NASA Astrophysics Data System (ADS)
Zhou, Chi-Chun; Dai, Wu-Sheng
2018-02-01
In statistical mechanics, for a system with a fixed number of particles, e.g. a finite-size system, strictly speaking, the thermodynamic quantity needs to be calculated in the canonical ensemble. Nevertheless, the calculation of the canonical partition function is difficult. In this paper, based on the mathematical theory of the symmetric function, we suggest a method for the calculation of the canonical partition function of ideal quantum gases, including ideal Bose, Fermi, and Gentile gases. Moreover, we express the canonical partition functions of interacting classical and quantum gases given by the classical and quantum cluster expansion methods in terms of the Bell polynomial in mathematics. The virial coefficients of ideal Bose, Fermi, and Gentile gases are calculated from the exact canonical partition function. The virial coefficients of interacting classical and quantum gases are calculated from the canonical partition function by using the expansion of the Bell polynomial, rather than calculated from the grand canonical potential.
NASA Astrophysics Data System (ADS)
Bornyakov, V. G.; Boyda, D. L.; Goy, V. A.; Molochkov, A. V.; Nakamura, Atsushi; Nikolaev, A. A.; Zakharov, V. I.
2017-05-01
We propose and test a new approach to computation of canonical partition functions in lattice QCD at finite density. We suggest a few steps procedure. We first compute numerically the quark number density for imaginary chemical potential i μq I . Then we restore the grand canonical partition function for imaginary chemical potential using the fitting procedure for the quark number density. Finally we compute the canonical partition functions using high precision numerical Fourier transformation. Additionally we compute the canonical partition functions using the known method of the hopping parameter expansion and compare results obtained by two methods in the deconfining as well as in the confining phases. The agreement between two methods indicates the validity of the new method. Our numerical results are obtained in two flavor lattice QCD with clover improved Wilson fermions.
Restoring canonical partition functions from imaginary chemical potential
NASA Astrophysics Data System (ADS)
Bornyakov, V. G.; Boyda, D.; Goy, V.; Molochkov, A.; Nakamura, A.; Nikolaev, A.; Zakharov, V. I.
2018-03-01
Using GPGPU techniques and multi-precision calculation we developed the code to study QCD phase transition line in the canonical approach. The canonical approach is a powerful tool to investigate sign problem in Lattice QCD. The central part of the canonical approach is the fugacity expansion of the grand canonical partition functions. Canonical partition functions Zn(T) are coefficients of this expansion. Using various methods we study properties of Zn(T). At the last step we perform cubic spline for temperature dependence of Zn(T) at fixed n and compute baryon number susceptibility χB/T2 as function of temperature. After that we compute numerically ∂χ/∂T and restore crossover line in QCD phase diagram. We use improved Wilson fermions and Iwasaki gauge action on the 163 × 4 lattice with mπ/mρ = 0.8 as a sandbox to check the canonical approach. In this framework we obtain coefficient in parametrization of crossover line Tc(µ2B) = Tc(C-ĸµ2B/T2c) with ĸ = -0.0453 ± 0.0099.
Quantum canonical ensemble: A projection operator approach
NASA Astrophysics Data System (ADS)
Magnus, Wim; Lemmens, Lucien; Brosens, Fons
2017-09-01
Knowing the exact number of particles N, and taking this knowledge into account, the quantum canonical ensemble imposes a constraint on the occupation number operators. The constraint particularly hampers the systematic calculation of the partition function and any relevant thermodynamic expectation value for arbitrary but fixed N. On the other hand, fixing only the average number of particles, one may remove the above constraint and simply factorize the traces in Fock space into traces over single-particle states. As is well known, that would be the strategy of the grand-canonical ensemble which, however, comes with an additional Lagrange multiplier to impose the average number of particles. The appearance of this multiplier can be avoided by invoking a projection operator that enables a constraint-free computation of the partition function and its derived quantities in the canonical ensemble, at the price of an angular or contour integration. Introduced in the recent past to handle various issues related to particle-number projected statistics, the projection operator approach proves beneficial to a wide variety of problems in condensed matter physics for which the canonical ensemble offers a natural and appropriate environment. In this light, we present a systematic treatment of the canonical ensemble that embeds the projection operator into the formalism of second quantization while explicitly fixing N, the very number of particles rather than the average. Being applicable to both bosonic and fermionic systems in arbitrary dimensions, transparent integral representations are provided for the partition function ZN and the Helmholtz free energy FN as well as for two- and four-point correlation functions. The chemical potential is not a Lagrange multiplier regulating the average particle number but can be extracted from FN+1 -FN, as illustrated for a two-dimensional fermion gas.
A statistical mechanical approach to restricted integer partition functions
NASA Astrophysics Data System (ADS)
Zhou, Chi-Chun; Dai, Wu-Sheng
2018-05-01
The main aim of this paper is twofold: (1) suggesting a statistical mechanical approach to the calculation of the generating function of restricted integer partition functions which count the number of partitions—a way of writing an integer as a sum of other integers under certain restrictions. In this approach, the generating function of restricted integer partition functions is constructed from the canonical partition functions of various quantum gases. (2) Introducing a new type of restricted integer partition functions corresponding to general statistics which is a generalization of Gentile statistics in statistical mechanics; many kinds of restricted integer partition functions are special cases of this restricted integer partition function. Moreover, with statistical mechanics as a bridge, we reveal a mathematical fact: the generating function of restricted integer partition function is just the symmetric function which is a class of functions being invariant under the action of permutation groups. Using this approach, we provide some expressions of restricted integer partition functions as examples.
Confinement and Mayer cluster expansions
NASA Astrophysics Data System (ADS)
Bourgine, Jean-Emile
2014-05-01
In this paper, we study a class of grand-canonical partition functions with a kernel depending on a small parameter ɛ. This class is directly relevant to Nekrasov partition functions of 𝒩 = 2 SUSY gauge theories on the 4d Ω-background, for which ɛ is identified with one of the equivariant deformation parameter. In the Nekrasov-Shatashvili limit ɛ→0, we show that the free energy is given by an on-shell effective action. The equations of motion take the form of a TBA equation. The free energy is identified with the Yang-Yang functional of the corresponding system of Bethe roots. We further study the associated canonical model that takes the form of a generalized matrix model. Confinement of the eigenvalues by the short-range potential is observed. In the limit where this confining potential becomes weak, the collective field theory formulation is recovered. Finally, we discuss the connection with the alternative expression of instanton partition functions as sums over Young tableaux.
Matrix quantum mechanics on S1 /Z2
NASA Astrophysics Data System (ADS)
Betzios, P.; Gürsoy, U.; Papadoulaki, O.
2018-03-01
We study Matrix Quantum Mechanics on the Euclidean time orbifold S1 /Z2. Upon Wick rotation to Lorentzian time and taking the double-scaling limit this theory provides a toy model for a big-bang/big crunch universe in two dimensional non-critical string theory where the orbifold fixed points become cosmological singularities. We derive the MQM partition function both in the canonical and grand canonical ensemble in two different formulations and demonstrate agreement between them. We pinpoint the contribution of twisted states in both of these formulations either in terms of bi-local operators acting at the end-points of time or branch-cuts on the complex plane. We calculate, in the matrix model, the contribution of the twisted states to the torus level partition function explicitly and show that it precisely matches the world-sheet result, providing a non-trivial test of the proposed duality. Finally we discuss some interesting features of the partition function and the possibility of realising it as a τ-function of an integrable hierarchy.
NASA Astrophysics Data System (ADS)
Alba, David; Crater, Horace W.; Lusanna, Luca
2015-03-01
A new formulation of relativistic classical mechanics allows a reconsideration of old unsolved problems in relativistic kinetic theory and in relativistic statistical mechanics. In particular a definition of the relativistic micro-canonical partition function is given strictly in terms of the Poincaré generators of an interacting N-particle system both in the inertial and non-inertial rest frames. The non-relativistic limit allows a definition of both the inertial and non-inertial micro-canonical ensemble in terms of the Galilei generators.
Temperature extrapolation of multicomponent grand canonical free energy landscapes
NASA Astrophysics Data System (ADS)
Mahynski, Nathan A.; Errington, Jeffrey R.; Shen, Vincent K.
2017-08-01
We derive a method for extrapolating the grand canonical free energy landscape of a multicomponent fluid system from one temperature to another. Previously, we introduced this statistical mechanical framework for the case where kinetic energy contributions to the classical partition function were neglected for simplicity [N. A. Mahynski et al., J. Chem. Phys. 146, 074101 (2017)]. Here, we generalize the derivation to admit these contributions in order to explicitly illustrate the differences that result. Specifically, we show how factoring out kinetic energy effects a priori, in order to consider only the configurational partition function, leads to simpler mathematical expressions that tend to produce more accurate extrapolations than when these effects are included. We demonstrate this by comparing and contrasting these two approaches for the simple cases of an ideal gas and a non-ideal, square-well fluid.
Morse oscillator propagator in the high temperature limit I: Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toutounji, Mohamad, E-mail: Mtoutounji@uaeu.ac.ae
2017-02-15
In an earlier work of the author the time evolution of Morse oscillator was studied analytically and exactly at low temperatures whereupon optical correlation functions were calculated using Morse oscillator coherent states were employed. Morse oscillator propagator in the high temperature limit is derived and a closed form of its corresponding canonical partition function is obtained. Both diagonal and off-diagonal forms of Morse oscillator propagator are derived in the high temperature limit. Partition functions of diatomic molecules are calculated. - Highlights: • Derives the quantum propagator of Morse oscillator in the high temperature limit. • Uses the resulting diagonal propagatormore » to derive a closed form of Morse oscillator partition function. • Provides a more sophisticated formula of the quantum propagator to test the accuracy of the herein results.« less
NASA Astrophysics Data System (ADS)
Wu, Xiongwu; Brooks, Bernard R.
2011-11-01
The self-guided Langevin dynamics (SGLD) is a method to accelerate conformational searching. This method is unique in the way that it selectively enhances and suppresses molecular motions based on their frequency to accelerate conformational searching without modifying energy surfaces or raising temperatures. It has been applied to studies of many long time scale events, such as protein folding. Recent progress in the understanding of the conformational distribution in SGLD simulations makes SGLD also an accurate method for quantitative studies. The SGLD partition function provides a way to convert the SGLD conformational distribution to the canonical ensemble distribution and to calculate ensemble average properties through reweighting. Based on the SGLD partition function, this work presents a force-momentum-based self-guided Langevin dynamics (SGLDfp) simulation method to directly sample the canonical ensemble. This method includes interaction forces in its guiding force to compensate the perturbation caused by the momentum-based guiding force so that it can approximately sample the canonical ensemble. Using several example systems, we demonstrate that SGLDfp simulations can approximately maintain the canonical ensemble distribution and significantly accelerate conformational searching. With optimal parameters, SGLDfp and SGLD simulations can cross energy barriers of more than 15 kT and 20 kT, respectively, at similar rates for LD simulations to cross energy barriers of 10 kT. The SGLDfp method is size extensive and works well for large systems. For studies where preserving accessible conformational space is critical, such as free energy calculations and protein folding studies, SGLDfp is an efficient approach to search and sample the conformational space.
Condensate fluctuations of interacting Bose gases within a microcanonical ensemble.
Wang, Jianhui; He, Jizhou; Ma, Yongli
2011-05-01
Based on counting statistics and Bogoliubov theory, we present a recurrence relation for the microcanonical partition function for a weakly interacting Bose gas with a finite number of particles in a cubic box. According to this microcanonical partition function, we calculate numerically the distribution function, condensate fraction, and condensate fluctuations for a finite and isolated Bose-Einstein condensate. For ideal and weakly interacting Bose gases, we compare the condensate fluctuations with those in the canonical ensemble. The present approach yields an accurate account of the condensate fluctuations for temperatures close to the critical region. We emphasize that the interactions between excited atoms turn out to be important for moderate temperatures.
Thermodynamics of pairing in mesoscopic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumaryada, Tony; Volya, Alexander
Using numerical and analytical methods implemented for different models, we conduct a systematic study of the thermodynamic properties of pairing correlations in mesoscopic nuclear systems. Various quantities are calculated and analyzed using the exact solution of pairing. An in-depth comparison of canonical, grand canonical, and microcanonical ensembles is conducted. The nature of the pairing phase transition in a small system is of a particular interest. We discuss the onset of discontinuity in the thermodynamic variables, fluctuations, and evolution of zeros of the canonical and grand canonical partition functions in the complex plane. The behavior of the invariant correlational entropy ismore » also studied in the transitional region of interest. The change in the character of the phase transition due to the presence of a magnetic field is discussed along with studies of superconducting thermodynamics.« less
Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs
2017-01-01
Prediction of RNA tertiary structure from sequence is an important problem, but generating accurate structure models for even short sequences remains difficult. Predictions of RNA tertiary structure tend to be least accurate in loop regions, where non-canonical pairs are important for determining the details of structure. Non-canonical pairs can be predicted using a knowledge-based model of structure that scores nucleotide cyclic motifs, or NCMs. In this work, a partition function algorithm is introduced that allows the estimation of base pairing probabilities for both canonical and non-canonical interactions. Pairs that are predicted to be probable are more likely to be found in the true structure than pairs of lower probability. Pair probability estimates can be further improved by predicting the structure conserved across multiple homologous sequences using the TurboFold algorithm. These pairing probabilities, used in concert with prior knowledge of the canonical secondary structure, allow accurate inference of non-canonical pairs, an important step towards accurate prediction of the full tertiary structure. Software to predict non-canonical base pairs and pairing probabilities is now provided as part of the RNAstructure software package. PMID:29107980
NASA Astrophysics Data System (ADS)
Hilbert, Stefan; Dunkel, Jörn
2006-07-01
We calculate exactly both the microcanonical and canonical thermodynamic functions (TDFs) for a one-dimensional model system with piecewise constant Lennard-Jones type pair interactions. In the case of an isolated N -particle system, the microcanonical TDFs exhibit (N-1) singular (nonanalytic) microscopic phase transitions of the formal order N/2 , separating N energetically different evaporation (dissociation) states. In a suitably designed evaporation experiment, these types of phase transitions should manifest themselves in the form of pressure and temperature oscillations, indicating cooling by evaporation. In the presence of a heat bath (thermostat), such oscillations are absent, but the canonical heat capacity shows a characteristic peak, indicating the temperature-induced dissociation of the one-dimensional chain. The distribution of complex zeros of the canonical partition may be used to identify different degrees of dissociation in the canonical ensemble.
Bi-Partition of Shared Binary Decision Diagrams
2002-12-01
independently. Such BDDs are considered as a special case of partitioned BDDs [6], [12], [13] and free BDDs ( FBDDs ) [7], [8]. Note that BDD nomenclature...shi, 214-8571 Japan. a)E-mail: sasao@cse.kyutech.ac.jp Applications of partitioned SBDDs are similar to that of partitioned BDDs and FBDDs . When...partitioned SBDD is more canonical than partitioned BDDs and free BDDs ( FBDDs ). We developed a heuristic bi-partition algorithm for SBDDs, and showed cases
NASA Astrophysics Data System (ADS)
Giraud, Olivier; Grabsch, Aurélien; Texier, Christophe
2018-05-01
We study statistical properties of N noninteracting identical bosons or fermions in the canonical ensemble. We derive several general representations for the p -point correlation function of occupation numbers n1⋯np ¯. We demonstrate that it can be expressed as a ratio of two p ×p determinants involving the (canonical) mean occupations n1¯, ..., np¯, which can themselves be conveniently expressed in terms of the k -body partition functions (with k ≤N ). We draw some connection with the theory of symmetric functions and obtain an expression of the correlation function in terms of Schur functions. Our findings are illustrated by revisiting the problem of Bose-Einstein condensation in a one-dimensional harmonic trap, for which we get analytical results. We get the moments of the occupation numbers and the correlation between ground-state and excited-state occupancies. In the temperature regime dominated by quantum correlations, the distribution of the ground-state occupancy is shown to be a truncated Gumbel law. The Gumbel law, describing extreme-value statistics, is obtained when the temperature is much smaller than the Bose-Einstein temperature.
Condensate statistics and thermodynamics of weakly interacting Bose gas: Recursion relation approach
NASA Astrophysics Data System (ADS)
Dorfman, K. E.; Kim, M.; Svidzinsky, A. A.
2011-03-01
We study condensate statistics and thermodynamics of weakly interacting Bose gas with a fixed total number N of particles in a cubic box. We find the exact recursion relation for the canonical ensemble partition function. Using this relation, we calculate the distribution function of condensate particles for N=200. We also calculate the distribution function based on multinomial expansion of the characteristic function. Similar to the ideal gas, both approaches give exact statistical moments for all temperatures in the framework of Bogoliubov model. We compare them with the results of unconstraint canonical ensemble quasiparticle formalism and the hybrid master equation approach. The present recursion relation can be used for any external potential and boundary conditions. We investigate the temperature dependence of the first few statistical moments of condensate fluctuations as well as thermodynamic potentials and heat capacity analytically and numerically in the whole temperature range.
ABJM Wilson loops in arbitrary representations
NASA Astrophysics Data System (ADS)
Hatsuda, Yasuyuki; Honda, Masazumi; Moriyama, Sanefumi; Okuyama, Kazumi
2013-10-01
We study vacuum expectation values (VEVs) of circular half BPS Wilson loops in arbitrary representations in ABJM theory. We find that those in hook representations are reduced to elementary integrations thanks to the Fermi gas formalism, which are accessible from the numerical studies similar to the partition function in the previous studies. For non-hook representations, we show that the VEVs in the grand canonical formalism can be exactly expressed as determinants of those in the hook representations. Using these facts, we can study the instanton effects of the VEVs in various representations. Our results are consistent with the worldsheet instanton effects studied from the topological string and a prescription to include the membrane instanton effects by shifting the chemical potential, which has been successful for the partition function.
Collective behaviour of dislocations in a finite medium
NASA Astrophysics Data System (ADS)
Kooiman, M.; Hütter, M.; Geers, M. G. D.
2014-04-01
We derive the grand-canonical partition function of straight and parallel dislocation lines without making a priori assumptions on the temperature regime. Such a systematic derivation for dislocations has, to the best of our knowledge, not been carried out before, and several conflicting assumptions on the free energy of dislocations have been made in the literature. Dislocations have gained interest as they are the carriers of plastic deformation in crystalline materials and solid polymers, and they constitute a prototype system for two-dimensional Coulomb particles. Our microscopic starting level is the description of dislocations as used in the discrete dislocation dynamics (DDD) framework. The macroscopic level of interest is characterized by the temperature, the boundary deformation and the dislocation density profile. By integrating over state space, we obtain a field theoretic partition function, which is a functional integral of the Boltzmann weight over an auxiliary field. The Hamiltonian consists of a term quadratic in the field and an exponential of this field. The partition function is strongly non-local, and reduces in special cases to the sine-Gordon model. Moreover, we determine implicit expressions for the response functions and the dominant scaling regime for metals, namely the low-temperature regime.
Random walk to a nonergodic equilibrium concept
NASA Astrophysics Data System (ADS)
Bel, G.; Barkai, E.
2006-01-01
Random walk models, such as the trap model, continuous time random walks, and comb models, exhibit weak ergodicity breaking, when the average waiting time is infinite. The open question is, what statistical mechanical theory replaces the canonical Boltzmann-Gibbs theory for such systems? In this paper a nonergodic equilibrium concept is investigated, for a continuous time random walk model in a potential field. In particular we show that in the nonergodic phase the distribution of the occupation time of the particle in a finite region of space approaches U- or W-shaped distributions related to the arcsine law. We show that when conditions of detailed balance are applied, these distributions depend on the partition function of the problem, thus establishing a relation between the nonergodic dynamics and canonical statistical mechanics. In the ergodic phase the distribution function of the occupation times approaches a δ function centered on the value predicted based on standard Boltzmann-Gibbs statistics. The relation of our work to single-molecule experiments is briefly discussed.
NASA Astrophysics Data System (ADS)
Desgranges, Caroline; Delhommelle, Jerome
2016-11-01
Using molecular simulation, we assess the impact of an electric field on the properties of water, modeled with the SPC/E potential, over a wide range of states and conditions. Electric fields of the order of 0.1 V/Å and beyond are found to have a significant impact on the grand-canonical partition function of water, resulting in shifts in the chemical potential at the vapor-liquid coexistence of up to 20%. This, in turn, leads to an increase in the critical temperatures by close to 7% for a field of 0.2 V/Å, to lower vapor pressures, and to much larger entropies of vaporization (by up to 35%). We interpret these results in terms of the greater density change at the transition and of the increased structural order resulting from the applied field. The thermodynamics of compressed liquids and of supercritical water are also analyzed over a wide range of pressures, leading to the determination of the Zeno line and of the curve of ideal enthalpy that span the supercritical region of the phase diagram. Rescaling the phase diagrams obtained for the different field strengths by their respective critical properties allows us to draw a correspondence between these systems for fields of up to 0.2 V/Å.
Force-field functor theory: classical force-fields which reproduce equilibrium quantum distributions
Babbush, Ryan; Parkhill, John; Aspuru-Guzik, Alán
2013-01-01
Feynman and Hibbs were the first to variationally determine an effective potential whose associated classical canonical ensemble approximates the exact quantum partition function. We examine the existence of a map between the local potential and an effective classical potential which matches the exact quantum equilibrium density and partition function. The usefulness of such a mapping rests in its ability to readily improve Born-Oppenheimer potentials for use with classical sampling. We show that such a map is unique and must exist. To explore the feasibility of using this result to improve classical molecular mechanics, we numerically produce a map from a library of randomly generated one-dimensional potential/effective potential pairs then evaluate its performance on independent test problems. We also apply the map to simulate liquid para-hydrogen, finding that the resulting radial pair distribution functions agree well with path integral Monte Carlo simulations. The surprising accessibility and transferability of the technique suggest a quantitative route to adapting Born-Oppenheimer potentials, with a motivation similar in spirit to the powerful ideas and approximations of density functional theory. PMID:24790954
On Painlevé/gauge theory correspondence
NASA Astrophysics Data System (ADS)
Bonelli, Giulio; Lisovyy, Oleg; Maruyoshi, Kazunobu; Sciarappa, Antonio; Tanzini, Alessandro
2017-12-01
We elucidate the relation between Painlevé equations and four-dimensional rank one N = 2 theories by identifying the connection associated with Painlevé isomonodromic problems with the oper limit of the flat connection of the Hitchin system associated with gauge theories and by studying the corresponding renormalization group flow. Based on this correspondence, we provide long-distance expansions at various canonical rays for all Painlevé τ -functions in terms of magnetic and dyonic Nekrasov partition functions for N = 2 SQCD and Argyres-Douglas theories at self-dual Omega background ɛ _1 + ɛ _2 = 0 or equivalently in terms of c=1 irregular conformal blocks.
NASA Astrophysics Data System (ADS)
Kim, Joonho; Kim, Seok; Lee, Kimyeong; Park, Jaemo; Vafa, Cumrun
2017-09-01
We study a family of 2d N=(0, 4) gauge theories which describes at low energy the dynamics of E-strings, the M2-branes suspended between a pair of M5 and M9 branes. The gauge theory is engineered using a duality with type IIA theory, leading to the D2-branes suspended between an NS5-brane and 8 D8-branes on an O8-plane. We compute the elliptic genus of this family of theories, and find agreement with the known results for single and two E-strings. The partition function can in principle be computed for arbitrary number of E-strings, and we compute them explicitly for low numbers. We test our predictions against the partially known results from topological strings, as well as from the instanton calculus of 5d Sp(1) gauge theory. Given the relation to topological strings, our computation provides the all genus partition function of the refined topological strings on the canonical bundle over 1/2K3.
Many-Body Effects on the Thermodynamics of Fluids, Mixtures, and Nanoconfined Fluids.
Desgranges, Caroline; Delhommelle, Jerome
2015-11-10
Using expanded Wang-Landau simulations, we show that taking into account the many-body interactions results in sharp changes in the grand-canonical partition functions of single-component systems, binary mixtures, and nanoconfined fluids. The many-body contribution, modeled with a 3-body Axilrod-Teller-Muto term, results in shifts toward higher chemical potentials of the phase transitions from low-density phases to high-density phases and accounts for deviations of more than, e.g., 20% of the value of the partition function for a single-component liquid. Using the statistical mechanics formalism, we analyze how this contribution has a strong impact on some properties (e.g., pressure, coexisting densities, and enthalpy) and a moderate impact on others (e.g., Gibbs or Helmholtz free energies). We also characterize the effect of the 3-body terms on adsorption isotherms and adsorption thermodynamic properties, thereby providing a full picture of the effect of the 3-body contribution on the thermodynamics of nanoconfined fluids.
Direct determination approach for the multifractal detrending moving average analysis
NASA Astrophysics Data System (ADS)
Xu, Hai-Chuan; Gu, Gao-Feng; Zhou, Wei-Xing
2017-11-01
In the canonical framework, we propose an alternative approach for the multifractal analysis based on the detrending moving average method (MF-DMA). We define a canonical measure such that the multifractal mass exponent τ (q ) is related to the partition function and the multifractal spectrum f (α ) can be directly determined. The performances of the direct determination approach and the traditional approach of the MF-DMA are compared based on three synthetic multifractal and monofractal measures generated from the one-dimensional p -model, the two-dimensional p -model, and the fractional Brownian motions. We find that both approaches have comparable performances to unveil the fractal and multifractal nature. In other words, without loss of accuracy, the multifractal spectrum f (α ) can be directly determined using the new approach with less computation cost. We also apply the new MF-DMA approach to the volatility time series of stock prices and confirm the presence of multifractality.
Comment on "Troublesome aspects of the Renyi-MaxEnt treatment"
NASA Astrophysics Data System (ADS)
Oikonomou, Thomas; Bagci, G. Baris
2017-11-01
Plastino et al. [Plastino et al., Phys. Rev. E 94, 012145 (2016), 10.1103/PhysRevE.94.012145] recently stated that the Rényi entropy is not suitable for thermodynamics by using functional calculus, since it leads to anomalous results unlike the Tsallis entropy. We first show that the Tsallis entropy also leads to such anomalous behaviors if one adopts the same functional calculus approach. Second, we note that one of the Lagrange multipliers is set in an ad hoc manner in the functional calculus approach of Plastino et al. Finally, the explanation for these anomalous behaviors is provided by observing that the generalized distributions obtained by Plastino et al. do not yield the ordinary canonical partition function in the appropriate limit and therefore cannot be considered as genuine generalized distributions.
Comment on "Troublesome aspects of the Renyi-MaxEnt treatment".
Oikonomou, Thomas; Bagci, G Baris
2017-11-01
Plastino et al. [Plastino et al., Phys. Rev. E 94, 012145 (2016)1539-375510.1103/PhysRevE.94.012145] recently stated that the Rényi entropy is not suitable for thermodynamics by using functional calculus, since it leads to anomalous results unlike the Tsallis entropy. We first show that the Tsallis entropy also leads to such anomalous behaviors if one adopts the same functional calculus approach. Second, we note that one of the Lagrange multipliers is set in an ad hoc manner in the functional calculus approach of Plastino et al. Finally, the explanation for these anomalous behaviors is provided by observing that the generalized distributions obtained by Plastino et al. do not yield the ordinary canonical partition function in the appropriate limit and therefore cannot be considered as genuine generalized distributions.
Thermal and magnetic properties of electron gas in toroidal quantum dot
NASA Astrophysics Data System (ADS)
Baghdasaryan, D. A.; Hayrapetyan, D. B.; Kazaryan, E. M.; Sarkisyan, H. A.
2018-07-01
One-electron states in a toroidal quantum dot in the presence of an external magnetic field have been considered. The magnetic field operator and the Schrodinger equation have been written in toroidal coordinates. The dependence of one-electron energy spectrum and wave function on the geometrical parameters of a toroidal quantum dot and magnetic field strength have been studied. The energy levels are employed to calculate the canonical partition function, which in its turn is used to obtain mean energy, heat capacity, entropy, magnetization, and susceptibility of noninteracting electron gas. The possibility to control the thermodynamic and magnetic properties of the noninteracting electron gas via changing the geometric parameters of the QD, magnetic field, and temperature, was demonstrated.
Hamiltonian thermodynamics of three-dimensional dilatonic black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dias, Goncalo A. S.; Lemos, Jose P. S.
2008-08-15
The action for a class of three-dimensional dilaton-gravity theories with a negative cosmological constant can be recast in a Brans-Dicke type action, with its free {omega} parameter. These theories have static spherically symmetric black holes. Those with well formulated asymptotics are studied through a Hamiltonian formalism, and their thermodynamical properties are found out. The theories studied are general relativity ({omega}{yields}{infinity}), a dimensionally reduced cylindrical four-dimensional general relativity theory ({omega}=0), and a theory representing a class of theories ({omega}=-3). The Hamiltonian formalism is set up in three dimensions through foliations on the right region of the Carter-Penrose diagram, with the bifurcationmore » 1-sphere as the left boundary, and anti-de Sitter infinity as the right boundary. The metric functions on the foliated hypersurfaces are the canonical coordinates. The Hamiltonian action is written, the Hamiltonian being a sum of constraints. One finds a new action which yields an unconstrained theory with one pair of canonical coordinates (M,P{sub M}), M being the mass parameter and P{sub M} its conjugate momenta The resulting Hamiltonian is a sum of boundary terms only. A quantization of the theory is performed. The Schroedinger evolution operator is constructed, the trace is taken, and the partition function of the canonical ensemble is obtained. The black hole entropies differ, in general, from the usual quarter of the horizon area due to the dilaton.« less
Efficient algorithms for probing the RNA mutation landscape.
Waldispühl, Jérôme; Devadas, Srinivas; Berger, Bonnie; Clote, Peter
2008-08-08
The diversity and importance of the role played by RNAs in the regulation and development of the cell are now well-known and well-documented. This broad range of functions is achieved through specific structures that have been (presumably) optimized through evolution. State-of-the-art methods, such as McCaskill's algorithm, use a statistical mechanics framework based on the computation of the partition function over the canonical ensemble of all possible secondary structures on a given sequence. Although secondary structure predictions from thermodynamics-based algorithms are not as accurate as methods employing comparative genomics, the former methods are the only available tools to investigate novel RNAs, such as the many RNAs of unknown function recently reported by the ENCODE consortium. In this paper, we generalize the McCaskill partition function algorithm to sum over the grand canonical ensemble of all secondary structures of all mutants of the given sequence. Specifically, our new program, RNAmutants, simultaneously computes for each integer k the minimum free energy structure MFE(k) and the partition function Z(k) over all secondary structures of all k-point mutants, even allowing the user to specify certain positions required not to mutate and certain positions required to base-pair or remain unpaired. This technically important extension allows us to study the resilience of an RNA molecule to pointwise mutations. By computing the mutation profile of a sequence, a novel graphical representation of the mutational tendency of nucleotide positions, we analyze the deleterious nature of mutating specific nucleotide positions or groups of positions. We have successfully applied RNAmutants to investigate deleterious mutations (mutations that radically modify the secondary structure) in the Hepatitis C virus cis-acting replication element and to evaluate the evolutionary pressure applied on different regions of the HIV trans-activation response element. In particular, we show qualitative agreement between published Hepatitis C and HIV experimental mutagenesis studies and our analysis of deleterious mutations using RNAmutants. Our work also predicts other deleterious mutations, which could be verified experimentally. Finally, we provide evidence that the 3' UTR of the GB RNA virus C has been optimized to preserve evolutionarily conserved stem regions from a deleterious effect of pointwise mutations. We hope that there will be long-term potential applications of RNAmutants in de novo RNA design and drug design against RNA viruses. This work also suggests potential applications for large-scale exploration of the RNA sequence-structure network. Binary distributions are available at http://RNAmutants.csail.mit.edu/.
Shannon information entropy in the canonical genetic code.
Nemzer, Louis R
2017-02-21
The Shannon entropy measures the expected information value of messages. As with thermodynamic entropy, the Shannon entropy is only defined within a system that identifies at the outset the collections of possible messages, analogous to microstates, that will be considered indistinguishable macrostates. This fundamental insight is applied here for the first time to amino acid alphabets, which group the twenty common amino acids into families based on chemical and physical similarities. To evaluate these schemas objectively, a novel quantitative method is introduced based the inherent redundancy in the canonical genetic code. Each alphabet is taken as a separate system that partitions the 64 possible RNA codons, the microstates, into families, the macrostates. By calculating the normalized mutual information, which measures the reduction in Shannon entropy, conveyed by single nucleotide messages, groupings that best leverage this aspect of fault tolerance in the code are identified. The relative importance of properties related to protein folding - like hydropathy and size - and function, including side-chain acidity, can also be estimated. This approach allows the quantification of the average information value of nucleotide positions, which can shed light on the coevolution of the canonical genetic code with the tRNA-protein translation mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.
Canonical Commonality Analysis.
ERIC Educational Resources Information Center
Leister, K. Dawn
Commonality analysis is a method of partitioning variance that has advantages over more traditional "OVA" methods. Commonality analysis indicates the amount of explanatory power that is "unique" to a given predictor variable and the amount of explanatory power that is "common" to or shared with at least one predictor…
Putz, Mihai V.
2009-01-01
The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems. PMID:20087467
Putz, Mihai V
2009-11-10
The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr's quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions - all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems.
Functional Multiple-Set Canonical Correlation Analysis
ERIC Educational Resources Information Center
Hwang, Heungsun; Jung, Kwanghee; Takane, Yoshio; Woodward, Todd S.
2012-01-01
We propose functional multiple-set canonical correlation analysis for exploring associations among multiple sets of functions. The proposed method includes functional canonical correlation analysis as a special case when only two sets of functions are considered. As in classical multiple-set canonical correlation analysis, computationally, the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desgranges, Caroline; Delhommelle, Jerome
2014-03-14
Combining rules, such as the Lorentz-Berthelot rules, are routinely used to calculate the thermodynamic properties of mixtures using molecular simulations. Here we extend the expanded Wang-Landau simulation approach to determine the impact of the combining rules on the value of the partition function of binary systems, and, in turn, on the phase coexistence and thermodynamics of these mixtures. We study various types of mixtures, ranging from systems of rare gases to biologically and technologically relevant mixtures, such as water-urea and water-carbon dioxide. Comparing the simulation results to the experimental data on mixtures of rare gases allows us to rank themore » performance of combining rules. We find that the widely used Lorentz-Berthelot rules exhibit the largest deviations from the experimental data, both for the bulk and at coexistence, while the Kong and Waldman-Hagler provide much better alternatives. In particular, in the case of aqueous solutions of urea, we show that the use of the Lorentz-Berthelot rules has a strong impact on the Gibbs free energy of the solute, overshooting the value predicted by the Waldman-Hagler rules by 7%. This result emphasizes the importance of the combining rule for the determination of hydration free energies using molecular simulations.« less
FAILSAFE Health Management for Embedded Systems
NASA Technical Reports Server (NTRS)
Horvath, Gregory A.; Wagner, David A.; Wen, Hui Ying; Barry, Matthew
2010-01-01
The FAILSAFE project is developing concepts and prototype implementations for software health management in mission- critical, real-time embedded systems. The project unites features of the industry-standard ARINC 653 Avionics Application Software Standard Interface and JPL s Mission Data System (MDS) technology (see figure). The ARINC 653 standard establishes requirements for the services provided by partitioned, real-time operating systems. The MDS technology provides a state analysis method, canonical architecture, and software framework that facilitates the design and implementation of software-intensive complex systems. The MDS technology has been used to provide the health management function for an ARINC 653 application implementation. In particular, the focus is on showing how this combination enables reasoning about, and recovering from, application software problems.
NASA Astrophysics Data System (ADS)
Berkovich, Ronen; Klafter, Joseph; Urbakh, Michael
Free energy is one of the most fundamental thermodynamic functions, determining relative phase stability and serving as a generating function for other thermodynamic quantities. The calculation of free energies is a challenging enterprise. In equilibrium statistical mechanics, the free energy is related to the canonical partition function. The partition function itself involves integrations over all degrees of freedom in the system and, in most cases, cannot be easily calculated directly. In 1997, Jarzynski proved a remarkable equality that allows computing the equilibrium free-energy difference between two states from the probability distribution of the nonequilibrium work done on the system to switch between the two states. The Jarzynski equality provides a powerful free-energy difference estimator from a set of irreversible experiments. This method is closely related to free-energy perturbation approach, which is also a computational technique for estimating free-energy differences. The ability to map potential profiles and topologies is of major significance to areas as diverse as biological recognition and nanoscale friction. This capability has been demonstrated for frictional studies where a force between the tip of the scanning force microscope and the surface is probed. The surface free-energy corrugation produces a detectable friction forces. Thus, friction force microscopy (FFM) should be able to discriminate between energetically different areas on the probed surface. Here, we apply the Jarzynski equality for the analysis of FFM measurements and thus obtain a variation of the free energy along a surface.
Water Dimers in the Atmosphere II: Results from the VRT(ASP-W)III Potential Surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldman, N; Saykally, R J; Leforestier, C
We report refined results for the equilibrium constant for water dimerization (K{sub P}), computed as a function of temperature via fully-coupled 6-D calculation of the canonical (H{sub 2}O){sub 2} partition function on VRT(ASP-W)III, the most accurate water dimer potential energy surface currently available. Partial pressure isotherms calculated for a range of temperatures and relative humidities indicate that water dimers can exist in sufficient concentrations (e.g., 10{sup 18}m{sup -3} at 30 C and 100% relative humidity) to affect physical and chemical processes in the atmosphere. The determinations of additional thermodynamic properties ({Delta}G, {Delta}H, {Delta}S, C{sub P}, C{sub V}) for (H{sub 2}O){submore » 2} are presented, and the role of quasi-bound states in the calculation of K{sub P} is discussed at length.« less
NASA Astrophysics Data System (ADS)
Sargolzaeipor, S.; Hassanabadi, H.; Chung, W. S.
2018-04-01
In this paper, we study the T -fluctuated form of superstatistics. In this form, some thermodynamic quantities such as the Helmholtz energy, the entropy and the internal energy, are expressed in terms of the T -fluctuated form for a canonical ensemble. In addition, the partition functions in the formalism for 2-level and 3-level distributions are derived. Then we make use of the T -fluctuated superstatistics for a quantum harmonic oscillator problem and the thermal properties of the system for three statistics of the Bose-Einstein, Maxwell-Boltzmann and Fermi-Dirac statistics are calculated. The effect of the deformation parameter on these properties is examined. All the results recover the well-known results by removing the deformation parameter.
Stability and Solid Solutions of Hydrous Alumino-Silicates in the Earth's Mantle
NASA Astrophysics Data System (ADS)
Panero, W. R.; Caracas, R.
2017-12-01
The degree to which the Earth's mantle stores and cycles water in excess of the storage capacity of nominally anhydrous minerals is dependent upon the stability of hydrous phases under mantle-relevant pressures, temperatures, and compositions. Two hydrous phases, phase D and phase H are stable to the pressures and temperatures of the Earth's lower mantle, suggesting that the Earth's lower mantle may participate in the cycling of water. Each phase has a wide solid solution series between MgSi2O6H2-Al2SiO6H2 and MgSiO4H2-2δAlOOH-SiO2, respectively, yet most work addresses end-member compositions for analysis of stability and elastic properties. We present the results of density functional theory calculations on the stability, structure, bonding, partitioning, and elasticity of hydrous phases D and H in the Al2O3-SiO2-MgO-H2O system, addressing the solid solution series through a statistical sampling of site occupancy and calculation of the partition function from the grand canonical ensemble. We find that the addition of Al to the endmember compositions stabilizes each phase to higher temperatures through additional configurational entropy. We further find that solid solutions tend not to undergo hydrogen-bond symmetrization as is found in the end member compositions as a result of non-symmetric bonding environments.
Target Detection and Identification Using Canonical Correlations Analysis and Subspace Partitioning
2008-04-01
Fig. 2. ROCs for DCC, DCC-P, NNLS, and NNLSP (Present chemical=t1, background= t56 , SNR= 5 dB) alarm, or 1−specificity, and PD is the probability of...discrimination values are given in each ROC plot. In Fig. 2, we use t56 as the background, and t1 as the target chemical. The SNR is 5 dB. For each
Hamiltonian thermodynamics of charged three-dimensional dilatonic black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dias, Goncalo A. S.; Lemos, Jose P. S.; Centro Multidisciplinar de Astrofisica-CENTRA, Departamento de Fisica, Instituto Superior Tecnico-IST, Universidade Tecnica de Lisboa-UTL, Avenida Rovisco Pais 1, 1049-001 Lisboa
2008-10-15
The action for a class of three-dimensional dilaton-gravity theories, with an electromagnetic Maxwell field and a cosmological constant, can be recast in a Brans-Dicke-Maxwell type action, with its free {omega} parameter. For a negative cosmological constant, these theories have static, electrically charged, and spherically symmetric black hole solutions. Those theories with well formulated asymptotics are studied through a Hamiltonian formalism, and their thermodynamical properties are found out. The theories studied are general relativity ({omega}{yields}{+-}{infinity}), a dimensionally reduced cylindrical four-dimensional general relativity theory ({omega}=0), and a theory representing a class of theories ({omega}=-3), all with a Maxwell term. The Hamiltonian formalismmore » is set up in three dimensions through foliations on the right region of the Carter-Penrose diagram, with the bifurcation 1-sphere as the left boundary, and anti-de Sitter infinity as the right boundary. The metric functions on the foliated hypersurfaces and the radial component of the vector potential one-form are the canonical coordinates. The Hamiltonian action is written, the Hamiltonian being a sum of constraints. One finds a new action which yields an unconstrained theory with two pairs of canonical coordinates (M,P{sub M};Q,P{sub Q}), where M is the mass parameter, which for {omega}<-(3/2) and for {omega}={+-}{infinity} needs a careful renormalization, P{sub M} is the conjugate momenta of M, Q is the charge parameter, and P{sub Q} is its conjugate momentum. The resulting Hamiltonian is a sum of boundary terms only. A quantization of the theory is performed. The Schroedinger evolution operator is constructed, the trace is taken, and the partition function of the grand canonical ensemble is obtained, where the chemical potential is the scalar electric field {phi}. Like the uncharged cases studied previously, the charged black hole entropies differ, in general, from the usual quarter of the horizon area due to the dilaton.« less
Stomach-brain synchrony reveals a novel, delayed-connectivity resting-state network in humans
Devauchelle, Anne-Dominique; Béranger, Benoît; Tallon-Baudry, Catherine
2018-01-01
Resting-state networks offer a unique window into the brain’s functional architecture, but their characterization remains limited to instantaneous connectivity thus far. Here, we describe a novel resting-state network based on the delayed connectivity between the brain and the slow electrical rhythm (0.05 Hz) generated in the stomach. The gastric network cuts across classical resting-state networks with partial overlap with autonomic regulation areas. This network is composed of regions with convergent functional properties involved in mapping bodily space through touch, action or vision, as well as mapping external space in bodily coordinates. The network is characterized by a precise temporal sequence of activations within a gastric cycle, beginning with somato-motor cortices and ending with the extrastriate body area and dorsal precuneus. Our results demonstrate that canonical resting-state networks based on instantaneous connectivity represent only one of the possible partitions of the brain into coherent networks based on temporal dynamics. PMID:29561263
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bezák, Viktor, E-mail: bezak@fmph.uniba.sk
Quantum theory of the non-harmonic oscillator defined by the energy operator proposed by Yurke and Buks (2006) is presented. Although these authors considered a specific problem related to a model of transmission lines in a Kerr medium, our ambition is not to discuss the physical substantiation of their model. Instead, we consider the problem from an abstract, logically deductive, viewpoint. Using the Yurke–Buks energy operator, we focus attention on the imaginary-time propagator. We derive it as a functional of the Mehler kernel and, alternatively, as an exact series involving Hermite polynomials. For a statistical ensemble of identical oscillators defined bymore » the Yurke–Buks energy operator, we calculate the partition function, average energy, free energy and entropy. Using the diagonal element of the canonical density matrix of this ensemble in the coordinate representation, we define a probability density, which appears to be a deformed Gaussian distribution. A peculiarity of this probability density is that it may reveal, when plotted as a function of the position variable, a shape with two peaks located symmetrically with respect to the central point.« less
On factors structuring the flatfish assemblage in the southern North Sea
NASA Astrophysics Data System (ADS)
Piet, G. J.; Pfisterer, A. B.; Rijnsdorp, A. D.
1998-09-01
Ten species of flatfish were studied to see to what extent interspecific competition influences their diet or spatial distribution and whether the potential of these flatfish species to avoid interspecific competition through resource partitioning is constrained by specific morphological characteristics. For this, seven morphological characteristics were measured, diet composition was determined from gut content analyses and overlap in distribution was determined from the co-occurrence in trawl hauls. Canonical correspondence analysis revealed the morphological characteristics that were most strongly correlated with the diet composition. Based on these findings the mouth gape was considered to be the most important morphological constraint affecting the choice of food. Two resource dimensions were distinguished along which interspecific competition can act on the flatfish assemblage: the trophic dimension (diet composition) and the spatial dimension (distribution). Resource partitioning was observed along both dimensions separately and, more importantly, the degree of resource partitioning along the two dimensions was negatively correlated. Especially the latter was considered strong circumstantial evidence that interspecific competition is a major factor structuring the flatfish assemblage. Resource partitioning along the two resource dimensions increased with decreasing mouth gape, suggesting that interspecific competition mainly acts on the small-mouthed fish, i.e. juveniles.
Influence in Canonical Correlation Analysis.
ERIC Educational Resources Information Center
Romanazzi, Mario
1992-01-01
The perturbation theory of the generalized eigenproblem is used to derive influence functions of each squared canonical correlation coefficient and the corresponding canonical vector pair. Three sample versions of these functions are described, and some properties are noted. Two obvious applications, multiple correlation and correspondence…
Generalized canonical ensembles and ensemble equivalence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costeniuc, M.; Ellis, R.S.; Turkington, B.
2006-02-15
This paper is a companion piece to our previous work [J. Stat. Phys. 119, 1283 (2005)], which introduced a generalized canonical ensemble obtained by multiplying the usual Boltzmann weight factor e{sup -{beta}}{sup H} of the canonical ensemble with an exponential factor involving a continuous function g of the Hamiltonian H. We provide here a simplified introduction to our previous work, focusing now on a number of physical rather than mathematical aspects of the generalized canonical ensemble. The main result discussed is that, for suitable choices of g, the generalized canonical ensemble reproduces, in the thermodynamic limit, all the microcanonical equilibriummore » properties of the many-body system represented by H even if this system has a nonconcave microcanonical entropy function. This is something that in general the standard (g=0) canonical ensemble cannot achieve. Thus a virtue of the generalized canonical ensemble is that it can often be made equivalent to the microcanonical ensemble in cases in which the canonical ensemble cannot. The case of quadratic g functions is discussed in detail; it leads to the so-called Gaussian ensemble.« less
ERIC Educational Resources Information Center
Nimon, Kim; Henson, Robin K.; Gates, Michael S.
2010-01-01
In the face of multicollinearity, researchers face challenges interpreting canonical correlation analysis (CCA) results. Although standardized function and structure coefficients provide insight into the canonical variates produced, they fall short when researchers want to fully report canonical effects. This article revisits the interpretation of…
NASA Astrophysics Data System (ADS)
Gross, D. H. E.
2001-11-01
Phase transitions in nuclei, small atomic clusters and self-gravitating systems demand the extension of thermo-statistics to "Small" systems. The main obstacle is the thermodynamic limit. It is shown how the original definition of the entropy by Boltzmann as the volume of the energy-manifold of the N-body phase space allows a geometrical definition of the entropy as function of the conserved quantities. Without invoking the thermodynamic limit the whole "zoo" of phase transitions and critical points/lines can be unambiguously defined. The relation to the Yang-Lee singularities of the grand-canonical partition sum is pointed out. It is shown that just phase transitions in non-extensive systems give the complete set of characteristic parameters of the transition including the surface tension. Nuclear heavy-ion collisions are an experimental playground to explore this extension of thermo-statistics
Instantons on ALE spaces and orbifold partitions
NASA Astrophysics Data System (ADS)
Dijkgraaf, Robbert; Sułkowski, Piotr
2008-03-01
We consider Script N = 4 theories on ALE spaces of Ak-1 type. As is well known, their partition functions coincide with Ak-1 affine characters. We show that these partition functions are equal to the generating functions of some peculiar classes of partitions which we introduce under the name 'orbifold partitions'. These orbifold partitions turn out to be related to the generalized Frobenius partitions introduced by G. E. Andrews some years ago. We relate the orbifold partitions to the blended partitions and interpret explicitly in terms of a free fermion system.
NASA Astrophysics Data System (ADS)
Bera, Sangita; Lekala, Mantile Leslie; Chakrabarti, Barnali; Bhattacharyya, Satadal; Rampho, Gaotsiwe Joel
2017-09-01
'We study the condensate fluctuation and several statistics of weakly interacting attractive Bose gas of 7 Li atoms in harmonic trap. Using exact recursion relation we calculate canonical ensemble partition function and study the thermal evolution of the condensate. As 7 Li condensate is associated with collapse, the number of condensate atom is truly finite and it facilitates to study the condensate in mesoscopic region. Being highly correlated, we utilize the two-body correlated basis function to get the many-body effective potential which is further used to calculate the energy levels. Taking van der Waals interaction as interatomic interaction we calculate several quantities like condensate fraction
Off-diagonal long-range order, cycle probabilities, and condensate fraction in the ideal Bose gas.
Chevallier, Maguelonne; Krauth, Werner
2007-11-01
We discuss the relationship between the cycle probabilities in the path-integral representation of the ideal Bose gas, off-diagonal long-range order, and Bose-Einstein condensation. Starting from the Landsberg recursion relation for the canonic partition function, we use elementary considerations to show that in a box of size L3 the sum of the cycle probabilities of length k>L2 equals the off-diagonal long-range order parameter in the thermodynamic limit. For arbitrary systems of ideal bosons, the integer derivative of the cycle probabilities is related to the probability of condensing k bosons. We use this relation to derive the precise form of the pik in the thermodynamic limit. We also determine the function pik for arbitrary systems. Furthermore, we use the cycle probabilities to compute the probability distribution of the maximum-length cycles both at T=0, where the ideal Bose gas reduces to the study of random permutations, and at finite temperature. We close with comments on the cycle probabilities in interacting Bose gases.
From r-spin intersection numbers to Hodge integrals
NASA Astrophysics Data System (ADS)
Ding, Xiang-Mao; Li, Yuping; Meng, Lingxian
2016-01-01
Generalized Kontsevich Matrix Model (GKMM) with a certain given potential is the partition function of r-spin intersection numbers. We represent this GKMM in terms of fermions and expand it in terms of the Schur polynomials by boson-fermion correspondence, and link it with a Hurwitz partition function and a Hodge partition by operators in a widehat{GL}(∞) group. Then, from a W 1+∞ constraint of the partition function of r-spin intersection numbers, we get a W 1+∞ constraint for the Hodge partition function. The W 1+∞ constraint completely determines the Schur polynomials expansion of the Hodge partition function.
Zhou, Yulian; Nathans, Jeremy
2014-10-27
Canonical Wnt signaling in endothelial cells (ECs) is required for vascularization of the central nervous system (CNS) and for formation and maintenance of barrier properties unique to CNS vasculature. Gpr124 is an orphan member of the adhesion G protein-coupled receptor family that is expressed in ECs and is essential for CNS angiogenesis and barrier formation via an unknown mechanism. Using canonical Wnt signaling assays in cell culture and genetic loss- and gain-of-function experiments in mice, we show that Gpr124 functions as a coactivator of Wnt7a- and Wnt7b-stimulated canonical Wnt signaling via a Frizzled receptor and Lrp coreceptor and that Gpr124-stimulated signaling functions in concert with Norrin/Frizzled4 signaling to control CNS vascular development. These experiments identify Gpr124 as a ligand-specific coactivator of canonical Wnt signaling.
Bounds for the Eventual Positivity of Difference Functions of Partitions
NASA Astrophysics Data System (ADS)
Woodford, Roger
2007-01-01
In this paper we specialize work done by Bateman and Erdos concerning difference functions of partition functions. In particular, we are concerned with partitions into fixed powers of the primes. We show that any difference function of these partition functions is eventually increasing, and derive explicit bounds for when it will attain strictly positive values. From these bounds an asymptotic result is derived.
Suseela, Y V; Narayanaswamy, Nagarjun; Pratihar, Sumon; Govindaraju, Thimmaiah
2018-02-05
The structural diversity and functional relevance of nucleic acids (NAs), mainly deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are indispensable for almost all living organisms, with minute aberrations in their structure and function becoming causative factors in numerous human diseases. The standard structures of NAs, termed canonical structures, are supported by Watson-Crick hydrogen bonding. Under special physiological conditions, NAs adopt distinct spatial organisations, giving rise to non-canonical conformations supported by hydrogen bonding other than the Watson-Crick type; such non-canonical structures have a definite function in controlling gene expression and are considered as novel diagnostic and therapeutic targets. Development of molecular probes for these canonical and non-canonical DNA/RNA structures has been an active field of research. Among the numerous probes studied, probes with turn-on fluorescence in the far-red (600-750 nm) region are highly sought-after due to minimal autofluorescence and cellular damage. Far-red fluorescent probes are vital for real-time imaging of NAs in live cells as they provide good resolution and minimal perturbation of the cell under investigation. In this review, we present recent advances in the area of far-red fluorescent probes of DNA/RNA and non-canonical G-quadruplex structures. For the sake of continuity and completeness, we provide a brief overview of visible fluorescent probes. Utmost importance is given to design criteria, characteristic properties and biological applications, including in cellulo imaging, apart from critical discussion on limitations of the far-red fluorescent probes. Finally, we offer current and future prospects in targeting canonical and non-canonical NAs specific to cellular organelles, through sequence- and conformation-specific far-red fluorescent probes. We also cover their implications in chemical and molecular biology, with particular focus on decoding various disease mechanisms involving NAs.
Alecu, I M; Zheng, Jingjing; Papajak, Ewa; Yu, Tao; Truhlar, Donald G
2012-12-20
Multistructural canonical variational transition-state theory with small-curvature multidimensional tunneling (MS-CVT/SCT) is employed to calculate thermal rate constants for hydrogen-atom abstraction from carbon-1 of n-butanol by the hydroperoxyl radical over the temperature range 250-2000 K. The M08-SO hybrid meta-GGA density functional was validated against CCSD(T)-F12a explicitly correlated wave function calculations with the jul-cc-pVTZ basis set. It was then used to compute the properties of all stationary points and the energies and Hessians of a few nonstationary points along the reaction path, which were then used to generate a potential energy surface by the multiconfiguration Shepard interpolation (MCSI) method. The internal rotations in the transition state for this reaction (like those in the reactant alcohol) are strongly coupled to each other and generate multiple stable conformations, which make important contributions to the partition functions. It is shown that neglecting to account for the multiple-structure effects and torsional potential anharmonicity effects that arise from the torsional modes would lead to order-of-magnitude errors in the calculated rate constants at temperatures of interest in combustion.
Optical display for radar sensing
NASA Astrophysics Data System (ADS)
Szu, Harold; Hsu, Charles; Willey, Jefferson; Landa, Joseph; Hsieh, Minder; Larsen, Louis V.; Krzywicki, Alan T.; Tran, Binh Q.; Hoekstra, Philip; Dillard, John T.; Krapels, Keith A.; Wardlaw, Michael; Chu, Kai-Dee
2015-05-01
Boltzmann headstone S = kB Log W turns out to be the Rosette stone for Greek physics translation optical display of the microwave sensing hieroglyphics. The LHS is the molecular entropy S measuring the degree of uniformity scattering off the sensing cross sections. The RHS is the inverse relationship (equation) predicting the Planck radiation spectral distribution parameterized by the Kelvin temperature T. Use is made of the conservation energy law of the heat capacity of Reservoir (RV) change T Δ S = -ΔE equals to the internal energy change of black box (bb) subsystem. Moreover, an irreversible thermodynamics Δ S > 0 for collision mixing toward totally larger uniformity of heat death, asserted by Boltzmann, that derived the so-called Maxwell-Boltzmann canonical probability. Given the zero boundary condition black box, Planck solved a discrete standing wave eigenstates (equation). Together with the canonical partition function (equation) an average ensemble average of all possible internal energy yielded the celebrated Planck radiation spectral (equation) where the density of states (equation). In summary, given the multispectral sensing data (equation), we applied Lagrange Constraint Neural Network (LCNN) to solve the Blind Sources Separation (BSS) for a set of equivalent bb target temperatures. From the measurements of specific value, slopes and shapes we can fit a set of Kelvin temperatures T's for each bb targets. As a result, we could apply the analytical continuation for each entropy sources along the temperature-unique Planck spectral curves always toward the RGB color temperature display for any sensing probing frequency.
Recent advances in understanding hematopoiesis in Fanconi Anemia
Bagby, Grover
2018-01-01
Fanconi anemia is an inherited disease characterized by genomic instability, hypersensitivity to DNA cross-linking agents, bone marrow failure, short stature, skeletal abnormalities, and a high relative risk of myeloid leukemia and epithelial malignancies. The 21 Fanconi anemia genes encode proteins involved in multiple nuclear biochemical pathways that effect DNA interstrand crosslink repair. In the past, bone marrow failure was attributed solely to the failure of stem cells to repair DNA. Recently, non-canonical functions of many of the Fanconi anemia proteins have been described, including modulating responses to oxidative stress, viral infection, and inflammation as well as facilitating mitophagic responses and enhancing signals that promote stem cell function and survival. Some of these functions take place in non-nuclear sites and do not depend on the DNA damage response functions of the proteins. Dysfunctions of the canonical and non-canonical pathways that drive stem cell exhaustion and neoplastic clonal selection are reviewed, and the potential therapeutic importance of fully investigating the scope and interdependences of the canonical and non-canonical pathways is emphasized. PMID:29399332
Pedagogical introduction to the entropy of entanglement for Gaussian states
NASA Astrophysics Data System (ADS)
Demarie, Tommaso F.
2018-05-01
In quantum information theory, the entropy of entanglement is a standard measure of bipartite entanglement between two partitions of a composite system. For a particular class of continuous variable quantum states, the Gaussian states, the entropy of entanglement can be expressed elegantly in terms of symplectic eigenvalues, elements that characterise a Gaussian state and depend on the correlations of the canonical variables. We give a rigorous step-by-step derivation of this result and provide physical insights, together with an example that can be useful in practice for calculations.
The canonical way to make a heart: β-catenin and plakoglobin in heart development and remodeling.
Piven, Oksana O; Winata, Cecilia L
2017-12-01
The main mediator of the canonical Wnt pathway, β-catenin, is a major effector of embryonic development, postnatal tissue homeostasis, and adult tissue regeneration. The requirement for β-catenin in cardiogenesis and embryogenesis has been well established. However, many questions regarding the molecular mechanisms by which β-catenin and canonical Wnt signaling regulate these developmental processes remain unanswered. An interesting question that emerged from our studies concerns how β-catenin signaling is modulated through interaction with other factors. Recent experimental data implicate new players in canonical Wnt signaling, particularly those which modulate β-catenin function in many its biological processes, including cardiogenesis. One of the interesting candidates is plakoglobin, a little-studied member of the catenin family which shares several mechanistic and functional features with its close relative, β-catenin. Here we have focused on the function of β-catenin in cardiogenesis. We also summarize findings on plakoglobin signaling function and discuss possible interplays between β-catenin and plakoglobin in the regulation of embryonic heart development. Impact statement Heart development, function, and remodeling are complex processes orchestrated by multiple signaling networks. This review examines our current knowledge of the role of canonical Wnt signaling in cardiogenesis and heart remodeling, focusing primarily on the mechanistic action of its effector β-catenin. We summarize the generally accepted understanding of the field based on experimental in vitro and in vivo data, and address unresolved questions in the field, specifically relating to the role of canonical Wnt signaling in heart maturation and regeneration. What are the modulators of canonical Wnt, and particularly what are the potential roles of plakoglobin, a close relative of β-catenin, in regulating Wnt signaling?Answers to these questions will enhance our understanding of the mechanism by which the canonical Wnt signaling regulates development of the heart and its regeneration after damage.
Hankey, William; Frankel, Wendy L; Groden, Joanna
2018-03-01
The acquisition of biallelic mutations in the APC gene is a rate-limiting step in the development of most colorectal cancers and occurs in the earliest lesions. APC encodes a 312-kDa protein that localizes to multiple subcellular compartments and performs diverse functions. APC participates in a cytoplasmic complex that promotes the destruction of the transcriptional licensing factor β-catenin; APC mutations that abolish this function trigger constitutive activation of the canonical WNT signaling pathway, a characteristic found in almost all colorectal cancers. By negatively regulating canonical WNT signaling, APC counteracts proliferation, promotes differentiation, facilitates apoptosis, and suppresses invasion and tumor progression. APC further antagonizes canonical WNT signaling by interacting with and counteracting β-catenin in the nucleus. APC also suppresses tumor initiation and progression in the colorectal epithelium through functions that are independent of canonical WNT signaling. APC regulates the mitotic spindle to facilitate proper chromosome segregation, localizes to the cell periphery and cell protrusions to establish cell polarity and appropriate directional migration, and inhibits DNA replication by interacting directly with DNA. Mutations in APC are often frameshifts, insertions, or deletions that introduce premature stop codons and lead to the production of truncated APC proteins that lack its normal functions and possess tumorigenic properties. Therapeutic approaches in development for the treatment of APC-deficient tumors are focused on the inhibition of canonical WNT signaling, especially through targets downstream of APC in the pathway, or on the restoration of wild-type APC expression.
CLIC, a tool for expanding biological pathways based on co-expression across thousands of datasets
Li, Yang; Liu, Jun S.; Mootha, Vamsi K.
2017-01-01
In recent years, there has been a huge rise in the number of publicly available transcriptional profiling datasets. These massive compendia comprise billions of measurements and provide a special opportunity to predict the function of unstudied genes based on co-expression to well-studied pathways. Such analyses can be very challenging, however, since biological pathways are modular and may exhibit co-expression only in specific contexts. To overcome these challenges we introduce CLIC, CLustering by Inferred Co-expression. CLIC accepts as input a pathway consisting of two or more genes. It then uses a Bayesian partition model to simultaneously partition the input gene set into coherent co-expressed modules (CEMs), while assigning the posterior probability for each dataset in support of each CEM. CLIC then expands each CEM by scanning the transcriptome for additional co-expressed genes, quantified by an integrated log-likelihood ratio (LLR) score weighted for each dataset. As a byproduct, CLIC automatically learns the conditions (datasets) within which a CEM is operative. We implemented CLIC using a compendium of 1774 mouse microarray datasets (28628 microarrays) or 1887 human microarray datasets (45158 microarrays). CLIC analysis reveals that of 910 canonical biological pathways, 30% consist of strongly co-expressed gene modules for which new members are predicted. For example, CLIC predicts a functional connection between protein C7orf55 (FMC1) and the mitochondrial ATP synthase complex that we have experimentally validated. CLIC is freely available at www.gene-clic.org. We anticipate that CLIC will be valuable both for revealing new components of biological pathways as well as the conditions in which they are active. PMID:28719601
Partitioning in Avionics Architectures: Requirements, Mechanisms, and Assurance
NASA Technical Reports Server (NTRS)
Rushby, John
1999-01-01
Automated aircraft control has traditionally been divided into distinct "functions" that are implemented separately (e.g., autopilot, autothrottle, flight management); each function has its own fault-tolerant computer system, and dependencies among different functions are generally limited to the exchange of sensor and control data. A by-product of this "federated" architecture is that faults are strongly contained within the computer system of the function where they occur and cannot readily propagate to affect the operation of other functions. More modern avionics architectures contemplate supporting multiple functions on a single, shared, fault-tolerant computer system where natural fault containment boundaries are less sharply defined. Partitioning uses appropriate hardware and software mechanisms to restore strong fault containment to such integrated architectures. This report examines the requirements for partitioning, mechanisms for their realization, and issues in providing assurance for partitioning. Because partitioning shares some concerns with computer security, security models are reviewed and compared with the concerns of partitioning.
Wang, Pei; Xianlong, Gao; Li, Haibin
2013-08-01
It is demonstrated in many thermodynamic textbooks that the equivalence of the different ensembles is achieved in the thermodynamic limit. In this present work we discuss the inequivalence of microcanonical and canonical ensembles in a finite ultracold system at low energies. We calculate the microcanonical momentum distribution function (MDF) in a system of identical fermions (bosons). We find that the microcanonical MDF deviates from the canonical one, which is the Fermi-Dirac (Bose-Einstein) function, in a finite system at low energies where the single-particle density of states and its inverse are finite.
Creativity and Brain-Functioning in Product Development Engineers: A Canonical Correlation Analysis
ERIC Educational Resources Information Center
Travis, Frederick; Lagrosen, Yvonne
2014-01-01
This study used canonical correlation analysis to explore the relation among scores on the Torrance test of figural and verbal creativity and demographic, psychological and physiological measures in Swedish product-development engineers. The first canonical variate included figural and verbal flexibility and originality as dependent measures and…
Hankey, William; Frankel, Wendy L.
