistance to the globally important wheat (T. aestivum) disease, Fusarium head blight. TaFROG is taxonomically restricted to the grass subfamily Pooideae. Gene expression studies showed that it is a component of the early wheat response to the mycotoxin deoxynivalenol (DON), which is a virulence factor produced by the causal fungal agent of Fusarium head blight, Fusarium graminearum. The temporal induction of TaFROG by F. graminearum in wheat spikelets correlated with the activation of the defense Triticum aestivum Pathogenesis-Related-1 (TaPR1) gene. But unlike TaPR1, TaFROG induction by F. graminearum was toxin dependent, as determined via comparative analysis of the effects of wild-type fungus and a DON minus mutant derivative. Using virus-induced gene silencing and overexpressing transgenic wheat lines, we present evidence that TaFROG contributes to host resistance to both DON and F. graminearum. TaFROG is an intrinsically disordered protein, and it localized to the nucleus. A wheat alpha subunit of the Sucrose Non-Fermenting1-Related Kinase1 was identified as a TaFROG-interacting protein based on a yeast two-hybrid study. In planta bimolecular fluorescence complementation assays confirmed the interaction. Thus, we conclude that TaFROG encodes a new Sucrose Non-Fermenting1-Related Kinase1-interacting protein and enhances biotic stress resistance.

  9. TaFROG Encodes a Pooideae Orphan Protein That Interacts with SnRK1 and Enhances Resistance to the Mycotoxigenic Fungus Fusarium graminearum1[OPEN

    PubMed Central

    Jianguang, Jia; Kahla, Amal; Arunachalam, Chanemougasoundharam; Scofield, Steven R.; Doohan, Fiona M.

    2015-01-01

    All genomes encode taxonomically restricted orphan genes, and the vast majority are of unknown function. There is growing evidence that such genes play an important role in the environmental adaptation of taxa. We report the functional characterization of an orphan gene (Triticum aestivum Fusarium Resistance Orphan Gene [TaFROG]) as a component of resistance to the globally important wheat (T. aestivum) disease, Fusarium head blight. TaFROG is taxonomically restricted to the grass subfamily Pooideae. Gene expression studies showed that it is a component of the early wheat response to the mycotoxin deoxynivalenol (DON), which is a virulence factor produced by the causal fungal agent of Fusarium head blight, Fusarium graminearum. The temporal induction of TaFROG by F. graminearum in wheat spikelets correlated with the activation of the defense Triticum aestivum Pathogenesis-Related-1 (TaPR1) gene. But unlike TaPR1, TaFROG induction by F. graminearum was toxin dependent, as determined via comparative analysis of the effects of wild-type fungus and a DON minus mutant derivative. Using virus-induced gene silencing and overexpressing transgenic wheat lines, we present evidence that TaFROG contributes to host resistance to both DON and F. graminearum. TaFROG is an intrinsically disordered protein, and it localized to the nucleus. A wheat alpha subunit of the Sucrose Non-Fermenting1-Related Kinase1 was identified as a TaFROG-interacting protein based on a yeast two-hybrid study. In planta bimolecular fluorescence complementation assays confirmed the interaction. Thus, we conclude that TaFROG encodes a new Sucrose Non-Fermenting1-Related Kinase1-interacting protein and enhances biotic stress resistance. PMID:26508775

  10. Contamination of Pinus radiata Seeds in California by Fusarium circinatum

    Treesearch

    L. David Dwinell

    1999-01-01

    The pitch canker fugus, Fusarium circinatum (= F. subglutinans f sp. pini), causes several serious diseases of pines. The pathogen infects a variety of vegetative and reproductive pine structures at diierent stages of maturity and produces a diversity of symptoms. In addition to producing resinous cankers on the...

  11. Widespread Occurrence of Diverse Human Pathogenic Types of the Fungus Fusarium Detected in Plumbing Drains ▿ †

    PubMed Central

    Short, Dylan P. G.; O'Donnell, Kerry; Zhang, Ning; Juba, Jean H.; Geiser, David M.

    2011-01-01

    It has been proposed that plumbing systems might serve as a significant environmental reservoir of human-pathogenic isolates of Fusarium. We tested this hypothesis by performing the first extensive multilocus sequence typing (MLST) survey of plumbing drain-associated Fusarium isolates and comparing the diversity observed to the known diversity of clinical Fusarium isolates. We sampled 471 drains, mostly in bathroom sinks, from 131 buildings in the United States using a swabbing method. We found that 66% of sinks and 80% of buildings surveyed yielded at least one Fusarium culture. A total of 297 isolates of Fusarium collected were subjected to MLST to identify the phylogenetic species and sequence types (STs) of these isolates. Our survey revealed that the six most common STs in sinks were identical to the six most frequently associated with human infections. We speculate that the most prevalent STs, by virtue of their ability to form and grow in biofilms, are well adapted to plumbing systems. Six major Fusarium STs were frequently isolated from plumbing drains within a broad geographic area and were identical to STs frequently associated with human infections. PMID:21976755

  12. Energy-dependent uptake of benzo[a]pyrene and its cytoskeleton-dependent intracellular transport by the telluric fungus Fusarium solani.

    PubMed

    Fayeulle, Antoine; Veignie, Etienne; Slomianny, Christian; Dewailly, Etienne; Munch, Jean-Charles; Rafin, Catherine

    2014-03-01

    In screening indigenous soil filamentous fungi for polycyclic aromatic hydrocarbons (PAHs) degradation, an isolate of the Fusarium solani was found to incorporate benzo[a]pyrene (BaP) into fungal hyphae before degradation and mineralization. The mechanisms involved in BaP uptake and intracellular transport remain unresolved. To address this, the incorporation of two PAHs, BaP, and phenanthrene (PHE) were studied in this fungus. The fungus incorporated more BaP into cells than PHE, despite the 400-fold higher aqueous solubility of PHE compared with BaP, indicating that PAH incorporation is not based on a simple diffusion mechanism. To identify the mechanism of BaP incorporation and transport, microscopic studies were undertaken with the fluorescence probes Congo Red, BODIPY®493/503, and FM®4-64, targeting different cell compartments respectively fungal cell walls, lipids, and endocytosis. The metabolic inhibitor sodium azide at 100 mM totally blocked BaP incorporation into fungal cells indicating an energy-requirement for PAH uptake into the mycelium. Cytochalasins also inhibited BaP uptake by the fungus and probably its intracellular transport into fungal hyphae. The perfect co-localization of BaP and BODIPY reveals that lipid bodies constitute the intracellular storage sites of BaP in F. solani. Our results demonstrate an energy-dependent uptake of BaP and its cytoskeleton-dependent intracellular transport by F. solani.

  13. Different Culture Metabolites of the Red Sea Fungus Fusarium equiseti Optimize the Inhibition of Hepatitis C Virus NS3/4A Protease (HCV PR)

    PubMed Central

    Hawas, Usama W.; Al-Farawati, Radwan; Abou El-Kassem, Lamia T.; Turki, Adnan J.

    2016-01-01

    The endophytic fungus Fusarium equiseti was isolated from the brown alga Padina pavonica, collected from the Red Sea. The fungus was identified by its morphology and 18S rDNA. Cultivation of this fungal strain in biomalt-peptone medium led to isolation of 12 known metabolites of diketopeprazines and anthraquinones. The organic extract and isolated compounds were screened for their inhibition of hepatitis C virus NS3/4A protease (HCV PR). As a result, the fungal metabolites showed inhibition of HCV protease (IC50 from 19 to 77 μM), and the fungus was subjected to culture on Czapek’s (Cz) media, with a yield of nine metabolites with potent HCV protease inhibition ranging from IC50 10 to 37 μM. The Cz culture extract exhibited high-level inhibition of HCV protease (IC50 27.6 μg/mL) compared to the biomalt culture extract (IC50 56 μg/mL), and the most potent HCV PR isolated compound (Griseoxanthone C, IC50 19.8 μM) from the bio-malt culture extract showed less of an inhibitory effect compared to isolated ω-hydroxyemodin (IC50 10.7 μM) from the optimized Cz culture extract. Both HCV PR active inhibitors ω-hydroxyemodin and griseoxanthone C were considered as the lowest selective safe constituents against Trypsin inhibitory effect with IC50 48.5 and 51.3 μM, respectively. PMID:27775589

  14. First report of Geosmithia morbida on ambrosia beetles emerged from thousand cankers-diseased Juglans nigra in Ohio

    Treesearch

    Jennifer Juzwik; M. McDermott-Kubeczko; T. J. Stewart; M. D. Ginzel

    2016-01-01

    Eastern black walnut (Juglans nigra) is a highly-valued species for timber and nut production in the eastern United States. Thousand cankers disease (TCD), caused by the interaction of the walnut twig beetle (Pityophthorus juglandis) and the canker fungus Geosmithia morbida (Tisserat et al. 2009), was first...

  15. Genetic variation in resistance to pine pitch canker and western gall rust in Monterey pine (Pinus radiata D. Don): Results from a three-country collaborative field trial

    Treesearch

    A.C. Matheson; W.R. Mark; G. Stovold; C. Balocchi; N. Smith; C. Brassey

    2012-01-01

    In 1998, Australia, Chile, and New Zealand agreed to work together in a program designed to test their elite breeding lines and to test for the genetics of resistance to pitch canker (causative organism Fusarium circinatum). Pitch canker was first discovered in the United States in 1946 and in California in 1986. The first discoveries in California...

  16. Cytochrome p450nor, a novel class of mitochondrial cytochrome P450 involved in nitrate respiration in the fungus Fusarium oxysporum.

    PubMed

    Takaya, N; Suzuki, S; Kuwazaki, S; Shoun, H; Maruo, F; Yamaguchi, M; Takeo, K

    1999-12-15

    Fusarium oxysporum, an imperfect filamentous fungus performs nitrate respiration under limited oxygen. In the respiratory system, Cytochrome P450nor (P450nor) is thought to catalyze the last step; reduction of nitric oxide to nitrous oxide. We examined its intracellular localization using enzymatic, spectroscopic, and immunological analyses to show that P450nor is found in both the mitochondria and the cytosol. Translational fusions between the putative mitochondrial targeting signal on the amino terminus of P450nor and Escherichia coli beta-galactosidase resulted in significant beta-galactosidase activity in the mitochondrial fraction of nitrate-respiring cells, suggesting that one of the isoforms of P450nor (P450norA) is in anaerobic mitochondrion of F. oxysporum and acts as nitric oxide reductase. Furthermore, these findings suggest the involvement of P450nor in nitrate respiration in mitochondria.

  17. The arbuscular mycorrhizal fungus, Glomus irregulare, controls the mycotoxin production of Fusarium sambucinum in the pathogenesis of potato

    USDA-ARS?s Scientific Manuscript database

    Trichothecenes are an important family of mycotoxins produced by several species of the genus Fusarium. These fungi cause serious disease on infected plants and postharvest storage of crops and the toxins can cause health problems for humans and animals. Unfortunately, there are few methods for cont...

  18. Evidence that a Secondary Metabolic Biosynthetic Gene Cluster has Grown by Gene Relocation During Evolution of the Filamentous Fungus Fusarium

    USDA-ARS?s Scientific Manuscript database

    Trichothecenes are terpene-derived secondary metabolites produced by multiple genera of filamentous fungi, including many plant pathogenic species of Fusarium. These metabolites are of medical and agricultural interest because they are toxic to animals and plants and can contribute to pathogenesis ...

  19. Fusarium euwallaceae sp. nov.—a symbiotic fungus of Euwallacea sp., an invasive ambrosia beetle in Israel and California

    USDA-ARS?s Scientific Manuscript database

    The invasive Asian ambrosia beetle Euwallacea sp. (Coleoptera, Scolytinae, Xyleborini) and a novel Fusarium sp. that it farms in its galleries as a source of nutrition seriously damage over 20 species of live trees and pose a serious threat to avocado production (Persea americana) in Israel and Cali...

  20. The Wor1-like protein Fgp1 regulates pathogenicity, toxin synthesis and reproduction in the phytopathogenic fungus Fusarium graminearum

    USDA-ARS?s Scientific Manuscript database

    WOR1 is a gene for a conserved fungal regulatory protein controlling the dimorphic switch and pathogenicity in Candida albicans and its ortholog in the plant pathogen Fusarium oxysporum, called SGE1, is also required for pathogenicity and expression of plant effector proteins. F. graminearum, an imp...

  1. [Influence of antitumor preparations on the concentration of free radicals in cells of Fusarium bulbigenum var. blasticola fungus during primary and tumour-like secondary growth].

    PubMed

    Riabikin, Iu A; Nikitina, E T; Balgimbatva, A S; Zashkvara, O V; Shakiev, S Sh

    2007-01-01

    The fungus Fusarium bulbigenum var. blasticola in which secondary tumor-like formations appear under certain conditions in aging was used as a new test system to examine the action of antitumor preparations. Free radicals in the primary mycelium and tumor-like formations without introduction of preparations (control samples) and after the introduction of preparation into the cultivation medium of the fungus have been studied by EPR spectroscopy. The EPR spectra of the fungus represent single, somewhat asymmetrical lines with a width of deltaH = 0.4 divided by 0.6 mT and g = 2.0036 +/- 0.006, which enabled one to assign the paramagnetic centers observed to melanine radicals. It was found that the concentration of free radicals in tumor-like formations is always higher than in the primary mycelium, which may be related to intensive metabolism in tumor-like formations. It has been established that several antitumor preparations (fluorouracil, hydrea, methotrexat, and vepezide) completely inhibit the growth of tumor-like formations. Another group of preparations (cyclophosphanum, dacarbazin, adriablastin, and vinblastin), on the contrary, stimulate their growth, which is accompanied by an increase in the concentration of free radicals in cells of the primary mycelium and tumor-like formations. The preparations of the third group (mercaptopurine, lanvis, and farmorubicin), despite the increased level of free radicals in cells, have a weak inhibitory effect. It has been shown that, in the concentration range studied, vitamins B2, B12, C, and PP stimulate the growth of tumor-like formations, and, when used in combination with antitumor preparations, enhance or reduce the inhibitory properties of these preparations.

  2. Fusarium euwallaceae sp. nov.--a symbiotic fungus of Euwallacea sp., an invasive ambrosia beetle in Israel and California.

    PubMed

    Freeman, S; Sharon, M; Maymon, M; Mendel, Z; Protasov, A; Aoki, T; Eskalen, A; O'Donnell, K

    2013-01-01

    The invasive Asian ambrosia beetle Euwallacea sp. (Coleoptera, Scolytinae, Xyleborini) and a novel Fusarium sp. that it farms in its galleries as a source of nutrition causes serious damage to more than 20 species of live trees and pose a serious threat to avocado production (Persea americana) in Israel and California. Adult female beetles are equipped with mandibular mycangia in which its fungal symbiont is transported within and from the natal galleries. Damage caused to the xylem is associated with disease symptoms that include sugar or gum exudates, dieback, wilt and ultimately host tree mortality. In 2012 the beetle was recorded on more than 200 and 20 different urban landscape species in southern California and Israel respectively. Euwallacea sp. and its symbiont are closely related to the tea shot-hole borer (E. fornicatus) and its obligate symbiont, F. ambrosium occurring in Sri Lanka and India. To distinguish these beetles, hereafter the unnamed xyleborine in Israel and California will be referred to as Euwallacea sp. IS/CA. Both fusaria exhibit distinctive ecologies and produce clavate macroconidia, which we think might represent an adaption to the species-specific beetle partner. Both fusaria comprise a genealogically exclusive lineage within Clade 3 of the Fusarium solani species complex (FSSC) that can be differentiated with arbitrarily primed PCR. Currently these fusaria can be distinguished only phenotypically by the abundant production of blue to brownish macroconidia in the symbiont of Euwallacea sp. IS/CA and their rarity or absence in F. ambrosium. We speculate that obligate symbiosis of Euwallacea and Fusarium, might have driven ecological speciation in these mutualists. Thus, the purpose of this paper is to describe and illustrate the novel, economically destructive avocado pathogen as Fusarium euwallaceae sp. nov. S. Freeman et al.

  3. Multiple garlic (Allium sativum L.) microRNAs regulate the immunity against the basal rot fungus Fusarium oxysporum f. sp. Cepae.

    PubMed

    Chand, Subodh Kumar; Nanda, Satyabrata; Mishra, Rukmini; Joshi, Raj Kumar

    2017-04-01

    The basal plate rot fungus, Fusarium oxysporum f. sp. cepae (FOC), is the most devastating pathogen posing a serious threat to garlic (Allium sativum L.) production worldwide. MicroRNAs (miRNAs) are key modulators of gene expression related to development and defense responses in eukaryotes. However, the miRNA species associated with garlic immunity against FOC are yet to be explored. In the present study, a small RNA library developed from FOC infected resistant garlic line was sequenced to identify immune responsive miRNAs. Forty-five miRNAs representing 39 conserved and six novel sequences responsive to FOC were detected. qRT-PCR analyses further classified them into three classes based on their expression patterns in susceptible line CBT-As11 and in the resistant line CBT-As153. North-blot analyses of six selective miRNAs confirmed the qRT-PCR results. Expression studies on a selective set of target genes revealed a negative correlation with the complementary miRNAs. Furthermore, transgenic garlic plant overexpresing miR164a, miR168a and miR393 showed enhanced resistance to FOC, as revealed by decreased fungal growth and up-regulated expression of defense-responsive genes. These results indicate that multiple miRNAs are involved in garlic immunity against FOC and that the overexpression of miR164a, miR168a and miR393 can augment garlic resistance to Fusarium basal rot infection.

  4. Banana infecting fungus, Fusarium musae, is also an opportunistic human pathogen: are bananas potential carriers and source of fusariosis?

    PubMed

    Triest, David; Stubbe, Dirk; De Cremer, Koen; Piérard, Denis; Detandt, Monique; Hendrickx, Marijke

    2015-01-01

    During re-identification of Fusarium strains in the BCCM™/IHEM fungal collection by multilocus sequence-analysis we observed that five strains, previously identified as Fusarium verticillioides, were Fusarium musae, a species described in 2011 from banana fruits. Four strains were isolated from blood samples or biopsies of immune-suppressed patients and one was isolated from the clinical environment, all originating from different hospitals in Belgium or France, 2001-2008. The F. musae identity of our isolates was confirmed by phylogenetic analysis using reference sequences of type material. Absence of the gene cluster necessary for fumonisin biosynthesis, characteristic to F. musae, was also the case for our isolates. In vitro antifungal susceptibility testing revealed no important differences in their susceptibility compared to clinical F. verticillioides strains and terbinafine was the most effective drug. Additional clinical F. musae strains were searched by performing BLAST queries in GenBank. Eight strains were found, of which six were keratitis cases from the U.S. multistate contact lens-associated outbreak in 2005 and 2006. The two other strains were also from the U.S., causing either a skin infection or sinusitis. This report is the first to describe F. musae as causative agent of superficial and opportunistic, disseminated infections in humans. Imported bananas might act as carriers of F. musae spores and be a potential source of infection with F. musae in humans. An alternative hypothesis is that the natural distribution of F. musae is geographically a lot broader than originally suspected and F. musae is present on different plant hosts. © 2015 by The Mycological Society of America.

  5. Management of apple anthracnose canker

    USDA-ARS?s Scientific Manuscript database

    Apple anthracnose (caused by Neofabraea malicorticis anamorph Cryptosporiopsis curvispora) is a fungal disease that causes cankers on trees and ‘Bull’s-eye rot’ on fruit. In western Washington, it is the canker phase of apple anthracnose that is considered most serious as it can result in death of ...

  6. Thorium(IV) removal from aqueous medium by citric acid treated mangrove endophytic fungus Fusarium sp. #ZZF51.

    PubMed

    Yang, S K; Tan, N; Yan, X M; Chen, F; Long, W; Lin, Y C

    2013-09-15

    Thorium(IV) biosorption is investigated by citric acid treated mangrove endophytic fungus Fussarium sp. #ZZF51 (CA-ZZF51) from South China Sea. The biosorption process was optimized at pH 4.5, equilibrium time 90 min, initial thorium(IV) concentration 50 mg L(-1) and adsorbent dose 0.6 g L(-1) with 90.87% of removal efficiency and 75.47 mg g(-1) of adsorption capacity, which is obviously greater than that (11.35 mg g(-1)) of the untreated fungus Fussarium sp. #ZZF51 for thorium(IV) biosorption under the condition of optimization. The experimental data are analyzed by using isotherm and kinetic models. Kinetic data follow the pseudo-second-order model and equilibrium data agree very well with the Langmuir model. In addition, FTIR analysis indicates that hydroxyl, amino, and carbonyl groups act as the important roles in the adsorption process.

  7. Tomato I2 Immune Receptor Can Be Engineered to Confer Partial Resistance to the Oomycete Phytophthora infestans in Addition to the Fungus Fusarium oxysporum.

    PubMed

    Giannakopoulou, Artemis; Steele, John F C; Segretin, Maria Eugenia; Bozkurt, Tolga O; Zhou, Ji; Robatzek, Silke; Banfield, Mark J; Pais, Marina; Kamoun, Sophien

    2015-12-01

    Plants and animals rely on immune receptors, known as nucleotide-binding domain and leucine-rich repeat (NLR)-containing proteins, to defend against invading pathogens and activate immune responses. How NLR receptors respond to pathogens is inadequately understood. We previously reported single-residue mutations that expand the response of the potato immune receptor R3a to AVR3a(EM), a stealthy effector from the late blight oomycete pathogen Phytophthora infestans. I2, another NLR that mediates resistance to the will-causing fungus Fusarium oxysporum f. sp. lycopersici, is the tomato ortholog of R3a. We transferred previously identified R3a mutations to I2 to assess the degree to which the resulting I2 mutants have an altered response. We discovered that wild-type I2 protein responds weakly to AVR3a. One mutant in the N-terminal coiled-coil domain, I2(I141N), appeared sensitized and displayed markedly increased response to AVR3a. Remarkably, I2(I141N) conferred partial resistance to P. infestans. Further, I2(I141N) has an expanded response spectrum to F. oxysporum f. sp. lycopersici effectors compared with the wild-type I2 protein. Our results suggest that synthetic immune receptors can be engineered to confer resistance to phylogenetically divergent pathogens and indicate that knowledge gathered for one NLR could be exploited to improve NLR from other plant species.

  8. Microbiological transformation of two 15α-hydroxy-ent-kaur-9(11),16-diene derivatives by the fungus Fusarium fujikuroi.

    PubMed

    Fraga, Braulio M; González-Vallejo, Victoria; Guillermo, Ricardo; Amaro-Luis, Juan M

    2013-05-01

    The incubation of 15α-hydroxy-ent-kaur-9(11),16-dien-19-oic acid (15α-hydroxy-grandiflorenic acid) with the fungus Fusarium fujikuroi gave as main metabolite its 3β,6β-dihydroxy derivative, which by an oxidative decarboxylation afforded a 19-nor compound with a 4,18-double bond. Other substances obtained were a 3α-hydroxy-19,6α-lactone, 3β-hydroxy-6β,7β-epoxy-ent-kaur-9(11),16-dien-19-oic acid and 3β-hydroxy-6-oxo-ent-kaur-9(11),16-dien-19-oic acid. Moreover, the biotransformation of 15α,18-dihydroxy-ent-kaur-9(11),16-diene led to the isolation of the corresponding 3β-, 6β-, 7α- and 12β-hydroxy derivatives. Two metabolites formed by 16β,17-epoxidation of the last compound and of the substrate were also obtained. These results indicated that the presence of the 9,11-double bond in the substrate impedes its 7β-hydroxylation, which is necessary for the formation of gibberellins and seco-ring B ent-kaurenoids. However, this 9,11-unsaturation does not hinder a 6,7-dehydrogenation and further 6β,7β-epoxidation, characteristic steps of the kaurenolide biosynthetic pathway.

  9. The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination

    PubMed Central

    García-Martínez, Jorge; Brunk, Michael; Avalos, Javier; Terpitz, Ulrich

    2015-01-01

    Rhodopsins are membrane-embedded photoreceptors found in all major taxonomic kingdoms using retinal as their chromophore. They play well-known functions in different biological systems, but their roles in fungi remain unknown. The filamentous fungus Fusarium fujikuroi contains two putative rhodopsins, CarO and OpsA. The gene carO is light-regulated, and the predicted polypeptide contains all conserved residues required for proton pumping. We aimed to elucidate the expression and cellular location of the fungal rhodopsin CarO, its presumed proton-pumping activity and the possible effect of such function on F. fujikuroi growth. In electrophysiology experiments we confirmed that CarO is a green-light driven proton pump. Visualization of fluorescent CarO-YFP expressed in F. fujikuroi under control of its native promoter revealed higher accumulation in spores (conidia) produced by light-exposed mycelia. Germination analyses of conidia from carO− mutant and carO+ control strains showed a faster development of light-exposed carO− germlings. In conclusion, CarO is an active proton pump, abundant in light-formed conidia, whose activity slows down early hyphal development under light. Interestingly, CarO-related rhodopsins are typically found in plant-associated fungi, where green light dominates the phyllosphere. Our data provide the first reliable clue on a possible biological role of a fungal rhodopsin. PMID:25589426

  10. Use of a series of chemostat cultures to isolate 'improved' variants of the Quorn mycoprotein fungus, Fusarium graminearum A3/5.

    PubMed

    Wiebe, M G; Robson, G D; Oliver, S G; Trinci, A P

    1994-11-01

    Variants (designated A23-S and A24-S) of the Quorn myco-protein fungus, Fusarium graminearum A3/5 were isolated from a series of glucose-limited cultures grown at a dilution rate of 0.18 h-1 for a combined total of 109 d. These variants had unchanged mycelial morphologies but, when grown in mixed culture with the parental strain (A3/5) in glucose-limited chemostat culture at 0.18 h-1, A23-S and A24-S had selection coefficients of 0.013 and 0.017 h-1, respectively, and supplanted A3/5. When a monoculture of A23-S was grown in a glucose-limited culture at a dilution rate of 0.18 h-1, the appearance of highly branched (so-called colonial) mutants was delayed compared with their appearance in chemostat cultures of the parental strain. Furthermore, when a monoculture of A24-S was grown in glucose-limited culture at 0.18 h-1, the appearance of colonial mutants was delayed even further. Thus, it is possible to isolate advantageous (relative to A3/5) variants of F. graminearum A3/5 which have unchanged mycelial morphologies, but in which the appearance of colonial mutants is delayed.

  11. The tomato wilt fungus Fusarium oxysporum f. sp. lycopersici shares common ancestors with nonpathogenic F. oxysporum isolated from wild tomatoes in the Peruvian Andes.

    PubMed

    Inami, Keigo; Kashiwa, Takeshi; Kawabe, Masato; Onokubo-Okabe, Akiko; Ishikawa, Nobuko; Pérez, Enrique Rodríguez; Hozumi, Takuo; Caballero, Liliana Aragón; de Baldarrago, Fatima Cáceres; Roco, Mauricio Jiménez; Madadi, Khalid A; Peever, Tobin L; Teraoka, Tohru; Kodama, Motoichiro; Arie, Tsutomu

    2014-01-01

    Fusarium oxysporum is an ascomycetous fungus that is well-known as a soilborne plant pathogen. In addition, a large population of nonpathogenic F. oxysporum (NPF) inhabits various environmental niches, including the phytosphere. To obtain an insight into the origin of plant pathogenic F. oxysporum, we focused on the tomato (Solanum lycopersicum) and its pathogenic F. oxysporum f. sp. lycopersici (FOL). We collected F. oxysporum from wild and transition Solanum spp. and modern cultivars of tomato in Chile, Ecuador, Peru, Mexico, Afghanistan, Italy, and Japan, evaluated the fungal isolates for pathogenicity, VCG, mating type, and distribution of SIX genes related to the pathogenicity of FOL, and constructed phylogenies based on ribosomal DNA intergenic spacer sequences. All F. oxysporum isolates sampled were genetically more diverse than FOL. They were not pathogenic to the tomato and did not carry SIX genes. Certain NPF isolates including those from wild Solanum spp. in Peru were grouped in FOL clades, whereas most of the NPF isolates were not. Our results suggested that the population of NPF isolates in FOL clades gave rise to FOL by gaining pathogenicity.

  12. The Tomato Wilt Fungus Fusarium oxysporum f. sp. lycopersici shares Common Ancestors with Nonpathogenic F. oxysporum isolated from Wild Tomatoes in the Peruvian Andes

    PubMed Central

    Inami, Keigo; Kashiwa, Takeshi; Kawabe, Masato; Onokubo-Okabe, Akiko; Ishikawa, Nobuko; Pérez, Enrique Rodríguez; Hozumi, Takuo; Caballero, Liliana Aragón; de Baldarrago, Fatima Cáceres; Roco, Mauricio Jiménez; Madadi, Khalid A.; Peever, Tobin L.; Teraoka, Tohru; Kodama, Motoichiro; Arie, Tsutomu

    2014-01-01

    Fusarium oxysporum is an ascomycetous fungus that is well-known as a soilborne plant pathogen. In addition, a large population of nonpathogenic F. oxysporum (NPF) inhabits various environmental niches, including the phytosphere. To obtain an insight into the origin of plant pathogenic F. oxysporum, we focused on the tomato (Solanum lycopersicum) and its pathogenic F. oxysporum f. sp. lycopersici (FOL). We collected F. oxysporum from wild and transition Solanum spp. and modern cultivars of tomato in Chile, Ecuador, Peru, Mexico, Afghanistan, Italy, and Japan, evaluated the fungal isolates for pathogenicity, VCG, mating type, and distribution of SIX genes related to the pathogenicity of FOL, and constructed phylogenies based on ribosomal DNA intergenic spacer sequences. All F. oxysporum isolates sampled were genetically more diverse than FOL. They were not pathogenic to the tomato and did not carry SIX genes. Certain NPF isolates including those from wild Solanum spp. in Peru were grouped in FOL clades, whereas most of the NPF isolates were not. Our results suggested that the population of NPF isolates in FOL clades gave rise to FOL by gaining pathogenicity. PMID:24909710

  13. The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination.

    PubMed

    García-Martínez, Jorge; Brunk, Michael; Avalos, Javier; Terpitz, Ulrich

    2015-01-15

    Rhodopsins are membrane-embedded photoreceptors found in all major taxonomic kingdoms using retinal as their chromophore. They play well-known functions in different biological systems, but their roles in fungi remain unknown. The filamentous fungus Fusarium fujikuroi contains two putative rhodopsins, CarO and OpsA. The gene carO is light-regulated, and the predicted polypeptide contains all conserved residues required for proton pumping. We aimed to elucidate the expression and cellular location of the fungal rhodopsin CarO, its presumed proton-pumping activity and the possible effect of such function on F. fujikuroi growth. In electrophysiology experiments we confirmed that CarO is a green-light driven proton pump. Visualization of fluorescent CarO-YFP expressed in F. fujikuroi under control of its native promoter revealed higher accumulation in spores (conidia) produced by light-exposed mycelia. Germination analyses of conidia from carO(-) mutant and carO(+) control strains showed a faster development of light-exposed carO(-) germlings. In conclusion, CarO is an active proton pump, abundant in light-formed conidia, whose activity slows down early hyphal development under light. Interestingly, CarO-related rhodopsins are typically found in plant-associated fungi, where green light dominates the phyllosphere. Our data provide the first reliable clue on a possible biological role of a fungal rhodopsin.

  14. Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium

    PubMed Central

    Xue, Baiji; He, Dan; Gao, Song; Wang, Dongyang; Yokoyama, Koji; Wang, Li

    2016-01-01

    The objective of this study was to find one or more fungal strains that could be utilized to biosynthesize antifungal silver nanoparticles (AgNPs). Using morphological and molecular methods, Arthroderma fulvum was identified as the most effective fungal strain for synthesizing AgNPs. The UV–visible range showed a single peak at 420 nm, which corresponded to the surface plasmon absorbance of AgNPs. X-ray diffraction and transmission electron microscopy demonstrated that the biosynthesized AgNPs were crystalline in nature with an average diameter of 15.5±2.5 nm. Numerous factors could potentially affect the process of biosynthesis, and the main factors are discussed here. Optimization results showed that substrate concentration of 1.5 mM, alkaline pH, reaction temperature of 55°C, and reaction time of 10 hours were the optimum conditions for AgNP biosynthesis. Biosynthesized AgNPs showed considerable activity against the tested fungal strains, including Candida spp., Aspergillus spp., and Fusarium spp., especially Candida spp. PMID:27217752

  15. Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium.

    PubMed

    Xue, Baiji; He, Dan; Gao, Song; Wang, Dongyang; Yokoyama, Koji; Wang, Li

    2016-01-01

    The objective of this study was to find one or more fungal strains that could be utilized to biosynthesize antifungal silver nanoparticles (AgNPs). Using morphological and molecular methods, Arthroderma fulvum was identified as the most effective fungal strain for synthesizing AgNPs. The UV-visible range showed a single peak at 420 nm, which corresponded to the surface plasmon absorbance of AgNPs. X-ray diffraction and transmission electron microscopy demonstrated that the biosynthesized AgNPs were crystalline in nature with an average diameter of 15.5±2.5 nm. Numerous factors could potentially affect the process of biosynthesis, and the main factors are discussed here. Optimization results showed that substrate concentration of 1.5 mM, alkaline pH, reaction temperature of 55°C, and reaction time of 10 hours were the optimum conditions for AgNP biosynthesis. Biosynthesized AgNPs showed considerable activity against the tested fungal strains, including Candida spp., Aspergillus spp., and Fusarium spp., especially Candida spp.

  16. Antifungal efficiency of a lipopeptide biosurfactant derived from Bacillus subtilis SPB1 versus the phytopathogenic fungus, Fusarium solani.

    PubMed

    Mnif, Ines; Hammami, Ines; Triki, Mohamed Ali; Azabou, Manel Cheffi; Ellouze-Chaabouni, Semia; Ghribi, Dhouha

    2015-11-01

    Bacillus subtilis SPB1 lipopeptides were evaluated as a natural antifungal agent against Fusarium solani infestation. In vitro antifungal assay showed a minimal inhibitory concentration of about 3 mg/ml with a fungicidal mode of action. In fact, treatment of F. solani by SPB1 lipopeptides generated excessive lyses of the mycelium and caused polynucleation and destruction of the related spores together with a total inhibition of spore production. Furthermore, an inhibition of germination potency accompanied with a high spore blowing was observed. Moreover, in order to be applied in agricultural field, in vivo antifungal activity was proved against the dry rot potato tubers caused by F. solani. Preventive treatment appeared as the most promising as after 20 days of fungi inoculation, rot invasion was reduced by almost 78%, in comparison to that of non-treated one. When treating infected tomato plants, disease symptoms were reduced by almost 100% when applying the curative method. Results of this study are very promising as it enables the use of the crude lipopeptide preparation of B. subtilis SPB1 as a potent natural fungicide that could effectively control the infection of F. solani in tomato and potato tubers at a concentration similar to the commercial fungicide hymexazol and therefore prevent the damage of olive tree.

  17. Canker Rots in Southern Hardwoods

    Treesearch

    F.I. McCracken

    1978-01-01

    Canker-rot fungi cause serious degrade and cull in southern hardwoods, especially the red oaks. Heartwood decay is the most serious form of damage, but the fungi also kill the cambium and decay the sapwood for as much as 3 feet (.91 m) above and below the entrance point into the tree. The ability of these fungi to kill the cambium and cause cankers distinguishes them...

  18. Secretome analysis of the mycoparasitic fungus Trichoderma harzianum ALL 42 cultivated in different media supplemented with Fusarium solani cell wall or glucose.

    PubMed

    Ramada, Marcelo Henrique Soller; Steindorff, Andrei Stecca; Bloch, Carlos; Ulhoa, Cirano José

    2016-02-01

    Trichoderma harzianum is a fungus well known for its potential as a biocontrol agent against many fungal phytopathogens. The aim of this study was to characterize the proteins secreted by T. harzianum ALL42 when its spores were inoculated and incubated for 48 h in culture media supplemented with glucose (GLU) or with cell walls from Fusarium solani (FSCW), a phytopathogen that causes severe losses in common bean and soy crops in Brazil, as well as other crop diseases around the world. Trichoderma harzianum was able to grow in Trichoderma Liquid Enzyme Production medium (TLE) and Minimal medium (MM) supplemented with FSCW and in TLE+GLU, but was unable to grow in MM+GLU medium. Protein quantification showed that TLE+FSCW and MM+FSCW had 45- and 30- fold, respectively, higher protein concentration on supernatant when compared to TLE+GLU, and this difference was observable on 2D gel electrophoresis (2DE). A total of 94 out of 105 proteins excised from 2DE maps were identified. The only protein observed in all three conditions was epl1. In the media supplemented with FSCW, different hydrolases such as chitinases, β-1,3-glucanases, glucoamylases, α-1,3-glucanases and proteases were identified, along with other proteins with no known functions in mycoparasitism, such as npp1 and cys. Trichoderma harzianum showed a complex and diverse arsenal of proteins that are secreted in response to the presence of FSCW, with novel proteins not previously described in mycoparasitic-related studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Thousand cankers disease complex: a forest health issue across the U.S.

    USDA-ARS?s Scientific Manuscript database

    Thousand Cankers Disease (TCD) is a disease complex wherein the fungus (Geosmithia morbida), is vectored by the walnut twig beetle (WTB, Pityophthorus juglandis). Disease causes mortality primarily of eastern black walnut (Juglans nigra), though other walnut species are also susceptible. Eastern bla...

  20. Scleroderris canker on National Forests in Upper Michigan and Northern Wisconsin.

    Treesearch

    Darroll D. Skilling; Charles E. Cordell

    1966-01-01

    Scleroderris canker, a disease caused by the fungus Scleroderris lagerbergii Gremmen, has a long history of injuries to young pine plantations and nurseries in Europe. It was recently identified as the cause of serious damage in the Lake States. During the summer and fall of 1965, a survey was conducted in Upper Michigan and northern Wisconsin to determine the...

  1. Thousand cankers disease research: The good, the bad and the ugly

    USDA-ARS?s Scientific Manuscript database

    The plant pathogenic fungus, Geosmithia morbida, vectored by the walnut twig beetle (WTB), Pityophthorus juglandis, has been associated with a disease complex of walnuts, Juglans spp., known as thousand cankers disease (TCD). TCD, originally described from the western U.S., has now expanded to the n...

  2. New Phomopsis species identified from wood cankers in eastern North American vineyards.

    USDA-ARS?s Scientific Manuscript database

    Phomopsis cane and leaf spot, caused by the Ascomycete fungus Phomopsis viticola, is a destructive fruit and foliar disease in eastern North American vineyards. The pathogen typically attacks green tissues, but can also cause wood cankers, presumably due to infection of pruning wounds, as is the cas...

  3. Genetic evidence that butternut canker was recently introduced into North America

    Treesearch

    Glenn R. Furnier; Allison M. Stoiz; Raka M. Mustaphi; Michael E. Ostry

    1999-01-01

    Butternut (Juglans cinerea) is seriously threatened by a canker disease caused by Sirococens clavigignenti-juglandacearum, a fungus with no known sexual stage. This pathogen was first reported in 1967 and is now found throughout the native range of butternut, suggesting that it was introduced into North America. We used randomly...

  4. Geosmithia morbida, the causal agent of thousand cankers disease, found in Indiana

    Treesearch

    Matthew Ginzel; Jennifer. Juzwik

    2014-01-01

    Thousand Cankers Disease (TCD) is caused by a fungus (Geosmithia morbida) that is vectored by a bark beetle, the walnut twig beetle (WTB), Pityophthorus juglandis (Coleoptera: Curculionidae: Scolytinae). The disease was first recognized in 2008 and has caused the widespread death of walnut trees (Juglans sp.)...

  5. Fusarium wilt of lentil

    USDA-ARS?s Scientific Manuscript database

    Fusarium wilt of lentil is caused by the soil borne fungus Fusaium oxysporum f. sp. lentis. The pathogen is widespread. The disease shows symptoms of wilting, and stunted plants. Other symptoms include wilting of top leaves resemble water deficiency, shrinking and curling of leaves from the lower...

  6. Widespread Distribution of Fungivorus Aphelenchoides spp. in Blight Cankers on American Chestnut Trees.

    PubMed

    Griffin, G J; Eisenback, J D; Oldham, K

    2012-12-01

    Previously we showed in laboratory studies that the fungivorus nematode, Aphelenchoides hylurgi, was attracted to and fed upon the chestnut blight fungus, Cryphonectria parasitica, from American chestnut bark cankers and was a carrier of biocontrol, white hypovirulent C. parasitica strains. In the present field study, we recovered Aphelenchoides spp. in almost all (97.0 %) of 133 blight canker tissue assays (three 5-g samples each) from four eastern states. High mean population densities (227 to 474 nematodes per 5 g tissue) of Aphelenchoides spp. were recovered from cankers in Virginia, West Virginia, and Tennessee but not from New Hampshire (mean = 75 nematodes per 5 g tissue). Overall, most canker assays yielded population densities less than 200 nematodes per 5 g tissue. All of 12 very small or young cankers yielded a few to many Aphelenchoides spp. Regression analysis indicated greatest recovery of Aphelenchoides spp. occurred in the month of May (r = 0.94). The results indicate that Aphelenchoides spp. appear to be widespread in blight cankers on American chestnut trees and could play a role in biocontrol of chestnut blight.

  7. Fusarium Infection

    PubMed Central

    Muhammed, Maged; Anagnostou, Theodora; Desalermos, Athanasios; Kourkoumpetis, Themistoklis K.; Carneiro, Herman A.; Glavis-Bloom, Justin; Coleman, Jeffrey J.

    2013-01-01

    Abstract Fusarium species is a ubiquitous fungus that causes opportunistic infections. We present 26 cases of invasive fusariosis categorized according to the European Organization for Research and Treatment of Cancer/Mycoses Study Group (EORTC/MSG) criteria of fungal infections. All cases (20 proven and 6 probable) were treated from January 2000 until January 2010. We also review 97 cases reported since 2000. The most important risk factors for invasive fusariosis in our patients were compromised immune system, specifically lung transplantation (n = 6) and hematologic malignancies (n = 5), and burns (n = 7 patients with skin fusariosis), while the most commonly infected site was the skin in 11 of 26 patients. The mortality rates among our patients with disseminated, skin, and pulmonary fusariosis were 50%, 40%, and 37.5%, respectively. Fusarium solani was the most frequent species, isolated from 49% of literature cases. Blood cultures were positive in 82% of both current study and literature patients with disseminated fusariosis, while the remaining 16% had 2 noncontiguous sites of infection but negative blood cultures. Surgical removal of focal lesions was effective in both current study and literature cases. Skin lesions in immunocompromised patients should raise the suspicion for skin or disseminated fusariosis. The combination of medical monotherapy with voriconazole or amphotericin B and surgery in such cases is highly suggested. PMID:24145697

  8. Integrated Management of Citrus Canker

    USDA-ARS?s Scientific Manuscript database

    Fruit losses due to citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), vary each crop season depending on citrus variety, tree age, flushing condition, leafminer control, and coincidence of weather events with occurrence of susceptible fruit and foliage. In 2012, crop losses in Hamlin f...

  9. A Basal Stem Canker of Sugar Maple

    Treesearch

    Kenneth J. Jr. Kessler

    1969-01-01

    A basal stem canker of sugar maple is common on trees in lightly stocked stands and on trees on the north side of roads and other clearings in the Lake States. The cankers are usually elongate, usually encompass about one-fourth of the stem circumference, and face the south. Most cankers originate following logging of old-growth stands on stems that had been present...

  10. Survival and growth of deep-planted, in-leaf grafts in a germplasm repository of canker-resistant butternut

    Treesearch

    J. W. Van Sambeek; Michael E. Ostry; James J. Zaczek

    2003-01-01

    Butternut (Juglans cinerea L.), highly valued for its timber and nuts, occurs as widely scattered trees or isolated stands throughout the Central Hardwood region (Rink 1990). The introduced fungus Sirococcus clavigignenti-juglandacearum has rapidly cankered, girdled, and killed most of the butternut trees; however, a few trees that...

  11. Phylogeography of the walnut twig beetle, Pityophthorus juglandis, the vector of thousand cankers disease in North American walnut trees

    Treesearch

    Paul F. Rugman-Jones; Steven J. Seybold; Andrew D. Graves; Richard. Stouthamer

    2015-01-01

    Thousand cankers disease (TCD) of walnut trees (Juglans spp.) results from aggressive feeding in the phloem by the walnut twig beetle (WTB), Pityophthorus juglandis, accompanied by inoculation of its galleries with a pathogenic fungus, Geosmithia morbida. In 1960, WTB was only known from four U.S. counties...

  12. Draft Genome Sequence of Rhizobium sp. Strain TBD182, an Antagonist of the Plant-Pathogenic Fungus Fusarium oxysporum, Isolated from a Novel Hydroponics System Using Organic Fertilizer

    PubMed Central

    Fujiwara, Kazuki; Someya, Nobutaka; Shinohara, Makoto

    2017-01-01

    ABSTRACT Rhizobium sp. strain TBD182, isolated from a novel hydroponics system, is an antagonistic bacterium that inhibits the mycelial growth of Fusarium oxysporum but does not eliminate the pathogen. We report the draft genome sequence of TBD182, which may contribute to elucidation of the molecular mechanisms of its fungistatic activity. PMID:28302768

  13. Draft Genome Sequence of Rhizobium sp. Strain TBD182, an Antagonist of the Plant-Pathogenic Fungus Fusarium oxysporum, Isolated from a Novel Hydroponics System Using Organic Fertilizer.

    PubMed

    Iida, Yuichiro; Fujiwara, Kazuki; Someya, Nobutaka; Shinohara, Makoto

    2017-03-16

    Rhizobium sp. strain TBD182, isolated from a novel hydroponics system, is an antagonistic bacterium that inhibits the mycelial growth of Fusarium oxysporum but does not eliminate the pathogen. We report the draft genome sequence of TBD182, which may contribute to elucidation of the molecular mechanisms of its fungistatic activity.

  14. TaFROG encodes a Pooideae orphan protein that interacts with SnRK1 and enhances resistance to the mycotoxigenic fungus fusarium graminearum.

    USDA-ARS?s Scientific Manuscript database

    All genomes encode taxonomically restricted ‘orphan’ genes, most of which are of unknown function. We report the functional characterization of the orphan gene TaFROG as a component of the wheat resistance to the globally important Fusarium head blight (FHB) disease. TaFROG is taxonomically restrict...

  15. An Asian ambrosia beetle Euwallacea fornicatus and its novel symbiotic fungus Fusarium sp. pose a serious threat to the Israeli avocado industry

    USDA-ARS?s Scientific Manuscript database

    The ambrosia beetle Euwallacea fornicatus Einchoff was first recorded in Israel in 2009. A novel unnamed symbiotic species within Clade 3 of the Fusarium solani species complex, carried in the mandibular mycangia of the beetle, is responsible for the typical wilt symptoms inflicted on avocado (Perse...

  16. Characteristics of Blister Rust Cankers on Eastern White Pine

    Treesearch

    William R. Phelps; Ray Weber

    1969-01-01

    The growth, development, and sporulation of white pine blister rust cankers were studied on eastern white pine in Wisconsin and Minnesota. Three district canker types were identified on the basis of physical appearance, growth rate, and sporulation. Canker growth rate and sporulation decreased as tree size or age increased, and many cankers apparently became inactive...

  17. [Features of interaction bacterial strains Micrococcus luteus LBK1 from plants varieties/hybrids cucumber and sweet pepper and with fungus Fusarium oxysporum Scelecht].

    PubMed

    Parfeniuk, A; Sterlikova, O; Beznosko, I; Krut', V

    2014-01-01

    The article presents the results of studying the impact of bacterial strain M. luteus LBK1, stimulating the growth and development of plant varieties/hybrids of cucumber and sweet pepper on the intensity of sporulation of the fungus F. oxysporum Scelecht--fusariose rot pathogen.

  18. Genetic structure of soil population of fungus Fusarium oxysporum Schlechtend.: Fr.: Molecular reidentification of the species and genetic differentiation of isolates using polymerase chain reaction technique with universal primers (UP-PCR)

    SciTech Connect

    Bulat, S.A.; Mironenko, N.V.; Zholkevich, Yu.G.

    1995-07-01

    The genetic structure of three soil populations of fungus Fusarium oxysporum was analyzed using polymerase chain reaction with universal primers (UP-PCR). Distinct UP-PCR variants revealed by means of cross-dot hybridization of amplified DNA and restriction analysis of nuclear ribosomal DNA represent subspecies or sibling species of F. oxysporum. The remaining isolates of F. oxysporum showed moderate UP-PCR polymorphism characterized by numerous types, whose relatedness was analyzed by computer treatment of the UP-PCR patterns. The genetic distance trees based on the UP-PCR patterns, which were obtained with different universal primers, demonstrated similar topology. This suggests that evolutionarily important genome rearrangements correlatively occur within the entire genome. Isolates representing different UP-PCR polymorphisms were encountered in all populations, being distributed asymmetrically in two of these. In general, soil populations of F. oxysporum were represented by numerous genetically isolated groups with a similar genome structure. The genetic heterogeneity of the isolates within these groups is likely to be caused by the parasexual process. The usefulness of the UP-PCR technique for population studies of F. oxysporum was demonstrated. 39 refs., 7 figs., 2 tabs.

  19. Immobilization of Fusarium verticillioides fungus on nano-silica (NSi-Fus): a novel and efficient biosorbent for water treatment and solid phase extraction of Mg(II) and Ca(II).

