Citti, Cinzia; Pacchetti, Barbara; Vandelli, Maria Angela; Forni, Flavio; Cannazza, Giuseppe
2018-02-05
Hemp seed oil from Cannabis sativa L. is a very rich natural source of important nutrients, not only polyunsaturated fatty acids and proteins, but also terpenes and cannabinoids, which contribute to the overall beneficial effects of the oil. Hence, it is important to have an analytical method for the determination of these components in commercial samples. At the same time, it is also important to assess the safety of the product in terms of amount of any psychoactive cannabinoid present therein. This work presents the development and validation of a highly sensitive, selective and rapid HPLC-UV method for the qualitative and quantitative determination of the main cannabinoids, namely cannabidiolic acid (CBDA), tetrahydrocannabinolic acid (THCA), cannabidiol (CBD), tetrahydrocannabinol (THC), cannabinol (CBN), cannabigerol (CBG) and cannabidivarin (CBDV), present in 13 commercial hemp seed oils. Moreover, since decomposition of cannabinoid acids generally occurs with light, air and heat, decarboxylation studies of the most abundant acid (CBDA) were carried out in both open and closed reactor and the kinetics parameters were evaluated at different temperatures in order to evaluate the stability of hemp seed oil in different storage conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Rock, Erin M; Connolly, Cassidy; Limebeer, Cheryl L; Parker, Linda A
2016-09-01
The purpose of this study was to evaluate the potential of oral combined cannabis constituents to reduce nausea. The objective of this study was to determine the effect of combining subthreshold oral doses of Δ(9)-tetrahydrocannabinol (THC) and cannabidiolic acid (CBDA) on acute and anticipatory nausea in rat models of conditioned gaping. The potential of intragastric (i.g.) administration of THC, CBDA, or combined doses, to interfere with acute nausea-induced conditioned gaping (acute nausea) or the expression of contextually elicited conditioned gaping (anticipatory nausea), was evaluated. For acute nausea, i.g. administration of subthreshold doses of THC (0.5 and 1 mg/kg) or CBDA (0.5 and 1 μg/kg) significantly suppressed acute nausea-induced gaping, whereas higher individual doses of both THC and CBDA were maximally effective. Combined i.g. administration of higher doses of THC and CBDA (2.5 mg/kg THC-2.5 μg/kg CBDA; 10 mg/kg THC-10 μg/kg CBDA; 20 mg/kg THC-20 μg/kg CBDA) also enhanced positive hedonic reactions elicited by saccharin solution during conditioning. For anticipatory nausea, combined subthreshold i.g. doses of THC (0.1 mg/kg) and CBDA (0.1 μg/kg) suppressed contextually elicited conditioned gaping. When administered i.g., THC was effective on its own at doses ranging from 1 to 10 mg/kg, but CBDA was only effective at 10 μg/kg. THC alone was equally effective by intraperitoneal (i.p.) and i.g. administration, whereas CBDA alone was more effective by i.p. administration (Rock et al. in Psychopharmacol (Berl) 232:4445-4454, 2015) than by i.g. administration. Oral administration of subthreshold doses of THC and CBDA may be an effective new treatment for acute nausea and anticipatory nausea and appetite enhancement in chemotherapy patients.
Rock, Erin M; Limebeer, Cheryl L; Parker, Linda A
2015-12-01
Δ(9)-Tetrahydrocannabinol (THC) and cannabidiolic acid (CBDA) found in cannabis both reduce the distressing symptom of nausea, but their combined effects are not understood. The potential of combined doses of THC and CBDA to reduce acute nausea and anticipatory nausea in rodent models was assessed. For acute nausea, the potential of cannabinoid pretreatment(s) to reduce LiCl-induced nausea paired with saccharin was evaluated in a subsequent drug free taste reactivity test, followed by a taste avoidance test. For anticipatory nausea, the potential of the cannabinoid pretreatment(s) to reduce the expression of LiCl-induced contextually elicited conditioned gaping was evaluated. Combined subthreshold doses of THC (0.01 and 0.1 mg/kg) and CBDA (0.01 and 0.1 μg/kg) reduced acute nausea. Higher doses of THC (1.0, 10 mg/kg) or CBDA (1.0, 10 μg/kg) alone, as well as these combined doses also reduced acute nausea. THC (10 mg/kg) interfered with conditioned taste avoidance, an effect attenuated by CBDA (10 μg/kg). On the other hand, combined subthreshold doses of THC (0.01 and 0.1 mg/kg) and CBDA (0.01 and 0.1 μg/kg) did not suppress contextually elicited conditioned gaping in a test for anticipatory nausea. However, higher doses of THC (1.0, 10 mg/kg) or CBDA (1.0, 10 μg/kg) alone, as well as these combined doses, also reduced anticipatory nausea. Only at the highest dose (10 mg/kg) did THC impair locomotor activity, but CBDA did not at any dose. Combined subthreshold doses of THC:CBDA are particularly effective as a treatment for acute nausea. At higher doses, CBDA may attenuate THC-induced interference with learning.
Cannabidiolic acid as a selective cyclooxygenase-2 inhibitory component in cannabis.
Takeda, Shuso; Misawa, Koichiro; Yamamoto, Ikuo; Watanabe, Kazuhito
2008-09-01
In the present study it was revealed that cannabidiolic acid (CBDA) selectively inhibited cyclooxygenase (COX)-2 activity with an IC(50) value (50% inhibition concentration) around 2 microM, having 9-fold higher selectivity than COX-1 inhibition. In contrast, Delta(9)-tetrahydrocannabinolic acid (Delta(9)-THCA) was a much less potent inhibitor of COX-2 (IC(50) > 100 microM). Nonsteroidal anti-inflammatory drugs containing a carboxyl group in their chemical structures such as salicylic acid are known to inhibit nonselectively both COX-1 and COX-2. CBDA and Delta(9)-THCA have a salicylic acid moiety in their structures. Thus, the structural requirements for the CBDA-mediated COX-2 inhibition were next studied. There is a structural difference between CBDA and Delta(9)-THCA; phenolic hydroxyl groups of CBDA are freed from the ring formation with the terpene moiety, although Delta(9)-THCA has dibenzopyran ring structure. It was assumed that the whole structure of CBDA is important for COX-2 selective inhibition because beta-resorcylic acid itself did not inhibit COX-2 activity. Methylation of the carboxylic acid moiety of CBDA led to disappearance of COX-2 selectivity. Thus, it was suggested that the carboxylic acid moiety in CBDA is a key determinant for the inhibition. Furthermore, the crude extract of cannabis containing mainly CBDA was shown to have a selective inhibitory effect on COX-2. Taken together, these lines of evidence in this study suggest that naturally occurring CBDA in cannabis is a selective inhibitor for COX-2.
Rock, Erin M; Limebeer, Cheryl L; Petrie, Gavin N; Williams, Lauren A; Mechoulam, Raphael; Parker, Linda A
2017-07-01
Cannabis is commonly used by humans to relieve stress. Here, we evaluate the potential of intraperitoneally (i.p.) administered Δ 9 -tetrahydrocannabiol (THC) and cannabidiolic acid (CBDA, the precursor of cannabidiol [CBD]) to produce dose-dependent effects on anxiety-like responding in the light-dark (LD) emergence test of anxiety-like responding in rats, when administered acutely or chronically (21 days). As well, we evaluate the potential of THC, CBDA, and CBD to reduce anxiogenic responding produced by foot shock (FS) stress 24 h prior to the LD test. In the absence of the explicit FS stressor, THC (1 and 10 mg/kg) produced anxiogenic-like responding when administered acutely or chronically, but CBDA produced neither anxiogenic- nor anxiolytic-like responding. Administration of FS stress 24 h prior to the LD test enhanced anxiogenic-like responding (reduced time spent and increased latency to enter the light compartment) in rats pretreated with either vehicle (VEH) or THC (1 mg/kg); however, administration of CBDA (0.1-100 μg/kg) or CBD (5 mg/kg) prevented the FS-induced anxiogenic-like responding (an anxiolytic-like effect). The 5-hydroxytryptamine 1A (5-HT 1A ) receptor antagonist, WAY100635, reversed CBDA's anxiolytic effect (1 μg/kg). Combining an anxiolytic dose of CBDA (1 μg/kg) or CBD (5 mg/kg) with an anxiogenic dose of THC (1 mg/kg) did not modify THC's anxiogenic effect. These results suggest the anxiolytic effects of CBDA and CBD may require the presence of a specific stressor.
Pertwee, Roger G; Rock, Erin M; Guenther, Kelsey; Limebeer, Cheryl L; Stevenson, Lesley A; Haj, Christeene; Smoum, Reem; Parker, Linda A; Mechoulam, Raphael
2018-01-01
The aim of this study was to compare the abilities of cannabidiolic acid methyl ester (HU-580) and cannabidiolic acid (CBDA) to enhance 5-HT 1A receptor activation in vitro and produce 5-HT 1A -mediated reductions in nausea and anxiety in vivo. We investigated the effects of HU-580 and CBDA on (i) activation by 8-hydroxy-2-(di-n-propylamino)tetralin of human 5-HT 1A receptors in CHO cell membranes, using [ 35 S]-GTPγS binding assays, (ii) gaping by rats in acute and anticipatory nausea models, and (iii) stress-induced anxiety-like behaviour, as indicated by exit time from the light compartment of a light-dark box of rats subjected 24 h earlier to six tone-paired foot shocks. HU-580 and CBDA increased the E max of 8-hydroxy-2-(di-n-propylamino) tetralin in vitro at 0.01-10 and 0.1-10 nM, respectively, and reduced signs of (i) acute nausea at 0.1 and 1 μg·kg -1 i.p. and at 1 μg·kg -1 i.p., respectively, and (ii) anticipatory nausea at 0.01 and 0.1 μg·kg -1 , and at 0.1 μg·kg -1 i.p. respectively. At 0.01 μg·kg -1 , HU-580, but not CBDA, increased the time foot-shocked rats spent in the light compartment of a light-dark box. The anti-nausea and anti-anxiety effects of 0.01 or 0.1 μg·kg -1 HU-580 were opposed by the 5-HT 1A antagonist, WAY100635 (0.1 mg·kg -1 i.p.). HU-580 is more potent than CBDA at enhancing 5-HT 1A receptor activation, and inhibiting signs of acute and anticipatory nausea, and anxiety. Consequently, HU-580 is a potential medicine for treating some nausea and anxiety disorders and possibly other disorders ameliorated by enhancement of 5-HT 1A receptor activation. © 2017 The British Pharmacological Society.
Bolognini, D; Rock, EM; Cluny, NL; Cascio, MG; Limebeer, CL; Duncan, M; Stott, CG; Javid, FA; Parker, LA; Pertwee, RG
2013-01-01
Background and Purpose To evaluate the ability of cannabidiolic acid (CBDA) to reduce nausea and vomiting and enhance 5-HT1A receptor activation in animal models. Experimental Approach We investigated the effect of CBDA on (i) lithium chloride (LiCl)-induced conditioned gaping to a flavour (nausea-induced behaviour) or a context (model of anticipatory nausea) in rats; (ii) saccharin palatability in rats; (iii) motion-, LiCl- or cisplatin-induced vomiting in house musk shrews (Suncus murinus); and (iv) rat brainstem 5-HT1A receptor activation by 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and mouse whole brain CB1 receptor activation by CP55940, using [35S]GTPγS-binding assays. Key Results In shrews, CBDA (0.1 and/or 0.5 mg·kg−1 i.p.) reduced toxin- and motion-induced vomiting, and increased the onset latency of the first motion-induced emetic episode. In rats, CBDA (0.01 and 0.1 mg·kg−1 i.p.) suppressed LiCl- and context-induced conditioned gaping, effects that were blocked by the 5-HT1A receptor antagonist, WAY100635 (0.1 mg·kg−1 i.p.), and, at 0.01 mg·kg−1 i.p., enhanced saccharin palatability. CBDA-induced suppression of LiCl-induced conditioned gaping was unaffected by the CB1 receptor antagonist, SR141716A (1 mg·kg−1 i.p.). In vitro, CBDA (0.1–100 nM) increased the Emax of 8-OH-DPAT. Conclusions and Implications Compared with cannabidiol, CBDA displays significantly greater potency at inhibiting vomiting in shrews and nausea in rats, and at enhancing 5-HT1A receptor activation, an action that accounts for its ability to attenuate conditioned gaping in rats. Consequently, CBDA shows promise as a treatment for nausea and vomiting, including anticipatory nausea for which no specific therapy is currently available. PMID:23121618
Brierley, Daniel I; Samuels, James; Duncan, Marnie; Whalley, Benjamin J; Williams, Claire M
2016-01-01
Anticipatory nausea (AN) is a poorly controlled side effect experienced by chemotherapy patients. Currently, pharmacotherapy is restricted to benzodiazepine anxiolytics, which have limited efficacy, have significant sedative effects and induce dependency. The non-psychoactive phytocannabinoid, cannabidiolic acid (CBDA), has shown considerable efficacy in pre-clinical AN models, however determination of its neuromotor tolerability profile is crucial to justify clinical investigation. Provisional evidence for appetite-stimulating properties also requires detailed investigation. This study aims to assess the tolerability of CBDA in locomotor activity, motor coordination and muscular strength tests, and additionally for ability to modulate feeding behaviours. Male Lister Hooded rats administered CBDA (0.05-5 mg/kg; p.o.) were assessed in habituated open field (for locomotor activity), static beam and grip strength tests. A further study investigated whether these CBDA doses modulated normal feeding behaviour. Finally, evidence of anxiolytic-like effects in the habituated open field prompted testing of 5 mg/kg CBDA for anxiolytic-like activity in unhabituated open field, light/dark box and novelty-suppressed feeding (NSF) tests. CBDA had no adverse effects upon performance in any neuromotor tolerability test, however anxiolytic-like behaviour was observed in the habituated open field. Normal feeding behaviours were unaffected by any dose. CBDA (5 mg/kg) abolished the increased feeding latency in the NSF test induced by the 5-HT1AR antagonist, WAY-100,635, indicative of anxiolytic-like effects, but had no effect on anxiety-like behaviour in the novel open field or light/dark box. CBDA is very well tolerated and devoid of the sedative side effect profile of benzodiazepines, justifying its clinical investigation as a novel AN treatment.
Takeda, Shuso
2013-01-01
Considerable attention has focused on cannabidiol (CBD), a major non-psychotropic constituent of fiber-type cannabis plant, and it has been reported to possess diverse biological activities. Although CBD is obtained from non-enzymatic decarboxylation of its parent molecule, cannabidiolic acid (CBDA), several studies have investigated whether CBDA itself is biologically active. In the present report, the author summarizes findings indicating that; 1) CBDA is a selective cyclooxygenase-2 (COX-2) inhibitor, and ii) CBDA possesses an anti-migrative potential for highly invasive cancer cells, apparently through a mechanism involving inhibition of cAMP-dependent protein kinase A, coupled with an activation of the small GTPase, RhoA. Further, the author introduces recent findings on the medicinal chemistry and pharmacology of the CBD derivative, CBD-2',6'-dimethyl ether (CBDD), that exhibits inhibitory activity toward 15-lipoxygenase (15-LOX), an enzyme responsible for the production of oxidized low-density lipoprotein (LDL). These studies establish CBD as both an important experimental tool and as a lead compound for pharmaceutical development. In this review, the author further discusses the potential uses of CBD and its derivatives in future medicines.
Rock, EM; Parker, LA
2013-01-01
Background and Purpose To determine the minimally effective dose of cannabidiolic acid (CBDA) that effectively reduces lithium chloride (LiCl)-induced conditioned gaping reactions (nausea-induced behaviour) in rats and to determine if these low systemic doses of CBDA (5–0.1 μg·kg−1) relative to those of CBD could potentiate the anti-nausea effects of the classic 5-hydroxytryptamine 3 (5-HT3) receptor antagonist, ondansetron (OND). Experimental Approach We investigated the efficacy of low doses of CBDA to suppress acute nausea, assessed by the establishment of conditioned gaping to a LiCl-paired flavour in rats. The potential of threshold and subthreshold doses of CBDA to enhance the reduction of nausea-induced conditioned gaping by OND were then determined. Key Results CBDA (at doses as low as 0.5 μg·kg−1) suppressed nausea-induced conditioned gaping to a flavour. A low dose of OND (1.0 μg·kg−1) alone reduced nausea-induced conditioned gaping, but when it was combined with a subthreshold dose of CBDA (0.1 μg·kg−1) there was an enhancement in the suppression of LiCl-induced conditioned gaping. Conclusions and Implications CBDA potently reduced conditioned gaping in rats, even at low doses and enhanced the anti-nausea effect of a low dose of OND. These findings suggest that combining low doses of CBDA and OND will more effectively treat acute nausea in chemotherapy patients. PMID:23488964
Rock, E M; Parker, L A
2013-06-01
To determine the minimally effective dose of cannabidiolic acid (CBDA) that effectively reduces lithium chloride (LiCl)-induced conditioned gaping reactions (nausea-induced behaviour) in rats and to determine if these low systemic doses of CBDA (5-0.1 μg·kg⁻¹) relative to those of CBD could potentiate the anti-nausea effects of the classic 5-hydroxytryptamine 3 (5-HT₃) receptor antagonist, ondansetron (OND). We investigated the efficacy of low doses of CBDA to suppress acute nausea, assessed by the establishment of conditioned gaping to a LiCl-paired flavour in rats. The potential of threshold and subthreshold doses of CBDA to enhance the reduction of nausea-induced conditioned gaping by OND were then determined. CBDA (at doses as low as 0.5 μg·kg⁻¹) suppressed nausea-induced conditioned gaping to a flavour. A low dose of OND (1.0 μg·kg⁻¹) alone reduced nausea-induced conditioned gaping, but when it was combined with a subthreshold dose of CBDA (0.1 μg·kg⁻¹) there was an enhancement in the suppression of LiCl-induced conditioned gaping. CBDA potently reduced conditioned gaping in rats, even at low doses and enhanced the anti-nausea effect of a low dose of OND. These findings suggest that combining low doses of CBDA and OND will more effectively treat acute nausea in chemotherapy patients. © 2013 The Authors. British Journal of Pharmacology © 2013 The British Pharmacological Society.
Smeriglio, Antonella; Giofrè, Salvatore V; Galati, Enza M; Monforte, Maria T; Cicero, Nicola; D'Angelo, Valeria; Grassi, Gianpaolo; Circosta, Clara
2018-02-07
Aldose reductase (ALR2) is a key enzyme involved in diabetic complications and the search for new aldose reductase inhibitors (ARIs) is currently very important. The synthetic ARIs are often associated with deleterious side effects and medicinal and edible plants, containing compounds with aldose reductase inhibitory activity, could be useful for prevention and therapy of diabetic complications. Non-psychotropic phytocannabinoids exert multiple pharmacological effects with therapeutic potential in many diseases such as inflammation, cancer, diabetes. Here, we have investigated the inhibitory effects of extracts and their fractions from two Cannabis sativa L. chemotypes with high content of cannabidiol (CBD)/cannabidiolic acid (CBDA) and cannabigerol (CBG)/cannabigerolic acid (CBGA), respectively, on human recombinant and pig kidney aldose reductase activity in vitro. A molecular docking study was performed to evaluate the interaction of these cannabinoids with the active site of ALR2 compared to known ARIs. The extracts showed significant dose-dependent aldose reductase inhibitory activity (>70%) and higher than fractions. The inhibitory activity of the fractions was greater for acidic cannabinoid-rich fractions. Comparative molecular docking results have shown a higher stability of the ALR2-cannabinoid acids complex than the other inhibitors. The extracts of Cannabis with high content of non-psychotropic cannabinoids CBD/CBDA or CBG/CBGA significantly inhibit aldose reductase activity. These results may have some relevance for the possible use of C. sativa chemotypes based preparations as aldose reductase inhibitors. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Mei; Wang, Yan-Hong; Avula, Bharathi; Radwan, Mohamed M.; Wanas, Amira S.; van Antwerp, John; Parcher, Jon F.; ElSohly, Mahmoud A.; Khan, Ikhlas A.
2016-01-01
Abstract Introduction: Decarboxylation is an important step for efficient production of the major active components in cannabis, for example, Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), and cannabigerol (CBG). These cannabinoids do not occur in significant concentrations in cannabis but can be formed by decarboxylation of their corresponding acids, the predominant cannabinoids in the plant. Study of the kinetics of decarboxylation is of importance for phytocannabinoid isolation and dosage formulation for medical use. Efficient analytical methods are essential for simultaneous detection of both neutral and acidic cannabinoids. Methods: C. sativa extracts were used for the studies. Decarboxylation conditions were examined at 80°C, 95°C, 110°C, 130°C, and 145°C for different times up to 60 min in a vacuum oven. An ultra-high performance supercritical fluid chromatography/photodiode array-mass spectrometry (UHPSFC/PDA-MS) method was used for the analysis of acidic and neutral cannabinoids before and after decarboxylation. Results: Decarboxylation at different temperatures displayed an exponential relationship between concentration and time indicating a first-order or pseudo-first-order reaction. The rate constants for Δ9-tetrahydrocannabinolic acid-A (THCA-A) were twice those of the cannabidiolic acid (CBDA) and cannabigerolic acid (CBGA). Decarboxylation of THCA-A was forthright with no side reactions or by-products. Decarboxylation of CBDA and CBGA was not as straightforward due to the unexplained loss of reactants or products. Conclusion: The reported UHPSFC/PDA-MS method provided consistent and sensitive analysis of phytocannabinoids and their decarboxylation products and degradants. The rate of change of acidic cannabinoid concentrations over time allowed for determination of rate constants. Variations of rate constants with temperature yielded values for reaction energy. PMID:28861498
Gene duplication and divergence affecting drug content in Cannabis sativa.
Weiblen, George D; Wenger, Jonathan P; Craft, Kathleen J; ElSohly, Mahmoud A; Mehmedic, Zlatko; Treiber, Erin L; Marks, M David
2015-12-01
Cannabis sativa is an economically important source of durable fibers, nutritious seeds, and psychoactive drugs but few economic plants are so poorly understood genetically. Marijuana and hemp were crossed to evaluate competing models of cannabinoid inheritance and to explain the predominance of tetrahydrocannabinolic acid (THCA) in marijuana compared with cannabidiolic acid (CBDA) in hemp. Individuals in the resulting F2 population were assessed for differential expression of cannabinoid synthase genes and were used in linkage mapping. Genetic markers associated with divergent cannabinoid phenotypes were identified. Although phenotypic segregation and a major quantitative trait locus (QTL) for the THCA/CBDA ratio were consistent with a simple model of codominant alleles at a single locus, the diversity of THCA and CBDA synthase sequences observed in the mapping population, the position of enzyme coding loci on the map, and patterns of expression suggest multiple linked loci. Phylogenetic analysis further suggests a history of duplication and divergence affecting drug content. Marijuana is distinguished from hemp by a nonfunctional CBDA synthase that appears to have been positively selected to enhance psychoactivity. An unlinked QTL for cannabinoid quantity may also have played a role in the recent escalation of drug potency. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Cannabidiol and (−)Δ9-tetrahydrocannabinol are neuroprotective antioxidants
Hampson, A. J.; Grimaldi, M.; Axelrod, J.; Wink, D.
1998-01-01
The neuroprotective actions of cannabidiol and other cannabinoids were examined in rat cortical neuron cultures exposed to toxic levels of the excitatory neurotransmitter glutamate. Glutamate toxicity was reduced by both cannabidiol, a nonpsychoactive constituent of marijuana, and the psychotropic cannabinoid (−)Δ9-tetrahydrocannabinol (THC). Cannabinoids protected equally well against neurotoxicity mediated by N-methyl-d-aspartate receptors, 2-amino-3-(4-butyl-3-hydroxyisoxazol-5-yl)propionic acid receptors, or kainate receptors. N-methyl-d-aspartate receptor-induced toxicity has been shown to be calcium dependent; this study demonstrates that 2-amino-3-(4-butyl-3-hydroxyisoxazol-5-yl)propionic acid/kainate receptor-type neurotoxicity is also calcium-dependent, partly mediated by voltage sensitive calcium channels. The neuroprotection observed with cannabidiol and THC was unaffected by cannabinoid receptor antagonist, indicating it to be cannabinoid receptor independent. Previous studies have shown that glutamate toxicity may be prevented by antioxidants. Cannabidiol, THC and several synthetic cannabinoids all were demonstrated to be antioxidants by cyclic voltametry. Cannabidiol and THC also were shown to prevent hydroperoxide-induced oxidative damage as well as or better than other antioxidants in a chemical (Fenton reaction) system and neuronal cultures. Cannabidiol was more protective against glutamate neurotoxicity than either ascorbate or α-tocopherol, indicating it to be a potent antioxidant. These data also suggest that the naturally occurring, nonpsychotropic cannabinoid, cannabidiol, may be a potentially useful therapeutic agent for the treatment of oxidative neurological disorders such as cerebral ischemia. PMID:9653176
... called dystonia, seizures, multiple sclerosis, Parkinson's disease, and schizophrenia. People inhale cannabidiol to help quit smoking. ... symptoms in people with Parkinson's disease and psychosis. Schizophrenia. Research on the use of cannabidiol for psychotic ...
(+)-Cannabidiol analogues which bind cannabinoid receptors but exert peripheral activity only.
Fride, Ester; Feigin, Cfir; Ponde, Datta E; Breuer, Aviva; Hanus, Lumír; Arshavsky, Nina; Mechoulam, Raphael
2004-12-15
Delta9-Tetrahydrocannabinol (Delta9-THC) and (-)-cannabidiol are major constituents of the Cannabis sativa plant with different pharmacological profiles: (-)-Delta9-tetrahydrocannabinol, but not (-)-cannabidiol, activates cannabinoid CB1 and CB2 receptors and induces psychoactive and peripheral effects. We have tested a series of (+)-cannabidiol derivatives, namely, (+)-cannabidiol-DMH (DMH-1,1-dimethylheptyl-), (+)-7-OH-cannabidiol-DMH, (+)-7-OH- cannabidiol, (+)-7-COOH- cannabidiol and (+)-7-COOH-cannabidiol-DMH, for central and peripheral (intestinal, antiinflammatory and peripheral pain) effects in mice. Although all (+)-cannabidiols bind to cannabinoid CB1 and CB2 receptors, only (+)-7-OH-cannabidiol-DMH was centrally active, while all (+)-cannabidiol analogues completely arrested defecation. The effects of (+)-cannabidiol-DMH and (+)-7-OH-cannabidiol-DMH were partially antagonized by the cannabinoid CB1 receptor antagonist N-(piperidiny-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716), but not by the cannabinoid CB2 receptor antagonist N-[-(1S)-endo-1,3,3-trimethil bicyclo [2.2.1] heptan-2-yl-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528), and had no effect on CB1(-/-) receptor knockout mice. (+)-Cannabidiol-DMH inhibited the peripheral pain response and arachidonic-acid-induced inflammation of the ear. We conclude that centrally inactive (+)-cannabidiol analogues should be further developed as antidiarrheal, antiinflammatory and analgesic drugs for gastrointestinal and other peripheral conditions.
Capasso, R; Borrelli, F; Aviello, G; Romano, B; Scalisi, C; Capasso, F; Izzo, A A
2008-07-01
Cannabidiol is a Cannabis-derived non-psychotropic compound that exerts a plethora of pharmacological actions, including anti-inflammatory, neuroprotective and antitumour effects, with potential therapeutic interest. However, the actions of cannabidiol in the digestive tract are largely unexplored. In the present study, we investigated the effect of cannabidiol on intestinal motility in normal (control) mice and in mice with intestinal inflammation. Motility in vivo was measured by evaluating the distribution of an orally administered fluorescent marker along the small intestine; intestinal inflammation was induced by the irritant croton oil; contractility in vitro was evaluated by stimulating the isolated ileum, in an organ bath, with ACh. In vivo, cannabidiol did not affect motility in control mice, but normalized croton oil-induced hypermotility. The inhibitory effect of cannabidiol was counteracted by the cannabinoid CB1 receptor antagonist rimonabant, but not by the cannabinoid CB2 receptor antagonist SR144528 (N-[-1S-endo-1,3,3-trimethyl bicyclo [2.2.1] heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide), by the opioid receptor antagonist naloxone or by the alpha2-adrenergic antagonist yohimbine. Cannabidiol did not reduce motility in animals treated with the fatty acid amide hydrolase (FAAH) inhibitor N-arachidonoyl-5-hydroxytryptamine, whereas loperamide was still effective. In vitro, cannabidiol inhibited ACh-induced contractions in the isolated ileum from both control and croton oil-treated mice. Cannabidiol selectively reduces croton oil-induced hypermotility in mice in vivo and this effect involves cannabinoid CB1 receptors and FAAH. In view of its low toxicity in humans, cannabidiol may represent a good candidate to normalize motility in patients with inflammatory bowel disease.
Happyana, Nizar; Agnolet, Sara; Muntendam, Remco; Van Dam, Annie; Schneider, Bernd; Kayser, Oliver
2013-03-01
Trichomes, especially the capitate-stalked glandular hairs, are well known as the main sites of cannabinoid and essential oil production of Cannabis sativa. In this study the distribution and density of various types of Cannabis sativa L. trichomes, have been investigated by scanning electron microscopy (SEM). Furthermore, glandular trichomes were isolated over the flowering period (8 weeks) by laser microdissection (LMD) and the cannabinoid profile analyzed by LCMS. Cannabinoids were detected in extracts of 25-143 collected cells of capitate-sessile and capitate stalked trichomes and separately in the gland (head) and the stem of the latter. Δ(9)-Tetrahydrocannabinolic acid [THCA (1)], cannabidiolic acid [CBDA (2)], and cannabigerolic acid [CBGA (3)] were identified as most-abundant compounds in all analyzed samples while their decarboxylated derivatives, Δ(9)-tetrahydrocannabinol [THC (4)], cannabidiol [CBD (5)], and cannabigerol [CBG (6)], co-detected in all samples, were present at significantly lower levels. Cannabichromene [CBC (8)] along with cannabinol (CBN (9)) were identified as minor compounds only in the samples of intact capitate-stalked trichomes and their heads harvested from 8-week old plants. Cryogenic nuclear magnetic resonance spectroscopy (NMR) was used to confirm the occurrence of major cannabinoids, THCA (1) and CBDA (2), in capitate-stalked and capitate-sessile trichomes. Cryogenic NMR enabled the additional identification of cannabichromenic acid [CBCA (7)] in the dissected trichomes, which was not possible by LCMS as standard was not available. The hereby documented detection of metabolites in the stems of capitate-stalked trichomes indicates a complex biosynthesis and localization over the trichome cells forming the glandular secretion unit. Copyright © 2012 Elsevier Ltd. All rights reserved.
Onofri, Chiara; de Meijer, Etienne P M; Mandolino, Giuseppe
2015-08-01
Sequence variants of THCA- and CBDA-synthases were isolated from different Cannabis sativa L. strains expressing various wild-type and mutant chemical phenotypes (chemotypes). Expressed and complete sequences were obtained from mature inflorescences. Each strain was shown to have a different specificity and/or ability to convert the precursor CBGA into CBDA and/or THCA type products. The comparison of the expressed sequences led to the identification of different mutations, all of them due to SNPs. These SNPs were found to relate to the cannabinoid composition of the inflorescence at maturity and are therefore proposed to have a functional significance. The amount of variation was found to be higher within the CBDAS sequence family than in the THCAS family, suggesting a more recent evolution of THCA-forming enzymes from the CBDAS group. We therefore consider CBDAS as the ancestral type of these synthases. Copyright © 2015 Elsevier Ltd. All rights reserved.
Aizpurua-Olaizola, Oier; Soydaner, Umut; Öztürk, Ekin; Schibano, Daniele; Simsir, Yilmaz; Navarro, Patricia; Etxebarria, Nestor; Usobiaga, Aresatz
2016-02-26
The evolution of major cannabinoids and terpenes during the growth of Cannabis sativa plants was studied. In this work, seven different plants were selected: three each from chemotypes I and III and one from chemotype II. Fifty clones of each mother plant were grown indoors under controlled conditions. Every week, three plants from each variety were cut and dried, and the leaves and flowers were analyzed separately. Eight major cannabinoids were analyzed via HPLC-DAD, and 28 terpenes were quantified using GC-FID and verified via GC-MS. The chemotypes of the plants, as defined by the tetrahydrocannabinolic acid/cannabidiolic acid (THCA/CBDA) ratio, were clear from the beginning and stable during growth. The concentrations of the major cannabinoids and terpenes were determined, and different patterns were found among the chemotypes. In particular, the plants from chemotypes II and III needed more time to reach peak production of THCA, CBDA, and monoterpenes. Differences in the cannabigerolic acid development among the different chemotypes and between monoterpene and sesquiterpene evolution patterns were also observed. Plants of different chemotypes were clearly differentiated by their terpene content, and characteristic terpenes of each chemotype were identified.
Quality Control of Traditional Cannabis Tinctures: Pattern, Markers, and Stability
Peschel, Wieland
2016-01-01
Traditional tinctures of Cannabis sativa L. became obsolete before elucidation of the main cannabinoids and routine quality testing for medicines. In view of increasing medicinal use of cannabinoids and associated safety concerns, tinctures from a Δ9-tetrahydrocannabinol (THC)-type chemovar were studied. High-performance liquid chromatography with diode-array detection (HPLC/DAD) was used to determine THC, Δ9-tetrahydrocannabinolic acid A (THCA), cannabinol (CBN), cannabidiol (CBD), cannabidiolic acid (CBDA), cannabigerol (CBG), cannabigerolic acid (CBGA), cannflavin A/B, and total phenolics. Derived group and ratio markers describe absolute and relative profiles when varying plant part (flos, folium), extraction solvent (EtOH percentage), storage conditions (‘shelf’ or ‘fridge’ up to 15 months), and pasteurization (2 h 70 °C, 20 min 80 °C). Tinctures from female flowering tops contained ten-fold more cannabinoids than tinctures from leaves; tinctures (80%–90% EtOH) contained ten-fold more cannabinoids than tinctures (40% EtOH). The analysis of CBGA + CBG, the main co-cannabinoids aside from THCA + THC, appears more relevant than CBDA + CBD. The decarboxylation of THCA to THC—the main change during storage of freshly prepared tinctures—is after 15 months in the ‘fridge’ comparable to 3 months on the ‘shelf’. Minimally increased CBN totals did not correlate to diminished totals of THCA and THC (up to 15% after 3 months ‘shelf’, 45% after 15 months ‘fridge’). Instead, total cannabinoids or acidic/neutral cannabinoid ratios are better stability markers. Moderate changes after pasteurization and partial losses below 10% for total cannabinoids after 9 months ‘fridge’ indicate possibilities for a reasonable shelf life. Yet storage and use of non-stabilized tinctures remain critical without authorized specification and stability data because a consistent cannabinoid content is not guaranteed. PMID:28117322
Borrelli, Francesca; Aviello, Gabriella; Romano, Barbara; Orlando, Pierangelo; Capasso, Raffaele; Maiello, Francesco; Guadagno, Federico; Petrosino, Stefania; Capasso, Francesco; Di Marzo, Vincenzo; Izzo, Angelo A
2009-11-01
Inflammatory bowel disease affects millions of individuals; nevertheless, pharmacological treatment is disappointingly unsatisfactory. Cannabidiol, a safe and non-psychotropic ingredient of marijuana, exerts pharmacological effects (e.g., antioxidant) and mechanisms (e.g., inhibition of endocannabinoids enzymatic degradation) potentially beneficial for the inflamed gut. Thus, we investigated the effect of cannabidiol in a murine model of colitis. Colitis was induced in mice by intracolonic administration of dinitrobenzene sulfonic acid. Inflammation was assessed both macroscopically and histologically. In the inflamed colon, cyclooxygenase-2 and inducible nitric oxide synthase (iNOS) were evaluated by Western blot, interleukin-1beta and interleukin-10 by ELISA, and endocannabinoids by isotope dilution liquid chromatography-mass spectrometry. Human colon adenocarcinoma (Caco-2) cells were used to evaluate the effect of cannabidiol on oxidative stress. Cannabidiol reduced colon injury, inducible iNOS (but not cyclooxygenase-2) expression, and interleukin-1beta, interleukin-10, and endocannabinoid changes associated with 2,4,6-dinitrobenzene sulfonic acid administration. In Caco-2 cells, cannabidiol reduced reactive oxygen species production and lipid peroxidation. In conclusion, cannabidiol, a likely safe compound, prevents experimental colitis in mice.
Cannabidiol induces intracellular calcium elevation and cytotoxicity in oligodendrocytes.
Mato, Susana; Victoria Sánchez-Gómez, María; Matute, Carlos
2010-11-01
Heavy marijuana use has been linked to white matter histological alterations. However, the impact of cannabis constituents on oligodendroglial pathophysiology remains poorly understood. Here, we investigated the in vitro effects of cannabidiol, the main nonpsychoactive marijuana component, on oligodendrocytes. Exposure to cannabidiol induced an intracellular Ca(2+) rise in optic nerve oligodendrocytes that was not primarily mediated by entry from the extracellular space, nor by interactions with ryanodine or IP(3) receptors. Application of the mitochondrial protonophore carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP; 1 μM) completely prevented subsequent cannabidiol-induced Ca(2+) responses. Conversely, the increase in cytosolic Ca(2+) levels elicited by FCCP was reduced after previous exposure to cannabidiol, further suggesting that the mitochondria acts as the source of cannabidiol-evoked Ca(2+) rise in oligodendrocytes. n addition, brief exposure to cannabidiol (100 nM-10 μM) led to a concentration-dependent decrease of oligodendroglial viability that was not prevented by antagonists of CB(1), CB(2), vanilloid, A(2A) or PPARγ receptors, but was instead reduced in the absence of extracellular Ca(2+). The oligodendrotoxic effect of cannabidiol was partially blocked by inhibitors of caspase-3, -8 and -9, PARP-1 and calpains, suggesting the activation of caspase-dependent and -independent death pathways. Cannabidiol also elicited a concentration-dependent alteration of mitochondrial membrane potential, and an increase in reactive oxygen species (ROS) that was reduced in the absence of extracellular Ca(2+). Finally, cannabidiol-induced cytotoxicity was partially prevented by the ROS scavenger trolox. Together, these results suggest that cannabidiol causes intracellular Ca(2+) dysregulation which can lead to oligodendrocytes demise.
McKallip, Robert J; Jia, Wentao; Schlomer, Jerome; Warren, James W; Nagarkatti, Prakash S; Nagarkatti, Mitzi
2006-09-01
In the current study, we examined the effects of the nonpsychoactive cannabinoid, cannabidiol, on the induction of apoptosis in leukemia cells. Exposure of leukemia cells to cannabidiol led to cannabinoid receptor 2 (CB2)-mediated reduction in cell viability and induction in apoptosis. Furthermore, cannabidiol treatment led to a significant decrease in tumor burden and an increase in apoptotic tumors in vivo. From a mechanistic standpoint, cannabidiol exposure resulted in activation of caspase-8, caspase-9, and caspase-3, cleavage of poly(ADP-ribose) polymerase, and a decrease in full-length Bid, suggesting possible cross-talk between the intrinsic and extrinsic apoptotic pathways. The role of the mitochondria was further suggested as exposure to cannabidiol led to loss of mitochondrial membrane potential and release of cytochrome c. It is noteworthy that cannabidiol exposure led to an increase in reactive oxygen species (ROS) production as well as an increase in the expression of the NAD(P)H oxidases Nox4 and p22(phox). Furthermore, cannabidiol-induced apoptosis and reactive oxygen species (ROS) levels could be blocked by treatment with the ROS scavengers or the NAD(P)H oxidase inhibitors. Finally, cannabidiol exposure led to a decrease in the levels of p-p38 mitogen-activated protein kinase, which could be blocked by treatment with a CB2-selective antagonist or ROS scavenger. Together, the results from this study reveal that cannabidiol, acting through CB2 and regulation of Nox4 and p22(phox) expression, may be a novel and highly selective treatment for leukemia.
Effect of Cannabidiol on Drop Seizures in the Lennox-Gastaut Syndrome.
Devinsky, Orrin; Patel, Anup D; Cross, J Helen; Villanueva, Vicente; Wirrell, Elaine C; Privitera, Michael; Greenwood, Sam M; Roberts, Claire; Checketts, Daniel; VanLandingham, Kevan E; Zuberi, Sameer M
2018-05-17
Cannabidiol has been used for treatment-resistant seizures in patients with severe early-onset epilepsy. We investigated the efficacy and safety of cannabidiol added to a regimen of conventional antiepileptic medication to treat drop seizures in patients with the Lennox-Gastaut syndrome, a severe developmental epileptic encephalopathy. In this double-blind, placebo-controlled trial conducted at 30 clinical centers, we randomly assigned patients with the Lennox-Gastaut syndrome (age range, 2 to 55 years) who had had two or more drop seizures per week during a 28-day baseline period to receive cannabidiol oral solution at a dose of either 20 mg per kilogram of body weight (20-mg cannabidiol group) or 10 mg per kilogram (10-mg cannabidiol group) or matching placebo, administered in two equally divided doses daily for 14 weeks. The primary outcome was the percentage change from baseline in the frequency of drop seizures (average per 28 days) during the treatment period. A total of 225 patients were enrolled; 76 patients were assigned to the 20-mg cannabidiol group, 73 to the 10-mg cannabidiol group, and 76 to the placebo group. During the 28-day baseline period, the median number of drop seizures was 85 in all trial groups combined. The median percent reduction from baseline in drop-seizure frequency during the treatment period was 41.9% in the 20-mg cannabidiol group, 37.2% in the 10-mg cannabidiol group, and 17.2% in the placebo group (P=0.005 for the 20-mg cannabidiol group vs. placebo group, and P=0.002 for the 10-mg cannabidiol group vs. placebo group). The most common adverse events among the patients in the cannabidiol groups were somnolence, decreased appetite, and diarrhea; these events occurred more frequently in the higher-dose group. Six patients in the 20-mg cannabidiol group and 1 patient in the 10-mg cannabidiol group discontinued the trial medication because of adverse events and were withdrawn from the trial. Fourteen patients who received cannabidiol
Cannabidiol Reduces Leukemic Cell Size - But Is It Important?
Kalenderoglou, Nikoletta; Macpherson, Tara; Wright, Karen L
2017-01-01
The anti-cancer effect of the plant-derived cannabinoid, cannabidiol, has been widely demonstrated both in vivo and in vitro . However, this body of preclinical work has not been translated into clinical use. Key issues around this failure can be related to narrow dose effects, the cell model used and incomplete efficacy. A model of acute lymphoblastic disease, the Jurkat T cell line, has been used extensively to study the cannabinoid system in the immune system and cannabinoid-induced apoptosis. Using these cells, this study sought to investigate the outcome of those remaining viable cells post-treatment with cannabidiol, both in terms of cell size and tracking any subsequent recovery. The phosphorylation status of the mammalian Target of Rapamycin (mTOR) signaling pathway and the downstream target ribosomal protein S6, were measured. The ability of cannabidiol to exert its effect on cell viability was also evaluated in physiological oxygen conditions. Cannabidiol reduced cell viability incompletely, and slowed the cell cycle with fewer cells in the G2/M phase of the cell cycle. Cannabidiol reduced phosphorylation of mTOR, PKB and S6 pathways related to survival and cell size. The remaining population of viable cells that were cultured in nutrient rich conditions post-treatment were able to proliferate, but did not recover to control cell numbers. However, the proportion of viable cells that were gated as small, increased in response to cannabidiol and normally sized cells decreased. This proportion of small cells persisted in the recovery period and did not return to basal levels. Finally, cells grown in 12% oxygen (physiological normoxia) were more resistant to cannabidiol. In conclusion, these results indicate that cannabidiol causes a reduction in cell size, which persists post-treatment. However, resistance to cannabidiol under physiological normoxia for these cells would imply that cannabidiol may not be useful in the clinic as an anti-leukemic agent.
Cannabidiol Reduces Leukemic Cell Size – But Is It Important?
Kalenderoglou, Nikoletta; Macpherson, Tara; Wright, Karen L.
2017-01-01
The anti-cancer effect of the plant-derived cannabinoid, cannabidiol, has been widely demonstrated both in vivo and in vitro. However, this body of preclinical work has not been translated into clinical use. Key issues around this failure can be related to narrow dose effects, the cell model used and incomplete efficacy. A model of acute lymphoblastic disease, the Jurkat T cell line, has been used extensively to study the cannabinoid system in the immune system and cannabinoid-induced apoptosis. Using these cells, this study sought to investigate the outcome of those remaining viable cells post-treatment with cannabidiol, both in terms of cell size and tracking any subsequent recovery. The phosphorylation status of the mammalian Target of Rapamycin (mTOR) signaling pathway and the downstream target ribosomal protein S6, were measured. The ability of cannabidiol to exert its effect on cell viability was also evaluated in physiological oxygen conditions. Cannabidiol reduced cell viability incompletely, and slowed the cell cycle with fewer cells in the G2/M phase of the cell cycle. Cannabidiol reduced phosphorylation of mTOR, PKB and S6 pathways related to survival and cell size. The remaining population of viable cells that were cultured in nutrient rich conditions post-treatment were able to proliferate, but did not recover to control cell numbers. However, the proportion of viable cells that were gated as small, increased in response to cannabidiol and normally sized cells decreased. This proportion of small cells persisted in the recovery period and did not return to basal levels. Finally, cells grown in 12% oxygen (physiological normoxia) were more resistant to cannabidiol. In conclusion, these results indicate that cannabidiol causes a reduction in cell size, which persists post-treatment. However, resistance to cannabidiol under physiological normoxia for these cells would imply that cannabidiol may not be useful in the clinic as an anti-leukemic agent. PMID
Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome.
Devinsky, Orrin; Cross, J Helen; Laux, Linda; Marsh, Eric; Miller, Ian; Nabbout, Rima; Scheffer, Ingrid E; Thiele, Elizabeth A; Wright, Stephen
2017-05-25
The Dravet syndrome is a complex childhood epilepsy disorder that is associated with drug-resistant seizures and a high mortality rate. We studied cannabidiol for the treatment of drug-resistant seizures in the Dravet syndrome. In this double-blind, placebo-controlled trial, we randomly assigned 120 children and young adults with the Dravet syndrome and drug-resistant seizures to receive either cannabidiol oral solution at a dose of 20 mg per kilogram of body weight per day or placebo, in addition to standard antiepileptic treatment. The primary end point was the change in convulsive-seizure frequency over a 14-week treatment period, as compared with a 4-week baseline period. The median frequency of convulsive seizures per month decreased from 12.4 to 5.9 with cannabidiol, as compared with a decrease from 14.9 to 14.1 with placebo (adjusted median difference between the cannabidiol group and the placebo group in change in seizure frequency, -22.8 percentage points; 95% confidence interval [CI], -41.1 to -5.4; P=0.01). The percentage of patients who had at least a 50% reduction in convulsive-seizure frequency was 43% with cannabidiol and 27% with placebo (odds ratio, 2.00; 95% CI, 0.93 to 4.30; P=0.08). The patient's overall condition improved by at least one category on the seven-category Caregiver Global Impression of Change scale in 62% of the cannabidiol group as compared with 34% of the placebo group (P=0.02). The frequency of total seizures of all types was significantly reduced with cannabidiol (P=0.03), but there was no significant reduction in nonconvulsive seizures. The percentage of patients who became seizure-free was 5% with cannabidiol and 0% with placebo (P=0.08). Adverse events that occurred more frequently in the cannabidiol group than in the placebo group included diarrhea, vomiting, fatigue, pyrexia, somnolence, and abnormal results on liver-function tests. There were more withdrawals from the trial in the cannabidiol group. Among patients with
Meng, Qingfang; Buchanan, Beth; Zuccolo, Jonathan; Poulin, Mathieu-Marc; Gabriele, Joseph; Baranowski, David Charles
2018-01-01
In the past 50 years, Cannabis sativa (C. sativa) has gone from a substance essentially prohibited worldwide to one that is gaining acceptance both culturally and legally in many countries for medicinal and recreational use. As additional jurisdictions legalize Cannabis products and the variety and complexity of these products surpass the classical dried plant material, appropriate methods for measuring the biologically active constituents is paramount to ensure safety and regulatory compliance. While there are numerous active compounds in C. sativa the primary cannabinoids of regulatory and safety concern are (-)-Δ⁹-tetrahydrocannabinol (THC), cannabidiol (CBD), and their respective acidic forms THCA-A and CBDA. Using the US Food and Drug Administration (FDA) bioanalytical method validation guidelines we developed a sensitive, selective, and accurate method for the simultaneous analysis CBD, CBDA, THC, and THCA-A in oils and THC & CBD in more complex matrices. This HPLC-MS/MS method was simple and reliable using standard sample dilution and homogenization, an isocratic chromatographic separation, and a triple quadrupole mass spectrometer. The lower limit of quantification (LLOQ) for analytes was 0.195 ng/mL over a 0.195-50.0 ng/mL range of quantification with a coefficient of correlation of >0.99. Average intra-day and inter-day accuracies were 94.2-112.7% and 97.2-110.9%, respectively. This method was used to quantify CBD, CBDA, THC, and THCA-A in 40 commercial hemp products representing a variety of matrices including oils, plant materials, and creams/cosmetics. All products tested met the federal regulatory restrictions on THC content in Canada (<10 μg/g) except two, with concentrations of 337 and 10.01 μg/g. With respect to CBD, the majority of analyzed products contained low CBD levels and a CBD: CBDA ratio of <1.0. In contrast, one product contained 8,410 μg/g CBD and a CBD: CBDA ratio of >1,000 (an oil-based product). Overall, the method proved
Meng, Qingfang; Buchanan, Beth; Zuccolo, Jonathan; Poulin, Mathieu-Marc; Gabriele, Joseph
2018-01-01
In the past 50 years, Cannabis sativa (C. sativa) has gone from a substance essentially prohibited worldwide to one that is gaining acceptance both culturally and legally in many countries for medicinal and recreational use. As additional jurisdictions legalize Cannabis products and the variety and complexity of these products surpass the classical dried plant material, appropriate methods for measuring the biologically active constituents is paramount to ensure safety and regulatory compliance. While there are numerous active compounds in C. sativa the primary cannabinoids of regulatory and safety concern are (-)-Δ⁹-tetrahydrocannabinol (THC), cannabidiol (CBD), and their respective acidic forms THCA-A and CBDA. Using the US Food and Drug Administration (FDA) bioanalytical method validation guidelines we developed a sensitive, selective, and accurate method for the simultaneous analysis CBD, CBDA, THC, and THCA-A in oils and THC & CBD in more complex matrices. This HPLC-MS/MS method was simple and reliable using standard sample dilution and homogenization, an isocratic chromatographic separation, and a triple quadrupole mass spectrometer. The lower limit of quantification (LLOQ) for analytes was 0.195 ng/mL over a 0.195–50.0 ng/mL range of quantification with a coefficient of correlation of >0.99. Average intra-day and inter-day accuracies were 94.2–112.7% and 97.2–110.9%, respectively. This method was used to quantify CBD, CBDA, THC, and THCA-A in 40 commercial hemp products representing a variety of matrices including oils, plant materials, and creams/cosmetics. All products tested met the federal regulatory restrictions on THC content in Canada (<10 μg/g) except two, with concentrations of 337 and 10.01 μg/g. With respect to CBD, the majority of analyzed products contained low CBD levels and a CBD: CBDA ratio of <1.0. In contrast, one product contained 8,410 μg/g CBD and a CBD: CBDA ratio of >1,000 (an oil-based product). Overall, the method proved
Cannabidiol: from an inactive cannabinoid to a drug with wide spectrum of action.
Zuardi, Antonio Waldo
2008-09-01
The aim of this review is to describe the historical development of research on cannabidiol. This review was carried out on reports drawn from Medline, Web of Science and SciELO. After the elucidation of the chemical structure of cannabidiol in 1963, the initial studies showed that cannabidiol was unable to mimic the effects of Cannabis. In the 1970's the number of publications on cannabidiol reached a first peak, having the research focused mainly on the interaction with delta9-THC and its antiepileptic and sedative effects. The following two decades showed lower degree of interest, and the potential therapeutic properties of cannabidiol investigated were mainly the anxiolytic, antipsychotic and on motor diseases effects. The last five years have shown a remarkable increase in publications on cannabidiol mainly stimulated by the discovery of its anti-inflammatory, anti-oxidative and neuroprotective effects. These studies have suggested a wide range of possible therapeutic effects of cannabidiol on several conditions, including Parkinson's disease, Alzheimer's disease, cerebral ischemia, diabetes, rheumatoid arthritis, other inflammatory diseases, nausea and cancer. In the last 45 years it has been possible to demonstrate that CBD has a wide range of pharmacological effects, many of which being of great therapeutic interest, but still waiting to be confirmed by clinical trials.
Cannabidiol prevents infarction via the non-CB1 cannabinoid receptor mechanism.
Hayakawa, Kazuhide; Mishima, Kenichi; Abe, Kohji; Hasebe, Nobuyoshi; Takamatsu, Fumie; Yasuda, Hiromi; Ikeda, Tomoaki; Inui, Keiichiro; Egashira, Nobuaki; Iwasaki, Katsunori; Fujiwara, Michihiro
2004-10-25
Cannabidiol, a non-psychoactive constituent of cannabis, has been reported as a neuroprotectant. Cannabidiol and Delta(9)-tetrahydrocannabinol, the primary psychoactive constituent of cannabis, significantly decreased the infarct volume at 4 h in the mouse middle cerebral artery occlusion model. The neuroprotective effects of Delta(9)-tetrahydrocannabinol but not cannabidiol were inhibited by SR141716, a cannabinoid CB1 receptor antagonist, and were abolished by warming of the animals to the levels observed in the controls. Delta(9)-Tetrahydrocannabinol significantly decreased the rectal temperature, and the hypothermic effect was inhibited by SR141716. These results surely show that the neuroprotective effect of Delta(9)-tetrahydrocannabinol are via a CB1 receptor and temperature-dependent mechanisms whereas the neuroprotective effects of cannabidiol are independent of CB1 blockade and of hypothermia.
COX-2 and PPAR-γ confer cannabidiol-induced apoptosis of human lung cancer cells.
Ramer, Robert; Heinemann, Katharina; Merkord, Jutta; Rohde, Helga; Salamon, Achim; Linnebacher, Michael; Hinz, Burkhard
2013-01-01
The antitumorigenic mechanism of cannabidiol is still controversial. This study investigates the role of COX-2 and PPAR-γ in cannabidiol's proapoptotic and tumor-regressive action. In lung cancer cell lines (A549, H460) and primary cells from a patient with lung cancer, cannabidiol elicited decreased viability associated with apoptosis. Apoptotic cell death by cannabidiol was suppressed by NS-398 (COX-2 inhibitor), GW9662 (PPAR-γ antagonist), and siRNA targeting COX-2 and PPAR-γ. Cannabidiol-induced apoptosis was paralleled by upregulation of COX-2 and PPAR-γ mRNA and protein expression with a maximum induction of COX-2 mRNA after 8 hours and continuous increases of PPAR-γ mRNA when compared with vehicle. In response to cannabidiol, tumor cell lines exhibited increased levels of COX-2-dependent prostaglandins (PG) among which PGD(2) and 15-deoxy-Δ(12,14)-PGJ(2) (15d-PGJ(2)) caused a translocation of PPAR-γ to the nucleus and induced a PPAR-γ-dependent apoptotic cell death. Moreover, in A549-xenografted nude mice, cannabidiol caused upregulation of COX-2 and PPAR-γ in tumor tissue and tumor regression that was reversible by GW9662. Together, our data show a novel proapoptotic mechanism of cannabidiol involving initial upregulation of COX-2 and PPAR-γ and a subsequent nuclear translocation of PPAR-γ by COX-2-dependent PGs.
Fagherazzi, Elen V; Garcia, Vanessa A; Maurmann, Natasha; Bervanger, Thielly; Halmenschlager, Luis H; Busato, Stefano B; Hallak, Jaime E; Zuardi, Antônio W; Crippa, José A; Schröder, Nadja
2012-02-01
Cannabidiol, the main nonpsychotropic constituent of Cannabis sativa, possesses a large number of pharmacological effects including anticonvulsive, sedative, hypnotic, anxiolytic, antipsychotic, anti-inflammatory, and neuroprotective, as demonstrated in clinical and preclinical studies. Many neurodegenerative disorders involve cognitive deficits, and this has led to interest in whether cannabidiol could be useful in the treatment of memory impairment associated to these diseases. We used an animal model of cognitive impairment induced by iron overload in order to test the effects of cannabidiol in memory-impaired rats. Rats received vehicle or iron at postnatal days 12-14. At the age of 2 months, they received an acute intraperitoneal injection of vehicle or cannabidiol (5.0 or 10.0 mg/kg) immediately after the training session of the novel object recognition task. In order to investigate the effects of chronic cannabidiol, iron-treated rats received daily intraperitoneal injections of cannabidiol for 14 days. Twenty-four hours after the last injection, they were submitted to object recognition training. Retention tests were performed 24 h after training. A single acute injection of cannabidiol at the highest dose was able to recover memory in iron-treated rats. Chronic cannabidiol improved recognition memory in iron-treated rats. Acute or chronic cannabidiol does not affect memory in control rats. The present findings provide evidence suggesting the potential use of cannabidiol for the treatment of cognitive decline associated with neurodegenerative disorders. Further studies, including clinical trials, are warranted to determine the usefulness of cannabidiol in humans suffering from neurodegenerative disorders.
Petrosino, Stefania; Verde, Roberta; Vaia, Massimo; Allarà, Marco; Iuvone, Teresa; Di Marzo, Vincenzo
2018-06-01
Phytocannabinoids modulate inflammatory responses by regulating the production of cytokines in several experimental models of inflammation. Cannabinoid type-2 (CB 2 ) receptor activation was shown to reduce the production of the monocyte chemotactic protein-2 (MCP-2) chemokine in polyinosinic-polycytidylic acid [poly-(I:C)]-stimulated human keratinocyte (HaCaT) cells, an in vitro model of allergic contact dermatitis (ACD). We investigated if nonpsychotropic cannabinoids, such as cannabidiol (CBD), produced similar effects in this experimental model of ACD. HaCaT cells were stimulated with poly-(I:C), and the release of chemokines and cytokines was measured in the presence of CBD or other phytocannabinoids (such as cannabidiol acid, cannabidivarin, cannabidivarinic acid, cannabichromene, cannabigerol, cannabigerolic acid, cannabigevarin, tetrahydrocannabivarin, and tetrahydrocannabivarinic acid) and antagonists of CB 1 , CB 2 , or transient receptor potential vanilloid type-1 (TRPV1) receptors. HaCaT cell viability following phytocannabinoid treatment was also measured. The cellular levels of endocannabinoids [anandamide (AEA), 2-arachidonoylglycerol] and related molecules (palmitoylethanolamide, oleoylethanolamide) were quantified in poly-(I:C)-stimulated HaCaT cells treated with CBD. We show that in poly-(I:C)-stimulated HaCaT cells, CBD elevates the levels of AEA and dose-dependently inhibits poly-(I:C)-induced release of MCP-2, interleukin-6 (IL-6), IL-8, and tumor necrosis factor- α in a manner reversed by CB 2 and TRPV1 antagonists 6-iodopravadoline (AM630) and 5'-iodio-resiniferatoxin (I-RTX), respectively, with no cytotoxic effect. This is the first demonstration of the anti-inflammatory properties of CBD in an experimental model of ACD. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
Cannabidiol as a Promising Strategy to Treat and Prevent Movement Disorders?
Peres, Fernanda F.; Lima, Alvaro C.; Hallak, Jaime E. C.; Crippa, José A.; Silva, Regina H.; Abílio, Vanessa C.
2018-01-01
Movement disorders such as Parkinson's disease and dyskinesia are highly debilitating conditions linked to oxidative stress and neurodegeneration. When available, the pharmacological therapies for these disorders are still mainly symptomatic, do not benefit all patients and induce severe side effects. Cannabidiol is a non-psychotomimetic compound from Cannabis sativa that presents antipsychotic, anxiolytic, anti-inflammatory, and neuroprotective effects. Although the studies that investigate the effects of this compound on movement disorders are surprisingly few, cannabidiol emerges as a promising compound to treat and/or prevent them. Here, we review these clinical and pre-clinical studies and draw attention to the potential of cannabidiol in this field. PMID:29867488
Cannabidiol: promise and pitfalls.
Welty, Timothy E; Luebke, Adrienne; Gidal, Barry E
2014-09-01
Over the past few years, increasing public and political pressure has supported legalization of medical marijuana. One of the main thrusts in this effort has related to the treatment of refractory epilepsy-especially in children with Dravet syndrome-using cannabidiol (CBD). Despite initiatives in numerous states to at least legalize possession of CBD oil for treating epilepsy, little published evidence is available to prove or disprove the efficacy and safety of CBD in patients with epilepsy. This review highlights some of the basic science theory behind the use of CBD, summarizes published data on clinical use of CBD for epilepsy, and highlights issues related to the use of currently available CBD products. Cannabidiol is the major nonpsychoactive component of Cannabis sativa. Over the centuries, a number of medicinal preparations derived from C. sativa have been employed for a variety of disorders, including gout, rheumatism, malaria, pain, and fever. These preparations were widely employed as analgesics by Western medical practitioners in the 19(th) century (1). More recently, there is clinical evidence suggesting efficacy in HIV-associated neuropathic pain, as well as spasms associated with multiple sclerosis (1).
Mechoulam, Raphael; Peters, Maximilian; Murillo-Rodriguez, Eric; Hanus, Lumír O
2007-08-01
The aim of this review is to present some of the recent publications on cannabidiol (CBD; 2), a major non-psychoactive constituent of Cannabis, and to give a general overview. Special emphasis is laid on biochemical and pharmacological advances, and on novel mechanisms recently put forward, to shed light on some of the pharmacological effects that can possibly be rationalized through these mechanisms. The plethora of positive pharmacological effects observed with CBD make this compound a highly attractive therapeutic entity.
Porter, Brenda E; Jacobson, Catherine
2013-12-01
Severe childhood epilepsies are characterized by frequent seizures, neurodevelopmental delays, and impaired quality of life. In these treatment-resistant epilepsies, families often seek alternative treatments. This survey explored the use of cannabidiol-enriched cannabis in children with treatment-resistant epilepsy. The survey was presented to parents belonging to a Facebook group dedicated to sharing information about the use of cannabidiol-enriched cannabis to treat their child's seizures. Nineteen responses met the following inclusion criteria for the study: a diagnosis of epilepsy and current use of cannabidiol-enriched cannabis. Thirteen children had Dravet syndrome, four had Doose syndrome, and one each had Lennox-Gastaut syndrome and idiopathic epilepsy. The average number of antiepileptic drugs (AEDs) tried before using cannabidiol-enriched cannabis was 12. Sixteen (84%) of the 19 parents reported a reduction in their child's seizure frequency while taking cannabidiol-enriched cannabis. Of these, two (11%) reported complete seizure freedom, eight (42%) reported a greater than 80% reduction in seizure frequency, and six (32%) reported a 25-60% seizure reduction. Other beneficial effects included increased alertness, better mood, and improved sleep. Side effects included drowsiness and fatigue. Our survey shows that parents are using cannabidiol-enriched cannabis as a treatment for their children with treatment-resistant epilepsy. Because of the increasing number of states that allow access to medical cannabis, its use will likely be a growing concern for the epilepsy community. Safety and tolerability data for cannabidiol-enriched cannabis use among children are not available. Objective measurements of a standardized preparation of pure cannabidiol are needed to determine whether it is safe, well tolerated, and efficacious at controlling seizures in this pediatric population with difficult-to-treat seizures. © 2013.
De Petrocellis, Luciano; Ligresti, Alessia; Moriello, Aniello Schiano; Allarà, Marco; Bisogno, Tiziana; Petrosino, Stefania; Stott, Colin G; Di Marzo, Vincenzo
2011-01-01
BACKGROUND AND PURPOSE Cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) interact with transient receptor potential (TRP) channels and enzymes of the endocannabinoid system. EXPERIMENTAL APPROACH The effects of 11 pure cannabinoids and botanical extracts [botanical drug substance (BDS)] from Cannabis varieties selected to contain a more abundant cannabinoid, on TRPV1, TRPV2, TRPM8, TRPA1, human recombinant diacylglycerol lipase α (DAGLα), rat brain fatty acid amide hydrolase (FAAH), COS cell monoacylglycerol lipase (MAGL), human recombinant N-acylethanolamine acid amide hydrolase (NAAA) and anandamide cellular uptake (ACU) by RBL-2H3 cells, were studied using fluorescence-based calcium assays in transfected cells and radiolabelled substrate-based enzymatic assays. Cannabinol (CBN), cannabichromene (CBC), the acids (CBDA, CBGA, THCA) and propyl homologues (CBDV, CBGV, THCV) of CBD, cannabigerol (CBG) and THC, and tetrahydrocannabivarin acid (THCVA) were also tested. KEY RESULTS CBD, CBG, CBGV and THCV stimulated and desensitized human TRPV1. CBC, CBD and CBN were potent rat TRPA1 agonists and desensitizers, but THCV-BDS was the most potent compound at this target. CBG-BDS and THCV-BDS were the most potent rat TRPM8 antagonists. All non-acid cannabinoids, except CBC and CBN, potently activated and desensitized rat TRPV2. CBDV and all the acids inhibited DAGLα. Some BDS, but not the pure compounds, inhibited MAGL. CBD was the only compound to inhibit FAAH, whereas the BDS of CBC > CBG > CBGV inhibited NAAA. CBC = CBG > CBD inhibited ACU, as did the BDS of THCVA, CBGV, CBDA and THCA, but the latter extracts were more potent inhibitors. CONCLUSIONS AND IMPLICATIONS These results are relevant to the analgesic, anti-inflammatory and anti-cancer effects of cannabinoids and Cannabis extracts. LINKED ARTICLES This article is part of a themed issue on Cannabinoids in Biology and Medicine. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011
Cannabidiol as a Potential New Type of an Antipsychotic. A Critical Review of the Evidence.
Rohleder, Cathrin; Müller, Juliane K; Lange, Bettina; Leweke, F M
2016-01-01
There is urgent need for the development of mechanistically different and less side-effect prone antipsychotic compounds. The endocannabinoid system has been suggested to represent a potential new target in this indication. While the chronic use of cannabis itself has been considered a risk factor contributing to the development of schizophrenia, triggered by the phytocannabinoid delta-9-tetrahydrocannabinol (Δ 9 -THC), cannabidiol, the second most important phytocannabinoid, appears to have no psychotomimetic potential. Although, results from animal studies are inconsistent to a certain extent and seem to depend on behavioral paradigms, treatment duration and experimental conditions applied, cannabidiol has shown antipsychotic properties in both rodents and rhesus monkeys. After some individual treatment attempts, the first randomized, double-blind controlled clinical trial demonstrated that in acute schizophrenia cannabidiol exerts antipsychotic properties comparable to the antipsychotic drug amisulpride while being accompanied by a superior, placebo-like side effect profile. As the clinical improvement by cannabidiol was significantly associated with elevated anandamide levels, it appears likely that its antipsychotic action is based on mechanisms associated with increased anandamide concentrations. Although, a plethora of mechanisms of action has been suggested, their potential relevance for the antipsychotic effects of cannabidiol still needs to be investigated. The clarification of these mechanisms as well as the establishment of cannabidiol's antipsychotic efficacy and its hopefully benign side-effect profile remains the subject of a number of previously started clinical trials.
Elmes, Matthew W.; Kaczocha, Martin; Berger, William T.; Leung, KwanNok; Ralph, Brian P.; Wang, Liqun; Sweeney, Joseph M.; Miyauchi, Jeremy T.; Tsirka, Stella E.; Ojima, Iwao; Deutsch, Dale G.
2015-01-01
Δ9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) occur naturally in marijuana (Cannabis) and may be formulated, individually or in combination in pharmaceuticals such as Marinol or Sativex. Although it is known that these hydrophobic compounds can be transported in blood by albumin or lipoproteins, the intracellular carrier has not been identified. Recent reports suggest that CBD and THC elevate the levels of the endocannabinoid anandamide (AEA) when administered to humans, suggesting that phytocannabinoids target cellular proteins involved in endocannabinoid clearance. Fatty acid-binding proteins (FABPs) are intracellular proteins that mediate AEA transport to its catabolic enzyme fatty acid amide hydrolase (FAAH). By computational analysis and ligand displacement assays, we show that at least three human FABPs bind THC and CBD and demonstrate that THC and CBD inhibit the cellular uptake and catabolism of AEA by targeting FABPs. Furthermore, we show that in contrast to rodent FAAH, CBD does not inhibit the enzymatic actions of human FAAH, and thus FAAH inhibition cannot account for the observed increase in circulating AEA in humans following CBD consumption. Using computational molecular docking and site-directed mutagenesis we identify key residues within the active site of FAAH that confer the species-specific sensitivity to inhibition by CBD. Competition for FABPs may in part or wholly explain the increased circulating levels of endocannabinoids reported after consumption of cannabinoids. These data shed light on the mechanism of action of CBD in modulating the endocannabinoid tone in vivo and may explain, in part, its reported efficacy toward epilepsy and other neurological disorders. PMID:25666611
Avraham, Y; Grigoriadis, NC; Poutahidis, T; Vorobiev, L; Magen, I; Ilan, Y; Mechoulam, R; Berry, EM
2011-01-01
BACKGROUND AND PURPOSE Hepatic encephalopathy is a neuropsychiatric disorder of complex pathogenesis caused by acute or chronic liver failure. We investigated the effects of cannabidiol, a non-psychoactive constituent of Cannabis sativa with anti-inflammatory properties that activates the 5-hydroxytryptamine receptor 5-HT1A, on brain and liver functions in a model of hepatic encephalopathy associated with fulminant hepatic failure induced in mice by thioacetamide. EXPERIMENTAL APPROACH Female Sabra mice were injected with either saline or thioacetamide and were treated with either vehicle or cannabidiol. Neurological and motor functions were evaluated 2 and 3 days, respectively, after induction of hepatic failure, after which brains and livers were removed for histopathological analysis and blood was drawn for analysis of plasma liver enzymes. In a separate group of animals, cognitive function was tested after 8 days and brain 5-HT levels were measured 12 days after induction of hepatic failure. KEY RESULTS Neurological and cognitive functions were severely impaired in thioacetamide-treated mice and were restored by cannabidiol. Similarly, decreased motor activity in thioacetamide-treated mice was partially restored by cannabidiol. Increased plasma levels of ammonia, bilirubin and liver enzymes, as well as enhanced 5-HT levels in thioacetamide-treated mice were normalized following cannabidiol administration. Likewise, astrogliosis in the brains of thioacetamide-treated mice was moderated after cannabidiol treatment. CONCLUSIONS AND IMPLICATIONS Cannabidiol restores liver function, normalizes 5-HT levels and improves brain pathology in accordance with normalization of brain function. Therefore, the effects of cannabidiol may result from a combination of its actions in the liver and brain. PMID:21182490
Hallak, Jaime E C; Machado-de-Sousa, João Paulo; Crippa, José Alexandre S; Sanches, Rafael Faria; Trzesniak, Clarissa; Chaves, Cristiano; Bernardo, Sandra Aparecida; Regalo, Simone Cecílio; Zuardi, Antonio Waldo
2010-03-01
The last decade has seen increasing evidence of dysfunctions in the endogenous cannabinoid system in schizophrenia and of its relationship with the typical cognitive impairment of the disorder. Studies in animal models, healthy volunteers, and psychotic patients clearly suggest an antipsychotic-like effect of cannabidiol. This study investigated the effects of cannabidiol on selective attention in 28 schizophrenic patients using the Stroop Color Word Test and on these patients' electrodermal responsiveness to auditive stimuli. The subjects attended two experimental sessions, the first one without the administration of drugs. In the second session the subjects were divided into three groups that received either a single dose of cannabidiol 300 mg or cannabidiol 600 mg or placebo. The three groups did not differ significantly with respect to electrodermal measures in the two experimental sessions. When the first and second sessions were compared improved performance was found in all three groups, with patients who received placebo and cannabidiol 300 mg performing better than those who received cannabidiol 600 mg. The single, acute administration of cannabidiol seems to have no beneficial effects on the performance of schizophrenic patients in the Stroop Color Word Test, although the hypothesis that chronic administration may lead to improvement cannot be disregarded.
Lafuente, Hector; Pazos, Maria R.; Alvarez, Antonia; Mohammed, Nagat; Santos, Martín; Arizti, Maialen; Alvarez, Francisco J.; Martinez-Orgado, Jose A.
2016-01-01
Hypothermia is a standard treatment for neonatal encephalopathy, but nearly 50% of treated infants have adverse outcomes. Pharmacological therapies can act through complementary mechanisms with hypothermia improving neuroprotection. Cannabidiol could be a good candidate. Our aim was to test whether immediate treatment with cannabidiol and hypothermia act through complementary brain pathways in hypoxic-ischemic newborn piglets. Hypoxic-ischemic animals were randomly divided into four groups receiving 30 min after the insult: (1) normothermia and vehicle administration; (2) normothermia and cannabidiol administration; (3) hypothermia and vehicle administration; and (4) hypothermia and cannabidiol administration. Six hours after treatment, brains were processed to quantify the number of damaged neurons by Nissl staining. Proton nuclear magnetic resonance spectra were obtained and analyzed for lactate, N-acetyl-aspartate and glutamate. Metabolite ratios were calculated to assess neuronal damage (lactate/N-acetyl-aspartate) and excitotoxicity (glutamate/Nacetyl-aspartate). Western blot studies were performed to quantify protein nitrosylation (oxidative stress), content of caspase-3 (apoptosis) and TNFα (inflammation). Individually, the hypothermia and the cannabidiol treatments reduced the glutamate/Nacetyl-aspartate ratio, as well as TNFα and oxidized protein levels in newborn piglets subjected to hypoxic-ischemic insult. Also, both therapies reduced the number of necrotic neurons and prevented an increase in lactate/N-acetyl-aspartate ratio. The combined effect of hypothermia and cannabidiol on excitotoxicity, inflammation and oxidative stress, and on cell damage, was greater than either hypothermia or cannabidiol alone. The present study demonstrated that cannabidiol and hypothermia act complementarily and show additive effects on the main factors leading to hypoxic-ischemic brain damage if applied shortly after the insult. PMID:27462203
Avraham, Y; Grigoriadis, Nc; Poutahidis, T; Vorobiev, L; Magen, I; Ilan, Y; Mechoulam, R; Berry, Em
2011-04-01
Hepatic encephalopathy is a neuropsychiatric disorder of complex pathogenesis caused by acute or chronic liver failure. We investigated the effects of cannabidiol, a non-psychoactive constituent of Cannabis sativa with anti-inflammatory properties that activates the 5-hydroxytryptamine receptor 5-HT(1A) , on brain and liver functions in a model of hepatic encephalopathy associated with fulminant hepatic failure induced in mice by thioacetamide. Female Sabra mice were injected with either saline or thioacetamide and were treated with either vehicle or cannabidiol. Neurological and motor functions were evaluated 2 and 3 days, respectively, after induction of hepatic failure, after which brains and livers were removed for histopathological analysis and blood was drawn for analysis of plasma liver enzymes. In a separate group of animals, cognitive function was tested after 8 days and brain 5-HT levels were measured 12 days after induction of hepatic failure. Neurological and cognitive functions were severely impaired in thioacetamide-treated mice and were restored by cannabidiol. Similarly, decreased motor activity in thioacetamide-treated mice was partially restored by cannabidiol. Increased plasma levels of ammonia, bilirubin and liver enzymes, as well as enhanced 5-HT levels in thioacetamide-treated mice were normalized following cannabidiol administration. Likewise, astrogliosis in the brains of thioacetamide-treated mice was moderated after cannabidiol treatment. Cannabidiol restores liver function, normalizes 5-HT levels and improves brain pathology in accordance with normalization of brain function. Therefore, the effects of cannabidiol may result from a combination of its actions in the liver and brain. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
Elmes, Matthew W; Kaczocha, Martin; Berger, William T; Leung, KwanNok; Ralph, Brian P; Wang, Liqun; Sweeney, Joseph M; Miyauchi, Jeremy T; Tsirka, Stella E; Ojima, Iwao; Deutsch, Dale G
2015-04-03
Δ(9)-Tetrahydrocannabinol (THC) and cannabidiol (CBD) occur naturally in marijuana (Cannabis) and may be formulated, individually or in combination in pharmaceuticals such as Marinol or Sativex. Although it is known that these hydrophobic compounds can be transported in blood by albumin or lipoproteins, the intracellular carrier has not been identified. Recent reports suggest that CBD and THC elevate the levels of the endocannabinoid anandamide (AEA) when administered to humans, suggesting that phytocannabinoids target cellular proteins involved in endocannabinoid clearance. Fatty acid-binding proteins (FABPs) are intracellular proteins that mediate AEA transport to its catabolic enzyme fatty acid amide hydrolase (FAAH). By computational analysis and ligand displacement assays, we show that at least three human FABPs bind THC and CBD and demonstrate that THC and CBD inhibit the cellular uptake and catabolism of AEA by targeting FABPs. Furthermore, we show that in contrast to rodent FAAH, CBD does not inhibit the enzymatic actions of human FAAH, and thus FAAH inhibition cannot account for the observed increase in circulating AEA in humans following CBD consumption. Using computational molecular docking and site-directed mutagenesis we identify key residues within the active site of FAAH that confer the species-specific sensitivity to inhibition by CBD. Competition for FABPs may in part or wholly explain the increased circulating levels of endocannabinoids reported after consumption of cannabinoids. These data shed light on the mechanism of action of CBD in modulating the endocannabinoid tone in vivo and may explain, in part, its reported efficacy toward epilepsy and other neurological disorders. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
McMahon, Lance R.