2018-01-01
The acquisition of biallelic mutations in the APC gene is a rate-limiting step in the development of most colorectal cancers and occurs in the earliest lesions. APC encodes a 312-kDa protein that localizes to multiple subcellular compartments and performs diverse functions. APC participates in a cytoplasmic complex that promotes the destruction of the transcriptional licensing factor β-catenin; APC mutations that abolish this function trigger constitutive activation of the canonical WNT signaling pathway, a characteristic found in almost all colorectal cancers. By negatively regulating canonical WNT signaling, APC counteracts proliferation, promotes differentiation, facilitates apoptosis and suppresses invasion and tumor progression. APC further antagonizes canonical WNT signaling by interacting with and counteracting β-catenin in the nucleus. APC also suppresses tumor initiation and progression in the colorectal epithelium through functions that are independent of canonical WNT signaling. APC regulates the mitotic spindle to facilitate proper chromosome segregation, localizes to the cell periphery and cell protrusions to establish cell polarity and appropriate directional migration, and inhibits DNA replication by interacting directly with DNA. Mutations in APC are often frameshifts, insertions or deletions that introduce premature stop codons and lead to the production of truncated APC proteins that lack its normal functions and possess tumorigenic properties. Therapeutic approaches in development for the treatment of APC-deficient tumors are focused on the inhibition of canonical WNT signaling, especially through targets downstream of APC in the pathway, or on the restoration of wild-type APC expression. PMID:29318445
Discriminant analysis in wildlife research: Theory and applications
Williams, B.K.; Capen, D.E.
1981-01-01
Discriminant analysis, a method of analyzing grouped multivariate data, is often used in ecological investigations. It has both a predictive and an explanatory function, the former aiming at classification of individuals of unknown group membership. The goal of the latter function is to exhibit group separation by means of linear transforms, and the corresponding method is called canonical analysis. This discussion focuses on the application of canonical analysis in ecology. In order to clarify its meaning, a parametric approach is taken instead of the usual data-based formulation. For certain assumptions the data-based canonical variates are shown to result from maximum likelihood estimation, thus insuring consistency and asymptotic efficiency. The distorting effects of covariance heterogeneity are examined, as are certain difficulties which arise in interpreting the canonical functions. A 'distortion metric' is defined, by means of which distortions resulting from the canonical transformation can be assessed. Several sampling problems which arise in ecological applications are considered. It is concluded that the method may prove valuable for data exploration, but is of limited value as an inferential procedure.
Upadhyay, Maitreyi; Kuna, Michael; Tudor, Sara; Martino Cortez, Yesenia
2018-01-01
Germline stem cell (GSC) self-renewal and differentiation into gametes is regulated by both intrinsic factors in the germ line as well as extrinsic factors from the surrounding somatic niche. dWnt4, in the escort cells of the adult somatic niche promotes GSC differentiation using the canonical β-catenin-dependent transcriptional pathway to regulate escort cell survival, adhesion to the germ line and downregulation of self-renewal signaling. Here, we show that in addition to the β-catenin-dependent canonical pathway, dWnt4 also uses downstream components of the Wnt non-canonical pathway to promote escort cell function earlier in development. We find that the downstream non-canonical components, RhoA, Rac1 and cdc42, are expressed at high levels and are active in escort cell precursors of the female larval gonad compared to the adult somatic niche. Consistent with this expression pattern, we find that the non-canonical pathway components function in the larval stages but not in adults to regulate GSC differentiation. In the larval gonad, dWnt4, RhoA, Rac1 and cdc42 are required to promote intermingling of escort cell precursors, a function that then promotes proper escort cell function in the adults. We find that dWnt4 acts by modulating the activity of RhoA, Rac1 and cdc42, but not their protein levels. Together, our results indicate that at different points of development, dWnt4 switches from using the non-canonical pathway components to using a β-catenin-dependent canonical pathway in the escort cells to facilitate the proper differentiation of GSCs. PMID:29370168
NASA Astrophysics Data System (ADS)
Foda, O.; Welsh, T. A.
2016-04-01
We study the Andrews-Gordon-Bressoud (AGB) generalisations of the Rogers-Ramanujan q-series identities in the context of cylindric partitions. We recall the definition of r-cylindric partitions, and provide a simple proof of Borodin’s product expression for their generating functions, that can be regarded as a limiting case of an unpublished proof by Krattenthaler. We also recall the relationships between the r-cylindric partition generating functions, the principal characters of {\\hat{{sl}}}r algebras, the {{\\boldsymbol{ M }}}r r,r+d minimal model characters of {{\\boldsymbol{ W }}}r algebras, and the r-string abaci generating functions, providing simple proofs for each. We then set r = 2, and use two-cylindric partitions to re-derive the AGB identities as follows. Firstly, we use Borodin’s product expression for the generating functions of the two-cylindric partitions with infinitely long parts, to obtain the product sides of the AGB identities, times a factor {(q;q)}∞ -1, which is the generating function of ordinary partitions. Next, we obtain a bijection from the two-cylindric partitions, via two-string abaci, into decorated versions of Bressoud’s restricted lattice paths. Extending Bressoud’s method of transforming between restricted paths that obey different restrictions, we obtain sum expressions with manifestly non-negative coefficients for the generating functions of the two-cylindric partitions which contains a factor {(q;q)}∞ -1. Equating the product and sum expressions of the same two-cylindric partitions, and canceling a factor of {(q;q)}∞ -1 on each side, we obtain the AGB identities.
A Study of the Thermal Environment Developed by a Traveling Slipper at High Velocity
2013-03-01
Power Partition Function The next partition function takes the same formulation as the powered function but now the exponent is squared. The...function and note the squared term in the exponent . 66 Equation 4.27 (4.36) Thus far the three partition functions each give a predicted...hypothesized that the function would fall somewhere between the first exponential decay function and the power function. However, by squaring the exponent
A model of individualized canonical microcircuits supporting cognitive operations
Peterson, Andre D. H.; Haueisen, Jens; Knösche, Thomas R.
2017-01-01
Major cognitive functions such as language, memory, and decision-making are thought to rely on distributed networks of a large number of basic elements, called canonical microcircuits. In this theoretical study we propose a novel canonical microcircuit model and find that it supports two basic computational operations: a gating mechanism and working memory. By means of bifurcation analysis we systematically investigate the dynamical behavior of the canonical microcircuit with respect to parameters that govern the local network balance, that is, the relationship between excitation and inhibition, and key intrinsic feedback architectures of canonical microcircuits. We relate the local behavior of the canonical microcircuit to cognitive processing and demonstrate how a network of interacting canonical microcircuits enables the establishment of spatiotemporal sequences in the context of syntax parsing during sentence comprehension. This study provides a framework for using individualized canonical microcircuits for the construction of biologically realistic networks supporting cognitive operations. PMID:29200435
Pei, Soo-Chang; Ding, Jian-Jiun
2005-03-01
Prolate spheroidal wave functions (PSWFs) are known to be useful for analyzing the properties of the finite-extension Fourier transform (fi-FT). We extend the theory of PSWFs for the finite-extension fractional Fourier transform, the finite-extension linear canonical transform, and the finite-extension offset linear canonical transform. These finite transforms are more flexible than the fi-FT and can model much more generalized optical systems. We also illustrate how to use the generalized prolate spheroidal functions we derive to analyze the energy-preservation ratio, the self-imaging phenomenon, and the resonance phenomenon of the finite-sized one-stage or multiple-stage optical systems.
Factors associated with the nutritional status of children less than 5 years of age
Miglioli, Teresa Cristina; Fonseca, Vania Matos; Gomes, Saint Clair; da Silva, Katia Silveira; de Lira, Pedro Israel Cabral; Batista, Malaquias
2015-01-01
OBJECTIVE To analyze if the nutritional status of children aged less than five years is related to the biological conditions of their mothers, environmental and socioeconomic factors, and access to health services and social programs. METHODS This cross-sectional population-based study analyzed 664 mothers and 790 children using canonical correlation analysis. Dependent variables were characteristics of the children (weight/age, height/age, BMI/age, hemoglobin, and retinol serum levels). Independent variables were those related to the mothers’ nutritional status (BMI, hemoglobin, and retinol serum levels), age, environmental and socioeconomic factors and access to health service and social programs. A < 0.05 significance level was adopted to select the interpreted canonical functions (CF) and ± 0.40 as canonical load value of the analyzed variables. RESULTS Three canonical functions were selected, concentrating 89.9% of the variability of the relationship among the groups. In the first canonical function, weight/age (-0.73) and height/age (-0.99) of the children were directly related to the mother’s height (-0.82), prenatal appointments (-0.43), geographical area of the residence (-0.41), and household income per capita (-0.42). Inverse relationship between the variables related to the children and people/room (0.44) showed that the larger the number of people/room, the poorer their nutritional status. Rural residents were found to have the worse nutritional conditions. In the second canonical function, the BMI of the mother (-0.48) was related to BMI/age and retinol of the children, indicating that as women gained weight so did their children. Underweight women tended to have children with vitamin A deficiency. In the third canonical function, hemoglobin (-0.72) and retinol serum levels (-0.40) of the children were directly related to the mother’s hemoglobin levels (-0.43). CONCLUSIONS Mothers and children were associated concerning anemia, vitamin A deficiency and anthropometric markers. Living in rural areas is a determining factor for the families health status. PMID:26398874
Wnt signaling inhibits cementoblast differentiation and promotes proliferation.
Nemoto, Eiji; Koshikawa, Yohei; Kanaya, Sousuke; Tsuchiya, Masahiro; Tamura, Masato; Somerman, Martha J; Shimauchi, Hidetoshi
2009-05-01
Cementoblasts, tooth root lining cells, are responsible for laying down cementum on the root surface, a process that is indispensable for establishing a functional periodontal ligament. Cementoblasts share phenotypical features with osteoblasts. Wnt signaling has been implicated in increased bone formation by controlling mesenchymal stem cell or osteoblastic cell functions; however the role of Wnt signaling on cementogenesis has not been examined. In this study, we have identified a consistent expression profile of Wnt signaling molecules in cementoblasts, in vitro by RT-PCR. Exposure of cells to LiCl, which promotes canonical Wnt signaling by inhibiting GSK-3beta, increased beta-catenin nuclear translocation and up-regulated the transcriptional activity of a canonical Wnt-responsive promoters, suggesting that an endogenous canonical Wnt pathway functions in cementoblasts. Activation of endogenous canonical Wnt signaling with LiCl suppressed alkaline phosphatase (ALP) activity and expression of genes associated with cementum function; ALP, bone sialoprotein (BSP), and osteocalcin (OCN). Exposure to Wnt3a, as a representative canonical Wnt member, also inhibited the expression of ALP, BSP, and OCN gene. This effect was accompanied by decreased gene expression of Runx2 and Osterix and by increased gene expression of lymphoid enhancer factor-1. Pretreatment with Dickkopf (Dkk)-1, a potent canonical Wnt antagonist, which binds to a low-density lipoprotein-receptor-related protein (LRP)-5/6 co-receptor, attenuated the suppressive effects of Wnt3a on mRNA expression of Runx2 and OCN on cementoblasts. These findings suggest that canonical Wnt signaling inhibits cementoblast differentiation via regulation of expression of selective transcription factors. Wnt3a also increased the expression of cyclin D1, known as a cell cycle regulator, as well as cell proliferation. In conclusion, these observations suggest that Wnt signaling inhibits cementoblast differentiation and promotes cell proliferation. Elucidating the role of Wnt in controlling cementoblast function will provide new tools needed to improve on existing periodontal regeneration therapies.
Shiraiwa, Manabu; Zuend, Andreas; Bertram, Allan K; Seinfeld, John H
2013-07-21
Atmospheric aerosols, comprising organic compounds and inorganic salts, play a key role in air quality and climate. Mounting evidence exists that these particles frequently exhibit phase separation into predominantly organic and aqueous electrolyte-rich phases. As well, the presence of amorphous semi-solid or glassy particle phases has been established. Using the canonical system of ammonium sulfate mixed with organics from the ozone oxidation of α-pinene, we illustrate theoretically the interplay of physical state, non-ideality, and particle morphology affecting aerosol mass concentration and the characteristic timescale of gas-particle mass transfer. Phase separation can significantly affect overall particle mass and chemical composition. Semi-solid or glassy phases can kinetically inhibit the partitioning of semivolatile components and hygroscopic growth, in contrast to the traditional assumption that organic compounds exist in quasi-instantaneous gas-particle equilibrium. These effects have significant implications for the interpretation of laboratory data and the development of improved atmospheric air quality and climate models.
Task-specific image partitioning.
Kim, Sungwoong; Nowozin, Sebastian; Kohli, Pushmeet; Yoo, Chang D
2013-02-01
Image partitioning is an important preprocessing step for many of the state-of-the-art algorithms used for performing high-level computer vision tasks. Typically, partitioning is conducted without regard to the task in hand. We propose a task-specific image partitioning framework to produce a region-based image representation that will lead to a higher task performance than that reached using any task-oblivious partitioning framework and existing supervised partitioning framework, albeit few in number. The proposed method partitions the image by means of correlation clustering, maximizing a linear discriminant function defined over a superpixel graph. The parameters of the discriminant function that define task-specific similarity/dissimilarity among superpixels are estimated based on structured support vector machine (S-SVM) using task-specific training data. The S-SVM learning leads to a better generalization ability while the construction of the superpixel graph used to define the discriminant function allows a rich set of features to be incorporated to improve discriminability and robustness. We evaluate the learned task-aware partitioning algorithms on three benchmark datasets. Results show that task-aware partitioning leads to better labeling performance than the partitioning computed by the state-of-the-art general-purpose and supervised partitioning algorithms. We believe that the task-specific image partitioning paradigm is widely applicable to improving performance in high-level image understanding tasks.
Intersecting surface defects and instanton partition functions
NASA Astrophysics Data System (ADS)
Pan, Yiwen; Peelaers, Wolfger
2017-07-01
We analyze intersecting surface defects inserted in interacting four-dimensional N=2 supersymmetric quantum field theories. We employ the realization of a class of such systems as the infrared fixed points of renormalization group flows from larger theories, triggered by perturbed Seiberg-Witten monopole-like configurations, to compute their partition functions. These results are cast into the form of a partition function of 4d/2d/0d coupled systems. Our computations provide concrete expressions for the instanton partition function in the presence of intersecting defects and we study the corresponding ADHM model.
Off-diagonal series expansion for quantum partition functions
NASA Astrophysics Data System (ADS)
Hen, Itay
2018-05-01
We derive an integral-free thermodynamic perturbation series expansion for quantum partition functions which enables an analytical term-by-term calculation of the series. The expansion is carried out around the partition function of the classical component of the Hamiltonian with the expansion parameter being the strength of the off-diagonal, or quantum, portion. To demonstrate the usefulness of the technique we analytically compute to third order the partition functions of the 1D Ising model with longitudinal and transverse fields, and the quantum 1D Heisenberg model.
NASA Astrophysics Data System (ADS)
Hart, Stanley R.; Gaetani, Glenn A.
2016-07-01
We have measured the partition coefficient of Pb (KdPb) between FeS melt and basalt melt at temperatures of 1250-1523 °C, pressures of 1.0-3.5 GPa and oxygen fugacities at iron-wustite and wustite-magnetite. The total observed range of KdPb is 4.0-66.6, with a strong negative dependence on pressure and a strong negative dependence on FeO of the silicate melt (Fe+2 only). The FeO control was constrained over a wide range of FeO (4.2-39.5%). We found that the effect of oxygen fugacity can be subsumed under the FeO control parameter. Prior work has established the lack of a significant effect of temperature (Kiseeva and Wood, 2015; Li and Audétat, 2015). Our data are parameterized as: KdPb = 4.8 + (512 - 119*P in GPa)*(1/FeO - 0.021). We also measured a single value of KdPb between clinopyroxene and basalt melt at 2.0 GPa of 0.020 ± 0.001. This experimental data supports the ;natural; partitioning of Pb measured on sulfide globules in MORB (Patten et al., 2013), but not the low KdPb of ∼3 inferred from sulfides in abyssal peridotites by Warren and Shirey (2012). It also quantitatively affirms the modeling of Hart and Gaetani (2006) with respect to using sulfide to buffer the canonical Nd/Pb ratio for MORB and OIB (Hofmann, 2003). For the low FeO and pressure of segregation typical of MORB, KdPb ∼ 45, and the Nd/Pb ratio of erupted basalts will be the same as the Nd/Pb ratio of the mantle source. The remaining puzzle is why MORB and OIB have the same Nd/Pb when they clearly have different FeO and pressure of melt segregation.
Quantum corrections to Bekenstein-Hawking black hole entropy and gravity partition functions
NASA Astrophysics Data System (ADS)
Bytsenko, A. A.; Tureanu, A.
2013-08-01
Algebraic aspects of the computation of partition functions for quantum gravity and black holes in AdS3 are discussed. We compute the sub-leading quantum corrections to the Bekenstein-Hawking entropy. It is shown that the quantum corrections to the classical result can be included systematically by making use of the comparison with conformal field theory partition functions, via the AdS3/CFT2 correspondence. This leads to a better understanding of the role of modular and spectral functions, from the point of view of the representation theory of infinite-dimensional Lie algebras. Besides, the sum of known quantum contributions to the partition function can be presented in a closed form, involving the Patterson-Selberg spectral function. These contributions can be reproduced in a holomorphically factorized theory whose partition functions are associated with the formal characters of the Virasoro modules. We propose a spectral function formulation for quantum corrections to the elliptic genus from supergravity states.
Exact Path Integral for 3D Quantum Gravity.
Iizuka, Norihiro; Tanaka, Akinori; Terashima, Seiji
2015-10-16
Three-dimensional Euclidean pure gravity with a negative cosmological constant can be formulated in terms of the Chern-Simons theory, classically. This theory can be written in a supersymmetric way by introducing auxiliary gauginos and scalars. We calculate the exact partition function of this Chern-Simons theory by using the localization technique. Thus, we obtain the quantum gravity partition function, assuming that it can be obtained nonperturbatively by summing over partition functions of the Chern-Simons theory on topologically different manifolds. The resultant partition function is modular invariant, and, in the case in which the central charge is expected to be 24, it is the J function, predicted by Witten.
Integration of two RAB5 groups during endosomal transport in plants
Ebine, Kazuo; Choi, Seung-won; Ichinose, Sakura; Uemura, Tomohiro; Nakano, Akihiko
2018-01-01
RAB5 is a key regulator of endosomal functions in eukaryotic cells. Plants possess two different RAB5 groups, canonical and plant-unique types, which act via unknown counteracting mechanisms. Here, we identified an effector molecule of the plant-unique RAB5 in Arabidopsis thaliana, ARA6, which we designated PLANT-UNIQUE RAB5 EFFECTOR 2 (PUF2). Preferential colocalization with canonical RAB5 on endosomes and genetic interaction analysis indicated that PUF2 coordinates vacuolar transport with canonical RAB5, although PUF2 was identified as an effector of ARA6. Competitive binding of PUF2 with GTP-bound ARA6 and GDP-bound canonical RAB5, together interacting with the shared activating factor VPS9a, showed that ARA6 negatively regulates canonical RAB5-mediated vacuolar transport by titrating PUF2 and VPS9a. These results suggest a unique and unprecedented function for a RAB effector involving the integration of two RAB groups to orchestrate endosomal trafficking in plant cells. PMID:29749929
Intersecting surface defects and instanton partition functions
Pan, Yiwen; Peelaers, Wolfger
2017-07-14
We analyze intersecting surface defects inserted in interacting four-dimensional N = 2 supersymmetric quantum field theories. We employ the realization of a class of such systems as the infrared xed points of renormalization group flows from larger theories, triggered by perturbed Seiberg-Witten monopole-like con gurations, to compute their partition functions. These results are cast into the form of a partition function of 4d/2d/0d coupled systems. In conclusion, our computations provide concrete expressions for the instanton partition function in the presence of intersecting defects and we study the corresponding ADHM model.
Intersecting surface defects and instanton partition functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Yiwen; Peelaers, Wolfger
We analyze intersecting surface defects inserted in interacting four-dimensional N = 2 supersymmetric quantum field theories. We employ the realization of a class of such systems as the infrared xed points of renormalization group flows from larger theories, triggered by perturbed Seiberg-Witten monopole-like con gurations, to compute their partition functions. These results are cast into the form of a partition function of 4d/2d/0d coupled systems. In conclusion, our computations provide concrete expressions for the instanton partition function in the presence of intersecting defects and we study the corresponding ADHM model.
The canonical Wnt signaling pathway in autism.
Zhang, Yinghua; Yuan, Xiangshan; Wang, Zhongping; Li, Ruixi
2014-01-01
Mounting attention is being focused on the canonical Wnt signaling pathway which has been implicated in the pathogenesis of autism in some our and other recent studies. The canonical Wnt pathway is involved in cell proliferation, differentiation and migration, especially during nervous system development. Given its various functions, dysfunction of the canonical Wnt pathway may exert adverse effects on neurodevelopment and therefore leads to the pathogenesis of autism. Here, we review human and animal studies that implicate the canonical Wnt signal transduction pathway in the pathogenesis of autism. We also describe the crosstalk between the canonical Wnt pathway and the Notch signaling pathway in several types of autism spectrum disorders, including Asperger syndrome and Fragile X. Further research on the crosstalk between the canonical Wnt signaling pathway and other signaling cascades in autism may be an efficient avenue to understand the etiology of autism and ultimately lead to alternative medications for autism-like phenotypes.
NASA Astrophysics Data System (ADS)
Hu, Xing-Biao; Li, Shi-Hao
2017-07-01
The relationship between matrix integrals and integrable systems was revealed more than 20 years ago. As is known, matrix integrals over a Gaussian ensemble used in random matrix theory could act as the τ-function of several hierarchies of integrable systems. In this article, we will show that the time-dependent partition function of the Bures ensemble, whose measure has many interesting geometric properties, could act as the τ-function of BKP and DKP hierarchies. In addition, if discrete time variables are introduced, then this partition function could act as the τ-function of discrete BKP and DKP hierarchies. In particular, there are some links between the partition function of the Bures ensemble and Toda-type equations.
Classification of multipartite entanglement via negativity fonts
NASA Astrophysics Data System (ADS)
Sharma, S. Shelly; Sharma, N. K.
2012-04-01
Partial transposition of state operator is a well-known tool to detect quantum correlations between two parts of a composite system. In this paper, the global partial transpose (GPT) is linked to conceptually multipartite underlying structures in a state—the negativity fonts. If K-way negativity fonts with nonzero determinants exist, then selective partial transposition of a pure state, involving K of the N qubits (K⩽N), yields an operator with negative eigenvalues, identifying K-body correlations in the state. Expansion of GPT in terms of K-way partially transposed (KPT) operators reveals the nature of intricate intrinsic correlations in the state. Classification criteria for multipartite entangled states based on the underlying structure of global partial transpose of canonical state are proposed. The number of N-partite entanglement types for an N-qubit system is found to be 2N-1-N+2, while the number of major entanglement classes is 2N-1-1. Major classes for three- and four-qubit states are listed. Subclasses are determined by the number and type of negativity fonts in canonical states.
NASA Astrophysics Data System (ADS)
Inoue, Makoto
2017-12-01
Some new formulae of the canonical correlation functions for the one dimensional quantum transverse Ising model are found by the ST-transformation method using a Morita's sum rule and its extensions for the two dimensional classical Ising model. As a consequence we obtain a time-independent term of the dynamical correlation functions. Differences of quantum version and classical version of these formulae are also discussed.
NASA Technical Reports Server (NTRS)
Schmidt, Phillip; Garg, Sanjay; Holowecky, Brian
1992-01-01
A parameter optimization framework is presented to solve the problem of partitioning a centralized controller into a decentralized hierarchical structure suitable for integrated flight/propulsion control implementation. The controller partitioning problem is briefly discussed and a cost function to be minimized is formulated, such that the resulting 'optimal' partitioned subsystem controllers will closely match the performance (including robustness) properties of the closed-loop system with the centralized controller while maintaining the desired controller partitioning structure. The cost function is written in terms of parameters in a state-space representation of the partitioned sub-controllers. Analytical expressions are obtained for the gradient of this cost function with respect to parameters, and an optimization algorithm is developed using modern computer-aided control design and analysis software. The capabilities of the algorithm are demonstrated by application to partitioned integrated flight/propulsion control design for a modern fighter aircraft in the short approach to landing task. The partitioning optimization is shown to lead to reduced-order subcontrollers that match the closed-loop command tracking and decoupling performance achieved by a high-order centralized controller.
NASA Technical Reports Server (NTRS)
Schmidt, Phillip H.; Garg, Sanjay; Holowecky, Brian R.
1993-01-01
A parameter optimization framework is presented to solve the problem of partitioning a centralized controller into a decentralized hierarchical structure suitable for integrated flight/propulsion control implementation. The controller partitioning problem is briefly discussed and a cost function to be minimized is formulated, such that the resulting 'optimal' partitioned subsystem controllers will closely match the performance (including robustness) properties of the closed-loop system with the centralized controller while maintaining the desired controller partitioning structure. The cost function is written in terms of parameters in a state-space representation of the partitioned sub-controllers. Analytical expressions are obtained for the gradient of this cost function with respect to parameters, and an optimization algorithm is developed using modern computer-aided control design and analysis software. The capabilities of the algorithm are demonstrated by application to partitioned integrated flight/propulsion control design for a modern fighter aircraft in the short approach to landing task. The partitioning optimization is shown to lead to reduced-order subcontrollers that match the closed-loop command tracking and decoupling performance achieved by a high-order centralized controller.
ERIC Educational Resources Information Center
Cleary, David A.
2014-01-01
The usefulness of the JANAF tables is demonstrated with specific equilibrium calculations. An emphasis is placed on the nature of standard chemical potential calculations. Also, the use of the JANAF tables for calculating partition functions is examined. In the partition function calculations, the importance of the zero of energy is highlighted.
Partition functions of thermally dissociating diatomic molecules and related momentum problem
NASA Astrophysics Data System (ADS)
Buchowiecki, Marcin
2017-11-01
The anharmonicity and ro-vibrational coupling in ro-vibrational partition functions of diatomic molecules are analyzed for the high temperatures of the thermal dissociation regime. The numerically exact partition functions and thermal energies are calculated. At the high temperatures the proper integration of momenta is important if the partition function of the molecule, understood as bounded system, is to be obtained. The problem of proper treatment of momentum is crucial for correctness of high temperature molecular simulations as the decomposition of simulated molecule have to be avoided; the analysis of O2, H2+, and NH3 molecules allows to show importance of βDe value.
Exact partition functions for gauge theories on Rλ3
NASA Astrophysics Data System (ADS)
Wallet, Jean-Christophe
2016-11-01
The noncommutative space Rλ3, a deformation of R3, supports a 3-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of Rλ3. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.
Custos controls β-catenin to regulate head development during vertebrate embryogenesis.
Komiya, Yuko; Mandrekar, Noopur; Sato, Akira; Dawid, Igor B; Habas, Raymond
2014-09-09
Precise control of the canonical Wnt pathway is crucial in embryogenesis and all stages of life, and dysregulation of this pathway is implicated in many human diseases including cancers and birth defect disorders. A key aspect of canonical Wnt signaling is the cytoplasmic to nuclear translocation of β-catenin, a process that remains incompletely understood. Here we report the identification of a previously undescribed component of the canonical Wnt signaling pathway termed Custos, originally isolated as a Dishevelled-interacting protein. Custos contains casein kinase phosphorylation sites and nuclear localization sequences. In Xenopus, custos mRNA is expressed maternally and then widely throughout embryogenesis. Depletion or overexpression of Custos produced defective anterior head structures by inhibiting the formation of the Spemann-Mangold organizer. In addition, Custos expression blocked secondary axis induction by positive signaling components of the canonical Wnt pathway and inhibited β-catenin/TCF-dependent transcription. Custos binds to β-catenin in a Wnt responsive manner without affecting its stability, but rather modulates the cytoplasmic to nuclear translocation of β-catenin. This effect on nuclear import appears to be the mechanism by which Custos inhibits canonical Wnt signaling. The function of Custos is conserved as loss-of-function and gain-of-function studies in zebrafish also demonstrate a role for Custos in anterior head development. Our studies suggest a role for Custos in fine-tuning canonical Wnt signal transduction during embryogenesis, adding an additional layer of regulatory control in the Wnt-β-catenin signal transduction cascade.
Orientifolding of the ABJ Fermi gas
NASA Astrophysics Data System (ADS)
Okuyama, Kazumi
2016-03-01
The grand partition functions of ABJ theory can be factorized into even and odd parts under the reflection of fermion coordinate in the Fermi gas approach. In some cases, the even/odd part of ABJ grand partition function is equal to that of {N}=5O(n)× USp({n}^') theory, hence it is natural to think of the even/odd projection of grand partition function as an orientifolding of ABJ Fermi gas system. By a systematic WKB analysis, we determine the coefficients in the perturbative part of grand potential of such orientifold ABJ theory. We also find the exact form of the first few "half-instanton" corrections coming from the twisted sector of the reflection of fermion coordinate. For the Chern-Simons level k = 2 ,4 ,8 we find closed form expressions of the grand partition functions of orientifold ABJ theory, and for k = 2 , 4 we prove the functional relations among the grand partition functions conjectured in arXiv:1410.7658.
Ross, Breyan H; Lin, Yimo; Corales, Esteban A; Burgos, Patricia V; Mardones, Gonzalo A
2014-01-01
Adaptor protein (AP) complexes facilitate protein trafficking by playing key roles in the selection of cargo molecules to be sorted in post-Golgi compartments. Four AP complexes (AP-1 to AP-4) contain a medium-sized subunit (μ1-μ4) that recognizes YXXØ-sequences (Ø is a bulky hydrophobic residue), which are sorting signals in transmembrane proteins. A conserved, canonical region in μ subunits mediates recognition of YXXØ-signals by means of a critical aspartic acid. Recently we found that a non-canonical YXXØ-signal on the cytosolic tail of the Alzheimer's disease amyloid precursor protein (APP) binds to a distinct region of the μ4 subunit of the AP-4 complex. In this study we aimed to determine the functionality of both binding sites of μ4 on the recognition of the non-canonical YXXØ-signal of APP. We found that substitutions in either binding site abrogated the interaction with the APP-tail in yeast-two hybrid experiments. Further characterization by isothermal titration calorimetry showed instead loss of binding to the APP signal with only the substitution R283D at the non-canonical site, in contrast to a decrease in binding affinity with the substitution D190A at the canonical site. We solved the crystal structure of the C-terminal domain of the D190A mutant bound to this non-canonical YXXØ-signal. This structure showed no significant difference compared to that of wild-type μ4. Both differential scanning fluorimetry and limited proteolysis analyses demonstrated that the D190A substitution rendered μ4 less stable, suggesting an explanation for its lower binding affinity to the APP signal. Finally, in contrast to overexpression of the D190A mutant, and acting in a dominant-negative manner, overexpression of μ4 with either a F255A or a R283D substitution at the non-canonical site halted APP transport at the Golgi apparatus. Together, our analyses support that the functional recognition of the non-canonical YXXØ-signal of APP is limited to the non-canonical site of μ4.
Ross, Breyan H.; Lin, Yimo; Corales, Esteban A.; Burgos, Patricia V.; Mardones, Gonzalo A.
2014-01-01
Adaptor protein (AP) complexes facilitate protein trafficking by playing key roles in the selection of cargo molecules to be sorted in post-Golgi compartments. Four AP complexes (AP-1 to AP-4) contain a medium-sized subunit (μ1-μ4) that recognizes YXXØ-sequences (Ø is a bulky hydrophobic residue), which are sorting signals in transmembrane proteins. A conserved, canonical region in μ subunits mediates recognition of YXXØ-signals by means of a critical aspartic acid. Recently we found that a non-canonical YXXØ-signal on the cytosolic tail of the Alzheimer's disease amyloid precursor protein (APP) binds to a distinct region of the μ4 subunit of the AP-4 complex. In this study we aimed to determine the functionality of both binding sites of μ4 on the recognition of the non-canonical YXXØ-signal of APP. We found that substitutions in either binding site abrogated the interaction with the APP-tail in yeast-two hybrid experiments. Further characterization by isothermal titration calorimetry showed instead loss of binding to the APP signal with only the substitution R283D at the non-canonical site, in contrast to a decrease in binding affinity with the substitution D190A at the canonical site. We solved the crystal structure of the C-terminal domain of the D190A mutant bound to this non-canonical YXXØ-signal. This structure showed no significant difference compared to that of wild-type μ4. Both differential scanning fluorimetry and limited proteolysis analyses demonstrated that the D190A substitution rendered μ4 less stable, suggesting an explanation for its lower binding affinity to the APP signal. Finally, in contrast to overexpression of the D190A mutant, and acting in a dominant-negative manner, overexpression of μ4 with either a F255A or a R283D substitution at the non-canonical site halted APP transport at the Golgi apparatus. Together, our analyses support that the functional recognition of the non-canonical YXXØ-signal of APP is limited to the non-canonical site of μ4. PMID:24498434
Shore, Joel D.; Thurston, George M.
2018-01-01
We report a charge-patterning phase transition on two-dimensional square lattices of titratable sites, here regarded as protonation sites, placed in a low-dielectric medium just below the planar interface between this medium and a salt solution. We calculate the work-of-charging matrix of the lattice with use of a linear Debye-Hückel model, as input to a grand-canonical partition function for the distribution of occupancy patterns. For a large range of parameter values, this model exhibits an approximate inverse cubic power-law decrease of the voltage produced by an individual charge, as a function of its in-lattice separation from neighboring titratable sites. Thus, the charge coupling voltage biases the local probabilities of proton binding as a function of the occupancy of sites for many neighbors beyond the nearest ones. We find that even in the presence of these longer-range interactions, the site couplings give rise to a phase transition in which the site occupancies exhibit an alternating, checkerboard pattern that is an analog of antiferromagnetic ordering. The overall strength W of this canonical charge coupling voltage, per unit charge, is a function of the Debye length, the charge depth, the Bjerrum length, and the dielectric coefficients of the medium and the solvent. The alternating occupancy transition occurs above a curve of thermodynamic critical points in the (pH-pK,W) plane, the curve representing a charge-regulation analog of variation of the Néel temperature of an Ising antiferromagnet as a function of an applied, uniform magnetic field. The analog of a uniform magnetic field in the antiferromagnet problem is a combination of pH-pK and W, and 1/W is the analog of the temperature in the antiferromagnet problem. We use Monte Carlo simulations to study the occupancy patterns of the titratable sites, including interactions out to the 37th nearest-neighbor category (a distance of 74 lattice constants), first validating simulations through comparison with exact and approximate results for the nearest-neighbor case. We then use the simulations to map the charge-patterning phase boundary in the (pH-pK,W) plane. The physical parameters that determine W provide a framework for identifying and designing real surfaces that could exhibit charge-patterning phase transitions. PMID:26764648
Shore, Joel D; Thurston, George M
2015-12-01
We report a charge-patterning phase transition on two-dimensional square lattices of titratable sites, here regarded as protonation sites, placed in a low-dielectric medium just below the planar interface between this medium and a salt solution. We calculate the work-of-charging matrix of the lattice with use of a linear Debye-Hückel model, as input to a grand-canonical partition function for the distribution of occupancy patterns. For a large range of parameter values, this model exhibits an approximate inverse cubic power-law decrease of the voltage produced by an individual charge, as a function of its in-lattice separation from neighboring titratable sites. Thus, the charge coupling voltage biases the local probabilities of proton binding as a function of the occupancy of sites for many neighbors beyond the nearest ones. We find that even in the presence of these longer-range interactions, the site couplings give rise to a phase transition in which the site occupancies exhibit an alternating, checkerboard pattern that is an analog of antiferromagnetic ordering. The overall strength W of this canonical charge coupling voltage, per unit charge, is a function of the Debye length, the charge depth, the Bjerrum length, and the dielectric coefficients of the medium and the solvent. The alternating occupancy transition occurs above a curve of thermodynamic critical points in the (pH-pK,W) plane, the curve representing a charge-regulation analog of variation of the Néel temperature of an Ising antiferromagnet as a function of an applied, uniform magnetic field. The analog of a uniform magnetic field in the antiferromagnet problem is a combination of pH-pK and W, and 1/W is the analog of the temperature in the antiferromagnet problem. We use Monte Carlo simulations to study the occupancy patterns of the titratable sites, including interactions out to the 37th nearest-neighbor category (a distance of √74 lattice constants), first validating simulations through comparison with exact and approximate results for the nearest-neighbor case. We then use the simulations to map the charge-patterning phase boundary in the (pH-pK,W) plane. The physical parameters that determine W provide a framework for identifying and designing real surfaces that could exhibit charge-patterning phase transitions.
NASA Astrophysics Data System (ADS)
Shore, Joel D.; Thurston, George M.
2015-12-01
We report a charge-patterning phase transition on two-dimensional square lattices of titratable sites, here regarded as protonation sites, placed in a low-dielectric medium just below the planar interface between this medium and a salt solution. We calculate the work-of-charging matrix of the lattice with use of a linear Debye-Hückel model, as input to a grand-canonical partition function for the distribution of occupancy patterns. For a large range of parameter values, this model exhibits an approximate inverse cubic power-law decrease of the voltage produced by an individual charge, as a function of its in-lattice separation from neighboring titratable sites. Thus, the charge coupling voltage biases the local probabilities of proton binding as a function of the occupancy of sites for many neighbors beyond the nearest ones. We find that even in the presence of these longer-range interactions, the site couplings give rise to a phase transition in which the site occupancies exhibit an alternating, checkerboard pattern that is an analog of antiferromagnetic ordering. The overall strength W of this canonical charge coupling voltage, per unit charge, is a function of the Debye length, the charge depth, the Bjerrum length, and the dielectric coefficients of the medium and the solvent. The alternating occupancy transition occurs above a curve of thermodynamic critical points in the (p H-p K ,W ) plane, the curve representing a charge-regulation analog of variation of the Néel temperature of an Ising antiferromagnet as a function of an applied, uniform magnetic field. The analog of a uniform magnetic field in the antiferromagnet problem is a combination of p H-p K and W , and 1 /W is the analog of the temperature in the antiferromagnet problem. We use Monte Carlo simulations to study the occupancy patterns of the titratable sites, including interactions out to the 37th nearest-neighbor category (a distance of √{74 } lattice constants), first validating simulations through comparison with exact and approximate results for the nearest-neighbor case. We then use the simulations to map the charge-patterning phase boundary in the (p H-p K ,W ) plane. The physical parameters that determine W provide a framework for identifying and designing real surfaces that could exhibit charge-patterning phase transitions.
Computational Prediction of Kinetic Rate Constants
2006-11-30
without requiring additional data. Zero-point energy ( ZPE ) anharmonicity has a large effect on the accuracy of approximate partition function estimates. If...the accurate ZPE is taken into account, separable approximation partition functions using the most accurate torsion treatment and harmonic treatments...for the remaining degrees of freedom agree with accurate QM partition functions to within a mean accuracy of 9%. If no ZPE anharmonicity correction
NASA Technical Reports Server (NTRS)
Jones, J. H.; Walker, D.
1993-01-01
Previously we have reported carbonate liq./silicate liq. partition coefficients (D) for a standard suite of trace elements (Nb, Mo, Ba, Ce, Pb, Th, and U) and Ra and Pa as well. In brief, we have found that immiscible liquid partitioning is a strong function of temperature. As the critical temperature of the carbonate-silicate solvus is approached, all partition coefficients approach unity. Additionally, for the overwhelming majority of the partitioning elements, InD is a linear function of 'ionic field strength,' z/r, where z is the charge of the partitioned cation and r is its ionic radius.
Buchanan, Paul J; McCloskey, Karen D
2016-10-01
The importance of ion channels in the hallmarks of many cancers is increasingly recognised. This article reviews current knowledge of the expression of members of the voltage-gated calcium channel family (Ca V ) in cancer at the gene and protein level and discusses their potential functional roles. The ten members of the Ca V channel family are classified according to expression of their pore-forming α-subunit; moreover, co-expression of accessory α2δ, β and γ confers a spectrum of biophysical characteristics including voltage dependence of activation and inactivation, current amplitude and activation/inactivation kinetics. Ca V channels have traditionally been studied in excitable cells including neurones, smooth muscle, skeletal muscle and cardiac cells, and drugs targeting the channels are used in the treatment of hypertension and epilepsy. There is emerging evidence that several Ca V channels are differentially expressed in cancer cells compared to their normal counterparts. Interestingly, a number of Ca V channels also have non-canonical functions and are involved in transcriptional regulation of the expression of other proteins including potassium channels. Pharmacological studies show that Ca V canonical function contributes to the fundamental biology of proliferation, cell-cycle progression and apoptosis. This raises the intriguing possibility that calcium channel blockers, approved for the treatment of other conditions, could be repurposed to treat particular cancers. Further research will reveal the full extent of both the canonical and non-canonical functions of Ca V channels in cancer and whether calcium channel blockers are beneficial in cancer treatment.
Mazengenya, Pedzisai; Bhikha, Rashid
2017-06-01
Ibn Sina is regarded as one of the greatest physicians, thinkers and medical scholars in the history of medicine. Ibn Sina, a Persian scholar in the medieval era, wrote a famous book of medicine, the Canon of Medicine. The book was adopted as the main textbook of medicine in most Western and Persian universities. In the present critique, we analyzed the functional and anatomic descriptions of the heart, airways and the lungs as viewed by Ibn Sina in volume three of the Canon of Medicine textbook, and compared them to modern anatomy texts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundararaman, Ravishankar; Goddard, III, William A.; Arias, Tomas A.
First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solvemore » the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.« less
Sundararaman, Ravishankar; Goddard, William A; Arias, Tomas A
2017-03-21
First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solve the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Finally, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.
Sundararaman, Ravishankar; Goddard, III, William A.; Arias, Tomas A.
2017-03-16
First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solvemore » the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.« less
3d expansions of 5d instanton partition functions
NASA Astrophysics Data System (ADS)
Nieri, Fabrizio; Pan, Yiwen; Zabzine, Maxim
2018-04-01
We propose a set of novel expansions of Nekrasov's instanton partition functions. Focusing on 5d supersymmetric pure Yang-Mills theory with unitary gauge group on C_{q,{t}^{-1}}^2× S^1 , we show that the instanton partition function admits expansions in terms of partition functions of unitary gauge theories living on the 3d subspaces C_q× S^1 , C_{t^{-1}}× S^1 and their intersection along S^1 . These new expansions are natural from the BPS/CFT viewpoint, as they can be matched with W q,t correlators involving an arbitrary number of screening charges of two kinds. Our constructions generalize and interpolate existing results in the literature.
Equivalence of several descriptions for 6d SCFT
NASA Astrophysics Data System (ADS)
Hayashi, Hirotaka; Kim, Sung-Soo; Lee, Kimyeong; Yagi, Futoshi
2017-01-01
We show that the three different looking BPS partition functions, namely the elliptic genus of the 6d N=(1, 0) Sp(1) gauge theory with 10 flavors and a tensor multiplet, the Nekrasov partition function of the 5d N=1 Sp(2) gauge theory with 10 flavors, and the Nekrasov partition function of the 5d N=1 SU(3) gauge theory with 10 flavors, are all equal to each other under specific maps among gauge theory parameters. This result strongly suggests that the three gauge theories have an identical UV fixed point. Type IIB 5-brane web diagrams play an essential role to compute the SU(3) Nekrasov partition function as well as establishing the maps.
On N = 1 partition functions without R-symmetry
Knodel, Gino; Liu, James T.; Zayas, Leopoldo A. Pando
2015-03-25
Here, we examine the dependence of four-dimensional Euclidean N = 1 partition functions on coupling constants. In particular, we focus on backgrounds without R-symmetry, which arise in the rigid limit of old minimal supergravity. Backgrounds preserving a single supercharge may be classified as having either trivial or SU(2) structure, with the former including S 4. We show that, in the absence of additional symmetries, the partition function depends non-trivially on all couplings in the trivial structure case, and (anti)-holomorphically on couplings in the SU(2) structure case. In both cases, this allows for ambiguities in the form of finite counterterms, whichmore » in principle render the partition function unphysical. However, we argue that on dimensional grounds, ambiguities are restricted to finite powers in relevant couplings, and can therefore be kept under control. On the other hand, for backgrounds preserving supercharges of opposite chiralities, the partition function is completely independent of all couplings. In this case, the background admits an R-symmetry, and the partition function is physical, in agreement with the results obtained in the rigid limit of new minimal supergravity. Based on a systematic analysis of supersymmetric invariants, we also demonstrate that N = 1 localization is not possible for backgrounds without R-symmetry.« less
Strutt, David; Madder, Daisy; Artymiuk, Peter J.
2012-01-01
Members of the Frizzled family of sevenpass transmembrane receptors signal via the canonical Wnt pathway and also via noncanonical pathways of which the best characterized is the planar polarity pathway. Activation of both canonical and planar polarity signaling requires interaction between Frizzled receptors and cytoplasmic proteins of the Dishevelled family; however, there has been some dispute regarding whether the Frizzled–Dishevelled interactions are the same in both cases. Studies looking at mutated forms of Dishevelled suggested that stable recruitment of Dishevelled to membranes by Frizzled was required only for planar polarity activity, implying that qualitatively different Frizzled–Dishevelled interactions underlie canonical signaling. Conversely, studies looking at the sequence requirements of Frizzled receptors in the fruit fly Drosophila melanogaster for canonical and planar polarity signaling have concluded that there is most likely a common mechanism of action. To understand better Frizzled receptor function, we have carried out a large-scale mutagenesis in Drosophila to isolate novel mutations in frizzled that affect planar polarity activity and have identified a group of missense mutations in cytosolic-facing regions of the Frizzled receptor that block Dishevelled recruitment. Interestingly, although some of these affect both planar polarity and canonical activity, as previously reported for similar lesions, we find a subset that affect only planar polarity activity. These results support the view that qualitatively different Frizzled–Dishevelled interactions underlie planar polarity and canonical Wnt signaling. PMID:23023003
Boundary perimeter Bethe ansatz
NASA Astrophysics Data System (ADS)
Frassek, Rouven
2017-06-01
We study the partition function of the six-vertex model in the rational limit on arbitrary Baxter lattices with reflecting boundary. Every such lattice is interpreted as an invariant of the twisted Yangian. This identification allows us to relate the partition function of the vertex model to the Bethe wave function of an open spin chain. We obtain the partition function in terms of creation operators on a reference state from the algebraic Bethe ansatz and as a sum of permutations and reflections from the coordinate Bethe ansatz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desgranges, Caroline; Delhommelle, Jerome
We extend Expanded Wang-Landau (EWL) simulations beyond classical systems and develop the EWL method for systems modeled with a tight-binding Hamiltonian. We then apply the method to determine the partition function and thus all thermodynamic properties, including the Gibbs free energy and entropy, of the fluid phases of Si. We compare the results from quantum many-body (QMB) tight binding models, which explicitly calculate the overlap between the atomic orbitals of neighboring atoms, to those obtained with classical many-body (CMB) force fields, which allow to recover the tetrahedral organization in condensed phases of Si through, e.g., a repulsive 3-body term thatmore » favors the ideal tetrahedral angle. Along the vapor-liquid coexistence, between 3000 K and 6000 K, the densities for the two coexisting phases are found to vary significantly (by 5 orders of magnitude for the vapor and by up to 25% for the liquid) and to provide a stringent test of the models. Transitions from vapor to liquid are predicted to occur for chemical potentials that are 10%–15% higher for CMB models than for QMB models, and a ranking of the force fields is provided by comparing the predictions for the vapor pressure to the experimental data. QMB models also reveal the formation of a gap in the electronic density of states of the coexisting liquid at high temperatures. Subjecting Si to a nanoscopic confinement has a dramatic effect on the phase diagram with, e.g. at 6000 K, a decrease in liquid densities by about 50% for both CMB and QMB models and an increase in vapor densities between 90% (CMB) and 170% (QMB). The results presented here provide a full picture of the impact of the strategy (CMB or QMB) chosen to model many-body effects on the thermodynamic properties of the fluid phases of Si.« less
Wang, Xiaohui; Xia, Yu; Wen, Xianghua; Yang, Yunfeng; Zhou, Jizhong
2014-01-01
Biological WWTPs must be functionally stable to continuously and steadily remove contaminants which rely upon the activity of complex microbial communities. However, knowledge is still lacking in regard to microbial community functional structures and their linkages to environmental variables. To investigate microbial community functional structures of activated sludge in wastewater treatment plants (WWTPs) and to understand the effects of environmental factors on their structure. 12 activated sludge samples were collected from four WWTPs in Beijing. A comprehensive functional gene array named GeoChip 4.2 was used to determine the microbial functional genes involved in a variety of biogeochemical processes such as carbon, nitrogen, phosphorous and sulfur cycles, metal resistance, antibiotic resistance and organic contaminant degradation. High similarities of the microbial community functional structures were found among activated sludge samples from the four WWTPs, as shown by both diversity indices and the overlapped genes. For individual gene category, such as egl, amyA, lip, nirS, nirK, nosZ, ureC, ppx, ppk, aprA, dsrA, sox and benAB, there were a number of microorganisms shared by all 12 samples. Canonical correspondence analysis (CCA) showed that the microbial functional patterns were highly correlated with water temperature, dissolved oxygen (DO), ammonia concentrations and loading rate of chemical oxygen demand (COD). Based on the variance partitioning analyses (VPA), a total of 53% of microbial community variation from GeoChip data can be explained by wastewater characteristics (25%) and operational parameters (23%), respectively. This study provided an overall picture of microbial community functional structures of activated sludge in WWTPs and discerned the linkages between microbial communities and environmental variables in WWTPs.
Elliptic supersymmetric integrable model and multivariable elliptic functions
NASA Astrophysics Data System (ADS)
Motegi, Kohei
2017-12-01
We investigate the elliptic integrable model introduced by Deguchi and Martin [Int. J. Mod. Phys. A 7, Suppl. 1A, 165 (1992)], which is an elliptic extension of the Perk-Schultz model. We introduce and study a class of partition functions of the elliptic model by using the Izergin-Korepin analysis. We show that the partition functions are expressed as a product of elliptic factors and elliptic Schur-type symmetric functions. This result resembles recent work by number theorists in which the correspondence between the partition functions of trigonometric models and the product of the deformed Vandermonde determinant and Schur functions were established.
Vassallo, I; Zinn, P; Lai, M; Rajakannu, P; Hamou, M-F; Hegi, M E
2016-01-07
Glioblastoma is the most aggressive primary brain tumor in adults and due to the invasive nature cannot be completely removed. The WNT inhibitory factor 1 (WIF1), a secreted inhibitor of WNTs, is systematically downregulated in glioblastoma and acts as strong tumor suppressor. The aim of this study was the dissection of WIF1-associated tumor-suppressing effects mediated by canonical and non-canonical WNT signaling. We found that WIF1 besides inhibiting the canonical WNT pathway selectively downregulates the WNT/calcium pathway associated with significant reduction of p38-MAPK (p38-mitogen-activated protein kinase) phosphorylation. Knockdown of WNT5A, the only WNT ligand overexpressed in glioblastoma, phenocopied this inhibitory effect. WIF1 expression inhibited cell migration in vitro and in an orthotopic brain tumor model, in accordance with the known regulatory function of the WNT/Ca(2+) pathway on migration and invasion. In search of a mediator for this function differential gene expression profiles of WIF1-expressing cells were performed. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long non-coding RNA and key positive regulator of invasion, emerged as the top downregulated gene. Indeed, knockdown of MALAT1 reduced migration in glioblastoma cells, without effect on proliferation. Hence, loss of WIF1 enhances the migratory potential of glioblastoma through WNT5A that activates the WNT/Ca(2+) pathway and MALAT1. These data suggest the involvement of canonical and non-canonical WNT pathways in glioblastoma promoting key features associated with this deadly disease, proliferation on one hand and invasion on the other. Successful targeting will require a dual strategy affecting both canonical and non-canonical WNT pathways.
Graviton 1-loop partition function for 3-dimensional massive gravity
NASA Astrophysics Data System (ADS)
Gaberdiel, Matthias R.; Grumiller, Daniel; Vassilevich, Dmitri
2010-11-01
Thegraviton1-loop partition function in Euclidean topologically massivegravity (TMG) is calculated using heat kernel techniques. The partition function does not factorize holomorphically, and at the chiral point it has the structure expected from a logarithmic conformal field theory. This gives strong evidence for the proposal that the dual conformal field theory to TMG at the chiral point is indeed logarithmic. We also generalize our results to new massive gravity.
Recurrence relations in one-dimensional Ising models.
da Conceição, C M Silva; Maia, R N P
2017-09-01
The exact finite-size partition function for the nonhomogeneous one-dimensional (1D) Ising model is found through an approach using algebra operators. Specifically, in this paper we show that the partition function can be computed through a trace from a linear second-order recurrence relation with nonconstant coefficients in matrix form. A relation between the finite-size partition function and the generalized Lucas polynomials is found for the simple homogeneous model, thus establishing a recursive formula for the partition function. This is an important property and it might indicate the possible existence of recurrence relations in higher-dimensional Ising models. Moreover, assuming quenched disorder for the interactions within the model, the quenched averaged magnetic susceptibility displays a nontrivial behavior due to changes in the ferromagnetic concentration probability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendes, Albert C.R., E-mail: albert@fisica.ufjf.br; Takakura, Flavio I., E-mail: takakura@fisica.ufjf.br; Abreu, Everton M.C., E-mail: evertonabreu@ufrrj.br
In this work we have obtained a higher-derivative Lagrangian for a charged fluid coupled with the electromagnetic fluid and the Dirac’s constraints analysis was discussed. A set of first-class constraints fixed by noncovariant gauge condition were obtained. The path integral formalism was used to obtain the partition function for the corresponding higher-derivative Hamiltonian and the Faddeev–Popov ansatz was used to construct an effective Lagrangian. Through the partition function, a Stefan–Boltzmann type law was obtained. - Highlights: • Higher-derivative Lagrangian for a charged fluid. • Electromagnetic coupling and Dirac’s constraint analysis. • Partition function through path integral formalism. • Stefan–Boltzmann-kind lawmore » through the partition function.« less
NASA Astrophysics Data System (ADS)
Zheng, Lixin; Chen, Mohan; Sun, Zhaoru; Ko, Hsin-Yu; Santra, Biswajit; Dhuvad, Pratikkumar; Wu, Xifan
2018-04-01
We perform ab initio molecular dynamics (AIMD) simulation of liquid water in the canonical ensemble at ambient conditions using the strongly constrained and appropriately normed (SCAN) meta-generalized-gradient approximation (GGA) functional approximation and carry out systematic comparisons with the results obtained from the GGA-level Perdew-Burke-Ernzerhof (PBE) functional and Tkatchenko-Scheffler van der Waals (vdW) dispersion correction inclusive PBE functional. We analyze various properties of liquid water including radial distribution functions, oxygen-oxygen-oxygen triplet angular distribution, tetrahedrality, hydrogen bonds, diffusion coefficients, ring statistics, density of states, band gaps, and dipole moments. We find that the SCAN functional is generally more accurate than the other two functionals for liquid water by not only capturing the intermediate-range vdW interactions but also mitigating the overly strong hydrogen bonds prescribed in PBE simulations. We also compare the results of SCAN-based AIMD simulations in the canonical and isothermal-isobaric ensembles. Our results suggest that SCAN provides a reliable description for most structural, electronic, and dynamical properties in liquid water.
NASA Technical Reports Server (NTRS)
Han, D.; Kim, Y. S.; Noz, Marilyn E.
1989-01-01
It is possible to calculate expectation values and transition probabilities from the Wigner phase-space distribution function. Based on the canonical transformation properties of the Wigner function, an algorithm is developed for calculating these quantities in quantum optics for coherent and squeezed states. It is shown that the expectation value of a dynamical variable can be written in terms of its vacuum expectation value of the canonically transformed variable. Parallel-axis theorems are established for the photon number and its variant. It is also shown that the transition probability between two squeezed states can be reduced to that of the transition from one squeezed state to vacuum.
Hirakawa, Teruo; Suzuki, Teppei; Bowler, David R; Miyazaki, Tsuyoshi
2017-10-11
We discuss the development and implementation of a constant temperature (NVT) molecular dynamics scheme that combines the Nosé-Hoover chain thermostat with the extended Lagrangian Born-Oppenheimer molecular dynamics (BOMD) scheme, using a linear scaling density functional theory (DFT) approach. An integration scheme for this canonical-ensemble extended Lagrangian BOMD is developed and discussed in the context of the Liouville operator formulation. Linear scaling DFT canonical-ensemble extended Lagrangian BOMD simulations are tested on bulk silicon and silicon carbide systems to evaluate our integration scheme. The results show that the conserved quantity remains stable with no systematic drift even in the presence of the thermostat.
The search of "canonical" explanations for the cerebral cortex.
Plebe, Alessio
2018-06-15
This paper addresses a fundamental line of research in neuroscience: the identification of a putative neural processing core of the cerebral cortex, often claimed to be "canonical". This "canonical" core would be shared by the entire cortex, and would explain why it is so powerful and diversified in tasks and functions, yet so uniform in architecture. The purpose of this paper is to analyze the search for canonical explanations over the past 40 years, discussing the theoretical frameworks informing this research. It will highlight a bias that, in my opinion, has limited the success of this research project, that of overlooking the dimension of cortical development. The earliest explanation of the cerebral cortex as canonical was attempted by David Marr, deriving putative cortical circuits from general mathematical laws, loosely following a deductive-nomological account. Although Marr's theory turned out to be incorrect, one of its merits was to have put the issue of cortical circuit development at the top of his agenda. This aspect has been largely neglected in much of the research on canonical models that has followed. Models proposed in the 1980s were conceived as mechanistic. They identified a small number of components that interacted as a basic circuit, with each component defined as a function. More recent models have been presented as idealized canonical computations, distinct from mechanistic explanations, due to the lack of identifiable cortical components. Currently, the entire enterprise of coming up with a single canonical explanation has been criticized as being misguided, and the premise of the uniformity of the cortex has been strongly challenged. This debate is analyzed here. The legacy of the canonical circuit concept is reflected in both positive and negative ways in recent large-scale brain projects, such as the Human Brain Project. One positive aspect is that these projects might achieve the aim of producing detailed simulations of cortical electrical activity, a negative one regards whether they will be able to find ways of simulating how circuits actually develop.
Linear canonical transformations of coherent and squeezed states in the Wigner phase space
NASA Technical Reports Server (NTRS)
Han, D.; Kim, Y. S.; Noz, Marilyn E.
1988-01-01
It is shown that classical linear canonical transformations are possible in the Wigner phase space. Coherent and squeezed states are shown to be linear canonical transforms of the ground-state harmonic oscillator. It is therefore possible to evaluate the Wigner functions for coherent and squeezed states from that for the harmonic oscillator. Since the group of linear canonical transformations has a subgroup whose algebraic property is the same as that of the (2+1)-dimensional Lorentz group, it may be possible to test certain properties of the Lorentz group using optical devices. A possible experiment to measure the Wigner rotation angle is discussed.
Wigner expansions for partition functions of nonrelativistic and relativistic oscillator systems
NASA Technical Reports Server (NTRS)
Zylka, Christian; Vojta, Guenter
1993-01-01
The equilibrium quantum statistics of various anharmonic oscillator systems including relativistic systems is considered within the Wigner phase space formalism. For this purpose the Wigner series expansion for the partition function is generalized to include relativistic corrections. The new series for partition functions and all thermodynamic potentials yield quantum corrections in terms of powers of h(sup 2) and relativistic corrections given by Kelvin functions (modified Hankel functions) K(sub nu)(mc(sup 2)/kT). As applications, the symmetric Toda oscillator, isotonic and singular anharmonic oscillators, and hindered rotators, i.e. oscillators with cosine potential, are addressed.
2016-01-01
The inner ear consists of two otocyst-derived, structurally and functionally distinct components: the dorsal vestibular and ventral auditory compartments. BMP signaling is required to form the vestibular compartment, but how it complements other required signaling molecules and acts intracellularly is unknown. Using spatially and temporally controlled delivery of signaling pathway regulators to developing chick otocysts, we show that BMP signaling regulates the expression of Dlx5 and Hmx3, both of which encode transcription factors essential for vestibular formation. However, although BMP regulates Dlx5 through the canonical SMAD pathway, surprisingly, it regulates Hmx3 through a non-canonical pathway involving both an increase in cAMP-dependent protein kinase A activity and the GLI3R to GLI3A ratio. Thus, both canonical and non-canonical BMP signaling establish the precise spatiotemporal expression of Dlx5 and Hmx3 during dorsal vestibular development. The identification of the non-canonical pathway suggests an intersection point between BMP and SHH signaling, which is required for ventral auditory development. PMID:27151948
Yamada, Azusa; Iwata, Takanori; Yamato, Masayuki; Okano, Teruo; Izumi, Yuichi
2013-04-01
Osteoinductive pretreatment of human mesenchymal stromal cells (hMSCs) has been widely accepted in bone tissue engineering before the use of cell transplantation; however, the mechanisms by which osteoinductive medium (OIM) enhances osteoblastic differentiation are not well understood. Using periodontal ligament-derived hMSCs, we identified key signalling molecules for osteoblastogenesis. Alkaline phosphatase activity induced by OIM, which contains ascorbic acid, β-glycerophosphate, and dexamethasone, was decreased by XAV939, which is an inhibitor of canonical WNT signalling, in a dose-dependent manner. A quantitative RT-PCR array demonstrated the upregulation of secreted frizzled-related protein (SFRP) 3 and the downregulation of SFRP4 during osteoinduction. Functional studies showed that SFRP3 promoted and SFRP4 suppressed the osteoblastic differentiation of hMSCs. In addition, SFRP3 inhibited non-canonical WNT signalling by binding WNT5A, which is a representative non-canonical WNT protein. These results indicate the involvement of the WNT signalling pathway during the osteoblastic differentiation of hMSCs. SFRPs oppositely control osteoblastogenesis through canonical and non-canonical pathways and may be useful for directing the lineage of hMSCs in cytotherapeutic use. Copyright © 2013 Elsevier Ltd. All rights reserved.
Renal hypodysplasia associates with a WNT4 variant that causes aberrant canonical WNT signaling.
Vivante, Asaf; Mark-Danieli, Michal; Davidovits, Miriam; Harari-Steinberg, Orit; Omer, Dorit; Gnatek, Yehudit; Cleper, Roxana; Landau, Daniel; Kovalski, Yael; Weissman, Irit; Eisenstein, Israel; Soudack, Michalle; Wolf, Haike Reznik; Issler, Naomi; Lotan, Danny; Anikster, Yair; Dekel, Benjamin
2013-03-01
Abnormal differentiation of the renal stem/progenitor pool into kidney tissue can lead to renal hypodysplasia (RHD), but the underlying causes of RHD are not well understood. In this multicenter study, we identified 20 Israeli pedigrees with isolated familial, nonsyndromic RHD and screened for mutations in candidate genes involved in kidney development, including PAX2, HNF1B, EYA1, SIX1, SIX2, SALL1, GDNF, WNT4, and WT1. In addition to previously reported RHD-causing genes, we found that two affected brothers were heterozygous for a missense variant in the WNT4 gene. Functional analysis of this variant revealed both antagonistic and agonistic canonical WNT stimuli, dependent on cell type. In HEK293 cells, WNT4 inhibited WNT3A induced canonical activation, and the WNT4 variant significantly enhanced this inhibition of the canonical WNT pathway. In contrast, in primary cultures of human fetal kidney cells, which maintain WNT activation and more closely represent WNT signaling in renal progenitors during nephrogenesis, this mutation caused significant loss of function, resulting in diminished canonical WNT/β-catenin signaling. In conclusion, heterozygous WNT4 variants are likely to play a causative role in renal hypodysplasia.
Renal Hypodysplasia Associates with a Wnt4 Variant that Causes Aberrant Canonical Wnt Signaling
Vivante, Asaf; Mark-Danieli, Michal; Davidovits, Miriam; Harari-Steinberg, Orit; Omer, Dorit; Gnatek, Yehudit; Cleper, Roxana; Landau, Daniel; Kovalski, Yael; Weissman, Irit; Eisenstein, Israel; Soudack, Michalle; Wolf, Haike Reznik; Issler, Naomi; Lotan, Danny; Anikster, Yair
2013-01-01
Abnormal differentiation of the renal stem/progenitor pool into kidney tissue can lead to renal hypodysplasia (RHD), but the underlying causes of RHD are not well understood. In this multicenter study, we identified 20 Israeli pedigrees with isolated familial, nonsyndromic RHD and screened for mutations in candidate genes involved in kidney development, including PAX2, HNF1B, EYA1, SIX1, SIX2, SALL1, GDNF, WNT4, and WT1. In addition to previously reported RHD-causing genes, we found that two affected brothers were heterozygous for a missense variant in the WNT4 gene. Functional analysis of this variant revealed both antagonistic and agonistic canonical WNT stimuli, dependent on cell type. In HEK293 cells, WNT4 inhibited WNT3A induced canonical activation, and the WNT4 variant significantly enhanced this inhibition of the canonical WNT pathway. In contrast, in primary cultures of human fetal kidney cells, which maintain WNT activation and more closely represent WNT signaling in renal progenitors during nephrogenesis, this mutation caused significant loss of function, resulting in diminished canonical WNT/β-catenin signaling. In conclusion, heterozygous WNT4 variants are likely to play a causative role in renal hypodysplasia. PMID:23520208
Alecu, I M; Marshall, Paul
2014-12-04
The multistructural method for torsional anharmonicity (MS-T) is employed to compute anharmonic conformationally averaged partition functions which then serve as the basis for the calculation of thermochemical parameters for N2O5 over the temperature range 0-3000 K, and thermal rate constants for the hydrolysis reaction N2O5 + H2O → 2 HNO3 over the temperature range 180-1800 K. The M06-2X hybrid meta-GGA density functional paired with the MG3S basis set is used to compute the properties of all stationary points and the energies, gradients, and Hessians of nonstationary points along the reaction path, with further energy refinement at stationary points obtained via single-point CCSD(T)-F12a/cc-pVTZ-F12 calculations including corrections for core-valence and scalar relativistic effects. The internal rotations in dinitrogen pentoxide are found to generate three structures (conformations) whose contributions are included in the partition function via the MS-T formalism, leading to a computed value for S°(298.15)(N2O5) of 353.45 J mol(-1) K(-1).This new estimate for S°(298.15)(N2O5) is used to reanalyze the equilibrium constants for the reaction NO3 + NO2 = N2O5 measured by Osthoff et al. [Phys. Chem. Chem. Phys. 2007, 9, 5785-5793] to arrive at ΔfH °(298.15) (N2O5) = 14.31 ± 0.53 kJ mol(-1)via the third law method, which compares well with our computed ab initio value of 13.53 ± 0.56 kJ mol(-1). Finally, multistructural canonical variational-transition-state theory with multidimensional tunneling (MS-CVT/MT) is used to study the kinetics for hydrolysis of N2O5 by a single water molecule, whose rate constant can be summarized by the Arrhenius expression 9.51 × 10(-17) (T/298 K)(3.354) e(-7900K/T) cm3 molecule(-1) s(-1) over the temperature range 180-1800 K.