    PubMed

    Mahmoud, Mohamed E; Yakout, Amr A; Abdel-Aal, Hany; Osman, Maher M

    2013-04-01

    Biosorption and water treatment of Mg(II) and Ca(II) hardness was designed via surface loading of heat inactivated Fusarium verticillioides fungus (Fus) on nano-silica (NSi) for developing the (NSi-Fus) as a novel biosorbent. Surface characterization was confirmed by FT-IR and SEM analysis. The (NSi), (Fus) and (NSi-Fus) sorbents were investigated for removal of Mg(II) and Ca(II) by using the batch equilibrium technique under the influence of solution pH, contact time, sorbent dosage, initial metal concentration and interfering ion. The maximum magnesium capacity values were identified as 600.0, 933.3 and 1000.0 μmole g(-1) while, the maximum calcium values were 1066.7, 1800.0 and 1333.3 μmole g(-1) for (NSi), (Fus) and (NSi-Fus), respectively. Sorption equilibria were established in ∼20 min and the data were well described by both Langmuir and Freundlich models. The potential applications of these biosorbents for water-softening and extraction of magnesium and calcium from sea water samples were successfully accomplished. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Biotransformation of ent-kaur-16-ene and ent-trachylobane 7β-acetoxy derivatives by the fungus Gibberella fujikuroi (Fusarium fujikuroi).

    PubMed

    Fraga, Braulio M; Bressa, Carlo; González-Vallejo, Victoria; González, Pedro; Guillermo, Ricardo

    2012-09-01

    Candol A (7β-hydroxy-ent-kaur-16-ene) (6) is efficiently transformed by Gibberella fujikuroi into the gibberellin plant hormones. In this work, the biotransformation of its acetate by this fungus has led to the formation of 7β-acetoxy-ent-kaur-16-en-19-oic acid (3), whose corresponding alcohol is a short-lived intermediate in the biosynthesis of gibberellins and seco-ring ent-kaurenoids in this fungus. Further biotransformation of this compound led to the hydroxylation of the 3β-positions to give 7β-acetoxy-3β-hydroxy-ent-kaur-16-en-19-oic acid (14), followed by a 2β- or 18-hydroxylation of this metabolite. The incubation of epicandicandiol 7β-monoacetate (7β-acetoxy-18-hydroxy-ent-kaur-16-ene) (10) produces also the 19-hydroxylation to form the 18,19 diol (20), which is oxidized to give the corresponding C-18 or C-19 acids. These results indicated that the presence of a 7β-acetoxy group does not inhibit the fungal oxidation of C-19 in 7β-acetoxy-ent-kaur-16-ene, but avoids the ring B contraction that leads to the gibberellins and the 6β-hydroxylation necessary for the formation of seco-ring B ent-kaurenoids. The biotransformation of 7β-acetoxy-ent-trachylobane (trachinol acetate) (27) only led to the formation of 7β-acetoxy-18-hydroxy-ent-trachylobane (33).

  1. Root rot symptoms in sugar beet lines caused by Fusarium oxysporum f. sp. betae

    USDA-ARS?s Scientific Manuscript database

    The soil-borne fungus Fusarium oxysporum may cause both Fusarium yellows and Fusarium root rot diseases with severe yield losses in cultivated sugar beet worldwide. These two diseases cause similar foliar symptoms but different root response and have been proposed to be due to two distinct F. oxyspo...

  2. Candidate genes associated with QTL controlling resistance to fusarium root rot in pea

    USDA-ARS?s Scientific Manuscript database

    Fusarium root rot (FRR) of pea (Pisum sativum L.) is a serious pathogen in the USA and Europe and genetic resistance offers an effective and economical control for this pathogen. Fusarium root rot is caused by the fungus pathogen (Haematonectria haematococca (Berk. & Broome) (Anamorph): Fusarium sol...

  3. Survey of Sycamore Plantations for Canker, Leaf Scorch, and Dieback

    Treesearch

    T. H. Filer; D. T. Cooper; R. J. Collins; R. Wolfe

    1975-01-01

    Twenty-six sycamore plantations surveyed in Louisiana, Mississippi, Arkansas, and Tennessee in 1973 had leaf scorch symptoms; cankers caused mor tality in six lower Mississippi Delta s tands. Symptoms of the disease are leaf scorch, top diebac k, and trunk canker. No trees under 4 years old had dieback, and none unde r 6 years old had lethal trunk canker.

  4. Antibiotic Treatment of Blister Rust Cankers in Eastern White Pine

    Treesearch

    William R. Phelps; Ray Weber

    1970-01-01

    Cycloheximide (Acti-dione) and Phytoactin antibiotics, applied as basal stem treatments, aerial spray treatments, and complete foliar drenches were not effective in controlling blister rust cankers in eastern white pine. Cycloheximide was effective in suppressing canker activity and growth if directly applied to scarified cankers.

  5. Involvement of the salicylic acid signaling pathway in the systemic resistance induced in Arabidopsis by plant growth-promoting fungus Fusarium equiseti GF19-1.

    PubMed

    Kojima, Hanae; Hossain, Md Motaher; Kubota, Mayumi; Hyakumachi, Mitsuro

    2013-01-01

    Plant growth-promoting fungi (PGPF) are effective biocontrol agents for a number of soil-borne diseases and are known for their ability to trigger induced systemic resistance (ISR). In this study, we investigated the mechanisms triggered by PGPF Fusarium equiseti GF19-1, which is known to increase pathogen resistance in plants, by using GF19-1 spores and the culture filtrate (CF) to treat the roots of Arabidopsis thaliana. Subsequently, the leaves were challenged with Pseudomonas syringae pv tomato DC3000 (Pst) bacteria. Arabidopsis plants treated with GF19-1 spores or the CF elicited ISR against the Pst pathogen, resulting in a restriction of disease severity and suppression of pathogen proliferation. Examination of ISR in various signaling mutants and transgenic plants showed that GF19-1-induced protection was observed in the jasmonate response mutant jar1 and the ethylene response mutant etr1, whereas it was blocked in Arabidopsis plants expressing the NahG transgene or demonstrating a disruption of the NPR1 gene (npr1). Analysis of systemic gene expression revealed that GF19-1 modulates the expression of salicylic acid (SA)-responsive PR-1, PR-2, and PR-5 genes. Moreover, transient accumulation of SA was observed in GF19-1-treated plant, whereas the level was further enhanced after Pst infection of GF19-1-pretreated plants, indicating that accumulation of SA was potentiated when Arabidopsis plants were primed for disease resistance by GF19-1. In conclusion, these findings imply that the induced protective effect conferred by F. equiseti GF19-1 against the leaf pathogen Pst requires responsiveness to an SA-dependent pathway.

  6. Spatial and temporal dynamics of the colonization of Pinus radiata by Fusarium circinatum, of conidiophora development in the pith and of traumatic resin duct formation.

    PubMed

    Martín-Rodrigues, Noemí; Espinel, Santiago; Sanchez-Zabala, Joseba; Ortíz, Amaia; González-Murua, Carmen; Duñabeitia, Miren K

    2013-06-01

    · Fusarium circinatum causes pitch canker disease in a wide range of pine trees, including Pinus radiata, with devastating economic consequences. · To assess the spatial and temporal dynamics of growth of this pathogen in radiata pine, we examined the process of infection using both real-time PCR to quantify fungal biomass inside the plant host, and confocal microscopy using a green fluorescent protein (GFP)-tagged strain of F. circinatum. · Pathogen growth exhibited three distinct phases: an initial exponential increase in fungal biomass, concomitant with pathogen colonization of the cortex and phloem; a slowdown in fungal growth coincident with sporulating hyphae deep within the host; and stabilization of the fungal biomass when the first wilting symptoms appeared. The number of resin ducts in the xylem was found to increase in response to infection and the fungus grew inside both constitutive and traumatic resin ducts. · These results indicate that conidiation may contribute to the spatial or temporal dissemination of the pathogen. Moreover, the present findings raise the intriguing possibility that the generation of traumatic resin ducts may be of more benefit to the fungus than to the plant.

  7. Fusarium Pathogenomics

    USDA-ARS?s Scientific Manuscript database

    Fusarium is a genus of filamentous fungi that contains many agronomically important plant pathogens, mycotoxin producers, and opportunistic human pathogens. Comparative analyses have revealed compartmentalization of genomes into regions responsible for metabolism and reproduction (core genome) and p...

  8. Analyses of the xylem sap proteomes identified candidate Fusarium virguliforme proteinacious toxins.

    PubMed

    Abeysekara, Nilwala S; Bhattacharyya, Madan K

    2014-01-01

    Sudden death syndrome (SDS) caused by the ascomycete fungus, Fusarium virguliforme, exhibits root necrosis and leaf scorch or foliar SDS. The pathogen has never been identified from the above ground diseased foliar tissues. Foliar SDS is believed to be caused by host selective toxins, including FvTox1, secreted by the fungus. This study investigated if the xylem sap of F. virguliforme-infected soybean plants contains secreted F. virguliforme-proteins, some of which could cause foliar SDS development. Xylem sap samples were collected from five biological replications of F. virguliforme-infected and uninfected soybean plants under controlled conditions. We identified five F. virguliforme proteins from the xylem sap of the F. virguliforme-infected soybean plants by conducting LC-ESI-MS/MS analysis. These five proteins were also present in the excreted proteome of the pathogen in culture filtrates. One of these proteins showed high sequence identity to cerato-platanin, a phytotoxin produced by Ceratocystis fimbriata f. sp. platani to cause canker stain disease in the plane tree. Of over 500 soybean proteins identified in this study, 112 were present in at least 80% of the sap samples collected from F. virguliforme-infected and -uninfected control plants. We have identified four soybean defense proteins from the xylem sap of F. virguliforme-infected soybean plants. The data have been deposited to the ProteomeXchange with identifier PXD000873. This study confirms that a few F. virguliforme proteins travel through the xylem, some of which could be involved in foliar SDS development. We have identified five candidate proteinaceous toxins, one of which showed high similarity to a previously characterized phytotoxin. We have also shown the presence of four soybean defense proteins in the xylem sap of F. virguliforme-infected soybean plants. This study laid the foundation for studying the molecular basis of foliar SDS development in soybean and possible defense mechanisms

  9. Research progress for integrated canker management

    USDA-ARS?s Scientific Manuscript database

    Fruit losses due to citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), vary each crop season depending on citrus variety, tree age, flushing condition, leafminer control, and coincidence of weather events with occurrence of susceptible fruit and foliage. In 2013, crop losses in Hamlin f...

  10. Thousand cankers disease -- What have we learned?

    Treesearch

    J.W. Van Sambeek; Sharon. Reed

    2013-01-01

    Thousand Cankers Disease (TCD) represents a serious threat to black walnut, an important nut and timber tree in the eastern United States. TCD was first described as a lethal disease for most walnut species in 2009. A webinar sponsored by the USDA Forest Service State & Private Forestry and Forest Health Protection, the Walnut Council, and the Purdue University...

  11. Reasons for inconsistent citrus canker control

    USDA-ARS?s Scientific Manuscript database

    Crop losses from citrus canker in 2014 for Hamlin due to premature fruit drop, or for grapefruit from unacceptable severity of fruit lesions, were highly variable due to periodic rains that in certain locations were coincident with grapefruit flushes in February-March or with early Hamlin fruit deve...

  12. Biological and Chemical Complexity of Fusarium proliferatum

    USDA-ARS?s Scientific Manuscript database

    In the past, the fungus Fusarium proliferatum has been confused with morphologically similar species. Today, F. proliferatum is well defined by morphology, its teleomorphic state (Gibberella intermedia), and DNA-based analyses. F. proliferatum has a worldwide distribution and an unusually broad ho...

  13. Gnomoniopsis smithogilvyi causes chestnut canker symptoms in Castanea sativa shoots in Switzerland.

    PubMed

    Pasche, Sabrina; Calmin, Gautier; Auderset, Guy; Crovadore, Julien; Pelleteret, Pegah; Mauch-Mani, Brigitte; Barja, François; Paul, Bernard; Jermini, Mauro; Lefort, François

    2016-02-01

    A screening of Castanea sativa scions for grafting for the presence of endophytes showed that the opportunistic fungal pathogen Gnomoniopsis smithogilvyi was the most abundant member of the endophytic flora. This fungus is known as a pathogen affecting chestnut fruits in Italy and Australia. Here, we present evidence that it causes cankers very similar to the ones due to Cryphonectria parasitica infection on twigs and scions of chestnut trees. We found natural infections of G. smithogilvyi in healthy grafted plants as well as in scions from chestnut trees. The identity of the fungus isolated from asymptomatic tissues was verified by applying Koch's postulates and corroborated by DNA sequencing of four different gene regions. In contrast to C. parasitica that appears on the bark as yellow to orange pycnidia, stromata and slimy twisted tendrils, G. smithogilvyi forms orange to red and black pycnidia, gray stromata and cream-colored to beige slimy twisted tendrils on the bark. These Swiss strains are closely related to G. smithogilvyi strains from Australia and from New Zealand, Gnomoniopsis sp. and Gnomoniopsis castanea from New Zealand, Italy, France and Switzerland. While the strains from Ticino are genetically very close to G. smithogilvyi and G. castanea from Italy, the differences between the strains from Ticino and Geneva suggest two different origins. The present study supports the hypothesis that a single species named G. smithogilvyi, which is known to be the agent of chestnut rot, also causes wood cankers on chestnut.

  14. Fusicoccum arbuti sp. nov. causing cankers on pacific madrone in western North America with notes on Fusicoccum dimidiatum, the correct name for Scytalidium dimidiatum and Nattrassia mangiferae.

    PubMed

    Farr, David F; Elliott, Marianne; Rossman, Amy Y; Edmonds, Robert L

    2005-01-01

    Pacific madrone (Arbutus menziesii) is a broadleaf evergreen tree native to western North America that has been in decline for the past 30 years. A fungus has been isolated and was verified as the cause of cankers on dying trees. It was determined to belong in the genus Fusicoccum, an asexual state of Botryosphaeria. This genus in both its sexual and asexual states commonly causes canker diseases of deciduous woody plants. Using morphological and molecular data the fungus causing cankers on Pacific madrone is characterized, described and illustrated as a new species of Fusicoccum, F. arbuti D.F. Farr & M. Elliott sp. nov. No sexual state is known for F. arbuti. Evidence from the literature, cultures and specimens suggests that F. arbuti, often mistakenly identified as Nattrassia mangiferae, has been causing madrone canker since at least 1968. Authentic isolates of Nattrassia mangiferae as the synanamorph Scytalidium dimidiatum were sequenced and determined to be different from Fusicoccum arbuti and to belong in Botryosphaeria/Fusicoccum. In addition to molecular sequence data, the morphology of the pycnidial and arthric conidial states of Nattrassia mangiferae/ Scytalidium dimidiatum resembles that of Fusicoccum. Therefore the correct name for Nattrassia mangiferae and its numerous synonyms (Dothiorella mangiferae, Torula dimidata, Scytilidium dimidiatum, Fusicoccum eucalypti, Hendersonula toruloidea, H. cypria, Exosporina fawcetii, H. agathidia, and S. lignicola) is Fusicoccum dimidiatum (Penz.) D.F. Farr, comb. nov.

  15. Novel taxa in the Fusarium fujikuroi species complex from Pinus spp.

    PubMed

    Herron, D A; Wingfield, M J; Wingfield, B D; Rodas, C A; Marincowitz, S; Steenkamp, E T

    2015-03-01

    The pitch canker pathogen Fusarium circinatum has caused devastation to Pinus spp. in natural forests and non-natives in commercially managed plantations. This has drawn attention to the potential importance of Fusarium species as pathogens of forest trees. In this study, we explored the diversity of Fusarium species associated with diseased Pinus patula, P. tecunumanii, P. kesiya and P. maximinoi in Colombian plantations and nurseries. Plants displaying symptoms associated with a F. circinatum-like infection (i.e., stem cankers and branch die-back on trees in plantations and root or collar rot of seedlings) were sampled. A total of 57 isolates were collected and characterised based on DNA sequence data for the translation elongation factor 1-α and β-tubulin gene regions. Phylogenetic analyses of these data allowed for the identification of more than 10 Fusarium species. These included F. circinatum, F. oxysporum, species within the Fusarium solani species complex and seven novel species in the Fusarium fujikuroi species complex (formerly the Gibberella fujikuroi species complex), five of which are described here as new. Selected isolates of the new species were tested for their pathogenicity on Pinus patula and compared with that of F. circinatum. Of these, F. marasasianum, F. parvisorum and F. sororula displayed levels of pathogenicity to P. patula that were comparable with that of F. circinatum. These apparently emerging pathogens thus pose a significant risk to forestry in Colombia and other parts of the world.

  16. Research promises earlier warning for grapevine canker diseases

    USDA-ARS?s Scientific Manuscript database

    When it comes to detecting and treating vineyards for grapevine canker diseases (also called trunk diseases), like Botryosphaeria dieback (Bot canker), Esca, Eutypa dieback and Phomopsis dieback, the earlier the better, says plant pathologist Kendra Baumgartner, with the USDA’s Agricultural Research...

  17. Apple anthracnose canker life cycle and disease cycle

    USDA-ARS?s Scientific Manuscript database

    Apple anthracnose [caused by Neofabraea malicorticis (H.S. Jacks) anamorph Cryptosporiopsis curvispora (Peck)] is a fungal disease that impacts apple production. The pathogen produces cankers on trees as well as a rot on the fruit known as ‘Bull’s-eye rot’. The cankers cause severe damage to trees...

  18. Phytophthora species associated with tanoak stem cankers in southwestern Oregon

    Treesearch

    Paul Reeser; Wendy Sutton; Everett Hansen

    2009-01-01

    From 2001 through 2006 stem cankers on tanoak (Lithocarpus densiflorus) were sampled during surveys to detect and eradicate Phytophthora ramorum from forests in southwestern Oregon. Pieces of bark from stem canker margins were plated on cornmeal agar amended with 10 ppm natamycin, 200 ppm Na-ampicillin, and 10 ppm rifampicin....

  19. Family disintegration: one fusarium verticillioides beta-lactamase at a time

    USDA-ARS?s Scientific Manuscript database

    Fusarium verticillioides is a mycotoxigenic fungus found commonly on maize, where it primarily exhibits asymptomatic endophytic growth. The F. verticillioides genome possesses approximately 30 regions that potentially encode beta-lactamase enzymatic domains. These enzymes are classically involved ...

  20. Ethanol attracts scolytid beetles to Phytophthora ramorum cankers on coast live oak

    Treesearch

    Rick G. Kelsey; Maia M. Beh; David C. Shaw; Daniel K. Manter

    2013-01-01

    Ethanol in sapwood was analyzed along vertical transects, through small spot cankers and larger basal cankers, of Phytophthora ramorum-infected stems of Quercus agrifolia at three sites in California. Trees with large basal cankers, known to attract scolytid beetles, had a 4.3 times higher ethanol level than trees with spot cankers...

  1. New tricks of an old enemy: Isolates of Fusarium graminearum produce a type A trichothecene mycotoxin

    USDA-ARS?s Scientific Manuscript database

    The ubiquitous filamentous fungus Fusarium graminearum causes the important disease Fusarium head blight on various species of cereals, leading to contamination of grains with mycotoxins. In a survey of F. graminearum (sensu stricto) on wheat in North America several novel strains were isolated, whi...

  2. New tricks of an old enemy: isolates of Fusarium graminearum produce a type A trichothecene mycotoxin

    USDA-ARS?s Scientific Manuscript database

    The ubiquitous filamentous fungus Fusarium graminearum causes the important disease Fusarium head blight on various species of cereals, leading to contamination of grains with mycotoxins. In a survey of F. graminearum (sensu stricto) on wheat in North America several novel strains were isolated, whi...

  3. Genetic transformation of Fusarium oxysporum f.sp. gladioli with Agrobacterium to study pathogenesis in Gladiolus

    USDA-ARS?s Scientific Manuscript database

    Fusarium rot caused by Fusarium oxysporum f.sp. gladioli (Fog) is one of the most serious diseases of Gladiolus, both in the field and in stored bulbs. In order to study the pathogenesis of this fungus, we have transformed Fog with Agrobacterium tumefaciens binary vectors containing the hygromycin B...

  4. Diallel analysis of resistance to fusarium ear rot and fumonisin contamination in maize

    USDA-ARS?s Scientific Manuscript database

    The fungus Fusarium verticillioides infects maize ears and kernels, resulting in Fusarium ear rot disease, reduced grain yields, and contamination of grain with the mycotoxin fumonisin. Typical hybrid maize breeding programs involve selection for both favorable inbred and hybrid performance, and the...

  5. The role of trichothecenes in the Triticeae-Fusarium graminearum interactions

    USDA-ARS?s Scientific Manuscript database

    Fusarium Head Blight (FHB), caused by Fusarium graminearum, is a major disease problem for the small grain crops wheat and barley. During infection, F. graminearum produces trichothecene mycotoxins such as deoxynivalenol (DON) that increase the aggressiveness of the fungus and reduces grain quality....

  6. Population genomics of Fusarium graminearum head blight pathogens in North America

    USDA-ARS?s Scientific Manuscript database

    In this study we utilized comparative genomics to identify candidate adaptive alleles in the fungus Fusarium graminearum, the primary pathogen of Fusarium head blight (FHB) in cereal crops. Recent epidemics of FHB have been economically devastating to agriculture, as F. graminearum reduces cereal yi...

  7. Insights into natural products biosynthesis from analysis of 490 polyketide synthases from Fusarium

    USDA-ARS?s Scientific Manuscript database

    Species of the fungus Fusarium collectively cause disease on almost all crop plants and produce numerous natural products (NPs), including some of the mycotoxins of greatest concern to agriculture. Many Fusarium NPs are derived from polyketide synthases, large multi-domain enzymes that catalyze sequ...

  8. A major quantitative trait locus is associated with Fusarium Wilt Race 1 resistance in watermelon

    USDA-ARS?s Scientific Manuscript database

    Fusarium wilt is a major disease of watermelon caused by the soil-borne fungus Fusarium oxysporum Schlechtend.:Fr. f. sp. niveum (E.F. Sm.) W.C. Snyder & H.N. Hans (Fon). A genetic population of 186 F3 families (24 plants in each family) exhibited continuous segregation for Fon race 1 response. Geno...

  9. Fusarium pathogenesis investigated using Galleria mellonella as a heterologous host

    PubMed Central

    Coleman, Jeffrey J.; Muhammed, Maged; Kasperkovitz, Pia V.; Vyas, Jatin M.; Mylonakis, Eleftherios

    2011-01-01

    Members of the fungal genus Fusarium are capable of manifesting in a multitude of clinical infections, most commonly in immunocompromised patients. In order to better understand the interaction between the fungus and host, we have developed the larvae of the greater wax moth, Galleria mellonella, as a heterologous host for fusaria. When conidia are injected into the hemocoel of this Lepidopteran system, both clinical and environmental isolates of the fungus are able to kill the larvae at 37°C, although killing occurs more rapidly when incubated at 30°C. This killing was dependent on several other factors besides temperature, including the Fusarium strain, the number of conidia injected, and the conidia morphology, where macroconidia are more virulent than their microconidia counterpart. There was a correlation in the killing rate of Fusarium spp. when evaluated in G. mellonella and a murine model. In vivo studies indicated G. mellonella hemocytes were capable of initially phagocytosing both conidial morphologies. The G. mellonella system was also used to evaluate antifungal agents, and amphotericin B was able to confer a significant increase in survival to Fusarium infected-larvae. The G. mellonella-Fusarium pathogenicity system revealed that virulence of Fusarium spp. is similar, regardless of the origin of the isolate, and that mammalian endothermy is a major deterrent for Fusarium infection and therefore provides a suitable alternative to mammalian models to investigate the interaction between the host and this increasingly important fungal pathogen. PMID:22115447

  10. First Report on Fusarium Wilt of Zucchini Caused by Fusarium oxysporum, in Korea.

    PubMed

    Choi, In-Young; Kim, Ju-Hee; Lee, Wang-Hyu; Park, Ji-Hyun; Shin, Hyeon-Dong

    2015-06-01

    Fusarium wilt of zucchini in Jeonju, Korea, was first noticed in May 2013. Symptoms included wilting of the foliage, drying and withering of older leaves, and stunting of plants. Infected plants eventually died during growth. Based on morphological characteristics and phylogenetic analyses of the molecular markers (internal transcribed spacer rDNA and translation elongation factor 1α), the fungus was identified as Fusarium oxysporum. Pathogenicity of a representative isolate was demonstrated via artificial inoculation, and it satisfied Koch's postulates. To our knowledge, this is the first report of F. oxysporum causing wilt of zucchini in Korea.

  11. Effector profiles distinguish formae speciales of Fusarium oxysporum

    USDA-ARS?s Scientific Manuscript database

    Formae speciales (ff. spp.) of the fungus Fusarium oxysporum are often polyphyletic in their origin, meaning that strains that infect a particular plant species are not necessarily more closely related to each other than to strains that cause disease in another host. Nevertheless, since strains of t...

  12. Lignin Degradation by Fusarium solani f. sp. glycines

    USDA-ARS?s Scientific Manuscript database

    Sudden death syndrome (SDS), caused by the soilborne fungal pathogen Fusarium solani f. sp. glycines, is one of the most important diseases of soybean. Lignin degradation may play a role in the infection, colonization, and survival of the fungus in root tissue . Lignin degradation by F. solani f. sp...

  13. Molecular Exploration of Beta-Lactamases in Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    The mycotoxigenic fungus Fusarium verticillioides (Fv) is one of the most prevalent maize fungal pathogens. Fv mycotoxins are a significant food safety issue and have given rise to exposure concerns worldwide. The FDB1 locus, a beta-lactamase-containing Fv gene cluster, was previously shown to be in...

  14. The depudecin cluster – a genetic curiosity in Fusarium langsethiae

    USDA-ARS?s Scientific Manuscript database

    Fusarium langsethiae is a consistent fungal contaminant on oat cereals in the Nordic region, the UK, as well as other parts of Europe. Leaving few symptoms of disease on the plant, the fungus is, however, the main producer of T-2 and HT-2 mycotoxins which can be found contaminating food and feed der...

  15. Labelling studies on the biosynthesis of terpenes in Fusarium fujikuroi.

    PubMed

    Citron, Christian A; Brock, Nelson L; Tudzynski, Bettina; Dickschat, Jeroen S

    2014-05-25

    Synthetic [2-(13)C]mevalonolactone was fed to the gibberellin producer Fusarium fujikuroi and its incorporation into four known terpenoids was investigated by (13)C NMR analysis of crude culture extracts. The experiments gave detailed insights into the mechanisms of terpene biosynthesis by this fungus.

  16. Fusarium MLST database

    USDA-ARS?s Scientific Manuscript database

    The CBS-KNAW Fungal Biodiversity Centre’s Fusarium MLST website (http://www.cbs.knaw.nl/Fusarium), and the corresponding Fusarium-ID site hosted at the Pennsylvania State University (http://isolate.fusariumdb.org; Geiser et al. 2004, Park et al. 2010) were constructed to facilitate identification of...

  17. Analyses of the Xylem Sap Proteomes Identified Candidate Fusarium virguliforme Proteinacious Toxins

    PubMed Central

    Abeysekara, Nilwala S.; Bhattacharyya, Madan K.

    2014-01-01

    Background Sudden death syndrome (SDS) caused by the ascomycete fungus, Fusarium virguliforme, exhibits root necrosis and leaf scorch or foliar SDS. The pathogen has never been identified from the above ground diseased foliar tissues. Foliar SDS is believed to be caused by host selective toxins, including FvTox1, secreted by the fungus. This study investigated if the xylem sap of F. virguliforme-infected soybean plants contains secreted F. virguliforme-proteins, some of which could cause foliar SDS development. Results Xylem sap samples were collected from five biological replications of F. virguliforme-infected and uninfected soybean plants under controlled conditions. We identified five F. virguliforme proteins from the xylem sap of the F. virguliforme-infected soybean plants by conducting LC-ESI-MS/MS analysis. These five proteins were also present in the excreted proteome of the pathogen in culture filtrates. One of these proteins showed high sequence identity to cerato-platanin, a phytotoxin produced by Ceratocystis fimbriata f. sp. platani to cause canker stain disease in the plane tree. Of over 500 soybean proteins identified in this study, 112 were present in at least 80% of the sap samples collected from F. virguliforme-infected and -uninfected control plants. We have identified four soybean defense proteins from the xylem sap of F. virguliforme-infected soybean plants. The data have been deposited to the ProteomeXchange with identifier PXD000873. Conclusion This study confirms that a few F. virguliforme proteins travel through the xylem, some of which could be involved in foliar SDS development. We have identified five candidate proteinaceous toxins, one of which showed high similarity to a previously characterized phytotoxin. We have also shown the presence of four soybean defense proteins in the xylem sap of F. virguliforme-infected soybean plants. This study laid the foundation for studying the molecular basis of foliar SDS development in soybean and

  18. Quantification of Fusarium virguliforme in soybean roots of partially resistant and susceptible genotypes using quantitative polymerase chain reaction

    USDA-ARS?s Scientific Manuscript database

    Soybean sudden death syndrome, caused by Fusarium virguliforme (syn. Fusarium solani f. sp. glycines), was first reported in 1971, in Arkansas. Since then, the fungus has spread to the northern United States, causing significant soybean yield losses. Soybean resistance to F. virguliforme is consider...

  19. Inhibition of Fusarium graminiarum growth in flour gel cultures by hexane soluble compounds from oat (Avena sativa L.) flour

    USDA-ARS?s Scientific Manuscript database

    Fusarium head blight, caused by the fungus Fusarium graminearum, primarily affects wheat (Triticum aestivum) and barley (Hordeum vulgarum) while oat (Avena sativa) appears to be more resistant. Although this has generally been attributed to the open panicle of oats, we hypothesized that a chemical c...

  20. Incorporating exposure to pitch canker disease to support management decisions of Pinus pinaster Ait. in the face of climate change

    PubMed Central

    Serra-Varela, María Jesús; Alía, Ricardo; Pórtoles, Javier; Gonzalo, Julián; Soliño, Mario; Grivet, Delphine; Raposo, Rosa

    2017-01-01

    Climate change is gravely affecting forest ecosystems, resulting in large distribution shifts as well as in increasing infection diseases and biological invasions. Accordingly, forest management requires an evaluation of exposure to climate change that should integrate both its abiotic and biotic components. Here we address the implications of climate change in an emerging disease by analysing both the host species (Pinus pinaster, Maritime pine) and the pathogen’s (Fusarium circinatum, pitch canker) environmental suitability i.e. estimating the host’s risk of habitat loss and the disease`s future environmental range. We constrained our study area to the Spanish Iberian Peninsula, where accurate climate and pitch canker occurrence databases were available. While P. pinaster is widely distributed across the study area, the disease has only been detected in its north-central and north-western edges. We fitted species distribution models for the current distribution of the conifer and the disease. Then, these models were projected into nine Global Climate Models and two different climatic scenarios which totalled to 18 different future climate predictions representative of 2050. Based on the level of agreement among them, we created future suitability maps for the pine and for the disease independently, which were then used to assess exposure of current populations of P. pinaster to abiotic and biotic effects of climate change. Almost the entire distribution of P. pinaster in the Spanish Iberian Peninsula will be subjected to abiotic exposure likely to be driven by the predicted increase in drought events in the future. Furthermore, we detected a reduction in exposure to pitch canker that will be concentrated along the north-western edge of the study area. Setting up breeding programs is recommended in highly exposed and productive populations, while silvicultural methods and monitoring should be applied in those less productive, but still exposed, populations

  1. Incorporating exposure to pitch canker disease to support management decisions of Pinus pinaster Ait. in the face of climate change.

    PubMed

    Serra-Varela, María Jesús; Alía, Ricardo; Pórtoles, Javier; Gonzalo, Julián; Soliño, Mario; Grivet, Delphine; Raposo, Rosa

    2017-01-01

    Climate change is gravely affecting forest ecosystems, resulting in large distribution shifts as well as in increasing infection diseases and biological invasions. Accordingly, forest management requires an evaluation of exposure to climate change that should integrate both its abiotic and biotic components. Here we address the implications of climate change in an emerging disease by analysing both the host species (Pinus pinaster, Maritime pine) and the pathogen's (Fusarium circinatum, pitch canker) environmental suitability i.e. estimating the host's risk of habitat loss and the disease`s future environmental range. We constrained our study area to the Spanish Iberian Peninsula, where accurate climate and pitch canker occurrence databases were available. While P. pinaster is widely distributed across the study area, the disease has only been detected in its north-central and north-western edges. We fitted species distribution models for the current distribution of the conifer and the disease. Then, these models were projected into nine Global Climate Models and two different climatic scenarios which totalled to 18 different future climate predictions representative of 2050. Based on the level of agreement among them, we created future suitability maps for the pine and for the disease independently, which were then used to assess exposure of current populations of P. pinaster to abiotic and biotic effects of climate change. Almost the entire distribution of P. pinaster in the Spanish Iberian Peninsula will be subjected to abiotic exposure likely to be driven by the predicted increase in drought events in the future. Furthermore, we detected a reduction in exposure to pitch canker that will be concentrated along the north-western edge of the study area. Setting up breeding programs is recommended in highly exposed and productive populations, while silvicultural methods and monitoring should be applied in those less productive, but still exposed, populations.

  2. The transcription cofactor FgSwi6 plays a role in growth and development, carbendazim sensitivity, cellulose utilization, lithium tolerance, deoxynivalenol production and virulence in the filamentous fungus Fusarium graminearum.

    PubMed

    Liu, Ningning; Fan, Feiyu; Qiu, Dewen; Jiang, Linghuo

    2013-01-01

    Fusarium head blight (FHB) is a worldwide devastating disease of wheat, barley and other small grain cereals and caused primarily by Fusarium graminearum. Carbendazim (MBC) is one of the fungicides widely used to control FHB in China. In the present study, we have identified the F. graminearum locus FGSG_04220 as the sequence homolog for Saccharomyces cerevisiae ScSWI6, named FgSWI6 hereafter. Deletion of FgSWI6 causes mycelium of F. graminearum become sensitive to MBC in liquid medium. In addition, deletion of FgSWI6 reduces mycelial growth as well as production and development of conidia. F. graminearum cells lacking FgSWI6 show reduced production efficiency and sizes of perithecia as well as a defect in the production of ascus and ascospore. FgSWI6 is required for the cellulose utilization, lithium tolerance and deoxynivalenol (DON) production of this pathogen. Furthermore, deletion of FgSWI6 significantly attenuates the virulence of F. graminearum on wheat. Therefore, FgSwi6p plays an important role in growth and development of the economically important fungal pathogen F. graminearum as well as its resistance to MBC.

  3. Inhibition of HMG-CoA reductase by MFS, a purified extract from the fermentation of marine fungus Fusarium solani FG319, and optimization of MFS production using response surface methodology.

    PubMed

    Zhou, Yu; Wu, Wen-Hui; Zhao, Qing-Bo; Wang, Xiao-Yu; Bao, Bin

    2015-05-01

    The present study was designed to isolate and characterize a purified extract from Fusarium solani FG319, termed MFS (Metabolite of Fusarium solani FG319) that showed anti-atherosclerosis activity by inhibiting 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Response surface methodology (RSM) was employed to achieve an improved yield from the fermentation medium. The inhibiting effect of the isolate, MFS, on HMG-CoA reductase was greater than that of the positive control, lovastatin. The average recovery of MFS and the relative standard deviation (RSD) ranged between 99.75% to 101.18%, and 0.31% to 0.74%, respectively. The RSDs intra- and inter-assay of the three samples ranged from 0.288% to 2.438%, and from 0.934% to 2.383%, respectively. From the RSM, the concentration of inducer, cultivation time, and culture temperatures had significant effects on the MFS production, with the effect of inducer concentration being more pronounced that other factors. In conclusion, the optimal conditions for the MFS production were achieved using RSM and that MFS could be explored as an anti-atherosclerosis agent based on its ability to inhibit HMG-CoA reductase.

  4. Breeding resistance to butternut canker disease

    Treesearch

    James McKenna; Keith Woeste; Michael Ostry

    2012-01-01

    Butternut (Juglans cinerea L.) is being killed throughout its native range by an exotic fungus Ophiognomonia clavigignenti-juglandacearum (Ocj). In recent years, many disease-free trees have been determined to be complex hybrids with an admixture of Japanese walnut (J. ailantifolia)....

  5. Novel taxa in the Fusarium fujikuroi species complex from Pinus spp.

    PubMed Central

    Herron, D.A.; Wingfield, M.J.; Wingfield, B.D.; Rodas, C.A.; Marincowitz, S.; Steenkamp, E.T.

    2015-01-01

    The pitch canker pathogen Fusarium circinatum has caused devastation to Pinus spp. in natural forests and non-natives in commercially managed plantations. This has drawn attention to the potential importance of Fusarium species as pathogens of forest trees. In this study, we explored the diversity of Fusarium species associated with diseased Pinus patula, P. tecunumanii, P. kesiya and P. maximinoi in Colombian plantations and nurseries. Plants displaying symptoms associated with a F. circinatum-like infection (i.e., stem cankers and branch die-back on trees in plantations and root or collar rot of seedlings) were sampled. A total of 57 isolates were collected and characterised based on DNA sequence data for the translation elongation factor 1-α and β-tubulin gene regions. Phylogenetic analyses of these data allowed for the identification of more than 10 Fusarium species. These included F. circinatum, F. oxysporum, species within the Fusarium solani species complex and seven novel species in the Fusarium fujikuroi species complex (formerly the Gibberella fujikuroi species complex), five of which are described here as new. Selected isolates of the new species were tested for their pathogenicity on Pinus patula and compared with that of F. circinatum. Of these, F. marasasianum, F. parvisorum and F. sororula displayed levels of pathogenicity to P. patula that were comparable with that of F. circinatum. These apparently emerging pathogens thus pose a significant risk to forestry in Colombia and other parts of the world. PMID:26955193

  6. Ethanol attracts scolytid beetles to Phytophthora ramorum cankers on coast live oak

    USDA-ARS?s Scientific Manuscript database

    Technical abstract: Ethanol in sapwood was analyzed along vertical transects, through small spot cankers and larger basal cankers, of Phytophthora ramorum-infected stems of Quercus agrifolia at three sites in California. Trees with large basal cankers, known to attract scolytid beetles, had a 4.3 ti...

  7. Horsfall-Barratt recalibration and replicated severity estimates of citrus canker

    USDA-ARS?s Scientific Manuscript database

    Citrus canker is a serious disease of citrus in tropical and subtropical citrus growing regions. Accurate and precise assessment of citrus canker and other plant pathogens is needed to obtain good quality data. Citrus canker assessment data were used to ascertain some of the mechanics of the Horsfal...

  8. Copper Sprays and Windbreaks for Control of Citrus Canker on Young Orange Trees in Southern Brazil

    USDA-ARS?s Scientific Manuscript database

    The benefit of windbreaks and copper sprays for control of citrus canker caused by Xanthomonas axonopodis pv. citri was investigated in a commercial citrus orchard located in a citrus canker endemic area in southern Brazil. Control of canker was evaluated as incidence and severity of lesions on foli...

  9. A meiotic drive element in the maize pathogen Fusarium verticillioides is located within a 102-kb region of chromosome V

    USDA-ARS?s Scientific Manuscript database

    Fusarium verticillioides is an agriculturally important fungus because of its association with maize and its propensity to contaminate grain with toxic compounds. Some isolates of the fungus harbor a meiotic drive element known as Spore killer (SkK) that causes nearly all surviving meiotic progeny f...

  10. Multi-gene phylogenies and phenotypic characters distinguish two species within the Colletogloeopsis zuluensis complex associated with Eucalyptus stem cankers

    PubMed Central

    Cortinas, Maria-Noel; Crous, Pedro W.; Wingfield, Brenda D.; Wingfield, Michael J.

    2006-01-01

    Colletogloeopsis zuluensis, previously known as Coniothyrium zuluense, causes a serious stem canker disease on Eucalyptus spp. grown as non-natives in many tropical and sub-tropical countries. This stem canker disease was first reported from South Africa and it has subsequently been found on various species and hybrids of Eucalyptus in other African countries as well as in countries of South America and South-East Asia. In previous studies, phylogenetic analyses based on DNA sequence data of the ITS region suggested that all material of C. zuluensis was monophyletic. However, the occurrence of the fungus in a greater number of countries, and analyses of DNA sequences with additional isolates has challenged the notion that a single species is involved with Coniothyrium canker. The aim of this study was to consider the phylogenetic relationships amongst C. zuluensis isolates from all available locations and to support these analyses with phenotypic and morphological comparisons. Individual and combined phylogenies were constructed using DNA sequences from the ITS region, exons 3 through 6 of the β-tubulin gene, the intron of the translation elongation factor 1-α gene, and a partial sequence of the mitochondrial ATPase 6 gene. Both phylogenetic data and morphological characteristics showed clearly that isolates of C. zuluensis represent at least two taxa. One of these is C. zuluensis as it was originally described from South Africa, and we provide an epitype for it. The second species occurs in Argentina and Uruguay, and is newly described as C. gauchensis. Both fungi are serious pathogens resulting in identical symptoms. Recognising them as different species has important quarantine consequences. PMID:18490975

  11. Fungus Amongus

    ERIC Educational Resources Information Center

    Wakeley, Deidra

    2005-01-01

    This role-playing simulation is designed to help teach middle level students about the typical lifecycle of a fungus. In this interactive simulation, students assume the roles of fungi, spores, living and dead organisms, bacteria, and rain. As they move around a playing field collecting food and water chips, they discover how the organisms…

  12. Fungus Amongus

    ERIC Educational Resources Information Center

    Wakeley, Deidra

    2005-01-01

    This role-playing simulation is designed to help teach middle level students about the typical lifecycle of a fungus. In this interactive simulation, students assume the roles of fungi, spores, living and dead organisms, bacteria, and rain. As they move around a playing field collecting food and water chips, they discover how the organisms…

  13. Variation in Host and Pathogen in the Neonectria/Malus Interaction; toward an Understanding of the Genetic Basis of Resistance to European Canker

    PubMed Central

    Gómez-Cortecero, Antonio; Saville, Robert J.; Scheper, Reiny W. A.; Bowen, Joanna K.; Agripino De Medeiros, Hugo; Kingsnorth, Jennifer; Xu, Xiangming; Harrison, Richard J.

    2016-01-01

    Apple canker caused by the phytopathogenic fungus Neonectria ditissima is an economically important disease, which has spread in recent years to almost all pome-producing regions of the world. N. ditissima is able to cross-infect a wide range of apple varieties and causes branch and trunk lesions, known as cankers. Most modern apple varieties are susceptible and in extreme cases suffer from high mortality (up to 50%) in the early phase of orchard establishment. There is no known race structure of the pathogen and the global level of genetic diversity of the pathogen population is unknown. Resistance breeding is underway in many global breeding programmes, but nevertheless, a total resistance to canker has not yet been demonstrated. Here we present preliminary data from a survey of the phylogenetic relationships between global isolates of N. ditissima which reveals only slight evidence for population structure. In addition we report the results of four rapid screening tests to assess the response to N. ditissima in different apple scion and rootstock varieties, which reveals abundant variation in resistance responses in both cultivar and rootstock material. Further seedling tests show that the segregation patterns of resistance and susceptibility vary widely between crosses. We discuss inconsistencies in test performance with field observations and discuss future research opportunities in this area. PMID:27695463

  14. Inoculation methods for Populus tremuloides resistant to Hypoxylon canker

    Treesearch

    S. A. Enebak; Michael E. Ostry; N. A. Anderson

    1999-01-01

    Canker expansion and the amount of callus tissue formed were measured monthly on 60 ramets from each of five trembling aspen (Populus tremuloides Michx.) clones that had been inoculated in wounds with Entoleuca mammata (= Hypoxylon marnmatum (Wahl.) Mill) over a 12-month period. At the clone level, the prevalence...

  15. Citrus diseases with global ramifications including citrus canker and huanglongbing

    USDA-ARS?s Scientific Manuscript database

    Although there are a number of diseases that plague citrus production worldwide, two bacterial diseases are particularly problematic. Both are of Asian origin and currently cause severe economic damage: Asiatic citrus canker (ACC) and citrus huanglongbing (HLB). Although ACC has been found in the ...

  16. Developing Transgenic Citrus for Resistance to Huanglongbing and Citrus Canker

    USDA-ARS?s Scientific Manuscript database

    Huanglongbing (HLB) and Citrus Bacterial Canker (CBC) are serious threats to citrus production, and resistant transgenic citrus is desirable. Genes for antimicrobial peptides (AMPs) with diverse promoters have been used to generate thousands of rootstock and scion transformants. D35S::D4E1 transfor...

  17. Pruning for prevention and management of canker diseases

    USDA-ARS?s Scientific Manuscript database

    Trunk diseases (wood-canker diseases) threaten all California vineyards due to widespread distribution of the fungal pathogens. The infections are chronic and occur each year. Trunk diseases in mature vineyards reduce yields and increase management costs to the point where the vineyard is no longer ...

  18. Hypoxylon Canker of Aspen Associated With Saperda inornata Galls

    Treesearch

    Neil A. Anderson; Michael E. Ostry; Gerald W. Anderson

    1976-01-01

    Preliminary findings from a study to gain information on the inflection process and genetics of resistance of the Hypoxylon canker fungue (Hypoxylon mammatum) on aspen (Populus tremuloides) indicate that the poplar-gall Saperda (Saperda inornata) may be involved. This paper describes the types of wounds made by...

  19. Scleroderris Canker in the Lake States - A Situation Report, 1968

    Treesearch

    Darroll D. Skilling; James T. O' Brian

    1969-01-01

    The history of Scleroderris canker in the Lake States Region is reviewed. U.S.D.A. Forest Service studies on the distribution, degree of infection, rate of spread, and general biology of the disease organism are described. On National Forest land in Upper Michigan and northern Wisconsin, where the disease is most serious, 66 percent of the red pine plantations and 88...

  20. Agrobacterium tumefaciens-mediated transformation of the causative agent of Valsa canker of apple tree Valsa mali var. mali.

    PubMed

    Hu, Yang; Dai, Qingqing; Liu, Yangyang; Yang, Zhe; Song, Na; Gao, Xiaoning; Voegele, Ralf Thomas; Kang, Zhensheng; Huang, Lili

    2014-06-01

    Valsa mali var. mali (Vmm), which is the causative agent of Valsa canker of apple tree, causes heavy damage to apple production in eastern Asia. In this article, we report Agrobacterium tumefaciens-mediated transformation (ATMT) of Vmm and expression of gfp (green fluorescent protein) in this fungus. The transformation system was optimized to a transformation efficiency of approximately 150 transformants/10(6) conidia, and a library containing over 4,000 transformants was generated. The tested transformants were mitotically stable. One hundred percent hph (hygromycin B phosphotransferase) integration into Vmm was identified by PCR and five single-copy integration of T-DNA was detected in the eighteen transformants by Southern blot. To our knowledge, this is the first report of ATMT of Vmm. Furthermore, this library has been used to identify genes involved in the virulence of the pathogen, and the transformation system may also be useful to the transformation of other species of the genus Valsa.

  1. Dynamic regions within and horizontal transfer of an otherwise stable gene cluster responsible for synthesis of the Fusarium mycotoxin fusaric acid

    USDA-ARS?s Scientific Manuscript database

    The Fusarium mycotoxin fusaric acid is toxic to plants as well as animals, but its function in the biology of the fungus is not known. Here, we used genome sequencing to survey multiple species in 18 lineages (species complexes) of Fusarium for the presence of the fusaric acid biosynthetic gene (FUB...

  2. Genetic mapping and identification of quantitative trait loci associated with resistance to Fusarium oxysporum f. sp. niveum races 1 and 2 in watermelon

    USDA-ARS?s Scientific Manuscript database

    Fusarium wilt is a major disease of watermelon caused by the soil-borne fungus Fusarium oxysporum Schlechtend.:Fr. f. sp. niveum (E.F. Sm.) W.C. Snyder & H.N. Hans (Fon). Fon race 1 is most prevalent throughout the U.S. while race 2 is more virulent. Our overall objective is to identify and utilize ...

  3. Disruption of ceramide biosynthesis and accumulation of sphingoid bases and sphingoid base 1-phosphates: A mechanism for Fusarium verticillioides effects in maize-seedling disease.

    USDA-ARS?s Scientific Manuscript database

    In sweet corn at the seedling and seed maturation stages, Fusarium can be a serious field problem. The fungus Fusarium verticillioides infects maize and produces fumonisins, inhibitors of ceramide synthase. To determine the role of fumonisins in maize seedling disease, seeds were inoculated with fu...

  4. Fusarium Wilt of Orchids

    USDA-ARS?s Scientific Manuscript database

    Fusarium wilt of orchids is highly destructive and economically limiting to the production of quality orchids that has steadily increased in many production facilities. Important crops such as phalaenopsis, cattleyas, and oncidiums appear to be especially susceptible to certain Fusarium species. Fu...

  5. Diagnosis of Fusarium keratitis in an animal model using the polymerase chain reaction

    PubMed Central

    Alexandrakis, G.; Jalali, S.; Gloor, P.

    1998-01-01

    AIMS/BACKGROUND—The purpose of this study was apply the polymerase chain reaction (PCR) to develop a sensitive, specific, and rapid test to diagnose Fusarium keratitis. Fusarium is the most common cause of fungal corneal infection in some parts of the world. It is often difficult to establish that a keratitis is due to fungal infection.
METHODS—Fusarium solani keratitis was induced in three eyes of three rabbits by injection of a suspension of the fungus into the anterior corneal stroma. In one rabbit the contralateral eye served as a control. From four to 28 days after inoculation, the corneas were scraped for culture, then scraped and swabbed for PCR analysis. The PCR was performed with primers directed against a portion of the Fusarium cutinase gene, and the presence or absence of this amplified target sequence was determined by agarose gel.
RESULTS—The amplified DNA sequence was detected in 25 of 28 samples from the corneas infected with Fusarium, for a sensitivity of 89%. Only three of the 14 samples from these eyes with Fusarium keratitis were positive by culture, for a sensitivity of 21%. Seven of eight control samples were negative by the PCR based test, for a specificity of 88%.
CONCLUSION—This PCR based test holds promise of being an effective method of diagnosing Fusarium keratitis as well as Fusarium infections at other sites.