2016-01-01
Background Cannabidiol, a therapeutic with potential serotonin (5-hydroxytryptamine; 5-HT) 5-HT1A receptor agonist activity, is the second most prevalent cannabinoid in Cannabis after Δ9-THC. The extent to which cannabidiol modifies the effects of Δ9-THC has not been firmly established, especially with respect to abuse-related effects in rhesus monkeys where previously antagonistic interactions have been reported for some behavioral outcomes. Methods Cannabidiol and the 5-HT1A receptor agonist (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) were tested in two separate discrimination assays in rhesus monkeys. One group (n=6) discriminated Δ9-tetrahydrocannabinol (Δ9-THC; 0.1 mg/kg i.v.); a second group (n=6) discriminated the cannabinoid antagonist rimonabant (1 mg/kg i.v.) while receiving Δ9-THC daily (1 mg/kg/12 h s.c.). Responding was maintained under a fixed ratio 5 schedule of stimulus-shock termination. Results Both training drugs dose-dependently increased the percentage of responses on the respective drug-associated levers. Cannabidiol (up to 17.8 mg/kg) and 8-OH-DPAT (up to 0.178 mg/kg) did not substitute for either training drug; however, both significantly increased the potency of Δ9-THC to produce discriminative stimulus effects. Moreover, 8-OH-DPAT significantly attenuated the discriminative stimulus effects of rimonabant, whereas cannabidiol did not modify the rimonabant discriminative stimulus. Conclusions These results, which are consistent with cannabidiol lacking CB1 receptor agonist or antagonist activity in vivo, demonstrate enhancement of the effects of Δ9-THC by cannabidiol, albeit at cannabidiol amounts larger than those in Cannabis or cannabidiol-based therapeutics (nabiximols). In addition to showing that cannabidiol and a 5-HT1A receptor agonist have overlapping behavioral effects, the current results suggest that 5-HT1A agonism enhances the CB1 receptor-mediated effects of Δ9-THC. PMID:27289270
McMahon, Lance R
2016-08-01
Cannabidiol, a therapeutic with potential serotonin (5-hydroxytryptamine; 5-HT) 5-HT1A receptor agonist activity, is the second most prevalent cannabinoid in Cannabis after Δ(9)-THC. The extent to which cannabidiol modifies the effects of Δ(9)-THC has not been firmly established, especially with respect to abuse-related effects in rhesus monkeys where previously antagonistic interactions have been reported for some behavioral outcomes. Cannabidiol and the 5-HT1A receptor agonist (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) were tested in two separate discrimination assays in rhesus monkeys. One group (n=6) discriminated Δ(9)-tetrahydrocannabinol (Δ(9)-THC; 0.1mg/kg i.v.); a second group (n=6) discriminated the cannabinoid antagonist rimonabant (1mg/kg i.v.) while receiving Δ(9)-THC daily (1mg/kg/12hs.c.). Responding was maintained under a fixed ratio 5 schedule of stimulus-shock termination. Both training drugs dose-dependently increased the percentage of responses on the respective drug-associated levers. Cannabidiol (up to 17.8mg/kg) and 8-OH-DPAT (up to 0.178mg/kg) did not substitute for either training drug; however, both significantly increased the potency of Δ(9)-THC to produce discriminative stimulus effects. Moreover, 8-OH-DPAT significantly attenuated the discriminative stimulus effects of rimonabant, whereas cannabidiol did not modify the rimonabant discriminative stimulus. These results, which are consistent with cannabidiol lacking CB1 receptor agonist or antagonist activity in vivo, demonstrate enhancement of the effects of Δ(9)-THC by cannabidiol, albeit at cannabidiol amounts larger than those in Cannabis or cannabidiol-based therapeutics (nabiximols). In addition to showing that cannabidiol and a 5-HT1A receptor agonist have overlapping behavioral effects, the current results suggest that 5-HT1A agonism enhances the CB1 receptor-mediated effects of Δ(9)-THC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Yang, Lili; Rozenfeld, Raphael; Wu, Defeng; Devi, Lakshmi A.; Zhang, Zhenfeng; Cederbaum, Arthur
2014-01-01
Acute alcohol drinking induces steatosis, and effective prevention of steatosis can protect liver from progressive damage caused by alcohol. Increased oxidative stress has been reported as one mechanism underlying alcohol-induced steatosis. We evaluated whether cannabidiol, which has been reported to function as an antioxidant, can protect the liver from alcohol-generated oxidative stress-induced steatosis. Cannabidiol can prevent acute alcohol-induced liver steatosis in mice, possibly by preventing the increase in oxidative stress and the activation of the JNK MAPK pathway. Cannabidiol per se can increase autophagy both in CYP2E1-expressing HepG2 cells and in mouse liver. Importantly, cannabidiol can prevent the decrease in autophagy induced by alcohol. In conclusion, these results show that cannabidiol protects mouse liver from acute alcohol-induced steatosis through multiple mechanisms including attenuation of alcohol-mediated oxidative stress, prevention of JNK MAPK activation, and increasing autophagy. PMID:24398069
Lee, Jonathan L C; Bertoglio, Leandro J; Guimarães, Francisco S; Stevenson, Carl W
2017-10-01
Learning to associate cues or contexts with potential threats or rewards is adaptive and enhances survival. Both aversive and appetitive memories are therefore powerful drivers of behaviour, but the inappropriate expression of conditioned responding to fear- and drug-related stimuli can develop into anxiety-related and substance abuse disorders respectively. These disorders are associated with abnormally persistent emotional memories and inadequate treatment, often leading to symptom relapse. Studies show that cannabidiol, the main non-psychotomimetic phytocannabinoid found in Cannabis sativa, reduces anxiety via 5-HT 1A and (indirect) cannabinoid receptor activation in paradigms assessing innate responses to threat. There is also accumulating evidence from animal studies investigating the effects of cannabidiol on fear memory processing indicating that it reduces learned fear in paradigms that are translationally relevant to phobias and post-traumatic stress disorder. Cannabidiol does so by reducing fear expression acutely and by disrupting fear memory reconsolidation and enhancing fear extinction, both of which can result in a lasting reduction of learned fear. Recent studies have also begun to elucidate the effects of cannabidiol on drug memory expression using paradigms with translational relevance to addiction. The findings suggest that cannabidiol reduces the expression of drug memories acutely and by disrupting their reconsolidation. Here, we review the literature demonstrating the anxiolytic effects of cannabidiol before focusing on studies investigating its effects on various fear and drug memory processes. Understanding how cannabidiol regulates emotion and emotional memory processing may eventually lead to its use as a treatment for anxiety-related and substance abuse disorders. Linked Articles This article is part of a themed section on Pharmacology of Cognition: a Panacea for Neuropsychiatric Disease? To view the other articles in this section visit
Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes
Oláh, Attila; Tóth, Balázs I.; Borbíró, István; Sugawara, Koji; Szöllõsi, Attila G.; Czifra, Gabriella; Pál, Balázs; Ambrus, Lídia; Kloepper, Jennifer; Camera, Emanuela; Ludovici, Matteo; Picardo, Mauro; Voets, Thomas; Zouboulis, Christos C.; Paus, Ralf; Bíró, Tamás
2014-01-01
The endocannabinoid system (ECS) regulates multiple physiological processes, including cutaneous cell growth and differentiation. Here, we explored the effects of the major nonpsychotropic phytocannabinoid of Cannabis sativa, (-)-cannabidiol (CBD), on human sebaceous gland function and determined that CBD behaves as a highly effective sebostatic agent. Administration of CBD to cultured human sebocytes and human skin organ culture inhibited the lipogenic actions of various compounds, including arachidonic acid and a combination of linoleic acid and testosterone, and suppressed sebocyte proliferation via the activation of transient receptor potential vanilloid-4 (TRPV4) ion channels. Activation of TRPV4 interfered with the prolipogenic ERK1/2 MAPK pathway and resulted in the downregulation of nuclear receptor interacting protein-1 (NRIP1), which influences glucose and lipid metabolism, thereby inhibiting sebocyte lipogenesis. CBD also exerted complex antiinflammatory actions that were coupled to A2a adenosine receptor-dependent upregulation of tribbles homolog 3 (TRIB3) and inhibition of the NF-κB signaling. Collectively, our findings suggest that, due to the combined lipostatic, antiproliferative, and antiinflammatory effects, CBD has potential as a promising therapeutic agent for the treatment of acne vulgaris. PMID:25061872
Enantiomeric cannabidiol derivatives: synthesis and binding to cannabinoid receptors.
Hanus, Lumír O; Tchilibon, Susanna; Ponde, Datta E; Breuer, Aviva; Fride, Ester; Mechoulam, Raphael
2005-03-21
(-)-Cannabidiol (CBD) is a major, non psychotropic constituent of cannabis. It has been shown to cause numerous physiological effects of therapeutic importance. We have reported that CBD derivatives in both enantiomeric series are of pharmaceutical interest. Here we describe the syntheses of the major CBD metabolites, (-)-7-hydroxy-CBD and (-)-CBD-7-oic acid and their dimethylheptyl (DMH) homologs, as well as of the corresponding compounds in the enantiomeric (+)-CBD series. The starting materials were the respective CBD enantiomers and their DMH homologs. The binding of these compounds to the CB(1) and CB(2) cannabinoid receptors are compared. Surprisingly, contrary to the compounds in the (-) series, which do not bind to the receptors, most of the derivatives in the (+) series bind to the CB(1) receptor in the low nanomole range. Some of these compounds also bind weakly to the CB(2) receptor.
Chen, Jie; Hou, Chen; Chen, Xin; Wang, Dong; Yang, Pinglin; He, Xijing; Zhou, Jinsong; Li, Haopeng
2016-09-01
Cannabidiol, a major component of marijuana, protects nerves, and exerts antispasmodic, anti-inflammatory and anti‑anxiety effects. In the current study, the protective effect of cannabidiol was observed to prevent hydrogen peroxide (H2O2)‑induced apoptosis, inflammation and oxidative stress in nucleus pulposus cells. Nucleus pulposus cells were isolated from rats and cultured in vitro, and H2O2 was used to construct the nucleus pulposus cell model. Cell viability of the nucleus pulposus cells was assessed using a 3‑(4,5-dimethylthiazol-2-yl)-2,5‑diphenyltetrazolium bromide assay. The ratio of apoptotic cells, and caspase‑3 or cyclooxygenase‑2 (COX‑2) mRNA expression was analyzed by annexin V‑fluorescein isothiocyanate/propidium‑iodide staining and reverse transcription‑quantitative polymerase chain reaction, respectively. The quantities of interleukin (IL)‑1β and interleukin‑6 were measured using a series of assay kits. B-cell lymphoma 2 (Bcl‑2) and inducible nitric oxide synthase (iNOS) protein expression levels were analyzed using western blotting. The present study identified that cannabidiol enhanced cell viability and reduced apoptosis in H2O2‑treated nucleus pulposus cells in vitro using a lumbar disc herniation (LDH) model. In addition, cannabidiol reduced caspase‑3 gene expression and augmented the Bcl‑2 protein expression levels in the nucleus pulposus cells following H2O2 exposure. Pre‑treatment with cannabidiol suppressed the promotion of COX‑2, iNOS, IL‑1β and IL‑6 expression in the nucleus pulposus cells following H2O2 exposure. Taken together, these results suggest that cannabidiol potentially exerts its protective effect on LDH via the suppression of anti‑apoptosis, anti‑inflammation and anti‑oxidative activities in nucleus pulposus cells.
Qin, Ning; Neeper, Michael P; Liu, Yi; Hutchinson, Tasha L; Lubin, Mary Lou; Flores, Christopher M
2008-06-11
Transient receptor potential V2 (TRPV2) has been proposed to be a high-threshold thermosensor. However, further elucidation of the channel properties and physiological role of TRPV2 have been hindered by the lack of selective pharmacological tools as well as by the species-dependent differences in the activation of this channel. In the present study, we have used cell-based calcium mobilization and electrophysiological assays to identify and characterize several novel cannabinoid TRPV2 agonists. Among these, cannabidiol was found to be the most robust and potent (EC(50) = 3.7 microM), followed by Delta(9)-tetrahydrocannabinol (EC(50) = 14 microM) and cannabinol (EC(50) = 77.7 microM). We also demonstrated that cannabidiol evoked a concentration-dependent release of calcitonin gene-related peptide (CGRP) from cultured rat dorsal root ganglion neurons in a cannabinoid receptor- and TRPV1-independent manner. Moreover, the cannabidiol-evoked CGRP release depended on extracellular calcium and was blocked by the nonselective TRP channel blocker, ruthenium red. We further provide evidence through the use of small interfering RNA knockdown and repetitive stimulation studies, to show that cannabidiol-evoked CGRP release is mediated, at least in part, by TRPV2. Together, these data suggest not only that TRPV2 may comprise a mechanism whereby cannabidiol exerts its clinically beneficial effects in vivo, but also that TRPV2 may constitute a viable, new drug target.
Cannabidiol-treated rats exhibited higher motor score after cryogenic spinal cord injury.
Kwiatkoski, Marcelo; Guimarães, Francisco Silveira; Del-Bel, Elaine
2012-04-01
Cannabidiol (CBD), a non-psychoactive constituent of cannabis, has been reported to induce neuroprotective effects in several experimental models of brain injury. We aimed at investigating whether this drug could also improve locomotor recovery of rats submitted to spinal cord cryoinjury. Rats were distributed into five experimental groups. Animals were submitted to laminectomy in vertebral segment T10 followed or not by application of liquid nitrogen for 5 s into the spinal cord at the same level to cause cryoinjury. The animals received injections of vehicle or CBD (20 mg/kg) immediately before, 3 h after and daily for 6 days after surgery. The Basso, Beattie, and Bresnahan motor evaluation test was used to assess motor function post-lesion one day before surgery and on the first, third, and seventh postoperative days. The extent of injury was evaluated by hematoxylin-eosin histology and FosB expression. Cryogenic lesion of the spinal cord resulted in a significant motor deficit. Cannabidiol-treated rats exhibited a higher Basso, Beattie, and Bresnahan locomotor score at the end of the first week after spinal cord injury: lesion + vehicle, day 1: zero, day 7: four, and lesion + Cannabidiol 20 mg/kg, day 1: zero, day 7: seven. Moreover, at this moment there was a significant reduction in the extent of tissue injury and FosB expression in the ventral horn of the spinal cord. The present study confirmed that application of liquid nitrogen to the spinal cord induces reproducible and quantifiable spinal cord injury associated with locomotor function impairments. Cannabidiol improved locomotor functional recovery and reduced injury extent, suggesting that it could be useful in the treatment of spinal cord lesions.
Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial.
Devinsky, Orrin; Marsh, Eric; Friedman, Daniel; Thiele, Elizabeth; Laux, Linda; Sullivan, Joseph; Miller, Ian; Flamini, Robert; Wilfong, Angus; Filloux, Francis; Wong, Matthew; Tilton, Nicole; Bruno, Patricia; Bluvstein, Judith; Hedlund, Julie; Kamens, Rebecca; Maclean, Jane; Nangia, Srishti; Singhal, Nilika Shah; Wilson, Carey A; Patel, Anup; Cilio, Maria Roberta
2016-03-01
Almost a third of patients with epilepsy have a treatment-resistant form, which is associated with severe morbidity and increased mortality. Cannabis-based treatments for epilepsy have generated much interest, but scientific data are scarce. We aimed to establish whether addition of cannabidiol to existing anti-epileptic regimens would be safe, tolerated, and efficacious in children and young adults with treatment-resistant epilepsy. In this open-label trial, patients (aged 1-30 years) with severe, intractable, childhood-onset, treatment-resistant epilepsy, who were receiving stable doses of antiepileptic drugs before study entry, were enrolled in an expanded-access programme at 11 epilepsy centres across the USA. Patients were given oral cannabidiol at 2-5 mg/kg per day, up-titrated until intolerance or to a maximum dose of 25 mg/kg or 50 mg/kg per day (dependent on study site). The primary objective was to establish the safety and tolerability of cannabidiol and the primary efficacy endpoint was median percentage change in the mean monthly frequency of motor seizures at 12 weeks. The efficacy analysis was by modified intention to treat. Comparisons of the percentage change in frequency of motor seizures were done with a Mann-Whitney U test. Between Jan 15, 2014, and Jan 15, 2015, 214 patients were enrolled; 162 (76%) patients who had at least 12 weeks of follow-up after the first dose of cannabidiol were included in the safety and tolerability analysis, and 137 (64%) patients were included in the efficacy analysis. In the safety group, 33 (20%) patients had Dravet syndrome and 31 (19%) patients had Lennox-Gastaut syndrome. The remaining patients had intractable epilepsies of different causes and type. Adverse events were reported in 128 (79%) of the 162 patients within the safety group. Adverse events reported in more than 10% of patients were somnolence (n=41 [25%]), decreased appetite (n=31 [19%]), diarrhoea (n=31 [19%]), fatigue (n=21 [13%]), and convulsion (n
Esposito, Giuseppe; De Filippis, Daniele; Carnuccio, Rosa; Izzo, Angelo A; Iuvone, Teresa
2006-03-01
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. A massive accumulation of beta-amyloid (Abeta) peptide aggregates has been proposed as pivotal event in AD. Abeta-induced toxicity is accompanied by a variegated combination of events including oxidative stress. The Wnt pathway has multiple actions in the cascade of events triggered by Abeta, and drugs that rescue Wnt activity may be considered as novel therapeutics for AD treatment. Cannabidiol, a non-psychoactive marijuana component, has been recently proposed as an antioxidant neuroprotective agent in neurodegenerative diseases. Moreover, it has been shown to rescue PC12 cells from toxicity induced by Abeta peptide. However, the molecular mechanism of cannabidiol-induced neuroprotective effect is still unknown. Here, we report that cannabidiol inhibits hyperphosphorylation of tau protein in Abeta-stimulated PC12 neuronal cells, which is one of the most representative hallmarks in AD. The effect of cannabidiol is mediated through the Wnt/beta-catenin pathway rescue in Abeta-stimulated PC12 cells. These results provide new molecular insight regarding the neuroprotective effect of cannabidiol and suggest its possible role in the pharmacological management of AD, especially in view of its low toxicity in humans.
Lukhele, Sindiswa T; Motadi, Lesetja R
2016-09-01
Cervical cancer remains a global health related issue among females of Sub-Saharan Africa, with over half a million new cases reported each year. Different therapeutic regimens have been suggested in various regions of Africa, however, over a quarter of a million women die of cervical cancer, annually. This makes it the most lethal cancer amongst black women and calls for urgent therapeutic strategies. In this study we compare the anti-proliferative effects of crude extract of Cannabis sativa and its main compound cannabidiol on different cervical cancer cell lines. To achieve our aim, phytochemical screening, MTT assay, cell growth analysis, flow cytometry, morphology analysis, Western blot, caspase 3/7 assay, and ATP measurement assay were conducted. Results obtained indicate that both cannabidiol and Cannabis sativa extracts were able to halt cell proliferation in all cell lines at varying concentrations. They further revealed that apoptosis was induced by cannabidiol as shown by increased subG0/G1 and apoptosis through annexin V. Apoptosis was confirmed by overexpression of p53, caspase 3 and bax. Apoptosis induction was further confirmed by morphological changes, an increase in Caspase 3/7 and a decrease in the ATP levels. In conclusion, these data suggest that cannabidiol rather than Cannabis sativa crude extracts prevent cell growth and induce cell death in cervical cancer cell lines.
Eichler, Martin; Spinedi, Luca; Unfer-Grauwiler, Sandra; Bodmer, Michael; Surber, Christian; Luedi, Markus; Drewe, Juergen
2012-05-01
The most important psychoactive constituent of CANNABIS SATIVA L. is Δ (9)-tetrahydrocannabinol (THC). Cannabidiol (CBD), another important constituent, is able to modulate the distinct unwanted psychotropic effect of THC. In natural plant extracts of C. SATIVA, large amounts of THC and CBD appear in the form of THCA-A (THC-acid-A) and CBDA (cannabidiolic acid), which can be transformed to THC and CBD by heating. Previous reports of medicinal use of cannabis or cannabis preparations with higher CBD/THC ratios and use in its natural, unheated form have demonstrated that pharmacological effects were often accompanied with a lower rate of adverse effects. Therefore, in the present study, the pharmacokinetics and metabolic profiles of two different C. SATIVA extracts (heated and unheated) with a CBD/THC ratio > 1 were compared to synthetic THC (dronabinol) in a double-blind, randomized, single center, three-period cross-over study involving 9 healthy male volunteers. The pharmacokinetics of the cannabinoids was highly variable. The metabolic pattern was significantly different after administration of the different forms: the heated extract showed a lower median THC plasma AUC (24 h) than the unheated extract of 2.84 vs. 6.59 pmol h/mL, respectively. The later was slightly higher than that of dronabinol (4.58 pmol h/mL). On the other hand, the median sum of the metabolites (THC, 11-OH-THC, THC-COOH, CBN) plasma AUC (24 h) was higher for the heated than for the unheated extract. The median CBD plasma AUC (24 h) was almost 2-fold higher for the unheated than for the heated extract. These results indicate that use of unheated extracts may lead to a beneficial change in metabolic pattern and possibly better tolerability. © Georg Thieme Verlag KG Stuttgart · New York.
Cannabidiol, neuroprotection and neuropsychiatric disorders.
Campos, Alline C; Fogaça, Manoela V; Sonego, Andreza B; Guimarães, Francisco S
2016-10-01
Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid derived from Cannabis sativa. It has possible therapeutic effects over a broad range of neuropsychiatric disorders. CBD attenuates brain damage associated with neurodegenerative and/or ischemic conditions. It also has positive effects on attenuating psychotic-, anxiety- and depressive-like behaviors. Moreover, CBD affects synaptic plasticity and facilitates neurogenesis. The mechanisms of these effects are still not entirely clear but seem to involve multiple pharmacological targets. In the present review, we summarized the main biochemical and molecular mechanisms that have been associated with the therapeutic effects of CBD, focusing on their relevance to brain function, neuroprotection and neuropsychiatric disorders. Copyright © 2016. Published by Elsevier Ltd.
Thiele, Elizabeth A; Marsh, Eric D; French, Jacqueline A; Mazurkiewicz-Beldzinska, Maria; Benbadis, Selim R; Joshi, Charuta; Lyons, Paul D; Taylor, Adam; Roberts, Claire; Sommerville, Kenneth
2018-03-17
Patients with Lennox-Gastaut syndrome, a rare, severe form of epileptic encephalopathy, are frequently treatment resistant to available medications. No controlled studies have investigated the use of cannabidiol for patients with seizures associated with Lennox-Gastaut syndrome. We therefore assessed the efficacy and safety of cannabidiol as an add-on anticonvulsant therapy in this population of patients. In this randomised, double-blind, placebo-controlled trial done at 24 clinical sites in the USA, the Netherlands, and Poland, we investigated the efficacy of cannabidiol as add-on therapy for drop seizures in patients with treatment-resistant Lennox-Gastaut syndrome. Eligible patients (aged 2-55 years) had Lennox-Gastaut syndrome, including a history of slow (<3 Hz) spike-and-wave patterns on electroencephalogram, evidence of more than one type of generalised seizure for at least 6 months, at least two drop seizures per week during the 4-week baseline period, and had not responded to treatment with at least two antiepileptic drugs. Patients were randomly assigned (1:1) using an interactive voice response system, stratified by age group, to receive 20 mg/kg oral cannabidiol daily or matched placebo for 14 weeks. All patients, caregivers, investigators, and individuals assessing data were masked to group assignment. The primary endpoint was percentage change from baseline in monthly frequency of drop seizures during the treatment period, analysed in all patients who received at least one dose of study drug and had post-baseline efficacy data. All randomly assigned patients were included in the safety analyses. This study is registered with ClinicalTrials.gov, number NCT02224690. Between April 28, 2015, and Oct 15, 2015, we randomly assigned 171 patients to receive cannabidiol (n=86) or placebo (n=85). 14 patients in the cannabidiol group and one in the placebo group discontinued study treatment; all randomly assigned patients received at least one dose of study
Cannabidiol: an overview of some pharmacological aspects.
Mechoulam, Raphael; Parker, Linda A; Gallily, Ruth
2002-11-01
Over the past few years, considerable attention has focused on cannabidiol (CBD), a major nonpsychotropic constituent of cannabis. The authors present a review on the chemistry of CBD and discuss the anticonvulsive, antianxiety, antipsychotic, antinausea, and antirheumatoid arthritic properties of CBD. CBD does not bind to the known cannabinoid receptors, and its mechanism of action is yet unknown. It is possible that, in part at least, its effects are due to its recently discovered inhibition of anandamide uptake and hydrolysis and to its antioxidative effect.
Gigli, Stefano; Seguella, Luisa; Pesce, Marcella; Bruzzese, Eugenia; D'Alessandro, Alessandra; Cuomo, Rosario; Steardo, Luca; Sarnelli, Giovanni; Esposito, Giuseppe
2017-12-01
Clostridium difficile toxin A is responsible for colonic damage observed in infected patients. Drugs able to restore Clostridium difficile toxin A-induced toxicity have the potential to improve the recovery of infected patients. Cannabidiol is a non-psychotropic component of Cannabis sativa, which has been demonstrated to protect enterocytes against chemical and/or inflammatory damage and to restore intestinal mucosa integrity. The purpose of this study was to evaluate (a) the anti-apoptotic effect and (b) the mechanisms by which cannabidiol protects mucosal integrity in Caco-2 cells exposed to Clostridium difficile toxin A. Caco-2 cells were exposed to Clostridium difficile toxin A (30 ng/ml), with or without cannabidiol (10 -7 -10 -9 M), in the presence of the specific antagonist AM251 (10 -7 M). Cytotoxicity assay, transepithelial electrical resistence measurements, immunofluorescence analysis and immunoblot analysis were performed in the different experimental conditions. Clostridium difficile toxin A significantly decreased Caco-2 cells' viability and reduced transepithelial electrical resistence values and RhoA guanosine triphosphate (GTP), bax, zonula occludens-1 and occludin protein expression, respectively. All these effects were significantly and concentration-dependently inhibited by cannabidiol, whose effects were completely abolished in the presence of the cannabinoid receptor type 1 (CB1) antagonist, AM251. Cannabidiol improved Clostridium difficile toxin A-induced damage in Caco-2 cells, by inhibiting the apoptotic process and restoring the intestinal barrier integrity, through the involvement of the CB1 receptor.
Takeda, Shuso; Usami, Noriyuki; Yamamoto, Ikuo; Watanabe, Kazuhito
2009-08-01
The inhibitory effect of nordihydroguaiaretic acid (NDGA) (a nonselective lipoxygenase (LOX) inhibitor)-mediated 15-LOX inhibition has been reported to be affected by modification of its catechol ring, such as methylation of the hydroxyl group. Cannabidiol (CBD), one of the major components of marijuana, is known to inhibit LOX activity. Based on the phenomenon observed in NDGA, we investigated whether or not methylation of CBD affects its inhibitory potential against 15-LOX, because CBD contains a resorcinol ring, which is an isomer of catechol. Although CBD inhibited 15-LOX activity with an IC(50) value (50% inhibition concentration) of 2.56 microM, its monomethylated and dimethylated derivatives, CBD-2'-monomethyl ether and CBD-2',6'-dimethyl ether (CBDD), inhibited 15-LOX activity more strongly than CBD. The number of methyl groups in the resorcinol moiety of CBD (as a prototype) appears to be a key determinant for potency and selectivity in inhibition of 15-LOX. The IC(50) value of 15-LOX inhibition by CBDD is 0.28 microM, and the inhibition selectivity for 15-LOX (i.e., the 5-LOX/15-LOX ratio of IC(50) values) is more than 700. Among LOX isoforms, 15-LOX is known to be able to oxygenate cholesterol esters in the low-density lipoprotein (LDL) particle (i.e., the formation of oxidized LDL). Thus, 15-LOX is suggested to be involved in development of atherosclerosis, and CBDD may be a useful prototype for producing medicines for atherosclerosis.
Iuvone, Teresa; Esposito, Giuseppe; Esposito, Ramona; Santamaria, Rita; Di Rosa, Massimo; Izzo, Angelo A
2004-04-01
Abstract Alzheimer's disease is widely held to be associated with oxidative stress due, in part, to the membrane action of beta-amyloid peptide aggregates. Here, we studied the effect of cannabidiol, a major non-psychoactive component of the marijuana plant (Cannabis sativa) on beta-amyloid peptide-induced toxicity in cultured rat pheocromocytoma PC12 cells. Following exposure of cells to beta-amyloid peptide (1 micro g/mL), a marked reduction in cell survival was observed. This effect was associated with increased reactive oxygen species (ROS) production and lipid peroxidation, as well as caspase 3 (a key enzyme in the apoptosis cell-signalling cascade) appearance, DNA fragmentation and increased intracellular calcium. Treatment of the cells with cannabidiol (10(-7)-10(-4)m) prior to beta-amyloid peptide exposure significantly elevated cell survival while it decreased ROS production, lipid peroxidation, caspase 3 levels, DNA fragmentation and intracellular calcium. Our results indicate that cannabidiol exerts a combination of neuroprotective, anti-oxidative and anti-apoptotic effects against beta-amyloid peptide toxicity, and that inhibition of caspase 3 appearance from its inactive precursor, pro-caspase 3, by cannabidiol is involved in the signalling pathway for this neuroprotection.
Cannabidiol in medical marijuana: Research vistas and potential opportunities.
Rong, Carola; Lee, Yena; Carmona, Nicole E; Cha, Danielle S; Ragguett, Renee-Marie; Rosenblat, Joshua D; Mansur, Rodrigo B; Ho, Roger C; McIntyre, Roger S
2017-07-01
The high and increasing prevalence of medical marijuana consumption in the general population invites the need for quality evidence regarding its safety and efficacy. Herein, we synthesize extant literature pertaining to the phytocannabinoid cannabidiol (CBD) and its brain effects. The principle phytocannabinoid Δ 9 -tetrahydrocannabinol (Δ 9 -THC) and CBD are the major pharmacologically active cannabinoids. The effect of CBD on brain systems as well as on phenomenological measures (e.g. cognitive function) are distinct and in many cases opposite to that of Δ 9 -THC. Cannabidiol is without euphoriant properties, and exerts antipsychotic, anxiolytic, anti-seizure, as well as anti-inflammatory properties. It is essential to parcellate phytocannabinoids into their constituent moieties as the most abundant cannabinoid have differential effects on physiologic systems in psychopathology measures. Disparate findings and reports related to effects of cannabis consumption reflect differential relative concentration of Δ 9 -THC and CBD. Existing literature, notwithstanding its deficiencies, provides empirical support for the hypothesis that CBD may exert beneficial effects on brain effector systems/substrates subserving domain-based phenomenology. Interventional studies with purified CBD are warranted with a call to target-engagement proof-of-principle studies using the research domain criteria (RDoC) framework. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shannon, Scott; Opila-Lehman, Janet
2016-01-01
Anxiety and sleep disorders are often the result of posttraumatic stress disorder and can contribute to an impaired ability to focus and to demonstration of oppositional behaviors. These symptoms were present in our patient, a ten-year-old girl who was sexually abused and had minimal parental supervision as a young child under the age of five. Pharmaceutical medications provided partial relief, but results were not long-lasting, and there were major side effects. A trial of cannabidiol oil resulted in a maintained decrease in anxiety and a steady improvement in the quality and quantity of the patient's sleep. Cannabidiol oil, an increasingly popular treatment of anxiety and sleep issues, has been documented as being an effective alternative to pharmaceutical medications. This case study provides clinical data that support the use of cannabidiol oil as a safe treatment for reducing anxiety and improving sleep in a young girl with posttraumatic stress disorder.
Juknat, Ana; Kozela, Ewa; Kaushansky, Nathali; Mechoulam, Raphael; Vogel, Zvi
2016-05-01
Dimethylheptyl-cannabidiol (DMH-CBD), a non-psychoactive, synthetic derivative of the phytocannabinoid cannabidiol (CBD), has been reported to be anti-inflammatory in RAW macrophages. Here, we evaluated the effects of DMH-CBD at the transcriptional level in BV-2 microglial cells as well as on the proliferation of encephalitogenic T cells. BV-2 cells were pretreated with DMH-CBD, followed by stimulation with the endotoxin lipopolysaccharide (LPS). The expression levels of selected genes involved in stress regulation and inflammation were determined by quantitative real-time PCR. In addition, MOG35-55-reactive T cells (TMOG) were cultured with antigen-presenting cells in the presence of DMH-CBD and MOG35-55 peptide, and cell proliferation was determined by measuring [3H]thymidine incorporation. DMH-CBD treatment downregulated in a dose-dependent manner the mRNA expression of LPS-upregulated pro-inflammatory genes (Il1b, Il6, and Tnf) in BV-2 microglial cells. The expression of these genes was also downregulated by DMH-CBD in unstimulated cells. In parallel, DMH-CBD upregulated the expression of genes related to oxidative stress and glutathione homeostasis such as Trb3, Slc7a11/xCT, Hmox1, Atf4, Chop, and p8 in both stimulated and unstimulated microglial cells. In addition, DMH-CBD dose-dependently inhibited MOG35-55-induced TMOG proliferation. The results show that DMH-CBD has similar anti-inflammatory properties to those of CBD. DMH-CBD downregulates the expression of inflammatory cytokines and protects the microglial cells by inducing an adaptive cellular response against inflammatory stimuli and oxidative injury. In addition, DMH-CBD decreases the proliferation of pathogenic activated TMOG cells.
Khaksar, Sepideh; Bigdeli, Mohammad Reza
2017-01-05
Excitotoxicity and imbalance of sodium and calcium homeostasis trigger pathophysiologic processes in cerebral ischemia which can accelerate neuronal death. Neuroprotective role of cannabidiol (CBD), one of the main non-psychoactive phytocannabinoids of the cannabis plant, has attracted attention of many researchers in the neurodegenerative diseases studies. The present investigation was designed to determine whether cannabidiol can alleviate the severity of ischemic damages and if it is able to exert its anti-excitotoxic effects through sodium and calcium regulation. By using stereotaxic surgery, a guide cannula was implanted into the lateral ventricle. Cannabidiol (50, 100, and 200ng/rat; i.c.v.) was administrated for 5 consecutive days. After pretreatment, the rats were subjected to 60min of right middle cerebral artery occlusion (MCAO). After 24h, neurological deficits score, infarct volume, brain edema, and blood-brain barrier (BBB) permeability in total of hemisphere, cortex, piriform cortex-amygdala, and striatum were assessed. The expression of Na + /Ca 2+ exchangers (NCXs) protein as an endogenous target in these regions was also studied. The present results indicate that administration of cannabidiol (100 and 200ng/rat) in the MCAO-induced cerebral ischemia caused a remarkable reduction in neurological deficit, infarction, brain edema, and BBB permeability in comparison with the vehicle group. Up-regulation of NCX2 and NCX3 in cannabidiol-received groups was also observed. These findings support the view that the reduction of ischemic injuries elicited by cannabidiol can be at least partly due to the enhancement of NCX protein expression and its cerebro-protective role in those cerebral territories supplied by MCA. Copyright © 2016 Elsevier B.V. All rights reserved.
Cannabidiol as potential anticancer drug
Massi, Paola; Solinas, Marta; Cinquina, Valentina; Parolaro, Daniela
2013-01-01
Over the past years, several lines of evidence support an antitumourigenic effect of cannabinoids including Δ9-tetrahydrocannabinol (Δ9-THC), synthetic agonists, endocannabinoids and endocannabinoid transport or degradation inhibitors. Indeed, cannabinoids possess anti-proliferative and pro-apoptotic effects and they are known to interfere with tumour neovascularization, cancer cell migration, adhesion, invasion and metastasization. However, the clinical use of Δ9-THC and additional cannabinoid agonists is often limited by their unwanted psychoactive side effects, and for this reason interest in non-psychoactive cannabinoid compounds with structural affinity for Δ9-THC, such as cannabidiol (CBD), has substantially increased in recent years. The present review will focus on the efficacy of CBD in the modulation of different steps of tumourigenesis in several types of cancer and highlights the importance of exploring CBD/CBD analogues as alternative therapeutic agents. PMID:22506672
Oral cannabidiol does not produce a signal for abuse liability in frequent marijuana smokers
Babalonis, Shanna; Haney, Margaret; Malcolm, Robert J.; Lofwall, Michelle R.; Votaw, Victoria R.; Sparenborg, Steven; Walsh, Sharon L.
2017-01-01
Background Cannabidiol (CBD) is a naturally occurring constituent of the marijuana plant. In the past few years, there has been great interest in the therapeutic effects of isolated CBD and it is currently being explored for numerous disease conditions (e.g., pain, epilepsy, cancer, various drug dependencies). However, CBD remains a Schedule I drug on the U.S. Controlled Substances Act (CSA). Despite its status, there are no well-controlled data available regarding its abuse liability. Methods Healthy, frequent marijuana users (n=31) were enrolled in this within subject, randomized, placebo-controlled, double-blind, multisite study that administered oral cannabidiol (0, 200, 400, 800 mg) alone and in combination with smoked marijuana (0.01%, 5.3-5.8% THC). Participants received one dose combination across 8 once-weekly outpatient sessions (7.5 hrs). The primary findings on the drug interaction effects were previously reported (Haney et al., 2016). The present study is a secondary analysis of the data to examine the abuse liability profile of oral cannabidiol (200, 400, 800 mg) in comparison to oral placebo and active smoked marijuana (5.3-5.8% THC). Results Active marijuana reliably produced abuse-related subjective effects (e.g., high) (p<.05). However, CBD was placebo-like on all measures collected (p>.05). Conclusions Overall, CBD did not display any signals of abuse liability at the doses tested and these data may help inform U.S. regulatory decisions regarding CBD schedule on the CSA. PMID:28088032
Safety and side effects of cannabidiol, a Cannabis sativa constituent.
Bergamaschi, Mateus Machado; Queiroz, Regina Helena Costa; Zuardi, Antonio Waldo; Crippa, José Alexandre S
2011-09-01
Cannabidiol (CBD), a major nonpsychotropic constituent of Cannabis, has multiple pharmacological actions, including anxiolytic, antipsychotic, antiemetic and anti-inflammatory properties. However, little is known about its safety and side effect profile in animals and humans. This review describes in vivo and in vitro reports of CBD administration across a wide range of concentrations, based on reports retrieved from Web of Science, Scielo and Medline. The keywords searched were "cannabinoids", "cannabidiol" and "side effects". Several studies suggest that CBD is non-toxic in non-transformed cells and does not induce changes on food intake, does not induce catalepsy, does not affect physiological parameters (heart rate, blood pressure and body temperature), does not affect gastrointestinal transit and does not alter psychomotor or psychological functions. Also, chronic use and high doses up to 1,500 mg/day of CBD are reportedly well tolerated in humans. Conversely, some studies reported that this cannabinoid can induce some side effects, including inhibition of hepatic drug metabolism, alterations of in vitro cell viability, decreased fertilization capacity, and decreased activities of p-glycoprotein and other drug transporters. Based on recent advances in cannabinoid administration in humans, controlled CBD may be safe in humans and animals. However, further studies are needed to clarify these reported in vitro and in vivo side effects.
Cannabidiol in humans-the quest for therapeutic targets.
Zhornitsky, Simon; Potvin, Stéphane
2012-05-21
Cannabidiol (CBD), a major phytocannabinoid constituent of cannabis, is attracting growing attention in medicine for its anxiolytic, antipsychotic, antiemetic and anti-inflammatory properties. However, up to this point, a comprehensive literature review of the effects of CBD in humans is lacking. The aim of the present systematic review is to examine the randomized and crossover studies that administered CBD to healthy controls and to clinical patients. A systematic search was performed in the electronic databases PubMed and EMBASE using the key word "cannabidiol". Both monotherapy and combination studies (e.g., CBD + ∆9-THC) were included. A total of 34 studies were identified: 16 of these were experimental studies, conducted in healthy subjects, and 18 were conducted in clinical populations, including multiple sclerosis (six studies), schizophrenia and bipolar mania (four studies), social anxiety disorder (two studies), neuropathic and cancer pain (two studies), cancer anorexia (one study), Huntington's disease (one study), insomnia (one study), and epilepsy (one study). Experimental studies indicate that a high-dose of inhaled/intravenous CBD is required to inhibit the effects of a lower dose of ∆9-THC. Moreover, some experimental and clinical studies suggest that oral/oromucosal CBD may prolong and/or intensify ∆9-THC-induced effects, whereas others suggest that it may inhibit ∆9-THC-induced effects. Finally, preliminary clinical trials suggest that high-dose oral CBD (150-600 mg/d) may exert a therapeutic effect for social anxiety disorder, insomnia and epilepsy, but also that it may cause mental sedation. Potential pharmacokinetic and pharmacodynamic explanations for these results are discussed.
Uribe-Mariño, Andrés; Francisco, Audrey; Castiblanco-Urbina, Maria Angélica; Twardowschy, André; Salgado-Rohner, Carlos José; Crippa, José Alexandre S; Hallak, Jaime Eduardo Cecílio; Zuardi, Antônio Waldo; Coimbra, Norberto Cysne
2012-01-01
Several pharmacological targets have been proposed as modulators of panic-like reactions. However, interest should be given to other potential therapeutic neurochemical agents. Recent attention has been given to the potential anxiolytic properties of cannabidiol, because of its complex actions on the endocannabinoid system together with its effects on other neurotransmitter systems. The aim of this study was to investigate the effects of cannabidiol on innate fear-related behaviors evoked by a prey vs predator paradigm. Male Swiss mice were submitted to habituation in an arena containing a burrow and subsequently pre-treated with intraperitoneal administrations of vehicle or cannabidiol. A constrictor snake was placed inside the arena, and defensive and non-defensive behaviors were recorded. Cannabidiol caused a clear anti-aversive effect, decreasing explosive escape and defensive immobility behaviors outside and inside the burrow. These results show that cannabidiol modulates defensive behaviors evoked by the presence of threatening stimuli, even in a potentially safe environment following a fear response, suggesting a panicolytic effect. PMID:21918503
Twardowschy, André; Castiblanco-Urbina, Maria Angélica; Uribe-Mariño, Andres; Biagioni, Audrey Francisco; Salgado-Rohner, Carlos José; Crippa, José Alexandre de Souza; Coimbra, Norberto Cysne
2013-12-01
The potential anxiolytic and antipanic properties of cannabidiol have been shown; however, its mechanism of action seems to recruit other receptors than those involved in the endocannabinoid-mediated system. It was recently shown that the model of panic-like behaviors elicited by the encounters between mice and snakes is a good tool to investigate innate fear-related responses, and cannabidiol causes a panicolytic-like effect in this model. The aim of the present study was to investigate the 5-hydroxytryptamine (5-HT) co-participation in the panicolytic-like effects of cannabidiol on the innate fear-related behaviors evoked by a prey versus predator interaction-based paradigm. Male Swiss mice were treated with intraperitoneal (i.p.) administrations of cannabidiol (3 mg/kg, i.p.) and its vehicle and the effects of the peripheral pre-treatment with increasing doses of the 5-HT1A receptor antagonist WAY-100635 (0.1, 0.3 and 0.9 mg/kg, i.p.) on instinctive fear-induced responses evoked by the presence of a wild snake were evaluated. The present results showed that the panicolytic-like effects of cannabidiol were blocked by the pre-treatment with WAY-100635 at different doses. These findings demonstrate that cannabidiol modulates the defensive behaviors evoked by the presence of threatening stimuli, and the effects of cannabidiol are at least partially dependent on the recruitment of 5-HT1A receptors.
Ribeiro, Alison; Ferraz-de-Paula, Viviane; Pinheiro, Milena L; Vitoretti, Luana B; Mariano-Souza, Domenica P; Quinteiro-Filho, Wanderley M; Akamine, Adriana T; Almeida, Vinícius I; Quevedo, João; Dal-Pizzol, Felipe; Hallak, Jaime E; Zuardi, Antônio W; Crippa, José A; Palermo-Neto, João
2012-03-05
Acute lung injury is an inflammatory condition for which treatment is mainly supportive because effective therapies have not been developed. Cannabidiol, a non-psychotropic cannabinoid component of marijuana (Cannabis sativa), has potent immunosuppressive and anti-inflammatory properties. Therefore, we investigated the possible anti-inflammatory effect of cannabidiol in a murine model of acute lung injury. Analysis of total inflammatory cells and differential in bronchoalveolar lavage fluid was used to characterize leukocyte migration into the lungs; myeloperoxidase activity of lung tissue and albumin concentration in the bronchoalveolar lavage fluid were analyzed by colorimetric assays; cytokine/chemokine production in the bronchoalveolar lavage fluid was also analyzed by Cytometric Bead Arrays and Enzyme-Linked Immunosorbent Assay (ELISA). A single dose of cannabidiol (20mg/kg) administered prior to the induction of LPS (lipopolysaccharide)-induced acute lung injury decreases leukocyte (specifically neutrophil) migration into the lungs, albumin concentration in the bronchoalveolar lavage fluid, myeloperoxidase activity in the lung tissue, and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) 1, 2, and 4days after the induction of LPS-induced acute lung injury. Additionally, adenosine A(2A) receptor is involved in the anti-inflammatory effects of cannabidiol on LPS-induced acute lung injury because ZM241385 (4-(2-[7-Amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol) (a highly selective antagonist of adenosine A(2A) receptor) abrogated all of the anti-inflammatory effects of cannabidiol previously described. Thus, we show that cannabidiol has anti-inflammatory effects in a murine model of acute lung injury and that this effect is most likely associated with an increase in the extracellular adenosine offer and signaling through adenosine A(2A) receptor. Copyright © 2012 Elsevier B.V. All rights
Cannabidiol as a potential treatment for psychosis.
Schubart, C D; Sommer, I E C; Fusar-Poli, P; de Witte, L; Kahn, R S; Boks, M P M
2014-01-01
Although cannabis use is associated with an increased risk of developing psychosis, the cannabis constituent cannabidiol (CBD) may have antipsychotic properties. This review concisely describes the role of the endocannabinoid system in the development of psychosis and provides an overview of currently available animal, human experimental, imaging, epidemiological and clinical studies that investigated the antipsychotic properties of CBD. In this targeted literature review we performed a search for English articles using Medline and EMBASE. Studies were selected if they described experiments with psychosis models, psychotic symptoms or psychotic disorders as outcome measure and involved the use of CBD as intervention. Evidence from several research domains suggests that CBD shows potential for antipsychotic treatment. © 2013 Published by Elsevier B.V. and ECNP.
The legal status of cannabis (marijuana) and cannabidiol (CBD) under U.S. law.
Mead, Alice
2017-05-01
In the United States, federal and state laws regarding the medical use of cannabis and cannabinoids are in conflict and have led to confusion among patients, caregivers, and healthcare providers. Currently, cannabis is legal for medical purposes in 50% of the states, and another seventeen states allow products that are high in cannabidiol (CBD) and low in THC (tetrahydrocannabinol) for medical use. Many of these artisanal products are sold in dispensaries or over the internet. However, none of these products has been approved by the Food and Drug Administration (FDA). Understanding how federal laws apply to clinical research and practice can be challenging, and the complexity of these laws has resulted in particular confusion regarding the legal status of CBD. This paper provides an up-to-date overview (as of August 2016) of the legal aspects of cannabis and cannabidiol, including cultivation, manufacture, distribution, and use for medical purposes. This article is part of a Special Issue title, Cannabinoids and Epilepsy. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.
Cannabidiol as potential treatment in refractory pediatric epilepsy.
Paolino, Maria Chiara; Ferretti, Alessandro; Papetti, Laura; Villa, Maria Pia; Parisi, Pasquale
2016-01-01
In recent years there has been great scientific and public interest focused on the therapeutic potential of compounds derived from cannabis for the treatment of refractory epilepsy in children. From in vitro and in vivo studies on animal models, cannabidiol (CBD) appears to be a promising anticonvulsant drug with a favorable side-effect profile. In humans, CBD efficacy and safety is not supported by well-designed trials and its use has been described by anecdotal reports. It will be necessary to investigate CBD safety, pharmacokinetics and interaction with other anti-epileptic drugs (AEDs) alongside performing double-blinded placebo-controlled trials in order to obtain conclusive data on its efficacy and safety in children.
Takeda, Shuso; Hirayama, Akari; Urata, Shino; Mano, Nobutaka; Fukagawa, Keiko; Imamura, Midori; Irii, Ayumi; Kitajima, Satomi; Masuyama, Tomoko; Nomiyama, Mai; Tatei, Sachiko; Tomita, Saari; Kudo, Taichi; Noguchi, Momoko; Yamaguchi, Yasuhiro; Okamoto, Yoshiko; Amamoto, Toshiaki; Fukunishi, Yoshifumi; Watanabe, Kazuhito; Omiecinski, Curtis John; Aramaki, Hironori
2011-01-01
15-Lipoxygenase (15-LOX) is one of the key enzymes responsible for the formation of oxidized low-density lipoprotein (ox-LDL), a major causal factor for atherosclerosis. Both enzymatic (15-LOX) and non-enzymatic (Cu(2+)) mechanisms have been proposed for the production of ox-LDL. We have recently reported that cannabidiol-2',6'-dimethyl ether (CBDD) is a selective and potent inhibitor of 15-LOX-catalyzed linoleic acid oxygenation (Takeda et al., Drug Metab. Dispos., 37, 1733-1737 (2009)). In the LDL, linoleic acid is present as cholesteryl linoleate, the major fatty acid esterified to cholesterol, and is susceptible to oxidative modification by 15-LOX or Cu(2+). In this investigation, we examined the efficacy of CBDD on i) 15-LOX-catalyzed oxygenation of cholesteryl linoleate, and ii) ox-LDL formation catalyzed by 15-LOX versus Cu(2+)-mediated non-enzymatic generation of this important mediator. The results obtained demonstrate that CBDD is a potent and selective inhibitor of ox-LDL formation generated by the 15-LOX pathway. These studies establish CBDD as both an important experimental tool for characterizing 15-LOX-mediated ox-LDL formation, and as a potentially useful therapeutic agent for treatment of atherosclerosis.
Cannabidiol Activates Neuronal Precursor Genes in Human Gingival Mesenchymal Stromal Cells.
Soundara Rajan, Thangavelu; Giacoppo, Sabrina; Scionti, Domenico; Diomede, Francesca; Grassi, Gianpaolo; Pollastro, Federica; Piattelli, Adriano; Bramanti, Placido; Mazzon, Emanuela; Trubiani, Oriana
2017-06-01
In the last years, mesenchymal stromal cells (MSCs) from oral tissues have received considerable interest in regenerative medicine since they can be obtained with minimal invasive procedure and exhibit immunomodulatory properties. This study was aimed to investigate whether in vitro pre-treatment of MSCs obtained from human gingiva (hGMSCs) with Cannabidiol (CBD), a cannabinoid component produced by the plant Cannabis sativa, may promote human gingiva derived MSCs to differentiate toward neuronal precursor cells. Specifically, we have treated the hGMSCs with CBD (5 µM) for 24 h in order to evaluate the expression of genes involved in cannabidiol signaling, cell proliferation, self-renewal and multipotency, and neural progenitor cells differentiation. Next generation sequencing (NGS) demonstrated that CBD activates genes associated with G protein coupled receptor signaling in hGMSCs. Genes involved in DNA replication, cell cycle, proliferation, and apoptosis were regulated. Moreover, genes associated with the biological process of neuronal progenitor cells (NCPs) proliferation, neuron differentiation, neurogenesis, and nervous system development were significantly modulated. From our results, we hypothesize that human gingiva-derived MSCs conditioned with CBD could represent a valid method for improving the hGMSCs phenotype and thus might be a potential therapeutic tool in the treatment of neurodegenerative diseases. J. Cell. Biochem. 118: 1531-1546, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Gallily, Ruth; Even-Chena, Tal; Katzavian, Galia; Lehmann, Dan; Dagan, Arie; Mechoulam, Raphael
2003-10-01
Two non-psychotropic cannabinoids, cannabidiol (CBD) and cannabidiol-dimethylheptyl (CBD-DMH), induced apoptosis in a human acute myeloid leukemia (AML) HL-60 cell line. Apoptosis was determined by staining with bisBenzimide and propidium iodide. A dose dependent increase of apoptosis was noted, reaching 61 and 43% with 8 microg/ml CBD and 15 microg/ml CBD-DMH, respectively, after a 24 h treatment. Prior exposure of the cells to gamma-irradiation (800 cGy) markedly enhanced apoptosis, reaching values of 93 and 95%, respectively. Human monocytes from normal individuals were resistant to either cannabinoids or gamma-irradiation. Caspase-3 activation was observed after the cannabinoid treatment, and may represent a mechanism for the apoptosis. Our data suggest a possible new approach to treatment of AML.
Almeida, Valéria; Levin, Raquel; Peres, Fernanda Fiel; Niigaki, Suzy T; Calzavara, Mariana B; Zuardi, Antônio W; Hallak, Jaime E; Crippa, José A; Abílio, Vanessa C
2013-03-05
Cannabidiol (CBD), a non-psychotomimetic compound of the Cannabis sativa, has been reported to have central therapeutic actions, such as antipsychotic and anxiolytic effects. We have recently reported that Spontaneously Hypertensive Rats (SHRs) present a deficit in social interaction that is ameliorated by atypical antipsychotics. In addition, SHRs present a hyperlocomotion that is reverted by typical and atypical antipsychotics, suggesting that this strain could be useful to study negative symptoms (modeled by a decrease in social interaction) and positive symptoms (modeled by hyperlocomotion) of schizophrenia as well as the effects of potential antipsychotics drugs. At the same time, an increase in social interaction in control animals similar to that induced by benzodiazepines is used to screen potential anxiolytic drugs. The aim of this study was to investigate the effects of CBD on social interaction presented by control animals (Wistar) and SHRs. The lowest dose of CBD (1mg/kg) increased passive and total social interaction of Wistar rats. However, the hyperlocomotion and the deficit in social interaction displayed by SHRs were not altered by any dose of CBD. Our results do not support an antipsychotic property of cannabidiol on symptoms-like behaviors in SHRs but reinforce the anxiolytic profile of this compound in control rats. Copyright © 2012 Elsevier Inc. All rights reserved.
Stout, Jake M; Boubakir, Zakia; Ambrose, Stephen J; Purves, Randy W; Page, Jonathan E
2012-08-01
The psychoactive and analgesic cannabinoids (e.g. Δ(9) -tetrahydrocannabinol (THC)) in Cannabis sativa are formed from the short-chain fatty acyl-coenzyme A (CoA) precursor hexanoyl-CoA. Cannabinoids are synthesized in glandular trichomes present mainly on female flowers. We quantified hexanoyl-CoA using LC-MS/MS and found levels of 15.5 pmol g(-1) fresh weight in female hemp flowers with lower amounts in leaves, stems and roots. This pattern parallels the accumulation of the end-product cannabinoid, cannabidiolic acid (CBDA). To search for the acyl-activating enzyme (AAE) that synthesizes hexanoyl-CoA from hexanoate, we analyzed the transcriptome of isolated glandular trichomes. We identified 11 unigenes that encoded putative AAEs including CsAAE1, which shows high transcript abundance in glandular trichomes. In vitro assays showed that recombinant CsAAE1 activates hexanoate and other short- and medium-chained fatty acids. This activity and the trichome-specific expression of CsAAE1 suggest that it is the hexanoyl-CoA synthetase that supplies the cannabinoid pathway. CsAAE3 encodes a peroxisomal enzyme that activates a variety of fatty acid substrates including hexanoate. Although phylogenetic analysis showed that CsAAE1 groups with peroxisomal AAEs, it lacked a peroxisome targeting sequence 1 (PTS1) and localized to the cytoplasm. We suggest that CsAAE1 may have been recruited to the cannabinoid pathway through the loss of its PTS1, thereby redirecting it to the cytoplasm. To probe the origin of hexanoate, we analyzed the trichome expressed sequence tag (EST) dataset for enzymes of fatty acid metabolism. The high abundance of transcripts that encode desaturases and a lipoxygenase suggests that hexanoate may be formed through a pathway that involves the oxygenation and breakdown of unsaturated fatty acids. © 2012 National Research Council of Canada. The Plant Journal © 2012 Blackwell Publishing Ltd.
Cannabidiol monotherapy for treatment-resistant schizophrenia.
Zuardi, Antonio Waldo; Hallak, Jaime E C; Dursun, Serdar Murat; Morais, Sílvio L; Sanches, Rafael Faria; Musty, Richard E; Crippa, José Alexandre S
2006-09-01
Cannabidiol (CBD), one of the major products of the marijuana plant, is devoid of marijuana's typical psychological effects. In contrast, potential antipsychotic efficacy has been suggested based on preclinical and clinical data (Zuardi et al., 2002). In this report, we further investigated the efficacy and safety of CBD monotherapy in three patients with treatment-resistant schizophrenia (TRS). This was an in-patient study. All patients were given placebo for the initial 5 days, and from the 6th to 35th day (inclusive) they received CBD (initial oral dose of 40 mg reaching 1280 mg/day). On the 36th day, CBD treatment was discontinued and replaced by placebo for 5 days, which was subsequently switched to olanzapine for over 15 days. Efficacy, tolerability and side effects were assessed. One patient showed mild improvement, but two patients didn't show any improvement during CBD monotherapy. All patients tolerated CBD very well and no side effects were reported. These preliminary data suggest that CBD monotherapy may not be effective for TRS.
Delta-9-tetrahydrocannabinolic acid A (THC-A) in urine of a 15-month-old child: A case report.
Morini, Luca; Quaiotti, Jessica; Moretti, Matteo; Osculati, Antonio Marco Maria; Tajana, Luca; Groppi, Angelo; Vignali, Claudia
2018-05-01
The acidic forms of cannabinoids, THC-A and CBD-A are naturally present in cannabis plants and preparations and are generally decarboxylated to the active compounds before the use (e.g. thermally decarboxylated through smoking). Hence, the identification of the acidic compounds in urine could be an evidence of cannabis ingestion rather than a passive exposure to smoke. This case report described a 15-month-old child that suffered an acute intoxication by accidental cannabis ingestion. It is important to assess the ingestion and to discriminate it from a passive exposure to better interpret the clinical findings and to establish the correct therapeutic procedure. Urine samples were simply diluted in deionized water and directly injected in the LC-MS/MS system. D 3 -THCCOOH was used as internal standard. Chromatographic separation of THCCOOH, THC-A and CBD-A was carried out in reversed phase on a c18 column. A triple quad in MRM negative mode was used to monitor the three analytes. The developed LC-MS/MS method was simple and fast. A LOD of 3.0ng/mL and a LOQ of 10.0ng/mL were measured for the three compounds. The analytical procedure was validated accordingly to international guidelines. The two urine samples collected from the 15-month-old child at the hospitalization and after three days provided positive results for THCCOOH (130.0 and 10.0ng/mL respectively). THC-A was found only in the urine sample collected at the hospitalization (concentration: 70.0ng/mL). THC-A was detected and quantitated in a urine sample of a 15-month-old child. Copyright © 2018 Elsevier B.V. All rights reserved.
Peschel, Wieland; Politi, Matteo
2015-08-01
The medicinal use of different chemovars and extracts of Cannabis sativa L. requires standardization beyond ∆9-tetrahydrocannabinol (THC) with complementing methods. We investigated the suitability of (1)H NMR key signals for distinction of four chemotypes measured in deuterated dimethylsulfoxide together with two new validated HPLC/DAD methods used for identification and extract profiling based on the main pattern of cannabinoids and other phenolics alongside the assayed content of THC, cannabidiol (CBD), cannabigerol (CBG) their acidic counterparts (THCA, CBDA, CBGA), cannabinol (CBN) and cannflavin A and B. Effects on cell viability (MTT assay, HeLa) were tested. The dominant cannabinoid pairs allowed chemotype recognition via assignment of selective proton signals and via HPLC even in cannabinoid-low extracts from the THC, CBD and CBG type. Substantial concentrations of cannabinoid acids in non-heated extracts suggest their consideration for total values in chemotype distinction and specifications of herbal drugs and extracts. Cannflavin A/B are extracted and detected together with cannabinoids but always subordinated, while other phenolics can be accumulated via fractionation and detected in a wide fingerprint but may equally serve as qualitative marker only. Cell viability reduction in HeLa was more determined by the total cannabinoid content than by the specific cannabinoid profile. Therefore the analysis and labeling of total cannabinoids together with the content of THC and 2-4 lead cannabinoids are considered essential. The suitability of analytical methods and the range of compound groups summarized in group and ratio markers are discussed regarding plant classification and pharmaceutical specification. Copyright © 2015 Elsevier B.V. All rights reserved.
Moldzio, Rudolf; Pacher, Thomas; Krewenka, Christopher; Kranner, Barbara; Novak, Johannes; Duvigneau, Johanna Catharina; Rausch, Wolf-Dieter
2012-06-15
Cannabinoids derived from Cannabis sativa demonstrate neuroprotective properties in various cellular and animal models. Mitochondrial impairment and consecutive oxidative stress appear to be major molecular mechanisms of neurodegeneration. Therefore we studied some major cannabinoids, i.e. delta-9-tetrahydrocannabinolic acid (THCA), delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in mice mesencephalic cultures for their protective capacities against 1-methyl-4-phenyl pyridinium (MPP(+)) toxicity. MPP(+) is an established model compound in the research of parkinsonism that acts as a complex I inhibitor of the mitochondrial respiratory chain, resulting in excessive radical formation and cell degeneration. MPP(+) (10 μM) was administered for 48 h at the 9th DIV with or without concomitant cannabinoid treatment at concentrations ranging from 0.01 to 10 μM. All cannabinoids exhibited in vitro antioxidative action ranging from 669 ± 11.1 (THC), 16 ± 3.2 (THCA) to 356 ± 29.5 (CBD) μg Trolox (a vitamin E derivative)/mg substance in the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) assay. Cannabinoids were without effect on the morphology of dopaminergic cells stained by tyrosine hydroxylase (TH) immunoreaction. THC caused a dose-dependent increase of cell count up to 17.3% at 10 μM, whereas CBD only had an effect at highest concentrations (decrease of cell count by 10.1-20% at concentrations of 0.01-10 μM). It influenced the viability of the TH immunoreactive neurons significantly, whereas THCA exerts no influence on dopaminergic cell count. Exposure of cultures to 10 μM of MPP(+) for 48 h significantly decreased the number of TH immunoreactive neurons by 44.7%, and shrunken cell bodies and reduced neurite lengths could be observed. Concomitant treatment of cultures with cannabinoids rescued dopaminergic cells. Compared to MPP(+) treated cultures, THC counteracted toxic effects in a dose-dependent manner. THCA and CBD treatment at a concentration of 10
Ribeiro, A; Almeida, V I; Costola-de-Souza, C; Ferraz-de-Paula, V; Pinheiro, M L; Vitoretti, L B; Gimenes-Junior, J A; Akamine, A T; Crippa, J A; Tavares-de-Lima, W; Palermo-Neto, J
2015-02-01
We have previously shown that the prophylactic treatment with cannabidiol (CBD) reduces inflammation in a model of acute lung injury (ALI). In this work we analyzed the effects of the therapeutic treatment with CBD in mice subjected to the model of lipopolysaccharide (LPS)-induced ALI on pulmonary mechanics and inflammation. CBD (20 and 80 mg/kg) was administered (i.p.) to mice 6 h after LPS-induced lung inflammation. One day (24 h) after the induction of inflammation the assessment of pulmonary mechanics and inflammation were analyzed. The results show that CBD decreased total lung resistance and elastance, leukocyte migration into the lungs, myeloperoxidase activity in the lung tissue, protein concentration and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) in the bronchoalveolar lavage supernatant. Thus, we conclude that CBD administered therapeutically, i.e. during an ongoing inflammatory process, has a potent anti-inflammatory effect and also improves the lung function in mice submitted to LPS-induced ALI. Therefore the present and previous data suggest that in the future cannabidiol might become a useful therapeutic tool for the attenuation and treatment of inflammatory lung diseases.
An Overview on Medicinal Chemistry of Synthetic and Natural Derivatives of Cannabidiol.
Morales, Paula; Reggio, Patricia H; Jagerovic, Nadine
2017-01-01
Cannabidiol (CBD) has been traditionally used in Cannabis -based preparation, however historically, it has received far less interest as a single drug than the other components of Cannabis . Currently, CBD generates considerable interest due to its beneficial neuroprotective, antiepileptic, anxiolytic, antipsychotic, and anti-inflammatory properties. Therefore, the CBD scaffold becomes of increasing interest for medicinal chemists. This review provides an overview of the chemical structure of natural and synthetic CBD derivatives including the molecular targets associated with these compounds. A clear identification of their biological targets has been shown to be still very challenging.
Mao, Ke; You, Chao; Lei, Ding; Zhang, Heng
2015-01-01
The study was designed to investigate the effect of various concentrations of cannabidiol (CBD) in rats with chronic epilepsy. The chronic epilepsy rat model was prepared by intraperitoneally injecting pentylenetetrazole to the rats pre-treated with CBD (10, 20 and 50 mg/kg) for 28 consecutive days. Behavioral measurements of convulsion following pentylenetetrazole treatment and morphological changes of the hippocampal neurons with hematoxylin and eosin staining were used to observe the epileptic behaviour. Immunohistochemistry was used to detect the expression levels of glial fibrillary acidic protein and inducible nitric oxide synthase (iNOS) in the hippocampus. The mRNA expression of N-methyl-D-aspartic acid (NMDA) receptor subunits (NR1 and NR2B) was detected by reverse transcription polymerase chain reaction. The results revealed a significant decrease in the daily average grade of epileptic seizures on treatment with CBD (50 mg/kg). The neuronal loss and astrocyte hyperplasia in the hippocampal area were also decreased. CBD treatment did not affect the expression of iNOS in the hippocampus; however, the expression of NR1 was decreased significantly. Thus, CBD administration inhibited the effect of pentylenetetrazole in rats, decreased the astrocytic hyperplasia, decreased neuronal damage in the hippocampus caused by seizures and selectively reduced the expression of the NR1 subunit of NMDA. Therefore, CBD exhibits an anticonvulsive effect in the rats with chronic epilepsy. PMID:26309534
Mao, Ke; You, Chao; Lei, Ding; Zhang, Heng
2015-01-01
The study was designed to investigate the effect of various concentrations of cannabidiol (CBD) in rats with chronic epilepsy. The chronic epilepsy rat model was prepared by intraperitoneally injecting pentylenetetrazole to the rats pre-treated with CBD (10, 20 and 50 mg/kg) for 28 consecutive days. Behavioral measurements of convulsion following pentylenetetrazole treatment and morphological changes of the hippocampal neurons with hematoxylin and eosin staining were used to observe the epileptic behaviour. Immunohistochemistry was used to detect the expression levels of glial fibrillary acidic protein and inducible nitric oxide synthase (iNOS) in the hippocampus. The mRNA expression of N-methyl-D-aspartic acid (NMDA) receptor subunits (NR1 and NR2B) was detected by reverse transcription polymerase chain reaction. The results revealed a significant decrease in the daily average grade of epileptic seizures on treatment with CBD (50 mg/kg). The neuronal loss and astrocyte hyperplasia in the hippocampal area were also decreased. CBD treatment did not affect the expression of iNOS in the hippocampus; however, the expression of NR1 was decreased significantly. Thus, CBD administration inhibited the effect of pentylenetetrazole in rats, decreased the astrocytic hyperplasia, decreased neuronal damage in the hippocampus caused by seizures and selectively reduced the expression of the NR1 subunit of NMDA. Therefore, CBD exhibits an anticonvulsive effect in the rats with chronic epilepsy.
Gofshteyn, Jacqueline S; Wilfong, Angus; Devinsky, Orrin; Bluvstein, Judith; Charuta, Joshi; Ciliberto, Michael A; Laux, Linda; Marsh, Eric D
2017-01-01
Febrile infection-related epilepsy syndrome (FIRES) is a devastating epilepsy affecting normal children after a febrile illness. FIRES presents with an acute phase with super-refractory status epilepticus and all patients progress to a chronic phase with persistent refractory epilepsy. The typical outcome is severe encephalopathy or death. The authors present 7 children from 5 centers with FIRES who had not responded to antiepileptic drugs or other therapies who were given cannabadiol (Epidiolex, GW Pharma) on emergency or expanded investigational protocols in either the acute or chronic phase of illness. After starting cannabidiol, 6 of 7 patients' seizures improved in frequency and duration. One patient died due to multiorgan failure secondary to isoflourane. An average of 4 antiepileptic drugs were weaned. Currently 5 subjects are ambulatory, 1 walks with assistance, and 4 are verbal. While this is an open-label case series, the authors add cannabidiol as a possible treatment for FIRES.
Takeda, Shuso; Hirayama, Akari; Urata, Shino; Mano, Nobutaka; Fukagawa, Keiko; Imamura, Midori; Irii, Ayumi; Kitajima, Satomi; Masuyama, Tomoko; Nomiyama, Mai; Tatei, Sachiko; Tomita, Saari; Kudo, Taichi; Noguchi, Momoko; Yamaguchi, Yasuhiro; Okamoto, Yoshiko; Amamoto, Toshiaki; Fukunishi, Yoshifumi; Watanabe, Kazuhito; Omiecinski, Curtis John; Aramaki, Hironori
2014-01-01
15-Lipoxygenase (15-LOX) is one of the key enzymes responsible for the formation of oxidized low-density lipoprotein (ox-LDL), a major causal factor for atherosclerosis. Both enzymatic (15-LOX) and non-enzymatic (Cu2+) mechanisms have been proposed for the production of ox-LDL. We have recently reported that cannabidiol-2′,6′-dimethyl ether (CBDD) is a selective and potent inhibitor of 15-LOX-catalyzed linoleic acid oxygenation (Takeda et al., Drug Metab. Dispos., 37, 1733–1737 (2009)). In the LDL, linoleic acid is present as cholesteryl linoleate, the major fatty acid esterified to cholesterol, and is susceptible to oxidative modification by 15-LOX or Cu2+. In this investigation, we examined the efficacy of CBDD on i) 15-LOX-catalyzed oxygenation of cholesteryl linoleate, and ii) ox-LDL formation catalyzed by 15-LOX versus Cu2+-mediated non-enzymatic generation of this important mediator. The results obtained demonstrate that CBDD is a potent and selective inhibitor of ox-LDL formation generated by the 15-LOX pathway. These studies establish CBDD as both an important experimental tool for characterizing 15-LOX-mediated ox-LDL formation, and as a potentially useful therapeutic agent for treatment of atherosclerosis. PMID:21804214
Cannabidiol for the treatment of cannabis withdrawal syndrome: a case report.
Crippa, J A S; Hallak, J E C; Machado-de-Sousa, J P; Queiroz, R H C; Bergamaschi, M; Chagas, M H N; Zuardi, A W
2013-04-01
Cannabis withdrawal in heavy users is commonly followed by increased anxiety, insomnia, loss of appetite, migraine, irritability, restlessness and other physical and psychological signs. Tolerance to cannabis and cannabis withdrawal symptoms are believed to be the result of the desensitization of CB1 receptors by THC. This report describes the case of a 19-year-old woman with cannabis withdrawal syndrome treated with cannabidiol (CBD) for 10 days. Daily symptom assessments demonstrated the absence of significant withdrawal, anxiety and dissociative symptoms during the treatment. CBD can be effective for the treatment of cannabis withdrawal syndrome. © 2012 Blackwell Publishing Ltd.
A Conversion of Oral Cannabidiol to Delta9-Tetrahydrocannabinol Seems Not to Occur in Humans
Nahler, Gerhard; Grotenhermen, Franjo; Zuardi, Antonio Waldo; Crippa, José A.S.
2017-01-01
Abstract Cannabidiol (CBD), a major cannabinoid of hemp, does not bind to CB1 receptors and is therefore devoid of psychotomimetic properties. Under acidic conditions, CBD can be transformed to delta9-tetrahydrocannabinol (THC) and other cannabinoids. It has been argued that this may occur also after oral administration in humans. However, the experimental conversion of CBD to THC and delta8-THC in simulated gastric fluid (SGF) is a highly artificial approach that deviates significantly from physiological conditions in the stomach; therefore, SGF does not allow an extrapolation to in vivo conditions. Unsurprisingly, the conversion of oral CBD to THC and its metabolites has not been observed to occur in vivo, even after high doses of oral CBD. In addition, the typical spectrum of side effects of THC, or of the very similar synthetic cannabinoid nabilone, as listed in the official Summary of Product Characteristics (e.g., dizziness, euphoria/high, thinking abnormal/concentration difficulties, nausea, tachycardia) has not been observed after treatment with CBD in double-blind, randomized, controlled clinical trials. In conclusion, the conversion of CBD to THC in SGF seems to be an in vitro artifact. PMID:28861507
A Conversion of Oral Cannabidiol to Delta9-Tetrahydrocannabinol Seems Not to Occur in Humans.
Nahler, Gerhard; Grotenhermen, Franjo; Zuardi, Antonio Waldo; Crippa, José A S
2017-01-01
Cannabidiol (CBD), a major cannabinoid of hemp, does not bind to CB1 receptors and is therefore devoid of psychotomimetic properties. Under acidic conditions, CBD can be transformed to delta9-tetrahydrocannabinol (THC) and other cannabinoids. It has been argued that this may occur also after oral administration in humans. However, the experimental conversion of CBD to THC and delta8-THC in simulated gastric fluid (SGF) is a highly artificial approach that deviates significantly from physiological conditions in the stomach; therefore, SGF does not allow an extrapolation to in vivo conditions. Unsurprisingly, the conversion of oral CBD to THC and its metabolites has not been observed to occur in vivo , even after high doses of oral CBD. In addition, the typical spectrum of side effects of THC, or of the very similar synthetic cannabinoid nabilone, as listed in the official Summary of Product Characteristics (e.g., dizziness, euphoria/high, thinking abnormal/concentration difficulties, nausea, tachycardia) has not been observed after treatment with CBD in double-blind, randomized, controlled clinical trials. In conclusion, the conversion of CBD to THC in SGF seems to be an in vitro artifact.
An Overview on Medicinal Chemistry of Synthetic and Natural Derivatives of Cannabidiol
Morales, Paula; Reggio, Patricia H.; Jagerovic, Nadine
2017-01-01
Cannabidiol (CBD) has been traditionally used in Cannabis-based preparation, however historically, it has received far less interest as a single drug than the other components of Cannabis. Currently, CBD generates considerable interest due to its beneficial neuroprotective, antiepileptic, anxiolytic, antipsychotic, and anti-inflammatory properties. Therefore, the CBD scaffold becomes of increasing interest for medicinal chemists. This review provides an overview of the chemical structure of natural and synthetic CBD derivatives including the molecular targets associated with these compounds. A clear identification of their biological targets has been shown to be still very challenging. PMID:28701957
Booz, George W.
2011-01-01
Oxidative stress with reactive oxygen species generation is a key weapon in the arsenal of the immune system for fighting invading pathogens and to initiate tissue repair. If excessive or unresolved, however, immune-related oxidative stress can initiate further increasing levels of oxidative stress that cause organ damage and dysfunction. Targeting oxidative stress in these various diseases therapeutically has proven more problematic than first anticipated given the complexities and perversity of both the underlying disease and the immune response. However, growing evidence suggests that the endocannabinoid system, which includes the CB1 and CB2 G protein-coupled receptors and their endogenous lipid ligands, may be an area that is ripe for therapeutic exploitation. In this context, the related nonpsychotropic cannabinoid cannabidiol, which may interact with the endocannabinoid system, but has actions that are distinct, offers promise as a prototype for anti-inflammatory drug development. This review discusses recent studies suggesting that cannabidiol may have utility in treating a number of human diseases and disorders now known to involve activation of the immune system and associated oxidative stress, as a contributor to their etiology and progression. These include rheumatoid arthritis, types I and II diabetes, atherosclerosis, Alzheimer’s disease, hypertension, the metabolic syndrome, ischemia-reperfusion injury, depression, and neuropathic pain. PMID:21238581
Does cannabidiol have a role in the treatment of schizophrenia?
Gururajan, Anand; Malone, Daniel Thomas
2016-10-01
Schizophrenia is a debilitating psychiatric disorder which places a significant emotional and economic strain on the individual and society-at-large. Unfortunately, currently available therapeutic strategies do not provide adequate relief and some patients are treatment-resistant. In this regard, cannabidiol (CBD), a non-psychoactive constituent of Cannabis sativa, has shown significant promise as a potential antipsychotic for the treatment of schizophrenia. However, there is still considerable uncertainty about the mechanism of action of CBD as well as the brain regions which are thought to mediate its putative antipsychotic effects. We argue that further research on CBD is required to fast-track its progress to the clinic and in doing so, we may generate novel insights into the neurobiology of schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of cannabidiol on schizophrenia-like symptoms in people who use cannabis.
Morgan, Celia J A; Curran, H Valerie
2008-04-01
Cannabis contains various cannabinoids, two of which have almost opposing actions: Delta9-tetrahydrocannabinol (Delta9-THC) is psychotomimetic, whereas cannabidiol (CBD) has antipsychotic effects. Hair samples were analysed to examine levels of Delta9-THC and CBD in 140 individuals. Three clear groups emerged: ;THC only', ;THC+CBD' and those with no cannabinoid in hair. The THC only group showed higher levels of positive schizophrenia-like symptoms compared with the no cannabinoid and THC+CBD groups, and higher levels of delusions compared with the no cannabinoid group. This provides evidence of the divergent properties of cannabinoids and has important implications for research into the link between cannabis use and psychosis.
Demirakca, Traute; Sartorius, Alexander; Ende, Gabriele; Meyer, Nadja; Welzel, Helga; Skopp, Gisela; Mann, Karl; Hermann, Derik
2011-04-01
Chronic cannabis use has been associated with memory deficits and a volume reduction of the hippocampus, but none of the studies accounted for different effects of tetrahydrocannabinol (THC) and cannabidiol (CBD). Using a voxel based morphometry approach optimized for small subcortical structures (DARTEL) gray matter (GM) concentration and volume of the hippocampus were measured in 11 chronic recreational cannabis users and 13 healthy controls, and correlated with THC and CBD from hair analyses. GM volume was calculated by modulating VBM using Jacobian determinants derived from the spatial normalization. Cannabis users showed lower GM volume located in a cluster of the right anterior hippocampus (P(uncorr)=0.002; effect size Cohen's d=1.34). In a regression analysis an inverse correlation of the ratio THC/CBD with the volume of the right hippocampus (P(uncorr) p<0.001, Cohen's d=3.43) was observed. Furthermore Cannabidiol correlated positively with GM concentration (unmodulated VBM data), but not with GM volume (modulated VBM) in the bilateral hippocampus (P=0.03 after correction for hippocampal volume; left hippocampus Cohen's d=4.37 and right hippocampus 4.65). Lower volume in the right hippocampus in chronic cannabis users was corroborated. Higher THC and lower CBD was associated with this volume reduction indicating neurotoxic effects of THC and neuroprotective effects of CBD. This confirms existing preclinical and clinical results. As a possible mechanism the influence of cannabinoids on hippocampal neurogenesis is suggested. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Controlled clinical trial of cannabidiol in Huntington's disease.
Consroe, P; Laguna, J; Allender, J; Snider, S; Stern, L; Sandyk, R; Kennedy, K; Schram, K
1991-11-01
Based on encouraging preliminary findings, cannabidiol (CBD), a major nonpsychotropic constituent of Cannabis, was evaluated for symptomatic efficacy and safety in 15 neuroleptic-free patients with Huntington's Disease (HD). The effects of oral CBD (10 mg/kg/day for 6 weeks) and placebo (sesame oil for 6 weeks) were ascertained weekly under a double-blind, randomized cross-over design. A comparison of the effects of CBD and placebo on chorea severity and other therapeutic outcome variables, and on a Cannabis side effect inventory, clinical lab tests and other safety outcome variables, indicated no significant (p greater than 0.05) or clinically important differences. Correspondingly, plasma levels of CBD were assayed by GC/MS, and the weekly levels (mean range of 5.9 to 11.2 ng/ml) did not differ significantly over the 6 weeks of CBD administration. In summary, CBD, at an average daily dose of about 700 mg/day for 6 weeks, was neither symptomatically effective nor toxic, relative to placebo, in neuroleptic-free patients with HD.
Cannabidiol Arrests Onset of Autoimmune Diabetes in NOD Mice
Weiss, Lola; Zeira, Michael; Reich, Shoshana; Slavin, Shimon; Raz, Itamar; Mechoulam, Raphael; Gallily, Ruth
2008-01-01
We have previously reported that cannabidiol (CBD) lowers the incidence of diabetes in young non-obese diabetes-prone (NOD) female mice. In the present study we show that administration of CBD to 11–14 week old female NOD mice, which are either in a latent diabetes stage or with initial symptoms of diabetes, ameliorates the manifestations of the disease. Diabetes was diagnosed in only 32% of the mice in the CBD-treated group, compared to 86% and 100% in the emulsifier-treated and untreated groups, respectively. In addition, the level of the proinflammatory cytokine IL-12 produced by splenocytes was significantly reduced, whereas the level of the anti-inflammatory IL-10 was significantly elevated following CBD-treatment. Histological examination of the pancreata of CBD-treated mice revealed more intact islets than in the controls. Our data strengthen our previous assumption that CBD, known to be safe in man, can possibly be used as a therapeutic agent for treatment of type 1 diabetes. PMID:17714746
Cannabidiol in medicine: a review of its therapeutic potential in CNS disorders.
Scuderi, Caterina; Filippis, Daniele De; Iuvone, Teresa; Blasio, Angelo; Steardo, Antonio; Esposito, Giuseppe
2009-05-01
Cannabidiol (CBD) is the main non-psychotropic component of the glandular hairs of Cannabis sativa. It displays a plethora of actions including anticonvulsive, sedative, hypnotic, antipsychotic, antiinflammatory and neuroprotective properties. However, it is well established that CBD produces its biological effects without exerting significant intrinsic activity upon cannabinoid receptors. For this reason, CBD lacks the unwanted psychotropic effects characteristic of marijuana derivatives, so representing one of the bioactive constituents of Cannabis sativa with the highest potential for therapeutic use.The present review reports the pharmacological profile of CBD and summarizes results from preclinical and clinical studies utilizing CBD, alone or in combination with other phytocannabinoids, for the treatment of a number of CNS disorders.
Merrick, John; Lane, Brian; Sebree, Terri; Yaksh, Tony; O'Neill, Carol; Banks, Stan L.