Asymptotics of quantum weighted Hurwitz numbers
NASA Astrophysics Data System (ADS)
Harnad, J.; Ortmann, Janosch
2018-06-01
This work concerns both the semiclassical and zero temperature asymptotics of quantum weighted double Hurwitz numbers. The partition function for quantum weighted double Hurwitz numbers can be interpreted in terms of the energy distribution of a quantum Bose gas with vanishing fugacity. We compute the leading semiclassical term of the partition function for three versions of the quantum weighted Hurwitz numbers, as well as lower order semiclassical corrections. The classical limit is shown to reproduce the simple single and double Hurwitz numbers studied by Okounkov and Pandharipande (2000 Math. Res. Lett. 7 447–53, 2000 Lett. Math. Phys. 53 59–74). The KP-Toda τ-function that serves as generating function for the quantum Hurwitz numbers is shown to have the τ-function of Okounkov and Pandharipande (2000 Math. Res. Lett. 7 447–53, 2000 Lett. Math. Phys. 53 59–74) as its leading term in the classical limit, and, with suitable scaling, the same holds for the partition function, the weights and expectations of Hurwitz numbers. We also compute the zero temperature limit of the partition function and quantum weighted Hurwitz numbers. The KP or Toda τ-function serving as generating function for the quantum Hurwitz numbers are shown to give the one for Belyi curves in the zero temperature limit and, with suitable scaling, the same holds true for the partition function, the weights and the expectations of Hurwitz numbers.
Shi, Yan; Wang, Hao Gang; Li, Long; Chan, Chi Hou
2008-10-01
A multilevel Green's function interpolation method based on two kinds of multilevel partitioning schemes--the quasi-2D and the hybrid partitioning scheme--is proposed for analyzing electromagnetic scattering from objects comprising both conducting and dielectric parts. The problem is formulated using the surface integral equation for homogeneous dielectric and conducting bodies. A quasi-2D multilevel partitioning scheme is devised to improve the efficiency of the Green's function interpolation. In contrast to previous multilevel partitioning schemes, noncubic groups are introduced to discretize the whole EM structure in this quasi-2D multilevel partitioning scheme. Based on the detailed analysis of the dimension of the group in this partitioning scheme, a hybrid quasi-2D/3D multilevel partitioning scheme is proposed to effectively handle objects with fine local structures. Selection criteria for some key parameters relating to the interpolation technique are given. The proposed algorithm is ideal for the solution of problems involving objects such as missiles, microstrip antenna arrays, photonic bandgap structures, etc. Numerical examples are presented to show that CPU time is between O(N) and O(N log N) while the computer memory requirement is O(N).
[3D structure of DKK1 indicates its involvement in both canonical and non-canonical Wnt pathways].
Khalili, S; Rasaee, M J; Bamdad, T
2017-01-01
Dikkoppf-1 (DKK1) is an antagonist of the canonical Wnt signaling pathway. The importance of DKK1 as a diagnostic and therapeutic agent in a wide range of diseases along with its significance in a variety of biological processes accentuate the necessity to decipher its 3D structure that would pave the way towards the development of relevant selective inhibitors. A DKK1 structure model predicted by the Robetta server with structural refinements including a 10 ns molecular dynamics run was subjected to functional and docking analyses. We hypothesize that the N-terminal region of the DKK1 molecule could be functionally important for both canonical and noncanonical Wnt pathways. Moreover, it seems that DKK1 could be involved in interactions with the Frizzled receptors, leading to the activation of the Planar Cell Polarity (PCP) pathway (activation of Jun N-terminal kinase (JNK) Pathway) and Wnt/Ca^(2+) pathway (activation of CamKII).
Controlled levels of canonical Wnt signaling are required for neural crest migration.
Maj, Ewa; Künneke, Lutz; Loresch, Elisabeth; Grund, Anita; Melchert, Juliane; Pieler, Tomas; Aspelmeier, Timo; Borchers, Annette
2016-09-01
Canonical Wnt signaling plays a dominant role in the development of the neural crest (NC), a highly migratory cell population that generates a vast array of cell types. Canonical Wnt signaling is required for NC induction as well as differentiation, however its role in NC migration remains largely unknown. Analyzing nuclear localization of β-catenin as readout for canonical Wnt activity, we detect nuclear β-catenin in premigratory but not migratory Xenopus NC cells suggesting that canonical Wnt activity has to decrease to basal levels to enable NC migration. To define a possible function of canonical Wnt signaling in Xenopus NC migration, canonical Wnt signaling was modulated at different time points after NC induction. This was accomplished using either chemical modulators affecting β-catenin stability or inducible glucocorticoid fusion constructs of Lef/Tcf transcription factors. In vivo analysis of NC migration by whole mount in situ hybridization demonstrates that ectopic activation of canonical Wnt signaling inhibits cranial NC migration. Further, NC transplantation experiments confirm that this effect is tissue-autonomous. In addition, live-cell imaging in combination with biophysical data analysis of explanted NC cells confirms the in vivo findings and demonstrates that modulation of canonical Wnt signaling affects the ability of NC cells to perform single cell migration. Thus, our data support the hypothesis that canonical Wnt signaling needs to be tightly controlled to enable migration of NC cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Canonical microcircuits for predictive coding
Bastos, Andre M.; Usrey, W. Martin; Adams, Rick A.; Mangun, George R.; Fries, Pascal; Friston, Karl J.
2013-01-01
Summary This review considers the influential notion of a canonical (cortical) microcircuit in light of recent theories about neuronal processing. Specifically, we conciliate quantitative studies of microcircuitry and the functional logic of neuronal computations. We revisit the established idea that message passing among hierarchical cortical areas implements a form of Bayesian inference – paying careful attention to the implications for intrinsic connections among neuronal populations. By deriving canonical forms for these computations, one can associate specific neuronal populations with specific computational roles. This analysis discloses a remarkable correspondence between the microcircuitry of the cortical column and the connectivity implied by predictive coding. Furthermore, it provides some intuitive insights into the functional asymmetries between feedforward and feedback connections and the characteristic frequencies over which they operate. PMID:23177956
NASA Astrophysics Data System (ADS)
Wang, Chen; Yuan, Tiange; Wood, Stephen A.; Goss, Kai-Uwe; Li, Jingyi; Ying, Qi; Wania, Frank
2017-06-01
Gas-particle partitioning governs the distribution, removal, and transport of organic compounds in the atmosphere and the formation of secondary organic aerosol (SOA). The large variety of atmospheric species and their wide range of properties make predicting this partitioning equilibrium challenging. Here we expand on earlier work and predict gas-organic and gas-aqueous phase partitioning coefficients for 3414 atmospherically relevant molecules using COSMOtherm, SPARC Performs Automated Reasoning in Chemistry (SPARC), and poly-parameter linear free-energy relationships. The Master Chemical Mechanism generated the structures by oxidizing primary emitted volatile organic compounds. Predictions for gas-organic phase partitioning coefficients (KWIOM/G) by different methods are on average within 1 order of magnitude of each other, irrespective of the numbers of functional groups, except for predictions by COSMOtherm and SPARC for compounds with more than three functional groups, which have a slightly higher discrepancy. Discrepancies between predictions of gas-aqueous partitioning (KW/G) are much larger and increase with the number of functional groups in the molecule. In particular, COSMOtherm often predicts much lower KW/G for highly functionalized compounds than the other methods. While the quantum-chemistry-based COSMOtherm accounts for the influence of intra-molecular interactions on conformation, highly functionalized molecules likely fall outside of the applicability domain of the other techniques, which at least in part rely on empirical data for calibration. Further analysis suggests that atmospheric phase distribution calculations are sensitive to the partitioning coefficient estimation method, in particular to the estimated value of KW/G. The large uncertainty in KW/G predictions for highly functionalized organic compounds needs to be resolved to improve the quantitative treatment of SOA formation.
Thermodynamics and statistical mechanics. [thermodynamic properties of gases
NASA Technical Reports Server (NTRS)
1976-01-01
The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.
Random Partition Distribution Indexed by Pairwise Information
Dahl, David B.; Day, Ryan; Tsai, Jerry W.
2017-01-01
We propose a random partition distribution indexed by pairwise similarity information such that partitions compatible with the similarities are given more probability. The use of pairwise similarities, in the form of distances, is common in some clustering algorithms (e.g., hierarchical clustering), but we show how to use this type of information to define a prior partition distribution for flexible Bayesian modeling. A defining feature of the distribution is that it allocates probability among partitions within a given number of subsets, but it does not shift probability among sets of partitions with different numbers of subsets. Our distribution places more probability on partitions that group similar items yet keeps the total probability of partitions with a given number of subsets constant. The distribution of the number of subsets (and its moments) is available in closed-form and is not a function of the similarities. Our formulation has an explicit probability mass function (with a tractable normalizing constant) so the full suite of MCMC methods may be used for posterior inference. We compare our distribution with several existing partition distributions, showing that our formulation has attractive properties. We provide three demonstrations to highlight the features and relative performance of our distribution. PMID:29276318
Chen, Ning; Teng, Xiao-Lu; Xiao, Xing-Guo
2017-01-01
AcCATPO is a plant catalase-phenol oxidase recently identified from red amaranth. Its physiological function remains unexplored. As the starting step of functional analysis, here we report its subcellular localization and a non-canonical targeting signal. Commonly used bioinformatics programs predicted a peroxisomal localization for AcCATPO, but failed in identification of canonical peroxisomal targeting signals (PTS). The C-terminal GFP tagging led the fusion protein AcCATPO-GFP to the cytosol and the nucleus, but N-terminal tagging directed the GFP-AcCATPO to peroxisomes and nuclei, in transgenic tobacco. Deleting the tripeptide (PTM) at the extreme C-terminus almost ruled out the peroxisomal localization of GFP-AcCATPOΔ3, and removing the C-terminal decapeptide completely excluded peroxisomes as the residence of GFP-AcCATPOΔ10. Furthermore, this decapeptide as a targeting signal could import GFP-10aa to the peroxisome exclusively. Taken together, these results demonstrate that AcCATPO is localized to the peroxisome and the nucleus, and its peroxisomal localization is attributed to a non-canonical PTS1, the C-terminal decapeptide which contains an internal SRL motif and a conserved tripeptide P-S/T-I/M at the extreme of C-terminus. This work may further the study as to the physiological function of AcCATPO, especially clarify its involvement in betalain biosynthesis, and provide a clue to elucidate more non-canonic PTS. PMID:28824680
Chen, Ning; Teng, Xiao-Lu; Xiao, Xing-Guo
2017-01-01
AcCATPO is a plant catalase-phenol oxidase recently identified from red amaranth. Its physiological function remains unexplored. As the starting step of functional analysis, here we report its subcellular localization and a non-canonical targeting signal. Commonly used bioinformatics programs predicted a peroxisomal localization for AcCATPO, but failed in identification of canonical peroxisomal targeting signals (PTS). The C-terminal GFP tagging led the fusion protein AcCATPO-GFP to the cytosol and the nucleus, but N-terminal tagging directed the GFP-AcCATPO to peroxisomes and nuclei, in transgenic tobacco. Deleting the tripeptide (PTM) at the extreme C-terminus almost ruled out the peroxisomal localization of GFP-AcCATPOΔ3, and removing the C-terminal decapeptide completely excluded peroxisomes as the residence of GFP-AcCATPOΔ10. Furthermore, this decapeptide as a targeting signal could import GFP-10aa to the peroxisome exclusively. Taken together, these results demonstrate that AcCATPO is localized to the peroxisome and the nucleus, and its peroxisomal localization is attributed to a non-canonical PTS1, the C-terminal decapeptide which contains an internal SRL motif and a conserved tripeptide P-S/T-I/M at the extreme of C-terminus. This work may further the study as to the physiological function of AcCATPO, especially clarify its involvement in betalain biosynthesis, and provide a clue to elucidate more non-canonic PTS.
Lattice QCD Thermodynamics and RHIC-BES Particle Production within Generic Nonextensive Statistics
NASA Astrophysics Data System (ADS)
Tawfik, Abdel Nasser
2018-05-01
The current status of implementing Tsallis (nonextensive) statistics on high-energy physics is briefly reviewed. The remarkably low freezeout-temperature, which apparently fails to reproduce the firstprinciple lattice QCD thermodynamics and the measured particle ratios, etc. is discussed. The present work suggests a novel interpretation for the so-called " Tsallis-temperature". It is proposed that the low Tsallis-temperature is due to incomplete implementation of Tsallis algebra though exponential and logarithmic functions to the high-energy particle-production. Substituting Tsallis algebra into grand-canonical partition-function of the hadron resonance gas model seems not assuring full incorporation of nonextensivity or correlations in that model. The statistics describing the phase-space volume, the number of states and the possible changes in the elementary cells should be rather modified due to interacting correlated subsystems, of which the phase-space is consisting. Alternatively, two asymptotic properties, each is associated with a scaling function, are utilized to classify a generalized entropy for such a system with large ensemble (produced particles) and strong correlations. Both scaling exponents define equivalence classes for all interacting and noninteracting systems and unambiguously characterize any statistical system in its thermodynamic limit. We conclude that the nature of lattice QCD simulations is apparently extensive and accordingly the Boltzmann-Gibbs statistics is fully fulfilled. Furthermore, we found that the ratios of various particle yields at extreme high and extreme low energies of RHIC-BES is likely nonextensive but not necessarily of Tsallis type.
Diagrammatic analysis of correlations in polymer fluids: Cluster diagrams via Edwards' field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morse, David C.
2006-10-15
Edwards' functional integral approach to the statistical mechanics of polymer liquids is amenable to a diagrammatic analysis in which free energies and correlation functions are expanded as infinite sums of Feynman diagrams. This analysis is shown to lead naturally to a perturbative cluster expansion that is closely related to the Mayer cluster expansion developed for molecular liquids by Chandler and co-workers. Expansion of the functional integral representation of the grand-canonical partition function yields a perturbation theory in which all quantities of interest are expressed as functionals of a monomer-monomer pair potential, as functionals of intramolecular correlation functions of non-interacting molecules,more » and as functions of molecular activities. In different variants of the theory, the pair potential may be either a bare or a screened potential. A series of topological reductions yields a renormalized diagrammatic expansion in which collective correlation functions are instead expressed diagrammatically as functionals of the true single-molecule correlation functions in the interacting fluid, and as functions of molecular number density. Similar renormalized expansions are also obtained for a collective Ornstein-Zernicke direct correlation function, and for intramolecular correlation functions. A concise discussion is given of the corresponding Mayer cluster expansion, and of the relationship between the Mayer and perturbative cluster expansions for liquids of flexible molecules. The application of the perturbative cluster expansion to coarse-grained models of dense multi-component polymer liquids is discussed, and a justification is given for the use of a loop expansion. As an example, the formalism is used to derive a new expression for the wave-number dependent direct correlation function and recover known expressions for the intramolecular two-point correlation function to first-order in a renormalized loop expansion for coarse-grained models of binary homopolymer blends and diblock copolymer melts.« less
Marginal Consistency: Upper-Bounding Partition Functions over Commutative Semirings.
Werner, Tomás
2015-07-01
Many inference tasks in pattern recognition and artificial intelligence lead to partition functions in which addition and multiplication are abstract binary operations forming a commutative semiring. By generalizing max-sum diffusion (one of convergent message passing algorithms for approximate MAP inference in graphical models), we propose an iterative algorithm to upper bound such partition functions over commutative semirings. The iteration of the algorithm is remarkably simple: change any two factors of the partition function such that their product remains the same and their overlapping marginals become equal. In many commutative semirings, repeating this iteration for different pairs of factors converges to a fixed point when the overlapping marginals of every pair of factors coincide. We call this state marginal consistency. During that, an upper bound on the partition function monotonically decreases. This abstract algorithm unifies several existing algorithms, including max-sum diffusion and basic constraint propagation (or local consistency) algorithms in constraint programming. We further construct a hierarchy of marginal consistencies of increasingly higher levels and show than any such level can be enforced by adding identity factors of higher arity (order). Finally, we discuss instances of the framework for several semirings, including the distributive lattice and the max-sum and sum-product semirings.
Pool, René; Heringa, Jaap; Hoefling, Martin; Schulz, Roland; Smith, Jeremy C; Feenstra, K Anton
2012-05-05
We report on a python interface to the GROMACS molecular simulation package, GromPy (available at https://github.com/GromPy). This application programming interface (API) uses the ctypes python module that allows function calls to shared libraries, for example, written in C. To the best of our knowledge, this is the first reported interface to the GROMACS library that uses direct library calls. GromPy can be used for extending the current GROMACS simulation and analysis modes. In this work, we demonstrate that the interface enables hybrid Monte-Carlo/molecular dynamics (MD) simulations in the grand-canonical ensemble, a simulation mode that is currently not implemented in GROMACS. For this application, the interplay between GromPy and GROMACS requires only minor modifications of the GROMACS source code, not affecting the operation, efficiency, and performance of the GROMACS applications. We validate the grand-canonical application against MD in the canonical ensemble by comparison of equations of state. The results of the grand-canonical simulations are in complete agreement with MD in the canonical ensemble. The python overhead of the grand-canonical scheme is only minimal. Copyright © 2012 Wiley Periodicals, Inc.
A dynamic re-partitioning strategy based on the distribution of key in Spark
NASA Astrophysics Data System (ADS)
Zhang, Tianyu; Lian, Xin
2018-05-01
Spark is a memory-based distributed data processing framework, has the ability of processing massive data and becomes a focus in Big Data. But the performance of Spark Shuffle depends on the distribution of data. The naive Hash partition function of Spark can not guarantee load balancing when data is skewed. The time of job is affected by the node which has more data to process. In order to handle this problem, dynamic sampling is used. In the process of task execution, histogram is used to count the key frequency distribution of each node, and then generate the global key frequency distribution. After analyzing the distribution of key, load balance of data partition is achieved. Results show that the Dynamic Re-Partitioning function is better than the default Hash partition, Fine Partition and the Balanced-Schedule strategy, it can reduce the execution time of the task and improve the efficiency of the whole cluster.
NASA Astrophysics Data System (ADS)
Lee, Eunsang; Paul, Wolfgang
2018-02-01
A variety of linear polymer precursors with hydrogen bonding motifs at both ends enable us to design supramolecular polymer systems with tailored macroscopic properties including self-healing. In this study, we investigate thermodynamic properties of single polyethylene and polybutylene glycols with hydrogen bonding motifs. In this context, we first build a coarse-grained model of building blocks of the supramolecular polymer system based on all-atom molecular structures. The density of states of the single precursor is obtained using the stochastic approximation Monte Carlo method. Constructing canonical partition functions from the density of states, we find the transition from looped to open conformations at transition temperatures which are non-monotonously changing with an increasing degree of polymerization due to the competition between chain stiffness and loop-forming entropy penalty. In the complete range of chain length under investigation, a coexistence of the looped and open morphologies at the transition temperature is shown regardless of whether the transition is first-order-like or continuous. Polyethylene and polybutylene glycols show similar behavior in all the thermodynamic properties but the transition temperature of the more flexible polybutylene glycol is shown to change more gradually.
A field theory approach to the evolution of canonical helicity and energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, S.
A redefinition of the Lagrangian of a multi-particle system in fields reformulates the single-particle, kinetic, and fluid equations governing fluid and plasma dynamics as a single set of generalized Maxwell's equations and Ohm's law for canonical force-fields. The Lagrangian includes new terms representing the coupling between the motion of particle distributions, between distributions and electromagnetic fields, with relativistic contributions. The formulation shows that the concepts of self-organization and canonical helicity transport are applicable across single-particle, kinetic, and fluid regimes, at classical and relativistic scales. The theory gives the basis for comparing canonical helicity change to energy change in general systems.more » For example, in a fixed, isolated system subject to non-conservative forces, a species' canonical helicity changes less than total energy only if gradients in density or distribution function are shallow.« less
Refined counting of necklaces in one-loop N=4 SYM
NASA Astrophysics Data System (ADS)
Suzuki, Ryo
2017-06-01
We compute the grand partition function of N=4 SYM at one-loop in the SU(2) sector with general chemical potentials, extending the results of Pólya's theorem. We make use of finite group theory, applicable to all orders of perturbative 1 /N c expansion. We show that only the planar terms contribute to the grand partition function, which is therefore equal to the grand partition function of an ensemble of {XXX}_{1/2} spin chains. We discuss how Hagedorn temperature changes on the complex plane of chemical potentials.
A Cell Culture Approach to Optimized Human Corneal Endothelial Cell Function
Bartakova, Alena; Kuzmenko, Olga; Alvarez-Delfin, Karen; Kunzevitzky, Noelia J.; Goldberg, Jeffrey L.
2018-01-01
Purpose Cell-based therapies to replace corneal endothelium depend on culture methods to optimize human corneal endothelial cell (HCEC) function and minimize endothelial-mesenchymal transition (EnMT). Here we explore contribution of low-mitogenic media on stabilization of phenotypes in vitro that mimic those of HCECs in vivo. Methods HCECs were isolated from cadaveric donor corneas and expanded in vitro, comparing continuous presence of exogenous growth factors (“proliferative media”) to media without those factors (“stabilizing media”). Identity based on canonical morphology and expression of surface marker CD56, and function based on formation of tight junction barriers measured by trans-endothelial electrical resistance assays (TEER) were assessed. Results Primary HCECs cultured in proliferative media underwent EnMT after three to four passages, becoming increasingly fibroblastic. Stabilizing the cells before each passage by switching them to a media low in mitogenic growth factors and serum preserved canonical morphology and yielded a higher number of cells. HCECs cultured in stabilizing media increased both expression of the identity marker CD56 and also tight junction monolayer integrity compared to cells cultured without stabilization. Conclusions HCECs isolated from donor corneas and expanded in vitro with a low-mitogenic media stabilizing step before each passage demonstrate more canonical structural and functional features and defer EnMT, increasing the number of passages and total canonical cell yield. This approach may facilitate development of HCEC-based cell therapies. PMID:29625488
Partition functions for heterotic WZW conformal field theories
NASA Astrophysics Data System (ADS)
Gannon, Terry
1993-08-01
Thus far in the search for, and classification of, "physical" modular invariant partition functions ΣN LRχ Lχ R∗ the attention has been focused on the symmetric case where the holomorphic and anti-holomorphic sectors, and hence the characters χLand χR, are associated with the same Kac-Moody algebras ĝL = ĝR and levels κ L = κ R. In this paper we consider the more general possibility where ( ĝL, κ L) may not equal ( ĝR, κ R). We discuss which choices of algebras and levels may correspond to well-defined conformal field theories, we find the "smallest" such heterotic (i.e. asymmetric) partition functions, and we give a method, generalizing the Roberts-Terao-Warner lattice method, for explicitly constructing many other modular invariants. We conclude the paper by proving that this new lattice method will succeed in generating all the heterotic partition functions, for all choices of algebras and levels.
Demazure Modules, Fusion Products and Q-Systems
NASA Astrophysics Data System (ADS)
Chari, Vyjayanthi; Venkatesh, R.
2015-01-01
In this paper, we introduce a family of indecomposable finite-dimensional graded modules for the current algebra associated to a simple Lie algebra. These modules are indexed by an -tuple of partitions , where α varies over a set of positive roots of and we assume that they satisfy a natural compatibility condition. In the case when the are all rectangular, for instance, we prove that these modules are Demazure modules in various levels. As a consequence, we see that the defining relations of Demazure modules can be greatly simplified. We use this simplified presentation to relate our results to the fusion products, defined in (Feigin and Loktev in Am Math Soc Transl Ser (2) 194:61-79, 1999), of representations of the current algebra. We prove that the Q-system of (Hatayama et al. in Contemporary Mathematics, vol. 248, pp. 243-291. American Mathematical Society, Providence, 1998) extends to a canonical short exact sequence of fusion products of representations associated to certain special partitions .Finally, in the last section we deal with the case of and prove that the modules we define are just fusion products of irreducible representations of the associated current algebra and give monomial bases for these modules.
Beta-diversity of ectoparasites at two spatial scales: nested hierarchy, geography and habitat type.
Warburton, Elizabeth M; van der Mescht, Luther; Stanko, Michal; Vinarski, Maxim V; Korallo-Vinarskaya, Natalia P; Khokhlova, Irina S; Krasnov, Boris R
2017-06-01
Beta-diversity of biological communities can be decomposed into (a) dissimilarity of communities among units of finer scale within units of broader scale and (b) dissimilarity of communities among units of broader scale. We investigated compositional, phylogenetic/taxonomic and functional beta-diversity of compound communities of fleas and gamasid mites parasitic on small Palearctic mammals in a nested hierarchy at two spatial scales: (a) continental scale (across the Palearctic) and (b) regional scale (across sites within Slovakia). At each scale, we analyzed beta-diversity among smaller units within larger units and among larger units with partitioning based on either geography or ecology. We asked (a) whether compositional, phylogenetic/taxonomic and functional dissimilarities of flea and mite assemblages are scale dependent; (b) how geographical (partitioning of sites according to geographic position) or ecological (partitioning of sites according to habitat type) characteristics affect phylogenetic/taxonomic and functional components of dissimilarity of ectoparasite assemblages and (c) whether assemblages of fleas and gamasid mites differ in their degree of dissimilarity, all else being equal. We found that compositional, phylogenetic/taxonomic, or functional beta-diversity was greater on a continental rather than a regional scale. Compositional and phylogenetic/taxonomic components of beta-diversity were greater among larger units than among smaller units within larger units, whereas functional beta-diversity did not exhibit any consistent trend regarding site partitioning. Geographic partitioning resulted in higher values of beta-diversity of ectoparasites than ecological partitioning. Compositional and phylogenetic components of beta-diversity were higher in fleas than mites but the opposite was true for functional beta-diversity in some, but not all, traits.
NASA Technical Reports Server (NTRS)
Papike, J. J.; Le, L.; Burger, P. V.; Shearer, C. K.; Bell, A. S.; Jones, J.
2013-01-01
Our research on valence state partitioning began in 2005 with a review of Cr, Fe, Ti, and V partitioning among crystallographic sites in olivine, pyroxene, and spinel [1]. That paper was followed by several on QUE94201 melt composition and specifically on Cr, V, and Eu partitioning between pyroxene and melt [2-5]. This paper represents the continuation of our examination of the partitioning of multivalent V between olivine, spinel, and melt in martian olivine-phyric basalts of Y980459 composition [6, 7]. Here we introduce a new, potentially powerful oxybarometer, V partitioning between spinel and olivine, which can be used when no melt is preserved in the meteorite. The bulk composition of QUE94201 was ideal for our study of martian pyroxene-phyric basalts and specifically the partitioning between pyroxene-melt for Cr, V, and Eu. Likewise, bulk composition Y980459 is ideal for the study of martian olivine-phyric basalts and specifically for olivine-melt, spinel-melt, and spinel-olivine partitioning of V as a function of oxygen fugacity.
Huang, WenJuan; Blinov, Nikolay; Kovalenko, Andriy
2015-04-30
The octanol-water partition coefficient is an important physical-chemical characteristic widely used to describe hydrophobic/hydrophilic properties of chemical compounds. The partition coefficient is related to the transfer free energy of a compound from water to octanol. Here, we introduce a new protocol for prediction of the partition coefficient based on the statistical-mechanical, 3D-RISM-KH molecular theory of solvation. It was shown recently that with the compound-solvent correlation functions obtained from the 3D-RISM-KH molecular theory of solvation, the free energy functional supplemented with the correction linearly related to the partial molar volume obtained from the Kirkwood-Buff/3D-RISM theory, also called the "universal correction" (UC), provides accurate prediction of the hydration free energy of small compounds, compared to explicit solvent molecular dynamics [ Palmer , D. S. ; J. Phys.: Condens. Matter 2010 , 22 , 492101 ]. Here we report that with the UC reparametrized accordingly this theory also provides an excellent agreement with the experimental data for the solvation free energy in nonpolar solvent (1-octanol) and so accurately predicts the octanol-water partition coefficient. The performance of the Kovalenko-Hirata (KH) and Gaussian fluctuation (GF) functionals of the solvation free energy, with and without UC, is tested on a large library of small compounds with diverse functional groups. The best agreement with the experimental data for octanol-water partition coefficients is obtained with the KH-UC solvation free energy functional.
A Recursive Method for Calculating Certain Partition Functions.
ERIC Educational Resources Information Center
Woodrum, Luther; And Others
1978-01-01
Describes a simple recursive method for calculating the partition function and average energy of a system consisting of N electrons and L energy levels. Also, presents an efficient APL computer program to utilize the recursion relation. (Author/GA)
Montoya-Castillo, Andrés; Reichman, David R
2017-01-14
We derive a semi-analytical form for the Wigner transform for the canonical density operator of a discrete system coupled to a harmonic bath based on the path integral expansion of the Boltzmann factor. The introduction of this simple and controllable approach allows for the exact rendering of the canonical distribution and permits systematic convergence of static properties with respect to the number of path integral steps. In addition, the expressions derived here provide an exact and facile interface with quasi- and semi-classical dynamical methods, which enables the direct calculation of equilibrium time correlation functions within a wide array of approaches. We demonstrate that the present method represents a practical path for the calculation of thermodynamic data for the spin-boson and related systems. We illustrate the power of the present approach by detailing the improvement of the quality of Ehrenfest theory for the correlation function C zz (t)=Re⟨σ z (0)σ z (t)⟩ for the spin-boson model with systematic convergence to the exact sampling function. Importantly, the numerically exact nature of the scheme presented here and its compatibility with semiclassical methods allows for the systematic testing of commonly used approximations for the Wigner-transformed canonical density.
Partitioning of functional gene expression data using principal points.
Kim, Jaehee; Kim, Haseong
2017-10-12
DNA microarrays offer motivation and hope for the simultaneous study of variations in multiple genes. Gene expression is a temporal process that allows variations in expression levels with a characterized gene function over a period of time. Temporal gene expression curves can be treated as functional data since they are considered as independent realizations of a stochastic process. This process requires appropriate models to identify patterns of gene functions. The partitioning of the functional data can find homogeneous subgroups of entities for the massive genes within the inherent biological networks. Therefor it can be a useful technique for the analysis of time-course gene expression data. We propose a new self-consistent partitioning method of functional coefficients for individual expression profiles based on the orthonormal basis system. A principal points based functional partitioning method is proposed for time-course gene expression data. The method explores the relationship between genes using Legendre coefficients as principal points to extract the features of gene functions. Our proposed method provides high connectivity in connectedness after clustering for simulated data and finds a significant subsets of genes with the increased connectivity. Our approach has comparative advantages that fewer coefficients are used from the functional data and self-consistency of principal points for partitioning. As real data applications, we are able to find partitioned genes through the gene expressions found in budding yeast data and Escherichia coli data. The proposed method benefitted from the use of principal points, dimension reduction, and choice of orthogonal basis system as well as provides appropriately connected genes in the resulting subsets. We illustrate our method by applying with each set of cell-cycle-regulated time-course yeast genes and E. coli genes. The proposed method is able to identify highly connected genes and to explore the complex dynamics of biological systems in functional genomics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Byeong-Moo; Department of Medicine, Harvard Medical School, Boston, MA 02115; Choi, Michael Y., E-mail: mchoi@partners.org
2012-09-21
Highlights: Black-Right-Pointing-Pointer Embryonic stem cells (ESCs) lacking non-canonical miRNAs proliferate slower. Black-Right-Pointing-Pointer miR-320 and miR-702 are two non-canonical miRNAs expressed in ESCs. Black-Right-Pointing-Pointer miR-320 and miR-702 promote proliferation of Dgcr8-deficient ESCs. Black-Right-Pointing-Pointer miR-320 targets p57 and helps to release Dgcr8-deficient ESCs from G1 arrest. Black-Right-Pointing-Pointer miR-702 targets p21 and helps to release Dgcr8-deficient ESCs from G1 arrest. -- Abstract: MicroRNAs are known to contribute significantly to stem cell phenotype by post-transcriptionally regulating gene expression. Most of our knowledge of microRNAs comes from the study of canonical microRNAs that require two sequential cleavages by the Drosha/Dgcr8 heterodimer and Dicer to generatemore » mature products. In contrast, non-canonical microRNAs bypass the cleavage by the Drosha/Dgcr8 heterodimer within the nucleus but still require cytoplasmic cleavage by Dicer. The function of non-canonical microRNAs in embryonic stem cells (ESCs) remains obscure. It has been hypothesized that non-canonical microRNAs have important roles in ESCs based upon the phenotypes of ESC lines that lack these specific classes of microRNAs; Dicer-deficient ESCs lacking both canonical and non-canonical microRNAs have much more severe proliferation defect than Dgcr8-deficient ESCs lacking only canonical microRNAs. Using these cell lines, we identified two non-canonical microRNAs, miR-320 and miR-702, that promote proliferation of Dgcr8-deficient ESCs by releasing them from G1 arrest. This is accomplished by targeting the 3 Prime -untranslated regions of the cell cycle inhibitors p57 and p21 and thereby inhibiting their expression. This is the first report of the crucial role of non-canonical microRNAs in ESCs.« less
Hydraulic geometry of the Platte River in south-central Nebraska
Eschner, T.R.
1982-01-01
At-a-station hydraulic-geometry of the Platte River in south-central Nebraska is complex. The range of exponents of simple power-function relations is large, both between different reaches of the river, and among different sections within a given reach. The at-a-station exponents plot in several fields of the b-f-m diagram, suggesting that morphologic and hydraulic changes with increasing discharge vary considerably. Systematic changes in the plotting positions of the exponents with time indicate that in general, the width exponent has decreased, although trends are not readily apparent in the other exponents. Plots of the hydraulic-geometry relations indicate that simple power functions are not the proper model in all instances. For these sections, breaks in the slopes of the hydraulic geometry relations serve to partition the data sets. Power functions fit separately to the partitioned data described the width-, depth-, and velocity-discharge relations more accurately than did a single power function. Plotting positions of the exponents from hydraulic geometry relations of partitioned data sets on b-f-m diagrams indicate that much of the apparent variations of plotting positions of single power functions results because the single power functions compromise both subsets of partitioned data. For several sections, the shape of the channel primarily accounts for the better fit of two-power functions to partitioned data than a single power function over the entire range of data. These non-log linear relations may have significance for channel maintenance. (USGS)
A strategy to load balancing for non-connectivity MapReduce job
NASA Astrophysics Data System (ADS)
Zhou, Huaping; Liu, Guangzong; Gui, Haixia
2017-09-01
MapReduce has been widely used in large scale and complex datasets as a kind of distributed programming model. Original Hash partitioning function in MapReduce often results the problem of data skew when data distribution is uneven. To solve the imbalance of data partitioning, we proposes a strategy to change the remaining partitioning index when data is skewed. In Map phase, we count the amount of data which will be distributed to each reducer, then Job Tracker monitor the global partitioning information and dynamically modify the original partitioning function according to the data skew model, so the Partitioner can change the index of these partitioning which will cause data skew to the other reducer that has less load in the next partitioning process, and can eventually balance the load of each node. Finally, we experimentally compare our method with existing methods on both synthetic and real datasets, the experimental results show our strategy can solve the problem of data skew with better stability and efficiency than Hash method and Sampling method for non-connectivity MapReduce task.
NASA Astrophysics Data System (ADS)
Karageorgiou, Elissaios; Lewis, Scott M.; Riley McCarten, J.; Leuthold, Arthur C.; Hemmy, Laura S.; McPherson, Susan E.; Rottunda, Susan J.; Rubins, David M.; Georgopoulos, Apostolos P.
2012-10-01
In previous work (Georgopoulos et al 2007 J. Neural Eng. 4 349-55) we reported on the use of magnetoencephalographic (MEG) synchronous neural interactions (SNI) as a functional biomarker in Alzheimer's dementia (AD) diagnosis. Here we report on the application of canonical correlation analysis to investigate the relations between SNI and cognitive neuropsychological (NP) domains in AD patients. First, we performed individual correlations between each SNI and each NP, which provided an initial link between SNI and specific cognitive tests. Next, we performed factor analysis on each set, followed by a canonical correlation analysis between the derived SNI and NP factors. This last analysis optimally associated the entire MEG signal with cognitive function. The results revealed that SNI as a whole were mostly associated with memory and language, and, slightly less, executive function, processing speed and visuospatial abilities, thus differentiating functions subserved by the frontoparietal and the temporal cortices. These findings provide a direct interpretation of the information carried by the SNI and set the basis for identifying specific neural disease phenotypes according to cognitive deficits.
From grand-canonical density functional theory towards rational compound design
NASA Astrophysics Data System (ADS)
von Lilienfeld, Anatole
2008-03-01
The fundamental challenge of rational compound design, ie the reverse engineering of chemical compounds with predefined specific properties, originates in the high-dimensional combinatorial nature of chemical space. Chemical space is the hyper-space of a given set of molecular observables that is spanned by the grand-canonical variables (particle densities of electrons and nuclei) which define chemical composition. A brief but rigorous description of chemical space within the molecular grand-canonical ensemble multi-component density functional theory framework will be given [1]. Numerical results will be presented for intermolecular energies as a continuous function of alchemical variations within a neutral and isoelectronic 10 proton system, including CH4, NH3, H2O, and HF, interacting with formic acid [2]. Furthermore, engineering the Fermi level through alchemical generation of boron-nitrogen doped mutants of benzene shall be discussed [3].[1] von Lilienfeld and Tuckerman JCP 125 154104 (2006)[2] von Lilienfeld and Tuckerman JCTC 3 1083 (2007)[3] Marcon et al. JCP 127 064305 (2007)
Dominant partition method. [based on a wave function formalism
NASA Technical Reports Server (NTRS)
Dixon, R. M.; Redish, E. F.
1979-01-01
By use of the L'Huillier, Redish, and Tandy (LRT) wave function formalism, a partially connected method, the dominant partition method (DPM) is developed for obtaining few body reductions of the many body problem in the LRT and Bencze, Redish, and Sloan (BRS) formalisms. The DPM maps the many body problem to a fewer body one by using the criterion that the truncated formalism must be such that consistency with the full Schroedinger equation is preserved. The DPM is based on a class of new forms for the irreducible cluster potential, which is introduced in the LRT formalism. Connectivity is maintained with respect to all partitions containing a given partition, which is referred to as the dominant partition. Degrees of freedom corresponding to the breakup of one or more of the clusters of the dominant partition are treated in a disconnected manner. This approach for simplifying the complicated BRS equations is appropriate for physical problems where a few body reaction mechanism prevails.
Canonical fluid thermodynamics
NASA Technical Reports Server (NTRS)
Schmid, L. A.
1972-01-01
The space-time integral of the thermodynamic pressure plays the role of the thermodynamic potential for compressible, adiabatic flow in the sense that the pressure integral for stable flow is less than for all slightly different flows. This stability criterion can be converted into a variational minimum principle by requiring the molar free-enthalpy and the temperature, which are the arguments of the pressure function, to be generalized velocities, that is, the proper-time derivatives of scalar spare-time functions which are generalized coordinates in the canonical formalism. In a fluid context, proper-time differentiation must be expressed in terms of three independent quantities that specify the fluid velocity. This can be done in several ways, all of which lead to different variants (canonical transformations) of the same constraint-free action integral whose Euler-Lagrange equations are just the well-known equations of motion for adiabatic compressible flow.
Canonical Wnt signaling in megakaryocytes regulates proplatelet formation
Macaulay, Iain C.; Thon, Jonathan N.; Tijssen, Marloes R.; Steele, Brian M.; MacDonald, Bryan T.; Meade, Gerardene; Burns, Philippa; Rendon, Augusto; Salunkhe, Vishal; Murphy, Ronan P.; Bennett, Cavan; Watkins, Nicholas A.; He, Xi; Fitzgerald, Desmond J.; Italiano, Joseph E.
2013-01-01
Wnt signaling is involved in numerous aspects of vertebrate development and homeostasis, including the formation and function of blood cells. Here, we show that canonical and noncanonical Wnt signaling pathways are present and functional in megakaryocytes (MKs), with several Wnt effectors displaying MK-restricted expression. Using the CHRF288-11 cell line as a model for human MKs, the canonical Wnt3a signal was found to induce a time and dose-dependent increase in β-catenin expression. β-catenin accumulation was inhibited by the canonical antagonist dickkopf-1 (DKK1) and by the noncanonical agonist Wnt5a. Whole genome expression analysis demonstrated that Wnt3a and Wnt5a regulated distinct patterns of gene expression in MKs, and revealed a further interplay between canonical and noncanonical Wnt pathways. Fetal liver cells derived from low-density-lipoprotein receptor-related protein 6-deficient mice (LRP6−/−), generated dramatically reduced numbers of MKs in culture of lower ploidy (2N and 4N) than wild-type controls, implicating LRP6-dependent Wnt signaling in MK proliferation and maturation. Finally, in wild-type mature murine fetal liver-derived MKs, Wnt3a potently induced proplatelet formation, an effect that could be completely abrogated by DKK1. These data identify novel extrinsic regulators of proplatelet formation, and reveal a profound role for Wnt signaling in platelet production. PMID:23160460
Erythroleukemia cells acquire an alternative mitophagy capability.
Wang, Jian; Fang, Yixuan; Yan, Lili; Yuan, Na; Zhang, Suping; Xu, Li; Nie, Meilan; Zhang, Xiaoying; Wang, Jianrong
2016-04-19
Leukemia cells are superior to hematopoietic cells with a normal differentiation potential in buffering cellular stresses, but the underlying mechanisms for this leukemic advantage are not fully understood. Using CRISPR/Cas9 deletion of the canonical autophagy-essential gene Atg7, we found that erythroleukemia K562 cells are armed with two sets of autophagic machinery. Alternative mitophagy is functional regardless of whether the canonical autophagic mechanism is intact or disrupted. Although canonical autophagy defects attenuated cell cycling, proliferation and differentiation potential, the leukemia cells retained their abilities for mitochondrial clearance and for maintaining low levels of reactive oxygen species (ROS) and apoptosis. Treatment with a specific inducer of mitophagy revealed that the canonical autophagy-defective erythroleukemia cells preserved a mitophagic response. Selective induction of mitophagy was associated with the upregulation and localization of RAB9A on the mitochondrial membrane in both wild-type and Atg7(-/-) leukemia cells. When the leukemia cells were treated with the alternative autophagy inhibitor brefeldin A or when the RAB9A was knocked down, this mitophagy was prohibited. This was accompanied by elevated ROS levels and apoptosis as well as reduced DNA damage repair. Therefore, the results suggest that erythroleukemia K562 cells possess an ATG7-independent alternative mitophagic mechanism that functions even when the canonical autophagic process is impaired, thereby maintaining the ability to respond to stresses such as excessive ROS and DNA damage.
NASA Astrophysics Data System (ADS)
Odabasi, Mustafa; Cetin, Eylem; Sofuoglu, Aysun
Octanol-air partition coefficients ( KOA) for 14 polycyclic aromatic hydrocarbons (PAHs) were determined as a function of temperature using the gas chromatographic retention time method. log KOA values at 25° ranged over six orders of magnitude, between 6.34 (acenaphthylene) and 12.59 (dibenz[ a,h]anthracene). The determined KOA values were within factor of 0.7 (dibenz[ a,h]anthracene) to 15.1 (benz[ a]anthracene) of values calculated as the ratio of octanol-water partition coefficient to dimensionless Henry's law constant. Supercooled liquid vapor pressures ( PL) of 13 PAHs were also determined using the gas chromatographic retention time technique. Activity coefficients in octanol calculated using KOA and PL ranged between 3.2 and 6.2 indicating near-ideal solution behavior. Atmospheric concentrations measured in this study in Izmir, Turkey were used to investigate the partitioning of PAHs between particle and gas-phases. Experimental gas-particle partition coefficients ( Kp) were compared to the predictions of KOA absorption and KSA (soot-air partition coefficient) models. Octanol-based absorptive partitioning model predicted lower partition coefficients especially for relatively volatile PAHs. Ratios of measured/modeled partition coefficients ranged between 1.1 and 15.5 (4.5±6.0, average±SD) for KOA model. KSA model predictions were relatively better and measured to modeled ratios ranged between 0.6 and 5.6 (2.3±2.7, average±SD).
O'Donoghue, Robert J J; Knight, Darryl A; Richards, Carl D; Prêle, Cecilia M; Lau, Hui Ling; Jarnicki, Andrew G; Jones, Jessica; Bozinovski, Steven; Vlahos, Ross; Thiem, Stefan; McKenzie, Brent S; Wang, Bo; Stumbles, Philip; Laurent, Geoffrey J; McAnulty, Robin J; Rose-John, Stefan; Zhu, Hong Jian; Anderson, Gary P; Ernst, Matthias R; Mutsaers, Steven E
2012-01-01
Idiopathic pulmonary fibrosis (IPF) is a fatal disease that is unresponsive to current therapies and characterized by excessive collagen deposition and subsequent fibrosis. While inflammatory cytokines, including interleukin (IL)-6, are elevated in IPF, the molecular mechanisms that underlie this disease are incompletely understood, although the development of fibrosis is believed to depend on canonical transforming growth factor (TGF)-β signalling. We examined bleomycin-induced inflammation and fibrosis in mice carrying a mutation in the shared IL-6 family receptor gp130. Using genetic complementation, we directly correlate the extent of IL-6-mediated, excessive Stat3 activity with inflammatory infiltrates in the lung and the severity of fibrosis in corresponding gp130757F mice. The extent of fibrosis was attenuated in B lymphocyte-deficient gp130757F;µMT−/− compound mutant mice, but fibrosis still occurred in their Smad3−/− counterparts consistent with the capacity of excessive Stat3 activity to induce collagen 1α1 gene transcription independently of canonical TGF-β/Smad3 signalling. These findings are of therapeutic relevance, since we confirmed abundant STAT3 activation in fibrotic lungs from IPF patients and showed that genetic reduction of Stat3 protected mice from bleomycin-induced lung fibrosis. PMID:22684844
Computer code for controller partitioning with IFPC application: A user's manual
NASA Technical Reports Server (NTRS)
Schmidt, Phillip H.; Yarkhan, Asim
1994-01-01
A user's manual for the computer code for partitioning a centralized controller into decentralized subcontrollers with applicability to Integrated Flight/Propulsion Control (IFPC) is presented. Partitioning of a centralized controller into two subcontrollers is described and the algorithm on which the code is based is discussed. The algorithm uses parameter optimization of a cost function which is described. The major data structures and functions are described. Specific instructions are given. The user is led through an example of an IFCP application.
p-Forms and diffeomorphisms: Hamiltonian formulation
NASA Astrophysics Data System (ADS)
Baulieu, Laurent; Henneaux, Marc
1987-07-01
The BRST charges corresponding to various (equivalent) ways of writing the action of the diffeomorphism group on p-form gauge fields are canonically related by a canonical transformation in the extended phase space which is explicitly constructed. The occurrence of higher order structure functions is pointed out. Also at: Centro de Estudios Cientificos de Santiago, Casilla 16443, Santiago 9, Chile.
Famili, Farbod; Perez, Laura Garcia; Naber, Brigitta Ae; Noordermeer, Jasprina N; Fradkin, Lee G; Staal, Frank Jt
2016-11-24
The development of blood and immune cells requires strict control by various signaling pathways in order to regulate self-renewal, differentiation and apoptosis in stem and progenitor cells. Recent evidence indicates critical roles for the canonical and non-canonical Wnt pathways in hematopoiesis. The non-canonical Wnt pathway is important for establishment of cell polarity and cell migration and regulates apoptosis in the thymus. We here investigate the role of the non-canonical Wnt receptor Ryk in hematopoiesis and lymphoid development. We show that there are dynamic changes in Ryk expression during development and in different hematopoietic tissues. Functionally, Ryk regulates NK cell development in a temporal fashion. Moreover, Ryk-deficient mice show diminished, but not absent self-renewal of hematopoietic stem cells (HSC), via effects on mildly increased proliferation and apoptosis. Thus, Ryk deficiency in HSCs from fetal liver reduces their quiescence, leading to proliferation-induced apoptosis and decreased self-renewal.
An Investigation of Document Partitions.
ERIC Educational Resources Information Center
Shaw, W. M., Jr.
1986-01-01
Empirical significance of document partitions is investigated as a function of index term-weight and similarity thresholds. Results show the same empirically preferred partitions can be detected by two independent strategies: an analysis of cluster-based retrieval analysis and an analysis of regularities in the underlying structure of the document…
ESTIMATING DISSOLVED ORGANIC CARBON PARTITION COEFFICIENTS FOR NONIONIC ORGANIC CHEMICALS
A literature search was performed for dissolved organic carbon/water partition coefficients for nonionic chemicals (Kdoc) and Kdoc data was taken from more than sixty references. The Kdoc data were evaluated as a function of the n-octanol/water partition coefficients (Kow). A pre...
Saldanha-Araujo, Felipe; Haddad, Rodrigo; de Farias, Kelen C R Malmegrim; Souza, Alessandra de Paula Alves; Palma, Patrícia V; Araujo, Amélia G; Orellana, Maristela D; Voltarelli, Julio C; Covas, Dimas T; Zago, Marco A; Panepucci, Rodrigo A
2012-01-01
Abstract Mesenchymal stem cells (MSCs) are known to induce the conversion of activated T cells into regulatory T cells in vitro. The marker CD69 is a target of canonical nuclear factor kappa-B (NF-κB) signalling and is transiently expressed upon activation; however, stable CD69 expression defines cells with immunoregulatory properties. Given its enormous therapeutic potential, we explored the molecular mechanisms underlying the induction of regulatory cells by MSCs. Peripheral blood CD3+ T cells were activated and cultured in the presence or absence of MSCs. CD4+ cell mRNA expression was then characterized by microarray analysis. The drug BAY11-7082 (BAY) and a siRNA against v-rel reticuloendotheliosis viral oncogene homolog B (RELB) were used to explore the differential roles of canonical and non-canonical NF-κB signalling, respectively. Flow cytometry and real-time PCR were used for analyses. Genes with immunoregulatory functions, CD69 and non-canonical NF-κB subunits (RELB and NFKB2) were all expressed at higher levels in lymphocytes co-cultured with MSCs. The frequency of CD69+ cells among lymphocytes cultured alone progressively decreased after activation. In contrast, the frequency of CD69+ cells increased significantly following activation in lymphocytes co-cultured with MSCs. Inhibition of canonical NF-κB signalling by BAY immediately following activation blocked the induction of CD69; however, inhibition of canonical NF-κB signalling on the third day further induced the expression of CD69. Furthermore, late expression of CD69 was inhibited by RELB siRNA. These results indicate that the canonical NF-κB pathway controls the early expression of CD69 after activation; however, in an immunoregulatory context, late and sustained CD69 expression is promoted by the non-canonical pathway and is inhibited by canonical NF-κB signalling. PMID:21777379
Complex Chern-Simons Theory at Level k via the 3d-3d Correspondence
NASA Astrophysics Data System (ADS)
Dimofte, Tudor
2015-10-01
We use the 3d-3d correspondence together with the DGG construction of theories T n [ M] labelled by 3-manifolds M to define a non-perturbative state-integral model for Chern-Simons theory at any level k, based on ideal triangulations. The resulting partition functions generalize a widely studied k = 1 state-integral, as well as the 3d index, which is k = 0. The Chern-Simons partition functions correspond to partition functions of T n [ M] on squashed lens spaces L( k, 1). At any k, they admit a holomorphic-antiholomorphic factorization, corresponding to the decomposition of L( k, 1) into two solid tori, and the associated holomorphic block decomposition of the partition functions of T n [ M]. A generalization to L( k, p) is also presented. Convergence of the state integrals, for any k, requires triangulations to admit a positive angle structure; we propose that this is also necessary for the DGG gauge theory T n [ M] to flow to a desired IR SCFT.
Beyond ubiquitination: the atypical functions of Fbxo7 and other F-box proteins.
Nelson, David E; Randle, Suzanne J; Laman, Heike
2013-10-09
F-box proteins (FBPs) are substrate-recruiting subunits of Skp1-cullin1-FBP (SCF)-type E3 ubiquitin ligases. To date, 69 FBPs have been identified in humans, but ubiquitinated substrates have only been identified for a few, with the majority of FBPs remaining 'orphans'. In recent years, a growing body of work has identified non-canonical, SCF-independent roles for about 12% of the human FBPs. These atypical FBPs affect processes as diverse as transcription, cell cycle regulation, mitochondrial dynamics and intracellular trafficking. Here, we provide a general review of FBPs, with a particular emphasis on these expanded functions. We review Fbxo7 as an exemplar of this special group as it has well-defined roles in both SCF and non-SCF complexes. We review its function as a cell cycle regulator, via its ability to stabilize p27 protein and Cdk6 complexes, and as a proteasome regulator, owing to its high affinity binding to PI31. We also highlight recent advances in our understanding of Fbxo7 function in Parkinson's disease, where it functions in the regulation of mitophagy with PINK1 and Parkin. We postulate that a few extraordinary FBPs act as platforms that seamlessly segue their canonical and non-canonical functions to integrate different cellular pathways and link their regulation.
Drug Distribution. Part 1. Models to Predict Membrane Partitioning.
Nagar, Swati; Korzekwa, Ken
2017-03-01
Tissue partitioning is an important component of drug distribution and half-life. Protein binding and lipid partitioning together determine drug distribution. Two structure-based models to predict partitioning into microsomal membranes are presented. An orientation-based model was developed using a membrane template and atom-based relative free energy functions to select drug conformations and orientations for neutral and basic drugs. The resulting model predicts the correct membrane positions for nine compounds tested, and predicts the membrane partitioning for n = 67 drugs with an average fold-error of 2.4. Next, a more facile descriptor-based model was developed for acids, neutrals and bases. This model considers the partitioning of neutral and ionized species at equilibrium, and can predict membrane partitioning with an average fold-error of 2.0 (n = 92 drugs). Together these models suggest that drug orientation is important for membrane partitioning and that membrane partitioning can be well predicted from physicochemical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miner, Jacob Carlson; Garcia, Angel Enrique
Monovalent salt solutions have strongly coupled interactions with biopolymers, from large polyelectrolytes to small RNA oligomers. High salt concentrations have been known to induce transitions in the structure of RNA, producing non-canonical configurations and even driving RNA to precipitate out of solution. Using all-atom molecular dynamics simulations, we model a monovalent salt species (KCL) at high concentrations (0.1–3m) and calculate the equilibrium distributions of water and ions around a small tetraloop-forming RNA oligomer in a variety of structural arrangements: folded A-RNA (canonical) and Z-RNA (non-canonical) tetraloops and unfolded configurations. From these data, we calculate the ion preferential binding coefficients andmore » Donnan coefficients for the RNA oligomer as a function of concentration and structure. We find that cation accumulation is highest around non-canonical Z-RNA configurations at concentrations below 0.5m, while unfolded configurations accumulate the most co-ions in all concentrations. By contrast, canonical A-RNA structures consistently show the lowest accumulations for all ion species. Water distributions vary markedly with RNA configuration but show little dependency on KCL concentration. Based on Donnan coefficient calculations, the net charge of the solution at the surface of the RNA decreases linearly as a function of salt concentration and becomes net-neutral near 2.5–3m KCL for folded configurations, while unfolded configurations still show a positive solution charge. Our findings show that all-atom molecular dynamics can describe the equilibrium distributions of monovalent salt in the presence of small RNA oligomers at KCL concentrations where ion correlation effects become important. Furthermore, these results provide valuable insights into the distributions of water and ions near the RNA oligomer surface as a function of structural configuration.« less
Miner, Jacob Carlson; Garcia, Angel Enrique
2018-05-29
Monovalent salt solutions have strongly coupled interactions with biopolymers, from large polyelectrolytes to small RNA oligomers. High salt concentrations have been known to induce transitions in the structure of RNA, producing non-canonical configurations and even driving RNA to precipitate out of solution. Using all-atom molecular dynamics simulations, we model a monovalent salt species (KCL) at high concentrations (0.1–3m) and calculate the equilibrium distributions of water and ions around a small tetraloop-forming RNA oligomer in a variety of structural arrangements: folded A-RNA (canonical) and Z-RNA (non-canonical) tetraloops and unfolded configurations. From these data, we calculate the ion preferential binding coefficients andmore » Donnan coefficients for the RNA oligomer as a function of concentration and structure. We find that cation accumulation is highest around non-canonical Z-RNA configurations at concentrations below 0.5m, while unfolded configurations accumulate the most co-ions in all concentrations. By contrast, canonical A-RNA structures consistently show the lowest accumulations for all ion species. Water distributions vary markedly with RNA configuration but show little dependency on KCL concentration. Based on Donnan coefficient calculations, the net charge of the solution at the surface of the RNA decreases linearly as a function of salt concentration and becomes net-neutral near 2.5–3m KCL for folded configurations, while unfolded configurations still show a positive solution charge. Our findings show that all-atom molecular dynamics can describe the equilibrium distributions of monovalent salt in the presence of small RNA oligomers at KCL concentrations where ion correlation effects become important. Furthermore, these results provide valuable insights into the distributions of water and ions near the RNA oligomer surface as a function of structural configuration.« less
NASA Astrophysics Data System (ADS)
Miner, Jacob Carlson; García, Angel Enrique
2018-06-01
Monovalent salt solutions have strongly coupled interactions with biopolymers, from large polyelectrolytes to small RNA oligomers. High salt concentrations have been known to induce transitions in the structure of RNA, producing non-canonical configurations and even driving RNA to precipitate out of solution. Using all-atom molecular dynamics simulations, we model a monovalent salt species (KCL) at high concentrations (0.1-3m) and calculate the equilibrium distributions of water and ions around a small tetraloop-forming RNA oligomer in a variety of structural arrangements: folded A-RNA (canonical) and Z-RNA (non-canonical) tetraloops and unfolded configurations. From these data, we calculate the ion preferential binding coefficients and Donnan coefficients for the RNA oligomer as a function of concentration and structure. We find that cation accumulation is highest around non-canonical Z-RNA configurations at concentrations below 0.5m, while unfolded configurations accumulate the most co-ions in all concentrations. By contrast, canonical A-RNA structures consistently show the lowest accumulations for all ion species. Water distributions vary markedly with RNA configuration but show little dependency on KCL concentration. Based on Donnan coefficient calculations, the net charge of the solution at the surface of the RNA decreases linearly as a function of salt concentration and becomes net-neutral near 2.5-3m KCL for folded configurations, while unfolded configurations still show a positive solution charge. Our findings show that all-atom molecular dynamics can describe the equilibrium distributions of monovalent salt in the presence of small RNA oligomers at KCL concentrations where ion correlation effects become important. Furthermore, these results provide valuable insights into the distributions of water and ions near the RNA oligomer surface as a function of structural configuration.
Miner, Jacob Carlson; García, Angel Enrique
2018-06-14
Monovalent salt solutions have strongly coupled interactions with biopolymers, from large polyelectrolytes to small RNA oligomers. High salt concentrations have been known to induce transitions in the structure of RNA, producing non-canonical configurations and even driving RNA to precipitate out of solution. Using all-atom molecular dynamics simulations, we model a monovalent salt species (KCL) at high concentrations (0.1-3m) and calculate the equilibrium distributions of water and ions around a small tetraloop-forming RNA oligomer in a variety of structural arrangements: folded A-RNA (canonical) and Z-RNA (non-canonical) tetraloops and unfolded configurations. From these data, we calculate the ion preferential binding coefficients and Donnan coefficients for the RNA oligomer as a function of concentration and structure. We find that cation accumulation is highest around non-canonical Z-RNA configurations at concentrations below 0.5m, while unfolded configurations accumulate the most co-ions in all concentrations. By contrast, canonical A-RNA structures consistently show the lowest accumulations for all ion species. Water distributions vary markedly with RNA configuration but show little dependency on KCL concentration. Based on Donnan coefficient calculations, the net charge of the solution at the surface of the RNA decreases linearly as a function of salt concentration and becomes net-neutral near 2.5-3m KCL for folded configurations, while unfolded configurations still show a positive solution charge. Our findings show that all-atom molecular dynamics can describe the equilibrium distributions of monovalent salt in the presence of small RNA oligomers at KCL concentrations where ion correlation effects become important. Furthermore, these results provide valuable insights into the distributions of water and ions near the RNA oligomer surface as a function of structural configuration.
Discrete linear canonical transforms based on dilated Hermite functions.
Pei, Soo-Chang; Lai, Yun-Chiu
2011-08-01
Linear canonical transform (LCT) is very useful and powerful in signal processing and optics. In this paper, discrete LCT (DLCT) is proposed to approximate LCT by utilizing the discrete dilated Hermite functions. The Wigner distribution function is also used to investigate DLCT performances in the time-frequency domain. Compared with the existing digital computation of LCT, our proposed DLCT possess additivity and reversibility properties with no oversampling involved. In addition, the length of input/output signals will not be changed before and after the DLCT transformations, which is consistent with the time-frequency area-preserving nature of LCT; meanwhile, the proposed DLCT has very good approximation of continuous LCT.
Statistical mechanics of free particles on space with Lie-type noncommutativity
NASA Astrophysics Data System (ADS)
Shariati, Ahmad; Khorrami, Mohammad; Fatollahi, Amir H.
2010-07-01
Effects of Lie-type noncommutativity on thermodynamic properties of a system of free identical particles are investigated. A definition for finite volume of the configuration space is given, and the grandcanonical partition function in the thermodynamic limit is calculated. Two possible definitions for the pressure are discussed, which are equivalent when the noncommutativity vanishes. The thermodynamic observables are extracted from the partition function. Different limits are discussed where either the noncommutativity or the quantum effects are important. Finally, specific cases are discussed where the group is SU(2) or SO(3), and the partition function of a nondegenerate gas is calculated.
The Partition Function in the Four-Dimensional Schwarz-Type Topological Half-Flat Two-Form Gravity
NASA Astrophysics Data System (ADS)
Abe, Mitsuko
We derive the partition functions of the Schwarz-type four-dimensional topological half-flat two-form gravity model on K3-surface or T4 up to on-shell one-loop corrections. In this model the bosonic moduli spaces describe an equivalent class of a trio of the Einstein-Kähler forms (the hyper-Kähler forms). The integrand of the partition function is represented by the product of some bar ∂ -torsions. bar ∂ -torsion is the extension of R-torsion for the de Rham complex to that for the bar ∂ -complex of a complex analytic manifold.
NASA Astrophysics Data System (ADS)
Qian, Shang-Wu; Gu, Zhi-Yu
2001-12-01
Using the Feynman's path integral with topological constraints arising from the presence of one singular line, we find the homotopic probability distribution P_L^n for the winding number n and the partition function P_L of the entangled system around a ribbon segment chain. We find that when the width of the ribbon segment chain 2a increases,the partition function exponentially decreases, whereas the free energy increases an amount, which is proportional to the square of the width. When the width tends to zero we obtain the same results as those of a single chain with one singular point.
Biological diversity can be divided into: alpha (α, local), beta (β, difference in assemblage composition among locals), and gamma (γ, total diversity). We assessed the partitioning of taxonomic diversity of Ephemeroptera, Plecoptera and Trichoptera (EPT) and of functional feedin...
Stream pH as an abiotic gradient influencing distributions of trout in Pennsylvania streams
Kocovsky, P.M.; Carline, R.F.