 Keywords: keratitis; Fusarium; ulcer; cornea; polymerase chain reaction PMID:9602631

  6. Evaluation of two methods for direct detection of Fusarium spp. in water.

    PubMed

    Graça, Mariana G; van der Heijden, Inneke M; Perdigão, Lauro; Taira, Cleison; Costa, Silvia F; Levin, Anna S

    2016-04-01

    Fusarium is a waterborne fungus that causes severe infections especially in patients with prolonged neutropenia. Traditionally, the detection of Fusarium in water is done by culturing which is difficult and time consuming. A faster method is necessary to prevent exposure of susceptible patients to contaminated water. The objective of this study was to develop a molecular technique for direct detection of Fusarium in water. A direct DNA extraction method from water was developed and coupled to a genus-specific PCR, to detect 3 species of Fusarium (verticillioides, oxysporum and solani). The detection limits were 10 cells/L and 1 cell/L for the molecular and culture methods, respectively. To our knowledge, this is the first method developed to detect Fusarium directly from water.

  7. Biological control of Fusarium moniliforme in maize.

    PubMed Central

    Bacon, C W; Yates, I E; Hinton, D M; Meredith, F

    2001-01-01

    Fusarium moniliforme Sheldon, a biological species of the mating populations within the (italic)Gibberella fujikuroi species complex, i.e., population A [= G. moniliformis (Sheld.) Wineland], is an example of a facultative fungal endophyte. During the biotrophic endophytic association with maize, as well as during saprophytic growth, F. moniliforme produces the fumonisins. The fungus is transmitted vertically and horizontally to the next generation of plants via clonal infection of seeds and plant debris. Horizontal infection is the manner by which this fungus is spread contagiously and through which infection occurs from the outside that can be reduced by application of certain fungicides. The endophytic phase is vertically transmitted. This type infection is important because it is not controlled by seed applications of fungicides, and it remains the reservoir from which infection and toxin biosynthesis takes place in each generation of plants. Thus, vertical transmission of this fungus is just as important as horizontal transmission. A biological control system using an endophytic bacterium, Bacillus subtilis, has been developed that shows great promise for reducing mycotoxin accumulation during the endophytic (vertical transmission) growth phase. Because this bacterium occupies the identical ecological niche within the plant, it is considered an ecological homologue to F. moniliforme, and the inhibitory mechanism, regardless of the mode of action, operates on the competitive exclusion principle. In addition to this bacterium, an isolate of a species of the fungus Trichoderma shows promise in the postharvest control of the growth and toxin accumulation from F. moniliforme on corn in storage. PMID:11359703

  8. Sensitive detection of Fusarium circinatum in pine seed by combining an enrichment procedure with a real-time polymerase chain reaction using dual-labeled probe chemistry.

    PubMed

    Ioos, Renaud; Fourrier, Céline; Iancu, Gabriela; Gordon, Thomas R

    2009-05-01

    Fusarium circinatum is the causal agent of pitch canker disease on numerous Pinus spp. This aggressive fungus may infect pine seed cryptically and, therefore, can easily be spread long distances by the seed trade. F. circinatum has recently been listed as a quarantine organism in numerous countries throughout the world, which prompted the development of a specific and sensitive tool for the detection of this pathogen in conifer seed. A new detection protocol for F. circinatum based on a biological enrichment step followed by a real-time polymerase chain reaction (PCR) assay was developed. Several enrichment protocols were compared and a 72-h incubation of the seed with potato dextrose broth was the most efficient technique to increase F. circinatum biomass before DNA extraction. The relative accuracy, specificity, and sensitivity of the real-time PCR assay was evaluated in comparison with a previously published conventional PCR test on 420 seed DNA extracts. The real-time PCR described here proved to be highly specific and significantly more sensitive than the conventional PCR, and enabled the detection of F. circinatum in samples artificially contaminated with less than 1/1,000 infected seed, as well as in naturally infected samples. Last, in order to routinely check the quality of the seed DNA extracts, a primer-probe combination that targets a highly conserved region within the 18S ribosomal DNA in plants or fungi was successfully developed. This assay allows for quick and reliable detection of F. circinatum in seed, which can help to prevent long-distance spread of the pathogen via contaminated seed lots.

  9. The influence of environmental factors on growth and interactions between Embellisia allii and Fusarium oxysporum f. sp. cepae isolated from garlic.

    PubMed

    Lee, Hyang Burm; Magan, Naresh

    2010-04-15

    Embellisia allii results in the formation of a bulb canker and black soot on the surface of different alliums and it has been frequently detected on garlic bulbs together with the spoilage fungus, Fusarium oxysporum f. sp. cepae, which causes bulb basal plate rot. In this study, the influence of water activity (a(w)) and temperature on mycelial growth of E. allii and F. oxysporum f. sp. cepae, conidial size and sporulation of E. allii, interactions between E. allii and F. oxysporum f. sp. cepae, Index of Dominance (I(D)), and in situ virulence on garlic were examined. Mycelial growth of E. allii was optimal (5.97 mm/day) at 0.995 a(w) and 25 degrees C, slower at 30 degrees C. However, almost no growth occurred at 0.937 a(w)/30 degrees C. F. oxysporum f. sp. cepae grew faster than E. allii, (6.3-7.4mm/day) at 30 degrees C. Interactions between E. allii and F. oxysporum f. sp. cepae were influenced by a(w) and temperature. Sporulation of E. allii was more abundant on PDA than on MEA, especially at high a(w) (0.995) and low temperature (20 degrees C), but almost no sporulation occurred at 30 degrees C regardless of nutritional medium or a(w) level. The spore length of E. allii was longer on PDA than MEA, and was significantly influenced by water availability. F. oxysporum f. sp. cepae was competitive against E. allii and had a higher I(D) value in comparison with E. allii especially at a higher temperature (30 degrees C). In situ virulence tests showed that E. allii was weakly virulent on the garlic bulb cloves while that of F. oxysporum f. sp. cepae was highly dependent on a(w). (c) 2010 Elsevier B.V. All rights reserved.

  10. Insights into natural products biosynthesis from analysis of 490 polyketide synthases from Fusarium.

    PubMed

    Brown, Daren W; Proctor, Robert H

    2016-04-01

    Species of the fungus Fusarium collectively cause disease on almost all crop plants and produce numerous natural products (NPs), including some of the mycotoxins of greatest concern to agriculture. Many Fusarium NPs are derived from polyketide synthases (PKSs), large multi-domain enzymes that catalyze sequential condensation of simple carboxylic acids to form polyketides. To gain insight into the biosynthesis of polyketide-derived NPs in Fusarium, we retrieved 488 PKS gene sequences from genome sequences of 31 species of the fungus. In addition to these apparently functional PKS genes, the genomes collectively included 81 pseudogenized PKS genes. Phylogenetic analysis resolved the PKS genes into 67 clades, and based on multiple lines of evidence, we propose that homologs in each clade are responsible for synthesis of a polyketide that is distinct from those synthesized by PKSs in other clades. The presence and absence of PKS genes among the species examined indicated marked differences in distribution of PKS homologs. Comparisons of Fusarium PKS genes and genes flanking them to those from other Ascomycetes provided evidence that Fusarium has the genetic potential to synthesize multiple NPs that are the same or similar to those reported in other fungi, but that have not yet been reported in Fusarium. The results also highlight ways in which such analyses can help guide identification of novel Fusarium NPs and differences in NP biosynthetic capabilities that exist among fungi.

  11. Insect and Canker Disease Impact in Cottonwood Nurseries

    Treesearch

    J. D. Solomon; J. R. Cook; F. L. Oliveria; T. H. Filer

    1976-01-01

    Insects (primarily cottonwood leaf beetle) reduced height growth in nurseries an average of 48.8 cm (19 in) per switch. Such a growth loss would mean a 20-25 percent drop in cuttings produced. In a survey of nine nursery plantings, cull due to borers (primarily clearwing borers)and disease cankers reduced the number of potential cuttings from 1.6 to 25.6 percent and...

  12. Deciphering the cryptic genome: Genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites

    USDA-ARS?s Scientific Manuscript database

    The fungus Fusarium fujikuroi is agriculturally important because it produces the phytohormones gibberellic acids (GAs) and causes bakanae (“foolish seedling”) disease of rice. The fungus also produces multiple other secondary metabolites, including pigments and mycotoxins. Here, we present a high-q...

  13. Suppression of Fusarium wilt of cucumber by ammonia gas fumigation via reduction of Fusarium population in the field.

    PubMed

    Zhao, Jun; Mei, Zhong; Zhang, Xu; Xue, Chao; Zhang, Chenzhi; Ma, Tengfei; Zhang, Shusheng

    2017-02-23

    Cucumber plants subjected to consecutive monoculture for 9 years were found to suffer from severe Fusarium wilt disease, caused by the soil-borne fungus Fusarium oxysporum f. sp. Cucumerinum J. H. Owen. In the present study, greenhouse experiments were performed to evaluate the influence of ammonia gas fumigation on Fusarium wilt suppression, fungal abundance and fungal community composition. Results showed that ammonia gas fumigation remarkably reduced disease incidence from 80% to 27%, resulting in a four-fold increase in yield, compared to the control. Total fungal abundance declined dramatically after fumigation and reached the lowest level at day 32, at 243 times lower than the control. Moreover, fumigation significantly increased soil fungal diversity, though it also decreased considerably coinciding with cucumber growth. Fumigation also significantly altered soil fungal community composition, relative to the control. Fusarium was strongly inhibited by fumigation in both relative abundance (3.8 times lower) and targeted quantification (a decrease of 167 fold). Collectively, the application of ammonia gas fumigation to control Fusarium wilt of cucumber resulted in a re-assembly of the fungal community to resemble that of a non-disease conducive consortium. Additional strategies, such as bioorganic fertilizer application, may still be required to develop sustainable disease suppression following fumigation.

  14. Suppression of Fusarium wilt of cucumber by ammonia gas fumigation via reduction of Fusarium population in the field

    PubMed Central

    Zhao, Jun; Mei, Zhong; Zhang, Xu; Xue, Chao; Zhang, Chenzhi; Ma, Tengfei; Zhang, Shusheng

    2017-01-01

    Cucumber plants subjected to consecutive monoculture for 9 years were found to suffer from severe Fusarium wilt disease, caused by the soil-borne fungus Fusarium oxysporum f. sp. Cucumerinum J. H. Owen. In the present study, greenhouse experiments were performed to evaluate the influence of ammonia gas fumigation on Fusarium wilt suppression, fungal abundance and fungal community composition. Results showed that ammonia gas fumigation remarkably reduced disease incidence from 80% to 27%, resulting in a four-fold increase in yield, compared to the control. Total fungal abundance declined dramatically after fumigation and reached the lowest level at day 32, at 243 times lower than the control. Moreover, fumigation significantly increased soil fungal diversity, though it also decreased considerably coinciding with cucumber growth. Fumigation also significantly altered soil fungal community composition, relative to the control. Fusarium was strongly inhibited by fumigation in both relative abundance (3.8 times lower) and targeted quantification (a decrease of 167 fold). Collectively, the application of ammonia gas fumigation to control Fusarium wilt of cucumber resulted in a re-assembly of the fungal community to resemble that of a non-disease conducive consortium. Additional strategies, such as bioorganic fertilizer application, may still be required to develop sustainable disease suppression following fumigation. PMID:28230182

  15. Nitric oxide detoxification by Fusarium verticillioides flavohemoglobin and role in pathogenicity of maize

    USDA-ARS?s Scientific Manuscript database

    Fusarium verticillioides is a non-obligate plant pathogen of maize causing a number of specific diseases, including root rot, kernel rot, seed rot, stalk rot, and seedling blight. The saprophytic nature of this fungus, its production of the mycotoxin fumonisin, and complex relationship maize puts t...

  16. Comparative genomics and transcriptomics of sexual development in a nematode-associated strain of Fusarium neocosmosporiellum

    USDA-ARS?s Scientific Manuscript database

    Fusarium neocosmosporiellum (formerly Neocosmospora vasinfecta) is a ubiquitous saprobic fungus that has been isolated from plants, fungi, nematodes, dung and soil. This homothallic species is nested in a clade within the F. solani species complex near a lineage of fusaria farmed by ambrosia beetles...

  17. Genes, Gene Clusters, and Biosynthesis of Trichothecenes and Fumonisins in Fusarium

    USDA-ARS?s Scientific Manuscript database

    Trichothecenes and fumonisins are mycotoxins produced by Fusarium, a filamentous fungus that can cause disease on some crop plants, including corn, rice, and wheat. Research on the genetics and biochemistry of trichothecene and fumonisin biosynthesis has provided important insights into the genetic...

  18. Exploring the role of trehalose metabolism in resistance to oxidative and desiccation stress in Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Fusarium verticillioides is a pathogenic filamentous fungus that primarily affects maize. We are exploring stress response mechanisms in F. verticillioides, particularly the role of trehalose, a disaccharide known to be involved in the ability of several organisms to withstand desiccation or drought...

  19. EBR1 genomic expansion and its role in virulence of Fusarium species

    USDA-ARS?s Scientific Manuscript database

    Genome sequencing of Fusarium oxysporum revealed that pathogenic forms of this fungus harbor supernumerary chromosomes with a wide variety of genes, many of which likely encode traits required for pathogenicity or niche specialization. Specific transcription factor (TF) gene families are expanded on...

  20. Food Fight: Fungal Foe Frustration (Fusarium verticillioides vs. the world of xenobiotics)

    USDA-ARS?s Scientific Manuscript database

    Fusarium verticillioides infects maize and produces the fumonisin mycotoxins. The genome of the fungus encodes approximately 30 proteins containing beta-lactamase domains that are roughly evenly split between two families, metallo beta-lactamases and cephalosporinases. In bacteria beta-lactamases ar...

  1. Seed treatment with live or dead Fusarium verticillioides equivalently reduces the severity of subsequent stalk rot

    USDA-ARS?s Scientific Manuscript database

    Fusarium verticillioides is a widely distributed fungus that can associate with maize as a deleterious pathogen and an advantageous endophyte. Here, we show that seed treatment with live F.verticillioides enhances maize resistance to secondary stalk rot infection, and demonstrate that dead F.vertici...

  2. DNA barcoding, MALDI-TOF, and AFLP data support Fusarium ficicrescens as a distinct species within the Fusarium fujikuroi species complex.

    PubMed

    Al-Hatmi, Abdullah M S; Mirabolfathy, Mansoureh; Hagen, Ferry; Normand, Anne-Cécile; Stielow, J Benjamin; Karami-Osbo, Rouhollah; van Diepeningen, Anne D; Meis, Jacques F; de Hoog, G Sybren

    2016-02-01

    The Fusarium fujikuroi species complex (FFSC) is one of the most common groups of fusaria associated with plant diseases, mycotoxin production and traumatic and disseminated human infections. Here we present the description and taxonomy of a new taxon, Fusarium ficicrescens sp. nov., collected from contaminated fig fruits in Iran. Initially this species was identified as Fusarium andiyazi by morphology. In the present study the species was studied by multilocus sequence analysis, amplified fragment length polymorphism (AFLP), matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and phenotypic characters. Multilocus analyses were based on translation elongation factor 1α (TEF1), RNA polymerase subunit (RPB2) and beta-tubulin (BT2) and proved F. ficicrescens as a member of the FFSC. Phylogenetic analysis showed that the fungus is closely related to Fusarium lactis, Fusarium ramigenum, and Fusarium napiforme; known plant pathogens, mycotoxin producers, and occasionally occurring multidrug resistant opportunists. The new species differed by being able to grow at 37 °C and by the absence of mycotoxin production. TEF1 was confirmed as an essential barcode for identifying Fusarium species. In addition to TEF1, we evaluated BT2 and RPB2 in order to provide sufficient genetic and species boundaries information for recognition of the novel species.

  3. Genomic analysis of Fusarium verticillioides.

    PubMed

    Brown, D W; Butchko, R A E; Proctor, R H

    2008-09-01

    Fusarium verticillioides (teleomorph Gibberella moniliformis) can be either an endophyte of maize, causing no visible disease, or a pathogen-causing disease of ears, stalks, roots and seedlings. At any stage, this fungus can synthesize fumonisins, a family of mycotoxins structurally similar to the sphingolipid sphinganine. Ingestion of fumonisin-contaminated maize has been associated with a number of animal diseases, including cancer in rodents, and exposure has been correlated with human oesophageal cancer in some regions of the world, and some evidence suggests that fumonisins are a risk factor for neural tube defects. A primary goal of the authors' laboratory is to eliminate fumonisin contamination of maize and maize products. Understanding how and why these toxins are made and the F. verticillioides-maize disease process will allow one to develop novel strategies to limit tissue destruction (rot) and fumonisin production. To meet this goal, genomic sequence data, expressed sequence tags (ESTs) and microarrays are being used to identify F. verticillioides genes involved in the biosynthesis of toxins and plant pathogenesis. This paper describes the current status of F. verticillioides genomic resources and three approaches being used to mine microarray data from a wild-type strain cultured in liquid fumonisin production medium for 12, 24, 48, 72, 96 and 120h. Taken together, these approaches demonstrate the power of microarray technology to provide information on different biological processes.

  4. Identification of Fusarium solani species complex from infected zebrafish (Danio rerio).

    PubMed

    Ke, Xiaoli; Lu, Maixin; Wang, Jianguo

    2016-11-01

    Although Fusarium sp. infections have been reported in aquatic invertebrates, studies of Fusarium spp. as fish pathogens remain very limited. In our study, a fungus was isolated from diseased zebrafish (Danio rerio). DNA sequence analysis of the fungus, based on a partial region of the translation elongation factor 1α gene (EF-1α), the internal transcribed spacer region and domains D1 and D2 of the large subunit of the ribosomal RNA gene (ITS plus LSU), and the RNA polymerase II subunit gene (RPB2), showed 99.9-100% homology to Fusarium solani species complex sequences. Multilocus sequence typing analysis based on 3-locus haplotypes (EF-1α, ITS plus LSU, and RPB2) suggests that the isolated strain was type 3+4-P. Challenge experiments showed that this organism could be pathogenic to zebrafish, but usually does not infect healthy subjects under normal circumstances.

  5. Candidate effector proteins of the necrotrophic apple canker pathogen Valsa mali can suppress BAX-induced PCD

    PubMed Central

    Li, Zhengpeng; Yin, Zhiyuan; Fan, Yanyun; Xu, Ming; Kang, Zhensheng; Huang, Lili

    2015-01-01

    Canker caused by the Ascomycete Valsa mali is the most destructive disease of apple in Eastern Asia, resulting in yield losses of up to 100%. This necrotrophic fungus induces severe necrosis on apple, eventually leading to the death of the whole tree. Identification of necrosis inducing factors may help to unravel the molecular bases for colonization of apple trees by V. mali. As a first step toward this goal, we identified and characterized the V. mali repertoire of candidate effector proteins (CEPs). In total, 193 secreted proteins with no known function were predicted from genomic data, of which 101 were V. mali-specific. Compared to non-CEPs predicted for the V. mali secretome, CEPs have shorter sequence length and a higher content of cysteine residues. Based on transient over-expression in Nicotiana benthamiana performed for 70 randomly selected CEPs, seven V. mali Effector Proteins (VmEPs) were shown to significantly suppress BAX-induced PCD. Furthermore, targeted deletion of VmEP1 resulted in a significant reduction of virulence. These results suggest that V. mali expresses secreted proteins that can suppress PCD usually associated with effector-triggered immunity (ETI). ETI in turn may play an important role in the V. mali–apple interaction. The ability of V. mali to suppress plant ETI sheds a new light onto the interaction of a necrotrophic fungus with its host plant. PMID:26284095

  6. Phomopsis stem canker: a re-emerging threat to sunflowers (Helianthus annuus) in the United States

    USDA-ARS?s Scientific Manuscript database

    Phomopsis stem canker frequently causes yield reductions on sunflowers (Helianthus annuus L.) on several continents, including Australia, Russia, Europe and North America. Between 2001 and 2012, the incidence of Phomopsis stem canker has increased 16 fold in the Northern Great Plains of the United...

  7. Effect of windbreaks on wind speed and citrus canker incidence on grapefruit

    USDA-ARS?s Scientific Manuscript database

    For fresh grapefruit the goal is to maximize pack-out by minimizing canker lesions on fruit. The objective of these trials was to determine the relationship between wind speed and incidence and severity of citrus canker on 5 to 7 yr-old ‘Ruby Red’ grapefruit trees located in two trial blocks (~4.5 h...

  8. Effect of windbreaks on wind speed and canker incidence and severity on grapefruit

    USDA-ARS?s Scientific Manuscript database

    For fresh grapefruit the goal is to maximize pack-out by minimizing canker lesions on fruit. The objective of these trials was to determine the relationship between wind speed and incidence and severity of canker on 5 to 7 yr-old Ruby Red grapefruit trees located in two trial blocks (~4.5 ha) surrou...

  9. Phomopsis Stem Canker: A Reemerging Threat to Sunflower (Helianthus annuus) in the United States

    USDA-ARS?s Scientific Manuscript database

    Phomopsis stem canker causes yield reductions on sunflower (Helianthus annuus L.) on several continents, including Australia, Europe, and North America. In the United States, Phomopsis stem canker incidence has increased 16-fold in the Northern Great Plains between 2001 and 2012. Although Diaporthe ...

  10. Canker Production By Strains Of Botryodipodia Theobromae In Cephalosporium-Wilted Sycamore

    Treesearch

    R. Lewis; Eugene P. van Arsdel

    1978-01-01

    Two strains of Botryodiplodia the obromae were isolated from cankered sycamore trees; one was virulent and the other was less virulent. The less virulent strain colonized all sycamores inoculated with it but, in most cases, did not induce cankers unless the sycamores were wilting from Cephalosporium diospyri infections. The virulent strain of

  11. Detecting citrus canker by hyperspectral reflectance imaging and PCA-based image classification method

    NASA Astrophysics Data System (ADS)

    Qin, Jianwei; Burks, Thomas F.; Kim, Moon S.; Chao, Kuanglin; Ritenour, Mark A.

    2008-04-01

    Citrus canker is one of the most devastating diseases that threaten citrus crops. Technologies that can efficiently identify citrus canker would assure fruit quality and safety and enhance the competitiveness and profitability of the citrus industry. This research was aimed to investigate the potential of using hyperspectral imaging technique for detecting canker lesions on citrus fruit. A portable hyperspectral imaging system consisting of an automatic sample handling unit, a light source, and a hyperspectral imaging unit was developed for citrus canker detection. The imaging system was used to acquire reflectance images from citrus samples in the wavelength range between 400 nm and 900 nm. Ruby Red grapefruits with normal and various diseased skin conditions including canker, copper burn, greasy spot, wind scar, cake melanose, and specular melanose were tested. Hyperspectral reflectance images were analyzed using principal component analysis (PCA) to compress the 3-D hyperspectral image data and extract useful image features that could be used to discriminate cankerous samples from normal and other diseased samples. Image processing and classification algorithms were developed based upon the transformed images of PCA. The overall accuracy for canker detection was 92.7%. This research demonstrated that hyperspectral imaging technique could be used for discriminating citrus canker from other confounding diseases.

  12. First report of citrus canker caused by Xanthomonas citri in Somalia

    USDA-ARS?s Scientific Manuscript database

    Xanthomonas citri, causal agent of citrus canker, has been reported in several countries in Africa, but not Somalia. During 2006 and 2007, hyperplasia-type lesions, often surrounded by a water-soaked margin and yellow halo, typical of citrus canker caused by X. citri, were found on 8-10 year-old gr...

  13. A major QTL associated with Fusarium oxysporum race 1 resistance identified in genetic populations derived from closely related watermelon lines using selective genotyping and genotyping-by-sequencing for SNP discovery

    USDA-ARS?s Scientific Manuscript database

    Fusarium wilt is a major soil-borne disease of watermelon caused by the fungus Fusarium oxysporum Schlechtend.:Fr. f. sp. niveum (E.F. Sm.) W.C. Snyder & H.N. Hans (Fon). In this study, a genetic population of 186 F3 families (24 plants in each family) exhibited continuous distribution for Fon race ...

  14. Cutinase of Fusarium solani F. sp. pisi: mechanism of induction and relatedness to other Fusarium species

    SciTech Connect

    Woloshuk, C.P.

    1986-01-01

    Three studies were made on the extracellular cutinase of the phytopathogenic fungus Fusarium solani f. sp. pisi. I. The production of cutinase was found to be induced in spores of F. solani f. sp. pisi, strain T-8, by cutin and cutin hydrolysate. Fractionation and analysis of the cutin hydrolysate indicated that dihydroxy-C/sub 16/ acid and trihydroxy-C/sub 18/ acid were the cutin monomers most active for inducing cutinase. Measurement of cutinase-specific RNA levels by dot-blot hybridization with a (/sup 32/P)-labeled cutinase cDNA showed that the cutinase gene transcripts could be detected within 15 min after addition of the inducers. The results indicated that the fungal spores have the capacity to recognize the unique monomer components of the plant cuticle and rapidly respond by the synthesis of cutinase. II. Analysis of the genomic DNA's of seven strains of F. solani f. sp. pisi indicated that both high and low cutinase-producing strains contain at least one copy of the cutinase structural gene and a homologous promoter region. The data suggest a different promoter sequence exists in these additional copies. III. Relatedness of five phytopathogenic Fusarium species to F. solani f. sp. pisi was determined by their cutinase antigenic properties and gene homologies of cutinase cDNA from F. solani f. sp. pisi. The results suggest that formae specialis of F. solani are phylogenetically identical and that F. solani is quite distinct from the other Fusarium species tested.

  15. A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance.

    PubMed

    Zhang, Xincheng; Lin, Li; Chen, Mingyue; Zhu, Zhiqiang; Yang, Weidong; Chen, Bao; Yang, Xiaoe; An, Qianli

    2012-08-30

    Low biomass and shallow root systems limit the application of heavy metal phytoextraction by hyperaccumulators. Plant growth-promoting microbes may enhance hyperaccumulators'phytoextraction. A heavy metal-resistant fungus belonged to the Fusarium oxysporum complex was isolated from the Zn/Cd co-hyperaccumulator Sedum alfredii Hance grown in a Pb/Zn mined area. This Fusarium fungus was not pathogenic to plants but promoted host growth. Hydroponic experiments showed that 500 μM Zn(2+) or 50 μM Cd(2+) combined with the fungus increased root length, branches, and surface areas, enhanced nutrient uptake and chlorophyll synthesis, leading to more vigorous hyperaccumulators with greater root systems. Soil experiments showed that the fungus increased root and shoot biomass and S. alfredii-mediated heavy metal availabilities, uptake, translocation or concentrations, and thus increased phytoextraction of Zn (144% and 44%), Cd (139% and 55%), Pb (84% and 85%) and Cu (63% and 77%) from the original Pb/Zn mined soil and a multi-metal contaminated paddy soil. Together, the nonpathogenic Fusarium fungus was able to increase S. alfredii root systems and function, metal availability and accumulation, plant biomass, and thus phytoextraction efficiency. This study showed a great application potential for culturable indigenous fungi other than symbiotic mycorrhizas to enhance the phytoextraction by hyperaccumulators.

  16. Fusarium brain abscess: case report and literature review.

    PubMed

    Garcia, Raquel Ramos; Min, Zaw; Narasimhan, Supriya; Bhanot, Nitin

    2015-01-01

    Severely immunocompromised patients such as those with haematological malignancies and haematopoietic stem cell transplant recipients are at an increased risk of acquiring invasive mould infections. Fusarium, a ubiquitous fungus, can cause potentially fatal infections in such hosts. It usually manifests as skin lesions, fevers and sino-pulmonary infections. Brain abscesses have been reported, but are relatively uncommon. We report a case of a 50-year-old patient with acute lymphocytic leukaemia and failed autologous peripheral stem cell transplant that presented with new onset seizures and was found to have Fusarium solani brain abscess. Nasal route was the presumed mode of entry of the fungus into the cerebrum. Treatment comprised surgical excision of the lesion, and antimycotic therapy with liposomal amphotericin B and voriconazole. Despite aggressive therapy, patient succumbed to the disease. We have provided an overview of infections secondary to Fusarium, along with a review of the central nervous system involvement by this pathogenic mould. © 2014 Blackwell Verlag GmbH.

  17. Assessment of diversity and genetic relationships of Neonectria ditissima: the causal agent of fruit tree canker.

    PubMed

    Ghasemkhani, Marjan; Garkava-Gustavsson, Larisa; Liljeroth, Erland; Nybom, Hilde

    2016-01-01

    Neonectria ditissima is one of the most important fungal pathogens of apple trees, where it causes fruit tree canker. Information about the amount and partitioning of genetic variation of this fungus could be helpful for improving orchard management strategies and for breeding apple cultivars with high levels of genetically determined resistance. In this study single-spore Neonectria isolates originating from both the same and from different perithecia, apple cultivars and apple orchards in Sweden and Belgium, were evaluated for AFLP- and SSR-based genetic similarity and for mating system. Seven SSR loci produced a total of 31 alleles with an average of 4 alleles per locus, while 11 AFLP primer combinations produced an average of 35 fragments per primer combination and 71 % polymorphic fragments. An AFLP-based analysis of molecular variance (AMOVA) revealed that 89 % of the variation was found within orchards and 11 % between orchards. Genetic similarity among the studied isolates was illustrated with a principal coordinate analyseis (PCoA) and a dendrogram. AFLP-based Jaccard's similarity coefficients were the highest when single-ascospore isolates obtained from the same perithecium were compared, medium-high for isolates from different perithecia on the same tree, and lowest when isolates from different trees were compared. Based on the results of PCoA and AMOVA analysis, isolates from the same or geographically close orchards did not group together. Since AFLP profiles differed also when single-ascospore isolates from the same perithecium were compared, the mating system of N. ditissima is most likely heterothallic.

  18. [Equine exudative canker: an (auto-)immune disease?].

    PubMed

    Jongbloets, A M C; Sloet van Oldruitenborgh-Oosterbaan, M M; Meeus, P J H M; Back, W

    2005-02-15

    Equine canker is a chronic, hyperplastic, exudative pododermatitis affecting one or more feet. Although many causes and treatments have been suggested, the cause of the disease is still unknown and most probably multifactorial. Local treatments include radical surgical debridement of the diseased hoof tissue and application of caustic substances, antibiotics, and pressure bandaging. Nevertheless, the number of recurrences is high (45%). This article presents a 3-year-old New Forest pony-cross mare in which all horny structures (frogs, coronets, spurs, chestnuts) of all feet were affected. Bacteriological and fungal cultures of the frogs were found negative for the pathogens tested. Papilloma virus was not found. Clinical findings raised the hypothesis that the non-specific hyperplastic inflammation of these horn-like structures might have been caused by an (auto-)immune reaction. On the basis of the clinical findings, the pony was treated with surgical debridement of the frogs of a diagonal pair of feet and oral administration of prednisolone (1 mg/kg sid). The frogs, coronets, spurs, and chestnuts of all four feet healed completely within 8 weeks, thus making an (auto-)immune reaction more likely. In conclusion, this case report raised the hypothesis that an aspecific, hyperplastic inflammation of all four feet ('equine canker') and other horny structures may be caused by an (auto-)immune reaction, and that corticosteroids (prednisolone 1 mg/kg sid per os) are effective as treatment.

  19. Fusarium Wilt of Banana.

    PubMed

    Ploetz, Randy C

    2015-12-01

    Banana (Musa spp.) is one of the world's most important fruits. In 2011, 145 million metric tons, worth an estimated $44 billion, were produced in over 130 countries. Fusarium wilt (also known as Panama disease) is one of the most destructive diseases of this crop. It devastated the 'Gros Michel'-based export trades before the mid-1900s, and threatens the Cavendish cultivars that were used to replace it; in total, the latter cultivars are now responsible for approximately 45% of all production. An overview of the disease and its causal agent, Fusarium oxysporum f. sp. cubense, is presented below. Despite a substantial positive literature on biological, chemical, or cultural measures, management is largely restricted to excluding F. oxysporum f. sp. cubense from noninfested areas and using resistant cultivars where the pathogen has established. Resistance to Fusarium wilt is poor in several breeding targets, including important dessert and cooking cultivars. Better resistance to this and other diseases is needed. The history and impact of Fusarium wilt is summarized with an emphasis on tropical race 4 (TR4), a 'Cavendish'-killing variant of the pathogen that has spread dramatically in the Eastern Hemisphere.

  20. Characterization of Five Novel Mitoviruses in the White Pine Blister Rust Fungus Cronartium ribicola.

    PubMed

    Liu, Jun-Jun; Chan, Danelle; Xiang, Yu; Williams, Holly; Li, Xiao-Rui; Sniezko, Richard A; Sturrock, Rona N

    2016-01-01

    The white pine blister rust (WPBR) fungus Cronartium ribicola (J.C. Fisch.) is an exotic invasive forest pathogen causing severe stem canker disease of native white pine trees (subgenus Strobus) in North America. The present study reports discovery of five novel mitoviruses in C. ribicola by deep RNA sequencing. The complete genome of each mitovirus was determined by rapid amplification of cDNA ends (RACE) and reverse transcriptase-polymerase chain reaction (RT-PCR). A single open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) was detected in each of the viral genomes using mitochondrial genetic codes. Phylogenetic analysis indicated that the C. ribicola mitoviruses (CrMV1 to CrMV5) are new putative species of the genus Mitovirus. qRT-PCR and RNA-Seq analyses revealed that viral RNAs were significantly increased in fungal mycelia in cankered pine stems compared to expression during two different stages of spore development, suggesting that viral genome replication and transcription benefit from active growth of the host fungus. CrMVs were widespread with relatively high levels of minor allele frequency (MAF) in western North America. As the first report of mitoviruses in the Class Pucciniomycetes, this work allows further investigation of the dynamics of a viral community in the WPBR pathosystem, including potential impacts that may affect pathogenicity and virulence of the host fungus.

  1. Inhibition of Fusarium graminearum growth in flour gel cultures by hexane-soluble compounds from oat (Avena sativa L.) flour.

    PubMed

    Doehlert, Douglas C; Rayas-Duarte, Patricia; McMullen, Michael S

    2011-12-01

    Fusarium head blight, incited by the fungus Fusarium graminearum, primarily affects wheat (Triticum aestivum) and barley (Hordeum vulgarum), while oat (Avena sativa) appears to be more resistant. Although this has generally been attributed to the open panicle of oats, we hypothesized that a chemical component of oats might contribute to this resistance. To test this hypothesis, we created culture media made of wheat, barley, and oat flour gels (6 g of flour in 20 ml of water, gelled by autoclaving) and inoculated these with plugs of F. graminearum from actively growing cultures. Fusarium growth was measured from the diameter of the fungal plaque. Plaque diameter was significantly smaller on oat flour cultures than on wheat or barley cultures after 40 to 80 h of growth. Ergosterol concentration was also significantly lower in oat cultures than in wheat cultures after growth. A hexane extract from oats added to wheat flour also inhibited Fusarium growth, and Fusarium grew better on hexane-defatted oat flour. The growth of Fusarium on oat flour was significantly and negatively affected by the oil concentration in the oat, in a linear relationship. A hexane-soluble chemical in oat flour appears to inhibit Fusarium growth and might contribute to oat's resistance to Fusarium head blight. Oxygenated fatty acids, including hydroxy, dihydroxy, and epoxy fatty acids, were identified in the hexane extracts and are likely candidates for causing the inhibition.

  2. Surface interactions of Fusarium graminearum on barley.

    PubMed

    Imboden, Lori; Afton, Drew; Trail, Frances

    2017-09-21

    The filamentous fungus Fusarium graminearum, a devastating pathogen of barley (Hordeum vulgare L.), produces mycotoxins that pose a health hazard. To investigate the surface interactions of F. graminearum with barley, we focused on barley florets, as the most important infection site leading to grain contamination. The fungus interacted with silica accumulating cells (trichomes and silica/cork cell pairs) on the host surface. We identified variation in trichome-type cells between two-row and six-row barley, and in the role of specific epidermal cells in the ingress of F. graminearum into barley florets. Prickle-type trichomes functioned to trap conidia and were sites of fungal penetration. Infections of more mature florets supported the spread of hyphae into the vascular bundles, whereas younger florets did not show this spread. These differences related directly to the timing and location of increases in silica content during maturation. Focal accumulation of cellulose in infected paleae of two-row and six-row barley indicated that the response is in part linked to trichome type. Overall, silica accumulating epidermal cells had an expanded role in barley, serving to trap conidia, provide sites for fungal ingress, and initiate resistance responses, suggesting a role for silica in pathogen establishment. This article is protected by copyright. All rights reserved. © 2017 BSPP and John Wiley & Sons Ltd.

  3. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains

    PubMed Central

    Durán, Nelson; Marcato, Priscyla D; Alves, Oswaldo L; De Souza, Gabriel IH; Esposito, Elisa

    2005-01-01

    Extracellular production of metal nanoparticles by several strains of the fungus Fusarium oxysporum was carried out. It was found that aqueous silver ions when exposed to several Fusarium oxysporum strains are reduced in solution, thereby leading to the formation of silver hydrosol. The silver nanoparticles were in the range of 20–50 nm in dimensions. The reduction of the metal ions occurs by a nitrate-dependent reductase and a shuttle quinone extracellular process. The potentialities of this nanotechnological design based in fugal biosynthesis of nanoparticles for several technical applications are important, including their high potential as antibacterial material. PMID:16014167

  4. Development of a qPCR technique to screen for resistance to Asiatic citrus canker

    USDA-ARS?s Scientific Manuscript database

    Asiatic citrus canker (Acc) (causal organism Xanthomonas citri subspc. citri (Xcc) is threatening sustainability of the Florida citrus industry. Resistant cultivars, whether developed through conventional breeding or genetic transformation, will be he best solution for dealint with Acc. In Florida...

  5. Genotype Response of Soybean (Glycine max) Whole Plants and Hairy Roots to Fusarium solani f. sp. glycines Infection

    USDA-ARS?s Scientific Manuscript database

    Fusarium solani f. sp. Glycines, a soilborne fungus, infects soybean roots and causes sudden death syndrome. The response of 13 soybean genotypes to the pathogen infection was tested with potted greenhouse grown plants and with cultured hairy roots. The taproots of all genotypes grown plants measure...

  6. Gene clusters FDB1 and FDB2 in Fusarium verticillioides were acquired through multiple horizontal gene transfer events

    USDA-ARS?s Scientific Manuscript database

    The corn pathogen Fusarium verticillioides is of significant importance because of its deleterious effects on plant and animal health and on the quality of their products due to mycotoxin contamination. The fungus is known to metabolize antimicrobial compounds produced by corn using genes within t...

  7. Discovery and toxicity assessment of a novel type A trichothecene produced by US isolates of Fusarium graminearum

    USDA-ARS?s Scientific Manuscript database

    The filamentous fungus Fusarium graminearum shows a widespread occurrence across temperate regions of the world and can produce several mycotoxins on almost every cereal. A large-scale survey of F. graminearum (sensu stricto) on wheat in the northern United States was conducted to investigate the po...

  8. The transcription factor FgStuAp influences spore development, pathogenicity, and secondary metabolism in Fusarium graminearum

    USDA-ARS?s Scientific Manuscript database

    Fusarium graminearum is an important plant-pathogenic fungus and the major cause of cereal head blight. Here, we report the functional analysis of FgStuA, the gene for a transcription factor with homology to key developmental regulators in fungi. The deletion mutant was greatly reduced in pathogenic...

  9. Exploring the role of trehalose-6-phosphate synthase in oxidation and desiccation stress tolerance of Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Fusarium verticillioides is a pathogenic filamentous fungus that primarily affects maize. We are exploring stress response mechanisms in F. verticillioides, particularly the role of the disaccharide trehalose. Trehalose-6-phosphate synthase, coded for by the TPS1 gene, catalyzes the first of two ste...

  10. Genome-wide analysis and functional characterization of candidate effector proteins potentially involved in Fusarium graminearum-wheat interactions

    USDA-ARS?s Scientific Manuscript database

    Fungal pathogens often produce certain small secreted cysteine-rich proteins (SSCPs) during pathogenesis that may function in triggering resistance or susceptibility in specific host plants. We have identified a total of 190 SSCPs encoded in the genome of the wheat scab fungus Fusarium graminearum a...

  11. He said, she said: mRNA sequencing identifies specificity in metabolic response to Bacillus mojavensis lipopeptides in Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Fusarium verticillioides is a mycotoxigenic fungus capable of both pathogenic and asymptomatic endophytic lifestyles in maize; such intimate association renders efficient chemical control cost-prohibitive. Bacillus mojavensis RRC101 is a maize endophyte demonstrating both in vitro antagonism of F. v...

  12. Origin and Evolution of the Kiwifruit Canker Pandemic

    PubMed Central

    Li, Li; Liu, Yifei; Li, Dawei; Pan, Hui; Zhong, Caihong; Rikkerink, Erik H.A.; Templeton, Matthew D.; Straub, Christina; Colombi, Elena

    2017-01-01

    Recurring epidemics of kiwifruit (Actinidia spp.) bleeding canker disease are caused by Pseudomonas syringae pv. actinidiae (Psa). In order to strengthen understanding of population structure, phylogeography, and evolutionary dynamics, we isolated Pseudomonas from cultivated and wild kiwifruit across six provinces in China. Based on the analysis of 80 sequenced Psa genomes, we show that China is the origin of the pandemic lineage but that strain diversity in China is confined to just a single clade. In contrast, Korea and Japan harbor strains from multiple clades. Distinct independent transmission events marked introduction of the pandemic lineage into New Zealand, Chile, Europe, Korea, and Japan. Despite high similarity within the core genome and minimal impact of within-clade recombination, we observed extensive variation even within the single clade from which the global pandemic arose. PMID:28369338

  13. Genetic differentiation and spatial structure of Geosmithia morbida, the causal agent of thousand cankers disease in black walnut (Juglans nigra).

    PubMed

    Hadziabdic, Denita; Vito, Lisa M; Windham, Mark T; Pscheidt, Jay W; Trigiano, Robert N; Kolarik, Miroslav

    2014-05-01

    The main objectives of this study were to evaluate genetic composition of Geosmithia morbida populations in the native range of black walnut and provide a better understanding regarding demography of the pathogen. The fungus G. morbida, and the walnut twig beetle, Pityophthorus juglandis, have been associated with a disease complex of black walnut (Juglans nigra) known as thousand cankers disease (TCD). The disease is manifested as branch dieback and canopy loss, eventually resulting in tree death. In 2010, the disease was detected in black walnut in Tennessee, and subsequently in Virginia and Pennsylvania in 2011 and North Carolina in 2012. These were the first incidences of TCD east of Colorado, where the disease has been established for more than a decade on indigenous walnut species. A genetic diversity and population structure study of 62 G. morbida isolates from Tennessee, Pennsylvania, North Carolina and Oregon was completed using 15 polymorphic microsatellite loci. The results revealed high haploid genetic diversity among seven G. morbida populations with evidence of gene flow, and significant differentiation among two identified genetic clusters. There was a significant correlation between geographic and genetic distance. Understanding the genetic composition and demography of G. morbida can provide valuable insight into recognizing factors affecting the persistence and spread of an invasive pathogen, disease progression, and future infestation predictions. Overall, these data support the hypotheses of two separate, highly diverse pathogen introductions into the native range of black walnut.

  14. Biosynthesis of silver and gold nanoparticles using Trichoderma atroviride for the biological control of Phomopsis canker disease in tea plants.

    PubMed

    Ponmurugan, Ponnusamy

    2017-04-01

    The biological way of metallic nanoparticles production using ecofriendly biocontrol agents are largely used to control many plant pathogenic microorganisms in agriculture. Hence, an attempt was made to evaluate the potential of suppressive activity of nanoparticles produced by an indigenous isolate, Trichoderma atroviride against a tea pathogenic fungus namely Phomopsis theae. The presence of biosynthesised nanoparticles was primarily confirmed through ultraviolet-visible spectroscopy analysis and was characterised using X-ray diffraction and scanning electron microscopy-energy dispersive X-ray analysis to delineate the size, shape and nature of particles. Further, Fourier transform infrared analysis revealed the functional biomolecules responsible for capping and stabilisation of nanoparticles. In addition, culture filtrate containing nanoparticles was subjected to invitro antifungal studies which revealed a considerable suppression on the growth of P. theae. The biosynthesised nanoparticles were found to be active even after 3 months which established and confirmed the stability. Finally, field experiments conducted with soil application and wound dressing of nanoparticles exhibited a significant reduction in canker size when plants treated with gold followed by silver nanoparticles. Similarly, improvement in leaf yield was noted in response to these treatments. The above study confirmed the efficacy of metallic nanoparticles in management of stem disease in tea plantation.

  15. Contribution of the endogeic earthworm species Aporrectodea caliginosa to the degradation of deoxynivalenol and Fusarium biomass in wheat straw.

    PubMed

    Wolfarth, Friederike; Schrader, Stefan; Oldenburg, Elisabeth; Weinert, Joachim

    2011-08-01

    In arable fields managed by conservation tillage combined with crop residue mulching, plant pathogen repression is an important ecosystem service to prevent cultivated plants from fungal diseases and mycotoxin contamination. A laboratory microcosm study was conducted to investigate the contribution of the endogeic, geophagous earthworm species Aporrectodea caliginosa as a secondary decomposer to the reduction of the phytopathogenic fungus Fusarium culmorum and its mycotoxin deoxynivalenol (DON) in wheat straw residues. After 5 weeks experimental time, the Fusarium biomass and the DON concentration in aboveground straw were reduced considerably to the same extent both in presence and absence of A. caliginosa. Another substantial reduction of Fusarium biomass and DON concentration was found in belowground straw, which A. caliginosa had buried into the soil. Thus, we conclude that the particular contribution of secondary decomposers like A. caliginosa to the degradation of phytopathogenic fungi like Fusarium species and their mycotoxins like DON in the soil systems has to be assessed as minor.

  16. Fusarium graminearum on plant cell wall: no fewer than 30 xylanase genes transcribed.

    PubMed

    Hatsch, Didier; Phalip, Vincent; Petkovski, Elizabet; Jeltsch, Jean-Marc

    2006-07-07

    The transcription of a set of 32 putative xylanase genes from Fusarium graminearum was examined by quantitative PCR after growth on different carbon sources (hop cell wall, xylan, xylose, or carboxymethylcellulose). Growing on plant cell wall medium, this fungus displays a great diversity of expression of xylan-related genes, with 30 being induced. A second level of diversity exists because expression patterns can be very different for loci encoding enzymes with the same activity (the same EC number). The wealth of xylan-degrading enzymes and the differential expression confer on the fungus a great flexibility of reaction to variation in its environment.

  17. Isolation and characterization of two mitoviruses and a putative alphapartitivirus from Fusarium spp.

    PubMed

    Osaki, Hideki; Sasaki, Atsuko; Nomiyama, Koji; Sekiguchi, Hiroyuki; Tomioka, Keisuke; Takehara, Toshiaki

    2015-06-01

    The filamentous fungus Fusarium spp. includes several important plant pathogens. We attempted to reveal presence of double-stranded (ds) RNAs in the genus. Thirty-seven Fusarium spp. at the MAFF collection were analyzed. In the strains of Fusarium coeruleum, Fusarium globosum and Fusarium solani f. sp. pisi, single dsRNA bands were detected. The strains of F. coeruleum and F. solani f. sp. pisi cause potato dry rot and mulberry twig blight, respectively. Sequence analyses revealed that dsRNAs in F. coeruleum and F. globosum consisted of 2423 and 2414 bp, respectively. Using the fungal mitochondrial translation table, the positive strands of these cDNAs were found to contain single open reading frames with the potential to encode a protein of putative 757 and 717 amino acids (molecular mass 88.5 and 84.0 kDa, respectively), similar to RNA-dependent RNA polymerases of members of the genus Mitovirus. These dsRNAs in F. coeruleum and F. globosum were assigned to the genus Mitovirus (family Narnaviridae), and these two mitoviruses were designated as Fusarium coeruleum mitovirus 1 and Fusarium globosum mitovirus 1. On the other hand, a positive strand of cDNA (1950 bp) from dsRNA in F. solani f. sp. pisi contained an ORF potentially encoding a putative RdRp of 608 amino acids (72.0 kDa). The putative RdRp was shown to be related to those of members of the genus of Alphapartitivirus (family Partitiviridae). We coined the name Fusarium solani partitivirus 2 for dsRNA in F. solani f. sp. pisi.

  18. A RALDH-like enzyme involved in Fusarium verticillioides development.

    PubMed

    Díaz-Sánchez, Violeta; Limón, M Carmen; Schaub, Patrick; Al-Babili, Salim; Avalos, Javier

    2016-01-01

    Retinaldehyde dehydrogenases (RALDHs) convert retinal to retinoic acid, an important chordate morphogen. Retinal also occurs in some fungi, such as Fusarium and Ustilago spp., evidenced by the presence of rhodopsins and β-carotene cleaving, retinal-forming dioxygenases. Based on the assumption that retinoic acid may also be formed in fungi, we searched the Fusarium protein databases for RALDHs homologs, focusing on Fusarium verticillioides. Using crude lysates of Escherichia coli cells expressing the corresponding cDNAs, we checked the capability of best matches to convert retinal into retinoic acid in vitro. Thereby, we identified an aldehyde dehydrogenase, termed CarY, as a retinoic acid-forming enzyme, an activity that was also exerted by purified CarY. Targeted mutation of the carY gene in F. verticillioides resulted in alterations of mycelia development and conidia morphology in agar cultures, and reduced capacity to produce perithecia as a female in sexual crosses. Complementation of the mutant with a wild-type carY allele demonstrated that these alterations are caused by the lackof CarY. However, retinoic acid could not be detected by LC-MS analysis either in the wild type or the complemented carY strain in vivo, making elusive the connection between CarY enzymatic activity and retinoic acid formation in the fungus.

  19. Diplodia Tip Blight and Canker of Pines (Pest Alert)

    Treesearch

    USDA Forest Service

    The fungus Diplodia pinea can cause serious damage to Austrian, ponderosa, red, Scots, mugo, jack, and white pine. Although it is considered a weak pathogen, it may successfully attack and kill trees. It may be more serious on trees growing out of their natural range or stressed by adverse climatic conditions or air pollution. Infection can occur as a result of hail...