2016-01-01
Abstract Introduction: In recent research, orally administered cannabidiol (CBD) showed a relatively high incidence of somnolence in a pediatric population. Previous work has suggested that when CBD is exposed to an acidic environment, it degrades to Δ9-tetrahydrocannabinol (THC) and other psychoactive cannabinoids. To gain a better understanding of quantitative exposure, we completed an in vitro study by evaluating the formation of psychoactive cannabinoids when CBD is exposed to simulated gastric fluid (SGF). Methods: Materials included synthetic CBD, Δ8-THC, and Δ9-THC. Linearity was demonstrated for each component over the concentration range used in this study. CBD was spiked into media containing 1% sodium dodecyl sulfate (SDS). Samples were analyzed using chromatography with UV and mass spectrometry detection. An assessment time of 3 h was chosen as representative of the maximal duration of exposure to gastric fluid. Results: CBD in SGF with 1% SDS was degraded about 85% after 60 min and more than 98% at 120 min. The degradation followed first-order kinetics at a rate constant of −0.031 min−1 (R2=0.9933). The major products formed were Δ9-THC and Δ8-THC with less significant levels of other related cannabinoids. CBD in physiological buffer performed as a control did not convert to THC. Confirmation of THC formation was demonstrated by comparison of mass spectral analysis, mass identification, and retention time of Δ9-THC and Δ8-THC in the SGF samples against authentic reference standards. Conclusions: SGF converts CBD into the psychoactive components Δ9-THC and Δ8-THC. The first-order kinetics observed in this study allowed estimated levels to be calculated and indicated that the acidic environment during normal gastrointestinal transit can expose orally CBD-treated patients to levels of THC and other psychoactive cannabinoids that may exceed the threshold for a physiological response. Delivery methods that decrease the potential for
Cannabidiol: a promising drug for neurodegenerative disorders?
Iuvone, Teresa; Esposito, Giuseppe; De Filippis, Daniele; Scuderi, Caterina; Steardo, Luca
2009-01-01
Neurodegenerative diseases represent, nowadays, one of the main causes of death in the industrialized country. They are characterized by a loss of neurons in particular regions of the nervous system. It is believed that this nerve cell loss underlies the subsequent decline in cognitive and motor function that patients experience in these diseases. A range of mutant genes and environmental toxins have been implicated in the cause of neurodegenerative disorders but the mechanism remains largely unknown. At present, inflammation, a common denominator among the diverse list of neurodegenerative diseases, has been implicated as a critical mechanism that is responsible for the progressive nature of neurodegeneration. Since, at present, there are few therapies for the wide range of neurodegenerative diseases, scientists are still in search of new therapeutic approaches to the problem. An early contribution of neuroprotective and antiinflammatory strategies for these disorders seems particularly desirable because isolated treatments cannot be effective. In this contest, marijuana derivatives have attracted special interest, although these compounds have always raised several practical and ethical problems for their potential abuse. Nevertheless, among Cannabis compounds, cannabidiol (CBD), which lacks any unwanted psychotropic effect, may represent a very promising agent with the highest prospect for therapeutic use.
Crippa, José A. S.; Crippa, Ana C. S.; Hallak, Jaime E. C.; Martín-Santos, Rocio; Zuardi, Antonio W.
2016-01-01
Animal studies and preliminary clinical trials have shown that cannabidiol (CBD)-enriched extracts may have beneficial effects for children with treatment-resistant epilepsy. However, these compounds are not yet registered as medicines by regulatory agencies. We describe the cases of two children with treatment-resistant epilepsy (Case A with left frontal dysplasia and Case B with Dravet Syndrome) with initial symptom improvement after the introduction of CBD extracts followed by seizure worsening after a short time. The children presented typical signs of intoxication by Δ9-THC (inappropriate laughter, ataxia, reduced attention, and eye redness) after using a CBD-enriched extract. The extract was replaced by the same dose of purified CBD with no Δ9-THC in both cases, which led to improvement in intoxication signs and seizure remission. These cases support pre-clinical and preliminary clinical evidence suggesting that CBD may be effective for some patients with epilepsy. Moreover, the cases highlight the need for randomized clinical trials using high-quality and reliable substances to ascertain the safety and efficacy of cannabinoids as medicines. PMID:27746737
Crippa, José A S; Crippa, Ana C S; Hallak, Jaime E C; Martín-Santos, Rocio; Zuardi, Antonio W
2016-01-01
Animal studies and preliminary clinical trials have shown that cannabidiol (CBD)-enriched extracts may have beneficial effects for children with treatment-resistant epilepsy. However, these compounds are not yet registered as medicines by regulatory agencies. We describe the cases of two children with treatment-resistant epilepsy (Case A with left frontal dysplasia and Case B with Dravet Syndrome) with initial symptom improvement after the introduction of CBD extracts followed by seizure worsening after a short time. The children presented typical signs of intoxication by Δ9-THC (inappropriate laughter, ataxia, reduced attention, and eye redness) after using a CBD-enriched extract. The extract was replaced by the same dose of purified CBD with no Δ9-THC in both cases, which led to improvement in intoxication signs and seizure remission. These cases support pre-clinical and preliminary clinical evidence suggesting that CBD may be effective for some patients with epilepsy. Moreover, the cases highlight the need for randomized clinical trials using high-quality and reliable substances to ascertain the safety and efficacy of cannabinoids as medicines.
Is there a role for cannabidiol in psychiatry?
Khoury, Julia Machado; Neves, Maila de Castro Lourenço das; Roque, Marco Antônio Valente; Queiroz, Daniela Alves de Brito; Corrêa de Freitas, André Augusto; de Fátima, Ângelo; Moreira, Fabrício A; Garcia, Frederico Duarte
2017-02-20
Understanding whether cannabidiol (CBD) is useful and safe for the treatment of psychiatric disorders is essential to empower psychiatrists and patients to take good clinical decisions. Our aim was to conduct a systematic review regarding the benefits and adverse events (AEs) of CBD in the treatment of schizophrenia, psychotic disorders, anxiety disorders, depression, bipolar disorder and substance-use disorders. We conducted a literature search in PubMed, Scielo, and Clinicaltrials.gov databases. Evidence was classified according to the WFSBP task forces standards. Bibliographic research yielded 692 records. After analysis, we included six case reports and seven trials, comprising 201 subjects. Most the studies published presented several drawbacks and did not reach statistical significance. We have not found evidence regarding major depressive and bipolar disorders. The level of evidence for cannabis withdrawal is B; cannabis addiction is C2; treatment of positive symptoms in schizophrenia and anxiety in social anxiety disorder is C1. Discrete or no AEs were reported. The most frequently reported AEs are sedation and dizziness. The evidence regarding efficacy and safety of CBD in psychiatry is still scarce. Further larger well-designed randomised controlled trials are required to assess the effects of CBD in psychiatric disorders.
Cannabidiol: an overview of some chemical and pharmacological aspects. Part I: chemical aspects.
Mechoulam, Raphael; Hanus, Lumír
2002-12-31
Over the last few years considerable attention has focused on cannabidiol (CBD), a major non-psychotropic constituent of Cannabis. In Part I of this review we present a condensed survey of the chemistry of CBD; in Part II, to be published later, we shall discuss the anti-convulsive, anti-anxiety, anti-psychotic, anti-nausea and anti-rheumatoid arthritic properties of CBD. CBD does not bind to the known cannabinoid receptors and its mechanism of action is yet unknown. In Part II we shall also present evidence that it is conceivable that, in part at least, its effects are due to its recently discovered inhibition of anandamide uptake and hydrolysis and to its anti-oxidative effect.
SYNTHESIS AND ISOLATION OF TETRAHYDROCANNABINOL ISOMERS.
additional amount of cannabidiol . The structure of tetrahydrocannabinol B was elucidated by chemical and spectral evidence. The partial syntheses of...In addition to cannabinol, cannabidiol , and trans-1-hydroxy-3-n-amyl-6, 6, 9 trimethyl-6a, 7, 8, 10a-tetrahydro-6-dibenzopyran (tetrahydrocannabinol...only cannabidiolic acid. A second sample of Mexican marijuana furnished only tetrahydrocannabinol A and cannabinol, while a Spanish sample contained an
Modulation of Astrocyte Activity by Cannabidiol, a Nonpsychoactive Cannabinoid
Kozela, Ewa; Juknat, Ana; Vogel, Zvi
2017-01-01
The astrocytes have gained in recent decades an enormous interest as a potential target for neurotherapies, due to their essential and pleiotropic roles in brain physiology and pathology. Their precise regulation is still far from understood, although several candidate molecules/systems arise as promising targets for astrocyte-mediated neuroregulation and/or neuroprotection. The cannabinoid system and its ligands have been shown to interact and affect activities of astrocytes. Cannabidiol (CBD) is the main non-psychotomimetic cannabinoid derived from Cannabis. CBD is devoid of direct CB1 and CB2 receptor activity, but exerts a number of important effects in the brain. Here, we attempt to sum up the current findings on the effects of CBD on astrocyte activity, and in this way on central nervous system (CNS) functions, across various tested models and neuropathologies. The collected data shows that increased astrocyte activity is suppressed in the presence of CBD in models of ischemia, Alzheimer-like and Multiple-Sclerosis-like neurodegenerations, sciatic nerve injury, epilepsy, and schizophrenia. Moreover, CBD has been shown to decrease proinflammatory functions and signaling in astrocytes. PMID:28788104
Could cannabidiol be used as an alternative to antipsychotics?
Fakhoury, Marc
2016-09-01
Schizophrenia is a mental disorder that affects close to 1% of the population. Individuals with this disorder often present signs such as hallucination, anxiety, reduced attention, and social withdrawal. Although antipsychotic drugs remain the cornerstone of schizophrenia treatment, they are associated with severe side effects. Recently, the endocannabinoid system (ECS) has emerged as a potential therapeutic target for pharmacotherapy that is involved in a wide range of disorders, including schizophrenia. Since its discovery, a lot of effort has been devoted to the study of compounds that can modulate its activity for therapeutic purposes. Among them, cannabidiol (CBD), a non-psychoactive component of cannabis, shows great promise for the treatment of psychosis, and is associated with fewer extrapyramidal side effects than conventional antipsychotic drugs. The overarching goal of this review is to provide current available knowledge on the role of the dopamine system and the ECS in schizophrenia, and to discuss key findings from animal studies and clinical trials investigating the antipsychotic potential of CBD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Modulation of Astrocyte Activity by Cannabidiol, a Nonpsychoactive Cannabinoid.
Kozela, Ewa; Juknat, Ana; Vogel, Zvi
2017-07-31
The astrocytes have gained in recent decades an enormous interest as a potential target for neurotherapies, due to their essential and pleiotropic roles in brain physiology and pathology. Their precise regulation is still far from understood, although several candidate molecules/systems arise as promising targets for astrocyte-mediated neuroregulation and/or neuroprotection. The cannabinoid system and its ligands have been shown to interact and affect activities of astrocytes. Cannabidiol (CBD) is the main non-psychotomimetic cannabinoid derived from Cannabis . CBD is devoid of direct CB1 and CB2 receptor activity, but exerts a number of important effects in the brain. Here, we attempt to sum up the current findings on the effects of CBD on astrocyte activity, and in this way on central nervous system (CNS) functions, across various tested models and neuropathologies. The collected data shows that increased astrocyte activity is suppressed in the presence of CBD in models of ischemia, Alzheimer-like and Multiple-Sclerosis-like neurodegenerations, sciatic nerve injury, epilepsy, and schizophrenia. Moreover, CBD has been shown to decrease proinflammatory functions and signaling in astrocytes.
Devinsky, Orrin; Cilio, Maria Roberta; Cross, Helen; Fernandez-Ruiz, Javier; French, Jacqueline; Hill, Charlotte; Katz, Russell; Di Marzo, Vincenzo; Jutras-Aswad, Didier; Notcutt, William George; Martinez-Orgado, Jose; Robson, Philip J.; Rohrback, Brian G.; Thiele, Elizabeth; Whalley, Benjamin; Friedman, Daniel
2015-01-01
Objective To present a summary of current scientific evidence about the cannabinoid, cannabidiol (CBD) with regards to their relevance to epilepsy and other selected neuropsychiatric disorders. Methods We summarize the presentations from a conference in which invited participants reviewed relevant aspects of the physiology, mechanisms of action, pharmacology and data from studies with animal models and human subjects. Results Cannabis has been used to treat disease since ancient times. Δ9-THC is the major psychoactive ingredient and cannabidiol (CBD) is the major non-psychoactive ingredient in cannabis. Cannabis and Δ9-THC are anticonvulsant in most animal models but can be proconvulsant in some healthy animals. Psychotropic effects of Δ9-THC limit tolerability. CBD is anticonvulsant in many acute animal models but there is limited data in chronic models. The antiepileptic mechanisms of CBD are not known, but may include effects on the equilibrative nucleoside transporter; the orphan G-protein-coupled receptor GPR55; the transient receptor potential of melastatin type 8 channel; the 5-HT1a receptor; the α3 and α1 glycine receptors; and the transient receptor potential of ankyrin type 1 channel. CBD has neuroprotective and anti-inflammatory effects. CBD appears to be well tolerated in humans but small and methodologically limited studies of CBD in human epilepsy have been inconclusive. More recent anecdotal reports of high-ratio CBD:Δ9-THC medical marijuana have claimed efficacy, but studies were not controlled. Significance CBD bears investigation in epilepsy and other neuropsychiatric disorders, including anxiety, schizophrenia, addiction and neonatal hypoxic-ischemic encephalopathy. However, we lack data from well-powered double-blind randomized, controlled studies on the efficacy of pure CBD for any disorder. Initial dose-tolerability and double-blind randomized, controlled studies focusing on target intractable epilepsy populations such as patients with
Rawal, S Y; Dabbous, M Kh; Tipton, D A
2012-06-01
Marijuana (Cannabis sativa) use may be associated with gingival enlargement, resembling that caused by phenytoin. Cannabidiol (CBD), a nonpsychotropic Cannabis derivative, is structurally similar to phenytoin. While there are many reports on effects of phenytoin on human gingival fibroblasts, there is no information on effects of Cannabis components on these cells. The objective of this study was to determine effects of CBD on human gingival fibroblast fibrogenic and matrix-degrading activities. Fibroblasts were incubated with CBD in serum-free medium for 1-6 d. The effect of CBD on cell viability was determined by measuring activity of a mitochondrial enzyme. The fibrogenic molecule transforming growth factor β and the extracellular matrix molecule fibronectin were measured by ELISA. Pro-MMP-1 and total MMP-2 were measured by ELISA. Activity of MMP-2 was determined via a colorimetric assay in which a detection enzyme is activated by active MMP-2. Data were analysed using ANOVA and Scheffe's F procedure for post hoc comparisons. Cannabidiol had little or no significant effect on cell viability. Low CBD concentrations increased transforming growth factor β production by as much as 40% (p < 0.001), while higher concentrations decreased it by as much as 40% (p < 0.0001). Cannabidiol increased fibronectin production by as much as approximately 100% (p < 0.001). Lower CBD concentrations increased MMP production, but the highest concentrations decreased production of both MMPs (p < 0.05) and decreased MMP-2 activity (p < 0.02). The data suggest that the CBD may promote fibrotic gingival enlargement by increasing gingival fibroblast production of transforming growth factor β and fibronectin, while decreasing MMP production and activity. © 2011 John Wiley & Sons A/S.
Fusar-Poli, Paolo; Crippa, José A; Bhattacharyya, Sagnik; Borgwardt, Stefan J; Allen, Paul; Martin-Santos, Rocio; Seal, Marc; Surguladze, Simon A; O'Carrol, Colin; Atakan, Zerrin; Zuardi, Antonio W; McGuire, Philip K
2009-01-01
Cannabis use can both increase and reduce anxiety in humans. The neurophysiological substrates of these effects are unknown. To investigate the effects of 2 main psychoactive constituents of Cannabis sativa (Delta9-tetrahydrocannabinol [Delta9-THC] and cannabidiol [CBD]) on regional brain function during emotional processing. Subjects were studied on 3 separate occasions using an event-related functional magnetic resonance imaging paradigm while viewing faces that implicitly elicited different levels of anxiety. Each scanning session was preceded by the ingestion of either 10 mg of Delta9-THC, 600 mg of CBD, or a placebo in a double-blind, randomized, placebo-controlled design. Fifteen healthy, English-native, right-handed men who had used cannabis 15 times or less in their life. Regional brain activation (blood oxygenation level-dependent response), electrodermal activity (skin conductance response [SCR]), and objective and subjective ratings of anxiety. Delta9-Tetrahydrocannabinol increased anxiety, as well as levels of intoxication, sedation, and psychotic symptoms, whereas there was a trend for a reduction in anxiety following administration of CBD. The number of SCR fluctuations during the processing of intensely fearful faces increased following administration of Delta9-THC but decreased following administration of CBD. Cannabidiol attenuated the blood oxygenation level-dependent signal in the amygdala and the anterior and posterior cingulate cortex while subjects were processing intensely fearful faces, and its suppression of the amygdalar and anterior cingulate responses was correlated with the concurrent reduction in SCR fluctuations. Delta9-Tetrahydrocannabinol mainly modulated activation in frontal and parietal areas. Delta9-Tetrahydrocannabinol and CBD had clearly distinct effects on the neural, electrodermal, and symptomatic response to fearful faces. The effects of CBD on activation in limbic and paralimbic regions may contribute to its ability to
Ibrahim, Elsayed A; Gul, Waseem; Gul, Shahbaz W; Stamper, Brandon J; Hadad, Ghada M; Abdel Salam, Randa A; Ibrahim, Amany K; Ahmed, Safwat A; Chandra, Suman; Lata, Hemant; Radwan, Mohamed M; ElSohly, Mahmoud A
2018-03-01
Cannabis ( Cannabis sativa L.) is an annual herbaceous plant that belongs to the family Cannabaceae. Trans -Δ 9 -tetrahydrocannabinol (Δ 9 -THC) and cannabidiol (CBD) are the two major phytocannabinoids accounting for over 40% of the cannabis plant extracts, depending on the variety. At the University of Mississippi, different strains of C. sativa, with different concentration ratios of CBD and Δ 9 -THC, have been tissue cultured via micropropagation and cultivated. A GC-FID method has been developed and validated for the qualitative and quantitative analysis of acid and neutral cannabinoids in C. sativa extracts. The method involves trimethyl silyl derivatization of the extracts. These cannabinoids include tetrahydrocannabivarian, CBD, cannabichromene, trans -Δ 8 -tetrahydrocannabinol, Δ 9 -THC, cannabigerol, cannabinol, cannabidiolic acid, cannabigerolic acid, and Δ 9 -tetrahydrocannabinolic acid-A. The concentration-response relationship of the method indicated a linear relationship between the concentration and peak area ratio with R 2 > 0.999 for all 10 cannabinoids. The precision and accuracy of the method were found to be ≤ 15% and ± 5%, respectively. The limit of detection range was 0.11 - 0.19 µg/mL, and the limit of quantitation was 0.34 - 0.56 µg/mL for all 10 cannabinoids. The developed method is simple, sensitive, reproducible, and suitable for the detection and quantitation of acidic and neutral cannabinoids in different extracts of cannabis varieties. The method was applied to the analysis of these cannabinoids in different parts of the micropropagated cannabis plants (buds, leaves, roots, and stems). Georg Thieme Verlag KG Stuttgart · New York.
Wang, Yan-Hong; Avula, Bharathi; ElSohly, Mahmoud A; Radwan, Mohamed M; Wang, Mei; Wanas, Amira S; Mehmedic, Zlatko; Khan, Ikhlas A
2018-03-01
Cannabinoids are a group of terpenophenolic compounds in the medicinal plant Cannabis sativa (Cannabaceae family). Cannabigerolic acid, Δ 9 -tetrahydrocannabinolic acid A, cannabidiolic acid, Δ 9 -tetrahydrocannabinol, cannabigerol, cannabidiol, cannabichromene, and tetrahydrocannabivarin are major metabolites in the classification of different strains of C. sativa . Degradation or artifact cannabinoids cannabinol, cannabicyclol, and Δ 8 -tetrahydrocannabinol are formed under the influence of heat and light during processing and storage of the plant sample. An ultrahigh-performance liquid chromatographic method coupled with photodiode array and single quadruple mass spectrometry detectors was developed and validated for quantitative determination of 11 cannabinoids in different C. sativa samples. Compounds 1: - 11: were baseline separated with an acetonitrile (with 0.05% formic acid) and water (with 0.05% formic acid) gradient at a flow rate of 0.25 mL/min on a Waters Cortec UPLC C18 column (100 mm × 2.1 mm I. D., 1.6 µm). The limits of detection and limits of quantitation of the 11 cannabinoids were below 0.2 and 0.5 µg/mL, respectively. The relative standard deviation for the precision test was below 2.4%. A mixture of acetonitrile and methanol (80 : 20, v / v ) was proven to be the best solvent system for the sample preparation. The recovery of all analytes was in the range of 97 - 105%. A total of 32 Cannabis samples including hashish, leaves, and flower buds were analyzed. Georg Thieme Verlag KG Stuttgart · New York.
Pertwee, Roger G; Thomas, Adèle; Stevenson, Lesley A; Maor, Yehoshua; Mechoulam, Raphael
2005-06-01
Previous experiments showed that R-(+)-WIN55212-induced inhibition of electrically-evoked contractions of mouse vasa deferentia could be antagonized by cannabidiol in a manner that appeared to be competitive but not to involve direct competition for established cannabinoid receptors. We have now discovered that (-)-7-hydroxy-4'-dimethylheptyl-cannabidiol (7-OH-DMH-CBD) inhibits electrically-evoked contractions of the vas deferens (EC(50)=13.3 nM). This it appeared to do by acting on prejunctional neurones as 100 nM 7-OH-DMH-CBD did not attenuate contractile responses to phenylephrine or beta,gamma-methylene-ATP. Although 7-OH-DMH-CBD was antagonized by SR141716A, it was less susceptible to antagonism by this CB(1) receptor antagonist than R-(+)-WIN55212. 7-OH-DMH-CBD was also antagonized by cannabidiol (1 microM; apparent K(B)=222.2 nM) but not by the CB(2) receptor antagonist, SR144528 (32 nM), or by naloxone (300 nM), ruthenium red (1 microM) or capsazepine (10 microM). Yohimbine (100 nM) enhanced the ability of 7-OH-DMH-CBD to inhibit electrically-evoked contractions. R-(+)-WIN55212 was also potentiated by 100 nM yohimbine, possibly reflecting ongoing sequestration of G(i/o) proteins from CB(1) receptors by alpha(2)-adrenoceptors. Our results suggest that 7-OH-DMH-CBD may activate a neuronal target in the vas deferens that is not a CB(1), CB(2), TRPV1, opioid or alpha(2)-adrenergic receptor but do not exclude the possibility that it also activates CB(1) receptors.
Vaccani, Angelo; Massi, Paola; Colombo, Arianna; Rubino, Tiziana; Parolaro, Daniela
2005-01-01
We evaluated the ability of cannabidiol (CBD) to impair the migration of tumor cells stimulated by conditioned medium. CBD caused concentration-dependent inhibition of the migration of U87 glioma cells, quantified in a Boyden chamber. Since these cells express both cannabinoid CB1 and CB2 receptors in the membrane, we also evaluated their engagement in the antimigratory effect of CBD. The inhibition of cell was not antagonized either by the selective cannabinoid receptor antagonists SR141716 (CB1) and SR144528 (CB2) or by pretreatment with pertussis toxin, indicating no involvement of classical cannabinoid receptors and/or receptors coupled to Gi/o proteins. These results reinforce the evidence of antitumoral properties of CBD, demonstrating its ability to limit tumor invasion, although the mechanism of its pharmacological effects remains to be clarified. PMID:15700028
Therapeutic Potential of Non-Psychotropic Cannabidiol in Ischemic Stroke.
Hayakawa, Kazuhide; Mishima, Kenichi; Fujiwara, Michihiro
2010-07-08
Cannabis contains the psychoactive component delta⁸-tetrahydrocannabinol (delta⁸-THC), and the non-psychoactive components cannabidiol (CBD), cannabinol, and cannabigerol. It is well-known that delta⁸-THC and other cannabinoid CB₁ receptor agonists are neuroprotective during global and focal ischemic injury. Additionally, delta⁸-THC also mediates psychological effects through the activation of the CB₁ receptor in the central nervous system. In addition to the CB₁ receptor agonists, cannabis also contains therapeutically active components which are CB₁ receptor independent. Of the CB₁ receptor-independent cannabis, the most important is CBD. In the past five years, an increasing number of publications have focused on the discovery of the anti-inflammatory, anti-oxidant, and neuroprotective effects of CBD. In particular, CBD exerts positive pharmacological effects in ischemic stroke and other chronic diseases, including Parkinson's disease, Alzheimer's disease, and rheumatoid arthritis. The cerebroprotective action of CBD is CB₁ receptor-independent, long-lasting, and has potent anti-oxidant activity. Importantly, CBD use does not lead to tolerance. In this review, we will discuss the therapeutic possibility of CBD as a cerebroprotective agent, highlighting recent pharmacological advances, novel mechanisms, and therapeutic time window of CBD in ischemic stroke.
Rajesh, Mohanraj; Mukhopadhyay, Partha; Bátkai, Sándor; Patel, Vivek; Saito, Keita; Matsumoto, Shingo; Kashiwaya, Yoshihiro; Horváth, Béla; Mukhopadhyay, Bani; Becker, Lauren; Haskó, György; Liaudet, Lucas; Wink, David A; Veves, Aristidis; Mechoulam, Raphael; Pacher, Pál
2010-01-01
Objectives In this study, we have investigated the effects of cannabidiol (CBD) on myocardial dysfunction, inflammation, oxidative/nitrosative stress, cell death and interrelated signaling pathways, using a mouse model of type I diabetic cardiomyopathy and primary human cardiomyocytes exposed to high glucose. Background CBD, the most abundant nonpsychoactive constituent of Cannabis sativa (marijuana) plant, exerts antiinflammatory effects in various disease models and alleviates pain and spasticity associated with multiple sclerosis in humans. Methods Left ventricular function was measured by pressure-volume system. Oxidative stress, cell death and fibrosis markers were evaluated by molecular biology/biochemical techniques, electron spin resonance spectroscopy and flow cytometry. Results Diabetic cardiomyopathy was characterized by declined diastolic and systolic myocardial performance associated with increased oxidative-nitrosative stress, NF-κB and MAPK (JNK and p-38, p38α) activation, enhanced expression of adhesion molecules (ICAM-1, VCAM-1), TNF-α, markers of fibrosis (TGF-β, CTGF, fibronectin, collagen-1, MMP-2 and MMP-9), enhanced cell death (caspase 3/7 and PARP activity, chromatin fragmentation and TUNEL) and diminished Akt phosphorylation. Remarkably, CBD attenuated myocardial dysfunction, cardiac fibrosis, oxidative/nitrosative stress, inflammation, cell death, and interrelated signaling pathways. Furthermore, CBD also attenuated the high glucose-induced increased reactive oxygen species generation, NF-κB activation and cell death in primary human cardiomyocytes. Conclusions Collectively, these results coupled with the excellent safety and tolerability profile of cannabidiol in humans, strongly suggest that it may have great therapeutic potential in the treatment of diabetic complications, and perhaps other cardiovascular disorders, by attenuating oxidative/nitrosative stress, inflammation, cell death and fibrosis. PMID:21144973
Hermann, Derik; Schneider, Miriam
2012-01-01
Cannabis use and the development of schizophrenic psychoses share a variety of similarities. Both start during late adolescence; go along with neuropsychological deficits, reduced activity, motivation deficits, and hallucinations suggesting impairment of similar brain structures. In cannabis heavy users diminished regional gray and white matter volume was reported. Similar alterations were observed in the large literature addressing structural abnormalities in schizophrenia. Furthermore, in cannabis using schizophrenic patients, these brain alterations were especially pronounced. Close relatives of schizophrenic patients showed greater cannabis-associated brain tissue loss than non-relatives indicating a genetically mediated particular sensitivity to brain tissue loss. Possible mechanisms for the induction of structural brain alterations are here discussed including impairments of neurogenesis, disturbance of endocannabinoids and diminished neuroplasticity. Especially direct THC effects (or via endocannabinoids) may mediate diminished glutamatergic neurotransmission usually driving neuroplasticity. Correspondingly, alterations of the kynurenic acid blocking NMDA receptors may contribute to brain structure alterations. However, different cannabis compounds may exert opposite effects on the neuroanatomical changes underlying psychosis. In particular, cannabidiol (CBD) was shown to prevent THC associated hippocampal volume loss in a small pilot study. This finding is further supported by several animal experiments supporting neuroprotective properties of CBD mainly via anti-oxidative effects, CB2 receptors or adenosine receptors. We will discuss here the mechanisms by which CBD may reduce brain volume loss, including antagonism of THC, interactions with endocannabinoids, and mechanisms that specifically underlie antipsychotic properties of CBD.
Breuer, Aviva; Haj, Christeene G; Fogaça, Manoela V; Gomes, Felipe V; Silva, Nicole Rodrigues; Pedrazzi, João Francisco; Del Bel, Elaine A; Hallak, Jaime C; Crippa, José A; Zuardi, Antonio W; Mechoulam, Raphael; Guimarães, Francisco S
2016-01-01
Cannabidiol (CBD) is a major Cannabis sativa constituent, which does not cause the typical marijuana psychoactivity. However, it has been shown to be active in a numerous pharmacological assays, including mice tests for anxiety, obsessive-compulsive disorder, depression and schizophrenia. In human trials the doses of CBD needed to achieve effects in anxiety and schizophrenia are high. We report now the synthesis of 3 fluorinated CBD derivatives, one of which, 4'-F-CBD (HUF-101) (1), is considerably more potent than CBD in behavioral assays in mice predictive of anxiolytic, antidepressant, antipsychotic and anti-compulsive activity. Similar to CBD, the anti-compulsive effects of HUF-101 depend on cannabinoid receptors.
Cannabidiol inhibits angiogenesis by multiple mechanisms
Solinas, M; Massi, P; Cantelmo, AR; Cattaneo, MG; Cammarota, R; Bartolini, D; Cinquina, V; Valenti, M; Vicentini, LM; Noonan, DM; Albini, A; Parolaro, D
2012-01-01
BACKGROUND AND PURPOSE Several studies have demonstrated anti-proliferative and pro-apoptotic actions of cannabinoids on various tumours, together with their anti-angiogenic properties. The non-psychoactive cannabinoid cannabidiol (CBD) effectively inhibits the growth of different types of tumours in vitro and in vivo and down-regulates some pro-angiogenic signals produced by glioma cells. As its anti-angiogenic properties have not been thoroughly investigated to date, and given its very favourable pharmacological and toxicological profile, here, we evaluated the ability of CBD to modulate tumour angiogenesis. EXPERIMENTAL APPROACH Firstly, we evaluated the effect of CBD on human umbilical vein endothelial cell (HUVEC) proliferation and viability – through [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and FACS analysis – and in vitro motility – both in a classical Boyden chamber test and in a wound-healing assay. We next investigated CBD effects on different angiogenesis-related proteins released by HUVECs, using an angiogenesis array kit and an ELISA directed at MMP2. Then we evaluated its effects on in vitro angiogenesis in treated HUVECs invading a Matrigel layer and in HUVEC spheroids embedded into collagen gels, and further characterized its effects in vivo using a Matrigel sponge model of angiogenesis in C57/BL6 mice. KEY RESULTS CBD induced HUVEC cytostasis without inducing apoptosis, inhibited HUVEC migration, invasion and sprouting in vitro, and angiogenesis in vivo in Matrigel sponges. These effects were associated with the down-modulation of several angiogenesis-related molecules. CONCLUSIONS AND IMPLICATIONS This study reveals that CBD inhibits angiogenesis by multiple mechanisms. Its dual effect on both tumour and endothelial cells supports the hypothesis that CBD has potential as an effective agent in cancer therapy. PMID:22624859
Cannabidiol inhibits angiogenesis by multiple mechanisms.
Solinas, M; Massi, P; Cantelmo, A R; Cattaneo, M G; Cammarota, R; Bartolini, D; Cinquina, V; Valenti, M; Vicentini, L M; Noonan, D M; Albini, A; Parolaro, D
2012-11-01
Several studies have demonstrated anti-proliferative and pro-apoptotic actions of cannabinoids on various tumours, together with their anti-angiogenic properties. The non-psychoactive cannabinoid cannabidiol (CBD) effectively inhibits the growth of different types of tumours in vitro and in vivo and down-regulates some pro-angiogenic signals produced by glioma cells. As its anti-angiogenic properties have not been thoroughly investigated to date, and given its very favourable pharmacological and toxicological profile, here, we evaluated the ability of CBD to modulate tumour angiogenesis. Firstly, we evaluated the effect of CBD on human umbilical vein endothelial cell (HUVEC) proliferation and viability - through [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and FACS analysis - and in vitro motility - both in a classical Boyden chamber test and in a wound-healing assay. We next investigated CBD effects on different angiogenesis-related proteins released by HUVECs, using an angiogenesis array kit and an ELISA directed at MMP2. Then we evaluated its effects on in vitro angiogenesis in treated HUVECs invading a Matrigel layer and in HUVEC spheroids embedded into collagen gels, and further characterized its effects in vivo using a Matrigel sponge model of angiogenesis in C57/BL6 mice. CBD induced HUVEC cytostasis without inducing apoptosis, inhibited HUVEC migration, invasion and sprouting in vitro, and angiogenesis in vivo in Matrigel sponges. These effects were associated with the down-modulation of several angiogenesis-related molecules. This study reveals that CBD inhibits angiogenesis by multiple mechanisms. Its dual effect on both tumour and endothelial cells supports the hypothesis that CBD has potential as an effective agent in cancer therapy. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.
Beyond the CB1 Receptor: Is Cannabidiol the Answer for Disorders of Motivation?
Zlebnik, Natalie E; Cheer, Joseph F
2016-07-08
The Cannabis sativa plant has been used to treat various physiological and psychiatric conditions for millennia. Current research is focused on isolating potentially therapeutic chemical constituents from the plant for use in the treatment of many central nervous system disorders. Of particular interest is the primary nonpsychoactive constituent cannabidiol (CBD). Unlike Δ(9)-tetrahydrocannabinol (THC), CBD does not act through the cannabinoid type 1 (CB1) receptor but has many other receptor targets that may play a role in psychiatric disorders. Here we review preclinical and clinical data outlining the therapeutic efficacy of CBD for the treatment of motivational disorders such as drug addiction, anxiety, and depression. Across studies, findings suggest promising treatment effects and potentially overlapping mechanisms of action for CBD in these disorders and indicate the need for further systematic investigation of the viability of CBD as a psychiatric pharmacotherapy.
Therapeutic Potential of Non-Psychotropic Cannabidiol in Ischemic Stroke
Hayakawa, Kazuhide; Mishima, Kenichi; Fujiwara, Michihiro
2010-01-01
Cannabis contains the psychoactive component delta9-tetrahydrocannabinol (delta9-THC), and the non-psychoactive components cannabidiol (CBD), cannabinol, and cannabigerol. It is well-known that delta9-THC and other cannabinoid CB1 receptor agonists are neuroprotective during global and focal ischemic injury. Additionally, delta9-THC also mediates psychological effects through the activation of the CB1 receptor in the central nervous system. In addition to the CB1 receptor agonists, cannabis also contains therapeutically active components which are CB1 receptor independent. Of the CB1 receptor-independent cannabis, the most important is CBD. In the past five years, an increasing number of publications have focused on the discovery of the anti-inflammatory, anti-oxidant, and neuroprotective effects of CBD. In particular, CBD exerts positive pharmacological effects in ischemic stroke and other chronic diseases, including Parkinson’s disease, Alzheimer’s disease, and rheumatoid arthritis. The cerebroprotective action of CBD is CB1 receptor-independent, long-lasting, and has potent anti-oxidant activity. Importantly, CBD use does not lead to tolerance. In this review, we will discuss the therapeutic possibility of CBD as a cerebroprotective agent, highlighting recent pharmacological advances, novel mechanisms, and therapeutic time window of CBD in ischemic stroke. PMID:27713349
Cannabis, cannabidiol, and epilepsy--from receptors to clinical response.
Szaflarski, Jerzy P; Bebin, E Martina
2014-12-01
Recreational cannabis use in adults with epilepsy is widespread. The use of cannabis for medicinal purposes is also becoming more prevalent. For this purpose, various preparations of cannabis of varying strengths and content are being used. The recent changes in the legal environment have improved the availability of products with high cannabidiol (CBD) and low tetrahydrocannabinol (THC) concentrations. There is some anecdotal evidence of their potential efficacy, but the mechanisms of such action are not entirely clear. Some suspect an existence of synergy or "entourage effect" between CBD and THC. There is strong evidence that THC acts via the cannabinoid receptor CB1. The mechanism of action of CBD is less clear but is likely polypharmacological. The scientific data support the role of the endocannabinoid system in seizure generation, maintenance, and control in animal models of epilepsy. There are clear data for the negative effects of cannabis on the developing and mature brain though these effects appear to be relatively mild in most cases. Further data from well-designed studies are needed regarding short- and long-term efficacy and side effects of CBD or high-CBD/low-THC products for the treatment of seizures and epilepsy in children and adults. Copyright © 2014 Elsevier Inc. All rights reserved.
Cannabidiol, a Cannabis sativa constituent, as an antipsychotic drug.
Zuardi, A W; Crippa, J A S; Hallak, J E C; Moreira, F A; Guimarães, F S
2006-04-01
A high dose of delta9-tetrahydrocannabinol, the main Cannabis sativa (cannabis) component, induces anxiety and psychotic-like symptoms in healthy volunteers. These effects of delta9-tetrahydrocannabinol are significantly reduced by cannabidiol (CBD), a cannabis constituent which is devoid of the typical effects of the plant. This observation led us to suspect that CBD could have anxiolytic and/or antipsychotic actions. Studies in animal models and in healthy volunteers clearly suggest an anxiolytic-like effect of CBD. The antipsychotic-like properties of CBD have been investigated in animal models using behavioral and neurochemical techniques which suggested that CBD has a pharmacological profile similar to that of atypical antipsychotic drugs. The results of two studies on healthy volunteers using perception of binocular depth inversion and ketamine-induced psychotic symptoms supported the proposal of the antipsychotic-like properties of CBD. In addition, open case reports of schizophrenic patients treated with CBD and a preliminary report of a controlled clinical trial comparing CBD with an atypical antipsychotic drug have confirmed that this cannabinoid can be a safe and well-tolerated alternative treatment for schizophrenia. Future studies of CBD in other psychotic conditions such as bipolar disorder and comparative studies of its antipsychotic effects with those produced by clozapine in schizophrenic patients are clearly indicated.
Valenza, Marta; Togna, Giuseppina Ines; Latina, Valentina; De Filippis, Daniele; Cipriano, Mariateresa; Carratù, Maria Rosaria; Iuvone, Teresa; Steardo, Luca
2011-01-01
Peroxisome proliferator-activated receptor-γ (PPARγ) has been reported to be involved in the etiology of pathological features of Alzheimer's disease (AD). Cannabidiol (CBD), a Cannabis derivative devoid of psychomimetic effects, has attracted much attention because of its promising neuroprotective properties in rat AD models, even though the mechanism responsible for such actions remains unknown. This study was aimed at exploring whether CBD effects could be subordinate to its activity at PPARγ, which has been recently indicated as its putative binding site. CBD actions on β-amyloid-induced neurotoxicity in rat AD models, either in presence or absence of PPAR antagonists were investigated. Results showed that the blockade of PPARγ was able to significantly blunt CBD effects on reactive gliosis and subsequently on neuronal damage. Moreover, due to its interaction at PPARγ, CBD was observed to stimulate hippocampal neurogenesis. All these findings report the inescapable role of this receptor in mediating CBD actions, here reported. PMID:22163051
Detection and Quantification of Cannabinoids in Extracts of Cannabis sativa Roots Using LC-MS/MS.
Gul, Waseem; Gul, Shahbaz W; Chandra, Suman; Lata, Hemant; Ibrahim, Elsayed A; ElSohly, Mahmoud A
2018-03-01
A liquid chromatography-tandem mass spectrometry single-laboratory validation was performed for the detection and quantification of the 10 major cannabinoids of cannabis, namely, (-)- trans -Δ 9 -tetrahydrocannabinol, cannabidiol, cannabigerol, cannabichromene, tetrahydrocannabivarian, cannabinol, (-)- trans -Δ 8 -tetrahydrocannabinol, cannabidiolic acid, cannabigerolic acid, and Δ 9 -tetrahydrocannabinolic acid-A, in the root extract of Cannabis sativa . Acetonitrile : methanol (80 : 20, v/v) was used for extraction; d 3 -cannabidiol and d 3 - tetrahydrocannabinol were used as the internal standards. All 10 cannabinoids showed a good regression relationship with r 2 > 0.99. The validated method is simple, sensitive, and reproducible and is therefore suitable for the detection and quantification of these cannabinoids in extracts of cannabis roots. To our knowledge, this is the first report for the quantification of cannabinoids in cannabis roots. Georg Thieme Verlag KG Stuttgart · New York.
Baron, Eric P; Lucas, Philippe; Eades, Joshua; Hogue, Olivia
2018-05-24
patients treating with cannabis were positive for migraine. Hybrid strains were preferred in ID Migraine™, headache, and most pain groups, with "OG Shark", a high THC (Δ9-tetrahydrocannabinol)/THCA (tetrahydrocannabinolic acid), low CBD (cannabidiol)/CBDA (cannabidiolic acid), strain with predominant terpenes β-caryophyllene and β-myrcene, most preferred in the headache and ID Migraine™ groups. This could reflect the potent analgesic, anti-inflammatory, and anti-emetic properties of THC, with anti-inflammatory and analgesic properties of β-caryophyllene and β-myrcene. Opiates/opioids were most commonly substituted with cannabis. Prospective studies are needed, but results may provide early insight into optimizing crossbred cannabis strains, synergistic biochemical profiles, dosing, and patterns of use in the treatment of headache, migraine, and chronic pain syndromes.
Fogaça, Manoela V.; Gomes, Felipe V.; Silva, Nicole Rodrigues; Pedrazzi, João Francisco; Del Bel, Elaine A.; Hallak, Jaime C.; Crippa, José A.; Zuardi, Antonio W.; Guimarães, Francisco S.
2016-01-01
Cannabidiol (CBD) is a major Cannabis sativa constituent, which does not cause the typical marijuana psychoactivity. However, it has been shown to be active in a numerous pharmacological assays, including mice tests for anxiety, obsessive-compulsive disorder, depression and schizophrenia. In human trials the doses of CBD needed to achieve effects in anxiety and schizophrenia are high. We report now the synthesis of 3 fluorinated CBD derivatives, one of which, 4'-F-CBD (HUF-101) (1), is considerably more potent than CBD in behavioral assays in mice predictive of anxiolytic, antidepressant, antipsychotic and anti-compulsive activity. Similar to CBD, the anti-compulsive effects of HUF-101 depend on cannabinoid receptors. PMID:27416026
Beyond the CB1 Receptor: Is Cannabidiol the Answer for Disorders of Motivation?
Zlebnik, Natalie E.; Cheer, Joseph F.
2018-01-01
The Cannabis sativa plant has been used to treat various physiological and psychiatric conditions for millennia. Current research is focused on isolating potentially therapeutic chemical constituents from the plant for use in the treatment of many central nervous system disorders. Of particular interest is the primary nonpsychoactive constituent cannabidiol (CBD). Unlike Δ9-tetrahydrocannabinol (THC), CBD does not act through the cannabinoid type 1 (CB1) receptor but has many other receptor targets that may play a role in psychiatric disorders. Here we review preclinical and clinical data outlining the therapeutic efficacy of CBD for the treatment of motivational disorders such as drug addiction, anxiety, and depression. Across studies, findings suggest promising treatment effects and potentially overlapping mechanisms of action for CBD in these disorders and indicate the need for further systematic investigation of the viability of CBD as a psychiatric pharmacotherapy. PMID:27023732
Neurological Aspects of Medical Use of Cannabidiol.
Mannucci, Carmen; Navarra, Michele; Calapai, Fabrizio; Spagnolo, Elvira V; Busardò, Francesco P; Cas, Roberto D; Ippolito, Francesca M; Calapai, Gioacchino
2017-01-01
Cannabidiol (CBD) is among the major secondary metabolites of Cannabis devoid of the delta-9-tetra-hydrocannabinol psychoactive effects. It is a resorcinol-based compound with a broad spectrum of potential therapeutic properties, including neuroprotective effects in numerous pathological conditions. CBD neuroprotection is due to its antioxidant and antiinflammatory activities and the modulation of a large number of brain biological targets (receptors, channels) involved in the development and maintenance of neurodegenerative diseases. The aim of the present review was to describe the state of art about the pre-clinical research, the potential use and, when existing, the clinical evidence related to CBD in the neurological field. Collection of all the pre-clinical and clinical findings carried out investigating the effects of CBD alone, not in combination with other substances, in the neurological arena with the exclusion of studies on neuropsychiatric disorders. Laboratory and clinical studies on the potential role of CBD in Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), Huntington's disease (HD), amyotrophic lateral sclerosis ALS), cerebral ischemia, were examined. Pre-clinical evidence largely shows that CBD can produce beneficial effects in AD, PD and MS patients, but its employment for these disorders needs further confirmation from well designed clinical studies. CBD pre-clinical demonstration of antiepileptic activity is supported by recent clinical studies in human epileptic subjects resistant to standard antiepileptic drugs showing its potential use in children and young adults affected by refractory epilepsy. Evidence for use of CBD in PD is still not supported by sufficient data whereas only a few studies including a small number of patients are available. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
de Mello Schier, Alexandre R; de Oliveira Ribeiro, Natalia P; Coutinho, Danielle S; Machado, Sergio; Arias-Carrión, Oscar; Crippa, Jose A; Zuardi, Antonio W; Nardi, Antonio E; Silva, Adriana C
2014-01-01
Anxiety and depression are pathologies that affect human beings in many aspects of life, including social life, productivity and health. Cannabidiol (CBD) is a constituent non-psychotomimetic of Cannabis sativa with great psychiatric potential, including uses as an antidepressant-like and anxiolytic-like compound. The aim of this study is to review studies of animal models using CBD as an anxiolytic-like and antidepressant-like compound. Studies involving animal models, performing a variety of experiments on the above-mentioned disorders, such as the forced swimming test (FST), elevated plus maze (EPM) and Vogel conflict test (VCT), suggest that CBD exhibited an anti-anxiety and antidepressant effects in animal models discussed. Experiments with CBD demonstrated non-activation of neuroreceptors CB1 and CB2. Most of the studies demonstrated a good interaction between CBD and the 5-HT1A neuro-receptor.
Ujváry, István; Hanuš, Lumír
2016-01-01
Abstract Cannabidiol (CBD), the main nonpsychoactive constituent of Cannabis sativa, has shown a wide range of therapeutically promising pharmacological effects either as a sole drug or in combination with other drugs in adjunctive therapy. However, the targets involved in the therapeutic effects of CBD appear to be elusive. Furthermore, scarce information is available on the biological activity of its human metabolites which, when formed in pharmacologically relevant concentration, might contribute to or even account for the observed therapeutic effects. The present overview summarizes our current knowledge on the pharmacokinetics and metabolic fate of CBD in humans, reviews studies on the biological activity of CBD metabolites either in vitro or in vivo, and discusses relevant drug–drug interactions. To facilitate further research in the area, the reported syntheses of CBD metabolites are also catalogued. PMID:28861484
Ujváry, István; Hanuš, Lumír
2016-01-01
Cannabidiol (CBD), the main nonpsychoactive constituent of Cannabis sativa , has shown a wide range of therapeutically promising pharmacological effects either as a sole drug or in combination with other drugs in adjunctive therapy. However, the targets involved in the therapeutic effects of CBD appear to be elusive. Furthermore, scarce information is available on the biological activity of its human metabolites which, when formed in pharmacologically relevant concentration, might contribute to or even account for the observed therapeutic effects. The present overview summarizes our current knowledge on the pharmacokinetics and metabolic fate of CBD in humans, reviews studies on the biological activity of CBD metabolites either in vitro or in vivo , and discusses relevant drug-drug interactions. To facilitate further research in the area, the reported syntheses of CBD metabolites are also catalogued.
Cannabidiol lowers incidence of diabetes in non-obese diabetic mice.
Weiss, L; Zeira, M; Reich, S; Har-Noy, M; Mechoulam, R; Slavin, S; Gallily, R
2006-03-01
Cannabidinoids are components of the Cannabis sativa (marijuana) plant that have been shown capable of suppressing inflammation and various aspects of cell-mediated immunity. Cannabidiol (CBD), a non-psychoactive cannabidinoid has been previously shown by us to suppress cell-mediated autoimmune joint destruction in an animal model of rheumatoid arthritis. We now report that CBD treatment significantly reduces the incidence of diabetes in NOD mice from an incidence of 86% in non-treated control mice to an incidence of 30% in CBD-treated mice. CBD treatment also resulted in the significant reduction of plasma levels of the pro-inflammatory cytokines, IFN-gamma and TNF-alpha. Th1-associated cytokine production of in vitro activated T-cells and peritoneal macrophages was also significantly reduced in CBD-treated mice, whereas production of the Th2-associated cytokines, IL-4 and IL-10, was increased when compared to untreated control mice. Histological examination of the pancreatic islets of CBD-treated mice revealed significantly reduced insulitis. Our results indicate that CBD can inhibit and delay destructive insulitis and inflammatory Th1-associated cytokine production in NOD mice resulting in a decreased incidence of diabetes possibly through an immunomodulatory mechanism shifting the immune response from Th1 to Th2 dominance.
Campos, Alline C.; Fogaça, Manoela V.; Scarante, Franciele F.; Joca, Sâmia R. L.; Sales, Amanda J.; Gomes, Felipe V.; Sonego, Andreza B.; Rodrigues, Naielly S.; Galve-Roperh, Ismael; Guimarães, Francisco S.
2017-01-01
Beneficial effects of cannabidiol (CBD) have been described for a wide range of psychiatric disorders, including anxiety, psychosis, and depression. The mechanisms responsible for these effects, however, are still poorly understood. Similar to clinical antidepressant or atypical antipsychotic drugs, recent findings clearly indicate that CBD, either acutely or repeatedly administered, induces plastic changes. For example, CBD attenuates the decrease in hippocampal neurogenesis and dendrite spines density induced by chronic stress and prevents microglia activation and the decrease in the number of parvalbumin-positive GABA neurons in a pharmacological model of schizophrenia. More recently, it was found that CBD modulates cell fate regulatory pathways such as autophagy and others critical pathways for neuronal survival in neurodegenerative experimental models, suggesting the potential benefit of CBD treatment for psychiatric/cognitive symptoms associated with neurodegeneration. These changes and their possible association with CBD beneficial effects in psychiatric disorders are reviewed here. PMID:28588483
Campos, Alline C; Fogaça, Manoela V; Scarante, Franciele F; Joca, Sâmia R L; Sales, Amanda J; Gomes, Felipe V; Sonego, Andreza B; Rodrigues, Naielly S; Galve-Roperh, Ismael; Guimarães, Francisco S
2017-01-01
Beneficial effects of cannabidiol (CBD) have been described for a wide range of psychiatric disorders, including anxiety, psychosis, and depression. The mechanisms responsible for these effects, however, are still poorly understood. Similar to clinical antidepressant or atypical antipsychotic drugs, recent findings clearly indicate that CBD, either acutely or repeatedly administered, induces plastic changes. For example, CBD attenuates the decrease in hippocampal neurogenesis and dendrite spines density induced by chronic stress and prevents microglia activation and the decrease in the number of parvalbumin-positive GABA neurons in a pharmacological model of schizophrenia. More recently, it was found that CBD modulates cell fate regulatory pathways such as autophagy and others critical pathways for neuronal survival in neurodegenerative experimental models, suggesting the potential benefit of CBD treatment for psychiatric/cognitive symptoms associated with neurodegeneration. These changes and their possible association with CBD beneficial effects in psychiatric disorders are reviewed here.
Antinociceptive effects of HUF-101, a fluorinated cannabidiol derivative.
Silva, Nicole R; Gomes, Felipe V; Fonseca, Miriam D; Mechoulam, Raphael; Breuer, Aviva; Cunha, Thiago M; Guimarães, Francisco S
2017-10-03
Cannabidiol (CBD) is a phytocannabinoid with multiple pharmacological effects and several potential therapeutic properties. Its low oral bioavailability, however, can limit its clinical use. Preliminary results indicate that fluorination of the CBD molecule increases its pharmacological potency. Here, we investigated whether HUF-101 (3, 10, and 30mg/kg), a fluorinated CBD analogue, would induce antinociceptive effects. HUF-101 effects were compared to those induced by CBD (10, 30, and 90mg/kg) and the cannabinoid CB 1/2 receptor agonist WIN55,212-2 (1, 3, and 5mg/kg). These drugs were tested in male Swiss mice submitted to the following models predictive to antinociceptive drugs: hot plate, acetic acid-induced writhing, and carrageenan-induced inflammatory hyperalgesia. To evaluate the involvement of CB 1 and CB 2 receptors in HUF-101 and CBD effects, mice received the CB 1 receptor antagonist AM251 (1 or 3mg/kg) or the CB 2 receptor antagonist AM630 (1 or 3mg/kg) 30min before HUF-101, CBD, or WIN55,212-2. In the hot plate test, HUF-101 (30mg/kg) and WIN55,212-2 (5mg/kg) induced antinociceptive effects, which were attenuated by the pretreatment with AM251 and AM630. In the abdominal writhing test, CBD (30 and 90mg/kg), HUF-101 (30mg/kg), and WIN55,212-2 (3 and 5mg/kg) induced antinociceptive effects indicated by a reduction in the number of writhing. Whereas the pretreatment with AM630 did not mitigate the effects induced by any drug in this test, the pretreatment with AM251 attenuated the effect caused by WIN55,212-2. In the carrageenan-induced hyperalgesia test, CBD (30 and 90mg/kg), HUF-101 (3, 10 and 30mg/kg) and WIN55,212-2 (1mg/kg) decreased the intensity of mechanical hyperalgesia measured by the electronic von Frey method. The effects of all compounds were attenuated by the pretreatment with AM251 and AM630. Additionally, we evaluated whether HUF-101 would induce the classic cannabinoid CB 1 receptor-mediated tetrad (hypolocomotion, catalepsy, hypothermia
Cannabidiol in Humans—The Quest for Therapeutic Targets
Zhornitsky, Simon; Potvin, Stéphane
2012-01-01
Cannabidiol (CBD), a major phytocannabinoid constituent of cannabis, is attracting growing attention in medicine for its anxiolytic, antipsychotic, antiemetic and anti-inflammatory properties. However, up to this point, a comprehensive literature review of the effects of CBD in humans is lacking. The aim of the present systematic review is to examine the randomized and crossover studies that administered CBD to healthy controls and to clinical patients. A systematic search was performed in the electronic databases PubMed and EMBASE using the key word “cannabidiol”. Both monotherapy and combination studies (e.g., CBD + ∆9-THC) were included. A total of 34 studies were identified: 16 of these were experimental studies, conducted in healthy subjects, and 18 were conducted in clinical populations, including multiple sclerosis (six studies), schizophrenia and bipolar mania (four studies), social anxiety disorder (two studies), neuropathic and cancer pain (two studies), cancer anorexia (one study), Huntington’s disease (one study), insomnia (one study), and epilepsy (one study). Experimental studies indicate that a high-dose of inhaled/intravenous CBD is required to inhibit the effects of a lower dose of ∆9-THC. Moreover, some experimental and clinical studies suggest that oral/oromucosal CBD may prolong and/or intensify ∆9-THC-induced effects, whereas others suggest that it may inhibit ∆9-THC-induced effects. Finally, preliminary clinical trials suggest that high-dose oral CBD (150–600 mg/d) may exert a therapeutic effect for social anxiety disorder, insomnia and epilepsy, but also that it may cause mental sedation. Potential pharmacokinetic and pharmacodynamic explanations for these results are discussed. PMID:24281562
Prohedonic Effect of Cannabidiol in a Rat Model of Depression.
Shoval, Gal; Shbiro, Liat; Hershkovitz, Liron; Hazut, Noa; Zalsman, Gil; Mechoulam, Raphael; Weller, Aron
2016-01-01
Accumulating evidence suggests that cannabidiol (CBD) may be an effective and safe anxiolytic agent and potentially also an antidepressant. The objective of this study was to further examine these properties of CBD using the 'depressive-like' Wistar-Kyoto (WKY) rat, focusing on the drug's effect on anhedonia-like behaviors. Forty-eight WKY and 48 control Wistar adult male rats were pretreated orally with CBD (15, 30 and 45 mg/kg) or vehicle. The saccharin preference test (SPT), the elevated plus maze (EPM) test and the novel object exploration (NOE) test were used. CBD showed a prohedonic effect on the WKY rats at 30 mg/kg in the SPT. In the NOE, CBD increased exploration of the novel object and locomotion at 45 mg/kg and increased locomotion at 15 mg/kg, indicating an improvement in the characteristically low motivation of WKY rats to explore. There was no similar effect at any dose in the EPM or in open-field behavior in the habituation to the NOE. These findings extend the limited knowledge on the antidepressant effect of CBD, now shown for the first time in a genetic animal model of depression. These results suggest that CBD may be beneficial for the treatment of clinical depression and other states with prominent anhedonia. © 2016 S. Karger AG, Basel.
Cannabidiol promotes browning in 3T3-L1 adipocytes.
Parray, Hilal Ahmad; Yun, Jong Won
2016-05-01
Recruitment of the brown-like phenotype in white adipocytes (browning) and activation of existing brown adipocytes are currently being investigated as a means to combat obesity. Thus, a wide variety of dietary agents that contribute to browning of white adipocytes have been identified. The present study was designed to investigate the effects of cannabidiol (CBD), a major nonpsychotropic phytocannabinoid of Cannabis sativa, on induction of browning in 3T3-L1 adipocytes. CBD enhanced expression of a core set of brown fat-specific marker genes (Ucp1, Cited1, Tmem26, Prdm16, Cidea, Tbx1, Fgf21, and Pgc-1α) and proteins (UCP1, PRDM16, and PGC-1α). Increased expression of UCP1 and other brown fat-specific markers contributed to the browning of 3T3-L1 adipocytes possibly via activation of PPARγ and PI3K. In addition, CBD increased protein expression levels of CPT1, ACSL, SIRT1, and PLIN while down-regulating JNK2, SREBP1, and LPL. These data suggest possible roles for CBD in browning of white adipocytes, augmentation of lipolysis, thermogenesis, and reduction of lipogenesis. In conclusion, the current data suggest that CBD plays dual modulatory roles in the form of inducing the brown-like phenotype as well as promoting lipid metabolism. Thus, CBD may be explored as a potentially promising therapeutic agent for the prevention of obesity.
Analysis of Cannabis Seizures in NSW, Australia: Cannabis Potency and Cannabinoid Profile
Li, Kong M.; Arnold, Jonathon C.; McGregor, Iain S.
2013-01-01
Recent analysis of the cannabinoid content of cannabis plants suggests a shift towards use of high potency plant material with high levels of Δ9-tetrahydrocannabinol (THC) and low levels of other phytocannabinoids, particularly cannabidiol (CBD). Use of this type of cannabis is thought by some to predispose to greater adverse outcomes on mental health and fewer therapeutic benefits. Australia has one of the highest per capita rates of cannabis use in the world yet there has been no previous systematic analysis of the cannabis being used. In the present study we examined the cannabinoid content of 206 cannabis samples that had been confiscated by police from recreational users holding 15 g of cannabis or less, under the New South Wales “Cannabis Cautioning” scheme. A further 26 “Known Provenance” samples were analysed that had been seized by police from larger indoor or outdoor cultivation sites rather than from street level users. An HPLC method was used to determine the content of 9 cannabinoids: THC, CBD, cannabigerol (CBG), and their plant-based carboxylic acid precursors THC-A, CBD-A and CBG-A, as well as cannabichromene (CBC), cannabinol (CBN) and tetrahydrocannabivarin (THC-V). The “Cannabis Cautioning” samples showed high mean THC content (THC+THC-A = 14.88%) and low mean CBD content (CBD+CBD-A = 0.14%). A modest level of CBG was detected (CBG+CBG-A = 1.18%) and very low levels of CBC, CBN and THC-V (<0.1%). “Known Provenance” samples showed no significant differences in THC content between those seized from indoor versus outdoor cultivation sites. The present analysis echoes trends reported in other countries towards the use of high potency cannabis with very low CBD content. The implications for public health outcomes and harm reduction strategies are discussed. PMID:23894589
Analysis of cannabis seizures in NSW, Australia: cannabis potency and cannabinoid profile.
Swift, Wendy; Wong, Alex; Li, Kong M; Arnold, Jonathon C; McGregor, Iain S
2013-01-01
Recent analysis of the cannabinoid content of cannabis plants suggests a shift towards use of high potency plant material with high levels of Δ(9)-tetrahydrocannabinol (THC) and low levels of other phytocannabinoids, particularly cannabidiol (CBD). Use of this type of cannabis is thought by some to predispose to greater adverse outcomes on mental health and fewer therapeutic benefits. Australia has one of the highest per capita rates of cannabis use in the world yet there has been no previous systematic analysis of the cannabis being used. In the present study we examined the cannabinoid content of 206 cannabis samples that had been confiscated by police from recreational users holding 15 g of cannabis or less, under the New South Wales "Cannabis Cautioning" scheme. A further 26 "Known Provenance" samples were analysed that had been seized by police from larger indoor or outdoor cultivation sites rather than from street level users. An HPLC method was used to determine the content of 9 cannabinoids: THC, CBD, cannabigerol (CBG), and their plant-based carboxylic acid precursors THC-A, CBD-A and CBG-A, as well as cannabichromene (CBC), cannabinol (CBN) and tetrahydrocannabivarin (THC-V). The "Cannabis Cautioning" samples showed high mean THC content (THC+THC-A = 14.88%) and low mean CBD content (CBD+CBD-A = 0.14%). A modest level of CBG was detected (CBG+CBG-A = 1.18%) and very low levels of CBC, CBN and THC-V (<0.1%). "Known Provenance" samples showed no significant differences in THC content between those seized from indoor versus outdoor cultivation sites. The present analysis echoes trends reported in other countries towards the use of high potency cannabis with very low CBD content. The implications for public health outcomes and harm reduction strategies are discussed.
Systemic Injections of Cannabidiol Enhance Acetylcholine Levels from Basal Forebrain in Rats.
Murillo-Rodríguez, Eric; Arankowsky-Sandoval, Gloria; Rocha, Nuno Barbosa; Peniche-Amante, Rodrigo; Veras, André Barciela; Machado, Sérgio; Budde, Henning
2018-06-06
Cannabis sativa is a plant that contains more than 500 components, of which the most studied are Δ 9 -tetrahydrocannabinol (Δ 9 -THC) and cannabidiol (CBD). Several studies have indicated that CBD displays neurobiological effects, including wake promotion. Moreover, experimental evidence has shown that injections of CBD enhance wake-related compounds, such as monoamines (dopamine, serotonin, epinephrine, and norepinephrine). However, no clear evidence is available regarding the effects of CBD on additional wake-related neurochemicals such as acetylcholine (ACh). Here, we demonstrate that systemic injections of CBD (0, 5, 10 or 30 mg/kg, i.p.) at the beginning of the lights-on period, increase the extracellular levels of ACh collected from the basal forebrain and measured by microdialysis and HPLC means. Moreover, the time course effects on the contents of ACh were present 5 h post-injection of CBD. Altogether, these data demonstrate that CBD increases ACh levels in a brain region related to wake control. This study is the first to show the effects of ACh levels in CBD-treated rats and suggests that the basal forebrain might be a site of action of CBD for wakefulness modulation.
The Potential of Cannabidiol Treatment for Cannabis Users With Recent-Onset Psychosis.
Hahn, Britta
2018-01-13
A major factor associated with poor prognostic outcome after a first psychotic break is cannabis misuse, which is prevalent in schizophrenia and particularly common in individuals with recent-onset psychosis. Behavioral interventions aimed at reducing cannabis use have been unsuccessful in this population. Cannabidiol (CBD) is a phytocannabinoid found in cannabis, although at low concentrations in modern-day strains. CBD has a broad pharmacological profile, but contrary to ∆9-tetrahydrocannabinol (THC), CBD does not activate CB1 or CB2 receptors and has at most subtle subjective effects. Growing evidence indicates that CBD acts as an antipsychotic and anxiolytic, and several reports suggest neuroprotective effects. Moreover, CBD attenuates THC's detrimental effects, both acutely and chronically, including psychotogenic, anxiogenic, and deleterious cognitive effects. This suggests that CBD may improve the disease trajectory of individuals with early psychosis and comorbid cannabis misuse in particular-a population with currently poor prognostic outcome and no specialized effective intervention. © The Author(s) 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Akimoto, Madoka; McNicholl, Eric Tyler; Ramkissoon, Avinash; Moleschi, Kody; Taylor, Susan S.; Melacini, Giuseppe
2015-01-01
Protein Kinase A (PKA) is the major receptor for the cyclic adenosine monophosphate (cAMP) secondary messenger in eukaryotes. cAMP binds to two tandem cAMP-binding domains (CBD-A and -B) within the regulatory subunit of PKA (R), unleashing the activity of the catalytic subunit (C). While CBD-A in RIα is required for PKA inhibition and activation, CBD-B functions as a “gatekeeper” domain that modulates the control exerted by CBD-A. Preliminary evidence suggests that CBD-B dynamics are critical for its gatekeeper function. To test this hypothesis, here we investigate by Nuclear Magnetic Resonance (NMR) the two-domain construct RIα (91–379) in its apo, cAMP2, and C-bound forms. Our comparative NMR analyses lead to a double conformational selection model in which each apo CBD dynamically samples both active and inactive states independently of the adjacent CBD within a nearly degenerate free energy landscape. Such degeneracy is critical to explain the sensitivity of CBD-B to weak interactions with C and its high affinity for cAMP. Binding of cAMP eliminates this degeneracy, as it selectively stabilizes the active conformation within each CBD and inter-CBD contacts, which require both cAMP and W260. The latter is contributed by CBD-B and mediates capping of the cAMP bound to CBD-A. The inter-CBD interface is dispensable for intra-CBD conformational selection, but is indispensable for full activation of PKA as it occludes C-subunit recognition sites within CBD-A. In addition, the two structurally homologous cAMP-bound CBDs exhibit marked differences in their residual dynamics profiles, supporting the notion that conservation of structure does not necessarily imply conservation of dynamics. PMID:26618408
Pacifici, Roberta; Marchei, Emilia; Salvatore, Francesco; Guandalini, Luca; Busardò, Francesco Paolo; Pichini, Simona
2017-08-28
Cannabis has been used since ancient times to relieve neuropathic pain, to lower intraocular pressure, to increase appetite and finally to decrease nausea and vomiting. The combination of the psychoactive cannabis alkaloid Δ9-tetrahydrocannabinol (THC) with the non-psychotropic alkaloids cannabidiol (CBD) and cannabinol (CBN) demonstrated a higher activity than THC alone. The Italian National Institute of Health sought to establish conditions and indications on how to correctly use nationally produced cannabis to guarantee therapeutic continuity in individuals treated with medical cannabis. The evaluation of cannabinoids concentration and stability in standardized preparations of cannabis tea and cannabis oil was conducted using an easy and fast ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) assay. Extraction efficiency of oil was significantly higher than that of water with respect to the different cannabinoids. This was especially observed in the case of the pharmacologically active THC, CBD and their acidic precursors. Fifteen minutes boiling was sufficient to achieve the highest concentrations of cannabinoids in the cannabis tea solutions. At ambient temperature, a significant THC and CBD decrease to 50% or less of the initial concentration was observed over 3 and 7 days, respectively. When refrigerated at 4 °C, similar decreasing profiles were observed for the two compounds. The cannabinoids profile in cannabis oil obtained after pre-heating the flowering tops at 145 °C for 30 min in a static oven resulted in a complete decarboxylation of cannabinoid acids CBDA and THCA-A. Nevertheless, it was apparent that heat not only decarboxylated acidic compounds, but also significantly increased the final concentrations of cannabinoids in oil. The stability of cannabinoids in oil samples was higher than that in tea samples since the maximum decrease (72% of initial concentration) was observed in THC coming from unheated flowering
Perez, Matheus; Benitez, Suzana U; Cartarozzi, Luciana P; Del Bel, Elaine; Guimarães, Francisco S; Oliveira, Alexandre L R
2013-11-01
In neonatal rats, the transection of a peripheral nerve leads to an intense retrograde degeneration of both motor and sensory neurons. Most of the axotomy-induced neuronal loss is a result of apoptotic processes. The clinical use of neurotrophic factors is difficult due to side effects and elevated costs, but other molecules might be effective and more easily obtained. Among them, some are derived from Cannabis sativa. Cannabidiol (CBD) is the major non-psychotropic component found on the surface of such plant leaves. The present study aimed to investigate the neuroprotective potential of CBD. Thus, 2-day-old Wistar rats were divided into the following experimental groups: sciatic nerve axotomy + CBD treatment (CBD group), axotomy + vehicle treatment (phosphate buffer group) and a control group (no-treatment group). The results were analysed by Nissl staining, immunohistochemistry and terminal deoxynucleotidyl transferase dUTP nick end labeling at 5 days post-lesion. Neuronal counting revealed both motor and sensory neuron rescue following treatment with CBD (15 and 30 mg/kg). Immunohistochemical analysis (obtained by synaptophysin staining) revealed 30% greater synaptic preservation within the spinal cord in the CBD-treated group. CBD administration decreased the astroglial and microglial reaction by 30 and 27%, respectively, as seen by glial fibrillary acidic protein and ionised calcium binding adaptor molecule 1 immunolabeling quantification. In line with such results, the terminal deoxynucleotidyl transferase dUTP nick end labeling reaction revealed a reduction of apoptotic cells, mostly located in the spinal cord intermediate zone, where interneurons promote sensory-motor integration. The present results show that CBD possesses neuroprotective characteristics that may, in turn, be promising for future clinical use. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Styrczewska, Monika; Kostyn, Anna; Kulma, Anna; Majkowska-Skrobek, Grazyna; Augustyniak, Daria; Prescha, Anna; Czuj, Tadeusz; Szopa, Jan
2015-01-01
Inflammation is the basis of many diseases, with chronic wounds amongst them, limiting cell proliferation and tissue regeneration. Our previous preclinical study of flax fiber applied as a wound dressing and analysis of its components impact on the fibroblast transcriptome suggested flax fiber hydrophobic extract use as an anti-inflammatory and wound healing preparation. The extract contains cannabidiol (CBD), phytosterols, and unsaturated fatty acids, showing great promise in wound healing. In in vitro proliferation and wound closure tests the extract activated cell migration and proliferation. The activity of matrix metalloproteinases in skin cells was increased, suggesting activation of extracellular components remodeling. The expression of cytokines was diminished by the extract in a cannabidiol-dependent manner, but β-sitosterol can act synergistically with CBD in inflammation inhibition. Extracellular matrix related genes were also analyzed, considering their importance in further stages of wound healing. The extract activated skin cell matrix remodeling, but the changes were only partially cannabidiol- and β-sitosterol-dependent. The possible role of fatty acids also present in the extract is suggested. The study shows the hydrophobic flax fiber components as wound healing activators, with anti-inflammatory cannabidiol acting in synergy with sterols, and migration and proliferation promoting agents, some of which still require experimental identification. PMID:26347154
Niesink, Raymond J M; Rigter, Sander; Koeter, Maarten W; Brunt, Tibor M
2015-12-01
Between 2000 and 2005 the average percentage of Δ(9) -tetrahydrocannabinol (THC) in marijuana as sold in Dutch coffeeshops has increased substantially; the potency of domestic products (Nederwiet and Nederhasj) has particularly increased. In contrast with imported marijuana, Nederwiet hardly contained any cannabidiol (CBD), a cannabinoid that is thought to offset some of the adverse effects of THC. In 2005, the THC content in Nederwiet was significantly lower than in 2004. This study investigates the further decrease or increase of cannabinoids in these cannabis products. From 2005 to 2015 five different cannabis products were bought anonymously in 50 coffeeshops that were selected randomly each year from all coffeeshops in the Netherlands. A total of 2126 cannabis samples were bought, consisting of 664 Nederwiet samples (most popular), 537 Nederwiet samples (supposed strongest varieties), 183 imported herbal cannabis samples, 140 samples of cannabis resin made of Nederwiet and 602 samples of imported cannabis resin. All samples were analysed chemically for their THC, CBD and cannabinol (CBN) content. Between 2005 and 2015, the mean potencies of the most popular and the strongest Nederwiet and of imported cannabis resin were 16.0±4.0%, 17.0±3,9% and 16.5±6.3%, respectively. Imported herbal cannabis (6.5±3.5%) and cannabis resin made from Nederwiet (30.2±16.4%) contained, respectively, less (β=-10.0, P<0.001) and more (β=13.7, P<0.001) THC than imported cannabis resin. Linear regression models were used to study the trends in THC of the different cannabis products over time. A marginal, but significant (P<0.001), overall decline of THC per year of 0.22% was found in all cannabis products. However, no significant difference was found between the five products in the THC linear trajectories across time. Of all the cannabis products, only imported cannabis resin contained a relatively high CBD/THC ratio (median 0.42). The average tetrahydrocannabinol (THC
Schönhofen, Patrícia; de Medeiros, Liana M; Bristot, Ivi Juliana; Lopes, Fernanda M; De Bastiani, Marco A; Kapczinski, Flávio; Crippa, José Alexandre S; Castro, Mauro Antônio A; Parsons, Richard B; Klamt, Fábio
2015-08-01
Cannabidiol (CBD), one of the most abundant Cannabis sativa-derived compounds, has been implicated with neuroprotective effect in several human pathologies. Until now, no undesired side effects have been associated with CBD. In this study, we evaluated CBD's neuroprotective effect in terminal differentiation (mature) and during neuronal differentiation (neuronal developmental toxicity model) of the human neuroblastoma SH-SY5Y cell line. A dose-response curve was performed to establish a sublethal dose of CBD with antioxidant activity (2.5 μM). In terminally differentiated SH-SY5Y cells, incubation with 2.5 μM CBD was unable to protect cells against the neurotoxic effect of glycolaldehyde, methylglyoxal, 6-hydroxydopamine, and hydrogen peroxide (H2O2). Moreover, no difference in antioxidant potential and neurite density was observed. When SH-SY5Y cells undergoing neuronal differentiation were exposed to CBD, no differences in antioxidant potential and neurite density were observed. However, CBD potentiated the neurotoxicity induced by all redox-active drugs tested. Our data indicate that 2.5 μM of CBD, the higher dose tolerated by differentiated SH-SY5Y neuronal cells, does not provide neuroprotection for terminally differentiated cells and shows, for the first time, that exposure of CBD during neuronal differentiation could sensitize immature cells to future challenges with neurotoxins.
Cannabidiol Prevents Motor and Cognitive Impairments Induced by Reserpine in Rats.
Peres, Fernanda F; Levin, Raquel; Suiama, Mayra A; Diana, Mariana C; Gouvêa, Douglas A; Almeida, Valéria; Santos, Camila M; Lungato, Lisandro; Zuardi, Antônio W; Hallak, Jaime E C; Crippa, José A; Vânia, D'Almeida; Silva, Regina H; Abílio, Vanessa C
2016-01-01
Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa that presents antipsychotic, anxiolytic, anti-inflammatory, and neuroprotective effects. In Parkinson's disease patients, CBD is able to attenuate the psychotic symptoms induced by L-DOPA and to improve quality of life. Repeated administration of reserpine in rodents induces motor impairments that are accompanied by cognitive deficits, and has been applied to model both tardive dyskinesia and Parkinson's disease. The present study investigated whether CBD administration would attenuate reserpine-induced motor and cognitive impairments in rats. Male Wistar rats received four injections of CBD (0.5 or 5 mg/kg) or vehicle (days 2-5). On days 3 and 5, animals received also one injection of 1 mg/kg reserpine or vehicle. Locomotor activity, vacuous chewing movements, and catalepsy were assessed from day 1 to day 7. On days 8 and 9, we evaluated animals' performance on the plus-maze discriminative avoidance task, for learning/memory assessment. CBD (0.5 and 5 mg/kg) attenuated the increase in catalepsy behavior and in oral movements - but not the decrease in locomotion - induced by reserpine. CBD (0.5 mg/kg) also ameliorated the reserpine-induced memory deficit in the discriminative avoidance task. Our data show that CBD is able to attenuate motor and cognitive impairments induced by reserpine, suggesting the use of this compound in the pharmacotherapy of Parkinson's disease and tardive dyskinesia.
Cannabidiol (CBD) Enhances Lipopolysaccharide (LPS)-Induced Pulmonary Inflammation in C57BL/6 Mice
Karmaus, Peer W. F.; Wagner, James G.; Harkema, Jack R.; Kaminski, Norbert E.; Kaplan, Barbara L.F.
2012-01-01
Cannabidiol (CBD) is a plant-derived cannabinoid that has been predominantly characterized as anti-inflammatory. However, it is clear that immune effects of cannabinoids can vary with cannabinoid concentration, or type or magnitude of immune stimulus. The present studies demonstrate that oral administration of CBD enhanced lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice. The enhanced inflammatory cell infiltrate as observed in bronchoalveolar lavage fluid (BALF) was comprised mainly of neutrophils, with some monocytes. Concomitantly, CBD enhanced pro-inflammatory cytokine mRNA production, including tumor necrosis factor-α (Tnfa), interleukins (IL) 6 and 23 (Il6, Il23), and granulocyte colony stimulating factor (Gcsf). These results demonstrate that the CBD-mediated enhancement of LPS-induced pulmonary inflammation is mediated at the level of transcription of a variety of pro-inflammatory genes. The significance of these studies is that CBD is part of a therapeutic currently in use for spasticity and pain in multiple sclerosis patients, and therefore it is important to further understand mechanisms by which CBD alters immune function. PMID:23173851
Cannabidiol (CBD) enhances lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice.
Karmaus, Peer W F; Wagner, James G; Harkema, Jack R; Kaminski, Norbert E; Kaplan, Barbara L F
2013-01-01
Cannabidiol (CBD) is a plant-derived cannabinoid that has been predominantly characterized as anti-inflammatory. However, it is clear that immune effects of cannabinoids can vary with cannabinoid concentration, or type or magnitude of immune stimulus. The present studies demonstrate that oral administration of CBD enhanced lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice. The enhanced inflammatory cell infiltrate as observed in bronchoalveolar lavage fluid (BALF) was comprised mainly of neutrophils, with some monocytes. Concomitantly, CBD enhanced pro-inflammatory cytokine mRNA production, including tumor necrosis factor-α (Tnfa), interleukins (IL)-5 and -23 (Il6, Il23), and granulocyte colony stimulating factor (Gcsf). These results demonstrate that the CBD-mediated enhancement of LPS-induced pulmonary inflammation is mediated at the level of transcription of a variety of pro-inflammatory genes. The significance of these studies is that CBD is part of a therapeutic currently in use for spasticity and pain in multiple sclerosis patients, and therefore it is important to further understand mechanisms by which CBD alters immune function.
Medical use of cannabis. Cannabidiol: a new light for schizophrenia?
Deiana, Serena
2013-01-01
The medical properties of cannabis have been known for many centuries; its first documented use dates back to 2800 BC when it was described for its hallucinogenic and pain-relieving properties. In the first half of the twentieth century, a number of pharmaceutical companies marked cannabis for indications such as asthma and pain, but since then its use has sharply declined, mainly due to its unpredictable effects, but also for socio-political issues. Recently, great attention has been directed to the medical properties of phytocannabinoids present in the cannabis plant alongside the main constituent Δ⁹-Tetrahydrocannabinol (THC); these include cannabinoids such as cannabidiol (CBD), cannabigerol (CBG), and tetrahydrocannabivarin (THCV). Evidence suggests an association between cannabis and schizophrenia: schizophrenics show a higher use of marijuana as compared to the healthy population. Additionally, the use of marijuana can trigger psychotic episodes in schizophrenic patients, and this has been ascribed to THC. Given the need to reduce the side effects of marketed antipsychotics, and their weak efficacy on some schizophrenic symptoms, cannabinoids have been suggested as a possible alternative treatment for schizophrenia. CBD, a non-psychoactive constituent of the Cannabis sativa plant, has been receiving growing attention for its anti-psychotic-like properties. Evidence suggests that CBD can ameliorate positive and negative symptoms of schizophrenia. Behavioural and neurochemical models suggest that CBD has a pharmacological profile similar to that of atypical anti-psychotic drugs and a clinical trial reported that this cannabinoid is a well-tolerated alternative treatment for schizophrenia. Copyright © 2012 John Wiley & Sons, Ltd.
Cannabidiol effects in the prepulse inhibition disruption induced by amphetamine.