2005-01-01
Elevation and stream slope are abiotic gradients that limit upstream distributions of brook trout Salvelinus fontinalis and brown trout Salmo trutta in streams. We sought to determine whether another abiotic gradient, base-flow pH, may also affect distributions of these two species in eastern North America streams. We used historical data from the Pennsylvania Fish and Boat Commission's fisheries management database to explore the effects of reach elevation, slope, and base-flow pH on distributional limits to brook trout and brown trout in Pennsylvania streams in the Appalachian Plateaus and Ridge and Valley physiographic provinces. Discriminant function analysis (DFA) was used to calculate a canonical axis that separated allopatric brook trout populations from allopatric brown trout populations and allowed us to assess which of the three independent variables were important gradients along which communities graded from allopatric brook trout to allopatric brown trout. Canonical structure coefficients from DFA indicated that in both physiographic provinces, stream base-flow pH and slope were important factors in distributional limits; elevation was also an important factor in the Ridge and Valley Province but not the Appalachian Plateaus Province. Graphs of each variable against the proportion of brook trout in a community also identified apparent zones of allopatry for both species on the basis of pH and stream slope. We hypothesize that pH-mediated interspecific competition that favors brook trout in competition with brown trout at lower pH is the most plausible mechanism for segregation of these two species along pH gradients. Our discovery that trout distributions in Pennsylvania are related to stream base-flow pH has important implications for brook trout conservation in acidified regions. Carefully designed laboratory and field studies will be required to test our hypothesis and elucidate the mechanisms responsible for the partitioning of brook trout and brown trout along pH gradients. ?? Copyright by the American Fisheries Society 2005.
Osborn, Daniel P S; Roccasecca, Rosa Maria; McMurray, Fiona; Hernandez-Hernandez, Victor; Mukherjee, Sriparna; Barroso, Inês; Stemple, Derek; Cox, Roger; Beales, Philip L; Christou-Savina, Sonia
2014-01-01
Common intronic variants in the Human fat mass and obesity-associated gene (FTO) are found to be associated with an increased risk of obesity. Overexpression of FTO correlates with increased food intake and obesity, whilst loss-of-function results in lethality and severe developmental defects. Despite intense scientific discussions around the role of FTO in energy metabolism, the function of FTO during development remains undefined. Here, we show that loss of Fto leads to developmental defects such as growth retardation, craniofacial dysmorphism and aberrant neural crest cells migration in Zebrafish. We find that the important developmental pathway, Wnt, is compromised in the absence of FTO, both in vivo (zebrafish) and in vitro (Fto(-/-) MEFs and HEK293T). Canonical Wnt signalling is down regulated by abrogated β-Catenin translocation to the nucleus whilst non-canonical Wnt/Ca(2+) pathway is activated via its key signal mediators CaMKII and PKCδ. Moreover, we demonstrate that loss of Fto results in short, absent or disorganised cilia leading to situs inversus, renal cystogenesis, neural crest cell defects and microcephaly in Zebrafish. Congruently, Fto knockout mice display aberrant tissue specific cilia. These data identify FTO as a protein-regulator of the balanced activation between canonical and non-canonical branches of the Wnt pathway. Furthermore, we present the first evidence that FTO plays a role in development and cilia formation/function.
Wang, Wang; Fernandez-Sanz, Celia; Sheu, Shey-Shing
2018-05-01
Recent advancement in mitochondrial research has significantly extended our knowledge on the role and regulation of mitochondria in health and disease. One important breakthrough is the delineation of how mitochondrial morphological changes, termed mitochondrial dynamics, are coupled to the bioenergetics and signaling functions of mitochondria. In general, it is believed that fusion leads to an increased mitochondrial respiration efficiency and resistance to stress-induced dysfunction while fission does the contrary. This concept seems not applicable to adult cardiomyocytes. The mitochondria in adult cardiomyocytes exhibit fragmented morphology (tilted towards fission) and show less networking and movement as compared to other cell types. However, being the most energy-demanding cells, cardiomyocytes in the adult heart possess vast number of mitochondria, high level of energy flow, and abundant mitochondrial dynamics proteins. This apparent discrepancy could be explained by recently identified new functions of the mitochondrial dynamics proteins. These "non-canonical" roles of mitochondrial dynamics proteins range from controlling inter-organelle communication to regulating cell viability and survival under metabolic stresses. Here, we summarize the newly identified non-canonical roles of mitochondrial dynamics proteins. We focus on how these fission and fusion independent roles of dynamics proteins regulate mitochondrial bioenergetics. We also discuss potential molecular mechanisms, unique intracellular location, and the cardiovascular disease relevance of these non-canonical roles of the dynamics proteins. We propose that future studies are warranted to differentiate the canonical and non-canonical roles of dynamics proteins and to identify new approaches for the treatment of heart diseases. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers. Copyright © 2017 Elsevier B.V. All rights reserved.
Tanaka, Tomohiro; Zhou, Yue; Ozawa, Tatsuhiko; Okizono, Ryuya; Banba, Ayako; Yamamura, Tomohiro; Oga, Eiji; Muraguchi, Atsushi; Sakurai, Hiroaki
2018-02-16
The canonical description of transmembrane receptor function is initial binding of ligand, followed by initiation of intracellular signaling and then internalization en route to degradation or recycling to the cell surface. It is known that low concentrations of extracellular ligand lead to a higher proportion of receptor that is recycled and that non-canonical mechanisms of receptor activation, including phosphorylation by the kinase p38, can induce internalization and recycling. However, no connections have been made between these pathways; i.e. it has yet to be established what happens to unbound receptors following stimulation with ligand. Here we demonstrate that a minimal level of activation of epidermal growth factor receptor (EGFR) tyrosine kinase by low levels of ligand is sufficient to fully activate downstream mitogen-activated protein kinase (MAPK) pathways, with most of the remaining unbound EGFR molecules being efficiently phosphorylated at intracellular serine/threonine residues by activated mitogen-activated protein kinase. This non-canonical, p38-mediated phosphorylation of the C-tail of EGFR, near Ser-1015, induces the clathrin-mediated endocytosis of the unliganded EGFR monomers, which occurs slightly later than the canonical endocytosis of ligand-bound EGFR dimers via tyrosine autophosphorylation. EGFR endocytosed via the non-canonical pathway is largely recycled back to the plasma membrane as functional receptors, whereas p38-independent populations are mainly sorted for lysosomal degradation. Moreover, ligand concentrations balance these endocytic trafficking pathways. These results demonstrate that ligand-activated EGFR signaling controls unliganded receptors through feedback phosphorylation, identifying a dual-mode regulation of the endocytic trafficking dynamics of EGFR. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Melas, Evangelos
2011-07-01
The 3+1 (canonical) decomposition of all geometries admitting two-dimensional space-like surfaces is exhibited as a generalization of a previous work. A proposal, consisting of a specific re-normalization Assumption and an accompanying Requirement, which has been put forward in the 2+1 case is now generalized to 3+1 dimensions. This enables the canonical quantization of these geometries through a generalization of Kuchař's quantization scheme in the case of infinite degrees of freedom. The resulting Wheeler-deWitt equation is based on a re-normalized manifold parameterized by three smooth scalar functionals. The entire space of solutions to this equation is analytically given, a fact that is entirely new to the present case. This is made possible by exploiting the freedom left by the imposition of the Requirement and contained in the third functional.
Matthews, Lindsay A.; Selvaratnam, Rajeevan; Jones, Darryl R.; Akimoto, Madoka; McConkey, Brendan J.; Melacini, Giuseppe; Duncker, Bernard P.; Guarné, Alba
2014-01-01
Forkhead-associated (FHA) and BRCA1 C-terminal (BRCT) domains are overrepresented in DNA damage and replication stress response proteins. They function primarily as phosphoepitope recognition modules but can also mediate non-canonical interactions. The latter are rare, and only a few have been studied at a molecular level. We have identified a crucial non-canonical interaction between the N-terminal FHA1 domain of the checkpoint effector kinase Rad53 and the BRCT domain of the regulatory subunit of the Dbf4-dependent kinase that is critical to suppress late origin firing and to stabilize stalled forks during replication stress. The Rad53-Dbf4 interaction is phosphorylation-independent and involves a novel non-canonical interface on the FHA1 domain. Mutations within this surface result in hypersensitivity to genotoxic stress. Importantly, this surface is not conserved in the FHA2 domain of Rad53, suggesting that the FHA domains of Rad53 gain specificity by engaging additional interaction interfaces beyond their phosphoepitope-binding site. In general, our results point to FHA domains functioning as complex logic gates rather than mere phosphoepitope-targeting modules. PMID:24285546
A brief history of partitions of numbers, partition functions and their modern applications
NASA Astrophysics Data System (ADS)
Debnath, Lokenath
2016-04-01
Chung, Pak-Kwong; Zhao, Yanan; Liu, Jing-Dong; Quach, Binh
This study aimed to explore the relationship between the functional fitness (FF) and health-related quality of life (HRQoL) in older adults, and to identify the key subdimensions of FF and HRQoL influencing their overall relationship. This cross-sectional study was performed among 851 independent community members (65-84 years; men=402). The Senior Fitness Test and the Short Form 36 Health Survey were used to measure FF and HRQoL, respectively. A canonical correlation analysis was conducted using seven fitness variables as predictors of eight HRQoL variables to examine the relationship between FF and HRQoL. The overall FF was positively correlated with the overall HRQoL in both men (canonical correlation=0.350) and women (canonical correlation=0.456). The up-and-go and 2-min step contributed the most to FF, and physical functioning contributed the most to HRQOL among men. Conversely, the up-and-go and 30-s chair stand contributed the most to FF, and physical functioning contributed the most to HRQoL in women. There were positive and moderate relationships between overall FF and overall HRQOL in older adults. The FF has a significant influence on HRQoL, particularly physical functioning. The main FF components influencing the relationship between FF and HRQoL in men are balance and agility and aerobic endurance, whereas in women they are balance and agility and lower extremity muscle strength. Results from this study facilitate comprehensively understanding the relationship between FF and HRQoL, and generating critical insight into HRQoL improvement from the perspective of FF enhancement. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Extensions of PDZ domains as important structural and functional elements.
Wang, Conan K; Pan, Lifeng; Chen, Jia; Zhang, Mingjie
2010-08-01
'Divide and conquer' has been the guiding strategy for the study of protein structure and function. Proteins are divided into domains with each domain having a canonical structural definition depending on its type. In this review, we push forward with the interesting observation that many domains have regions outside of their canonical definition that affect their structure and function; we call these regions 'extensions'. We focus on the highly abundant PDZ (PSD-95, DLG1 and ZO-1) domain. Using bioinformatics, we find that many PDZ domains have potential extensions and we developed an openly-accessible website to display our results ( http://bcz102.ust.hk/pdzex/ ). We propose, using well-studied PDZ domains as illustrative examples, that the roles of PDZ extensions can be classified into at least four categories: 1) protein dynamics-based modulation of target binding affinity, 2) provision of binding sites for macro-molecular assembly, 3) structural integration of multi-domain modules, and 4) expansion of the target ligand-binding pocket. Our review highlights the potential structural and functional importance of domain extensions, highlighting the significance of looking beyond the canonical boundaries of protein domains in general.
Hoggard, Timothy; Liachko, Ivan; Burt, Cassaundra; Meikle, Troy; Jiang, Katherine; Craciun, Gheorghe; Dunham, Maitreya J.; Fox, Catherine A.
2016-01-01
The ability of plasmids to propagate in Saccharomyces cerevisiae has been instrumental in defining eukaryotic chromosomal control elements. Stable propagation demands both plasmid replication, which requires a chromosomal replication origin (i.e., an ARS), and plasmid distribution to dividing cells, which requires either a chromosomal centromere for segregation or a plasmid-partitioning element. While our knowledge of yeast ARSs and centromeres is relatively advanced, we know less about chromosomal regions that can function as plasmid partitioning elements. The Rap1 protein-binding site (RAP1) present in transcriptional silencers and telomeres of budding yeast is a known plasmid-partitioning element that functions to anchor a plasmid to the inner nuclear membrane (INM), which in turn facilitates plasmid distribution to daughter cells. This Rap1-dependent INM-anchoring also has an important chromosomal role in higher-order chromosomal structures that enhance transcriptional silencing and telomere stability. Thus, plasmid partitioning can reflect fundamental features of chromosome structure and biology, yet a systematic screen for plasmid partitioning elements has not been reported. Here, we couple deep sequencing with competitive growth experiments of a plasmid library containing thousands of short ARS fragments to identify new plasmid partitioning elements. Competitive growth experiments were performed with libraries that differed only in terms of the presence or absence of a centromere. Comparisons of the behavior of ARS fragments in the two experiments allowed us to identify sequences that were likely to drive plasmid partitioning. In addition to the silencer RAP1 site, we identified 74 new putative plasmid-partitioning motifs predicted to act as binding sites for DNA binding proteins enriched for roles in negative regulation of gene expression and G2/M-phase associated biology. These data expand our knowledge of chromosomal elements that may function in plasmid partitioning and suggest underlying biological roles shared by such elements. PMID:26865697
SMAD4 feedback regulates the canonical TGF-β signaling pathway to control granulosa cell apoptosis.
Du, Xing; Pan, Zengxiang; Li, Qiqi; Liu, Honglin; Li, Qifa
2018-02-02
Canonical TGF-β signals are transduced from the cell surface to the cytoplasm, and then translocated into the nucleus, a process that involves ligands (TGF-β1), receptors (TGFBR2/1), receptor-activated SMADs (SMAD2/3), and the common SMAD (SMAD4). Here we provide evidence that SMAD4, a core component of the canonical TGF-β signaling pathway, regulates the canonical TGF-β signaling pathway in porcine granulosa cells (GCs) through a feedback mechanism. Genome-wide analysis and qRT-PCR revealed that SMAD4 affected miRNA biogenesis in GCs. Interestingly, TGFBR2, the type II receptor of the canonical TGF-β signaling pathway, was downregulated in SMAD4-silenced GCs and found to be a common target of SMAD4-inhibited miRNAs. miR-425, the most significantly elevated miRNA in SMAD4-silenced GCs, mediated the SMAD4 feedback regulation of the TGF-β signaling pathway. This was accomplished through a direct interaction between the transcription factor SMAD4 and the miR-425 promoter, and a direct interaction between miR-425 and the TGFBR2 3'-UTR. Furthermore, miR-425 enhanced GC apoptosis by targeting TGFBR2 and the canonical TGF-β signaling pathway, which was rescued by SMAD4 and TGF-β1. Overall, our findings demonstrate that a positive feedback mechanism exists within the canonical TGF-β signaling pathway. This study also provides new insights into mechanism underlying the canonical TGF-β signaling pathway, which regulates GC function and follicular development.
Localization in abelian Chern-Simons theory
NASA Astrophysics Data System (ADS)
McLellan, B. D. K.
2013-02-01
Chern-Simons theory on a closed contact three-manifold is studied when the Lie group for gauge transformations is compact, connected, and abelian. The abelian Chern-Simons partition function is derived using the Faddeev-Popov gauge fixing method. The partition function is then formally computed using the technique of non-abelian localization. This study leads to a natural identification of the abelian Reidemeister-Ray-Singer torsion as a specific multiple of the natural unit symplectic volume form on the moduli space of flat abelian connections for the class of Sasakian three-manifolds. The torsion part of the abelian Chern-Simons partition function is computed explicitly in terms of Seifert data for a given Sasakian three-manifold.
Factors affecting plant species composition of hedgerows: relative importance and hierarchy
NASA Astrophysics Data System (ADS)
Deckers, Bart; Hermy, Martin; Muys, Bart
2004-07-01
Although there has been a clear quantitative and qualitative decline in traditional hedgerow network landscapes during last century, hedgerows are crucial for the conservation of rural biodiversity, functioning as an important habitat, refuge and corridor for numerous species. To safeguard this conservation function, insight in the basic organizing principles of hedgerow plant communities is needed. The vegetation composition of 511 individual hedgerows situated within an ancient hedgerow network landscape in Flanders, Belgium was recorded, in combination with a wide range of explanatory variables, including a selection of spatial variables. Non-parametric statistics in combination with multivariate data analysis techniques were used to study the effect of individual explanatory variables. Next, variables were grouped in five distinct subsets and the relative importance of these variable groups was assessed by two related variation partitioning techniques, partial regression and partial canonical correspondence analysis, taking into account explicitly the existence of intercorrelations between variables of different factor groups. Most explanatory variables affected significantly hedgerow species richness and composition. Multivariate analysis showed that, besides adjacent land use, hedgerow management, soil conditions, hedgerow type and origin, the role of other factors such as hedge dimensions, intactness, etc., could certainly not be neglected. Furthermore, both methods revealed the same overall ranking of the five distinct factor groups. Besides a predominant impact of abiotic environmental conditions, it was found that management variables and structural aspects have a relatively larger influence on the distribution of plant species in hedgerows than their historical background or spatial configuration.
Comparison of Penalty Functions for Sparse Canonical Correlation Analysis
Chalise, Prabhakar; Fridley, Brooke L.
2011-01-01
Canonical correlation analysis (CCA) is a widely used multivariate method for assessing the association between two sets of variables. However, when the number of variables far exceeds the number of subjects, such in the case of large-scale genomic studies, the traditional CCA method is not appropriate. In addition, when the variables are highly correlated the sample covariance matrices become unstable or undefined. To overcome these two issues, sparse canonical correlation analysis (SCCA) for multiple data sets has been proposed using a Lasso type of penalty. However, these methods do not have direct control over sparsity of solution. An additional step that uses Bayesian Information Criterion (BIC) has also been suggested to further filter out unimportant features. In this paper, a comparison of four penalty functions (Lasso, Elastic-net, SCAD and Hard-threshold) for SCCA with and without the BIC filtering step have been carried out using both real and simulated genotypic and mRNA expression data. This study indicates that the SCAD penalty with BIC filter would be a preferable penalty function for application of SCCA to genomic data. PMID:21984855
In silico concurrent multisite pH titration in proteins.
Hu, Hao; Shen, Lin
2014-07-30
The concurrent proton binding at multiple sites in macromolecules such as proteins and nucleic acids is an important yet challenging problem in biochemistry. We develop an efficient generalized Hamiltonian approach to attack this issue. Based on the previously developed generalized-ensemble methods, an effective potential energy is constructed which combines the contributions of all (relevant) protonation states of the molecule. The effective potential preserves important phase regions of all states and, thus, allows efficient sampling of these regions in one simulation. The need for intermediate states in alchemical free energy simulations is greatly reduced. Free energy differences between different protonation states can be determined accurately and enable one to construct the grand canonical partition function. Therefore, the complicated concurrent multisite proton titration process of protein molecules can be satisfactorily simulated. Application of this method to the simulation of the pKa of Glu49, Asp50, and C-terminus of bovine pancreatic trypsin inhibitor shows reasonably good agreement with published experimental work. This method provides an unprecedented vivid picture of how different protonation states change their relative population upon pH titration. We believe that the method will be very useful in deciphering the molecular mechanism of pH-dependent biomolecular processes in terms of a detailed atomistic description. Copyright © 2014 Wiley Periodicals, Inc.
N = 1 supersymmetric indices and the four-dimensional A-model
NASA Astrophysics Data System (ADS)
Closset, Cyril; Kim, Heeyeon; Willett, Brian
2017-08-01
We compute the supersymmetric partition function of N = 1 supersymmetric gauge theories with an R-symmetry on M_4\\cong M_{g,p}× {S}^1 , a principal elliptic fiber bundle of degree p over a genus- g Riemann surface, Σ g . Equivalently, we compute the generalized supersymmetric index I_{M}{_{g,p}, with the supersymmetric three-manifold M_{g,p} as the spatial slice. The ordinary N = 1 supersymmetric index on the round three-sphere is recovered as a special case. We approach this computation from the point of view of a topological A-model for the abelianized gauge fields on the base Σ g . This A-model — or A-twisted two-dimensional N = (2 , 2) gauge theory — encodes all the information about the generalized indices, which are viewed as expectations values of some canonically-defined surface defects wrapped on T 2 inside Σ g × T 2. Being defined by compactification on the torus, the A-model also enjoys natural modular properties, governed by the four-dimensional 't Hooft anomalies. As an application of our results, we provide new tests of Seiberg duality. We also present a new evaluation formula for the three-sphere index as a sum over two-dimensional vacua.
How Incorrect Is the Classical Partition Function for the Ideal Gas?
ERIC Educational Resources Information Center
Kroemer, Herbert
1980-01-01
Discussed is the classical partition function for the ideal gas and how it differs from the exact value for bosons or fermions in the classical regime. The differences in the two values are negligible hence the classical treatment leads in the end to correct answers for all observables. (Author/DS)
Discrete wavelet approach to multifractality
NASA Astrophysics Data System (ADS)
Isaacson, Susana I.; Gabbanelli, Susana C.; Busch, Jorge R.
2000-12-01
The use of wavelet techniques for the multifractal analysis generalizes the box counting approach, and in addition provides information on eventual deviations of multifractal behavior. By the introduction of a wavelet partition function Wq and its corresponding free energy (beta) (q), the discrepancies between (beta) (q) and the multifractal free energy r(q) are shown to be indicative of these deviations. We study with Daubechies wavelets (D4) some 1D examples previously treated with Haar wavelets, and we apply the same ideas to some 2D Monte Carlo configurations, that simulate a solution under the action of an attractive potential. In this last case, we study the influence in the multifractal spectra and partition functions of four physical parameters: the intensity of the pairwise potential, the temperature, the range of the model potential, and the concentration of the solution. The wavelet partition function Wq carries more information about the cluster statistics than the multifractal partition function Zq, and the location of its peaks contributes to the determination of characteristic sales of the measure. In our experiences, the information provided by Daubechies wavelet sis slightly more accurate than the one obtained by Haar wavelets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casana, Rodolfo; Ferreira, Manoel M. Jr; Rodrigues, Josberg S.
2009-10-15
In this work, we examine the finite temperature properties of the CPT-even and Lorentz-invariance-violating (LIV) electrodynamics of the standard model extension, represented by the term W{sub {alpha}}{sub {nu}}{sub {rho}}{sub {phi}}F{sup {alpha}}{sup {nu}}F{sup {rho}}{sup {phi}}. We begin analyzing the Hamiltonian structure following the Dirac's procedure for constrained systems and construct a well-defined and gauge invariant partition function in the functional integral formalism. Next, we specialize for the nonbirefringent coefficients of the tensor W{sub {alpha}}{sub {nu}}{sub {rho}}{sub {phi}}. In the sequel, the partition function is explicitly carried out for the parity-even sector of the tensor W{sub {alpha}}{sub {nu}}{sub {rho}}{sub {phi}}. The modifiedmore » partition function is a power of the Maxwell's partition function. It is observed that the LIV coefficients induce an anisotropy in the black body angular energy density distribution. The Planck's radiation law, however, retains its frequency dependence and the Stefan-Boltzmann law keeps the usual form, except for a change in the Stefan-Boltzmann constant by a factor containing the LIV contributions.« less
An iterative network partition algorithm for accurate identification of dense network modules
Sun, Siqi; Dong, Xinran; Fu, Yao; Tian, Weidong
2012-01-01
A key step in network analysis is to partition a complex network into dense modules. Currently, modularity is one of the most popular benefit functions used to partition network modules. However, recent studies suggested that it has an inherent limitation in detecting dense network modules. In this study, we observed that despite the limitation, modularity has the advantage of preserving the primary network structure of the undetected modules. Thus, we have developed a simple iterative Network Partition (iNP) algorithm to partition a network. The iNP algorithm provides a general framework in which any modularity-based algorithm can be implemented in the network partition step. Here, we tested iNP with three modularity-based algorithms: multi-step greedy (MSG), spectral clustering and Qcut. Compared with the original three methods, iNP achieved a significant improvement in the quality of network partition in a benchmark study with simulated networks, identified more modules with significantly better enrichment of functionally related genes in both yeast protein complex network and breast cancer gene co-expression network, and discovered more cancer-specific modules in the cancer gene co-expression network. As such, iNP should have a broad application as a general method to assist in the analysis of biological networks. PMID:22121225
Pucciarelli, Sandra; Ballarini, Patrizia; Sparvoli, Daniela; Barchetta, Sabrina; Yu, Ting; Detrich, H William; Miceli, Cristina
2012-01-01
The multi-tubulin hypothesis proposes that each tubulin isotype performs a unique role, or subset of roles, in the universe of microtubule function(s). To test this hypothesis, we are investigating the functions of the recently discovered, noncanonical β-like tubulins (BLTs) of the ciliate, Tetrahymena thermophila. Tetrahymena forms 17 distinct microtubular structures whose assembly had been thought to be based on single α- and β-isotypes. However, completion of the macronuclear genome sequence of Tetrahymena demonstrated that this ciliate possessed a β-tubulin multigene family: two synonymous genes (BTU1 and BTU2) encode the canonical β-tubulin, BTU2, and six genes (BLT1-6) yield five divergent β-tubulin isotypes. In this report, we examine the structural features and functions of two of the BLTs (BLT1 and BLT4) and compare them to those of BTU2. With respect to BTU2, BLT1 and BLT4 had multiple sequence substitutions in their GTP-binding sites, in their interaction surfaces, and in their microtubule-targeting motifs, which together suggest that they have specialized functions. To assess the roles of these tubulins in vivo, we transformed Tetrahymena with expression vectors that direct the synthesis of GFP-tagged versions of the isotypes. We show that GFP-BLT1 and GFP-BLT4 were not detectable in somatic cilia and basal bodies, whereas GFP-BTU2 strongly labeled these structures. During cell division, GFP-BLT1 and GFP-BLT4, but not GFP-BTU2, were incorporated into the microtubule arrays of the macronucleus and into the mitotic apparatus of the micronucleus. GFP-BLT1 also participated in formation of the microtubules of the meiotic apparatus of the micronucleus during conjugation. Partitioning of the isotypes between nuclear and ciliary microtubules was confirmed biochemically. We conclude that Tetrahymena uses a family of distinct β-tubulin isotypes to construct subsets of functionally different microtubules, a result that provides strong support for the multi-tubulin hypothesis.
NASA Astrophysics Data System (ADS)
Popovas, A.; Jørgensen, U. G.
2016-11-01
Context. Hydrogen is the most abundant molecule in the Universe. Its thermodynamic quantities dominate the physical conditions in molecular clouds, protoplanetary disks, etc. It is also of high interest in plasma physics. Therefore thermodynamic data for molecular hydrogen have to be as accurate as possible in a wide temperature range. Aims: We here rigorously show the shortcomings of various simplifications that are used to calculate the total internal partition function. These shortcomings can lead to errors of up to 40 percent or more in the estimated partition function. These errors carry on to calculations of thermodynamic quantities. Therefore a more complicated approach has to be taken. Methods: Seven possible simplifications of various complexity are described, together with advantages and disadvantages of direct summation of experimental values. These were compared to what we consider the most accurate and most complete treatment (case 8). Dunham coefficients were determined from experimental and theoretical energy levels of a number of electronically excited states of H2. Both equilibrium and normal hydrogen was taken into consideration. Results: Various shortcomings in existing calculations are demonstrated, and the reasons for them are explained. New partition functions for equilibrium, normal, and ortho and para hydrogen are calculated and thermodynamic quantities are reported for the temperature range 1-20 000 K. Our results are compared to previous estimates in the literature. The calculations are not limited to the ground electronic state, but include all bound and quasi-bound levels of excited electronic states. Dunham coefficients of these states of H2 are also reported. Conclusions: For most of the relevant astrophysical cases it is strongly advised to avoid using simplifications, such as a harmonic oscillator and rigid rotor or ad hoc summation limits of the eigenstates to estimate accurate partition functions and to be particularly careful when using polynomial fits to the computed values. Reported internal partition functions and thermodynamic quantities in the present work are shown to be more accurate than previously available data. The full datasets in 1 K temperature steps are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A130
Kinetic energy partition method applied to ground state helium-like atoms.
Chen, Yu-Hsin; Chao, Sheng D
2017-03-28
We have used the recently developed kinetic energy partition (KEP) method to solve the quantum eigenvalue problems for helium-like atoms and obtain precise ground state energies and wave-functions. The key to treating properly the electron-electron (repulsive) Coulomb potential energies for the KEP method to be applied is to introduce a "negative mass" term into the partitioned kinetic energy. A Hartree-like product wave-function from the subsystem wave-functions is used to form the initial trial function, and the variational search for the optimized adiabatic parameters leads to a precise ground state energy. This new approach sheds new light on the all-important problem of solving many-electron Schrödinger equations and hopefully opens a new way to predictive quantum chemistry. The results presented here give very promising evidence that an effective one-electron model can be used to represent a many-electron system, in the spirit of density functional theory.
Li, Zhenping; Zhang, Xiang-Sun; Wang, Rui-Sheng; Liu, Hongwei; Zhang, Shihua
2013-01-01
Identification of communities in complex networks is an important topic and issue in many fields such as sociology, biology, and computer science. Communities are often defined as groups of related nodes or links that correspond to functional subunits in the corresponding complex systems. While most conventional approaches have focused on discovering communities of nodes, some recent studies start partitioning links to find overlapping communities straightforwardly. In this paper, we propose a new quantity function for link community identification in complex networks. Based on this quantity function we formulate the link community partition problem into an integer programming model which allows us to partition a complex network into overlapping communities. We further propose a genetic algorithm for link community detection which can partition a network into overlapping communities without knowing the number of communities. We test our model and algorithm on both artificial networks and real-world networks. The results demonstrate that the model and algorithm are efficient in detecting overlapping community structure in complex networks. PMID:24386268
Two-particle correlation function and dihadron correlation approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vechernin, V. V., E-mail: v.vechernin@spbu.ru; Ivanov, K. O.; Neverov, D. I.
It is shown that, in the case of asymmetric nuclear interactions, the application of the traditional dihadron correlation approach to determining a two-particle correlation function C may lead to a form distorted in relation to the canonical pair correlation function {sub C}{sup 2}. This result was obtained both by means of exact analytic calculations of correlation functions within a simple string model for proton–nucleus and deuteron–nucleus collisions and by means of Monte Carlo simulations based on employing the HIJING event generator. It is also shown that the method based on studying multiplicity correlations in two narrow observation windows separated inmore » rapidity makes it possible to determine correctly the canonical pair correlation function C{sub 2} for all cases, including the case where the rapidity distribution of product particles is not uniform.« less
One-loop tests of supersymmetric gauge theories on spheres
Minahan, Joseph A.; Naseer, Usman
2017-07-14
Here, we show that a recently conjectured form for perturbative supersymmetric partition functions on spheres of general dimension d is consistent with the at space limit of 6-dimensional N = 1 super Yang-Mills. We also show that the partition functions for N = 1 8- and 9-dimensional theories are consistent with their known at space limits.
Comments on "The multisynapse neural network and its application to fuzzy clustering".
Yu, Jian; Hao, Pengwei
2005-05-01
In the above-mentioned paper, Wei and Fahn proposed a neural architecture, the multisynapse neural network, to solve constrained optimization problems including high-order, logarithmic, and sinusoidal forms, etc. As one of its main applications, a fuzzy bidirectional associative clustering network (FBACN) was proposed for fuzzy-partition clustering according to the objective-functional method. The connection between the objective-functional-based fuzzy c-partition algorithms and FBACN is the Lagrange multiplier approach. Unfortunately, the Lagrange multiplier approach was incorrectly applied so that FBACN does not equivalently minimize its corresponding constrained objective-function. Additionally, Wei and Fahn adopted traditional definition of fuzzy c-partition, which is not satisfied by FBACN. Therefore, FBACN can not solve constrained optimization problems, either.
Dual little strings and their partition functions
NASA Astrophysics Data System (ADS)
Bastian, Brice; Hohenegger, Stefan; Iqbal, Amer; Rey, Soo-Jong
2018-05-01
We study the topological string partition function of a class of toric, double elliptically fibered Calabi-Yau threefolds XN ,M at a generic point in the Kähler moduli space. These manifolds engineer little string theories in five dimensions or lower and are dual to stacks of M5-branes probing a transverse orbifold singularity. Using the refined topological vertex formalism, we explicitly calculate a generic building block which allows us to compute the topological string partition function of XN ,M as a series expansion in different Kähler parameters. Using this result, we give further explicit proof for a duality found previously in the literature, which relates XN ,M˜XN',M' for N M =N'M' and gcd (N ,M )=gcd (N',M') .
Szewczak-Harris, Andrzej; Löwe, Jan
2018-03-27
Low copy-number plasmid pLS32 of Bacillus subtilis subsp. natto contains a partitioning system that ensures segregation of plasmid copies during cell division. The partitioning locus comprises actin-like protein AlfA, adaptor protein AlfB, and the centromeric sequence parN Similar to the ParMRC partitioning system from Escherichia coli plasmid R1, AlfA filaments form actin-like double helical filaments that arrange into an antiparallel bipolar spindle, which attaches its growing ends to sister plasmids through interactions with AlfB and parN Because, compared with ParM and other actin-like proteins, AlfA is highly diverged in sequence, we determined the atomic structure of nonbundling AlfA filaments to 3.4-Å resolution by cryo-EM. The structure reveals how the deletion of subdomain IIB of the canonical actin fold has been accommodated by unique longitudinal and lateral contacts, while still enabling formation of left-handed, double helical, polar and staggered filaments that are architecturally similar to ParM. Through cryo-EM reconstruction of bundling AlfA filaments, we obtained a pseudoatomic model of AlfA doublets: the assembly of two filaments. The filaments are antiparallel, as required by the segregation mechanism, and exactly antiphasic with near eightfold helical symmetry, to enable efficient doublet formation. The structure of AlfA filaments and doublets shows, in atomic detail, how deletion of an entire domain of the actin fold is compensated by changes to all interfaces so that the required properties of polymerization, nucleotide hydrolysis, and antiparallel doublet formation are retained to fulfill the system's biological raison d'être.
Integer Partitions and Convexity
NASA Astrophysics Data System (ADS)
Bouroubi, Sadek
2007-06-01
Let n be an integer >=1, and let p(n,k) and P(n,k) count the number of partitions of n into k parts, and the number of partitions of n into parts less than or equal to k, respectively. In this paper, we show that these functions are convex. The result includes the actual value of the constant of Bateman and Erdos.
Schmidt, Markus H; Swang, Theodore W; Hamilton, Ian M; Best, Janet A
2017-01-01
Metabolic rate reduction has been considered the mechanism by which sleep conserves energy, similar to torpor or hibernation. This mechanism of energy savings is in conflict with the known upregulation (compared to wake) of diverse functions during sleep and neglects a potential role in energy conservation for partitioning of biological operations by behavioral state. Indeed, energy savings as derived from state-dependent resource allocations have yet to be examined. A mathematical model is presented based on relative rates of energy deployment for biological processes upregulated during either wake or sleep. Using this model, energy savings from sleep-wake cycling over constant wakefulness is computed by comparing stable limit cycles for systems of differential equations. A primary objective is to compare potential energy savings derived from state-dependent metabolic partitioning versus metabolic rate reduction. Additionally, energy conservation from sleep quota and the circadian system are also quantified in relation to a continuous wake condition. As a function of metabolic partitioning, our calculations show that coupling of metabolic operations with behavioral state may provide comparatively greater energy savings than the measured decrease in metabolic rate, suggesting that actual energy savings derived from sleep may be more than 4-fold greater than previous estimates. A combination of state-dependent metabolic partitioning and modest metabolic rate reduction during sleep may enhance energy savings beyond what is achievable through metabolic partitioning alone; however, the relative contribution from metabolic partitioning diminishes as metabolic rate is decreased during the rest phase. Sleep quota and the circadian system further augment energy savings in the model. Finally, we propose that state-dependent resource allocation underpins both sleep homeostasis and the optimization of daily energy conservation across species. This new paradigm identifies an evolutionary selective advantage for the upregulation of central and peripheral biological processes during sleep, presenting a unifying construct to understand sleep function.
Finite temperature grand canonical ensemble study of the minimum electrophilicity principle.
Miranda-Quintana, Ramón Alain; Chattaraj, Pratim K; Ayers, Paul W
2017-09-28
We analyze the minimum electrophilicity principle of conceptual density functional theory using the framework of the finite temperature grand canonical ensemble. We provide support for this principle, both for the cases of systems evolving from a non-equilibrium to an equilibrium state and for the change from one equilibrium state to another. In doing so, we clearly delineate the cases where this principle can, or cannot, be used.
The effect of cholesterol on the partitioning of 1-octanol into POPC vesicles
NASA Astrophysics Data System (ADS)
Zakariaee Kouchaksaraee, Roja
Microcalorimetry has become a method of choice for sensitive characterization of biomolecular interactions. In this study, isothermal titration calorimetry (ITC) was used to measure the partitioning of 1-octanol into lipid bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), a semi-unsaturated lipid, and cholesterol, a steroid, as a function of cholesterol molar concentration. The ITC instrument measures the heat evolved or absorbed upon titration of a liposome dispersion, at concentrations ranging from 0 to 40% cholesterol, into a suspension of 1-octanol in water. A model function was fit to the data in order to determine the partition coefficient of octanol into POPC bilayers and the enthalpy of interaction. I found that the partition coefficient increases and the heat of interaction becomes less negative with increasing cholesterol content, in contrast to results found by other groups for partitioning of alcohols into lipid-cholesterol bilayers containing saturated lipids. The heat of dilution of vesicles was also measured. Keywords: Partition coefficient; POPC; 1-Octanol; Cholesterol; Isothermal titration calorimetry; Lipid-alcohol interactions. Subject Terms: Calorimetry; Membranes (Biology); Biophysics; Biology -- Technique; Bilayer lipid membranes -- Biotechnology; Lipid membranes -- Biotechnology.
Stress-induced EGFR trafficking: mechanisms, functions, and therapeutic implications
Tan, Xiaojun; Lambert, Paul F.; Rapraeger, Alan C.; Anderson, Richard A.
2016-01-01
Epidermal growth factor receptor (EGFR) has fundamental roles in normal physiology and in cancer, making it a rational target for cancer therapy. Surprisingly, however, inhibitors that target canonical, ligand-stimulated EGFR signaling have proven to be largely ineffective in treating many EGFR-dependent cancers. Recent evidence indicates that both intrinsic and therapy-induced cellular stress triggers robust, non-canonical pathways of ligand-independent EGFR trafficking and signaling, which provides cancer cells with a survival advantage and resistance to therapeutics. Here we review the mechanistic regulation of non-canonical EGFR trafficking and signaling, the pathological and therapeutic stresses that activate it, and discuss the implications of this pathway in clinical treatment of EGFR-overexpressing cancers. PMID:26827089
Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao
2015-10-19
The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics.
Ocean surface partitioning strategies using ocean colour remote Sensing: A review
NASA Astrophysics Data System (ADS)
Krug, Lilian Anne; Platt, Trevor; Sathyendranath, Shubha; Barbosa, Ana B.
2017-06-01
The ocean surface is organized into regions with distinct properties reflecting the complexity of interactions between environmental forcing and biological responses. The delineation of these functional units, each with unique, homogeneous properties and underlying ecosystem structure and dynamics, can be defined as ocean surface partitioning. The main purposes and applications of ocean partitioning include the evaluation of particular marine environments; generation of more accurate satellite ocean colour products; assimilation of data into biogeochemical and climate models; and establishment of ecosystem-based management practices. This paper reviews the diverse approaches implemented for ocean surface partition into functional units, using ocean colour remote sensing (OCRS) data, including their purposes, criteria, methods and scales. OCRS offers a synoptic, high spatial-temporal resolution, multi-decadal coverage of bio-optical properties, relevant to the applications and value of ocean surface partitioning. In combination with other biotic and/or abiotic data, OCRS-derived data (e.g., chlorophyll-a, optical properties) provide a broad and varied source of information that can be analysed using different delineation methods derived from subjective, expert-based to unsupervised learning approaches (e.g., cluster, fuzzy and empirical orthogonal function analyses). Partition schemes are applied at global to mesoscale spatial coverage, with static (time-invariant) or dynamic (time-varying) representations. A case study, the highly heterogeneous area off SW Iberian Peninsula (NE Atlantic), illustrates how the selection of spatial coverage and temporal representation affects the discrimination of distinct environmental drivers of phytoplankton variability. Advances in operational oceanography and in the subject area of satellite ocean colour, including development of new sensors, algorithms and products, are among the potential benefits from extended use, scope and applications of ocean surface partitioning using OCRS.
Herrero-Martin, Griselda; Puri, Sapna; Taketo, Makoto Mark; Rojas, Anabel; Hebrok, Matthias; Cano, David A.
2016-01-01
Organ formation is achieved through the complex interplay between signaling pathways and transcriptional cascades. The canonical Wnt signaling pathway plays multiple roles during embryonic development including patterning, proliferation and differentiation in distinct tissues. Previous studies have established the importance of this pathway at multiple stages of pancreas formation as well as in postnatal organ function and homeostasis. In mice, gain-of-function experiments have demonstrated that activation of the canonical Wnt pathway results in pancreatic hypoplasia, a phenomenon whose underlying mechanisms remains to be elucidated. Here, we show that ectopic activation of epithelial canonical Wnt signaling causes aberrant induction of gastric and intestinal markers both in the pancreatic epithelium and mesenchyme, leading to the development of gut-like features. Furthermore, we provide evidence that β -catenin-induced impairment of pancreas formation depends on Hedgehog signaling. Together, our data emphasize the developmental plasticity of pancreatic progenitors and further underscore the key role of precise regulation of signaling pathways to maintain appropriate organ boundaries. PMID:27736991
Scalar field quantum cosmology: A Schrödinger picture
NASA Astrophysics Data System (ADS)
Vakili, Babak
2012-11-01
We study the classical and quantum models of a scalar field Friedmann-Robertson-Walker (FRW) cosmology with an eye to the issue of time problem in quantum cosmology. We introduce a canonical transformation on the scalar field sector of the action such that the momentum conjugate to the new canonical variable appears linearly in the transformed Hamiltonian. Using this canonical transformation, we show that, it may lead to the identification of a time parameter for the corresponding dynamical system. In the cases of flat, closed and open FRW universes the classical cosmological solutions are obtained in terms of the introduced time parameter. Moreover, this formalism gives rise to a Schrödinger-Wheeler-DeWitt equation for the quantum-mechanical description of the model under consideration, the eigenfunctions of which can be used to construct the wave function of the universe. We use the resulting wave functions in order to investigate the possible corrections to the classical cosmologies due to quantum effects by means of the many-worlds and ontological interpretation of quantum cosmology.
The impact of aerosol composition on the particle to gas partitioning of reactive mercury.
Rutter, Andrew P; Schauer, James J
2007-06-01
A laboratory system was developed to study the gas-particle partitioning of reactive mercury (RM) as a function of aerosol composition in synthetic atmospheric particulate matter. The collection of RM was achieved by filter- and sorbent-based methods. Analyses of the RM collected on the filters and sorbents were performed using thermal extraction combined with cold vapor atomic fluorescence spectroscopy (CVAFS), allowing direct measurement of the RM load on the substrates. Laboratory measurements of the gas-particle partitioning coefficients of RM to atmospheric aerosol particles revealed a strong dependence on aerosol composition, with partitioning coefficients that varied by orders of magnitude depending on the composition of the particles. Particles of sodium nitrate and the chlorides of potassium and sodium had high partitioning coefficients, shifting the RM partitioning toward the particle phase, while ammonium sulfate, levoglucosan, and adipic acid caused the RM to partition toward the gas phase and, therefore, had partitioning coefficients that were lower by orders of magnitude.
NASA Astrophysics Data System (ADS)
Rai, Prashant; Sargsyan, Khachik; Najm, Habib; Hermes, Matthew R.; Hirata, So
2017-09-01
A new method is proposed for a fast evaluation of high-dimensional integrals of potential energy surfaces (PES) that arise in many areas of quantum dynamics. It decomposes a PES into a canonical low-rank tensor format, reducing its integral into a relatively short sum of products of low-dimensional integrals. The decomposition is achieved by the alternating least squares (ALS) algorithm, requiring only a small number of single-point energy evaluations. Therefore, it eradicates a force-constant evaluation as the hotspot of many quantum dynamics simulations and also possibly lifts the curse of dimensionality. This general method is applied to the anharmonic vibrational zero-point and transition energy calculations of molecules using the second-order diagrammatic vibrational many-body Green's function (XVH2) theory with a harmonic-approximation reference. In this application, high dimensional PES and Green's functions are both subjected to a low-rank decomposition. Evaluating the molecular integrals over a low-rank PES and Green's functions as sums of low-dimensional integrals using the Gauss-Hermite quadrature, this canonical-tensor-decomposition-based XVH2 (CT-XVH2) achieves an accuracy of 0.1 cm-1 or higher and nearly an order of magnitude speedup as compared with the original algorithm using force constants for water and formaldehyde.
Nakashima, Hideyuki; Tsujimura, Keita; Irie, Koichiro; Ishizu, Masataka; Pan, Miao; Kameda, Tomonori; Nakashima, Kinichi
2018-05-16
Functional neuronal connectivity requires proper neuronal morphogenesis and its dysregulation causes neurodevelopmental diseases. Transforming growth factor-β (TGF-β) family cytokines play pivotal roles in development, but little is known about their contribution to morphological development of neurons. Here we show that the Smad-dependent canonical signaling of TGF-β family cytokines negatively regulates neuronal morphogenesis during brain development. Mechanistically, activated Smads form a complex with transcriptional repressor TG-interacting factor (TGIF), and downregulate the expression of a neuronal polarity regulator, collapsin response mediator protein 2. We also demonstrate that TGF-β family signaling inhibits neurite elongation of human induced pluripotent stem cell-derived neurons. Furthermore, the expression of TGF-β receptor 1, Smad4, or TGIF, which have mutations found in patients with neurodevelopmental disorders, disrupted neuronal morphogenesis in both mouse (male and female) and human (female) neurons. Together, these findings suggest that the regulation of neuronal morphogenesis by an evolutionarily conserved function of TGF-β signaling is involved in the pathogenesis of neurodevelopmental diseases. SIGNIFICANCE STATEMENT Canonical transforming growth factor-β (TGF-β) signaling plays a crucial role in multiple organ development, including brain, and mutations in components of the signaling pathway associated with several human developmental disorders. In this study, we found that Smads/TG-interacting factor-dependent canonical TGF-β signaling regulates neuronal morphogenesis through the suppression of collapsin response mediator protein-2 (CRMP2) expression during brain development, and that function of this signaling is evolutionarily conserved in the mammalian brain. Mutations in canonical TGF-β signaling factors identified in patients with neurodevelopmental disorders disrupt the morphological development of neurons. Thus, our results suggest that proper control of TGF-β/Smads/CRMP2 signaling pathways is critical for the precise execution of neuronal morphogenesis, whose impairment eventually results in neurodevelopmental disorders. Copyright © 2018 the authors 0270-6474/18/384791-20$15.00/0.
Local performance optimization for a class of redundant eight-degree-of-freedom manipulators
NASA Technical Reports Server (NTRS)
Williams, Robert L., II
1994-01-01
Local performance optimization for joint limit avoidance and manipulability maximization (singularity avoidance) is obtained by using the Jacobian matrix pseudoinverse and by projecting the gradient of an objective function into the Jacobian null space. Real-time redundancy optimization control is achieved for an eight-joint redundant manipulator having a three-axis spherical shoulder, a single elbow joint, and a four-axis spherical wrist. Symbolic solutions are used for both full-Jacobian and wrist-partitioned pseudoinverses, partitioned null-space projection matrices, and all objective function gradients. A kinematic limitation of this class of manipulators and the limitation's effect on redundancy resolution are discussed. Results obtained with graphical simulation are presented to demonstrate the effectiveness of local redundant manipulator performance optimization. Actual hardware experiments performed to verify the simulated results are also discussed. A major result is that the partitioned solution is desirable because of low computation requirements. The partitioned solution is suboptimal compared with the full solution because translational and rotational terms are optimized separately; however, the results show that the difference is not significant. Singularity analysis reveals that no algorithmic singularities exist for the partitioned solution. The partitioned and full solutions share the same physical manipulator singular conditions. When compared with the full solution, the partitioned solution is shown to be ill-conditioned in smaller neighborhoods of the shared singularities.
Brain Network Regional Synchrony Analysis in Deafness
Xu, Lei; Liang, Mao-Jin
2018-01-01
Deafness, the most common auditory disease, has greatly affected people for a long time. The major treatment for deafness is cochlear implantation (CI). However, till today, there is still a lack of objective and precise indicator serving as evaluation of the effectiveness of the cochlear implantation. The goal of this EEG-based study is to effectively distinguish CI children from those prelingual deafened children without cochlear implantation. The proposed method is based on the functional connectivity analysis, which focuses on the brain network regional synchrony. Specifically, we compute the functional connectivity between each channel pair first. Then, we quantify the brain network synchrony among regions of interests (ROIs), where both intraregional synchrony and interregional synchrony are computed. And finally the synchrony values are concatenated to form the feature vector for the SVM classifier. What is more, we develop a new ROI partition method of 128-channel EEG recording system. That is, both the existing ROI partition method and the proposed ROI partition method are used in the experiments. Compared with the existing EEG signal classification methods, our proposed method has achieved significant improvements as large as 87.20% and 86.30% when the existing ROI partition method and the proposed ROI partition method are used, respectively. It further demonstrates that the new ROI partition method is comparable to the existing ROI partition method. PMID:29854776
Topological strings on singular elliptic Calabi-Yau 3-folds and minimal 6d SCFTs
NASA Astrophysics Data System (ADS)
Del Zotto, Michele; Gu, Jie; Huang, Min-xin; Kashani-Poor, Amir-Kian; Klemm, Albrecht; Lockhart, Guglielmo
2018-03-01
We apply the modular approach to computing the topological string partition function on non-compact elliptically fibered Calabi-Yau 3-folds with higher Kodaira singularities in the fiber. The approach consists in making an ansatz for the partition function at given base degree, exact in all fiber classes to arbitrary order and to all genus, in terms of a rational function of weak Jacobi forms. Our results yield, at given base degree, the elliptic genus of the corresponding non-critical 6d string, and thus the associated BPS invariants of the 6d theory. The required elliptic indices are determined from the chiral anomaly 4-form of the 2d worldsheet theories, or the 8-form of the corresponding 6d theories, and completely fix the holomorphic anomaly equation constraining the partition function. We introduce subrings of the known rings of Weyl invariant Jacobi forms which are adapted to the additional symmetries of the partition function, making its computation feasible to low base wrapping number. In contradistinction to the case of simpler singularities, generic vanishing conditions on BPS numbers are no longer sufficient to fix the modular ansatz at arbitrary base wrapping degree. We show that to low degree, imposing exact vanishing conditions does suffice, and conjecture this to be the case generally.
Data-driven process decomposition and robust online distributed modelling for large-scale processes
NASA Astrophysics Data System (ADS)
Shu, Zhang; Lijuan, Li; Lijuan, Yao; Shipin, Yang; Tao, Zou
2018-02-01
With the increasing attention of networked control, system decomposition and distributed models show significant importance in the implementation of model-based control strategy. In this paper, a data-driven system decomposition and online distributed subsystem modelling algorithm was proposed for large-scale chemical processes. The key controlled variables are first partitioned by affinity propagation clustering algorithm into several clusters. Each cluster can be regarded as a subsystem. Then the inputs of each subsystem are selected by offline canonical correlation analysis between all process variables and its controlled variables. Process decomposition is then realised after the screening of input and output variables. When the system decomposition is finished, the online subsystem modelling can be carried out by recursively block-wise renewing the samples. The proposed algorithm was applied in the Tennessee Eastman process and the validity was verified.
A rapid boundary integral equation technique for protein electrostatics
NASA Astrophysics Data System (ADS)
Grandison, Scott; Penfold, Robert; Vanden-Broeck, Jean-Marc
2007-06-01
A new boundary integral formulation is proposed for the solution of electrostatic field problems involving piecewise uniform dielectric continua. Direct Coulomb contributions to the total potential are treated exactly and Green's theorem is applied only to the residual reaction field generated by surface polarisation charge induced at dielectric boundaries. The implementation shows significantly improved numerical stability over alternative schemes involving the total field or its surface normal derivatives. Although strictly respecting the electrostatic boundary conditions, the partitioned scheme does introduce a jump artefact at the interface. Comparison against analytic results in canonical geometries, however, demonstrates that simple interpolation near the boundary is a cheap and effective way to circumvent this characteristic in typical applications. The new scheme is tested in a naive model to successfully predict the ground state orientation of biomolecular aggregates comprising the soybean storage protein, glycinin.
Arefin, Ahmed Shamsul; Vimieiro, Renato; Riveros, Carlos; Craig, Hugh; Moscato, Pablo
2014-01-01
In this paper we analyse the word frequency profiles of a set of works from the Shakespearean era to uncover patterns of relationship between them, highlighting the connections within authorial canons. We used a text corpus comprising 256 plays and poems from the 16th and 17th centuries, with 17 works of uncertain authorship. Our clustering approach is based on the Jensen-Shannon divergence and a graph partitioning algorithm, and our results show that authors' characteristic styles are very powerful factors in explaining the variation of word use, frequently transcending cross-cutting factors like the differences between tragedy and comedy, early and late works, and plays and poems. Our method also provides an empirical guide to the authorship of plays and poems where this is unknown or disputed. PMID:25347727
Hamiltonian modelling of relative motion.
Kasdin, N Jeremy; Gurfil, Pini
2004-05-01
This paper presents a Hamiltonian approach to modelling relative spacecraft motion based on derivation of canonical coordinates for the relative state-space dynamics. The Hamiltonian formulation facilitates the modelling of high-order terms and orbital perturbations while allowing us to obtain closed-form solutions to the relative motion problem. First, the Hamiltonian is partitioned into a linear term and a high-order term. The Hamilton-Jacobi equations are solved for the linear part by separation, and new constants for the relative motions are obtained, they are called epicyclic elements. The influence of higher order terms and perturbations, such as the oblateness of the Earth, are incorporated into the analysis by a variation of parameters procedure. Closed-form solutions for J(2-) and J(4-)invariant orbits and for periodic high-order unperturbed relative motion, in terms of the relative motion elements only, are obtained.
Takeshi Ise; Creighton M. Litton; Christian P. Giardina; Akihiko Ito
2010-01-01
Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long�]lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta-analysis of forest ecosystems suggests that carbon partitioning...
Witten index for noncompact dynamics
NASA Astrophysics Data System (ADS)
Lee, Seung-Joo; Yi, Piljin
2016-06-01
Among gauged dynamics motivated by string theory, we find many with gapless asymptotic directions. Although the natural boundary condition for ground states is L 2, one often turns on chemical potentials or supersymmetric mass terms to regulate the infrared issues, instead, and computes the twisted partition function. We point out how this procedure generically fails to capture physical L 2 Witten index with often misleading results. We also explore how, nevertheless, the Witten index is sometimes intricately embedded in such twisted partition functions. For d = 1 theories with gapless continuum sector from gauge multiplets, such as non-primitive quivers and pure Yang-Mills, a further subtlety exists, leading to fractional expressions. Quite unexpectedly, however, the integral L 2 Witten index can be extracted directly and easily from the twisted partition function of such theories. This phenomenon is tied to the notion of the rational invariant that appears naturally in the wall-crossing formulae, and offers a general mechanism of reading off Witten index directly from the twisted partition function. Along the way, we correct early numerical results for some of mathcal{N} = 4 , 8 , 16 pure Yang-Mills quantum mechanics, and count threshold bound states for general gauge groups beyond SU( N ).
Canonical WNT signaling components in vascular development and barrier formation.
Zhou, Yulian; Wang, Yanshu; Tischfield, Max; Williams, John; Smallwood, Philip M; Rattner, Amir; Taketo, Makoto M; Nathans, Jeremy
2014-09-01
Canonical WNT signaling is required for proper vascularization of the CNS during embryonic development. Here, we used mice with targeted mutations in genes encoding canonical WNT pathway members to evaluate the exact contribution of these components in CNS vascular development and in specification of the blood-brain barrier (BBB) and blood-retina barrier (BRB). We determined that vasculature in various CNS regions is differentially sensitive to perturbations in canonical WNT signaling. The closely related WNT signaling coreceptors LDL receptor-related protein 5 (LRP5) and LRP6 had redundant functions in brain vascular development and barrier maintenance; however, loss of LRP5 alone dramatically altered development of the retinal vasculature. The BBB in the cerebellum and pons/interpeduncular nuclei was highly sensitive to decrements in canonical WNT signaling, and WNT signaling was required to maintain plasticity of barrier properties in mature CNS vasculature. Brain and retinal vascular defects resulting from ablation of Norrin/Frizzled4 signaling were ameliorated by stabilizing β-catenin, while inhibition of β-catenin-dependent transcription recapitulated the vascular development and barrier defects associated with loss of receptor, coreceptor, or ligand, indicating that Norrin/Frizzled4 signaling acts predominantly through β-catenin-dependent transcriptional regulation. Together, these data strongly support a model in which identical or nearly identical canonical WNT signaling mechanisms mediate neural tube and retinal vascularization and maintain the BBB and BRB.
Liu, Jian; Miller, William H
2011-03-14
We show the exact expression of the quantum mechanical time correlation function in the phase space formulation of quantum mechanics. The trajectory-based dynamics that conserves the quantum canonical distribution-equilibrium Liouville dynamics (ELD) proposed in Paper I is then used to approximately evaluate the exact expression. It gives exact thermal correlation functions (of even nonlinear operators, i.e., nonlinear functions of position or momentum operators) in the classical, high temperature, and harmonic limits. Various methods have been presented for the implementation of ELD. Numerical tests of the ELD approach in the Wigner or Husimi phase space have been made for a harmonic oscillator and two strongly anharmonic model problems, for each potential autocorrelation functions of both linear and nonlinear operators have been calculated. It suggests ELD can be a potentially useful approach for describing quantum effects for complex systems in condense phase.
Signature and Pathophysiology of Non-canonical Pores in Voltage-Dependent Cation Channels.
Held, Katharina; Voets, Thomas; Vriens, Joris
2016-01-01
Opening and closing of voltage-gated cation channels allows the regulated flow of cations such as Na(+), K(+), and Ca(2+) across cell membranes, which steers essential physiological processes including shaping of action potentials and triggering Ca(2+)-dependent processes. Classical textbooks describe the voltage-gated cation channels as membrane proteins with a single, central aqueous pore. In recent years, however, evidence has accumulated for the existence of additional ion permeation pathways in this group of cation channels, distinct from the central pore, which here we collectively name non-canonical pores. Whereas the first non-canonical pores were unveiled only after making specific point mutations in the voltage-sensor region of voltage-gated Na(+) and K(+) channels, recent evidence indicates that they may also be functional in non-mutated channels. Moreover, several channelopathies have been linked to mutations that cause the appearance of a non-canonical ion permeation pathway as a new pathological mechanism. This review provides an integrated overview of the biophysical properties of non-canonical pores described in voltage-dependent cation channels (KV, NaV, Cav, Hv1, and TRPM3) and of the (patho)physiological impact of opening of such pores.
A non-canonical site reveals the cooperative mechanisms of microRNA-mediated silencing.
Flamand, Mathieu N; Gan, Hin Hark; Mayya, Vinay K; Gunsalus, Kristin C; Duchaine, Thomas F
2017-07-07
Although strong evidence supports the importance of their cooperative interactions, microRNA (miRNA)-binding sites are still largely investigated as functionally independent regulatory units. Here, a survey of alternative 3΄UTR isoforms implicates a non-canonical seedless site in cooperative miRNA-mediated silencing. While required for target mRNA deadenylation and silencing, this site is not sufficient on its own to physically recruit miRISC. Instead, it relies on facilitating interactions with a nearby canonical seed-pairing site to recruit the Argonaute complexes. We further show that cooperation between miRNA target sites is necessary for silencing in vivo in the C. elegans embryo, and for the recruitment of the Ccr4-Not effector complex. Using a structural model of cooperating miRISCs, we identified allosteric determinants of cooperative miRNA-mediated silencing that are required for both embryonic and larval miRNA functions. Our results delineate multiple cooperative mechanisms in miRNA-mediated silencing and further support the consideration of target site cooperation as a fundamental characteristic of miRNA function. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Diagrammatic expansion for positive density-response spectra: Application to the electron gas
NASA Astrophysics Data System (ADS)
Uimonen, A.-M.; Stefanucci, G.; Pavlyukh, Y.; van Leeuwen, R.
2015-03-01
In a recent paper [Phys. Rev. B 90, 115134 (2014), 10.1103/PhysRevB.90.115134] we put forward a diagrammatic expansion for the self-energy which guarantees the positivity of the spectral function. In this work we extend the theory to the density-response function. We write the generic diagram for the density-response spectrum as the sum of "partitions." In a partition the original diagram is evaluated using time-ordered Green's functions on the left half of the diagram, antitime-ordered Green's functions on the right half of the diagram, and lesser or greater Green's function gluing the two halves. As there exists more than one way to cut a diagram in two halves, to every diagram corresponds more than one partition. We recognize that the most convenient diagrammatic objects for constructing a theory of positive spectra are the half-diagrams. Diagrammatic approximations obtained by summing the squares of half-diagrams do indeed correspond to a combination of partitions which, by construction, yield a positive spectrum. We develop the theory using bare Green's functions and subsequently extend it to dressed Green's functions. We further prove a connection between the positivity of the spectral function and the analytic properties of the polarizability. The general theory is illustrated with several examples and then applied to solve the long-standing problem of including vertex corrections without altering the positivity of the spectrum. In fact already the first-order vertex diagram, relevant to the study of gradient expansion, Friedel oscillations, etc., leads to spectra which are negative in certain frequency domain. We find that the simplest approximation to cure this deficiency is given by the sum of the zeroth-order bubble diagram, the first-order vertex diagram, and a partition of the second-order ladder diagram. We evaluate this approximation in the three-dimensional homogeneous electron gas and show the positivity of the spectrum for all frequencies and densities.
Exact deconstruction of the 6D (2,0) theory
NASA Astrophysics Data System (ADS)
Hayling, J.; Papageorgakis, C.; Pomoni, E.; Rodríguez-Gómez, D.
2017-06-01
The dimensional-deconstruction prescription of Arkani-Hamed, Cohen, Kaplan, Karch and Motl provides a mechanism for recovering the A-type (2,0) theories on T 2, starting from a four-dimensional N=2 circular-quiver theory. We put this conjecture to the test using two exact-counting arguments: in the decompactification limit, we compare the Higgs-branch Hilbert series of the 4D N=2 quiver to the "half-BPS" limit of the (2,0) superconformal index. We also compare the full partition function for the 4D quiver on S 4 to the (2,0) partition function on S 4 × T 2. In both cases we find exact agreement. The partition function calculation sets up a dictionary between exact results in 4D and 6D.
Partition functions with spin in AdS2 via quasinormal mode methods
Keeler, Cynthia; Lisbão, Pedro; Ng, Gim Seng
2016-10-12
We extend the results of [1], computing one loop partition functions for massive fields with spin half in AdS 2 using the quasinormal mode method proposed by Denef, Hartnoll, and Sachdev [2]. We find the finite representations of SO(2,1) for spin zero and spin half, consisting of a highest weight state |hi and descendants with non-unitary values of h. These finite representations capture the poles and zeroes of the one loop determinants. Together with the asymptotic behavior of the partition functions (which can be easily computed using a large mass heat kernel expansion), these are sufficient to determine the fullmore » answer for the one loop determinants. We also discuss extensions to higher dimensional AdS 2n and higher spins.« less
Complement factor H family proteins in their non-canonical role as modulators of cellular functions.
Józsi, Mihály; Schneider, Andrea E; Kárpáti, Éva; Sándor, Noémi
2018-01-04
Complement factor H is a major regulator of the alternative pathway of the complement system. The factor H-related proteins are less characterized, but recent data indicate that they rather promote complement activation. These proteins have some common ligands with factor H and have both overlapping and distinct functions depending on domain composition and the degree of conservation of amino acid sequence. Factor H and some of the factor H-related proteins also appear in a non-canonical function that is beyond their role in the modulation of complement activation. This review covers our current understanding on this emerging role of factor H family proteins in modulating the activation and function of various cells by binding to receptors or receptor ligands. Copyright © 2018 Elsevier Ltd. All rights reserved.
Canonical wnt signaling regulates hematopoiesis in a dosage-dependent fashion.
Luis, Tiago C; Naber, Brigitta A E; Roozen, Paul P C; Brugman, Martijn H; de Haas, Edwin F E; Ghazvini, Mehrnaz; Fibbe, Willem E; van Dongen, Jacques J M; Fodde, Riccardo; Staal, Frank J T
2011-10-04
Canonical Wnt signaling has been implicated in the regulation of hematopoiesis. By employing a Wnt-reporter mouse, we observed that Wnt signaling is differentially activated during hematopoiesis, suggesting an important regulatory role for specific Wnt signaling levels. To investigate whether canonical Wnt signaling regulates hematopoiesis in a dosage-dependent fashion, we analyzed the effect of different mutations in the Adenomatous polyposis coli gene (Apc), a negative modulator of the canonical Wnt pathway. By combining different targeted hypomorphic alleles and a conditional deletion allele of Apc, a gradient of five different Wnt signaling levels was obtained in vivo. We here show that different, lineage-specific Wnt dosages regulate hematopoietic stem cells (HSCs), myeloid precursors, and T lymphoid precursors during hematopoiesis. Differential, lineage-specific optimal Wnt dosages provide a unifying concept that explains the differences reported among inducible gain-of-function approaches, leading to either HSC expansion or depletion of the HSC pool. Copyright © 2011 Elsevier Inc. All rights reserved.
Practical deviations from Henry`s law for water/air partitioning of volatile organic compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schabron, J.F.; Rovani, J.F. Jr.