  20. HOW TO Identify White Pine Blister Rust and Remove Cankers

    Treesearch

    Thomas H. Nicholls; Robert L. Anderson

    1977-01-01

    White pine blister rust (caused by the fungus Cronartium ribicola J. C. Fisch. ex Rabenh.) was introduced into the United States about 1900 and has since spread throughout the range of white pine. The disease intensity varies throughout the range but is normally most severe where late summers (July-September) are cool (below 67? F) and damp, conditions necessary for...

  1. Screening butternut and butternut hybrids for resistance to butternut canker

    Treesearch

    J.R. McKenna; M.E. Ostry; K. Woeste

    2011-01-01

    Butternut (Juglans cinerea) is being killed throughout its native range by the fungus Sirococcus clavigignenti-juglandacearum (Scj). In recent years, many disease-free trees have been determined to be complex hybrids with an admixture of Japanese walnut (J. ailantifolia). We challenged 5-year-...

  2. 76 FR 52543 - European Larch Canker; Expansion of Regulated Areas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... (44 U.S.C. 3501 et seq.). List of Subjects in 7 CFR Part 301 Agricultural commodities, Plant diseases... disease caused by a fungus that can kill mature and immature species of the genus Larix (larch) and... and around the regulated areas. Since APHIS established the ELC regulations, Maine's survey data have...

  3. [A case of mycotic keratitis due to Fusarium solani in Valdivia, Chile].

    PubMed

    Mena, Rodrigo; Carrasco, Eduardo; Godoy-Martínez, Patricio; Stchigel, Alberto M; Cano-Lira, José F; Zaror, Luis

    2015-01-01

    Keratomycosis is one of the most prevalent ophthalmic infections, which needs a specific treatment depending on the nature of the infecting fungus. The prognosis is usually severe and depends on an early diagnosis and suitable therapy. We describe a case of keratitis due to Fusarium solani in a patient from a rural area, who, between May and October 2011, suffered a corneal trauma caused by dust particles in Valdivia, Chile. On two occasions, direct examination of eye scrapes revealed abundant septate hyphae. All cultures were positive for the same fungus, which was identified as Fusarium solani by phenotypic characterization and sequencing of ribosomal nuclear genes. The patient was initially treated with amphotericin B and afterwards successfully responded to a treatment with oral and intravenous voriconazole, although corneal opacity persisted. Although keratomycosis in Chile is rare, its diagnostic particularities must be taken into consideration to establish the most effective treatment. Thus, a rapid visualization of the fungus in the lesion, an efficient isolation of the etiologic agent in pure culture is essential, as well as its rapid identification, which requires the use of molecular sequencing techniques in the case of Fusarium species. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  4. Oak Tree Canker Disease Supports Arthropod Diversity in a Natural Ecosystem

    PubMed Central

    Lee, Yong-Bok; An, Su Jung; Park, Chung Gyoo; Kim, Jinwoo; Han, Sangjo; Kwak, Youn-Sig

    2014-01-01

    Microorganisms have many roles in nature. They may act as decomposers that obtain nutrients from dead materials, while some are pathogens that cause diseases in animals, insects, and plants. Some are symbionts that enhance plant growth, such as arbuscular mycorrhizae and nitrogen fixation bacteria. However, roles of plant pathogens and diseases in natural ecosystems are still poorly understood. Thus, the current study addressed this deficiency by investigating possible roles of plant diseases in natural ecosystems, particularly, their positive effects on arthropod diversity. In this study, the model system was the oak tree (Quercus spp.) and the canker disease caused by Annulohypoxylon truncatum, and its effects on arthropod diversity. The oak tree site contained 44 oak trees; 31 had canker disease symptoms while 13 were disease-free. A total of 370 individual arthropods were detected at the site during the survey period. The arthropods belonged to 25 species, 17 families, and seven orders. Interestingly, the cankered trees had significantly higher biodiversity and richness compared with the canker-free trees. This study clearly demonstrated that arthropod diversity was supported by the oak tree canker disease. PMID:25288984

  5. Oak tree canker disease supports arthropod diversity in a natural ecosystem.

    PubMed

    Lee, Yong-Bok; An, Su Jung; Park, Chung Gyoo; Kim, Jinwoo; Han, Sangjo; Kwak, Youn-Sig

    2014-03-01

    Microorganisms have many roles in nature. They may act as decomposers that obtain nutrients from dead materials, while some are pathogens that cause diseases in animals, insects, and plants. Some are symbionts that enhance plant growth, such as arbuscular mycorrhizae and nitrogen fixation bacteria. However, roles of plant pathogens and diseases in natural ecosystems are still poorly understood. Thus, the current study addressed this deficiency by investigating possible roles of plant diseases in natural ecosystems, particularly, their positive effects on arthropod diversity. In this study, the model system was the oak tree (Quercus spp.) and the canker disease caused by Annulohypoxylon truncatum, and its effects on arthropod diversity. The oak tree site contained 44 oak trees; 31 had canker disease symptoms while 13 were disease-free. A total of 370 individual arthropods were detected at the site during the survey period. The arthropods belonged to 25 species, 17 families, and seven orders. Interestingly, the cankered trees had significantly higher biodiversity and richness compared with the canker-free trees. This study clearly demonstrated that arthropod diversity was supported by the oak tree canker disease.

  6. Development and validation of standard area diagrams as assessment aids for estimating the severity of citrus canker on unripe oranges

    USDA-ARS?s Scientific Manuscript database

    Canker (caused by Xanthomonas citri subsp. citri) is an important disease of citrus in Brazil and elsewhere in the world, and can cause severe disease on the fruit. The severity of citrus canker of fruit must often be estimated visually. The objective of this research was to construct and validate s...

  7. A method for estimating white pine blister rust canker age on limber pine in the central Rocky Mountains

    Treesearch

    Holly S. J. Kearns; William R. Jacobi; Brian W. Geils

    2009-01-01

    Epidemiological studies of white pine blister rust on limber pine require a temporal component to explain variations in incidence of infection and mortality. Unfortunately, it is not known how long the pathogen has been present at various sites in the central Rocky Mountains of North America. Canker age, computed from canker length and average expansion rate, can be...

  8. Long-term trends in coast live oak and tanoak stands affected by Phytophthora ramorum canker (Sudden Oak Death)

    Treesearch

    Tedmund J. Swiecki; Elizabeth Bernhardt

    2010-01-01

    Permanent plots were established in 2000 to examine how tree and site factors affect risk of Phytophthora ramorum stem canker (sudden oak death [SOD]) and determine how affected stands change over time due to disease. P. ramorum canker was prevalent in the sampled coast live oak (Quercus agrifolia) or...

  9. Influence of Infection Court, Host Vigor, and Culture Filtrates on Canker Production by Botryodiplodia Theobromae Conidia in Sycamore

    Treesearch

    R. Lewis

    1978-01-01

    Some of the factors that influence canker development in American sycamores inoculated with Botryodiplodia theobromae conidia were determined. A combination of B. theobromae culture filtrates and conidia resulted in 100% canker production when introduced into stem wounds; however, a combination of Cephalosporium diospyri...

  10. Water balance altered in cucumber plants infected with Fusarium oxysporum f. sp. cucumerinum.

    PubMed

    Wang, Min; Sun, Yuming; Sun, Guomei; Liu, Xiaokang; Zhai, Luchong; Shen, Qirong; Guo, Shiwei

    2015-01-12

    Fusarium wilt is caused by the infection and growth of the fungus Fusarium oxysporum in the xylem of host plants. The physiological responses of cucumbers that are infected with Fusarium oxysporum f. sp. cucumerinum (FOC) was studied in pot and hydroponic experiments in a greenhouse. The results showed that although water absorption and stem hydraulic conductance decreased markedly in infected plants, large amounts of red ink accumulated in the leaves of infected cucumber plants. The transpiration rate (E) and stomatal conductance (gs) of the infected plants were significantly reduced, but the E/gs was higher than healthy plants. We further found that there was a positive correlation between leaf membrane injury and E/gs, indicating that the leaf cell membrane injury increased the non-stomatal water loss from infected plants. The fusaric acid (FA), which was detected in the infected plant, resulted in damage to the leaf cell membranes and an increase in E/gs, suggesting that FA plays an important role in non-stomatal water loss. In conclusion, leaf cell membrane injury in the soil-borne Fusarium wilt of cucumber plants induced uncontrolled water loss from damaged cells. FA plays a critical role in accelerating the development of Fusarium wilt in cucumber plants.

  11. Toxicity of abiotic stressors to Fusarium species: differences in hydrogen peroxide and fungicide tolerance.

    PubMed

    Nagygyörgy, Emese D; Kovács, Barbara; Leiter, Eva; Miskei, Márton; Pócsi, István; Hornok, László; Adám, Attila L

    2014-06-01

    Stress sensitivity of three related phytopathogenic Fusarium species (Fusarium graminearum, Fusarium oxysporum and Fusarium verticillioides) to different oxidative, osmotic, cell wall, membrane, fungicide stressors and an antifungal protein (PAF) were studied in vitro. The most prominent and significant differences were found in oxidative stress tolerance: all the three F. graminearum strains showed much higher sensitivity to hydrogen peroxide and, to a lesser extent, to menadione than the other two species. High sensitivity of F. verticillioides strains was also detectable to an azole drug, Ketoconazole. Surprisingly, no or limited differences were observed in response to other oxidative, osmotic and cell wall stressors. These results indicate that fungal oxidative stress response and especially the response to hydrogen peroxide (this compound is involved in a wide range of plant-fungus interactions) might be modified on niche-specific manner in these phylogenetically related Fusarium species depending on their pathogenic strategy. Supporting the increased hydrogen peroxide sensitivity of F. graminearum, genome-wide analysis of stress signal transduction pathways revealed the absence one CatC-type catalase gene in F. graminearum in comparison to the other two species.

  12. Host-Induced Silencing of Pathogenicity Genes Enhances Resistance to Fusarium oxysporum Wilt in Tomato.

    PubMed

    Bharti, Poonam; Jyoti, Poonam; Kapoor, Priya; Sharma, Vandana; Shanmugam, V; Yadav, Sudesh Kumar

    2017-08-01

    This study presents a novel approach of controlling vascular wilt in tomato by RNAi expression directed to pathogenicity genes of Fusarium oxysporum f. sp. lycopersici. Vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici leads to qualitative and quantitative loss of the crop. Limitation in the existing control measures necessitates the development of alternative strategies to increase resistance in the plants against pathogens. Recent findings paved way to RNAi, as a promising method for silencing of pathogenicity genes in fungus and provided effective resistance against fungal pathogens. Here, two important pathogenicity genes FOW2, a Zn(II)2Cys6 family putative transcription regulator, and chsV, a putative myosin motor and a chitin synthase domain, were used for host-induced gene silencing through hairpinRNA cassettes of these genes against Fusarium oxysporum f. sp. lycopersici. HairpinRNAs were assembled in appropriate binary vectors and transformed into tomato plant targeting FOW2 and chsV genes, for two highly pathogenic strains of Fusarium oxysporum viz. TOFOL-IHBT and TOFOL-IVRI. Transgenic tomatoes were analyzed for possible attainment of resistance in transgenic lines against fungal infection. Eight transgenic lines expressing hairpinRNA cassettes showed trivial disease symptoms after 6-8 weeks of infection. Hence, the host-induced posttranscriptional gene silencing of pathogenicity genes in transgenic tomato plants has enhanced their resistance to vascular wilt disease caused by Fusarium oxysporum.

  13. Water balance altered in cucumber plants infected with Fusarium oxysporum f. sp. cucumerinum

    PubMed Central

    Wang, Min; Sun, Yuming; Sun, Guomei; Liu, Xiaokang; Zhai, Luchong; Shen, Qirong; Guo, Shiwei

    2015-01-01

    Fusarium wilt is caused by the infection and growth of the fungus Fusarium oxysporum in the xylem of host plants. The physiological responses of cucumbers that are infected with Fusarium oxysporum f. sp. cucumerinum (FOC) was studied in pot and hydroponic experiments in a greenhouse. The results showed that although water absorption and stem hydraulic conductance decreased markedly in infected plants, large amounts of red ink accumulated in the leaves of infected cucumber plants. The transpiration rate (E) and stomatal conductance (gs) of the infected plants were significantly reduced, but the E/gs was higher than healthy plants. We further found that there was a positive correlation between leaf membrane injury and E/gs, indicating that the leaf cell membrane injury increased the non-stomatal water loss from infected plants. The fusaric acid (FA), which was detected in the infected plant, resulted in damage to the leaf cell membranes and an increase in E/gs, suggesting that FA plays an important role in non-stomatal water loss. In conclusion, leaf cell membrane injury in the soil-borne Fusarium wilt of cucumber plants induced uncontrolled water loss from damaged cells. FA plays a critical role in accelerating the development of Fusarium wilt in cucumber plants. PMID:25579504

  14. Fungus Infections: Tinea

    MedlinePlus

    ... cat, or from exposure to fungus in the soil. Itchy red scaly patches come up anywhere the ... Truth 12/19/2013 Osteopathic Training Statement Online Surveys About AOCD The AOCD was recognized in 1958 ...

  15. Detection of citrus canker and Huanglongbing using fluorescence imaging spectroscopy and support vector machine technique.

    PubMed

    Wetterich, Caio Bruno; Felipe de Oliveira Neves, Ruan; Belasque, José; Marcassa, Luis Gustavo

    2016-01-10

    Citrus canker and Huanglongbing (HLB) are citrus diseases that represent a serious threat to the citrus production worldwide and may cause large economic losses. In this work, we combined fluorescence imaging spectroscopy (FIS) and a machine learning technique to discriminate between these diseases and other ordinary citrus conditions that may be present at citrus orchards, such as citrus scab and zinc deficiency. Our classification results are highly accurate when discriminating citrus canker from citrus scab (97.8%), and HLB from zinc deficiency (95%). These results show that it is possible to accurately identify citrus diseases that present similar symptoms.

  16. Ethanol attracts scolytid beetles to Phytophthora ramorum cankers on coast live oak.

    PubMed

    Kelsey, Rick G; Beh, Maia M; Shaw, David C; Manter, Daniel K

    2013-04-01

    Ethanol in sapwood was analyzed along vertical transects, through small spot cankers and larger basal cankers, of Phytophthora ramorum-infected stems of Quercus agrifolia at three sites in California. Trees with large basal cankers, known to attract scolytid beetles, had a 4.3 times higher ethanol level than trees with spot cankers that attract fewer beetles. Ethanol concentrations inside cankers, where scolytid beetles preferentially attack, varied by about four orders of magnitude among samples, with a median level of 16.0 μg.g(-1) fresh mass. This concentration was 4.3 and 15.5 times greater, respectively, than the concentrations at 1 cm or 15-30 cm outside the canker boundaries. In the laboratory, we demonstrated that ethanol escaped through the bark of a Q. garryana log just 3 days after it was added to the sapwood. At the three study sites, traps baited with ethanol captured more Xyleborinus saxesenii, Pseudopityophthorus pubipennis, and Monarthrum dentiger (all Coleoptera: Curculionidae: Scolytinae) than traps baited with ethanol plus (-)-α-pinene, or ethanol plus 4-allylanisole (4AA). Logs of Q. agrifolia with a 50 % ethanol solution added to the sapwood were placed at the study sites, with or without additional bark treatments above the ethanol. The number of scolytid beetle gallery holes above the ethanol-infused sapwood was 4.4 times greater than that on the opposite side of the log where no ethanol was added. Attachment of ultra-high release (-)-α-pinene pouches to the bark surface above the 50 % ethanol solution reduced scolytid attacks to a density of 19.1 % that of logs without this treatment. We conclude that ethanol in P. ramorum cankers functions as a primary host attractant for scolytid beetles and is an important link in colonization of these cankers and accelerated mortality of Q. agrifolia. The results of this research shed light on the chemical ecology behind the focused scolytid attacks on P. ramorum-infected coast live oaks, and lay the

  17. Ecological distribution of Fusarium solani and its opportunistic action related to mycotic keratitis in Cali, Colombia.

    PubMed Central

    Cuero, R G

    1980-01-01

    Corneal ulcera in patients treated at the University Hospital Cali, Colombia have been attributed to the fungus Fusarium solani, which was isolated from patients' eyes by deep scraping. The fungus, which was characterized by culture and morphology, was found to grow well at 37 degrees C in Sabouraud and potato dextrose agars and in liquid asparagine medium, in which it produced very few spores; at 40 degrees C, it survived for 3 weeks. Different levels of pathogenicity were shown by the fungus when 3-week-old bean, corn, and tomato plants were inoculated. Controlled experiments in which an inoculum of F. solani was instilled in rabbit eyes were also carried out; it evoked a clinical reaction producing irritation and erythema. The F. solani isolated from eyes was the same species as that isolated by an agar plate method with Fusarium-selective medium from sugar cane, bean, tomato, or corn fields throughout December 1976 to November 1977. Nonfarming areas and urban sites were also air sampled, but only a few (less than 1%) colonies of F. solani were isolated at one of four sites. A preliminary attempt to identify the physiologically active substance of the fungus was carried out through chemical extraction, thin-layer chromatography, and ultraviolet and infrared spectra analysis. Images PMID:7217337

  18. Quantification of Fusarium solani f. sp. glycines Isolates in Soybean Roots by Colony-forming Unit Assays and Real-time Quantitative PCR

    USDA-ARS?s Scientific Manuscript database

    Fusarium solani f. sp. glycines (FSG; syn. F. virguliforme Akoi, O’Donnell, Homma & Lattanzi) is a soil-borne fungus that infects soybean roots and causes sudden death syndrome (SDS) a widespread and destructive soybean disease. The goal of this study was to develop and used a real-time quantitative...

  19. Isolation and characterization of Leu[7]-Surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Bacillus mojavensis is an endophytic bacterium patented for control of fungal diseases in maize and other plants. Culture extracts and filtrates from this bacterium were antagonistic to the pathogenic and mycotoxic fungus Fusarium verticillioides. However, the identity of the inhibitory substance ...

  20. Registration of five pima cotton germplasm lines (SJ-FR05 - FR09) with improved resistance to fusarium wilt race 4 and good lint yield and fiber quality

    USDA-ARS?s Scientific Manuscript database

    Cotton breeders continue to need alternative sources of cotton breeding lines for improving Fusarium wilt (FOV race 4) resistance in Pima cotton in California. FOV race 4 is a fungus that has impacted cotton yields in the San Joaquin Valley (SJV) for the last 12 years. For this purpose, the Agricult...

  1. Optimizing conditions of a cell-free toxic filtrate stem cutting assay to evaluate soybean genotype responses to Fusarium species that cause sudden death syndrome

    USDA-ARS?s Scientific Manuscript database

    Cell-free toxic culture filtrates from Fusarium virguliforme, the causal fungus of soybean sudden death syndrome (SDS), cause foliar symptoms on soybean stem-cuttings similar to those obtained from root inoculations in whole plants and those observed in production fields. The objectives of this stud...

  2. Surfactin A production and isoforms characterizations in strains of Bacillus mojavensis for control of a maize pathogen, Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    The endophytic bacterium, Bacillus mojavensis, RRC 101 controls fungal diseases in maize and other plants. The bacterium and its cultural extracts have been shown to be antagonistic to the pathogenic and mycotoxic fungus, Fusarium verticillioides. An antifungal cyclic lipopeptide produced by B. moj...

  3. Agrobacterium-mediated transformation of Fusarium proliferatum.

    PubMed

    Bernardi-Wenzel, J; Quecine, M C; Azevedo, J L; Pamphile, J A

    2016-06-03

    Fusarium proliferatum is an important pathogen that is associated with plant diseases and primarily affects aerial plant parts by producing different mycotoxins, which are toxic to humans and animals. Within the last decade, this fungus has also been described as one of the causes of red root rot or sudden death syndrome in soybean, which causes extensive damage to this crop. This study describes the Agrobacterium tumefaciens-mediated transformation of F. proliferatum as a tool for the disruption of pathogenicity genes. The genetic transformation was performed using two binary vectors (pCAMDsRed and pFAT-GFP) containing the hph (hygromycin B resistance) gene as a selection marker and red and green fluorescence, respectively. The presence of acetosyringone and the use of filter paper or nitrocellulose membrane were evaluated for their effect on the transformation efficiency. A mean processing rate of 94% was obtained with 96 h of co-cultivation only in the presence of acetosyringone and the use of filter paper or nitrocellulose membrane did not affect the transformation process. Hygromycin B resistance and the presence of the hph gene were confirmed by PCR, and fluorescence due to the expression of GFP and DsRed protein was monitored in the transformants. A high rate of mitotic stability (95%) was observed. The efficiency of Agrobacterium-mediated transformation of F. proliferatum allows the technique to be used for random insertional mutagenesis studies and to analyze fungal genes involved in the infection process.

  4. Enhancement of trichothecene production in Fusarium graminearum by cobalt chloride.

    PubMed

    Tsuyuki, Rie; Yoshinari, Tomoya; Sakamoto, Naoko; Nagasawa, Hiromichi; Sakuda, Shohei

    2011-03-09

    The effects of cobalt chloride on the production of trichothecene and ergosterol in Fusarium graminearum were examined. Incorporation experiments with (13)C-labeled acetate and leucine confirmed that both 3-acetyldeoxynivalenol and ergosterol were biosynthesized via a mevalonate pathway by the fungus, although hydroxymethyl-glutaryl CoA (HMG-CoA) from intact leucine was able to be partially used for ergosterol production. Addition of cobalt chloride at concentrations of 3-30 μM into liquid culture strongly enhanced 3-acetyldeoxynivalenol production by the fungus, whereas the amount of ergosterol and the mycelial weight of the fungus did not change. The mRNA levels of genes encoding trichothecene biosynthetic proteins (TRI4 and TRI6), ergosterol biosynthetic enzymes (ERG3 and ERG25), and enzymes involved in the mevalonate pathway (HMG-CoA synthase (HMGS) and HMG-CoA reductase (HMGR)) were all strongly up-regulated in the presence of cobalt chloride. Precocene II, a specific trichothecene production inhibitor, suppressed the effects of cobalt chloride on Tri4, Tri6, HMGS, and HMGR, but did not affect erg3 and erg25. These results indicate that cobalt chloride is useful for investigating regulatory mechanisms of trichothecene and ergosterol production in F. graminearum.

  5. Phylogeography of the Walnut Twig Beetle, Pityophthorus juglandis, the Vector of Thousand Cankers Disease in North American Walnut Trees

    PubMed Central

    Rugman-Jones, Paul F.; Seybold, Steven J.; Graves, Andrew D.; Stouthamer, Richard

    2015-01-01

    Thousand cankers disease (TCD) of walnut trees (Juglans spp.) results from aggressive feeding in the phloem by the walnut twig beetle (WTB), Pityophthorus juglandis, accompanied by inoculation of its galleries with a pathogenic fungus, Geosmithia morbida. In 1960, WTB was only known from four U.S. counties (in Arizona, California, and New Mexico), but the species has now (2014) invaded over 115 counties, representing much of the western USA, and at least six states in the eastern USA. The eastern expansion places TCD in direct proximity to highly valuable (> $500 billion) native timber stands of eastern black walnut, Juglans nigra. Using mitochondrial DNA sequences, from nearly 1100 individuals, we examined variation among 77 samples of WTB populations across its extended range in the USA, revealing high levels of polymorphism and evidence of two divergent lineages. The highest level of genetic diversity for the different lineages was found in the neighboring Madrean Sky Island and Western New Mexico regions, respectively. Despite their proximity, there was little evidence of mixing between these regions, with only a single migrant detected among 179 beetles tested. Indeed, geographic overlap of the two lineages was only common in parts of Colorado and Utah. Just two haplotypes, from the same lineage, predominated over the vast majority of the recently expanded range. Tests for Wolbachia proved negative suggesting it plays no role in "driving" the spread of particular haplotypes, or in maintaining deep levels of intraspecific divergence in WTB. Genotyping of ribosomal RNA corroborated the mitochondrial lineages, but also revealed evidence of hybridization between them. Hybridization was particularly prevalent in the sympatric areas, also apparent in all invaded areas, but absent from the most haplotype-rich area of each mitochondrial lineage. Hypotheses about the specific status of WTB, its recent expansion, and potential evolutionary origins of TCD are discussed

  6. Phylogeography of the walnut twig beetle, Pityophthorus juglandis, the vector of thousand cankers disease in North American walnut trees.

    PubMed

    Rugman-Jones, Paul F; Seybold, Steven J; Graves, Andrew D; Stouthamer, Richard

    2015-01-01

    Thousand cankers disease (TCD) of walnut trees (Juglans spp.) results from aggressive feeding in the phloem by the walnut twig beetle (WTB), Pityophthorus juglandis, accompanied by inoculation of its galleries with a pathogenic fungus, Geosmithia morbida. In 1960, WTB was only known from four U.S. counties (in Arizona, California, and New Mexico), but the species has now (2014) invaded over 115 counties, representing much of the western USA, and at least six states in the eastern USA. The eastern expansion places TCD in direct proximity to highly valuable (> $500 billion) native timber stands of eastern black walnut, Juglans nigra. Using mitochondrial DNA sequences, from nearly 1100 individuals, we examined variation among 77 samples of WTB populations across its extended range in the USA, revealing high levels of polymorphism and evidence of two divergent lineages. The highest level of genetic diversity for the different lineages was found in the neighboring Madrean Sky Island and Western New Mexico regions, respectively. Despite their proximity, there was little evidence of mixing between these regions, with only a single migrant detected among 179 beetles tested. Indeed, geographic overlap of the two lineages was only common in parts of Colorado and Utah. Just two haplotypes, from the same lineage, predominated over the vast majority of the recently expanded range. Tests for Wolbachia proved negative suggesting it plays no role in "driving" the spread of particular haplotypes, or in maintaining deep levels of intraspecific divergence in WTB. Genotyping of ribosomal RNA corroborated the mitochondrial lineages, but also revealed evidence of hybridization between them. Hybridization was particularly prevalent in the sympatric areas, also apparent in all invaded areas, but absent from the most haplotype-rich area of each mitochondrial lineage. Hypotheses about the specific status of WTB, its recent expansion, and potential evolutionary origins of TCD are discussed.

  7. Fusarium subglutinans: A new eumycetoma agent.

    PubMed

    Campos-Macías, Pablo; Arenas-Guzmán, Roberto; Hernández-Hernández, Francisca

    2013-07-09

    Eumycetoma is a chronic subcutaneous mycosis mainly caused by Madurella spp. Fusarium opportunistic infections in humans are often caused by Fusarium solani and Fusarium oxysporum. We report a case of eumycetoma by F. subglutinans, diagnosed by clinical aspect and culture, and confirmed by PCR sequencing. The patient was successfully treated with oral itraconazole. To our knowledge, this is the second report of human infection and the first case of mycetoma by Fusarium subglutinans.

  8. Fusarium subglutinans: A new eumycetoma agent☆

    PubMed Central

    Campos-Macías, Pablo; Arenas-Guzmán, Roberto; Hernández-Hernández, Francisca

    2013-01-01

    Eumycetoma is a chronic subcutaneous mycosis mainly caused by Madurella spp. Fusarium opportunistic infections in humans are often caused by Fusarium solani and Fusarium oxysporum. We report a case of eumycetoma by F. subglutinans, diagnosed by clinical aspect and culture, and confirmed by PCR sequencing. The patient was successfully treated with oral itraconazole. To our knowledge, this is the second report of human infection and the first case of mycetoma by Fusarium subglutinans. PMID:24432236

  9. Different Transcriptional Response to Xanthomonas citri subsp. citri between Kumquat and Sweet Orange with Contrasting Canker Tolerance

    PubMed Central

    Fu, Xing-Zheng; Gong, Xiao-Qing; Zhang, Yue-Xin; Wang, Yin; Liu, Ji-Hong

    2012-01-01

    Citrus canker disease caused by Xanthomonas citri subsp. citri (Xcc) is one of the most devastating biotic stresses affecting the citrus industry. Meiwa kumquat (Fortunella crassifolia) is canker-resistant, while Newhall navel orange (Citrus sinensis Osbeck) is canker-sensitive. To understand the molecular mechanisms underlying the differences in responses to Xcc, transcriptomic profiles of these two genotypes following Xcc attack were compared by using the Affymetrix citrus genome GeneChip. A total of 794 and 1324 differentially expressed genes (DEGs) were identified as canker-responsive genes in Meiwa and Newhall, respectively. Of these, 230 genes were expressed in common between both genotypes, while 564 and 1094 genes were only significantly expressed in either Meiwa or Newhall. Gene ontology (GO) annotation and Singular Enrichment Analysis (SEA) of the DEGs showed that genes related to the cell wall and polysaccharide metabolism were induced for basic defense in both Meiwa and Newhall, such as chitinase, glucanase and thaumatin-like protein. Moreover, apart from inducing basic defense, Meiwa showed specially upregulated expression of several genes involved in the response to biotic stimulus, defense response, and cation binding as comparing with Newhall. And in Newhall, abundant photosynthesis-related genes were significantly down-regulated, which may be in order to ensure the basic defense. This study revealed different molecular responses to canker disease in Meiwa and Newhall, affording insight into the response to canker and providing valuable information for the identification of potential genes for engineering canker tolerance in the future. PMID:22848606

  10. Vinegar residue compost as a growth substrate enhances cucumber resistance against the Fusarium wilt pathogen Fusarium oxysporum by regulating physiological and biochemical responses.

    PubMed

    Shi, Lu; Du, Nanshan; Yuan, Yinghui; Shu, Sheng; Sun, Jin; Guo, Shirong

    2016-09-01

    Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. cucumerinum (FOC) is the most severe soil-borne disease attacking cucumber. To assess the positive effects of vinegar residue substrate (VRS) on the growth and incidence of Fusarium wilt on cucumber, we determined the cucumber growth parameters, disease severity, defense-related enzyme and pathogenesis-related (PR) protein activities, and stress-related gene expression levels. In in vitro and pot experiments, we demonstrated the following results: (i) the VRS extract exhibited a higher biocontrol activity than that of peat against FOC, and significantly improved the growth inhibition of FOC, with values of 48.3 %; (ii) in response to a FOC challenge, antioxidant enzymes and the key enzymes of phenylpropanoid metabolic activities, as well as the PR protein activities in the roots of cucumber, were significantly increased. Moreover, the activities of these proteins were higher in VRS than in peat; (iii) the expression levels of stress-related genes (including glu, pal, and ethylene receptor) elicited responses to the pathogens inoculated in cucumber leaves; and (iv) the FOC treatment significantly inhibited the growth of cucumber seedlings. Moreover, all of the growth indices of plants grown in VRS were significantly higher than those grown in peat. These results offer a new strategy to control cucumber Fusarium wilt, by upregulating the activity levels of defense-related enzymes and PR proteins and adjusting gene expression levels. They also provide a theoretical basis for VRS applications.

  11. Complete DNA Sequence of Pseudomonas syringae pv. actinidiae, the Causal Agent of Kiwifruit Canker Disease.

    PubMed

    Templeton, Matthew D; Warren, Benjamin A; Andersen, Mark T; Rikkerink, Erik H A; Fineran, Peter C

    2015-09-17

    Pseudomonas syringae pv. actinidiae is the causal agent of bacterial canker of kiwifruit, a disease that has rapidly spread worldwide. We have fully sequenced and assembled the chromosomal and plasmid DNA from P. syringae pv. actinidiae ICMP 18884 using the PacBio RS II platform.

  12. Phytophthora species associated with stem cankers on tanoak in southwestern Oregon

    Treesearch

    Paul Reeser; Wendy Sutton; Everett Hansen

    2008-01-01

    In effort to eradicate Phytophthora ramorum from Oregon forests, tanoak over its entire range in southwestern Oregon is surveyed intensively for stem disease. Pieces of bark from the leading edge of tanoak stem cankers were plated on cornmeal agar amended with 10 ppm natamycin, 200 ppm a-ampicillin, and 10 ppm rifamycin SV (CARP) to favor the...

  13. New canker disease of Incense-cedar in Oregon caused by Phaeobotryon cupressi.

    USDA-ARS?s Scientific Manuscript database

    Incense-cedar (Calocedrus decurrens) is a native tree occurring in Oregon and California. Since the early 2000’s, a new canker disease has been observed with increasing frequency on ornamental and windbreak trees planted in the Willamette Valley of Oregon. Symptoms appear as dead, flagging, small-di...

  14. First report of Phaeobotryon cupressi causing canker of Calocedrus decurrens in Oregon.

    USDA-ARS?s Scientific Manuscript database

    Since the early 2000’s a canker disease has been noticed with increasing frequency on landscape specimens of native incense cedar (Calocedrus decurrens) planted throughout the Willamette Valley (from Portland south to Eugene) in western Oregon. Symptoms initially appear as dead and flagging small-di...

  15. Cold-Induced Cankers and Associated Fungi in a Sycamore Seed Orchard

    Treesearch

    Francis I. McCracken; R. Rousseau

    1991-01-01

    Of the trees in a 6-year-old sycamore seed orchard in Carlisle County, KY, 66 percent developed obscure vertical cankers in the spring of 1990. A variety of wound-invading saprophytes, including Hyalodendron sp., Stachylidium sp., Botrytis sp., Phialophora sp., Trichoderma...

  16. Evaluation of resistance to asiatic citrus canker among selections of pera sweet orange (Citrus sinensis)

    USDA-ARS?s Scientific Manuscript database

    Asiatic citrus canker (ACC, caused by the bacterium Xanthomonas citri subsp. citri) is a destructive disease of citrus in Brazil and in several other citrus-producing countries. ACC management is problematic, and bactericides such as copper can be reasonably efficacious but do not completely control...

  17. Optical fiber laser induced fluorescence spectroscopy as a citrus canker diagnostic.

    PubMed

    Lins, E C; Belasque, J; Marcassa, L G

    2010-02-01

    Citrus canker is a serious disease caused by Xanthomonas citri subsp. citri bacteria, which infects citrus plants (Citrus spp.) leading to large economic losses in citrus production worldwide. In this work, laser induced fluorescence spectroscopy (LIF) was investigated as a diagnostic technique for citrus canker disease in citrus trees at an orchard using a portable optical fiber based spectrometer. For comparison we have applied LIF to leaves contaminated with citrus canker, citrus scab, citrus variegates chlorosis, and Huanglongbing (HLB, Greening). In order to reduce the noise in the data, we collected spectra from ten leaves with visual symptoms of diseases and from five healthy leaves per plant. This procedure is carried out in order to minimize the environmental effect on the spectrum (water and nutrient supply) of each plant. Our results show that this method presents a high sensitivity (approximately 90%), however it does present a low specificity (approximately 70%) for citrus canker diagnostic. We believe that such poor performance is due to the fact that the optical fiber collects light from only a small part of the leaf. Such results may be improved using the fluorescence imaging technique on the whole leaf.

  18. Phomopsis Stem Canker: A Reemerging Threat to Sunflower (Helianthus annuus) in the United States.

    PubMed

    Mathew, Febina M; Alananbeh, Kholoud M; Jordahl, James G; Meyer, Scott M; Castlebury, Lisa A; Gulya, Thomas J; Markell, Samuel G

    2015-07-01

    Phomopsis stem canker causes yield reductions on sunflower (Helianthus annuus L.) on several continents, including Australia, Europe, and North America. In the United States, Phomopsis stem canker incidence has increased 16-fold in the Northern Great Plains between 2001 and 2012. Although Diaporthe helianthi was assumed to be the sole causal agent in the United States, a newly described species, D. gulyae, was found to be the primary cause of Phomopsis stem canker in Australia. To determine the identity of Diaporthe spp. causing Phomopsis stem canker in the Northern Great Plains, 275 infected stems were collected between 2010 and 2012. Phylogenetic analyses of sequences of the ribosomal DNA internal transcribed spacer region, elongation factor subunit 1-α, and actin gene regions of representative isolates, in comparison with those of type specimens, confirmed two species (D. helianthi and D. gulyae) in the United States. Differences in aggressiveness between the two species were determined using the stem-wound method in the greenhouse; overall, D. helianthi and D. gulyae did not vary significantly (P≤0.05) in their aggressiveness at 10 and 14 days after inoculation. These findings indicate that both Diaporthe spp. have emerged as sunflower pathogens in the United States, and have implications on the management of this disease.

  19. Resistance evaluation of Pera (Citrus sinensis) genotypes to citrus canker in greenhouse conditions

    USDA-ARS?s Scientific Manuscript database

    Citrus canker, caused by the bacterium Xanthomonas citri subsp. citri results in serious yield losses and phytoregulation penalties. The use of resistant genotypes is recognized as an important tool to facilitate control of the pathogen. Studies have show that artificial inoculation results in typic...

  20. Relationships between Phytophthora ramorum canker (sudden oak death) and failure potential in coast live oak

    Treesearch

    Tedmund J. Swiecki; Elizabeth Bernhardt; Christiana Drake; Laurence R. Costello

    2006-01-01

    In autumn 2002, we conducted a retrospective study on coast live oak (Quercus agrifolia) failures in Marin County, California, woodlands affected by Phytophthora ramorum canker (sudden oak death). The objectives of this case-control study were to quantify levels of bole, large branch, and root failure in these woodlands and...

  1. Rapid screening for citrus canker resistance employing pattern-triggered immunity (PTI) responses

    USDA-ARS?s Scientific Manuscript database

    Citrus canker, caused by the bacterial pathogen Xanthomonas citri ssp. citri (Xcc), has been attributed to millions of dollars in loss or damage to commercial citrus crops in subtropical production areas of the world. Since identification of resistant plants is one of the most effective methods of d...

  2. Optimal strategies for the eradication of Asiatic citrus canker in heterogeneous host landscapes

    USDA-ARS?s Scientific Manuscript database

    The eradication of non-native plant pathogens is a key challenge in plant disease epidemiology. Asiatic citrus canker is an economically significant disease of citrus caused by the bacterial plant pathogen Xanthomonas citri subsp. citri. The pathogen is a major exotic disease problem in many citru...

  3. Wind speed and wind-associated leaf injury affect severity of citrus canker on Swingle citrumelo

    USDA-ARS?s Scientific Manuscript database

    Citrus canker (caused by the bacterial pathogen Xanthomonas citri subsp. citri, Xcc) can cause severe damage to citrus. It is endemic in Florida, and occurs in other citrus growing regions. The bacterium is dispersed predominantly in rain splash. To simulate dispersal in splash, and to investigate t...

  4. Canker and twig dieback of blueberry caused by Pestalotiopsis spp. and a Truncatella sp. in Chile

    USDA-ARS?s Scientific Manuscript database

    Blueberry (Vaccinium spp.) has great economic importance in Chile, currently with about 8,500 ha being cultivated. Recently, the presence of canker and dieback symptoms has been observed along the productive blueberry zone of Chile extending from the V Region (32º49´ South lat.) in the north to the ...

  5. Exacerbation of citrus canker by citrus leafminer, Phyllocnistis citrella in Florida

    USDA-ARS?s Scientific Manuscript database

    Citrus canker (caused by Xanthomonas citri subsp. citri, Xcc) is an important bacterial disease of citrus that is spread naturally by rain and wind. Damage to citrus leaves by the citrus leafminer (CLM) , Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae), has been shown to promote infect...

  6. De novo genome assembly of Geosmithia morbida, the causal agent of thousand cankers disease

    Treesearch

    Taruna A. Schuelke; Anthony Westbrook; Kirk Broders; Keith Woeste; Matthew D. MacManes

    2016-01-01

    Geosmithia morbida is a filamentous ascomycete that causes thousand cankers disease in the eastern black walnut tree. This pathogen is commonly found in the western U.S.; however, recently the disease was also detected in several eastern states where the black walnut lumber industry is concentrated. G. morbida is one of two...

  7. Commercial postharvest practices used to handle fresh citrus fruit with canker symptoms

    USDA-ARS?s Scientific Manuscript database

    To assist in developing best postharvest practices for handling fruit with canker lesions, a survey was distributed in summers of 2008 and 2009 to better understand current practices. Approximately 60% of the surveys were returned each year representing about 55% of total fresh fruit shipments. As e...

  8. Ethanol attracts scolytid beetles to Phytophthora ramorum cankers on coast live oak [Abstract

    Treesearch

    Rick G. Kelsey; Maia Beh; Dave Shaw; Daniel K. Manter

    2013-01-01

    Successful infection of coast live oak (Quercus agrifolia Née) stems by Phytophthora ramorum results in the formation of a canker visible initially at the bark surface by the release of a dark red to black colored exudate referred to as "bleeding." Bark and ambrosia beetles are often attracted to diseased trees within...

  9. 78 FR 58992 - Notice of Request for Extension of Approval of an Information Collection; Citrus Canker...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... Collection; Citrus Canker; Interstate Movement of Regulated Nursery Stock and Fruit From Quarantined Areas... an information collection associated with the regulations for the interstate movement of regulated...: For information on the regulations for the interstate movement of regulated nursery stock and fruit...

  10. ANNUAL AND POLYETIC PROGRESSION OF CITRUS CANKER ON TREES PROTECTED WITH COPPER SPRAYS

    USDA-ARS?s Scientific Manuscript database

    : Mathematical models are important tools for comparative analysis of epidemics. In this paper, parameters obtained from the mathematical model that best fitted to the annual progress curves of citrus canker incidence were used to evaluate the effect of copper sprays and windbreaks on the annual and...

  11. Overexpression of a Modified Plant Thionin Enhances Disease Resistance to Citrus Canker and Huanglongbing (HLB).

    PubMed

    Hao, Guixia; Stover, Ed; Gupta, Goutam

    2016-01-01

    Huanglongbing (HLB or citrus greening disease) caused by Candidatus Liberibacter asiaticus (Las) is a great threat to the US citrus industry. There are no proven strategies to eliminate HLB disease and no cultivar has been identified with strong HLB resistance. Citrus canker is also an economically important disease associated with a bacterial pathogen (Xanthomonas citri). In this study, we characterized endogenous citrus thionins and investigated their expression in different citrus tissues. Since no HLB-resistant citrus cultivars have been identified, we attempted to develop citrus resistant to both HLB and citrus canker through overexpression of a modified plant thionin. To improve effectiveness for disease resistance, we modified and synthesized the sequence encoding a plant thionin and cloned into the binary vector pBinPlus/ARS. The construct was then introduced into Agrobacterium strain EHA105 for citrus transformation. Transgenic Carrizo plants expressing the modified plant thionin were generated by Agrobacterium-mediated transformation. Successful transformation and transgene gene expression was confirmed by molecular analysis. Transgenic Carrizo plants expressing the modified thionin gene were challenged with X. citri 3213 at a range of concentrations, and a significant reduction in canker symptoms and a decrease in bacterial growth were demonstrated compared to nontransgenic plants. Furthermore, the transgenic citrus plants were challenged with HLB via graft inoculation. Our results showed significant Las titer reduction in roots of transgenic Carrizo compared with control plants and reduced scion Las titer 12 months after graft inoculation. These data provide promise for engineering citrus disease resistance against HLB and canker.

  12. Overexpression of a modified plant thionin enhances disease resistance to citrus canker and Huanglongbing (HLB)

    USDA-ARS?s Scientific Manuscript database

    Huanglongbing (HLB or citrus greening disease) caused by Candidatus Liberibacter asiaticus (Las) is a great threat to the United States citrus industry. There are no proven strategies to eliminate HLB disease and no cultivar has been identified with strong HLB resistance. Citrus canker is also an ec...

  13. Production of transgenic citrus resistant to citrus canker and Huanglongbing diseases

    USDA-ARS?s Scientific Manuscript database

    Huanglongbing (HLB or citrus greening disease) caused by Candidatus Liberibacter asiaticus (Las) is a great threat to the U.S. citrus industry. There are no proven strategies to eliminate HLB disease and no cultivars identified with strong HLB resistance. Citrus canker is also an economically import...

  14. Citrus MAF1, a Repressor of RNA Polymerase III, Binds the Xanthomonas citri Canker Elicitor PthA4 and Suppresses Citrus Canker Development1

    PubMed Central

    Soprano, Adriana Santos; Abe, Valeria Yukari; Smetana, Juliana Helena Costa; Benedetti, Celso Eduardo

    2013-01-01

    Transcription activator-like (TAL) effectors from Xanthomonas species pathogens act as transcription factors in plant cells; however, how TAL effectors activate host transcription is unknown. We found previously that TAL effectors of the citrus canker pathogen Xanthomonas citri, known as PthAs, bind the carboxyl-terminal domain of the sweet orange (Citrus sinensis) RNA polymerase II (Pol II) and inhibit the activity of CsCYP, a cyclophilin associated with the carboxyl-terminal domain of the citrus RNA Pol II that functions as a negative regulator of cell growth. Here, we show that PthA4 specifically interacted with the sweet orange MAF1 (CsMAF1) protein, an RNA polymerase III (Pol III) repressor that controls ribosome biogenesis and cell growth in yeast (Saccharomyces cerevisiae) and human. CsMAF1 bound the human RNA Pol III and rescued the yeast maf1 mutant by repressing tRNAHis transcription. The expression of PthA4 in the maf1 mutant slightly restored tRNAHis synthesis, indicating that PthA4 counteracts CsMAF1 activity. In addition, we show that sweet orange RNA interference plants with reduced CsMAF1 levels displayed a dramatic increase in tRNA transcription and a marked phenotype of cell proliferation during canker formation. Conversely, CsMAF1 overexpression was detrimental to seedling growth, inhibited tRNA synthesis, and attenuated canker development. Furthermore, we found that PthA4 is required to elicit cankers in sweet orange leaves and that depletion of CsMAF1 in X. citri-infected tissues correlates with the development of hyperplastic lesions and the presence of PthA4. Considering that CsMAF1 and CsCYP function as canker suppressors in sweet orange, our data indicate that TAL effectors from X. citri target negative regulators of RNA Pol II and Pol III to coordinately increase the transcription of host genes involved in ribosome biogenesis and cell proliferation. PMID:23898043

  15. Fusarium temperatum and Fusarium subglutinans isolated from maize in Argentina.

    PubMed

    Fumero, María Verónica; Reynoso, María Marta; Chulze, Sofía

    2015-04-16

    Fusarium temperatum and Fusarium subglutinans isolated from the Northwest region (NOA region) of Argentina were characterized using a polyphasic approach based on morphological, biological and molecular markers. Some interfertility between the species was observed. The phylogenetic analysis showed that the two species represented two clades strongly supported by bootstrap values. The toxigenic profile of the strains was also determined. F. temperatum strains were fusaproliferin and beauvericin producers, and only some strains were fumonisin B1 producers. All F. subglutinans strains produced fusaproliferin but none produced beauvericin, indicating a potential toxicological risk from maize harvested in the NOA region of Argentina. This study provides new information about F. temperatum isolated from maize in Argentina.

  16. Hyperspectral reflectance imaging for detecting citrus canker based on dual-band ratio image classification method

    NASA Astrophysics Data System (ADS)

    Li, Jiangbo; Rao, Xiuqin; Guo, Junxian; Ying, Yibin

    2010-10-01

    Citrus are one of the major fruit produced in China. Most of this production is exported to Europe for fresh consumption, where consumers increasingly demand best quality. Citrus canker is one of the most devastating diseases that threaten peel of most commercial citrus varieties. The aim of this research was to investigate the potential of using hyperspectral imaging technique for detecting canker lesions on citrus fruit. Navel oranges with cankerous, normal and various common diseased skin conditions including wind scar, thrips scarring, scale insect, dehiscent fruit, phytotoxicity, heterochromatic stripe, and insect damage were studied. The imaging system (400-1000 nm) was established to acquire reflectance images from samples. Region of interest (ROI) spectral feature of various diseased peel areas was analyzed and characteristic wavebands (630, 685, and 720 nm) were extracted. The dual-band reflectance ratio (such as Q720/685) algorithm was performed on the hyperspectral images of navel oranges for differentiating canker from normal fruit skin and other surface diseases. The overall classification success rate was 96.84% regardless of the presence of other confounding diseases. The presented processing approach overcame the presence of stem/navel on navel oranges that typically has been a problematic source for false positives in the detection of defects. Because of the limited sample size, delineation of an optimal detection scheme is beyond the scope of the current study. However, the results showed that two-band ratio (Q685/630) along with the use of a simple threshold value segmentation method for discriminating canker on navel oranges from other peel diseases may be feasible.

  17. Fusarochromanone production by Fusarium isolates.

    PubMed Central

    Wu, W D; Nelson, P E; Cook, M E; Smalley, E B

    1990-01-01

    Sixty two Fusarium isolates representing nine species from many parts of the world were screened for fusarochromanone production. A simplified method for the detection of fusarochromanone in culture filtrates or grain cultures was used. Under UV irradiation (364 nm) the chloroform phase from fusarochromanone-positive culture extracts fluoresced a characteristic bright blue color. Results were confirmed by thin-layer-chromatography comparison with pure fusarochromanone standards. Detection was possible in cultures as young as 1 week old. Biosynthesis of fusarochromanone was rare in Fusarium spp. and was only detected in three isolates of Fusarium equiseti, namely R-4482 (barley [Federal Republic of Germany]), R-6137 (barley [Alaska]), and R-8508 (potato [Denmark]), among all the isolates tested from various geographic sources. Images PMID:2285312

  18. Fusion proteins comprising a Fusarium-specific antibody linked to antifungal peptides protect plants against a fungal pathogen.

    PubMed

    Peschen, Dieter; Li, He-Ping; Fischer, Rainer; Kreuzaler, Fritz; Liao, Yu-Cai

    2004-06-01

    In planta expression of recombinant antibodies recognizing pathogen-specific antigens has been proposed as a strategy for crop protection. We report the expression of fusion proteins comprising a Fusarium-specific recombinant antibody linked to one of three antifungal peptides (AFPs) as a method for protecting plants against fungal diseases. A chicken-derived single-chain antibody specific to antigens displayed on the Fusarium cell surface was isolated from a pooled immunocompetent phage display library. This recombinant antibody inhibited fungal growth in vitro when fused to any of the three AFPs. Expression of the fusion proteins in transgenic Arabidopsis thaliana plants conferred high levels of protection against Fusarium oxysporum f.sp. matthiolae, whereas plants expressing either the fungus-specific antibody or AFPs alone exhibited only moderate resistance. Our results demonstrate that antibody fusion proteins may be used as effective and versatile tools for the protection of crop plants against fungal infection.