Pedrazzi, J F C; Issy, A C; Gomes, F V; Guimarães, F S; Del-Bel, E A
2015-08-01
The information processing appears to be deficient in schizophrenia. Prepulse inhibition (PPI), which measures the inhibition of a motor response by a weak sensory event, is considered particularly useful to understand the biology of information processing in schizophrenia patients. Drugs that facilitate dopaminergic neurotransmission such as amphetamine induce PPI disruption in human and rodents. Clinical and neurobiological findings suggest that the endocannabinoid system and cannabinoids may be implicated in the pathophysiology and treatment of schizophrenia. Cannabidiol (CBD), a non-psychotomimetic constituent of the Cannabis sativa plant, has also been reported to have potential as an antipsychotic. Our aim was to investigate if CBD pretreatment was able to prevent PPI disruption induced by amphetamine. Since one possible mechanism of CBD action is the facilitation of endocannabinoid-mediated neurotransmission through anandamide, we tested the effects of an anandamide hydrolysis inhibitor (URB597) in the amphetamine-induced PPI disruption. Male Swiss mice were treated with CBD systemic or intra-accumbens, or URB597 (systemic) prior to amphetamine and were exposed to PPI test. Amphetamine (10 mg/kg) disrupted PPI while CBD (15-60 mg/kg) or URB597 (0.1-1 mg/kg) administered alone had no effect. Pretreatment with CBD attenuated the amphetamine-disruptive effects on PPI test after systemic or intra-accumbens administration. Similar effects were also found with the inhibitor of anandamide hydrolysis. These results corroborate findings indicating that CBD induces antipsychotic-like effects. In addition, they pointed to the nucleus accumbens as a possible site of these effects. The increase of anandamide availability may be enrolled in the CBD effects.
Jamontt, J M; Molleman, A; Pertwee, R G; Parsons, M E
2010-06-01
Cannabis is taken as self-medication by patients with inflammatory bowel disease for symptomatic relief. Cannabinoid receptor agonists decrease inflammation in animal models of colitis, but their effects on the disturbed motility is not known. (-)-Cannabidiol (CBD) has been shown to interact with Delta(9)-tetrahydrocannabinol (THC) in behavioural studies, but it remains to be established if these cannabinoids interact in vivo in inflammatory disorders. Therefore the effects of CBD and THC alone and in combination were investigated in a model of colitis. The 2,4,6-trinitrobenzene sulphonic acid (TNBS) model of acute colitis in rats was used to assess damage, inflammation (myeloperoxidase activity) and in vitro colonic motility. Sulphasalazine was used as an active control drug. Sulphasalazine, THC and CBD proved beneficial in this model of colitis with the dose-response relationship for the phytocannabinoids showing a bell-shaped pattern on the majority of parameters (optimal THC and CBD dose, 10 mg.kg(-1)). THC was the most effective drug. The effects of these phytocannabinoids were additive, and CBD increased some effects of an ineffective THC dose to the level of an effective one. THC alone and in combination with CBD protected cholinergic nerves whereas sulphasalazine did not. In this model of colitis, THC and CBD not only reduced inflammation but also lowered the occurrence of functional disturbances. Moreover the combination of CBD and THC could be beneficial therapeutically, via additive or potentiating effects.
A systematic review of the antipsychotic properties of cannabidiol in humans.
Iseger, Tabitha A; Bossong, Matthijs G
2015-03-01
Despite extensive study over the past decades, available treatments for schizophrenia are only modestly effective and cause serious metabolic and neurological side effects. Therefore, there is an urgent need for novel therapeutic targets for the treatment of schizophrenia. A highly promising new pharmacological target in the context of schizophrenia is the endocannabinoid system. Modulation of this system by the main psychoactive component in cannabis, Δ9-tetrahydrocannabinol (THC), induces acute psychotic effects and cognitive impairment. However, the non-psychotropic, plant-derived cannabinoid agent cannabidiol (CBD) may have antipsychotic properties, and thus may be a promising new agent in the treatment of schizophrenia. Here we review studies that investigated the antipsychotic properties of CBD in human subjects. Results show the ability of CBD to counteract psychotic symptoms and cognitive impairment associated with cannabis use as well as with acute THC administration. In addition, CBD may lower the risk for developing psychosis that is related to cannabis use. These effects are possibly mediated by opposite effects of CBD and THC on brain activity patterns in key regions implicated in the pathophysiology of schizophrenia, such as the striatum, hippocampus and prefrontal cortex. The first small-scale clinical studies with CBD treatment of patients with psychotic symptoms further confirm the potential of CBD as an effective, safe and well-tolerated antipsychotic compound, although large randomised clinical trials will be needed before this novel therapy can be introduced into clinical practice. Copyright © 2015 Elsevier B.V. All rights reserved.
In vivo Evidence for Therapeutic Properties of Cannabidiol (CBD) for Alzheimer's Disease.
Watt, Georgia; Karl, Tim
2017-01-01
Alzheimer's disease (AD) is a debilitating neurodegenerative disease that is affecting an increasing number of people. It is characterized by the accumulation of amyloid-β and tau hyperphosphorylation as well as neuroinflammation and oxidative stress. Current AD treatments do not stop or reverse the disease progression, highlighting the need for new, more effective therapeutics. Cannabidiol (CBD) is a non-psychoactive phytocannabinoid that has demonstrated neuroprotective, anti-inflammatory and antioxidant properties in vitro . Thus, it is investigated as a potential multifunctional treatment option for AD. Here, we summarize the current status quo of in vivo effects of CBD in established pharmacological and transgenic animal models for AD. The studies demonstrate the ability of CBD to reduce reactive gliosis and the neuroinflammatory response as well as to promote neurogenesis. Importantly, CBD also reverses and prevents the development of cognitive deficits in AD rodent models. Interestingly, combination therapies of CBD and Δ 9 -tetrahydrocannabinol (THC), the main active ingredient of cannabis sativa , show that CBD can antagonize the psychoactive effects associated with THC and possibly mediate greater therapeutic benefits than either phytocannabinoid alone. The studies provide "proof of principle" that CBD and possibly CBD-THC combinations are valid candidates for novel AD therapies. Further investigations should address the long-term potential of CBD and evaluate mechanisms involved in the therapeutic effects described.
Cannabidiol Reverses Deficits in Hippocampal LTP in a Model of Alzheimer's Disease.
Hughes, Blathnaid; Herron, Caroline E
2018-03-24
Here we demonstrate for the first time that cannabidiol (CBD) acts to protect synaptic plasticity in an in vitro model of Alzheimer's disease (AD). The non-psycho active component of Cannabis sativa, CBD has previously been shown to protect against the neurotoxic effects of beta amyloid peptide (Aβ) in cell culture and cognitive behavioural models of neurodegeneration. Hippocampal long-term potentiation (LTP) is an activity dependent increase in synaptic efficacy often used to study cellular mechanisms related to memory. Here we show that acute application of soluble oligomeric beta amyloid peptide (Aβ 1-42 ) associated with AD, attenuates LTP in the CA 1 region of hippocampal slices from C57Bl/6 mice. Application of CBD alone did not alter LTP, however pre-treatment of slices with CBD rescued the Aβ 1-42 mediated deficit in LTP. We found that the neuroprotective effects of CBD were not reversed by WAY100635, ZM241385 or AM251, demonstrating a lack of involvement of 5HT 1A , adenosine (A 2A ) or Cannabinoid type 1 (CB 1 ) receptors respectively. However in the presence of the PPARγ antagonist GW9662 the neuroprotective effect of CBD was prevented. Our data suggests that this major component of Cannabis sativa, which lacks psychoactivity may have therapeutic potential for the treatment of AD.
In vivo Evidence for Therapeutic Properties of Cannabidiol (CBD) for Alzheimer's Disease
Watt, Georgia; Karl, Tim
2017-01-01
Alzheimer's disease (AD) is a debilitating neurodegenerative disease that is affecting an increasing number of people. It is characterized by the accumulation of amyloid-β and tau hyperphosphorylation as well as neuroinflammation and oxidative stress. Current AD treatments do not stop or reverse the disease progression, highlighting the need for new, more effective therapeutics. Cannabidiol (CBD) is a non-psychoactive phytocannabinoid that has demonstrated neuroprotective, anti-inflammatory and antioxidant properties in vitro. Thus, it is investigated as a potential multifunctional treatment option for AD. Here, we summarize the current status quo of in vivo effects of CBD in established pharmacological and transgenic animal models for AD. The studies demonstrate the ability of CBD to reduce reactive gliosis and the neuroinflammatory response as well as to promote neurogenesis. Importantly, CBD also reverses and prevents the development of cognitive deficits in AD rodent models. Interestingly, combination therapies of CBD and Δ9-tetrahydrocannabinol (THC), the main active ingredient of cannabis sativa, show that CBD can antagonize the psychoactive effects associated with THC and possibly mediate greater therapeutic benefits than either phytocannabinoid alone. The studies provide “proof of principle” that CBD and possibly CBD-THC combinations are valid candidates for novel AD therapies. Further investigations should address the long-term potential of CBD and evaluate mechanisms involved in the therapeutic effects described. PMID:28217094
Crippa, José Alexandre; Hallak, Jaime Eduardo Cecílio; Abílio, Vanessa Costhek; de Lacerda, Acioly Luiz Tavares; Zuardi, Antonio Waldo
2015-01-01
Since most patients with schizophrenia do not respond properly to treatment, scientific effort has been driven to the development of new compounds acting on pharmacological targets beyond the dopaminergic system. Therefore, the aim is to review basic and clinical research findings from studies evaluating the effects of cannabidiol (CBD), an inhibitor of the reuptake and metabolism of anandamide and several other effects on nervous system, and sodium nitroprusside, a nitric oxide donor, on the prevention and treatment of psychosis. Animal and human research supports that CBD and sodium nitroprusside might be effective in the prevention and treatment of psychosis in general and especially in schizophrenia. The evidence available to date shows that CBD and sodium nitroprusside act in pathways associated with psychotic symptoms and that they may be important agents in the management of prodromal psychotic states and psychosis. This underscores the relevance of further research on the effects of these agents and others that mediate the activity of the cannabinoid system and of nitric oxide, as well as comparative studies of their antipsychotic effects and those of other antipsychotic drugs currently used to treat schizophrenia.
Cannabidiol (CBD) Induces Functional Tregs in Response to Low-Level T Cell Activation
Dhital, Saphala; Stokes, John V.; Park, Nogi; Seo, Keun-Seok; Kaplan, Barbara L.F.
2016-01-01
Many effects of the non-psychoactive cannabinoid, cannabidiol (CBD), have been described in immune responses induced by strong immunological stimuli. It has also been shown that CBD enhances IL-2 production in response to low-level T cell stimulation. Since IL-2, in combination with TGF-β1, are critical for Treg induction, we hypothesized that CBD would induce CD4+CD25+FOXP3+ Tregs in response to low-level stimulation. Low-level T cell stimulation conditions were established based on minimal CD25 expression in CD4+ cells using suboptimal PMA/Io (4 nM/0.05 μM, S/o), ultrasuboptimal PMA/Io (1 nM/0.0125 μM, Us/o) or soluble anti-CD3/28 (400-800 ng each, s3/28). CBD increased CD25+FOXP3+ cells from CD4+, CD4+CD25+, and CD4+CD25− T cells, as well as in CD4+ T cells derived from FOXP3-GFP mice. Most importantly, the Us/o + CBD-induced CD4+CD25+ Tregs robustly suppressed responder T cell proliferation, demonstrating that the mechanism by which CBD is immunosuppressive under low-level T cell stimulation involves induction of functional Tregs. PMID:27865421
Boggs, Douglas L; Nguyen, Jacques D; Morgenson, Daralyn; Taffe, Michael A; Ranganathan, Mohini
2018-01-01
The plant Cannabis sativa, commonly called cannabis or marijuana, has been used for its psychotropic and mind-altering side effects for millennia. There has been growing attention in recent years on its potential therapeutic efficacy as municipalities and legislative bodies in the United States, Canada, and other countries grapple with enacting policy to facilitate the use of cannabis or its constituents for medical purposes. There are >550 chemical compounds and >100 phytocannabinoids isolated from cannabis, including Δ 9 -tetrahydrocannabinol (THC) and cannabidiol (CBD). THC is thought to produce the main psychoactive effects of cannabis, while CBD does not appear to have similar effects. Studies conflict as to whether CBD attenuates or exacerbates the behavioral and cognitive effects of THC. This includes effects of CBD on THC-induced anxiety, psychosis, and cognitive deficits. In this article, we review the available evidence on the pharmacology and behavioral interactions of THC and CBD from preclinical and human studies, particularly with reference to anxiety and psychosis-like symptoms. Both THC and CBD, as well as other cannabinoid molecules, are currently being evaluated for medicinal purposes, separately and in combination. Future cannabis-related policy decisions should include consideration of scientific findings, including the individual and interactive effects of CBD and THC.
Cannabidiol (CBD) induces functional Tregs in response to low-level T cell activation.
Dhital, Saphala; Stokes, John V; Park, Nogi; Seo, Keun Seok; Kaplan, Barbara L F
2017-02-01
Many effects of the non-psychoactive cannabinoid, cannabidiol (CBD), have been described in immune responses induced by strong immunological stimuli. It has also been shown that CBD enhances IL-2 production in response to low-level T cell stimulation. Since IL-2, in combination with TGF-β1, are critical for Treg induction, we hypothesized that CBD would induce CD4 + CD25 + FOXP3 + Tregs in response to low-level stimulation. Low-level T cell stimulation conditions were established based on minimal CD25 expression in CD4 + cells using suboptimal PMA/Io (4nM/0.05μM, S/o), ultrasuboptimal PMA/Io (1nM/0.0125μM, Us/o) or soluble anti-CD3/28 (400-800ng each, s3/28). CBD increased CD25 + FOXP3 + cells from CD4 + , CD4 + CD25 + , and CD4 + CD25 - T cells, as well as in CD4 + T cells derived from FOXP3-GFP mice. Most importantly, the Us/o+CBD-induced CD4 + CD25 + Tregs robustly suppressed responder T cell proliferation, demonstrating that the mechanism by which CBD is immunosuppressive under low-level T cell stimulation involves induction of functional Tregs. Copyright © 2016 Elsevier Inc. All rights reserved.
Mandolini, G M; Lazzaretti, M; Pigoni, A; Oldani, L; Delvecchio, G; Brambilla, P
2018-05-23
Cannabidiol (CBD) represents a new promising drug due to a wide spectrum of pharmacological actions. In order to relate CBD clinical efficacy to its pharmacological mechanisms of action, we performed a bibliographic search on PUBMED about all clinical studies investigating the use of CBD as a treatment of psychiatric symptoms. Findings to date suggest that (a) CBD may exert antipsychotic effects in schizophrenia mainly through facilitation of endocannabinoid signalling and cannabinoid receptor type 1 antagonism; (b) CBD administration may exhibit acute anxiolytic effects in patients with generalised social anxiety disorder through modification of cerebral blood flow in specific brain sites and serotonin 1A receptor agonism; (c) CBD may reduce withdrawal symptoms and cannabis/tobacco dependence through modulation of endocannabinoid, serotoninergic and glutamatergic systems; (d) the preclinical pro-cognitive effects of CBD still lack significant results in psychiatric disorders. In conclusion, current evidences suggest that CBD has the ability to reduce psychotic, anxiety and withdrawal symptoms by means of several hypothesised pharmacological properties. However, further studies should include larger randomised controlled samples and investigate the impact of CBD on biological measures in order to correlate CBD's clinical effects to potential modifications of neurotransmitters signalling and structural and functional cerebral changes.
Effects of cannabidiol plus naltrexone on motivation and ethanol consumption.
Viudez-Martínez, Adrián; García-Gutiérrez, María S; Fraguas-Sánchez, Ana Isabel; Torres-Suárez, Ana Isabel; Manzanares, Jorge
2018-06-02
The aim of this study was to explore if the administration of naltrexone (NTX) together with cannabidiol (CBD) may improve the efficacy in reducing alcohol consumption and motivation rather than any of the drugs given separately. The effects of low doses of NTX (0.7 mg/kg; p.o.) and/or CBD (20 mg/kg/day; s.c.) on ethanol consumption and motivation to drink were evaluated in the oral-ethanol self-administration paradigm in C57BL/6 mice. Gene expression analyses of μ opioid receptor (Oprm1) in the nucleus accumbens (NAc), tyrosine hydroxylase (TH) in the ventral tegmental area (VTA) and serotonin 1A receptor (5-HT 1A ) in the dorsal raphe nucleus (DR) were carried out by real-time polymerase chain reaction. The role of 5-HT 1A on the ethanol reduction induced by the administration of CBD + NTX was analysed by using the 5-HT 1A receptor antagonist WAY100635 (0.3 mg/kg, i.p.). The administration of CBD + NTX significantly reduced motivation and ethanol intake in the oral self-administration procedure in a greater proportion than the drugs given alone. Only the combination of both drugs significantly reduced Oprm1, TH and 5-HT 1A gene expressions in the NAc, VTA and DR, respectively. Interestingly, the administration of WAY100635 significantly blocked the actions of CBD + NTX but had no effects by itself. The combination of low doses of CBD plus NTX resulted more effective to reduce ethanol consumption and motivation to drink. These effects, appears to be mediated, at least in part, by 5-HT 1A receptors. This article is protected by copyright. All rights reserved.
Pagano, Ester; Capasso, Raffaele; Piscitelli, Fabiana; Romano, Barbara; Parisi, Olga A; Finizio, Stefania; Lauritano, Anna; Marzo, Vincenzo Di; Izzo, Angelo A; Borrelli, Francesca
2016-01-01
Anecdotal and scientific evidence suggests that Cannabis use may be beneficial in inflammatory bowel disease (IBD) patients. Here, we have investigated the effect of a standardized Cannabis sativa extract with high content of cannabidiol (CBD), here named CBD BDS for "CBD botanical drug substance," on mucosal inflammation and hypermotility in mouse models of intestinal inflammation. Colitis was induced in mice by intracolonic administration of dinitrobenzenesulfonic acid (DNBS). Motility was evaluated in the experimental model of intestinal hypermotility induced by irritant croton oil. CBD BDS or pure CBD were given - either intraperitoneally or by oral gavage - after the inflammatory insult (curative protocol). The amounts of CBD in the colon, brain, and liver after the oral treatments were measured by high-performance liquid chromatography coupled to ion trap-time of flight mass spectrometry. CBD BDS, both when given intraperitoneally and by oral gavage, decreased the extent of the damage (as revealed by the decrease in the colon weight/length ratio and myeloperoxidase activity) in the DNBS model of colitis. It also reduced intestinal hypermotility (at doses lower than those required to affect transit in healthy mice) in the croton oil model of intestinal hypermotility. Under the same experimental conditions, pure CBD did not ameliorate colitis while it normalized croton oil-induced hypermotility when given intraperitoneally (in a dose-related fashion) or orally (only at one dose). In conclusion, CBD BDS, given after the inflammatory insult, attenuates injury and motility in intestinal models of inflammation. These findings sustain the rationale of combining CBD with other minor Cannabis constituents and support the clinical development of CBD BDS for IBD treatment.
Pagano, Ester; Capasso, Raffaele; Piscitelli, Fabiana; Romano, Barbara; Parisi, Olga A.; Finizio, Stefania; Lauritano, Anna; Marzo, Vincenzo Di; Izzo, Angelo A.; Borrelli, Francesca
2016-01-01
Anecdotal and scientific evidence suggests that Cannabis use may be beneficial in inflammatory bowel disease (IBD) patients. Here, we have investigated the effect of a standardized Cannabis sativa extract with high content of cannabidiol (CBD), here named CBD BDS for “CBD botanical drug substance,” on mucosal inflammation and hypermotility in mouse models of intestinal inflammation. Colitis was induced in mice by intracolonic administration of dinitrobenzenesulfonic acid (DNBS). Motility was evaluated in the experimental model of intestinal hypermotility induced by irritant croton oil. CBD BDS or pure CBD were given - either intraperitoneally or by oral gavage – after the inflammatory insult (curative protocol). The amounts of CBD in the colon, brain, and liver after the oral treatments were measured by high-performance liquid chromatography coupled to ion trap-time of flight mass spectrometry. CBD BDS, both when given intraperitoneally and by oral gavage, decreased the extent of the damage (as revealed by the decrease in the colon weight/length ratio and myeloperoxidase activity) in the DNBS model of colitis. It also reduced intestinal hypermotility (at doses lower than those required to affect transit in healthy mice) in the croton oil model of intestinal hypermotility. Under the same experimental conditions, pure CBD did not ameliorate colitis while it normalized croton oil-induced hypermotility when given intraperitoneally (in a dose-related fashion) or orally (only at one dose). In conclusion, CBD BDS, given after the inflammatory insult, attenuates injury and motility in intestinal models of inflammation. These findings sustain the rationale of combining CBD with other minor Cannabis constituents and support the clinical development of CBD BDS for IBD treatment. PMID:27757083
Cannabidiol Oil for Decreasing Addictive Use of Marijuana: A Case Report.
Shannon, Scott; Opila-Lehman, Janet
2015-12-01
This case study illustrates the use of cannabidiol (CBD) oil to decrease the addictive use of marijuana and provide anxiolytic and sleep benefits. Addiction to marijuana is a chronic, relapsing disorder, which is becoming a prevalent condition in the United States. The most abundant compound in the marijuana, which is called tetrahydrocannabinol (THC), has been widely studied and known for its psychoactive properties. The second most abundant component-CBD-has been suggested to have the medicinal effects of decreasing anxiety, improving sleep, and other neuro-protective effects. The mechanism of action for CBD has been suggested to be antagonistic to the psychoactive properties of THC in many locations within the central nervous system. Such action raises the issue of whether it might be beneficial to use CBD in isolation to facilitate withdrawal of marijuana use. The specific use of CBD for marijuana reduction has not been widely studied. The patient was a 27-y-old male who presented with a long-standing diagnosis of bipolar disorder and a daily addiction to marijuana use. In the described intervention, the only change made to the patient's treatment was the addition of CBD oil with the dosage gradually decreasing from 24 to 18 mg. With use of the CBD oil, the patient reported being less anxious, as well as settling into a regular pattern of sleep. He also indicated that he had not used any marijuana since starting the CBD oil. With the decrease in the dosage to 18 mg, the patient was able to maintain his nonuse of marijuana.
Interactions between THC and cannabidiol in mouse models of cannabinoid activity.
Varvel, S A; Wiley, J L; Yang, R; Bridgen, D T; Long, K; Lichtman, A H; Martin, B R
2006-06-01
Interest persists in characterizing potential interactions between Delta(9)-tetrahydocannabinol (THC) and other marijuana constituents such as cannabidiol (CBD). Such interactions may have important implications for understanding the long-term health consequences of chronic marijuana use as well as for attempts to develop therapeutic uses for THC and other CB(1) agonists. We investigated whether CBD may modulate the pharmacological effects of intravenously administered THC or inhaled marijuana smoke on hypoactivity, antinociception, catalepsy, and hypothermia, the well characterized models of cannabinoid activity. Intravenously administered CBD possessed very little activity on its own and, at a dose equal to a maximally effective dose of THC (3 mg/kg), failed to alter THC's effects on any measure. However, higher doses of CBD (ED(50)=7.4 mg/kg) dose-dependently potentiated the antinociceptive effects of a low dose of THC (0.3 mg/kg). Pretreatment with 30 mg/kg CBD, but not 3 mg/kg, significantly elevated THC blood and brain levels. No interactions between THC and CBD were observed in several variations of a marijuana smoke exposure model. Either quantities of CBD were applied directly to marijuana, CBD and THC were both applied to placebo plant material, or mice were pretreated intravenously with 30 mg/kg CBD before being exposed to marijuana smoke. As the amount of CBD found in most marijuana strains in the US is considerably less than that of THC, these results suggest that CBD concentrations relevant to what is normally found in marijuana exert very little, if any, modulatory effects on CB(1)-receptor-mediated pharmacological effects of marijuana smoke.
Cannabidiol inhibits THC-elicited paranoid symptoms and hippocampal-dependent memory impairment.
Englund, Amir; Morrison, Paul D; Nottage, Judith; Hague, Dominic; Kane, Fergus; Bonaccorso, Stefania; Stone, James M; Reichenberg, Avi; Brenneisen, Rudolf; Holt, David; Feilding, Amanda; Walker, Lucy; Murray, Robin M; Kapur, Shitij
2013-01-01
Community-based studies suggest that cannabis products that are high in Δ⁹-tetrahydrocannabinol (THC) but low in cannabidiol (CBD) are particularly hazardous for mental health. Laboratory-based studies are ideal for clarifying this issue because THC and CBD can be administered in pure form, under controlled conditions. In a between-subjects design, we tested the hypothesis that pre-treatment with CBD inhibited THC-elicited psychosis and cognitive impairment. Healthy participants were randomised to receive oral CBD 600 mg (n=22) or placebo (n=26), 210 min ahead of intravenous (IV) THC (1.5 mg). Post-THC, there were lower PANSS positive scores in the CBD group, but this did not reach statistical significance. However, clinically significant positive psychotic symptoms (defined a priori as increases ≥ 3 points) were less likely in the CBD group compared with the placebo group, odds ratio (OR)=0.22 (χ²=4.74, p<0.05). In agreement, post-THC paranoia, as rated with the State Social Paranoia Scale (SSPS), was less in the CBD group compared with the placebo group (t=2.28, p<0.05). Episodic memory, indexed by scores on the Hopkins Verbal Learning Task-revised (HVLT-R), was poorer, relative to baseline, in the placebo pre-treated group (-10.6 ± 18.9%) compared with the CBD group (-0.4% ± 9.7 %) (t=2.39, p<0.05). These findings support the idea that high-THC/low-CBD cannabis products are associated with increased risks for mental health.
Stability of Tetrahydrocannabinol and Cannabidiol in Prepared Quality Control Medible Brownies.
Wolf, Carl E; Poklis, Justin L; Poklis, Alphonse
2017-03-01
The legalization of marijuana in the USA for both medicinal and recreational use has increased in the past few years. Currently, 24 states have legalized marijuana for medicinal use. The US Drug Enforcement Administration has classified marijuana as a Schedule I substance. The US Food and Drug Administration does not regulate formulations or packages of marijuana that are currently marketed in states that have legalized marijuana. Marijuana edibles or "medibles" are typically packages of candies and baked goods consumed for medicinal as well as recreational marijuana use. They contain major psychoactive drug in marijuana, delta-9-tetrahydrocannabinol (THC) and/or cannabidiol (CBD), which has reputed medical properties. Presented is a method for the preparation and application of THC and CBD containing brownies used as quality control (QC) material for the analysis of marijuana or cannabinoid baked medibles. The performance parameters of the assay including possible matrix effects and cannabinoid stability in the brownie QC over time are presented. It was determined that the process used to prepare and bake the brownie control material did not degrade the THC or CBD. The brownie matrix was found not to interfere with the analysis of a THC or a CBD. Ten commercially available brownie matrixes were evaluated for potential interferences; none of them were found to interfere with the analysis of THC or CBD. The laboratory baked medible QC material was found to be stable at room temperature for at least 3 months. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Vuolo, Francieli; Petronilho, Fabricia; Sonai, Beatriz; Ritter, Cristiane; Hallak, Jaime E C; Zuardi, Antonio Waldo; Crippa, José A; Dal-Pizzol, Felipe
2015-01-01
Asthma represents a public health problem and traditionally is classified as an atopic disease, where the allergen can induce clinical airway inflammation, bronchial hyperresponsiveness, and reversible obstruction of airways. Studies have demonstrated the presence of T-helper 2 lymphocytes in the lung of patients with asthma. These cells are involved in cytokine production that regulates immunoglobulin synthesis. Recognizing that T cell interaction with antigens/allergens is key to the development of inflammatory diseases, the aim of this study is to evaluate the anti-inflammatory potential of cannabidiol (CBD) in this setting. Asthma was induced in 8-week-old Wistar rats by ovalbumin (OVA). In the last 2 days of OVA challenge animals received CBD (5 mg/kg, i.p.) and were killed 24 hours after. The levels of IL-4, IL-5, IL-13, IL-6, IL-10, and TNF-α were determinate in the serum. CBD treatment was able to decrease the serum levels of all analyzed cytokines except for IL-10 levels. CBD seems to be a potential new drug to modulate inflammatory response in asthma.
Evaluation of Serum Cytokines Levels and the Role of Cannabidiol Treatment in Animal Model of Asthma
Vuolo, Francieli; Petronilho, Fabricia; Sonai, Beatriz; Ritter, Cristiane; Hallak, Jaime E. C.; Zuardi, Antonio Waldo; Crippa, José A.; Dal-Pizzol, Felipe
2015-01-01
Asthma represents a public health problem and traditionally is classified as an atopic disease, where the allergen can induce clinical airway inflammation, bronchial hyperresponsiveness, and reversible obstruction of airways. Studies have demonstrated the presence of T-helper 2 lymphocytes in the lung of patients with asthma. These cells are involved in cytokine production that regulates immunoglobulin synthesis. Recognizing that T cell interaction with antigens/allergens is key to the development of inflammatory diseases, the aim of this study is to evaluate the anti-inflammatory potential of cannabidiol (CBD) in this setting. Asthma was induced in 8-week-old Wistar rats by ovalbumin (OVA). In the last 2 days of OVA challenge animals received CBD (5 mg/kg, i.p.) and were killed 24 hours after. The levels of IL-4, IL-5, IL-13, IL-6, IL-10, and TNF-α were determinate in the serum. CBD treatment was able to decrease the serum levels of all analyzed cytokines except for IL-10 levels. CBD seems to be a potential new drug to modulate inflammatory response in asthma. PMID:26101464
Saletti, Patricia G; Maior, Rafael S; Barros, Marilia; Nishijo, Hisao; Tomaz, Carlos
2017-01-01
There are several lines of evidence indicating a possible therapeutic action of cannabidiol (CBD) in schizophrenia treatment. Studies with rodents have demonstrated that CBD reverses MK-801 effects in prepulse inhibition (PPI) disruption, which may indicate that CBD acts by improving sensorimotor gating deficits. In the present study, we investigated the effects of CBD on a PPI learned response of capuchin monkeys ( Sapajus spp.). A total of seven monkeys were employed in this study. In Experiment 1, we evaluated the CBD (doses of 15, 30, 60 mg/kg, i.p.) effects on PPI. In Experiment 2, the effects of sub-chronic MK-801 (0.02 mg/kg, i.m.) on PPI were challenged by a CBD pre-treatment. No changes in PPI response were observed after CBD-alone administration. However, MK-801 increased the PPI response of our animals. CBD pre-treatment blocked the PPI increase induced by MK-801. Our findings suggest that CBD's reversal of the MK-801 effects on PPI is unlikely to stem from a direct involvement on sensorimotor mechanisms, but may possibly reflect its anxiolytic properties.
Osborne, Ashleigh L; Solowij, Nadia; Babic, Ilijana; Huang, Xu-Feng; Weston-Green, Katrina
2017-01-01
Neuropsychiatric disorders such as schizophrenia are associated with cognitive impairment, including learning, memory and attention deficits. Antipsychotic drugs are limited in their efficacy to improve cognition; therefore, new therapeutic agents are required. Cannabidiol (CBD), the non-intoxicating component of cannabis, has anti-inflammatory, neuroprotective and antipsychotic-like properties; however, its ability to improve the cognitive deficits of schizophrenia remains unclear. Using a prenatal infection model, we examined the effect of chronic CBD treatment on cognition and social interaction. Time-mated pregnant Sprague-Dawley rats (n=16) were administered polyinosinic-polycytidilic acid (poly I:C) (POLY; 4 mg/kg) or saline (CONT) at gestation day 15. Male offspring (PN56) were injected twice daily with 10 mg/kg CBD (CONT+CBD, POLY+CBD; n=12 per group) or vehicle (VEH; CONT+VEH, POLY+VEH; n=12 per group) for 3 weeks. Body weight, food and water intake was measured weekly. The Novel Object Recognition and rewarded T-maze alternation tests assessed recognition and working memory, respectively, and the social interaction test assessed sociability. POLY+VEH offspring exhibited impaired recognition and working memory, and reduced social interaction compared to CONT+VEH offspring (p<0.01). CBD treatment significantly improved recognition, working memory and social interaction deficits in the poly I:C model (p<0.01 vs POLY+VEH), did not affect total body weight gain, food or water intake, and had no effect in control animals (all p>0.05). In conclusion, chronic CBD administration can attenuate the social interaction and cognitive deficits induced by prenatal poly I:C infection. These novel findings present interesting implications for potential use of CBD in treating the cognitive deficits and social withdrawal of schizophrenia. PMID:28230072
Osborne, Ashleigh L; Solowij, Nadia; Babic, Ilijana; Huang, Xu-Feng; Weston-Green, Katrina
2017-06-01
Neuropsychiatric disorders such as schizophrenia are associated with cognitive impairment, including learning, memory and attention deficits. Antipsychotic drugs are limited in their efficacy to improve cognition; therefore, new therapeutic agents are required. Cannabidiol (CBD), the non-intoxicating component of cannabis, has anti-inflammatory, neuroprotective and antipsychotic-like properties; however, its ability to improve the cognitive deficits of schizophrenia remains unclear. Using a prenatal infection model, we examined the effect of chronic CBD treatment on cognition and social interaction. Time-mated pregnant Sprague-Dawley rats (n=16) were administered polyinosinic-polycytidilic acid (poly I:C) (POLY; 4 mg/kg) or saline (CONT) at gestation day 15. Male offspring (PN56) were injected twice daily with 10 mg/kg CBD (CONT+CBD, POLY+CBD; n=12 per group) or vehicle (VEH; CONT+VEH, POLY+VEH; n=12 per group) for 3 weeks. Body weight, food and water intake was measured weekly. The Novel Object Recognition and rewarded T-maze alternation tests assessed recognition and working memory, respectively, and the social interaction test assessed sociability. POLY+VEH offspring exhibited impaired recognition and working memory, and reduced social interaction compared to CONT+VEH offspring (p<0.01). CBD treatment significantly improved recognition, working memory and social interaction deficits in the poly I:C model (p<0.01 vs POLY+VEH), did not affect total body weight gain, food or water intake, and had no effect in control animals (all p>0.05). In conclusion, chronic CBD administration can attenuate the social interaction and cognitive deficits induced by prenatal poly I:C infection. These novel findings present interesting implications for potential use of CBD in treating the cognitive deficits and social withdrawal of schizophrenia.
Neuroprotective and Blood-Retinal Barrier-Preserving Effects of Cannabidiol in Experimental Diabetes
El-Remessy, Azza B.; Al-Shabrawey, Mohamed; Khalifa, Yousuf; Tsai, Nai-Tse; Caldwell, Ruth B.; Liou, Gregory I.
2006-01-01
Diabetic retinopathy is characterized by blood-retinal barrier (BRB) breakdown and neurotoxicity. These pathologies have been associated with oxidative stress and proinflammatory cytokines, which may operate by activating their downstream target p38 MAP kinase. In the present study, the protective effects of a nonpsychotropic cannabinoid, cannabidiol (CBD), were examined in streptozotocin-induced diabetic rats after 1, 2, or 4 weeks. Retinal cell death was determined by terminal dUTP nick-end labeling assay; BRB function by quantifying extravasation of bovine serum albumin-fluorescein; and oxidative stress by assays for lipid peroxidation, dichlorofluorescein fluorescence, and tyrosine nitration. Experimental diabetes induced significant increases in oxidative stress, retinal neuronal cell death, and vascular permeability. These effects were associated with increased levels of tumor necrosis factor-α, vascular endothelial growth factor, and intercellular adhesion molecule-1 and activation of p38 MAP kinase, as assessed by enzyme-linked immunosorbent assay, immunohistochemistry, and/or Western blot. CBD treatment significantly reduced oxidative stress; decreased the levels of tumor necrosis factor-α, vascular endothelial growth factor, and intercellular adhesion molecule-1; and prevented retinal cell death and vascular hyperpermeability in the diabetic retina. Consistent with these effects, CBD treatment also significantly inhibited p38 MAP kinase in the diabetic retina. These results demonstrate that CBD treatment reduces neurotoxicity, inflammation, and BRB breakdown in diabetic animals through activities that may involve inhibition of p38 MAP kinase. PMID:16400026
In vitro and in vivo efficacy of non-psychoactive cannabidiol in neuroblastoma.
Fisher, T; Golan, H; Schiby, G; PriChen, S; Smoum, R; Moshe, I; Peshes-Yaloz, N; Castiel, A; Waldman, D; Gallily, R; Mechoulam, R; Toren, A
2016-03-01
Neuroblastoma (nbl) is one of the most common solid cancers in children. Prognosis in advanced nbl is still poor despite aggressive multimodality therapy. Furthermore, survivors experience severe long-term multi-organ sequelae. Hence, the identification of new therapeutic strategies is of utmost importance. Cannabinoids and their derivatives have been used for years in folk medicine and later in the field of palliative care. Recently, they were found to show pharmacologic activity in cancer, including cytostatic, apoptotic, and antiangiogenic effects. We investigated, in vitro and in vivo, the anti-nbl effect of the most active compounds in Cannabis, Δ(9)-tetrahydrocannabinol (thc) and cannabidiol (cbd). We set out to experimentally determine the effects of those compounds on viability, invasiveness, cell cycle distribution, and programmed cell death in human nbl SK-N-SH cells. Both compounds have antitumourigenic activity in vitro and impeded the growth of tumour xenografts in vivo. Of the two cannabinoids tested, cbd was the more active. Treatment with cbd reduced the viability and invasiveness of treated tumour cells in vitro and induced apoptosis (as demonstrated by morphology changes, sub-G1 cell accumulation, and annexin V assay). Moreover, cbd elicited an increase in activated caspase 3 in treated cells and tumour xenografts. Our results demonstrate the antitumourigenic action of cbd on nbl cells. Because cbd is a nonpsychoactive cannabinoid that appears to be devoid of side effects, our results support its exploitation as an effective anticancer drug in the management of nbl.
Evaluation of Two Commercially Available Cannabidiol Formulations for Use in Electronic Cigarettes.
Peace, Michelle R; Butler, Karen E; Wolf, Carl E; Poklis, Justin L; Poklis, Alphonse
2016-01-01
Since 24 states and the District of Columbia have legalized marijuana in some form, suppliers of legal marijuana have developed Cannabis sativa products for use in electronic cigarettes (e-cigarettes). Personal battery powered vaporizers, or e-cigarettes, were developed to deliver a nicotine vapor such that smokers could simulate smoking tobacco without the inherent pathology of inhaled tobacco smoke. The liquid formulations used in these devices are comprised of an active ingredient such as nicotine mixed with vegetable glycerin (VG) and/or propylene glycol (PG) and flavorings. A significant active ingredient of C. sativa, cannabidiol (CBD), has been purported to have anti-convulsant, anti-nociceptive, and anti-psychotic properties. These properties have potential medical therapies such as intervention of addictive behaviors, treatments for epilepsy, management of pain for cancer patients, and treatments for schizophrenia. However, CBD extracted from C. sativa remains a DEA Schedule I drug since it has not been approved by the FDA for medical purposes. Two commercially available e-cigarette liquid formulations reported to contain 3.3 mg/mL of CBD as the active ingredient were evaluated. These products are not regulated by the FDA in manufacturing or in labeling of the products and were found to contain 6.5 and 7.6 mg/mL of CBD in VG and PG with a variety of flavoring agents. Presently, while labeled as to content, the quality control of manufacturers and the relative safety of these products is uncertain.
Effects of cannabidiol on contractions and calcium signaling in rat ventricular myocytes.
Ali, Ramez M; Al Kury, Lina T; Yang, Keun-Hang Susan; Qureshi, Anwar; Rajesh, Mohanraj; Galadari, Sehamuddin; Shuba, Yaroslav M; Howarth, Frank Christopher; Oz, Murat
2015-04-01
Cannabidiol (CBD), a major nonpsychotropic cannabinoid found in Cannabis plant, has been shown to influence cardiovascular functions under various physiological and pathological conditions. In the present study, the effects of CBD on contractility and electrophysiological properties of rat ventricular myocytes were investigated. Video edge detection was used to measure myocyte shortening. Intracellular Ca(2+) was measured in cells loaded with the Ca(2+) sensitive fluorescent indicator fura-2 AM. Whole-cell patch clamp was used to measure action potential and Ca(2+) currents. Radioligand binding was employed to study pharmacological characteristics of CBD binding. CBD (1μM) caused a significant decrease in the amplitudes of electrically evoked myocyte shortening and Ca(2+) transients. However, the amplitudes of caffeine-evoked Ca(2+) transients and the rate of recovery of electrically evoked Ca(2+) transients following caffeine application were not altered. CBD (1μM) significantly decreased the duration of APs. Further studies on L-type Ca(2+) channels indicated that CBD inhibits these channels with IC50 of 0.1μM in a voltage-independent manner. Radioligand studies indicated that the specific binding of [(3)H]Isradipine, was not altered significantly by CBD. The results suggest that CBD depresses myocyte contractility by suppressing L-type Ca(2+) channels at a site different than dihydropyridine binding site and inhibits excitation-contraction coupling in cardiomyocytes. Copyright © 2015 Elsevier Ltd. All rights reserved.
From Cannabis to Cannabidiol to Treat Epilepsy, Where Are We?
Lippiello, Pellegrino; Balestrini, Simona; Leo, Antonio; Coppola, Antonietta; Citraro, Rita; Elia, Maurizio; Russo, Emilio; De Sarro, Giovambattista
2016-01-01
Several antiepileptic drugs (AEDs), about 25, are currently clinically available for the treatment of patients with epilepsy. Despite this armamentarium and the many recently introduced AEDs, no major advances have been achieved considering the number of drug resistant patients, while many benefits have been indeed obtained for other clinical outcomes (e.g. better tolerability, less interactions). Cannabinoids have long been studied for their potential therapeutical use and more recently phytocannabinoids have been considered a valuable tool for the treatment of several neurological disorders including epilepsy. Among this wide class, the most studied is cannabidiol (CBD) considering its lack of psychotropic effects and its anticonvulsant properties. Analyse the currently available literature on CBD also in light of other data on phytocannabinoids, reviewing data spanning from the mechanism of action, pharmacokinetic to clinical evidences. Several preclinical studies have tried to understand the mechanism of action of CBD, which still remains largely not understood. CBD has shown significant anticonvulsant effects mainly in acute animal models of seizures; beneficial effects were reported also in animal models of epileptogenesis and chronic models of epilepsy, although not substantial. In contrast, data coming from some studies raise questions on the effects of other cannabinoids and above all marijuana. There is indeed sufficient supporting data for clinical development and important antiepileptic effects and the currently ongoing clinical studies will permit the real usefulness of CBD and possibly other cannabinoids. Undoubtedly, several issues also need to be addressed in the next future (e.g. better pharmacokinetic profiling). Finally, shading light on the mechanism of action and the study of other cannabinoids might represent an advantage for future developments. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Wang, Yuping; Mukhopadhyay, Partha; Cao, Zongxian; Wang, Hua; Feng, Dechun; Haskó, György; Mechoulam, Raphael; Gao, Bin; Pacher, Pal
2017-09-21
Cannabidiol (CBD) is a non-psychoactive component of marijuana, which has anti-inflammatory effects. It has also been approved by FDA for various orphan diseases for exploratory trials. Herein, we investigated the effects of CBD on liver injury induced by chronic plus binge alcohol feeding in mice. CBD or vehicle was administered daily throughout the alcohol feeding study. At the conclusion of the feeding protocol, serums samples, livers or isolated neutrophils were utilized for molecular biology, biochemistry and pathology analysis. CBD significantly attenuated the alcohol feeding-induced serum transaminase elevations, hepatic inflammation (mRNA expressions of TNFα, MCP1, IL1β, MIP2 and E-Selectin, and neutrophil accumulation), oxidative/nitrative stress (lipid peroxidation, 3-nitrotyrosine formation, and expression of reactive oxygen species generating enzyme NOX2). CBD treatment also attenuated the respiratory burst of neutrophils isolated from chronic plus binge alcohol fed mice or from human blood, and decreased the alcohol-induced increased liver triglyceride and fat droplet accumulation. Furthermore, CBD improved alcohol-induced hepatic metabolic dysregulation and steatosis by restoring changes in hepatic mRNA or protein expression of ACC-1, FASN, PPARα, MCAD, ADIPOR-1, and mCPT-1. Thus, CBD may have therapeutic potential in the treatment of alcoholic liver diseases associated with inflammation, oxidative stress and steatosis, which deserves exploration in human trials.
Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet syndrome
Kaplan, Joshua S.; Stella, Nephi; Catterall, William A.; Westenbroek, Ruth E.
2017-01-01
Worldwide medicinal use of cannabis is rapidly escalating, despite limited evidence of its efficacy from preclinical and clinical studies. Here we show that cannabidiol (CBD) effectively reduced seizures and autistic-like social deficits in a well-validated mouse genetic model of Dravet syndrome (DS), a severe childhood epilepsy disorder caused by loss-of-function mutations in the brain voltage-gated sodium channel NaV1.1. The duration and severity of thermally induced seizures and the frequency of spontaneous seizures were substantially decreased. Treatment with lower doses of CBD also improved autistic-like social interaction deficits in DS mice. Phenotypic rescue was associated with restoration of the excitability of inhibitory interneurons in the hippocampal dentate gyrus, an important area for seizure propagation. Reduced excitability of dentate granule neurons in response to strong depolarizing stimuli was also observed. The beneficial effects of CBD on inhibitory neurotransmission were mimicked and occluded by an antagonist of GPR55, suggesting that therapeutic effects of CBD are mediated through this lipid-activated G protein-coupled receptor. Our results provide critical preclinical evidence supporting treatment of epilepsy and autistic-like behaviors linked to DS with CBD. We also introduce antagonism of GPR55 as a potential therapeutic approach by illustrating its beneficial effects in DS mice. Our study provides essential preclinical evidence needed to build a sound scientific basis for increased medicinal use of CBD. PMID:28973916
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hsin-Ying; Chang, An-Chi; Wang, Chia-Chi
2010-08-01
It has been documented that cannabidiol (CBD) induced apoptosis in a variety of transformed cells, including lymphocytic and monocytic leukemias. In contrast, a differential sensitivity between normal lymphocytes and monocytes to CBD-mediated apoptosis has been reported. The present study investigated the pro-apoptotic effect of CBD on human peripheral monocytes that were either freshly isolated or precultured for 72 h. CBD markedly enhanced apoptosis of freshly isolated monocytes in a time- and concentration-dependent manner, whereas precultured monocytes were insensitive. By comparison, both cells were sensitive to doxorubicin-induced apoptosis. CBD significantly diminished the cellular thiols and glutathione in freshly isolated monocytes. Themore » apoptosis induced by CBD was abrogated in the presence of N-acetyl-{sub L}-cysteine, a precursor of glutathione. In addition, precultured monocytes contained a significantly greater level of glutathione and heme oxygenase-1 (HO-1) compared to the freshly isolated cells. The HO-1 competitive inhibitor zinc protoporphyrin partially but significantly restored the sensitivity of precultured monocytes to CBD-mediated apoptosis. Collectively, our results demonstrated a contrasting pro-apoptotic effect of CBD between precultured and freshly isolated monocytes, which was closely associated with the cellular level of glutathione and the antioxidative capability of the cells.« less
Hindocha, C; Freeman, T P; Grabski, M; Crudgington, H; Davies, A C; Stroud, J B; Das, R K; Lawn, W; Morgan, C J A; Curran, H V
2018-05-15
Acute nicotine abstinence in cigarette smokers results in deficits in performance on specific cognitive processes, including working memory and impulsivity which are important in relapse. Cannabidiol (CBD), the non-intoxicating cannabinoid found in cannabis, has shown pro-cognitive effects and preliminary evidence has indicated it can reduce the number of cigarettes smoked in dependent smokers. However, the effects of CBD on cognition have never been tested during acute nicotine withdrawal. The present study therefore aimed to investigate if CBD can improve memory and reduce impulsivity during acute tobacco abstinence. Thirty, non-treatment seeking, dependent, cigarette smokers attended two laboratory-based sessions after overnight abstinence, in which they received either 800 mg oral CBD or placebo (PBO), in a randomised order. Abstinence was biologically verified. Participants were assessed on go/no-go, delay discounting, prose recall and N-back (0-back, 1-back, 2-back) tasks. The effects of CBD on delay discounting, prose recall and the N-back (correct responses, maintenance or manipulation) were null, confirmed by a Bayesian analysis, which found evidence for the null hypothesis. Contrary to our predictions, CBD increased commission errors on the go/no-go task. In conclusion, a single 800 mg dose of CBD does not improve verbal or spatial working memory, or impulsivity during tobacco abstinence.
Fernández-Ruiz, Javier; Sagredo, Onintza; Pazos, M Ruth; García, Concepción; Pertwee, Roger; Mechoulam, Raphael; Martínez-Orgado, José
2013-01-01
Cannabidiol (CBD) is a phytocannabinoid with therapeutic properties for numerous disorders exerted through molecular mechanisms that are yet to be completely identified. CBD acts in some experimental models as an anti-inflammatory, anticonvulsant, anti-oxidant, anti-emetic, anxiolytic and antipsychotic agent, and is therefore a potential medicine for the treatment of neuroinflammation, epilepsy, oxidative injury, vomiting and nausea, anxiety and schizophrenia, respectively. The neuroprotective potential of CBD, based on the combination of its anti-inflammatory and anti-oxidant properties, is of particular interest and is presently under intense preclinical research in numerous neurodegenerative disorders. In fact, CBD combined with Δ9-tetrahydrocannabinol is already under clinical evaluation in patients with Huntington's disease to determine its potential as a disease-modifying therapy. The neuroprotective properties of CBD do not appear to be exerted by the activation of key targets within the endocannabinoid system for plant-derived cannabinoids like Δ9-tetrahydrocannabinol, i.e. CB1 and CB2 receptors, as CBD has negligible activity at these cannabinoid receptors, although certain activity at the CB2 receptor has been documented in specific pathological conditions (i.e. damage of immature brain). Within the endocannabinoid system, CBD has been shown to have an inhibitory effect on the inactivation of endocannabinoids (i.e. inhibition of FAAH enzyme), thereby enhancing the action of these endogenous molecules on cannabinoid receptors, which is also noted in certain pathological conditions. CBD acts not only through the endocannabinoid system, but also causes direct or indirect activation of metabotropic receptors for serotonin or adenosine, and can target nuclear receptors of the PPAR family and also ion channels. PMID:22625422
Hassan, Samia; Eldeeb, Khalil; Millns, Paul J; Bennett, Andrew J; Alexander, Stephen P H; Kendall, David A
2014-01-01
Background and Purpose Microglial cells are important mediators of the immune response in the CNS. The phytocannabinoid, cannabidiol (CBD), has been shown to have central anti-inflammatory properties, and the purpose of the present study was to investigate the effects of CBD and other phytocannabinoids on microglial phagocytosis. Experimental Approach Phagocytosis was assessed by measuring ingestion of fluorescently labelled latex beads by cultured microglial cells. Drug effects were probed using single-cell Ca2+ imaging and expression of mediator proteins by immunoblotting and immunocytochemistry. Key Results CBD (10 μM) enhanced bead phagocytosis to 175 ± 7% control. Other phytocannabinoids, synthetic and endogenous cannabinoids were without effect. The enhancement was dependent upon Ca2+ influx and was abolished in the presence of EGTA, the Ca2+ channel inhibitor SKF96365, the transient receptor potential (TRP) channel blocker ruthenium red, and the TRPV1 antagonists capsazepine and AMG9810. CBD produced a sustained increase in intracellular Ca2+ concentration in BV-2 microglia and this was abolished by ruthenium red. CBD rapidly increased the expression of TRPV2 and TRPV1 proteins and caused a translocation of TRPV2 to the cell membrane. Wortmannin blocked CBD enhancement of BV-2 cell phagocytosis, suggesting that it is mediated by PI3K signalling downstream of the Ca2+ influx. Conclusions and Implications The TRPV-dependent phagocytosis-enhancing effect of CBD suggests that pharmacological modification of TRPV channel activity could be a rational approach to treating neuroinflammatory disorders involving changes in microglial function and that CBD is a potential starting point for future development of novel therapeutics acting on the TRPV receptor family. PMID:24641282
Cannabidiol-Δ9-tetrahydrocannabinol interactions on acute pain and locomotor activity.
Britch, Stevie C; Wiley, Jenny L; Yu, Zhihao; Clowers, Brian H; Craft, Rebecca M
2017-06-01
Previous studies suggest that cannabidiol (CBD) may potentiate or antagonize Δ 9 -tetrahydrocannabinol's (THC) effects. The current study examined sex differences in CBD modulation of THC-induced antinociception, hypolocomotion, and metabolism. In Experiment 1, CBD (0, 10 or 30mg/kg) was administered 15min before THC (0, 1.8, 3.2, 5.6 or 10mg/kg), and rats were tested for antinociception and locomotion 15-360min post-THC injection. In Experiments 2 and 3, CBD (30mg/kg) was administered 13h or 15min before THC (1.8mg/kg); rats were tested for antinociception and locomotion 30-480min post-THC injection (Experiment 2), or serum samples were taken 30-360min post-THC injection to examine CBD modulation of THC metabolism (Experiment 3). In Experiment 1, CBD alone produced no antinociceptive effects, while enhancing THC-induced paw pressure but not tail withdrawal antinociception 4-6h post-THC injection. CBD alone increased locomotor activity at 6h post-injection, but enhanced THC-induced hypolocomotion 4-6h post-THC injection, at lower THC doses. There were no sex differences in CBD-THC interactions. In Experiments 2 and 3, CBD did not significantly enhance THC's effects when CBD was administered 13h or 15min before THC; however, CBD inhibited THC metabolism, and this effect was greater in females than males. These results suggest that CBD may enhance THC's antinociceptive and hypolocomotive effects, primarily prolonging THC's duration of action; however, these effects were small and inconsistent across experiments. CBD inhibition of THC metabolism as well other mechanisms likely contribute to CBD-THC interactions on behavior. Copyright © 2017 Elsevier B.V. All rights reserved.
In vitro and in vivo efficacy of non-psychoactive cannabidiol in neuroblastoma
Fisher, T.; Golan, H.; Schiby, G.; PriChen, S.; Smoum, R.; Moshe, I.; Peshes-Yaloz, N.; Castiel, A.; Waldman, D.; Gallily, R.; Mechoulam, R.; Toren, A.
2016-01-01
Background Neuroblastoma (nbl) is one of the most common solid cancers in children. Prognosis in advanced nbl is still poor despite aggressive multimodality therapy. Furthermore, survivors experience severe long-term multi-organ sequelae. Hence, the identification of new therapeutic strategies is of utmost importance. Cannabinoids and their derivatives have been used for years in folk medicine and later in the field of palliative care. Recently, they were found to show pharmacologic activity in cancer, including cytostatic, apoptotic, and antiangiogenic effects. Methods We investigated, in vitro and in vivo, the anti-nbl effect of the most active compounds in Cannabis, Δ9-tetrahydrocannabinol (thc) and cannabidiol (cbd). We set out to experimentally determine the effects of those compounds on viability, invasiveness, cell cycle distribution, and programmed cell death in human nbl SK-N-SH cells. Results Both compounds have antitumourigenic activity in vitro and impeded the growth of tumour xenografts in vivo. Of the two cannabinoids tested, cbd was the more active. Treatment with cbd reduced the viability and invasiveness of treated tumour cells in vitro and induced apoptosis (as demonstrated by morphology changes, sub-G1 cell accumulation, and annexin V assay). Moreover, cbd elicited an increase in activated caspase 3 in treated cells and tumour xenografts. Conclusions Our results demonstrate the antitumourigenic action of cbd on nbl cells. Because cbd is a nonpsychoactive cannabinoid that appears to be devoid of side effects, our results support its exploitation as an effective anticancer drug in the management of nbl. PMID:27022310
Syed, Yahiya Y; McKeage, Kate; Scott, Lesley J
2014-04-01
Delta-9-tetrahydrocannabinol (THC)/cannabidiol (CBD) [Sativex®] is an oromucosal spray formulation that contains principally THC and CBD at an approximately 1:1 fixed ratio, derived from cloned Cannabis sativa L. plants. The main active substance, THC, acts as a partial agonist at human cannabinoid receptors (CB1 and CB2), and thus, may modulate the effects of excitatory (glutamate) and inhibitory (gamma-aminobutyric acid) neurotransmitters. THC/CBD is approved in a number of countries, including Germany and the UK, as an add-on treatment for symptom improvement in adult patients with moderate to severe spasticity due to multiple sclerosis who have not responded adequately to other anti-spasticity medication and who demonstrate clinically significant improvement in spasticity-related symptoms during an initial trial of therapy. In the largest multinational clinical trial that evaluated the approved THC/CBD regimen in this population, 12 weeks' double-blind treatment with THC/CBD significantly reduced spasticity severity (primary endpoint) compared with placebo in patients who achieved a clinically significant improvement in spasticity after 4 weeks' single-blind THC/CBD treatment, as assessed by a patient-rated numerical rating scale. A significantly greater proportion of THC/CBD than placebo recipients achieved a ≥ 30% reduction (a clinically relevant reduction) in spasticity severity. The efficacy of THC/CBD has been also shown in at least one everyday clinical practice study (MOVE 2). THC/CBD was generally well tolerated in clinical trials. Dizziness and fatigue were reported most frequently during the first 4 weeks of treatment and resolved within a few days even with continued treatment. Thus, add-on THC/CBD is a useful symptomatic treatment option for its approved indication.
Renard, Justine; Norris, Christopher; Rushlow, Walter; Laviolette, Steven R
2017-04-01
Growing clinical and pre-clinical evidence points to a critical role for cannabidiol (CBD), the largest phytochemical component of cannabis, as a potential pharmacotherapy for various neuropsychiatric disorders. In contrast to delta-9-tetrahydrocannabinol (THC), which is associated with acute and neurodevelopmental pro-psychotic side-effects, CBD possesses no known psychoactive or dependence-producing properties. However, evidence has demonstrated that CBD strongly modulates the mesolimbic dopamine (DA) system and may possess promising anti-psychotic properties. Despite the psychotropic differences between CBD and THC, little is known regarding their molecular and neuronal effects on the mesolimbic DA system, nor how these differential effects may relate to their potential pro vs. anti-psychotic properties. This review summarizes clinical and pre-clinical evidence demonstrating CBD's modulatory effects on DA activity states within the mesolimbic pathway, functional interactions with the serotonin 5-HT 1A receptor system, and their downstream molecular signaling effects. Together with clinical evidence showing that CBD may normalize affective and cognitive deficits associated with schizophrenia, CBD may represent a promising treatment for schizophrenia, acting through novel molecular and neuronal mesolimbic substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.
2014-06-01
Conventional drugs have only a limited impact on spasticity associated with multiple sclerosis and are rarely satisfactory. A solution for oral transmucosal delivery (spray) containing a mixture of cannabis extracts (2.7 mg of delta-9-tetrahydrocannabinol + 2.5 mg of cannabidiol per spray) has been granted marketing authorisation in France for patients who are inadequately relieved by standard treatments. Three double-blind, placebo-controlled trials in a total of about 300 patients tested this combination, in addition to ongoing treatment, for periods of 6 to 14 weeks. Individually, none of these trials showed any tangible anti-spastic efficacy, but two combined analyses showed "response rates" of about 35% with the mixture versus about 25% with placebo. In a trial with 572 patients, the 241 patients who "responded" after 4 weeks of treatment were randomised to either continue using the cannabis extract or receive placebo. Twelve weeks later, 75% of patients using the extract were still "responders", versus 51% of patients switched to placebo. The principal adverse effects of the cannabis extracts consist of neuropsychiatric disorders that resolve on treatment withdrawal. The potential for abuse increases with the dose and is tangible from 16 sprays per day. Pharmacokinetic interactions due to P-glycoprotein inhibition are likely. Treatment during pregnancy may lead to neonatal withdrawal symptoms. In practice, about 10% of patients in whom standard anti-spastic medications are unsatisfactory benefit from a specific effect of the cannabis extracts contained in this oral spray.
Vermersch, Patrick; Trojano, Maria
2016-01-01
Tetrahydrocannabinol:cannabidiol (THC:CBD) oromucosal spray (Sativex®) is an add-on therapy for moderate-to-severe multiple sclerosis (MS)-related drug-resistant spasticity (MSS). The MOVE-2 EU study collected data from everyday clinical practice concerning the effectiveness and tolerability of THC:CBD. This was an observational, prospective, multicentre, non-interventional study. Patients with resistant MSS prescribed add-on THC:CBD oromucosal spray according to approved labelling, were followed for 3 months. After 1 month, only responders (≥20% improvement in spasticity) continued treatment. The main endpoints were the evolution of MSS and associated symptoms, quality of life (QoL) and tolerability. Four hundred and thirty three patients (55% female) were recruited (98% in Italy). The mean duration of MSS was 7.4 years and baclofen was used by 78.1% of participants. Three hundred and forty nine participants continued with THC:CBD oromucosal spray after 1 month, and 281 after 3 months. THC:CBD mean dosage was 6 sprays/day. MSS scores and spasticity-related symptoms (spasms, fatigue, pain, sleep quality and bladder dysfunction) were significantly improved by THC:CBD at 3 months, as were activities of daily living, and QoL (EQ-5D VAS). Adverse events, none of which were severe or serious, were reported by 10.4% of patients. In everyday clinical practice, THC:CBD oromucosal spray provided symptomatic relief of MSS and related troublesome symptoms. © 2016 S. Karger AG, Basel.
Keating, Gillian M
2017-04-01
Delta-9-tetrahydrocannabinol (THC)/cannabidiol (CBD) oromucosal spray (THC/CBD, Sativex ® , nabiximols) is available in numerous countries worldwide for the treatment of multiple sclerosis (MS)-related moderate to severe spasticity in patients who have not responded adequately to other anti-spasticity medication and who demonstrate clinically significant improvement in spasticity-related symptoms during an initial trial of therapy. Twelve weeks' therapy with THC/CBD improved MS-related spasticity in patients with an inadequate response to other anti-spasticity agents who had undergone a successful initial trial of THC/CBD therapy, according to the results of a pivotal phase 3 trial. Improvements in spasticity were maintained in the longer term with THC/CBD with no evidence of dose tolerance, and results of real-world studies confirm the effectiveness of THC/CBD in everyday clinical practice. Improvements in health-related quality of life and activities of daily living were also seen with THC/CBD. THC/CBD is generally well tolerated; adverse effects such as dizziness may occur whilst the THC/CBD dosage is being optimized. THC/CBD has low abuse potential and a low risk of psychoactive effects. In conclusion, THC/CBD oromucosal spray is a useful option for the treatment of MS-related spasticity not completely relieved with current anti-spasticity medication.
McNicholl, E. Tyler; Das, Rahul; SilDas, Soumita; Taylor, Susan S.; Melacini, Giuseppe
2010-01-01
Protein kinase A (PKA) is the main receptor for the universal cAMP second messenger. PKA is a tetramer with two catalytic (C) and two regulatory (R) subunits, each including two tandem cAMP binding domains, i.e. CBD-A and -B. Structural investigations of RIα have revealed that although CBD-A plays a pivotal role in the cAMP-dependent inhibition of C, the main function of CBD-B is to regulate the access of cAMP to site A. To further understand the mechanism underlying the cross-talk between CBD-A and -B, we report here the NMR investigation of a construct of R, RIα-(119–379), which unlike previous fragments characterized by NMR, spans in full both CBDs. Our NMR studies were also extended to two mutants, R209K and the corresponding R333K, which severely reduce the affinity of cAMP for CBD-A and -B, respectively. The comparative NMR analysis of wild-type RIα-(119–379) and of the two domain silencing mutations has led to the definition at an unprecedented level of detail of both intra- and interdomain allosteric networks, revealing several striking differences between the two CBDs. First, the two domains, although homologous in sequence and structure, exhibit remarkably different responses to the R/K mutations especially at the β2-3 allosteric “hot spot.” Second, although the two CBDs are reciprocally coupled at the level of local unfolding of the hinge, the A-to-B and B-to-A pathways are dramatically asymmetrical at the level of global unfolding. Such an asymmetric interdomain cross-talk ensures efficiency and robustness in both the activation and de-activation of PKA. PMID:20202931
Fogaça, Manoela V; Campos, Alline C; Coelho, Ludmila D; Duman, Ronald S; Guimarães, Francisco S
2018-06-01
Repeated injections of cannabidiol (CBD), the major non-psychotomimetic compound present in the Cannabis sativa plant, attenuate the anxiogenic effects induced by Chronic Unpredictable Stress (CUS). The specific mechanisms remain to be fully understood but seem to involve adult hippocampal neurogenesis and recruitment of endocannabinoids. Here we investigated for the first time if the behavioral and pro-neurogenic effects of CBD administered concomitant the CUS procedure (14 days) are mediated by CB 1 , CB 2 or 5HT 1A receptors, as well as CBD effects on dendritic remodeling and on intracellular/synaptic signaling (fatty acid amide hydrolase - FAAH, Akt, GSK3β and the synaptic proteins Synapsin Ia/b, mGluR1 and PSD95). After 14 days, CBD injections (30 mg/kg) induced anxiolytic responses in stressed animals in the elevated plus-maze and novelty suppressed feeding tests, that were blocked by pre-treatment with a CB 1 (AM251, 0.3 mg/kg) or CB 2 (AM630, 0.3 mg/kg), but not by a 5HT 1A (WAY100635, 0.05 mg/kg) receptor antagonist. Golgi staining and immunofluorescence revealed that these effects were associated with an increase in hippocampal neurogenesis and spine density in the dentate gyrus of the hippocampus. AM251 and AM630 abolished the effects of CBD on spines density. However, AM630 was more effective in attenuating the pro-neurogenic effects of CBD. CBD decreased FAAH and increased p-GSK3β expression in stressed animals, which was also attenuated by AM630. These results indicate that CBD prevents the behavioral effects caused by CUS probably due to a facilitation of endocannabinoid neurotransmission and consequent CB 1 /CB 2 receptors activation, which could recruit intracellular/synaptic proteins involved in neurogenesis and dendritic remodeling. Copyright © 2018 Elsevier Ltd. All rights reserved.
González-García, Coral; Torres, Irene Moreno; García-Hernández, Ruth; Campos-Ruíz, Lucía; Esparragoza, Luis Rodríguez; Coronado, María José; Grande, Aranzazu García; García-Merino, Antonio; Sánchez López, Antonio J
2017-12-01
Cannabidiol (CBD) is one of the most important compounds in Cannabis sativa, lacks psychotropic effects, and possesses a high number of therapeutic properties including the amelioration of experimental autoimmune encephalomyelitis (EAE). The aim of this study was to analyse the relative efficacy of CBD in adoptively transferred EAE (at-EAE), a model that allows better delineation of the effector phase of EAE. Splenocytes and lymph nodes from mice with actively induced EAE were cultured in the presence of MOG 35-55 and IL-12 and inoculated intraperitoneally in recipient female C57BL/6J mice. The effects of CBD were evaluated using clinical scores and magnetic resonance imaging (MRI). In the central nervous system, the extent of cell infiltration, axonal damage, demyelination, microglial activation and cannabinoid receptors expression was assessed by immunohistochemistry. Lymph cell viability, apoptosis, oxidative stress and IL-6 production were measured in vitro. Preventive intraperitoneal treatment with CBD ameliorated the clinical signs of at-EAE, and this improvement was accompanied by a reduction of the apparent diffusion coefficient in the subiculum area of the brain. Inflammatory infiltration, axonal damage, and demyelination were reduced, and cannabinoid receptor expression was modulated. Incubation with CBD decreased encephalitogenic cell viability, increasing early apoptosis and reactive oxygen species (ROS) and decreasing IL-6 production. The reduction in viability was not mediated by CB 1 , CB 2 or GPR55 receptors. CBD markedly improved the clinical signs of at-EAE and reduced infiltration, demyelination and axonal damage. The CBD-mediated decrease in the viability of encephalitogenic cells involves ROS generation, apoptosis and a decrease in IL-6 production and may contribute to the therapeutic effect of this compound. Copyright © 2017 Elsevier Inc. All rights reserved.
Fernández-Ruiz, Javier; Sagredo, Onintza; Pazos, M Ruth; García, Concepción; Pertwee, Roger; Mechoulam, Raphael; Martínez-Orgado, José
2013-02-01
Cannabidiol (CBD) is a phytocannabinoid with therapeutic properties for numerous disorders exerted through molecular mechanisms that are yet to be completely identified. CBD acts in some experimental models as an anti-inflammatory, anticonvulsant, anti-oxidant, anti-emetic, anxiolytic and antipsychotic agent, and is therefore a potential medicine for the treatment of neuroinflammation, epilepsy, oxidative injury, vomiting and nausea, anxiety and schizophrenia, respectively. The neuroprotective potential of CBD, based on the combination of its anti-inflammatory and anti-oxidant properties, is of particular interest and is presently under intense preclinical research in numerous neurodegenerative disorders. In fact, CBD combined with Δ(9)-tetrahydrocannabinol is already under clinical evaluation in patients with Huntington's disease to determine its potential as a disease-modifying therapy. The neuroprotective properties of CBD do not appear to be exerted by the activation of key targets within the endocannabinoid system for plant-derived cannabinoids like Δ(9)-tetrahydrocannabinol, i.e. CB(1) and CB(2) receptors, as CBD has negligible activity at these cannabinoid receptors, although certain activity at the CB(2) receptor has been documented in specific pathological conditions (i.e. damage of immature brain). Within the endocannabinoid system, CBD has been shown to have an inhibitory effect on the inactivation of endocannabinoids (i.e. inhibition of FAAH enzyme), thereby enhancing the action of these endogenous molecules on cannabinoid receptors, which is also noted in certain pathological conditions. CBD acts not only through the endocannabinoid system, but also causes direct or indirect activation of metabotropic receptors for serotonin or adenosine, and can target nuclear receptors of the PPAR family and also ion channels. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.
Cannabidiol-Δ9-tetrahydrocannabinol interactions on acute pain and locomotor activity
Britch, Stevie C.; Wiley, Jenny L.; Yu, Zhihao; Clowers, Brian H.; Craft, Rebecca M.
2017-01-01
Background Previous studies suggest that cannabidiol (CBD) may potentiate or antagonize Δ9-tetrahydrocannabinol’s (THC) effects. The current study examined sex differences in CBD-THC interactions on antinociception, locomotion, and THC metabolism. Methods In Experiment 1, CBD (0, 10 or 30 mg/kg) was administered 15 min before THC (0, 1.8, 3.2, 5.6 or10 mg/kg), and rats were tested for antinociception and locomotion 15–360 min post-THC injection. In Experiments 2 and 3, CBD (30 mg/kg) was administered 13 hr or 15 min before THC (1.8 mg/kg); rats were tested for antinociception and locomotion 30–480 min post-THC injection (Experiment 2), or serum samples were taken 30–360 min post-THC injection to examine CBD modulation of THC metabolism (Experiment 3). Results In Experiment 1, CBD alone produced no antinociceptive effects, while enhancing THC-induced paw pressure but not tail withdrawal antinociception 4–6 hr post-THC injection. CBD alone increased locomotor activity at 6 hr post-injection, but enhanced THC-induced hypolocomotion 4–6 hr post-THC injection, at lower THC doses. There were no sex differences in CBD-THC interactions. In Experiments 2 and 3, CBD did not significantly enhance THC’s effects when CBD was administered 13 hr or 15 min before THC; however, CBD inhibited THC metabolism, and this effect was greater in females than males. Conclusions These results suggest that CBD may enhance THC’s antinociceptive and hypolocomotive effects, primarily prolonging THC’s duration of action; however, these effects were small and inconsistent across experiments. CBD inhibition of THC metabolism as well other mechanisms likely contribute to CBD-THC interactions on behavior. PMID:28445853
Current Status and Prospects for Cannabidiol Preparations as New Therapeutic Agents.
Fasinu, Pius S; Phillips, Sarah; ElSohly, Mahmoud A; Walker, Larry A
2016-07-01
States and the federal government are under growing pressure to legalize the use of cannabis products for medical purposes in the United States. Sixteen states have legalized (or decriminalized possession of) products high in cannabidiol (CBD) and with restricted ∆(9) -tetrahydrocannabinol (∆(9) -THC) content. In most of these states, the intent is for use in refractory epileptic seizures in children, but in a few states, the indications are broader. This review provides an overview of the pharmacology and toxicology of CBD; summarizes some of the regulatory, safety, and cultural issues relevant to the further exploitation of its antiepileptic or other pharmacologic activities; and assesses the current status and prospects for clinical development of CBD and CBD-rich preparations for medical use in the United States. Unlike Δ(9) -THC, CBD elicits its pharmacologic effects without exerting any significant intrinsic activity on the cannabinoid receptors, whose activation results in the psychotropic effects characteristic of Δ(9) -THC, and CBD possesses several pharmacologic activities that give it a high potential for therapeutic use. CBD exhibits neuroprotective, antiepileptic, anxiolytic, antipsychotic, and antiinflammatory properties. In combination with Δ(9) -THC, CBD has received regulatory approvals in several European countries and is currently under study in trials registered by the U.S. Food and Drug Administration in the United States. A number of states have passed legislation to allow for the use of CBD-rich, limited Δ(9) -THC-content preparations of cannabis for certain pathologic conditions. CBD is currently being studied in several clinical trials and is at different stages of clinical development for various medical indications. Judging from clinical findings reported so far, CBD and CBD-enriched preparations have great potential utility, but uncertainties regarding sourcing, long-term safety, abuse potential, and regulatory dilemmas remain.
Film patterned retarder for stereoscopic three-dimensional display using ink-jet printing method.
Lim, Young Jin; Yu, Ji Hoon; Song, Ki Hoon; Lee, Myong-Hoon; Ren, Hongwen; Mun, Byung-June; Lee, Gi-Dong; Lee, Seung Hee
2014-09-22
We propose a film patterned retarder (FPR) for stereoscopic three-dimensional display with polarization glasses using ink-jet printing method. Conventional FPR process requires coating of photo-alignment and then UV exposure using wire-grid mask, which is very expensive and difficult. The proposed novel fabrication method utilizes a plastic substrate made of polyether sulfone and an alignment layer, poly (4, 4' - (9, 9 -fluorenyl) diphenylene cyclobutanyltetracarboximide) (9FDA/CBDA) in which the former and the latter aligns reactive mesogen along and perpendicular to the rubbing direction, respectively. The ink-jet printing of 9FDA/CBDA line by line allows fabricating the cost effective FPR which can be widely applied for 3D display applications.
Randomized, dose-ranging safety trial of cannabidiol in Dravet syndrome
Patel, Anup D.; Thiele, Elizabeth A.; Wong, Matthew H.; Appleton, Richard; Harden, Cynthia L.; Greenwood, Sam; Morrison, Gilmour; Sommerville, Kenneth
2018-01-01
Objective To evaluate the safety and preliminary pharmacokinetics of a pharmaceutical formulation of purified cannabidiol (CBD) in children with Dravet syndrome. Methods Patients aged 4–10 years were randomized 4:1 to CBD (5, 10, or 20 mg/kg/d) or placebo taken twice daily. The double-blind trial comprised 4-week baseline, 3-week treatment (including titration), 10-day taper, and 4-week follow-up periods. Completers could continue in an open-label extension. Multiple pharmacokinetic blood samples were taken on the first day of dosing and at end of treatment for measurement of CBD, its metabolites 6-OH-CBD, 7-OH-CBD, and 7-COOH-CBD, and antiepileptic drugs (AEDs; clobazam and metabolite N-desmethylclobazam [N-CLB], valproate, levetiracetam, topiramate, and stiripentol). Safety assessments were clinical laboratory tests, physical examinations, vital signs, ECGs, adverse events (AEs), seizure frequency, and suicidality. Results Thirty-four patients were randomized (10, 8, and 9 to the 5, 10, and 20 mg/kg/d CBD groups, and 7 to placebo); 32 (94%) completed treatment. Exposure to CBD and its metabolites was dose-proportional (AUC0–t). CBD did not affect concomitant AED levels, apart from an increase in N-CLB (except in patients taking stiripentol). The most common AEs on CBD were pyrexia, somnolence, decreased appetite, sedation, vomiting, ataxia, and abnormal behavior. Six patients taking CBD and valproate developed elevated transaminases; none met criteria for drug-induced liver injury and all recovered. No other clinically relevant safety signals were observed. Conclusions Exposure to CBD and its metabolites increased proportionally with dose. An interaction with N-CLB was observed, likely related to CBD inhibition of cytochrome P450 subtype 2C19. CBD resulted in more AEs than placebo but was generally well-tolerated. Classification of evidence This study provides Class I evidence that for children with Dravet syndrome, CBD resulted in more AEs than placebo but
Morini, Luca; Porro, Giorgio; Liso, Maurizio; Groppi, Angelo
2017-01-01
Since 2013 Cannabis-based preparations, containing the two main cannabinoids of interest, Δ9-tetrahydrocannabinol (THC), and cannabidiol (CBD), can be used for therapeutic purposes, such as palliative care, neurodegenerative disorder treatment and other therapies. The preparations may consist of a drug partition in sachets, capsules or through the extraction in certified olive oil. The aims of the study were: a) to develop and validate a new liquid chromatographictandem mass spectrometric (LC-MS/MS) method for the identification and quantification of THC and CBD in olive oil; b) to evaluate the extraction efficiency and reproducibility of a new commercial extractor on the market. The olive oil was simply diluted three consecutive times, using organic solvents with increasing polarity index (n-hexane → isopropanol → methanol). The sample was then directly injected into LC-MS/MS system, operating in Multiple Reaction Monitoring Mode, in positive polarization. The method was then fully validated. The method assessed to be linear over the range 0.1-10 ng/µL for both THC and CBD. Imprecision and accuracy were within 12.2% and 16.9% respectively; matrix effects proved to be negligible; THC concentration in oil is stable up to two months at room temperature, whenever kept in the dark. CBD provided a degradation of 30% within ten weeks. The method was then applied to olive oil after sample preparation, in order to evaluate the efficiency of extraction of a new generation instrument. Temperature of extraction is the most relevant factor to be optimized. Indeed, a difference of 2°C (from 94.5°C to 96.5°C, the highest temperature reached in the experiments) of the heating phase, increases the percentage of extraction from 54.2% to 64.0% for THC and from 58.2% to 67.0% for CBD. The amount of THC acid and CBD acid that are decarboxylated during the procedure must be check out in the future. The developed method was simple and fast. The extraction procedure proved to be
Wright, M Jerry; Vandewater, Sophia A; Taffe, Michael A
2013-12-01
Recent human studies suggest that recreational cannabis strains that are relatively high in cannabidiol (CBD) content produce less cognitive impairment than do strains with negligible CBD and similar Δ(9) tetrahydrocannabinol (THC) content. Self-selection in such studies means it is impossible to rule out additional variables which may determine both cannabis strain selection and basal cognitive performance level. Controlled laboratory studies can better determine a direct relationship. In this study, adult male rhesus monkeys were assessed on visuospatial Paired Associates Learning and Self-Ordered Spatial Search memory tasks, as well as additional tests of motivation and manual dexterity. Subjects were challenged with THC (0.2, 0.5 mg·kg(-1) , i.m.) in randomized order and evaluated in the presence or absence of 0.5 mg·kg(-1) CBD. CBD attenuated the effects of THC on paired associates learning and a bimanual motor task without affecting the detrimental effects of THC on a Self-Ordered Spatial Search task of working memory. CBD did not significantly reverse THC-induced impairment of a progressive ratio or a rotating turntable task. This study provides direct evidence that CBD can oppose the cognitive-impairing effects of THC and that it does so in a task-selective manner when administered simultaneously in a 1:1 ratio with THC. The addition of CBD to THC-containing therapeutic products may therefore help to ameliorate unwanted cognitive side-effects. This article is commented on by Mechoulam and Parker, pp 1363-1364 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12400. © 2013 The Authors. British Journal of Pharmacology © 2013 The British Pharmacological Society.