A study was conducted to define parameters relating to the use of a down hole submersible photoionization detector (PID) probe to measure volatile organic compounds (VOCs) in an artificial headspace. The partitioning of toluene and trichloroethylene between water and air was studied as a function of analyte concentration and water temperature. The Henry`s law constant governing this partitioning represents an ideal condition at infinite dilution for a particular temperature. The results show that in practice. this partitioning is far from ideal. Conditions resulting in apparent, practical deviations from Henry`s law include temperature and VOC concentration. Thus, a single value ofmore » Henry`s law constant for a particular VOC such as toluene can provide only an approximation of concentration in the field. Detector response in saturated humidity environments as a function of water temperature and analyte concentration was studied also.« less
Cunningham, Orla; Andolfo, Annapaola; Santovito, Maria Lisa; Iuzzolino, Lucia; Blasi, Francesco; Sidenius, Nicolai
2003-01-01
The urokinase-type plasminogen activator receptor (uPAR/CD87) is a glycosylphosphatidylinositol-anchored membrane protein with multiple functions in extracellular proteolysis, cell adhesion, cell migration and proliferation. We now report that cell surface uPAR dimerizes and that dimeric uPAR partitions preferentially to detergent-resistant lipid rafts. Dimerization of uPAR did not require raft partitioning as the lowering of membrane cholesterol failed to reduce dimerization and as a transmembrane uPAR chimera, which does not partition to lipid rafts, also dimerized efficiently. While uPA bound to uPAR independently of its membrane localization and dimerization status, uPA-induced uPAR cleavage was strongly accelerated in lipid rafts. In contrast to uPA, the binding of Vn occurred preferentially to raft- associated dimeric uPAR and was completely blocked by cholesterol depletion. PMID:14609946
Recent applications of THERMUS
NASA Astrophysics Data System (ADS)
Wheaton, S.; Hauer, M.
2011-12-01
Some of the most recent applications of the statistical-thermal model package, THERMUS, are reviewed. These applications focus on fluctuation and correlation observables in an ideal particle and anti-particle gas in limited momentum space segments, as well as in a hadron resonance gas. In the case of the latter, a Monte Carlo event generator, utilising THERMUS functionality and assuming thermal production of hadrons, is discussed. The system under consideration is sampled grand canonically in the Boltzmann approximation. A re-weighting scheme is then introduced to account for conservation of charges (baryon number, strangeness, electric charge) and energy and momentum, effectively allowing for extrapolation of grand canonical results to the micro canonical limit. The approach utilised in this and other applications suggests improvements to existing THERMUS calculations.
Thermodynamic limit of random partitions and dispersionless Toda hierarchy
NASA Astrophysics Data System (ADS)
Takasaki, Kanehisa; Nakatsu, Toshio
2012-01-01
We study the thermodynamic limit of random partition models for the instanton sum of 4D and 5D supersymmetric U(1) gauge theories deformed by some physical observables. The physical observables correspond to external potentials in the statistical model. The partition function is reformulated in terms of the density function of Maya diagrams. The thermodynamic limit is governed by a limit shape of Young diagrams associated with dominant terms in the partition function. The limit shape is characterized by a variational problem, which is further converted to a scalar-valued Riemann-Hilbert problem. This Riemann-Hilbert problem is solved with the aid of a complex curve, which may be thought of as the Seiberg-Witten curve of the deformed U(1) gauge theory. This solution of the Riemann-Hilbert problem is identified with a special solution of the dispersionless Toda hierarchy that satisfies a pair of generalized string equations. The generalized string equations for the 5D gauge theory are shown to be related to hidden symmetries of the statistical model. The prepotential and the Seiberg-Witten differential are also considered.
Monochromatic Transmittance/Radiance Computations
1974-12-31
In the infrared region, these tran- sitions are normally between various vibration -rotation states. There are usually a large number of possible...energy level of the transition, and Q (e,m.) and Q (0,m.) are respectively the ratio of the vibrational and rotational partition function at...values used are listed in Table 2 (Ref. 2). For source conditions, the vibrational partition function cannot be ignored and has been calculated 4
Phase diagram of q-deformed Yang-Mills theory on S 2 at non-zero θ-angle
NASA Astrophysics Data System (ADS)
Okuyama, Kazumi
2018-04-01
We study the phase diagram of q-deformed Yang-Mills theory on S 2 at non-zero θ-angle using the exact partition function at finite N . By evaluating the exact partition function numerically, we find evidence for the existence of a series of phase transitions at non-zero θ-angle as conjectured in [hep-th/0509004
GPS/INS integration by functional partitioning
NASA Astrophysics Data System (ADS)
Diesel, John W.
It is shown that a GPS/INS system integrated by functional partitioning can satisfy all of the RTCA navigation requirements and goals. This is accomplished by accurately calibrating the INS using GPS after the inertial instruments are thermally stabilized and by exploiting the very slow subsequent error growth in the INS information. In this way, autonomous integrity monitoring can be achieved using only existing or presently planned systems.
Chen, Song; Wang, Chenran; Yeo, Syn; Liang, Chun-Chi; Okamoto, Takako; Sun, Shaogang; Wen, Jian; Guan, Jun-Lin
2016-01-01
Autophagy is an evolutionarily conserved cellular process controlled through a set of essential autophagy genes (Atgs). However, there is increasing evidence that most, if not all, Atgs also possess functions independent of their requirement in canonical autophagy, making it difficult to distinguish the contributions of autophagy-dependent or -independent functions of a particular Atg to various biological processes. To distinguish these functions for FIP200 (FAK family-interacting protein of 200 kDa), an Atg in autophagy induction, we examined FIP200 interaction with its autophagy partner, Atg13. We found that residues 582–585 (LQFL) in FIP200 are required for interaction with Atg13, and mutation of these residues to AAAA (designated the FIP200-4A mutant) abolished its canonical autophagy function in vitro. Furthermore, we created a FIP200-4A mutant knock-in mouse model and found that specifically blocking FIP200 interaction with Atg13 abolishes autophagy in vivo, providing direct support for the essential role of the ULK1/Atg13/FIP200/Atg101 complex in the process beyond previous studies relying on the complete knockout of individual components. Analysis of the new mouse model showed that nonautophagic functions of FIP200 are sufficient to fully support embryogenesis by maintaining a protective role in TNFα-induced apoptosis. However, FIP200-mediated canonical autophagy is required to support neonatal survival and tumor cell growth. These studies provide the first genetic evidence linking an Atg's autophagy and nonautophagic functions to different biological processes in vivo. PMID:27013233
STRUCTURAL DYNAMICS OF METAL PARTITIONING TO MINERAL SURFACES
The conceptual understanding of surface complexation reactions that control trace element partitioning to mineral surfaces is limited by the assumption that the solid reactant possesses a finite, time-invariant population of surface functional groups. This assumption has limited...
Inflammasome complexes: emerging mechanisms and effector functions
Rathinam, Vijay A. K.; Fitzgerald, Katherine A.
2017-01-01
Canonical activation of the inflammasome is critical to promote caspase-1-dependent maturation of the proinflammatory cytokines IL-1β and IL-18, as well as to induce pyroptotic cell death in response to pathogens and endogenous danger signals. Recent discoveries, however, are beginning to unveil new components of the inflammasome machinery, and the full spectrum of inflammasome functions, extending their influence beyond canonical functions, to regulation of eicosanoid storm, autophagy and metabolism. In addition, the receptor components of the inflammasome can also regulate diverse biological processes, such as cellular proliferation, gene transcription and tumorigenesis, all of which are independent of their inflammasome complex-forming capabilities. Here, we review these recent advances that are shaping our understanding of the complex biology of the inflammasome and its constituents. PMID:27153493
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franco-Pérez, Marco, E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx; Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México, D.F. 09340; Ayers, Paul W., E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx
2015-12-28
We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dualmore » descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.« less
Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto
2015-12-28
We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.
High-temperature asymptotics of supersymmetric partition functions
Ardehali, Arash Arabi
2016-07-05
We study the supersymmetric partition function of 4d supersymmetric gauge theories with a U(1) R-symmetry on Euclidean S 3 × S β 1, with S 3 the unit-radius squashed three-sphere, and β the circumference of the circle. For superconformal theories, this partition function coincides (up to a Casimir energy factor) with the 4d superconformal index. The partition function can be computed exactly using the supersymmetric localization of the gauge theory path-integral. It takes the form of an elliptic hypergeometric integral, which may be viewed as a matrix-integral over the moduli space of the holonomies of the gauge fields around Smore » β 1. At high temperatures (β → 0, corresponding to the hyperbolic limit of the elliptic hypergeometric integral) we obtain from the matrix-integral a quantum effective potential for the holonomies. The effective potential is proportional to the temperature. Therefore the high-temperature limit further localizes the matrix-integral to the locus of the minima of the potential. If the effective potential is positive semi-definite, the leading high-temperature asymptotics of the partition function is given by the formula of Di Pietro and Komargodski, and the subleading asymptotics is connected to the Coulomb branch dynamics on R 3 × S 1. In theories where the effective potential is not positive semi-definite, the Di Pietro-Komargodski formula needs to be modified. In particular, this modification occurs in the SU(2) theory of Intriligator-Seiberg-Shenker, and the SO(N) theory of Brodie-Cho-Intriligator, both believed to exhibit “misleading” anomaly matchings, and both believed to yield interacting superconformal field theories with c < a. Lastly, two new simple tests for dualities between 4d supersymmetric gauge theories emerge as byproducts of our analysis.« less
Anharmonic effects in the quantum cluster equilibrium method
NASA Astrophysics Data System (ADS)
von Domaros, Michael; Perlt, Eva
2017-03-01
The well-established quantum cluster equilibrium (QCE) model provides a statistical thermodynamic framework to apply high-level ab initio calculations of finite cluster structures to macroscopic liquid phases using the partition function. So far, the harmonic approximation has been applied throughout the calculations. In this article, we apply an important correction in the evaluation of the one-particle partition function and account for anharmonicity. Therefore, we implemented an analytical approximation to the Morse partition function and the derivatives of its logarithm with respect to temperature, which are required for the evaluation of thermodynamic quantities. This anharmonic QCE approach has been applied to liquid hydrogen chloride and cluster distributions, and the molar volume, the volumetric thermal expansion coefficient, and the isobaric heat capacity have been calculated. An improved description for all properties is observed if anharmonic effects are considered.
NASA Astrophysics Data System (ADS)
Le Floch, Bruno; Turiaci, Gustavo J.
2017-12-01
We relate Liouville/Toda CFT correlators on Riemann surfaces with boundaries and cross-cap states to supersymmetric observables in four-dimensional N=2 gauge theories. Our construction naturally involves four-dimensional theories with fields defined on different ℤ2 quotients of the sphere (hemisphere and projective space) but nevertheless interacting with each other. The six-dimensional origin is a ℤ2 quotient of the setup giving rise to the usual AGT correspondence. To test the correspondence, we work out the ℝℙ4 partition function of four-dimensional N=2 theories by combining a 3d lens space and a 4d hemisphere partition functions. The same technique reproduces known ℝℙ2 partition functions in a form that lets us easily check two-dimensional Seiberg-like dualities on this nonorientable space. As a bonus we work out boundary and cross-cap wavefunctions in Toda CFT.
Polynomial solution of quantum Grassmann matrices
NASA Astrophysics Data System (ADS)
Tierz, Miguel
2017-05-01
We study a model of quantum mechanical fermions with matrix-like index structure (with indices N and L) and quartic interactions, recently introduced by Anninos and Silva. We compute the partition function exactly with q-deformed orthogonal polynomials (Stieltjes-Wigert polynomials), for different values of L and arbitrary N. From the explicit evaluation of the thermal partition function, the energy levels and degeneracies are determined. For a given L, the number of states of different energy is quadratic in N, which implies an exponential degeneracy of the energy levels. We also show that at high-temperature we have a Gaussian matrix model, which implies a symmetry that swaps N and L, together with a Wick rotation of the spectral parameter. In this limit, we also write the partition function, for generic L and N, in terms of a single generalized Hermite polynomial.
Liu, Wenjia; Konermann, Anna; Guo, Tao; Jäger, Andreas; Zhang, Liqiang; Jin, Yan
2014-03-01
Cellular plasticity and complex functional requirements of the periodontal ligament (PDL) assume a local stem cell (SC) niche to maintain tissue homeostasis and repair. Here, pathological alterations caused by inflammatory insults might impact the regenerative capacities of these cells. As bone homeostasis is fundamentally controlled by Wnt-mediated signals, it was the aim of this study to characterize the SC-like capacities of cells derived from PDL and to investigate their involvement in bone pathophysiology especially regarding the canonical Wnt pathway. PDLSCs were investigated for their SC characteristics via analysis of cell surface marker expression, colony forming unit efficiency, proliferation, osteogenic differentiation and adipogenic differentiation, and compared to bone marrow derived mesenchymal SCs (BMMSCs). To determine the impact of both inflammation and the canonical Wnt pathway on osteogenic differentiation, cells were challenged with TNF-α, maintained with or without Wnt3a or DKK-1 under osteogenic induction conditions and investigated for p-IκBα, p-NF-κB, p-Akt, β-catenin, p-GSK-3β, ALP and Runx2. PDLSCs exhibit weaker adipogenic and osteogenic differentiation capacities compared to BMMSCs. TNF-α inhibited osteogenic differentiation of PDLSCs more than BMMSCs mainly through regulating canonical Wnt pathway. Blocking the canonical Wnt pathway by DKK-1 reconstituted osteogenic differentiation of PDLSCs under inflammatory conditions, whereas activation by Wnt3a increased osteogenic differentiation of BMMSCs. Our results suggest a diverse regulation of the inhibitory effect of TNF-α in BMMSCs and PDLSCs via canonical Wnt pathway modulation. These findings provide novel insights on PDLSC SC-like capacities and their involvement in bone pathophysiology under the impact of the canonical Wnt pathway. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Punjabi, Alkesh; Ali, Halima
2008-12-01
A new approach to integration of magnetic field lines in divertor tokamaks is proposed. In this approach, an analytic equilibrium generating function (EGF) is constructed in natural canonical coordinates (ψ,θ) from experimental data from a Grad-Shafranov equilibrium solver for a tokamak. ψ is the toroidal magnetic flux and θ is the poloidal angle. Natural canonical coordinates (ψ,θ,φ) can be transformed to physical position (R,Z,φ) using a canonical transformation. (R,Z,φ) are cylindrical coordinates. Another canonical transformation is used to construct a symplectic map for integration of magnetic field lines. Trajectories of field lines calculated from this symplectic map in natural canonical coordinates can be transformed to trajectories in real physical space. Unlike in magnetic coordinates [O. Kerwin, A. Punjabi, and H. Ali, Phys. Plasmas 15, 072504 (2008)], the symplectic map in natural canonical coordinates can integrate trajectories across the separatrix surface, and at the same time, give trajectories in physical space. Unlike symplectic maps in physical coordinates (x,y) or (R,Z), the continuous analog of a symplectic map in natural canonical coordinates does not distort trajectories in toroidal planes intervening the discrete map. This approach is applied to the DIII-D tokamak [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The EGF for the DIII-D gives quite an accurate representation of equilibrium magnetic surfaces close to the separatrix surface. This new approach is applied to demonstrate the sensitivity of stochastic broadening using a set of perturbations that generically approximate the size of the field errors and statistical topological noise expected in a poloidally diverted tokamak. Plans for future application of this approach are discussed.
Rai, Prashant; Sargsyan, Khachik; Najm, Habib; ...
2017-03-07
Here, a new method is proposed for a fast evaluation of high-dimensional integrals of potential energy surfaces (PES) that arise in many areas of quantum dynamics. It decomposes a PES into a canonical low-rank tensor format, reducing its integral into a relatively short sum of products of low-dimensional integrals. The decomposition is achieved by the alternating least squares (ALS) algorithm, requiring only a small number of single-point energy evaluations. Therefore, it eradicates a force-constant evaluation as the hotspot of many quantum dynamics simulations and also possibly lifts the curse of dimensionality. This general method is applied to the anharmonic vibrationalmore » zero-point and transition energy calculations of molecules using the second-order diagrammatic vibrational many-body Green's function (XVH2) theory with a harmonic-approximation reference. In this application, high dimensional PES and Green's functions are both subjected to a low-rank decomposition. Evaluating the molecular integrals over a low-rank PES and Green's functions as sums of low-dimensional integrals using the Gauss–Hermite quadrature, this canonical-tensor-decomposition-based XVH2 (CT-XVH2) achieves an accuracy of 0.1 cm -1 or higher and nearly an order of magnitude speedup as compared with the original algorithm using force constants for water and formaldehyde.« less
The non-canonical functions of the heme oxygenases
Tibullo, Daniele; Forte, Stefano; Zappalà, Agata; Volti, Giovanni Li
2016-01-01
Heme oxygenase (HO) isoforms catalyze the conversion of heme to carbon monoxide (CO) and biliverdin with a concurrent release of iron, which can drive the synthesis of ferritin for iron sequestration. Most of the studies so far were directed at evaluating the protective effect of these enzymes because of their ability to generate antioxidant and antiapoptotic molecules such as CO and bilirubin. Recent evidences are suggesting that HO may possess other important physiological functions, which are not related to its enzymatic activity and for which we would like to introduce for the first time the term “non canonical functions”. Recent evidence suggest that both HO isoforms may form protein-protein interactions (i.e. cytochrome P450, adiponectin, CD91) thus serving as chaperone-like protein. In addition, truncated HO-1 isoform was localized in the nuclear compartment under certain experimental conditions (i.e. excitotoxicity, hypoxia) regulating the activity of important nuclear transcription factors (i.e. Nrf2) and DNA repair. In the present review, we discuss three potential signaling mechanisms that we refer to as the non-canonical functions of the HO isoforms: protein-protein interaction, intracellular compartmentalization, and extracellular secretion. The aim of the present review is to describe each of this mechanism and all the aspects warranting additional studies in order to unravel all the functions of the HO system. PMID:27626166
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rai, Prashant; Sargsyan, Khachik; Najm, Habib
Here, a new method is proposed for a fast evaluation of high-dimensional integrals of potential energy surfaces (PES) that arise in many areas of quantum dynamics. It decomposes a PES into a canonical low-rank tensor format, reducing its integral into a relatively short sum of products of low-dimensional integrals. The decomposition is achieved by the alternating least squares (ALS) algorithm, requiring only a small number of single-point energy evaluations. Therefore, it eradicates a force-constant evaluation as the hotspot of many quantum dynamics simulations and also possibly lifts the curse of dimensionality. This general method is applied to the anharmonic vibrationalmore » zero-point and transition energy calculations of molecules using the second-order diagrammatic vibrational many-body Green's function (XVH2) theory with a harmonic-approximation reference. In this application, high dimensional PES and Green's functions are both subjected to a low-rank decomposition. Evaluating the molecular integrals over a low-rank PES and Green's functions as sums of low-dimensional integrals using the Gauss–Hermite quadrature, this canonical-tensor-decomposition-based XVH2 (CT-XVH2) achieves an accuracy of 0.1 cm -1 or higher and nearly an order of magnitude speedup as compared with the original algorithm using force constants for water and formaldehyde.« less
Computer program for calculating and fitting thermodynamic functions
NASA Technical Reports Server (NTRS)
Mcbride, Bonnie J.; Gordon, Sanford
1992-01-01
A computer program is described which (1) calculates thermodynamic functions (heat capacity, enthalpy, entropy, and free energy) for several optional forms of the partition function, (2) fits these functions to empirical equations by means of a least-squares fit, and (3) calculates, as a function of temperture, heats of formation and equilibrium constants. The program provides several methods for calculating ideal gas properties. For monatomic gases, three methods are given which differ in the technique used for truncating the partition function. For diatomic and polyatomic molecules, five methods are given which differ in the corrections to the rigid-rotator harmonic-oscillator approximation. A method for estimating thermodynamic functions for some species is also given.
Evaluation of Hierarchical Clustering Algorithms for Document Datasets
2002-06-03
link, complete-link, and group average ( UPGMA )) and a new set of merging criteria derived from the six partitional criterion functions. Overall, we...used the single-link, complete-link, and UPGMA schemes, as well as, the various partitional criterion functions described in Section 3.1. The single-link...other (complete-link approach). The UPGMA scheme [16] (also known as group average) overcomes these problems by measuring the similarity of two clusters
Wu, Yao; Dai, Xiaodong; Huang, Niu; Zhao, Lifeng
2013-06-05
In force field parameter development using ab initio potential energy surfaces (PES) as target data, an important but often neglected matter is the lack of a weighting scheme with optimal discrimination power to fit the target data. Here, we developed a novel partition function-based weighting scheme, which not only fits the target potential energies exponentially like the general Boltzmann weighting method, but also reduces the effect of fitting errors leading to overfitting. The van der Waals (vdW) parameters of benzene and propane were reparameterized by using the new weighting scheme to fit the high-level ab initio PESs probed by a water molecule in global configurational space. The molecular simulation results indicate that the newly derived parameters are capable of reproducing experimental properties in a broader range of temperatures, which supports the partition function-based weighting scheme. Our simulation results also suggest that structural properties are more sensitive to vdW parameters than partial atomic charge parameters in these systems although the electrostatic interactions are still important in energetic properties. As no prerequisite conditions are required, the partition function-based weighting method may be applied in developing any types of force field parameters. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
William, Peter
In this dissertation several two dimensional statistical systems exhibiting discrete Z(n) symmetries are studied. For this purpose a newly developed algorithm to compute the partition function of these models exactly is utilized. The zeros of the partition function are examined in order to obtain information about the observable quantities at the critical point. This occurs in the form of critical exponents of the order parameters which characterize phenomena at the critical point. The correlation length exponent is found to agree very well with those computed from strong coupling expansions for the mass gap and with Monte Carlo results. In Feynman's path integral formalism the partition function of a statistical system can be related to the vacuum expectation value of the time ordered product of the observable quantities of the corresponding field theoretic model. Hence a generalization of ordinary scale invariance in the form of conformal invariance is focussed upon. This principle is very suitably applicable, in the case of two dimensional statistical models undergoing second order phase transitions at criticality. The conformal anomaly specifies the universality class to which these models belong. From an evaluation of the partition function, the free energy at criticality is computed, to determine the conformal anomaly of these models. The conformal anomaly for all the models considered here are in good agreement with the predicted values.
Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal.
Yan, Kelley S; Janda, Claudia Y; Chang, Junlei; Zheng, Grace X Y; Larkin, Kathryn A; Luca, Vincent C; Chia, Luis A; Mah, Amanda T; Han, Arnold; Terry, Jessica M; Ootani, Akifumi; Roelf, Kelly; Lee, Mark; Yuan, Jenny; Li, Xiao; Bolen, Christopher R; Wilhelmy, Julie; Davies, Paige S; Ueno, Hiroo; von Furstenberg, Richard J; Belgrader, Phillip; Ziraldo, Solongo B; Ordonez, Heather; Henning, Susan J; Wong, Melissa H; Snyder, Michael P; Weissman, Irving L; Hsueh, Aaron J; Mikkelsen, Tarjei S; Garcia, K Christopher; Kuo, Calvin J
2017-05-11
The canonical Wnt/β-catenin signalling pathway governs diverse developmental, homeostatic and pathological processes. Palmitoylated Wnt ligands engage cell-surface frizzled (FZD) receptors and LRP5 and LRP6 co-receptors, enabling β-catenin nuclear translocation and TCF/LEF-dependent gene transactivation. Mutations in Wnt downstream signalling components have revealed diverse functions thought to be carried out by Wnt ligands themselves. However, redundancy between the 19 mammalian Wnt proteins and 10 FZD receptors and Wnt hydrophobicity have made it difficult to attribute these functions directly to Wnt ligands. For example, individual mutations in Wnt ligands have not revealed homeostatic phenotypes in the intestinal epithelium-an archetypal canonical, Wnt pathway-dependent, rapidly self-renewing tissue, the regeneration of which is fueled by proliferative crypt Lgr5 + intestinal stem cells (ISCs). R-spondin ligands (RSPO1-RSPO4) engage distinct LGR4-LGR6, RNF43 and ZNRF3 receptor classes, markedly potentiate canonical Wnt/β-catenin signalling, and induce intestinal organoid growth in vitro and Lgr5 + ISCs in vivo. However, the interchangeability, functional cooperation and relative contributions of Wnt versus RSPO ligands to in vivo canonical Wnt signalling and ISC biology remain unknown. Here we identify the functional roles of Wnt and RSPO ligands in the intestinal crypt stem-cell niche. We show that the default fate of Lgr5 + ISCs is to differentiate, unless both RSPO and Wnt ligands are present. However, gain-of-function studies using RSPO ligands and a new non-lipidated Wnt analogue reveal that these ligands have qualitatively distinct, non-interchangeable roles in ISCs. Wnt proteins are unable to induce Lgr5 + ISC self-renewal, but instead confer a basal competency by maintaining RSPO receptor expression that enables RSPO ligands to actively drive and specify the extent of stem-cell expansion. This functionally non-equivalent yet cooperative interaction between Wnt and RSPO ligands establishes a molecular precedent for regulation of mammalian stem cells by distinct priming and self-renewal factors, with broad implications for precise control of tissue regeneration.
Ogawa, Atsushi; Murashige, Yuta; Takahashi, Hajime
2018-06-19
We have found that OFF-riboswitches that ligand-dependently downregulate the canonical translation in a higher eukaryotic expression system (wheat germ extract) can be easily created by inserting a single aptamer into the 5' untranslated region (UTR) of mRNA, even if its ligand is as small as theophylline. The key is the position of the inserted aptamer: the 5' end (+0 position) is much better than other positions for inhibiting canonical translation with the aptamer-ligand complex. The data showed that ribosome loading is suppressed by a rigid structure in the 5' end, and this suppression is dependent on the structure's stability but not on its size. Although this preference of aptamer insertion point contradicts the results in a lower eukaryote, it accords with the fact that the 5'-end structural hindrance is more effective for blocking the ribosome in higher eukaryotes. Therefore, the present type of OFF-riboswitch would function in various higher eukaryotic expression systems. Copyright © 2018 Elsevier Ltd. All rights reserved.
A nucleobase-centered coarse-grained representation for structure prediction of RNA motifs.
Poblete, Simón; Bottaro, Sandro; Bussi, Giovanni
2018-02-28
We introduce the SPlit-and-conQueR (SPQR) model, a coarse-grained (CG) representation of RNA designed for structure prediction and refinement. In our approach, the representation of a nucleotide consists of a point particle for the phosphate group and an anisotropic particle for the nucleoside. The interactions are, in principle, knowledge-based potentials inspired by the $\\mathcal {E}$SCORE function, a base-centered scoring function. However, a special treatment is given to base-pairing interactions and certain geometrical conformations which are lost in a raw knowledge-based model. This results in a representation able to describe planar canonical and non-canonical base pairs and base-phosphate interactions and to distinguish sugar puckers and glycosidic torsion conformations. The model is applied to the folding of several structures, including duplexes with internal loops of non-canonical base pairs, tetraloops, junctions and a pseudoknot. For the majority of these systems, experimental structures are correctly predicted at the level of individual contacts. We also propose a method for efficiently reintroducing atomistic detail from the CG representation.
Breaking of Ensemble Equivalence in Networks
NASA Astrophysics Data System (ADS)
Squartini, Tiziano; de Mol, Joey; den Hollander, Frank; Garlaschelli, Diego
2015-12-01
It is generally believed that, in the thermodynamic limit, the microcanonical description as a function of energy coincides with the canonical description as a function of temperature. However, various examples of systems for which the microcanonical and canonical ensembles are not equivalent have been identified. A complete theory of this intriguing phenomenon is still missing. Here we show that ensemble nonequivalence can manifest itself also in random graphs with topological constraints. We find that, while graphs with a given number of links are ensemble equivalent, graphs with a given degree sequence are not. This result holds irrespective of whether the energy is nonadditive (as in unipartite graphs) or additive (as in bipartite graphs). In contrast with previous expectations, our results show that (1) physically, nonequivalence can be induced by an extensive number of local constraints, and not necessarily by long-range interactions or nonadditivity, (2) mathematically, nonequivalence is determined by a different large-deviation behavior of microcanonical and canonical probabilities for a single microstate, and not necessarily for almost all microstates. The latter criterion, which is entirely local, is not restricted to networks and holds in general.
New gravitational solutions via a Riemann-Hilbert approach
NASA Astrophysics Data System (ADS)
Cardoso, G. L.; Serra, J. C.
2018-03-01
We consider the Riemann-Hilbert factorization approach to solving the field equations of dimensionally reduced gravity theories. First we prove that functions belonging to a certain class possess a canonical factorization due to properties of the underlying spectral curve. Then we use this result, together with appropriate matricial decompositions, to study the canonical factorization of non-meromorphic monodromy matrices that describe deformations of seed monodromy matrices associated with known solutions. This results in new solutions, with unusual features, to the field equations.
Many-body formalism for fermions: The partition function
NASA Astrophysics Data System (ADS)
Watson, D. K.
2017-09-01
The partition function, a fundamental tenet in statistical thermodynamics, contains in principle all thermodynamic information about a system. It encapsulates both microscopic information through the quantum energy levels and statistical information from the partitioning of the particles among the available energy levels. For identical particles, this statistical accounting is complicated by the symmetry requirements of the allowed quantum states. In particular, for Fermi systems, the enforcement of the Pauli principle is typically a numerically demanding task, responsible for much of the cost of the calculations. The interplay of these three elements—the structure of the many-body spectrum, the statistical partitioning of the N particles among the available levels, and the enforcement of the Pauli principle—drives the behavior of mesoscopic and macroscopic Fermi systems. In this paper, we develop an approach for the determination of the partition function, a numerically difficult task, for systems of strongly interacting identical fermions and apply it to a model system of harmonically confined, harmonically interacting fermions. This approach uses a recently introduced many-body method that is an extension of the symmetry-invariant perturbation method (SPT) originally developed for bosons. It uses group theory and graphical techniques to avoid the heavy computational demands of conventional many-body methods which typically scale exponentially with the number of particles. The SPT application of the Pauli principle is trivial to implement since it is done "on paper" by imposing restrictions on the normal-mode quantum numbers at first order in the perturbation. The method is applied through first order and represents an extension of the SPT method to excited states. Our method of determining the partition function and various thermodynamic quantities is accurate and efficient and has the potential to yield interesting insight into the role played by the Pauli principle and the influence of large degeneracies on the emergence of the thermodynamic behavior of large-N systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adachi, Atsuo; Takahashi, Tomosaburo, E-mail: ttaka@koto.kpu-m.ac.jp; Ogata, Takehiro
Highlights: Black-Right-Pointing-Pointer NFAT5 protein expression is downregulated during cardiomyogenesis. Black-Right-Pointing-Pointer Inhibition of NFAT5 function suppresses canonical Wnt signaling. Black-Right-Pointing-Pointer Inhibition of NFAT5 function attenuates mesodermal induction. Black-Right-Pointing-Pointer NFAT5 function is required for cardiomyogenesis. -- Abstract: While nuclear factor of activated T cells 5 (NFAT5), a transcription factor implicated in osmotic stress response, is suggested to be involved in other processes such as migration and proliferation, its role in cardiomyogenesis is largely unknown. Here, we examined the role of NFAT5 in cardiac differentiation of P19CL6 cells, and observed that it was abundantly expressed in undifferentiated P19CL6 cells, and its protein expressionmore » was significantly downregulated by enhanced proteasomal degradation during DMSO-induced cardiomyogenesis. Expression of a dominant negative mutant of NFAT5 markedly attenuated cardiomyogenesis, which was associated with the inhibition of mesodermal differentiation. TOPflash reporter assay revealed that the transcriptional activity of canonical Wnt signaling was activated prior to mesodermal differentiation, and this activation was markedly attenuated by NFAT5 inhibition. Pharmacological activation of canonical Wnt signaling by [2 Prime Z, 3 Prime E]-6-bromoindirubin-3 Prime -oxime (BIO) restored Brachyury expression in NFAT5DN-expressing cells. Inhibition of NFAT5 markedly attenuated Wnt3 and Wnt3a induction. Expression of Dkk1 and Cerberus1, which are secreted Wnt antagonists, was also inhibited by NFAT5 inhibition. Thus, endogenous NFAT5 regulates the coordinated expression of Wnt ligands and antagonists, which are essential for cardiomyogenesis through the canonical Wnt pathway. These results demonstrated a novel role of NFAT5 in cardiac differentiation of stem cells.« less
The coordinate coherent states approach revisited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Yan-Gang, E-mail: miaoyg@nankai.edu.cn; Zhang, Shao-Jun, E-mail: sjzhang@mail.nankai.edu.cn
2013-02-15
We revisit the coordinate coherent states approach through two different quantization procedures in the quantum field theory on the noncommutative Minkowski plane. The first procedure, which is based on the normal commutation relation between an annihilation and creation operators, deduces that a point mass can be described by a Gaussian function instead of the usual Dirac delta function. However, we argue this specific quantization by adopting the canonical one (based on the canonical commutation relation between a field and its conjugate momentum) and show that a point mass should still be described by the Dirac delta function, which implies thatmore » the concept of point particles is still valid when we deal with the noncommutativity by following the coordinate coherent states approach. In order to investigate the dependence on quantization procedures, we apply the two quantization procedures to the Unruh effect and Hawking radiation and find that they give rise to significantly different results. Under the first quantization procedure, the Unruh temperature and Unruh spectrum are not deformed by noncommutativity, but the Hawking temperature is deformed by noncommutativity while the radiation specturm is untack. However, under the second quantization procedure, the Unruh temperature and Hawking temperature are untack but the both spectra are modified by an effective greybody (deformed) factor. - Highlights: Black-Right-Pointing-Pointer Suggest a canonical quantization in the coordinate coherent states approach. Black-Right-Pointing-Pointer Prove the validity of the concept of point particles. Black-Right-Pointing-Pointer Apply the canonical quantization to the Unruh effect and Hawking radiation. Black-Right-Pointing-Pointer Find no deformations in the Unruh temperature and Hawking temperature. Black-Right-Pointing-Pointer Provide the modified spectra of the Unruh effect and Hawking radiation.« less
How the Wnt signaling pathway protects from neurodegeneration: the mitochondrial scenario
Arrázola, Macarena S.; Silva-Alvarez, Carmen; Inestrosa, Nibaldo C.
2015-01-01
Alzheimer’s disease (AD) is the most common neurodegenerative disorder and is characterized by progressive memory loss and cognitive decline. One of the hallmarks of AD is the overproduction of amyloid-beta aggregates that range from the toxic soluble oligomer (Aβo) form to extracellular accumulations in the brain. Growing evidence indicates that mitochondrial dysfunction is a common feature of neurodegenerative diseases and is observed at an early stage in the pathogenesis of AD. Reports indicate that mitochondrial structure and function are affected by Aβo and can trigger neuronal cell death. Mitochondria are highly dynamic organelles, and the balance between their fusion and fission processes is essential for neuronal function. Interestingly, in AD, the process known as “mitochondrial dynamics” is also impaired by Aβo. On the other hand, the activation of the Wnt signaling pathway has an essential role in synaptic maintenance and neuronal functions, and its deregulation has also been implicated in AD. We have demonstrated that canonical Wnt signaling, through the Wnt3a ligand, prevents the permeabilization of mitochondrial membranes through the inhibition of the mitochondrial permeability transition pore (mPTP), induced by Aβo. In addition, we showed that non-canonical Wnt signaling, through the Wnt5a ligand, protects mitochondria from fission-fusion alterations in AD. These results suggest new approaches by which different Wnt signaling pathways protect neurons in AD, and support the idea that mitochondria have become potential therapeutic targets for the treatment of neurodegenerative disorders. Here we discuss the neuroprotective role of the canonical and non-canonical Wnt signaling pathways in AD and their differential modulation of mitochondrial processes, associated with mitochondrial dysfunction and neurodegeneration. PMID:25999816
Study of high-performance canonical molecular orbitals calculation for proteins
NASA Astrophysics Data System (ADS)
Hirano, Toshiyuki; Sato, Fumitoshi
2017-11-01
The canonical molecular orbital (CMO) calculation can help to understand chemical properties and reactions in proteins. However, it is difficult to perform the CMO calculation of proteins because of its self-consistent field (SCF) convergence problem and expensive computational cost. To certainly obtain the CMO of proteins, we work in research and development of high-performance CMO applications and perform experimental studies. We have proposed the third-generation density-functional calculation method of calculating the SCF, which is more advanced than the FILE and direct method. Our method is based on Cholesky decomposition for two-electron integrals calculation and the modified grid-free method for the pure-XC term evaluation. By using the third-generation density-functional calculation method, the Coulomb, the Fock-exchange, and the pure-XC terms can be given by simple linear algebraic procedure in the SCF loop. Therefore, we can expect to get a good parallel performance in solving the SCF problem by using a well-optimized linear algebra library such as BLAS on the distributed memory parallel computers. The third-generation density-functional calculation method is implemented to our program, ProteinDF. To achieve computing electronic structure of the large molecule, not only overcoming expensive computation cost and also good initial guess for safe SCF convergence are required. In order to prepare a precise initial guess for the macromolecular system, we have developed the quasi-canonical localized orbital (QCLO) method. The QCLO has the characteristics of both localized and canonical orbital in a certain region of the molecule. We have succeeded in the CMO calculations of proteins by using the QCLO method. For simplified and semi-automated calculation of the QCLO method, we have also developed a Python-based program, QCLObot.
Frank, Alexander H.; Garcia, Juan A. L.; Herndl, Gerhard J.
2016-01-01
Summary To decipher the influence of depth stratification and surface provincialism on the dark ocean prokaryotic community composition, we sampled the major deep‐water masses in the eastern North Atlantic covering three biogeographic provinces. Their diversity was evaluated using ordination and canonical analysis of 454 pyrotag sequences. Variance partitioning suggested that 16% of the variation in the bacterial community composition was based on depth stratification while 9% of the variation was due to geographic location. General linear mixed effect models showed that the community of the subsurface waters was connected to the dark ocean prokaryotic communities in different biogeographic provinces. Cluster analysis indicated that some prokaryotic taxa are specific to distinct regions in bathypelagic water masses. Taken together, our data suggest that the dark ocean prokaryotic community composition of the eastern North Atlantic is primed by the formation and the horizontal transport of water masses. PMID:26914787
Tangles of the ideal separatrix from low mn perturbation in the DIII-D
NASA Astrophysics Data System (ADS)
Goss, Talisa; Crank, Willie; Ali, Halima; Punjabi, Alkesh
2010-11-01
The equilibrium EFIT data for the DIII-D shot 115467 at 3000 ms is used to construct the equilibrium generating function for magnetic field line trajectories in the DIII-D tokamak in natural canonical coordinates [A. Punjabi, and H. Ali, Phys. Plasmas 15, 122502 (2008); A. Punjabi, Nucl. Fusion 49, 115020 (2009)]. The generating function represents the axisymmetric magnetic geometry and the topology of the DIII-D shot very accurately. A symplectic map for field line trajectories in the natural canonical coordinates in the DIII-D is constructed. We call this map the DIII-D map. The natural canonical coordinates can be readily inverted to physical coordinates (R,φ,Z). Low mn magnetic perturbation with mode numbers (m,n)=(1,1)+(1,-1) is added to the generating function of the map. The amplitude for the low mn perturbation is chosen to be 6X10-4, which is the expected value of the amplitude in tokamaks. The forward and backward DIII-D maps with low mn perturbation are used to calculate the tangles of the ideal separatrix from low mn perturbation in the DIII-D. This work is supported by US Department of Energy grants DE-FG02-07ER54937, DE-FG02-01ER54624 and DE-FG02-04ER54793.
Pistocchi, A; Fazio, G; Cereda, A; Ferrari, L; Bettini, L R; Messina, G; Cotelli, F; Biondi, A; Selicorni, A; Massa, V
2013-10-17
Cornelia de Lange Syndrome is a severe genetic disorder characterized by malformations affecting multiple systems, with a common feature of severe mental retardation. Genetic variants within four genes (NIPBL (Nipped-B-like), SMC1A, SMC3, and HDAC8) are believed to be responsible for the majority of cases; all these genes encode proteins that are part of the 'cohesin complex'. Cohesins exhibit two temporally separated major roles in cells: one controlling the cell cycle and the other involved in regulating the gene expression. The present study focuses on the role of the zebrafish nipblb paralog during neural development, examining its expression in the central nervous system, and analyzing the consequences of nipblb loss of function. Neural development was impaired by the knockdown of nipblb in zebrafish. nipblb-loss-of-function embryos presented with increased apoptosis in the developing neural tissues, downregulation of canonical Wnt pathway genes, and subsequent decreased Cyclin D1 (Ccnd1) levels. Importantly, the same pattern of canonical WNT pathway and CCND1 downregulation was observed in NIPBL-mutated patient-specific fibroblasts. Finally, chemical activation of the pathway in nipblb-loss-of-function embryos rescued the adverse phenotype and restored the physiological levels of cell death.
NASA Astrophysics Data System (ADS)
Beretta, Elena; Micheletti, Stefano; Perotto, Simona; Santacesaria, Matteo
2018-01-01
In this paper, we develop a shape optimization-based algorithm for the electrical impedance tomography (EIT) problem of determining a piecewise constant conductivity on a polygonal partition from boundary measurements. The key tool is to use a distributed shape derivative of a suitable cost functional with respect to movements of the partition. Numerical simulations showing the robustness and accuracy of the method are presented for simulated test cases in two dimensions.
Partition of some key regulating services in terrestrial ecosystems: Meta-analysis and review.
Viglizzo, E F; Jobbágy, E G; Ricard, M F; Paruelo, J M
2016-08-15
Our knowledge about the functional foundations of ecosystem service (ES) provision is still limited and more research is needed to elucidate key functional mechanisms. Using a simplified eco-hydrological scheme, in this work we analyzed how land-use decisions modify the partition of some essential regulatory ES by altering basic relationships between biomass stocks and water flows. A comprehensive meta-analysis and review was conducted based on global, regional and local data from peer-reviewed publications. We analyzed five datasets comprising 1348 studies and 3948 records on precipitation (PPT), aboveground biomass (AGB), AGB change, evapotranspiration (ET), water yield (WY), WY change, runoff (R) and infiltration (I). The conceptual framework was focused on ES that are associated with the ecological functions (e.g., intermediate ES) of ET, WY, R and I. ES included soil protection, carbon sequestration, local climate regulation, water-flow regulation and water recharge. To address the problem of data normality, the analysis included both parametric and non-parametric regression analysis. Results demonstrate that PPT is a first-order biophysical factor that controls ES release at the broader scales. At decreasing scales, ES are partitioned as result of PPT interactions with other biophysical and anthropogenic factors. At intermediate scales, land-use change interacts with PPT modifying ES partition as it the case of afforestation in dry regions, where ET and climate regulation may be enhanced at the expense of R and water-flow regulation. At smaller scales, site-specific conditions such as topography interact with PPT and AGB displaying different ES partition formats. The probable implications of future land-use and climate change on some key ES production and partition are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Ghalyan, Najah F; Miller, David J; Ray, Asok
2018-06-12
Estimation of a generating partition is critical for symbolization of measurements from discrete-time dynamical systems, where a sequence of symbols from a (finite-cardinality) alphabet may uniquely specify the underlying time series. Such symbolization is useful for computing measures (e.g., Kolmogorov-Sinai entropy) to identify or characterize the (possibly unknown) dynamical system. It is also useful for time series classification and anomaly detection. The seminal work of Hirata, Judd, and Kilminster (2004) derives a novel objective function, akin to a clustering objective, that measures the discrepancy between a set of reconstruction values and the points from the time series. They cast estimation of a generating partition via the minimization of their objective function. Unfortunately, their proposed algorithm is nonconvergent, with no guarantee of finding even locally optimal solutions with respect to their objective. The difficulty is a heuristic-nearest neighbor symbol assignment step. Alternatively, we develop a novel, locally optimal algorithm for their objective. We apply iterative nearest-neighbor symbol assignments with guaranteed discrepancy descent, by which joint, locally optimal symbolization of the entire time series is achieved. While most previous approaches frame generating partition estimation as a state-space partitioning problem, we recognize that minimizing the Hirata et al. (2004) objective function does not induce an explicit partitioning of the state space, but rather the space consisting of the entire time series (effectively, clustering in a (countably) infinite-dimensional space). Our approach also amounts to a novel type of sliding block lossy source coding. Improvement, with respect to several measures, is demonstrated over popular methods for symbolizing chaotic maps. We also apply our approach to time-series anomaly detection, considering both chaotic maps and failure application in a polycrystalline alloy material.
BPS/CFT Correspondence III: Gauge Origami Partition Function and qq-Characters
NASA Astrophysics Data System (ADS)
Nekrasov, Nikita
2018-03-01
We study generalized gauge theories engineered by taking the low energy limit of the Dp branes wrapping {X × {T}^{p-3}}, with X a possibly singular surface in a Calabi-Yau fourfold Z. For toric Z and X the partition function can be computed by localization, making it a statistical mechanical model, called the gauge origami. The random variables are the ensembles of Young diagrams. The building block of the gauge origami is associated with a tetrahedron, whose edges are colored by vector spaces. We show the properly normalized partition function is an entire function of the Coulomb moduli, for generic values of the {Ω} -background parameters. The orbifold version of the theory defines the qq-character operators, with and without the surface defects. The analytic properties are the consequence of a relative compactness of the moduli spaces M({ěc n}, k) of crossed and spiked instantons, demonstrated in "BPS/CFT correspondence II: instantons at crossroads, moduli and compactness theorem".
Z/sub n/ Baxter model: symmetries and the Belavin parametrization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richey, M.P.; Tracy, C.A.
1986-02-01
The Z/sub n/ Baxter model is an exactly solvable lattice model in the special case of the Belavin parametrization. For this parametrization the authors calculate the partition function in an antiferromagnetic region and the order parameter in a ferromagnetic region. They find that the order parameter is expressible in terms of a modular function of level n which for n=2 is the Onsager-Yang-Baxter result. In addition they determine the symmetry group of the finite lattice partition function for the general Z/sub n/ Baxter model.
Generalized Green's function molecular dynamics for canonical ensemble simulations
NASA Astrophysics Data System (ADS)
Coluci, V. R.; Dantas, S. O.; Tewary, V. K.
2018-05-01
The need of small integration time steps (˜1 fs) in conventional molecular dynamics simulations is an important issue that inhibits the study of physical, chemical, and biological systems in real timescales. Additionally, to simulate those systems in contact with a thermal bath, thermostating techniques are usually applied. In this work, we generalize the Green's function molecular dynamics technique to allow simulations within the canonical ensemble. By applying this technique to one-dimensional systems, we were able to correctly describe important thermodynamic properties such as the temperature fluctuations, the temperature distribution, and the velocity autocorrelation function. We show that the proposed technique also allows the use of time steps one order of magnitude larger than those typically used in conventional molecular dynamics simulations. We expect that this technique can be used in long-timescale molecular dynamics simulations.
Pei, Du; Ye, Ke
2016-11-02
Here, we test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T [L(p, 1)] and the partition function of complex Chern-Simons theory on L(p, 1). In particular, for p = 1, we show how the familiar S 3 partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p, 1)] becomes a constant independent of p. In addition, we study T[L(p, 1)] on the squashed three-sphere S b 3. Thismore » enables us to see clearly, at the level of partition function, to what extent G C complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.« less
Da, Yang
2015-12-18
The amount of functional genomic information has been growing rapidly but remains largely unused in genomic selection. Genomic prediction and estimation using haplotypes in genome regions with functional elements such as all genes of the genome can be an approach to integrate functional and structural genomic information for genomic selection. Towards this goal, this article develops a new haplotype approach for genomic prediction and estimation. A multi-allelic haplotype model treating each haplotype as an 'allele' was developed for genomic prediction and estimation based on the partition of a multi-allelic genotypic value into additive and dominance values. Each additive value is expressed as a function of h - 1 additive effects, where h = number of alleles or haplotypes, and each dominance value is expressed as a function of h(h - 1)/2 dominance effects. For a sample of q individuals, the limit number of effects is 2q - 1 for additive effects and is the number of heterozygous genotypes for dominance effects. Additive values are factorized as a product between the additive model matrix and the h - 1 additive effects, and dominance values are factorized as a product between the dominance model matrix and the h(h - 1)/2 dominance effects. Genomic additive relationship matrix is defined as a function of the haplotype model matrix for additive effects, and genomic dominance relationship matrix is defined as a function of the haplotype model matrix for dominance effects. Based on these results, a mixed model implementation for genomic prediction and variance component estimation that jointly use haplotypes and single markers is established, including two computing strategies for genomic prediction and variance component estimation with identical results. The multi-allelic genetic partition fills a theoretical gap in genetic partition by providing general formulations for partitioning multi-allelic genotypic values and provides a haplotype method based on the quantitative genetics model towards the utilization of functional and structural genomic information for genomic prediction and estimation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Havu, V.; Fritz Haber Institute of the Max Planck Society, Berlin; Blum, V.
2009-12-01
We consider the problem of developing O(N) scaling grid-based operations needed in many central operations when performing electronic structure calculations with numeric atom-centered orbitals as basis functions. We outline the overall formulation of localized algorithms, and specifically the creation of localized grid batches. The choice of the grid partitioning scheme plays an important role in the performance and memory consumption of the grid-based operations. Three different top-down partitioning methods are investigated, and compared with formally more rigorous yet much more expensive bottom-up algorithms. We show that a conceptually simple top-down grid partitioning scheme achieves essentially the same efficiency as themore » more rigorous bottom-up approaches.« less
A Meinardus Theorem with Multiple Singularities
NASA Astrophysics Data System (ADS)
Granovsky, Boris L.; Stark, Dudley
2012-09-01
Meinardus proved a general theorem about the asymptotics of the number of weighted partitions, when the Dirichlet generating function for weights has a single pole on the positive real axis. Continuing (Granovsky et al., Adv. Appl. Math. 41:307-328, 2008), we derive asymptotics for the numbers of three basic types of decomposable combinatorial structures (or, equivalently, ideal gas models in statistical mechanics) of size n, when their Dirichlet generating functions have multiple simple poles on the positive real axis. Examples to which our theorem applies include ones related to vector partitions and quantum field theory. Our asymptotic formula for the number of weighted partitions disproves the belief accepted in the physics literature that the main term in the asymptotics is determined by the rightmost pole.
NASA Astrophysics Data System (ADS)
Mobarakeh, Pouyan Shakeri; Grinchenko, Victor T.
2015-06-01
The majority of practical cases of acoustics problems requires solving the boundary problems in non-canonical domains. Therefore construction of analytical solutions of mathematical physics boundary problems for non-canonical domains is both lucrative from the academic viewpoint, and very instrumental for elaboration of efficient algorithms of quantitative estimation of the field characteristics under study. One of the main solving ideologies for such problems is based on the superposition method that allows one to analyze a wide class of specific problems with domains which can be constructed as the union of canonically-shaped subdomains. It is also assumed that an analytical solution (or quasi-solution) can be constructed for each subdomain in one form or another. However, this case implies some difficulties in the construction of calculation algorithms, insofar as the boundary conditions are incompletely defined in the intervals, where the functions appearing in the general solution are orthogonal to each other. We discuss several typical examples of problems with such difficulties, we study their nature and identify the optimal methods to overcome them.
NASA Astrophysics Data System (ADS)
Lee, T.-W.
2017-11-01
Recently, we developed a theoretical basis for determination of the Reynolds stress in canonical flows. Writing momentum balance for a control volume moving at the local mean velocity, along with a differential transform ∂/∂x =C1 U∂/∂y , a turbulence momentum balance is discovered which includes the Reynolds stress as a function of root turbulence parameters: ∂(u'v')/∂y = -C1 U∂u'2/∂y +νm∂2urms'/∂y2 . Then, the Reynolds stress can simply be computed by integrating in the y-direction using the right-hand side (RHS). This is obviously a far simplification of complex modeling of the Reynolds stress, but contains the correct physics, as borne out by comparisons with experimental and DNS data in canonical flows in our earlier works (e.g. in APS 2016). The RHS contains only two parameters, U and u'. In this work, we seek extensions of this solution to non-canonical flows such as wakes, flow over a step, and mixing layers. Comparisons with experimental and DNS data will be presented.
Non-canonical NF-κB signalling and ETS1/2 cooperatively drive C250T mutant TERT promoter activation
Li, Yinghui; Zhou, Qi-Ling; Sun, Wenjie; Chandrasekharan, Prashant; Cheng, Hui Shan; Ying, Zhe; Lakshmanan, Manikandan; Raju, Anandhkumar; Tenen, Daniel G.; Cheng, Shi-Yuan; Chuang, Kai-Hsiang; Li, Jun; Prabhakar, Shyam; Li, Mengfeng; Tergaonkar, Vinay
2016-01-01
Transcriptional reactivation of TERT, the catalytic subunit of telomerase, is necessary for cancer progression in about 90% of human cancers. The recent discovery of two prevalent somatic mutations—C250T and C228T—in the TERT promoter in various cancers has provided insight into a plausible mechanism of TERT reactivation. Although the two hotspot mutations create a similar binding motif for E-twenty-six (ETS) transcription factors, we show that they are functionally distinct, in that the C250T unlike the C228T TERT promoter is driven by non-canonical NF-κB signalling. We demonstrate that binding of ETS to the mutant TERT promoter is insufficient in driving its transcription but this process requires non-canonical NF-κB signalling for stimulus responsiveness, sustained telomerase activity and hence cancer progression. Our findings highlight a previously unrecognized role of non-canonical NF-κB signalling in tumorigenesis and elucidate a fundamental mechanism for TERT reactivation in cancers, which if targeted could have immense therapeutic implications. PMID:26389665
Vahedi, Shahrum; Farrokhi, Farahman; Gahramani, Farahnaz; Issazadegan, Ali
2012-01-01
Approximately 66-80%of graduate students experience statistics anxiety and some researchers propose that many students identify statistics courses as the most anxiety-inducing courses in their academic curriculums. As such, it is likely that statistics anxiety is, in part, responsible for many students delaying enrollment in these courses for as long as possible. This paper proposes a canonical model by treating academic procrastination (AP), learning strategies (LS) as predictor variables and statistics anxiety (SA) as explained variables. A questionnaire survey was used for data collection and 246-college female student participated in this study. To examine the mutually independent relations between procrastination, learning strategies and statistics anxiety variables, a canonical correlation analysis was computed. Findings show that two canonical functions were statistically significant. The set of variables (metacognitive self-regulation, source management, preparing homework, preparing for test and preparing term papers) helped predict changes of statistics anxiety with respect to fearful behavior, Attitude towards math and class, Performance, but not Anxiety. These findings could be used in educational and psychological interventions in the context of statistics anxiety reduction.
Non-canonical NF-κB signalling and ETS1/2 cooperatively drive C250T mutant TERT promoter activation.
Li, Yinghui; Zhou, Qi-Ling; Sun, Wenjie; Chandrasekharan, Prashant; Cheng, Hui Shan; Ying, Zhe; Lakshmanan, Manikandan; Raju, Anandhkumar; Tenen, Daniel G; Cheng, Shi-Yuan; Chuang, Kai-Hsiang; Li, Jun; Prabhakar, Shyam; Li, Mengfeng; Tergaonkar, Vinay
2015-10-01
Transcriptional reactivation of TERT, the catalytic subunit of telomerase, is necessary for cancer progression in about 90% of human cancers. The recent discovery of two prevalent somatic mutations-C250T and C228T-in the TERT promoter in various cancers has provided insight into a plausible mechanism of TERT reactivation. Although the two hotspot mutations create a similar binding motif for E-twenty-six (ETS) transcription factors, we show that they are functionally distinct, in that the C250T unlike the C228T TERT promoter is driven by non-canonical NF-κB signalling. We demonstrate that binding of ETS to the mutant TERT promoter is insufficient in driving its transcription but this process requires non-canonical NF-κB signalling for stimulus responsiveness, sustained telomerase activity and hence cancer progression. Our findings highlight a previously unrecognized role of non-canonical NF-κB signalling in tumorigenesis and elucidate a fundamental mechanism for TERT reactivation in cancers, which if targeted could have immense therapeutic implications.
Nonequilibrium partitioning during rapid solidification of SiAs alloys
NASA Astrophysics Data System (ADS)
Kittl, J. A.; Aziz, M. J.; Brunco, D. P.; Thompson, M. O.
1995-02-01
The velocity dependence of the partition coefficient was measured for rapid solidification of polycrystalline Si-4.5 at% As and Si-9 at% As alloys induced by pulsed laser melting. The results constitute the first test of partitioning models both for the high velocity regime and for non-dilute alloys. The continuous growth model (CGM) of Aziz and Kaplan fits the data well, but with an unusually low diffusive speed of 0.46 m/s. The data show negligible dependence of partitioning on concentration, also consistent with the CGM. The predictions of the Hillert-Sundman model are inconsistent with partitioning results. Using the aperiodic stepwise growth model (ASGM) of Goldman and Aziz, an average over crystallographic orientations with parameters from independent single-crystal experiments is shown to be reasonably consistent with these polycrystalline partitioning results. The results, combined with others, indicate that the CGM without solute drag and its extension to lateral ledge motion, the ASGM, are the only models that fit the data for both solute partioning and kinetic undercooling interface response functions. No current solute drag models can match both partitioning and undercooling measurements.
Interglomerular Connectivity within the Canonical and GC-D/Necklace Olfactory Subsystems
Puche, Adam C.; Munger, Steven D.
2016-01-01
The mammalian main olfactory system contains several subsystems that differ not only in the receptors they express and the glomerular targets they innervate within the main olfactory bulb (MOB), but also in the strategies they use to process odor information. The canonical main olfactory system employs a combinatorial coding strategy that represents odorant identity as a pattern of glomerular activity. By contrast, the "GC-D/necklace" olfactory subsystem—formed by olfactory sensory neurons expressing the receptor guanylyl cyclase GC-D and their target necklace glomeruli (NGs) encircling the caudal MOB—is critical for the detection of a small number of semiochemicals that promote the acquisition of food preferences. The formation of these socially-transmitted food preferences requires the animal to integrate information about two types of olfactory stimuli: these specialized social chemosignals and the food odors themselves. However, the neural mechanisms with which the GC-D/necklace subsystem processes this information are unclear. We used stimulus-induced increases in intrinsic fluorescence signals to map functional circuitry associated with NGs and canonical glomeruli (CGs) in the MOB. As expected, CG-associated activity spread laterally through both the glomerular and external plexiform layers associated with activated glomeruli. Activation of CGs or NGs resulted in activity spread between the two types of glomeruli; there was no evidence of preferential connectivity between individual necklace glomeruli. These results support previous anatomical findings that suggest the canonical and GC-D/necklace subsystems are functionally connected and may integrate general odor and semiochemical information in the MOB. PMID:27902696
[Discrimination of Rice Syrup Adulterant of Acacia Honey Based Using Near-Infrared Spectroscopy].
Zhang, Yan-nan; Chen, Lan-zhen; Xue, Xiao-feng; Wu, Li-ming; Li, Yi; Yang, Juan
2015-09-01
At present, the rice syrup as a low price of the sweeteners was often adulterated into acacia honey and the adulterated honeys were sold in honey markets, while there is no suitable and fast method to identify honey adulterated with rice syrup. In this study, Near infrared spectroscopy (NIR) combined with chemometric methods were used to discriminate authenticity of honey. 20 unprocessed acacia honey samples from the different honey producing areas, mixed? with different proportion of rice syrup, were prepared of seven different concentration gradient? including 121 samples. The near infrared spectrum (NIR) instrument and spectrum processing software have been applied in the? spectrum? scanning and data conversion on adulterant samples, respectively. Then it was analyzed by Principal component analysis (PCA) and canonical discriminant analysis methods in order to discriminating adulterated honey. The results showed that after principal components analysis, the first two principal components accounted for 97.23% of total variation, but the regionalism of the score plot of the first two PCs was not obvious, so the canonical discriminant analysis was used to make the further discrimination, all samples had been discriminated correctly, the first two discriminant functions accounted for 91.6% among the six canonical discriminant functions, Then the different concentration of adulterant samples can be discriminated correctly, it illustrate that canonical discriminant analysis method combined with NIR spectroscopy is not only feasible but also practical for rapid and effective discriminate of the rice syrup adulterant of acacia honey.
On a canonical quantization of 3D Anti de Sitter pure gravity
NASA Astrophysics Data System (ADS)
Kim, Jihun; Porrati, Massimo
2015-10-01
We perform a canonical quantization of pure gravity on AdS 3 using as a technical tool its equivalence at the classical level with a Chern-Simons theory with gauge group SL(2,{R})× SL(2,{R}) . We first quantize the theory canonically on an asymptotically AdS space -which is topologically the real line times a Riemann surface with one connected boundary. Using the "constrain first" approach we reduce canonical quantization to quantization of orbits of the Virasoro group and Kähler quantization of Teichmüller space. After explicitly computing the Kähler form for the torus with one boundary component and after extending that result to higher genus, we recover known results, such as that wave functions of SL(2,{R}) Chern-Simons theory are conformal blocks. We find new restrictions on the Hilbert space of pure gravity by imposing invariance under large diffeomorphisms and normalizability of the wave function. The Hilbert space of pure gravity is shown to be the target space of Conformal Field Theories with continuous spectrum and a lower bound on operator dimensions. A projection defined by topology changing amplitudes in Euclidean gravity is proposed. It defines an invariant subspace that allows for a dual interpretation in terms of a Liouville CFT. Problems and features of the CFT dual are assessed and a new definition of the Hilbert space, exempt from those problems, is proposed in the case of highly-curved AdS 3.
Observational constraints on Tachyon and DBI inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Sheng; Liddle, Andrew R., E-mail: sl277@sussex.ac.uk, E-mail: arl@roe.ac.uk
2014-03-01
We present a systematic method for evaluation of perturbation observables in non-canonical single-field inflation models within the slow-roll approximation, which allied with field redefinitions enables predictions to be established for a wide range of models. We use this to investigate various non-canonical inflation models, including Tachyon inflation and DBI inflation. The Lambert W function will be used extensively in our method for the evaluation of observables. In the Tachyon case, in the slow-roll approximation the model can be approximated by a canonical field with a redefined potential, which yields predictions in better agreement with observations than the canonical equivalents. Formore » DBI inflation models we consider contributions from both the scalar potential and the warp geometry. In the case of a quartic potential, we find a formula for the observables under both non-relativistic (sound speed c{sub s}{sup 2} ∼ 1) and relativistic behaviour (c{sub s}{sup 2} || 1) of the scalar DBI inflaton. For a quadratic potential we find two branches in the non-relativistic c{sub s}{sup 2} ∼ 1 case, determined by the competition of model parameters, while for the relativistic case c{sub s}{sup 2} → 0, we find consistency with results already in the literature. We present a comparison to the latest Planck satellite observations. Most of the non-canonical models we investigate, including the Tachyon, are better fits to data than canonical models with the same potential, but we find that DBI models in the slow-roll regime have difficulty in matching the data.« less
Lipsewers, Yvonne A.; Vasquez-Cardenas, Diana; Seitaj, Dorina; Schauer, Regina; Hidalgo-Martinez, Silvia; Meysman, Filip J. R.