  19. Deoxynivalenol: A Major Player in the Multifaceted Response of Fusarium to Its Environment

    PubMed Central

    Audenaert, Kris; Vanheule, Adriaan; Höfte, Monica; Haesaert, Geert

    2013-01-01

    The mycotoxin deoxynivalenol (DON), produced by several Fusarium spp., acts as a virulence factor and is essential for symptom development after initial wheat infection. Accumulating evidence shows that the production of this secondary metabolite can be triggered by diverse environmental and cellular signals, implying that it might have additional roles during the life cycle of the fungus. Here, we review data that position DON in the saprophytic fitness of Fusarium, in defense and in the primary C and N metabolism of the plant and the fungus. We combine the available information in speculative models on the role of DON throughout the interaction with the host, providing working hypotheses that await experimental validation. We also highlight the possible impact of control measures in the field on DON production and summarize the influence of abiotic factors during processing and storage of food and feed matrices. Altogether, we can conclude that DON is a very important compound for Fusarium to cope with a changing environment and to assure its growth, survival, and production of toxic metabolites in diverse situations. PMID:24451843

  20. Deoxynivalenol: a major player in the multifaceted response of Fusarium to its environment.

    PubMed

    Audenaert, Kris; Vanheule, Adriaan; Höfte, Monica; Haesaert, Geert

    2013-12-19

    The mycotoxin deoxynivalenol (DON), produced by several Fusarium spp., acts as a virulence factor and is essential for symptom development after initial wheat infection. Accumulating evidence shows that the production of this secondary metabolite can be triggered by diverse environmental and cellular signals, implying that it might have additional roles during the life cycle of the fungus. Here, we review data that position DON in the saprophytic fitness of Fusarium, in defense and in the primary C and N metabolism of the plant and the fungus. We combine the available information in speculative models on the role of DON throughout the interaction with the host, providing working hypotheses that await experimental validation. We also highlight the possible impact of control measures in the field on DON production and summarize the influence of abiotic factors during processing and storage of food and feed matrices. Altogether, we can conclude that DON is a very important compound for Fusarium to cope with a changing environment and to assure its growth, survival, and production of toxic metabolites in diverse situations.

  1. Biocontrol of the toxigenic plant pathogen Fusarium culmorum by soil fauna in an agroecosystem.

    PubMed

    Meyer-Wolfarth, Friederike; Schrader, Stefan; Oldenburg, Elisabeth; Weinert, Joachim; Brunotte, Joachim

    2017-08-01

    In 2011 and 2013, a field experiment was conducted in a winter wheat field at Adenstedt (northern Germany) to investigate biocontrol and interaction effects of important members of the soil food web (Lumbricus terrestris, Annelida; Folsomia candida, Collembola and Aphelenchoides saprophilus, Nematoda) on the phytopathogenic fungus Fusarium culmorum in wheat straw. Therefore, soil fauna was introduced in mesocosms in defined numbers and combinations and exposed to either Fusarium-infected or non-infected wheat straw. L. terrestris was introduced in all faunal treatments and combined either with F. candida or A. saprophilus or both. Mesocosms filled with a Luvisol soil, a cover of different types of wheat straw and respective combinations of faunal species were established outdoors in the topsoil of a winter wheat field after harvest of the crop. After a time span of 4 and 8 weeks, the degree of wheat straw coverage of mesocosms was quantified to assess its attractiveness for the soil fauna. The content of Fusarium biomass in residual wheat straw and soil was determined using a double-antibody sandwich (DAS)-ELISA method. In both experimental years, the infected wheat straw was incorporated more efficiently into the soil than the non-infected control straw due to the presence of L. terrestris in all faunal treatments than the non-infected control straw. In addition, Fusarium biomass was reduced significantly in all treatments after 4 weeks (2011: 95-99%; 2013:15-54%), whereupon the decline of fungal biomass was higher in faunal treatments than in non-faunal treatments and differed significantly from them. In 2011, Fusarium biomass of the faunal treatments was below the quantification limit after 8 weeks. In 2013, a decline of Fusarium biomass was observed, but the highest content of Fusarium biomass was still found in the non-faunal treatments after 8 weeks. In the soil of all treatments, Fusarium biomass was below the quantification limit. The earthworm species

  2. Cytotoxic Naphthoquinone and Azaanthraquinone Derivatives from an Endophytic Fusarium solani.

    PubMed

    Chowdhury, Nargis Sultana; Sohrab, Md Hossain; Rana, Md Sohel; Hasan, Choudhury Mahmood; Jamshidi, Shirin; Rahman, Khondaker Miraz

    2017-04-28

    Bioactivity-guided fractionation of the ethyl acetate extract obtained from the culture of the endophytic fungus Fusarium solani resulted in the isolation of one new naphthoquinone, 9-desmethylherbarine (1), and two azaanthraquinone derivatives, 7-desmethylscorpinone (2) and 7-desmethyl-6-methylbostrycoidin (3), along with four known compounds. Their structures were elucidated by spectral analysis, as well as a direct comparison of spectral data with those of known compounds. Azaanthraquinones 2 and 3 showed cytotoxic activity against four human tumor cell lines, MDA MB 231, MIA PaCa2, HeLa, and NCI H1975. A molecular docking study suggested DNA interactions as the mode of action of these naphthoquinones and azaanthraquinones.

  3. Population structure of Geosmithia morbida, the causal agent of thousand cankers disease of walnut trees in the United States

    Treesearch

    Marcelo M. Zerillo; Jorge Ibarra Caballero; Keith Woeste; Andrew D. Graves; Colleen Hartel; Jay W. Pscheidt; Jadelys Tonos; Kirk Broders; Whitney Cranshaw; Steven J. Seybold; Ned Tisserat

    2014-01-01

    The ascomycete Geosmithia morbida and the walnut twig beetle Pityophthorus juglandis are associated with thousand cankers disease of Juglans (walnut) and Pterocarya (wingnut). The disease was first reported in the western United States (USA) on several Juglans species, but...

  4. Screening antimicrobial peptides in-vitro for use in developing transgenic citrus resistant to huanglongbing and citrus canker

    USDA-ARS?s Scientific Manuscript database

    Huanglongbing (HLB, associated with Candidatus Liberibacter sp.) and Asiatic citrus canker (ACC, causal organism Xanthomonas citri subsp. citri (XCC)) are bacterial diseases that seriously threaten sustainability of the Florida citrus industry. Sweet orange and grapefruit are highly susceptible to A...

  5. Identification and regulation of fusA, the polyketide synthase gene responsible for fusarin production in Fusarium fujikuroi.

    PubMed

    Díaz-Sánchez, Violeta; Avalos, Javier; Limón, M Carmen

    2012-10-01

    Fusarins are a class of mycotoxins of the polyketide family produced by different Fusarium species, including the gibberellin-producing fungus Fusarium fujikuroi. Based on sequence comparisons between polyketide synthase (PKS) enzymes for fusarin production in other Fusarium strains, we have identified the F. fujikuroi orthologue, called fusA. The participation of fusA in fusarin biosynthesis was demonstrated by targeted mutagenesis. Fusarin production is transiently stimulated by nitrogen availability in this fungus, a regulation paralleled by the fusA mRNA levels in the cell. Illumination of the cultures results in a reduction of the fusarin content, an effect partially explained by a high sensitivity of these compounds to light. Mutants of the fusA gene exhibit no external phenotypic alterations, including morphology and conidiation, except for a lack of the characteristic yellow and/or orange pigmentation of fusarins. Moreover, the fusA mutants are less efficient than the wild type at degrading cellophane on agar cultures, a trait associated with pathogenesis functions in Fusarium oxysporum. The fusA mutants, however, are not affected in their capacities to grow on plant tissues.

  6. Fusarium graminearum forms mycotoxin producing infection structures on wheat

    PubMed Central

    2011-01-01

    Background The mycotoxin producing fungal pathogen Fusarium graminearum is the causal agent of Fusarium head blight (FHB) of small grain cereals in fields worldwide. Although F. graminearum is highly investigated by means of molecular genetics, detailed studies about hyphal development during initial infection stages are rare. In addition, the role of mycotoxins during initial infection stages of FHB is still unknown. Therefore, we investigated the infection strategy of the fungus on different floral organs of wheat (Triticum aestivum L.) under real time conditions by constitutive expression of the dsRed reporter gene in a TRI5prom::GFP mutant. Additionally, trichothecene induction during infection was visualised with a green fluorescent protein (GFP) coupled TRI5 promoter. A tissue specific infection pattern and TRI5 induction were tested by using different floral organs of wheat. Through combination of bioimaging and electron microscopy infection structures were identified and characterised. In addition, the role of trichothecene production for initial infection was elucidated by a ΔTRI5-GFP reporter strain. Results The present investigation demonstrates the formation of foot structures and compound appressoria by F. graminearum. All infection structures developed from epiphytic runner hyphae. Compound appressoria including lobate appressoria and infection cushions were observed on inoculated caryopses, paleas, lemmas, and glumes of susceptible and resistant wheat cultivars. A specific trichothecene induction in infection structures was demonstrated by different imaging techniques. Interestingly, a ΔTRI5-GFP mutant formed the same infection structures and exhibited a similar symptom development compared to the wild type and the TRI5prom::GFP mutant. Conclusions The different specialised infection structures of F. graminearum on wheat florets, as described in this study, indicate that the penetration strategy of this fungus is far more complex than postulated to

  7. Fusarium foetens, a new species pathogenic to begonia elatior hybrids (Begonia x hiemalis) and the sister taxon of the Fusarium oxysporum species complex.

    PubMed

    Schroers, H-J; Baayen, R P; Meffert, J P; de Gruyter, J; Hooftman, M; O'Donnell, K

    2004-01-01

    A new disease recently was discovered in begonia elatior hybrid (Begonia × hiemalis) nurseries in The Netherlands. Diseased plants showed a combination of basal rot, vein yellowing and wilting and the base of collapsing plants was covered by unusually large masses of Fusarium macroconidia. A species of Fusarium was isolated consistently from the discolored veins of leaves and stems. It differed morphologically from F. begoniae, a known agent of begonia flower, leaf and stem blight. The Fusarium species resembled members of the F. oxysporum species complex in producing short monophialides on the aerial mycelium and abundant chlamydospores. Other phenotypic characters such as polyphialides formed occasionally in at least some strains, relatively long monophialides intermingled with the short monophialides formed on the aerial mycelium, distinct sporodochial conidiomata, and distinct pungent colony odor distinguished it from the F. oxysporum species complex. Phylogenetic analyses of partial sequences of the mitochondrial small subunit of the ribosomal DNA (mtSSU rDNA), nuclear translation elongation factor 1α (EF-1α) and β-tubulin gene exons and introns indicate that the Fusarium species represents a sister group of the F. oxysporum species complex. Begonia × hiemalis cultivars Bazan, Bellona and Netja Dark proved to be highly susceptible to the new species. Inoculated plants developed tracheomycosis within 4 wk, and most died within 8 wk. The new taxon was not pathogenic to Euphorbia pulcherrima, Impatiens walleriana and Saintpaulia ionantha that commonly are grown in nurseries along with B. × hiemalis. Inoculated plants of Cyclamen persicum did not develop the disease but had discolored vessels from which the inoculated fungus was isolated. Given that the newly discovered begonia pathogen is distinct in pathogenicity, morphology and phylogeny from other fusaria, it is described here as a new species, Fusarium foetens.

  8. Fusarium infection causes genotoxic disorders and antioxidant-based damages in Orobanche spp.

    PubMed

    Aybeke, Mehmet

    2017-08-01

    This study aims to evaluate the toxic effects of Fusarium oxysporum on root parasitic weed, Orobanche spp. Comparative genetic and gene expression studies were conducted on uninfected and fungus-infected orobanches. In genetic studies, isolated total DNA was amplified by RAPD PCR. Fragment properties were analysed by GTS test. According to the results, the fragment properties of control and Fusarium infected (experimental) groups varied widely; and it has been observed that Fusarium has genotoxic effects on the DNA of orobanches. In gene expression studies, the expression levels of genes encoding enzymes or proteins were associated with ROS damage and toxic effects, therefore, gene expressions of Mn-superoxide dismutase (SOD), Zn-superoxide dismutase (=SOD2, mitochondrial), glutamine synthetase (GS), heat shock protein gene (HSP70), BAX, Caspase-3 and BCL2 were significantly higher in the experimental group. In the light of obtained data, it was concluded that F. oxysporum (1) caused heavy ROS damage in Orobanche (2) induced significant irrevocable genotoxic effects on the DNA of Orobanche, (3) degraded protein metabolism and synthesis, and finally (4) triggered apoptosis. The results of this study can be a ground for further research on reducing the toxic effects of Fusarium on agricultural products, so that advancements in bio-herbicide technology may provide a sustainable agricultural production. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Cytospora species associated with walnut canker disease in China, with description of a new species C. gigalocus.

    PubMed

    Fan, Xinlei; Hyde, Kevin D; Liu, Min; Liang, Yingmei; Tian, Chengming

    2015-05-01

    Cytospora species associated with canker disease are presently difficult to identify because of lack of ex-types cultures with molecular data, few distinguishable characters, and only Internal transcribed spacer (ITS) sequence data is available for most Cytospora strains in GenBank. We report on Cytospora species from the walnut tree in China. Collections were subjected to morphological and phylogenetic study. The relatedness of species associated with walnut canker were established using combined ITS, nrLSU, β-tubulin, and actin gene sequence data. Cytospora atrocirrhata, Cytospora chrysosperma, Cytospora sacculus, and a new species, Cytospora gigalocus, were identified causing canker disease of walnut. Cytospora gigalocus is formally described and compared with most similar species. Cytospora chrysosperma and C. sacculus have previously been recorded from walnut, whereas C. atrocirrhata is reported as associated with walnut canker for the first time. This is the first study that has established the Cytospora species causing walnut canker in China using a multi-phasic approach. All species are recorded as being associated with walnut canker disease in China for the first time.

  10. Draft Genome Sequences of Pectobacterium carotovorum subsp. actinidiae ICMP 19971 and ICMP 19972, Two Strains Isolated from Actinidia chinensis with Symptoms of Summer Canker in South Korea.

    PubMed

    Visnovsky, Sandra B; Panda, Preetinanda; Taylor, Robert; Pitman, Andrew R

    2017-04-06

    Pectobacterium carotovorum subsp. actinidiae is the causal agent of summer canker in kiwifruit plants in South Korea. We report here the draft genome sequences of two P. carotovorum subsp. actinidiae strains, ICMP 19971 and ICMP 19972, which were originally isolated from Actinidia chinensis with symptoms of summer canker. These genome sequences will aid in the identification of genetic traits associated with their unusual capacity to cause canker and help understanding of the threat these exotic enterobacteria pose to the New Zealand kiwifruit industry.

  11. Challenges in Fusarium, a Trans-Kingdom Pathogen.

    PubMed

    van Diepeningen, Anne D; de Hoog, G Sybren

    2016-04-01

    Fusarium species are emerging human pathogens, next to being plant pathogens. Problems with Fusarium are in their diagnostics and in their difficult treatment, but also in what are actual Fusarium species or rather Fusarium-like species. In this issue Guevara-Suarez et al. (Mycopathologia. doi: 10.1007/s11046-016-9983-9 , 2016) characterized 89 isolates of Fusarium from Colombia showing especially lineages within the Fusarium solani and oxysporum species complexes to be responsible for onychomycosis.

  12. First Report and Characterization of Pestalotiopsis ellipsospora Causing Canker on Acanthopanax divaricatus

    PubMed Central

    Yun, Yeo Hong; Ahn, Geum Ran

    2015-01-01

    Acanthopanax divaricatus, a member of the Araliaceae family, has been used as an invigorant in traditional Korean medicine. During disease monitoring, a stem with small, irregular, brown lesions was sampled at a farm in Cheonan in 2011. The symptoms seen were sunken cankers and reddish-brown needles on the infected twig. The isolated fungal colonies were whitish, having crenated edges and aerial mycelium on the surface, and with black gregarious fruiting bodies. The reverse plate was creamy white. Conidia were 17~22 × 3.5~4.2 µm, fusiform, 4-septate, and straight to slightly curved. The nucleotide sequence of the partial translation elongation factor 1 alpha gene of the fungal isolate, shares 99% sequence identity with that of known Pestalotiopsis ellipsospora. Based on the results of the morphological and molecular analyses, the fungal isolate was identified as P. ellipsospora. In Korea, this is the first report of canker on A. divaricatus. PMID:26539058

  13. In vitro generation of somaclonal variant plants of sugarcane for tolerance to Fusarium sacchari.

    PubMed

    Mahlanza, Tendekai; Rutherford, R Stuart; Snyman, Sandy J; Watt, M Paula

    2013-02-01

    KEY MESSAGE : A combination of in vitro culture and mutagenesis using ethyl methanesulfonate (EMS) followed by culture filtrate-mediated selection produced variant sugarcane plants tolerant and resistant to Fusarium sacchari. Eldana saccharina is a destructive pest of the sugarcane crop in South Africa. Fusarium sacchari PNG40 (a fungal strain harmful to E. saccharina) has the potential to be an endophytic biological control agent of the stalk borer. However, the fungus causes Fusarium stalk rot in sugarcane. In the current study, sugarcane plants tolerant and resistant to F. sacchari PNG40 were produced by exposing embryogenic calli to the chemical mutagen ethyl methanesulfonate (EMS), followed by in vitro selection during somatic embryogenesis and plantlet regeneration on media containing F. sacchari culture filtrates (CF). The incorporation of 100 ppm CF in the culture media at the embryo maturation stage, at germination, or at both, resulted in callus necrosis and consequent reduced plantlet yield. Subsequent trimming of the roots of regenerated plants and their exposure to 1,500 ppm CF served as a further selection treatment. Plants produced from EMS-treated calli displayed improved root re-growth in the presence of CF pressure compared with those from non-treated calli. The tolerance of CF-selected plants was confirmed in greenhouse tests by inoculation with F. sacchari PNG40, re-isolation of Fusarium spp. from undamaged tissue of asymptomatic plants and establishment of the identity of fungal isolates as PNG40 using molecular analysis. The restriction of PNG40 presence to the inoculation lesion in some plants suggested their resistance to the fungus. Genotypes exhibiting symptomless endophytic colonization by PNG40 were identified and will be utilised for testing biological control strategies against E. saccharina.

  14. Overexpression of a Modified Plant Thionin Enhances Disease Resistance to Citrus Canker and Huanglongbing (HLB)

    PubMed Central

    Hao, Guixia; Stover, Ed; Gupta, Goutam

    2016-01-01

    Huanglongbing (HLB or citrus greening disease) caused by Candidatus Liberibacter asiaticus (Las) is a great threat to the US citrus industry. There are no proven strategies to eliminate HLB disease and no cultivar has been identified with strong HLB resistance. Citrus canker is also an economically important disease associated with a bacterial pathogen (Xanthomonas citri). In this study, we characterized endogenous citrus thionins and investigated their expression in different citrus tissues. Since no HLB-resistant citrus cultivars have been identified, we attempted to develop citrus resistant to both HLB and citrus canker through overexpression of a modified plant thionin. To improve effectiveness for disease resistance, we modified and synthesized the sequence encoding a plant thionin and cloned into the binary vector pBinPlus/ARS. The construct was then introduced into Agrobacterium strain EHA105 for citrus transformation. Transgenic Carrizo plants expressing the modified plant thionin were generated by Agrobacterium-mediated transformation. Successful transformation and transgene gene expression was confirmed by molecular analysis. Transgenic Carrizo plants expressing the modified thionin gene were challenged with X. citri 3213 at a range of concentrations, and a significant reduction in canker symptoms and a decrease in bacterial growth were demonstrated compared to nontransgenic plants. Furthermore, the transgenic citrus plants were challenged with HLB via graft inoculation. Our results showed significant Las titer reduction in roots of transgenic Carrizo compared with control plants and reduced scion Las titer 12 months after graft inoculation. These data provide promise for engineering citrus disease resistance against HLB and canker. PMID:27499757

  15. Molecular characterization of Fusarium oxysporum and fusarium commune isolates from a conifer nursery

    Treesearch

    Jane E. Stewart; Mee-Sook Kim; Robert L. James; R. Kasten Dumroese; Ned B. Klopfenstein

    2006-01-01

    Fusarium species can cause severe root disease and damping-off in conifer nurseries. Fusarium inoculum is commonly found in most container and bareroot nurseries on healthy and diseased seedlings, in nursery soils, and on conifer seeds. Isolates of Fusarium spp. can differ in virulence; however, virulence and...

  16. Fusarium oxysporum protects Douglas-fir (Pseudotsuga menziesii) seedlings from root disease caused by Fusarium commune

    Treesearch

    R. Kasten Dumroese; Mee-Sook Kim; Robert L. James

    2012-01-01

    Fusarium root disease can be a serious problem in forest and conservation nurseries in the western United States. Fusarium inoculum is commonly found in most container and bareroot nurseries on healthy and diseased seedlings, in nursery soils, and on conifer seeds. Fusarium spp. within the F. oxysporum species complex have been recognized as pathogens for more than a...

  17. Rapid screening for citrus canker resistance employing pathogen-associated molecular pattern-triggered immunity responses

    PubMed Central

    Pitino, Marco; Armstrong, Cheryl M; Duan, Yongping

    2015-01-01

    Citrus canker, caused by the bacterial pathogen Xanthomonas citri ssp. citri (Xcc), has been attributed to millions of dollars in loss or damage to commercial citrus crops in subtropical production areas of the world. Since identification of resistant plants is one of the most effective methods of disease management, the ability to screen for resistant seedlings plays a key role in the production of a long-term solution to canker. Here, an inverse correlation between reactive oxygen species (ROS) production by the plant and the ability of Xcc to grow and form lesions on infected plants is reported. Based on this information, a novel screening method that can rapidly identify citrus seedlings that are less susceptible to early infection by Xcc was devised by measuring ROS accumulation triggered by a 22-amino acid sequence of the conserved N-terminal part of flagellin (flg22) from X. citri ssp. citri (Xcc-flg22). In addition to limiting disease symptoms, ROS production was also correlated with the expression of basal defense-related genes such as the pattern recognition receptors LRR8 and FLS2, the leucine-rich repeat receptor-like protein RLP12, and the defense-related gene PR1, indicating an important role for pathogen-associated molecular pattern-triggered immunity (PTI) in determining resistance to citrus canker. Moreover, the differential expression patterns observed amongst the citrus seedlings demonstrated the existence of genetic variations in the PTI response among citrus species/varieties. PMID:26504581

  18. Clavibacter michiganensis subsp. capsici subsp. nov., causing bacterial canker disease in pepper.

    PubMed

    Oh, Eom-Ji; Bae, Chungyun; Lee, Han-Beoyl; Hwang, In Sun; Lee, Hyok-In; Yea, Mi Chi; Yim, Kyu-Ock; Lee, Seungdon; Heu, Sunggi; Cha, Jae-Soon; Oh, Chang-Sik

    2016-10-01

    Clavibacter michiganensis is a Gram-stain-positive bacterium with eight subspecies. One of these subspecies is C. michiganensis subsp. michiganensis, which causes bacterial canker disease in tomato. Bacterial strains showing very similar canker disease symptoms to those of a strain originally classified as C. michiganensis have been isolated from pepper. In this paper, we reclassified strains isolated from pepper. On the basis of phylogenetic analysis with 16S rRNA gene sequences, the strains isolated from pepper were grouped in a separate clade from other subspecies of C. michiganensis. Biochemical, physiological and genetic characteristics of strain PF008T, which is the representative strain of the isolates from pepper, were examined in this study. Based on multi-locus sequence typing and other biochemical and physiological features including colony color, utilization of carbon sources and enzyme activities, strain PF008T was categorically differentiated from eight subspecies of C. michiganensis. Moreover, genome analysis showed that the DNA G+C content of strain PF008T is 73.2 %. These results indicate that PF008T is distinct from other known subspecies of C. michiganensis. Therefore, we propose a novel subspecies, C. michiganensis subsp. capsici, causing bacterial canker disease in pepper, with a type strain of PF008T (=KACC 18448T=LMG 29047T).

  19. Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri.

    PubMed

    Rigano, Luciano A; Siciliano, Florencia; Enrique, Ramón; Sendín, Lorena; Filippone, Paula; Torres, Pablo S; Qüesta, Julia; Dow, J Maxwell; Castagnaro, Atilio P; Vojnov, Adrián A; Marano, María Rosa

    2007-10-01

    The phytopathogenic bacterium Xanthomonas axonopodis pv. citri is responsible for the canker disease affecting citrus plants throughout the world. Here, we have evaluated the role of bacterial attachment and biofilm formation in leaf colonization during canker development on lemon leaves. Crystal violet staining and confocal laser scanning microscopy analysis of X. axonopodis pv. citri strains expressing the green fluorescent protein were used to evaluate attachment and biofilm formation on abiotic and biotic (leaf) surfaces. Wild-type X. axonopodis pv. citri attached to and formed a complex, structured biofilm on glass in minimal medium containing glucose. Similar attachment and structured biofilm formation also were seen on lemon leaves. An X. axonopodis pv. citri gumB mutant strain, defective in production of the extracellular polysaccharide xanthan, did not form a structured biofilm on either abiotic or biotic surfaces. In addition, the X. axonopodis pv. citri gumB showed reduced growth and survival on leaf surfaces and reduced disease symptoms. These findings suggest an important role for formation of biofilms in the epiphytic survival of X. axonopodis pv. citri prior to development of canker disease.

  20. Analysis of carbohydrates in Fusarium verticillioides using size-exclusion HPLC – DRI and direct analysis in real time ionization – time-of-flight – mass spectrometry (DART-MS)

    USDA-ARS?s Scientific Manuscript database

    Direct analysis in real time ionization – time-of-flight – mass spectrometry (DART-MS) and size-exclusion HPLC – DRI are used, respectively, to qualitatively and quantitatively determine the carbohydrates extracted from the corn rot fungus Fusarium verticillioides. In situ permethylation in the DART...

  1. Isolation screening and characterisation of local beneficial rhizobacteria based upon their ability to suppress the growth of Fusarium oxysporum f. sp. radicis-lycopersici and tomato foot and root rot

    USDA-ARS?s Scientific Manuscript database

    Tomato crown and root rot or tomato foot and root rot (TFRR) is caused by the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici (Forl). The disease occurs in both greenhouse and outdoor tomato cultivations and cannot be treated efficiently with the existing fungicides. We conducte...

  2. Microbial transformation of the diterpene 7-epi-foliol by Fusarium fujikuroi.

    PubMed

    Fraga, Braulio M; Bressa, Carlo; González, Pedro; Guillermo, Ricardo

    2014-08-01

    The incubation of 3alpha,7alpha,18-trihydroxy-ent-kaur-16-ene (7-epi-foliol) with the fungus Fusarium fujikuroi gave 3alpha,7alpha,18-trihydroxy-ent-kaur-16-en-18-al as the sole product. The biotransformation of other 7alpha- or 7beta-hydroxy derivatives had led to the oxidation of C-19, which is a main step in the biosynthesis of gibberellins and kaurenolides. Now, the presence of the 3alpha-hydroxyl impedes that oxidation, which is directed to the adjacent C-18 hydroxymethyl forming the corresponding aldehyde.

  3. Pathogen profile update: Fusarium oxysporum.

    PubMed

    Michielse, Caroline B; Rep, Martijn

    2009-05-01

    Kingdom Fungi; Phylum Ascomycota; Class Sordariomycetes; Order Hypocreales; Family Nectriaceae; genus Fusarium. Very broad at the species level. More than 120 different formae speciales have been identified based on specificity to host species belonging to a wide range of plant families. Initial symptoms of vascular wilt include vein clearing and leaf epinasty, followed by stunting, yellowing of the lower leaves, progressive wilting, defoliation and, finally, death of the plant. On fungal colonization, the vascular tissue turns brown, which is clearly visible in cross-sections of the stem. Some formae speciales are not primarily vascular pathogens, but cause foot and root rot or bulb rot. Can cause severe losses in many vegetables and flowers, field crops, such as cotton, and plantation crops, such as banana, date palm and oil palm. Use of resistant varieties is the only practical measure for controlling the disease in the field. In glasshouses, soil sterilization can be performed. http://www.broad.mit.edu/annotation/genome/fusarium_group/MultiHome.html; http://www.fgsc.net/Fusarium/fushome.htm; http://www.phi-base.org/query.php

  4. [Degradation of phenanthrene and pyrene in contaminated soil by immobilized Zoogloea sp. and Fusarium sp].

    PubMed

    Wang, X; Li, P; Gong, Z; Li, B; Ju, J; He, X; Tai, P

    2001-08-01

    Immobilized with PVA, sodium alginate and activated carbon, both Zoogloea sp. and Fusarium sp. strains could degrade phenanthrene and pyrene efficiently. The optimal carrier was made of 100 rho.g-1 L PVA, 5 sodium alginate rho.g-1 L and 50 activated carbon rho.g-1 L. The degradation rates of phenanthrene and pyrene in 10 days were 87.48% and 75.34% by the immobilized bacterium, 37.04% and 20.85% higher than those by the free bacterium, and the rates in 15 days were 84.36% and 74.87% by the immobilized fungus, 5.35% and 11.23% higher than those by the free fungus.

  5. [Peptide-containing fraction from a culture medium of Fusarium sambucinum: composition and biological effects].

    PubMed

    Bogdanov, V V; Fatkulina, É F; Berezin, B B; Il'ina, A P; Iamskova, V P; Iamskov, I A

    2014-01-01

    The culture fluid of the fungus Fusarium sambucinum was investigated for the presence of new peptide-containing bioregulators, previously identified in various mammalian and plant tissues. A fraction containing peptides with molecular weights from 1000 to 2000 Da, which exhibited specific membranotropic activity and a number of physical and chemical properties characteristic of this group of bioregulators, was obtained. The effects of this fraction on the model roller organotypic cultivation of liver tissue of the Pleurodeles waltl newt in vitro were investigated for the first time. This fraction caused the additional activation of pigmented liver cells of newt (analogues to Kupffer cells of the liver of mammals) and provided the maintenance of cell-cell adhesive interactions in tissues. The results show that a new group of peptide bioregulators was present in the culture medium of the fungus F. sambucinum.

  6. The Fusarium Graminearum Genome Reveals a Link Between Localized Polymorphism and Pathogen Specialization

    SciTech Connect

    Cuomo, Christina A.; Guldener, Ulrich; Xu, Jin Rong; Trail, Frances; Turgeon, Barbara G.; Di Pietro, Antonio; Walton, Johnathan D.; Ma, Li Jun; Baker, Scott E.; Rep, Martijn; Adam, Gerhard; Antoniw, John; Baldwin, Thomas; Calvo, Sarah; Chang, Yueh Long; DeCaprio, David; Gale, Liane R.; Gnerre, Sante; Goswami, Rubella S.; Hammond-Kossack, Kim; Harris, Linda J.; Hilburn, Karen; Kennell, John C.; Kroken, Scott; Magnuson, Jon K.; Mannhaupt, Gertrud; Mauceli, Evan; Mewes, Hans Werner; Mitterbauer, Rudolf; Muehlbauer, Gary; Munsterkotter, Martin; Nelson, David; O'Donnell, Kerry; Ouellet, Therese; Qi, Weihong; Quesneville, Hadi; Roncero, M. Isabel; Seong, Kye Yong; Tetko, Igor V.; Urban, Martin; Waalwijk, Cees; Ward, Todd J.; Yao, Jiqiang; Birren, Bruce W.; Kistler, H. Corby

    2007-09-07

    We sequenced and annotated the genome of the filamentous fungus Fusarium graminearum, a major pathogen of cultivated cereals. Very few repetitive sequences were detected, and the process of repeat-induced point mutation, in which duplicated sequences are subject to extensive mutation, may partially account for the reduced repeat content and apparent low number of paralogous (ancestrally duplicated) genes. A second strain of F. graminearum contained more than 10,000 single-nucleotide polymorphisms, which were frequently located near telomeres and within other discrete chromosomal segments. Many highly polymorphic regions contained sets of genes implicated in plant-fungus interactions and were unusually divergent, with higher rates of recombination. These regions of genome innovation may result from selection due to interactions of F. graminearum with its plant hosts.

  7. Bioconversion of olive-mill dry residue by Fusarium lateritium and subsequent impact on its phytotoxicity.

    PubMed

    Sampedro, I; D'Annibale, A; Ocampo, J A; Stazi, S R; García-Romera, I

    2005-09-01

    The present study investigated the ability of the non-pathogenic fungus Fusarium lateritium to either degrade or modify aromatic substances in olive-mill dry residue (DOR) and to reduce its phytotoxicity. The 80% reduction of ethylacetate extractable phenols in DOR colonized by the fungus for 20 weeks appeared to be due to polymerization reactions of phenol molecules as suggested by mass-balance ultrafiltration and size-exclusion chromatography experiments. Several lignin-modifying oxidases, including laccase, Mn-peroxidase and Mn-inhibited peroxidase were detected in F. lateritium solid-state cultures. Tests performed with tomato seedlings in soils containing 6% (w/w) sterilized non-inoculated DOR showed that the waste was highly phytotoxic. By contract, F. lateritium growth on DOR for 20 weeks led to a complete removal of the waste toxicity and to a higher shoot dry weight of tomato plants than that obtained in the absence of DOR.

  8. The Nuclear Protein Sge1 of Fusarium oxysporum Is Required for Parasitic Growth

    PubMed Central

    Reijnen, Linda; Manders, Erik M. M.; Boas, Sonja; Olivain, Chantal; Alabouvette, Claude; Rep, Martijn

    2009-01-01

    Dimorphism or morphogenic conversion is exploited by several pathogenic fungi and is required for tissue invasion and/or survival in the host. We have identified a homolog of a master regulator of this morphological switch in the plant pathogenic fungus Fusarium oxysporum f. sp. lycopersici. This non-dimorphic fungus causes vascular wilt disease in tomato by penetrating the plant roots and colonizing the vascular tissue. Gene knock-out and complementation studies established that the gene for this putative regulator, SGE1 (SIX Gene Expression 1), is essential for pathogenicity. In addition, microscopic analysis using fluorescent proteins revealed that Sge1 is localized in the nucleus, is not required for root colonization and penetration, but is required for parasitic growth. Furthermore, Sge1 is required for expression of genes encoding effectors that are secreted during infection. We propose that Sge1 is required in F. oxysporum and other non-dimorphic (plant) pathogenic fungi for parasitic growth. PMID:19851506

  9. Proteomic analysis of conidia germination in Fusarium oxysporum f. sp. cubense tropical race 4 reveals new targets in ergosterol biosynthesis pathway for controlling Fusarium wilt of banana.

    PubMed

    Deng, Gui-Ming; Yang, Qiao-Song; He, Wei-Di; Li, Chun-Yu; Yang, Jing; Zuo, Cun-Wu; Gao, Jie; Sheng, Ou; Lu, Shao-Yun; Zhang, Sheng; Yi, Gan-Jun

    2015-09-01

    Conidial germination is a crucial step of the soilborne fungus Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), a most important lethal disease of banana. In this study, a total of 3659 proteins were identified by isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative proteomic approach, of which 1009 were differentially expressed during conidial germination of the fungus at 0, 3, 7, and 11 h. Functional classification and bioinformatics analysis revealed that the majority of the differentially expressed proteins are involved in six metabolic pathways. Particularly, all differential proteins involved in the ergosterol biosynthesis pathway were significantly upregulated, indicating the importance of the ergosterol biosynthesis pathway to the conidial germination of Foc TR4. Quantitative RT-PCR, western blotting, and in vitro growth inhibition assay by several categories of fungicides on the Foc TR4 were used to validate the proteomics results. Four enzymes, C-24 sterol methyltransferase (ERG6), cytochrome P450 lanosterol C-14α-demethylase (EGR11), hydroxymethylglutaryl-CoA synthase (ERG13), and C-4 sterol methyl oxidase (ERG25), in the ergosterol biosynthesis pathway were identified and verified, and they hold great promise as new targets for effective inhibition of Foc TR4 early growth in controlling Fusarium wilt of banana. To the best of our knowledge, this report represents the first comprehensive study on proteomics profiling of conidia germination in Foc TR4. It provides new insights into a better understanding of the developmental processes of Foc TR4 spores. More importantly, by host plant-induced gene silencing (HIGS) technology, the new targets reported in this work allow us to develop novel transgenic banana leading to high protection from Fusarium wilt and to explore more effective antifungal drugs against either individual or multiple target proteins of Foc TR4.

  10. The effect of wind on dispersal of splash-borne Xanthomonas citri subsp citri at different heights and distances downwind of canker-infected grapefruit trees

    USDA-ARS?s Scientific Manuscript database

    Xanthomonas citri subsp citri (Xcc), which causes citrus canker, is a major pathogen of grapefruit and other canker-susceptible citrus species and cultivars grown in Florida and elsewhere. It is dispersed by rain splash, and wind promotes the dispersal of the pathogen. The aim of this study was to e...

  11. Semiochemicals provide a deterrent to the black twig borer, Xylosandrus compactus (Coleoptera: Curculionidae, Scolytinae)

    Treesearch

    Nick Dudley; John D. Stein; Taylor Jones; Nancy Gillette

    2007-01-01

    The black twig borer (Xylosandrus compactus) (BTB) is a serious pest of agriculture, forestry, and native Hawaiian plants. The BTB is a typical ambrosia beetle that bores into the host and inoculates the galleries with an ambrosia fungus (Fusarium solani) known to cause cankers, root rot, and wilt. The host list for this beetle is...

  12. Fate of Fusarium Toxins during Brewing.

    PubMed

    Habler, Katharina; Geissinger, Cajetan; Hofer, Katharina; Schüler, Jan; Moghari, Sarah; Hess, Michael; Gastl, Martina; Rychlik, Michael

    2017-01-11

    Some information is available about the fate of Fusarium toxins during the brewing process, but only little is known about the single processing steps in detail. In our study we produced beer from two different barley cultivars inoculated with three different Fusarium species, namely, Fusarium culmorum, Fusarium sporotrichioides, and Fusarium avenaceum, producing a wide range of mycotoxins such as type B trichothecenes, type A trichothecenes, and enniatins. By the use of multi-mycotoxin LC-MS/MS stable isotope dilution methods we were able to follow the fate of Fusarium toxins during the entire brewing process. In particular, the type B trichothecenes deoxynivalenol, 3-acetyldeoxynivalenol, and 15-acetyldeoxynivalenol showed similar behaviors. Between 35 and 52% of those toxins remained in the beer after filtration. The contents of the potentially hazardous deoxynivalenol-3-glucoside and the type A trichothecenes increased during mashing, but a rapid decrease of deoxynivalenol-3-glucoside content was found during the following steps of lautering and wort boiling. The concentration of enniatins greatly decreased with the discarding of spent grains or finally with the hot break. The results of our study show the retention of diverse Fusarium toxins during the brewing process and allow for assessing the food safety of beer regarding the monitored Fusarium mycotoxins.

  13. Characterization of effectors from Fusarium graminearum

    USDA-ARS?s Scientific Manuscript database

    Fusarium graminearum is the causal agent of Fusarium head blight (FHB), which reduces crop yield and quality by producing various mycotoxins. Effectors play an important role in the pathogenesis of many bacterial and fungal pathogens. In this study, 26 effector candidates were selected for investiga...

  14. Biological and Chemical Complexity of Fusarium proliferatum

    USDA-ARS?s Scientific Manuscript database

    The heterothallic ascomycete Fusarium proliferatum (teleomorph Gibberella intermedia) is a genetically diverse biological and phylogenetic species with a worldwide distribution and an unusually broad host range. F. proliferatum is a frequent component of the Fusarium ear rot complexes of maize and ...

  15. Resistance to Fusarium wilt in chickpea

    USDA-ARS?s Scientific Manuscript database

    Fusarium wilt of chickpea, caused by the fungal pathogen Fusarium oxysporum f. sp. ciceris (Foc), is a destructive disease and is distributed in almost all chickpea producing regions of the world. Foc has eight physiological races designated as 0, 1A, 1B/C, 2, 3, 4, 5 and 6. The races are different...

  16. Biological and chemical complexity of Fusarium proliferatum

    USDA-ARS?s Scientific Manuscript database

    The heterothallic ascomycete Fusarium proliferatum (teleomorph Gibberella intermedia) is a genetically diverse biological and phylogenetic species with a worldwide distribution and an unusually broad host range. F. proliferatum is a frequent component of the Fusarium ear rot complexes of maize and ...

  17. Fungus Resistant XM205 Nonmetallic Cartridge Case,

    DTIC Science & Technology

    CARTRIDGE CASES, *FUNGICIDES, FUNGUS PROOFING, FUNGUS DETERIORATION, RESISTANCE, NITROCELLULOSE, POLYMERS, FIBERS, SYNTHETIC FIBERS, MATERIALS, ZINC COMPOUNDS, ORGANIC COMPOUNDS, ORGANIC SULFUR COMPOUNDS.

  18. Bacterial canker of plum trees, caused by Pseudomonas syringae pathovars, as a serious threat for plum production in the Netherlands.

    PubMed

    Wenneker, M; Janse, J D; De Bruine, J A

    2011-01-01

    In the Netherlands, bacterial canker in plum trees (Prunus domestica) is a serious and recent problem in plum production. It is caused by Pseudomonas syringae pathovars syringae and morsprunorum. The trunks of the affected plum trees are girdled by bacterial cankers resulting in sudden death of infected trees in 3-4 years after planting. Disease incidences can be very high, and sometimes complete orchards have to be removed. Recently, plum cultivation in the Netherlands has changed from a relatively extensive into an intensive cultivation. However, due to the risks of losses of trees due to bacterial canker, growers are reluctant to plant new plum orchards. In general nurseries and fruit growers are not familiar with bacterial diseases and lack knowledge in order to prevent infections. Therefore, control strategies to manage plum decline have to be developed.

  19. Analysis of Quality-Related Parameters in Mature Kernels of Polygalacturonase Inhibiting Protein (PGIP) Transgenic Bread Wheat Infected with Fusarium graminearum.

    PubMed

    Masci, Stefania; Laino, Paolo; Janni, Michela; Botticella, Ermelinda; Di Carli, Mariasole; Benvenuto, Eugenio; Danieli, Pier Paolo; Lilley, Kathryn S; Lafiandra, Domenico; D'Ovidio, Renato

    2015-04-22

    Fusarium head blight, caused by the fungus Fusarium graminearum, has a detrimental effect on both productivity and qualitative properties of wheat. To evaluate its impact on wheat flour, we compared its effect on quality-related parameters between a transgenic bread wheat line expressing a bean polygalacturonase inhibiting protein (PGIP) and its control line. We have compared metabolic proteins, the amounts of gluten proteins and their relative ratios, starch content, yield, extent of pathogen contamination, and deoxynivalenol (DON) accumulation. These comparisons showed that Fusarium significantly decreases the amount of starch in infected control plants, but not in infected PGIP plants. The flour of PGIP plants contained also a lower amount of pathogen biomass and DON accumulation. Conversely, both gluten and metabolic proteins were not significantly influenced either by the transgene or by fungal infection. These results indicate that the transgenic PGIP expression reduces the level of infection, without changing significantly the wheat seed proteome and other quality-related parameters.

  20. IDENTIFICATION OF DIFFERENT FUSARIUM SPP. IN ALLIUM SPP. IN GERMANY.

    PubMed

    Boehnke, B; Karlovsky, P; Pfohl, K; Gamliel, A; Isack, Y; Dehne, H W

    2015-01-01

    In 2013 Allium cepa bulbs from different fields in Northern and Southern Germany, seeds and sets from onion breeders were analysed for infestation with Fusarium species. The same investigation was done in 2014 with different edible Allium spp. from local markets. Different Fusarium spp. were isolated and identified by morphological characterisation. 24 different Fusarium spp. were identified. The diversity of Fusarium spp. and the intensity of infestation was higher on edible bulbs compared to the younger sets and seeds. The analysed onions and other edible Allium spp. from local markets showed also high contents of different Fusarium species. The most prevalent identified Fusarium sp. in the analysed Allium spp. in Germany was Fusarium oxysporum which can cause the Fusarium Basal Rot, followed by Fusarium solani. Fusarium proliferatum, which can cause the Fusarium Salmon Blotch in onions, could be detected in about half of the sampled onion fields and in approximately 10% of all analysed onions from fields. Also in the onion sets, on the surface of the seeds and in other edible Allium spp. F. proliferatum could be identified. Besides F. proliferatum, further mycotoxin producing Fusarium spp. like Fusarium equiseti or Fusarium tricinctum were identified. Other Fusarium spp. like Fusarium sporotrichioides and Fusarium poae were first described in Allium sp. in this study. The two most prevalent Fusarium spp. F. oxysporum and F. solani are able to produce mycotoxins like enniatins, fumonisins, moniliformin and T-2 toxins. Fusarium sp. like F. proliferatum, F. equiseti and F. tricinctum are able to produce additional toxins like beauvericins, zearalenone and diacetoscirpenol. This high number of Fusarium spp., which are able to produce a broad spectrum of different mycotoxins, could be a potential health risk for human beings and livestock.

  1. Pseudomonas protegens CS1 from the lemon phyllosphere as a candidate for citrus canker biocontrol agent.

    PubMed

    Michavila, G; Adler, C; De Gregorio, P R; Lami, M J; Caram Di Santo, M C; Zenoff, A M; de Cristobal, R E; Vincent, P A

    2017-07-01

    Citrus canker is a worldwide-distributed disease caused by Xanthomonas citri subsp. citri. One of the most used strategies to control the disease is centred on copper-based compounds that cause environmental problems. Therefore, it is of interest to develop new strategies to manage the disease. Previously, we reported the ability of the siderophore pyochelin, produced by the opportunistic human pathogen Pseudomonas aeruginosa, to inhibit in vitro several bacterial species, including X. citri subsp. citri. The action mechanism, addressed with the model bacterium Escherichia coli, was connected to the generation of reactive oxygen species (ROS). This work aimed to find a non-pathogenic strain from the lemon phyllosphere that would produce pyochelin and therefore serve in canker biocontrol. An isolate that retained its capacity to colonise the lemon phyllosphere and inhibit X. citri subsp. citri was selected and characterised as Pseudomonas protegens CS1. From a liquid culture of this strain, the active compound was purified and identified as the pyochelin enantiomer, enantio-pyochelin. Using the producing strain and the pure compound, both in vitro and in vivo, we determined that the action mechanism of X. citri subsp. citri inhibition also involved the generation of ROS. Finally, the potential application of P. protegens CS1 was evaluated by spraying the bacterium in a model that mimics the natural X. citri subsp. citri infection. The ability of P. protegens CS1 to reduce canker formation makes this strain an interesting candidate as a biocontrol agent. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Positive selection is the main driving force for evolution of citrus canker-causing Xanthomonas.

    PubMed

    Zhang, Yunzeng; Jalan, Neha; Zhou, Xiaofeng; Goss, Erica; Jones, Jeffrey B; Setubal, João C; Deng, Xiaoling; Wang, Nian

    2015-10-01

    Understanding the evolutionary history and potential of bacterial pathogens is critical to prevent the emergence of new infectious bacterial diseases. Xanthomonas axonopodis subsp. citri (Xac) (synonym X. citri subsp. citri), which causes citrus canker, is one of the hardest-fought plant bacterial pathogens in US history. Here, we sequenced 21 Xac strains (14 XacA, 3 XacA* and 4 XacA(w)) with different host ranges from North America and Asia and conducted comparative genomic and evolutionary analyses. Our analyses suggest that acquisition of beneficial genes and loss of detrimental genes most likely allowed XacA to infect a broader range of hosts as compared with XacA(w) and XacA*. Recombination was found to have occurred frequently on the relative ancient branches, but rarely on the young branches of the clonal genealogy. The ratio of recombination/mutation ρ/θ was 0.0790±0.0005, implying that the Xac population was clonal in structure. Positive selection has affected 14% (395 out of 2822) of core genes of the citrus canker-causing Xanthomonas. The genes affected are enriched in 'carbohydrate transport and metabolism' and 'DNA replication, recombination and repair' genes (P<0.05). Many genes related to virulence, especially genes involved in the type III secretion system and effectors, are affected by positive selection, further highlighting the contribution of positive selection to the evolution of citrus canker-causing Xanthomonas. Our results suggest that both metabolism and virulence genes provide advantages to endow XacA with higher virulence and a wider host range. Our analysis advances our understanding of the genomic basis of specialization by positive selection in bacterial evolution.

  3. Amplification of DNA of Xanthomonas axonopodis pv. citri from historic citrus canker herbarium specimens.

    PubMed

    Li, Wenbin; Brlansky, Ronald H; Hartung, John S

    2006-05-01

    Herbaria are important resources for the study of the origins and dispersal of plant pathogens, particularly bacterial plant pathogens that incite local lesions in which large numbers of pathogen genomes are concentrated. Xanthomonas axonopodis pv. citri (Xac), the causal agent of citrus bacterial canker disease, is a notable example of such a pathogen. The appearance of novel strains of the pathogen in Florida and elsewhere make it increasingly important to understand the relationships among strains of this pathogen. USDA-ARS at Beltsville, Maryland maintains approximately 700 herbarium specimens with citrus canker disease lesions up to 90 years old, originally collected from all over the world, and so is an important resource for phytogeographic studies of this bacterium. Unfortunately, DNA in herbarium specimens is degraded and may contain high levels of inhibitors of PCR. In this study, we compared a total of 23 DNA isolation techniques in combination with 31 novel primer pairs in order to develop an efficient protocol for the analysis of Xac DNA in herbarium specimens. We identified the most reliable extraction method, identified in terms of successful amplification by our panel of 31 primer pairs. We also identified the most robust primer pairs, identified as successful in the largest number of extracts prepared by different methods. We amplified Xac genomic sequences up to 542 bp long from herbarium samples up to 89 years old. Primers varied in effectiveness, with some primer pairs amplifying Xac DNA from a 1/10,000 dilution of extract from a single lesion from a citrus canker herbarium specimen. Our methodology will be useful to identify pathogens and perform molecular analyses of bacterial and possibly fungal genomes from herbarium specimens.