Hao, Enkui; Mukhopadhyay, Partha; Cao, Zongxian; Erdélyi, Katalin; Holovac, Eileen; Liaudet, Lucas; Lee, Wen-Shin; Haskó, György; Mechoulam, Raphael; Pacher, Pál
2015-01-06
Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX's cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may
Hao, Enkui; Mukhopadhyay, Partha; Cao, Zongxian; Erdélyi, Katalin; Holovac, Eileen; Liaudet, Lucas; Lee, Wen-Shin; Haskó, György; Mechoulam, Raphael; Pacher, Pál
2015-01-01
Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX’s cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may
Cannabidiol attenuates deficits of visuospatial associative memory induced by Δ9tetrahydrocannabinol
Wright, M Jerry; Vandewater, Sophia A; Taffe, Michael A
2013-01-01
BACKGROUND AND PURPOSE Recent human studies suggest that recreational cannabis strains that are relatively high in cannabidiol (CBD) content produce less cognitive impairment than do strains with negligible CBD and similar Δ9tetrahydrocannabinol (THC) content. Self-selection in such studies means it is impossible to rule out additional variables which may determine both cannabis strain selection and basal cognitive performance level. Controlled laboratory studies can better determine a direct relationship. EXPERIMENTAL APPROACH In this study, adult male rhesus monkeys were assessed on visuospatial Paired Associates Learning and Self-Ordered Spatial Search memory tasks, as well as additional tests of motivation and manual dexterity. Subjects were challenged with THC (0.2, 0.5 mg·kg−1, i.m.) in randomized order and evaluated in the presence or absence of 0.5 mg·kg−1 CBD. KEY RESULTS CBD attenuated the effects of THC on paired associates learning and a bimanual motor task without affecting the detrimental effects of THC on a Self-Ordered Spatial Search task of working memory. CBD did not significantly reverse THC-induced impairment of a progressive ratio or a rotating turntable task. CONCLUSIONS AND IMPLICATIONS This study provides direct evidence that CBD can oppose the cognitive-impairing effects of THC and that it does so in a task-selective manner when administered simultaneously in a 1:1 ratio with THC. The addition of CBD to THC-containing therapeutic products may therefore help to ameliorate unwanted cognitive side-effects. LINKED ARTICLE This article is commented on by Mechoulam and Parker, pp 1363–1364 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12400 PMID:23550724
Zhang, Aizhi; Wang, Quanlin; Mo, Shijie
2010-11-01
A method for the simultaneous determination of delta-9-tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabinol (CBN) in edible oil was developed using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The target compounds were extracted with methanol, purified by an LC-Alumina-N solid phase extraction cartridge, separated and detected by the UPLC-MS/MS. Quantitative analysis was corrected by an isotope internal standard method using delta-9-THC-D3 as internal standard. Average recoveries for the target compounds varied from 68.0% to 101.6% with the relative standard deviations ranging from 7.0% to 20.1% at three spiked levels. The limits of detection (LOD) of the method were from 0.06-0.17 microg/kg and the limits of quantification (LOQ) were in the range of 0.20-0.52 microg/kg. The results showed that the method is able to meet the requirements for the simultaneous determination of THC, CBD and CBN in edible oil.
Berber, Hatice; Lameiras, Pedro; Denhez, Clément; Antheaume, Cyril; Clayden, Jonathan
2014-07-03
Terpenylation reactions of substituted phenols were used to prepare cannabidiol and linderatin derivatives, and their structure and conformational behavior in solution were investigated by NMR and, for some representative examples, by DFT. VT-NMR spectra and DFT calculations were used to determine the activation energies of the conformational change arising from restricted rotation about the aryl-Csp(3) bond that lead to two unequally populated rotameric epimers. The NBO calculation was applied to explain the electronic stabilization of one conformer over another by donor-acceptor charge transfer interactions. Conformational control arises from a combination of stereoelectronic and steric effects between substituents in close contact with each other on the two rings of the endocyclic epoxide atropisomers. This study represents the first exploration of the stereoelectronic origins of atropisomerism around C(sp(2))-C(sp(3)) single bonds through theoretical calculations.
Murillo-Rodríguez, Eric; Palomero-Rivero, Marcela; Millán-Aldaco, Diana; Mechoulam, Raphael; Drucker-Colín, René
2011-03-14
The major non-psychoactive component of Cannabis sativa, cannabidiol (CBD), displays a plethora of actions including wakefulness. In the present study, we addressed whether perfusing CBD via microdialysis into lateral hypothalamus (LH) during the lights-on period would modify the sleep-wake cycle of rats as well as the contents of dopamine (DA) collected from nucleus accumbens (AcbC). Additionally, we tested whether perfusion of CBD into LH would block the sleep rebound after a sleep deprivation period. Electroencephalogram and electromyogram electrodes were implanted in rats as well as a guide-cannula aimed to LH or AcbC. CBD perfusion was carried out via cannulae placed into LH whereas contents of DA were collected from AcbC and analyzed using HPLC means. We found that microdialysis perfusion of CBD (30, 60, or 90 nM) into LH of rat enhances alertness and suppresses sleep. This effect was accompanied with an increase in DA extracellular levels collected from the AcbC. Furthermore, perfusion of CBD into LH after total sleep deprivation prevented the sleep rebound. These findings enhance the investigation about the neurobiological properties of CBD on sleep modulation. Copyright © 2011 Elsevier Inc. All rights reserved.
Stanley, Christopher P.; Hind, William H.; Tufarelli, Cristina; O'Sullivan, Saoirse E.
2015-01-01
Aims The protective effects of cannabidiol (CBD) have been widely shown in preclinical models and have translated into medicines for the treatment of multiple sclerosis and epilepsy. However, the direct vascular effects of CBD in humans are unknown. Methods and results Using wire myography, the vascular effects of CBD were assessed in human mesenteric arteries, and the mechanisms of action probed pharmacologically. CBD-induced intracellular signalling was characterized using human aortic endothelial cells (HAECs). CBD caused acute, non-recoverable vasorelaxation of human mesenteric arteries with an Rmax of ∼40%. This was inhibited by cannabinoid receptor 1 (CB1) receptor antagonists, desensitization of transient receptor potential channels using capsaicin, removal of the endothelium, and inhibition of potassium efflux. There was no role for cannabinoid receptor-2 (CB2) receptor, peroxisome proliferator activated receptor (PPAR)γ, the novel endothelial cannabinoid receptor (CBe), or cyclooxygenase. CBD-induced vasorelaxation was blunted in males, and in patients with type 2 diabetes or hypercholesterolemia. In HAECs, CBD significantly reduced phosphorylated JNK, NFκB, p70s6 K and STAT5, and significantly increased phosphorylated CREB, ERK1/2, and Akt levels. CBD also increased phosphorylated eNOS (ser1177), which was correlated with increased levels of ERK1/2 and Akt levels. CB1 receptor antagonism prevented the increase in eNOS phosphorylation. Conclusion This study shows, for the first time, that CBD causes vasorelaxation of human mesenteric arteries via activation of CB1 and TRP channels, and is endothelium- and nitric oxide-dependent. PMID:26092099
Chagas, Marcos Hortes N; Zuardi, Antonio W; Tumas, Vitor; Pena-Pereira, Márcio Alexandre; Sobreira, Emmanuelle T; Bergamaschi, Mateus M; dos Santos, Antonio Carlos; Teixeira, Antonio Lucio; Hallak, Jaime E C; Crippa, José Alexandre S
2014-11-01
Parkinson's disease (PD) has a progressive course and is characterized by the degeneration of dopaminergic neurons. Although no neuroprotective treatments for PD have been found to date, the endocannabinoid system has emerged as a promising target. From a sample of 119 patients consecutively evaluated in a specialized movement disorders outpatient clinic, we selected 21 PD patients without dementia or comorbid psychiatric conditions. Participants were assigned to three groups of seven subjects each who were treated with placebo, cannabidiol (CBD) 75 mg/day or CBD 300 mg/day. One week before the trial and in the last week of treatment participants were assessed in respect to (i) motor and general symptoms score (UPDRS); (ii) well-being and quality of life (PDQ-39); and (iii) possible neuroprotective effects (BDNF and H(1)-MRS). We found no statistically significant differences in UPDRS scores, plasma BDNF levels or H(1)-MRS measures. However, the groups treated with placebo and CBD 300 mg/day had significantly different mean total scores in the PDQ-39 (p = 0.05). Our findings point to a possible effect of CBD in improving quality of life measures in PD patients with no psychiatric comorbidities; however, studies with larger samples and specific objectives are required before definitive conclusions can be drawn. © The Author(s) 2014.
Crippa, José Alexandre S; Derenusson, Guilherme Nogueira; Ferrari, Thiago Borduqui; Wichert-Ana, Lauro; Duran, Fábio L S; Martin-Santos, Rocio; Simões, Marcus Vinícius; Bhattacharyya, Sagnik; Fusar-Poli, Paolo; Atakan, Zerrin; Santos Filho, Alaor; Freitas-Ferrari, Maria Cecília; McGuire, Philip K; Zuardi, Antonio Waldo; Busatto, Geraldo F; Hallak, Jaime Eduardo Cecílio
2011-01-01
Animal and human studies indicate that cannabidiol (CBD), a major constituent of cannabis, has anxiolytic properties. However, no study to date has investigated the effects of this compound on human pathological anxiety and its underlying brain mechanisms. The aim of the present study was to investigate this in patients with generalized social anxiety disorder (SAD) using functional neuroimaging. Regional cerebral blood flow (rCBF) at rest was measured twice using (99m)Tc-ECD SPECT in 10 treatment-naïve patients with SAD. In the first session, subjects were given an oral dose of CBD (400 mg) or placebo, in a double-blind procedure. In the second session, the same procedure was performed using the drug that had not been administered in the previous session. Within-subject between-condition rCBF comparisons were performed using statistical parametric mapping. Relative to placebo, CBD was associated with significantly decreased subjective anxiety (p < 0.001), reduced ECD uptake in the left parahippocampal gyrus, hippocampus, and inferior temporal gyrus (p < 0.001, uncorrected), and increased ECD uptake in the right posterior cingulate gyrus (p < 0.001, uncorrected). These results suggest that CBD reduces anxiety in SAD and that this is related to its effects on activity in limbic and paralimbic brain areas.
Mecha, M; Torrao, A S; Mestre, L; Carrillo-Salinas, F J; Mechoulam, R; Guaza, C
2012-01-01
Cannabidiol (CBD) is the most abundant cannabinoid in Cannabis sativa that has no psychoactive properties. CBD has been approved to treat inflammation, pain and spasticity associated with multiple sclerosis (MS), of which demyelination and oligodendrocyte loss are hallmarks. Thus, we investigated the protective effects of CBD against the damage to oligodendrocyte progenitor cells (OPCs) mediated by the immune system. Doses of 1 μM CBD protect OPCs from oxidative stress by decreasing the production of reactive oxygen species. CBD also protects OPCs from apoptosis induced by LPS/IFNγ through the decrease of caspase 3 induction via mechanisms that do not involve CB1, CB2, TRPV1 or PPARγ receptors. Tunicamycin-induced OPC death was attenuated by CBD, suggesting a role of endoplasmic reticulum (ER) stress in the mode of action of CBD. This protection against ER stress-induced apoptosis was associated with reduced phosphorylation of eiF2α, one of the initiators of the ER stress pathway. Indeed, CBD diminished the phosphorylation of PKR and eiF2α induced by LPS/IFNγ. The pro-survival effects of CBD in OPCs were accompanied by decreases in the expression of ER apoptotic effectors (CHOP, Bax and caspase 12), and increased expression of the anti-apoptotic Bcl-2. These findings suggest that attenuation of the ER stress pathway is involved in the ‘oligoprotective' effects of CBD during inflammation. PMID:22739983
Zuardi, Antonio Waldo; Crippa, Jose Alexandre S; Hallak, Jaime E C; Bhattacharyya, Sagnik; Atakan, Zerrin; Martin-Santos, Rocio; McGuire, Philip K; Guimarães, Francisco Silveira
2012-01-01
Δ(9)-tetrahydrocannabinol (Δ(9)-THC) is the main compound of the Cannabis Sativa responsible for most of the effects of the plant. Another major constituent is cannabidiol (CBD), formerly regarded to be devoid of pharmacological activity. However, laboratory rodents and human studies have shown that this cannabinoid is able to prevent psychotic-like symptoms induced by high doses of Δ(9)- THC. Subsequent studies have demonstrated that CBD has antipsychotic effects as observed using animal models and in healthy volunteers. Thus, this article provides a critical review of the research evaluating antipsychotic potential of this cannabinoid. CBD appears to have pharmacological profile similar to that of atypical antipsychotic drugs as seem using behavioral and neurochemical techniques in animal models. Additionally, CBD prevented human experimental psychosis and was effective in open case reports and clinical trials in patients with schizophrenia with a remarkable safety profile. Moreover, fMRI results strongly suggest that the antipsychotic effects of CBD in relation to the psychotomimetic effects of Δ(9)-THC involve the striatum and temporal cortex that have been traditionally associated with psychosis. Although the mechanisms of the antipsychotic properties are still not fully understood, we propose a hypothesis that could have a heuristic value to inspire new studies. These results support the idea that CBD may be a future therapeutic option in psychosis, in general and in schizophrenia, in particular.
Nabissi, Massimo; Morelli, Maria Beatrice; Santoni, Matteo; Santoni, Giorgio
2013-01-01
The aggressive behavior of Glioblastoma multiforme (GBM) is mainly due to high invasiveness and proliferation rate as well as to high resistance to standard chemotherapy. Several chemotherapeutic agents like temozolomide (TMZ), carmustine (BCNU) or doxorubicin (DOXO) have been employed for treatment of GBM, but they display limited efficacy. Therefore, it is important to identify new treatment modalities to improve therapeutic effects and enhance GBM chemosensitivity. Recently, activation of the transient receptor potential vanilloid type 2 (TRPV2) has been found to inhibit human GBM cell proliferation and overcome BCNU resistance of GBM cells. Herein, we evaluated the involvement of cannabidiol (CBD)-induced TRPV2 activation, in the modulation of glioma cell chemosensitivity to TMZ, BCNU and DOXO. We found that CBD increases TRPV2 expression and activity. CBD by triggering TRPV2-dependent Ca(2+) influx increases drug uptake and synergizes with cytotoxic agents to induce apoptosis of glioma cells, whereas no effects were observed in normal human astrocytes. Moreover, as the pore region of transient receptor potential (TRP) channels is critical for ion channel permeation, we demonstrated that deletion of TRPV2 poredomain inhibits CBD-induced Ca(2+) influx, drug uptake and cytotoxic effects. Overall, we demonstrated that co-administration of cytotoxic agents together with the TRPV2 agonist CBD increases drug uptake and parallelly potentiates cytotoxic activity in human glioma cells.
Rosenberg, Evan C; Louik, Jay; Conway, Erin; Devinsky, Orrin; Friedman, Daniel
2017-08-01
Recent clinical trials indicate that cannabidiol (CBD) may reduce seizure frequency in pediatric patients with certain forms of treatment-resistant epilepsy. Many of these patients experience significant impairments in quality of life (QOL) in physical, mental, and social dimensions of health. In this study, we measured the caregiver-reported Quality of Life in Childhood Epilepsy (QOLCE) in a subset of patients enrolled in a prospective, open-label clinical study of CBD. Results from caregivers of 48 patients indicated an 8.2 ± 9.9-point improvement in overall patient QOLCE (p < 0.001) following 12 weeks of CBD. Subscores with improvement included energy/fatigue, memory, control/helplessness, other cognitive functions, social interactions, behavior, and global QOL. These differences were not correlated to changes in seizure frequency or adverse events. The results suggest that CBD may have beneficial effects on patient QOL, distinct from its seizure-reducing effects; however, further studies in placebo-controlled, double-blind trials are necessary to confirm this finding. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Antitumor effects of cannabidiol, a nonpsychoactive cannabinoid, on human glioma cell lines.
Massi, Paola; Vaccani, Angelo; Ceruti, Stefania; Colombo, Arianna; Abbracchio, Maria P; Parolaro, Daniela
2004-03-01
Recently, cannabinoids (CBs) have been shown to possess antitumor properties. Because the psychoactivity of cannabinoid compounds limits their medicinal usage, we undertook the present study to evaluate the in vitro antiproliferative ability of cannabidiol (CBD), a nonpsychoactive cannabinoid compound, on U87 and U373 human glioma cell lines. The addition of CBD to the culture medium led to a dramatic drop of mitochondrial oxidative metabolism [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide test] and viability in glioma cells, in a concentration-dependent manner that was already evident 24 h after CBD exposure, with an apparent IC(50) of 25 microM. The antiproliferative effect of CBD was partially prevented by the CB2 receptor antagonist N-[(1S)-endo-1,3,3-trimethylbicyclo[2,2,1]heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528; SR2) and alpha-tocopherol. By contrast, the CB1 cannabinoid receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR141716; SR1), capsazepine (vanilloid receptor antagonist), the inhibitors of ceramide generation, or pertussis toxin did not counteract CBD effects. We also show, for the first time, that the antiproliferative effect of CBD was correlated to induction of apoptosis, as determined by cytofluorimetric analysis and single-strand DNA staining, which was not reverted by cannabinoid antagonists. Finally, CBD, administered s.c. to nude mice at the dose of 0.5 mg/mouse, significantly inhibited the growth of subcutaneously implanted U87 human glioma cells. In conclusion, the nonpsychoactive CBD was able to produce a significant antitumor activity both in vitro and in vivo, thus suggesting a possible application of CBD as an antineoplastic agent.
Distinct Neurobehavioural Effects of Cannabidiol in Transmembrane Domain Neuregulin 1 Mutant Mice
Long, Leonora E.; Chesworth, Rose; Huang, Xu-Feng; Wong, Alexander; Spiro, Adena; McGregor, Iain S.; Arnold, Jonathon C.; Karl, Tim
2012-01-01
The cannabis constituent cannabidiol (CBD) possesses anxiolytic and antipsychotic properties. We have previously shown that transmembrane domain neuregulin 1 mutant (Nrg1 TM HET) mice display altered neurobehavioural responses to the main psychoactive constituent of cannabis, Δ9-tetrahydrocannabinol. Here we investigated whether Nrg1 TM HET mice respond differently to CBD and whether CBD reverses schizophrenia-related phenotypes expressed by these mice. Adult male Nrg1 TM HET and wild type-like littermates (WT) received vehicle or CBD (1, 50 or 100 mg/kg i.p.) for 21 days. During treatment and 48 h after withdrawal we measured behaviour, whole blood CBD concentrations and autoradiographic receptor binding. Nrg1 HET mice displayed locomotor hyperactivity, PPI deficits and reduced 5-HT2A receptor binding density in the substantia nigra, but these phenotypes were not reversed by CBD. However, long-term CBD (50 and 100 mg/kg) selectively enhanced social interaction in Nrg1 TM HET mice. Furthermore, acute CBD (100 mg/kg) selectively increased PPI in Nrg1 TM HET mice, although tolerance to this effect was manifest upon repeated CBD administration. Long-term CBD (50 mg/kg) also selectively increased GABAA receptor binding in the granular retrosplenial cortex in Nrg1 TM HET mice and reduced 5-HT2A binding in the substantia nigra in WT mice. Nrg1 appears necessary for CBD-induced anxiolysis since only WT mice developed decreased anxiety-related behaviour with repeated CBD treatment. Altered pharmacokinetics in mutant mice could not explain our findings since no genotype differences existed in CBD blood concentrations. Here we demonstrate that Nrg1 modulates acute and long-term neurobehavioural effects of CBD, which does not reverse the schizophrenia-relevant phenotypes. PMID:22509273
Distinct neurobehavioural effects of cannabidiol in transmembrane domain neuregulin 1 mutant mice.
Long, Leonora E; Chesworth, Rose; Huang, Xu-Feng; Wong, Alexander; Spiro, Adena; McGregor, Iain S; Arnold, Jonathon C; Karl, Tim
2012-01-01
The cannabis constituent cannabidiol (CBD) possesses anxiolytic and antipsychotic properties. We have previously shown that transmembrane domain neuregulin 1 mutant (Nrg1 TM HET) mice display altered neurobehavioural responses to the main psychoactive constituent of cannabis, Δ(9)-tetrahydrocannabinol. Here we investigated whether Nrg1 TM HET mice respond differently to CBD and whether CBD reverses schizophrenia-related phenotypes expressed by these mice. Adult male Nrg1 TM HET and wild type-like littermates (WT) received vehicle or CBD (1, 50 or 100 mg/kg i.p.) for 21 days. During treatment and 48 h after withdrawal we measured behaviour, whole blood CBD concentrations and autoradiographic receptor binding. Nrg1 HET mice displayed locomotor hyperactivity, PPI deficits and reduced 5-HT(2A) receptor binding density in the substantia nigra, but these phenotypes were not reversed by CBD. However, long-term CBD (50 and 100 mg/kg) selectively enhanced social interaction in Nrg1 TM HET mice. Furthermore, acute CBD (100 mg/kg) selectively increased PPI in Nrg1 TM HET mice, although tolerance to this effect was manifest upon repeated CBD administration. Long-term CBD (50 mg/kg) also selectively increased GABA(A) receptor binding in the granular retrosplenial cortex in Nrg1 TM HET mice and reduced 5-HT(2A) binding in the substantia nigra in WT mice. Nrg1 appears necessary for CBD-induced anxiolysis since only WT mice developed decreased anxiety-related behaviour with repeated CBD treatment. Altered pharmacokinetics in mutant mice could not explain our findings since no genotype differences existed in CBD blood concentrations. Here we demonstrate that Nrg1 modulates acute and long-term neurobehavioural effects of CBD, which does not reverse the schizophrenia-relevant phenotypes.
Napimoga, Marcelo H; Benatti, Bruno B; Lima, Flavia O; Alves, Polyanna M; Campos, Alline C; Pena-Dos-Santos, Diego R; Severino, Fernando P; Cunha, Fernando Q; Guimarães, Francisco S
2009-02-01
Cannabidiol (CBD) is a cannabinoid component from Cannabis sativa that does not induce psychotomimetic effects and possess anti-inflammatory properties. In the present study we tested the effects of CBD in a periodontitis experimental model in rats. We also investigated possible mechanisms underlying these effects. Periodontal disease was induced by a ligature placed around the mandible first molars of each animal. Male Wistar rats were divided into 3 groups: control animals; ligature-induced animals treated with vehicle and ligature-induced animals treated with CBD (5 mg/kg, daily). Thirty days after the induction of periodontal disease the animals were sacrificed and mandibles and gingival tissues removed for further analysis. Morphometrical analysis of alveolar bone loss demonstrated that CBD-treated animals presented a decreased alveolar bone loss and a lower expression of the activator of nuclear factor-kappaB ligand RANKL/RANK. Moreover, gingival tissues from the CBD-treated group showed decreased neutrophil migration (MPO assay) associated with lower interleukin (IL)-1beta and tumor necrosis factor (TNF)-alpha production. These results indicate that CBD may be useful to control bone resorption during progression of experimental periodontitis in rats.
Navarrete, Francisco; Aracil-Fernández, Auxiliadora; Manzanares, Jorge
2018-07-01
Cannabidiol (CBD) represents a promising therapeutic tool for treating cannabis use disorder (CUD). This study aimed to evaluate the effects of CBD on the behavioural and gene expression alterations induced by spontaneous cannabinoid withdrawal. Spontaneous cannabinoid withdrawal was evaluated 12 h after cessation of CP-55,940 treatment (0.5 mg·kg -1 every 12 h, i.p.; 7 days) in C57BL/6J mice. The effects of CBD (5, 10 and 20 mg·kg -1 , i.p.) on withdrawal-related behavioural signs were evaluated by measuring motor activity, somatic signs and anxiety-like behaviour. Furthermore, gene expression changes in TH in the ventral tegmental area, and in the opioid μ receptor (Oprm1), cannabinoid CB 1 receptor (Cnr1) and CB 2 receptor (Cnr2) in the nucleus accumbens, were also evaluated using the real-time PCR technique. The administration of CBD significantly blocked the increase in motor activity and the increased number of rearings, rubbings and jumpings associated with cannabinoid withdrawal, and it normalized the decrease in the number of groomings. However, CBD did not change somatic signs in vehicle-treated animals. In addition, the anxiogenic-like effect observed in abstinent mice disappeared with CBD administration, whereas CBD induced an anxiolytic-like effect in non-abstinent animals. Moreover, CBD normalized gene expression changes induced by CP-55,940-mediated spontaneous withdrawal. The results suggest that CBD alleviates spontaneous cannabinoid withdrawal and normalizes associated gene expression changes. Future studies are needed to determine the relevance of CBD as a potential therapeutic tool for treating CUD. © 2018 The British Pharmacological Society.
Cannabidiol inhibits lung cancer cell invasion and metastasis via intercellular adhesion molecule-1.
Ramer, Robert; Bublitz, Katharina; Freimuth, Nadine; Merkord, Jutta; Rohde, Helga; Haustein, Maria; Borchert, Philipp; Schmuhl, Ellen; Linnebacher, Michael; Hinz, Burkhard
2012-04-01
Cannabinoids inhibit cancer cell invasion via increasing tissue inhibitor of matrix metalloproteinases-1 (TIMP-1). This study investigates the role of intercellular adhesion molecule-1 (ICAM-1) within this action. In the lung cancer cell lines A549, H358, and H460, cannabidiol (CBD; 0.001-3 μM) elicited concentration-dependent ICAM-1 up-regulation compared to vehicle via cannabinoid receptors, transient receptor potential vanilloid 1, and p42/44 mitogen-activated protein kinase. Up-regulation of ICAM-1 mRNA by CBD in A549 was 4-fold at 3 μM, with significant effects already evident at 0.01 μM. ICAM-1 induction became significant after 2 h, whereas significant TIMP-1 mRNA increases were observed only after 48 h. Inhibition of ICAM-1 by antibody or siRNA approaches reversed the anti-invasive and TIMP-1-upregulating action of CBD and the likewise ICAM-1-inducing cannabinoids Δ(9)-tetrahydrocannabinol and R(+)-methanandamide when compared to isotype or nonsilencing siRNA controls. ICAM-1-dependent anti-invasive cannabinoid effects were confirmed in primary tumor cells from a lung cancer patient. In athymic nude mice, CBD elicited a 2.6- and 3.0-fold increase of ICAM-1 and TIMP-1 protein in A549 xenografts, as compared to vehicle-treated animals, and an antimetastatic effect that was fully reversed by a neutralizing antibody against ICAM-1 [% metastatic lung nodules vs. isotype control (100%): 47.7% for CBD + isotype antibody and 106.6% for CBD + ICAM-1 antibody]. Overall, our data indicate that cannabinoids induce ICAM-1, thereby conferring TIMP-1 induction and subsequent decreased cancer cell invasiveness.
McGuire, Philip; Robson, Philip; Cubala, Wieslaw Jerzy; Vasile, Daniel; Morrison, Paul Dugald; Barron, Rachel; Taylor, Adam; Wright, Stephen
2018-03-01
Research in both animals and humans indicates that cannabidiol (CBD) has antipsychotic properties. The authors assessed the safety and effectiveness of CBD in patients with schizophrenia. In an exploratory double-blind parallel-group trial, patients with schizophrenia were randomized in a 1:1 ratio to receive CBD (1000 mg/day; N=43) or placebo (N=45) alongside their existing antipsychotic medication. Participants were assessed before and after treatment using the Positive and Negative Syndrome Scale (PANSS), the Brief Assessment of Cognition in Schizophrenia (BACS), the Global Assessment of Functioning scale (GAF), and the improvement and severity scales of the Clinical Global Impressions Scale (CGI-I and CGI-S). After 6 weeks of treatment, compared with the placebo group, the CBD group had lower levels of positive psychotic symptoms (PANSS: treatment difference=-1.4, 95% CI=-2.5, -0.2) and were more likely to have been rated as improved (CGI-I: treatment difference=-0.5, 95% CI=-0.8, -0.1) and as not severely unwell (CGI-S: treatment difference=-0.3, 95% CI=-0.5, 0.0) by the treating clinician. Patients who received CBD also showed greater improvements that fell short of statistical significance in cognitive performance (BACS: treatment difference=1.31, 95% CI=-0.10, 2.72) and in overall functioning (GAF: treatment difference=3.0, 95% CI=-0.4, 6.4). CBD was well tolerated, and rates of adverse events were similar between the CBD and placebo groups. These findings suggest that CBD has beneficial effects in patients with schizophrenia. As CBD's effects do not appear to depend on dopamine receptor antagonism, this agent may represent a new class of treatment for the disorder.
Lee, Wen-Shin; Erdelyi, Katalin; Matyas, Csaba; Mukhopadhyay, Partha; Varga, Zoltan V; Liaudet, Lucas; Haskó, György; Čiháková, Daniela; Mechoulam, Raphael; Pacher, Pal
2016-01-08
Myocarditis is a major cause of heart failure and sudden cardiac death in young adults and adolescents. Many cases of myocarditis are associated with autoimmune processes in which cardiac myosin is a major autoantigen. Conventional immunosuppressive therapies often provide unsatisfactory results and are associated with adverse toxicities during the treatment of autoimmune myocarditis. Cannabidiol (CBD) is a non-psychoactive constituent of Marijuana which exerts antiinflammatory effects independent from classical cannabinoid receptors. Recently 80 clinical trials have been reported investigating the effects of CBD in various diseases from inflammatory bowel disease to graft-versus-host disease. CBD-based formulations are used for the management of multiple sclerosis in numerous countries, and CBD also received FDA approval for the treatment of refractory childhood epilepsy and glioblastoma multiforme. Herein, using a well-established mouse model of experimental autoimmune myocarditis (EAM) induced by immunization with cardiac myosin emmulsified in adjuvant resulting in T cell-mediated inflammation, cardiomyocyte cell death, fibrosis and myocardial dysfunction, we studied the potential beneficial effects of CBD. EAM was characterized by marked myocardial T cell-infiltration, profound inflammatory response, fibrosis (measured by qRT-PCR, histology and immunohistochemistry analyses) accompanied by marked attenuation of both systolic and diastolic cardiac functions measured with pressure-volume conductance catheter technique. Chronic treatment with CBD largely attenuated the CD3+ and CD4+ mediated inflammatory response and injury, myocardial fibrosis and cardiac dysfunction in mice. CBD may represent a promising novel treatment for management of autoimmune myocarditis and possibly other autoimmune disorders, and organ transplantation.
A systematic review of the effect of cannabidiol on cognitive function: Relevance to schizophrenia.
Osborne, Ashleigh L; Solowij, Nadia; Weston-Green, Katrina
2017-01-01
Cognitive impairment is a core symptom domain of schizophrenia, neurological disorders and substance abuse. It is characterised by deficits in learning, memory, attention and executive functioning and can severely impact daily living. Antipsychotic drugs prescribed to treat schizophrenia provide limited cognitive benefits and novel therapeutic targets are required. Cannabidiol (CBD), a component of the cannabis plant, has anti-inflammatory and antipsychotic-like properties; however, its ability to improve cognitive impairment has not been thoroughly explored. The aim of this systematic review was to evaluate preclinical and clinical literature on the effects of CBD in cognitive domains relevant to schizophrenia. A systematic literature search was performed across numerous electronic databases for English language articles (January 1990-March 2016), with 27 articles (18 preclinical and 9 clinical studies) included in the present review. CBD improves cognition in multiple preclinical models of cognitive impairment, including models of neuropsychiatric (schizophrenia), neurodegenerative (Alzheimer's disease), neuro-inflammatory (meningitis, sepsis and cerebral malaria) and neurological disorders (hepatic encephalopathy and brain ischemia). To date, there is one clinical investigation into the effects of CBD on cognition in schizophrenia patients, with negative results for the Stroop test. CBD attenuates Δ 9 -THC-induced cognitive deficits. The efficacy of CBD to improve cognition in schizophrenia cannot be elucidated due to lack of clinical evidence; however, given the ability of CBD to restore cognition in multiple studies of impairment, further investigation into its efficacy in schizophrenia is warranted. Potential mechanisms underlying the efficacy of CBD to improve cognition are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, H.-Y.; Chu, R.-M.; Wang, C.-C.
2008-02-01
We recently reported that cannabidiol (CBD) exhibited a generalized suppressive effect on T-cell functional activities in splenocytes directly exposed to CBD in vitro or isolated from CBD-administered mice. To investigate the potential mechanisms of CBD effects on T cells, we characterized the pro-apoptotic effect of CBD on primary lymphocytes. The apoptosis of splenocytes was markedly enhanced following CBD exposure in a time- and concentration-dependent manner, as evidenced by nuclear hypodiploidity and DNA strand breaks. Exposure of splenocytes to CBD elicited an early production of reactive oxygen species (ROS) with the peak response at 1 h post CBD treatment. In parallelmore » with the ROS production, a gradual diminishment in the cellular glutathione (GSH) content was detected in CBD-treated splenocytes. Both CBD-mediated ROS production and GSH diminishment were remarkably attenuated by the presence of N-acetyl-L-cysteine (NAC), a thiol antioxidant. In addition, CBD treatment significantly stimulated the activation of caspase-8, which was abrogated in the presence of NAC or GSH. Pretreatment of splenocytes with a cell-permeable inhibitor for caspase-8 significantly attenuated, in a concentration-dependent manner, CBD-mediated apoptosis, but not ROS production. Collectively, the present study demonstrated that the apoptotic effect of CBD in primary lymphocytes is closely associated with oxidative stress-dependent activation of caspase-8.« less
Malone, Daniel Thomas; Jongejan, Dennis; Taylor, David Alan
2009-08-01
While Delta(9)-tetrahydrocannabinol (THC) is the main psychoactive constituent of the cannabis plant, a non-psychoactive constituent is cannabidiol (CBD). CBD has been implicated as a potential treatment of a number of disorders including schizophrenia and epilepsy and has been included with THC in a 1:1 combination for the treatment of conditions such as neuropathic pain. This study investigated the effect of THC and CBD, alone or in combination, on some objective behaviours of rats in the open field. Pairs of rats were injected with CBD or vehicle followed by THC or vehicle and behaviour in the open field was assessed for 10 min. In vehicle pretreated rats THC (1 mg/kg) significantly reduced social interaction between rat pairs. Treatment with CBD had no significant effect alone, but pretreatment with CBD (20 mg/kg) reversed the THC-induced decreases in social interaction. A higher dose of THC (10 mg/kg) produced no significant effect on social interaction. However, the combination of high dose CBD and high dose THC significantly reduced social interaction between rat pairs, as well as producing a significant decrease in locomotor activity. This data suggests that CBD can reverse social withdrawal induced by low dose THC, but the combination of high dose THC and CBD impairs social interaction, possibly by decreasing locomotor activity.
Levin, Raquel; Almeida, Valeria; Peres, Fernanda Fiel; Calzavara, Mariana Bendlin; da Silva, Neide Derci; Suiama, Mayra Akimi; Niigaki, Suzy Tamie; Zuardi, Antonio Waldo; Hallak, Jaime Eduardo Cecilio; Crippa, Jose Alexandre; Abílio, Vanessa Costhek
2012-01-01
Clinical and neurobiological findings suggest that cannabinoids and their receptors are implicated in schizophrenia. Cannabidiol (CBD), a non-psychotomimetic compound of the Cannabis sativa plant, has been reported to have central therapeutic actions, such as antipsychotic and anxiolytic effects. We have recently reported that spontaneously hypertensive rats (SHR) present a deficit in contextual fear conditioning (CFC) that is specifically ameliorated by antipsychotics and aggravated by proschizophrenia manipulations. These results led us to suggest that the CFC deficit presented by SHR could be used as a model to study emotional processing impairment in schizophrenia. The aim of this study is to evaluate the effects of CBD and rimonabant (CB1 receptor antagonist) on the contextual fear conditioning in SHR and Wistar rats (WR). Rats were submitted to CFC task after treatment with different doses of CBD (experiment 1) and rimonabant (experiment 2). In experiment 1, SHR showed a decreased freezing response when compared to WR that was attenuated by 1 mg/kg CBD. Moreover, all CBD-treated WR presented a decreased freezing response when compared to control rats. In experiment 2, SHR showed a decreased freezing response when compared to WR that was attenuated by 3 mg/kg rimonabant. Our results suggest a potential therapeutical effect of CBD and rimonabant to treat the emotional processing impairment presented in schizophrenia. In addition, our results reinforce the anxiolytic profile of CBD.
Usami, N; Tateoka, Y; Watanabe, K; Yamamoto, I; Yoshimura, H
1995-04-01
Carbon monoxide (CO) was generated in the process of hepatic microsomal oxidative metabolism of cannabidiol (CBD). After the generated CO was reduced to methane (CH4) with a methanizer, CH4 formed was determined by gas chromatography (GC) with a flame ionization detector. After oxidation with hopcalite, CO was also identified as CO2 by gas chromatography/mass spectrometry (GC/MS). The reaction was NADPH-dependent and required molecular oxygen. It was inhibited by addition of some inhibitors of cytochrome P450-dependent monooxygenase. When CBD (191 microM) was incubated with hepatic microsomes of mice in the presence of an NADPH-generating system and oxygen, concentration of CO determined by GC was 4.7 +/- 0.5 ppm/nmol P450 in the incubation atmosphere. Pretreatment with phenobarbital (100 mg/kg, i.p. for 3d) but not 3-methylcholanthrene (80 mg/kg, i.p.) increased the CO formation 78%, while pretreatment with cobaltous chloride (40 mg/kg, i.p. for 3 d) decreased the formation 56%. When CBD was incubated under oxygen-18 gas, molecular oxygen was not incorporated into the CO molecule. 8,9-Dihydro- and 1,2,8,9-tetrahydro-CBDs also produced CO to some extent, whereas CBD monomethyl- and dimethylethers reduced the ability to produce CO. In addition, cannabidivarin and olivetol produced CO, although none of delta 9-tetrahydrocannabinol, cannabinol and d-limonene did. Thus, the resorcinol moiety of CBD is important for CO formation.
Molecular Targets of Cannabidiol in Neurological Disorders.
Ibeas Bih, Clementino; Chen, Tong; Nunn, Alistair V W; Bazelot, Michaël; Dallas, Mark; Whalley, Benjamin J
2015-10-01
Cannabis has a long history of anecdotal medicinal use and limited licensed medicinal use. Until recently, alleged clinical effects from anecdotal reports and the use of licensed cannabinoid medicines are most likely mediated by tetrahydrocannabinol by virtue of: 1) this cannabinoid being present in the most significant quantities in these preparations; and b) the proportion:potency relationship between tetrahydrocannabinol and other plant cannabinoids derived from cannabis. However, there has recently been considerable interest in the therapeutic potential for the plant cannabinoid, cannabidiol (CBD), in neurological disorders but the current evidence suggests that CBD does not directly interact with the endocannabinoid system except in vitro at supraphysiological concentrations. Thus, as further evidence for CBD's beneficial effects in neurological disease emerges, there remains an urgent need to establish the molecular targets through which it exerts its therapeutic effects. Here, we conducted a systematic search of the extant literature for original articles describing the molecular pharmacology of CBD. We critically appraised the results for the validity of the molecular targets proposed. Thereafter, we considered whether the molecular targets of CBD identified hold therapeutic potential in relevant neurological diseases. The molecular targets identified include numerous classical ion channels, receptors, transporters, and enzymes. Some CBD effects at these targets in in vitro assays only manifest at high concentrations, which may be difficult to achieve in vivo, particularly given CBD's relatively poor bioavailability. Moreover, several targets were asserted through experimental designs that demonstrate only correlation with a given target rather than a causal proof. When the molecular targets of CBD that were physiologically plausible were considered for their potential for exploitation in neurological therapeutics, the results were variable. In some cases
Palazzoli, Federica; Citti, Cinzia; Licata, Manuela; Vilella, Antonietta; Manca, Letizia; Zoli, Michele; Vandelli, Maria Angela; Forni, Flavio; Cannazza, Giuseppe
2018-02-20
The investigation of the possible conversion of cannabidiol (CBD) into Δ 9 -tetrahydrocannabinol (THC) in vivo after oral administration of CBD is reported herein since recent publications suggested a rapid conversion in simulated gastric fluid. To this end, single high dose of CBD (50mg/kg) was administered orally to rats and their blood was collected after 3 and 6h. A highly sensitive and selective LC-MS/MS method was developed and fully validated in compliance with the Scientific Working Group of Forensic Toxicology (SWGTOX) standard practices for method validation in forensic toxicology. This method also involved the optimization of cannabinoids and their metabolites extraction in order to remove co-eluting phospholipids and increase the sensitivity of the MS detection. Neither THC nor its metabolites were detected in rat whole blood after 3 or 6h from CBD administration. After oral administration, the amount of CBD dissolved in olive oil was higher than that absorbed from an ethanolic solution. This could be explained by the protection of lipid excipients towards CBD from acidic gastric juice. Copyright © 2017 Elsevier B.V. All rights reserved.
Rimmerman, Neta; Juknat, Ana; Kozela, Ewa; Levy, Rivka; Bradshaw, Heather B; Vogel, Zvi
2011-08-01
Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that is clinically used in a 1:1 mixture with the psychoactive cannabinoid Δ(9)-tetrahydrocannabinol (THC) for the treatment of neuropathic pain and spasticity in multiple sclerosis. Our group previously reported that CBD exerts anti-inflammatory effects on microglial cells. In addition, we found that CBD treatment increases the accumulation of the endocannabinoid N-arachidonoyl ethanolamine (AEA), thus enhancing endocannabinoid signaling. Here we proceeded to investigate the effects of CBD on the modulation of lipid-related genes in microglial cells. Cell viability was tested using FACS analysis, AEA levels were measured using LC/MS/MS, gene array analysis was validated with real-time qPCR, and cytokine release was measured using ELISA. We report that CBD significantly upregulated the mRNAs of the enzymes sterol-O-acyl transferase (Soat2), which synthesizes cholesteryl esters, and of sterol 27-hydroxylase (Cyp27a1). In addition, CBD increased the mRNA of the lipid droplet-associated protein, perilipin2 (Plin2). Moreover, we found that pretreatment of the cells with the cholesterol chelating agent, methyl-β-cyclodextrin (MBCD), reversed the CBD-induced increase in Soat2 mRNA but not in Plin2 mRNA. Incubation with AEA increased the level of Plin2, but not of Soat2 mRNA. Furthermore, MBCD treatment did not affect the reduction by CBD of the LPS-induced release of the proinflammatory cytokine IL-1β. CBD treatment modulates cholesterol homeostasis in microglial cells, and pretreatment with MBCD reverses this effect without interfering with CBD's anti-inflammatory effects. The effects of the CBD-induced increase in AEA accumulation on lipid-gene expression are discussed.
Transdermal cannabidiol reduces inflammation and pain-related behaviours in a rat model of arthritis
Hammell, D.C.; Zhang, L.P.; Ma, F.; Abshire, S.M.; McIlwrath, S.L.; Stinchcomb, A.L.; Westlund, K.N.
2015-01-01
Background Current arthritis treatments often have side-effects attributable to active compounds as well as route of administration. Cannabidiol (CBD) attenuates inflammation and pain without side-effects, but CBD is hydrophobic and has poor oral bioavailability. Topical drug application avoids gastrointestinal administration, first pass metabolism, providing more constant plasma levels. Methods This study examined efficacy of transdermal CBD for reduction in inflammation and pain, assessing any adverse effects in a rat complete Freund’s adjuvant-induced monoarthritic knee joint model. CBD gels (0.6, 3.1, 6.2 or 62.3 mg/day) were applied for 4 consecutive days after arthritis induction. Joint circumference and immune cell invasion in histological sections were measured to indicate level of inflammation. Paw withdrawal latency (PWL) in response to noxious heat stimulation determined nociceptive sensitization, and exploratory behaviour ascertained animal’s activity level. Results Measurement of plasma CBD concentration provided by transdermal absorption revealed linearity with 0.6–6.2 mg/day doses. Transdermal CBD gel significantly reduced joint swelling, limb posture scores as a rating of spontaneous pain, immune cell infiltration and thickening of the synovial membrane in a dose-dependent manner. PWL recovered to near baseline level. Immunohistochemical analysis of spinal cord (CGRP, OX42) and dorsal root ganglia (TNFα) revealed dose-dependent reductions of pro-inflammatory biomarkers. Results showed 6.2 and 62 mg/day were effective doses. Exploratory behaviour was not altered by CBD indicating limited effect on higher brain function. Conclusions These data indicate that topical CBD application has therapeutic potential for relief of arthritis pain-related behaviours and inflammation without evident side-effects. PMID:26517407
Manini, Alex F.; Yiannoulos, Georgia; Bergamaschi, Mateus M.; Hernandez, Stephanie; Olmedo, Ruben; Barnes, Allan J.; Winkel, Gary; Sinha, Rajita; Jutras-Aswad, Didier; Huestis, Marilyn A.; Hurd, Yasmin L.
2015-01-01
Objectives Cannabidiol (CBD) is hypothesized as a potential treatment for opioid addiction, with safety studies an important first step for medication development. We determined CBD safety and pharmacokinetics when administered concomitantly with a high-potency opioid in healthy subjects. Methods This double-blind, placebo-controlled cross-over study of CBD co-administered with intravenous fentanyl, was conducted at the Clinical Research Center in Mount Sinai Hospital, a tertiary care medical center in New York City. Participants were healthy volunteers aged 21–65 years with prior opioid exposure, regardless of route. Blood samples were obtained before and after 400 or 800 mg CBD pretreatment, followed by a single 0.5 (Session 1) or 1.0mcg/Kg (Session 2) intravenous fentanyl dose. The primary outcome was the Systematic Assessment for Treatment Emergent Events (SAFTEE) to assess safety and adverse effects. CBD peak plasma concentrations, time to reach peak plasma concentrations (tmax), and area under the curve (AUC) were measured. Results SAFTEE data were similar between groups without respiratory depression or cardiovascular complications during any test session. Following low dose CBD, tmax occurred at 3 and 1.5h (Sessions 1 and 2, respectively). Following high dose CBD, tmax occurred at 3 and 4h in Sessions 1 and 2, respectively. There were no significant differences in plasma CBD or cortisol (AUC p=NS) between sessions. Conclusions CBD does not exacerbate adverse effects associated with intravenous fentanyl administration. Co-administration of CBD and opioids was safe and well tolerated. These data provide the foundation for future studies examining CBD as a potential treatment for opioid abuse. PMID:25748562
Stern, Cristina A J; Gazarini, Lucas; Vanvossen, Ana C; Zuardi, Antonio W; Galve-Roperh, Ismael; Guimaraes, Francisco S; Takahashi, Reinaldo N; Bertoglio, Leandro J
2015-06-01
Δ(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD) are the major constituents of the Cannabis sativa plant, which is frequently consumed by subjects exposed to life-threatening situations to relief their symptomatology. It is still unknown, however, whether THC could also affect the maintenance of an aversive memory formed at that time when taken separately and/or in conjunction with CBD. The present study sought to investigate this matter at a preclinical level. We report that THC (0.3-10mg/kg, i.p.) was able to disrupt the reconsolidation of a contextual fear memory, resulting in reduced conditioned freezing expression for over 22 days. This effect was dependent on activation of cannabinoid type-1 receptors located in prelimbic subregion of the medial prefrontal cortex and on memory retrieval/reactivation. Since CBD may counteract the negative psychotropic effects induced by THC and has been shown to be a reconsolidation blocker, we then investigated and demonstrated that associating sub-effective doses of these two compounds was equally effective in attenuating fear memory maintenance in an additive fashion and in a dose ratio of 10 to 1, which contrasts with that commonly found in C. sativa recreational samples. Of note, neither THC alone nor CBD plus THC interfered with anxiety-related behaviors and locomotor activity, as assessed in the elevated plus-maze test, at a time point coinciding with that used to evaluate their effects on memory reconsolidation. Altogether, present findings suggest a potential therapeutic value of using THC and/or CBD to mitigate a dysfunctional aversive memory through reconsolidation disruption in post-traumatic stress disorder patients. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.
Norris, Christopher; Loureiro, Michael; Kramar, Cecilia; Zunder, Jordan; Renard, Justine; Rushlow, Walter; Laviolette, Steven R
2016-01-01
Emerging evidence suggests that the largest phytochemical component of cannabis, cannabidiol (CBD), may possess pharmacotherapeutic properties in the treatment of neuropsychiatric disorders. CBD has been reported to functionally interact with both the mesolimbic dopamine (DA) and serotonergic (5-HT) receptor systems. However, the underlying mechanisms by which CBD may modulate emotional processing are not currently understood. Using a combination of in vivo electrophysiological recording and fear conditioning in rats, the present study aimed to characterize the behavioral, neuroanatomical, and pharmacological effects of CBD within the mesolimbic pathway, and its possible functional interactions with 5-HT and DAergic transmission. Using targeted microinfusions of CBD into the shell region of the mesolimbic nucleus accumbens (NASh), we report that intra-NASh CBD potently blocks the formation of conditioned freezing behaviors. These effects were challenged with DAergic, cannabinoid CB1 receptor, and serotonergic (5-HT1A) transmission blockade, but only 5-HT1A blockade restored associative conditioned freezing behaviors. In vivo intra-ventral tegmental area (VTA) electrophysiological recordings revealed that behaviorally effective doses of intra-NASh CBD elicited a predominant decrease in spontaneous DAergic neuronal frequency and bursting activity. These neuronal effects were reversed by simultaneous blockade of 5-HT1A receptor transmission. Finally, using a functional contralateral disconnection procedure, we demonstrated that the ability of intra-NASh CBD to block the formation of conditioned freezing behaviors was dependent on intra-VTA GABAergic transmission substrates. Our findings demonstrate a novel NAc→VTA circuit responsible for the behavioral and neuronal effects of CBD within the mesolimbic system via functional interactions with serotonergic 5-HT1A receptor signaling. PMID:27296152
Prolonged Cannabidiol Treatment Effects on Hippocampal Subfield Volumes in Current Cannabis Users.
Beale, Camilla; Broyd, Samantha J; Chye, Yann; Suo, Chao; Schira, Mark; Galettis, Peter; Martin, Jennifer H; Yücel, Murat; Solowij, Nadia
2018-01-01
Introduction: Chronic cannabis use is associated with neuroanatomical alterations in the hippocampus. While adverse impacts of cannabis use are generally attributed to Δ 9 -tetrahydrocannabinol, emerging naturalistic evidence suggests cannabidiol (CBD) is neuroprotective and may ameliorate brain harms associated with cannabis use, including protection from hippocampal volume loss. This study examined whether prolonged administration of CBD to regular cannabis users within the community could reverse or reduce the characteristic hippocampal harms associated with chronic cannabis use. Materials and Methods: Eighteen regular cannabis users participated in an ∼10-week open-label pragmatic trial involving daily oral administration of 200 mg CBD, with no change to their ongoing cannabis use requested. Participants were assessed at baseline and post-CBD treatment using structural magnetic resonance imaging. Automated longitudinal hippocampal segmentation was performed to assess volumetric change over the whole hippocampus and within 12 subfields. Results: No change was observed in left or right hippocampus as a whole. However, left subicular complex (parasubiculum, presubiculum, and subiculum) volume significantly increased from baseline to post-treatment ( p =0.017 uncorrected) by 1.58% (Cohen's d =0.63; 2.83% in parasubiculum). Heavy cannabis users demonstrated marked growth in the left subicular complex, predominantly within the presubiculum, and right cornu ammonis (CA)1 compared to lighter users. Associations between greater right subicular complex and total hippocampal volume and higher plasma CBD concentration were evident, particularly in heavy users. Conclusions: Our findings suggest a restorative effect of CBD on the subicular and CA1 subfields in current cannabis users, especially those with greater lifetime exposure to cannabis. While replication is required in a larger, placebo-controlled trial, these findings support a protective role of CBD against
Prolonged Cannabidiol Treatment Effects on Hippocampal Subfield Volumes in Current Cannabis Users
Beale, Camilla; Broyd, Samantha J.; Chye, Yann; Suo, Chao; Schira, Mark; Galettis, Peter; Martin, Jennifer H.; Yücel, Murat; Solowij, Nadia
2018-01-01
Abstract Introduction: Chronic cannabis use is associated with neuroanatomical alterations in the hippocampus. While adverse impacts of cannabis use are generally attributed to Δ9-tetrahydrocannabinol, emerging naturalistic evidence suggests cannabidiol (CBD) is neuroprotective and may ameliorate brain harms associated with cannabis use, including protection from hippocampal volume loss. This study examined whether prolonged administration of CBD to regular cannabis users within the community could reverse or reduce the characteristic hippocampal harms associated with chronic cannabis use. Materials and Methods: Eighteen regular cannabis users participated in an ∼10-week open-label pragmatic trial involving daily oral administration of 200 mg CBD, with no change to their ongoing cannabis use requested. Participants were assessed at baseline and post-CBD treatment using structural magnetic resonance imaging. Automated longitudinal hippocampal segmentation was performed to assess volumetric change over the whole hippocampus and within 12 subfields. Results: No change was observed in left or right hippocampus as a whole. However, left subicular complex (parasubiculum, presubiculum, and subiculum) volume significantly increased from baseline to post-treatment (p=0.017 uncorrected) by 1.58% (Cohen's d=0.63; 2.83% in parasubiculum). Heavy cannabis users demonstrated marked growth in the left subicular complex, predominantly within the presubiculum, and right cornu ammonis (CA)1 compared to lighter users. Associations between greater right subicular complex and total hippocampal volume and higher plasma CBD concentration were evident, particularly in heavy users. Conclusions: Our findings suggest a restorative effect of CBD on the subicular and CA1 subfields in current cannabis users, especially those with greater lifetime exposure to cannabis. While replication is required in a larger, placebo-controlled trial, these findings support a protective role of CBD against
Devinsky, Orrin; Cilio, Maria Roberta; Cross, Helen; Fernandez-Ruiz, Javier; French, Jacqueline; Hill, Charlotte; Katz, Russell; Di Marzo, Vincenzo; Jutras-Aswad, Didier; Notcutt, William George; Martinez-Orgado, Jose; Robson, Philip J; Rohrback, Brian G; Thiele, Elizabeth; Whalley, Benjamin; Friedman, Daniel
2014-06-01
To present a summary of current scientific evidence about the cannabinoid, cannabidiol (CBD) with regard to its relevance to epilepsy and other selected neuropsychiatric disorders. We summarize the presentations from a conference in which invited participants reviewed relevant aspects of the physiology, mechanisms of action, pharmacology, and data from studies with animal models and human subjects. Cannabis has been used to treat disease since ancient times. Δ(9) -Tetrahydrocannabinol (Δ(9) -THC) is the major psychoactive ingredient and CBD is the major nonpsychoactive ingredient in cannabis. Cannabis and Δ(9) -THC are anticonvulsant in most animal models but can be proconvulsant in some healthy animals. The psychotropic effects of Δ(9) -THC limit tolerability. CBD is anticonvulsant in many acute animal models, but there are limited data in chronic models. The antiepileptic mechanisms of CBD are not known, but may include effects on the equilibrative nucleoside transporter; the orphan G-protein-coupled receptor GPR55; the transient receptor potential of vanilloid type-1 channel; the 5-HT1a receptor; and the α3 and α1 glycine receptors. CBD has neuroprotective and antiinflammatory effects, and it appears to be well tolerated in humans, but small and methodologically limited studies of CBD in human epilepsy have been inconclusive. More recent anecdotal reports of high-ratio CBD:Δ(9) -THC medical marijuana have claimed efficacy, but studies were not controlled. CBD bears investigation in epilepsy and other neuropsychiatric disorders, including anxiety, schizophrenia, addiction, and neonatal hypoxic-ischemic encephalopathy. However, we lack data from well-powered double-blind randomized, controlled studies on the efficacy of pure CBD for any disorder. Initial dose-tolerability and double-blind randomized, controlled studies focusing on target intractable epilepsy populations such as patients with Dravet and Lennox-Gastaut syndromes are being planned. Trials in
Lee, Wen-Shin; Erdelyi, Katalin; Matyas, Csaba; Mukhopadhyay, Partha; Varga, Zoltan V; Liaudet, Lucas; Hask’, György; ’iháková, Daniela; Mechoulam, Raphael; Pacher, Pal
2016-01-01
Myocarditis is a major cause of heart failure and sudden cardiac death in young adults and adolescents. Many cases of myocarditis are associated with autoimmune processes in which cardiac myosin is a major autoantigen. Conventional immunosuppressive therapies often provide unsatisfactory results and are associated with adverse toxicities during the treatment of autoimmune myocarditis. Cannabidiol (CBD) is a nonpsychoactive constituent of marijuana that exerts antiinflammatory effects independent of classical cannabinoid receptors. Recently, 80 clinical trials have investigated the effects of CBD in various diseases from inflammatory bowel disease to graft versus host disease. CBD-based formulations are used for the management of multiple sclerosis in numerous countries, and CBD also received U.S. Food and Drug Administration approval for the treatment of refractory childhood epilepsy and glioblastoma multiforme. Herein, using a well-established mouse model of experimental autoimmune myocarditis (EAM) induced by immunization with cardiac myosin emmulsified in adjuvant resulting in T cell–mediated inflammation, cardiomyocyte cell death, fibrosis and myocardial dysfunction, we studied the potential beneficial effects of CBD. EAM was characterized by marked myocardial T-cell infiltration, profound inflammatory response and fibrosis (measured by quantitative real-time polymerase chain reaction, histology and immunohistochemistry analyses) accompanied by marked attenuation of both systolic and diastolic cardiac functions measured with a pressure-volume conductance catheter technique. Chronic treatment with CBD largely attenuated the CD3+ and CD4+ T cell–mediated inflammatory response and injury, myocardial fibrosis and cardiac dysfunction in mice. In conclusion, CBD may represent a promising novel treatment for managing autoimmune myocarditis and possibly other autoimmune disorders and organ transplantation. PMID:26772776
Lim, M P; Devi, L A; Rozenfeld, R
2011-01-01
The major cellular event in the development and progression of liver fibrosis is the activation of hepatic stellate cells (HSCs). Activated HSCs proliferate and produce excess collagen, leading to accumulation of scar matrix and fibrotic liver. As such, the induction of activated HSC death has been proposed as a means to achieve resolution of liver fibrosis. Here we demonstrate that cannabidiol (CBD), a major non-psychoactive component of the plant Cannabis sativa, induces apoptosis in activated HSCs through a cannabinoid receptor-independent mechanism. CBD elicits an endoplasmic reticulum (ER) stress response, characterized by changes in ER morphology and the initiation of RNA-dependent protein kinase-like ER kinase-, activating transcription factor-6-, and inositol-requiring ER-to-nucleus signal kinase-1 (IRE1)-mediated signaling cascades. Furthermore, CBD induces downstream activation of the pro-apoptotic IRE1/ASK1/c-Jun N-terminal kinase pathway, leading to HSC death. Importantly, we show that this mechanism of CBD-induced ER stress-mediated apoptosis is specific to activated HSCs, as it occurs in activated human and rat HSC lines, and in primary in vivo-activated mouse HSCs, but not in quiescent HSCs or primary hepatocytes from rat. Finally, we provide evidence that the elevated basal level of ER stress in activated HSCs has a role in their susceptibility to the pro-apoptotic effect of CBD. We propose that CBD, by selectively inducing death of activated HSCs, represents a potential therapeutic agent for the treatment of liver fibrosis. PMID:21654828
Malfait, A. M.; Gallily, R.; Sumariwalla, P. F.; Malik, A. S.; Andreakos, E.; Mechoulam, R.; Feldmann, M.
2000-01-01
The therapeutic potential of cannabidiol (CBD), the major nonpsychoactive component of cannabis, was explored in murine collagen-induced arthritis (CIA). CIA was elicited by immunizing DBA/1 mice with type II collagen (CII) in complete Freund's adjuvant. The CII used was either bovine or murine, resulting in classical acute CIA or in chronic relapsing CIA, respectively. CBD was administered after onset of clinical symptoms, and in both models of arthritis the treatment effectively blocked progression of arthritis. CBD was equally effective when administered i.p. or orally. The dose dependency showed a bell-shaped curve, with an optimal effect at 5 mg/kg per day i.p. or 25 mg/kg per day orally. Clinical improvement was associated with protection of the joints against severe damage. Ex vivo, draining lymph node cells from CBD-treated mice showed a diminished CII-specific proliferation and IFN-γ production, as well as a decreased release of tumor necrosis factor by knee synovial cells. In vitro effects of CBD included a dose-dependent suppression of lymphocyte proliferation, both mitogen-stimulated and antigen-specific, and the blockade of the Zymosan-triggered reactive oxygen burst by peritoneal granulocytes. It also was found that CBD administration was capable of blocking the lipopolysaccharide-induced rise in serum tumor necrosis factor in C57/BL mice. Taken together, these data show that CBD, through its combined immunosuppressive and anti-inflammatory actions, has a potent anti-arthritic effect in CIA. PMID:10920191
Marcu, Jahan P.; Christian, Rigel T.; Lau, Darryl; Zielinski, Anne J.; Horowitz, Maxx P.; Lee, Jasmine; Pakdel, Arash; Allison, Juanita; Limbad, Chandani; Moore, Dan H.; Yount, Garret L.; Desprez, Pierre-Yves; McAllister, Sean D.
2009-01-01
The cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor agonist, Δ9-tetrahydrocannabinol (THC), has been shown to be a broad range inhibitor of cancer in culture and in vivo, and is currently being used in a clinical trial for the treatment of glioblastoma. It has been suggested that other plant-derived cannabinoids, which do not interact efficiently with CB1 and CB2 receptors, can modulate the actions of Δ9-THC. However, there are conflicting reports as to what extent other cannabinoids can modulate Δ9-THC activity, and most importantly, it is not clear whether other cannabinoid compounds can either potentiate or inhibit the actions of Δ9-THC. We therefore tested cannabidiol (CBD), the second most abundant plant derived cannabiniod, in combination with Δ9-THC. In U251 and SF126 glioblastoma cell lines, Δ9-THC and CBD acted synergistically to inhibit cell proliferation. The treatment of glioblastoma cells with both compounds led to significant modulations of the cell cycle and induction of reactive oxygen species (ROS) and apoptosis as well as specific modulations of extracellular signal-regulated kinase (ERK) and caspase activities. These specific changes were not observed with either compound individually, indicating that the signal transduction pathways affected by the combination treatment were unique. Our results suggest that the addition of CBD to Δ9-THC may improve the overall effectiveness of Δ9-THC in the treatment of glioblastoma in cancer patients. PMID:20053780
Renard, Justine; Loureiro, Michael; Rosen, Laura G.; Zunder, Jordan; de Oliveira, Cleusa; Schmid, Susanne; Rushlow, Walter J.
2016-01-01
Schizophrenia-related psychosis is associated with disturbances in mesolimbic dopamine (DA) transmission, characterized by hyperdopaminergic activity in the mesolimbic pathway. Currently, the only clinically effective treatment for schizophrenia involves the use of antipsychotic medications that block DA receptor transmission. However, these medications produce serious side effects leading to poor compliance and treatment outcomes. Emerging evidence points to the involvement of a specific phytochemical component of marijuana called cannabidiol (CBD), which possesses promising therapeutic properties for the treatment of schizophrenia-related psychoses. However, the neuronal and molecular mechanisms through which CBD may exert these effects are entirely unknown. We used amphetamine (AMPH)-induced sensitization and sensorimotor gating in rats, two preclinical procedures relevant to schizophrenia-related psychopathology, combined with in vivo single-unit neuronal electrophysiology recordings in the ventral tegmental area, and molecular analyses to characterize the actions of CBD directly in the nucleus accumbens shell (NASh), a brain region that is the current target of most effective antipsychotics. We demonstrate that Intra-NASh CBD attenuates AMPH-induced sensitization, both in terms of DAergic neuronal activity measured in the ventral tegmental area and psychotomimetic behavioral analyses. We further report that CBD controls downstream phosphorylation of the mTOR/p70S6 kinase signaling pathways directly within the NASh. Our findings demonstrate a novel mechanism for the putative antipsychotic-like properties of CBD in the mesolimbic circuitry. We identify the molecular signaling pathways through which CBD may functionally reduce schizophrenia-like neuropsychopathology. SIGNIFICANCE STATEMENT The cannabis-derived phytochemical, cannabidiol (CBD), has been shown to have pharmacotherapeutic efficacy for the treatment of schizophrenia. However, the mechanisms by which
Renard, Justine; Loureiro, Michael; Rosen, Laura G; Zunder, Jordan; de Oliveira, Cleusa; Schmid, Susanne; Rushlow, Walter J; Laviolette, Steven R
2016-05-04
Schizophrenia-related psychosis is associated with disturbances in mesolimbic dopamine (DA) transmission, characterized by hyperdopaminergic activity in the mesolimbic pathway. Currently, the only clinically effective treatment for schizophrenia involves the use of antipsychotic medications that block DA receptor transmission. However, these medications produce serious side effects leading to poor compliance and treatment outcomes. Emerging evidence points to the involvement of a specific phytochemical component of marijuana called cannabidiol (CBD), which possesses promising therapeutic properties for the treatment of schizophrenia-related psychoses. However, the neuronal and molecular mechanisms through which CBD may exert these effects are entirely unknown. We used amphetamine (AMPH)-induced sensitization and sensorimotor gating in rats, two preclinical procedures relevant to schizophrenia-related psychopathology, combined with in vivo single-unit neuronal electrophysiology recordings in the ventral tegmental area, and molecular analyses to characterize the actions of CBD directly in the nucleus accumbens shell (NASh), a brain region that is the current target of most effective antipsychotics. We demonstrate that Intra-NASh CBD attenuates AMPH-induced sensitization, both in terms of DAergic neuronal activity measured in the ventral tegmental area and psychotomimetic behavioral analyses. We further report that CBD controls downstream phosphorylation of the mTOR/p70S6 kinase signaling pathways directly within the NASh. Our findings demonstrate a novel mechanism for the putative antipsychotic-like properties of CBD in the mesolimbic circuitry. We identify the molecular signaling pathways through which CBD may functionally reduce schizophrenia-like neuropsychopathology. The cannabis-derived phytochemical, cannabidiol (CBD), has been shown to have pharmacotherapeutic efficacy for the treatment of schizophrenia. However, the mechanisms by which CBD may produce
Poklis, Justin L.; Thompson, Candace C.; Long, Kelly A.; Lichtman, Aron H.; Poklis, Alphonse
2011-01-01
A liquid chromatography–tandem mass spectrometry (LC–MS–MS) method was developed for the analysis of marijuana cannabinoids in mouse brain tissue using an Applied Biosystems 3200 Q trap with a turbo V source for TurbolonSpray attached to a Shimadzu SCL HPLC system. The method included cannabichromene (CBC), cannabidiol (CBD), D9-tetrahydrocannabinol (THC), 11-hydroxytetrahydrocannabinol (11-OH-THC), and 11-nor-D9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH). These compounds were isolated by liquid-liquid extraction using cold acetonitrile. The following transition ions were monitored by multiple reaction monitoring (MRM): m/z 315>193, 315>259 for THC/CBD/CBC; m/z 331>193, 331>105 for 11-OH-THC; m/z 345>299, 345>193 for THC-COOH;c m/z 318>196 for THC-d3; m/z 334>196 for 11-OH-THC-d3, and m/z 348>302 for THCCOOH-d3. Linearity for THC, 1-OH-THC, and THC-COOH was 1-200 ng/g; for CBC and CBD, it was 0.5–20 ng/g. Within-run and between-run precisions for all the analytes yielded coefficients of variation of < 20%. Four C57BL6 mice were sacrificed 20 min after nose-only exposure to the smoke of 200 mg of marijuana containing 0.44 mg CBC, 0.93 mg CBD, and 8.81 mg THC. The mean brain concentrations were 3.9 ± 1.5 ng/g CBC, 21 ± 3.9 ng/g CBD, 364 ± 74 ng/g THC, and 28 ± 5.9 ng/g 11-OH-THC. THCCOOH was not detected. The relative mean brain cannabinoid concentrations correlated to the amounts of the cannabinoids in the inhaled marijuana. PMID:21258613
Haney, Margaret; Malcolm, Robert J; Babalonis, Shanna; Nuzzo, Paul A; Cooper, Ziva D; Bedi, Gillinder; Gray, Kevin M; McRae-Clark, Aimee; Lofwall, Michelle R; Sparenborg, Steven; Walsh, Sharon L
2016-01-01
Cannabidiol (CBD), a constituent of cannabis with few psychoactive effects, has been reported in some studies to attenuate certain aspects of Δ9-tetrahydrocannabinol (THC) intoxication. However, most studies have tested only one dose of CBD in combination with one dose of oral THC, making it difficult to assess the nature of this interaction. Further, the effect of oral CBD on smoked cannabis administration is unknown. The objective of this multi-site, randomized, double-blind, within-subject laboratory study was to assess the influence of CBD (0, 200, 400, 800 mg, p.o.) pretreatment on the reinforcing, subjective, cognitive, and physiological effects of smoked cannabis (0.01 (inactive), 5.30–5.80% THC). Non-treatment-seeking, healthy cannabis smokers (n=31; 17M, 14 F) completed eight outpatient sessions. CBD was administered 90 min prior to cannabis administration. The behavioral and cardiovascular effects of cannabis were measured at baseline and repeatedly throughout the session. A subset of participants (n=8) completed an additional session to measure plasma CBD concentrations after administration of the highest CBD dose (800 mg). Under placebo CBD conditions, active cannabis (1) was self-administered by significantly more participants than placebo cannabis and (2) produced significant, time-dependent increases in ratings of ‘High', ‘Good Effect', ratings of the cannabis cigarette (eg, strength, liking), and heart rate relative to inactive cannabis. CBD, which alone produced no significant psychoactive or cardiovascular effects, did not significantly alter any of these outcomes. Cannabis self-administration, subjective effects, and cannabis ratings did not vary as a function of CBD dose relative to placebo capsules. These findings suggest that oral CBD does not reduce the reinforcing, physiological, or positive subjective effects of smoked cannabis. PMID:26708108
Effects of Δ9-THC and cannabidiol vapor inhalation in male and female rats.
Javadi-Paydar, Mehrak; Nguyen, Jacques D; Kerr, Tony M; Grant, Yanabel; Vandewater, Sophia A; Cole, Maury; Taffe, Michael A
2018-06-16
Previous studies report sex differences in some, but not all, responses to cannabinoids in rats. The majority of studies use parenteral injection; however, most human use is via smoke inhalation and, increasingly, vapor inhalation. To compare thermoregulatory and locomotor responses to inhaled ∆ 9 -tetrahydrocannabinol (THC), cannabidiol (CBD), and their combination using an e-cigarette-based model in male and female rats METHODS: Male and female Wistar rats were implanted with radiotelemetry devices for the assessment of body temperature and locomotor activity. Animals were then exposed to THC or CBD vapor using a propylene glycol (PG) vehicle. THC dose was adjusted via the concentration in the vehicle (12.5-200 mg/mL) and the CBD (100, 400 mg/mL) dose was also adjusted by varying the inhalation duration (10-40 min). Anti-nociception was evaluated using a tail-withdrawal assay following vapor inhalation. Plasma samples obtained following inhalation in different groups of rats were compared for THC content. THC inhalation reduced body temperature and increased tail-withdrawal latency in both sexes equivalently and in a concentration-dependent manner. Female temperature, activity, and tail-withdrawal responses to THC did not differ between estrus and diestrus. CBD inhalation alone induced modest hypothermia and suppressed locomotor activity in both males and females. Co-administration of THC with CBD, in a 1:4 ratio, significantly decreased temperature and activity in an approximately additive manner and to similar extent in each sex. Plasma THC varied with the concentration in the PG vehicle but did not differ across rat sex. In summary, the inhalation of THC or CBD, alone and in combination, produces approximately equivalent effects in male and female rats. This confirms the efficacy of the e-cigarette-based method of THC delivery in female rats.
Evaluation of Cannabidiol in Animal Seizure Models by the Epilepsy Therapy Screening Program (ETSP).
Klein, Brian D; Jacobson, Catherine A; Metcalf, Cameron S; Smith, Misty D; Wilcox, Karen S; Hampson, Aidan J; Kehne, John H
2017-07-01
Cannabidiol (CBD) is a cannabinoid component of marijuana that has no significant activity at cannabinoid receptors or psychoactive effects. There is considerable interest in CBD as a therapy for epilepsy. Almost a third of epilepsy patients are not adequately controlled by clinically available anti-seizure drugs (ASDs). Initial studies appear to demonstrate that CBD preparations may be a useful treatment for pharmacoresistant epilepsy. The National Institute of Neurological Disorders and Stroke (NINDS) funded Epilepsy Therapy Screening Program (ETSP) investigated CBD in a battery of seizure models using a refocused screening protocol aimed at identifying pharmacotherapies to address the unmet need in pharmacoresistant epilepsy. Applying this new screening workflow, CBD was investigated in mouse 6 Hz 44 mA, maximal electroshock (MES), corneal kindling models and rat MES and lamotrigine-resistant amygdala kindling models. Following intraperitoneal (i.p.) pretreatment, CBD produced dose-dependent protection in the acute seizure models; mouse 6 Hz 44 mA (ED 50 164 mg/kg), mouse MES (ED 50 83.5 mg/kg) and rat MES (ED 50 88.9 mg/kg). In chronic models, CBD produced dose-dependent protection in the corneal kindled mouse (ED 50 119 mg/kg) but CBD (up to 300 mg/kg) was not protective in the lamotrigine-resistant amygdala kindled rat. Motor impairment assessed in conjunction with the acute seizure models showed that CBD exerted seizure protection at non-impairing doses. The ETSP investigation demonstrates that CBD exhibits anti-seizure properties in acute seizure models and the corneal kindled mouse. However, further preclinical and clinical studies are needed to determine the potential for CBD to address the unmet needs in pharmacoresistant epilepsy.
Haney, Margaret; Malcolm, Robert J; Babalonis, Shanna; Nuzzo, Paul A; Cooper, Ziva D; Bedi, Gillinder; Gray, Kevin M; McRae-Clark, Aimee; Lofwall, Michelle R; Sparenborg, Steven; Walsh, Sharon L
2016-07-01
Cannabidiol (CBD), a constituent of cannabis with few psychoactive effects, has been reported in some studies to attenuate certain aspects of Δ(9)-tetrahydrocannabinol (THC) intoxication. However, most studies have tested only one dose of CBD in combination with one dose of oral THC, making it difficult to assess the nature of this interaction. Further, the effect of oral CBD on smoked cannabis administration is unknown. The objective of this multi-site, randomized, double-blind, within-subject laboratory study was to assess the influence of CBD (0, 200, 400, 800 mg, p.o.) pretreatment on the reinforcing, subjective, cognitive, and physiological effects of smoked cannabis (0.01 (inactive), 5.30-5.80% THC). Non-treatment-seeking, healthy cannabis smokers (n=31; 17M, 14 F) completed eight outpatient sessions. CBD was administered 90 min prior to cannabis administration. The behavioral and cardiovascular effects of cannabis were measured at baseline and repeatedly throughout the session. A subset of participants (n=8) completed an additional session to measure plasma CBD concentrations after administration of the highest CBD dose (800 mg). Under placebo CBD conditions, active cannabis (1) was self-administered by significantly more participants than placebo cannabis and (2) produced significant, time-dependent increases in ratings of 'High', 'Good Effect', ratings of the cannabis cigarette (eg, strength, liking), and heart rate relative to inactive cannabis. CBD, which alone produced no significant psychoactive or cardiovascular effects, did not significantly alter any of these outcomes. Cannabis self-administration, subjective effects, and cannabis ratings did not vary as a function of CBD dose relative to placebo capsules. These findings suggest that oral CBD does not reduce the reinforcing, physiological, or positive subjective effects of smoked cannabis.
Campos, Alline Cristina; Moreira, Fabricio Araújo; Gomes, Felipe Villela; Del Bel, Elaine Aparecida; Guimarães, Francisco Silveira
2012-01-01
Cannabidiol (CBD) is a major phytocannabinoid present in the Cannabis sativa plant. It lacks the psychotomimetic and other psychotropic effects that the main plant compound Δ9-tetrahydrocannabinol (THC) being able, on the contrary, to antagonize these effects. This property, together with its safety profile, was an initial stimulus for the investigation of CBD pharmacological properties. It is now clear that CBD has therapeutic potential over a wide range of non-psychiatric and psychiatric disorders such as anxiety, depression and psychosis. Although the pharmacological effects of CBD in different biological systems have been extensively investigated by in vitro studies, the mechanisms responsible for its therapeutic potential are still not clear. Here, we review recent in vivo studies indicating that these mechanisms are not unitary but rather depend on the behavioural response being measured. Acute anxiolytic and antidepressant-like effects seem to rely mainly on facilitation of 5-HT1A-mediated neurotransmission in key brain areas related to defensive responses, including the dorsal periaqueductal grey, bed nucleus of the stria terminalis and medial prefrontal cortex. Other effects, such as anti-compulsive, increased extinction and impaired reconsolidation of aversive memories, and facilitation of adult hippocampal neurogenesis could depend on potentiation of anandamide-mediated neurotransmission. Finally, activation of TRPV1 channels may help us to explain the antipsychotic effect and the bell-shaped dose-response curves commonly observed with CBD. Considering its safety profile and wide range of therapeutic potential, however, further studies are needed to investigate the involvement of other possible mechanisms (e.g. inhibition of adenosine uptake, inverse agonism at CB2 receptor, CB1 receptor antagonism, GPR55 antagonism, PPARγ receptors agonism, intracellular (Ca2+) increase, etc.), on CBD behavioural effects. PMID:23108553
Do Val-da Silva, Raquel A; Peixoto-Santos, Jose E; Kandratavicius, Ludmyla; De Ross, Jana B; Esteves, Ingrid; De Martinis, Bruno S; Alves, Marcela N R; Scandiuzzi, Renata C; Hallak, Jaime E C; Zuardi, Antonio W; Crippa, Jose A; Leite, Joao P
2017-01-01
The present study reports the behavioral, electrophysiological, and neuropathological effects of cannabidiol (CBD), a major non-psychotropic constituent of Cannabis sativa , in the intrahippocampal pilocarpine-induced status epilepticus (SE) rat model. CBD was administered before pilocarpine-induced SE (group SE+CBDp) or before and after SE (group SE+CBDt), and compared to rats submitted only to SE (SE group), CBD, or vehicle (VH group). Groups were evaluated during SE (behavioral and electrophysiological analysis), as well as at days one and three post-SE (exploratory activity, electrophysiological analysis, neuron density, and neuron degeneration). Compared to SE group, SE+CBD groups (SE+CBDp and SE+CBDt) had increased SE latency, diminished SE severity, increased contralateral afterdischarge latency and decreased relative powers in delta (0.5-4 Hz) and theta (4-10 Hz) bands. Only SE+CBDp had increased vertical exploratory activity 1-day post SE and decreased contralateral relative power in delta 3 days after SE, when compared to SE group. SE+CBD groups also showed decreased neurodegeneration in the hilus and CA3, and higher neuron density in granule cell layer, hilus, CA3, and CA1, when compared to SE group. Our findings demonstrate anticonvulsant and neuroprotective effects of CBD preventive treatment in the intrahippocampal pilocarpine epilepsy model, either as single or multiple administrations, reinforcing the potential role of CBD in the treatment of epileptic disorders.
Cheng, David; Low, Jac Kee; Logge, Warren; Garner, Brett; Karl, Tim
2014-08-01
Patients suffering from Alzheimer's disease (AD) exhibit a decline in cognitive abilities including an inability to recognise familiar faces. Hallmark pathological changes in AD include the aggregation of amyloid-β (Aβ), tau protein hyperphosphorylation as well as pronounced neurodegeneration, neuroinflammation, neurotoxicity and oxidative damage. The non-psychoactive phytocannabinoid cannabidiol (CBD) exerts neuroprotective, anti-oxidant and anti-inflammatory effects and promotes neurogenesis. CBD also reverses Aβ-induced spatial memory deficits in rodents. Thus we determined the therapeutic-like effects of chronic CBD treatment (20 mg/kg, daily intraperitoneal injections for 3 weeks) on the APPswe/PS1∆E9 (APPxPS1) transgenic mouse model for AD in a number of cognitive tests, including the social preference test, the novel object recognition task and the fear conditioning paradigm. We also analysed the impact of CBD on anxiety behaviours in the elevated plus maze. Vehicle-treated APPxPS1 mice demonstrated impairments in social recognition and novel object recognition compared to wild type-like mice. Chronic CBD treatment reversed these cognitive deficits in APPxPS1 mice without affecting anxiety-related behaviours. This is the first study to investigate the effect of chronic CBD treatment on cognition in an AD transgenic mouse model. Our findings suggest that CBD may have therapeutic potential for specific cognitive impairments associated with AD.