2017-01-01
ABSTRACT Seasonal hypoxia in coastal systems drastically changes the availability of electron acceptors in bottom water, which alters the sedimentary reoxidation of reduced compounds. However, the effect of seasonal hypoxia on the chemolithoautotrophic community that catalyzes these reoxidation reactions is rarely studied. Here, we examine the changes in activity and structure of the sedimentary chemolithoautotrophic bacterial community of a seasonally hypoxic saline basin under oxic (spring) and hypoxic (summer) conditions. Combined 16S rRNA gene amplicon sequencing and analysis of phospholipid-derived fatty acids indicated a major temporal shift in community structure. Aerobic sulfur-oxidizing Gammaproteobacteria (Thiotrichales) and Epsilonproteobacteria (Campylobacterales) were prevalent during spring, whereas Deltaproteobacteria (Desulfobacterales) related to sulfate-reducing bacteria prevailed during summer hypoxia. Chemolithoautotrophy rates in the surface sediment were three times higher in spring than in summer. The depth distribution of chemolithoautotrophy was linked to the distinct sulfur oxidation mechanisms identified through microsensor profiling, i.e., canonical sulfur oxidation, electrogenic sulfur oxidation by cable bacteria, and sulfide oxidation coupled to nitrate reduction by Beggiatoaceae. The metabolic diversity of the sulfur-oxidizing bacterial community suggests a complex niche partitioning within the sediment, probably driven by the availability of reduced sulfur compounds (H2S, S0, and S2O32−) and electron acceptors (O2 and NO3−) regulated by seasonal hypoxia. IMPORTANCE Chemolithoautotrophic microbes in the seafloor are dependent on electron acceptors, like oxygen and nitrate, that diffuse from the overlying water. Seasonal hypoxia, however, drastically changes the availability of these electron acceptors in the bottom water; hence, one expects a strong impact of seasonal hypoxia on sedimentary chemolithoautotrophy. A multidisciplinary investigation of the sediments in a seasonally hypoxic coastal basin confirms this hypothesis. Our data show that bacterial community structure and chemolithoautotrophic activity varied with the seasonal depletion of oxygen. Unexpectedly, the dark carbon fixation was also dependent on the dominant microbial pathway of sulfur oxidation occurring in the sediment (i.e., canonical sulfur oxidation, electrogenic sulfur oxidation by cable bacteria, and sulfide oxidation coupled to nitrate reduction by Beggiatoaceae). These results suggest that a complex niche partitioning within the sulfur-oxidizing bacterial community additionally affects the chemolithoautotrophic community of seasonally hypoxic sediments. PMID:28314724
Lipsewers, Yvonne A; Vasquez-Cardenas, Diana; Seitaj, Dorina; Schauer, Regina; Hidalgo-Martinez, Silvia; Sinninghe Damsté, Jaap S; Meysman, Filip J R; Villanueva, Laura; Boschker, Henricus T S
2017-05-15
Seasonal hypoxia in coastal systems drastically changes the availability of electron acceptors in bottom water, which alters the sedimentary reoxidation of reduced compounds. However, the effect of seasonal hypoxia on the chemolithoautotrophic community that catalyzes these reoxidation reactions is rarely studied. Here, we examine the changes in activity and structure of the sedimentary chemolithoautotrophic bacterial community of a seasonally hypoxic saline basin under oxic (spring) and hypoxic (summer) conditions. Combined 16S rRNA gene amplicon sequencing and analysis of phospholipid-derived fatty acids indicated a major temporal shift in community structure. Aerobic sulfur-oxidizing Gammaproteobacteria ( Thiotrichales ) and Epsilonproteobacteria ( Campylobacterales ) were prevalent during spring, whereas Deltaproteobacteria ( Desulfobacterales ) related to sulfate-reducing bacteria prevailed during summer hypoxia. Chemolithoautotrophy rates in the surface sediment were three times higher in spring than in summer. The depth distribution of chemolithoautotrophy was linked to the distinct sulfur oxidation mechanisms identified through microsensor profiling, i.e., canonical sulfur oxidation, electrogenic sulfur oxidation by cable bacteria, and sulfide oxidation coupled to nitrate reduction by Beggiatoaceae The metabolic diversity of the sulfur-oxidizing bacterial community suggests a complex niche partitioning within the sediment, probably driven by the availability of reduced sulfur compounds (H 2 S, S 0 , and S 2 O 3 2- ) and electron acceptors (O 2 and NO 3 - ) regulated by seasonal hypoxia. IMPORTANCE Chemolithoautotrophic microbes in the seafloor are dependent on electron acceptors, like oxygen and nitrate, that diffuse from the overlying water. Seasonal hypoxia, however, drastically changes the availability of these electron acceptors in the bottom water; hence, one expects a strong impact of seasonal hypoxia on sedimentary chemolithoautotrophy. A multidisciplinary investigation of the sediments in a seasonally hypoxic coastal basin confirms this hypothesis. Our data show that bacterial community structure and chemolithoautotrophic activity varied with the seasonal depletion of oxygen. Unexpectedly, the dark carbon fixation was also dependent on the dominant microbial pathway of sulfur oxidation occurring in the sediment (i.e., canonical sulfur oxidation, electrogenic sulfur oxidation by cable bacteria, and sulfide oxidation coupled to nitrate reduction by Beggiatoaceae ). These results suggest that a complex niche partitioning within the sulfur-oxidizing bacterial community additionally affects the chemolithoautotrophic community of seasonally hypoxic sediments. Copyright © 2017 American Society for Microbiology.
Correspondence between spanning trees and the Ising model on a square lattice
NASA Astrophysics Data System (ADS)
Viswanathan, G. M.
2017-06-01
An important problem in statistical physics concerns the fascinating connections between partition functions of lattice models studied in equilibrium statistical mechanics on the one hand and graph theoretical enumeration problems on the other hand. We investigate the nature of the relationship between the number of spanning trees and the partition function of the Ising model on the square lattice. The spanning tree generating function T (z ) gives the spanning tree constant when evaluated at z =1 , while giving the lattice green function when differentiated. It is known that for the infinite square lattice the partition function Z (K ) of the Ising model evaluated at the critical temperature K =Kc is related to T (1 ) . Here we show that this idea in fact generalizes to all real temperatures. We prove that [Z(K ) s e c h 2 K ] 2=k exp[T (k )] , where k =2 tanh(2 K )s e c h (2 K ) . The identical Mahler measure connects the two seemingly disparate quantities T (z ) and Z (K ) . In turn, the Mahler measure is determined by the random walk structure function. Finally, we show that the the above correspondence does not generalize in a straightforward manner to nonplanar lattices.
Gupta, Harshita B; Clark, Curtis A; Yuan, Bin; Sareddy, Gangadhara; Pandeswara, Srilakshmi; Padron, Alvaro S; Hurez, Vincent; Conejo-Garcia, José; Vadlamudi, Ratna; Li, Rong; Curiel, Tyler J
2016-01-01
As tumor PD-L1 provides signals to anti-tumor PD-1+ T cells that blunt their functions, αPD-1 and αPD-L1 antibodies have been developed as anti-cancer immunotherapies based on interrupting this signaling axis. However, tumor cell-intrinsic PD-L1 signals also regulate immune-independent tumor cell proliferation and mTOR signals, among other important effects. Tumor-initiating cells (TICs) generate carcinomas, resist treatments and promote relapse. We show here that in murine B16 melanoma and ID8agg ovarian carcinoma cells, TICs express more PD-L1 versus non-TICs. Silencing PD-L1 in B16 and ID8agg cells by shRNA (‘PD-L1lo’) reduced TIC numbers, the canonical TIC genes nanog and pou5f1 (oct4), and functions as assessed by tumorosphere development, immune-dependent and immune-independent tumorigenesis, and serial transplantability in vivo. Strikingly, tumor PD-L1 sensitized TIC to interferon-γ and rapamycin in vitro. Cell-intrinsic PD-L1 similarly drove functional TIC generation, canonical TIC gene expression and sensitivity to interferon-γ and rapamycin in human ES2 ovarian cancer cells. Thus, tumor-intrinsic PD-L1 signals promote TIC generation and virulence, possibly by promoting canonical TIC gene expression, suggesting that PD-L1 has novel signaling effects on cancer pathogenesis and treatment responses. PMID:28798885
Pucciarelli, Sandra; Ballarini, Patrizia; Sparvoli, Daniela; Barchetta, Sabrina; Yu, Ting; Detrich, H. William; Miceli, Cristina
2012-01-01
Background The multi-tubulin hypothesis proposes that each tubulin isotype performs a unique role, or subset of roles, in the universe of microtubule function(s). To test this hypothesis, we are investigating the functions of the recently discovered, noncanonical β-like tubulins (BLTs) of the ciliate, Tetrahymena thermophila. Tetrahymena forms 17 distinct microtubular structures whose assembly had been thought to be based on single α- and β-isotypes. However, completion of the macronuclear genome sequence of Tetrahymena demonstrated that this ciliate possessed a β-tubulin multigene family: two synonymous genes (BTU1 and BTU2) encode the canonical β-tubulin, BTU2, and six genes (BLT1-6) yield five divergent β-tubulin isotypes. In this report, we examine the structural features and functions of two of the BLTs (BLT1 and BLT4) and compare them to those of BTU2. Methodology/Principal Findings With respect to BTU2, BLT1 and BLT4 had multiple sequence substitutions in their GTP-binding sites, in their interaction surfaces, and in their microtubule-targeting motifs, which together suggest that they have specialized functions. To assess the roles of these tubulins in vivo, we transformed Tetrahymena with expression vectors that direct the synthesis of GFP-tagged versions of the isotypes. We show that GFP-BLT1 and GFP-BLT4 were not detectable in somatic cilia and basal bodies, whereas GFP-BTU2 strongly labeled these structures. During cell division, GFP-BLT1 and GFP-BLT4, but not GFP-BTU2, were incorporated into the microtubule arrays of the macronucleus and into the mitotic apparatus of the micronucleus. GFP-BLT1 also participated in formation of the microtubules of the meiotic apparatus of the micronucleus during conjugation. Partitioning of the isotypes between nuclear and ciliary microtubules was confirmed biochemically. Conclusion/Significance We conclude that Tetrahymena uses a family of distinct β-tubulin isotypes to construct subsets of functionally different microtubules, a result that provides strong support for the multi-tubulin hypothesis. PMID:22745812
NASA Technical Reports Server (NTRS)
Delaney, J. S.; Sutton, S. R.; Newville, M.; Jones, J. H.; Hanson, B.; Dyar, M. D.; Schreiber, H.
2000-01-01
Oxidation state microanalyses for V in glass have been made by calibrating XANES spectral features with optical spectroscopic measurements. The oxidation state change with fugacity of O2 will strongly influence partitioning results.
Soulsby, David; Chica, Jeryl A M
2017-08-01
We have developed a simple, direct and novel method for the determination of partition coefficients and partitioning behavior using 1 H NMR spectroscopy combined with time domain complete reduction to amplitude-frequency tables (CRAFT). After partitioning into water and 1-octanol using standard methods, aliquots from each layer are directly analyzed using either proton or selective excitation NMR experiments. Signal amplitudes for each compound from each layer are then extracted directly from the time domain data in an automated fashion and analyzed using the CRAFT software. From these amplitudes, log P and log D 7.4 values can be calculated directly. Phase, baseline and internal standard issues, which can be problematic when Fourier transformed data are used, are unimportant when using time domain data. Furthermore, analytes can contain impurities because only a single resonance is examined and need not be UV active. Using this approach, we examined a variety of pharmaceutically relevant compounds and determined partition coefficients that are in excellent agreement with literature values. To demonstrate the utility of this approach, we also examined salicylic acid in more detail demonstrating an aggregation effect as a function of sample loading and partition coefficient behavior as a function of pH value. This method provides a valuable addition to the medicinal chemist toolbox for determining these important constants. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Betel, Doron; Koppal, Anjali; Agius, Phaedra; Sander, Chris; Leslie, Christina
2010-01-01
mirSVR is a new machine learning method for ranking microRNA target sites by a down-regulation score. The algorithm trains a regression model on sequence and contextual features extracted from miRanda-predicted target sites. In a large-scale evaluation, miRanda-mirSVR is competitive with other target prediction methods in identifying target genes and predicting the extent of their downregulation at the mRNA or protein levels. Importantly, the method identifies a significant number of experimentally determined non-canonical and non-conserved sites.
Bilenko, Natalia Y; Gallant, Jack L
2016-01-01
In this article we introduce Pyrcca, an open-source Python package for performing canonical correlation analysis (CCA). CCA is a multivariate analysis method for identifying relationships between sets of variables. Pyrcca supports CCA with or without regularization, and with or without linear, polynomial, or Gaussian kernelization. We first use an abstract example to describe Pyrcca functionality. We then demonstrate how Pyrcca can be used to analyze neuroimaging data. Specifically, we use Pyrcca to implement cross-subject comparison in a natural movie functional magnetic resonance imaging (fMRI) experiment by finding a data-driven set of functional response patterns that are similar across individuals. We validate this cross-subject comparison method in Pyrcca by predicting responses to novel natural movies across subjects. Finally, we show how Pyrcca can reveal retinotopic organization in brain responses to natural movies without the need for an explicit model.
Bilenko, Natalia Y.; Gallant, Jack L.
2016-01-01
In this article we introduce Pyrcca, an open-source Python package for performing canonical correlation analysis (CCA). CCA is a multivariate analysis method for identifying relationships between sets of variables. Pyrcca supports CCA with or without regularization, and with or without linear, polynomial, or Gaussian kernelization. We first use an abstract example to describe Pyrcca functionality. We then demonstrate how Pyrcca can be used to analyze neuroimaging data. Specifically, we use Pyrcca to implement cross-subject comparison in a natural movie functional magnetic resonance imaging (fMRI) experiment by finding a data-driven set of functional response patterns that are similar across individuals. We validate this cross-subject comparison method in Pyrcca by predicting responses to novel natural movies across subjects. Finally, we show how Pyrcca can reveal retinotopic organization in brain responses to natural movies without the need for an explicit model. PMID:27920675
Non-metabolic functions of glycolytic enzymes in tumorigenesis.
Yu, X; Li, S
2017-05-11
Cancer cells reprogram their metabolism to meet the requirement for survival and rapid growth. One hallmark of cancer metabolism is elevated aerobic glycolysis and reduced oxidative phosphorylation. Emerging evidence showed that most glycolytic enzymes are deregulated in cancer cells and play important roles in tumorigenesis. Recent studies revealed that all essential glycolytic enzymes can be translocated into nucleus where they participate in tumor progression independent of their canonical metabolic roles. These noncanonical functions include anti-apoptosis, regulation of epigenetic modifications, modulation of transcription factors and co-factors, extracellular cytokine, protein kinase activity and mTORC1 signaling pathway, suggesting that these multifaceted glycolytic enzymes not only function in canonical metabolism but also directly link metabolism to epigenetic and transcription programs implicated in tumorigenesis. These findings underscore our understanding about how tumor cells adapt to nutrient and fuel availability in the environment and most importantly, provide insights into development of cancer therapy.
NF-κB Essential Modulator (NEMO) Is Critical for Thyroid Function.
Reale, Carla; Iervolino, Anna; Scudiero, Ivan; Ferravante, Angela; D'Andrea, Luca Egildo; Mazzone, Pellegrino; Zotti, Tiziana; Leonardi, Antonio; Roberto, Luca; Zannini, Mariastella; de Cristofaro, Tiziana; Shanmugakonar, Muralitharan; Capasso, Giovambattista; Pasparakis, Manolis; Vito, Pasquale; Stilo, Romania
2016-03-11
The I-κB kinase (IKK) subunit NEMO/IKKγ (NEMO) is an adapter molecule that is critical for canonical activation of NF-κB, a pleiotropic transcription factor controlling immunity, differentiation, cell growth, tumorigenesis, and apoptosis. To explore the functional role of canonical NF-κB signaling in thyroid gland differentiation and function, we have generated a murine strain bearing a genetic deletion of the NEMO locus in thyroid. Here we show that thyrocyte-specific NEMO knock-out mice gradually develop hypothyroidism after birth, which leads to reduced body weight and shortened life span. Histological and molecular analysis indicate that absence of NEMO in thyrocytes results in a dramatic loss of the thyroid gland cellularity, associated with down-regulation of thyroid differentiation markers and ongoing apoptosis. Thus, NEMO-dependent signaling is essential for normal thyroid physiology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Fisicaro, E; Braibanti, A; Lamb, J D; Oscarson, J L
1990-05-01
The relationships between the chemical properties of a system and the partition function algorithm as applied to the description of multiple equilibria in solution are explained. The partition functions ZM, ZA, and ZH are obtained from powers of the binary generating functions Jj = (1 + kappa j gamma j,i[Y])i tau j, where i tau j = p tau j, q tau j, or r tau j represent the maximum number of sites in sites in class j, for Y = M, A, or H, respectively. Each term of the generating function can be considered an element (ij) of a vector Jj and each power of the cooperativity factor gamma ij,i can be considered an element of a diagonal cooperativity matrix gamma j. The vectors Jj are combined in tensor product matrices L tau = (J1) [J2]...[Jj]..., thus representing different receptor-ligand combinations. The partition functions are obtained by summing elements of the tensor matrices. The relationship of the partition functions with the total chemical amounts TM, TA, and TH has been found. The aim is to describe the total chemical amounts TM, TA, and TH as functions of the site affinity constants kappa j and cooperativity coefficients bj. The total amounts are calculated from the sum of elements of tensor matrices Ll. Each set of indices (pj..., qj..., rj...) represents one element of a tensor matrix L tau and defines each term of the summation. Each term corresponds to the concentration of a chemical microspecies. The distinction between microspecies MpjAqjHrj with ligands bound on specific sites and macrospecies MpAqHR corresponding to a chemical stoichiometric composition is shown. The translation of the properties of chemical model schemes into the algorithms for the generation of partition functions is illustrated with reference to a series of examples of gradually increasing complexity. The equilibria examined concern: (1) a unique class of sites; (2) the protonation of a base with two classes of sites; (3) the simultaneous binding of ligand A and proton H to a macromolecule or receptor M with four classes of sites; and (4) the binding to a macromolecule M of ligand A which is in turn a receptor for proton H. With reference to a specific example, it is shown how a computer program for least-squares refinement of variables kappa j and bj can be organized. The chemical model from the free components M, A, and H to the saturated macrospecies MpAQHR, with possible complex macrospecies MpAq and AHR, is defined first.(ABSTRACT TRUNCATED AT 250 WORDS)
Wang, Pei; Li, Xiao-Yan; Wang, Lixin; Wu, Xiuchen; Hu, Xia; Fan, Ying; Tong, Yaqin
2018-06-04
Previous evapotranspiration (ET) partitioning studies have usually neglected competitions and interactions between antagonistic plant functional types. This study investigated whether shrubs and grasses have divergent ET partition dynamics impacted by different water-use patterns, canopy structures, and physiological properties in a shrub-encroached steppe ecosystem in Inner Mongolia, China. The soil water-use patterns of shrubs and grasses have been quantified by an isotopic tracing approach and coupled into an improved multisource energy balance model to partition ET fluxes into soil evaporation, grass transpiration, and shrub transpiration. The mean fractional contributions to total ET were 24 ± 13%, 20 ± 4%, and 56 ± 16% for shrub transpiration, grass transpiration, and soil evaporation respectively during the growing season. Difference in ecohydrological connectivity and leaf development both contributed to divergent transpiration partitioning between shrubs and grasses. Shrub-encroachment processes result in larger changes in the ET components than in total ET flux, which could be well explained by changes in canopy resistance, an ecosystem function dominated by the interaction of soil water-use patterns and ecosystem structure. The analyses presented here highlight the crucial effects of vegetation structural changes on the processes of land-atmosphere interaction and climate feedback. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Ivancic-Jelecki, Jelena; Slovic, Anamarija; Šantak, Maja; Tešović, Goran; Forcic, Dubravko
2016-07-29
The canonical genome organization of measles virus (MV) is characterized by total size of 15 894 nucleotides (nts) and defined length of every genomic region, both coding and non-coding. Only rarely have reports of strains possessing non-canonical genomic properties (possessing indels, with or without the change of total genome length) been published. The observed mutations are mutually compensatory in a sense that the total genome length remains polyhexameric. Although programmed and highly precise pseudo-templated nucleotide additions during transcription are inherent to polymerases of all viruses belonging to family Paramyxoviridae, a similar mechanism that would serve to non-randomly correct genome length, if an indel has occurred during replication, has so far not been described in the context of a complete virus genome. We compiled all complete MV genomic sequences (64 in total) available in open access sequence databases. Multiple sequence comparisons and phylogenetic analyses were performed with the aim of exploring whether non-recombinant and non-evolutionary linked measles strains that show deviations from canonical genome organization possess a common genetic characteristic. In 11 MV sequences we detected deviations from canonical genome organization due to short indels located within homopolymeric stretches or next to them. In nine out of 11 identified non-canonical MV sequences, a common feature was observed: one mutation, either an insertion or a deletion, was located in a 28 nts long region in F gene 5' untranslated region (positions 5051-5078 in genomic cDNA of canonical strains). This segment is composed of five tandemly linked homopolymeric stretches, its consensus sequence is G6-7C7-8A6-7G1-3C5-6. Although none of the mononucleotide repeats within this segment has fixed length, the total number of nts in canonical strains is always 28. These nine non-canonical strains, as well as the tenth (not mutated in 5051-5078 segment), can be grouped in three clusters, based on their passage histories/epidemiological data/genetic similarities. There are no indications that the 3 clusters are evolutionary linked, other than the fact that they all belong to clade D. A common narrow genomic region was found to be mutated in different, non-related, wild type strains suggesting that this region might have a function in non-random genome length corrections occurring during MV replication.
Wnt5a attenuates Wnt3a-induced alkaline phosphatase expression in dental follicle cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakisaka, Yukihiko; Tsuchiya, Masahiro; Tohoku Fukushi University, Sendai 989-3201
Wnt signaling regulates multiple cellular events such as cell proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathways. Canonical Wnt/β-catenin signaling can promote the differentiation of dental follicle cells, putative progenitor cells for cementoblasts, osteoblasts, and periodontal ligament cells, toward a cementoblast/osteoblast phenotype during root formation, but little is known about the biological significance of noncanonical Wnt signaling in this process. We identified the expression of Wnt5a, a representative noncanonical Wnt ligand, in tooth root lining cells (i.e. precementoblasts/cementoblasts) and dental follicle cells during mouse tooth root development, as assessed by immunohistochemistry. Silencing expression of the Wnt5a genemore » in a dental follicle cell line resulted in enhancement of the Wnt3a (a representative canonical Wnt ligand)-mediated increase in alkaline phosphatase (ALP) expression. Conversely, treatment with recombinant Wnt5a inhibited the increase in ALP expression, suggesting that Wnt5a signaling functions as a negative regulator of canonical Wnt-mediated ALP expression of dental follicle cells. Wnt5a did not affect the nuclear translocation of β-catenin as well as β-catenin-mediated transcriptional activation of T-cell factor (Tcf) triggered by Wnt3a, suggesting that Wnt5a inhibits the downstream part of the β-catenin-Tcf pathway. These findings suggest the existence of a feedback mechanism between canonical and noncanonical Wnt signaling during the differentiation of dental follicle cells. - Highlights: • Dental follicle cells express Wnt5a during tooth root development. • Silencing of Wnt5a enhances Wnt3a-mediated ALP expression of dental follicle cells. • Conversely, treatment with rWnt5a inhibited the increase in ALP expression. • Wnt5a functions as a negative regulator of Wnt3a-mediated ALP expression.« less
Dimensionally regularized Tsallis' statistical mechanics and two-body Newton's gravitation
NASA Astrophysics Data System (ADS)
Zamora, J. D.; Rocca, M. C.; Plastino, A.; Ferri, G. L.
2018-05-01
Typical Tsallis' statistical mechanics' quantifiers like the partition function and the mean energy exhibit poles. We are speaking of the partition function Z and the mean energy 〈 U 〉 . The poles appear for distinctive values of Tsallis' characteristic real parameter q, at a numerable set of rational numbers of the q-line. These poles are dealt with dimensional regularization resources. The physical effects of these poles on the specific heats are studied here for the two-body classical gravitation potential.
Topological vertex formalism with O5-plane
NASA Astrophysics Data System (ADS)
Kim, Sung-Soo; Yagi, Futoshi
2018-01-01
We propose a new topological vertex formalism for a type IIB (p ,q ) 5-brane web with an O5-plane. We apply our proposal to five-dimensional N =1 Sp(1) gauge theory with Nf=0 , 1, 8 flavors to compute the topological string partition functions and check the agreement with the known results. Especially for the Nf=8 case, which corresponds to E-string theory on a circle, we obtain a new, yet simple, expression of the partition function with a two Young diagram sum.
Analysis of Different Cost Functions in the Geosect Airspace Partitioning Tool
NASA Technical Reports Server (NTRS)
Wong, Gregory L.
2010-01-01
A new cost function representing air traffic controller workload is implemented in the Geosect airspace partitioning tool. Geosect currently uses a combination of aircraft count and dwell time to select optimal airspace partitions that balance controller workload. This is referred to as the aircraft count/dwell time hybrid cost function. The new cost function is based on Simplified Dynamic Density, a measure of different aspects of air traffic controller workload. Three sectorizations are compared. These are the current sectorization, Geosect's sectorization based on the aircraft count/dwell time hybrid cost function, and Geosect s sectorization based on the Simplified Dynamic Density cost function. Each sectorization is evaluated for maximum and average workload along with workload balance using the Simplified Dynamic Density as the workload measure. In addition, the Airspace Concept Evaluation System, a nationwide air traffic simulator, is used to determine the capacity and delay incurred by each sectorization. The sectorization resulting from the Simplified Dynamic Density cost function had a lower maximum workload measure than the other sectorizations, and the sectorization based on the combination of aircraft count and dwell time did a better job of balancing workload and balancing capacity. However, the current sectorization had the lowest average workload, highest sector capacity, and the least system delay.
A nucleobase-centered coarse-grained representation for structure prediction of RNA motifs
Poblete, Simón; Bottaro, Sandro; Bussi, Giovanni
2018-01-01
Abstract We introduce the SPlit-and-conQueR (SPQR) model, a coarse-grained (CG) representation of RNA designed for structure prediction and refinement. In our approach, the representation of a nucleotide consists of a point particle for the phosphate group and an anisotropic particle for the nucleoside. The interactions are, in principle, knowledge-based potentials inspired by the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\mathcal {E}$\\end{document}SCORE function, a base-centered scoring function. However, a special treatment is given to base-pairing interactions and certain geometrical conformations which are lost in a raw knowledge-based model. This results in a representation able to describe planar canonical and non-canonical base pairs and base–phosphate interactions and to distinguish sugar puckers and glycosidic torsion conformations. The model is applied to the folding of several structures, including duplexes with internal loops of non-canonical base pairs, tetraloops, junctions and a pseudoknot. For the majority of these systems, experimental structures are correctly predicted at the level of individual contacts. We also propose a method for efficiently reintroducing atomistic detail from the CG representation. PMID:29272539
Chen, Tian; Liu, Zhi; Sun, Wenhua; Li, Jingyu; Liang, Yan; Yang, Xianrui; Xu, Yang; Yu, Mei; Tian, Weidong; Chen, Guoqing; Bai, Ding
2015-12-07
Dentinogenesis is the formation of dentin, a substance that forms the majority of teeth, and this process is performed by odontoblasts. Dental papilla cells (DPCs), as the progenitor cells of odontoblasts, undergo the odontogenic differentiation regulated by multiple cytokines and paracrine signal molecules. Ape1 is a perfect paradigm of the function complexity of a biological macromolecule with two major functional regions for DNA repair and redox regulation, respectively. To date, it remains unclear whether Ape1 can regulate the dentinogenesis in DPCs. In the present study, we firstly examed the spatio-temporal expression of Ape1 during tooth germ developmental process, and found the Ape1 expression was initially high and then gradually reduced along with the tooth development. Secondly, the osteo/odontogenic differentiation capacity of DPCs was up-regulated when treated with either Ape1-shRNA or E3330 (a specific inhibitor of the Ape1 redox function), respectively. Moreover, we found that the canonical Wnt signaling pathway was activated in this process, and E3330 reinforced-osteo/odontogenic differentiation capacity was suppressed by Dickkopf1 (DKK1), a potent antagonist of canonical Wnt signaling pathway. Taken together, we for the first time showed that inhibition of Ape1 redox regulation could promote the osteo/odontogenic differentiation capacity of DPCs via canonical Wnt signaling pathway.
Functional Implications of Ubiquitous Semicircular Canal Non-Orthogonality in Mammals
Berlin, Jeri C.; Kirk, E. Christopher; Rowe, Timothy B.
2013-01-01
The ‘canonical model’ of semicircular canal orientation in mammals assumes that 1) the three ipsilateral canals of an inner ear exist in orthogonal planes (i.e., orthogonality), 2) corresponding left and right canal pairs have equivalent angles (i.e., angle symmetry), and 3) contralateral synergistic canals occupy parallel planes (i.e., coplanarity). However, descriptions of vestibular anatomy that quantify semicircular canal orientation in single species often diverge substantially from this model. Data for primates further suggest that semicircular canal orthogonality varies predictably with the angular head velocities encountered in locomotion. These observations raise the possibility that orthogonality, symmetry, and coplanarity are misleading descriptors of semicircular canal orientation in mammals, and that deviations from these norms could have significant functional consequences. Here we critically assess the canonical model of semicircular canal orientation using high-resolution X-ray computed tomography scans of 39 mammal species. We find that substantial deviations from orthogonality, angle symmetry, and coplanarity are the rule for the mammals in our comparative sample. Furthermore, the degree to which the semicircular canals of a given species deviate from orthogonality is negatively correlated with estimated vestibular sensitivity. We conclude that the available comparative morphometric data do not support the canonical model and that its overemphasis as a heuristic generalization obscures a large amount of functionally relevant variation in semicircular canal orientation between species. PMID:24260256
Peng, Yunfeng; Yang, Yuanhe
2016-06-28
Allometric and optimal hypotheses have been widely used to explain biomass partitioning in response to resource changes for individual plants; however, little evidence has been reported from measurements at the community level across a broad geographic scale. This study assessed the nitrogen (N) effect on community-level root to shoot (R/S) ratios and biomass partitioning functions by synthesizing global manipulative experiments. Results showed that, in aggregate, N addition decreased the R/S ratios in various biomes. However, the scaling slopes of the allometric equations were not significantly altered by the N enrichment, possibly indicating that N-induced reduction of the R/S ratio is a consequence of allometric allocation as a function of increasing plant size rather than an optimal partitioning model. To further illustrate this point, we developed power function models to explore the relationships between aboveground and belowground biomass for various biomes; then, we generated the predicted root biomass from the observed shoot biomass and predicted R/S ratios. The comparison of predicted and observed N-induced changes of the R/S ratio revealed no significant differences between each other, supporting the allometric allocation hypothesis. These results suggest that allometry, rather than optimal allocation, explains the N-induced reduction in the R/S ratio across global biomes.
NASA Technical Reports Server (NTRS)
Colson, R. O.; Mckay, G. A.; Taylor, L. A.
1988-01-01
This paper presents a systematic thermodynamic analysis of the effects of temperature and composition on olivine/melt and low-Ca pyroxene/melt partitioning. Experiments were conducted in several synthetic basalts with a wide range of Fe/Mg, determining partition coefficients for Eu, Ca, Mn, Fe, Ni, Sm, Cd, Y, Yb, Sc, Al, Zr, and Ti and modeling accurately the changes in free energy for trace element exchange between crystal and melt as functions of the trace element size and charge. On the basis of this model, partition coefficients for olivine/melt and low-Ca pyroxene/melt can be predicted for a wide range of elements over a variety of basaltic bulk compositions and temperatures. Moreover, variations in partition coeffeicients during crystallization or melting can be modeled on the basis of changes in temperature and major element chemistry.
ADHM and the 4d quantum Hall effect
NASA Astrophysics Data System (ADS)
Barns-Graham, Alec; Dorey, Nick; Lohitsiri, Nakarin; Tong, David; Turner, Carl
2018-04-01
Yang-Mills instantons are solitonic particles in d = 4 + 1 dimensional gauge theories. We construct and analyse the quantum Hall states that arise when these particles are restricted to the lowest Landau level. We describe the ground state wavefunctions for both Abelian and non-Abelian quantum Hall states. Although our model is purely bosonic, we show that the excitations of this 4d quantum Hall state are governed by the Nekrasov partition function of a certain five dimensional supersymmetric gauge theory with Chern-Simons term. The partition function can also be interpreted as a variant of the Hilbert series of the instanton moduli space, counting holomorphic sections rather than holomorphic functions. It is known that the Hilbert series of the instanton moduli space can be rewritten using mirror symmetry of 3d gauge theories in terms of Coulomb branch variables. We generalise this approach to include the effect of a five dimensional Chern-Simons term. We demonstrate that the resulting Coulomb branch formula coincides with the corresponding Higgs branch Molien integral which, in turn, reproduces the standard formula for the Nekrasov partition function.
Lieb-Robinson bounds on n -partite connected correlation functions
NASA Astrophysics Data System (ADS)
Tran, Minh Cong; Garrison, James R.; Gong, Zhe-Xuan; Gorshkov, Alexey V.
2017-11-01
Lieb and Robinson provided bounds on how fast bipartite connected correlations can arise in systems with only short-range interactions. We generalize Lieb-Robinson bounds on bipartite connected correlators to multipartite connected correlators. The bounds imply that an n -partite connected correlator can reach unit value in constant time. Remarkably, the bounds also allow for an n -partite connected correlator to reach a value that is exponentially large with system size in constant time, a feature which stands in contrast to bipartite connected correlations. We provide explicit examples of such systems.
Alecu, I M; Truhlar, Donald G
2011-12-29
Multistructural canonical variational-transition-state theory with multidimensional tunneling (MS-CVT/MT) is employed to calculate thermal rate constants for the abstraction of hydrogen atoms from both positions of methanol by the hydroperoxyl and methyl radicals over the temperature range 100-3000 K. The M08-HX hybrid meta-generalized gradient approximation density functional and M08-HX with specific reaction parameters, both with the maug-cc-pVTZ basis set, were validated in part 1 of this study (Alecu, I. M.; Truhlar, D. G. J. Phys. Chem. A2011, 115, 2811) against highly accurate CCSDT(2)(Q)/CBS calculations for the energetics of these reactions, and they are used here to compute the properties of all stationary points and the energies, gradients, and Hessians of nonstationary points along each considered reaction path. The internal rotations in some of the transition states are found to be highly anharmonic and strongly coupled to each other, and they generate multiple structures (conformations) whose contributions are included in the partition function. It is shown that the previous estimates for these rate constants used to build kinetic models for the combustion of methanol, some of which were based on transition state theory calculations with one-dimensional tunneling corrections and harmonic-oscillator approximations or separable one-dimensional hindered rotor treatments of torsions, are appreciably different than the ones presently calculated using MS-CVT/MT. The rate constants obtained from the best MS-CVT/MT calculations carried out in this study, in which the important effects of corner cutting due to small and large reaction path curvature are captured via a microcanonical optimized multidimensional tunneling (μOMT) treatment, are recommended for future refinement of the kinetic model for methanol combustion. © 2011 American Chemical Society
R-HyMOD: an R-package for the hydrological model HyMOD
NASA Astrophysics Data System (ADS)
Baratti, Emanuele; Montanari, Alberto
2015-04-01
A software code for the implementation of the HyMOD hydrological model [1] is presented. HyMOD is a conceptual lumped rainfall-runoff model that is based on the probability-distributed soil storage capacity principle introduced by R. J. Moore 1985 [2]. The general idea behind this model is to describe the spatial variability of some process parameters as, for instance, the soil structure or the water storage capacities, through probability distribution functions. In HyMOD, the rainfall-runoff process is represented through a nonlinear tank connected with three identical linear tanks in parallel representing the surface flow and a slow-flow tank representing groundwater flow. The model requires the optimization of five parameters: Cmax (the maximum storage capacity within the watershed), β (the degree of spatial variability of the soil moisture capacity within the watershed), α (a factor for partitioning the flow between two series of tanks) and the two residence time parameters of quick-flow and slow-flow tanks, kquick and kslow respectively. Given its relatively simplicity but robustness, the model is widely used in the literature. The input data consist of precipitation and potential evapotranspiration at the given time scale. The R-HyMOD package is composed by a 'canonical' R-function of HyMOD and a fast FORTRAN implementation. The first one can be easily modified and can be used, for instance, for educational purposes; the second part combines the R user friendly interface with a fast processing unit. [1] Boyle D.P. (2000), Multicriteria calibration of hydrological models, Ph.D. dissertation, Dep. of Hydrol. and Water Resour., Univ of Arizona, Tucson. [2] Moore, R.J., (1985), The probability-distributed principle and runoff production at point and basin scale, Hydrol. Sci. J., 30(2), 273-297.
A Brief History of Partitions of Numbers, Partition Functions and Their Modern Applications
ERIC Educational Resources Information Center
Debnath, Lokenath
2016-01-01
This paper is written to commemorate the centennial anniversary of the Mathematical Association of America. It deals with a short history of different kinds of natural numbers including triangular, square, pentagonal, hexagonal and "k"-gonal numbers, and their simple properties and their geometrical representations. Included are Euclid's…
Complexes of oligo(poly)nucleotides with structural anomalies
NASA Astrophysics Data System (ADS)
Dolinnaya, N. G.; Gryaznova, O. I.
1989-08-01
The results of studies on the structure and properties of DNA-RNA hybrids and complexes of oligo(poly)nucleotides containing non-canonical base pairs or unpaired bases both within and at the ends of the double helix are surveyed. The methods used in the study of such systems are briefly characterised: X-ray diffraction analysis, NMR and UV spectroscopy, circular dichroism, scanning microcalorimetry, etc. A comparative analysis of the influence of the non-canonical pairs on the structure and the energetic and kinetic parameters of the formation and dissociation of the oligonucleotide complexes has been carried out. The question of the stability of the non-canonical pairs as a function of their nature and position in the double helix is considered. The mechanisms of the formation of the hydrogen bonds between the bases of non-complementary pairs are discussed. The bibliography includes 171 references.
Fibrin-Enhanced Canonical Wnt Signaling Directs Plasminogen Expression in Cementoblasts
Rahman, Saeed Ur; Ryoo, Hyun-Mo
2017-01-01
Cementum is a mineralized layer on the tooth’s root surface and facilitates the biomechanical anchoring of fibrous connective tissues as a part of tooth-supportive complexes. Previously, we observed that OCCM30 cementoblasts cultured on fibrin matrices underwent apoptosis due to fibrin degradation through the expression of proteases. Here, we demonstrated that OCCM30 on fibrin matrices (OCCM30-fibrin) enhanced canonical Wnt signaling, which directed to plasminogen expression. The OCCM30-fibrin showed higher levels of Wnt3a expression, nuclear translocation of β-catenin, and T-cell factor (TCF) optimal motif (TOP) reporter activity than the cells on tissue culture dishes (OCCM30-TCD), indicating that the OCCM30-fibrin enhanced canonical Wnt/β-catenin signaling. Also, OCCM30-fibrin expressed biomineralization-associated markers at higher levels than OCCM30-TCD, of which levels were further increased with LiCl, a Wnt signaling activator. The OCCM30 cementoblasts simultaneously showed that high levels of plasminogen, a critical component of fibrinolysis, were expressed in the OCCM30-fibrin. Activation of canonical Wnt signaling with LiCl treatment or with forced lymphoid enhancer factor 1 (LEF1)-expression increased the expression of plasminogen. On the contrary, the inhibition of canonical Wnt signaling with siRNAs against Wnt3a or β-catenin abrogated fibrin-enhanced plasminogen expression. Furthermore, there are three conserved putative response elements for the LEF1/β-catenin complex in the plasminogen proximal promoter regions (−900 to +54). Site-directed mutations and chromatin immunoprecipitation indicated that canonical Wnt signaling directed plasminogen expression. Taken together, this study suggests that fibrin-based materials can modulate functional periodontal formations in controlling cementoblast differentiation and fibrin degradation. PMID:29120400
DOE Office of Scientific and Technical Information (OSTI.GOV)
Punjabi, Alkesh; Ali, Halima
A new approach to integration of magnetic field lines in divertor tokamaks is proposed. In this approach, an analytic equilibrium generating function (EGF) is constructed in natural canonical coordinates ({psi},{theta}) from experimental data from a Grad-Shafranov equilibrium solver for a tokamak. {psi} is the toroidal magnetic flux and {theta} is the poloidal angle. Natural canonical coordinates ({psi},{theta},{phi}) can be transformed to physical position (R,Z,{phi}) using a canonical transformation. (R,Z,{phi}) are cylindrical coordinates. Another canonical transformation is used to construct a symplectic map for integration of magnetic field lines. Trajectories of field lines calculated from this symplectic map in natural canonicalmore » coordinates can be transformed to trajectories in real physical space. Unlike in magnetic coordinates [O. Kerwin, A. Punjabi, and H. Ali, Phys. Plasmas 15, 072504 (2008)], the symplectic map in natural canonical coordinates can integrate trajectories across the separatrix surface, and at the same time, give trajectories in physical space. Unlike symplectic maps in physical coordinates (x,y) or (R,Z), the continuous analog of a symplectic map in natural canonical coordinates does not distort trajectories in toroidal planes intervening the discrete map. This approach is applied to the DIII-D tokamak [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The EGF for the DIII-D gives quite an accurate representation of equilibrium magnetic surfaces close to the separatrix surface. This new approach is applied to demonstrate the sensitivity of stochastic broadening using a set of perturbations that generically approximate the size of the field errors and statistical topological noise expected in a poloidally diverted tokamak. Plans for future application of this approach are discussed.« less
Decision tree modeling using R.
Zhang, Zhongheng
2016-08-01
In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chertkov, Michael; Ahn, Sungsoo; Shin, Jinwoo
Computing partition function is the most important statistical inference task arising in applications of Graphical Models (GM). Since it is computationally intractable, approximate methods have been used to resolve the issue in practice, where meanfield (MF) and belief propagation (BP) are arguably the most popular and successful approaches of a variational type. In this paper, we propose two new variational schemes, coined Gauged-MF (G-MF) and Gauged-BP (G-BP), improving MF and BP, respectively. Both provide lower bounds for the partition function by utilizing the so-called gauge transformation which modifies factors of GM while keeping the partition function invariant. Moreover, we provemore » that both G-MF and G-BP are exact for GMs with a single loop of a special structure, even though the bare MF and BP perform badly in this case. Our extensive experiments, on complete GMs of relatively small size and on large GM (up-to 300 variables) confirm that the newly proposed algorithms outperform and generalize MF and BP.« less
Aspects of hot Galilean field theory
NASA Astrophysics Data System (ADS)
Jensen, Kristan
2015-04-01
We reconsider general aspects of Galilean-invariant thermal field theory. Using the proposal of our companion paper, we recast non-relativistic hydrodynamics in a manifestly covariant way and couple it to a background spacetime. We examine the concomitant consequences for the thermal partition functions of Galilean theories on a time-independent, but weakly curved background. We work out both the hydrodynamics and partition functions in detail for the example of parity-violating normal fluids in two dimensions to first order in the gradient expansion, finding results that differ from those previously reported in the literature. As for relativistic field theories, the equality-type constraints imposed by the existence of an entropy current appear to be in one-to-one correspondence with those arising from the existence of a hydrostatic partition function. Along the way, we obtain a number of useful results about non-relativistic hydrodynamics, including a manifestly boost-invariant presentation thereof, simplified Ward identities, the systematics of redefinitions of the fluid variables, and the positivity of entropy production.
Stepien, Anna E; Tripodi, Marco; Arber, Silvia
2010-11-04
Movement is the behavioral output of neuronal activity in the spinal cord. Motor neurons are grouped into motor neuron pools, the functional units innervating individual muscles. Here we establish an anatomical rabies virus-based connectivity assay in early postnatal mice. We employ it to study the connectivity scheme of premotor neurons, the neuronal cohorts monosynaptically connected to motor neurons, unveiling three aspects of organization. First, motor neuron pools are connected to segmentally widely distributed yet stereotypic interneuron populations, differing for pools innervating functionally distinct muscles. Second, depending on subpopulation identity, interneurons take on local or segmentally distributed positions. Third, cholinergic partition cells involved in the regulation of motor neuron excitability segregate into ipsilaterally and bilaterally projecting populations, the latter exhibiting preferential connections to functionally equivalent motor neuron pools bilaterally. Our study visualizes the widespread yet precise nature of the connectivity matrix for premotor interneurons and reveals exquisite synaptic specificity for bilaterally projecting cholinergic partition cells. Copyright © 2010 Elsevier Inc. All rights reserved.
Computing black hole partition functions from quasinormal modes
Arnold, Peter; Szepietowski, Phillip; Vaman, Diana
2016-07-07
We propose a method of computing one-loop determinants in black hole space-times (with emphasis on asymptotically anti-de Sitter black holes) that may be used for numerics when completely-analytic results are unattainable. The method utilizes the expression for one-loop determinants in terms of quasinormal frequencies determined by Denef, Hartnoll and Sachdev in [1]. A numerical evaluation must face the fact that the sum over the quasinormal modes, indexed by momentum and overtone numbers, is divergent. A necessary ingredient is then a regularization scheme to handle the divergent contributions of individual fixed-momentum sectors to the partition function. To this end, we formulatemore » an effective two-dimensional problem in which a natural refinement of standard heat kernel techniques can be used to account for contributions to the partition function at fixed momentum. We test our method in a concrete case by reproducing the scalar one-loop determinant in the BTZ black hole background. Furthermore, we then discuss the application of such techniques to more complicated spacetimes.« less
Zhang, Xian-Ming; Han, Qing-Long; Zeng, Zhigang
2018-05-01
This paper is concerned with global asymptotic stability of delayed neural networks. Notice that a Bessel-Legendre inequality plays a key role in deriving less conservative stability criteria for delayed neural networks. However, this inequality is in the form of Legendre polynomials and the integral interval is fixed on . As a result, the application scope of the Bessel-Legendre inequality is limited. This paper aims to develop the Bessel-Legendre inequality method so that less conservative stability criteria are expected. First, by introducing a canonical orthogonal polynomial sequel, a canonical Bessel-Legendre inequality and its affine version are established, which are not explicitly in the form of Legendre polynomials. Moreover, the integral interval is shifted to a general one . Second, by introducing a proper augmented Lyapunov-Krasovskii functional, which is tailored for the canonical Bessel-Legendre inequality, some sufficient conditions on global asymptotic stability are formulated for neural networks with constant delays and neural networks with time-varying delays, respectively. These conditions are proven to have a hierarchical feature: the higher level of hierarchy, the less conservatism of the stability criterion. Finally, three numerical examples are given to illustrate the efficiency of the proposed stability criteria.
Vahedi, Shahrum; Farrokhi, Farahman; Gahramani, Farahnaz; Issazadegan, Ali
2012-01-01
Objective: Approximately 66-80%of graduate students experience statistics anxiety and some researchers propose that many students identify statistics courses as the most anxiety-inducing courses in their academic curriculums. As such, it is likely that statistics anxiety is, in part, responsible for many students delaying enrollment in these courses for as long as possible. This paper proposes a canonical model by treating academic procrastination (AP), learning strategies (LS) as predictor variables and statistics anxiety (SA) as explained variables. Methods: A questionnaire survey was used for data collection and 246-college female student participated in this study. To examine the mutually independent relations between procrastination, learning strategies and statistics anxiety variables, a canonical correlation analysis was computed. Results: Findings show that two canonical functions were statistically significant. The set of variables (metacognitive self-regulation, source management, preparing homework, preparing for test and preparing term papers) helped predict changes of statistics anxiety with respect to fearful behavior, Attitude towards math and class, Performance, but not Anxiety. Conclusion: These findings could be used in educational and psychological interventions in the context of statistics anxiety reduction. PMID:24644468
Partitioning of Nanoparticles into Organic Phases and Model Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Posner, J.D.; Westerhoff, P.; Hou, W-C.
2011-08-25
There is a recognized need to understand and predict the fate, transport and bioavailability of engineered nanoparticles (ENPs) in aquatic and soil ecosystems. Recent research focuses on either collection of empirical data (e.g., removal of a specific NP through water or soil matrices under variable experimental conditions) or precise NP characterization (e.g. size, degree of aggregation, morphology, zeta potential, purity, surface chemistry, and stability). However, it is almost impossible to transition from these precise measurements to models suitable to assess the NP behavior in the environment with complex and heterogeneous matrices. For decades, the USEPA has developed and applies basicmore » partitioning parameters (e.g., octanol-water partition coefficients) and models (e.g., EPI Suite, ECOSAR) to predict the environmental fate, bioavailability, and toxicity of organic pollutants (e.g., pesticides, hydrocarbons, etc.). In this project we have investigated the hypothesis that NP partition coefficients between water and organic phases (octanol or lipid bilayer) is highly dependent on their physiochemical properties, aggregation, and presence of natural constituents in aquatic environments (salts, natural organic matter), which may impact their partitioning into biological matrices (bioaccumulation) and human exposure (bioavailability) as well as the eventual usage in modeling the fate and bioavailability of ENPs. In this report, we use the terminology "partitioning" to operationally define the fraction of ENPs distributed among different phases. The mechanisms leading to this partitioning probably involve both chemical force interactions (hydrophobic association, hydrogen bonding, ligand exchange, etc.) and physical forces that bring the ENPs in close contact with the phase interfaces (diffusion, electrostatic interactions, mixing turbulence, etc.). Our work focuses on partitioning, but also provides insight into the relative behavior of ENPs as either "more like dissolved substances" or "more like colloids" as the division between behaviors of macromolecules versus colloids remains ill-defined. Below we detail our work on two broadly defined objectives: (i) Partitioning of ENP into octanol, lipid bilayer, and water, and (ii) disruption of lipid bilayers by ENPs. We have found that the partitioning of NP reaches pseudo-equilibrium distributions between water and organic phases. The equilibrium partitioning most strongly depends on the particle surface charge, which leads us to the conclusion that electrostatic interactions are critical to understanding the fate of NP in the environment. We also show that the kinetic rate at which particle partition is a function of their size (small particles partition faster by number) as can be predicted from simple DLVO models. We have found that particle number density is the most effective dosimetry to present our results and provide quantitative comparison across experiments and experimental platforms. Cumulatively, our work shows that lipid bilayers are a more effective organic phase than octanol because of the definable surface area and ease of interpretation of the results. Our early comparison of NP partitioning between water and lipids suggest that this measurement can be predictive of bioaccumulation in aquatic organisms. We have shown that nanoparticle disrupt lipid bilayer membranes and detail how NP-bilayer interaction leads to the malfunction of lipid bilayers in regulating the fluxes of ionic charges and molecules. Our results show that the disruption of the lipid membranes is similar to that of toxin melittin, except single particles can disrupt a bilayer. We show that only a single particle is required to disrupt a 150 nm DOPC liposome. The equilibrium leakage of membranes is a function of the particle number density and particle surface charge, consistent with results from our partitioning experiments. Our disruption experiments with varying surface functionality show that positively charged particles (poly amine) are most disruptive, consistent with in in vitro toxicity panels using cell cultures. Overall, this project has resulted in 8 published or submitted archival papers and has been presented 12 times. We have trained five students and provided growth opportunities for a postdoc.« less
Alternative intronic promoters in development and disease.
Vacik, Tomas; Raska, Ivan
2017-05-01
Approximately 20,000 mammalian genes are estimated to encode between 250 thousand and 1 million different proteins. This enormous diversity of the mammalian proteome is caused by the ability of a single-gene locus to encode multiple protein isoforms. Protein isoforms encoded by one gene locus can be functionally distinct, and they can even have antagonistic functions. One of the mechanisms involved in creating this proteome complexity is alternative promoter usage. Alternative intronic promoters are located downstream from their canonical counterparts and drive the expression of alternative RNA isoforms that lack upstream exons. These upstream exons can encode some important functional domains, and proteins encoded by alternative mRNA isoforms can be thus functionally distinct from the full-length protein encoded by canonical mRNA isoforms. Since any misbalance of functionally distinct protein isoforms is likely to have detrimental consequences for the cell and the whole organism, their expression must be precisely regulated. Misregulation of alternative intronic promoters is frequently associated with various developmental defects and diseases including cancer, and it is becoming increasingly clear that this phenomenon deserves more attention.
Geometry of Spin and SPINc Structures in the M-Theory Partition Function
NASA Astrophysics Data System (ADS)
Sati, Hisham
We study the effects of having multiple Spin structures on the partition function of the spacetime fields in M-theory. This leads to a potential anomaly which appears in the eta invariants upon variation of the Spin structure. The main sources of such spaces are manifolds with nontrivial fundamental group, which are also important in realistic models. We extend the discussion to the Spinc case and find the phase of the partition function, and revisit the quantization condition for the C-field in this case. In type IIA string theory in 10 dimensions, the (mod 2) index of the Dirac operator is the obstruction to having a well-defined partition function. We geometrically characterize manifolds with and without such an anomaly and extend to the case of nontrivial fundamental group. The lift to KO-theory gives the α-invariant, which in general depends on the Spin structure. This reveals many interesting connections to positive scalar curvature manifolds and constructions related to the Gromov-Lawson-Rosenberg conjecture. In the 12-dimensional theory bounding M-theory, we study similar geometric questions, including choices of metrics and obtaining elements of K-theory in 10 dimensions by pushforward in K-theory on the disk fiber. We interpret the latter in terms of the families index theorem for Dirac operators on the M-theory circle and disk. This involves superconnections, eta forms, and infinite-dimensional bundles, and gives elements in Deligne cohomology in lower dimensions. We illustrate our discussion with many examples throughout.
NASA Technical Reports Server (NTRS)
McCubbin, F. M.
2017-01-01
Apatite [Ca5(PO4)3(F,Cl,OH)] is present in a wide range of planetary materials, and due to the presence of volatiles within its crystal structure (X-site), many recent studies have attempted to use apatite to constrain the volatile contents of planetary magmas and mantle sources [i.e., 1]. Experimental studies have investigated the apatite-melt partitioning behavior of F, Cl, and OH in basaltic systems [e.g., 2- 3], reporting that apatite-melt partitioning of volatiles is best described as exchange equilibria similar to Fe-Mg partitioning between olivine and silicate melt. However, exchange coefficients may vary as a function of temperature, pressure, melt composition, and/or oxygen fugacity. Furthermore, exchange coefficients may vary in portions of apatite compositional space where F, Cl, and OH do not mix ideally in apatite [3]. In these regions of ternary space, we anticipate that crystal chemistry could influence partitioning behavior. Consequently, we conducted experiments to investigate the effect of apatite crystal chemistry on apatite-melt partitioning of F, Cl, and OH.
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Schmidt, Phillip H.
1993-01-01
A parameter optimization framework has earlier been developed to solve the problem of partitioning a centralized controller into a decentralized, hierarchical structure suitable for integrated flight/propulsion control implementation. This paper presents results from the application of the controller partitioning optimization procedure to IFPC design for a Short Take-Off and Vertical Landing (STOVL) aircraft in transition flight. The controller partitioning problem and the parameter optimization algorithm are briefly described. Insight is provided into choosing various 'user' selected parameters in the optimization cost function such that the resulting optimized subcontrollers will meet the characteristics of the centralized controller that are crucial to achieving the desired closed-loop performance and robustness, while maintaining the desired subcontroller structure constraints that are crucial for IFPC implementation. The optimization procedure is shown to improve upon the initial partitioned subcontrollers and lead to performance comparable to that achieved with the centralized controller. This application also provides insight into the issues that should be addressed at the centralized control design level in order to obtain implementable partitioned subcontrollers.
A strategy for reducing gross errors in the generalized Born models of implicit solvation
Onufriev, Alexey V.; Sigalov, Grigori
2011-01-01
The “canonical” generalized Born (GB) formula [C. Still, A. Tempczyk, R. C. Hawley, and T. Hendrickson, J. Am. Chem. Soc. 112, 6127 (1990)] is known to provide accurate estimates for total electrostatic solvation energies ΔGel of biomolecules if the corresponding effective Born radii are accurate. Here we show that even if the effective Born radii are perfectly accurate, the canonical formula still exhibits significant number of gross errors (errors larger than 2kBT relative to numerical Poisson equation reference) in pairwise interactions between individual atomic charges. Analysis of exact analytical solutions of the Poisson equation (PE) for several idealized nonspherical geometries reveals two distinct spatial modes of the PE solution; these modes are also found in realistic biomolecular shapes. The canonical GB Green function misses one of two modes seen in the exact PE solution, which explains the observed gross errors. To address the problem and reduce gross errors of the GB formalism, we have used exact PE solutions for idealized nonspherical geometries to suggest an alternative analytical Green function to replace the canonical GB formula. The proposed functional form is mathematically nearly as simple as the original, but depends not only on the effective Born radii but also on their gradients, which allows for better representation of details of nonspherical molecular shapes. In particular, the proposed functional form captures both modes of the PE solution seen in nonspherical geometries. Tests on realistic biomolecular structures ranging from small peptides to medium size proteins show that the proposed functional form reduces gross pairwise errors in all cases, with the amount of reduction varying from more than an order of magnitude for small structures to a factor of 2 for the largest ones. PMID:21528947
Zakrzewicz, Anna; Richter, Katrin; Agné, Alisa; Wilker, Sigrid; Siebers, Kathrin; Fink, Bijan; Krasteva-Christ, Gabriela; Althaus, Mike; Padberg, Winfried; Hone, Arik J.; McIntosh, J. Michael; Grau, Veronika
2017-01-01
Recently, we discovered a cholinergic mechanism that inhibits the adenosine triphosphate (ATP)-dependent release of interleukin-1β (IL-1β) by human monocytes via nicotinic acetylcholine receptors (nAChRs) composed of α7, α9 and/or α10 subunits. Furthermore, we identified phosphocholine (PC) and dipalmitoylphosphatidylcholine (DPPC) as novel nicotinic agonists that elicit metabotropic activity at monocytic nAChR. Interestingly, PC does not provoke ion channel responses at conventional nAChRs composed of subunits α9 and α10. The purpose of this study is to determine the composition of nAChRs necessary for nicotinic signaling in monocytic cells and to test the hypothesis that common metabolites of phosphatidylcholines, lysophosphatidylcholine (LPC) and glycerophosphocholine (G-PC), function as nAChR agonists. In peripheral blood mononuclear cells from nAChR gene-deficient mice, we demonstrated that inhibition of ATP-dependent release of IL-1β by acetylcholine (ACh), nicotine and PC depends on subunits α7, α9 and α10. Using a panel of nAChR antagonists and siRNA technology, we confirmed the involvement of these subunits in the control of IL-1β release in the human monocytic cell line U937. Furthermore, we showed that LPC (C16:0) and G-PC efficiently inhibit ATP-dependent release of IL-1β. Of note, the inhibitory effects mediated by LPC and G-PC depend on nAChR subunits α9 and α10, but only to a small degree on α7. In Xenopus laevis oocytes heterologously expressing different combinations of human α7, α9 or α10 subunits, ACh induced canonical ion channel activity, whereas LPC, G-PC and PC did not. In conclusion, we demonstrate that canonical nicotinic agonists and PC elicit metabotropic nAChR activity in monocytes via interaction of nAChR subunits α7, α9 and α10. For the metabotropic signaling of LPC and G-PC, nAChR subunits α9 and α10 are needed, whereas α7 is virtually dispensable. Furthermore, molecules bearing a PC group in general seem to regulate immune functions without perturbing canonical ion channel functions of nAChR. PMID:28725182
de la Riva, Enrique G; Marañón, Teodoro; Violle, Cyrille; Villar, Rafael; Pérez-Ramos, Ignacio M
2017-01-01
According with niche theory the species are specialized in different ecological niches, being able to coexist as result of a differential use of resources. In this context, the biogeochemical niche hypothesis proposes that species have an optimal elemental composition which results from the link between the chemical and morphological traits for the optimum plant functioning. Thus, and attending to the limiting similarity concept, different elemental composition and plant structure among co-occurring species may reduce competition, promoting different functional niches. Different functional habits associated with leaf life-span or growth forms are associated with different strategies for resource uptake, which could promote niche partitioning. In the present study, based on the biogeochemical niche concept and the use of resources in different proportions, we have focused on leaf traits (morphological and chemical) associated with resource uptake, and explored the niche partitioning among functional habits: leaf life-span (deciduous, evergreen, and semideciduous) and growth (tree, shrub, and arborescent-shrub). To this end, we have quantified the hypervolume of the leaf functional trait space (both structure and chemical composition) in a sample of 45 Mediterranean woody species from Sierra Morena Mountains (Spain) growing along a local soil resource gradient. Our results show consistent variation in functional space for woody communities distributed along the environmental gradient. Thus, communities dominated by deciduous trees with faster growth and a predominant acquisitive strategy were characteristic of bottom forests and showed highest leaf biogeochemical space. While semideciduous shrubs and evergreen (arborescent, trees) species, characterized by a conservative strategy, dominated ridge forests and showed smaller functional space. In addition, within each topographical zone or environment type, the foliar biogeochemical niche partitioning would underlie the species ability to coexist by diverging on leaf nutrient composition and resource uptake. Lower niche overlap among functional habits were found, which support that different growth forms and leaf life-habits may facilitate the coexistence of the woody species and niche partitioning along and within the gradient.
Performance of Multi-chaotic PSO on a shifted benchmark functions set
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pluhacek, Michal; Senkerik, Roman; Zelinka, Ivan
2015-03-10
In this paper the performance of Multi-chaotic PSO algorithm is investigated using two shifted benchmark functions. The purpose of shifted benchmark functions is to simulate the time-variant real-world problems. The results of chaotic PSO are compared with canonical version of the algorithm. It is concluded that using the multi-chaotic approach can lead to better results in optimization of shifted functions.
NASA Astrophysics Data System (ADS)
Khoromskaia, Venera; Khoromskij, Boris N.
2014-12-01
Our recent method for low-rank tensor representation of sums of the arbitrarily positioned electrostatic potentials discretized on a 3D Cartesian grid reduces the 3D tensor summation to operations involving only 1D vectors however retaining the linear complexity scaling in the number of potentials. Here, we introduce and study a novel tensor approach for fast and accurate assembled summation of a large number of lattice-allocated potentials represented on 3D N × N × N grid with the computational requirements only weakly dependent on the number of summed potentials. It is based on the assembled low-rank canonical tensor representations of the collected potentials using pointwise sums of shifted canonical vectors representing the single generating function, say the Newton kernel. For a sum of electrostatic potentials over L × L × L lattice embedded in a box the required storage scales linearly in the 1D grid-size, O(N) , while the numerical cost is estimated by O(NL) . For periodic boundary conditions, the storage demand remains proportional to the 1D grid-size of a unit cell, n = N / L, while the numerical cost reduces to O(N) , that outperforms the FFT-based Ewald-type summation algorithms of complexity O(N3 log N) . The complexity in the grid parameter N can be reduced even to the logarithmic scale O(log N) by using data-sparse representation of canonical N-vectors via the quantics tensor approximation. For justification, we prove an upper bound on the quantics ranks for the canonical vectors in the overall lattice sum. The presented approach is beneficial in applications which require further functional calculus with the lattice potential, say, scalar product with a function, integration or differentiation, which can be performed easily in tensor arithmetics on large 3D grids with 1D cost. Numerical tests illustrate the performance of the tensor summation method and confirm the estimated bounds on the tensor ranks.
WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis.
Nalesso, Giovanna; Thomas, Bethan Lynne; Sherwood, Joanna Claire; Yu, Jing; Addimanda, Olga; Eldridge, Suzanne Elizabeth; Thorup, Anne-Sophie; Dale, Leslie; Schett, Georg; Zwerina, Jochen; Eltawil, Noha; Pitzalis, Costantino; Dell'Accio, Francesco
2017-01-01
Both excessive and insufficient activation of WNT signalling results in cartilage breakdown and osteoarthritis. WNT16 is upregulated in the articular cartilage following injury and in osteoarthritis. Here, we investigate the function of WNT16 in osteoarthritis and the downstream molecular mechanisms. Osteoarthritis was induced by destabilisation of the medial meniscus in wild-type and WNT16-deficient mice. Molecular mechanisms and downstream effects were studied in vitro and in vivo in primary cartilage progenitor cells and primary chondrocytes. The pathway downstream of WNT16 was studied in primary chondrocytes and using the axis duplication assay in Xenopus. WNT16-deficient mice developed more severe osteoarthritis with reduced expression of lubricin and increased chondrocyte apoptosis. WNT16 supported the phenotype of cartilage superficial-zone progenitor cells and lubricin expression. Increased osteoarthritis in WNT16-deficient mice was associated with excessive activation of canonical WNT signalling. In vitro, high doses of WNT16 weakly activated canonical WNT signalling, but, in co-stimulation experiments, WNT16 reduced the capacity of WNT3a to activate the canonical WNT pathway. In vivo, WNT16 rescued the WNT8-induced primary axis duplication in Xenopus embryos. In osteoarthritis, WNT16 maintains a balanced canonical WNT signalling and prevents detrimental excessive activation, thereby supporting the homeostasis of progenitor cells. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data.
Nielsen, Allan Aasbjerg
2002-01-01
This paper describes two- and multiset canonical correlations analysis (CCA) for data fusion, multisource, multiset, or multitemporal exploratory data analysis. These techniques transform multivariate multiset data into new orthogonal variables called canonical variates (CVs) which, when applied in remote sensing, exhibit ever-decreasing similarity (as expressed by correlation measures) over sets consisting of 1) spectral variables at fixed points in time (R-mode analysis), or 2) temporal variables with fixed wavelengths (T-mode analysis). The CVs are invariant to linear and affine transformations of the original variables within sets which means, for example, that the R-mode CVs are insensitive to changes over time in offset and gain in a measuring device. In a case study, CVs are calculated from Landsat Thematic Mapper (TM) data with six spectral bands over six consecutive years. Both Rand T-mode CVs clearly exhibit the desired characteristic: they show maximum similarity for the low-order canonical variates and minimum similarity for the high-order canonical variates. These characteristics are seen both visually and in objective measures. The results from the multiset CCA R- and T-mode analyses are very different. This difference is ascribed to the noise structure in the data. The CCA methods are related to partial least squares (PLS) methods. This paper very briefly describes multiset CCA-based multiset PLS. Also, the CCA methods can be applied as multivariate extensions to empirical orthogonal functions (EOF) techniques. Multiset CCA is well-suited for inclusion in geographical information systems (GIS).
NASA Astrophysics Data System (ADS)
Zhao, Michael; Punjabi, Alkesh; Ali, Halima
2009-11-01
The equilibrium EFIT data for the DIII-D shot 115467 is used to construct the equilibrium generating function for magnetic field line trajectories in the DIII-D tokamak in natural canonical coordinates [A. Punjabi, and H. Ali, Phys. Plasmas 15, 122502 (2008)]. A canonical transformation is used to construct an area-preserving map for field line trajectories in the natural canonical coordinates in the DIII-D. Maps in natural canonical coordinates have the advantage that natural canonical coordinates can be inverted to calculate real space coordinates (R,Z,φ), and there is no problem in crossing the separatrix. This is not possible for magnetic coordinates [O. Kerwin, A. Punjabi, and H. Ali, Phys. Plasmas 15, 072504 (2008)]. This map is applied to calculate stochastic broadening from the low mn (m,n)=(1,1)+(1,-1); high mn (m,n)=(4,1)+(3,1); and the peeling-ballooning (m,n)=(40,10)+(30,10) magnetic perturbations. In all three cases, the scaling of the widths of stochastic layer near the X-point in the principal plane of the DIII-D deviates at most by 6% from the .5ex1 -.1em/ -.15em.25ex2 power Boozer-Rechester scaling [A. Boozer, and A. Rechester, Phys. Fluids 21, 682 (1978)]. This work is supported by US Department of Energy grants DE-FG02-07ER54937, DE-FG02-01ER54624 and DE-FG02-04ER54793.