  4. Positive selection is the main driving force for evolution of citrus canker-causing Xanthomonas

    PubMed Central

    Zhang, Yunzeng; Jalan, Neha; Zhou, Xiaofeng; Goss, Erica; Jones, Jeffrey B; Setubal, João C; Deng, Xiaoling; Wang, Nian

    2015-01-01

    Understanding the evolutionary history and potential of bacterial pathogens is critical to prevent the emergence of new infectious bacterial diseases. Xanthomonas axonopodis subsp. citri (Xac) (synonym X. citri subsp. citri), which causes citrus canker, is one of the hardest-fought plant bacterial pathogens in US history. Here, we sequenced 21 Xac strains (14 XacA, 3 XacA* and 4 XacAw) with different host ranges from North America and Asia and conducted comparative genomic and evolutionary analyses. Our analyses suggest that acquisition of beneficial genes and loss of detrimental genes most likely allowed XacA to infect a broader range of hosts as compared with XacAw and XacA*. Recombination was found to have occurred frequently on the relative ancient branches, but rarely on the young branches of the clonal genealogy. The ratio of recombination/mutation ρ/θ was 0.0790±0.0005, implying that the Xac population was clonal in structure. Positive selection has affected 14% (395 out of 2822) of core genes of the citrus canker-causing Xanthomonas. The genes affected are enriched in ‘carbohydrate transport and metabolism' and ‘DNA replication, recombination and repair' genes (P<0.05). Many genes related to virulence, especially genes involved in the type III secretion system and effectors, are affected by positive selection, further highlighting the contribution of positive selection to the evolution of citrus canker-causing Xanthomonas. Our results suggest that both metabolism and virulence genes provide advantages to endow XacA with higher virulence and a wider host range. Our analysis advances our understanding of the genomic basis of specialization by positive selection in bacterial evolution. PMID:25689023

  5. Evaluation of the significance of cell wall polymers in flax infected with a pathogenic strain of Fusarium oxysporum.

    PubMed

    Wojtasik, Wioleta; Kulma, Anna; Dymińska, Lucyna; Hanuza, Jerzy; Czemplik, Magdalena; Szopa, Jan

    2016-03-22

    Fusarium oxysporum infection leads to Fusarium-derived wilt, which is responsible for the greatest losses in flax (Linum usitatissimum) crop yield. Plants infected by Fusarium oxysporum show severe symptoms of dehydration due to the growth of the fungus in vascular tissues. As the disease develops, vascular browning and leaf yellowing can be observed. In the case of more virulent strains, plants die. The pathogen's attack starts with secretion of enzymes degrading the host cell wall. The main aim of the study was to evaluate the role of the cell wall polymers in the flax plant response to the infection in order to better understand the process of resistance and develop new ways to protect plants against infection. For this purpose, the expression of genes involved in cell wall polymer metabolism and corresponding polymer levels were investigated in flax seedlings after incubation with Fusarium oxysporum. This analysis was facilitated by selecting two groups of genes responding differently to the infection. The first group comprised genes strongly affected by the infection and activated later (phenylalanine ammonia lyase and glucosyltransferase). The second group comprised genes which are slightly affected (up to five times) and their expression vary as the infection progresses. Fusarium oxysporum infection did not affect the contents of cell wall polymers, but changed their structure. The results suggest that the role of the cell wall polymers in the plant response to Fusarium oxysporum infection is manifested through changes in expression of their genes and rearrangement of the cell wall polymers. Our studies provided new information about the role of cellulose and hemicelluloses in the infection process, the change of their structure and the expression of genes participating in their metabolism during the pathogen infection. We also confirmed the role of pectin and lignin in this process, indicating the major changes at the mRNA level of lignin metabolism genes

  6. Diversity of the exoproteome of Fusarium graminearum grown on plant cell wall.

    PubMed

    Phalip, Vincent; Delalande, François; Carapito, Christine; Goubet, Florence; Hatsch, Didier; Leize-Wagner, Emmanuelle; Dupree, Paul; Dorsselaer, Alain Van; Jeltsch, Jean-Marc

    2005-12-01

    The exoproteome of the fungus Fusarium graminearum grown on glucose and on hop (Humulus lupulus, L.) cell wall has been investigated. The culture medium was found to contain a higher quantity of proteins and the proteins are more diverse when the fungus is grown on cell wall. Using both 1D and 2D electrophoresis followed by mass spectrometry analysis and protein identification based on similarity searches, 84 unique proteins were identified in the cell wall-grown fungal exoproteome. Many are putatively implicated in carbohydrate metabolism, mainly in cell wall polysaccharide degradation. The predicted carbohydrate-active enzymes fell into 24 different enzymes classes, and up to eight different proteins within a same class are secreted. This indicates that fungal metabolism becomes oriented towards synthesis and secretion of a whole arsenal of enzymes able to digest almost the complete plant cell wall. Cellobiohydrolase is one of the only four proteins found both after growth on glucose and on plant cell wall and we propose that this enzyme could act as a sensor of the extracellular environment. Extensive knowledge of this very diverse F. graminearum exoproteome is an important step towards the full understanding of Fusarium/plants interactions.

  7. Draft genome sequence and chemical profiling of Fusarium langsethiae, an emerging producer of type A trichothecenes.

    PubMed

    Lysøe, Erik; Frandsen, Rasmus J N; Divon, Hege H; Terzi, Valeria; Orrù, Luigi; Lamontanara, Antonella; Kolseth, Anna-Karin; Nielsen, Kristian F; Thrane, Ulf

    2016-03-16

    Fusarium langsethiae is a widespread pathogen of small grain cereals, causing problems with T-2 and HT-2 toxin contamination in grains every year. In an effort to better understand the biology of this fungus, we present a draft genome sequence of F. langsethiae Fl201059 isolated from oats in Norway. The assembly was fragmented, but reveals a genome of approximately 37.5 Mb, with a GC content around 48%, and 12,232 predicted protein-coding genes. Focusing on secondary metabolism we identified candidate genes for 12 polyketide synthases, 13 non-ribosomal peptide synthetases, and 22 genes for terpene/isoprenoid biosynthesis. Some of these were found to be unique compared to sequence databases. The identified putative Tri5 cluster was highly syntenic to the cluster reported in F. sporotrichioides. Fusarium langsethiae Fl201059 produces a high number of secondary metabolites on Yeast Extract Sucrose (YES) agar medium, dominated by type A trichothecenes. Interestingly we found production of glucosylated HT-2 toxin (Glu-HT-2), previously suggested to be formed by the host plant and not by the fungus itself. In greenhouse inoculations of F. langsethiae Fl201059 on barley and oats, we detected the type A trichothecenes: neosolaniol, HT-2 toxin, T-2 toxin, Glu-HT-2 and numerous derivatives of these.

  8. Interactions of Bacillus mojavensis and Fusarium verticillioides with a benzoxazolinone (BOA) and its transformation product, APO.

    PubMed

    Bacon, Charles W; Hinton, Dorothy M; Glenn, Anthony E; Macías, Francisco A; Marin, David

    2007-10-01

    The benzoxazolinones, specifically benzoxazolin-2(3H)-one (BOA), are important transformation products of the benzoxazinones that can serve as allelochemicals providing resistance to maize from pathogenic bacteria, fungi, and insects. However, maize pathogens such as Fusarium verticillioides are capable of detoxifying the benzoxazolinones to 2-aminophenol (AP), which is converted to the less toxic N-(2-hydroxyphenyl) malonamic acid (HPMA) and 2-acetamidophenol (HPAA). As biocontrol strategies that utilize a species of endophytic bacterium, Bacillus mojavensis, are considered efficacious as a control of this Fusarium species, the in vitro transformation and effects of BOA on growth of this bacterium was examined relative to its interaction with strains of F. verticillioides. The results showed that a red pigment was produced and accumulated only on BOA-amended media when wild type and the progeny of genetic crosses of F. verticillioides are cultured in the presence of the bacterium. The pigment was identified as 2-amino-3H-phenoxazin-3-one (APO), which is a stable product. The results indicate that the bacterium interacts with the fungus preventing the usual transformation of AP to the nontoxic HPMA, resulting in the accumulation of higher amounts of APO than when the fungus is cultured alone. APO is highly toxic to F. verticillioides and other organisms. Thus, an enhanced biocontrol is suggested by this in vitro study.

  9. First report of Fusarium oxysporum species complex infection in zebrafish culturing system.

    PubMed

    Kulatunga, D C M; Dananjaya, S H S; Park, B K; Kim, C-H; Lee, J; De Zoysa, M

    2017-04-01

    Fusarium oxysporum species complex (FOSC) is a highly diverse fungus. Recently, F. oxysporum infection was identified from zebrafish (Danio rerio) culturing system in Korea. Initially, a rapid whitish smudge was appeared in the water with the fungal blooming on walls of fish tanks. Microscopic studies were conducted on fungal hyphae, colony pigmentation and chlamydospore formation and the presence of macro- and microspores confirmed that the isolated fungus as F. oxysporum. Furthermore, isolated F. oxysporum was confirmed by internal transcribed spacer sequencing which matched (100%) to nine F. oxysporum sequences available in GenBank. Experimental hypodermic injection of F. oxysporum into adult zebrafish showed the development of fungal mycelium and pathogenicity similar to signs observed. Histopathologic results revealed a presence of F. oxysporum hyphae in zebrafish muscle. Fusarium oxysporum growth was increased with sea salt in a concentration-dependent manner. Antifungal susceptibility results revealed that F. oxysporum is resistant to copper sulphate (up to 200 μg mL(-1) ) and sensitive to nystatin (up to 40 μg mL(-1) ). This is the first report of FOSC from zebrafish culture system, suggesting it appears as an emerging pathogen, thus posing a significant risk on zebrafish facilities in the world. © 2016 John Wiley & Sons Ltd.

  10. Fusarium solani onychomycosis of the thumbnail coinfected with Pseudomonas aeruginosa: report of two cases.

    PubMed

    Yang, Yun-Seok; Ahn, Jae-Jun; Shin, Min-Kyung; Lee, Mu-Hyoung

    2011-03-01

    Fusarium species are non-dermatophytic moulds, which are commonly known soil saprophytes and important plant pathogens, and have been frequently reported to be aetiological agents of opportunistic infections in humans. The prevalence of onychomycosis caused by Fusarium species varies in the literature because of geographical differences in mould distribution and diagnostic methods. Onychomycosis caused by Fusarium species is considered rare in Korea, and only four cases have been described to date. Pseudomonas aeruginosa also can infect nails and cause green nail syndrome, and recent research has shown that fungal infection may potentiate the colonisation or growth of P. aeruginosa within a nail. Furthermore, such coinfection with P. aeruginosa can prevent the isolation of the fungus because of bacterial overgrowth in culture. The authors report the cases of two immunocompetent patients with F. solani onychomycosis coinfected with P. aeruginosa. Both presented with a greenish/yellowish discolouration and thickening of a thumbnail, and were treated with systemic ciprofloxacin in combination with itraconazole or terbinafine.

  11. Contamination of bananas with beauvericin and fusaric acid produced by Fusarium oxysporum f. sp. cubense.

    PubMed

    Li, Chunyu; Zuo, Cunwu; Deng, Guiming; Kuang, Ruibin; Yang, Qiaosong; Hu, Chunhua; Sheng, Ou; Zhang, Sheng; Ma, Lijun; Wei, Yuerong; Yang, Jing; Liu, Siwen; Biswas, Manosh Kumar; Viljoen, Altus; Yi, Ganjun

    2013-01-01

    Fusarium wilt, caused by the fungal pathogen Fusarium oxysporum f. sp. cubense (Foc), is one of the most destructive diseases of banana. Toxins produced by Foc have been proposed to play an important role during the pathogenic process. The objectives of this study were to investigate the contamination of banana with toxins produced by Foc, and to elucidate their role in pathogenesis. Twenty isolates of Foc representing races 1 and 4 were isolated from diseased bananas in five Chinese provinces. Two toxins were consistently associated with Foc, fusaric acid (FA) and beauvericin (BEA). Cytotoxicity of the two toxins on banana protoplast was determined using the Alamar Blue assay. The virulence of 20 Foc isolates was further tested by inoculating tissue culture banana plantlets, and the contents of toxins determined in banana roots, pseudostems and leaves. Virulence of Foc isolates correlated well with toxin deposition in the host plant. To determine the natural occurrence of the two toxins in banana plants with Fusarium wilt symptoms, samples were collected before harvest from the pseudostems, fruit and leaves from 10 Pisang Awak 'Guangfen #1' and 10 Cavendish 'Brazilian' plants. Fusaric acid and BEA were detected in all the tissues, including the fruits. The current study provides the first investigation of toxins produced by Foc in banana. The toxins produced by Foc, and their levels of contamination of banana fruits, however, were too low to be of concern to human and animal health. Rather, these toxins appear to contribute to the pathogenicity of the fungus during infection of banana plants.

  12. Identification and characterization of gushing-active hydrophobins from Fusarium graminearum and related species.

    PubMed

    Sarlin, Tuija; Kivioja, Teemu; Kalkkinen, Nisse; Linder, Markus B; Nakari-Setälä, Tiina

    2012-04-01

    Fungal infection of barley and malt, particularly by the Fusarium species, is a direct cause of spontaneous overfoaming of beer, referred to as gushing. We have shown previously that small fungal proteins, hydrophobins, act as gushing-inducing factors in beer. The aim of our present study was to isolate and characterize hydrophobins from a gushing-active fungus, Fusarium graminearum (teleomorph Gibberella zeae) and related species. We generated profile hidden Markov models (profile HMMs) for the hydrophobin classes Ia, Ib and II from the multiple sequence alignments of their known members available in public domain databases. We searched the published Fusarium graminearum genome with the Markov models. The best matching sequences and the corresponding genes were isolated from F. graminearum and the related species F. culmorum and F. poae by PCR and characterized. One each of the putative F. graminearum and F. poae hydrophobin genes were expressed in the heterologous host Trichoderma reesei. The proteins corresponding to the genes were purified and identified as hydrophobins and named GzHYD5 and FpHYD5, respectively. Concentrations of 0.003 ppm of these hydrophobins were observed to induce vigorous beer gushing.

  13. Detection of Fusarium oxysporum f.sp. basilici in substrates and roots by PCR.

    PubMed

    Pugliese, M; Ferrocino, I; Gullino, M L; Garibaldi, A

    2013-01-01

    Fusarium oxysporum is a soil-borne fungus that causes vascular wilts in a wide variety of plant species. Basil is recognized as an ecological niche for Fusarium oxysporum f.sp. basilici (FOB) and this fungus is now present in most countries where basil is cultivated. The rapid identification of the species affecting basil plants is necessary to define a successful method for crop protection. The aim of this study was to develop a PCR method for the rapid detection of Fusarium oxysporum f. sp. basilici in substrates. The specificity of the primers used was tested using the DNA extracted directly from substrate samples. Fusarium oxysporum f.sp. basilici was artificially inoculated with decreasing amounts in a commercial substrate (sphagnum peat moss) and in a mixture with 40% of municipal compost, after steam disinfestation. Basil seeds (cv. Fine verde) were sown in pots that were laid on a bench in the greenhouse. At time 0 and after 7, 14 and 21 days from the inoculation, substrate and root samples were collected and prepared for microbial analysis and for the DNA extraction. DNA extraction was carried out using NucleoSpin Soil Kit (Macherey-Nagel, Germany). PCR amplification for the specific detection was carried out using primer sets Bik 1 (5'-ATT CAA GAG CTA AAG GTC C-3') and Bik 4 (5'-TTT GAC CAA GAT AGA TGC C-3') for the first PCR, while primers Bik 1 + Bik 2 (5'-AAA GGT AGT ATA TCG GAG G-3') for the nested PCR to increase detection sensitivity. Disease incidence was also assessed 21 days after seeding. The results showed the presence of amplified fragments of the expected size when the concentration of F. oxysporum f.sp. basilici was at least 3.5 Log CFU g(-1) by using DNA extract directly from substrate, before roots were infected by the pathogen. The detection of Fusarium oxysporum f. sp. basilici by PCR method developed in this study is certainly simple and fast and can be useful for its reliable detection in substrate samples, but not to guarantee that

  14. A Network Approach to Predict Pathogenic Genes for Fusarium graminearum

    PubMed Central

    Liu, Xiaoping; Tang, Wei-Hua; Zhao, Xing-Ming; Chen, Luonan

    2010-01-01

    Fusarium graminearum is the pathogenic agent of Fusarium head blight (FHB), which is a destructive disease on wheat and barley, thereby causing huge economic loss and health problems to human by contaminating foods. Identifying pathogenic genes can shed light on pathogenesis underlying the interaction between F. graminearum and its plant host. However, it is difficult to detect pathogenic genes for this destructive pathogen by time-consuming and expensive molecular biological experiments in lab. On the other hand, computational methods provide an alternative way to solve this problem. Since pathogenesis is a complicated procedure that involves complex regulations and interactions, the molecular interaction network of F. graminearum can give clues to potential pathogenic genes. Furthermore, the gene expression data of F. graminearum before and after its invasion into plant host can also provide useful information. In this paper, a novel systems biology approach is presented to predict pathogenic genes of F. graminearum based on molecular interaction network and gene expression data. With a small number of known pathogenic genes as seed genes, a subnetwork that consists of potential pathogenic genes is identified from the protein-protein interaction network (PPIN) of F. graminearum, where the genes in the subnetwork are further required to be differentially expressed before and after the invasion of the pathogenic fungus. Therefore, the candidate genes in the subnetwork are expected to be involved in the same biological processes as seed genes, which imply that they are potential pathogenic genes. The prediction results show that most of the pathogenic genes of F. graminearum are enriched in two important signal transduction pathways, including G protein coupled receptor pathway and MAPK signaling pathway, which are known related to pathogenesis in other fungi. In addition, several pathogenic genes predicted by our method are verified in other pathogenic fungi, which

  15. Molecular identification of Fusarium species isolated from transgenic insect-resistant cotton plants in Mexicali valley, Baja California.

    PubMed

    Gonzalez-Soto, T; González-Mendoza, D; Troncoso-Rojas, R; Morales-Trejo, A; Ceceña-Duran, C; Garcia-Lopez, A; Grimaldo-Juarez, O

    2015-10-02

    Cotton production in the Mexicali valley is adversely affected by wilt and root rot disease associated with Fusarium species. In the present study, we sought to isolate and identify the Fusarium species in the rhizosphere of transgenic insect-resistant cotton plants grown in the Mexicali valley. Our analyses isolated four native fungi from the rhizosphere of cotton plants, namely, T-ICA01, T-ICA03, T-ICA04, and T-ICA08. These fungal isolates were categorized as belonging to Fusarium solani using their phenotypic characteristics and ITS region sequence data. Examination of the infection index showed that T-ICA03 and T-ICA04 caused systemic colonization (90%) of seeds followed by the occurrence of radicle and coleoptile decay. In contrast, T-ICA08 strain was less pathogenic against seed tissues (40%) in comparison to the other strains isolated. Our study showed that in transgenic insect-resistant cotton the disease "Fusarium wilt" is caused by the fungus, F. solani. Future studies are necessary to characterize the F. solani populations to determine whether phenological stages might influence the genetic diversity of the fungal populations present.

  16. Antifungal activity and computational study of constituents from Piper divaricatum essential oil against Fusarium infection in black pepper.

    PubMed

    da Silva, Joyce Kelly R; Silva, José Rogério A; Nascimento, Soelange B; da Luz, Shirlley F M; Meireles, Erisléia N; Alves, Cláudio N; Ramos, Alessandra R; Maia, José Guilherme S

    2014-11-04

    Fusarium disease causes considerable losses in the cultivation of Piper nigrum, the black pepper used in the culinary world. Brazil was the largest producer of black pepper, but in recent years has lost this hegemony, with a significant reduction in its production, due to the ravages produced by the Fusarium solani f. sp. piperis, the fungus which causes this disease. Scientific research seeks new alternatives for the control and the existence of other Piper species in the Brazilian Amazon, resistant to disease, are being considered in this context. The main constituents of the oil of Piper divaricatum are methyleugenol (75.0%) and eugenol (10.0%). The oil and these two main constituents were tested individually at concentrations of 0.25 to 2.5 mg/mL against F. solani f. sp. piperis, exhibiting strong antifungal index, from 18.0% to 100.0%. The 3D structure of the β-glucosidase from Fusarium solani f. sp. piperis, obtained by homology modeling, was used for molecular docking and molecular electrostatic potential calculations in order to determine the binding energy of the natural substrates glucose, methyleugenol and eugenol. The results showed that β-glucosidase (Asp45, Arg113, Lys146, Tyr193, Asp225, Trp226 and Leu99) residues play an important role in the interactions that occur between the protein-substrate and the engenol and methyleugenol inhibitors, justifying the antifungal action of these two phenylpropenes against Fusarium solani f. sp. piperis.

  17. The Phosphatome of Medicinal and Edible Fungus Wolfiporia cocos.

    PubMed

    Zhu, Wenjun; Wei, Wei; Zhang, Shaopeng; Zheng, Yonglian; Chen, Ping; Xu, Xiaowen

    2017-09-12

    Wolfiporia cocos is an important medicinal and edible fungus that grows in association with pine trees, and its dried sclerotium has been used as a traditional medicine in China for centuries. However, the commercial production of W. cocos sclerotia is currently limited by shortages in pine wood resources. Since protein phosphatases (PPs) play significant roles in growth, signal transduction, development, metabolism, sexual reproduction, cell cycle, and environmental stress responses in fungi, the phosphatome of W. cocos was analyzed in this study by identifying PP genes, studying transcript profiles and assigning PPs to orthologous groups. Fifty-four putative PP genes were putatively identified in W. cocos genome based on homologous sequences searching using BLASTx program against the Saccharomyces cerevisiae, Fusarium graminearum, and Sclerotinia sclerotiorum databases. Based on known and presumed functions of orthologues of these PP genes found in other fungi, the putative roles of these W. cocos PPs in colonization, hyphal growth, sclerotial formation, secondary metabolism, and stress tolerance to environment were discussed in this study. And the level of transcripts from PP genes in the mycelium and sclerotium stages was also analyzed by qRT-PCR. Our study firstly identified and functional discussed the phosphatome in the medicinal and edible fungus W. cocos. The data from our study contribute to a better understanding of PPs potential roles in various cellar processes of W. cocos, and systematically provide comprehensive and novel insights into W. cocos economically important traits that could be extended to other fungi.

  18. Onychomycosis caused by Fusarium solani and Fusarium oxysporum in São Paulo, Brazil.

    PubMed

    Godoy, P; Nunes, E; Silva, V; Tomimori-Yamashita, J; Zaror, L; Fischman, O

    2004-04-01

    Fusarium species are common soil saprophytes and plant pathogens that have been frequently reported as etiologic agents of opportunistic infections in humans. We report eight cases of onychomycosis caused by Fusarium solani (4) and Fusarium oxysporum (4) in São Paulo, Brazil. These species were isolated from toenails in all cases. The infections were initially considered to be caused by dermatophytes. The clinical appearance of the affected toenails was leukonychia or distal subungual hyperkeratosis with yellowish brown coloration. The eight cases reported here suggest that Fusarium spp. should be taken into consideration in the differential diagnosis of tinea unguium.

  19. An Endohyphal Bacterium (Chitinophaga, Bacteroidetes) Alters Carbon Source Use by Fusarium keratoplasticum (F. solani Species Complex, Nectriaceae)

    PubMed Central

    Shaffer, Justin P.; U'Ren, Jana M.; Gallery, Rachel E.; Baltrus, David A.; Arnold, A. Elizabeth

    2017-01-01

    Bacterial endosymbionts occur in diverse fungi, including members of many lineages of Ascomycota that inhabit living plants. These endosymbiotic bacteria (endohyphal bacteria, EHB) often can be removed from living fungi by antibiotic treatment, providing an opportunity to assess their effects on functional traits of their fungal hosts. We examined the effects of an endohyphal bacterium (Chitinophaga sp., Bacteroidetes) on substrate use by its host, a seed-associated strain of the fungus Fusarium keratoplasticum, by comparing growth between naturally infected and cured fungal strains across 95 carbon sources with a Biolog® phenotypic microarray. Across the majority of substrates (62%), the strain harboring the bacterium significantly outperformed the cured strain as measured by respiration and hyphal density. These substrates included many that are important for plant- and seed-fungus interactions, such as D-trehalose, myo-inositol, and sucrose, highlighting the potential influence of EHB on the breadth and efficiency of substrate use by an important Fusarium species. Cases in which the cured strain outperformed the strain harboring the bacterium were observed in only 5% of substrates. We propose that additive or synergistic substrate use by the fungus-bacterium pair enhances fungal growth in this association. More generally, alteration of the breadth or efficiency of substrate use by dispensable EHB may change fungal niches in short timeframes, potentially shaping fungal ecology and the outcomes of fungal-host interactions. PMID:28382021

  20. Essential Oils of Myrtaceae Species Growing Wild in Tunisia: Chemical Variability and Antifungal Activity Against Biscogniauxia mediterranea, the Causative Agent of Charcoal Canker.

    PubMed

    Yangui, Islem; Zouaoui Boutiti, Meriem; Boussaid, Mohamed; Messaoud, Chokri

    2017-07-01

    The chemical composition of five Eucalyptus species and five Myrtus communis L. populations was investigated using GC/MS and GC-FID. For Eucalyptus essential oils, 32 compounds, representing 88.56 - 96.83% of the total oil according to species, were identified. The main compounds were 1,8-cineole, α-pinene, p-cymene, γ-gurjunene, α-aromadendrene, and β-phellandrene. For Myrtle essential oils, 26 compounds, representing 93.13 - 98.91% of the total oil were identified. α-Pinene, 1,8-cineole, linalool, and myrtenyl acetate were found to be the major compounds. Principal component analysis (PCA) showed chemical differentiation between Eucalyptus species and between Myrtle populations. Biscogniauxia mediterranea, the causative agent of charcoal canker, was identified according to its morphological and molecular characteristics. Essential oils of the investigated Eucalyptus species and Myrtle populations were tested for their antifungal capacity against this fungus. The antifungal activity varied according to the essential oil composition. Biscogniauxia mediterranea exhibited powerful resistance to some essential oils including them of Eucalyptus lehmannii and Eucalyptus sideroxylon but it was very sensitive to Eucalyptus camaldulensis oil (IC50  = 3.83 mg/ml) and M. communis oil from Zaghouan (IC50  = 1 mg/ml). This sensitivity was found to be correlated to some essential oil compounds such as p-cymene, carvacrol, cuminaldehyde, and linalool. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  1. Zirconia enrichment in zircon sand by selective fungus-mediated bioleaching of silica.

    PubMed

    Bansal, Vipul; Syed, Asad; Bhargava, Suresh K; Ahmad, Absar; Sastry, Murali

    2007-04-24

    One of the important routes for the production of zirconia is by chemical treatment and removal of silica from zircon sand (ZrSixOy). We present here a completely green chemistry approach toward enrichment of zirconia in zircon sand; this is based on the reaction of the fungus Fusarium oxysporum with zircon sand by a process of selective extracellular bioleaching of silica nanoparticles. Since this reaction does not result in zirconia being simultaneously leached out from the sand, there is a consequent enrichment of the zirconia component in zircon sand. We believe that fungal enzymes specifically hydrolyze the silicates present in the sand to form silicic acid, which on condensation by certain other fungal enzymes results in room-temperature synthesis of silica nanoparticles. This fungus-mediated twofold approach might have vast commercial implications in low-cost, ecofriendly, room-temperature syntheses of technologically important oxide nanomaterials from potentially cheap naturally available raw materials like zircon sand.

  2. When Is It Nail Fungus?

    MedlinePlus

    ... medlineplus.gov/news/fullstory_167455.html When Is It Nail Fungus? Dermatologist says only an expert can ... but you shouldn't be embarrassed to discuss it with a board-certified dermatologist, who can help ...

  3. Unconventional Recombination in the Mating Type Locus of Heterothallic Apple Canker Pathogen Valsa mali

    PubMed Central

    Yin, Zhiyuan; Ke, Xiwang; Li, Zhengpeng; Chen, Jiliang; Gao, Xiaoning; Huang, Lili

    2017-01-01

    Sexual reproduction in filamentous ascomycetes is controlled by the mating type (MAT) locus, including two idiomorphs MAT1-1 and MAT1-2. Understanding the MAT locus can provide clues for unveiling the sexual development and virulence factors for fungal pathogens. The genus Valsa (Sordariomycetes, Diaporthales) contains many tree pathogens responsible for destructive canker diseases. The sexual stage of these ascomycetes is occasionally observed in nature, and no MAT locus has been reported to date. Here, we identified the MAT locus of the apple canker pathogen Valsa mali, which causes extensive damage, and even death, to trees. V. mali is heterothallic in that each isolate carries either the MAT1-1 or MAT1-2 idiomorph. However, the MAT structure is distinct from that of many other heterothallic fungi in the Sordariomycetes. Two flanking genes, COX13 and APN2, were coopted into the MAT locus, possibly by intrachromosomal rearrangement. After the acquisition of foreign genes, unequal recombination occurred between MAT1-1/2 idiomorphs, resulting in a reverse insertion in the MAT1-2 idiomorph. Evolutionary analysis showed that the three complete MAT1-1-2, COX13, and APN2 genes in this region diverged independently due to different selection pressure. Null hypothesis tests of a 1:1 MAT ratio of 86 V. mali isolates from four different provinces showed a relatively balanced distribution of the two idiomorphs in the fields. These results provide insights into the evolution of the mating systems in Sordariomycetes. PMID:28228472

  4. Occurrence of shallow bark canker of walnut (Juglans regia) in southern provinces of Iran.

    PubMed

    Yousefikopaei, F; Taghavi, S M; Banihashemi, Z

    2007-05-01

    From April 2001 to November 2002, samples of walnut branches and trunks with symptoms of shallow bark canker were collected from Fars and Kohgiluyeh-va-Boyerahmad provinces. Symptoms of the disease were small cracks in the bark of the trunk and scaffold branches of mature trees with dark watery exudates which stained the affected trunk or limb. By removal of phelloderm, extensive necrosis of the underlying tissues was observed. In some cases, necrosis extended to cambium and outer xylem. Sixty-one strains of a bacterium were isolated from infected tissues using EMB and YDC media. On the basis of standard biochemical and physiological tests the bacterium was identified as Brenneria nigrifluens. The pathogen was found to be wide-spread in the provinces. Isolates were compared by physiological and biochemical characters, antibiotic sensitivity and protein electrophoretic pattern. Most of the strains were fairly similar in phenotypic features and electrophoretic profiles ofwhole-cell proteins were similar to each other and to reference strain (B. nigrifluens 5D313). Inoculation of 1-2 years-old walnut seedlings in May and June produced blackening symptoms and the bacterium survived for long period in infected tissues. This is the first report of the shallow bark canker of walnut in southern Iran.

  5. Isolation and Characterization of Bacteriophages Against Pseudomonas syringae pv. actinidiae Causing Bacterial Canker Disease in Kiwifruit.

    PubMed

    Yu, Ji-Gang; Lim, Jeong-A; Song, Yu-Rim; Heu, Sunggi; Kim, Gyoung Hee; Koh, Young Jin; Oh, Chang-Sik

    2016-02-01

    Pseudomonas syringae pv. actinidiae causes bacterial canker disease in kiwifruit. Owing to the prohibition of agricultural antibiotic use in major kiwifruit-cultivating countries, alternative methods need to be developed to manage this disease. Bacteriophages are viruses that specifically infect target bacteria and have recently been reconsidered as potential biological control agents for bacterial pathogens owing to their specificity in terms of host range. In this study, we isolated bacteriophages against P. syringae pv. actinidiae from soils collected from kiwifruit orchards in Korea and selected seven bacteriophages for further characterization based on restriction enzyme digestion patterns of genomic DNA. Among the studied bacteriophages, two belong to the Myoviridae family and three belong to the Podoviridae family, based on morphology observed by transmission electron microscopy. The host range of the selected bacteriophages was confirmed using 18 strains of P. syringae pv. actinidiae, including the Psa2 and Psa3 groups, and some were also effective against other P. syringae pathovars. Lytic activity of the selected bacteriophages was sustained in vitro until 80 h, and their activity remained stable up to 50°C, at pH 11, and under UV-B light. These results indicate that the isolated bacteriophages are specific to P. syringae species and are resistant to various environmental factors, implying their potential use in control of bacterial canker disease in kiwifruits.

  6. The cold-induced defensin TAD1 confers resistance against snow mold and Fusarium head blight in transgenic wheat.

    PubMed

    Sasaki, Kentaro; Kuwabara, Chikako; Umeki, Natsuki; Fujioka, Mari; Saburi, Wataru; Matsui, Hirokazu; Abe, Fumitaka; Imai, Ryozo

    2016-06-20

    TAD1 (Triticum aestivum defensin 1) is induced during cold acclimation in winter wheat and encodes a plant defensin with antimicrobial activity. In this study, we demonstrated that recombinant TAD1 protein inhibits hyphal growth of the snow mold fungus, Typhula ishikariensis in vitro. Transgenic wheat plants overexpressing TAD1 were created and tested for resistance against T. ishikariensis. Leaf inoculation assays revealed that overexpression of TAD1 confers resistance against the snow mold. In addition, the TAD1-overexpressors showed resistance against Fusarium graminearum, which causes Fusarium head blight, a devastating disease in wheat and barley. These results indicate that TAD1 is a candidate gene to improve resistance against multiple fungal diseases in cereal crops. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Development of a Selective Medium for the Fungal Pathogen Fusarium graminearum Using Toxoflavin Produced by the Bacterial Pathogen Burkholderia glumae.

    PubMed

    Jung, Boknam; Lee, Sehee; Ha, Jiran; Park, Jong-Chul; Han, Sung-Sook; Hwang, Ingyu; Lee, Yin-Won; Lee, Jungkwan

    2013-12-01

    The ascomycete fungus Fusarium graminearum is a major causal agent for Fusarium head blight in cereals and produces mycotoxins such as trichothecenes and zearalenone. Isolation of the fungal strains from air or cereals can be hampered by various other airborne fungal pathogens and saprophytic fungi. In this study, we developed a selective medium specific to F. graminearum using toxoflavin produced by the bacterial pathogen Burkholderia glumae. F. graminearum was resistant to toxoflavin, while other fungi were sensitive to this toxin. Supplementing toxoflavin into medium enhanced the isolation of F. graminearum from rice grains by suppressing the growth of saprophytic fungal species. In addition, a medium with or without toxoflavin exposed to wheat fields for 1 h had 84% or 25%, respectively, of colonies identified as F. graminearum. This selection medium provides an efficient tool for isolating F. graminearum, and can be adopted by research groups working on genetics and disease forecasting.

  8. Diplopyrone, a new phytotoxic tetrahydropyranpyran-2-one produced by Diplodia mutila, a fungus pathogen of cork oak.

    PubMed

    Evidente, Antonio; Maddau, Lucia; Spanu, Emanuela; Franceschini, Antonio; Lazzaroni, Silvia; Motta, Andrea

    2003-02-01

    A new phytotoxic monosubstituted tetrahydropyranpyran-2-one, named diplopyrone (1), was isolated from the liquid culture filtrates of Diplodia mutila, a plant pathogenic fungus causing a form of canker disease of cork oak (Quercus suber). Diplopyrone was characterized, using spectroscopic and chemical methods, as 6-[(1S)-1-hydroxyethyl]-2,4a,6,8a-tetrahydropyran[3,2-b]pyran-2-one. The absolute stereochemistry of the chiral secondary hydroxylated carbon (C-9), determined by application of Mosher's method, proved to be S. Diplopyrone assayed at a 0.01-0.1 mg/mL concentration range caused necrosis and wilting on cork oak cuttings. On a nonhost plant, tomato, diplopyrone caused brown discoloration or stewing on the stem.

  9. Additive roles of PthAs in bacterial growth and pathogenicity associated with nucleotide polymorphisms in effector-binding elements of citrus canker susceptibility genes.

    PubMed

    Abe, Valeria Yukari; Benedetti, Celso Eduardo

    2016-10-01

    Citrus canker, caused by Xanthomonas citri, affects most commercial citrus varieties. All X. citri strains possess at least one transcription activator-like effector of the PthA family that activates host disease susceptibility (S) genes. The X. citri strain 306 encodes four PthA effectors; nevertheless, only PthA4 is known to elicit cankers on citrus. As none of the PthAs act as avirulence factors on citrus, we hypothesized that PthAs 1-3 might also contribute to pathogenicity on certain hosts. Here, we show that, although PthA4 is indispensable for canker formation in six Brazilian citrus varieties, PthAs 1 and 3 contribute to canker development in 'Pera' sweet orange, but not in 'Tahiti' lemon. Deletions in two or more pthA genes reduce bacterial growth in planta more pronouncedly than single deletions, suggesting an additive role of PthAs in pathogenicity and bacterial fitness. The contribution of PthAs 1 and 3 in canker formation in 'Pera' plants does not correlate with the activation of the canker S gene, LOB1 (LATERAL ORGAN BOUNDARIES 1), but with the induction of other PthA targets, including LOB2 and citrus dioxygenase (DIOX). LOB1, LOB2 and DIOX show differential PthA-dependent expression between 'Pera' and 'Tahiti' plants that appears to be associated with nucleotide polymorphisms found at or near PthA-binding sites. We also present evidence that LOB1 activation alone is not sufficient to elicit cankers on citrus, and that DIOX acts as a canker S gene in 'Pera', but not 'Tahiti', plants. Our results suggest that the activation of multiple S genes, such as LOB1 and DIOX, is necessary for full canker development. © 2015 BSPP and John Wiley & Sons Ltd.

  10. Under severe HLB and citrus canker pressure, 'Triumph' and 'Jackson' perform better than 'Flame' and 'Marsh' grapefruit

    USDA-ARS?s Scientific Manuscript database

    Huanglongbing (HLB) and Citrus Canker (CC) threaten the viability of Florida grapefruit production. ‘Triumph’ (T), reportedly a grapefruit/sweet orange hybrid, is similar to seedy white grapefruit with earlier maturity and lower bitterness. ‘Jackson’ (J) is a low-seeded budsport of ‘Triumph’. Tree h...

  11. Under severe citrus canker and HLB (Huanglongbing) pressure, Triumph and Jackson perform better than Flame and Marsh grapefruit

    USDA-ARS?s Scientific Manuscript database

    Huanglongbing (HLB) and Citrus Canker (CC) threaten the viability of Florida grapefruit production. Triumph (T), reportedly a grapefruit/sweet orange hybrid, is similar to seedy white grapefruit with earlier maturity and lower bitterness. Jackson (J) is a low-seeded budsport of Triumph. Tree health ...

  12. Transcriptional Profiling of Canker-Resistant Transgenic Sweet Orange (Citrus sinensis Osbeck) Constitutively Overexpressing a Spermidine Synthase Gene

    PubMed Central

    Fu, Xing-Zheng; Liu, Ji-Hong

    2013-01-01

    Citrus canker disease caused by Xanthomonas citri subsp. citri (Xcc) is one of the most devastating diseases affecting the citrus industry worldwide. In our previous study, the canker-resistant transgenic sweet orange (Citrus sinensis Osbeck) plants were produced via constitutively overexpressing a spermidine synthase. To unravel the molecular mechanisms underlying Xcc resistance of the transgenic plants, in the present study global transcriptional profiling was compared between untransformed line (WT) and the transgenic line (TG9) by hybridizing with Affymetrix Citrus GeneChip. In total, 666 differentially expressed genes (DEGs) were identified, 448 upregulated, and 218 downregulated. The DEGs were classified into 33 categories after Gene ontology (GO) annotation, in which 68 genes are in response to stimulus and involved in immune system process, 12 genes are related to cell wall, and 13 genes belong to transcription factors. These genes and those related to starch and sucrose metabolism, glutathione metabolism, biosynthesis of phenylpropanoids, and plant hormones were hypothesized to play major roles in the canker resistance of TG9. Semiquantitative RT-PCR analysis showed that the transcript levels of several candidate genes in TG9 were significantly higher than in WT both before and after Xcc inoculation, indicating their potential association with canker disease. PMID:23509803

  13. The HPLC-Fluorescence Detection of Coumarins in ‘Hamlin’ Sweet Orange and ‘Marsh’ Grapefruit Leaf Cankers

    USDA-ARS?s Scientific Manuscript database

    Canker is a devastating disease for the citrus fresh fruit market and is caused by the pathogenic bacterium Xanthomonas citri var. citri (Xcc). Infection occurs by bacterial penetration through physical damage of leaves, peel and stems, and also by bacterial entry through the stomates of these photo...

  14. Efficacy of Heat Treatment for the Thousand Cankers Disease Vector and Pathogen in Small Black Walnut Logs

    Treesearch

    A. E. Mayfield; S. W. Fraedrich; A. Taylor; P. Merten; S. W. Myers

    2014-01-01

    Thousand cankers disease, caused by the walnut twig beetle (Pityophthorus juglandis Blackman) and an associated fungal pathogen (Geosmithia morbida M. Kolarõ´k, E. Freeland, C. Utley, and N. Tisserat), threatens the health and commercial use of eastern black walnut (Juglans nigra L.), one of the most economically...

  15. Characteristics of the perception of different severity measures of citrus canker and the relations between the various symptom types

    USDA-ARS?s Scientific Manuscript database

    Citrus canker is a disease of citrus and is caused by the bacterial pathogen Xanthomonas axonopodis pv citri (Xac). Ways of managing the disease are being sought, and accurate, precise, reproducible disease assessment is needed for monitoring epidemics. The objective of this study was to investigate...

  16. Visual rating and the use of image analysis for assessing different symptoms of citrus canker on grapefruit leaves

    USDA-ARS?s Scientific Manuscript database

    Citrus canker is caused by the bacterial pathogen Xanthomonas axonopodis pv citri (Xac) and infects several citrus species in wet tropical and subtropical citrus growing regions. Accurate, precise and reproducible disease assessment is needed for monitoring epidemics and disease response in breeding...

  17. Disease risk factors and disease progress in coast live oak and tanoak affected by Phytophthora ramorum canker (sudden oak death)

    Treesearch

    Tedmund J. Swiecki; Elizabeth Bernhardt

    2006-01-01

    This paper reports on five years of observations in a case-control study examining the role of tree and site factors on the development of Phytophthora ramorum stem canker (sudden oak death) in coast live oak (Quercus agrifolia) and tanoak (Lithocarpus densiflorus). In September of each year from 2000 through...

  18. Survival, growth, and target canker infection of black walnut families 15 years after establishment in West Virginia

    Treesearch

    Thomas M. Schuler; Thomas M. Schuler

    1993-01-01

    The survival, growth, and rate of target canker infection of 34 black walnut (Juglans nigra L.) families were evaluated 15 years after establishment in north-central West Virginia. The progenies originated at locations in Pennsylvania, West Virginia, Tennessee, and North Carolina. There were significant differences between families in survival, incidence of target...

  19. Increasing distance from California bay laurel reduces the risk and severity of Phytophthora ramorum canker in coast live oak

    Treesearch

    Tedmund J. Swiecki; Elizabeth A. Bernhardt

    2008-01-01

    Foliar infections in California bay (Umbellularia californica) are the most important known source of inoculum contributing to Phytophthora ramorum canker in coast live oak (Quercus agrifolia). This research addressed the question whether there is a ?safe? distance between California bay and coast live oak beyond...

  20. Transcriptional profiling of canker-resistant transgenic sweet orange (Citrus sinensis Osbeck) constitutively overexpressing a spermidine synthase gene.

    PubMed

    Fu, Xing-Zheng; Liu, Ji-Hong

    2013-01-01

    Citrus canker disease caused by Xanthomonas citri subsp. citri (Xcc) is one of the most devastating diseases affecting the citrus industry worldwide. In our previous study, the canker-resistant transgenic sweet orange (Citrus sinensis Osbeck) plants were produced via constitutively overexpressing a spermidine synthase. To unravel the molecular mechanisms underlying Xcc resistance of the transgenic plants, in the present study global transcriptional profiling was compared between untransformed line (WT) and the transgenic line (TG9) by hybridizing with Affymetrix Citrus GeneChip. In total, 666 differentially expressed genes (DEGs) were identified, 448 upregulated, and 218 downregulated. The DEGs were classified into 33 categories after Gene ontology (GO) annotation, in which 68 genes are in response to stimulus and involved in immune system process, 12 genes are related to cell wall, and 13 genes belong to transcription factors. These genes and those related to starch and sucrose metabolism, glutathione metabolism, biosynthesis of phenylpropanoids, and plant hormones were hypothesized to play major roles in the canker resistance of TG9. Semiquantitative RT-PCR analysis showed that the transcript levels of several candidate genes in TG9 were significantly higher than in WT both before and after Xcc inoculation, indicating their potential association with canker disease.

  1. Overexpression of a modified plant thionin enhances disease resistance to citrus canker and huanglongbing (HLB, citrus greening)

    USDA-ARS?s Scientific Manuscript database

    Huanglongbing (HLB or citrus greening disease) caused by Candidatus Liberibacter asiaticus (Las) is a great threat to the United States citrus industry. Citrus canker is also an economically important disease associated with a bacterial pathogen (Xanthomonas citri). In this study, we characterized e...

  2. Spread of butternut canker in North America, host range, evidence of resistance within butternut populations and conservation genetics

    Treesearch

    M. E. Ostry; K. Woeste

    2004-01-01

    Butternut canker is killing trees throughout the range of butternut in North America and is threatening the viability of many populations in several areas. Although butternut is the primary host, other Juglans species and some hardwood species also are potential hosts. Evidence is building that genetic resistance within butternut populations may be...

  3. Efficacy of sludge and manure compost amendments against Fusarium wilt of cucumber.

    PubMed

    Huang, Xiao; Shi, Dezhi; Sun, Faqian; Lu, Haohao; Liu, Jingjing; Wu, Weixiang

    2012-11-01

    Fusarium wilt of cucumber caused by the fungus, Fusarium oxysporum, is one of the most destructive soilborne diseases and can result in serious economic loss. No efficient fungicide is currently available to control the disease. The aim of this study was to examine the disease suppression ability of pig manure and sludge composts in peat-based container media and explore the possible disease suppression mechanisms. Pig manure and sewage sludge compost were made in laboratory-scale tanks. Plant growth media were formulated with peat mixture and compost (or 60 °C heated compost) in a 4:1 ratio (v/v). Cucumber seedlings were artificially inoculated with F. oxysporum conidia (5 × 10(5) conidia mL(-1)) by the root-dip method. Cucumber Fusarium wilt was effectively suppressed in sludge compost-amended media, while the disease suppression effect of pig manure compost was limited. The ammonia levels in the manure compost-amended media were significantly higher than those of sludge compost-amended media, which could explain its lower disease suppression ability. Heated composts behaved similarly with respect to disease suppression. Adding composts increased microbial biomass, microbial activity, and the microbial diversity of the growth media. PCR-DGGE results indicated that the fungal community had a significant correlation to the disease severity. The artificially inoculated pathogen was retrieved in all treatments and one possible biocontrol agent was identified as a strain of F. oxysporum by phylogenetic analyses. The results indicated that the sludge compost used in this study could be applied as a method for biocontrol of cucumber Fusarium wilt.

  4. Brachypodium distachyon: a new pathosystem to study Fusarium head blight and other Fusarium diseases of wheat

    PubMed Central

    2011-01-01

    Background Fusarium species cause Fusarium head blight (FHB) and other important diseases of cereals. The causal agents produce trichothecene mycotoxins such as deoxynivalenol (DON). The dicotyledonous model species Arabidopsis thaliana has been used to study Fusarium-host interactions but it is not ideal for model-to-crop translation. Brachypodium distachyon (Bd) has been proposed as a new monocotyledonous model species for functional genomic studies in grass species. This study aims to assess the interaction between the most prevalent FHB-causing Fusarium species and Bd in order to develop and exploit Bd as a genetic model for FHB and other Fusarium diseases of wheat. Results The ability of Fusarium graminearum and Fusarium culmorum to infect a range of Bd tissues was examined in various bioassays which showed that both species can infect all Bd tissues examined, including intact foliar tissues. DON accumulated in infected spike tissues at levels similar to those of infected wheat spikes. Histological studies revealed details of infection, colonisation and host response and indicate that hair cells are important sites of infection. Susceptibility to Fusarium and DON was assessed in two Bd ecotypes and revealed variation in resistance between ecotypes. Conclusions Bd exhibits characteristics of susceptibility highly similar to those of wheat, including susceptibility to spread of disease in the spikelets. Bd is the first reported plant species to allow successful infection on intact foliar tissues by FHB-causing Fusarium species. DON appears to function as a virulence factor in Bd as it does in wheat. Bd is proposed as a valuable model for undertaking studies of Fusarium head blight and other Fusarium diseases of wheat. PMID:21639892

  5. Fungus-Mediated Preferential Bioleaching of Waste Material Such as Fly - Ash as a Means of Producing Extracellular, Protein Capped, Fluorescent and Water Soluble Silica Nanoparticles

    PubMed Central

    Khan, Shadab Ali; Uddin, Imran; Moeez, Sana; Ahmad, Absar

    2014-01-01

    In this paper, we for the first time show the ability of the mesophilic fungus Fusarium oxysporum in the bioleaching of waste material such as Fly-ash for the extracellular production of highly crystalline and highly stable, protein capped, fluorescent and water soluble silica nanoparticles at ambient conditions. When the fungus Fusarium oxysporum is exposed to Fly-ash, it is capable of selectively leaching out silica nanoparticles of quasi-spherical morphology within 24 h of reaction. These silica nanoparticles have been completely characterized by UV-vis spectroscopy, Photoluminescence (PL), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Energy dispersive analysis of X-rays (EDAX). PMID:25244567

  6. Draft Genome Sequences of Pectobacterium carotovorum subsp. actinidiae ICMP 19971 and ICMP 19972, Two Strains Isolated from Actinidia chinensis with Symptoms of Summer Canker in South Korea

    PubMed Central

    Panda, Preetinanda; Taylor, Robert; Pitman, Andrew R.