Iffland, Kerstin; Grotenhermen, Franjo
2017-01-01
Abstract Introduction: This literature survey aims to extend the comprehensive survey performed by Bergamaschi et al. in 2011 on cannabidiol (CBD) safety and side effects. Apart from updating the literature, this article focuses on clinical studies and CBD potential interactions with other drugs. Results: In general, the often described favorable safety profile of CBD in humans was confirmed and extended by the reviewed research. The majority of studies were performed for treatment of epilepsy and psychotic disorders. Here, the most commonly reported side effects were tiredness, diarrhea, and changes of appetite/weight. In comparison with other drugs, used for the treatment of these medical conditions, CBD has a better side effect profile. This could improve patients' compliance and adherence to treatment. CBD is often used as adjunct therapy. Therefore, more clinical research is warranted on CBD action on hepatic enzymes, drug transporters, and interactions with other drugs and to see if this mainly leads to positive or negative effects, for example, reducing the needed clobazam doses in epilepsy and therefore clobazam's side effects. Conclusion: This review also illustrates that some important toxicological parameters are yet to be studied, for example, if CBD has an effect on hormones. Additionally, more clinical trials with a greater number of participants and longer chronic CBD administration are still lacking. PMID:28861514
Do Val-da Silva, Raquel A.; Peixoto-Santos, Jose E.; Kandratavicius, Ludmyla; De Ross, Jana B.; Esteves, Ingrid; De Martinis, Bruno S.; Alves, Marcela N. R.; Scandiuzzi, Renata C.; Hallak, Jaime E. C.; Zuardi, Antonio W.; Crippa, Jose A.; Leite, Joao P.
2017-01-01
The present study reports the behavioral, electrophysiological, and neuropathological effects of cannabidiol (CBD), a major non-psychotropic constituent of Cannabis sativa, in the intrahippocampal pilocarpine-induced status epilepticus (SE) rat model. CBD was administered before pilocarpine-induced SE (group SE+CBDp) or before and after SE (group SE+CBDt), and compared to rats submitted only to SE (SE group), CBD, or vehicle (VH group). Groups were evaluated during SE (behavioral and electrophysiological analysis), as well as at days one and three post-SE (exploratory activity, electrophysiological analysis, neuron density, and neuron degeneration). Compared to SE group, SE+CBD groups (SE+CBDp and SE+CBDt) had increased SE latency, diminished SE severity, increased contralateral afterdischarge latency and decreased relative powers in delta (0.5–4 Hz) and theta (4–10 Hz) bands. Only SE+CBDp had increased vertical exploratory activity 1-day post SE and decreased contralateral relative power in delta 3 days after SE, when compared to SE group. SE+CBD groups also showed decreased neurodegeneration in the hilus and CA3, and higher neuron density in granule cell layer, hilus, CA3, and CA1, when compared to SE group. Our findings demonstrate anticonvulsant and neuroprotective effects of CBD preventive treatment in the intrahippocampal pilocarpine epilepsy model, either as single or multiple administrations, reinforcing the potential role of CBD in the treatment of epileptic disorders. PMID:28367124
Valvassori, Samira S; Elias, Guilherme; de Souza, Bruna; Petronilho, Fabrícia; Dal-Pizzol, Felipe; Kapczinski, Flávio; Trzesniak, Clarissa; Tumas, Vitor; Dursun, Serdar; Chagas, Marcos Hortes Nisihara; Hallak, Jaime E C; Zuardi, Antonio W; Quevedo, João; Crippa, José A S
2011-02-01
Cannabidiol (CBD), a Cannabis sativa constituent, may present a pharmacological profile similar to mood stabilizing drugs, in addition to anti-oxidative and neuroprotective properties. The present study aims to directly investigate the effects of CBD in an animal model of mania induced by D-amphetamine (D-AMPH). In the first model (reversal treatment), rats received saline or D-AMPH (2 mg/kg) once daily intraperitoneal (i.p.) for 14 days, and from the 8th to the 14th day, they were treated with saline or CBD (15, 30 or 60 mg/kg) i.p. twice a day. In the second model (prevention treatment), rats were pretreated with saline or CBD (15, 30, or 60 mg/kg) regime i.p. twice a day, and from the 8th to the 14th day, they also received saline or D-AMPH i.p. once daily. In the hippocampus CBD (15 mg/kg) reversed the d-AMPH-induced damage and increased (30 mg/kg) brain-derived neurotrophic factor (BDNF) expression. In the second experiment, CBD (30 or 60 mg/kg) prevented the D-AMPH-induced formation of carbonyl group in the prefrontal cortex. In the hippocampus and striatum the D-AMPH-induced damage was prevented by CBD (15, 30 or 60 mg/kg). At both treatments CBD did not present any effect against d-AMPH-induced hyperactivity. In conclusion, we could not observe effects on locomotion, but CBD protect against d-AMPH-induced oxidative protein damage and increased BDNF levels in the reversal model and these effects vary depending on the brain regions evaluated and doses of CBD administered.
McPartland, John M; Duncan, Marnie; Di Marzo, Vincenzo; Pertwee, Roger G
2015-02-01
Based upon evidence that the therapeutic properties of Cannabis preparations are not solely dependent upon the presence of Δ(9) -tetrahydrocannabinol (THC), pharmacological studies have been recently carried out with other plant cannabinoids (phytocannabinoids), particularly cannabidiol (CBD) and Δ(9) -tetrahydrocannabivarin (THCV). Results from some of these studies have fostered the view that CBD and THCV modulate the effects of THC via direct blockade of cannabinoid CB1 receptors, thus behaving like first-generation CB1 receptor inverse agonists, such as rimonabant. Here, we review in vitro and ex vivo mechanistic studies of CBD and THCV, and synthesize data from these studies in a meta-analysis. Synthesized data regarding mechanisms are then used to interpret results from recent pre-clinical animal studies and clinical trials. The evidence indicates that CBD and THCV are not rimonabant-like in their action and thus appear very unlikely to produce unwanted CNS effects. They exhibit markedly disparate pharmacological profiles particularly at CB1 receptors: CBD is a very low-affinity CB1 ligand that can nevertheless affect CB1 receptor activity in vivo in an indirect manner, while THCV is a high-affinity CB1 receptor ligand and potent antagonist in vitro and yet only occasionally produces effects in vivo resulting from CB1 receptor antagonism. THCV has also high affinity for CB2 receptors and signals as a partial agonist, differing from both CBD and rimonabant. These cannabinoids illustrate how in vitro mechanistic studies do not always predict in vivo pharmacology and underlie the necessity of testing compounds in vivo before drawing any conclusion on their functional activity at a given target. © 2014 The British Pharmacological Society.
McPartland, John M; Duncan, Marnie; Di Marzo, Vincenzo; Pertwee, Roger G
2015-01-01
Based upon evidence that the therapeutic properties of Cannabis preparations are not solely dependent upon the presence of Δ9-tetrahydrocannabinol (THC), pharmacological studies have been recently carried out with other plant cannabinoids (phytocannabinoids), particularly cannabidiol (CBD) and Δ9-tetrahydrocannabivarin (THCV). Results from some of these studies have fostered the view that CBD and THCV modulate the effects of THC via direct blockade of cannabinoid CB1 receptors, thus behaving like first-generation CB1 receptor inverse agonists, such as rimonabant. Here, we review in vitro and ex vivo mechanistic studies of CBD and THCV, and synthesize data from these studies in a meta-analysis. Synthesized data regarding mechanisms are then used to interpret results from recent pre-clinical animal studies and clinical trials. The evidence indicates that CBD and THCV are not rimonabant-like in their action and thus appear very unlikely to produce unwanted CNS effects. They exhibit markedly disparate pharmacological profiles particularly at CB1 receptors: CBD is a very low-affinity CB1 ligand that can nevertheless affect CB1 receptor activity in vivo in an indirect manner, while THCV is a high-affinity CB1 receptor ligand and potent antagonist in vitro and yet only occasionally produces effects in vivo resulting from CB1 receptor antagonism. THCV has also high affinity for CB2 receptors and signals as a partial agonist, differing from both CBD and rimonabant. These cannabinoids illustrate how in vitro mechanistic studies do not always predict in vivo pharmacology and underlie the necessity of testing compounds in vivo before drawing any conclusion on their functional activity at a given target. PMID:25257544
Philpott, Holly T.; O'Brien, Melissa; McDougall, Jason J.
2017-01-01
Abstract Osteoarthritis (OA) is a multifactorial joint disease, which includes joint degeneration, intermittent inflammation, and peripheral neuropathy. Cannabidiol (CBD) is a noneuphoria producing constituent of cannabis that has the potential to relieve pain. The aim of this study was to determine whether CBD is anti-nociceptive in OA, and whether inhibition of inflammation by CBD could prevent the development of OA pain and joint neuropathy. Osteoarthritis was induced in male Wistar rats (150-175 g) by intra-articular injection of sodium monoiodoacetate (MIA; 3 mg). On day 14 (end-stage OA), joint afferent mechanosensitivity was assessed using in vivo electrophysiology, whereas pain behaviour was measured by von Frey hair algesiometry and dynamic incapacitance. To investigate acute joint inflammation, blood flow and leukocyte trafficking were measured on day 1 after MIA. Joint nerve myelination was calculated by G-ratio analysis. The therapeutic and prophylactic effects of peripheral CBD (100-300 μg) were assessed. In end-stage OA, CBD dose-dependently decreased joint afferent firing rate, and increased withdrawal threshold and weight bearing (P < 0.0001; n = 8). Acute, transient joint inflammation was reduced by local CBD treatment (P < 0.0001; n = 6). Prophylactic administration of CBD prevented the development of MIA-induced joint pain at later time points (P < 0.0001; n = 8), and was also found to be neuroprotective (P < 0.05; n = 6-8). The data presented here indicate that local administration of CBD blocked OA pain. Prophylactic CBD treatment prevented the later development of pain and nerve damage in these OA joints. These findings suggest that CBD may be a safe, useful therapeutic for treating OA joint neuropathic pain. PMID:28885454
Philpott, Holly T; OʼBrien, Melissa; McDougall, Jason J
2017-12-01
Osteoarthritis (OA) is a multifactorial joint disease, which includes joint degeneration, intermittent inflammation, and peripheral neuropathy. Cannabidiol (CBD) is a noneuphoria producing constituent of cannabis that has the potential to relieve pain. The aim of this study was to determine whether CBD is anti-nociceptive in OA, and whether inhibition of inflammation by CBD could prevent the development of OA pain and joint neuropathy. Osteoarthritis was induced in male Wistar rats (150-175 g) by intra-articular injection of sodium monoiodoacetate (MIA; 3 mg). On day 14 (end-stage OA), joint afferent mechanosensitivity was assessed using in vivo electrophysiology, whereas pain behaviour was measured by von Frey hair algesiometry and dynamic incapacitance. To investigate acute joint inflammation, blood flow and leukocyte trafficking were measured on day 1 after MIA. Joint nerve myelination was calculated by G-ratio analysis. The therapeutic and prophylactic effects of peripheral CBD (100-300 μg) were assessed. In end-stage OA, CBD dose-dependently decreased joint afferent firing rate, and increased withdrawal threshold and weight bearing (P < 0.0001; n = 8). Acute, transient joint inflammation was reduced by local CBD treatment (P < 0.0001; n = 6). Prophylactic administration of CBD prevented the development of MIA-induced joint pain at later time points (P < 0.0001; n = 8), and was also found to be neuroprotective (P < 0.05; n = 6-8). The data presented here indicate that local administration of CBD blocked OA pain. Prophylactic CBD treatment prevented the later development of pain and nerve damage in these OA joints. These findings suggest that CBD may be a safe, useful therapeutic for treating OA joint neuropathic pain.
Wertlake, Paul T; Henson, Michael D
2016-01-01
Marijuana is classified by the Drug Enforcement Agency (DEA) as Schedule I, drugs having no accepted medical value. Twenty-three states and the District of Columbia have legalized medical marijuana. This conflict inhibits physicians from prescribing marijuana and the systematic study of marijuana in medical care. This study concerns the use of the clinical laboratory as a resource for physicians recommending cannabidiol (CBD) to patients, or for patients using medical marijuana. Marijuana containing delta-9-tetrahydrocannabinol (THC) is psychoactive. CBD is not psychoactive. CBD is reported to have medical benefit for seizure control, neurologic disorders including multiple sclerosis, neuropathic pain and pain associated with cancer. Use of opiates leads to increasing dosage over time that may cause respiratory depression. The Medical Board of California has termed this a serious public health crisis of addiction, overdose, and death. Is it feasible that CBD might alleviate persistent, severe pain and therefore diminished opiate use? Further study is needed to determine medical effectiveness of CBD including the effect on concurrent opiate therapy due to competition for receptor sites. This study is the application of a gas chromatography mass spectrometry procedure adapted for use in our laboratory, to detect CBD in urine. The intended use is as a tool for physicians to assess that marijuana being used by a patient is of a composition likely to be medically effective. A law ensuring physicians freedom from federal prosecution would provide confidence essential to formal study of medical uses of marijuana and treatment of clinical problems. Detection of CBD in a urine sample would be a convenient test for such confirmation.
Taffe, Michael A; Creehan, Kevin M; Vandewater, Sophia A
2015-04-01
Growing evidence shows cannabidiol (CBD) modulates some of the effects of Δ(9) -tetrahydrocannabinol (THC). CBD is a constituent of some strains of recreational cannabis but its content is highly variable. High CBD strains may have less memory-impairing effects than low-CBD strains and CBD can reverse behavioural effects of THC in monkeys. CBD/THC interactions in rodents are more complicated as CBD can attenuate or exacerbate the effects of THC. This study was undertaken to determine if CBD could reverse hypothermia or hypolocomotor effects caused by THC in rats. Male Sprague-Dawley rats were prepared with radiotelemetry devices and then given doses of THC (10-30 mg·kg(-1) , i.p.) with or without CBD. Experiments determined the effect of simultaneous or 30 min pretreatment with CBD in a 1:1 ratio with THC, as well as the effect of CBD in a 3:1 ratio. Additional experiments determined the effects of pretreatment with the cannabinoid CB1 receptor antagonist SR141716 (rimonabant). CBD did not attentuate THC-induced hypothermia or hypolocomotion but instead exaggerated these effects in some conditions. The antagonist SR141716 blocked hypolocomotor effects of THC for the first hour after injection and the hypothermia for 6 h; thus validating the pharmacological model. There is no evidence from this study that elevated CBD content in cannabis could provide protection from the physiological effects of THC, in rats. © 2014 The British Pharmacological Society.
Vann, Robert E.; Gamage, Thomas F.; Warner, Jonathan A.; Marshall, Ericka M.; Taylor, Nathan L.; Martin, Billy R.; Wiley, Jenny L.
2008-01-01
Cannabis sativa (marijuana plant) contains myriad cannabinoid compounds; yet, investigative attention has focused almost exclusively on Δ9-tetrahydrocannabinol (THC), its primary psychoactive substituent. Interest in modulation of THC’s effects by these other cannabinoids [e.g., cannabidiol (CBD)] has been stimulated anew by recent approval by Canada of Sativex (a 1:1 dose ratio combination of CBD:THC) for the treatment of multiple sclerosis. The goal of this study was to determine the degree to which THC’s abuse-related effects were altered by co-administration of CBD. To this end, CBD and THC were assessed alone and in combination in a two-lever THC discrimination procedure in Long-Evans rats and in a conditioned place preference/aversion (CPP/A) model in ICR mice. CBD did not alter the discriminative stimulus effects of THC at any CBD:THC dose ratio tested. In contrast, CBD, at CBD:THC dose ratios of 1:1 and 1:10, reversed CPA produced by acute injection with 10 mg/kg THC. When administered alone, CBD did not produce effects in either procedure. These results suggest that CBD, when administered with THC at therapeutically relevant ratios, may ameliorate aversive effects (e.g., dysphoria) often associated with initial use of THC alone. While this effect may be beneficial for therapeutic usage of a CBD:THC combination medication, our discrimination results showing that CBD did not alter THC’s discriminative stimulus effects suggest that CBD:THC combination medications may also produce THC-like subjective effects at these dose ratios. PMID:18206320
Wheal, Amanda J.; Jadoon, Khalid; Randall, Michael D.; O’Sullivan, Saoirse E.
2017-01-01
Background and purpose: We have shown that in vitro treatment with cannabidiol (CBD, 2 h) enhances endothelial function in arteries from Zucker diabetic fatty (ZDF) rats, partly due to a cyclooxygenase (COX)-mediated mechanism. The aim of the present study was to determine whether treatment with CBD in vivo would also enhance endothelial function. Experimental approach: Male ZDF rats, or ZDF Lean rats, were treated for 7 days (daily i.p. injection) with either 10mg/kg CBD or vehicle (n = 6 per group). Sections of mesenteric resistance arteries, femoral arteries and thoracic aortae were mounted on a wire myograph, and cumulative concentration-response curves to endothelium-dependent (acetylcholine, ACh, 1 nM–100 μM) or endothelium-independent (sodium nitroprusside, SNP, 1 nM–100 μM) agents were constructed. Multiplex analysis was used to measure serum metabolic and cardiovascular biomarkers. Key results: Vasorelaxation to ACh was significantly enhanced in mesenteric arteries from CBD-treated ZDF rats, but not ZDF Lean rats. The enhanced vasorelaxation in ZDF mesenteric arteries was no longer observed after COX inhibition using indomethacin or nitric oxide (NO) inhibition using L-NAME. Increased levels of serum c-peptide, insulin and intracellular adhesion molecule-1 observed in the ZDF compared to ZDF Lean rats were no longer significant after 7 days CBD treatment. Conclusion and implications: Short-term in vivo treatment with CBD improves ex vivo endothelium-dependent vasorelaxation in mesenteric arteries from ZDF rats due to COX- or NO-mediated mechanisms, and leads to improvements in serum biomarkers. PMID:28572770
Ellis, L D; Berrue, F; Morash, M; Achenbach, J C; Hill, J; McDougall, J J
2018-01-30
It has been established that both adult and larval zebrafish are capable of showing nociceptive responses to noxious stimuli; however, the use of larvae to test novel analgesics has not been fully explored. Zebrafish larvae represent a low-cost, high-throughput alternative to traditional mammalian models for the assessment of product efficacy during the initial stages of drug development. In the current study, a novel model of nociception using zebrafish larvae is described. During the recovery from an acute exposure to low levels of acetic acid, larvae display innate changes in behaviour that may be indicative of nociception. To assess the usefulness of this model for testing potential analgesics, three known synthetic pain medications were assessed (ibuprofen, acetaminophen and tramadol) along with three naturally occurring products (honokiol, tetrahydrocannabinol and cannabidiol). When the effect of each compound on both the acetic acid recovery and control activity was compared there appeared to be both similarities and differences between the compounds. One of the most interesting effects was found for cannabidiol which appeared to oppose the activity change during the recovery period of AA exposed larvae while having a nominal effect on control activity. This would appear to be in line with current research that has demonstrated the nociceptive properties of cannabidiol. Here we have provided a novel model that will complement existing zebrafish models and will expand on the potential use of zebrafish larvae for studying both nociception and new analgesics. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Grotenhermen, Franjo; Russo, Ethan; Zuardi, Antonio Waldo
2017-01-01
Abstract This short communication examines the question whether the experimental data presented in a study by Merrick et al. are of clinical relevance. These authors found that cannabidiol (CBD), a major cannabinoid of the cannabis plant devoid of psychotropic effects and of great interest for therapeutic use in several medical conditions, may be converted in gastric fluid into the psychoactive cannabinoids delta-8-THC and delta-9-THC to a relevant degree. They concluded that “the acidic environment during normal gastrointestinal transit can expose orally CBD-treated patients to levels of THC and other psychoactive cannabinoids that may exceed the threshold for a positive physiological response.” They issued a warning concerning oral use of CBD and recommend the development of other delivery methods. However, the available clinical data do not support this conclusion and recommendation, since even high doses of oral CBD do not cause psychological, psychomotor, cognitive, or physical effects that are characteristic for THC or cannabis rich in THC. On the contrary, in the past decades and by several groups, high doses of oral CBD were consistently shown to cause opposite effects to those of THC in clinical studies. In addition, administration of CBD did not result in detectable THC blood concentrations. Thus, there is no reason to avoid oral use of CBD, which has been demonstrated to be a safe means of administration of CBD, even at very high doses. PMID:28861499
A Systematic Review and Meta-Analysis of the Haemodynamic Effects of Cannabidiol
Sultan, Salahaden R.; Millar, Sophie A.; England, Timothy J.; O'Sullivan, Saoirse E.
2017-01-01
Despite cannabidiol (CBD) having numerous cardiovascular effects in vitro, its haemodynamic effects in vivo are unclear. Nonetheless, the clinical use of CBD (Epidiolex) is becoming more widespread. The aim of this systematic review was to establish whether CBD is associated with changes in haemodynamics in vivo. Twenty-five studies that assessed the haemodynamic effects of CBD (from PubMed, Medline and EMBASE) were systematically reviewed and meta-analyzed. Data on blood pressure (BP), heart rate (HR), and blood flow (BF) were extracted and analyzed using random effects models. Twenty-two publications assessed BP and HR among 6 species (BP n = 344 and HR n = 395), and 5 publications assessed BF in 3 species (n = 56) after acute dosing of CBD. Chronic dosing was assessed in 4 publications in 3 species (total subjects BP, n = 6; HR, n = 27; BF, n = 3). Acute CBD dosing had no effect on BP or HR under control conditions. Similarly, chronic dosing with CBD had no effect on HR. In models of stress, acute CBD administration significantly reduced the increase in BP and HR induced by stress (BP, mean difference (MD) −3.54, 95% CI −5.19, −1.9, p < 0.0001; HR, MD −16.23, 95% CI −26.44, −6.02, p = 0.002). In mouse models of stroke, CBD significantly increased cerebral blood flow (CBF, standardized mean difference (SMD) 1.62, 95% CI 0.41, 2.83, p = 0.009). Heterogeneity among the studies was present, there was no publication bias except in HR of control and stressful conditions after acute CBD dosing, and median study quality was 5 out of 9 (ranging from 1 to 8). From the limited data available, we conclude that acute and chronic administration of CBD had no effect on BP or HR under control conditions, but reduces BP and HR in stressful conditions, and increases cerebral blood flow (CBF) in mouse models of stroke. Further studies are required to fully understand the potential haemodynamic effects of CBD in humans under normal and pathological conditions. PMID
Martin-Santos, R; Crippa, J A; Batalla, A; Bhattacharyya, S; Atakan, Z; Borgwardt, S; Allen, P; Seal, M; Langohr, K; Farré, M; Zuardi, A W; McGuire, P K
2012-01-01
Animal and humans studies suggest that the two main constituents of cannabis sativa, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) have quite different acute effects. However, to date the two compounds have largely been studied separately. To evaluate and compare the acute pharmacological effects of both THC and CBD in the same human volunteers. A randomised, double-blind, cross-over, placebo controlled trial was conducted in 16 healthy male subjects. Oral THC 10 mg or CBD 600 mg or placebo was administered in three consecutive sessions, at one-month interval. Physiological measures and symptom ratings were assessed before, and at 1, 2 and 3 hours post drug administration. The area under the curve (AUC) between baseline and 3 hours, and the maximum absolute change from baseline at 2 hours were analysed by one-way repeated measures analysis of variance, with drug condition (THC or CBD or placebo) as the factor. Relative to both placebo and CBD, administration of THC was associated with anxiety, dysphoria, positive psychotic symptoms, physical and mental sedation, subjective intoxication (AUC and effect at 2 hours: p < 0.01), an increase in heart rate (p < 0.05). There were no differences between CBD and placebo on any symptomatic, physiological variable. In healthy volunteers, THC has marked acute behavioural and physiological effects, whereas CBD has proven to be safe and well tolerated.
Vallée, Alexandre; Lecarpentier, Yves; Guillevin, Rémy; Vallée, Jean-Noël
2017-10-01
Alzheimer's disease (AD) is a neurodegenerative disease, in which the primary etiology remains unknown. AD presents amyloid beta (Aβ) protein aggregation and neurofibrillary plaque deposits. AD shows oxidative stress and chronic inflammation. In AD, canonical Wingless-Int (Wnt)/β-catenin pathway is downregulated, whereas peroxisome proliferator-activated receptor γ (PPARγ) is increased. Downregulation of Wnt/β-catenin, through activation of glycogen synthase kinase-3β (GSK-3β) by Aβ, and inactivation of phosphatidylinositol 3-kinase/Akt signaling involve oxidative stress in AD. Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid from Cannabis sativa plant. In PC12 cells, Aβ-induced tau protein hyperphosphorylation is inhibited by CBD. This inhibition is associated with a downregulation of p-GSK-3β, an inhibitor of Wnt pathway. CBD may also increase Wnt/β-catenin by stimulation of PPARγ, inhibition of Aβ and ubiquitination of amyloid precursor protein. CBD attenuates oxidative stress and diminishes mitochondrial dysfunction and reactive oxygen species generation. CBD suppresses, through activation of PPARγ, pro-inflammatory signaling and may be a potential new candidate for AD therapy. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Romano, Barbara; Borrelli, Francesca; Pagano, Ester; Cascio, Maria Grazia; Pertwee, Roger G; Izzo, Angelo A
2014-04-15
Colon cancer is a major public health problem. Cannabis-based medicines are useful adjunctive treatments in cancer patients. Here, we have investigated the effect of a standardized Cannabis sativa extract with high content of cannabidiol (CBD), here named CBD BDS, i.e. CBD botanical drug substance, on colorectal cancer cell proliferation and in experimental models of colon cancer in vivo. Proliferation was evaluated in colorectal carcinoma (DLD-1 and HCT116) as well as in healthy colonic cells using the MTT assay. CBD BDS binding was evaluated by its ability to displace [(3)H]CP55940 from human cannabinoid CB1 and CB2 receptors. In vivo, the effect of CBD BDS was examined on the preneoplastic lesions (aberrant crypt foci), polyps and tumours induced by the carcinogenic agent azoxymethane (AOM) as well as in a xenograft model of colon cancer in mice. CBD BDS and CBD reduced cell proliferation in tumoral, but not in healthy, cells. The effect of CBD BDS was counteracted by selective CB1 and CB2 receptor antagonists. Pure CBD reduced cell proliferation in a CB1-sensitive antagonist manner only. In binding assays, CBD BDS showed greater affinity than pure CBD for both CB1 and CB2 receptors, with pure CBD having very little affinity. In vivo, CBD BDS reduced AOM-induced preneoplastic lesions and polyps as well as tumour growth in the xenograft model of colon cancer. CBD BDS attenuates colon carcinogenesis and inhibits colorectal cancer cell proliferation via CB1 and CB2 receptor activation. The results may have some clinical relevance for the use of Cannabis-based medicines in cancer patients. Copyright © 2013 Elsevier GmbH. All rights reserved.
A highly stable l-alanine-based mono(aquated) Mn(ii) complex as a T1-weighted MRI contrast agent.
Khannam, Mahmuda; Weyhermüller, Thomas; Goswami, Upashi; Mukherjee, Chandan
2017-08-08
The synthesized lithium (S)-6,6'-(1-carboxyethylazanediyl)bis(methylene)dipicolinate (Li 3 cbda) is a new chiral, alanine-based ligand bearing two picolinate functionalities. The trianionic form of the ligand [(cbda) 3- ] constitutes a seven-coordinate, water-soluble, pentagonal bipyramidal Mn(ii) complex (1). The structural analysis reveals the presence of a water coordinating site in the complex. The complex is thermodynamically very stable, and the stability is not affected by the presence of physiological anions (HCO 3 - , PO 4 3- , and F - ). The pH of the medium exerts a small effect on the stability of the complex. The r 1 relaxivity of 3.02 mM -1 s -1 is exhibited by the complex at 1.41 T, pH ∼7.4, and 25 °C. Phantom images obtained via a clinical MRI BRIVO MR355 system established concentration-dependent signal enhancement by the complex. The cytotoxicity test confirmed complex 1 as a biocompatible potential T 1 -weighted MRI contrast agent.
Todd, S M; Arnold, J C
2016-01-01
It has been proposed that medicinal strains of cannabis and therapeutic preparations would be safer with a more balanced concentration ratio of Δ(9) -tetrahydrocannabinol (THC) to cannabidiol (CBD), as CBD reduces the adverse psychotropic effects of THC. However, our understanding of CBD and THC interactions is limited and the brain circuitry mediating interactions between CBD and THC are unknown. The aim of this study was to investigate whether CBD modulated the functional effects and c-Fos expression induced by THC, using a 1:1 dose ratio that approximates therapeutic strains of cannabis and nabiximols. Male C57BL/6 mice were treated with vehicle, CBD, THC or a combination of CBD and THC (10 mg·kg(-1) i.p. for both cannabinoids) to examine effects on locomotor activity, anxiety-related behaviour, body temperature and brain c-Fos expression (a marker of neuronal activation). CBD potentiated THC-induced locomotor suppression but reduced the hypothermic and anxiogenic effects of THC. CBD alone had no effect on these measures. THC increased brain activation as measured by c-Fos expression in 11 of the 35 brain regions studied. CBD co-administration suppressed THC-induced c-Fos expression in six of these brain regions. This effect was most pronounced in the medial preoptic nucleus and lateral periaqueductal gray. Treatment with CBD alone diminished c-Fos expression only in the central nucleus of the amygdala compared with vehicle. These data confirm that CBD modulated the pharmacological actions of THC and provide new information regarding brain regions involved in the interaction between CBD and THC. © 2015 The British Pharmacological Society.
Martínez-Pinilla, Eva; Varani, Katia; Reyes-Resina, Irene; Angelats, Edgar; Vincenzi, Fabrizio; Ferreiro-Vera, Carlos; Oyarzabal, Julen; Canela, Enric I; Lanciego, José L; Nadal, Xavier; Navarro, Gemma; Borea, Pier Andrea; Franco, Rafael
2017-01-01
The mechanism of action of cannabidiol (CBD), the main non-psychotropic component of Cannabis sativa L., is not completely understood. First assumed that the compound was acting via cannabinoid CB 2 receptors (CB 2 Rs) it is now suggested that it interacts with non-cannabinoid G-protein-coupled receptors (GPCRs); however, CBD does not bind with high affinity to the orthosteric site of any GPCR. To search for alternative explanations, we tested CBD as a potential allosteric ligand of CB 2 R. Radioligand and non-radioactive homogeneous binding, intracellular cAMP determination and ERK1/2 phosphorylation assays were undertaken in heterologous systems expressing the human version of CB 2 R. Using membrane preparations from CB 2 R-expressing HEK-293T (human embryonic kidney 293T) cells, we confirmed that CBD does not bind with high affinity to the orthosteric site of the human CB 2 R where the synthetic cannabinoid, [ 3 H]-WIN 55,212-2, binds. CBD was, however, able to produce minor but consistent reduction in the homogeneous binding assays in living cells using the fluorophore-conjugated CB 2 R-selective compound, CM-157. The effect on binding to CB 2 R-expressing living cells was different to that exerted by the orthosteric antagonist, SR144528, which decreased the maximum binding without changing the K D . CBD at nanomolar concentrations was also able to significantly reduce the effect of the selective CB 2 R agonist, JWH133, on forskolin-induced intracellular cAMP levels and on activation of the MAP kinase pathway. These results may help to understand CBD mode of action and may serve to revisit its therapeutic possibilities.
Martínez-Pinilla, Eva; Varani, Katia; Reyes-Resina, Irene; Angelats, Edgar; Vincenzi, Fabrizio; Ferreiro-Vera, Carlos; Oyarzabal, Julen; Canela, Enric I.; Lanciego, José L.; Nadal, Xavier; Navarro, Gemma; Borea, Pier Andrea; Franco, Rafael
2017-01-01
The mechanism of action of cannabidiol (CBD), the main non-psychotropic component of Cannabis sativa L., is not completely understood. First assumed that the compound was acting via cannabinoid CB2 receptors (CB2Rs) it is now suggested that it interacts with non-cannabinoid G-protein-coupled receptors (GPCRs); however, CBD does not bind with high affinity to the orthosteric site of any GPCR. To search for alternative explanations, we tested CBD as a potential allosteric ligand of CB2R. Radioligand and non-radioactive homogeneous binding, intracellular cAMP determination and ERK1/2 phosphorylation assays were undertaken in heterologous systems expressing the human version of CB2R. Using membrane preparations from CB2R-expressing HEK-293T (human embryonic kidney 293T) cells, we confirmed that CBD does not bind with high affinity to the orthosteric site of the human CB2R where the synthetic cannabinoid, [3H]-WIN 55,212-2, binds. CBD was, however, able to produce minor but consistent reduction in the homogeneous binding assays in living cells using the fluorophore-conjugated CB2R-selective compound, CM-157. The effect on binding to CB2R-expressing living cells was different to that exerted by the orthosteric antagonist, SR144528, which decreased the maximum binding without changing the KD. CBD at nanomolar concentrations was also able to significantly reduce the effect of the selective CB2R agonist, JWH133, on forskolin-induced intracellular cAMP levels and on activation of the MAP kinase pathway. These results may help to understand CBD mode of action and may serve to revisit its therapeutic possibilities. PMID:29109685
Kogan, Natalya M; Melamed, Eitan; Wasserman, Elad; Raphael, Bitya; Breuer, Aviva; Stok, Kathryn S; Sondergaard, Rachel; Escudero, Ana V Villarreal; Baraghithy, Saja; Attar-Namdar, Malka; Friedlander-Barenboim, Silvina; Mathavan, Neashan; Isaksson, Hanna; Mechoulam, Raphael; Müller, Ralph; Bajayo, Alon; Gabet, Yankel; Bab, Itai
2015-10-01
Cannabinoid ligands regulate bone mass, but skeletal effects of cannabis (marijuana and hashish) have not been reported. Bone fractures are highly prevalent, involving prolonged immobilization and discomfort. Here we report that the major non-psychoactive cannabis constituent, cannabidiol (CBD), enhances the biomechanical properties of healing rat mid-femoral fractures. The maximal load and work-to-failure, but not the stiffness, of femurs from rats given a mixture of CBD and Δ(9) -tetrahydrocannabinol (THC) for 8 weeks were markedly increased by CBD. This effect is not shared by THC (the psychoactive component of cannabis), but THC potentiates the CBD stimulated work-to-failure at 6 weeks postfracture followed by attenuation of the CBD effect at 8 weeks. Using micro-computed tomography (μCT), the fracture callus size was transiently reduced by either CBD or THC 4 weeks after fracture but reached control level after 6 and 8 weeks. The callus material density was unaffected by CBD and/or THC. By contrast, CBD stimulated mRNA expression of Plod1 in primary osteoblast cultures, encoding an enzyme that catalyzes lysine hydroxylation, which is in turn involved in collagen crosslinking and stabilization. Using Fourier transform infrared (FTIR) spectroscopy we confirmed the increase in collagen crosslink ratio by CBD, which is likely to contribute to the improved biomechanical properties of the fracture callus. Taken together, these data show that CBD leads to improvement in fracture healing and demonstrate the critical mechanical role of collagen crosslinking enzymes. © 2015 American Society for Bone and Mineral Research.
Taffe, Michael A; Creehan, Kevin M; Vandewater, Sophia A
2015-01-01
Background and Purpose Growing evidence shows cannabidiol (CBD) modulates some of the effects of Δ9-tetrahydrocannabinol (THC). CBD is a constituent of some strains of recreational cannabis but its content is highly variable. High CBD strains may have less memory-impairing effects than low-CBD strains and CBD can reverse behavioural effects of THC in monkeys. CBD/THC interactions in rodents are more complicated as CBD can attenuate or exacerbate the effects of THC. This study was undertaken to determine if CBD could reverse hypothermia or hypolocomotor effects caused by THC in rats. Experimental Approaches Male Sprague-Dawley rats were prepared with radiotelemetry devices and then given doses of THC (10–30 mg·kg−1, i.p.) with or without CBD. Experiments determined the effect of simultaneous or 30 min pretreatment with CBD in a 1:1 ratio with THC, as well as the effect of CBD in a 3:1 ratio. Additional experiments determined the effects of pretreatment with the cannabinoid CB1 receptor antagonist SR141716 (rimonabant). Key Results CBD did not attentuate THC-induced hypothermia or hypolocomotion but instead exaggerated these effects in some conditions. The antagonist SR141716 blocked hypolocomotor effects of THC for the first hour after injection and the hypothermia for 6 h; thus validating the pharmacological model. Conclusions and Implications There is no evidence from this study that elevated CBD content in cannabis could provide protection from the physiological effects of THC, in rats. PMID:25425111
Capasso, Raffaele; Aviello, Gabriella; Borrelli, Francesca; Romano, Barbara; Ferro, Matteo; Castaldo, Luigi; Montanaro, Vittorino; Altieri, Vincenzo; Izzo, Angelo A
2011-04-01
To evaluate the effect of a Cannabis sativa extract enriched in cannabidiol (CBD) botanic drug substance (BDS) and pure CBD, on bladder contractility in vitro. Cannabis based-medicines, including CBD-enriched extracts, have been shown to reduce urinary urgency, incontinence episodes, frequency, and nocturia in patients with multiple sclerosis. Strips were cut from male Wistar rats and the human bladder body and placed in organ baths containing Krebs solution. Contractions were induced by electrical field stimulation, acetylcholine, KCl, and α,β-methylene adenosine triphosphate. CBD BDS significantly reduced the contractions induced by acetylcholine, but not those induced with electrical field stimulation, KCl, or α,β-methylene adenosine triphosphate in the isolated rat bladder. The inhibitory effect of CBD BDS was not significantly modified by the cannabinoid or opioid receptor antagonists or by modulators of calcium levels, but it was increased by ruthenium red and capsazepine, 2 transient receptor potential vanilloid type-1 blockers. In humans, CBD BDS and pure CBD significantly reduced acetylcholine-induced contractions, an effect that was not changed by the transient receptor potential vanilloid type-1 blockers. Our data have suggested that CBD BDS reduces cholinergic-mediated contractility and that this effect is modulated by transient receptor potential vanilloid type-1 in rats but not in humans. CBD is the chemical ingredient of CBD BDS responsible for such activity. If confirmed in vivo, such results could provide a pharmacologic basis to explain, at least in part, the efficacy of Cannabis medicines in reducing incontinence episodes in patients with multiple sclerosis. Copyright © 2011 Elsevier Inc. All rights reserved.
Cheng, David; Spiro, Adena S; Jenner, Andrew M; Garner, Brett; Karl, Tim
2014-01-01
Impairments in cognitive ability and widespread pathophysiological changes caused by neurotoxicity, neuroinflammation, oxidative damage, and altered cholesterol homeostasis are associated with Alzheimer's disease (AD). Cannabidiol (CBD) has been shown to reverse cognitive deficits of AD transgenic mice and to exert neuroprotective, anti-oxidative, and anti-inflammatory properties in vitro and in vivo. Here we evaluate the preventative properties of long-term CBD treatment in male AβPPSwe/PS1ΔE9 (AβPP × PS1) mice, a transgenic model of AD. Control and AD transgenic mice were treated orally from 2.5 months of age with CBD (20 mg/kg) daily for 8 months. Mice were then assessed in the social preference test, elevated plus maze, and fear conditioning paradigms, before cortical and hippocampal tissues were analyzed for amyloid load, oxidative damage, cholesterol, phytosterols, and inflammation. We found that AβPP × PS1 mice developed a social recognition deficit, which was prevented by CBD treatment. CBD had no impact on anxiety or associative learning. The prevention of the social recognition deficit was not associated with any changes in amyloid load or oxidative damage. However, the study revealed a subtle impact of CBD on neuroinflammation, cholesterol, and dietary phytosterol retention, which deserves further investigation. This study is the first to demonstrate CBD's ability to prevent the development of a social recognition deficit in AD transgenic mice. Our findings provide the first evidence that CBD may have potential as a preventative treatment for AD with a particular relevance for symptoms of social withdrawal and facial recognition.
Use of the Classroom Behavior Description Checklist in Preschool Developmental Screening.
ERIC Educational Resources Information Center
Aaronson, May; And Others
The Classroom Behavior Description (CBD)--a brief 10-item checklist on which teachers rate preschool childrens' behaviors which are considered most likely to influence school performance--was developed on the basis of earlier extensive research with more comprehensive children's behavior inventories. Results are reported of studies of teachers'…
Sun, Shanshan; Hu, Fangyuan; Wu, Jihong; Zhang, Shenghai
2017-04-01
Deficient bioenergetics and diminished redox conservation have been implicated in the development of cerebral ischemia/reperfusion injury. In this study, the mechanisms underlying the neuroprotective effects of cannabidiol (CBD), a nonpsychotropic compound derived from Cannabis sativa with FDA-approved antiepilepsy properties, were studied in vitro using an oxygen-glucose-deprivation/reperfusion (OGD/R) model in a mouse hippocampal neuronal cell line. CBD supplementation during reperfusion rescued OGD/R-induced cell death, attenuated intracellular ROS generation and lipid peroxidation, and simultaneously reversed the abnormal changes in antioxidant biomarkers. Using the Seahorse XF e 24 Extracellular Flux Analyzer, we found that CBD significantly improved basal respiration, ATP-linked oxygen consumption rate, and the spare respiratory capacity, and augmented glucose consumption in OGD/R-injured neurons. The activation of glucose 6-phosphate dehydrogenase and the preservation of the NADPH/NADP + ratio implies that the pentose-phosphate pathway is stimulated by CBD, thus protecting hippocampal neurons from OGD/R injury. This study is the first to document the neuroprotective effects of CBD against OGD/R insult, which depend in part on attenuating oxidative stress, enhancing mitochondrial bioenergetics, and modulating glucose metabolism via the pentose-phosphate pathway, thus preserving both energy and the redox balance. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Atsmon, Jacob; Heffetz, Daphna; Deutsch, Lisa; Deutsch, Frederic; Sacks, Hagit
2017-11-10
Cannabidiol (CBD) is the main nonpsychoactive component of the cannabis plant. It has been associated with antiseizure, antioxidant, neuroprotective, anxiolytic, anti-inflammatory, antidepressant, and antipsychotic effects. PTL101 is an oral gelatin matrix pellets technology-based formulation containing highly purified CBD embedded in seamless gelatin matrix beadlets. Study objectives were to evaluate the safety and tolerability of PTL101 containing 10 and 100 mg CBD, following single administrations to healthy volunteers and to compare the pharmacokinetic profiles and relative bioavailability of CBD with Sativex oromucosal spray (the reference product) in a randomized, crossover study design. Administration of PTL101 containing 10 CBD, led to a 1.7-fold higher C max and 1.3-fold higher AUC compared with the oromucosal spray. T max following both modes of delivery was 3-3.5 hours postdosing. CBD exhibited about a 1-hour lag in absorption when delivered via PTL101. A 10-fold increase in the dose resulted in an ∼15-fold increase in C max and AUC. Bioavailability of CBD in the 10-mg PTL101 dose was 134% relative to the reference spray. PTL101 is a pharmaceutical-grade, user-friendly oral formulation that demonstrated safe and efficient delivery of CBD and therefore could be an attractive candidate for therapeutic indications. © 2017, The American College of Clinical Pharmacology.
Decreased glial reactivity could be involved in the antipsychotic-like effect of cannabidiol.
Gomes, Felipe V; Llorente, Ricardo; Del Bel, Elaine A; Viveros, Maria-Paz; López-Gallardo, Meritxell; Guimarães, Francisco S
2015-05-01
NMDA receptor hypofunction could be involved, in addition to the positive, also to the negative symptoms and cognitive deficits found in schizophrenia patients. An increasing number of data has linked schizophrenia with neuroinflammatory conditions and glial cells, such as microglia and astrocytes, have been related to the pathogenesis of schizophrenia. Cannabidiol (CBD), a major non-psychotomimetic constituent of Cannabis sativa with anti-inflammatory and neuroprotective properties induces antipsychotic-like effects. The present study evaluated if repeated treatment with CBD (30 and 60 mg/kg) would attenuate the behavioral and glial changes observed in an animal model of schizophrenia based on the NMDA receptor hypofunction (chronic administration of MK-801, an NMDA receptor antagonist, for 28 days). The behavioral alterations were evaluated in the social interaction and novel object recognition (NOR) tests. These tests have been widely used to study changes related to negative symptoms and cognitive deficits of schizophrenia, respectively. We also evaluated changes in NeuN (a neuronal marker), Iba-1 (a microglia marker) and GFAP (an astrocyte marker) expression in the medial prefrontal cortex (mPFC), dorsal striatum, nucleus accumbens core and shell, and dorsal hippocampus by immunohistochemistry. CBD effects were compared to those induced by the atypical antipsychotic clozapine. Repeated MK-801 administration impaired performance in the social interaction and NOR tests. It also increased the number of GFAP-positive astrocytes in the mPFC and the percentage of Iba-1-positive microglia cells with a reactive phenotype in the mPFC and dorsal hippocampus without changing the number of Iba-1-positive cells. No change in the number of NeuN-positive cells was observed. Both the behavioral disruptions and the changes in expression of glial markers induced by MK-801 treatment were attenuated by repeated treatment with CBD or clozapine. These data reinforces the proposal
Kozela, Ewa; Haj, Christeene; Hanuš, Lumir; Chourasia, Mukesh; Shurki, Avital; Juknat, Ana; Kaushansky, Nathali; Mechoulam, Raphael; Vogel, Zvi
2016-01-01
Cannabidiol (CBD), the non-psychoactive cannabinoid, has been previously shown by us to decrease peripheral inflammation and neuroinflammation in mouse experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). Here we have studied the anti-inflammatory effects of newly synthesized derivatives of natural (-)-CBD ((-)-8,9-dihydro-7-hydroxy-CBD; HU-446) and of synthetic (+)-CBD ((+)-8,9-dihydro-7-hydroxy-CBD; HU-465) on activated myelin oligodendrocyte glycoprotein (MOG)35-55-specific mouse encephalitogenic T cells (T(MOG) ) driving EAE/MS-like pathologies. Binding assays followed by molecular modeling revealed that HU-446 has negligible affinity toward the cannabinoid CB1 and CB2 receptors while HU-465 binds to both CB1 and CB2 receptors at the high nanomolar concentrations (Ki = 76.7 ± 5.8 nm and 12.1 ± 2.3 nm, respectively). Both, HU-446 and HU-465, at 5 and 10 μm (but not at 0.1 and 1 μm), inhibited the MOG35-55-induced proliferation of autoreactive T(MOG) cells via CB1/CB2 receptor independent mechanisms. Moreover, both HU-446 and HU-465, at 5 and 10 μm, inhibited the release of IL-17, a key autoimmune cytokine, from MOG35-55-stimulated T(MOG) cells. These results suggest that HU-446 and HU-465 have anti-inflammatory potential in inflammatory and autoimmune diseases. © 2015 John Wiley & Sons A/S.
Mukhopadhyay, Partha; Rajesh, Mohanraj; Horváth, Béla; Bátkai, Sándor; Park, Ogyi; Tanashian, Galin; Gao, Rachel Y; Patel, Vivek; Wink, David A.; Liaudet, Lucas; Haskó, György; Mechoulam, Raphael; Pacher, Pál
2011-01-01
Ischemia-reperfusion (I/R) is a pivotal mechanism of liver damage following liver transplantation or hepatic surgery. We have investigated the effects of cannabidiol(CBD), the non-psychotropic constituent of marijuana, in a mouse model of hepatic I/R injury. I/R triggered time-dependent increases/changes in markers of liver injury (serum transaminases), hepatic oxidative/nitrative stress (4-hydroxy-2-nonenal, nitrotyrosine content/staining, gp91phox and inducible nitric oxide synthase mRNA), mitochondrial dysfunction (decreased complex I activity), inflammation (tumor necrosis factor alpha (TNF-α), cyclooxygenase 2, macrophage inflammatory protein-1α/2, inter-cellular adhesion molecule 1 mRNA levels, tissue neutrophil infiltration, nuclear factor kappa B (NF-KB) activation), stress signaling (p38MAPK and JNK) and cell death (DNA fragmentation, PARP activity, and TUNEL). CBD significantly reduced the extent of liver inflammation, oxidative/nitrative stress and cell death, and also attenuated the bacterial endotoxin-triggered NF-KB activation and TNF-α production in isolated Kupffer cells, likewise the adhesion molecules expression in primary human liver sinusoidal endothelial cells stimulated with TNF-α, and attachment of human neutrophils to the activated endothelium. These protective effects were preserved in CB2 knockout mice and were not prevented by CB1/2 antagonists in vitro. Thus, CBD may represent a novel, protective strategy against I/R injury by attenuating key inflammatory pathways and oxidative/nitrative tissue injury, independent from classical CB1/2 receptors. PMID:21362471
Wakeford, Alison G P; Wetzell, Bradley B; Pomfrey, Rebecca L; Clasen, Matthew M; Taylor, William W; Hempel, Briana J; Riley, Anthony L
2017-08-01
Despite widespread cannabis use in humans, few rodent models exist demonstrating significant Δ⁹-tetrahydrocannabinol (THC) self-administration, possibly due to THC's co-occurring aversive effects, which impact drug reinforcement. Cannabis contains a number of phytocannabinoids in addition to THC, one of which, cannabidiol (CBD), has been reported to antagonize some of the aversive effects of THC. Given such effects of CBD, it is possible that it might influence THC intravenous self-administration in rodents. Accordingly, male and female Long-Evans rats were trained to self-administer THC over a 3-week period and then were assessed for the effects of CBD on responding for THC at 1:1 and 1:10 dose ratios or for the establishment of cocaine self-administration (as a positive control for drug self-administration). Consistent with previous research, THC self-administration was modest and only evident in a subset of animals (and unaffected by sex). Cocaine self-administration was high and evident in the majority of animals tested, indicating that the design was sensitive to drug reinforcement. There was no effect of CBD pretreatment on THC intravenous self-administration at any CBD:THC dose ratio. Future developments of animal models of THC self-administration and the examination of factors that affect its display remain important to establish procedures designed to assess the basis for and treatment of cannabis use and abuse. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Neuroprotective antioxidants from marijuana.
Hampson, A J; Grimaldi, M; Lolic, M; Wink, D; Rosenthal, R; Axelrod, J
2000-01-01
Cannabidiol and other cannabinoids were examined as neuroprotectants in rat cortical neuron cultures exposed to toxic levels of the neurotransmitter, glutamate. The psychotropic cannabinoid receptor agonist delta 9-tetrahydrocannabinol (THC) and cannabidiol, (a non-psychoactive constituent of marijuana), both reduced NMDA, AMPA and kainate receptor mediated neurotoxicities. Neuroprotection was not affected by cannabinoid receptor antagonist, indicating a (cannabinoid) receptor-independent mechanism of action. Glutamate toxicity can be reduced by antioxidants. Using cyclic voltametry and a fenton reaction based system, it was demonstrated that Cannabidiol, THC and other cannabinoids are potent antioxidants. As evidence that cannabinoids can act as an antioxidants in neuronal cultures, cannabidiol was demonstrated to reduce hydroperoxide toxicity in neurons. In a head to head trial of the abilities of various antioxidants to prevent glutamate toxicity, cannabidiol was superior to both alpha-tocopherol and ascorbate in protective capacity. Recent preliminary studies in a rat model of focal cerebral ischemia suggest that cannabidiol may be at least as effective in vivo as seen in these in vitro studies.
Campos, A C; Brant, F; Miranda, A S; Machado, F S; Teixeira, A L
2015-03-19
Cerebral malaria (CM) is a severe complication resulting from Plasmodium falciparum infection that might cause permanent neurological deficits. Cannabidiol (CBD) is a nonpsychotomimetic compound of Cannabis sativa with neuroprotective properties. In the present work, we evaluated the effects of CBD in a murine model of CM. Female mice were infected with Plasmodium berghei ANKA (PbA) and treated with CBD (30mg/kg/day - 3 or 7days i.p.) or vehicle. On 5th day-post-infection (dpi), at the peak of the disease), animals were treated with single or repeated doses of Artesunate, an antimalarial drug. All groups were tested for memory impairment (Novel Object Recognition or Morris Water Maze) and anxiety-like behaviors (Open field or elevated plus maze test) in different stages of the disease (at the peak or after the complete clearance of the disease). Th1/Th2 cytokines and neurotrophins (brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF)) were measured in the prefrontal cortex and hippocampus of experimental groups. PbA-infected mice displayed memory deficits and exhibited increase in anxiety-like behaviors on the 5dpi or after the clearance of the parasitemia, effects prevented by CBD treatment. On 5dpi, TNF-α and IL-6 increased in the hippocampus, while only IL-6 increased in the prefrontal cortex. CBD treatment resulted in an increase in BDNF expression in the hippocampus and decreased levels of proinflammatory cytokines in the hippocampus (TNF-α) and prefrontal cortex (IL-6). Our results indicate that CBD exhibits neuroprotective effects in CM model and might be useful as an adjunctive therapy to prevent neurological symptoms following this disease. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Giacoppo, S; Soundara Rajan, T; Galuppo, M; Pollastro, F; Grassi, G; Bramanti, P; Mazzon, E
2015-12-01
Multiple Sclerosis (MS) is a global concern disease leading to a progressive, chronic and demyelinating condition, affecting the central nervous system (CNS). The pathology has an inflammatory/autoimmune origin; nevertheless, neuronal cell death mechanisms are not to be underestimated. The present study was designed to test the effects of intraperitoneal administration of cannabidiol (CBD), the main non-psychotropic cannabinoid of Cannabis sativa (CS), in an experimental model of MS. The aim is to evaluate the capability of CBD administration to thwart the cascade of mediators involved in MS-induced apoptosis. Experimental Autoimmune Encephalomyelitis (EAE) was induced by immunization with myelin oligodendroglial glycoprotein (MOG)35-55 peptide in mice. After immunization, mice were observed daily for signs of EAE and weight loss. Disease signs were evaluated using a standardized scoring system. Immunohistochemical and Western blot assessments of key apoptotic markers reveal that CBD treatment is able to avoid Fas pathway activation, phospho-ERK p42/44 and cleaved caspase-3 triggering as well as alterations in mitochondrial permeability due to Bax/Bcl-2 unbalance. Moreover, CBD interferes with p53-p21 axis activation. As results, the absence of tissue apobody formation in spinal cord tissues of EAE-mice treated with CBD was established. Most of therapeutic properties of CS are currently ascribed to the psychotropic effects of phenylterpenoid delta-9 tetrahydrocannabinol. We have demonstrated that, alone, purified CBD possesses an anti-apoptotic power against the neurodegenerative processes underlying MS development. This represents an interesting new profile of CBD that could lead to its introduction in the clinical management of MS.
Todd, S M
2015-01-01
Background and Purpose It has been proposed that medicinal strains of cannabis and therapeutic preparations would be safer with a more balanced concentration ratio of Δ9‐tetrahydrocannabinol (THC) to cannabidiol (CBD), as CBD reduces the adverse psychotropic effects of THC. However, our understanding of CBD and THC interactions is limited and the brain circuitry mediating interactions between CBD and THC are unknown. The aim of this study was to investigate whether CBD modulated the functional effects and c‐Fos expression induced by THC, using a 1:1 dose ratio that approximates therapeutic strains of cannabis and nabiximols. Experimental Approach Male C57BL/6 mice were treated with vehicle, CBD, THC or a combination of CBD and THC (10 mg·kg−1 i.p. for both cannabinoids) to examine effects on locomotor activity, anxiety‐related behaviour, body temperature and brain c‐Fos expression (a marker of neuronal activation). Key Results CBD potentiated THC‐induced locomotor suppression but reduced the hypothermic and anxiogenic effects of THC. CBD alone had no effect on these measures. THC increased brain activation as measured by c‐Fos expression in 11 of the 35 brain regions studied. CBD co‐administration suppressed THC‐induced c‐Fos expression in six of these brain regions. This effect was most pronounced in the medial preoptic nucleus and lateral periaqueductal gray. Treatment with CBD alone diminished c‐Fos expression only in the central nucleus of the amygdala compared with vehicle. Conclusions and Implications These data confirm that CBD modulated the pharmacological actions of THC and provide new information regarding brain regions involved in the interaction between CBD and THC. PMID:26377899
Arnold, J C; Boucher, A A; Karl, T
2012-01-01
The link between cannabis and psychosis has often been debated with polarized views on the topic. There is substantial epidemiological evidence showing that cannabis increases the risk of psychosis, whereas other research suggests that schizophrenia patients self-medicate with the substance. These conflicting accounts may at least be partially explained by the two phytocannabinoids cannabidiol (CBD) and Δ(9)-tetrahydrocannabinol (THC) and their opposing actions on schizophrenia-related symptoms. In the present review we will first focus on how traditional rodent models of schizophrenia have been used to improve our understanding of the propsychotic actions of THC and the antipsychotic actions of CBD. We will also review novel rodent models used to address genetic vulnerability to cannabis-induced schizophrenia and show that specific genes are being uncovered that modulate cannabinoid action (e.g. the schizophrenia susceptibility gene neuregulin 1). We will also review rodent studies that have addressed interactions between THC and CBD. These animal studies underscore great complexity with some studies showing that CBD antagonises the neurobehavioural effects of THC, while others show the opposite, that CBD potentiates the actions of THC. Various mechanisms are put forth to explain these divergent effects such as CBD antagonism at central CB1 receptors or that CBD inhibits proteins that regulate THC disposition and metabolism (e.g. the ABC transporter, P-glycoprotein).
Cannabidiol Does Not Convert to Δ9-Tetrahydrocannabinol in an In Vivo Animal Model
Wray, Louise; Stott, Colin; Jones, Nicholas; Wright, Stephen
2017-01-01
Abstract Introduction: Cannabidiol (CBD) can convert to Δ9-tetrahydrocannabinol (THC) in vitro with prolonged exposure to simulated gastric fluid; however, in vitro conditions may not be representative of the in vivo gut environment. Using the minipig, we investigated whether enteral CBD converts to THC in vivo. Materials and Methods: Synthetic CBD (100 mg/mL) was administered orally in a sesame oil formulation twice daily to minipigs (N=3) in 15 mg/kg doses for 5 consecutive days. Blood samples were taken before and 1, 2, 4, and 6 h after morning doses on Days 1 and 5. Six hours after the final dose on Day 5, the animals were euthanized, and samples of gastrointestinal (GI) tract contents were obtained. Liquid chromatography with tandem mass spectrometry analysis determined CBD, THC, and 11-hydroxy-THC (11-OH-THC) concentrations. Lower limits of quantification: plasma CBD=1 ng/mL, plasma THC and 11-OH-THC=0.5 ng/mL, GI tract CBD=2 ng/mL, and GI tract THC and 11-OH-THC=1 ng/mL. Results: THC and 11-OH-THC were undetectable in all plasma samples. Maximum plasma concentrations (Cmax) of CBD were observed between 1 and 4 h on Days 1 and 5. CBD was present in plasma 6 h after administration on Days 1 (mean 33.6 ng/mL) and 5 (mean 98.8 ng/mL). Mean Cmax CBD values, 328 ng/mL (Day 1) and 259 ng/mL (Day 5), were within range of those achieved in clinical studies. Mean CBD exposure over 6 h was similar on Days 1 (921 h·ng/mL) and 5 (881 h·ng/mL). THC and 11-OH-THC were not detected in all GI tract samples. Mean CBD concentrations reached 84,500 ng/mL in the stomach and 43,900 ng/mL in the small intestine. Conclusions: Findings of the present study show that orally dosed CBD, yielding clinically relevant plasma exposures, does not convert to THC in the minipig, a species predictive of human GI tract function. PMID:29285522
Cannabidiol Does Not Convert to Δ9-Tetrahydrocannabinol in an In Vivo Animal Model.
Wray, Louise; Stott, Colin; Jones, Nicholas; Wright, Stephen
2017-01-01
Introduction: Cannabidiol (CBD) can convert to Δ 9 -tetrahydrocannabinol (THC) in vitro with prolonged exposure to simulated gastric fluid; however, in vitro conditions may not be representative of the in vivo gut environment. Using the minipig, we investigated whether enteral CBD converts to THC in vivo . Materials and Methods: Synthetic CBD (100 mg/mL) was administered orally in a sesame oil formulation twice daily to minipigs ( N =3) in 15 mg/kg doses for 5 consecutive days. Blood samples were taken before and 1, 2, 4, and 6 h after morning doses on Days 1 and 5. Six hours after the final dose on Day 5, the animals were euthanized, and samples of gastrointestinal (GI) tract contents were obtained. Liquid chromatography with tandem mass spectrometry analysis determined CBD, THC, and 11-hydroxy-THC (11-OH-THC) concentrations. Lower limits of quantification: plasma CBD=1 ng/mL, plasma THC and 11-OH-THC=0.5 ng/mL, GI tract CBD=2 ng/mL, and GI tract THC and 11-OH-THC=1 ng/mL. Results: THC and 11-OH-THC were undetectable in all plasma samples. Maximum plasma concentrations ( C max ) of CBD were observed between 1 and 4 h on Days 1 and 5. CBD was present in plasma 6 h after administration on Days 1 (mean 33.6 ng/mL) and 5 (mean 98.8 ng/mL). Mean C max CBD values, 328 ng/mL (Day 1) and 259 ng/mL (Day 5), were within range of those achieved in clinical studies. Mean CBD exposure over 6 h was similar on Days 1 (921 h·ng/mL) and 5 (881 h·ng/mL). THC and 11-OH-THC were not detected in all GI tract samples. Mean CBD concentrations reached 84,500 ng/mL in the stomach and 43,900 ng/mL in the small intestine. Conclusions: Findings of the present study show that orally dosed CBD, yielding clinically relevant plasma exposures, does not convert to THC in the minipig, a species predictive of human GI tract function.
Boggs, Douglas L; Surti, Toral; Gupta, Aarti; Gupta, Swapnil; Niciu, Mark; Pittman, Brian; Schnakenberg Martin, Ashley M; Thurnauer, Halle; Davies, Andrew; D'Souza, Deepak C; Ranganathan, Mohini
2018-07-01
Preliminary evidence suggests that cannabidiol (CBD) may be effective in the treatment of neurodegenerative disorders; however, CBD has never been evaluated for the treatment of cognitive impairments associated with schizophrenia (CIAS). This study compared the cognitive, symptomatic, and side effects of CBD versus placebo in a clinical trial. This study was a 6-week, randomized, placebo-controlled, parallel group, fixed-dose study of oral CBD (600 mg/day) or placebo augmentation in 36 stable antipsychotic-treated patients diagnosed with chronic schizophrenia. All subjects completed the MATRICS Consensus Cognitive Battery (MCCB) at baseline and at end of 6 weeks of treatment. Psychotic symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS) at baseline and biweekly. There was no main effect of time or drug on MCCB Composite score, but a significant drug × time effect was observed (p = 0.02). Post hoc analyses revealed that only placebo-treated subjects improved over time (p = 0.03). There was a significant decrease in PANSS Total scores over time (p < 0. 0001) but there was no significant drug × time interaction (p = 0.18). Side effects were similar between CBD and placebo, with the one exception being sedation, which was more prevalent in the CBD group. At the dose studied, CBD augmentation was not associated with an improvement in MCCB or PANSS scores in stable antipsychotic-treated outpatients with schizophrenia. Overall, CBD was well tolerated with no worsening of mood, suicidality, or movement side effects. https://clinicaltrials.gov/ct2/show/NCT00588731.
Bergamaschi, Mateus M; Queiroz, Regina Helena Costa; Chagas, Marcos Hortes Nisihara; de Oliveira, Danielle Chaves Gomes; De Martinis, Bruno Spinosa; Kapczinski, Flávio; Quevedo, João; Roesler, Rafael; Schröder, Nadja; Nardi, Antonio E; Martín-Santos, Rocio; Hallak, Jaime Eduardo Cecílio; Zuardi, Antonio Waldo; Crippa, José Alexandre S
2011-05-01
Generalized Social Anxiety Disorder (SAD) is one of the most common anxiety conditions with impairment in social life. Cannabidiol (CBD), one major non-psychotomimetic compound of the cannabis sativa plant, has shown anxiolytic effects both in humans and in animals. This preliminary study aimed to compare the effects of a simulation public speaking test (SPST) on healthy control (HC) patients and treatment-naïve SAD patients who received a single dose of CBD or placebo. A total of 24 never-treated patients with SAD were allocated to receive either CBD (600 mg; n=12) or placebo (placebo; n=12) in a double-blind randomized design 1 h and a half before the test. The same number of HC (n=12) performed the SPST without receiving any medication. Each volunteer participated in only one experimental session in a double-blind procedure. Subjective ratings on the Visual Analogue Mood Scale (VAMS) and Negative Self-Statement scale (SSPS-N) and physiological measures (blood pressure, heart rate, and skin conductance) were measured at six different time points during the SPST. The results were submitted to a repeated-measures analysis of variance. Pretreatment with CBD significantly reduced anxiety, cognitive impairment and discomfort in their speech performance, and significantly decreased alert in their anticipatory speech. The placebo group presented higher anxiety, cognitive impairment, discomfort, and alert levels when compared with the control group as assessed with the VAMS. The SSPS-N scores evidenced significant increases during the testing of placebo group that was almost abolished in the CBD group. No significant differences were observed between CBD and HC in SSPS-N scores or in the cognitive impairment, discomfort, and alert factors of VAMS. The increase in anxiety induced by the SPST on subjects with SAD was reduced with the use of CBD, resulting in a similar response as the HC.
Libro, Rosaliana; Scionti, Domenico; Diomede, Francesca; Marchisio, Marco; Grassi, Gianpaolo; Pollastro, Federica; Piattelli, Adriano; Bramanti, Placido; Mazzon, Emanuela; Trubiani, Oriana
2016-01-01
Human Gingival Mesenchymal Stem Cells (hGMSCs) are multipotential cells that can expand and differentiate in culture under specific and standardized conditions. In the present study, we have investigated whether in vitro pre-treatment of hGMSCs with Cannabidiol (CBD) can influence their expression profile, improving the therapeutic potential of this cell culture. Following CBD treatment (5 μM) for 24 h, gene expression analysis through Next Generation Sequencing (NGS) has revealed several genes differentially expressed between CBD-treated hGMSCs (CBD-hGMSCs) and control cells (CTR-hGMSCs) that were linked to inflammation and apoptosis. In particular, we have demonstrated that CBD treatment in hGMSCs prevented the activation of the NALP3-inflammasome pathway by suppressing the levels of NALP3, CASP1, and IL18, and in parallel, inhibited apoptosis, as demonstrated by the suppression of Bax. CBD treatment was also able to modulate the expression of the well-known mesenchymal stem cell markers (CD13, CD29, CD73, CD44, CD90, and CD166), and other surface antigens. Specifically, CBD led to the downregulation of genes codifying for antigens involved in the activation of the immune system (CD109, CD151, CD40, CD46, CD59, CD68, CD81, CD82, CD99), while it led to the upregulation of those implicated in the inhibition of the immune responses (CD47, CD55, CD276). In conclusion, the present study will provide a new simple and reproducible method for preconditioning hGMSCs with CBD, before transplantation, as an interesting strategy for improving the hGMSCs molecular phenotype, reducing the risk of immune or inflammatory reactions in the host, and in parallel, for increasing their survival and thus, their long-term therapeutic efficacy. PMID:27932991
Bergamaschi, Mateus M; Queiroz, Regina Helena Costa; Chagas, Marcos Hortes Nisihara; de Oliveira, Danielle Chaves Gomes; De Martinis, Bruno Spinosa; Kapczinski, Flávio; Quevedo, João; Roesler, Rafael; Schröder, Nadja; Nardi, Antonio E; Martín-Santos, Rocio; Hallak, Jaime Eduardo Cecílio; Zuardi, Antonio Waldo; Crippa, José Alexandre S
2011-01-01
Generalized Social Anxiety Disorder (SAD) is one of the most common anxiety conditions with impairment in social life. Cannabidiol (CBD), one major non-psychotomimetic compound of the cannabis sativa plant, has shown anxiolytic effects both in humans and in animals. This preliminary study aimed to compare the effects of a simulation public speaking test (SPST) on healthy control (HC) patients and treatment-naïve SAD patients who received a single dose of CBD or placebo. A total of 24 never-treated patients with SAD were allocated to receive either CBD (600 mg; n=12) or placebo (placebo; n=12) in a double-blind randomized design 1 h and a half before the test. The same number of HC (n=12) performed the SPST without receiving any medication. Each volunteer participated in only one experimental session in a double-blind procedure. Subjective ratings on the Visual Analogue Mood Scale (VAMS) and Negative Self-Statement scale (SSPS-N) and physiological measures (blood pressure, heart rate, and skin conductance) were measured at six different time points during the SPST. The results were submitted to a repeated-measures analysis of variance. Pretreatment with CBD significantly reduced anxiety, cognitive impairment and discomfort in their speech performance, and significantly decreased alert in their anticipatory speech. The placebo group presented higher anxiety, cognitive impairment, discomfort, and alert levels when compared with the control group as assessed with the VAMS. The SSPS-N scores evidenced significant increases during the testing of placebo group that was almost abolished in the CBD group. No significant differences were observed between CBD and HC in SSPS-N scores or in the cognitive impairment, discomfort, and alert factors of VAMS. The increase in anxiety induced by the SPST on subjects with SAD was reduced with the use of CBD, resulting in a similar response as the HC. PMID:21307846
Rimmerman, N; Ben-Hail, D; Porat, Z; Juknat, A; Kozela, E; Daniels, M P; Connelly, P S; Leishman, E; Bradshaw, H B; Shoshan-Barmatz, V; Vogel, Z
2013-01-01
Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that inhibits cell proliferation and induces cell death of cancer cells and activated immune cells. It is not an agonist of the classical CB1/CB2 cannabinoid receptors and the mechanism by which it functions is unknown. Here, we studied the effects of CBD on various mitochondrial functions in BV-2 microglial cells. Our findings indicate that CBD treatment leads to a biphasic increase in intracellular calcium levels and to changes in mitochondrial function and morphology leading to cell death. Density gradient fractionation analysis by mass spectrometry and western blotting showed colocalization of CBD with protein markers of mitochondria. Single-channel recordings of the outer-mitochondrial membrane protein, the voltage-dependent anion channel 1 (VDAC1) functioning in cell energy, metabolic homeostasis and apoptosis revealed that CBD markedly decreases channel conductance. Finally, using microscale thermophoresis, we showed a direct interaction between purified fluorescently labeled VDAC1 and CBD. Thus, VDAC1 seems to serve as a novel mitochondrial target for CBD. The inhibition of VDAC1 by CBD may be responsible for the immunosuppressive and anticancer effects of CBD. PMID:24309936
Hurd, Yasmin L; Yoon, Michelle; Manini, Alex F; Hernandez, Stephanie; Olmedo, Ruben; Ostman, Maria; Jutras-Aswad, Didier
2015-10-01
Multiple cannabinoids derived from the marijuana plant have potential therapeutic benefits but most have not been well investigated, despite the widespread legalization of medical marijuana in the USA and other countries. Therapeutic indications will depend on determinations as to which of the multiple cannabinoids, and other biologically active chemicals that are present in the marijuana plant, can be developed to treat specific symptoms and/or diseases. Such insights are particularly critical for addiction disorders, where different phytocannabinoids appear to induce opposing actions that can confound the development of treatment interventions. Whereas Δ(9)-tetracannabinol has been well documented to be rewarding and to enhance sensitivity to other drugs, cannabidiol (CBD), in contrast, appears to have low reinforcing properties with limited abuse potential and to inhibit drug-seeking behavior. Other considerations such as CBD's anxiolytic properties and minimal adverse side effects also support its potential viability as a treatment option for a variety of symptoms associated with drug addiction. However, significant research is still needed as CBD investigations published to date primarily relate to its effects on opioid drugs, and CBD's efficacy at different phases of the abuse cycle for different classes of addictive substances remain largely understudied. Our paper provides an overview of preclinical animal and human clinical investigations, and presents preliminary clinical data that collectively sets a strong foundation in support of the further exploration of CBD as a therapeutic intervention against opioid relapse. As the legal landscape for medical marijuana unfolds, it is important to distinguish it from "medical CBD" and other specific cannabinoids, that can more appropriately be used to maximize the medicinal potential of the marijuana plant.
Kaplan, Barbara L F; Springs, Alison E B; Kaminski, Norbert E
2008-09-15
Cannabidiol (CBD) is a cannabinoid compound derived from Cannabis Sativa that does not possess high affinity for either the CB1 or CB2 cannabinoid receptors. Similar to other cannabinoids, we demonstrated previously that CBD suppressed interleukin-2 (IL-2) production from phorbol ester plus calcium ionophore (PMA/Io)-activated murine splenocytes. Thus, the focus of the present studies was to further characterize the effect of CBD on immune function. CBD also suppressed IL-2 and interferon-gamma (IFN-gamma) mRNA expression, proliferation, and cell surface expression of the IL-2 receptor alpha chain, CD25. While all of these observations support the fact that CBD suppresses T cell function, we now demonstrate that CBD suppressed IL-2 and IFN-gamma production in purified splenic T cells. CBD also suppressed activator protein-1 (AP-1) and nuclear factor of activated T cells (NFAT) transcriptional activity, which are critical regulators of IL-2 and IFN-gamma. Furthermore, CBD suppressed the T cell-dependent anti-sheep red blood cell immunoglobulin M antibody forming cell (anti-sRBC IgM AFC) response. Finally, using splenocytes derived from CB1(-/-)/CB2(-/-) mice, it was determined that suppression of IL-2 and IFN-gamma and suppression of the in vitro anti-sRBC IgM AFC response occurred independently of both CB1 and CB2. However, the magnitude of the immune response to sRBC was significantly depressed in CB1(-/-)/CB2(-/-) mice. Taken together, these data suggest that CBD suppresses T cell function and that CB1 and/or CB2 play a critical role in the magnitude of the in vitro anti-sRBC IgM AFC response.
Evaluation of Prevalent Phytocannabinoids in the Acetic Acid Model of Visceral Nociception
Booker, Lamont; Naidu, Pattipati S.; Razdan, Raj K.; Mahadevan, Anu; Lichtman, Aron H.
2009-01-01
Considerable preclinical research has demonstrated the efficacy of Δ9-tetrahydrocannabinol (Δ9-THC), the primary psychoactive constituent of Cannabis sativa, in a wide variety of animal models of pain, but few studies have examined other phytocannabinoids. Indeed, other plant-derived cannabinoids, including cannabidiol (CBD), cannabinol (CBN), and cannabichromene (CBC) elicit antinociceptive effects in some assays. In contrast, tetrahydrocannabivarin (THCV), another component of cannabis, antagonizes the pharmacological effects of Δ9-THC. These results suggest that various constituents of this plant may interact in a complex manner to modulate pain. The primary purpose of the present study was to assess the antinociceptive effects of these other prevalent phytocannabinoids in the acetic acid stretching test, a rodent visceral pain model. Of the cannabinoid compounds tested, Δ9-THC and CBN bound to the CB1 receptor and produced antinociceptive effects. The CB1 receptor antagonist, rimonabant, but not the CB2 receptor antagonist, SR144528, blocked the antinociceptive effects of both compounds. Although THCV bound to the CB1 receptor with similar affinity as Δ9-THC, it had no effects when administered alone, but antagonized the antinociceptive effects of Δ9-THC when both drugs were given in combination. Importantly, the antinociceptive effects of Δ9-THC and CBN occurred at lower doses than those necessary to produce locomotor suppression, suggesting motor dysfunction did not account for the decreases in acetic acid-induced abdominal stretching. These data raise the intriguing possibility that other constituents of cannabis can be used to modify the pharmacological effects of Δ9-THC by either eliciting antinociceptive effects (i.e., CBN) or antagonizing (i.e., THCV) the actions of Δ9-THC. PMID:19679411
Cannabinoid Regulation of Acute and Anticipatory Nausea
Rock, Erin M.; Sticht, Martin A.; Limebeer, Cheryl L.; Parker, Linda A.
2016-01-01
Abstract Chemotherapy-induced nausea is one of the most distressing symptoms reported by patients undergoing treatment, and even with the introduction of newer antiemetics such as ondansetron and aprepitant, nausea remains problematic in the clinic. Indeed, when acute nausea is not properly managed, the cues of the clinic can become associated with this distressing symptom resulting in anticipatory nausea for which no effective treatments are available. Clinical trials exploring the potential of exogenous or endogenous cannabinoids to reduce chemotherapy-induced nausea are sparse; therefore, we must rely on the data from pre-clinical rat models of nausea. In this review, we explore the human and pre-clinical animal literature examining the potential for exogenous and endogenous cannabinoid treatments to regulate chemotherapy-induced nausea. The pre-clinical evidence points to a compelling need to evaluate the antinausea potential of cannabidiol, cannabidiolic acid, and treatments that boost the functioning of the endocannabinoid system in human clinical trials. PMID:28861486
Hallak, Jaime E C; Dursun, Serdar M; Bosi, Daniel C; de Macedo, Ligia Ribeiro Horta; Machado-de-Sousa, João Paulo; Abrão, João; Crippa, José A S; McGuire, Phillip; Krystal, John H; Baker, Glen B; Zuardi, Antonio W
2011-01-15
Interactions between glutamatergic and endocannabinoid systems may contribute to schizophrenia, dissociative states, and other psychiatric conditions. Cannabidiol (CBD), a cannabinoid-1/2 (CB1/2) receptor weak partial agonist or antagonist, may play a role in the treatment of schizophrenia. This study tested the hypothesis that CBD would attenuate the behavioral effects of the NMDA receptor antagonist, ketamine, in healthy human subjects. Ten male healthy volunteers were evaluated twice in a randomized order. In both sessions they received ketamine (bolus of 0.26 mg/kg/1 min followed by IV infusion of 0.25mg/kg over 30 min) preceded by either CBD (600 mg) or placebo. Psychopathology was assessed using the Brief Psychiatric Rating Scale (BPRS) and the CADSS (Clinician Administered Dissociative States Scale) at regular intervals from 30 min before to 90 min after ketamine administration. CBD significantly augmented the activating effects of ketamine, as measured by the activation subscales of the BPRS. However, CBD also showed a non-significant trend to reduce ketamine-induced depersonalization, as measured by the CADSS. These data describe a complex pattern of psychopharmacologic interactions between CBD and ketamine at the doses of each agent studied in this experiment. Copyright © 2010 Elsevier B.V. All rights reserved.
Martín-Moreno, Ana María; Reigada, David; Ramírez, Belén G.; Mechoulam, R.; Innamorato, Nadia; Cuadrado, Antonio
2011-01-01
Microglial activation is an invariant feature of Alzheimer's disease (AD). It is noteworthy that cannabinoids are neuroprotective by preventing β-amyloid (Aβ)-induced microglial activation both in vitro and in vivo. On the other hand, the phytocannabinoid cannabidiol (CBD) has shown anti-inflammatory properties in different paradigms. In the present study, we compared the effects of CBD with those of other cannabinoids on microglial cell functions in vitro and on learning behavior and cytokine expression after Aβ intraventricular administration to mice. CBD, (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo-[1,2,3-d,e]-1,4-benzoxazin-6-yl]-1-naphthalenyl-methanone [WIN 55,212-2 (WIN)], a mixed CB1/CB2 agonist, and 1,1-dimethylbutyl-1-deoxy-Δ9-tetrahydrocannabinol [JWH-133 (JWH)], a CB2-selective agonist, concentration-dependently decreased ATP-induced (400 μM) increase in intracellular calcium ([Ca2+]i) in cultured N13 microglial cells and in rat primary microglia. In contrast, 4-[4-(1,1-dimethylheptyl)-2,6-dimethoxyphenyl]-6,6-dimethyl-bicyclo[3.1.1]hept-2-ene-2-methanol [HU-308 (HU)], another CB2 agonist, was without effect. Cannabinoid and adenosine A2A receptors may be involved in the CBD action. CBD- and WIN-promoted primary microglia migration was blocked by CB1 and/or CB2 antagonists. JWH and HU-induced migration was blocked by a CB2 antagonist only. All of the cannabinoids decreased lipopolysaccharide-induced nitrite generation, which was insensitive to cannabinoid antagonism. Finally, both CBD and WIN, after subchronic administration for 3 weeks, were able to prevent learning of a spatial navigation task and cytokine gene expression in β-amyloid-injected mice. In summary, CBD is able to modulate microglial cell function in vitro and induce beneficial effects in an in vivo model of AD. Given that CBD lacks psychoactivity, it may represent a novel therapeutic approach for this neurological disease. PMID:21350020
Oleamide: a fatty acid amide signaling molecule in the cardiovascular system?