NASA Astrophysics Data System (ADS)
Desgranges, Caroline; Huber, Landon; Delhommelle, Jerome
2016-07-01
We determine the impact of the Friedel oscillations on the phase behavior, critical properties, and thermodynamic contours in films [two dimensions (2 D )] and bulk phases [three dimensions (3 D )]. Using expanded Wang-Landau simulations, we calculate the grand-canonical partition function and, in turn, the thermodynamic properties of systems modeled with a linear combination of the Lennard-Jones and Dzugutov potentials, weighted by a parameter X (0
Thermodynamics of higher spin black holes in AdS3
NASA Astrophysics Data System (ADS)
de Boer, Jan; Jottar, Juan I.
2014-01-01
We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL( N, ) × SL( N, ) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with WN symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural definitions of the thermodynamically conjugate variables that follow from careful examination of the variational principle, and moreover agree with those obtained via canonical methods. Building on this intuition, we derive general expressions for the higher spin black hole entropy and free energy which are written entirely in terms of the Chern-Simons connections, and are valid for both static and rotating solutions. We compare our results to other proposals in the literature, and provide a new and efficient way to determine the generalization of the Cardy formula to a situation with higher spin charges.
From creation and annihilation operators to statistics
NASA Astrophysics Data System (ADS)
Hoyuelos, M.
2018-01-01
A procedure to derive the partition function of non-interacting particles with exotic or intermediate statistics is presented. The partition function is directly related to the associated creation and annihilation operators that obey some specific commutation or anti-commutation relations. The cases of Gentile statistics, quons, Polychronakos statistics, and ewkons are considered. Ewkons statistics was recently derived from the assumption of free diffusion in energy space (Hoyuelos and Sisterna, 2016); an ideal gas of ewkons has negative pressure, a feature that makes them suitable for the description of dark energy.
Cisneros, Laura M; Fagan, Matthew E; Willig, Michael R
2016-01-01
Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes. We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms. The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition. Variation among bat communities was related to environmental mechanisms, especially niche-based (i.e., environmental) processes, rather than spatial mechanisms. High variation in functional or phylogenetic dispersion, as opposed to functional or phylogenetic composition, suggests that loss or gain of niche space is driving the progressive loss or gain of species with particular traits from communities along the human-modified gradient. Thus, environmental characteristics associated with landscape structure influence functional or phylogenetic aspects of bat communities by effectively altering the ways in which species partition niche space.
Fagan, Matthew E.; Willig, Michael R.
2016-01-01
Background Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes. Methods We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms. Results The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition. Discussion Variation among bat communities was related to environmental mechanisms, especially niche-based (i.e., environmental) processes, rather than spatial mechanisms. High variation in functional or phylogenetic dispersion, as opposed to functional or phylogenetic composition, suggests that loss or gain of niche space is driving the progressive loss or gain of species with particular traits from communities along the human-modified gradient. Thus, environmental characteristics associated with landscape structure influence functional or phylogenetic aspects of bat communities by effectively altering the ways in which species partition niche space. PMID:27761338
Iron Partitioning in Ferropericlase and Consequences for the Magma Ocean.
NASA Astrophysics Data System (ADS)
Braithwaite, J. W. H.; Stixrude, L. P.; Holmstrom, E.; Pinilla, C.
2016-12-01
The relative buoyancy of crystals and liquid is likely to exert a strong influence on the thermal and chemical evolution of the magma ocean. Theory indicates that liquids approach, but do not exceed the density of iso-chemical crystals in the deep mantle. The partitioning of heavy elements, such as Fe, is therefore likely to control whether crystals sink or float. While some experimental results exist, our knowledge of silicate liquid-crystal element partitioning is still limited in the deep mantle. We have developed a method for computing the Mg-Fe partitioning of Fe in such systems. We have focused initially on ferropericlase, as a relatively simple system where the buoyancy effects of Fe partitioning are likely to be large. The method is based on molecular dynamics driven by density functional theory (spin polarized, PBEsol+U). We compute the free energy of Mg for Fe substitution in simulations of liquid and B1 crystalline phases via adiabatic switching. We investigate the dependence of partitioning on pressure, temperature, and iron concentration. We find that the liquid is denser than the coexisting crystalline phase at all conditions studies. We also find that the high-spin to low-spin transition in the crystal and the liquid, have an important influence on partitioning behavior.
Finite-size effects for anisotropic 2D Ising model with various boundary conditions
NASA Astrophysics Data System (ADS)
Izmailian, N. Sh
2012-12-01
We analyze the exact partition function of the anisotropic Ising model on finite M × N rectangular lattices under four different boundary conditions (periodic-periodic (pp), periodic-antiperiodic (pa), antiperiodic-periodic (ap) and antiperiodic-antiperiodic (aa)) obtained by Kaufman (1949 Phys. Rev. 76 1232), Wu and Hu (2002 J. Phys. A: Math. Gen. 35 5189) and Kastening (2002 Phys. Rev. E 66 057103)). We express the partition functions in terms of the partition functions Zα, β(J, k) with (α, β) = (0, 0), (1/2, 0), (0, 1/2) and (1/2, 1/2), J is an interaction coupling and k is an anisotropy parameter. Based on such expressions, we then extend the algorithm of Ivashkevich et al (2002 J. Phys. A: Math. Gen. 35 5543) to derive the exact asymptotic expansion of the logarithm of the partition function for all boundary conditions mentioned above. Our result is f = fbulk + ∑∞p = 0fp(ρ, k)S-p - 1, where f is the free energy of the system, fbulk is the free energy of the bulk, S = MN is the area of the lattice and ρ = M/N is the aspect ratio. All coefficients in this expansion are expressed through analytical functions. We have introduced the effective aspect ratio ρeff = ρ/sinh 2Jc and show that for pp and aa boundary conditions all finite size correction terms are invariant under the transformation ρeff → 1/ρeff. This article is part of ‘Lattice models and integrability’, a special issue of Journal of Physics A: Mathematical and Theoretical in honour of F Y Wu's 80th birthday.
Adventures in Topological Field Theory
NASA Astrophysics Data System (ADS)
Horne, James H.
1990-01-01
This thesis consists of 5 parts. In part I, the topological Yang-Mills theory and the topological sigma model are presented in a superspace formulation. This greatly simplifies the field content of the theories, and makes the Q-invariance more obvious. The Feynman rules for the topological Yang -Mills theory are derived. We calculate the one-loop beta-functions of the topological sigma model in superspace. The lattice version of these theories is presented. The self-duality constraints of both models lead to spectrum doubling. In part II, we show that conformally invariant gravity in three dimensions is equivalent to the Yang-Mills gauge theory of the conformal group in three dimensions, with a Chern-Simons action. This means that conformal gravity is finite and exactly soluble. In part III, we derive the skein relations for the fundamental representations of SO(N), Sp(2n), Su(m| n), and OSp(m| 2n). These relations can be used recursively to calculate the expectation values of Wilson lines in three-dimensional Chern-Simons gauge theory with these gauge groups. A combination of braiding and tying of Wilson lines completely describes the skein relations. In part IV, we show that the k = 1 two dimensional gravity amplitudes at genus 3 agree precisely with the results from intersection theory on moduli space. Predictions for the genus 4 intersection numbers follow from the two dimensional gravity theory. In part V, we discuss the partition function in two dimensional gravity. For the one matrix model at genus 2, we use the partition function to derive a recursion relation. We show that the k = 1 amplitudes completely determine the partition function at arbitrary genus. We present a conjecture for the partition function for the arbitrary topological field theory coupled to topological gravity.
An efficient parallel algorithm for the calculation of canonical MP2 energies.
Baker, Jon; Pulay, Peter
2002-09-01
We present the parallel version of a previous serial algorithm for the efficient calculation of canonical MP2 energies (Pulay, P.; Saebo, S.; Wolinski, K. Chem Phys Lett 2001, 344, 543). It is based on the Saebo-Almlöf direct-integral transformation, coupled with an efficient prescreening of the AO integrals. The parallel algorithm avoids synchronization delays by spawning a second set of slaves during the bin-sort prior to the second half-transformation. Results are presented for systems with up to 2000 basis functions. MP2 energies for molecules with 400-500 basis functions can be routinely calculated to microhartree accuracy on a small number of processors (6-8) in a matter of minutes with modern PC-based parallel computers. Copyright 2002 Wiley Periodicals, Inc. J Comput Chem 23: 1150-1156, 2002
Xiao, Xiong; Liu, Hui-Xia; Shen, Kuo; Cao, Wei; Li, Xiao-Qiang
2017-09-01
The canonical transient receptor potential channels (TRPCs) constitute a series of nonselective cation channels with variable degrees of Ca 2+ selectivity. TRPCs consist of seven mammalian members, TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7, which are further divided into four subtypes, TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7. These channels take charge of various essential cell functions such as contraction, relaxation, proliferation, and dysfunction. This review, organized into seven main sections, will provide an overview of current knowledge about the underlying pathogenesis of TRPCs in cardio/cerebrovascular diseases, including hypertension, pulmonary arterial hypertension, cardiac hypertrophy, atherosclerosis, arrhythmia, and cerebrovascular ischemia reperfusion injury. Collectively, TRPCs could become a group of drug targets with important physiological functions for the therapy of human cardio/cerebro-vascular diseases.
Hirano, Toshiyuki; Sato, Fumitoshi
2014-07-28
We used grid-free modified Cholesky decomposition (CD) to develop a density-functional-theory (DFT)-based method for calculating the canonical molecular orbitals (CMOs) of large molecules. Our method can be used to calculate standard CMOs, analytically compute exchange-correlation terms, and maximise the capacity of next-generation supercomputers. Cholesky vectors were first analytically downscaled using low-rank pivoted CD and CD with adaptive metric (CDAM). The obtained Cholesky vectors were distributed and stored on each computer node in a parallel computer, and the Coulomb, Fock exchange, and pure exchange-correlation terms were calculated by multiplying the Cholesky vectors without evaluating molecular integrals in self-consistent field iterations. Our method enables DFT and massively distributed memory parallel computers to be used in order to very efficiently calculate the CMOs of large molecules.
Rajagopal, Ramya; Huang, Jie; Dattilo, Lisa K.; Kaartinen, Vesa; Mishina, Yuji; Deng, Chu-Xia; Umans, Lieve; Zwijsen, An; Roberts, Anita B.; Beebe, David C.
2009-01-01
BMPs play multiple roles in development and BMP signaling is essential for lens formation. However, the mechanisms by which BMP receptors function in vertebrate development are incompletely understood. To determine the downstream effectors of BMP signaling and their functions in the ectoderm that will form the lens, we deleted the genes encoding the type I BMP receptors, Bmpr1a and Acvr1, and the canonical transducers of BMP signaling, Smad4, Smad1 and Smad5. Bmpr1a and Acvr1 regulated cell survival and proliferation, respectively. Absence of both receptors interfered with the expression of proteins involved in normal lens development and prevented lens formation, demonstrating that BMPs induce lens formation by acting directly on the prospective lens ectoderm. Remarkably, the canonical Smad signaling pathway was not needed for most of these processes. Lens formation, placode cell proliferation, the expression of FoxE3, a lens-specific transcription factor, and the lens protein, αA-crystallin were regulated by BMP receptors in a Smad-independent manner. Placode cell survival was promoted by R-Smad signaling, but in a manner that did not involve Smad4. Of the responses tested, only maintaining a high level of Sox2 protein, a transcription factor expressed early in placode formation, required the canonical Smad pathway. A key function of Smad-independent BMP receptor signaling may be reorganization of actin cytoskeleton to drive lens invagination. PMID:19733164
Littelmann path model for geometric crystals, Whittaker functions on Lie groups and Brownian motion
NASA Astrophysics Data System (ADS)
Chhaibi, Reda
2013-02-01
Generally speaking, this thesis focuses on the interplay between the representations of Lie groups and probability theory. It subdivides into essentially three parts. In a first rather algebraic part, we construct a path model for geometric crystals in the sense of Berenstein and Kazhdan, for complex semi-simple Lie groups. We will mainly describe the algebraic structure, its natural morphisms and parameterizations. The theory of total positivity will play a particularly important role. Then, we anticipate on the probabilistic part by exhibiting a canonical measure on geometric crystals. It uses as ingredients the superpotential for the flag manifold and a measure invariant under the crystal actions. The image measure under the weight map plays the role of Duistermaat-Heckman measure. Its Laplace transform defines Whittaker functions, providing an interesting formula for all Lie groups. Then it appears clearly that Whittaker functions are to geometric crystals, what characters are to combinatorial crystals. The Littlewood-Richardson rule is also exposed. Finally we present the probabilistic approach that allows to find the canonical measure. It is based on the fundamental idea that the Wiener measure will induce the adequate measure on the algebraic structures through the path model. In the last chapter, we show how our geometric model degenerates to the continuous classical Littelmann path model and thus recover known results. For example, the canonical measure on a geometric crystal of highest weight degenerates into a uniform measure on a polytope, and recovers the parameterizations of continuous crystals.
Asnani, Mukta; Pestova, Tatyana V.; Hellen, Christopher U.T.
2016-01-01
The cadicivirus IRES diverges structurally from canonical Type 1 IRESs (e.g. poliovirus) but nevertheless also contains an essential GNRA tetraloop in a subdomain (d10c) that is homologous to poliovirus dIVc. In addition to canonical initiation factors, the canonical Type 1 and divergent cadicivirus IRESs require the same IRES trans-acting factor, poly(C)-binding protein 2 (PCBP2). PCBP2 has three KH domains and binds poliovirus IRES domain dIV in the vicinity of the tetraloop. How PCBP2 binds the cadicivirus IRES, and the roles of PCBP2 and the tetraloop in Type 1 IRES function are unknown. Here, directed hydroxyl radical probing showed that KH1 also binds near the cadicivirus tetraloop. KH2 and KH3 bind adjacently to an IRES subdomain (d10b) that is unrelated to dIV, with KH3 in an inverted orientation. KH3 is critical for PCBP2's binding to this IRES whereas KH1 is essential for PCBP2's function in promoting initiation. PCBP2 enforced the wild-type structure of d10c when it contained minor destabilizing substitutions, exposing the tetraloop. Strikingly, PCBP2 enhanced initiation on mutant IRESs that retained consensus GNRA tetraloops, whereas mutants with divergent sequences did not respond to PCBP2. These studies show that PCBP2 enables the IRES to exploit the GNRA tetraloop to enhance initiation. PMID:27387282
NASA Astrophysics Data System (ADS)
Yun, Wanying; Lu, Zhenzhou; Jiang, Xian
2018-06-01
To efficiently execute the variance-based global sensitivity analysis, the law of total variance in the successive intervals without overlapping is proved at first, on which an efficient space-partition sampling-based approach is subsequently proposed in this paper. Through partitioning the sample points of output into different subsets according to different inputs, the proposed approach can efficiently evaluate all the main effects concurrently by one group of sample points. In addition, there is no need for optimizing the partition scheme in the proposed approach. The maximum length of subintervals is decreased by increasing the number of sample points of model input variables in the proposed approach, which guarantees the convergence condition of the space-partition approach well. Furthermore, a new interpretation on the thought of partition is illuminated from the perspective of the variance ratio function. Finally, three test examples and one engineering application are employed to demonstrate the accuracy, efficiency and robustness of the proposed approach.
Stability of coefficients in the Kronecker product of a hook and a rectangle
NASA Astrophysics Data System (ADS)
Ballantine, Cristina M.; Hallahan, William T.
2016-02-01
We use recent work of Jonah Blasiak (2012 arXiv:1209.2018) to prove a stability result for the coefficients in the Kronecker product of two Schur functions: one indexed by a hook partition and one indexed by a rectangle partition. We also give nearly sharp bounds for the size of the partition starting with which the Kronecker coefficients are stable. Moreover, we show that once the bound is reached, no new Schur functions appear in the decomposition of Kronecker product. We call this property superstability. Thus, one can recover the Schur decomposition of the Kronecker product from the smallest case in which the superstability holds. The bound for superstability is sharp. Our study of this particular case of the Kronecker product is motivated by its usefulness for the understanding of the quantum Hall effect (Scharf T et al 1994 J. Phys. A: Math. Gen 27 4211-9).
VizieR Online Data Catalog: Partition functions for molecules and atoms (Barklem+, 2016)
NASA Astrophysics Data System (ADS)
Barklem, P. S.; Collet, R.
2016-02-01
The results and input data are presented in the following files. Table 1 contains dissociation energies from the literature, and final adopted values, for 291 molecules. The literature values are from the compilations of Huber & Herzberg (1979, Constants of Diatomic Molecules (Van Nostrand Reinhold), Luo (2007, Comprehensive Handbook of Chemical Bond Energies (CRC Press)) and G2 theory calculations of Curtiss et al. (1991, J. Chem. Phys., 94, 7221). Table 2 contains the input data for the molecular calculations including adopted dissociation energy, nuclear spins, molecular spectroscopic constants and their sources. There are 291 files, one for each molecule, labelled by the molecule name. The various molecular spectroscopic constants are as defined in the paper. Table 4 contains the first, second and third ionisation energies for all chemical elements from H to U. The data comes from the CRC Handbook of Chemistry and Physics (Haynes, W.M. 2010, CRC Handbook of Chemistry and Physics, 91st edn. (CRC Press, Taylor and Francis Group)). Table 5a contains a list of keys to bibliographic references for the atomic energy level data that was extracted from NIST Atomic Spectra Database and used in the present work to compute atomic partition functions. The citation keys are abbreviations of the full bibliographic references which are made available in Table 5b in BibTeX format. Table 5b contains the full bibliographic references for the atomic energy level data that was extracted from the NIST Atomic Spectra Database. Table 6 contains tabulated partition function data as a function of temperature for 291 molecules. Table 7 contains tabulated equilibrium constant data as a function of temperature for 291 molecules. Table 8 contains tabulated partition function data as a function of temperature for 284 atoms and ions. The paper should be consulted for further details. (10 data files).
NASA Astrophysics Data System (ADS)
Tasaki, Hal
2018-06-01
We study a quantum spin system on the d-dimensional hypercubic lattice Λ with N=L^d sites with periodic boundary conditions. We take an arbitrary translation invariant short-ranged Hamiltonian. For this system, we consider both the canonical ensemble with inverse temperature β _0 and the microcanonical ensemble with the corresponding energy U_N(β _0) . For an arbitrary self-adjoint operator \\hat{A} whose support is contained in a hypercubic block B inside Λ , we prove that the expectation values of \\hat{A} with respect to these two ensembles are close to each other for large N provided that β _0 is sufficiently small and the number of sites in B is o(N^{1/2}) . This establishes the equivalence of ensembles on the level of local states in a large but finite system. The result is essentially that of Brandao and Cramer (here restricted to the case of the canonical and the microcanonical ensembles), but we prove improved estimates in an elementary manner. We also review and prove standard results on the thermodynamic limits of thermodynamic functions and the equivalence of ensembles in terms of thermodynamic functions. The present paper assumes only elementary knowledge on quantum statistical mechanics and quantum spin systems.
Sun, Ye; Li, Xue
2014-07-01
Haploinsufficiency of Eya1 causes the branchio-oto-renal (BOR) syndrome, and abnormally high levels of Eya1 are linked to breast cancer progression and poor prognosis. Therefore, regulation of Eya1 activity is key to its tissue-specific functions and oncogenic activities. Here, we show that Eya1 is posttranslationally modified by ubiquitin and that its ubiquitination level is self-limited to prevent premature degradation. Eya1 has an evolutionarily conserved CDC4 phosphodegron (CPD) signal, a target site of glycogen synthase kinase 3 (GSK3) kinase and Fbw7 ubiquitin ligase, which is required for Eya1 ubiquitination. Genetic deletion of Fbw7 and pharmacological inhibition of GSK3 significantly decrease Eya1 ubiquitination. Conversely, activation of the phosphatidylinositol 3-kinase (PI3K)/Akt and the canonical Wnt signal suppresses Eya1 ubiquitination. Compound Eya1(+/-); Wnt9b(+/-) mutants exhibit an increased penetrance of renal defect, indicating that they function in the same genetic pathway in vivo. Together, these findings reveal that the canonical Wnt and PI3K/Akt signal pathways restrain the GSK3/Fbw7-dependent Eya1 ubiquitination, and they further suggest that dysregulation of this novel axis contributes to tumorigenesis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Guerra, Yasel; Valiente, Pedro A; Pons, Tirso; Berry, Colin; Rudiño-Piñera, Enrique
2016-08-01
Bi-functional inhibitors from the Kunitz-type soybean trypsin inhibitor (STI) family are glycosylated proteins able to inhibit serine and aspartic proteases. Here we report six crystal structures of the wild-type and a non-glycosylated mutant of the bifunctional inhibitor E3Ad obtained at different pH values and space groups. The crystal structures show that E3Ad adopts the typical β-trefoil fold of the STI family exhibiting some conformational changes due to pH variations and crystal packing. Despite the high sequence identity with a recently reported potato cathepsin D inhibitor (PDI), three-dimensional structures obtained in this work show a significant conformational change in the protease-binding loop proposed for aspartic protease inhibition. The E3Ad binding loop for serine protease inhibition is also proposed, based on structural similarity with a novel non-canonical conformation described for the double-headed inhibitor API-A from the Kunitz-type STI family. In addition, structural and sequence analyses suggest that bifunctional inhibitors of serine and aspartic proteases from the Kunitz-type STI family are more similar to double-headed inhibitor API-A than other inhibitors with a canonical protease-binding loop. Copyright © 2016. Published by Elsevier Inc.
Bao, Le; Gu, Hong; Dunn, Katherine A; Bielawski, Joseph P
2007-02-08
Models of codon evolution have proven useful for investigating the strength and direction of natural selection. In some cases, a priori biological knowledge has been used successfully to model heterogeneous evolutionary dynamics among codon sites. These are called fixed-effect models, and they require that all codon sites are assigned to one of several partitions which are permitted to have independent parameters for selection pressure, evolutionary rate, transition to transversion ratio or codon frequencies. For single gene analysis, partitions might be defined according to protein tertiary structure, and for multiple gene analysis partitions might be defined according to a gene's functional category. Given a set of related fixed-effect models, the task of selecting the model that best fits the data is not trivial. In this study, we implement a set of fixed-effect codon models which allow for different levels of heterogeneity among partitions in the substitution process. We describe strategies for selecting among these models by a backward elimination procedure, Akaike information criterion (AIC) or a corrected Akaike information criterion (AICc). We evaluate the performance of these model selection methods via a simulation study, and make several recommendations for real data analysis. Our simulation study indicates that the backward elimination procedure can provide a reliable method for model selection in this setting. We also demonstrate the utility of these models by application to a single-gene dataset partitioned according to tertiary structure (abalone sperm lysin), and a multi-gene dataset partitioned according to the functional category of the gene (flagellar-related proteins of Listeria). Fixed-effect models have advantages and disadvantages. Fixed-effect models are desirable when data partitions are known to exhibit significant heterogeneity or when a statistical test of such heterogeneity is desired. They have the disadvantage of requiring a priori knowledge for partitioning sites. We recommend: (i) selection of models by using backward elimination rather than AIC or AICc, (ii) use a stringent cut-off, e.g., p = 0.0001, and (iii) conduct sensitivity analysis of results. With thoughtful application, fixed-effect codon models should provide a useful tool for large scale multi-gene analyses.
Frank, Alexander H; Garcia, Juan A L; Herndl, Gerhard J; Reinthaler, Thomas
2016-06-01
To decipher the influence of depth stratification and surface provincialism on the dark ocean prokaryotic community composition, we sampled the major deep-water masses in the eastern North Atlantic covering three biogeographic provinces. Their diversity was evaluated using ordination and canonical analysis of 454 pyrotag sequences. Variance partitioning suggested that 16% of the variation in the bacterial community composition was based on depth stratification while 9% of the variation was due to geographic location. General linear mixed effect models showed that the community of the subsurface waters was connected to the dark ocean prokaryotic communities in different biogeographic provinces. Cluster analysis indicated that some prokaryotic taxa are specific to distinct regions in bathypelagic water masses. Taken together, our data suggest that the dark ocean prokaryotic community composition of the eastern North Atlantic is primed by the formation and the horizontal transport of water masses. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Drumm, Daniel W; Greentree, Andrew D
2017-11-07
Finding a fluorescent target in a biological environment is a common and pressing microscopy problem. This task is formally analogous to the canonical search problem. In ideal (noise-free, truthful) search problems, the well-known binary search is optimal. The case of half-lies, where one of two responses to a search query may be deceptive, introduces a richer, Rényi-Ulam problem and is particularly relevant to practical microscopy. We analyse microscopy in the contexts of Rényi-Ulam games and half-lies, developing a new family of heuristics. We show the cost of insisting on verification by positive result in search algorithms; for the zero-half-lie case bisectioning with verification incurs a 50% penalty in the average number of queries required. The optimal partitioning of search spaces directly following verification in the presence of random half-lies is determined. Trisectioning with verification is shown to be the most efficient heuristic of the family in a majority of cases.
A mass and momentum conserving unsplit semi-Lagrangian framework for simulating multiphase flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owkes, Mark, E-mail: mark.owkes@montana.edu; Desjardins, Olivier
In this work, we present a computational methodology for convection and advection that handles discontinuities with second order accuracy and maintains conservation to machine precision. This method can transport a variety of discontinuous quantities and is used in the context of an incompressible gas–liquid flow to transport the phase interface, momentum, and scalars. The proposed method provides a modification to the three-dimensional, unsplit, second-order semi-Lagrangian flux method of Owkes & Desjardins (JCP, 2014). The modification adds a refined grid that provides consistent fluxes of mass and momentum defined on a staggered grid and discrete conservation of mass and momentum, evenmore » for flows with large density ratios. Additionally, the refined grid doubles the resolution of the interface without significantly increasing the computational cost over previous non-conservative schemes. This is possible due to a novel partitioning of the semi-Lagrangian fluxes into a small number of simplices. The proposed scheme is tested using canonical verification tests, rising bubbles, and an atomizing liquid jet.« less
Lagrangian based methods for coherent structure detection
NASA Astrophysics Data System (ADS)
Allshouse, Michael R.; Peacock, Thomas
2015-09-01
There has been a proliferation in the development of Lagrangian analytical methods for detecting coherent structures in fluid flow transport, yielding a variety of qualitatively different approaches. We present a review of four approaches and demonstrate the utility of these methods via their application to the same sample analytic model, the canonical double-gyre flow, highlighting the pros and cons of each approach. Two of the methods, the geometric and probabilistic approaches, are well established and require velocity field data over the time interval of interest to identify particularly important material lines and surfaces, and influential regions, respectively. The other two approaches, implementing tools from cluster and braid theory, seek coherent structures based on limited trajectory data, attempting to partition the flow transport into distinct regions. All four of these approaches share the common trait that they are objective methods, meaning that their results do not depend on the frame of reference used. For each method, we also present a number of example applications ranging from blood flow and chemical reactions to ocean and atmospheric flows.
Bernatik, Ondrej; Radaszkiewicz, Tomasz; Behal, Martin; Dave, Zankruti; Witte, Florian; Mahl, Annika; Cernohorsky, Nicole H.; Krejci, Pavel; Stricker, Sigmar; Bryja, Vitezslav
2017-01-01
Mammalian limb development is driven by the integrative input from several signaling pathways; a failure to receive or a misinterpretation of these signals results in skeletal defects. The brachydactylies, a group of overlapping inherited human hand malformation syndromes, are mainly caused by mutations in BMP signaling pathway components. Two closely related forms, Brachydactyly type B2 (BDB2) and BDB1 are caused by mutations in the BMP antagonist Noggin (NOG) and the atypical receptor tyrosine kinase ROR2 that acts as a receptor in the non-canonical Wnt pathway. Genetic analysis of Nog and Ror2 functional interaction via crossing Noggin and Ror2 mutant mice revealed a widening of skeletal elements in compound but not in any of the single mutants, thus indicating genetic interaction. Since ROR2 is a non-canonical Wnt co-receptor specific for Wnt-5a we speculated that this phenotype might be a result of deregulated Wnt-5a signaling activation, which is known to be essential for limb skeletal elements growth and patterning. We show that Noggin potentiates activation of the Wnt-5a-Ror2-Disheveled (Dvl) pathway in mouse embryonic fibroblast (MEF) cells in a Ror2-dependent fashion. Rat chondrosarcoma chondrocytes (RCS), however, are not able to respond to Noggin in this fashion unless growth arrest is induced by FGF2. In summary, our data demonstrate genetic interaction between Noggin and Ror2 and show that Noggin can sensitize cells to Wnt-5a/Ror2-mediated non-canonical Wnt signaling, a feature that in cartilage may depend on the presence of active FGF signaling. These findings indicate an unappreciated function of Noggin that will help to understand BMP and Wnt/PCP signaling pathway interactions. PMID:28523267
Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion
He, Wan-ting; Wan, Haoqiang; Hu, Lichen; Chen, Pengda; Wang, Xin; Huang, Zhe; Yang, Zhang-Hua; Zhong, Chuan-Qi; Han, Jiahuai
2015-01-01
Inflammasome is an intracellular signaling complex of the innate immune system. Activation of inflammasomes promotes the secretion of interleukin 1β (IL-1β) and IL-18 and triggers pyroptosis. Caspase-1 and -11 (or -4/5 in human) in the canonical and non-canonical inflammasome pathways, respectively, are crucial for inflammasome-mediated inflammatory responses. Here we report that gasdermin D (GSDMD) is another crucial component of inflammasomes. We discovered the presence of GSDMD protein in nigericin-induced NLRP3 inflammasomes by a quantitative mass spectrometry-based analysis. Gene deletion of GSDMD demonstrated that GSDMD is required for pyroptosis and for the secretion but not proteolytic maturation of IL-1β in both canonical and non-canonical inflammasome responses. It was known that GSDMD is a substrate of caspase-1 and we showed its cleavage at the predicted site during inflammasome activation and that this cleavage was required for pyroptosis and IL-1β secretion. Expression of the N-terminal proteolytic fragment of GSDMD can trigger cell death and N-terminal modification such as tagging with Flag sequence disrupted the function of GSDMD. We also found that pro-caspase-1 is capable of processing GSDMD and ASC is not essential for GSDMD to function. Further analyses of LPS plus nigericin- or Salmonella typhimurium-treated macrophage cell lines and primary cells showed that apoptosis became apparent in Gsdmd−/− cells, indicating a suppression of apoptosis by pyroptosis. The induction of apoptosis required NLRP3 or other inflammasome receptors and ASC, and caspase-1 may partially contribute to the activation of apoptotic caspases in Gsdmd−/− cells. These data provide new insights into the molecular mechanisms of pyroptosis and reveal an unexpected interplay between apoptosis and pyroptosis. PMID:26611636
Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion.
He, Wan-ting; Wan, Haoqiang; Hu, Lichen; Chen, Pengda; Wang, Xin; Huang, Zhe; Yang, Zhang-Hua; Zhong, Chuan-Qi; Han, Jiahuai
2015-12-01
Inflammasome is an intracellular signaling complex of the innate immune system. Activation of inflammasomes promotes the secretion of interleukin 1β (IL-1β) and IL-18 and triggers pyroptosis. Caspase-1 and -11 (or -4/5 in human) in the canonical and non-canonical inflammasome pathways, respectively, are crucial for inflammasome-mediated inflammatory responses. Here we report that gasdermin D (GSDMD) is another crucial component of inflammasomes. We discovered the presence of GSDMD protein in nigericin-induced NLRP3 inflammasomes by a quantitative mass spectrometry-based analysis. Gene deletion of GSDMD demonstrated that GSDMD is required for pyroptosis and for the secretion but not proteolytic maturation of IL-1β in both canonical and non-canonical inflammasome responses. It was known that GSDMD is a substrate of caspase-1 and we showed its cleavage at the predicted site during inflammasome activation and that this cleavage was required for pyroptosis and IL-1β secretion. Expression of the N-terminal proteolytic fragment of GSDMD can trigger cell death and N-terminal modification such as tagging with Flag sequence disrupted the function of GSDMD. We also found that pro-caspase-1 is capable of processing GSDMD and ASC is not essential for GSDMD to function. Further analyses of LPS plus nigericin- or Salmonella typhimurium-treated macrophage cell lines and primary cells showed that apoptosis became apparent in Gsdmd(-/-) cells, indicating a suppression of apoptosis by pyroptosis. The induction of apoptosis required NLRP3 or other inflammasome receptors and ASC, and caspase-1 may partially contribute to the activation of apoptotic caspases in Gsdmd(-/-) cells. These data provide new insights into the molecular mechanisms of pyroptosis and reveal an unexpected interplay between apoptosis and pyroptosis.
Byrne, Brendan M; Oakley, Gregory G
2018-04-20
The eukaryotic ssDNA-binding protein, Replication protein A (RPA), was first discovered almost three decades ago. Since then, much progress has been made to elucidate the critical roles for RPA in DNA metabolic pathways that help promote genomic stability. The canonical RPA heterotrimer (RPA1-3) is an essential coordinator of DNA metabolism that interacts with ssDNA and numerous protein partners to coordinate its roles in DNA replication, repair, recombination and telomere maintenance. An alternative form of RPA, termed aRPA, is formed by a complex of RPA4 with RPA1 and RPA3. aRPA is expressed differentially in cells compared to canonical RPA and has been shown to inhibit canonical RPA function while allowing for regular maintenance of cell viability. Interestingly, while aRPA is defective in DNA replication and cell cycle progression, it was shown to play a supporting role in nucleotide excision repair and recombination. The binding domains of canonical RPA interact with a growing number of partners involved in numerous genome maintenance processes. The protein interactions of the RPA-ssDNA complex are not only governed by competition between the binding proteins but also by post-translation modifications such as phosphorylation. Phosphorylation of RPA2 is an important post-translational modification of the RPA complex, and is essential for directing context-specific functions of the RPA complex in the DNA damage response. Due to the importance of RPA in cellular metabolism, it was identified as an appealing target for chemotherapeutic drug development that could be used in future cancer treatment regimens. Copyright © 2018 Elsevier Ltd. All rights reserved.
Benjamin, Jacqueline M.; Nelson, W. James
2009-01-01
The cadherin/catenin complex, comprised of E-cadherin, β-catenin and α-catenin, is essential for initiating cell-cell adhesion, establishing cellular polarity and maintaining tissue organization. Disruption or loss of the cadherin/catenin complex is common in cancer. As the primary cell-cell adhesion protein in epithelial cells, E-cadherin has long been studied in cancer progression. Similarly, additional roles for β-catenin in the Wnt signaling pathway has led to many studies of the role of β-catenin in cancer. Alpha-catenin, in contrast, has received less attention. However, recent data demonstrate novel functions for α-catenin in regulating the actin cytoskeleton and cell-cell adhesion, which when perturbed could contribute to cancer progression. In this review, we use cancer data to evaluate molecular models of α-catenin function, from the canonical role of α-catenin in cell-cell adhesion to non-canonical roles identified following conditional α-catenin deletion. This analysis identifies α-catenin as a prognostic factor in cancer progression. PMID:17945508
The distinct emotional flavor of Gnostic writings from the early Christian era.
Whissell, Cynthia
2008-02-01
More than 500,000 scored words in 83 documents were used to conclude that it is possible to identify the source of documents (proto-orthodox Christian versus early Gnostic) on the basis of the emotions underlying the words. Twenty-seven New Testament works and seven Gnostic documents (including the gospels of Thomas, Judas, and Mary [Magdalene]) were scored with the Dictionary of Affect in Language. Patterns of emotional word use focusing on eight types of extreme emotional words were employed in a discriminant function analysis to predict source. Prediction was highly successful (canonical r = .81, 97% correct identification of source). When the discriminant function was tested with more than 30 additional Gnostic and Christian works including a variety of translations and some wisdom books, it correctly classified all of them. The majority of the predictive power of the function (97% of all correct categorizations, 70% of the canonical r2) was associated with the preferential presence of passive and passive/pleasant words in Gnostic documents.
Nan Liu; Shuhua Wu; Qinfeng Guo; Jiaxin Wang; Ce Cao; Jun Wang
2018-01-01
Global increases in nitrogen deposition may alter forest structure and function by interferingwith plant nitrogen metabolism (e.g., assimilation and partitioning) and subsequent carbon assimilation, but it is unclear how these responses to nitrogen deposition differ among species. In this study, we conducted a 2-year experiment to investigate the effects of canopy...
Statistical model of a flexible inextensible polymer chain: The effect of kinetic energy.
Pergamenshchik, V M; Vozniak, A B
2017-01-01
Because of the holonomic constraints, the kinetic energy contribution in the partition function of an inextensible polymer chain is difficult to find, and it has been systematically ignored. We present the first thermodynamic calculation incorporating the kinetic energy of an inextensible polymer chain with the bending energy. To explore the effect of the translation-rotation degrees of freedom, we propose and solve a statistical model of a fully flexible chain of N+1 linked beads which, in the limit of smooth bending, is equivalent to the well-known wormlike chain model. The partition function with the kinetic and bending energies and correlations between orientations of any pair of links and velocities of any pair of beads are found. This solution is precise in the limits of small and large rigidity-to-temperature ratio b/T. The last exact solution is essential as even very "harmless" approximation results in loss of the important effects when the chain is very rigid. For very high b/T, the orientations of different links become fully correlated. Nevertheless, the chain does not go over into a hard rod even in the limit b/T→∞: While the velocity correlation length diverges, the correlations themselves remain weak and tend to the value ∝T/(N+1). The N dependence of the partition function is essentially determined by the kinetic energy contribution. We demonstrate that to obtain the correct energy and entropy in a constrained system, the T derivative of the partition function has to be applied before integration over the constraint-setting variable.
Statistical model of a flexible inextensible polymer chain: The effect of kinetic energy
NASA Astrophysics Data System (ADS)
Pergamenshchik, V. M.; Vozniak, A. B.
2017-01-01
Because of the holonomic constraints, the kinetic energy contribution in the partition function of an inextensible polymer chain is difficult to find, and it has been systematically ignored. We present the first thermodynamic calculation incorporating the kinetic energy of an inextensible polymer chain with the bending energy. To explore the effect of the translation-rotation degrees of freedom, we propose and solve a statistical model of a fully flexible chain of N +1 linked beads which, in the limit of smooth bending, is equivalent to the well-known wormlike chain model. The partition function with the kinetic and bending energies and correlations between orientations of any pair of links and velocities of any pair of beads are found. This solution is precise in the limits of small and large rigidity-to-temperature ratio b /T . The last exact solution is essential as even very "harmless" approximation results in loss of the important effects when the chain is very rigid. For very high b /T , the orientations of different links become fully correlated. Nevertheless, the chain does not go over into a hard rod even in the limit b /T →∞ : While the velocity correlation length diverges, the correlations themselves remain weak and tend to the value ∝T /(N +1 ). The N dependence of the partition function is essentially determined by the kinetic energy contribution. We demonstrate that to obtain the correct energy and entropy in a constrained system, the T derivative of the partition function has to be applied before integration over the constraint-setting variable.
Awonaike, Boluwatife; Wang, Chen; Goss, Kai-Uwe; Wania, Frank
2017-03-22
Functional groups attached to polycyclic aromatic hydrocarbons (PAHs) can significantly modify the environmental fate of the parent compound. Equilibrium partition coefficients, which are essential for describing the environmental phase distribution of a compound, are largely unavailable for substituted PAHs (SPAHs). Here, COSMOtherm, a software based on quantum-chemical calculations is used to estimate the atmospherically relevant partition coefficients between the gas phase, the aqueous bulk phase, the water surface and the water insoluble organic matter phase, as well as the salting-out coefficients, for naphthalene, anthracene, phenanthrene, benz(a)anthracene, benzo(a)pyrene and dibenz(a,h)anthracene and 62 of their substituted counterparts. They serve as input parameters for the calculation of equilibrium phase distribution of these compounds in aerosols and clouds. Our results, which were compared with available experimental data, show that the effect of salts, the adsorption to the water surface and the dissolution in a bulk aqueous phase can be safely neglected when estimating the gas-particle partitioning of SPAHs in aerosols. However, for small PAHs with more than one polar functional group the aqueous phase can be the dominant reservoir in a cloud.
USDA-ARS?s Scientific Manuscript database
A computational chemistry analysis of six unique tautomers of cyromazine, a pesticide used for fly control, was performed with density functional theory (DFT) and canonical second order Møller–Plesset perturbation theory (MP2) methods to gain insight into the contributions of molecular structure to ...
Liang, Hui; He, Shiming; Yang, Jingyi; Jia, Xinying; Wang, Pan; Chen, Xi; Zhang, Zhong; Zou, Xiajuan; McNutt, Michael A; Shen, Wen Hong; Yin, Yuxin
2014-05-06
PTEN is one of the most frequently mutated genes in human cancer. It is known that PTEN has a wide range of biological functions beyond tumor suppression. Here, we report that PTENα, an N-terminally extended form of PTEN, functions in mitochondrial metabolism. Translation of PTENα is initiated from a CUG codon upstream of and in-frame with the coding region of canonical PTEN. Eukaryotic translation initiation factor 2A (eIF2A) controls PTENα translation, which requires a CUG-centered palindromic motif. We show that PTENα induces cytochrome c oxidase activity and ATP production in mitochondria. TALEN-mediated somatic deletion of PTENα impairs mitochondrial respiratory chain function. PTENα interacts with canonical PTEN to increase PINK1 protein levels and promote energy production. Our studies demonstrate the importance of eIF2A-mediated alternative translation for generation of protein diversity in eukaryotic systems and provide insights into the mechanism by which the PTEN family is involved in multiple cellular processes. Copyright © 2014 Elsevier Inc. All rights reserved.
Black holes in higher spin supergravity
NASA Astrophysics Data System (ADS)
Datta, Shouvik; David, Justin R.
2013-07-01
We study black hole solutions in Chern-Simons higher spin supergravity based on the superalgebra sl(3|2). These black hole solutions have a U(1) gauge field and a spin 2 hair in addition to the spin 3 hair. These additional fields correspond to the R-symmetry charges of the supergroup sl(3|2). Using the relation between the bulk field equations and the Ward identities of a CFT with {N} = 2 super- {{{W}}_3} symmetry, we identify the bulk charges and chemical potentials with those of the boundary CFT. From these identifications we see that a suitable set of variables to study this black hole is in terms of the charges present in three decoupled bosonic sub-algebras of the {N} = 2 super- {{{W}}_3} algebra. The entropy and the partition function of these R-charged black holes are then evaluated in terms of the charges of the bulk theory as well as in terms of its chemical potentials. We then compute the partition function in the dual CFT and find exact agreement with the bulk partition function.
An in situ approach to study trace element partitioning in the laser heated diamond anvil cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petitgirard, S.; Mezouar, M.; Borchert, M.
2012-01-15
Data on partitioning behavior of elements between different phases at in situ conditions are crucial for the understanding of element mobility especially for geochemical studies. Here, we present results of in situ partitioning of trace elements (Zr, Pd, and Ru) between silicate and iron melts, up to 50 GPa and 4200 K, using a modified laser heated diamond anvil cell (DAC). This new experimental set up allows simultaneous collection of x-ray fluorescence (XRF) and x-ray diffraction (XRD) data as a function of time using the high pressure beamline ID27 (ESRF, France). The technique enables the simultaneous detection of sample meltingmore » based to the appearance of diffuse scattering in the XRD pattern, characteristic of the structure factor of liquids, and measurements of elemental partitioning of the sample using XRF, before, during and after laser heating in the DAC. We were able to detect elements concentrations as low as a few ppm level (2-5 ppm) on standard solutions. In situ measurements are complimented by mapping of the chemical partitions of the trace elements after laser heating on the quenched samples to constrain the partitioning data. Our first results indicate a strong partitioning of Pd and Ru into the metallic phase, while Zr remains clearly incompatible with iron. This novel approach extends the pressure and temperature range of partitioning experiments derived from quenched samples from the large volume presses and could bring new insight to the early history of Earth.« less
Scholz, Beate; Korn, Claudia; Wojtarowicz, Jessica; Mogler, Carolin; Augustin, Iris; Boutros, Michael; Niehrs, Christof; Augustin, Hellmut G
2016-01-11
The WNT signaling enhancer R-spondin3 (RSPO3) is prominently expressed in the vasculature. Correspondingly, embryonic lethality of Rspo3-deficient mice is caused by vessel remodeling defects. Yet the mechanisms underlying vascular RSPO3 function remain elusive. Inducible endothelial Rspo3 deletion (Rspo3-iECKO) resulted in perturbed developmental and tumor vascular remodeling. Endothelial cell apoptosis and vascular pruning led to reduced microvessel density in Rspo3-iECKO mice. Rspo3-iECKO mice strikingly phenocopied the non-canonical WNT signaling-induced vascular defects of mice deleted for the WNT secretion factor Evi/Wls. An endothelial screen for RSPO3 and EVI/WLS co-regulated genes identified Rnf213, Usp18, and Trim30α. RNF213 targets filamin A and NFAT1 for proteasomal degradation attenuating non-canonical WNT/Ca(2+) signaling. Likewise, USP18 and TRIM5α inhibited NFAT1 activation. Consequently, NFAT protein levels were decreased in endothelial cells of Rspo3-iECKO mice and pharmacological NFAT inhibition phenocopied Rspo3-iECKO mice. The data identify endothelial RSPO3-driven non-canonical WNT/Ca(2+)/NFAT signaling as a critical maintenance pathway of the remodeling vasculature. Copyright © 2016 Elsevier Inc. All rights reserved.
A canonical theory of dynamic decision-making.
Fox, John; Cooper, Richard P; Glasspool, David W
2013-01-01
Decision-making behavior is studied in many very different fields, from medicine and economics to psychology and neuroscience, with major contributions from mathematics and statistics, computer science, AI, and other technical disciplines. However the conceptualization of what decision-making is and methods for studying it vary greatly and this has resulted in fragmentation of the field. A theory that can accommodate various perspectives may facilitate interdisciplinary working. We present such a theory in which decision-making is articulated as a set of canonical functions that are sufficiently general to accommodate diverse viewpoints, yet sufficiently precise that they can be instantiated in different ways for specific theoretical or practical purposes. The canons cover the whole decision cycle, from the framing of a decision based on the goals, beliefs, and background knowledge of the decision-maker to the formulation of decision options, establishing preferences over them, and making commitments. Commitments can lead to the initiation of new decisions and any step in the cycle can incorporate reasoning about previous decisions and the rationales for them, and lead to revising or abandoning existing commitments. The theory situates decision-making with respect to other high-level cognitive capabilities like problem solving, planning, and collaborative decision-making. The canonical approach is assessed in three domains: cognitive and neuropsychology, artificial intelligence, and decision engineering.
A Canonical Theory of Dynamic Decision-Making
Fox, John; Cooper, Richard P.; Glasspool, David W.
2012-01-01
Decision-making behavior is studied in many very different fields, from medicine and economics to psychology and neuroscience, with major contributions from mathematics and statistics, computer science, AI, and other technical disciplines. However the conceptualization of what decision-making is and methods for studying it vary greatly and this has resulted in fragmentation of the field. A theory that can accommodate various perspectives may facilitate interdisciplinary working. We present such a theory in which decision-making is articulated as a set of canonical functions that are sufficiently general to accommodate diverse viewpoints, yet sufficiently precise that they can be instantiated in different ways for specific theoretical or practical purposes. The canons cover the whole decision cycle, from the framing of a decision based on the goals, beliefs, and background knowledge of the decision-maker to the formulation of decision options, establishing preferences over them, and making commitments. Commitments can lead to the initiation of new decisions and any step in the cycle can incorporate reasoning about previous decisions and the rationales for them, and lead to revising or abandoning existing commitments. The theory situates decision-making with respect to other high-level cognitive capabilities like problem solving, planning, and collaborative decision-making. The canonical approach is assessed in three domains: cognitive and neuropsychology, artificial intelligence, and decision engineering. PMID:23565100
Noncanonical spike-related BOLD responses in focal epilepsy
Lemieux, Louis; Laufs, Helmut; Carmichael, David; Paul, Joseph Suresh; Walker, Matthew C; Duncan, John S
2008-01-01
Till now, most studies of the Blood Oxygen Level-Dependent (BOLD) response to interictal epileptic discharges (IED) have assumed that its time course matches closely to that of brief physiological stimuli, commonly called the canonical event-related haemodynamic response function (canonical HRF). Analyses based on that assumption have produced significant response patterns that are generally concordant with prior electroclinical data. In this work, we used a more flexible model of the event-related response, a Fourier basis set, to investigate the presence of other responses in relation to individual IED in 30 experiments in patients with focal epilepsy. We found significant responses that had a noncanonical time course in 37% of cases, compared with 40% for the conventional, canonical HRF-based approach. In two cases, the Fourier analysis suggested activations where the conventional model did not. The noncanonical activations were almost always remote from the presumed generator of epileptiform activity. In the majority of cases with noncanonical responses, the noncanonical responses in single-voxel clusters were suggestive of artifacts. We did not find evidence for IED-related noncanonical HRFs arising from areas of pathology, suggesting that the BOLD response to IED is primarily canonical. Noncanonical responses may represent a number of phenomena, including artefacts and propagated epileptiform activity. Hum Brain Mapp 2008. © 2007 Wiley-Liss, Inc. PMID:17510926
Gate-tunable current partition in graphene-based topological zero lines
NASA Astrophysics Data System (ADS)
Wang, Ke; Ren, Yafei; Deng, Xinzhou; Yang, Shengyuan A.; Jung, Jeil; Qiao, Zhenhua
2017-06-01
We demonstrate new mechanisms for gate-tunable current partition at topological zero-line intersections in a graphene-based current splitter. Based on numerical calculations of the nonequilibrium Green's functions and Landauer-Büttiker formula, we show that the presence of a perpendicular magnetic field on the order of a few Teslas allows for carrier sign dependent current routing. In the zero-field limit the control on current routing and partition can be achieved within a range of 10-90 % of the total incoming current by tuning the carrier density at tilted intersections or by modifying the relative magnitude of the bulk band gaps via gate voltage. We discuss the implications of our findings in the design of topological zero-line networks where finite orbital magnetic moments are expected when the current partition is asymmetric.
The association between indicators of health and housing in people with Parkinson's disease.
Nilsson, Maria H; Ullén, Susann; Ekström, Henrik; Iwarsson, Susanne
2016-07-27
There are knowledge gaps about the life situation for people ageing with Parkinson's disease (PD), with virtually no understanding of home and health dynamics. Therefore, the aim of the present study was to explore the association between aspects of health and objective as well as perceived housing in people with PD. Participants were recruited from three hospitals in the region of Skåne in southern Sweden. The sample for the present study included 231 (62 % men) participants with PD, with a mean age of 75 (min-max, 45-93) years. The data collection procedure included a self-administered postal survey and a subsequent home visit where structured interviews, observations and clinical assessments were administered. To study the association between aspects of health and housing canonical correlation was applied. Twelve variables (6 in the health and 6 in the housing set) were included. This corresponds to about 20 individuals per variable and is considered sufficient to accurately interpret the largest (i.e., first) canonical correlation. The analysis between the health variables and housing variables set yielded two significant pairs of variates with the canonical correlations 0.68 (p < 0.0001) and 0.33 (p = 0.0112), respectively. For the first pair of variates the canonical R(2) was 0.46. The results showed that external control beliefs and behavioral aspects of meaning of home contributed the most to the housing variate, whereas difficulties/dependence in activities of daily living (ADL) and functional limitations contributed the most to the health variate. Although a significant relationship was found for the second canonical correlation, the shared variance between the two variates was considerably lower; R(2) = 0.11. This study suggests that people with PD who have more functional limitations, difficulties in ADL and are more dependent perceive their homes as less meaningful from a behavioral perspective. Moreover, they tend to rely on external influences managing their housing situation. With this kind of knowledge at hand, health care and social services professionals are in a better position to observe and efficiently address problems related to health and housing among people with PD.
Sowers, L. P.; Loo, L.; Wu, Y.; Campbell, E.; Ulrich, J. D.; Wu, S.; Paemka, L.; Wassink, T.; Meyer, K.; Bing, X.; El-Shanti, H.; Usachev, Y. M.; Ueno, N.; Manak, R. J.; Shepherd, A. J.; Ferguson, P. J.; Darbro, B. W.; Richerson, G. B.; Mohapatra, D. P.; Wemmie, J. A.; Bassuk, A. G.
2014-01-01
Autism spectrum disorders (ASDs) have been suggested to arise from abnormalities in the canonical and non-canonical Wnt signaling pathways. However, a direct connection between a human variant in a Wnt pathway gene and ASD-relevant brain pathology has not been established. Prickle2 (Pk2) is a post-synaptic non-canonical Wnt signaling protein shown to interact with post synaptic density 95 (PSD-95). Here we show that mice with disruption in Prickle2 display behavioral abnormalities including altered social interaction, learning abnormalities, and behavioral inflexibility. Prickle2 disruption in mouse hippocampal neurons led to reductions in dendrite branching, synapse number, and post-synaptic density size. Consistent with these findings, Prickle2 null neurons show decreased frequency and size of spontaneous miniature synaptic currents. These behavioral and physiological abnormalities in Prickle2 disrupted mice are consistent with ASD-like phenotypes present in other mouse models of ASDs. In 384 individuals with autism, we identified two with distinct, heterozygous, rare, non-synonymous PRICKLE2 variants (p.E8Q and p.V153I) that were shared by their affected siblings and inherited paternally. Unlike wild-type PRICKLE2, the PRICKLE2 variants found in ASD patients exhibit deficits in morphological and electrophysiological assays. These data suggest that these PRICKLE2 variants cause a critical loss of PRICKLE2 function. The data presented here provide new insight into the biological roles of Prickle2, its behavioral importance, and suggest disruptions in non-canonical Wnt genes such as PRICKLE2 may contribute to synaptic abnormalities underlying ASDs. PMID:23711981
Eigenstate-specific temperatures in two-level paramagnetic spin lattices.
Masthay, Mark B; Eads, Calley N; Johnson, Amber N; Keil, Robert G; Miller, Philip; Jones, Ross E; Mashburn, Joe D; Fannin, Harry B
2017-12-07
Increasing interest in the thermodynamics of small and/or isolated systems, in combination with recent observations of negative temperatures of atoms in ultracold optical lattices, has stimulated the need for estimating the conventional, canonical temperature T c conv of systems in equilibrium with heat baths using eigenstate-specific temperatures (ESTs). Four distinct ESTs-continuous canonical, discrete canonical, continuous microcanonical, and discrete microcanonical-are accordingly derived for two-level paramagnetic spin lattices (PSLs) in external magnetic fields. At large N, the four ESTs are intensive, equal to T c conv , and obey all four laws of thermodynamics. In contrast, for N < 1000, the ESTs of most PSL eigenstates are non-intensive, differ from T c conv , and violate each of the thermodynamic laws. Hence, in spite of their similarities to T c conv at large N, the ESTs are not true thermodynamic temperatures. Even so, each of the ESTs manifests a unique functional dependence on energy which clearly specifies the magnitude and direction of their deviation from T c conv ; the ESTs are thus good temperature estimators for small PSLs. The thermodynamic uncertainty relation is obeyed only by the ESTs of small canonical PSLs; it is violated by large canonical PSLs and by microcanonical PSLs of any size. The ESTs of population-inverted eigenstates are negative (positive) when calculated using Boltzmann (Gibbs) entropies; the thermodynamic implications of these entropically induced differences in sign are discussed in light of adiabatic invariance of the entropies. Potential applications of the four ESTs to nanothermometers and to systems with long-range interactions are discussed.
The non-canonical BMP and Wnt/β-catenin signaling pathways orchestrate early tooth development
Yuan, Guohua; Yang, Guobin; Zheng, Yuqian; Zhu, Xiaojing; Chen, Zhi; Zhang, Zunyi; Chen, YiPing
2015-01-01
BMP and Wnt signaling pathways play a crucial role in organogenesis, including tooth development. Despite extensive studies, the exact functions, as well as if and how these two pathways act coordinately in regulating early tooth development, remain elusive. In this study, we dissected regulatory functions of BMP and Wnt pathways in early tooth development using a transgenic noggin (Nog) overexpression model (K14Cre;pNog). It exhibits early arrested tooth development, accompanied by reduced cell proliferation and loss of odontogenic fate marker Pitx2 expression in the dental epithelium. We demonstrated that overexpression of Nog disrupted BMP non-canonical activity, which led to a dramatic reduction of cell proliferation rate but did not affect Pitx2 expression. We further identified a novel function of Nog by inhibiting Wnt/β-catenin signaling, causing loss of Pitx2 expression. Co-immunoprecipitation and TOPflash assays revealed direct binding of Nog to Wnts to functionally prevent Wnt/β-catenin signaling. In situ PLA and immunohistochemistry on Nog mutants confirmed in vivo interaction between endogenous Nog and Wnts and modulation of Wnt signaling by Nog in tooth germs. Genetic rescue experiments presented evidence that both BMP and Wnt signaling pathways contribute to cell proliferation regulation in the dental epithelium, with Wnt signaling also controlling the odontogenic fate. Reactivation of both BMP and Wnt signaling pathways, but not of only one of them, rescued tooth developmental defects in K14Cre;pNog mice, in which Wnt signaling can be substituted by transgenic activation of Pitx2. Our results reveal the orchestration of non-canonical BMP and Wnt/β-catenin signaling pathways in the regulation of early tooth development. PMID:25428587
Bedse, Gaurav; Hartley, Nolan D; Neale, Emily; Gaulden, Andrew D; Patrick, Toni A; Kingsley, Philip J; Uddin, Md Jashim; Plath, Niels; Marnett, Lawrence J; Patel, Sachin
2017-10-01
Increasing the available repertoire of effective treatments for mood and anxiety disorders represents a critical unmet need. Pharmacological augmentation of endogenous cannabinoid (eCB) signaling has been suggested to represent a novel approach to the treatment of anxiety disorders; however, the functional interactions between two canonical eCB pathways mediated via anandamide (N-arachidonylethanolamine [AEA]) and 2-arachidonoylglycerol (2-AG) in the regulation of anxiety are not well understood. We utilized pharmacological augmentation and depletion combined with behavioral and electrophysiological approaches to probe the role of 2-AG signaling in the modulation of stress-induced anxiety and the functional redundancy between AEA and 2-AG signaling in the modulation of anxiety-like behaviors in mice. Selective 2-AG augmentation reduced anxiety in the light/dark box assay and prevented stress-induced increases in anxiety associated with limbic AEA deficiency. In contrast, acute 2-AG depletion increased anxiety-like behaviors, which was normalized by selective pharmacological augmentation of AEA signaling and via direct cannabinoid receptor 1 stimulation with Δ 9 -tetrahydrocannabinol. Electrophysiological studies revealed 2-AG modulation of amygdala glutamatergic transmission as a key synaptic correlate of the anxiolytic effects of 2-AG augmentation. Although AEA and 2-AG likely subserve distinct physiological roles, a pharmacological and functional redundancy between these canonical eCB signaling pathways exists in the modulation of anxiety-like behaviors. These data support development of eCB-based treatment approaches for mood and anxiety disorders and suggest a potentially wider therapeutic overlap between AEA and 2-AG augmentation approaches than was previously appreciated. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Hall, Amanda C.; Ostrowski, Lauren A.; Mekhail, Karim
2017-01-01
ABSTRACT Cells have evolved intricate mechanisms to maintain genome stability despite allowing mutational changes to drive evolutionary adaptation. Repetitive DNA sequences, which represent the bulk of most genomes, are a major threat to genome stability often driving chromosome rearrangements and disease. The major source of repetitive DNA sequences and thus the most vulnerable constituents of the genome are the rDNA (rDNA) repeats, telomeres, and transposable elements. Maintaining the stability of these loci is critical to overall cellular fitness and lifespan. Therefore, cells have evolved mechanisms to regulate rDNA copy number, telomere length and transposon activity, as well as DNA repair at these loci. In addition, non-canonical structure-forming DNA motifs can also modulate the function of these repetitive DNA loci by impacting their transcription, replication, and stability. Here, we discuss key mechanisms that maintain rDNA repeats, telomeres, and transposons in yeast and human before highlighting emerging roles for non-canonical DNA structures at these repetitive loci. PMID:28406751
Molecular dynamics coupled with a virtual system for effective conformational sampling.
Hayami, Tomonori; Kasahara, Kota; Nakamura, Haruki; Higo, Junichi
2018-07-15
An enhanced conformational sampling method is proposed: virtual-system coupled canonical molecular dynamics (VcMD). Although VcMD enhances sampling along a reaction coordinate, this method is free from estimation of a canonical distribution function along the reaction coordinate. This method introduces a virtual system that does not necessarily obey a physical law. To enhance sampling the virtual system couples with a molecular system to be studied. Resultant snapshots produce a canonical ensemble. This method was applied to a system consisting of two short peptides in an explicit solvent. Conventional molecular dynamics simulation, which is ten times longer than VcMD, was performed along with adaptive umbrella sampling. Free-energy landscapes computed from the three simulations mutually converged well. The VcMD provided quicker association/dissociation motions of peptides than the conventional molecular dynamics did. The VcMD method is applicable to various complicated systems because of its methodological simplicity. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
A transcriptional profile of the decidua in preeclampsia
LØSET, Mari; MUNDAL, Siv B.; JOHNSON, Matthew P.; FENSTAD, Mona H.; FREED, Katherine A.; LIAN, Ingrid A.; EIDE, Irina P.; BJØRGE, Line; BLANGERO, John; MOSES, Eric K.; AUSTGULEN, Rigmor
2010-01-01
OBJECTIVE To obtain insight into possible mechanisms underlying preeclampsia using genome-wide transcriptional profiling in decidua basalis. STUDY DESIGN Genome-wide transcriptional profiling was performed on decidua basalis tissue from preeclamptic (n = 37) and normal pregnancies (n = 58). Differentially expressed genes were identified and merged into canonical pathways and networks. RESULTS Of the 26,504 expressed transcripts detected, 455 were differentially expressed (P <0.05, FDR P <0.1). Both novel (ARL5B, SLITRK4) and previously reported preeclampsia-associated genes (PLA2G7, HMOX1) were identified. Pathway analysis revealed that ‘tryptophan metabolism’, ‘endoplasmic reticulum stress’, ‘linoleic acid metabolism’, ‘notch signaling’, ‘fatty acid metabolism’, ‘arachidonic acid metabolism’ and ‘NRF2-mediated oxidative stress response’ were overrepresented canonical pathways. CONCLUSION In the present study single genes, canonical pathways and gene-gene networks that are likely to play an important role in the pathogenesis of preeclampsia, have been identified. Future functional studies are needed to accomplish a greater understanding of the mechanisms involved. PMID:20934677
Gnutzmann, Sven; Waltner, Daniel
2016-12-01
We consider exact and asymptotic solutions of the stationary cubic nonlinear Schrödinger equation on metric graphs. We focus on some basic example graphs. The asymptotic solutions are obtained using the canonical perturbation formalism developed in our earlier paper [S. Gnutzmann and D. Waltner, Phys. Rev. E 93, 032204 (2016)2470-004510.1103/PhysRevE.93.032204]. For closed example graphs (interval, ring, star graph, tadpole graph), we calculate spectral curves and show how the description of spectra reduces to known characteristic functions of linear quantum graphs in the low-intensity limit. Analogously for open examples, we show how nonlinear scattering of stationary waves arises and how it reduces to known linear scattering amplitudes at low intensities. In the short-wavelength asymptotics we discuss how genuine nonlinear effects may be described using the leading order of canonical perturbation theory: bifurcation of spectral curves (and the corresponding solutions) in closed graphs and multistability in open graphs.
The opposing roles of Wnt-5a in cancer
McDonald, S L; Silver, A
2009-01-01
Wnt-5a is one of the most highly investigated non-canonical Wnts and has been implicated in almost all aspects of non-canonical Wnt signalling. In terms of cancer development, Wnt-5a has, until recently, lived in the shadow of its better-characterised relatives. This was largely because of its apparent inability to transform cells or signal through the canonical β-catenin pathway that is so important in cancer, particularly colorectal cancer. Recent work in a wide range of human tumours has pointed to a critical role for Wnt-5a in malignant progression, but there is conflicting evidence whether Wnt-5a has a tumour-promoting or -suppressing role. Emerging evidence suggests that the functions of Wnt-5a can be drastically altered depending on the availability of key receptors. Hence, the presence or absence of these receptors may go some way to explain the conflicting role of Wnt-5a in different cancers. This review summarises our current understanding of Wnt-5a and cancer. PMID:19603030
A canonical correlation neural network for multicollinearity and functional data.
Gou, Zhenkun; Fyfe, Colin
2004-03-01
We review a recent neural implementation of Canonical Correlation Analysis and show, using ideas suggested by Ridge Regression, how to make the algorithm robust. The network is shown to operate on data sets which exhibit multicollinearity. We develop a second model which not only performs as well on multicollinear data but also on general data sets. This model allows us to vary a single parameter so that the network is capable of performing Partial Least Squares regression (at one extreme) to Canonical Correlation Analysis (at the other)and every intermediate operation between the two. On multicollinear data, the parameter setting is shown to be important but on more general data no particular parameter setting is required. Finally, we develop a second penalty term which acts on such data as a smoother in that the resulting weight vectors are much smoother and more interpretable than the weights without the robustification term. We illustrate our algorithms on both artificial and real data.