    2017-01-01

    ABSTRACT Pectobacterium carotovorum subsp. actinidiae is the causal agent of summer canker in kiwifruit plants in South Korea. We report here the draft genome sequences of two P. carotovorum subsp. actinidiae strains, ICMP 19971 and ICMP 19972, which were originally isolated from Actinidia chinensis with symptoms of summer canker. These genome sequences will aid in the identification of genetic traits associated with their unusual capacity to cause canker and help understanding of the threat these exotic enterobacteria pose to the New Zealand kiwifruit industry. PMID:28385839

  7. IAA-producing Penicillium sp. NICS01 triggers plant growth and suppresses Fusarium sp.-induced oxidative stress in sesame (Sesamum indicum L.).

    PubMed

    Radhakrishnan, Ramalingam; Shim, Kang-Bo; Lee, Byeong-Won; Hwang, Chung-Dong; Pae, Suk-Bok; Park, Chang-Hwan; Kim, Sung-Up; Lee, Choon-Ki; Baek, In-Youl

    2013-06-28

    Application of rhizospheric fungi is an effective and environmentally friendly method of improving plant growth and controlling many plant diseases. The current study was aimed to identify phytohormone-producing fungi from soil, to understand their roles in sesame plant growth, and to control Fusarium disease. Three predominant fungi (PNF1, PNF2, and PNF3) isolated from the rhizospheric soil of peanut plants were screened for their growth-promoting efficiency on sesame seedlings. Among these isolates, PNF2 significantly increased the shoot length and fresh weight of seedlings compared with controls. Analysis of the fungal culture filtrate showed a higher concentration of indole acetic acid in PNF2 than in the other isolates. PNF2 was identified as Penicillium sp. on the basis of phylogenetic analysis of ITS sequence similarity. The in vitro biocontrol activity of Penicillium sp. against Fusarium sp. was exhibited by a 49% inhibition of mycelial growth in a dual culture bioassay and by hyphal injuries as observed by scanning electron microscopy. In addition, greenhouse experiments revealed that Fusarium inhibited growth in sesame plants by damaging lipid membranes and reducing protein content. Co-cultivation with Penicillium sp. mitigated Fusarium-induced oxidative stress in sesame plants by limiting membrane lipid peroxidation, and by increasing the protein concentration, levels of antioxidants such as total polyphenols, and peroxidase and polyphenoloxidase activities. Thus, our findings suggest that Penicillium sp. is a potent plant growthpromoting fungus that has the ability to ameliorate damage caused by Fusarium infection in sesame cultivation.

  8. DNA Fingerprinting and Analysis of Population Structure in the Chestnut Blight Fungus, Cryphonectria Parasitica

    PubMed Central

    Milgroom, M. G.; Lipari, S. E.; Powell, W. A.

    1992-01-01

    We analyzed DNA fingerprints in the chestnut blight fungus, Cryphonectria parasitica, for stability, inheritance, linkage and variability in a natural population. DNA fingerprints resulting from hybridization with a dispersed moderately repetitive DNA sequence of C. parasitica in plasmid pMS5.1 hybridized to 6-17 restriction fragments per individual isolate. In a laboratory cross and from progeny from a single perithecium collected from a field population, the presence/absence of 11 fragments in the laboratory cross and 12 fragments in the field progeny set segregated in 1:1 ratios. Two fragments in each progeny set cosegregated; no other linkage was detected among the segregating fragments. Mutations, identified by missing bands, were detected for only one fragment in which 4 of 43 progeny lacked a band present in both parents; no novel fragments were detected in any progeny. All other fragments appeared to be stably inherited. Hybridization patterns did not change during vegetative growth or sporulation. However, fingerprint patterns of single conidial isolates of strains EP155 and EP67 were found to be heterogenous due to mutations that occurred during culturing in the laboratory since these strains were first isolated in 1976-1977. In a population sample of 39 C. parasitica isolates, we found 33 different fingerprint patterns with pMS5.1. Most isolates differed from all other isolates by the presence or absence of several fragments. Six fingerprint patterns each occurred twice. Isolates with identical fingerprints occurred in cankers on the same chestnut stems three times; isolates within the other three pairs were isolated from cankers more than 5 m apart. The null hypothesis of random mating in this population could not be rejected if the six putative clones were removed from the analysis. Thus, a rough estimate of the clonal fraction of this population is 6 in 39 isolates (15.4%). PMID:1353735

  9. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker.

    PubMed

    Jia, Hongge; Zhang, Yunzeng; Orbović, Vladimir; Xu, Jin; White, Frank F; Jones, Jeffrey B; Wang, Nian

    2016-12-09

    Citrus is a highly valued tree crop worldwide, while, at the same time, citrus production faces many biotic challenges, including bacterial canker and Huanglongbing (HLB). Breeding for disease-resistant varieties is the most efficient and sustainable approach to control plant diseases. Traditional breeding of citrus varieties is challenging due to multiple limitations, including polyploidy, polyembryony, extended juvenility and long crossing cycles. Targeted genome editing technology has the potential to shorten varietal development for some traits, including disease resistance. Here, we used CRISPR/Cas9/sgRNA technology to modify the canker susceptibility gene CsLOB1 in Duncan grapefruit. Six independent lines, DLOB 2, DLOB 3, DLOB 9, DLOB 10, DLOB 11 and DLOB 12, were generated. Targeted next-generation sequencing of the six lines showed the mutation rate was 31.58%, 23.80%, 89.36%, 88.79%, 46.91% and 51.12% for DLOB 2, DLOB 3, DLOB 9, DLOB 10, DLOB 11 and DLOB 12, respectively, of the cells in each line. DLOB 2 and DLOB 3 showed canker symptoms similar to wild-type grapefruit, when inoculated with the pathogen Xanthomonas citri subsp. citri (Xcc). No canker symptoms were observed on DLOB 9, DLOB 10, DLOB 11 and DLOB 12 at 4 days postinoculation (DPI) with Xcc. Pustules caused by Xcc were observed on DLOB 9, DLOB 10, DLOB 11 and DLOB 12 in later stages, which were much reduced compared to that on wild-type grapefruit. The pustules on DLOB 9 and DLOB 10 did not develop into typical canker symptoms. No side effects and off-target mutations were detected in the mutated plants. This study indicates that genome editing using CRISPR technology will provide a promising pathway to generate disease-resistant citrus varieties.

  10. Occurrence of fungi and fungus-like organisms in the Horodnianka River in the vicinity of Białystok, Poland.

    PubMed

    Kiziewicz, Bozena; Zdrojkowska, Ewa; Gajo, Bernadetta; Godlewska, Anna; Muszyńska, Elzbieta; Mazalska, Bozenna

    2011-01-01

    Studies of fungi and fungus- like organisms in the northeastern Poland have mainly concentrated on running waters in the vicinity of Białystok, including the Horodnianka River. The main objective was to investigate biodiversity of fungi and fungus-like organisms which take part in decomposition of organic matter commonly found in inland waters. To obtain a complete picture of species composition of fungi and fungus-like organisms in running waters we decided to explore representative sites of the Horodnianka River such as Olmonty, Hryniewicze and Horodniany with close localization of landfill. Fungal species were isolated using baiting technique. Baits of onion skin (Alium cepa), hemp-seeds (Cannabis sativa), impregnated cellophane and snake skin (Natrix natrix) were applied to isolate fungi from water of the Horodnianka River. The fungal community consists of 26 species, 10 species of fungi belonging to class Chytridiomycetes (3), anamorphic fungi (6), and Zygomycetes (1). 16 species belong to fungus-like organisms from class Oomycetes. Most of the recognized species have already been found in other running waters. From all the examined habitats the fungi belonging to 26 species of 18 genera Achlya, Alternaria, Aphanomyces, Aspergillus, Catenophlyctis, Dictyuchus, Fusarium, Karlingia, Lagenidium, Leptomitus, Olpidiopsis, Penicillium, Phlyctochytrium, Pythium, Saprolegnia, Scoliognia, Thraustotheca and Zoophagus were obtained. Certain fungal species like Aphanomyces laevis, Fusarium aqueductum, F. moniliforme, F. oxysporum, Leptomitus lacteus, Saprolegnia feax and S. parasitica were found at all the study sites. Among fungi potentially pathogenic and allergogenic for humans the genera Alternaria, Aspergillus, Fusarium, Lagenidium and Penicillium have already been described. However, the species Lagenidium giganteum and Achlya androgyna are new in the fungal biota of Poland. The greatest number of fungal species occurred in Olmonty (24), the smallest in Horodniany

  11. Fusarium-damaged kernels and deoxynivalenol in Fusarium-infected U.S. Winter Wheat

    USDA-ARS?s Scientific Manuscript database

    Fusarium head blight (FHB) is a devastating disease that threatens wheat (Triticum aestivum L.) production in many areas worldwide. FHB infection results in Fusarium-damaged kernels (FDK) and deoxynivalenol (DON) that dramatically reduce grain yield and quality. More effective and accurate disease e...

  12. Pathogenicity of Conidiobolus coronatus and Fusarium solani in mouse models.

    PubMed

    Li, Yadi; Fang, Xiangang; Zhou, Xiaoqian; Geng, Suying; Wang, Yuxin; Yang, Xiumin

    2017-02-27

    To study the pathogenicity of Conidiobolus coronatus (C. coronatus) and Fusarium solani (F. solani) in animal models. Immunocompromised mice were treated with cyclophosphamide and prednisolone via intraperitoneal injection before and after inoculation. According to pathogenic characteristics of different fungi, C. coronatus was used to infect mice via intravenous inoculation, intraperitoneal inoculation, gastrointestinal infusion and intradermal inoculation methods. And F. solani was used to infect mice by inoculation via the abraded or normal skin. In the group of immunocompromised mice, C. coronatus was isolated from the lung tissues of one mouse on day 7 and another on day 10 respectively. The corresponding histopathology revealed infiltration of local inflammatory cells in the lung tissue. Pathogenic lesions were observed in all normal and immunocompromised mice infected with F. solani via abraded skin. The lesions in the immunocompromised mice were more severe and persisted longer than those in the normal mice. Moreover, hyphae were mostly observed in the histopathological examination and fungal culture from the immunocompromised mouse. The pathogenicity of C. coronatus was relatively weak as it did not induce local infections and did not disseminate the disease in immunocompetent and immunocompromised mice. Therefore, F. solani is a type of opportunistic pathogenic fungus, and abraded skin is one of the causative routes of infection.

  13. Gene expression in Fusarium graminearum grown on plant cell wall.

    PubMed

    Carapito, Raphaël; Hatsch, Didier; Vorwerk, Sonja; Petkovski, Elizabet; Jeltsch, Jean-Marc; Phalip, Vincent

    2008-05-01

    Fusarium graminearum is a phytopathogenic filamentous fungus attacking a wide range of plants including Humulus lupulus (hop). Transcriptional analysis of F. graminearum grown on minimal media containing hop cell wall or glucose as the sole carbon source was performed by applying a highly stringent method combining microarrays and a subtracted cDNA library. In addition to genes coding for various cell wall degrading enzymes (CWDE), several metabolic pathways were induced in response to the plant cell wall substrate. Many genes participating in these pathways are probably involved in cellular transport. But the most interesting was that all the genes composing the 4-aminobutyrate-shunt (GABA-shunt) were also up-regulated in the presence of plant cell wall material and were present in the cDNA library. This study provides a description of a part of the fungal gene expression profile when it is in contact with raw biological materials, and helps in understanding the plant cell wall degradation and the infection process.

  14. Dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici.

    PubMed

    Vlaardingerbroek, Ido; Beerens, Bas; Schmidt, Sarah M; Cornelissen, Ben J C; Rep, Martijn

    2016-12-01

    The genomes of many filamentous fungi consist of a 'core' part containing conserved genes essential for normal development as well as conditionally dispensable (CD) or lineage-specific (LS) chromosomes. In the plant-pathogenic fungus Fusarium oxysporum f. sp. lycopersici, one LS chromosome harbours effector genes that contribute to pathogenicity. We employed flow cytometry to select for events of spontaneous (partial) loss of either the two smallest LS chromosomes or two different core chromosomes. We determined the rate of spontaneous loss of the 'effector' LS chromosome in vitro at around 1 in 35 000 spores. In addition, a viable strain was obtained lacking chromosome 12, which is considered to be a part of the core genome. We also isolated strains carrying approximately 1-Mb deletions in the LS chromosomes and in the dispensable core chromosome. The large core chromosome 1 was never observed to sustain deletions over 200 kb. Whole-genome sequencing revealed that some of the sites at which the deletions occurred were the same in several independent strains obtained for the two chromosomes tested, indicating the existence of deletion hotspots. For the core chromosome, this deletion hotspot was the site of insertion of the marker used to select for loss events. Loss of the core chromosome did not affect pathogenicity, whereas loss of the effector chromosome led to a complete loss of pathogenicity. © 2016 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.

  15. Extracellular mycosynthesis of gold nanoparticles using Fusarium solani

    NASA Astrophysics Data System (ADS)

    Gopinath, K.; Arumugam, A.

    2014-08-01

    The development of eco-friendly methods for the synthesis of nanomaterial shape and size is an important area of research in the field of nanotechnology. The present investigation deals with the extracellular rapid biosynthesis of gold nanoparticles using Fusarium solani culture filtrate. The UV-vis spectra of the fungal culture filtrate medium containing gold ion showed peak at 527 nm corresponding to the plasmon absorbance of gold nanoparticles. FTIR spectra provide an evidence for the presence of heterocyclic compound in the culture filtrate, which increases the stability of the synthesized gold nanoparticles. The X-ray analysis respects the Bragg's law and confirmed the crystalline nature of the gold nanoparticles. AFM analysis showed the results of particle sizes (41 nm). Transmission electron microscopy (TEM) showed that the gold nanoparticles are spherical in shape with the size range from 20 to 50 nm. The use of F. solani will offer several advantages since it is considered as a non-human pathogenic organism. The fungus F. solani has a fast growth rate, rapid capacity of metallic ions reduction, NPs stabilization and facile and economical biomass handling. Extracellular biosynthesis of gold nanoparticles could be highly advantageous from the point of view of synthesis in large quantities, time consumption, eco-friendly, non-toxic and easy downstream processing.

  16. Optimization of Biological Synthesis of Silver Nanoparticles using Fusarium oxysporum

    PubMed Central

    Korbekandi, Hassan; Ashari, Zeynab; Iravani, Siavash; Abbasi, Sajjad

    2013-01-01

    Silver nanoparticles are increasingly used in various fields of biotechnology and applications in the medicine. Objectives of this study were optimization of production of silver nanoparticles using biotransformations by Fusarium oxysporum, and a further study on the location of nanoparticles synthesis in this microorganism. The reaction mixture contained the following ingredients (final concentrations): AgNO3 (1-10 mM) as the biotransformation substrate, biomass as the biocatalyst, glucose (560 mM) as the electron donor, and phosphate buffer (pH= 7, 100 mM). The samples were taken from the reaction mixtures at different times, and the absorbance (430 nm) of the colloidal suspensions of silver nanoparticles hydrosols was read freshly (without freezing) and immediately after dilution (1:40). SEM and TEM analyses were performed on selected samples. The presence of AgNO3 (0.1 mM) in the culture as enzyme inducer, and glucose (560 mM) as electron donor had positive effects on nanoparticle production. In SEM micrographs, silver nanoparticles were almost spherical, single (25-50 nm) or in aggregates (100 nm), attached to the surface of biomass. The reaction mixture was successfully optimized to increase the yield of silver nanoparticles production. More details of the location of nanoparticles production by this fungus were revealed, which support the hypothesis that silver nanoparticles are synthesized intracellularly and not extracellularly. PMID:24250635

  17. Extracellular peptidases of the cereal pathogen Fusarium graminearum

    PubMed Central

    Lowe, Rohan G. T.; McCorkelle, Owen; Bleackley, Mark; Collins, Christine; Faou, Pierre; Mathivanan, Suresh; Anderson, Marilyn

    2015-01-01

    The plant pathogenic fungus Fusarium graminearum (Fgr) creates economic and health risks in cereals agriculture. Fgr causes head blight (or scab) of wheat and stalk rot of corn, reducing yield, degrading grain quality, and polluting downstream food products with mycotoxins. Fungal plant pathogens must secrete proteases to access nutrition and to breakdown the structural protein component of the plant cell wall. Research into the proteolytic activity of Fgr is hindered by the complex nature of the suite of proteases secreted. We used a systems biology approach comprising genome analysis, transcriptomics and label-free quantitative proteomics to characterize the peptidases deployed by Fgr during growth. A combined analysis of published microarray transcriptome datasets revealed seven transcriptional groupings of peptidases based on in vitro growth, in planta growth, and sporulation behaviors. A high resolution mass spectrometry-based proteomics analysis defined the extracellular proteases secreted by F. graminearum. A meta-classification based on sequence characters and transcriptional/translational activity in planta and in vitro provides a platform to develop control strategies that target Fgr peptidases. PMID:26635820

  18. Effector profiles distinguish formae speciales of Fusarium oxysporum.

    PubMed

    van Dam, Peter; Fokkens, Like; Schmidt, Sarah M; Linmans, Jasper H J; Kistler, H Corby; Ma, Li-Jun; Rep, Martijn

    2016-11-01

    Formae speciales (ff.spp.) of the fungus Fusarium oxysporum are often polyphyletic within the species complex, making it impossible to identify them on the basis of conserved genes. However, sequences that determine host-specific pathogenicity may be expected to be similar between strains within the same forma specialis. Whole genome sequencing was performed on strains from five different ff.spp. (cucumerinum, niveum, melonis, radicis-cucumerinum and lycopersici). In each genome, genes for putative effectors were identified based on small size, secretion signal, and vicinity to a "miniature impala" transposable element. The candidate effector genes of all genomes were collected and the presence/absence patterns in each individual genome were clustered. Members of the same forma specialis turned out to group together, with cucurbit-infecting strains forming a supercluster separate from other ff.spp. Moreover, strains from different clonal lineages within the same forma specialis harbour identical effector gene sequences, supporting horizontal transfer of genetic material. These data offer new insight into the genetic basis of host specificity in the F. oxysporum species complex and show that (putative) effectors can be used to predict host specificity in F. oxysporum. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Extracellular peptidases of the cereal pathogen Fusarium graminearum.

    PubMed

    Lowe, Rohan G T; McCorkelle, Owen; Bleackley, Mark; Collins, Christine; Faou, Pierre; Mathivanan, Suresh; Anderson, Marilyn

    2015-01-01

    The plant pathogenic fungus Fusarium graminearum (Fgr) creates economic and health risks in cereals agriculture. Fgr causes head blight (or scab) of wheat and stalk rot of corn, reducing yield, degrading grain quality, and polluting downstream food products with mycotoxins. Fungal plant pathogens must secrete proteases to access nutrition and to breakdown the structural protein component of the plant cell wall. Research into the proteolytic activity of Fgr is hindered by the complex nature of the suite of proteases secreted. We used a systems biology approach comprising genome analysis, transcriptomics and label-free quantitative proteomics to characterize the peptidases deployed by Fgr during growth. A combined analysis of published microarray transcriptome datasets revealed seven transcriptional groupings of peptidases based on in vitro growth, in planta growth, and sporulation behaviors. A high resolution mass spectrometry-based proteomics analysis defined the extracellular proteases secreted by F. graminearum. A meta-classification based on sequence characters and transcriptional/translational activity in planta and in vitro provides a platform to develop control strategies that target Fgr peptidases.

  20. Conjunctively screening of biocontrol agents (BCAs) against fusarium root rot and fusarium head blight caused by Fusarium graminearum.

    PubMed

    Wang, Lu-Yao; Xie, Yue-Shen; Cui, Yuan-Yu; Xu, Jianjun; He, Wei; Chen, Huai-Gu; Guo, Jian-Hua

    2015-08-01

    Fusarium root-rot and fusarium head blight are plant diseases caused by Fusarium sp. in different growth periods of wheat, bring heavy losses to crop production in China. This research is aiming to screen biocontrol agents conjunctively for controlling these two diseases at the same time, as well as evaluate our previous BCAs (Biological Control Agents) screening strategies in more complex situation, considering biocontrol is well concerned as an environmental-friendly plant disease controlling method. Totally 966 bacterial isolates were screened from different parts of wheat tissues, of which potential biocontrol values were detected according to their abilities in antagonism inhibition and secreting extracellular hydrolytic enzyme. Biocontrol tests against fusarium root rot and fusarium head blight were carried out on 37 bacterial isolates with potential biocontrol capacity after pre-selection through ARDRA- and BOX-PCR analysis on strains with high assessment points. We acquired 10 BCAs with obvious biocontrol efficacy (more than 40%) in greenhouse and field tests. Pseudomonas fluorescens LY1-8 performed well in both two tests (biocontrol efficacy: 44.62% and 58.31%), respectively. Overall, correlation coefficient is 0.720 between assessment values of 37 tested BCA strains and their biocontrol efficacy in trails against fusarium root rot; correlation coefficient is 0.806 between their assessment values and biocontrol efficacy in trails against fusarium head blight. We acquired 10 well-performed potential BCAs, especially P. fluorescens LY1-8 displayed good biocontrol capacity against two different diseases on wheat. Biocontrol efficacies results in both greenhouse and field tests showed high positive correlation with assessment values (0.720 and 0.806), suggesting that the BCAs screening and assessing strategy previously developed in our lab is also adaptable for conjunctively screening BCAs for controlling both root and shoot diseases on wheat caused by same

  1. Tissue-specific and pathogen-inducible expression of a fusion protein containing a Fusarium-specific antibody and a fungal chitinase protects wheat against Fusarium pathogens and mycotoxins.

    PubMed

    Cheng, Wei; Li, He-Ping; Zhang, Jing-Bo; Du, Hong-Jie; Wei, Qi-Yong; Huang, Tao; Yang, Peng; Kong, Xian-Wei; Liao, Yu-Cai

    2015-06-01

    Fusarium head blight (FHB) in wheat and other small grain cereals is a globally devastating disease caused by toxigenic Fusarium pathogens. Controlling FHB is a challenge because germplasm that is naturally resistant against these pathogens is inadequate. Current control measures rely on fungicides. Here, an antibody fusion comprised of the Fusarium spp.-specific recombinant antibody gene CWP2 derived from chicken, and the endochitinase gene Ech42 from the biocontrol fungus Trichoderma atroviride was introduced into the elite wheat cultivar Zhengmai9023 by particle bombardment. Expression of this fusion gene was regulated by the lemma/palea-specific promoter Lem2 derived from barley; its expression was confirmed as lemma/palea-specific in transgenic wheat. Single-floret inoculation of independent transgenic wheat lines of the T3 to T6 generations revealed significant resistance (type II) to fungal spreading, and natural infection assays in the field showed significant resistance (type I) to initial infection. Gas chromatography-mass spectrometry analysis revealed marked reduction of mycotoxins in the grains of the transgenic wheat lines. Progenies of crosses between the transgenic lines and the FHB-susceptible cultivar Huamai13 also showed significantly enhanced FHB resistance. Quantitative real-time PCR analysis revealed that the tissue-specific expression of the antibody fusion was induced by salicylic acid drenching and induced to a greater extent by F. graminearum infection. Histochemical analysis showed substantial restriction of mycelial growth in the lemma tissues of the transgenic plants. Thus, the combined tissue-specific and pathogen-inducible expression of this Fusarium-specific antibody fusion can effectively protect wheat against Fusarium pathogens and reduce mycotoxin content in grain.

  2. Host-induced silencing of Fusarium culmorum genes protects wheat from infection

    PubMed Central

    Chen, Wanxin; Kastner, Christine; Nowara, Daniela; Oliveira-Garcia, Ely; Rutten, Twan; Zhao, Yusheng; Deising, Holger B.; Kumlehn, Jochen; Schweizer, Patrick

    2016-01-01

    Plants producing antisense or double-stranded RNA molecules that target specific genes of eukaryotic pests or pathogens can become protected from their attack. This beneficial effect was also reported for plant–fungus interactions and is believed to reflect uptake of the RNAs by the fungus via an as yet unknown mechanism, followed by target gene silencing. Here we report that wheat plants pre-infected with Barley stripe mosaic virus (BSMV) strains containing antisense sequences against target genes of the Fusarium head blight (FHB) fungus F. culmorum caused a reduction of corresponding transcript levels in the pathogen and reduced disease symptoms. Stable transgenic wheat plants carrying an RNAi hairpin construct against the β-1, 3-glucan synthase gene FcGls1 of F. culmorum or a triple combination of FcGls1 with two additional, pre-tested target genes also showed enhanced FHB resistance in leaf and spike inoculation assays under greenhouse and near-field conditions, respectively. Microscopic evaluation of F. culmorum development in plants transiently or stably expressing FcGls1 silencing constructs revealed aberrant, swollen fungal hyphae, indicating severe hyphal cell wall defects. The results lead us to propose host-induced gene silencing (HIGS) as a plant protection approach that may also be applicable to highly FHB-susceptible wheat genotypes. PMID:27540093

  3. Adaptive expression of host cell wall degrading enzymes in fungal disease: an example from Fusarium root rot of medicinal Coleus.

    PubMed

    Bhattacharya, A

    2013-12-15

    Quantity of extracellular proteins and activities two cell wall degrading enzymes pectinase and cellulase were determined in the culture filtrate of Fusarium solani, the causal organism of root rot of Coleus forskohlii. Substitution of carbon source in the medium with either pectin or carboxymethyl cellulose led to the increased production of extracellular proteins by the fungus. Pectinase and cellulase activity in the culture filtrate was detected only when the growth medium contained substituted carbon source in the form of pectin and CMC, respectively. Pectinase activity was highest after 5 days incubation and then decreased gradually with time but cellulase activity showed a steady time dependent increase. In vitro virulence study showed the requirement of both the enzymes for complete expression of rot symptoms on Coleus plants. Thus the present study established the adaptive, substrate dependent expression of the two enzymes by the fungus and also their involvement in the root rot disease of Coleus forskohlii.

  4. The HEX1 gene of Fusarium graminearum is required for fungal asexual reproduction and pathogenesis and for efficient viral RNA accumulation of Fusarium graminearum virus 1.

    PubMed

    Son, Moonil; Lee, Kyung-Mi; Yu, Jisuk; Kang, Minji; Park, Jin Man; Kwon, Sun-Jung; Kim, Kook-Hyung

    2013-09-01

    The accumulation of viral RNA depends on many host cellular factors. The hexagonal peroxisome (Hex1) protein is a fungal protein that is highly expressed when the DK21 strain of Fusarium graminearum virus 1 (FgV1) infects its host, and Hex1 affects the accumulation of FgV1 RNA. The Hex1 protein is the major constituent of the Woronin body (WB), which is a peroxisome-derived electron-dense core organelle that seals the septal pore in response to hyphal wounding. To clarify the role of Hex1 and the WB in the relationship between FgV1 and Fusarium graminearum, we generated targeted gene deletion and overexpression mutants. Although neither HEX1 gene deletion nor overexpression substantially affected vegetative growth, both changes reduced the production of asexual spores and reduced virulence on wheat spikelets in the absence of FgV1 infection. However, the vegetative growth of deletion and overexpression mutants was increased and decreased, respectively, upon FgV1 infection compared to that of an FgV1-infected wild-type isolate. Viral RNA accumulation was significantly decreased in deletion mutants but was significantly increased in overexpression mutants compared to the viral RNA accumulation in the virus-infected wild-type control. Overall, these data indicate that the HEX1 gene plays a direct role in the asexual reproduction and virulence of F. graminearum and facilitates viral RNA accumulation in the FgV1-infected host fungus.

  5. Fusarium Infection in Lung Transplant Patients

    PubMed Central

    Carneiro, Herman A.; Coleman, Jeffrey J.; Restrepo, Alejandro; Mylonakis, Eleftherios

    2013-01-01

    Fusarium is a fungal pathogen of immunosuppressed lung transplant patients associated with a high mortality in those with severe and persistent neutropenia. The principle portal of entry for Fusarium species is the airways, and lung involvement almost always occurs among lung transplant patients with disseminated infection. In these patients, the immunoprotective mechanisms of the transplanted lungs are impaired, and they are, therefore, more vulnerable to Fusarium infection. As a result, fusariosis occurs in up to 32% of lung transplant patients. We studied fusariosis in 6 patients following lung transplantation who were treated at Massachusetts General Hospital during an 8-year period and reviewed 3 published cases in the literature. Cases were identified by the microbiology laboratory and through discharge summaries. Patients presented with dyspnea, fever, nonproductive cough, hemoptysis, and headache. Blood tests showed elevated white blood cell counts with granulocytosis and elevated inflammatory markers. Cultures of Fusarium were isolated from bronchoalveolar lavage, blood, and sputum specimens. Treatments included amphotericin B, liposomal amphotericin B, caspofungin, voriconazole, and posaconazole, either alone or in combination. Lung involvement occurred in all patients with disseminated disease and it was associated with a poor outcome. The mortality rate in this group of patients was high (67%), and of those who survived, 1 patient was treated with a combination of amphotericin B and voriconazole, 1 patient with amphotericin B, and 1 patient with posaconazole. Recommended empirical treatment includes voriconazole, amphotericin B or liposomal amphotericin B first-line, and posaconazole for refractory disease. High-dose amphotericin B is recommended for treatment of most cases of fusariosis. The echinocandins (for example, caspofungin, micafungin, anidulafungin) are generally avoided because Fusarium species have intrinsic resistance to them. Treatment

  6. Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of Xanthomonas fuscans subsp. aurantifolii

    PubMed Central

    2010-01-01

    Background Citrus canker is a disease that has severe economic impact on the citrus industry worldwide. There are three types of canker, called A, B, and C. The three types have different phenotypes and affect different citrus species. The causative agent for type A is Xanthomonas citri subsp. citri, whose genome sequence was made available in 2002. Xanthomonas fuscans subsp. aurantifolii strain B causes canker B and Xanthomonas fuscans subsp. aurantifolii strain C causes canker C. Results We have sequenced the genomes of strains B and C to draft status. We have compared their genomic content to X. citri subsp. citri and to other Xanthomonas genomes, with special emphasis on type III secreted effector repertoires. In addition to pthA, already known to be present in all three citrus canker strains, two additional effector genes, xopE3 and xopAI, are also present in all three strains and are both located on the same putative genomic island. These two effector genes, along with one other effector-like gene in the same region, are thus good candidates for being pathogenicity factors on citrus. Numerous gene content differences also exist between the three cankers strains, which can be correlated with their different virulence and host range. Particular attention was placed on the analysis of genes involved in biofilm formation and quorum sensing, type IV secretion, flagellum synthesis and motility, lipopolysacharide synthesis, and on the gene xacPNP, which codes for a natriuretic protein. Conclusion We have uncovered numerous commonalities and differences in gene content between the genomes of the pathogenic agents causing citrus canker A, B, and C and other Xanthomonas genomes. Molecular genetics can now be employed to determine the role of these genes in plant-microbe interactions. The gained knowledge will be instrumental for improving citrus canker control. PMID:20388224

  7. Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of Xanthomonas fuscans subsp. aurantifolii.

    PubMed

    Moreira, Leandro M; Almeida, Nalvo F; Potnis, Neha; Digiampietri, Luciano A; Adi, Said S; Bortolossi, Julio C; da Silva, Ana C; da Silva, Aline M; de Moraes, Fabrício E; de Oliveira, Julio C; de Souza, Robson F; Facincani, Agda P; Ferraz, André L; Ferro, Maria I; Furlan, Luiz R; Gimenez, Daniele F; Jones, Jeffrey B; Kitajima, Elliot W; Laia, Marcelo L; Leite, Rui P; Nishiyama, Milton Y; Rodrigues Neto, Julio; Nociti, Letícia A; Norman, David J; Ostroski, Eric H; Pereira, Haroldo A; Staskawicz, Brian J; Tezza, Renata I; Ferro, Jesus A; Vinatzer, Boris A; Setubal, João C

    2010-04-13

    Citrus canker is a disease that has severe economic impact on the citrus industry worldwide. There are three types of canker, called A, B, and C. The three types have different phenotypes and affect different citrus species. The causative agent for type A is Xanthomonas citri subsp. citri, whose genome sequence was made available in 2002. Xanthomonas fuscans subsp. aurantifolii strain B causes canker B and Xanthomonas fuscans subsp. aurantifolii strain C causes canker C. We have sequenced the genomes of strains B and C to draft status. We have compared their genomic content to X. citri subsp. citri and to other Xanthomonas genomes, with special emphasis on type III secreted effector repertoires. In addition to pthA, already known to be present in all three citrus canker strains, two additional effector genes, xopE3 and xopAI, are also present in all three strains and are both located on the same putative genomic island. These two effector genes, along with one other effector-like gene in the same region, are thus good candidates for being pathogenicity factors on citrus. Numerous gene content differences also exist between the three cankers strains, which can be correlated with their different virulence and host range. Particular attention was placed on the analysis of genes involved in biofilm formation and quorum sensing, type IV secretion, flagellum synthesis and motility, lipopolysacharide synthesis, and on the gene xacPNP, which codes for a natriuretic protein. We have uncovered numerous commonalities and differences in gene content between the genomes of the pathogenic agents causing citrus canker A, B, and C and other Xanthomonas genomes. Molecular genetics can now be employed to determine the role of these genes in plant-microbe interactions. The gained knowledge will be instrumental for improving citrus canker control.

  8. Extracellular polysaccharides of a bacterium associated with a fungal canker disease of Eucalyptus sp.

    PubMed

    Yang, Byung Yun; Ding, Qiong; Montgomery, Rex

    2002-04-17

    Extracellular polysaccharides (EPSs) produced by an Erwinia sp associated with a fungal canker disease of Eucalyptus were fractionated into one polysaccharide that was identified with that produced by Erwinia chrysanthemi strains SR260, Ech1, and Ech9, and the other distinctively different from any other EPS produced by E. chrysanthemi strains so far studied. Their structures were determined using a combination of chemical and physical techniques including methylation analysis, low pressure gel-filtration, and anion-exchange chromatographies, high-pH anion-exchange chromatography, mass spectrometry and 1D and 2D 1H NMR spectroscopy. The new polysaccharide, identified as EPS Teranera, has the following structure: [structure: see text] The molecular weights of the polysaccharides range from 3.2-6.2 x 10(5) and their hydrodynamic properties are those of polydisperse, polyanionic biopolymers with pseudoplastic, non-thixotropic flow characteristics in aqueous solutions.

  9. Lonsdalea quercina subsp. populi subsp. nov., isolated from bark canker of poplar trees.

    PubMed

    Tóth, Tímea; Lakatos, Tamás; Koltay, András

    2013-06-01

    Seven Gram-negative bacterial strains were isolated from oozing bark canker of poplar (Populus × euramericana) trees in Hungary. They showed high (>98.3%) 16S rRNA gene sequence similarity to Lonsdalea quercina; however, they differed from this species in several phenotypic characteristics. Multilocus sequence analysis based on three housekeeping genes (gyrB, atpD and infB) revealed, and DNA-DNA hybridization analysis confirmed, that this group of bacterial strains forms a distinct lineage within the species Lonsdalea quercina. A detailed study of phenotypic and physiological characteristics confirmed the separation of isolates from poplars from other subspecies of L. quercina; therefore, a novel subspecies, Lonsdalea quercina subsp. populi, type strain NY060(T) (=DSM 25466(T)=NCAIM B 02483(T)), is proposed.

  10. Selection of Small Synthetic Antimicrobial Peptides Inhibiting Xanthomonas citri subsp. citri Causing Citrus Canker

    PubMed Central

    Choi, Jeahyuk; Park, Euiho; Lee, Se-Weon; Hyun, Jae-Wook; Baek, Kwang-Hyun

    2017-01-01

    Citrus canker disease decreases the fruit quality and yield significantly, furthermore, emerging of streptomycin-resistant pathogens threatens the citrus industry seriously because of a lack of proper control agents. Small synthetic antimicrobial peptides (AMPs) could be a promising alternative. Fourteen hexapeptides were selected by using positional scanning of synthetic peptide combinatorial libraries. Each hexapeptide showed different antimicrobial spectrum against Bacillus, Pseudomonas, Xanthomonas, and Candida species. Intriguingly, BHC10 showed bactericidal activity exclusively on Xanthomonas citri subsp. citri (Xcc), while BHC7 was none-active exclusively against two Pseudomonas spp. at concentration of 100 μg/ml suggesting potential selectivity constrained in hexapeptide frame. Three hexapeptides, BHC02, 06 and 11, showed bactericidal activities against various Xcc strains at concentration of 10 μg/ml. When they were co-infiltrated with pathogens into citrus leaves the disease progress was suppressed significantly. Further study would be needed to confirm the actual disease control capacity of the selected hexapeptides. PMID:28167892

  11. Fusarium stalk blight and rot in sugar beet

    USDA-ARS?s Scientific Manuscript database

    Fusarium stalk blight of sugar beet can cause reductions or complete loss of seed production. The causal agent is Fusarium oxysporum. In addition, Fusarium solani has been demonstrated to cause a rot of sugar beet seed stalk, and other species have been reported associated with sugar beet fruit, but...

  12. Diversity of the Fusarium complex on French maize

    USDA-ARS?s Scientific Manuscript database

    Ear rot caused by Fusarium species is a major threat to maize production worldwide, causing yield reduction and poor grain quality. In addition, various species of the genus Fusarium can produce mycotoxins, which accumulate in the grain. The distribution and predominance of the different Fusarium sp...

  13. Delimiting cryptic pathogen species causing apple Valsa canker with multilocus data

    PubMed Central

    Wang, Xuli; Zang, Rui; Yin, Zhiyuan; Kang, Zhensheng; Huang, Lili

    2014-01-01

    Fungal diseases are posing tremendous threats to global economy and food safety. Among them, Valsa canker, caused by fungi of Valsa and their Cytospora anamorphs, has been a serious threat to fruit and forest trees and is one of the most destructive diseases of apple in East Asia, particularly. Accurate and robust delimitation of pathogen species is not only essential for the development of effective disease control programs, but also will advance our understanding of the emergence of plant diseases. However, species delimitation is especially difficult in Valsa because of the high variability of morphological traits and in many cases the lack of the teleomorph. In this study, we delimitated species boundary for pathogens causing apple Valsa canker with a multifaceted approach. Based on three independent loci, the internal transcribed spacer (ITS), β-tubulin (Btu), and translation elongation factor-1 alpha (EF1α), we inferred gene trees with both maximum likelihood and Bayesian methods, estimated species tree with Bayesian multispecies coalescent approaches, and validated species tree with Bayesian species delimitation. Through divergence time estimation and ancestral host reconstruction, we tested the possible underlying mechanisms for fungal speciation and host-range change. Our results proved that two varieties of the former morphological species V. mali represented two distinct species, V. mali and V. pyri, which diverged about 5 million years ago, much later than the divergence of their preferred hosts, excluding a scenario of fungi–host co-speciation. The marked different thermal preferences and contrasting pathogenicity in cross-inoculation suggest ecological divergences between the two species. Apple was the most likely ancestral host for both V. mali and V. pyri. Host-range expansion led to the occurrence of V. pyri on both pear and apple. Our results also represent an example in which ITS data might underestimate species diversity. PMID:24834333

  14. Canker Sores

    MedlinePlus

    ... the right nutrition (such as not getting enough iron or vitamin B12) also might contribute to some ... find out if another condition — like a vitamin deficiency, a problem with your immune system, or even ...

  15. Canker Sores

    MedlinePlus

    ... Birth Control Family HealthInfants and Toddlers Kids and Teens Pregnancy and Childbirth Women Men SeniorsIn The NewsYour Health ... Birth Control Family HealthInfants and Toddlers Kids and Teens Pregnancy and Childbirth Women Men SeniorsIn The NewsYour Health ...

  16. Canker Sores

    MedlinePlus

    ... SLS is a foaming agent found in most toothpastes and mouthwashes. Finally, not getting the right nutrition, ... you brush your teeth . Brush and rinse with toothpastes and mouthwashes that don't contain sodium lauryl ...

  17. Canker sore

    MedlinePlus

    ... which can irritate the area more.) Apply a mixture of half hydrogen peroxide and half water directly ... times a day. Rinse your mouth with a mixture of half Milk of Magnesia and half Benadryl ...

  18. Molecular identification of Fusarium spp. causing wilt of chickpea and the first report of Fusarium redolens in Turkey

    USDA-ARS?s Scientific Manuscript database

    Chickpea (Cicer arietinum L.) is an important food legume crop and Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris is one of the most important diseases of chickpea in Turkey. Fusarium redolens is known to cause wilt-like disease of chickpea in other countries, but has not been reported fr...

  19. Temperature effects on the interactions of sugar beet Fusarium yellows caused by Fusarium oxysporum f. sp. betae

    USDA-ARS?s Scientific Manuscript database

    Fusarium yellows of sugar beet (Beta vulgaris L.), caused by Fusarium oxysporum f. sp. betae, causes a significant reduction in root yield, sucrose percentage, and juice purity. The environmental or agronomic factors that contribute to development and severity of Fusarium yellows have not been desc...

  20. Fusarium equiseti LPSC 1166 and its in vitro role in the decay of Heterostachys ritteriana leaf litter.

    PubMed

    Franco, Ernesto; Troncozo, María I; Baez, Margot; Mirífico, María V; Robledo, Gerardo L; Balatti, Pedro A; Saparrat, Mario C N

    2017-09-10

    The role of microorganisms in litter degradation in arid and semi-arid zones, where soil and water salinization is one of the main factors limiting carbon turnover and decay, remains obscure. Heterostachys ritteriana (Amaranthaceae), a halophyte shrub growing in arid environments such as "Salinas Grandes" (Córdoba, Argentina), appears to be the main source of organic matter in the area. Little is known regarding the microorganisms associated with H. ritteriana, although they are a potential source of enzymes such as cellulolytic ones, which might be important in biotechnological fields such as bioethanol production using ionic liquids. In the present study, by studying the microbiota growing on H. ritteriana leaf litter in "Salinas Grandes," we isolated the cellulolytic fungus Fusarium equiseti LPSC 1166, which grew and degraded leaf litter under salt stress. The growth of this fungus was a function of the C substrate and the presence of NaCl. Although in vitro the fungus used both soluble and polymeric compounds from H. ritteriana litter and synthesized extracellular β-1,4 endoglucanases, its activity was reduced by 10% NaCl. Based on these results, F. equiseti LPSC 1166 can be described as a halotolerant cellulolytic fungus most probably playing a key role in the decay of H. ritteriana leaf litter in "Salinas Grandes."

  1. In-vitro antifungal susceptibility of clinical and environmental Fusarium spp. strains.

    PubMed

    Pujol, I; Guarro, J; Gené, J; Sala, J

    1997-02-01

    The MICs of amphotericin B, miconazole, ketoconazole, flucytosine, itraconazole and fluconazole for 19 isolates of Fusarium oxysporum, 16 Fusarium solani, seven Fusarium verticilliodes, four Fusarium proliferatum, four Fusarium dimerum, three Fusarium equiseti, and one each of the following species: Fusarium graminearum, Fusarium chlamydosporum, Fusarium semitectum, Fusarium avenaceum and Fusarium subglutinans were determined by a broth microdilution method. Thirty-eight of these isolates were of clinical origin and 20 from environmental sources. In general, Fusarium spp. strains showed resistance to all the antifungals tested. However, the most active agent was amphotericin B. Fluconazole and flucytosine were not active against any of the isolates tested. A correlation study of in-vitro testing with in-vivo outcome of amphotericin B of the cases of disseminated fusarium infections published is reported.

  2. Comparative genomic analysis of duplicated homoeologous regions involved in the resistance of Brassica napus to stem canker

    PubMed Central

    Fopa Fomeju, Berline; Falentin, Cyril; Lassalle, Gilles; Manzanares-Dauleux, Maria J.; Delourme, Régine

    2015-01-01

    All crop species are current or ancient polyploids. Following whole genome duplication, structural and functional modifications result in differential gene content or regulation in the duplicated regions, which can play a fundamental role in the diversification of genes underlying complex traits. We have investigated this issue in Brassica napus, a species with a highly duplicated genome, with the aim of studying the structural and functional organization of duplicated regions involved in quantitative resistance to stem canker, a disease caused by the fungal pathogen Leptosphaeria maculans. Genome-wide association analysis on two oilseed rape panels confirmed that duplicated regions of ancestral blocks E, J, R, U, and W were involved in resistance to stem canker. The structural analysis of the duplicated genomic regions showed a higher gene density on the A genome than on the C genome and a better collinearity between homoeologous regions than paralogous regions, as overall in the whole B. napus genome. The three ancestral sub-genomes were involved in the resistance to stem canker and the fractionation profile of the duplicated regions corresponded to what was expected from results on the B. napus progenitors. About 60% of the genes identified in these duplicated regions were single-copy genes while less than 5% were retained in all the duplicated copies of a given ancestral block. Genes retained in several copies were mainly involved in response to stress, signaling, or transcription regulation. Genes with resistance-associated markers were mainly retained in more than two copies. These results suggested that some genes underlying quantitative resistance to stem canker might be duplicated genes. Genes with a hydrolase activity that were retained in one copy or R-like genes might also account for resistance in some regions. Further analyses need to be conducted to indicate to what extent duplicated genes contribute to the expression of the resistance phenotype

  3. Assessing quantitative resistance against Leptosphaeria maculans (phoma stem canker) in Brassica napus (oilseed rape) in young plants.

    PubMed

    Huang, Yong-Ju; Qi, Aiming; King, Graham J; Fitt, Bruce D L

    2014-01-01

    Quantitative resistance against Leptosphaeria maculans in Brassica napus is difficult to assess in young plants due to the long period of symptomless growth of the pathogen from the appearance of leaf lesions to the appearance of canker symptoms on the stem. By using doubled haploid (DH) lines A30 (susceptible) and C119 (with quantitative resistance), quantitative resistance against L. maculans was assessed in young plants in controlled environments at two stages: stage 1, growth of the pathogen along leaf veins/petioles towards the stem by leaf lamina inoculation; stage 2, growth in stem tissues to produce stem canker symptoms by leaf petiole inoculation. Two types of inoculum (ascospores; conidia) and three assessment methods (extent of visible necrosis; symptomless pathogen growth visualised using the GFP reporter gene; amount of pathogen DNA quantified by PCR) were used. In stage 1 assessments, significant differences were observed between lines A30 and C119 in area of leaf lesions, distance grown along veins/petioles assessed by visible necrosis or by viewing GFP and amount of L. maculans DNA in leaf petioles. In stage 2 assessments, significant differences were observed between lines A30 and C119 in severity of stem canker and amount of L. maculans DNA in stem tissues. GFP-labelled L. maculans spread more quickly from the stem cortex to the stem pith in A30 than in C119. Stem canker symptoms were produced more rapidly by using ascospore inoculum than by using conidial inoculum. These results suggest that quantitative resistance against L. maculans in B. napus can be assessed in young plants in controlled conditions. Development of methods to phenotype quantitative resistance against plant pathogens in young plants in controlled environments will help identification of stable quantitative resistance for control of crop diseases.

  4. Comparative genomic analysis of duplicated homoeologous regions involved in the resistance of Brassica napus to stem canker.

    PubMed

    Fopa Fomeju, Berline; Falentin, Cyril; Lassalle, Gilles; Manzanares-Dauleux, Maria J; Delourme, Régine

    2015-01-01

    All crop species are current or ancient polyploids. Following whole genome duplication, structural and functional modifications result in differential gene content or regulation in the duplicated regions, which can play a fundamental role in the diversification of genes underlying complex traits. We have investigated this issue in Brassica napus, a species with a highly duplicated genome, with the aim of studying the structural and functional organization of duplicated regions involved in quantitative resistance to stem canker, a disease caused by the fungal pathogen Leptosphaeria maculans. Genome-wide association analysis on two oilseed rape panels confirmed that duplicated regions of ancestral blocks E, J, R, U, and W were involved in resistance to stem canker. The structural analysis of the duplicated genomic regions showed a higher gene density on the A genome than on the C genome and a better collinearity between homoeologous regions than paralogous regions, as overall in the whole B. napus genome. The three ancestral sub-genomes were involved in the resistance to stem canker and the fractionation profile of the duplicated regions corresponded to what was expected from results on the B. napus progenitors. About 60% of the genes identified in these duplicated regions were single-copy genes while less than 5% were retained in all the duplicated copies of a given ancestral block. Genes retained in several copies were mainly involved in response to stress, signaling, or transcription regulation. Genes with resistance-associated markers were mainly retained in more than two copies. These results suggested that some genes underlying quantitative resistance to stem canker might be duplicated genes. Genes with a hydrolase activity that were retained in one copy or R-like genes might also account for resistance in some regions. Further analyses need to be conducted to indicate to what extent duplicated genes contribute to the expression of the resistance phenotype.

  5. Assessing Quantitative Resistance against Leptosphaeria maculans (Phoma Stem Canker) in Brassica napus (Oilseed Rape) in Young Plants

    PubMed Central

    Huang, Yong-Ju; Qi, Aiming; King, Graham J.; Fitt, Bruce D. L.