Hiley, C Robin; Hoi, Pui Man
2007-01-01
Oleamide (cis-9,10-octadecenoamide), a fatty acid primary amide discovered in the cerebrospinal fluid of sleep-deprived cats, has a variety of actions that give it potential as a signaling molecule, although these actions have not been extensively investigated in the cardiovascular system. The synthetic pathway probably involves synthesis of oleoylglycine and then conversion to oleamide by peptidylglycine alpha-amidating monooxygenase (PAM); breakdown of oleamide is by fatty acid amide hydrolase (FAAH). Oleamide interacts with voltage-gated Na(+) channels and allosterically with GABA(A) and 5-HT(7) receptors as well as having cannabinoid-like actions. The latter have been suggested to be due to potentiation of the effects of endocannabinoids such as anandamide by inhibiting FAAH-mediated hydrolysis. This might underlie an "entourage effect" whereby co-released endogenous nonagonist congeners of endocannabinoids protect the active molecule from hydrolysis by FAAH. However, oleamide has direct agonist actions at CB(1) cannabinoid receptors and also activates the TRPV1 vanilloid receptor. Other actions include inhibition of gap-junctional communication, and this might give oleamide a role in myocardial development. Many of these actions are absent from the trans isomer of 9,10-octadecenoamide. One of the most potent actions of oleamide is vasodilation. In rat small mesenteric artery the response does not involve CB(1) cannabinoid receptors but another pertussis toxin-sensitive, G protein-coupled receptor, as yet unidentified. This receptor is sensitive to rimonabant and O-1918, an antagonist at the putative "abnormal-cannabidiol" or endothelial "anandamide" receptors. Vasodilation is mediated by endothelium-derived nitric oxide, endothelium-dependent hyperpolarization, and also through activation of TRPV1 receptors. A physiological role for oleamide in the heart and circulation has yet to be demonstrated, as has production by cells of the cardiovascular system, but
Solowij, Nadia; Broyd, Samantha J; van Hell, Hendrika H; Hazekamp, Arno
2014-10-16
Significant interest has emerged in the therapeutic and interactive effects of different cannabinoids. Cannabidiol (CBD) has been shown to have anxiolytic and antipsychotic effects with high doses administered orally. We report a series of studies conducted to determine the vaporisation efficiency of high doses of CBD, alone and in combination with ∆9-tetrahydrocannabinol (THC), to achieve faster onset effects in experimental and clinical trials and emulate smoked cannabis. Purified THC and CBD (40 mg/ml and 100 mg/ml respectively) were loaded onto a liquid absorbing pad in a Volcano vaporiser, vaporised and the vapours quantitatively analysed. Preliminary studies determined 200 mg CBD to be the highest dose effectively vaporised at 230 ° C, yielding an availability of approximately 40% in the vapour phase. Six confirmatory studies examined the quantity of each compound delivered when 200 mg or 4 mg CBD was loaded together with 8 mg of THC. THC showed 55% availability when vaporised alone or with low dose CBD, while large variation in the availability of high dose CBD impacted upon the availability of THC when co-administered, with each compound affecting the vaporisation efficiency of the other in a dynamic and dose-dependent manner. We describe optimised protocols that enable delivery of 160 mg CBD through vaporisation. While THC administration by vaporisation is increasingly adopted in experimental studies, often with oral predosing with CBD to examine interactive effects, no studies to date have reported the administration of CBD by vaporisation. We report the detailed methodology aimed at optimising the efficiency of delivery of therapeutic doses of CBD, alone and in combination with THC, by vaporisation. These protocols provide a technical advance that may inform methodology for clinical trials in humans, especially for examining interactions between THC and CBD and for therapeutic applications of CBD. Current Controlled Trials ISRCTN24109245.
Zuardi, Antonio W; Rodrigues, Natália P; Silva, Angélica L; Bernardo, Sandra A; Hallak, Jaime E C; Guimarães, Francisco S; Crippa, José A S
2017-01-01
The purpose of this study was to investigate whether the anxiolytic effect of cannabidiol (CBD) in humans follows the same pattern of an inverted U-shaped dose-effect curve observed in many animal studies. Sixty healthy subjects of both sexes aged between 18 and 35 years were randomly assigned to five groups that received placebo, clonazepam (1 mg), and CBD (100, 300, and 900 mg). The subjects were underwent a test of public speaking in a real situation (TPSRS) where each subject had to speak in front of a group formed by the remaining participants. Each subject completed the anxiety and sedation factors of the Visual Analog Mood Scale and had their blood pressure and heart rate recorded. These measures were obtained in five experimental sessions with 12 volunteers each. Each session had four steps at the following times (minutes) after administration of the drug/placebo, as time 0: -5 (baseline), 80 (pre-test), 153 (speech), and 216 (post-speech). Repeated-measures analyses of variance showed that the TPSRS increased the subjective measures of anxiety, heart rate, and blood pressure. Student-Newman-Keuls test comparisons among the groups in each phase showed significant attenuation in anxiety scores relative to the placebo group in the group treated with clonazepam during the speech phase, and in the clonazepam and CBD 300 mg groups in the post-speech phase. Clonazepam was more sedative than CBD 300 and 900 mg and induced a smaller increase in systolic and diastolic blood pressure than CBD 300 mg. The results confirmed that the acute administration of CBD induced anxiolytic effects with a dose-dependent inverted U-shaped curve in healthy subjects, since the subjective anxiety measures were reduced with CBD 300 mg, but not with CBD 100 and 900 mg, in the post-speech phase.
Zuardi, Antonio W.; Rodrigues, Natália P.; Silva, Angélica L.; Bernardo, Sandra A.; Hallak, Jaime E. C.; Guimarães, Francisco S.; Crippa, José A. S.
2017-01-01
The purpose of this study was to investigate whether the anxiolytic effect of cannabidiol (CBD) in humans follows the same pattern of an inverted U-shaped dose-effect curve observed in many animal studies. Sixty healthy subjects of both sexes aged between 18 and 35 years were randomly assigned to five groups that received placebo, clonazepam (1 mg), and CBD (100, 300, and 900 mg). The subjects were underwent a test of public speaking in a real situation (TPSRS) where each subject had to speak in front of a group formed by the remaining participants. Each subject completed the anxiety and sedation factors of the Visual Analog Mood Scale and had their blood pressure and heart rate recorded. These measures were obtained in five experimental sessions with 12 volunteers each. Each session had four steps at the following times (minutes) after administration of the drug/placebo, as time 0: -5 (baseline), 80 (pre-test), 153 (speech), and 216 (post-speech). Repeated-measures analyses of variance showed that the TPSRS increased the subjective measures of anxiety, heart rate, and blood pressure. Student-Newman-Keuls test comparisons among the groups in each phase showed significant attenuation in anxiety scores relative to the placebo group in the group treated with clonazepam during the speech phase, and in the clonazepam and CBD 300 mg groups in the post-speech phase. Clonazepam was more sedative than CBD 300 and 900 mg and induced a smaller increase in systolic and diastolic blood pressure than CBD 300 mg. The results confirmed that the acute administration of CBD induced anxiolytic effects with a dose-dependent inverted U-shaped curve in healthy subjects, since the subjective anxiety measures were reduced with CBD 300 mg, but not with CBD 100 and 900 mg, in the post-speech phase. PMID:28553229
Deiana, Serena; Watanabe, Akihito; Yamasaki, Yuki; Amada, Naoki; Kikuchi, Tetsuro; Stott, Colin; Riedel, Gernot
2015-12-01
Deficiencies in social activities are hallmarks of numerous brain disorders. With respect to schizophrenia, social withdrawal belongs to the category of negative symptoms and is associated with deficits in the cognitive domain. Here, we used the N-methyl-D-aspartate receptor antagonist dizocilpine (MK-801) for induction of social withdrawal in rats and assessed the efficacy of several atypical antipsychotics with different pharmacological profiles as putative treatment. In addition, we reasoned that the marijuana constituent cannabidiol (CBD) may provide benefit or could be proposed as an adjunct treatment in combination with antipsychotics. Hooded Lister rats were tested in the three-chamber version for social interaction, with an initial novelty phase, followed after 3 min by a short-term recognition memory phase. No drug treatment affected sociability. However, distinct effects on social recognition were revealed. MK-801 reduced social recognition memory at all doses (>0.03 mg/kg). Predosing with aripiprazole dose-dependently (2 or 10 mg/kg) prevented the memory decline, but doses of 0.1 mg/kg risperidone or 1 mg/kg olanzapine did not. Intriguingly, CBD impaired social recognition memory (12 and 30 mg/kg) but did not rescue the MK-801-induced deficits. When CBD was combined with protective doses of aripiprazole (CBD-aripiprazole at 12 : or 5 : 2 mg/kg) the benefit of the antipsychotic was lost. At the same time, activity-related changes in behaviour were excluded as underlying reasons for these pharmacological effects. Collectively, the combined activity of aripiprazole on dopamine D2 and serotonin 5HT1A receptors appears to provide a significant advantage over risperidone and olanzapine with respect to the rescue of cognitive deficits reminiscent of schizophrenia. The differential pharmacological properties of CBD, which are seemingly beneficial in human patients, did not back-translate and rescue the MK-801-induced social memory deficit.
Gobira, Pedro H; Vilela, Luciano R; Gonçalves, Bruno D C; Santos, Rebeca P M; de Oliveira, Antonio C; Vieira, Luciene B; Aguiar, Daniele C; Crippa, José A; Moreira, Fabricio A
2015-09-01
Cannabidiol (CBD), a major non-psychotomimetic constituent of Cannabis sativa, has therapeutic potential for certain psychiatric and neurological disorders. Studies in laboratory animals and limited human trials indicate that CBD has anticonvulsant and neuroprotective properties. Its effects against cocaine neurotoxicity, however, have remained unclear. Thus, the present study tested the hypothesis that CBD protects against cocaine-induced seizures and investigated the underlying mechanisms. CBD (30 mg/kg) pre-treatment increased the latency and reduced the duration of cocaine (75 mg/kg)-induced seizures in mice. The CB1 receptor antagonist, AM251 (1 and 3mg/kg), and the CB2 receptor antagonist, AM630 (2 and 4 mg/kg), failed to reverse this protective effect, suggesting that alternative mechanisms are involved. Synaptosome studies with the hippocampus of drug-treated animals revealed that cocaine increases glutamate release, whereas CBD induces the opposite effect. Finally, the protective effect of this cannabinoid against cocaine-induced seizure was reversed by rapamycin (1 and 5mg/kg), an inhibitor of the mammalian target of rapamycin (mTOR) intracellular pathway. In conclusion, CBD protects against seizures in a model of cocaine intoxication. These effects possibly occur through activation of mTOR with subsequent reduction in glutamate release. CBD should be further investigated as a strategy for alleviating psychostimulant toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.
Genaro, Karina; Fabris, Débora; Arantes, Ana L. F.; Zuardi, Antônio W.; Crippa, José A. S.; Prado, Wiliam A.
2017-01-01
Background: Pain involves different brain regions and is critically determined by emotional processing. Among other areas, the rostral anterior cingulate cortex (rACC) is implicated in the processing of affective pain. Drugs that interfere with the endocannabinoid system are alternatives for the management of clinical pain. Cannabidiol (CBD), a phytocannabinoid found in Cannabis sativa, has been utilized in preclinical and clinical studies for the treatment of pain. Herein, we evaluate the effects of CBD, injected either systemically or locally into the rACC, on mechanical allodynia in a postoperative pain model and on the negative reinforcement produced by relief of spontaneous incision pain. Additionally, we explored whether CBD underlies the reward of pain relief after systemic or rACC injection. Methods and Results: Male Wistar rats were submitted to a model of incision pain. All rats had mechanical allodynia, which was less intense after intraperitoneal CBD (3 and 10 mg/kg). Conditioned place preference (CPP) paradigm was used to assess negative reinforcement. Intraperitoneal CBD (1 and 3 mg/kg) inverted the CPP produced by peripheral nerve block even at doses that do not change mechanical allodynia. CBD (10 to 40 nmol/0.25 μL) injected into the rACC reduced mechanical allodynia in a dose-dependent manner. CBD (5 nmol/0.25 μL) did not change mechanical allodynia, but reduced peripheral nerve block-induced CPP, and the higher doses inverted the CPP. Additionally, CBD injected systemically or into the rACC at doses that did not change the incision pain evoked by mechanical stimulation significantly produced CPP by itself. Therefore, a non-rewarding dose of CBD in sham-incised rats becomes rewarding in incised rats, presumably because of pain relief or reduction of pain aversiveness. Conclusion: The study provides evidence that CBD influences different dimensions of the response of rats to a surgical incision, and the results establish the rACC as a brain area
Feng, Yuanbo; Chen, Feng; Yin, Ting; Xia, Qian; Liu, Yewei; Huang, Gang; Zhang, Jian; Oyen, Raymond; Ni, Yicheng
2015-10-01
Cannabidiol (CBD) has anti-inflammatory effects. We explored its therapeutic effects on cardiac ischemia-reperfusion injury with an experimental imaging platform. Reperfused acute myocardial infarction (AMI) was induced in rabbits with a 90-minute coronary artery occlusion followed by 24-hour reperfusion. Before reperfusion, rabbits received 2 intravenous doses of 100 μg/kg CBD (n = 10) or vehicle (control, n = 10). Evans blue was intravenously injected for later detection of the AMI core. Cardiac magnetic resonance imaging was performed to evaluate cardiac morphology and function. After euthanasia, blood troponin I (cTnI) was assessed, and the heart was excised and infused with multifunctional red iodized oil dye. The heart was sliced for digital radiography to quantify the perfusion density rate, area at risk (AAR), and myocardial salvage index, followed by histomorphologic staining. Compared with controls, CBD treatment improved systolic wall thickening (P < 0.05), significantly increased blood flow in the AAR (P < 0.05), significantly decreased microvascular obstruction (P < 0.05), increased the perfusion density rate by 1.7-fold, lowered the AMI core/AAR ratio (P < 0.05), and increased the myocardial salvage index (P < 0.05). These improvements were associated with reductions in serum cTnI, cardiac leukocyte infiltration, and myocellular apoptosis (P < 0.05). Thus, CBD therapy reduced AMI size and facilitated restoration of left ventricular function. We demonstrated that this experimental platform has potential theragnostic utility.
Murase, Ryuichi; Christian, Rigel T.; Lau, Darryl; Zielinski, Anne J.; Allison, Juanita; Almanza, Carolina; Pakdel, Arash; Lee, Jasmine; Limbad, Chandani; Liu, Yong; Debs, Robert J.; Moore, Dan H.; Desprez, Pierre-Yves
2012-01-01
Invasion and metastasis of aggressive breast cancer cells are the final and fatal steps during cancer progression. Clinically, there are still limited therapeutic interventions for aggressive and metastatic breast cancers available. Therefore, effective, targeted, and non-toxic therapies are urgently required. Id-1, an inhibitor of basic helix-loop-helix transcription factors, has recently been shown to be a key regulator of the metastatic potential of breast and additional cancers. We previously reported that cannabidiol (CBD), a cannabinoid with a low toxicity pro-file, down-regulated Id-1 gene expression in aggressive human breast cancer cells in culture. Using cell proliferation and invasion assays, cell flow cytometry to examine cell cycle and the formation of reactive oxygen species, and Western analysis, we determined pathways leading to the down-regulation of Id-1 expression by CBD and consequently to the inhibition of the proliferative and invasive phenotype of human breast cancer cells. Then, using the mouse 4T1 mammary tumor cell line and the ranksum test, two different syngeneic models of tumor metastasis to the lungs were chosen to determine whether treatment with CBD would reduce metastasis in vivo. We show that CBD inhibits human breast cancer cell proliferation and invasion through differential modulation of the extracellular signal-regulated kinase (ERK) and reactive oxygen species (ROS) pathways, and that both pathways lead to down-regulation of Id-1 expression. Moreover, we demonstrate that CBD up-regulates the pro-differentiation factor, Id-2. Using immune competent mice, we then show that treatment with CBD significantly reduces primary tumor mass as well as the size and number of lung metastatic foci in two models of metastasis. Our data demonstrate the efficacy of CBD in pre-clinical models of breast cancer. The results have the potential to lead to the development of novel non-toxic compounds for the treatment of breast cancer metastasis
Linares, Ila M. P.; Guimaraes, Francisco S.; Eckeli, Alan; Crippa, Ana C. S.; Zuardi, Antonio W.; Souza, Jose D. S.; Hallak, Jaime E.; Crippa, José A. S.
2018-01-01
Cannabidiol (CBD) is a component of Cannabis sativa that has a broad spectrum of potential therapeutic effects in neuropsychiatric and other disorders. However, few studies have investigated the possible interference of CBD on the sleep-wake cycle. The aim of the present study was to evaluate the effect of a clinically anxiolytic dose of CBD on the sleep-wake cycle of healthy subjects in a crossover, double-blind design. Twenty-seven healthy volunteers that fulfilled the eligibility criteria were selected and allocated to receive either CBD (300 mg) or placebo in the first night in a double-blind randomized design (one volunteer withdrew from the study). In the second night, the same procedure was performed using the substance that had not been administered in the previous occasion. CBD or placebo were administered 30 min before the start of polysomnography recordings that lasted 8 h. Cognitive and subjective measures were performed immediately after polysomnography to assess possible residual effects of CBD. The drug did not induce any significant effect (p > 0.05). Different from anxiolytic and antidepressant drugs such as benzodiazepines and selective serotonin reuptake inhibitors, acute administration of an anxiolytic dose of CBD does not seem to interfere with the sleep cycle of healthy volunteers. The present findings support the proposal that CBD do not alter normal sleep architecture. Future studies should address the effects of CBD on the sleep-wake cycle of patient populations as well as in clinical trials with larger samples and chronic use of different doses of CBD. Such studies are desirable and opportune. PMID:29674967
Parker, Linda A; Kwiatkowska, Magdalena; Mechoulam, Raphael
2006-01-30
Chemotherapy patients report not only acute nausea and vomiting during the treatment itself, but also report anticipatory nausea and vomiting upon re-exposure to the cues associated with the treatment. We present a model of anticipatory nausea based on the emetic reactions of the Suncus murinus (musk shrew). Following three pairings of a novel distinctive contextual cue with the emetic effects of an injection of lithium chloride, the context acquired the potential to elicit conditioned retching in the absence of the toxin. The expression of this conditioned retching reaction was completely suppressed by pretreatment with each of the principal cannabinoids found in marijuana, Delta(9)-tetrahydrocannabinol or cannabidiol, at a dose that did not suppress general activity. On the other hand, pretreatment with a dose of ondansetron (a 5-HT(3) antagonist) that interferes with acute vomiting in this species, did not suppress the expression of conditioned retching during re-exposure to the lithium-paired context. These results support anecdotal claims that marijuana, but not ondansetron, may suppress the expression of anticipatory nausea.
Deng, Liting; Ng, Lindsay; Ozawa, Tatsuya
2017-01-01
Evidence suggests that the nonpsychotropic cannabis-derived compound, cannabidiol (CBD), has antineoplastic activity in multiple types of cancers, including glioblastoma multiforme (GBM). DNA-damaging agents remain the main standard of care treatment available for patients diagnosed with GBM. Here we studied the antiproliferative and cell-killing activity of CBD alone and in combination with DNA-damaging agents (temozolomide, carmustine, or cisplatin) in several human GBM cell lines and in mouse primary GBM cells in cultures. This activity was also studied in mouse neural progenitor cells (NPCs) in culture to assess for potential central nervous system toxicity. We found that CBD induced a dose-dependent reduction of both proliferation and viability of all cells with similar potencies, suggesting no preferential activity for cancer cells. Hill plot analysis indicates an allosteric mechanism of action triggered by CBD in all cells. Cotreatment regimens combining CBD and DNA-damaging agents produced synergistic antiproliferating and cell-killing responses over a limited range of concentrations in all human GBM cell lines and mouse GBM cells as well as in mouse NPCs. Remarkably, antagonistic responses occurred at low concentrations in select human GBM cell lines and in mouse GBM cells. Our study suggests limited synergistic activity when combining CBD and DNA-damaging agents in treating GBM cells, along with little to no therapeutic window when considering NPCs. PMID:27821713
Ward, Sara Jane; McAllister, Sean D; Kawamura, Rumi; Murase, Ryuchi; Neelakantan, Harshini; Walker, Ellen A
2014-02-01
Paclitaxel (PAC) is associated with chemotherapy-induced neuropathic pain (CIPN) that can lead to the cessation of treatment in cancer patients even in the absence of alternate therapies. We previously reported that chronic administration of the non-psychoactive cannabinoid cannabidiol (CBD) prevents PAC-induced mechanical and thermal sensitivity in mice. Hence, we sought to determine receptor mechanisms by which CBD inhibits CIPN and whether CBD negatively effects nervous system function or chemotherapy efficacy. The ability of acute CBD pretreatment to prevent PAC-induced mechanical sensitivity was assessed, as was the effect of CBD on place conditioning and on an operant-conditioned learning and memory task. The potential interaction of CBD and PAC on breast cancer cell viability was determined using the MTT assay. PAC-induced mechanical sensitivity was prevented by administration of CBD (2.5 - 10 mg·kg⁻¹) in female C57Bl/6 mice. This effect was reversed by co-administration of the 5-HT(1A) antagonist WAY 100635, but not the CB₁ antagonist SR141716 or the CB₂ antagonist SR144528. CBD produced no conditioned rewarding effects and did not affect conditioned learning and memory. Also, CBD + PAC combinations produce additive to synergistic inhibition of breast cancer cell viability. Our data suggest that CBD is protective against PAC-induced neurotoxicity mediated in part by the 5-HT(1A) receptor system. Furthermore, CBD treatment was devoid of conditioned rewarding effects or cognitive impairment and did not attenuate PAC-induced inhibition of breast cancer cell viability. Hence, adjunct treatment with CBD during PAC chemotherapy may be safe and effective in the prevention or attenuation of CIPN. © 2013 The British Pharmacological Society.
Klein, Charlotte; Karanges, Emily; Spiro, Adena; Wong, Alexander; Spencer, Jarrah; Huynh, Thanh; Gunasekaran, Nathan; Karl, Tim; Long, Leonora E; Huang, Xu-Feng; Liu, Kelly; Arnold, Jonathon C; McGregor, Iain S
2011-11-01
The interactions between Δ(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD) during chronic treatment, and at equivalent doses, are not well characterised in animal models. The aim of this study is to examine whether the behavioural effects of THC, and blood and brain THC levels are affected by pre-treatment with equivalent CBD doses. Adolescent rats were treated with ascending daily THC doses over 21 days (1 then 3 then 10 mg/kg). Some rats were given equivalent CBD doses 20 min prior to each THC injection to allow examination of possible antagonistic effects of CBD. During dosing, rats were assessed for THC and CBD/THC effects on anxiety-like behaviour, social interaction and place conditioning. At the end of dosing, blood and brain levels of THC, and CB(1) and 5-HT(1A) receptor binding were assessed. CBD potentiated an inhibition of body weight gain caused by chronic THC, and mildly augmented the anxiogenic effects, locomotor suppressant effects and decreased social interaction seen with THC. A trend towards place preference was observed in adolescent rats given CBD/THC but not those given THC alone. With both acute and chronic administration, CBD pre-treatment potentiated blood and brain THC levels, and lowered levels of THC metabolites (THC-COOH and 11-OH-THC). CBD co-administration did not alter the THC-induced decreases in CB(1) receptor binding and no drug effects on 5-HT(1A) receptor binding were observed. CBD can potentiate the psychoactive and physiological effects of THC in rats, most likely by delaying the metabolism and elimination of THC through an action on the CYP450 enzymes that metabolise both drugs.
Michaels-Igbokwe, Christine; Terris-Prestholt, Fern; Lagarde, Mylene; Chipeta, Effie; Cairns, John
2015-01-01
Objective To quantify the impact of service provider characteristics on young people’s choice of family planning (FP) service provider in rural Malawi in order to identify strategies for increasing access and uptake of FP among youth. Methods and Findings A discrete choice experiment was developed to assess the relative impact of service characteristics on preferences for FP service providers among young people (aged 15–24). Four alternative providers were included (government facility, private facility, outreach and community based distribution of FP) and described by six attributes (the distance between participants’ home and the service delivery point, frequency of service delivery, waiting time at the facility, service providers’ attitude, availability of FP commodities and price). A random parameters logit model was used to estimate preferences for service providers and the likely uptake of services following the expansion of outreach and community based distribution (CBDA) services. In the choice experiment young people were twice as likely to choose a friendly provider (government service odds ratio [OR] = 2.45, p<0.01; private service OR = 1.99, p<0.01; CBDA OR = 1.88, p<0.01) and more than two to three times more likely to choose a provider with an adequate supply of FP commodities (government service OR = 2.48, p<0.01; private service OR = 2.33, p<0.01; CBDA = 3.85, p<0.01). Uptake of community based services was greater than facility based services across a variety of simulated service scenarios indicating that such services may be an effective means of expanding access for youth in rural areas and an important tool for increasing service uptake among youth. Conclusions Ensuring that services are acceptable to young people may require additional training for service providers in order to ensure that all providers are friendly and non-judgemental when dealing with younger clients and to ensure that supplies are consistently available. PMID
Pazos, M Ruth; Mohammed, Nagat; Lafuente, Hector; Santos, Martin; Martínez-Pinilla, Eva; Moreno, Estefania; Valdizan, Elsa; Romero, Julián; Pazos, Angel; Franco, Rafael; Hillard, Cecilia J; Alvarez, Francisco J; Martínez-Orgado, Jose
2013-08-01
The mechanisms underlying the neuroprotective effects of cannabidiol (CBD) were studied in vivo using a hypoxic-ischemic (HI) brain injury model in newborn pigs. One- to two-day-old piglets were exposed to HI for 30 min by interrupting carotid blood flow and reducing the fraction of inspired oxygen to 10%. Thirty minutes after HI, the piglets were treated with vehicle (HV) or 1 mg/kg CBD, alone (HC) or in combination with 1 mg/kg of a CB₂ receptor antagonist (AM630) or a serotonin 5HT(1A) receptor antagonist (WAY100635). HI decreased the number of viable neurons and affected the amplitude-integrated EEG background activity as well as different prognostic proton-magnetic-resonance-spectroscopy (H(±)-MRS)-detectable biomarkers (lactate/N-acetylaspartate and N-acetylaspartate/choline ratios). HI brain damage was also associated with increases in excitotoxicity (increased glutamate/N-acetylaspartate ratio), oxidative stress (decreased glutathione/creatine ratio and increased protein carbonylation) and inflammation (increased brain IL-1 levels). CBD administration after HI prevented all these alterations, although this CBD-mediated neuroprotection was reversed by co-administration of either WAY100635 or AM630, suggesting the involvement of CB₂ and 5HT(1A) receptors. The involvement of CB₂ receptors was not dependent on a CBD-mediated increase in endocannabinoids. Finally, bioluminescence resonance energy transfer studies indicated that CB₂ and 5HT(1A) receptors may form heteromers in living HEK-293T cells. In conclusion, our findings demonstrate that CBD exerts robust neuroprotective effects in vivo in HI piglets, modulating excitotoxicity, oxidative stress and inflammation, and that both CB₂ and 5HT(1A) receptors are implicated in these effects. Copyright © 2013 Elsevier Ltd. All rights reserved.
Long, Leonora E; Chesworth, Rose; Huang, Xu-Feng; McGregor, Iain S; Arnold, Jonathon C; Karl, Tim
2010-08-01
Cannabis contains over 70 unique compounds and its abuse is linked to an increased risk of developing schizophrenia. The behavioural profiles of the psychotropic cannabis constituent Delta9-tetrahydrocannabinol (Delta9-THC) and the non-psychotomimetic constituent cannabidiol (CBD) were investigated with a battery of behavioural tests relevant to anxiety and positive, negative and cognitive symptoms of schizophrenia. Male adult C57BL/6JArc mice were given 21 daily intraperitoneal injections of vehicle, Delta9-THC (0.3, 1, 3 or 10 mg/kg) or CBD (1, 5, 10 or 50 mg/kg). Delta9-THC produced the classic cannabinoid CB1 receptor-mediated tetrad of hypolocomotion, analgesia, catalepsy and hypothermia while CBD had modest hyperthermic effects. While sedative at this dose, Delta9-THC (10 mg/kg) produced locomotor-independent anxiogenic effects in the open-field and light-dark tests. Chronic CBD produced moderate anxiolytic-like effects in the open-field test at 50 mg/kg and in the light-dark test at a low dose (1 mg/kg). Acute and chronic Delta9-THC (10 mg/kg) decreased the startle response while CBD had no effect. Prepulse inhibition was increased by acute treatment with Delta9-THC (0.3, 3 and 10 mg/kg) or CBD (1, 5 and 50 mg/kg) and by chronic CBD (1 mg/kg). Chronic CBD (50 mg/kg) attenuated dexamphetamine (5 mg/kg)-induced hyperlocomotion, suggesting an antipsychotic-like action for this cannabinoid. Chronic Delta9-THC decreased locomotor activity before and after dexamphetamine administration suggesting functional antagonism of the locomotor stimulant effect. These data provide the first evidence of anxiolytic- and antipsychotic-like effects of chronic but not acute CBD in C57BL/6JArc mice, extending findings from acute studies in other inbred mouse strains and rats.
da Silva, Vanessa Kappel; de Freitas, Betânia Souza; da Silva Dornelles, Arethuza; Nery, Laura Roesler; Falavigna, Lucio; Ferreira, Rafael Dal Ponte; Bogo, Maurício Reis; Hallak, Jaime Eduardo Cecílio; Zuardi, Antônio Waldo; Crippa, José Alexandre S; Schröder, Nadja
2014-02-01
We have recently shown that chronic treatment with cannabidiol (CBD) was able to recover memory deficits induced by brain iron loading in a dose-dependent manner in rats. Brain iron accumulation is implicated in the pathogenesis of neurodegenerative diseases, including Parkinson's and Alzheimer's, and has been related to cognitive deficits in animals and human subjects. Deficits in synaptic energy supply have been linked to neurodegenerative diseases, evidencing the key role played by mitochondria in maintaining viable neural cells and functional circuits. It has also been shown that brains of patients suffering from neurodegenerative diseases have increased expression of apoptosisrelated proteins and specific DNA fragmentation. Here, we have analyzed the expression level of brain proteins involved with mitochondrial fusion and fission mechanisms (DNM1L and OPA1), the main integral transmembrane protein of synaptic vesicles (synaptophysin), and caspase 3, an apoptosis-related protein, to gain a better understanding of the potential of CBD in restoring the damage caused by iron loading in rats. We found that CBD rescued iron-induced effects, bringing hippocampal DNM1L, caspase 3, and synaptophysin levels back to values comparable to the control group. Our results suggest that iron affects mitochondrial dynamics, possibly trigging synaptic loss and apoptotic cell death and indicate that CBD should be considered as a potential molecule with memory-rescuing and neuroprotective properties to be used in the treatment of cognitive deficits observed in neurodegenerative disorders.
2014-01-01
Background Significant interest has emerged in the therapeutic and interactive effects of different cannabinoids. Cannabidiol (CBD) has been shown to have anxiolytic and antipsychotic effects with high doses administered orally. We report a series of studies conducted to determine the vaporisation efficiency of high doses of CBD, alone and in combination with ∆9-tetrahydrocannabinol (THC), to achieve faster onset effects in experimental and clinical trials and emulate smoked cannabis. Methods Purified THC and CBD (40 mg/ml and 100 mg/ml respectively) were loaded onto a liquid absorbing pad in a Volcano® vaporiser, vaporised and the vapours quantitatively analysed. Preliminary studies determined 200 mg CBD to be the highest dose effectively vaporised at 230°C, yielding an availability of approximately 40% in the vapour phase. Six confirmatory studies examined the quantity of each compound delivered when 200 mg or 4 mg CBD was loaded together with 8 mg of THC. Results THC showed 55% availability when vaporised alone or with low dose CBD, while large variation in the availability of high dose CBD impacted upon the availability of THC when co-administered, with each compound affecting the vaporisation efficiency of the other in a dynamic and dose-dependent manner. We describe optimised protocols that enable delivery of 160 mg CBD through vaporisation. Conclusions While THC administration by vaporisation is increasingly adopted in experimental studies, often with oral predosing with CBD to examine interactive effects, no studies to date have reported the administration of CBD by vaporisation. We report the detailed methodology aimed at optimising the efficiency of delivery of therapeutic doses of CBD, alone and in combination with THC, by vaporisation. These protocols provide a technical advance that may inform methodology for clinical trials in humans, especially for examining interactions between THC and CBD and for therapeutic applications of CBD. Trial
Scott, Katherine A; Dalgleish, Angus G; Liu, Wai M
2014-12-01
High-grade glioma is one of the most aggressive cancers in adult humans and long-term survival rates are very low as standard treatments for glioma remain largely unsuccessful. Cannabinoids have been shown to specifically inhibit glioma growth as well as neutralize oncogenic processes such as angiogenesis. In an attempt to improve treatment outcome, we have investigated the effect of Δ(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD) both alone and in combination with radiotherapy in a number of glioma cell lines (T98G, U87MG, and GL261). Cannabinoids were used in two forms, pure (P) and as a botanical drug substance (BDS). Results demonstrated a duration- and dose-dependent reduction in cell viability with each cannabinoid and suggested that THC-BDS was more efficacious than THC-P, whereas, conversely, CBD-P was more efficacious than CBD-BDS. Median effect analysis revealed all combinations to be hyperadditive [T98G 48-hour combination index (CI) at FU50, 0.77-1.09]. Similarly, pretreating cells with THC-P and CBD-P together for 4 hours before irradiation increased their radiosensitivity when compared with pretreating with either of the cannabinoids individually. The increase in radiosensitivity was associated with an increase in markers of autophagy and apoptosis. These in vitro results were recapitulated in an orthotopic murine model for glioma, which showed dramatic reductions in tumor volumes when both cannabinoids were used with irradiation (day 21: 5.5 ± 2.2 mm(3) vs. 48.7 ± 24.9 mm(3) in the control group; P < 0.01). Taken together, our data highlight the possibility that these cannabinoids can prime glioma cells to respond better to ionizing radiation, and suggest a potential clinical benefit for glioma patients by using these two treatment modalities. ©2014 American Association for Cancer Research.
Ward, Sara Jane; McAllister, Sean D; Kawamura, Rumi; Murase, Ryuchi; Neelakantan, Harshini; Walker, Ellen A
2014-01-01
Background and Purpose Paclitaxel (PAC) is associated with chemotherapy-induced neuropathic pain (CIPN) that can lead to the cessation of treatment in cancer patients even in the absence of alternate therapies. We previously reported that chronic administration of the non-psychoactive cannabinoid cannabidiol (CBD) prevents PAC-induced mechanical and thermal sensitivity in mice. Hence, we sought to determine receptor mechanisms by which CBD inhibits CIPN and whether CBD negatively effects nervous system function or chemotherapy efficacy. Experimental Approach The ability of acute CBD pretreatment to prevent PAC-induced mechanical sensitivity was assessed, as was the effect of CBD on place conditioning and on an operant-conditioned learning and memory task. The potential interaction of CBD and PAC on breast cancer cell viability was determined using the MTT assay. Key Results PAC-induced mechanical sensitivity was prevented by administration of CBD (2.5 – 10 mg·kg−1) in female C57Bl/6 mice. This effect was reversed by co-administration of the 5-HT1A antagonist WAY 100635, but not the CB1 antagonist SR141716 or the CB2 antagonist SR144528. CBD produced no conditioned rewarding effects and did not affect conditioned learning and memory. Also, CBD + PAC combinations produce additive to synergistic inhibition of breast cancer cell viability. Conclusions and Implications Our data suggest that CBD is protective against PAC-induced neurotoxicity mediated in part by the 5-HT1A receptor system. Furthermore, CBD treatment was devoid of conditioned rewarding effects or cognitive impairment and did not attenuate PAC-induced inhibition of breast cancer cell viability. Hence, adjunct treatment with CBD during PAC chemotherapy may be safe and effective in the prevention or attenuation of CIPN. PMID:24117398
Jacobs, David S; Kohut, Stephen J; Jiang, Shan; Nikas, Spyros P; Makriyannis, Alexandros; Bergman, Jack
2016-10-01
Recent clinical and preclinical research has suggested that cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC) have interactive effects on measures of cognition; however, the nature of these interactions is not yet fully characterized. To address this, we investigated the effects of Δ9-THC and CBD independently and in combination with proposed therapeutic dose ratios of 1:1 and 1:3 Δ9-THC:CBD in adult rhesus monkeys (n = 6) performing a stop signal task (SST). Additionally, the development of tolerance to the effects of Δ9-THC on SST performance was evaluated by determining the effects of acutely administered Δ9-THC (0.1-3.2 mg/kg), during a 24-day chronic Δ9-THC treatment period with Δ9-THC alone or in combination with CBD. Results indicate that Δ9-THC (0.032-0.32 mg/kg) dose-dependently decreased go success but did not alter go reaction time (RT) or stop signal RT (SSRT); CBD (0.1-1.0 mg/kg) was without effect on all measures and, when coadministered in a 1:1 dose ratio, did not exacerbate or attenuate the effects of Δ9-THC. When coadministered in a 1:3 dose ratio, CBD (1.0 mg/kg) attenuated the disruptive effects of 0.32 mg/kg Δ9-THC but did not alter the effects of other Δ9-THC doses. Increases in ED50 values for the effects of Δ9-THC on SST performance were apparent during chronic Δ9-THC treatment, with little evidence for modification of changes in sensitivity by CBD. These results indicate that CBD, when combined with Δ9-THC in clinically available dose ratios, does not exacerbate and, under restricted conditions may even attenuate, Δ9-THC's behavioral effects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Jacobs, David S.; Kohut, Stephen J.; Jiang, Shan; Nikas, Spyros P.; Makriyannis, Alexandros; Bergman, Jack
2016-01-01
Recent clinical and preclinical research suggests that cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC) have interactive effects on measures of cognition; however, the nature of these interactions is not yet fully characterized. To address this, the effects of Δ9-THC and CBD were investigated independently and in combination with proposed therapeutic dose ratios of 1:1 and 1:3 Δ9-THC:CBD in adult rhesus monkeys (n=6) performing a stop signal task (SST). Additionally, the development of tolerance to the effects of THC on SST performance was evaluated by determining the effects of acutely administered Δ9-THC (0.1-3.2 mg/kg), during a 24-day chronic Δ9-THC treatment period with Δ9-THC alone or with CBD. Results indicate that Δ9-THC (0.032 - 0.32 mg/kg) dose-dependently decreased ‘go’ success but did not alter ‘go’ reaction time or stop signal reaction time (SSRT); CBD (0.1-1.0 mg/kg) was without effect on all measures and, when co-administered in a 1:1 dose-ratio, did not exacerbate or attenuate the effects of Δ9-THC. When co-administered in a 1:3 dose-ratio, CBD (1.0 mg/kg) attenuated the disruptive effects of 0.32 mg/kg Δ9-THC but did not alter the effects of other Δ9-THC doses. Increases in ED50 values for the effects of Δ9-THC on SST performance were apparent during chronic Δ9-THC treatment, with little evidence for modification of changes in sensitivity by CBD. These results indicate that CBD, when combined with THC in clinically available dose-ratios does not exacerbate and, under restricted conditions, may even attenuate Δ9-THC’s behavioral effects. PMID:27690502
Deng, Liting; Ng, Lindsay; Ozawa, Tatsuya; Stella, Nephi
2017-01-01
Evidence suggests that the nonpsychotropic cannabis-derived compound, cannabidiol (CBD), has antineoplastic activity in multiple types of cancers, including glioblastoma multiforme (GBM). DNA-damaging agents remain the main standard of care treatment available for patients diagnosed with GBM. Here we studied the antiproliferative and cell-killing activity of CBD alone and in combination with DNA-damaging agents (temozolomide, carmustine, or cisplatin) in several human GBM cell lines and in mouse primary GBM cells in cultures. This activity was also studied in mouse neural progenitor cells (NPCs) in culture to assess for potential central nervous system toxicity. We found that CBD induced a dose-dependent reduction of both proliferation and viability of all cells with similar potencies, suggesting no preferential activity for cancer cells. Hill plot analysis indicates an allosteric mechanism of action triggered by CBD in all cells. Cotreatment regimens combining CBD and DNA-damaging agents produced synergistic antiproliferating and cell-killing responses over a limited range of concentrations in all human GBM cell lines and mouse GBM cells as well as in mouse NPCs. Remarkably, antagonistic responses occurred at low concentrations in select human GBM cell lines and in mouse GBM cells. Our study suggests limited synergistic activity when combining CBD and DNA-damaging agents in treating GBM cells, along with little to no therapeutic window when considering NPCs. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Bisogno, Tiziana; Hanuš, Lumír; De Petrocellis, Luciano; Tchilibon, Susanna; Ponde, Datta E; Brandi, Ines; Moriello, Aniello Schiano; Davis, John B; Mechoulam, Raphael; Di Marzo, Vincenzo
2001-01-01
(−)-Cannabidiol (CBD) is a non-psychotropic component of Cannabis with possible therapeutic use as an anti-inflammatory drug. Little is known on the possible molecular targets of this compound. We investigated whether CBD and some of its derivatives interact with vanilloid receptor type 1 (VR1), the receptor for capsaicin, or with proteins that inactivate the endogenous cannabinoid, anandamide (AEA).CBD and its enantiomer, (+)-CBD, together with seven analogues, obtained by exchanging the C-7 methyl group of CBD with a hydroxy-methyl or a carboxyl function and/or the C-5′ pentyl group with a di-methyl-heptyl (DMH) group, were tested on: (a) VR1-mediated increase in cytosolic Ca2+ concentrations in cells over-expressing human VR1; (b) [14C]-AEA uptake by RBL-2H3 cells, which is facilitated by a selective membrane transporter; and (c) [14C]-AEA hydrolysis by rat brain membranes, which is catalysed by the fatty acid amide hydrolase.Both CBD and (+)-CBD, but not the other analogues, stimulated VR1 with EC50=3.2 – 3.5 μM, and with a maximal effect similar in efficacy to that of capsaicin, i.e. 67 – 70% of the effect obtained with ionomycin (4 μM). CBD (10 μM) desensitized VR1 to the action of capsaicin. The effects of maximal doses of the two compounds were not additive.(+)-5′-DMH-CBD and (+)-7-hydroxy-5′-DMH-CBD inhibited [14C]-AEA uptake (IC50=10.0 and 7.0 μM); the (−)-enantiomers were slightly less active (IC50=14.0 and 12.5 μM). CBD and (+)-CBD were also active (IC50=22.0 and 17.0 μM).CBD (IC50=27.5 μM), (+)-CBD (IC50=63.5 μM) and (−)-7-hydroxy-CBD (IC50=34 μM), but not the other analogues (IC50>100 μM), weakly inhibited [14C]-AEA hydrolysis.Only the (+)-isomers exhibited high affinity for CB1 and/or CB2 cannabinoid receptors.These findings suggest that VR1 receptors, or increased levels of endogenous AEA, might mediate some of the pharmacological effects of CBD and its analogues. In view of the facile high yield
Cannabis Dampens the Effects of Music in Brain Regions Sensitive to Reward and Emotion
Pope, Rebecca A; Wall, Matthew B; Bisby, James A; Luijten, Maartje; Hindocha, Chandni; Mokrysz, Claire; Lawn, Will; Moss, Abigail; Bloomfield, Michael A P; Morgan, Celia J A; Nutt, David J; Curran, H Valerie
2018-01-01
Abstract Background Despite the current shift towards permissive cannabis policies, few studies have investigated the pleasurable effects users seek. Here, we investigate the effects of cannabis on listening to music, a rewarding activity that frequently occurs in the context of recreational cannabis use. We additionally tested how these effects are influenced by cannabidiol, which may offset cannabis-related harms. Methods Across 3 sessions, 16 cannabis users inhaled cannabis with cannabidiol, cannabis without cannabidiol, and placebo. We compared their response to music relative to control excerpts of scrambled sound during functional Magnetic Resonance Imaging within regions identified in a meta-analysis of music-evoked reward and emotion. All results were False Discovery Rate corrected (P<.05). Results Compared with placebo, cannabis without cannabidiol dampened response to music in bilateral auditory cortex (right: P=.005, left: P=.008), right hippocampus/parahippocampal gyrus (P=.025), right amygdala (P=.025), and right ventral striatum (P=.033). Across all sessions, the effects of music in this ventral striatal region correlated with pleasure ratings (P=.002) and increased functional connectivity with auditory cortex (right: P< .001, left: P< .001), supporting its involvement in music reward. Functional connectivity between right ventral striatum and auditory cortex was increased by cannabidiol (right: P=.003, left: P=.030), and cannabis with cannabidiol did not differ from placebo on any functional Magnetic Resonance Imaging measures. Both types of cannabis increased ratings of wanting to listen to music (P<.002) and enhanced sound perception (P<.001). Conclusions Cannabis dampens the effects of music in brain regions sensitive to reward and emotion. These effects were offset by a key cannabis constituent, cannabidol. PMID:29025134
Epigenetic control of skin differentiation genes by phytocannabinoids
Pucci, Mariangela; Rapino, Cinzia; Di Francesco, Andrea; Dainese, Enrico; D'Addario, Claudio; Maccarrone, Mauro
2013-01-01
BACKGROUND AND PURPOSE Endocannabinoid signalling has been shown to have a role in the control of epidermal physiology, whereby anandamide is able to regulate the expression of skin differentiation genes through DNA methylation. Here, we investigated the possible epigenetic regulation of these genes by several phytocannabinoids, plant-derived cannabinoids that have the potential to be novel therapeutics for various human diseases. EXPERIMENTAL APPROACH The effects of cannabidiol, cannabigerol and cannabidivarin on the expression of skin differentiation genes keratins 1 and 10, involucrin and transglutaminase 5, as well as on DNA methylation of keratin 10 gene, were investigated in human keratinocytes (HaCaT cells). The effects of these phytocannabinoids on global DNA methylation and the activity and expression of four major DNA methyltransferases (DNMT1, 3a, 3b and 3L) were also examined. KEY RESULTS Cannabidiol and cannabigerol significantly reduced the expression of all the genes tested in differentiated HaCaT cells, by increasing DNA methylation of keratin 10 gene, but cannabidivarin was ineffective. Remarkably, cannabidiol reduced keratin 10 mRNA through a type-1 cannabinoid (CB1) receptor-dependent mechanism, whereas cannabigerol did not affect either CB1 or CB2 receptors of HaCaT cells. In addition, cannabidiol, but not cannabigerol, increased global DNA methylation levels by selectively enhancing DNMT1 expression, without affecting DNMT 3a, 3b or 3L. CONCLUSIONS AND IMPLICATIONS These findings show that the phytocannabinoids cannabidiol and cannabigerol are transcriptional repressors that can control cell proliferation and differentiation. This indicates that they (especially cannabidiol) have the potential to be lead compounds for the development of novel therapeutics for skin diseases. PMID:23869687
Juknat, Ana; Pietr, Maciej; Kozela, Ewa; Rimmerman, Neta; Levy, Rivka; Coppola, Giovanni; Geschwind, Daniel; Vogel, Zvi
2012-01-01
BACKGROUND AND PURPOSE Apart from their effects on mood and reward, cannabinoids exert beneficial actions such as neuroprotection and attenuation of inflammation. The immunosuppressive activity of cannabinoids has been well established. However, the underlying mechanisms are largely unknown. We previously showed that the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) and the non-psychoactive cannabidiol (CBD) differ in their anti-inflammatory signalling pathways. EXPERIMENTAL APPROACH To characterize the transcriptional effects of CBD and THC, we treated BV-2 microglial cells with these compounds and performed comparative microarray analysis using the Illumina MouseRef-8 BeadChip platform. Ingenuity Pathway Analysis was performed to identify functional subsets of genes and networks regulated by CBD and/or THC. KEY RESULTS Overall, CBD altered the expression of many more genes; from the 1298 transcripts found to be differentially regulated by the treatments, 680 gene probe sets were up-regulated by CBD and 58 by THC, and 524 gene products were down-regulated by CBD and only 36 by THC. CBD-specific gene expression profile showed changes associated with oxidative stress and glutathione depletion, normally occurring under nutrient limiting conditions or proteasome inhibition and involving the GCN2/eIF2α/p8/ATF4/CHOP-TRIB3 pathway. Furthermore, CBD-stimulated genes were shown to be controlled by nuclear factors known to be involved in the regulation of stress response and inflammation, mainly via the (EpRE/ARE)-Nrf2/ATF4 system and the Nrf2/Hmox1 axis. CONCLUSIONS AND IMPLICATIONS These observations indicated that CBD, but much less than THC, induced a cellular stress response in microglial cells and suggested that this effect could underlie its anti-inflammatory activity. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012
King, Kirsten M; Myers, Alyssa M; Soroka-Monzo, Ariele J; Tuma, Ronald F; Tallarida, Ronald J; Walker, Ellen A; Ward, Sara Jane
2017-09-01
The non-psychoactive phytocannabinoid cannabidiol (CBD) can affect the pharmacological effects of Δ 9 -tetrahydrocannabinol (THC). We tested the possible synergy between CBD and THC in decreasing mechanical sensitivity in a mouse model of paclitaxel-induced neuropathic pain. We also tested the effects of CBD on oxaliplatin- and vincristine-induced mechanical sensitivity. Paclitaxel-treated mice (8.0 mg·kg -1 i.p., days 1, 3, 5 and 7) were pretreated with CBD (0.625-20.0 mg·kg -1 i.p.), THC (0.625-20.0 mg·kg -1 i.p.) or CBD + THC (0.04 + 0.04-20.0 + 20.0 mg·kg -1 i.p.), and mechanical sensitivity was assessed on days 9, 14 and 21. Oxaliplatin-treated (6.0 mg·kg -1 i.p., day 1) or vincristine-treated mice (0.1 mg·kg -1 i.p. days 1-7) were pretreated with CBD (1.25-10.0 mg·kg -1 i.p.), THC (10.0 mg·kg -1 i.p.) or THC + CBD (0.16 mg·kg -1 THC + 0.16 mg·kg -1 CBD i.p.). Both CBD and THC alone attenuated mechanical allodynia in mice treated with paclitaxel. Very low ineffective doses of CBD and THC were synergistic when given in combination. CBD also attenuated oxaliplatin- but not vincristine-induced mechanical sensitivity, while THC significantly attenuated vincristine- but not oxaliplatin-induced mechanical sensitivity. The low dose combination significantly attenuated oxaliplatin- but not vincristine-induced mechanical sensitivity. CBD may be potent and effective at preventing the development of chemotherapy-induced peripheral neuropathy, and its clinical use may be enhanced by co-administration of low doses of THC. These treatment strategies would increase the therapeutic window of cannabis-based pharmacotherapies. © 2017 The British Pharmacological Society.
Pertwee, R G
2007-01-01
Cannabis sativa is the source of a unique set of compounds known collectively as plant cannabinoids or phytocannabinoids. This review focuses on the manner with which three of these compounds, (−)-trans-Δ9-tetrahydrocannabinol (Δ9-THC), (−)-cannabidiol (CBD) and (−)-trans-Δ9-tetrahydrocannabivarin (Δ9-THCV), interact with cannabinoid CB1 and CB2 receptors. Δ9-THC, the main psychotropic constituent of cannabis, is a CB1 and CB2 receptor partial agonist and in line with classical pharmacology, the responses it elicits appear to be strongly influenced both by the expression level and signalling efficiency of cannabinoid receptors and by ongoing endogenous cannabinoid release. CBD displays unexpectedly high potency as an antagonist of CB1/CB2 receptor agonists in CB1- and CB2-expressing cells or tissues, the manner with which it interacts with CB2 receptors providing a possible explanation for its ability to inhibit evoked immune cell migration. Δ9-THCV behaves as a potent CB2 receptor partial agonist in vitro. In contrast, it antagonizes cannabinoid receptor agonists in CB1-expressing tissues. This it does with relatively high potency and in a manner that is both tissue and ligand dependent. Δ9-THCV also interacts with CB1 receptors when administered in vivo, behaving either as a CB1 antagonist or, at higher doses, as a CB1 receptor agonist. Brief mention is also made in this review, first of the production by Δ9-THC of pharmacodynamic tolerance, second of current knowledge about the extent to which Δ9-THC, CBD and Δ9-THCV interact with pharmacological targets other than CB1 or CB2 receptors, and third of actual and potential therapeutic applications for each of these cannabinoids. PMID:17828291
Ivanov, Vladimir N.; Wu, Jinhua; Hei, Tom K.
2017-01-01
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. The challenging problem in cancer treatment is to find a way to upregulate radiosensitivity of GBM while protecting neurons and neural stem/progenitor cells in the brain. The goal of the present study was upregulation of the cytotoxic effect of γ-irradiation in GBM by non-psychotropic and non-toxic cannabinoid, cannabidiol (CBD). We emphasized three main aspects of signaling mechanisms induced by CBD treatment (alone or in combination with γ-irradiation) in human GBM that govern cell death: 1) CBD significantly upregulated the active (phosphorylated) JNK1/2 and MAPK p38 levels with the subsequent downregulation of the active phospho-ERK1/2 and phospho-AKT1 levels. MAPK p38 was one of the main drivers of CBD-induced cell death, while death levels after combined treatment of CBD and radiation were dependent on both MAPK p38 and JNK. Both MAPK p38 and JNK regulate the endogenous TRAIL expression. 2) NF-κB p65-P(Ser536) was not the main target of CBD treatment and this transcription factor was found at high levels in CBD-treated GBM cells. Additional suppression of p65-P(Ser536) levels using specific small molecule inhibitors significantly increased CBD-induced apoptosis. 3) CBD treatment substantially upregulated TNF/TNFR1 and TRAIL/TRAIL-R2 signaling by modulation of both ligand and receptor levels followed by apoptosis. Our results demonstrate that radiation-induced death in GBM could be enhanced by CBD-mediated signaling in concert with its marginal effects for neural stem/progenitor cells and astrocytes. It will allow selecting efficient targets for sensitization of GBM and overcoming cancer therapy-induced severe adverse sequelae. PMID:29088769
Brzozowska, Natalia; Li, Kong M.; Wang, Xiao Suo; Booth, Jessica; Stuart, Jordyn; McGregor, Iain S.
2016-01-01
Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b−∕−), Bcrp knockout (Abcg2−∕−), combined P-gp/Bcrp knockout (Abcb1a/b−∕−Abcg2−∕−) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders. PMID:27257556
Brzozowska, Natalia; Li, Kong M; Wang, Xiao Suo; Booth, Jessica; Stuart, Jordyn; McGregor, Iain S; Arnold, Jonathon C
2016-01-01
Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b (-∕-)), Bcrp knockout (Abcg2 (-∕-)), combined P-gp/Bcrp knockout (Abcb1a/b (-∕-) Abcg2 (-∕-)) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders.
Sonego, Andreza B; Gomes, Felipe V; Del Bel, Elaine A; Guimaraes, Francisco S
2016-08-01
Cannabidiol (CBD) is a major non-psychoactive compound from Cannabis sativa plant. Given that CBD reduces psychotic symptoms without inducing extrapyramidal motor side-effects in animal models and schizophrenia patients, it has been proposed to act as an atypical antipsychotic. In addition, CBD reduced catalepsy induced by drugs with distinct pharmacological mechanisms, including the typical antipsychotic haloperidol. To further investigate this latter effect, we tested whether CBD (15-60mg/kg) would attenuate the catalepsy and c-Fos protein expression in the dorsal striatum induced by haloperidol (0.6mg/kg). We also evaluated if these effects occur through the facilitation of 5-HT1A receptor-mediated neurotransmission. For this, male Swiss mice were treated with CBD and haloperidol systemically and then subjected to the catalepsy test. Independent groups of animals were also treated with the 5-HT1A receptor antagonist WAY100635 (0.1mg/kg). As expected, haloperidol induced catalepsy throughout the experiments, an effect that was prevented by systemic CBD treatment 30min before haloperidol administration. Also, CBD, administered 2.5h after haloperidol, reversed haloperidol-induced catalepsy. Haloperidol also increased c-Fos protein expression in the dorsolateral striatum, an effect attenuated by previous CBD administration. CBD effects on catalepsy and c-Fos protein expression induced by haloperidol were blocked by the 5-HT1A receptor antagonist. We also evaluated the effects of CBD (60nmol) injection into the dorsal striatum on haloperidol-induced catalepsy. Similar to systemic administration, this treatment reduced catalepsy induced by haloperidol. Altogether, these results suggest that CBD acts in the dorsal striatum to improve haloperidol-induced catalepsy via postsynaptic 5-HT1A receptors. Copyright © 2016 Elsevier B.V. All rights reserved.
Yeshurun, Moshe; Shpilberg, Ofer; Herscovici, Corina; Shargian, Liat; Dreyer, Juliet; Peck, Anat; Israeli, Moshe; Levy-Assaraf, Maly; Gruenewald, Tsipora; Mechoulam, Raphael; Raanani, Pia; Ram, Ron
2015-10-01
Graft-versus-host-disease (GVHD) is a major obstacle to successful allogeneic hematopoietic cell transplantation (alloHCT). Cannabidiol (CBD), a nonpsychotropic ingredient of Cannabis sativa, possesses potent anti-inflammatory and immunosuppressive properties. We hypothesized that CBD may decrease GVHD incidence and severity after alloHCT. We conducted a phase II study. GVHD prophylaxis consisted of cyclosporine and a short course of methotrexate. Patients transplanted from an unrelated donor were given low-dose anti-T cell globulin. CBD 300 mg/day was given orally starting 7 days before transplantation until day 30. Forty-eight consecutive adult patients undergoing alloHCT were enrolled. Thirty-eight patients (79%) had acute leukemia or myelodysplastic syndrome and 35 patients (73%) were given myeloablative conditioning. The donor was either an HLA-identical sibling (n = 28), a 10/10 matched unrelated donor (n = 16), or a 1-antigen-mismatched unrelated donor (n = 4). The median follow-up was 16 months (range, 7 to 23). No grades 3 to 4 toxicities were attributed to CBD. None of the patients developed acute GVHD while consuming CBD. In an intention-to-treat analysis, we found that the cumulative incidence rates of grades II to IV and grades III to IV acute GVHD by day 100 were 12.1% and 5%, respectively. Compared with 101 historical control subjects given standard GVHD prophylaxis, the hazard ratio of developing grades II to IV acute GVHD among subjects treated with CBD plus standard GVHD prophylaxis was .3 (P = .0002). Rates of nonrelapse mortality at 100 days and at 1 year after transplantation were 8.6% and 13.4%, respectively. Among patients surviving more than 100 days, the cumulative incidences of moderate-to-severe chronic GVHD at 12 and 18 months were 20% and 33%, respectively. The combination of CBD with standard GVHD prophylaxis is a safe and promising strategy to reduce the incidence of acute GVHD. A randomized double-blind controlled study is warranted
Issy, Ana Carolina; Ferreira, Frederico R.; Viveros, Maria-Paz; Del Bel, Elaine A.; Guimarães, Francisco S.
2015-01-01
Background: Preclinical and clinical data suggest that cannabidiol (CBD), a major non-psychotomimetic compound from Cannabis sativa, induces antipsychotic-like effects. However, the antipsychotic properties of repeated CBD treatment have been poorly investigated. Behavioral changes induced by repeated treatment with glutamate N-methyl-D-aspartate receptor (NMDAR) antagonists have been proposed as an animal model of schizophrenia-like signs. In the present study, we evaluated if repeated treatment with CBD would attenuate the behavioral and molecular modifications induced by chronic administration of one of these antagonists, MK-801. Methods: Male C57BL/6J mice received daily i.p. injections of MK-801 (0.1, 0.5, or 1mg/kg) for 14, 21, or 28 days. Twenty-four hours after the last injection, animals were submitted to the prepulse inhibition (PPI) test. After that, we investigated if repeated treatment with CBD (15, 30, and 60mg/kg) would attenuate the PPI impairment induced by chronic treatment with MK-801 (1mg/kg; 28 days). CBD treatment began on the 6th day after the start of MK-801 administration and continued until the end of the treatment. Immediately after the PPI, the mice brains were removed and processed to evaluate the molecular changes. We measured changes in FosB/ΔFosB and parvalbumin (PV) expression, a marker of neuronal activity and a calcium-binding protein expressed in a subclass of GABAergic interneurons, respectively. Changes in mRNA expression of the NMDAR GluN1 subunit gene (GRN1) were also evaluated. CBD effects were compared to those induced by the atypical antipsychotic clozapine. Results: MK-801 administration at the dose of 1mg/kg for 28 days impaired PPI responses. Chronic treatment with CBD (30 and 60mg/kg) attenuated PPI impairment. MK-801 treatment increased FosB/ΔFosB expression and decreased PV expression in the medial prefrontal cortex. A decreased mRNA level of GRN1 in the hippocampus was also observed. All the molecular changes were
Gomes, Felipe V; Issy, Ana Carolina; Ferreira, Frederico R; Viveros, Maria-Paz; Del Bel, Elaine A; Guimarães, Francisco S
2014-10-31
Preclinical and clinical data suggest that cannabidiol (CBD), a major non-psychotomimetic compound from Cannabis sativa, induces antipsychotic-like effects. However, the antipsychotic properties of repeated CBD treatment have been poorly investigated. Behavioral changes induced by repeated treatment with glutamate N-methyl-D-aspartate receptor (NMDAR) antagonists have been proposed as an animal model of schizophrenia-like signs. In the present study, we evaluated if repeated treatment with CBD would attenuate the behavioral and molecular modifications induced by chronic administration of one of these antagonists, MK-801. Male C57BL/6J mice received daily i.p. injections of MK-801 (0.1, 0.5, or 1mg/kg) for 14, 21, or 28 days. Twenty-four hours after the last injection, animals were submitted to the prepulse inhibition (PPI) test. After that, we investigated if repeated treatment with CBD (15, 30, and 60mg/kg) would attenuate the PPI impairment induced by chronic treatment with MK-801 (1mg/kg; 28 days). CBD treatment began on the 6th day after the start of MK-801 administration and continued until the end of the treatment. Immediately after the PPI, the mice brains were removed and processed to evaluate the molecular changes. We measured changes in FosB/ΔFosB and parvalbumin (PV) expression, a marker of neuronal activity and a calcium-binding protein expressed in a subclass of GABAergic interneurons, respectively. Changes in mRNA expression of the NMDAR GluN1 subunit gene (GRN1) were also evaluated. CBD effects were compared to those induced by the atypical antipsychotic clozapine. MK-801 administration at the dose of 1mg/kg for 28 days impaired PPI responses. Chronic treatment with CBD (30 and 60mg/kg) attenuated PPI impairment. MK-801 treatment increased FosB/ΔFosB expression and decreased PV expression in the medial prefrontal cortex. A decreased mRNA level of GRN1 in the hippocampus was also observed. All the molecular changes were attenuated by CBD. CBD by
Santos, Neife Aparecida Guinaim; Martins, Nádia Maria; Sisti, Flávia Malvestio; Fernandes, Laís Silva; Ferreira, Rafaela Scalco; Queiroz, Regina Helena Costa; Santos, Antônio Cardozo
2015-12-25
Cannabidiol (CBD) is a non-psychoactive constituent of Cannabis sativa with potential to treat neurodegenerative diseases. Its neuroprotection has been mainly associated with anti-inflammatory and antioxidant events; however, other mechanisms might be involved. We investigated the involvement of neuritogenesis, NGF receptors (trkA), NGF, and neuronal proteins in the mechanism of neuroprotection of CBD against MPP(+) toxicity in PC12 cells. CBD increased cell viability, differentiation, and the expression of axonal (GAP-43) and synaptic (synaptophysin and synapsin I) proteins. Its neuritogenic effect was not dependent or additive to NGF, but it was inhibited by K252a (trkA inhibitor). CBD did not increase the expression of NGF, but protected against its decrease induced by MPP(+), probably by an indirect mechanism. We also evaluated the neuritogenesis in SH-SY5Y cells, which do not express trkA receptors. CBD did not induce neuritogenesis in this cellular model, which supports the involvement of trkA receptors. This is the first study to report the involvement of neuronal proteins and trkA in the neuroprotection of CBD. Our findings suggest that CBD has a neurorestorative potential independent of NGF that might contribute to its neuroprotection against MPP(+), a neurotoxin relevant to Parkinson's disease. Copyright © 2015 Elsevier B.V. All rights reserved.
Hindocha, Chandni; Freeman, Tom P; Schafer, Grainne; Gardener, Chelsea; Das, Ravi K; Morgan, Celia J A; Curran, H Valerie
2015-03-01
Acute administration of the primary psychoactive constituent of cannabis, Δ-9-tetrahydrocannabinol (THC), impairs human facial affect recognition, implicating the endocannabinoid system in emotional processing. Another main constituent of cannabis, cannabidiol (CBD), has seemingly opposite functional effects on the brain. This study aimed to determine the effects of THC and CBD, both alone and in combination on emotional facial affect recognition. 48 volunteers, selected for high and low frequency of cannabis use and schizotypy, were administered, THC (8mg), CBD (16mg), THC+CBD (8mg+16mg) and placebo, by inhalation, in a 4-way, double-blind, placebo-controlled crossover design. They completed an emotional facial affect recognition task including fearful, angry, happy, sad, surprise and disgust faces varying in intensity from 20% to 100%. A visual analogue scale (VAS) of feeling 'stoned' was also completed. In comparison to placebo, CBD improved emotional facial affect recognition at 60% emotional intensity; THC was detrimental to the recognition of ambiguous faces of 40% intensity. The combination of THC+CBD produced no impairment. Relative to placebo, both THC alone and combined THC+CBD equally increased feelings of being 'stoned'. CBD did not influence feelings of 'stoned'. No effects of frequency of use or schizotypy were found. In conclusion, CBD improves recognition of emotional facial affect and attenuates the impairment induced by THC. This is the first human study examining the effects of different cannabinoids on emotional processing. It provides preliminary evidence that different pharmacological agents acting upon the endocannabinoid system can both improve and impair recognition of emotional faces. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Hindocha, Chandni; Freeman, Tom P.; Schafer, Grainne; Gardener, Chelsea; Das, Ravi K.; Morgan, Celia J.A.; Curran, H. Valerie
2015-01-01
Acute administration of the primary psychoactive constituent of cannabis, Δ-9-tetrahydrocannabinol (THC), impairs human facial affect recognition, implicating the endocannabinoid system in emotional processing. Another main constituent of cannabis, cannabidiol (CBD), has seemingly opposite functional effects on the brain. This study aimed to determine the effects of THC and CBD, both alone and in combination on emotional facial affect recognition. 48 volunteers, selected for high and low frequency of cannabis use and schizotypy, were administered, THC (8 mg), CBD (16 mg), THC+CBD (8 mg+16 mg) and placebo, by inhalation, in a 4-way, double-blind, placebo-controlled crossover design. They completed an emotional facial affect recognition task including fearful, angry, happy, sad, surprise and disgust faces varying in intensity from 20% to 100%. A visual analogue scale (VAS) of feeling ‘stoned’ was also completed. In comparison to placebo, CBD improved emotional facial affect recognition at 60% emotional intensity; THC was detrimental to the recognition of ambiguous faces of 40% intensity. The combination of THC+CBD produced no impairment. Relative to placebo, both THC alone and combined THC+CBD equally increased feelings of being ‘stoned’. CBD did not influence feelings of ‘stoned’. No effects of frequency of use or schizotypy were found. In conclusion, CBD improves recognition of emotional facial affect and attenuates the impairment induced by THC. This is the first human study examining the effects of different cannabinoids on emotional processing. It provides preliminary evidence that different pharmacological agents acting upon the endocannabinoid system can both improve and impair recognition of emotional faces. PMID:25534187
Nabissi, Massimo; Morelli, Maria Beatrice; Amantini, Consuelo; Liberati, Sonia; Santoni, Matteo; Ricci-Vitiani, Lucia; Pallini, Roberto; Santoni, Giorgio
2015-10-15
Glioma stem-like cells (GSCs) correspond to a tumor cell subpopulation, involved in glioblastoma multiforme (GBM) tumor initiation and acquired chemoresistance. Currently, drug-induced differentiation is considered as a promising approach to eradicate this tumor-driving cell population. Recently, the effect of cannabinoids (CBs) in promoting glial differentiation and inhibiting gliomagenesis has been evidenced. Herein, we demonstrated that cannabidiol (CBD) by activating transient receptor potential vanilloid-2 (TRPV2) triggers GSCs differentiation activating the autophagic process and inhibits GSCs proliferation and clonogenic capability. Above all, CBD and carmustine (BCNU) in combination overcome the high resistance of GSCs to BCNU treatment, by inducing apoptotic cell death. Acute myeloid leukemia (Aml-1) transcription factors play a pivotal role in GBM proliferation and differentiation and it is known that Aml-1 control the expression of several nociceptive receptors. So, we evaluated the expression levels of Aml-1 spliced variants (Aml-1a, b and c) in GSCs and during their differentiation. We found that Aml-1a is upregulated during GSCs differentiation, and its downregulation restores a stem cell phenotype in differentiated GSCs. Since it was demonstrated that CBD induces also TRPV2 expression and that TRPV2 is involved in GSCs differentiation, we evaluated if Aml-1a interacted directly with TRPV2 promoters. Herein, we found that Aml-1a binds TRPV2 promoters and that Aml-1a expression is upregulated by CBD treatment, in a TRPV2 and PI3K/AKT dependent manner. Altogether, these results support a novel mechanism by which CBD inducing TRPV2-dependent autophagic process stimulates Aml-1a-dependent GSCs differentiation, abrogating the BCNU chemoresistance in GSCs. © 2015 UICC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lydon, J.
The concentration of cannabinoids in Cannabis sativa L. is correlated with high ultraviolet-B (UV-B) radiation environments. ..delta../sup 9/-Tetrahydrocannabinolic acid and cannabidiolic acid, both major secondary products of C. sativa, absorb UV-B radiation and may function as solar screens. The object of this study was to test the effects of UV-B radiation on the physiology and cannabinoid production of C. sativa. Drug and fiber-type C. sativa were irradiated with three levels of UV-B radiation for 40 days in greenhouse experiments. Physiological measurements on leaf tissues were made by infra-red gas analysis. Drug and fiber-type control plants had similar CO/sub 2/ assimilationmore » rates from 26 to 32/sup 0/C. Drug-type control plant had higher dark respiration rates and stomatal conductances than fiber-type control plants. The concentration of ..delta../sup 9/-THC, but not of other cannabinoids) in both vegetative and reproductive tissues increased with UV-B dose in drug-type plants. None of the cannabinoids in fiber-type plants were affected by UV-B radiation. The increased level of ..delta../sup 9/-THC found in leaves after irradiation may account for the physiological and morphological insensitivity to UV-B radiation in the drug-type plants. However, fiber plants showed no comparable change in the level of cannabidoil (CBD). Resin stripped form fresh fiber-type floral tissue by sonication was spotted on filter paper and irradiated continuously for 7 days. Cannabidiol (CBD) gradually decreased when irradiated but ..delta../sup 9/-THC and cannabichromene did not.« less
Harvey, Benjamin S; Ohlsson, Katharina S; Mååg, Jesper L V; Musgrave, Ian F; Smid, Scott D
2012-01-01
Cannabinoids have been widely reported to have neuroprotective properties in vitro and in vivo. In this study we compared the effects of CB1 and CB2 receptor-selective ligands, the endocannabinoid anandamide and the phytocannabinoid cannabidiol, against oxidative stress and the toxic hallmark Alzheimer's protein, β-amyloid (Aβ) in neuronal cell lines. PC12 or SH-SY5Y cells were selectively exposed to either hydrogen peroxide, tert-butyl hydroperoxide or Aβ, alone or in the presence of the CB1 specific agonist arachidonyl-2'-chloroethylamide (ACEA), CB2 specific agonist JWH-015, anandamide or cannabidiol. Cannabidiol improved cell viability in response to tert-butyl hydroperoxide in PC12 and SH-SY5Y cells, while hydrogen peroxide-mediated toxicity was unaffected by cannabidiol pretreatment. Aβ exposure evoked a loss of cell viability in PC12 cells. Of the cannabinoids tested, only anandamide was able to inhibit Aβ-evoked neurotoxicity. ACEA had no effect on Aβ-evoked neurotoxicity, suggesting a CB1 receptor-independent effect of anandamide. JWH-015 pretreatment was also without protective influence on PC12 cells from either pro-oxidant or Aβ exposure. None of the cannabinoids directly inhibited or disrupted preformed Aβ fibrils and aggregates. In conclusion, the endocannabinoid anandamide protects neuronal cells from Aβ exposure via a pathway unrelated to CB1 or CB2 receptor activation. The protective effect of cannabidiol against oxidative stress does not confer protection against Aβ exposure, suggesting divergent pathways for neuroprotection of these two cannabinoids. Copyright © 2011 Elsevier Inc. All rights reserved.
Porcari, Giulia S; Fu, Cary; Doll, Emily D; Carter, Emma G; Carson, Robert P
2018-03-01
Medically refractory epilepsy continues to be a challenge worldwide, and despite an increasing number of medical therapies, approximately 1 in 3 patients continues to have seizures. Cannabidiol (CBD), one of many constituents of the Cannabis sativa or marijuana plant, has received renewed interest in the treatment of epilepsy. While highly purified CBD awaits Food and Drug Administration (FDA) approval, artisanal formulations of CBD are readily available and are seeing increased use in our patient population. Although randomized controlled trials of CBD are ongoing and promising, data regarding artisanal formulations of CBD are minimal and largely anecdotal. Here, we report a retrospective study to define the efficacy of artisanal CBD preparations in children with epilepsy. Given the known interaction between CBD and clobazam, we also conducted a subgroup comparison to determine if clobazam use was related to any beneficial effects of CBD. Additionally, we compared response rates with CBD and with clobazam alone within an overlapping patient cohort. A pediatric cohort with epilepsy of 108 patients was identified through a medical record search for patients using CBD oil. The addition of CBD resulted in 39% of patients having a >50% reduction in seizures, with 10% becoming seizure-free. The responder rate for clobazam was similar. No patients achieved CBD monotherapy, although the weaning of other antiepileptic drugs (AEDs) became possible in 22% of patients. A comparable proportion had AED additions during CBD therapy. With concomitant use of clobazam, 44% of patients had a 50% reduction in seizures upon addition of CBD compared with 33% in the population not taking clobazam; this difference was not statistically significant. The most common reported side effect of CBD was sedation in less than 4% of patients, all of whom were also taking clobazam. Increased alertness and improved verbal interactions were reported in 14% of patients in the CBD group and 8% of
Giacoppo, Sabrina; Galuppo, Maria; Pollastro, Federica; Grassi, Gianpaolo; Bramanti, Placido; Mazzon, Emanuela
2015-10-21
The present study was designed to investigate the efficacy of a new formulation of alone, purified cannabidiol (CBD) (>98 %), the main non-psychotropic cannabinoid of Cannabis sativa, as a topical treatment in an experimental model of autoimmune encephalomyelitis (EAE), the most commonly used model for multiple sclerosis (MS). Particularly, we evaluated whether administration of a topical 1 % CBD-cream, given at the time of symptomatic disease onset, could affect the EAE progression and if this treatment could also recover paralysis of hind limbs, qualifying topical-CBD for the symptomatic treatment of MS. In order to have a preparation of 1 % of CBD-cream, pure CBD have been solubilized in propylene glycoland basic dense cream O/A. EAE was induced by immunization with myelin oligodendroglial glycoprotein peptide (MOG35-55) in C57BL/6 mice. After EAE onset, mice were allocated into several experimental groups (Naïve, EAE, EAE-1 % CBD-cream, EAE-vehicle cream, CTRL-1 % CBD-cream, CTRL-vehicle cream). Mice were observed daily for signs of EAE and weight loss. At the sacrifice of the animals, which occurred at the 28(th) day from EAE-induction, spinal cord and spleen tissues were collected in order to perform histological evaluation, immunohistochemistry and western blotting analysis. Achieved results surprisingly show that daily treatment with topical 1 % CBD-cream may exert neuroprotective effects against EAE, diminishing clinical disease score (mean of 5.0 in EAE mice vs 1.5 in EAE + CBD-cream), by recovering of paralysis of hind limbs and by ameliorating histological score typical of disease (lymphocytic infiltration and demyelination) in spinal cord tissues. Also, 1 % CBD-cream is able to counteract the EAE-induced damage reducing release of CD4 and CD8α T cells (spleen tissue localization was quantified about 10,69 % and 35,96 % of positive staining respectively in EAE mice) and expression of the main pro-inflammatory cytokines as well as several other
Todd, Stephanie M; Zhou, Cilla; Clarke, David J; Chohan, Tariq W; Bahceci, Dilara; Arnold, Jonathon C
2017-02-01
The evidence base for the use of medical cannabis preparations containing specific ratios of cannabidiol (CBD) and Δ 9 -tetrahydrocannabinol (THC) is limited. While there is abundant data on acute interactions between CBD and THC, few studies have assessed the impact of their repeated co-administration. We previously reported that CBD inhibited or potentiated the acute effects of THC dependent on the measure being examined at a 1:1 CBD:THC dose ratio. Further, CBD decreased THC effects on brain regions involved in memory, anxiety and body temperature regulation. Here we extend on these finding by examining over 15 days of treatment whether CBD modulated the repeated effects of THC on behaviour and neuroadaption markers in the mesolimbic dopamine pathway. After acute locomotor suppression, repeated THC caused rebound locomotor hyperactivity that was modestly inhibited by CBD. CBD also slightly reduced the acute effects of THC on sensorimotor gating. These subtle effects were found at a 1:1 CBD:THC dose ratio but were not accentuated by a 5:1 dose ratio. CBD did not alter the trajectory of enduring THC-induced anxiety nor tolerance to the pharmacological effects of THC. There was no evidence of CBD potentiating the behavioural effects of THC. However we demonstrated for the first time that repeated co-administration of CBD and THC increased histone 3 acetylation (H3K9/14ac) in the VTA and ΔFosB expression in the nucleus accumbens. These changes suggest that while CBD may have protective effects acutely, its long-term molecular actions on the brain are more complex and may be supradditive. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.