    2014-01-01

    Quantitative resistance against Leptosphaeria maculans in Brassica napus is difficult to assess in young plants due to the long period of symptomless growth of the pathogen from the appearance of leaf lesions to the appearance of canker symptoms on the stem. By using doubled haploid (DH) lines A30 (susceptible) and C119 (with quantitative resistance), quantitative resistance against L. maculans was assessed in young plants in controlled environments at two stages: stage 1, growth of the pathogen along leaf veins/petioles towards the stem by leaf lamina inoculation; stage 2, growth in stem tissues to produce stem canker symptoms by leaf petiole inoculation. Two types of inoculum (ascospores; conidia) and three assessment methods (extent of visible necrosis; symptomless pathogen growth visualised using the GFP reporter gene; amount of pathogen DNA quantified by PCR) were used. In stage 1 assessments, significant differences were observed between lines A30 and C119 in area of leaf lesions, distance grown along veins/petioles assessed by visible necrosis or by viewing GFP and amount of L. maculans DNA in leaf petioles. In stage 2 assessments, significant differences were observed between lines A30 and C119 in severity of stem canker and amount of L. maculans DNA in stem tissues. GFP-labelled L. maculans spread more quickly from the stem cortex to the stem pith in A30 than in C119. Stem canker symptoms were produced more rapidly by using ascospore inoculum than by using conidial inoculum. These results suggest that quantitative resistance against L. maculans in B. napus can be assessed in young plants in controlled conditions. Development of methods to phenotype quantitative resistance against plant pathogens in young plants in controlled environments will help identification of stable quantitative resistance for control of crop diseases. PMID:24454767

  6. Sensitivity of Fusarium strains to Chelidonium majus L. extracts.

    PubMed

    Matos, O C; Baeta, J; Silva, M J; Pinto Ricardo, C

    1999-08-01

    Ten Fusarium strains were tested for their sensitivity to extracts of Chelidonium majus L. Growth inhibition was measured either in solid or in liquid media. Aqueous extracts had considerable inhibitory action but methanolic extracts showed the best results. Root extracts were more inhibitory than shoot extracts. On the basis of growth inhibition the Fusarium strains were aggregated into five classes, the extremes being Fusarium culmorum plus Fusarium graminearum (quite resistant) and Fusarium oxysporum f. sp. cubense (very sensitive), with the other seven strains occupying the three intermediate classes. The high resistance of most Fusarium strains to conventional fungicides led us to propose C. majus as a good source of substances useful for the treatment of fungal infections, with special importance for those caused by Fusarium.

  7. A PR-1-like Protein of Fusarium oxysporum Functions in Virulence on Mammalian Hosts*

    PubMed Central

    Prados-Rosales, Rafael C.; Roldán-Rodríguez, Raquel; Serena, Carolina; López-Berges, Manuel S.; Guarro, Josep; Martínez-del-Pozo, Álvaro; Di Pietro, Antonio

    2012-01-01

    The pathogenesis-related PR-1-like protein family comprises secreted proteins from the animal, plant, and fungal kingdoms whose biological function remains poorly understood. Here we have characterized a PR-1-like protein, Fpr1, from Fusarium oxysporum, an ubiquitous fungal pathogen that causes vascular wilt disease on a wide range of plant species and can produce life-threatening infections in immunocompromised humans. Fpr1 is secreted and proteolytically processed by the fungus. The fpr1 gene is required for virulence in a disseminated immunodepressed mouse model, and its function depends on the integrity of the proposed active site of PR-1-like proteins. Fpr1 belongs to a gene family that has expanded in plant pathogenic Sordariomycetes. These results suggest that secreted PR-1-like proteins play important roles in fungal pathogenicity. PMID:22553200

  8. [Development and relations of Fusarium culmorum and Pseudomonas fluorescens in soil].

    PubMed

    Strunnikova, O K; Shakhnazarova, V Iu; Vishnevskaia, N A; Chebotar', V K; Tikhonovich, I A

    2007-01-01

    The development of Fusarium culmorum and Pseudomonas fluorescens in soil, and the relations between them, were studied using membrane filters containing the fungus, the bacterium, or both microorganisms; the filters were incubated in soil. F. culmorum was identified by indirect immunofluorescence: the GUS-labeled strain was used to visualize P. fluorescens. It was found that F. culmorum introduced in soil can develop as a saprotroph, with the formation of mycelium, macroconidia, and a small amount of chlamydospores. Introduction of glucose and cellulose resulted in increased density of the F. culmorum mycelium and macroconidia. P. fluorescens suppressed development of F. culmorum mycelium in soil but stimulated formation of fungal chlamydospores. Decreased mycelial density in the presence of P. fluorescens was more pronounced in unsupplemented soil and less pronounced when glucose or cellulose was intiodaced. F. culmorum had no significant effect on P. fluorescens growth in soil.

  9. The effect of nanosilver on pigments production by Fusarium culmorum (W. G. Sm.) Sacc.

    PubMed

    Kasprowicz, Marek J; Gorczyca, Anna; Frandsen, Rasmus J N

    2013-01-01

    A disk-diffusion method experiment assessed the impact of nanosilver on production of secondary metabolites (pigments) by the Fusarium culmorum fungus. Nanosilver colloidal particles in water have been obtained by the use of a method based on high voltage electric arcs between silver electrodes. The silver nanoparticles size in colloid ranged between 15 and 100 nm and 7, 35 and 70 ppm concentration. Nanosilver modifies the metabolism of the researched F. culmorum strain. Coming into contact with nanosilver colloids induces more intensive mycelia pigmentation correlated with nanosilver concentration levels. The performed analysis of metabolites indicates that under the influence of nanosilver fungi biosynthesise aurofusarin more intensively and the conversion of rubrofusarin to aurofusarin is intensified as compared to the control culture. Under the influence of nanosilver F. culmorum intensively biosynthesises an unidentified dye which shares structural features with aurofusarin but which is not produced by fungi in standard cultures.

  10. The production of β-glucosidases by Fusarium proliferatum NBRC109045 isolated from Vietnamese forest

    PubMed Central

    2012-01-01

    Fusarium proliferatum NBRC109045 is a filamentous fungus isolated from Vietnamese forest due to high production of β-glucosidases. Production of the enzyme was studied on varied carbon source based mediums. The highest activity was obtained in medium containing 1% corn stover + 1% wheat bran (3.31 ± 0.14 U/ml). It is interesting to note that glucose (0.69 ± 0.02 U/ml) gave higher activity and just followed by cellobiose among the di- and mono-saccharides, which is generally regarded as a universal repressor of hydrolases. We improved the zymogram method to prove that in response to various carbon sources, F. proliferatum could express various β-glucosidases. One of the β-glucosidases produced by F. proliferatum growing in corn stover + wheat bran based medium was partially purified and proved to have high catalytic ability. PMID:22974424

  11. Feed Refusal Factors in Pure Cultures of Fusarium roseum ”graminearum”

    PubMed Central

    Kotsonis, Frank N.; Smalley, Eugene B.; Ellison, Robert A.; Gale, Carol M.

    1975-01-01

    Isolations from 1972 Wisconsin feed refusal corn yielded predominantly cultures of Fusarium roseum ”graminearum.” With one possible exception, none of the selected isolates of this fungus induced emesis in pigeons, whereas six of nine isolates produced feed refusal responses in all test animals. A single isolate of F. roseum ”equiseti” also induced a severe refusal response and possibly slight emesis. None of the other fungi isolated from this corn (F. moniliforme, Acremoniella atra) or controls caused either emesis or feed refusal. Zearalenone was detected in all isolates and was shown to be partially responsible for refusal activity. The remaining activity was ascribed to one or more nonvolatile, neutral, relatively polar molecules. T-2 toxin, although not detected in these isolates, was shown to have dramatic refusal activity in rats. PMID:1237267

  12. Natural occurrence of Fusarium species, fumonisin production by toxigenic strains, and concentrations of fumonisins B1, and B2 in conventional and organic maize grown in Spain.

    PubMed

    Ariño, Agustín; Juan, Teresa; Estopañan, Gloria; González-Cabo, José F

    2007-01-01

    Sixty samples of corn from both conventional and organic farms were tested for internal fungal contamination. Molds were identified to genus, and those belonging to the genus Fusarium were identified to species. Twenty isolates of Fusarium verticillioides were tested with a high-performance liquid chromatography-naphthalene dicarboxaldehyde-fluorescence method for their ability to produce fumonisins B1 and B2. The internal fungal infection in organic maize (63.20%) was significantly higher than that in conventional maize (40.27%) (P < 0.05). However, the distribution of fungal genera indicated a significantly higher prevalence of Fusarium in conventional (34.93%) than in organic (18.15%) maize, making Fusarium the predominant fungus in conventional maize. This difference in mold distribution between organic and conventional maize was attributed to the difference in cultivation system. The dominant Fusarium species in both conventional and organic samples was F. verticillioides. There were no significant differences in the ability of 20 selected isolates of F. verticillioides to produce fumonisins on conventional or organic corn. Up to 13.3% of the conventional corn samples contained fumonisins B1 and B2 at mean concentrations of 43 and 22 ng/g, respectively. Organic corn samples had somewhat lower levels of contamination: 35 ng/g fumonisin B1 and 19 ng/g fumonisin B2 (P > 0.05). The organic farming system, with well-balanced crop rotation, tillage, and compost fertilization, produced corn that was less likely to be contaminated with Fusarium species, although no significant difference in fumonisin concentrations was found between the two types of contaminated corn.

  13. Effect of X-irradiation on Citrus Canker Pathogen Xanthomonas citri subsp. citri of Satsuma Mandarin Fruits

    PubMed Central

    Song, Min-A; Park, Jae Sin; Kim, Ki Deok; Jeun, Yong Chull

    2015-01-01

    Citrus canker caused by Xanthomonas citri subsp. citri (Xcc) is one of the most important bacterial diseases of citrus. Because citrus canker is not found in many countries including European Union and Australia, Xcc is strictly regulated in order to prevent its spread. In this study, the effects of X-irradiation on Xcc growth either in the suspension or on the surface of citrus fruits were investigated. The suspension containing 1×107 cfu/ml of Xcc was irradiated with different absorbed doses of X-irradiation ranging from 50 to 400 Gy. The results showed that Xcc was fully dead at 400 Gy of X-irradiation. To determine the effect of X-irradiation on quarantine, the Xcc-inoculated citrus fruits were irradiated with different X-ray doses at which Xcc was completely inhibited by an irradiation dose of 250 Gy. The D10 value for Xcc on citrus fruits was found to be 97 Gy, indicating the possibility of direct application on citrus quarantine without any side sterilizer. Beside, presence of Xcc on the surface of asymptomatic citrus fruits obtained from citrus canker-infected orchards was noted. It indicated that the exporting citrus fruits need any treatment so that Xcc on the citrus fruits should be completely eliminated. Based on these results, ionizing radiation can be considered as an alternative method of eradicating Xcc for export of citrus fruits. PMID:26672670

  14. Interplay between pathway-specific and global regulation of the fumonisin gene cluster in the rice pathogen Fusarium fujikuroi.

    PubMed

    Rösler, Sarah M; Sieber, Christian M K; Humpf, Hans-Ulrich; Tudzynski, Bettina

    2016-07-01

    The rice pathogenic fungus Fusarium fujikuroi is known to produce a large variety of secondary metabolites. Besides the gibberellins, causing the bakanae effect in infected rice seedlings, the fungus produces several mycotoxins and pigments. Among the 47 putative secondary metabolite gene clusters identified in the genome of F. fujikuroi, the fumonisin gene cluster (FUM) shows very high homology to the FUM cluster of the main fumonisin producer Fusarium verticillioides, a pathogen of maize. Despite the high level of cluster gene conservation, total fumonisin FB1 and FB2 levels (FBx) produced by F. fujikuroi were only 1-10 % compared to F. verticillioides under inducing conditions. Nitrogen repression was found to be relevant for wild-type strains of both species. However, addition of germinated maize kernels activated the FBx production only in F. verticillioides, reflecting the different host specificity of both wild-type strains. Over-expression of the pathway-specific transcription factor Fum21 in F. fujikuroi strongly activated the FUM cluster genes leading to 1000-fold elevated FBx levels. To gain further insights into the nitrogen metabolite repression of FBx biosynthesis, we studied the impact of the global nitrogen regulators AreA and AreB and demonstrated that both GATA-type transcription factors are essential for full activation of the FUM gene cluster. Loss of one of them obstructs the pathway-specific transcription factor Fum21 to fully activate expression of FUM cluster genes.

  15. Inhibitory effects of antimicrobial agents against Fusarium species.

    PubMed

    Kawakami, Hideaki; Inuzuka, Hiroko; Hori, Nobuhide; Takahashi, Nobumichi; Ishida, Kyoko; Mochizuki, Kiyofumi; Ohkusu, Kiyofumi; Muraosa, Yasunori; Watanabe, Akira; Kamei, Katsuhiko

    2015-08-01

    We investigated the inhibitory effects of antibacterial, biocidal, and antifungal agents against Fusarium spp. Seven Fusarium spp: four F. falciforme (Fusarium solani species complex), one Fusarium spp, one Fusarium spp. (Fusarium incarnatum-equiseti species complex), and one F. napiforme (Gibberella fujikuroi species complex), isolated from eyes with fungal keratitis were used in this study. Their susceptibility to antibacterial agents: flomoxef, imipenem, gatifloxacin, levofloxacin, moxifloxacin, gentamicin, tobramycin, and Tobracin® (contained 3,000 μg/ml of tobramycin and 25 μg/ml of benzalkonium chloride (BAK), a biocidal agent: BAK, and antifungal agents: amphotericin B, pimaricin (natamycin), fluconazole, itraconazole, miconazole, voriconazole, and micafungin, was determined by broth microdilution tests. The half-maximal inhibitory concentration (IC50), 100% inhibitory concentration (IC100), and minimum inhibitory concentration (MIC) against the Fusarium isolates were determined. BAK had the highest activity against the Fusarium spp. except for the antifungal agents. Three fluoroquinolones and two aminoglycosides had inhibitory effects against the Fusarium spp. at relatively high concentrations. Tobracin® had a higher inhibitory effect against Fusarium spp. than tobramycin alone. Amphotericin B had the highest inhibitory effect against the Fusarium spp, although it had different degrees of activity against each isolate. Our findings showed that fluoroquinolones, aminoglycosides, and BAK had some degree of inhibitory effect against the seven Fusarium isolates, although these agents had considerably lower effect than amphotericin B. However, the inhibitory effects of amphotericin B against the Fusarium spp. varied for the different isolates. Further studies for more effective medications against Fusarium, such as different combinations of antibacterial, biocidal, and antifungal agents are needed.

  16. Mass Spectrometric Identification of Isoforms of PR Proteins in Xylem Sap of Fungus-Infected Tomato1

    PubMed Central

    Rep, Martijn; Dekker, Henk L.; Vossen, Jack H.; de Boer, Albert D.; Houterman, Petra M.; Speijer, Dave; Back, Jaap W.; de Koster, Chris G.; Cornelissen, Ben J.C.

    2002-01-01

    The protein content of tomato (Lycopersicon esculentum) xylem sap was found to change dramatically upon infection with the vascular wilt fungus Fusarium oxysporum. Peptide mass fingerprinting and mass spectrometric sequencing were used to identify the most abundant proteins appearing during compatible or incompatible interactions. A new member of the PR-5 family was identified that accumulated early in both types of interaction. Other pathogenesis-related proteins appeared in compatible interactions only, concomitantly with disease development. This study demonstrates the feasibility of using proteomics for the identification of known and novel proteins in xylem sap, and provides insights into plant-pathogen interactions in vascular wilt diseases. PMID:12376655

  17. Occurrence of Fusarium verticillioides and Fusarium musae on banana fruits marketed in Hungary.

    PubMed

    Molnár, Orsolya; Bartók, Tibor; Szécsi, Árpád

    2015-06-01

    Fusarium strains were isolated from rotten banana fruit imported into Hungary from some African and some Neotropical countries. The strains were identified using morphological features, 2-benzoxazolinone tolerance, translation elongation factor (EF-1α) sequences and inter simple sequence repeat (ISSR) analysis. All strains from Africa proved to be F. verticillioides whereas the strains from the Neotropics are Fusarium musae. According to the PCR proof and the fumonisin toxin measurement F. musae strains cannot produce any fumonisins (FB1-4).

  18. Antifungal Attributes of Lactobacillus plantarum MYS6 against Fumonisin Producing Fusarium proliferatum Associated with Poultry Feeds.

    PubMed

    Deepthi, B V; Poornachandra Rao, K; Chennapa, G; Naik, M K; Chandrashekara, K T; Sreenivasa, M Y

    2016-01-01

    Fumonisins, being common in occurrence in maize-based feeds, pose a great threat to animal and human health. The present study is aimed at determining the antifungal activity of Lactobacillus plantarum MYS6 against a fumonisin producing fungus, Fusarium proliferatum MYS9. The isolate was subjected to standard tests for determining its probiotic attributes and antifungal properties. L. plantarum MYS6 thrived well at pH 3.0 and 6.0, and exhibited strong resistance up to 3% bile. The isolate showed a high degree of cell surface hydrophobicity corresponding to its strong adhesion to chicken crop epithelial cells. Co-inoculation with the fungus on modified de Man Rogosa Sharpe medium revealed the inhibitory effect of L. plantarum MYS6 on fungal growth and biomass. Observation using scanning electron microscopy showed distortion of hyphal structures, swollen tips and disrupted conidia. Conidia germination inhibition assay restrained germination and showed deformed hyphae. The bioprotective feature of the isolate was evident by the inhibition of fungal development in maize-kernel treated with the cell free supernatant of L. plantarum MYS6. Both the isolate and its extracellular metabolites lowered fumonisin content in feed model up to 0.505 mg/Kg of feed and 0.3125 mg/Kg of feed respectively when compared to the level of 0.870 mg/Kg of feed in control. The major antifungal compounds produced by the isolate were 10-Octadecenoic acid, methyl ester; palmitic acid, methyl ester; heptadecanoic acid, 16-methyl ester; stearic acid and lauric acid. L. plantarum MYS6 reduced 61.7% of fumonisin possibly by a binding mechanism. These findings suggest the application of L. plantarum MYS6 as an efficient probiotic additive and biocontrol agent in feed used in poultry industry. Additionally, the antifungal metabolites pose a conspicuous inhibition of Fusarium growth and fumonisin production.

  19. Structural and functional studies of a Fusarium oxysporum cutinase with polyethylene terephthalate modification potential.

    PubMed

    Dimarogona, Maria; Nikolaivits, Efstratios; Kanelli, Maria; Christakopoulos, Paul; Sandgren, Mats; Topakas, Evangelos

    2015-11-01

    Cutinases are serine hydrolases that degrade cutin, a polyester of fatty acids that is the main component of plant cuticle. These biocatalysts have recently attracted increased biotechnological interest due to their potential to modify and degrade polyethylene terephthalate (PET), as well as other synthetic polymers. A cutinase from the mesophilic fungus Fusarium oxysporum, named FoCut5a, was expressed either in the cytoplasm or periplasm of Escherichia coli BL21. Its X-ray structure was determined to 1.9Å resolution using molecular replacement. The activity of the recombinant enzyme was tested on a variety of synthetic esters and polyester analogues. The highest production of recombinant FoCut5a was achieved using periplasmic expression at 16°C. Its crystal structure is highly similar to previously determined Fusarium solani cutinase structure. However, a more detailed comparison of the surface properties and amino acid interactions revealed differences with potential impact on the biochemical properties of the two enzymes. FoCut5a showed maximum activity at 40°C and pH 8.0, while it was active on three p-nitrophenyl synthetic esters of aliphatic acids (C(2), C(4), C(12)), with the highest catalytic efficiency for the hydrolysis of the butyl ester. The recombinant cutinase was also found capable of hydrolyzing PET model substrates and synthetic polymers. The present work is the first reported expression and crystal structure determination of a functional cutinase from the mesophilic fungus F. oxysporum with potential application in surface modification of PET synthetic polymers. FoCut5a could be used as a biocatalyst in industrial applications for the environmentally-friendly treatment of synthetic polymers. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Antifungal Attributes of Lactobacillus plantarum MYS6 against Fumonisin Producing Fusarium proliferatum Associated with Poultry Feeds

    PubMed Central

    Deepthi, B. V.; Poornachandra Rao, K.; Chennapa, G.; Naik, M. K.; Chandrashekara, K. T.; Sreenivasa, M. Y.

    2016-01-01

    Fumonisins, being common in occurrence in maize-based feeds, pose a great threat to animal and human health. The present study is aimed at determining the antifungal activity of Lactobacillus plantarum MYS6 against a fumonisin producing fungus, Fusarium proliferatum MYS9. The isolate was subjected to standard tests for determining its probiotic attributes and antifungal properties. L. plantarum MYS6 thrived well at pH 3.0 and 6.0, and exhibited strong resistance up to 3% bile. The isolate showed a high degree of cell surface hydrophobicity corresponding to its strong adhesion to chicken crop epithelial cells. Co-inoculation with the fungus on modified de Man Rogosa Sharpe medium revealed the inhibitory effect of L. plantarum MYS6 on fungal growth and biomass. Observation using scanning electron microscopy showed distortion of hyphal structures, swollen tips and disrupted conidia. Conidia germination inhibition assay restrained germination and showed deformed hyphae. The bioprotective feature of the isolate was evident by the inhibition of fungal development in maize-kernel treated with the cell free supernatant of L. plantarum MYS6. Both the isolate and its extracellular metabolites lowered fumonisin content in feed model up to 0.505 mg/Kg of feed and 0.3125 mg/Kg of feed respectively when compared to the level of 0.870 mg/Kg of feed in control. The major antifungal compounds produced by the isolate were 10-Octadecenoic acid, methyl ester; palmitic acid, methyl ester; heptadecanoic acid, 16-methyl ester; stearic acid and lauric acid. L. plantarum MYS6 reduced 61.7% of fumonisin possibly by a binding mechanism. These findings suggest the application of L. plantarum MYS6 as an efficient probiotic additive and biocontrol agent in feed used in poultry industry. Additionally, the antifungal metabolites pose a conspicuous inhibition of Fusarium growth and fumonisin production. PMID:27285317

  1. Two Novel Relative Double-Stranded RNA Mycoviruses Infecting Fusarium poae Strain SX63

    PubMed Central

    Wang, Luan; Zhang, Jingze; Zhang, Hailong; Qiu, Dewen; Guo, Lihua

    2016-01-01

    Two novel double-stranded RNA (dsRNA) mycoviruses, termed Fusarium poae dsRNA virus 2 (FpV2) and Fusarium poae dsRNA virus 3 (FpV3), were isolated from the plant pathogenic fungus, Fusarium poae strain SX63, and molecularly characterized. FpV2 and FpV3, with respective genome sequences of 9518 and 9419 base pairs (bps), are both predicted to contain two discontinuous open reading frames (ORFs), ORF1 and ORF2. A hypothetical polypeptide (P1) and a RNA-dependent RNA polymerase (RdRp) are encoded by ORF1 and ORF2, respectively. Phytoreo_S7 domain (pfam07236) homologs were detected downstream of the RdRp domain (RdRp_4; pfam02123) of the ORF2-coded proteins of both FpV2 and FpV3. The same shifty heptamers (GGAAAAC) were both found immediately before the stop codon UAG of ORF1 in FpV2 and FpV3, which could mediate programmed –1 ribosomal frameshifting (–1 PRF). Phylogenetic analysis based on RdRp sequences clearly place FpV2 and FpV3 in a taxonomically unassigned dsRNA mycovirus group. Together, with a comparison of genome organization, a new taxonomic family termed Fusagraviridae is proposed to be created to include FpV2- and FpV3-related dsRNA mycoviruses, within which FpV2 and FpV3 would represent two distinct virus species. PMID:27144564

  2. Genome-Based Selection and Characterization of Fusarium circinatum-Specific Sequences

    PubMed Central

    Maphosa, Mkhululi N.; Steenkamp, Emma T.; Wingfield, Brenda D.

    2016-01-01

    Fusarium circinatum is an important pathogen of pine trees and its management in the commercial forestry environment relies largely on early detection, particularly in seedling nurseries. The fact that the entire genome of this pathogen is available opens new avenues for the development of diagnostic tools for this fungus. In this study we identified open reading frames (ORFs) unique to F. circinatum and determined that they were specific to the pathogen. The ORF identification process involved bioinformatics-based screening of all the putative F. circinatum ORFs against public databases. This was followed by functional characterization of ORFs found to be unique to F. circinatum. We used PCR- and hybridization-based approaches to confirm the presence of selected unique genes in different strains of F. circinatum and their absence from other Fusarium species for which genome sequence data are not yet available. These included species that are closely related to F. circinatum as well as those that are commonly encountered in the forestry environment. Thirty-six ORFs were identified as potentially unique to F. circinatum. Nineteen of these encode proteins with known domains while the other 17 encode proteins of unknown function. The results of our PCR analyses and hybridization assays showed that three of the selected genes were present in all of the strains of F. circinatum tested and absent from the other Fusarium species screened. These data thus indicate that the selected genes are common and unique to F. circinatum. These genes thus could be good candidates for use in rapid, in-the-field diagnostic assays specific to F. circinatum. Our study further demonstrates how genome sequence information can be mined for the identification of new diagnostic markers for the detection of plant pathogens. PMID:26888868

  3. Contamination of Bananas with Beauvericin and Fusaric Acid Produced by Fusarium oxysporum f. sp. cubense

    PubMed Central

    Kuang, Ruibin; Yang, Qiaosong; Hu, Chunhua; Sheng, Ou; Zhang, Sheng; Ma, Lijun; Wei, Yuerong; Yang, Jing; Liu, Siwen; Biswas, Manosh Kumar; Viljoen, Altus; Yi, Ganjun

    2013-01-01

    Background Fusarium wilt, caused by the fungal pathogen Fusarium oxysporum f. sp. cubense (Foc), is one of the most destructive diseases of banana. Toxins produced by Foc have been proposed to play an important role during the pathogenic process. The objectives of this study were to investigate the contamination of banana with toxins produced by Foc, and to elucidate their role in pathogenesis. Methodology/Principal Findings Twenty isolates of Foc representing races 1 and 4 were isolated from diseased bananas in five Chinese provinces. Two toxins were consistently associated with Foc, fusaric acid (FA) and beauvericin (BEA). Cytotoxicity of the two toxins on banana protoplast was determined using the Alamar Blue assay. The virulence of 20 Foc isolates was further tested by inoculating tissue culture banana plantlets, and the contents of toxins determined in banana roots, pseudostems and leaves. Virulence of Foc isolates correlated well with toxin deposition in the host plant. To determine the natural occurrence of the two toxins in banana plants with Fusarium wilt symptoms, samples were collected before harvest from the pseudostems, fruit and leaves from 10 Pisang Awak ‘Guangfen #1’ and 10 Cavendish ‘Brazilian’ plants. Fusaric acid and BEA were detected in all the tissues, including the fruits. Conclusions/Signficance The current study provides the first investigation of toxins produced by Foc in banana. The toxins produced by Foc, and their levels of contamination of banana fruits, however, were too low to be of concern to human and animal health. Rather, these toxins appear to contribute to the pathogenicity of the fungus during infection of banana plants. PMID:23922960

  4. Comparative Proteomics Analyses of Two Races of Fusarium oxysporum f. sp. conglutinans that Differ in Pathogenicity

    PubMed Central

    Li, Erfeng; Ling, Jian; Wang, Gang; Xiao, Jiling; Yang, Yuhong; Mao, Zhenchuan; Wang, Xuchu; Xie, Bingyan

    2015-01-01

    Fusarium oxysporum is a soil-inhabiting fungus that induces vascular wilt and root rot in a variety of plants. F. oxysporum f. sp. conglutinans (Foc), which comprises two races, can cause wilt disease in cabbage. Compared with race 1 (52557−TM, R1), race 2 (58385−TM, R2) exhibits much stronger pathogenicity. Here, we provide the first proteome reference maps for Foc mycelium and conidia and identify 145 proteins with different abundances among the two races. Of these proteins, most of the high-abundance proteins in the R2 mycelium and conidia are involved in carbohydrate, amino acid and ion metabolism, which indicates that these proteins may play important roles in isolate R2’s stronger pathogenicity. The expression levels of 20 typical genes demonstrate similarly altered patterns compared to the proteomic analysis. The protein glucanosyltransferase, which is involved in carbohydrate metabolism, was selected for research. We knocked out the corresponding gene (gas1) and found that Foc-∆gas1 significantly reduced growth rate and virulence compared with wild type isolates. These results deepened our understanding of the proteins related to F. oxysporum pathogenicity in cabbage Fusarium wilt and provided new opportunities to control this disease. PMID:26333982

  5. New tricks of an old enemy: isolates of Fusarium graminearum produce a type A trichothecene mycotoxin.

    PubMed

    Varga, Elisabeth; Wiesenberger, Gerlinde; Hametner, Christian; Ward, Todd J; Dong, Yanhong; Schöfbeck, Denise; McCormick, Susan; Broz, Karen; Stückler, Romana; Schuhmacher, Rainer; Krska, Rudolf; Kistler, H Corby; Berthiller, Franz; Adam, Gerhard

    2015-08-01

    The ubiquitous filamentous fungus Fusarium graminearum causes the important disease Fusarium head blight on various species of cereals, leading to contamination of grains with mycotoxins. In a survey of F. graminearum (sensu stricto) on wheat in North America several novel strains were isolated, which produced none of the known trichothecene mycotoxins despite causing normal disease symptoms. In rice cultures, a new trichothecene mycotoxin (named NX-2) was characterized by liquid chromatography-tandem mass spectrometry. Nuclear magnetic resonance measurements identified NX-2 as 3α-acetoxy-7α,15-dihydroxy-12,13-epoxytrichothec-9-ene. Compared with the well-known 3-acetyl-deoxynivalenol (3-ADON), it lacks the keto group at C-8 and hence is a type A trichothecene. Wheat ears inoculated with the isolated strains revealed a 10-fold higher contamination with its deacetylated form, named NX-3, (up to 540 mg kg(-1) ) compared with NX-2. The toxicities of the novel mycotoxins were evaluated utilizing two in vitro translation assays and the alga Chlamydomonas reinhardtii. NX-3 inhibits protein biosynthesis to almost the same extent as the prominent mycotoxin deoxynivalenol, while NX-2 is far less toxic, similar to 3-ADON. Genetic analysis revealed a different TRI1 allele in the N-isolates, which was verified to be responsible for the difference in hydroxylation at C-8.

  6. Biological Efficacy of Streptomyces sp. Strain BN1 against the Cereal Head Blight Pathogen Fusarium graminearum.

    PubMed

    Jung, Boknam; Park, Sook-Young; Lee, Yin-Won; Lee, Jungkwan

    2013-03-01

    Fusarium head blight (FHB) caused by the filamentous fungus Fusarium graminearum is one of the most severe diseases threatening the production of small grains. Infected grains are often contaminated with mycotoxins such as zearalenone and trichothecences. During survey of contamination by FHB in rice grains, we found a bacterial isolate, designated as BN1, antagonistic to F. graminearum. The strain BN1 had branching vegetative hyphae and spores, and its aerial hyphae often had long, straight filaments bearing spores. The 16S rRNA gene of BN1 had 100% sequence identity with those found in several Streptomyces species. Phylogenetic analysis of ITS regions showed that BN1 grouped with S. sampsonii with 77% bootstrap value, suggesting that BN1 was not a known Streptomyces species. In addition, the efficacy of the BN1 strain against F. graminearum strains was tested both in vitro and in vivo. Wheat seedling length was significantly decreased by F. graminearum infection. However, this effect was mitigated when wheat seeds were treated with BN1 spore suspension prior to F. graminearum infection. BN1 also significantly decreased FHB severity when it was sprayed onto wheat heads, whereas BN1 was not effective when wheat heads were point inoculated. These results suggest that spraying of BN1 spores onto wheat heads during the wheat flowering season can be efficient for plant protection. Mechanistic studies on the antagonistic effect of BN1 against F. graminearum remain to be analyzed.

  7. A fungal symbiont of plant-roots modulates mycotoxin gene expression in the pathogen Fusarium sambucinum.

    PubMed

    Ismail, Youssef; McCormick, Susan; Hijri, Mohamed

    2011-03-24

    Fusarium trichothecenes are fungal toxins that cause disease on infected plants and, more importantly, health problems for humans and animals that consume infected fruits or vegetables. Unfortunately, there are few methods for controlling mycotoxin production by fungal pathogens. In this study, we isolated and characterized sixteen Fusarium strains from naturally infected potato plants in the field. Pathogenicity tests were carried out in the greenhouse to evaluate the virulence of the strains on potato plants as well as their trichothecene production capacity, and the most aggressive strain was selected for further studies. This strain, identified as F. sambucinum, was used to determine if trichothecene gene expression was affected by the symbiotic Arbuscular mycorrhizal fungus (AMF) Glomus irregulare. AMF form symbioses with plant roots, in particular by improving their mineral nutrient uptake and protecting plants against soil-borne pathogens. We found that that G. irregulare significantly inhibits F. sambucinum growth. We also found, using RT-PCR assays to assess the relative expression of trichothecene genes, that in the presence of the AMF G. irregulare, F. sambucinum genes TRI5 and TRI6 were up-regulated, while TRI4, TRI13 and TRI101 were down-regulated. We conclude that AMF can modulate mycotoxin gene expression by a plant fungal pathogen. This previously undescribed effect may be an important mechanism for biological control and has fascinating implications for advancing our knowledge of plant-microbe interactions and controlling plant pathogens.

  8. A Fungal Symbiont of Plant-Roots Modulates Mycotoxin Gene Expression in the Pathogen Fusarium sambucinum

    PubMed Central

    Ismail, Youssef; McCormick, Susan; Hijri, Mohamed

    2011-01-01

    Fusarium trichothecenes are fungal toxins that cause disease on infected plants and, more importantly, health problems for humans and animals that consume infected fruits or vegetables. Unfortunately, there are few methods for controlling mycotoxin production by fungal pathogens. In this study, we isolated and characterized sixteen Fusarium strains from naturally infected potato plants in the field. Pathogenicity tests were carried out in the greenhouse to evaluate the virulence of the strains on potato plants as well as their trichothecene production capacity, and the most aggressive strain was selected for further studies. This strain, identified as F. sambucinum, was used to determine if trichothecene gene expression was affected by the symbiotic Arbuscular mycorrhizal fungus (AMF) Glomus irregulare. AMF form symbioses with plant roots, in particular by improving their mineral nutrient uptake and protecting plants against soil-borne pathogens. We found that that G. irregulare significantly inhibits F. sambucinum growth. We also found, using RT-PCR assays to assess the relative expression of trichothecene genes, that in the presence of the AMF G. irregulare, F. sambucinum genes TRI5 and TRI6 were up-regulated, while TRI4, TRI13 and TRI101 were down-regulated. We conclude that AMF can modulate mycotoxin gene expression by a plant fungal pathogen. This previously undescribed effect may be an important mechanism for biological control and has fascinating implications for advancing our knowledge of plant-microbe interactions and controlling plant pathogens. PMID:21455305

  9. The Fusarium oxysporum effector Six6 contributes to virulence and suppresses I-2-mediated cell death.

    PubMed

    Gawehns, F; Houterman, P M; Ichou, F Ait; Michielse, C B; Hijdra, M; Cornelissen, B J C; Rep, M; Takken, F L W

    2014-04-01

    Plant pathogens secrete effectors to manipulate their host and facilitate colonization. Fusarium oxysporum f. sp. lycopersici is the causal agent of Fusarium wilt disease in tomato. Upon infection, F. oxysporum f. sp. lycopersici secretes numerous small proteins into the xylem sap (Six proteins). Most Six proteins are unique to F. oxysporum, but Six6 is an exception; a homolog is also present in two Colletotrichum spp. SIX6 expression was found to require living host cells and a knockout of SIX6 in F. oxysporum f. sp. lycopersici compromised virulence, classifying it as a genuine effector. Heterologous expression of SIX6 did not affect growth of Agrobacterium tumefaciens in Nicotiana benthamiana leaves or susceptibility of Arabidopsis thaliana toward Verticillium dahliae, Pseudomonas syringae, or F. oxysporum, suggesting a specific function for F. oxysporum f. sp. lycopersici Six6 in the F. oxysporum f. sp. lycopersici- tomato pathosystem. Remarkably, Six6 was found to specifically suppress I-2-mediated cell death (I2CD) upon transient expression in N. benthamiana, whereas it did not compromise the activity of other cell-death-inducing genes. Still, this I2CD suppressing activity of Six6 does not allow the fungus to overcome I-2 resistance in tomato, suggesting that I-2-mediated resistance is independent from cell death.

  10. The Membrane Mucin Msb2 Regulates Invasive Growth and Plant Infection in Fusarium oxysporum[W

    PubMed Central

    Pérez-Nadales, Elena; Di Pietro, Antonio

    2011-01-01

    Fungal pathogenicity in plants requires a conserved mitogen-activated protein kinase (MAPK) cascade homologous to the yeast filamentous growth pathway. How this signaling cascade is activated during infection remains poorly understood. In the soil-borne vascular wilt fungus Fusarium oxysporum, the orthologous MAPK Fmk1 (Fusarium MAPK1) is essential for root penetration and pathogenicity in tomato (Solanum lycopersicum) plants. Here, we show that Msb2, a highly glycosylated transmembrane protein, is required for surface-induced phosphorylation of Fmk1 and contributes to a subset of Fmk1-regulated functions related to invasive growth and virulence. Mutants lacking Msb2 share characteristic phenotypes with the Δfmk1 mutant, including defects in cellophane invasion, penetration of the root surface, and induction of vascular wilt symptoms in tomato plants. In contrast with Δfmk1, Δmsb2 mutants were hypersensitive to cell wall targeting compounds, a phenotype that was exacerbated in a Δmsb2 Δfmk1 double mutant. These results suggest that the membrane mucin Msb2 promotes invasive growth and plant infection upstream of Fmk1 while contributing to cell integrity through a distinct pathway. PMID:21441438

  11. Comparative Proteomics Analyses of Two Races of Fusarium oxysporum f. sp. conglutinans that Differ in Pathogenicity.

    PubMed

    Li, Erfeng; Ling, Jian; Wang, Gang; Xiao, Jiling; Yang, Yuhong; Mao, Zhenchuan; Wang, Xuchu; Xie, Bingyan

    2015-09-03

    Fusarium oxysporum is a soil-inhabiting fungus that induces vascular wilt and root rot in a variety of plants. F. oxysporum f. sp. conglutinans (Foc), which comprises two races, can cause wilt disease in cabbage. Compared with race 1 (52557(-TM), R1), race 2 (58385(-TM), R2) exhibits much stronger pathogenicity. Here, we provide the first proteome reference maps for Foc mycelium and conidia and identify 145 proteins with different abundances among the two races. Of these proteins, most of the high-abundance proteins in the R2 mycelium and conidia are involved in carbohydrate, amino acid and ion metabolism, which indicates that these proteins may play important roles in isolate R2's stronger pathogenicity. The expression levels of 20 typical genes demonstrate similarly altered patterns compared to the proteomic analysis. The protein glucanosyltransferase, which is involved in carbohydrate metabolism, was selected for research. We knocked out the corresponding gene (gas1) and found that Foc-∆gas1 significantly reduced growth rate and virulence compared with wild type isolates. These results deepened our understanding of the proteins related to F. oxysporum pathogenicity in cabbage Fusarium wilt and provided new opportunities to control this disease.

  12. The Sch9 Kinase Regulates Conidium Size, Stress Responses, and Pathogenesis in Fusarium graminearum

    PubMed Central

    Zhou, Xiaoying; Wang, Yulin; Xu, Jin-Rong

    2014-01-01

    Fusarium head blight caused by Fusarium graminearum is an important disease of wheat and barley worldwide. In a previous study on functional characterization of the F. graminearum kinome, one protein kinase gene important for virulence is orthologous to SCH9 that is functionally related to the cAMP-PKA and TOR pathways in the budding yeast. In this study, we further characterized the functions of FgSCH9 in F. graminearum and its ortholog in Magnaporthe oryzae. The ΔFgsch9 mutant was slightly reduced in growth rate but significantly reduced in conidiation, DON production, and virulence on wheat heads and corn silks. It had increased tolerance to elevated temperatures but became hypersensitive to oxidative, hyperosmotic, cell wall, and membrane stresses. The ΔFgsch9 deletion also had conidium morphology defects and produced smaller conidia. These results suggest that FgSCH9 is important for stress responses, DON production, conidiogenesis, and pathogenesis in F. graminearum. In the rice blast fungus Magnaporthe oryzae, the ΔMosch9 mutant also was defective in conidiogenesis and pathogenesis. Interestingly, it also produced smaller conidia and appressoria. Taken together, our data indicate that the SCH9 kinase gene may have a conserved role in regulating conidium size and plant infection in phytopathogenic ascomycetes. PMID:25144230

  13. Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35.

    PubMed

    Minerdi, Daniela; Bossi, Simone; Gullino, Maria Lodovica; Garibaldi, Angelo

    2009-04-01

    Fusarium oxysporum MSA35 [wild-type (WT) strain] is an antagonistic Fusarium that lives in association with a consortium of bacteria belonging to the genera Serratia, Achromobacter, Bacillus and Stenotrophomonas in an Italian soil suppressive to Fusarium wilt. Typing experiments and virulence tests provided evidence that the F. oxysporum isolate when cured of the bacterial symbionts [the cured (CU) form], is pathogenic, causing wilt symptoms identical to those caused by F. oxysporum f. sp. lactucae. Here, we demonstrate that small volatile organic compounds (VOCs) emitted from the WT strain negatively influence the mycelial growth of different formae speciales of F. oxysporum. Furthermore, these VOCs repress gene expression of two putative virulence genes in F. oxysporum lactucae strain Fuslat10, a fungus against which the WT strain MSA 35 has antagonistic activity. The VOC profile of the WT and CU fungus shows different compositions. Sesquiterpenes, mainly caryophyllene, were present in the headspace only of WT MSA 35. No sesquiterpenes were found in the volatiles of ectosymbiotic Serratia sp. strain DM1 and Achromobacter sp. strain MM1. Bacterial volatiles had no effects on the growth of the different ff. spp. of F. oxysporum examined. Hyphae grownwithVOCfrom WT F. oxysporum f. sp. lactucae strain MSA 35 were hydrophobic whereas those grown without VOCs were not, suggesting a correlation between the presence of volatiles in the atmosphere and the phenotype of the mycelium. This is the first report of VOC production by antagonistic F. oxysporum MSA35 and their effects on pathogenic F. oxysporum. The results obtained in this work led us to propose a new potential direct long-distance mechanism for antagonism by F. oxysporum MSA 35 mediated by VOCs. Antagonism could be the consequence of both reduction of pathogen mycelial growth and inhibition of pathogen virulence gene expression.

  14. Identification of regulated proteins in naked barley grains (Hordeum vulgare nudum) after Fusarium graminearum infection at different grain ripening stages.

    PubMed

    Trümper, Christina; Paffenholz, Katrin; Smit, Inga; Kössler, Philip; Karlovsky, Petr; Braun, Hans-Peter; Pawelzik, Elke

    2016-02-05

    We analyzed the effect of Fusarium graminearum infection on field-grown naked barley (Hordeum vulgare nudum). The ears were inoculated with F. graminearum spores during anthesis. In the course of ripening, grains in five phenological growth stages of naked barley from milk ripe to plant death were sampled. The albumin and globulin proteins of inoculated grains and untreated (control) grains were separated by two-dimensional gel electrophoresis. Forty-five spots composing of proteins that were changed in abundance due to F. graminearum infection were subsequently identified by mass spectrometry. Various proteins showing altered expression pattern after Fusarium infection were linked to stress response such as plant signal transduction pathways, fungal defense and oxidative burst. More proteins changed during early grain ripening stages than during later ripening stages. Protease inhibitors occurred at increased abundancy during milk ripe stage. A thaumatin-like protein accumulated at plant death stage. Proteins linked to nitrogen metabolism and protein biosynthesis were mainly reduced, whereas those linked to carbon metabolism were predominantly increased in infected grains. Fusarium graminearum infection can lead to significant contamination of grains with mycotoxins. With this 2D-based proteomics study we give an insight into plant–pathogen interactions between the non-model plant naked barley and the fungus F. graminearum during five stages of grain development. Over the multiple developmental stages we observed specific patterns of changes induced by the fungus: the primary plant metabolism and inhibition of fungal protease were predominantly affected during early grain development stages. During the entire grain development we found an induced accumulation of thaumatin-like proteins due to the fungal infection indicating their fundamental role for naked barley defense.

  15. Fumonisin detection and analysis of potential fumonisin-producing Fusarium spp. in asparagus (Asparagus officinalis L.) in Zhejiang Province of China.

    PubMed

    Wang, Jiansheng; Wang, Xiaoping; Zhou, Ying; Du, Liangcheng; Wang, Qiaomei

    2010-04-15

    Fumonisins are mycotoxins produced by a number of Fusarium species, including several pathogens of asparagus plants. China is one of the largest asparagus producers in the world. In this study, we analysed the contamination of fumonisins and fumonisin-producing fungi in asparagus spear samples from Zhejiang Province, the major asparagus production province in China. The asparagus did not contain a detectable level of fumonisins. However, the recovery of Fusarium in asparagus was 72.7%, including F. proliferatum (40.9%), F. oxysporum (22.7%), F. acuminatum (4.55%) and F. equesti (4.55%). A multiplex PCR targeting the internal transcribed spacer sequence (ITS), translation elongation factor 1-alpha (TEF), and key biosynthetic genes FUM1 and FUM8, was used to simultaneously determine the identity and the biosynthetic ability of the fungal isolates. Fungal isolates containing the FUM genes also produced fumonisins in cultures, ranging from 28 to 4204 microg g(-1). F. proliferatum was the only fumonisin-producing Fusarium species in asparagus. Although no fumonisin contamination was detected in asparagus in the current survey, we found that the majority of samples contained Fusarium spp. Because F. proliferatum is a high fumonisin-producing species, potential health risks for human consumption of asparagus exist, if the appropriate environmental conditions are present for this fungus. (c) 2010 Society of Chemical Industry.

  16. Rapid biodegradation of aflatoxin B1 by metabolites of Fusarium sp. WCQ3361 with broad working temperature range and excellent thermostability.

    PubMed

    Wang, Cuiqiong; Li, Zhongyuan; Wang, Hui; Qiu, Haiyan; Zhang, Minghui; Li, Shuang; Luo, Xuegang; Song, Yajian; Zhou, Hao; Ma, Wenjian; Zhang, Tongcun

    2017-03-01

    Contamination of food and feed by aflatoxin B1 (AFB1) poses serious economic and health problems worldwide, so the development of biological methods for effective AFB1 degradation is strongly required. Among three AFB1-degrading microorganisms isolated from moldy peanut, Fusarium sp. WCQ3361 could remove AFB1 extremely effectively, with a degradation ratio of 70.20% after 1 min and 95.38% after 24 h. Its degradation ratio was not much affected by temperature change (0-90 °C) and it also displayed excellent thermostability, maintaining 99.40% residual activity after boiling for 10 min. Since protease K could reduce the AFB1 degradation ratio by 55.15%, it is proposed that the effective component for AFB1 degradation is a protein. The AFB1 degradation ability of Fusarium sp. WCQ3361 was further verified by feed stock detoxification and the MTT test with HepG2 cells. In addition, no degradation products were detected by preliminary liquid chromatography/mass spectrometry, suggesting that AFB1 might be metabolized to products with different chemical characteristics from AFB1. Fusarium sp. WCQ3361 is the first reported AFB1 degradation fungus belonging to the genus Fusarium with broad working temperature range, excellent thermostability and high activity, which provides a potential highly useful solution for dealing with AFB1 contamination in the human diet and animal feed. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Production of fusaric acid by Fusarium species.

    PubMed Central

    Bacon, C W; Porter, J K; Norred, W P; Leslie, J F

    1996-01-01

    Fusaric acid is a mycotoxin with low to moderate toxicity, which is of concern since it might be synergistic with other cooccurring mycotoxins. Fusaric acid is widespread on corn and corn-based food and feeds and is frequently found in grain, where Fusarium spp. are also isolated. We surveyed 78 strains of Fusarium moniliforme, F. crookwellense, F. subglutinans, F. sambucinum, F. napiforme, F. heterosporum, F. oxysporum, F. solani, and F. proliferatum for their ability to produce fusaric acid. Strains in Fusarium section Liseola also were assigned to mating population of the Gibberella fujikuroi species complex. The fungi could be divided into three classes, low (< 100 micrograms/g), moderate (100 to 500 micrograms/g), and high (> 500 micrograms/g), based on the amounts of this mycotoxin produced in culture on autoclaved corn. Strains of mating populations C from rice consistently produced moderate to high concentrations of fusaric acid. Two isolates, one each from mating populations C and D, produced fusaric acid in excess of 1,000 micrograms/g of corn. No isolates of any of the Fusarium species examined were negative for the production of fusaric acid on autoclaved corn. PMID:8899996

  18. Fusarium and other opportunistic hyaline fungi

    USDA-ARS?s Scientific Manuscript database

    This chapter focuses on those fungi that grow in tissue in the form of hyaline or lightly colored septate hyphae. These fungi include Fusarium and other hyaline fungi. Disease caused by hyaline fungi is referred to as hyalohyphomycosis. Hyaline fungi described in this chapter include the anamorphic,...

  19. Investigating Spore killer of Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Maize is one of the most important crops in the world. Fusarium verticillioides may colonize maize as an endophyte or as a pathogen, causing disease at any life stage of the plant. During growth on maize, F. verticillioides can synthesis a number of mycotoxins including fumonisins, which have been l...

  20. Identification of Ina proteins from Fusarium acuminatum

    NASA Astrophysics Data System (ADS)

    Scheel, Jan Frederik; Kunert, Anna Theresa; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2015-04-01

    Freezing of water above -36° C is based on ice nucleation activity (INA) mediated by ice nucleators (IN) which can be of various origins. Beside mineral IN, biological particles are a potentially important source of atmospheric IN. The best-known biological IN are common plant-associated bacteria. The IN activity of these bacteria is induced by a surface protein on the outer cell membrane, which is fully characterized. In contrast, much less is known about the nature of fungal IN. The fungal genus Fusarium is widely spread throughout the earth. It belongs to the Ascomycota and is one of the most severe fungal pathogens. It can affect a variety of organisms from plants to animals including humans. INA of Fusarium was already described about 30 years ago and INA of Fusarium as well as other fungal genera is assumed to be mediated by proteins or at least to contain a proteinaceous compound. Although many efforts were made the precise INA machinery of Fusarium and other fungal species including the proteins and their corresponding genes remain unidentified. In this study preparations from living fungal samples of F. acuminatum were fractionated by liquid chromatography and IN active fractions were identified by freezing assays. SDS-page and de novo sequencing by mass spectrometry were used to identify the primary structure of the protein. Preliminary results show that the INA protein of F. acuminatum is contained in the early size exclusion chromatography fractions indicating a high molecular size. Moreover we could identify a single protein band from IN active fractions at 130-145 kDa corresponding to sizes of IN proteins from bacterial species. To our knowledge this is for the first time an isolation of a single protein from in vivo samples, which can be assigned as IN active from Fusarium.