Rossignoli, Matheus Teixeira; Lopes-Aguiar, Cleiton; Ruggiero, Rafael Naime; Do Val da Silva, Raquel Araujo; Bueno-Junior, Lezio Soares; Kandratavicius, Ludmyla; Peixoto-Santos, José Eduardo; Crippa, José Alexandre; Cecilio Hallak, Jaime Eduardo; Zuardi, Antonio Waldo; Szawka, Raphael Escorsim; Anselmo-Franci, Janete; Leite, João Pereira; Romcy-Pereira, Rodrigo Neves
2017-05-14
The prefrontal cortex (PFC), amygdala and hippocampus display a coordinated activity during acquisition of associative fear memories. Evidence indicates that PFC engagement in aversive memory formation does not progress linearly as previously thought. Instead, it seems to be recruited at specific time windows after memory acquisition, which has implications for the treatment of post-traumatic stress disorders. Cannabidiol (CBD), the major non-psychotomimetic phytocannabinoid of the Cannabis sativa plant, is known to modulate contextual fear memory acquisition in rodents. However, it is still not clear how CBD interferes with PFC-dependent processes during post-training memory consolidation. Here, we tested whether intra-PFC infusions of CBD immediately after or 5h following contextual fear conditioning was able to interfere with memory consolidation. Neurochemical and cellular correlates of the CBD treatment were evaluated by the quantification of extracellular levels of dopamine (DA), serotonin, and their metabolites in the PFC and by measuring the cellular expression of activity-dependent transcription factors in cortical and limbic regions. Our results indicate that bilateral intra-PFC CBD infusion impaired contextual fear memory consolidation when applied 5h after conditioning, but had no effect when applied immediately after it. This effect was associated with a reduction in DA turnover in the PFC following retrieval 5days after training. We also observed that post-conditioning infusion of CBD reduced c-fos and zif-268 protein expression in the hippocampus, PFC, and thalamus. Our findings support that CBD interferes with contextual fear memory consolidation by reducing PFC influence on cortico-limbic circuits. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Hussain, Shaun A; Zhou, Raymond; Jacobson, Catherine; Weng, Julius; Cheng, Emily; Lay, Johnson; Hung, Phoebe; Lerner, Jason T; Sankar, Raman
2015-06-01
There is a great need for safe and effective therapies for treatment of infantile spasms (IS) and Lennox-Gastaut syndrome (LGS). Based on anecdotal reports and limited experience in an open-label trial, cannabidiol (CBD) has received tremendous attention as a potential treatment for pediatric epilepsy, especially Dravet syndrome. However, there is scant evidence of specific utility for treatment of IS and LGS. We sought to document the experiences of children with IS and/or LGS who have been treated with CBD-enriched cannabis preparations. We conducted a brief online survey of parents who administered CBD-enriched cannabis preparations for the treatment of their children's epilepsy. We specifically recruited parents of children with IS and LGS and focused on perceived efficacy, dosage, and tolerability. Survey respondents included 117 parents of children with epilepsy (including 53 with IS or LGS) who had administered CBD products to their children. Perceived efficacy and tolerability were similar across etiologic subgroups. Eighty-five percent of all parents reported a reduction in seizure frequency, and 14% reported complete seizure freedom. Epilepsy was characterized as highly refractory with median latency from epilepsy onset to CBD initiation of five years, during which the patient's seizures failed to improve after a median of eight antiseizure medication trials. The median duration and the median dosage of CBD exposure were 6.8 months and 4.3mg/kg/day, respectively. Reported side effects were far less common during CBD exposure, with the exception of increased appetite (30%). A high proportion of respondents reported improvement in sleep (53%), alertness (71%), and mood (63%) during CBD therapy. Although this study suggests a potential role for CBD in the treatment of refractory childhood epilepsy including IS and LGS, it does not represent compelling evidence of efficacy or safety. From a methodological standpoint, this study is extraordinarily vulnerable
Solowij, Nadia; Broyd, Samantha J; Beale, Camilla; Prick, Julie-Anne; Greenwood, Lisa-Marie; van Hell, Hendrika; Suo, Chao; Galettis, Peter; Pai, Nagesh; Fu, Shanlin; Croft, Rodney J; Martin, Jennifer H; Yücel, Murat
2018-01-01
Introduction: Chronic cannabis use has been associated with impaired cognition and elevated psychological symptoms, particularly psychotic-like experiences. While Δ 9 -tetrahydrocannabinol (THC) is thought to be primarily responsible for these deleterious effects, cannabidiol (CBD) is purported to have antipsychotic properties and to ameliorate cognitive, symptomatic, and brain harms in cannabis users. However, this has never been tested in a prolonged administration trial in otherwise healthy cannabis users. Here, we report the first study of prolonged CBD administration to a community sample of regular cannabis users in a pragmatic trial investigating potential restorative effects of CBD on psychological symptoms and cognition. Materials and Methods: Twenty frequent cannabis users (16 male, median age 25 years) underwent a 10-week open-label trial of 200 mg of daily oral CBD treatment, while continuing to use cannabis as usual. The majority of participants were daily cannabis users who had used cannabis for several years (median 5.5 years of regular use). Participants underwent psychological and cognitive assessments at baseline (BL) and post-treatment (PT) and were monitored weekly throughout the trial. Results: CBD was well tolerated with no reported side effects; however, participants retrospectively reported reduced euphoria when smoking cannabis. No impairments to cognition were found, nor were there deleterious effects on psychological function. Importantly, participants reported significantly fewer depressive and psychotic-like symptoms at PT relative to BL, and exhibited improvements in attentional switching, verbal learning, and memory. Increased plasma CBD concentrations were associated with improvements in attentional control and beneficial changes in psychological symptoms. Greater benefits were observed in dependent than in nondependent cannabis users. Conclusions: Prolonged CBD treatment appears to have promising therapeutic effects for improving
Solowij, Nadia; Broyd, Samantha J.; Beale, Camilla; Prick, Julie-Anne; Greenwood, Lisa-marie; van Hell, Hendrika; Suo, Chao; Galettis, Peter; Pai, Nagesh; Fu, Shanlin; Croft, Rodney J.; Martin, Jennifer H.; Yücel, Murat
2018-01-01
Abstract Introduction: Chronic cannabis use has been associated with impaired cognition and elevated psychological symptoms, particularly psychotic-like experiences. While Δ9-tetrahydrocannabinol (THC) is thought to be primarily responsible for these deleterious effects, cannabidiol (CBD) is purported to have antipsychotic properties and to ameliorate cognitive, symptomatic, and brain harms in cannabis users. However, this has never been tested in a prolonged administration trial in otherwise healthy cannabis users. Here, we report the first study of prolonged CBD administration to a community sample of regular cannabis users in a pragmatic trial investigating potential restorative effects of CBD on psychological symptoms and cognition. Materials and Methods: Twenty frequent cannabis users (16 male, median age 25 years) underwent a 10-week open-label trial of 200 mg of daily oral CBD treatment, while continuing to use cannabis as usual. The majority of participants were daily cannabis users who had used cannabis for several years (median 5.5 years of regular use). Participants underwent psychological and cognitive assessments at baseline (BL) and post-treatment (PT) and were monitored weekly throughout the trial. Results: CBD was well tolerated with no reported side effects; however, participants retrospectively reported reduced euphoria when smoking cannabis. No impairments to cognition were found, nor were there deleterious effects on psychological function. Importantly, participants reported significantly fewer depressive and psychotic-like symptoms at PT relative to BL, and exhibited improvements in attentional switching, verbal learning, and memory. Increased plasma CBD concentrations were associated with improvements in attentional control and beneficial changes in psychological symptoms. Greater benefits were observed in dependent than in nondependent cannabis users. Conclusions: Prolonged CBD treatment appears to have promising therapeutic effects for
Rock, Erin M; Goodwin, Jennifer M; Limebeer, Cheryl L; Breuer, Aviva; Pertwee, Roger G; Mechoulam, Raphael; Parker, Linda A
2011-06-01
The interaction between two non-psychotropic cannabinoids, cannabidiol (CBD) and cannabigerol (CBG), which have been reported to act as a 5-hydroxytryptamine 1A (5-HT(1A)) agonist and antagonist, respectively, was evaluated. To evaluate the potential of CBG to reverse the anti-nausea, anti-emetic effects of CBD. In experiment 1, rats were pre-treated with CBG (0.0, 1, 5, and 10 mg/kg, ip), 15 min prior to being treated with CBD (experiment 1a: VEH or 5 mg/kg, ip) or 8-OH-DPAT (experiment 1b: VEH or 0.01 mg/kg, ip). Thirty minutes later, all rats received a pairing of 0.1% saccharin solution and LiCl (20 ml/kg of 0.15 M, ip). Seventy-two hours later, the rats received a drug-free taste reactivity test with saccharin to evaluate the effects of the treatments on the establishment of conditioned gaping reactions (a model of nausea). As well, conditioned saccharin avoidance was measured. In experiment 2, Suncus murinus were injected with CBG (5 mg/kg, ip) or VEH 15 min prior to CBD (5 mg/kg) or VEH and 30 min later were injected with LiCl (60 ml/kg of 0.15 M, i.p.), and the number of vomiting episodes were measured. CBD (5 mg/kg) suppressed conditioned gaping in rats and vomiting in shrews, which were reversed by pre-treatment with all doses of CBG. CBG also prevented the anti-nausea effects of 8-OH-DPAT. Interactions between moderate doses of CBG and CBD may oppose one another at the 5-HT(1A) receptor in the regulation of nausea and vomiting.
Kozela, Ewa; Pietr, Maciej; Juknat, Ana; Rimmerman, Neta; Levy, Rivka; Vogel, Zvi
2010-01-01
Cannabinoids have been shown to exert anti-inflammatory activities in various in vivo and in vitro experimental models as well as ameliorate various inflammatory degenerative diseases. However, the mechanisms of these effects are not completely understood. Using the BV-2 mouse microglial cell line and lipopolysaccharide (LPS) to induce an inflammatory response, we studied the signaling pathways engaged in the anti-inflammatory effects of cannabinoids as well as their influence on the expression of several genes known to be involved in inflammation. We found that the two major cannabinoids present in marijuana, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), decrease the production and release of proinflammatory cytokines, including interleukin-1β, interleukin-6, and interferon (IFN)β, from LPS-activated microglial cells. The cannabinoid anti-inflammatory action does not seem to involve the CB1 and CB2 cannabinoid receptors or the abn-CBD-sensitive receptors. In addition, we found that THC and CBD act through different, although partially overlapping, mechanisms. CBD, but not THC, reduces the activity of the NF-κB pathway, a primary pathway regulating the expression of proinflammatory genes. Moreover, CBD, but not THC, up-regulates the activation of the STAT3 transcription factor, an element of homeostatic mechanism(s) inducing anti-inflammatory events. Following CBD treatment, but less so with THC, we observed a decreased level of mRNA for the Socs3 gene, a main negative regulator of STATs and particularly of STAT3. However, both CBD and THC decreased the activation of the LPS-induced STAT1 transcription factor, a key player in IFNβ-dependent proinflammatory processes. In summary, our observations show that CBD and THC vary in their effects on the anti-inflammatory pathways, including the NF-κB and IFNβ-dependent pathways. PMID:19910459
Hegde, Venkatesh L.; Singh, Udai P.; Nagarkatti, Prakash S.; Nagarkatti, Mitzi
2015-01-01
Cannabidiol (CBD) is a natural non-psychotropic cannabinoid from marijuana (Cannabis sativa) with anti-epileptic and anti-inflammatory properties. Effect of CBD on naïve immune system is not precisely understood. In this study, we observed that administering CBD into naïve mice triggers robust induction of CD11b+Gr-1+ MDSC in the peritoneum, which expressed functional Arg1, and potently suppressed T cell proliferation ex vivo. Further, CBD-MDSC suppressed LPS-induced acute inflammatory response upon adoptive transfer in vivo. CBD-induced suppressor cells were comprised of CD11b+Ly6-G+Ly6-C+ granulocytic and CD11b+Ly6-G−Ly6-C+ monocytic subtypes, with monocytic MDSC exhibiting higher T cell suppressive function. Induction of MDSC by CBD was markedly attenuated in Kit-mutant (KitW/W-v) mast cell-deficient mice. MDSC response was reconstituted upon transfer of WT bone marrow-derived mast cells in KitW/W-v mice suggesting the key role of cKit (CD117) as well as mast cells. Moreover, mast cell activator compound 48/80 induced significant levels of MDSC in vivo. CBD administration in mice induced G-CSF, CXCL1 and M-CSF, but not GM-CSF. G-CSF was found to play a key role in MDSC mobilization inasmuch as neutralizing G-CSF caused a significant decrease in MDSC. Lastly, CBD enhanced the transcriptional activity of PPARγ in luciferase reporter assay, and PPARγ selective antagonist completely inhibited MDSC induction in vivo suggesting its critical role. Together, the results suggest that CBD may induce activation of PPARγ in mast cells leading to secretion of G-CSF and consequent MDSC mobilization. CBD being a major component of Cannabis, our study indicates that marijuana may modulate or dysregulate the immune system by mobilizing MDSC. PMID:25917103
Novel biotherapies are needed in youth mental health.
Amminger, G Paul; Berger, Maximus; Rice, Simon M; Davey, Christopher G; Schäfer, Miriam R; McGorry, Patrick D
2017-04-01
Adverse effects and lack of efficacy in a significant number of patients limit pharmaceutical interventions in youth psychiatry. This is exemplified by the fact that no medication is currently approved for the treatment of non-OCD anxiety disorders or major depressive disorder in young people younger than 18 years of age in Australia. Here, emerging biological therapies for youth with mental health problems are discussed. There is an urgent need for more research into biological interventions with acceptable risk-benefit balances. Omega-3 fatty acids, cannabidiol and N-acetylcysteine are currently being evaluated. If initial findings are confirmed, they may offer alternatives with more benign side-effect profiles than existing treatments.
Simultaneous quantification of delta-9-THC, THC-acid A, CBN and CBD in seized drugs using HPLC-DAD.
Ambach, Lars; Penitschka, Franziska; Broillet, Alain; König, Stefan; Weinmann, Wolfgang; Bernhard, Werner
2014-10-01
An HPLC-DAD method for the quantitative analysis of Δ(9)-tetrahydrocannabinol (THC), Δ(9)-tetrahydrocannabinolic acid-A (THCA-A), cannabidiol (CBD), and cannabinol (CBN) in confiscated cannabis products has been developed, fully validated and applied to analyse seized cannabis products. For determination of the THC content of plant material, this method combines quantitation of THCA-A, which is the inactive precursor of THC, and free THC. Plant material was dried, homogenized and extracted with methanol by ultrasonication. Chromatographic separation was achieved with a Waters Alliance 2695 HPLC equipped with a Merck LiChrospher 60 RP-Select B (5μm) precolumn and a Merck LiChroCart 125-4 LiChrospher 60 RP-Select B (5μm) analytical column. Analytes were detected and quantified using a Waters 2996 photo diode array detector. This method has been accepted by the public authorities of Switzerland (Bundesamt für Gesundheit, Federal Office of Public Health), and has been used to analyse 9092 samples since 2000. Since no thermal decarboxylation of THCA-A occurs, the method is highly reproducible for different cannabis materials. Two calibration ranges are used, a lower one for THC, CBN and CBD, and a higher one for THCA-A, due to its dominant presence in fresh plant material. As provider of the Swiss proficiency test, the robustness of this method has been tested over several years, and homogeneity tests even in the low calibration range (1%) show high precision (RSD≤4.3%, except CBD) and accuracy (bias≤4.1%, except CBN). Copyright © 2014. Published by Elsevier Ireland Ltd.
Thieme, Detlef; Sachs, Ulf; Sachs, Hans; Moore, Christine
2015-07-01
Formation of picolinic acid esters of hydroxylated drugs or their biotransformation products is a promising tool to improve their mass spectrometric ionization efficiency, alter their fragmentation behaviour and enhance sensitivity and specificity of their detection. The procedure was optimized and tested for the detection of cannabinoids, which proved to be most challenging when dealing with alternative specimens, for example hair and oral fluid. In particular, the detection of the THC metabolites hydroxyl-THC and carboxy-THC requires ultimate sensitivity because of their poor incorporation into hair or saliva. Both biotransformation products are widely accepted as incorporation markers to distinguish drug consumption from passive contamination. The derivatization procedure was carried out by adding a mixture of picolinic acid, 4-(dimethylamino)pyridine and 2-methyl-6-nitrobenzoic anhydride in tetrahydrofuran/triethylamine to the dry extraction residues. Resulting derivatives were found to be very stable and could be reconstituted in aqueous or organic buffers and subsequently analyzed by liquid chromatography-mass spectrometry (LC-MS). Owing to the complex consecutive fragmentation patterns, the application of multistage MS3 proved to be extremely useful for a sensitive identification of doubly picolinated hydroxy-THC in complex matrices. The detection limits - estimated by comparison of corresponding signal-to-noise ratios - increased by a factor of 100 following picolination. All other species examined, like cannabinol, THC, cannabidiol, and carboxy-THC, could also be derivatized exhibiting only moderate sensitivity improvements. The assay was systematically tested using hair samples and exemplarily applied to oral fluid. Concentrations of OH-THC identified in THC-positive hair samples ranged from 0.02 to 0.29pg/mg. Copyright © 2014 John Wiley & Sons, Ltd.
Jadoon, Khalid A; Ratcliffe, Stuart H; Barrett, David A; Thomas, E Louise; Stott, Colin; Bell, Jimmy D; O'Sullivan, Saoirse E; Tan, Garry D
2016-10-01
Cannabidiol (CBD) and Δ(9)-tetrahydrocannabivarin (THCV) are nonpsychoactive phytocannabinoids affecting lipid and glucose metabolism in animal models. This study set out to examine the effects of these compounds in patients with type 2 diabetes. In this randomized, double-blind, placebo-controlled study, 62 subjects with noninsulin-treated type 2 diabetes were randomized to five treatment arms: CBD (100 mg twice daily), THCV (5 mg twice daily), 1:1 ratio of CBD and THCV (5 mg/5 mg, twice daily), 20:1 ratio of CBD and THCV (100 mg/5 mg, twice daily), or matched placebo for 13 weeks. The primary end point was a change in HDL-cholesterol concentrations from baseline. Secondary/tertiary end points included changes in glycemic control, lipid profile, insulin sensitivity, body weight, liver triglyceride content, adipose tissue distribution, appetite, markers of inflammation, markers of vascular function, gut hormones, circulating endocannabinoids, and adipokine concentrations. Safety and tolerability end points were also evaluated. Compared with placebo, THCV significantly decreased fasting plasma glucose (estimated treatment difference [ETD] = -1.2 mmol/L; P < 0.05) and improved pancreatic β-cell function (HOMA2 β-cell function [ETD = -44.51 points; P < 0.01]), adiponectin (ETD = -5.9 × 10(6) pg/mL; P < 0.01), and apolipoprotein A (ETD = -6.02 μmol/L; P < 0.05), although plasma HDL was unaffected. Compared with baseline (but not placebo), CBD decreased resistin (-898 pg/ml; P < 0.05) and increased glucose-dependent insulinotropic peptide (21.9 pg/ml; P < 0.05). None of the combination treatments had a significant impact on end points. CBD and THCV were well tolerated. THCV could represent a new therapeutic agent in glycemic control in subjects with type 2 diabetes. © 2016 by the American Diabetes Association.
Iannotti, Fabio Arturo; Hill, Charlotte L; Leo, Antonio; Alhusaini, Ahlam; Soubrane, Camille; Mazzarella, Enrico; Russo, Emilio; Whalley, Benjamin J; Di Marzo, Vincenzo; Stephens, Gary J
2014-11-19
Epilepsy is the most common neurological disorder, with over 50 million people worldwide affected. Recent evidence suggests that the transient receptor potential cation channel subfamily V member 1 (TRPV1) may contribute to the onset and progression of some forms of epilepsy. Since the two nonpsychotropic cannabinoids cannabidivarin (CBDV) and cannabidiol (CBD) exert anticonvulsant activity in vivo and produce TRPV1-mediated intracellular calcium elevation in vitro, we evaluated the effects of these two compounds on TRPV1 channel activation and desensitization and in an in vitro model of epileptiform activity. Patch clamp analysis in transfected HEK293 cells demonstrated that CBD and CBDV dose-dependently activate and rapidly desensitize TRPV1, as well as TRP channels of subfamily V type 2 (TRPV2) and subfamily A type 1 (TRPA1). TRPV1 and TRPV2 transcripts were shown to be expressed in rat hippocampal tissue. When tested on epileptiform neuronal spike activity in hippocampal brain slices exposed to a Mg(2+)-free solution using multielectrode arrays (MEAs), CBDV reduced both epileptiform burst amplitude and duration. The prototypical TRPV1 agonist, capsaicin, produced similar, although not identical effects. Capsaicin, but not CBDV, effects on burst amplitude were reversed by IRTX, a selective TRPV1 antagonist. These data suggest that CBDV antiepileptiform effects in the Mg(2+)-free model are not uniquely mediated via activation of TRPV1. However, TRPV1 was strongly phosphorylated (and hence likely sensitized) in Mg(2+)-free solution-treated hippocampal tissue, and both capsaicin and CBDV caused TRPV1 dephosphorylation, consistent with TRPV1 desensitization. We propose that CBDV effects on TRP channels should be studied further in different in vitro and in vivo models of epilepsy.
Espejo-Porras, Francisco; Fernández-Ruiz, Javier; Pertwee, Roger G; Mechoulam, Raphael; García, Concepción
2013-12-01
The broad presence of CB1 receptors in the basal ganglia, mainly in GABA- or glutamate-containing neurons, as well as the presence of TRPV1 receptors in dopaminergic neurons and the identification of CB2 receptors in some neuronal subpopulations within the basal ganglia, explain the powerful motor effects exerted by those cannabinoids that can activate/block these receptors. By contrast, cannabidiol (CBD), a phytocannabinoid with a broad therapeutic profile, is generally presented as an example of a cannabinoid compound with no motor effects due to its poor affinity for the CB1 and the CB2 receptor, despite its activity at the TRPV1 receptor. However, recent evidence suggests that CBD may interact with the serotonin 5-HT1A receptor to produce some of its beneficial effects. This may enable CBD to directly influence motor activity through the well-demonstrated role of serotonergic transmission in the basal ganglia. We have investigated this issue in rats using three different pharmacological and neurochemical approaches. First, we compared the motor effects of various i.p. doses of CBD with the selective 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT; i.p.). Second, we investigated whether the motor effects of CBD are sensitive to 5-HT1A receptor blockade in comparison with CB1 receptor antagonism. Finally, we investigated whether CBD was able to potentiate the effect of a sub-effective dose of 8-OH-DPAT. Our results demonstrated that: (i) only high doses of CBD (>10 mg/kg) altered motor behavior measured in a computer-aided actimeter; (ii) these alterations were restricted to vertical activity (rearing) with only modest changes in other parameters; (iii) similar effects were produced by 8-OH-DPAT (1 mg/kg), although this agonist affected exclusively vertical activity, with no effects on other motor parameters, and it showed always more potency than CBD; (iv) the effects of 8-OH-DPAT (1 mg/kg) and CBD (20 mg/kg) on vertical activity
de Bruijn, Suzanne E M; de Graaf, Cees; Witkamp, Renger F; Jager, Gerry
2017-01-01
Introduction: The endocannabinoid system (ECS) plays an important role in food reward. For example, in humans, liking of palatable foods is assumed to be modulated by endocannabinoid activity. Studies in rodents suggest that the ECS also plays a role in sweet taste intensity perception, but it is unknown to what extent this can be extrapolated to humans. Therefore, this study aimed at elucidating whether Δ9-tetrahydrocannabinol (THC) or cannabidiol (CBD) affects sweet taste intensity perception and liking in humans, potentially resulting in alterations in food preferences. Materials and Methods: In a randomized placebo-controlled, double-blind crossover study, 10 healthy males participated in three test sessions that were 2 weeks apart. During the test sessions, participants received THC-rich, CBD-rich, or placebo Cannabis by inhalation divided over two doses (4 + 1 mg THC; 25 + 10 mg CBD). Participants tasted seven chocolate milk-like drinks that differed in sugar concentration and they rated sweet taste intensity and liking of the drinks. They were then asked to rank the seven drinks according to how much they liked the drinks and were offered ad libitum access to their favorite drink. In addition, they completed a computerized food preference task and completed an appetite questionnaire at the start, midway, and end of the test sessions. Results: Inhalation of the Cannabis preparations did not affect sweet taste intensity perception and liking, ranking order, or ad libitum consumption of the favorite drink. In addition, food preferences were not influenced by the interventions. Reported fullness was lower, whereas desire to eat was higher throughout the THC compared to the CBD condition. Conclusions: These results suggest that administration of Cannabis preparations at the low doses tested does not affect sweet taste intensity perception and liking, nor does it influence food preferences in humans.
Murphy, Michelle; Mills, Sierra; Winstone, Joanna; Leishman, Emma; Wager-Miller, Jim; Bradshaw, Heather; Mackie, Ken
2017-01-01
Introduction: The high prevalence of adolescent cannabis use, the association between this use and later psychiatric disease, and increased access to high-potency cannabis highlight the need for a better understanding of the long-term effects of adolescent cannabis use on cognitive and behavioral outcomes. Furthermore, increasing Δ 9 -tetrahydrocannabinol (THC) in high-potency cannabis is accompanied by a decrease in cannabidiol (CBD), thus an understanding of the interactions between CBD and THC in the neurodevelopmental effects of THC is also important. The current study examined the immediate and long-term behavioral consequences of THC, CBD, and their combination in a mouse model of adolescent cannabis use. Materials and Methods: Male CD1 mice received daily injections of THC (3 mg/kg), CBD (3 mg/kg), CBD+THC (3 mg/kg each), vehicle, or remained undisturbed in their home cage (no handling/injections), either during adolescence (postnatal day [PND] 28-48) or during early adulthood (PND 69-89). Animals were then evaluated with a battery of behavioral tests 1 day after drug treatment, and again after 42 drug-free days. The tests included the following: open field (day 1), novel object recognition (NOR; day 2), marble burying (day 3), elevated plus maze (EPM; day 4), and Nestlet shredding (day 5). Results: Chronic administration of THC during adolescence led to immediate and long-term impairments in object recognition/working memory, as measured by the NOR task. In contrast, adult administration of THC caused immediate, but not long term, impairment of object/working memory. Adolescent chronic exposure to THC increased repetitive and compulsive-like behaviors, as measured by the Nestlet shredding task. Chronic administration of THC, either during adolescence or during adulthood, led to a delayed increase in anxiety as measured by the EPM. All THC-induced behavioral abnormalities were prevented by the coadministration of CBD+THC, whereas CBD alone did not
Murphy, Michelle; Mills, Sierra; Winstone, Joanna; Leishman, Emma; Wager-Miller, Jim; Bradshaw, Heather; Mackie, Ken
2017-01-01
Abstract Introduction: The high prevalence of adolescent cannabis use, the association between this use and later psychiatric disease, and increased access to high-potency cannabis highlight the need for a better understanding of the long-term effects of adolescent cannabis use on cognitive and behavioral outcomes. Furthermore, increasing Δ9-tetrahydrocannabinol (THC) in high-potency cannabis is accompanied by a decrease in cannabidiol (CBD), thus an understanding of the interactions between CBD and THC in the neurodevelopmental effects of THC is also important. The current study examined the immediate and long-term behavioral consequences of THC, CBD, and their combination in a mouse model of adolescent cannabis use. Materials and Methods: Male CD1 mice received daily injections of THC (3 mg/kg), CBD (3 mg/kg), CBD+THC (3 mg/kg each), vehicle, or remained undisturbed in their home cage (no handling/injections), either during adolescence (postnatal day [PND] 28–48) or during early adulthood (PND 69–89). Animals were then evaluated with a battery of behavioral tests 1 day after drug treatment, and again after 42 drug-free days. The tests included the following: open field (day 1), novel object recognition (NOR; day 2), marble burying (day 3), elevated plus maze (EPM; day 4), and Nestlet shredding (day 5). Results: Chronic administration of THC during adolescence led to immediate and long-term impairments in object recognition/working memory, as measured by the NOR task. In contrast, adult administration of THC caused immediate, but not long term, impairment of object/working memory. Adolescent chronic exposure to THC increased repetitive and compulsive-like behaviors, as measured by the Nestlet shredding task. Chronic administration of THC, either during adolescence or during adulthood, led to a delayed increase in anxiety as measured by the EPM. All THC-induced behavioral abnormalities were prevented by the coadministration of CBD+THC, whereas CBD alone
Deiana, Serena; Watanabe, Akihito; Yamasaki, Yuki; Amada, Naoki; Arthur, Marlene; Fleming, Shona; Woodcock, Hilary; Dorward, Patricia; Pigliacampo, Barbara; Close, Steve; Platt, Bettina; Riedel, Gernot
2012-02-01
Phytocannabinoids are useful therapeutics for multiple applications including treatments of constipation, malaria, rheumatism, alleviation of intraocular pressure, emesis, anxiety and some neurological and neurodegenerative disorders. Consistent with these medicinal properties, extracted cannabinoids have recently gained much interest in research, and some are currently in advanced stages of clinical testing. Other constituents of Cannabis sativa, the hemp plant, however, remain relatively unexplored in vivo. These include cannabidiol (CBD), cannabidivarine (CBDV), Δ(9)-tetrahydrocannabivarin (Δ(9)-THCV) and cannabigerol (CBG). We here determined pharmacokinetic profiles of the above phytocannabinoids after acute single-dose intraperitoneal and oral administration in mice and rats. The pharmacodynamic-pharmacokinetic relationship of CBD (120 mg/kg, ip and oral) was further assessed using a marble burying test in mice. All phytocannabinoids readily penetrated the blood-brain barrier and solutol, despite producing moderate behavioural anomalies, led to higher brain penetration than cremophor after oral, but not intraperitoneal exposure. In mice, cremophor-based intraperitoneal administration always attained higher plasma and brain concentrations, independent of substance given. In rats, oral administration offered higher brain concentrations for CBD (120 mg/kg) and CBDV (60 mg/kg), but not for Δ(9)-THCV (30 mg/kg) and CBG (120 mg/kg), for which the intraperitoneal route was more effective. CBD inhibited obsessive-compulsive behaviour in a time-dependent manner matching its pharmacokinetic profile. These data provide important information on the brain and plasma exposure of new phytocannabinoids and guidance for the most efficacious administration route and time points for determination of drug effects under in vivo conditions.
Pharmacological Foundations of Cannabis Chemovars.
Lewis, Mark A; Russo, Ethan B; Smith, Kevin M
2018-03-01
An advanced Mendelian Cannabis breeding program has been developed utilizing chemical markers to maximize the yield of phytocannabinoids and terpenoids with the aim to improve therapeutic efficacy and safety. Cannabis is often divided into several categories based on cannabinoid content. Type I, Δ 9 -tetrahydrocannabinol-predominant, is the prevalent offering in both medical and recreational marketplaces. In recent years, the therapeutic benefits of cannabidiol have been better recognized, leading to the promotion of additional chemovars: Type II, Cannabis that contains both Δ 9 -tetrahydrocannabinol and cannabidiol, and cannabidiol-predominant Type III Cannabis. While high- Δ 9 -tetrahydrocannabinol and high-myrcene chemovars dominate markets, these may not be optimal for patients who require distinct chemical profiles to achieve symptomatic relief. Type II Cannabis chemovars that display cannabidiol- and terpenoid-rich profiles have the potential to improve both efficacy and minimize adverse events associated with Δ 9 -tetrahydrocannabinol exposure. Cannabis samples were analyzed for cannabinoid and terpenoid content, and analytical results are presented via PhytoFacts, a patent-pending method of graphically displaying phytocannabinoid and terpenoid content, as well as scent, taste, and subjective therapeutic effect data. Examples from the breeding program are highlighted and include Type I, II, and III Cannabis chemovars, those highly potent in terpenoids in general, or single components, for example, limonene, pinene, terpinolene, and linalool. Additionally, it is demonstrated how Type I - III chemovars have been developed with conserved terpenoid proportions. Specific chemovars may produce enhanced analgesia, anti-inflammatory, anticonvulsant, antidepressant, and anti-anxiety effects, while simultaneously reducing sequelae of Δ 9 -tetrahydrocannabinol such as panic, toxic psychosis, and short-term memory impairment. Georg Thieme Verlag KG Stuttgart
Cannabis cultivation: Methodological issues for obtaining medical-grade product.
Chandra, Suman; Lata, Hemant; ElSohly, Mahmoud A; Walker, Larry A; Potter, David
2017-05-01
As studies continue to reveal favorable findings for the use of cannabidiol in the management of childhood epilepsy syndromes and other disorders, best practices for the large-scale production of Cannabis are needed for timely product development and research purposes. The processes of two institutions with extensive experience in producing large-scale cannabidiol chemotype Cannabis crops-GW Pharmaceuticals and the University of Mississippi-are described, including breeding, indoor and outdoor growing, harvesting, and extraction methods. Such practices have yielded desirable outcomes in Cannabis breeding and production: GW Pharmaceuticals has a collection of chemotypes dominant in any one of eight cannabinoids, two of which-cannabidiol and cannabidivarin-are supporting epilepsy clinical trial research, whereas in addition to a germplasm bank of high-THC, high-CBD, and intermediate type cannabis varieties, the team at University of Mississippi has established an in vitro propagation protocol for cannabis with no detectable variations in morphologic, physiologic, biochemical, and genetic profiles as compared to the mother plants. Improvements in phytocannabinoid yields and growing efficiency are expected as research continues at these institutions. This article is part of a Special Issue entitled "Cannabinoids and Epilepsy". Copyright © 2016. Published by Elsevier Inc.
[Studies on interaction of acid-treated nanotube titanic acid and amino acids].
Zhang, Huqin; Chen, Xuemei; Jin, Zhensheng; Liao, Guangxi; Wu, Xiaoming; Du, Jianqiang; Cao, Xiang
2010-06-01
Nanotube titanic acid (NTA) has distinct optical and electrical character, and has photocatalysis character. In accordance with these qualities, NTA was treated with acid so as to enhance its surface activity. Surface structures and surface groups of acid-treated NTA were characterized and analyzed by Transmission Electron Microscope (TEM) and Fourier Transform Infrared Spectrometry (FT-IR). The interaction between acid-treated NTA and amino acids was investigated. Analysis results showed that the lengths of acid-treated NTA became obviously shorter. The diameters of nanotube bundles did not change obviously with acid-treating. Meanwhile, the surface of acid-treated NTA was cross-linked with carboxyl or esterfunction. In addition, acid-treated NTA can catch amino acid residues easily, and then form close combination.
Towards a better cannabis drug.
Mechoulam, Raphael; Parker, Linda
2013-12-01
This commentary discusses the importance of a new study entitled 'Cannabidiol attenuates deficits of visuo-spatial associative memory induced by Δ(9) -tetrahydrocannabinol' by Wright et al. from the Scripps Institute in La Jolla, California. The results in this study show that the non-psychoactive cannabis constituent cannabidiol opposes some, but not all, forms of behavioural and memory disruption caused by Δ(9) -tetrahydrocannabinol in male rhesus monkeys. This article is a commentary on the research paper by Wright et al., pp 1365-1373 of this issue. To view this paper visit http://dx.doi.org/10.1111/bph.12199. © 2013 The British Pharmacological Society.
Towards a better cannabis drug
Mechoulam, Raphael; Parker, Linda
2013-01-01
This commentary discusses the importance of a new study entitled ‘Cannabidiol attenuates deficits of visuo-spatial associative memory induced by Δ9-tetrahydrocannabinol’ by Wright et al. from the Scripps Institute in La Jolla, California. The results in this study show that the non-psychoactive cannabis constituent cannabidiol opposes some, but not all, forms of behavioural and memory disruption caused by Δ9-tetrahydrocannabinol in male rhesus monkeys. LINKED ARTICLE This article is a commentary on the research paper by Wright et al., pp 1365–1373 of this issue. To view this paper visit http://dx.doi.org/10.1111/bph.12199 PMID:24024867
Parker, Linda A; Burton, Page; Sorge, Robert E; Yakiwchuk, Christine; Mechoulam, Raphael
2004-09-01
Using the place-preference conditioning paradigm, we evaluated the potential of the two most prominent cannabinoids found in marijuana, the psychoactive component delta9-tetrahydrocannabinol (delta9-THC) and the nonpsychoactive component cannabidiol (CBD), to potentiate extinction of a cocaine-induced and an amphetamine-induced conditioned place preference in rats. To determine the effects of pretreatment with delta9-THC or CBD on extinction, a cocaine-induced and amphetamine-induced place preference was first established. Rats were then given an extinction trial, during which they were confined to the treatment-paired floor for 15 min. Thirty minutes prior to the extinction trial, they were injected with a low dose of delta9-THC (0.5 mg/kg), CBD (5 mg/kg) or vehicle. The potential of the CB1 receptor antagonist, SR141716, to reverse the effects of delta9-THC or CBD was also evaluated. To determine the hedonic effects of CBD, one distinctive floor was paired with CBD (5 mg/kg) and another with saline. Finally, to determine the effect of delta9-THC.or CBD on the establishment and/or the expression of a place preference during four cycles of conditioning trials, rats were injected with delta9-THC (0.25-1 mg/kg), CBD (5 mg/kg) or vehicle 25 min prior to receiving an injection of amphetamine followed by placement on the treatment floor; on alternate days, they received injections of vehicle followed by saline and placement on the nontreatment floor. The rats then received two test trials; on one trial they were pretreated with the cannabinoid and on the other trial with vehicle. delta9-THC and CBD potentiated the extinction of both cocaine-induced and amphetamine-induced conditioned place preference learning, and this effect was not reversed by SR141716. The cannabinoids did not affect learning or retrieval, and CBD was not hedonic on its own. These results are the first to show that both delta9-THC, which acts on both CB 1 and CB2 receptors, and CBD, which does not
Andrenyak, David M; Moody, David E; Slawson, Matthew H; O'Leary, Daniel S; Haney, Margaret
2017-05-01
Two marijuana compounds of particular medical interest are delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). A gas chromatography-tandem mass spectrometry (GC-MS-MS) method was developed to test for CBD, THC, hydroxy-THC (OH-THC) and carboxy-THC (COOH-THC) in human plasma. Calibrators (THC and OH-THC, 0.1 to 100; CBD, 0.25 to 100; COOH-THC, 0.5-500 ng/mL) and controls (0.3, 5 and 80 ng/mL, except COOH-THC at 1.5, 25 and 400 ng/mL) were prepared in blank matrix. Deuterated (d3) internal standards were added to 1-mL samples. Preparation involved acetonitrile precipitation, liquid-liquid extraction (hexane:ethyl acetate, 9:1), and MSTFA derivatization. An Agilent 7890 A GC was interfaced with an Agilent 7000 MS Triple Quadrupole. Selected reaction monitoring was employed. Blood samples were provided from a marijuana smoking study (two participants) and a CBD ingestion study (eight participants). Three analytes with the same transitions (THC, OH-THC and COOH-THC) were chromatographically separated. Matrix selectivity studies showed endogenous chromatographic peak area ratios (PAR) at the analyte retention times were <20% of the analyte limit of quantitation PAR. The intra-assay accuracy ranged from 83.5% to 118% of target and the intra-run imprecision ranged from 2.0% to 19.1%. The inter-assay accuracy ranged from 90.3% to 104% of target and the inter-run imprecision ranged from 6.5% to 12.0%. Stability was established for 25 hours at room temperature, 207 days at -20°C, after three freeze-thaw cycles and for 26 days for rederivatized processed samples. After smoking marijuana predictable concentrations of THC, OH-THC and COOH-THC were seen; low concentrations of CBD were detected at early time points. In moderate users who had not smoked for at least 9 hours before ingesting an 800 mg oral dose of CBD, the method was sensitive enough to follow residual concentrations of THC and OH-THC; sustained COOH-THC concentrations over 50 ng/mL validated its higher
Andrenyak, David M.; Slawson, Matthew H.; O'Leary, Daniel S.; Haney, Margaret
2017-01-01
Abstract Two marijuana compounds of particular medical interest are delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). A gas chromatography–tandem mass spectrometry (GC–MS-MS) method was developed to test for CBD, THC, hydroxy-THC (OH-THC) and carboxy-THC (COOH-THC) in human plasma. Calibrators (THC and OH-THC, 0.1 to 100; CBD, 0.25 to 100; COOH-THC, 0.5–500 ng/mL) and controls (0.3, 5 and 80 ng/mL, except COOH-THC at 1.5, 25 and 400 ng/mL) were prepared in blank matrix. Deuterated (d3) internal standards were added to 1-mL samples. Preparation involved acetonitrile precipitation, liquid–liquid extraction (hexane:ethyl acetate, 9:1), and MSTFA derivatization. An Agilent 7890 A GC was interfaced with an Agilent 7000 MS Triple Quadrupole. Selected reaction monitoring was employed. Blood samples were provided from a marijuana smoking study (two participants) and a CBD ingestion study (eight participants). Three analytes with the same transitions (THC, OH-THC and COOH-THC) were chromatographically separated. Matrix selectivity studies showed endogenous chromatographic peak area ratios (PAR) at the analyte retention times were <20% of the analyte limit of quantitation PAR. The intra-assay accuracy ranged from 83.5% to 118% of target and the intra-run imprecision ranged from 2.0% to 19.1%. The inter-assay accuracy ranged from 90.3% to 104% of target and the inter-run imprecision ranged from 6.5% to 12.0%. Stability was established for 25 hours at room temperature, 207 days at −20°C, after three freeze-thaw cycles and for 26 days for rederivatized processed samples. After smoking marijuana predictable concentrations of THC, OH-THC and COOH-THC were seen; low concentrations of CBD were detected at early time points. In moderate users who had not smoked for at least 9 hours before ingesting an 800 mg oral dose of CBD, the method was sensitive enough to follow residual concentrations of THC and OH-THC; sustained COOH-THC concentrations over 50 ng
Karschner, Erin L; Barnes, Allan J; Lowe, Ross H; Scheidweiler, Karl B; Huestis, Marilyn A
2010-05-01
A sensitive analytical method for simultaneous quantification of sub-nanogram concentrations of cannabidiol (CBD), Delta(9)-tetrahydrocannabinol (THC), 11-hydroxy-THC (11-OH-THC), and 11-nor-9-carboxy-THC (THCCOOH) in plasma is presented for monitoring cannabinoid pharmacotherapy and illicit cannabis use. Analytes were extracted from 1 mL plasma by solid-phase extraction, derivatized with N,O-bis(trimethylsilyl) trifluoroacetamide with 1% trimethylchlorosilane, and analyzed by two-dimensional gas chromatography mass spectrometry (2D-GCMS) with cryofocusing. The lower calibration curve was linear from 0.25-25 ng/mL for CBD and THC, 0.125-25 ng/mL for 11-OH-THC and 0.25-50 ng/mL for THCCOOH. A second higher linear range from 5-100 ng/mL, achieved through modification of injection parameters, was validated for THC, 11-OH-THC, and THCCOOH and was only implemented if concentrations exceeded the lower curve upper limit of linearity. This procedure prevented laborious re-extraction by allowing the same specimen to be re-injected for quantification on the high calibration curve. Intra- and inter-assay imprecision, determined at four quality control concentrations, were
Cherniakov, Irina; Izgelov, Dvora; Domb, Abraham J; Hoffman, Amnon
2017-11-15
The lipophilic phytocannabinoids cannabidiol (CBD) and Δ 9 -tetrahydrocannabinol (THC) show therapeutic efficacy in various medical conditions. Both molecules are poorly water soluble and subjected to extensive first pass metabolism in the gastrointestinal tract, leading to a limited oral bioavailability of approximately 9%. We have developed an advanced lipid based Self-Emulsifying Drug Delivery System termed Advanced Pro-NanoLiposphere (PNL) pre-concentrate. The PNL is composed of lipid and emulsifying excipients of GRAS status and are known to increase solubility and reduce Phase I metabolism of lipophilic active compounds. Advanced PNLs are PNLs with an incorporated natural absorption enhancers. These molecules are natural alkaloids and phenolic compounds which were reported to inhibit certain phase I and phase II metabolism processes. Here we use piperine, curcumin and resveratrol to formulate the Advanced-PNL formulations. Consequently, we have explored the utility of these Advanced-PNLs on CBD and THC oral bioavailability. Oral administration of CBD-piperine-PNL resulted in 6-fold increase in AUC compared to CBD solution, proving to be the most effective of the screened formulations. The same trend was found in pharmacokinetic experiments of THC-piperine-PNL which resulted in a 9.3-fold increase in AUC as compared to THC solution. Our Piperine-PNL can be used as a platform for synchronized delivery of piperine and CBD or THC to the enterocyte site. This co-localization provides an increase in CBD and THC bioavailability by its effect at the pre-enterocyte and the enterocyte levels of the absorption process. The extra augmentation in the absorption of CBD and THC by incorporating piperine into PNL is attributed to the inhibition of Phase I and phase II metabolism by piperine in addition to the Phase I metabolism and P-gp inhibition by PNL. These novel results pave the way to utilize piperine-PNL delivery system for other poorly soluble, highly metabolized
Giese, Matthew W; Lewis, Mark A; Giese, Laura; Smith, Kevin M
2015-01-01
The requirements for an acceptable cannabis assay have changed dramatically over the years resulting in a large number of laboratories using a diverse array of analytical methodologies that have not been properly validated. Due to the lack of sufficiently validated methods, we conducted a single- laboratory validation study for the determination of cannabinoids and terpenes in a variety of commonly occurring cultivars. The procedure involves high- throughput homogenization to prepare sample extract, which is then profiled for cannabinoids and terpenes by HPLC-diode array detector and GC-flame ionization detector, respectively. Spike recovery studies for terpenes in the range of 0.03-1.5% were carried out with analytical standards, while recovery studies for Δ9-tetrahydrocannabinolic acid, cannabidiolic acid, Δ9-tetrahydrocannabivarinic acid, and cannabigerolic acid and their neutral counterparts in the range of 0.3-35% were carried out using cannabis extracts. In general, accuracy at all levels was within 5%, and RSDs were less than 3%. The interday and intraday repeatabilities of the procedure were evaluated with five different cultivars of varying chemotype, again resulting in acceptable RSDs. As an example of the application of this assay, it was used to illustrate the variability seen in cannabis coming from very advanced indoor cultivation operations.
Microbial degradation of poly(amino acid)s.
Obst, Martin; Steinbüchel, Alexander
2004-01-01
Natural poly(amino acid)s are a group of poly(ionic) molecules (ionomers) with various biological functions and putative technical applications and play, therefore, an important role both in nature and in human life. Because of their biocompatibility and their synthesis from renewable resources, poly(amino acid)s may be employed for many different purposes covering a broad spectrum of medical, pharmaceutical, and personal care applications as well as the domains of agriculture and of environmental applications. Biodegradability is one important advantage of naturally occurring poly(amino acid)s over many synthetic polymers. The intention of this review is to give an overview about the enzyme systems catalyzing the initial steps in poly(amino acid) degradation. The focus is on the naturally occurring poly(amino acid)s cyanophycin, poly(epsilon-L-lysine) and poly(gamma-glutamic acid); but biodegradation of structurally related synthetic polyamides such as poly(aspartic acid) and nylons, which are known from various technical applications, is also included.
GPR55 promotes migration and adhesion of colon cancer cells indicating a role in metastasis
Andersen, L; Hasenöhrl, C; Feuersinger, D; Stančić, A; Fauland, A; Magnes, C; El‐Heliebi, A; Lax, S; Uranitsch, S; Haybaeck, J; Heinemann, A
2015-01-01
Background and Purpose Tumour cell migration and adhesion constitute essential features of metastasis. G‐protein coupled receptor 55 (GPR55), a lysophospholipid receptor, has been shown to play an important role in carcinogenesis. Here, we investigated the involvement of GPR55 in migration and metastasis of colon cancer cells. Experimental Approach Adhesion and migration assays using the highly metastatic colon cancer cell line HCT116 and an in vivo assay of liver metastasis were performed. The GPR55 antagonist CID16020046, cannabidiol, a putative GPR55 antagonist and GPR55 siRNA were used to block GPR55 activity in HCT116 colon cancer cells. Key Results HCT116 cells showed a significant decrease in adhesion to endothelial cells and in migration after blockade with CID16020046 or cannabidiol. The inhibitory effects of CID16020046 or cannabidiol were averted by GPR55 siRNA knock down in cancer cells. The integrity of endothelial cell monolayers was increased after pretreatment of HCT116 cells with the antagonists or after GPR55 siRNA knockdown while pretreatment with lysophosphatidylinositol (LPI), the endogenous ligand of GPR55, decreased integrity of the monolayers. LPI also induced migration in GPR55 overexpressing HCT116 cells that was blocked by GPR55 antagonists. In a mouse model of metastasis, the arrest of HCT116 cancer cells in the liver was reduced after treatment with CID16020046 or cannabidiol. Increased levels of LPI (18:0) were found in colon cancer patients when compared with healthy individuals. Conclusions and Implications GPR55 is involved in the migratory behaviour of colon carcinoma cells and may serve as a pharmacological target for the prevention of metastasis. © 2015 The British Pharmacological Society PMID:26436760
Johns, D G; Behm, D J; Walker, D J; Ao, Z; Shapland, E M; Daniels, D A; Riddick, M; Dowell, S; Staton, P C; Green, P; Shabon, U; Bao, W; Aiyar, N; Yue, T-L; Brown, A J; Morrison, A D; Douglas, S A
2007-01-01
Background and purpose: Atypical cannabinoids are thought to cause vasodilatation through an as-yet unidentified ‘CBx' receptor. Recent reports suggest GPR55 is an atypical cannabinoid receptor, making it a candidate for the vasodilator ‘CBx' receptor. The purpose of the present study was to test the hypothesis that human recombinant GPR55 is activated by atypical cannabinoids and mediates vasodilator responses to these agents. Experimental approach: Human recombinant GPR55 was expressed in HEK293T cells and specific GTPγS activity was monitored as an index of receptor activation. In GPR55-deficient and wild-type littermate control mice, in vivo blood pressure measurement and isolated resistance artery myography were used to determine GPR55 dependence of atypical cannabinoid-induced haemodynamic and vasodilator responses. Key results: Atypical cannabinoids O-1602 and abnormal cannabidiol both stimulated GPR55-dependent GTPγS activity (EC50 approximately 2 nM), whereas the CB1 and CB2-selective agonist WIN 55,212-2 showed no effect in GPR55-expressing HEK293T cell membranes. Baseline mean arterial pressure and heart rate were not different between WT and GPR55 KO mice. The blood pressure-lowering response to abnormal cannabidiol was not different between WT and KO mice (WT 20±2%, KO 26±5% change from baseline), nor was the vasodilator response to abnormal cannabidiol in isolated mesenteric arteries (IC50 approximately 3 μ M for WT and KO). The abnormal cannabidiol vasodilator response was antagonized equivalently by O-1918 in both strains. Conclusions: These results demonstrate that while GPR55 is activated by atypical cannabinoids, it does not appear to mediate the vasodilator effects of these agents. PMID:17704827
Industrial hemp decreases intestinal motility stronger than indian hemp in mice.
Sabo, A; Horvat, O; Stilinovic, N; Berenji, J; Vukmirovic, S
2013-02-01
Indian hemp has shown beneficial effects in various gastrointestinal conditions but it is not widely accepted due to high content of tetrahydrocannabinol resulting in unwanted psychotropic effects. Since industrial hemp rich in cannabidiol lacks psychotropic effects the aim of research was to study the effects of industrial hemp on intestinal motility. Animals were randomly divided in six groups (each group consisting of 6 animals): Control group, Cind group - receiving indian hemp infuse for 20 days, Cids group-receiving industrial hemp infuse for 20 days, M group - treated with single dose of morphine (5 mg/kg i.m.) Cind+M group - treated with indian hemp infuse and single dose of morphine (5 mg/kg i.m.), Cids+M - treated with industrial hemp infuse and single dose of morphine (5 mg/kg i.m.). On the 20th day of the study animals were administered charcoal meal, and were sacrificed 35 minutes after administration. Intestinal motility was estimated according to distance between carbo medicinalis and cecum in centimeters. Decrease of intestinal motility in animals treated with indian hemp infuse was not significant compared to controls and it was smaller compared to animals treated with morphine (Indian hemp =15.43±10.5 cm, morphine = 20.14±5.87 cm). Strongest decrease of intestinal motility was recorded in animals treated with industrial hemp infuse, and it was significant compared to controls and morphine (industrial hemp = 26.5±9.90 cm, morphine = 20.14±5.87 cm; p < 0.005). Although not completely without psychotropic activity cannabidiol could be a potential replacement for tetrahydrocannabinol. Since industrial hemp infuse rich in cannabidiol reduces intestinal motility in healthy mice cannabidiol should be further evaluated for the treatment of intestinal hypermotility.
The Acid-Base Titration of a Very Weak Acid: Boric Acid
ERIC Educational Resources Information Center
Celeste, M.; Azevedo, C.; Cavaleiro, Ana M. V.
2012-01-01
A laboratory experiment based on the titration of boric acid with strong base in the presence of d-mannitol is described. Boric acid is a very weak acid and direct titration with NaOH is not possible. An auxiliary reagent that contributes to the release of protons in a known stoichiometry facilitates the acid-base titration. Students obtain the…
Davidson, Michael H
2013-12-01
Fish oil contains a complex mixture of omega-3 fatty acids, which are predominantly eicosapentaenoic acid (EPA), docosapentaenoic acid, and docosahexaenoic acid (DHA). Each of these omega-3 fatty acids has distinct biological effects that may have variable clinical effects. In addition, plasma levels of omega-3 fatty acids are affected not only by dietary intake, but also by the polymorphisms of coding genes fatty acid desaturase 1-3 for the desaturase enzymes that convert short-chain polyunsaturated fatty acids to long-chain polyunsaturated fatty acids. The clinical significance of this new understanding regarding the complexity of omega-3 fatty acid biology is the purpose of this review. FADS polymorphisms that result in either lower levels of long-chain omega-3 fatty acids or higher levels of long-chain omega-6 polyunsaturated fatty acids, such as arachidonic acid, are associated with dyslipidemia and other cardiovascular risk factors. EPA and DHA have differences in their effects on lipoprotein metabolism, in which EPA, with a more potent peroxisome proliferator-activated receptor-alpha effect, decreases hepatic lipogenesis, whereas DHA not only enhances VLDL lipolysis, resulting in greater conversion to LDL, but also increases HDL cholesterol and larger, more buoyant LDL particles. Overall, these results emphasize that blood concentrations of individual long-chain polyunsaturated fatty acids, which reflect both dietary intake and metabolic influences, may have independent, but also complementary- biological effects and reinforce the need to potentially provide a complex mixture of omega-3 fatty acids to maximize cardiovascular risk reduction.
77 FR 47114 - Manufacturer of Controlled Substances; Notice of Application; AMRI Rensselaer, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-07
... Marihuana (7360) I Tetrahydrocannabinols (7370) I Amphetamine (1100) II Lisdexamfetamine (1205) II... (Marihuana), the company plans to bulk manufacture cannabidiol as a synthetic intermediate, which will be...
Hermann, Derik; Sartorius, Alexander; Welzel, Helga; Walter, Sigrid; Skopp, Gisela; Ende, Gabriele; Mann, Karl
2007-06-01
Cannabinoids present neurotoxic and neuroprotective properties in in vitro studies, inconsistent alterations in human neuroimaging studies, neuropsychological deficits, and an increased risk for psychotic episodes. Proton magnetic resonance spectroscopy ((1)H-MRS), neuropsychological testing, and hair analysis for cannabinoids was performed in 13 male nontreatment-seeking recreational cannabis users and 13 male control subjects. A significantly diminished N-acetylaspartate/total creatine (NAA/tCr) ratio in the dorsolateral prefrontal cortex (DLPFC) was observed in cannabis users (p = .0003). The NAA/tCr in the putamen/globus pallidum region correlated significantly with cannabidiol (R(2) = .66, p = .004). Results of the Wisconsin Card Sorting test, Trail making Test, and D2 test for attention were influenced by cannabinoids. Chronic recreational cannabis use is associated with an indication of diminished neuronal and axonal integrity in the DLPFC in this study. As chronic cannabis use is a risk factor for psychosis, these results are interesting because diminished NAA/tCr ratios in the DLPFC and neuropsychological deficits were also reported in schizophrenia. The strong positive correlation of NAA/tCr and cannabidiol in the putamen/globus pallidum is in line with neuroprotective properties of cannabidiol, which were also observed in in vitro model studies of Parkinson's disease.
Cannabinoids impair the formation of cholesteryl ester in cultured human cells.
Cornicelli, J A; Gilman, S R; Krom, B A; Kottke, B A
1981-01-01
The ability of cultured human fibroblasts to form cholesteryl esters from 14C-oleate is impaired by delta'-tetrahydrocannabinol, cannabidiol, and cannabinol, a group of natural products isolated from Cannabis sativa. This inhibition is compound and dose-related; 30 microM cannabidiol reduced esterification to less than 20% of the control values. The esterification of endogenous and exogenous cholesterol was affected, since inhibition was seen with either low density lipoproteins (200 micrograms/ml) or 25-hydroxycholesterol (5 micrograms/ml) as esterification stimuli. Cells treated with these compounds at doses of from 1 to 30 microM showed no impairment of protein synthesis, triglyceride or phospholipid formation, or ability to metabolize 125I-low density lipoproteins. An inhibition of cholesterol esterification was seen in human aortic medial cells. With increasing doses of these compounds, low density lipoproteins (25 micrograms/ml) became progressively less effective in suppressing HMG-CoA reductase in cultured human fibroblasts; with 30 microM cannabidiol the enzyme suppression was only 24% of that found in cells incubated with low density lipoproteins in the absence of drugs. Based on these data, we conclude that the cannabinoids "compartmentalize" cholesterol and, thus, make is unavailable for regulating cellular cholesterol metabolism. This may occur as a result of enhanced sterol efflux.
Boric acid and boronic acids inhibition of pigeonpea urease.
Reddy, K Ravi Charan; Kayastha, Arvind M
2006-08-01
Urease from the seeds of pigeonpea was competitively inhibited by boric acid, butylboronic acid, phenylboronic acid, and 4-bromophenylboronic acid; 4-bromophenylboronic acid being the strongest inhibitor, followed by boric acid > butylboronic acid > phenylboronic acid, respectively. Urease inhibition by boric acid is maximal at acidic pH (5.0) and minimal at alkaline pH (10.0), i.e., the trigonal planar B(OH)3 form is a more effective inhibitor than the tetrahedral B(OH)4 -anionic form. Similarly, the anionic form of phenylboronic acid was least inhibiting in nature.
Bricker, Owen P.; Rice, Karen C.
1995-01-01
Although acid rain is fading as a political issue in the United States and funds for research in this area have largely disappeared, the acidity of rain in the Eastern United States has not changed significantly over the last decade, and it continues to be a serious environmental problem. Acid deposition (commonly called acid rain) is a term applied to all forms of atmospheric deposition of acidic substances - rain, snow, fog, acidic dry particulates, aerosols, and acid-forming gases. Water in the atmosphere reacts with certain atmospheric gases to become acidic. For example, water reacts with carbon dioxide in the atmosphere to produce a solution with a pH of about 5.6. Gases that produce acids in the presence of water in the atmosphere include carbon dioxide (which converts to carbonic acid), oxides of sulfur and nitrogen (which convert to sulfuric and nitric acids}, and hydrogen chloride (which converts to hydrochloric acid). These acid-producing gases are released to the atmosphere through natural processes, such as volcanic emissions, lightning, forest fires, and decay of organic matter. Accordingly, precipitation is slightly acidic, with a pH of 5.0 to 5.7 even in undeveloped areas. In industrialized areas, most of the acid-producing gases are released to the atmosphere from burning fossil fuels. Major emitters of acid-producing gases include power plants, industrial operations, and motor vehicles. Acid-producing gases can be transported through the atmosphere for hundreds of miles before being converted to acids and deposited as acid rain. Because acids tend to build up in the atmosphere between storms, the most acidic rain falls at the beginning of a storm, and as the rain continues, the acids "wash out" of the atmosphere.
76 FR 5829 - Manufacturer of Controlled Substances; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-02
... bulk manufacturer of the following basic classes of controlled substances: Drug Schedule Marihuana.... In reference to drug code 7360 (Marihuana), the company plans to bulk manufacture cannabidiol as a...
Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid.
Lenghor, Narong; Jakmunee, Jaroon; Vilen, Michael; Sara, Rolf; Christian, Gary D; Grudpan, Kate
2002-12-06
Two sequential injection titration systems with spectrophotometric detection have been developed. The first system for determination of ascorbic acid was based on redox reaction between ascorbic acid and permanganate in an acidic medium and lead to a decrease in color intensity of permanganate, monitored at 525 nm. A linear dependence of peak area obtained with ascorbic acid concentration up to 1200 mg l(-1) was achieved. The relative standard deviation for 11 replicate determinations of 400 mg l(-1) ascorbic acid was 2.9%. The second system, for acetic acid determination, was based on acid-base titration of acetic acid with sodium hydroxide using phenolphthalein as an indicator. The decrease in color intensity of the indicator was proportional to the acid content. A linear calibration graph in the range of 2-8% w v(-1) of acetic acid with a relative standard deviation of 4.8% (5.0% w v(-1) acetic acid, n=11) was obtained. Sample throughputs of 60 h(-1) were achieved for both systems. The systems were successfully applied for the assays of ascorbic acid in vitamin C tablets and acetic acid content in vinegars, respectively.
Robandt, P V; Klette, K L; Sibum, M
2009-10-01
An automated solid-phase extraction coupled with liquid chromatography and tandem mass spectrometry (SPE-LC-MS-MS) method for the analysis of 11-nor-Delta(9)-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) in human urine specimens was developed. The method was linear (R(2) = 0.9986) to 1000 ng/mL with no carryover evidenced at 2000 ng/mL. Limits of quantification and detection were found to be 2 ng/mL. Interrun precision was evaluated at the 15 ng/mL level over nine batches spanning 15 days (n = 45). The coefficient of variation (%CV) was found to be 5.5% over the course of the validation. Intrarun precision of a 15 ng/mL control (n = 5) ranged from 0.58% CV to 7.4% CV for the same set of analytical batches. Interference was tested using (+/-)-11-hydroxy-Delta(9)-tetrahydrocannabinol, cannabidiol, (-)-Delta(8)-tetrahydrocannabinol, and cannabinol. One hundred and nineteen specimens previously found to contain THC-COOH by a previously validated gas chromatographic mass spectrometry (GC-MS) procedure were compared to the SPE-LC-MS-MS method. Excellent agreement was found (R(2) = 0.9925) for the parallel comparison study. The automated SPE procedure eliminates the human factors of specimen handling, extraction, and derivatization, thereby reducing labor costs and rework resulting from human error or technique issues. Additionally, method runtime is greatly reduced (e.g., during parallel studies the SPE-LC-MS-MS instrument was often finished with analysis by the time the technician finished the offline SPE and derivatization procedure prior to the GC-MS analysis).
Gao, Chao; Qiu, Jianhua; Li, Jingchen; Ma, Cuiqing; Tang, Hongzhi; Xu, Ping
2009-03-01
D-lactic acid and pyruvic acid are two important building block intermediates. Production of D-lactic acid and pyruvic acid from racemic lactic acid by biotransformation is economically interesting. Biocatalyst prepared from 9 g dry cell wt l(-1) of Pseudomonas stutzeri SDM could catalyze 45.00 g l(-1)DL-lactic acid into 25.23 g l(-1)D-lactic acid and 19.70 g l(-1) pyruvic acid in 10h. Using a simple ion exchange process, D-lactic acid and pyruvic acid were effectively separated from the biotransformation system. Co-production of d-lactic acid and pyruvic acid by enantioselective oxidation of racemic lactic acid is technically feasible.
Xu, Jian; Bao, Jia-Wei; Su, Xian-Feng; Zhang, Hong-Jian; Zeng, Xin; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui
2016-03-01
In this study, an integrated citric acid-methane fermentation process was established to solve the problem of wastewater treatment in citric acid production. Citric acid wastewater was treated through anaerobic digestion and then the anaerobic digestion effluent (ADE) was further treated and recycled for the next batch citric acid fermentation. This process could eliminate wastewater discharge and reduce water resource consumption. Propionic acid was found in the ADE and its concentration continually increased in recycling. Effect of propionic acid on citric acid fermentation was investigated, and results indicated that influence of propionic acid on citric acid fermentation was contributed to the undissociated form. Citric acid fermentation was inhibited when the concentration of propionic acid was above 2, 4, and 6 mM in initial pH 4.0, 4.5 and, 5.0, respectively. However, low concentration of propionic acid could promote isomaltase activity which converted more isomaltose to available sugar, thereby increasing citric acid production. High concentration of propionic acid could influence the vitality of cell and prolong the lag phase, causing large amount of glucose still remaining in medium at the end of fermentation and decreasing citric acid production.
DeFilippis, Andrew P; Harper, Charles R; Cotsonis, George A; Jacobson, Terry A
2009-01-01
We previously reported a >50% increase in mean plasma eicosapentaenoic acid levels in a general medicine clinic population after supplementation with alpha-linolenic acid. In the current analysis, we evaluate the variability of changes in eicosapentaenoic acid levels among individuals supplemented with alpha-linolenic acid and evaluated the impact of baseline plasma fatty acids levels on changes in eicosapentaenoic acid levels in these individuals. Changes in eicosapentaenoic acid levels among individuals supplemented with alpha-linolenic acid ranged from a 55% decrease to a 967% increase. Baseline plasma fatty acids had no statistically significant effect on changes in eicosapentaenoic levels acid after alpha-linolenic acid supplementation. Changes in eicosapentaenoic acid levels varied considerably in a general internal medicine clinic population supplemented with alpha-linolenic acid. Factors that may impact changes in plasma eicosapentaenoic acid levels after alpha-linolenic acid supplementation warrant further study.
Specific bile acids inhibit hepatic fatty acid uptake
Nie, Biao; Park, Hyo Min; Kazantzis, Melissa; Lin, Min; Henkin, Amy; Ng, Stephanie; Song, Sujin; Chen, Yuli; Tran, Heather; Lai, Robin; Her, Chris; Maher, Jacquelyn J.; Forman, Barry M.; Stahl, Andreas
2012-01-01
Bile acids are known to play important roles as detergents in the absorption of hydrophobic nutrients and as signaling molecules in the regulation of metabolism. Here we tested the novel hypothesis that naturally occurring bile acids interfere with protein-mediated hepatic long chain free fatty acid (LCFA) uptake. To this end stable cell lines expressing fatty acid transporters as well as primary hepatocytes from mouse and human livers were incubated with primary and secondary bile acids to determine their effects on LCFA uptake rates. We identified ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) as the two most potent inhibitors of the liver-specific fatty acid transport protein 5 (FATP5). Both UDCA and DCA were able to inhibit LCFA uptake by primary hepatocytes in a FATP5-dependent manner. Subsequently, mice were treated with these secondary bile acids in vivo to assess their ability to inhibit diet-induced hepatic triglyceride accumulation. Administration of DCA in vivo via injection or as part of a high-fat diet significantly inhibited hepatic fatty acid uptake and reduced liver triglycerides by more than 50%. In summary, the data demonstrate a novel role for specific bile acids, and the secondary bile acid DCA in particular, in the regulation of hepatic LCFA uptake. The results illuminate a previously unappreciated means by which specific bile acids, such as UDCA and DCA, can impact hepatic triglyceride metabolism and may lead to novel approaches to combat obesity-associated fatty liver disease. PMID:22531947
[Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].
Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua
2016-03-01
Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis.
Cannabinoids in oral fluid following passive exposure to marijuana smoke.
Moore, Christine; Coulter, Cynthia; Uges, Donald; Tuyay, James; van der Linde, Susanne; van Leeuwen, Arthur; Garnier, Margaux; Orbita, Jonathan
2011-10-10
The concentration of tetrahydrocannabinol (THC) and its main metabolite 11-nor-Δ(9)-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) as well as cannabinol (CBN), and cannabidiol (CBD) were measured in oral fluid following realistic exposure to marijuana in a Dutch coffee-shop. Ten healthy subjects, who were not marijuana smokers, volunteered to spend 3h in two different coffee shops in Groningen, The Netherlands. Subjects gave two oral fluid specimens at each time point: before entering the store, after 20 min, 40 min, 1h, 2h, and 3h of exposure. The specimens were collected outside the shop. Volunteers left the shop completely after 3h and also provided specimens approximately 12-22 h after beginning the exposure. The oral fluid specimens were subjected to immunoassay screening; confirmation for THC, cannabinol and cannabidiol using GC/MS; and THC-COOH using two-dimensional GC-GC/MS. THC was detectable in all oral fluid specimens taken 3h after exposure to smoke from recreationally used marijuana. In 50% of the volunteers, the concentration at the 3h time-point exceeded 4 ng/mL of THC, which is the current recommended cut-off concentration for immunoassay screening; the concentration of THC in 70% of the oral fluid specimens exceeded 2 ng/mL, currently proposed as the confirmatory cut-off concentration. THC-COOH was not detected in any specimens from passively exposed individuals. Therefore it is recommended that in order to avoid false positive oral fluid results assigned to marijuana use, by analyzing for only THC, the metabolite THC-COOH should also be monitored. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Guo, Rui; Reiner, Eric J; Bhavsar, Satyendra P; Helm, Paul A; Mabury, Scott A; Braekevelt, Eric; Tittlemier, Sheryl A
2012-11-01
A comprehensive method to extract perfluoroalkyl carboxylic acids, perfluoroalkane sulfonic acids, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, and polyfluoroalkyl phosphoric acid diesters simultaneously from fish samples has been developed. The recoveries of target compounds ranged from 78 % to 121 %. The new method was used to analyze lake trout (Salvelinus namaycush) from the Great Lakes region. The results showed that the total perfluoroalkane sulfonate concentrations ranged from 0.1 to 145 ng/g (wet weight) with perfluorooctane sulfonate (PFOS) as the dominant contaminant. Concentrations in fish between lakes were in the order of Lakes Ontario ≈ Erie > Huron > Superior ≈ Nipigon. The total perfluoroalkyl carboxylic acid concentrations ranged from 0.2 to 18.2 ng/g wet weight. The aggregate mean perfluorooctanoic acid (PFOA) concentration in fish across all lakes was 0.045 ± 0.023 ng/g. Mean concentrations of PFOA were not significantly different (p > 0.1) among the five lakes. Perfluoroalkyl phosphinic acids were detected in lake trout from Lake Ontario, Lake Erie, and Lake Huron with concentration ranging from non-detect (ND) to 0.032 ng/g. Polyfluoroalkyl phosphoric acid diesters were detected only in lake trout from Lake Huron, at levels similar to perfluorooctanoic acid.
Production of Succinic Acid from Citric Acid and Related Acids by Lactobacillus Strains
Kaneuchi, Choji; Seki, Masako; Komagata, Kazuo
1988-01-01
A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, α-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli. PMID:16347795
Production of succinic Acid from citric Acid and related acids by lactobacillus strains.
Kaneuchi, C; Seki, M; Komagata, K
1988-12-01
A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, alpha-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli.
NASA Astrophysics Data System (ADS)
Abdulloh, Abdulloh; Aminah, Nanik Siti; Triyono, Mudasir, Trisunaryanti, Wega
2016-03-01
Catalyst preparation and characterization of Al3+-bentonite for esterification of palmitic acid, oleic acid and linoleic acid has been done. Al3+-bentonite catalyst was prepared from natural bentonite of Turen Malang through cation exchange reaction using AlCl3 solution. The catalysts obtained were characterized by XRD, XRF, pyridine-FTIR and surface area analyser using the BET method. Catalyst activity test of Al3+-bentonite for esterification reaction was done at 65°C using molar ratio of metanol-fatty acid of 30:1 and 0.25 g of Al3+-bentonite catalyst for the period of ½, 1, 2, 3, 4 and 5 hours. Based on the characterization results, the Al3+-bentonite Turen Malang catalyst has a d-spacing of 15.63 Ǻ, acid sites of Brönsted and Lewis respectively of 230.79 µmol/g and 99.39 µmol/g, surface area of 507.3 m2/g and the average of radius pore of 20.09 Å. GC-MS analysis results of the oil phase after esterification reaction showed the formation of biodiesel (FAME: Fatty acid methyl ester), namely methyl palmitate, methyl oleate and methyl linoleate. The number of conversions resulted in esterification reaction using Al3+-bentonite Turen Malang catalyst was 74.61%, 37.75%, and 20, 93% for the esterification of palmitic acid, oleic acid and linoleic acid respectively.
Ramirez-Hernandez, Alejandra; Brashears, Mindy M; Sanchez-Plata, Marcos X
2018-01-01
The poultry processing industry has been undergoing a series of changes as it modifies processing practices to comply with new performance standards for chicken parts and comminuted poultry products. The regulatory approach encourages the use of intervention strategies to prevent and control foodborne pathogens in poultry products and thus improve food safety and protect human health. The present studies were conducted to evaluate the efficacy of antimicrobial interventions for reducing Salmonella on inoculated chicken parts under simulated commercial processing conditions. Chicken pieces were inoculated by immersion in a five-strain Salmonella cocktail at 6 log CFU/mL and then treated with organic acids and oxidizing agents on a commercial rinsing conveyor belt. The efficacy of spraying with six different treatments (sterile water, lactic acid, acetic acid, buffered lactic acid, acetic acid in combination with lactic acid, and peracetic acid) at two concentrations was evaluated on skin-on and skin-off chicken thighs at three application temperatures. Skinless chicken breasts were used to evaluate the antimicrobial efficacy of lactic acid and peracetic acid. The color stability of treated and untreated chicken parts was assessed after the acid interventions. The lactic acid and buffered lactic acid treatments produced the greatest reductions in Salmonella counts. Significant differences between the control and water treatments were identified for 5.11% lactic acid and 5.85% buffered lactic acid in both skin-on and skin-off chicken thighs. No significant effect of treatment temperature for skin-on chicken thighs was found. Lactic acid and peracetic acid were effective agents for eluting Salmonella cells attached to chicken breasts.
Preparation of the 3-monosulphates of cholic acid, chenodeoxycholic acid and deoxycholic acid.
Haslewood, E S; Haslewood, G A
1976-01-01
1. The 3-sulphates of cholic, chenodeoxycholic and deoxycholic acids were prepared as crystalline disodium salts. 2. The method described shows that it is possible to prepare specific sulphate esters of polyhydroxy bile acids and to remove protecting acyl groups without removing the sulphate. 3. A study of bile acid sulphate solvolysis showed that none of the usual methods give the original bile acid in major yield in a single step. 4. An understanding of the preparation, properties and methods of solvolysis of bile acid sulphates is basic for investigations of cholestasis and liver disease. PMID:938488
Comelli, Francesca; Giagnoni, Gabriella; Bettoni, Isabella; Colleoni, Mariapia; Costa, Barbara
2008-08-01
This study aimed to give a rationale for the employment of phytocannabinoid formulations to treat neuropathic pain. It was found that a controlled cannabis extract, containing multiple cannabinoids, in a defined ratio, and other non-cannabinoid fractions (terpenes and flavonoids) provided better antinociceptive efficacy than the single cannabinoid given alone, when tested in a rat model of neuropathic pain. The results also demonstrated that such an antihyperalgesic effect did not involve the cannabinoid CB1 and CB2 receptors, whereas it was mediated by vanilloid receptors TRPV1. The non-psychoactive compound, cannabidiol, is the only component present at a high level in the extract able to bind to this receptor: thus cannabidiol was the drug responsible for the antinociceptive behaviour observed. In addition, the results showed that after chronic oral treatment with cannabis extract the hepatic total content of cytochrome P450 was strongly inhibited as well as the intestinal P-glycoprotein activity. It is suggested that the inhibition of hepatic metabolism determined an increased bioavailability of cannabidiol resulting in a greater effect. However, in the light of the well known antioxidant and antiinflammatory properties of terpenes and flavonoids which could significantly contribute to the therapeutic effects, it cannot be excluded that the synergism observed might be achieved also in the absence of the cytochrome P450 inhibition.
Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui
2014-09-01
An integrated citric acid-methane fermentation process was proposed to solve the problem of extraction wastewater in citric acid fermentation process. Extraction wastewater was treated by anaerobic digestion and then recycled for the next batch of citric acid fermentation to eliminate wastewater discharge and reduce water resource consumption. Acetic acid as an intermediate product of methane fermentation was present in anaerobic digestion effluent. In this study, the effect of acetic acid on citric acid fermentation was investigated and results showed that lower concentration of acetic acid could promote Aspergillus niger growth and citric acid production. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) staining was used to quantify the activity of A. niger cells, and the results suggested that when acetic acid concentration was above 8 mM at initial pH 4.5, the morphology of A. niger became uneven and the part of the cells' activity was significantly reduced, thereby resulting in deceasing of citric acid production. Effects of acetic acid on citric acid fermentation, as influenced by initial pH and cell number in inocula, were also examined. The result indicated that inhibition by acetic acid increased as initial pH declined and was rarely influenced by cell number in inocula.
Bayes, M; Rabasseda, X; Prous, J R
2005-01-01
Gateways to Clinical Trials are a guide to the most recent clinical trials in current literature and congresses. The data in the following tables have been retrieved from the Clinical Trials Knowledge Area of Prous Science Integrity, the drug discovery and development portal, http://integrity.prous.com. This issue focuses on the following selection of drugs: (-)-Epigallocatechin gallate; ACP-103, Ad.Egr.TNF.11 D, adalimumab, AF-IL 12, AIDSVAX gp120 B/B, alefacept, alemtuzumab, a-Galactosylceramide, ALVAC vCP 1452, alvimopan hydrate, alvocidib hydrochloride, aminolevulinic acid hydrochloride, aminolevulinic acid methyl ester, anakinra, anidulafungin, antarelix, aprepitant, aripiprazole, arsenic sulfide, asoprisnil, atazanavir sulfate, atomoxetine hydrochloride; Bevacizumab, bimatoprost, BMS-184476, bortezomib, bosentan, botulinum toxin type B, BrachySil, brivudine; Caffeine, calcipotriol/betamethasone dipropionate, cannabidiol, capsaicin for injection, caspofungin acetate, CC-4047, cetuximab, CGP-36742, clofazimine, CpG-7909, Cypher; Darbepoetin alfa, dextromethorphan/quinidine sulfate, dimethylfumarate, dronabinol/cannabidiol, drotrecogin alfa (activated), duloxetine hydrochloride, dutasteride; Ecogramostim, efalizumab, eletriptan, emtricitabine, enfuvirtide, eplerenone, esomeprazole magnesium, estradiol acetate, eszopiclone, etoricoxib, exenatide, ezetimibe, ezetimibe/simvastatin; Fampridine, fondaparinux sodium, fosamprenavir calcium; Gefitinib, GPI-0100; hA 20, HTU-PA, human insulin, HuOKT 3 gamma 1(Ala 234-Ala 235), hyaluronic acid; Icatibant, imatinib mesylate, Indiplon, INKP-100, INKP-102, iodine (I131) tositumomab, istradefylline, IV gamma-globulin, ivabradine hydrochloride, ixabepilone; Lacosamide, landiolol, lanthanum carbonate, lasofoxifene tartrate, LB-80380, lenalidomide, lidocaine/tetracaine, linezolid, liposomal doxorubicin, liposomal vincristine sulfate, lopinavir, lopinavir/ritonavir, lumiracoxib, lurtotecan; Maribavir, morphine glucuronide, MVA-5 T
Happyana, Nizar; Kayser, Oliver
2016-08-01
Cannabis sativa trichomes are glandular structures predominantly responsible for the biosynthesis of cannabinoids, the biologically active compounds unique to this plant. To the best of our knowledge, most metabolomic works on C. sativa that have been reported previously focused their investigations on the flowers and leaves of this plant. In this study, (1)H NMR-based metabolomics and real-time PCR analysis were applied for monitoring the metabolite profiles of C. sativa trichomes, variety Bediol, during the last 4 weeks of the flowering period. Partial least squares discriminant analysis models successfully classified metabolites of the trichomes based on the harvest time. Δ (9)-Tetrahydrocannabinolic acid (1) and cannabidiolic acid (2) constituted the vital differential components of the organic preparations, while asparagine, glutamine, fructose, and glucose proved to be their water-extracted counterparts. According to RT-PCR analysis, gene expression levels of olivetol synthase and olivetolic acid cyclase influenced the accumulation of cannabinoids in the Cannabis trichomes during the monitoring time. Moreover, quantitative (1)H NMR and RT-PCR analysis of the Cannabis trichomes suggested that the gene regulation of cannabinoid biosynthesis in the C. sativa variety Bediol is unique when compared with other C. sativa varieties. Georg Thieme Verlag KG Stuttgart · New York.
Acid Rain, pH & Acidity: A Common Misinterpretation.
ERIC Educational Resources Information Center
Clark, David B.; Thompson, Ronald E.
1989-01-01
Illustrates the basis for misleading statements about the relationship between pH and acid content in acid rain. Explains why pH cannot be used as a measure of acidity for rain or any other solution. Suggests that teachers present acidity and pH as two separate and distinct concepts. (RT)
Zou, Xiang; Zhou, Yipin; Yang, Shang-Tian
2013-08-01
Malic acid is a dicarboxylic acid widely used in the food industry and also a potential C4 platform chemical that can be produced from biomass. However, microbial fermentation for direct malic acid production is limited by low product yield, titer, and productivity due to end-product inhibition. In this work, a novel process for malic acid production from polymalic acid (PMA) fermentation followed by acid hydrolysis was developed. First, a PMA-producing Aureobasidium pullulans strain ZX-10 was screened and isolated. This microbe produced PMA as the major fermentation product at a high-titer equivalent to 87.6 g/L of malic acid and high-productivity of 0.61 g/L h in free-cell fermentation in a stirred-tank bioreactor. Fed-batch fermentations with cells immobilized in a fibrous-bed bioreactor (FBB) achieved the highest product titer of 144.2 g/L and productivity of 0.74 g/L h. The fermentation produced PMA was purified by adsorption with IRA-900 anion-exchange resins, achieving a ∼100% purity and a high recovery rate of 84%. Pure malic acid was then produced from PMA by hydrolysis with 2 M sulfuric acid at 85°C, which followed the first-order reaction kinetics. This process provides an efficient and economical way for PMA and malic acid production, and is promising for industrial application. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Cronin, J. R.; Pizzarello, S.; Epstein, S.; Krishnamurthy, R. V.
1993-10-01
The hydroxymonocarboxylic acids, dicarboxylic acids, and hydroxydicarboxylic acids of the Murchison meteorite were analyzed as their tert-butyldimethylsilyl derivatives using combined gas chromatography-mass spectrometry. The hydroxydicarboxylic acids have not been found previously in meteorites. Each class of compounds is numerous with carbon chains up to C8 or C9 and many, if not all, chain and substitu