The Xenopus Tgfbi is required for embryogenesis through regulation of canonical Wnt signalling.
Wang, Feng; Hu, Wanzhou; Xian, Jian; Ohnuma, Shin-ichi; Brenton, James D
2013-07-01
Tgfbi, a fasciclin family extracellular matrix protein, has various roles in human diseases from corneal dystrophies to cancer. However, the molecular mechanisms that underlie its functions are poorly understood. Here, we studied the role of Tgfbi during Xenopus embryogenesis. During gastrulation and immediately after, Xtgfbi is expressed at developmentally important signaling centers including the dorsal marginal zone, notochord and floorplate. Xtgfbi knockdown by anti-sense morpholinos causes defective organizer induction, patterning and differentiation of muscle, neuron and neural crests, similar to suppression of canonical Wnt signaling. In Xenopus embryos and animal caps as well as DLD-1 cells, we show that Tgfbi is strongly required for the full activation of the canonical Wnt pathway by promoting phosphorylation of GSK3β and consequently enhancing the stabilization and nuclear localization of β-catenin. Further analysis shows that Tgfbi is likely to promote GSK3β phosphorylation through integrin-linked kinase. Copyright © 2013 Elsevier Inc. All rights reserved.
The Unruh effect for eccentric uniformly rotating observers
NASA Astrophysics Data System (ADS)
Ramezani-Aval, H.
It is common to use Galilean rotational transformation (GRT) to investigate the Unruh effect for uniformly rotating observers. However, the rotating observer in this subject is an eccentric observer while GRT is only valid for centrally rotating observers. Thus, the reliability of the results of applying GRT to the study of the Unruh effect might be considered as questionable. In this work, the rotational analog of the Unruh effect is investigated by employing two relativistic rotational transformations corresponding to the eccentric rotating observer, and it is shown that in both cases, the detector response function is nonzero. It is also shown that although consecutive Lorentz transformations cannot give a frame within which the canonical construction can be carried out, the expectation value of particle number operator in canonical approach will be zero if we use modified Franklin transformation. These conclusions reinforce the claim that correspondence between vacuum states defined via canonical field theory and a detector is broken for rotating observers. Some previous conclusions are commented on and some controversies are also discussed.
Zhang, Guang-Wei; Sun, Wen-Jian; Zingg, Brian; Shen, Li; He, Jufang; Xiong, Ying; Tao, Huizhong W; Zhang, Li I
2018-01-17
In the mammalian brain, auditory information is known to be processed along a central ascending pathway leading to auditory cortex (AC). Whether there exist any major pathways beyond this canonical auditory neuraxis remains unclear. In awake mice, we found that auditory responses in entorhinal cortex (EC) cannot be explained by a previously proposed relay from AC based on response properties. By combining anatomical tracing and optogenetic/pharmacological manipulations, we discovered that EC received auditory input primarily from the medial septum (MS), rather than AC. A previously uncharacterized auditory pathway was then revealed: it branched from the cochlear nucleus, and via caudal pontine reticular nucleus, pontine central gray, and MS, reached EC. Neurons along this non-canonical auditory pathway responded selectively to high-intensity broadband noise, but not pure tones. Disruption of the pathway resulted in an impairment of specifically noise-cued fear conditioning. This reticular-limbic pathway may thus function in processing aversive acoustic signals. Copyright © 2017 Elsevier Inc. All rights reserved.
On global optimization using an estimate of Lipschitz constant and simplicial partition
NASA Astrophysics Data System (ADS)
Gimbutas, Albertas; Žilinskas, Antanas
2016-10-01
A new algorithm is proposed for finding the global minimum of a multi-variate black-box Lipschitz function with an unknown Lipschitz constant. The feasible region is initially partitioned into simplices; in the subsequent iteration, the most suitable simplices are selected and bisected via the middle point of the longest edge. The suitability of a simplex for bisection is evaluated by minimizing of a surrogate function which mimics the lower bound for the considered objective function over that simplex. The surrogate function is defined using an estimate of the Lipschitz constant and the objective function values at the vertices of a simplex. The novelty of the algorithm is the sophisticated method of estimating the Lipschitz constant, and the appropriate method to minimize the surrogate function. The proposed algorithm was tested using 600 random test problems of different complexity, showing competitive results with two popular advanced algorithms which are based on similar assumptions.
Parallel Prebiotic Origin of Canonical and Non-Canonical Purine Nucleosides
NASA Astrophysics Data System (ADS)
Becker, S.; Carell, T.
2017-07-01
RNA of all living organisms is highly modified. It is unclear if these non-canonical bases are ancestors of an early Earth or biological inventions. We investigated a prebiotic pathway that leads to canonical and non-canonical purine nucleosides.
Inverse structure functions in the canonical wind turbine array boundary layer
NASA Astrophysics Data System (ADS)
Viggiano, Bianca; Gion, Moira; Ali, Naseem; Tutkun, Murat; Cal, Raúl Bayoán
2015-11-01
Insight into the statistical behavior of the flow past an array of wind turbines is useful in determining how to improve power extraction from the overall available energy. Considering a wind tunnel experiment, hot-wire anemometer velocity signals are obtained at the centerline of a 3 x 3 canonical wind turbine array boundary layer. Two downstream locations are considered referring to the near- and far-wake, and 21 vertical points were acquired per profile. Velocity increments are used to quantify the ordinary and inverse structure functions at both locations and their relationship between the scaling exponents is noted. It is of interest to discern if there is evidence of an inverted scaling. The inverse structure functions will also be discussed from the standpoint of the proximity to the array. Observations will also address if inverted scaling exponents follow a power law behavior and furthermore, extended self-similarity of the second moment is used to obtain the scaling exponent of other moments. Inverse structure functions of moments one through eight are tested via probability density functions and the behavior of the negative moment is investigated as well. National Science Foundation-CBET-1034581.
Are neoclassical canons valid for southern Chinese faces?
Jayaratne, Yasas S N; Deutsch, Curtis K; McGrath, Colman P J; Zwahlen, Roger A
2012-01-01
Proportions derived from neoclassical canons, initially described by Renaissance sculptors and painters, are still being employed as aesthetic guidelines during the clinical assessment of the facial morphology. 1. to determine the applicability of neoclassical canons for Southern Chinese faces and 2. to explore gender differences in relation to the applicability of the neoclassical canons and their variants. 3-D photographs acquired from 103 young adults (51 males and 52 females) without facial dysmorphology were used to test applicability of four neoclassical canons. Standard anthropometric measurements that determine the facial canons were made on these 3-D images. The validity of the canons as well as their different variants were quantified. The neoclassical cannons seldom applied to these individuals, and facial three-section and orbital canons did not apply at all. The orbitonasal canon was most frequently applicable, with a frequency of 19%. Significant sexual dimorphism was found relative to the prevalence of the variants of facial three-section and orbitonasal canons. The neoclassical canons did not appear to apply to our sample when rigorous quantitative measurements were employed. Thus, they should not be used as esthetic goals for craniofacial surgical interventions.
Clustering of galaxies with f(R) gravity
NASA Astrophysics Data System (ADS)
Capozziello, Salvatore; Faizal, Mir; Hameeda, Mir; Pourhassan, Behnam; Salzano, Vincenzo; Upadhyay, Sudhaker
2018-02-01
Based on thermodynamics, we discuss the galactic clustering of expanding Universe by assuming the gravitational interaction through the modified Newton's potential given by f(R) gravity. We compute the corrected N-particle partition function analytically. The corrected partition function leads to more exact equations of state of the system. By assuming that the system follows quasi-equilibrium, we derive the exact distribution function that exhibits the f(R) correction. Moreover, we evaluate the critical temperature and discuss the stability of the system. We observe the effects of correction of f(R) gravity on the power-law behaviour of particle-particle correlation function also. In order to check the feasibility of an f(R) gravity approach to the clustering of galaxies, we compare our results with an observational galaxy cluster catalogue.
VizieR Online Data Catalog: Thermodynamic quantities of molecular hydrogen (Popovas+, 2016)
NASA Astrophysics Data System (ADS)
Popovas, A.; Jorgensen, U. G.
2016-07-01
New partition functions for equilibrium, normal, and ortho and para hydrogen are calculated and thermodynamic quantities are reported for the temperature range 1-20000K. Our results are compared to previous estimates in the literature. The calculations are not limited to the ground electronic state, but include all bound and quasi-bound levels of excited electronic states. Dunham coefficients of these states of H2 are also reported. Reported internal partition functions and thermodynamic quantities in the present work are shown to be more accurate than previously available data. (4 data files).
Life skills and subjective well-being of people with disabilities: a canonical correlation analysis.
da Silva Cardoso, Elizabeth; Blalock, Kacie; Allen, Chase A; Chan, Fong; Rubin, Stanford E
2004-12-01
This study examined the canonical relationships between a set of life skill variables and a set of subjective well-being variables among a national sample of vocational rehabilitation clients in the USA. Self-direction, work tolerance, general employability, and self-care were related to physical, family and social, and financial well-being. This analysis also found that communication skill is related to family and social well-being, while psychological well-being is not related to any life skills in the set. The results showed that vocational rehabilitation services aimed to improve life functioning will lead to an improvement in subjective quality of life.
Recursions for the exchangeable partition function of the seedbank coalescent.
Kurt, Noemi; Rafler, Mathias
2017-04-01
For the seedbank coalescent with mutation under the infinite alleles assumption, which describes the gene genealogy of a population with a strong seedbank effect subject to mutations, we study the distribution of the final partition with mutation. This generalizes the coalescent with freeze by Dong et al. (2007) to coalescents where ancestral lineages are blocked from coalescing. We derive an implicit recursion which we show to have a unique solution and give an interpretation in terms of absorption problems of a random walk. Moreover, we derive recursions for the distribution of the number of blocks in the final partition. Copyright © 2017 Elsevier Inc. All rights reserved.
Weak Concordance between Fish and Macroinvertebrates in Mediterranean Streams
Larsen, Stefano; Mancini, Laura; Pace, Giorgio; Scalici, Massimiliano; Tancioni, Lorenzo
2012-01-01
Although anthropogenic degradation of riverine systems stimulated a multi-taxon bioassessment of their ecological integrity in EU countries, specific responses of different taxonomic groups to human pressure are poorly investigated in Mediterranean rivers. Here, we assess if richness and composition of macroinvertebrate and fish assemblages show concordant variation along a gradient of anthropogenic pressure in 31 reaches across 13 wadeable streams in central Italy. Fish and invertebrate taxonomic richness was not correlated across sites. However, Mantel test showed that the two groups were significantly, albeit weakly, correlated even after statistically controlling for the effect of environmental variables and site proximity. Variance partitioning with partial Canonical Correspondence Analysis showed that the assemblages of the two groups were influenced by different set of environmental drivers: invertebrates were influenced by water organic content, channel and substratum features, while fish were related to stream temperature (mirroring elevation) and local land-use. Variance partitioning revealed the importance of biotic interactions between the two groups as a possible mechanisms determining concordance. Although significant, the congruence between the groups was weak, indicating that they should not be used as surrogate of each other for environmental assessments in these Mediterranean catchments. Indeed, both richness and patterns in nestedness (i.e. where depauperate locations host only a subset of taxa found in richer locations) appeared influenced by different environmental drivers suggesting that the observed concordance did not result from a co-loss of taxa along similar environmental gradients. As fish and macroinvertebrates appeared sensitive to different environmental factors, we argue that monitoring programmes should consider a multi-assemblage assessment, as also required by the Water Framework Directive. PMID:23251432
Integrated Modular Avionics for Spacecraft: Earth Observation Use Case Demonstrator
NASA Astrophysics Data System (ADS)
Deredempt, Marie-Helene; Rossignol, Alain; Hyounet, Philippe
2013-08-01
Integrated Modular Avionics (IMA) for Space, as European Space Agency initiative, aimed to make applicable to space domain the time and space partitioning concepts and particularly the ARINC 653 standard [1][2]. Expected benefits of such an approach are development flexibility, capability to provide differential V&V for different criticality level functionalities and to integrate late or In-Orbit delivery. This development flexibility could improve software subcontracting, industrial organization and software reuse. Time and space partitioning technique facilitates integration of software functions as black boxes and integration of decentralized function such as star tracker in On Board Computer to save mass and power by limiting electronics resources. In aeronautical domain, Integrated Modular Avionics architecture is based on a network of LRU (Line Replaceable Unit) interconnected by AFDX (Avionic Full DupleX). Time and Space partitioning concept is applicable to LRU and provides independent partitions which inter communicate using ARINC 653 communication ports. Using End System (LRU component) intercommunication between LRU is managed in the same way than intercommunication between partitions in LRU. In such architecture an application developed using only communication port can be integrated in an LRU or another one without impacting the global architecture. In space domain, a redundant On Board Computer controls (ground monitoring TM) and manages the platform (ground command TC) in terms of power, solar array deployment, attitude, orbit, thermal, maintenance, failure detection and recovery isolation. In addition, Payload units and platform units such as RIU, PCDU, AOCS units (Star tracker, Reaction wheels) are considered in this architecture. Interfaces are mainly realized through MIL-STD-1553B busses and SpaceWire and this could be considered as the main constraint for IMA implementation in space domain. During the first phase of IMA SP project, ARINC653 impact was analyzed. Requirements and architecture for space domain were defined [3][4] and System Executive platforms (based on Xtratum, Pike OS, and AIR) were developed with RTEMS as Guest OS. This paper focuses on the demonstrator developed by Astrium as part of IMA SP project. This demonstrator has the objective to confirm operational software partitioning feasibility above Xtratum System Executive Platform with acceptable CPU overhead.
Mahajan, Sai Pooja; Velez-Vega, Camilo; Escobedo, Fernando A
2013-01-10
Nanobodies are single-domain antibodies found in camelids. These are the smallest naturally occurring binding domains and derive functionality via three hypervariable loops (H1-H3) that form the binding surface. They are excellent candidates for antibody engineering because of their favorable characteristics like small size, high solubility, and stability. To rationally engineer antibodies with affinity for a specific target, the hypervariable loops can be tailored to obtain the desired binding surface. As a first step toward such a goal, we consider the design of loops with a desired conformation. In this study, we focus on the H1 loop of the anti-hCG llama nanobody that exhibits a noncanonical conformation. We aim to "tilt" the stability of the H1 loop structure from a noncanonical conformation to a (humanized) type 1 canonical conformation by studying the effect of selected mutations to the amino acid sequence of the H1, H2, and proximal residues. We use all-atomistic, explicit-solvent, biased molecular dynamic simulations to simulate the wild-type and mutant loops in a prefolded framework. We thus find mutants with increasing propensity to form a stable type 1 canonical conformation of the H1 loop. Free energy landscapes reveal the existence of conformational isomers of the canonical conformation that may play a role in binding different antigenic surfaces. We also elucidate the approximate mechanism and kinetics of transitions between such conformational isomers by using a Markovian model. We find that a particular three-point mutant has the strongest thermodynamic propensity to form the H1 type 1 canonical structure but also to exhibit transitions between conformational isomers, while a different, more rigid three-point mutant has the strongest propensity to be kinetically trapped in such a canonical structure.
Gross, Markus; Gambassi, Andrea; Dietrich, S
2017-08-01
The effect of imposing a constraint on a fluctuating scalar order parameter field in a system of finite volume is studied within statistical field theory. The canonical ensemble, corresponding to a fixed total integrated order parameter (e.g., the total number of particles), is obtained as a special case of the theory. A perturbative expansion is developed which allows one to systematically determine the constraint-induced finite-volume corrections to the free energy and to correlation functions. In particular, we focus on the Landau-Ginzburg model in a film geometry (i.e., in a rectangular parallelepiped with a small aspect ratio) with periodic, Dirichlet, or Neumann boundary conditions in the transverse direction and periodic boundary conditions in the remaining, lateral directions. Within the expansion in terms of ε=4-d, where d is the spatial dimension of the bulk, the finite-size contribution to the free energy of the confined system and the associated critical Casimir force are calculated to leading order in ε and are compared to the corresponding expressions for an unconstrained (grand canonical) system. The constraint restricts the fluctuations within the system and it accordingly modifies the residual finite-size free energy. The resulting critical Casimir force is shown to depend on whether it is defined by assuming a fixed transverse area or a fixed total volume. In the former case, the constraint is typically found to significantly enhance the attractive character of the force as compared to the grand canonical case. In contrast to the grand canonical Casimir force, which, for supercritical temperatures, vanishes in the limit of thick films, in the canonical case with fixed transverse area the critical Casimir force attains for thick films a negative value for all boundary conditions studied here. Typically, the dependence of the critical Casimir force both on the temperaturelike and on the fieldlike scaling variables is different in the two ensembles.
NASA Astrophysics Data System (ADS)
Gross, Markus; Gambassi, Andrea; Dietrich, S.
2017-08-01
The effect of imposing a constraint on a fluctuating scalar order parameter field in a system of finite volume is studied within statistical field theory. The canonical ensemble, corresponding to a fixed total integrated order parameter (e.g., the total number of particles), is obtained as a special case of the theory. A perturbative expansion is developed which allows one to systematically determine the constraint-induced finite-volume corrections to the free energy and to correlation functions. In particular, we focus on the Landau-Ginzburg model in a film geometry (i.e., in a rectangular parallelepiped with a small aspect ratio) with periodic, Dirichlet, or Neumann boundary conditions in the transverse direction and periodic boundary conditions in the remaining, lateral directions. Within the expansion in terms of ɛ =4 -d , where d is the spatial dimension of the bulk, the finite-size contribution to the free energy of the confined system and the associated critical Casimir force are calculated to leading order in ɛ and are compared to the corresponding expressions for an unconstrained (grand canonical) system. The constraint restricts the fluctuations within the system and it accordingly modifies the residual finite-size free energy. The resulting critical Casimir force is shown to depend on whether it is defined by assuming a fixed transverse area or a fixed total volume. In the former case, the constraint is typically found to significantly enhance the attractive character of the force as compared to the grand canonical case. In contrast to the grand canonical Casimir force, which, for supercritical temperatures, vanishes in the limit of thick films, in the canonical case with fixed transverse area the critical Casimir force attains for thick films a negative value for all boundary conditions studied here. Typically, the dependence of the critical Casimir force both on the temperaturelike and on the fieldlike scaling variables is different in the two ensembles.
Canonical Transient Receptor Potential Channels and Their Link with Cardio/Cerebro-Vascular Diseases
Xiao, Xiong; Liu, Hui-Xia; Shen, Kuo; Cao, Wei; Li, Xiao-Qiang
2017-01-01
The canonical transient receptor potential channels (TRPCs) constitute a series of nonselective cation channels with variable degrees of Ca2+ selectivity. TRPCs consist of seven mammalian members, TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7, which are further divided into four subtypes, TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7. These channels take charge of various essential cell functions such as contraction, relaxation, proliferation, and dysfunction. This review, organized into seven main sections, will provide an overview of current knowledge about the underlying pathogenesis of TRPCs in cardio/cerebrovascular diseases, including hypertension, pulmonary arterial hypertension, cardiac hypertrophy, atherosclerosis, arrhythmia, and cerebrovascular ischemia reperfusion injury. Collectively, TRPCs could become a group of drug targets with important physiological functions for the therapy of human cardio/cerebro-vascular diseases. PMID:28274093
Moreira, Pedro Silva; Santos, Nadine Correia; Sousa, Nuno
2015-01-01
Executive functioning (EF), which is considered to govern complex cognition, and verbal memory (VM) are constructs assumed to be related. However, it is not known the magnitude of the association between EF and VM, and how sociodemographic and psychological factors may affect this relationship, including in normal aging. In this study, we assessed different EF and VM parameters, via a battery of neurocognitive/psychological tests, and performed a Canonical Correlation Analysis (CCA) to explore the connection between these constructs, in a sample of middle-aged and older healthy individuals without cognitive impairment (N = 563, 50+ years of age). The analysis revealed a positive and moderate association between EF and VM independently of gender, age, education, global cognitive performance level, and mood. These results confirm that EF presents a significant association with VM performance. PMID:28138465
RORα, a Potential Tumor Suppressor and Therapeutic Target of Breast Cancer
Du, Jun; Xu, Ren
2012-01-01
The function of the nuclear receptor (NR) in breast cancer progression has been investigated for decades. The majority of the nuclear receptors have well characterized natural ligands, but a few of them are orphan receptors for which no ligand has been identified. RORα, one member of the retinoid orphan nuclear receptor (ROR) subfamily of orphan receptors, regulates various cellular and pathological activities. RORα is commonly down-regulated and/or hypoactivated in breast cancer compared to normal mammary tissue. Expression of RORα suppresses malignant phenotypes in breast cancer cells, in vitro and in vivo. Activity of RORα can be categorized into the canonical and non-canonical nuclear receptor pathways, which in turn regulate various breast cancer cellular function, including cell proliferation, apoptosis and invasion. This information suggests that RORα is a potent tumor suppressor and a potential therapeutic target for breast cancer. PMID:23443091
Using model order tests to determine sensory inputs in a motion study
NASA Technical Reports Server (NTRS)
Repperger, D. W.; Junker, A. M.
1977-01-01
In the study of motion effects on tracking performance, a problem of interest is the determination of what sensory inputs a human uses in controlling his tracking task. In the approach presented here a simple canonical model (FID or a proportional, integral, derivative structure) is used to model the human's input-output time series. A study of significant changes in reduction of the output error loss functional is conducted as different permutations of parameters are considered. Since this canonical model includes parameters which are related to inputs to the human (such as the error signal, its derivatives and integration), the study of model order is equivalent to the study of which sensory inputs are being used by the tracker. The parameters are obtained which have the greatest effect on reducing the loss function significantly. In this manner the identification procedure converts the problem of testing for model order into the problem of determining sensory inputs.
Canonical Structure and Orthogonality of Forces and Currents in Irreversible Markov Chains
NASA Astrophysics Data System (ADS)
Kaiser, Marcus; Jack, Robert L.; Zimmer, Johannes
2018-03-01
We discuss a canonical structure that provides a unifying description of dynamical large deviations for irreversible finite state Markov chains (continuous time), Onsager theory, and Macroscopic Fluctuation Theory (MFT). For Markov chains, this theory involves a non-linear relation between probability currents and their conjugate forces. Within this framework, we show how the forces can be split into two components, which are orthogonal to each other, in a generalised sense. This splitting allows a decomposition of the pathwise rate function into three terms, which have physical interpretations in terms of dissipation and convergence to equilibrium. Similar decompositions hold for rate functions at level 2 and level 2.5. These results clarify how bounds on entropy production and fluctuation theorems emerge from the underlying dynamical rules. We discuss how these results for Markov chains are related to similar structures within MFT, which describes hydrodynamic limits of such microscopic models.
Madrigal, Pedro
2017-03-01
Computational evaluation of variability across DNA or RNA sequencing datasets is a crucial step in genomic science, as it allows both to evaluate reproducibility of biological or technical replicates, and to compare different datasets to identify their potential correlations. Here we present fCCAC, an application of functional canonical correlation analysis to assess covariance of nucleic acid sequencing datasets such as chromatin immunoprecipitation followed by deep sequencing (ChIP-seq). We show how this method differs from other measures of correlation, and exemplify how it can reveal shared covariance between histone modifications and DNA binding proteins, such as the relationship between the H3K4me3 chromatin mark and its epigenetic writers and readers. An R/Bioconductor package is available at http://bioconductor.org/packages/fCCAC/ . pmb59@cam.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitts, J. Brian, E-mail: jbp25@cam.ac.uk
In Dirac–Bergmann constrained dynamics, a first-class constraint typically does not alone generate a gauge transformation. By direct calculation it is found that each first-class constraint in Maxwell’s theory generates a change in the electric field E{sup →} by an arbitrary gradient, spoiling Gauss’s law. The secondary first-class constraint p{sup i},{sub i}=0 still holds, but being a function of derivatives of momenta (mere auxiliary fields), it is not directly about the observable electric field (a function of derivatives of A{sub μ}), which couples to charge. Only a special combination of the two first-class constraints, the Anderson–Bergmann–Castellani gauge generator G, leaves E{supmore » →} unchanged. Likewise only that combination leaves the canonical action invariant—an argument independent of observables. If one uses a first-class constraint to generate instead a canonical transformation, one partly strips the canonical coordinates of physical meaning as electromagnetic potentials, vindicating the Anderson–Bergmann Lagrangian orientation of interesting canonical transformations. The need to keep gauge-invariant the relation q-dot −(δH)/(δp) =−E{sub i}−p{sup i}=0 supports using the gauge generator and primary Hamiltonian rather than the separate first-class constraints and the extended Hamiltonian. Partly paralleling Pons’s criticism, it is shown that Dirac’s proof that a first-class primary constraint generates a gauge transformation, by comparing evolutions from identical initial data, cancels out and hence fails to detect the alterations made to the initial state. It also neglects the arbitrary coordinates multiplying the secondary constraints inside the canonical Hamiltonian. Thus the gauge-generating property has been ascribed to the primaries alone, not the primary–secondary team G. Hence the Dirac conjecture about secondary first-class constraints as generating gauge transformations rests upon a false presupposition about primary first-class constraints. Clarity about Hamiltonian electromagnetism will be useful for an analogous treatment of GR. - Highlights: • A first-class constraint changes the electric field E, spoiling Gauss’s law. • A first-class constraint does not leave the action invariant or preserve q,0−dH/dp. • The gauge generator preserves E,q,0−dH/dp, and the canonical action. • The error in proofs that first-class primaries generating gauge is shown. • Dirac’s conjecture about secondary first-class constraints is blocked.« less
Are Neoclassical Canons Valid for Southern Chinese Faces?
Jayaratne, Yasas S. N.; Deutsch, Curtis K.; McGrath, Colman P. J.; Zwahlen, Roger A.
2012-01-01
Background Proportions derived from neoclassical canons, initially described by Renaissance sculptors and painters, are still being employed as aesthetic guidelines during the clinical assessment of the facial morphology. Objective 1. to determine the applicability of neoclassical canons for Southern Chinese faces and 2. to explore gender differences in relation to the applicability of the neoclassical canons and their variants. Methodology 3-D photographs acquired from 103 young adults (51 males and 52 females) without facial dysmorphology were used to test applicability of four neoclassical canons. Standard anthropometric measurements that determine the facial canons were made on these 3-D images. The validity of the canons as well as their different variants were quantified. Principal Findings The neoclassical cannons seldom applied to these individuals, and facial three-section and orbital canons did not apply at all. The orbitonasal canon was most frequently applicable, with a frequency of 19%. Significant sexual dimorphism was found relative to the prevalence of the variants of facial three-section and orbitonasal canons. Conclusion The neoclassical canons did not appear to apply to our sample when rigorous quantitative measurements were employed. Thus, they should not be used as esthetic goals for craniofacial surgical interventions. PMID:23285105
Ideal proportions in full face front view, contemporary versus antique.
Mommaerts, M Y; Moerenhout, B A M M L
2011-03-01
To compare the facial proportions of contemporary harmonious faces with those of antiquity, to validate classical canons and to determine new ones useful in orthofacial surgery planning. Contemporary beautiful faces were retrieved from yearly polls of People Magazine and FHM. Selected B/W frontal facial photographs of 31 men and 74 women were ranked by 20 patients who had to undergo orthofacial surgery. The top-15 female faces and the top-10 male faces were analyzed with Scion Image software. The classical facial index, the Bruges facial index, the ratio lower facial height/total facial height and the vertical tri-partite of the lower face were calculated. The same analysis was done on pictures of classical sculptures representing seven goddesses and 12 gods. Harmonious contemporary female faces have a significantly lower classical facial index, indicating that facial height is less or facial width is larger than in male and even than in antique female faces. The Bruges index indicates a similar difference between ideal contemporary female and male faces. The contemporary male has a higher lower face (48%) compared to total facial height than the contemporary female (45%), although this is statistically not significant (P=0.08). The lower facial thirds index remained quite stabile for 2500 years, without gender difference. A good canon for both sexes today is stomion-gnathion being 70% of subnasale-stomion. The average ideal contemporary female face is shorter than the male face, given the fact that interpupillary distance is similar. The Vitruvian thirds in the lower face have to be adjusted to a 30% upper lip, 70% lower lip-chin proportion. The contemporary ideal ratios are suitable to be implemented in an orthofacial planning concept. Copyright © 2010 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Effect of partition board color on mood and autonomic nervous function.
Sakuragi, Sokichi; Sugiyama, Yoshiki
2011-12-01
The purpose of this study was to evaluate the effects of the presence or absence (control) of a partition board and its color (red, yellow, blue) on subjective mood ratings and changes in autonomic nervous system indicators induced by a video game task. The increase in the mean Profile of Mood States (POMS) Fatigue score and mean Oppressive feeling rating after the task was lowest with the blue partition board. Multiple-regression analysis identified oppressive feeling and error scores on the second half of the task as statistically significant contributors to Fatigue. While explanatory variables were limited to the physiological indices, multiple-regression analysis identified a significant contribution of autonomic reactivity (assessed by heart rate variability) to Fatigue. These results suggest that a blue partition board would reduce task-induced subjective fatigue, in part by lowering the oppressive feeling of being enclosed during the task, possibly by increasing autonomic reactivity.
Diffusion, phase equilibria and partitioning experiments in the Ni-Fe-Ru system
NASA Technical Reports Server (NTRS)
Blum, Joel D.; Wasserburg, G. J.; Hutcheon, I. D.; Beckett, J. R.; Stolper, E. M.
1989-01-01
Results are presented on thin-film diffusion experiments designed to investigate phase equilibria in systems containing high concentrations of Pt-group elements, such as Ni-Fe-Ru-rich systems containing Pt, at temperatures of 1273, 1073, and 873 K. The rate of Ru diffusion in Ni was determined as a function of temperature, and, in addition, the degree of Pt and Ir partitioning between phases in a Ni-Fe-Ru-rich system and of V between phases in a Ni-Fe-O-rich system at 873 were determined. It was found that Pt preferentially partitions into the (gamma)Ni-Fe phase, whereas Ir prefers the (epsilon)Ru-Fe phase. V partitions strongly into Fe oxides relative to (gamma)Ni-Fe. These results have direct application to the origin and thermal history of the alloys rich in Pt-group elements in meteorites.
Silencing of Smed-betacatenin1 generates radial-like hypercephalized planarians.
Iglesias, Marta; Gomez-Skarmeta, Jose Luis; Saló, Emili; Adell, Teresa
2008-04-01
Little is known about the molecular mechanisms responsible for axis establishment during non-embryonic processes such as regeneration and homeostasis. To address this issue, we set out to analyze the role of the canonical Wnt pathway in planarians, flatworms renowned for their extraordinary morphological plasticity. Canonical Wnt signalling is an evolutionarily conserved mechanism to confer polarity during embryonic development, specifying the anteroposterior (AP) axis in most bilaterians and the dorsoventral (DV) axis in early vertebrate embryos. beta-Catenin is a key element in this pathway, although it is a bifunctional protein that is also involved in cell-cell adhesion. Here, we report the characterization of two beta-catenin homologs from Schmidtea mediterranea (Smed-betacatenin1/2). Loss of function of Smed-betacatenin1, but not Smed-betacatenin2, in both regenerating and intact planarians, generates radial-like hypercephalized planarians in which the AP axis disappears but the DV axis remains unaffected, representing a unique example of a striking body symmetry transformation. The radial-like hypercephalized phenotype demonstrates the requirement for Smed-betacatenin1 in AP axis re-establishment and maintenance, and supports a conserved role for canonical Wnt signalling in AP axis specification, whereas the role of beta-catenin in DV axis establishment would be a vertebrate innovation. When considered alongside the protein domains present in each S. mediterranea beta-catenin and the results of functional assays in Xenopus embryos demonstrating nuclear accumulation and axis induction with Smed-betacatenin1, but not Smed-betacatenin2, these data suggest that S. mediterranea beta-catenins could be functionally specialized and that only Smed-betacatenin1 is involved in Wnt signalling.
Pankow, J.F.; McKenzie, S.W.
1991-01-01
The manner in which a chemical material partitions among the dissolved (D), participate (P), and colloidal (C) phases affects both its chemical and physical behavior in the aquatic environment. The fractions of the chemical that are present in each of these three phases will be determined by the values of two simple parameters, KpSp/??w and KcSc/??w. The variables Kp and Kc are the particle/water and colloid/water partition constants (mL/g), respectively, Sp and Sc are the volume concentrations of particulate and colloidal material (mg/L), respectively, and ??w is the fractional volume of the system that is aqueous. This parameterization allows a rapid overview of how partitioning (1) changes as a function of chemical partitioning properties and water type, (2) affects apparent partition constants (i.e., Kpapp values) computed between the particulate phase and the remainder of the system, and (3) causes Kpapp values to become independent of chemical properties at high values of KcSc/??w. ?? 1991 American Chemical Society.
Donaldson-Witten theory and indefinite theta functions
NASA Astrophysics Data System (ADS)
Korpas, Georgios; Manschot, Jan
2017-11-01
We consider partition functions with insertions of surface operators of topologically twisted N=2 , SU(2) supersymmetric Yang-Mills theory, or Donaldson-Witten theory for short, on a four-manifold. If the metric of the compact four-manifold has positive scalar curvature, Moore and Witten have shown that the partition function is completely determined by the integral over the Coulomb branch parameter a, while more generally the Coulomb branch integral captures the wall-crossing behavior of both Donaldson polynomials and Seiberg-Witten invariants. We show that after addition of a \\overlineQ -exact surface operator to the Moore-Witten integrand, the integrand can be written as a total derivative to the anti-holomorphic coordinate ā using Zwegers' indefinite theta functions. In this way, we reproduce Göttsche's expressions for Donaldson invariants of rational surfaces in terms of indefinite theta functions for any choice of metric.
Wigner Distribution for Angle Coordinates in Quantum Mechanics.
ERIC Educational Resources Information Center
Mukunda, N.
1979-01-01
Shows how to extend Wigner distribution functions, and Weyl correspondence between quantum and classical variables, from the usual kind of canonically conjugate position and momentum operators to the case of an angle and angular momentum operator pair. (Author/GA)
Du, Yushen; Wu, Nicholas C; Jiang, Lin; Zhang, Tianhao; Gong, Danyang; Shu, Sara; Wu, Ting-Ting; Sun, Ren
2016-11-01
Identification and annotation of functional residues are fundamental questions in protein sequence analysis. Sequence and structure conservation provides valuable information to tackle these questions. It is, however, limited by the incomplete sampling of sequence space in natural evolution. Moreover, proteins often have multiple functions, with overlapping sequences that present challenges to accurate annotation of the exact functions of individual residues by conservation-based methods. Using the influenza A virus PB1 protein as an example, we developed a method to systematically identify and annotate functional residues. We used saturation mutagenesis and high-throughput sequencing to measure the replication capacity of single nucleotide mutations across the entire PB1 protein. After predicting protein stability upon mutations, we identified functional PB1 residues that are essential for viral replication. To further annotate the functional residues important to the canonical or noncanonical functions of viral RNA-dependent RNA polymerase (vRdRp), we performed a homologous-structure analysis with 16 different vRdRp structures. We achieved high sensitivity in annotating the known canonical polymerase functional residues. Moreover, we identified a cluster of noncanonical functional residues located in the loop region of the PB1 β-ribbon. We further demonstrated that these residues were important for PB1 protein nuclear import through the interaction with Ran-binding protein 5. In summary, we developed a systematic and sensitive method to identify and annotate functional residues that are not restrained by sequence conservation. Importantly, this method is generally applicable to other proteins about which homologous-structure information is available. To fully comprehend the diverse functions of a protein, it is essential to understand the functionality of individual residues. Current methods are highly dependent on evolutionary sequence conservation, which is usually limited by sampling size. Sequence conservation-based methods are further confounded by structural constraints and multifunctionality of proteins. Here we present a method that can systematically identify and annotate functional residues of a given protein. We used a high-throughput functional profiling platform to identify essential residues. Coupling it with homologous-structure comparison, we were able to annotate multiple functions of proteins. We demonstrated the method with the PB1 protein of influenza A virus and identified novel functional residues in addition to its canonical function as an RNA-dependent RNA polymerase. Not limited to virology, this method is generally applicable to other proteins that can be functionally selected and about which homologous-structure information is available. Copyright © 2016 Du et al.
Calculation of the octanol-water partition coefficient of armchair polyhex BN nanotubes
NASA Astrophysics Data System (ADS)
Mohammadinasab, E.; Pérez-Sánchez, H.; Goodarzi, M.
2017-12-01
A predictive model for determination partition coefficient (log P) of armchair polyhex BN nanotubes by using simple descriptors was built. The relationship between the octanol-water log P and quantum chemical descriptors, electric moments, and topological indices of some armchair polyhex BN nanotubes with various lengths and fixed circumference are represented. Based on density functional theory electric moments and physico-chemical properties of those nanotubes are calculated.
Phylogenetically conserved resource partitioning in the coastal microbial loop
Bryson, Samuel; Li, Zhou; Chavez, Francisco; ...
2017-08-11
Resource availability influences marine microbial community structure, suggesting that population-specific resource partitioning defines discrete niches. Identifying how resources are partitioned among populations, thereby characterizing functional guilds within the communities, remains a challenge for microbial ecologists. We used proteomic stable isotope probing (SIP) and NanoSIMS analysis of phylogenetic microarrays (Chip-SIP) along with 16S rRNA gene amplicon and metagenomic sequencing to characterize the assimilation of six 13C-labeled common metabolic substrates and changes in the microbial community structure within surface water collected from Monterey Bay, CA. Both sequencing approaches indicated distinct substrate-specific community shifts. However, observed changes in relative abundance for individual populationsmore » did not correlate well with directly measured substrate assimilation. The complementary SIP techniques identified assimilation of all six substrates by diverse taxa, but also revealed differential assimilation of substrates into protein and ribonucleotide biomass between taxa. Substrate assimilation trends indicated significantly conserved resource partitioning among populations within the Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria classes, suggesting that functional guilds within marine microbial communities are phylogenetically cohesive. However, populations within these classes exhibited heterogeneity in biosynthetic activity, which distinguished high-activity copiotrophs from low-activity oligotrophs. These results indicate distinct growth responses between populations that is not apparent by genome sequencing alone.« less
Phylogenetically conserved resource partitioning in the coastal microbial loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryson, Samuel; Li, Zhou; Chavez, Francisco
Resource availability influences marine microbial community structure, suggesting that population-specific resource partitioning defines discrete niches. Identifying how resources are partitioned among populations, thereby characterizing functional guilds within the communities, remains a challenge for microbial ecologists. We used proteomic stable isotope probing (SIP) and NanoSIMS analysis of phylogenetic microarrays (Chip-SIP) along with 16S rRNA gene amplicon and metagenomic sequencing to characterize the assimilation of six 13C-labeled common metabolic substrates and changes in the microbial community structure within surface water collected from Monterey Bay, CA. Both sequencing approaches indicated distinct substrate-specific community shifts. However, observed changes in relative abundance for individual populationsmore » did not correlate well with directly measured substrate assimilation. The complementary SIP techniques identified assimilation of all six substrates by diverse taxa, but also revealed differential assimilation of substrates into protein and ribonucleotide biomass between taxa. Substrate assimilation trends indicated significantly conserved resource partitioning among populations within the Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria classes, suggesting that functional guilds within marine microbial communities are phylogenetically cohesive. However, populations within these classes exhibited heterogeneity in biosynthetic activity, which distinguished high-activity copiotrophs from low-activity oligotrophs. These results indicate distinct growth responses between populations that is not apparent by genome sequencing alone.« less
Phylogenetically conserved resource partitioning in the coastal microbial loop
Bryson, Samuel; Li, Zhou; Chavez, Francisco; Weber, Peter K; Pett-Ridge, Jennifer; Hettich, Robert L; Pan, Chongle; Mayali, Xavier; Mueller, Ryan S
2017-01-01
Resource availability influences marine microbial community structure, suggesting that population-specific resource partitioning defines discrete niches. Identifying how resources are partitioned among populations, thereby characterizing functional guilds within the communities, remains a challenge for microbial ecologists. We used proteomic stable isotope probing (SIP) and NanoSIMS analysis of phylogenetic microarrays (Chip-SIP) along with 16S rRNA gene amplicon and metagenomic sequencing to characterize the assimilation of six 13C-labeled common metabolic substrates and changes in the microbial community structure within surface water collected from Monterey Bay, CA. Both sequencing approaches indicated distinct substrate-specific community shifts. However, observed changes in relative abundance for individual populations did not correlate well with directly measured substrate assimilation. The complementary SIP techniques identified assimilation of all six substrates by diverse taxa, but also revealed differential assimilation of substrates into protein and ribonucleotide biomass between taxa. Substrate assimilation trends indicated significantly conserved resource partitioning among populations within the Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria classes, suggesting that functional guilds within marine microbial communities are phylogenetically cohesive. However, populations within these classes exhibited heterogeneity in biosynthetic activity, which distinguished high-activity copiotrophs from low-activity oligotrophs. These results indicate distinct growth responses between populations that is not apparent by genome sequencing alone. PMID:28800138
Jeong, Yoonah; Schäffer, Andreas; Smith, Kilian
2017-05-01
Oasis hydrophilic lipophilic balance ® (Oasis HLB) is commonly employed in solid phase extraction (SPE) of environmental contaminants and within polar organic chemical integrative passive samplers (POCIS). In this study batch experiments were carried out to evaluate the relative affinity of a range of relevant organic pollutants to Oasis HLB in aqueous systems. The influence of sorbate concentration, temperature, pH, and salinity on the equilibrium sorption was investigated. Equilibrium partition ratios (K D ) of 28 compounds were determined, ranging over three orders of magnitude from 1.16 × 10 3 L/kg (atenolol) to 1.07 × 10 6 L/kg (isoproturon). The Freundlich model was able to describe the equilibrium partitioning to Oasis HLB, and an analysis of the thermodynamic parameters revealed the spontaneous and exothermic nature of the partitioning process. Ionic strength had only a minor effect on the partitioning, whereas pH had a considerable effect but only for ionizable compounds. The results show that apolar interactions between the Oasis HLB and analyte mainly determine the equilibrium partitioning. These research findings can be used to optimize the application of SPE and POCIS for analyses of environmental contaminants even in complex mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Orr, Lindsay; Hernández de la Peña, Lisandro; Roy, Pierre-Nicholas
2017-06-07
A derivation of quantum statistical mechanics based on the concept of a Feynman path centroid is presented for the case of generalized density operators using the projected density operator formalism of Blinov and Roy [J. Chem. Phys. 115, 7822-7831 (2001)]. The resulting centroid densities, centroid symbols, and centroid correlation functions are formulated and analyzed in the context of the canonical equilibrium picture of Jang and Voth [J. Chem. Phys. 111, 2357-2370 (1999)]. The case where the density operator projects onto a particular energy eigenstate of the system is discussed, and it is shown that one can extract microcanonical dynamical information from double Kubo transformed correlation functions. It is also shown that the proposed projection operator approach can be used to formally connect the centroid and Wigner phase-space distributions in the zero reciprocal temperature β limit. A Centroid Molecular Dynamics (CMD) approximation to the state-projected exact quantum dynamics is proposed and proven to be exact in the harmonic limit. The state projected CMD method is also tested numerically for a quartic oscillator and a double-well potential and found to be more accurate than canonical CMD. In the case of a ground state projection, this method can resolve tunnelling splittings of the double well problem in the higher barrier regime where canonical CMD fails. Finally, the state-projected CMD framework is cast in a path integral form.
NASA Astrophysics Data System (ADS)
Orr, Lindsay; Hernández de la Peña, Lisandro; Roy, Pierre-Nicholas
2017-06-01
A derivation of quantum statistical mechanics based on the concept of a Feynman path centroid is presented for the case of generalized density operators using the projected density operator formalism of Blinov and Roy [J. Chem. Phys. 115, 7822-7831 (2001)]. The resulting centroid densities, centroid symbols, and centroid correlation functions are formulated and analyzed in the context of the canonical equilibrium picture of Jang and Voth [J. Chem. Phys. 111, 2357-2370 (1999)]. The case where the density operator projects onto a particular energy eigenstate of the system is discussed, and it is shown that one can extract microcanonical dynamical information from double Kubo transformed correlation functions. It is also shown that the proposed projection operator approach can be used to formally connect the centroid and Wigner phase-space distributions in the zero reciprocal temperature β limit. A Centroid Molecular Dynamics (CMD) approximation to the state-projected exact quantum dynamics is proposed and proven to be exact in the harmonic limit. The state projected CMD method is also tested numerically for a quartic oscillator and a double-well potential and found to be more accurate than canonical CMD. In the case of a ground state projection, this method can resolve tunnelling splittings of the double well problem in the higher barrier regime where canonical CMD fails. Finally, the state-projected CMD framework is cast in a path integral form.
Etheridge, S. Leah; Ray, Saugata; Li, Shuangding; Hamblet, Natasha S.; Lijam, Nardos; Tsang, Michael; Greer, Joy; Kardos, Natalie; Wang, Jianbo; Sussman, Daniel J.; Chen, Ping; Wynshaw-Boris, Anthony
2008-01-01
Dishevelled (Dvl) proteins are important signaling components of both the canonical β-catenin/Wnt pathway, which controls cell proliferation and patterning, and the planar cell polarity (PCP) pathway, which coordinates cell polarity within a sheet of cells and also directs convergent extension cell (CE) movements that produce narrowing and elongation of the tissue. Three mammalian Dvl genes have been identified and the developmental roles of Dvl1 and Dvl2 were previously determined. Here, we identify the functions of Dvl3 in development and provide evidence of functional redundancy among the three murine Dvls. Dvl3 −/− mice died perinatally with cardiac outflow tract abnormalities, including double outlet right ventricle and persistent truncus arteriosis. These mutants also displayed a misorientated stereocilia in the organ of Corti, a phenotype that was enhanced with the additional loss of a single allele of the PCP component Vangl2/Ltap (LtapLp/+). Although neurulation appeared normal in both Dvl3 −/− and LtapLp/+ mutants, Dvl3 +/−;LtapLp/+ combined mutants displayed incomplete neural tube closure. Importantly, we show that many of the roles of Dvl3 are also shared by Dvl1 and Dvl2. More severe phenotypes were observed in Dvl3 mutants with the deficiency of another Dvl, and increasing Dvl dosage genetically with Dvl transgenes demonstrated the ability of Dvls to compensate for each other to enable normal development. Interestingly, global canonical Wnt signaling appeared largely unaffected in the double Dvl mutants, suggesting that low Dvl levels are sufficient for functional canonical Wnt signals. In summary, we demonstrate that Dvl3 is required for cardiac outflow tract development and describe its importance in the PCP pathway during neurulation and cochlea development. Finally, we establish several developmental processes in which the three Dvls are functionally redundant. PMID:19008950
Etheridge, S Leah; Ray, Saugata; Li, Shuangding; Hamblet, Natasha S; Lijam, Nardos; Tsang, Michael; Greer, Joy; Kardos, Natalie; Wang, Jianbo; Sussman, Daniel J; Chen, Ping; Wynshaw-Boris, Anthony
2008-11-01
Dishevelled (Dvl) proteins are important signaling components of both the canonical beta-catenin/Wnt pathway, which controls cell proliferation and patterning, and the planar cell polarity (PCP) pathway, which coordinates cell polarity within a sheet of cells and also directs convergent extension cell (CE) movements that produce narrowing and elongation of the tissue. Three mammalian Dvl genes have been identified and the developmental roles of Dvl1 and Dvl2 were previously determined. Here, we identify the functions of Dvl3 in development and provide evidence of functional redundancy among the three murine Dvls. Dvl3(-/-) mice died perinatally with cardiac outflow tract abnormalities, including double outlet right ventricle and persistent truncus arteriosis. These mutants also displayed a misorientated stereocilia in the organ of Corti, a phenotype that was enhanced with the additional loss of a single allele of the PCP component Vangl2/Ltap (LtapLp/+). Although neurulation appeared normal in both Dvl3(-/-) and LtapLp/+ mutants, Dvl3(+/-);LtapLp/+ combined mutants displayed incomplete neural tube closure. Importantly, we show that many of the roles of Dvl3 are also shared by Dvl1 and Dvl2. More severe phenotypes were observed in Dvl3 mutants with the deficiency of another Dvl, and increasing Dvl dosage genetically with Dvl transgenes demonstrated the ability of Dvls to compensate for each other to enable normal development. Interestingly, global canonical Wnt signaling appeared largely unaffected in the double Dvl mutants, suggesting that low Dvl levels are sufficient for functional canonical Wnt signals. In summary, we demonstrate that Dvl3 is required for cardiac outflow tract development and describe its importance in the PCP pathway during neurulation and cochlea development. Finally, we establish several developmental processes in which the three Dvls are functionally redundant.
Three-dimensional facial analyses of Indian and Malaysian women.
Kusugal, Preethi; Ruttonji, Zarir; Gowda, Roopa; Rajpurohit, Ladusingh; Lad, Pritam; Ritu
2015-01-01
Facial measurements serve as a valuable tool in the treatment planning of maxillofacial rehabilitation, orthodontic treatment, and orthognathic surgeries. The esthetic guidelines of face are still based on neoclassical canons, which were used in the ancient art. These canons are considered to be highly subjective, and there is ample evidence in the literature, which raises such questions as whether or not these canons can be applied for the modern population. This study was carried out to analyze the facial features of Indian and Malaysian women by using three-dimensional (3D) scanner and thus determine the prevalence of neoclassical facial esthetic canons in both the groups. The study was carried out on 60 women in the age range of 18-25 years, out of whom 30 were Indian and 30 Malaysian. As many as 16 facial measurements were taken by using a noncontact 3D scanner. Unpaired t-test was used for comparison of facial measurements between Indian and Malaysian females. Two-tailed Fisher exact test was used to determine the prevalence of neoclassical canons. Orbital Canon was prevalent in 80% of Malaysian women; the same was found only in 16% of Indian women (P = 0.00013). About 43% of Malaysian women exhibited orbitonasal canon (P = 0.0470) whereas nasoaural canon was prevalent in 73% of Malaysian and 33% of Indian women (P = 0.0068). Orbital, orbitonasal, and nasoaural canon were more prevalent in Malaysian women. Facial profile canon, nasooral, and nasofacial canons were not seen in either group. Though some canons provide guidelines in esthetic analyses of face, complete reliance on these canons is not justifiable.
In VIVO tracer kinetics of plant function using positron emission technology
NASA Astrophysics Data System (ADS)
Fares, Y.; Goeschl, J. D.; Magnuson, C. E.; Mckinney, C. J.; Musser, R. L.; Strain, B. R.
1989-04-01
A 11CO 2 storage and dispensing system was developed and used successfully to deliver constant activity levels for 2 h plant tracer experiments. Using tracer kinetics of a step input function the relationships between diurnal patterns of carbon partitioning and gas exchange properties of leaves in C 3 and C 4 plants were studied. We also studied the immediate and long term effects of the abrupt changes in CO 2 concentrations on carbon partitioning of these species. Results indicate that raising the CO 2 concentration above ambient immediately increases 11C storage over export rates, while lowering the CO 2 concentration immediately decreases storage more than export rates. This long term accumulation of starch may depend as much on the biochemistry of partitioning within the leaf as on limitations in the sink capacity of plants. Although gas exchange remained constant during the photoperiod, the photosynthate storage rate increased and the export rate decreased. These changes were more pronounced in C 4 plants.
Space and Time Partitioning with Hardware Support for Space Applications
NASA Astrophysics Data System (ADS)
Pinto, S.; Tavares, A.; Montenegro, S.
2016-08-01
Complex and critical systems like airplanes and spacecraft implement a very fast growing amount of functions. Typically, those systems were implemented with fully federated architectures, but the number and complexity of desired functions of todays systems led aerospace industry to follow another strategy. Integrated Modular Avionics (IMA) arose as an attractive approach for consolidation, by combining several applications into one single generic computing resource. Current approach goes towards higher integration provided by space and time partitioning (STP) of system virtualization. The problem is existent virtualization solutions are not ready to fully provide what the future of aerospace are demanding: performance, flexibility, safety, security while simultaneously containing Size, Weight, Power and Cost (SWaP-C).This work describes a real time hypervisor for space applications assisted by commercial off-the-shell (COTS) hardware. ARM TrustZone technology is exploited to implement a secure virtualization solution with low overhead and low memory footprint. This is demonstrated by running multiple guest partitions of RODOS operating system on a Xilinx Zynq platform.
NASA Astrophysics Data System (ADS)
McCaul, G. M. G.; Lorenz, C. D.; Kantorovich, L.
2017-03-01
We present a partition-free approach to the evolution of density matrices for open quantum systems coupled to a harmonic environment. The influence functional formalism combined with a two-time Hubbard-Stratonovich transformation allows us to derive a set of exact differential equations for the reduced density matrix of an open system, termed the extended stochastic Liouville-von Neumann equation. Our approach generalizes previous work based on Caldeira-Leggett models and a partitioned initial density matrix. This provides a simple, yet exact, closed-form description for the evolution of open systems from equilibriated initial conditions. The applicability of this model and the potential for numerical implementations are also discussed.
Language in the brain at rest: new insights from resting state data and graph theoretical analysis
Muller, Angela M.; Meyer, Martin
2014-01-01
In humans, the most obvious functional lateralization is the specialization of the left hemisphere for language. Therefore, the involvement of the right hemisphere in language is one of the most remarkable findings during the last two decades of fMRI research. However, the importance of this finding continues to be underestimated. We examined the interaction between the two hemispheres and also the role of the right hemisphere in language. From two seeds representing Broca's area, we conducted a seed correlation analysis (SCA) of resting state fMRI data and could identify a resting state network (RSN) overlapping to significant extent with a language network that was generated by an automated meta-analysis tool. To elucidate the relationship between the clusters of this RSN, we then performed graph theoretical analyses (GTA) using the same resting state dataset. We show that the right hemisphere is clearly involved in language. A modularity analysis revealed that the interaction between the two hemispheres is mediated by three partitions: A bilateral frontal partition consists of nodes representing the classical left sided language regions as well as two right-sided homologs. The second bilateral partition consists of nodes from the right frontal, the left inferior parietal cortex as well as of two nodes within the posterior cerebellum. The third partition is also bilateral and comprises five regions from the posterior midline parts of the brain to the temporal and frontal cortex, two of the nodes are prominent default mode nodes. The involvement of this last partition in a language relevant function is a novel finding. PMID:24808843
Waleń, Tomasz; Chojnowski, Grzegorz; Gierski, Przemysław; Bujnicki, Janusz M.
2014-01-01
The understanding of folding and function of RNA molecules depends on the identification and classification of interactions between ribonucleotide residues. We developed a new method named ClaRNA for computational classification of contacts in RNA 3D structures. Unique features of the program are the ability to identify imperfect contacts and to process coarse-grained models. Each doublet of spatially close ribonucleotide residues in a query structure is compared to clusters of reference doublets obtained by analysis of a large number of experimentally determined RNA structures, and assigned a score that describes its similarity to one or more known types of contacts, including pairing, stacking, base–phosphate and base–ribose interactions. The accuracy of ClaRNA is 0.997 for canonical base pairs, 0.983 for non-canonical pairs and 0.961 for stacking interactions. The generalized squared correlation coefficient (GC2) for ClaRNA is 0.969 for canonical base pairs, 0.638 for non-canonical pairs and 0.824 for stacking interactions. The classifier can be easily extended to include new types of spatial relationships between pairs or larger assemblies of nucleotide residues. ClaRNA is freely available via a web server that includes an extensive set of tools for processing and visualizing structural information about RNA molecules. PMID:25159614
Multifunction devices and their impacts on energy use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amorosano, D.
1995-12-01
Integrated multifunctional office equipment will have ramifications for energy efficiency and use. Specifically discussed here is Canon`s Digital Imaging System, also known as the GP55 Series, currently under development. Integrated office equipment combines the capabilities of single-function, stand-alone devices, increasing efficiency by eliminating steps in the production and distribution of documents. Canon and other vendors are now introducing these products into the office equipment industry in response to four trends: (1) Implementation of local area networks (LANs). It`s estimated that by 1997, 73% of all personal computers (PCs) in offices will be networked in some way. Vendors are looking tomore » tie their office equipment into that network connection and shared-resource capability. (2) Adoption of the {open_quotes}More with less{close_quotes} attitude by most companies is forcing new approaches to the way in which they increase efficiency. (3) Continuing workgroup requirements for both electronic and hard copy input/output capabilities. (4) Persistence of the {open_quotes}Sneaker{close_quotes} network. Research commissioned by Canon has shown that in spite of LAN penetration, this {open_quotes}Sneakernet{close_quotes} is still significant, meaning that users must still leave their desks an average of 11 times a day to make copies, send faxes, etc. The idea behind integrated technology is to eliminate those steps in the document processing procedure.« less
Feynman graphs and the large dimensional limit of multipartite entanglement
NASA Astrophysics Data System (ADS)
Di Martino, Sara; Facchi, Paolo; Florio, Giuseppe
2018-01-01
In this paper, we extend the analysis of multipartite entanglement, based on techniques from classical statistical mechanics, to a system composed of n d-level parties (qudits). We introduce a suitable partition function at a fictitious temperature with the average local purity of the system as Hamiltonian. In particular, we analyze the high-temperature expansion of this partition function, prove the convergence of the series, and study its asymptotic behavior as d → ∞. We make use of a diagrammatic technique, classify the graphs, and study their degeneracy. We are thus able to evaluate their contributions and estimate the moments of the distribution of the local purity.
Sensor/Response Coordination In A Tactical Self-Protection System
NASA Astrophysics Data System (ADS)
Steinberg, Alan N.
1988-08-01
This paper describes a model for integrating information acquisition functions into a response planner within a tactical self-defense system. This model may be used in defining requirements in such applications for sensor systems and for associated processing and control functions. The goal of information acquisition in a self-defense system is generally not that of achieving the best possible estimate of the threat environment; but rather to provide resolution of that environment sufficient to support response decisions. We model the information acquisition problem as that of achieving a partition among possible world states such that the final partition maps into the system's repertoire of possible responses.
NASA Astrophysics Data System (ADS)
Raymond, Neil; Iouchtchenko, Dmitri; Roy, Pierre-Nicholas; Nooijen, Marcel
2018-05-01
We introduce a new path integral Monte Carlo method for investigating nonadiabatic systems in thermal equilibrium and demonstrate an approach to reducing stochastic error. We derive a general path integral expression for the partition function in a product basis of continuous nuclear and discrete electronic degrees of freedom without the use of any mapping schemes. We separate our Hamiltonian into a harmonic portion and a coupling portion; the partition function can then be calculated as the product of a Monte Carlo estimator (of the coupling contribution to the partition function) and a normalization factor (that is evaluated analytically). A Gaussian mixture model is used to evaluate the Monte Carlo estimator in a computationally efficient manner. Using two model systems, we demonstrate our approach to reduce the stochastic error associated with the Monte Carlo estimator. We show that the selection of the harmonic oscillators comprising the sampling distribution directly affects the efficiency of the method. Our results demonstrate that our path integral Monte Carlo method's deviation from exact Trotter calculations is dominated by the choice of the sampling distribution. By improving the sampling distribution, we can drastically reduce the stochastic error leading to lower computational cost.
Binary partition tree analysis based on region evolution and its application to tree simplification.
Lu, Huihai; Woods, John C; Ghanbari, Mohammed
2007-04-01
Pyramid image representations via tree structures are recognized methods for region-based image analysis. Binary partition trees can be applied which document the merging process with small details found at the bottom levels and larger ones close to the root. Hindsight of the merging process is stored within the tree structure and provides the change histories of an image property from the leaf to the root node. In this work, the change histories are modelled by evolvement functions and their second order statistics are analyzed by using a knee function. Knee values show the reluctancy of each merge. We have systematically formulated these findings to provide a novel framework for binary partition tree analysis, where tree simplification is demonstrated. Based on an evolvement function, for each upward path in a tree, the tree node associated with the first reluctant merge is considered as a pruning candidate. The result is a simplified version providing a reduced solution space and still complying with the definition of a binary tree. The experiments show that image details are preserved whilst the number of nodes is dramatically reduced. An image filtering tool also results which preserves object boundaries and has applications for segmentation.
Harnessing the Bethe free energy†
Bapst, Victor
2016-01-01
ABSTRACT A wide class of problems in combinatorics, computer science and physics can be described along the following lines. There are a large number of variables ranging over a finite domain that interact through constraints that each bind a few variables and either encourage or discourage certain value combinations. Examples include the k‐SAT problem or the Ising model. Such models naturally induce a Gibbs measure on the set of assignments, which is characterised by its partition function. The present paper deals with the partition function of problems where the interactions between variables and constraints are induced by a sparse random (hyper)graph. According to physics predictions, a generic recipe called the “replica symmetric cavity method” yields the correct value of the partition function if the underlying model enjoys certain properties [Krzkala et al., PNAS (2007) 10318–10323]. Guided by this conjecture, we prove general sufficient conditions for the success of the cavity method. The proofs are based on a “regularity lemma” for probability measures on sets of the form Ωn for a finite Ω and a large n that may be of independent interest. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 49, 694–741, 2016 PMID:28035178
Sloma, Michael F.; Mathews, David H.
2016-01-01
RNA secondary structure prediction is widely used to analyze RNA sequences. In an RNA partition function calculation, free energy nearest neighbor parameters are used in a dynamic programming algorithm to estimate statistical properties of the secondary structure ensemble. Previously, partition functions have largely been used to estimate the probability that a given pair of nucleotides form a base pair, the conditional stacking probability, the accessibility to binding of a continuous stretch of nucleotides, or a representative sample of RNA structures. Here it is demonstrated that an RNA partition function can also be used to calculate the exact probability of formation of hairpin loops, internal loops, bulge loops, or multibranch loops at a given position. This calculation can also be used to estimate the probability of formation of specific helices. Benchmarking on a set of RNA sequences with known secondary structures indicated that loops that were calculated to be more probable were more likely to be present in the known structure than less probable loops. Furthermore, highly probable loops are more likely to be in the known structure than the set of loops predicted in the lowest free energy structures. PMID:27852924
NASA Astrophysics Data System (ADS)
Sievwright, R. H.; Wilkinson, J. J.; O'Neill, H. St. C.; Berry, A. J.
2017-08-01
Titanomagnetite-melt partitioning of Mg, Mn, Al, Ti, Sc, V, Co, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Hf and Ta was investigated experimentally as a function of oxygen fugacity ( fO2) and temperature ( T) in an andesitic-dacitic bulk-chemical compositional range. In these bulk systems, at constant T, there are strong increases in the titanomagnetite-melt partitioning of the divalent cations (Mg2+, Mn2+, Co2+, Ni2+, Zn2+) and Cu2+/Cu+ with increasing fO2 between 0.2 and 3.7 log units above the fayalite-magnetite-quartz buffer. This is attributed to a coupling between magnetite crystallisation and melt composition. Although melt structure has been invoked to explain the patterns of mineral-melt partitioning of divalent cations, a more rigorous justification of magnetite-melt partitioning can be derived from thermodynamic principles, which accounts for much of the supposed influence ascribed to melt structure. The presence of magnetite-rich spinel in equilibrium with melt over a range of fO2 implies a reciprocal relationship between a(Fe2+O) and a(Fe3+O1.5) in the melt. We show that this relationship accounts for the observed dependence of titanomagnetite-melt partitioning of divalent cations with fO2 in magnetite-rich spinel. As a result of this, titanomagnetite-melt partitioning of divalent cations is indirectly sensitive to changes in fO2 in silicic, but less so in mafic bulk systems.
2010-01-01
Background Comparative genomics methods such as phylogenetic profiling can mine powerful inferences from inherently noisy biological data sets. We introduce Sites Inferred by Metabolic Background Assertion Labeling (SIMBAL), a method that applies the Partial Phylogenetic Profiling (PPP) approach locally within a protein sequence to discover short sequence signatures associated with functional sites. The approach is based on the basic scoring mechanism employed by PPP, namely the use of binomial distribution statistics to optimize sequence similarity cutoffs during searches of partitioned training sets. Results Here we illustrate and validate the ability of the SIMBAL method to find functionally relevant short sequence signatures by application to two well-characterized protein families. In the first example, we partitioned a family of ABC permeases using a metabolic background property (urea utilization). Thus, the TRUE set for this family comprised members whose genome of origin encoded a urea utilization system. By moving a sliding window across the sequence of a permease, and searching each subsequence in turn against the full set of partitioned proteins, the method found which local sequence signatures best correlated with the urea utilization trait. Mapping of SIMBAL "hot spots" onto crystal structures of homologous permeases reveals that the significant sites are gating determinants on the cytosolic face rather than, say, docking sites for the substrate-binding protein on the extracellular face. In the second example, we partitioned a protein methyltransferase family using gene proximity as a criterion. In this case, the TRUE set comprised those methyltransferases encoded near the gene for the substrate RF-1. SIMBAL identifies sequence regions that map onto the substrate-binding interface while ignoring regions involved in the methyltransferase reaction mechanism in general. Neither method for training set construction requires any prior experimental characterization. Conclusions SIMBAL shows that, in functionally divergent protein families, selected short sequences often significantly outperform their full-length parent sequence for making functional predictions by sequence similarity, suggesting avenues for improved functional classifiers. When combined with structural data, SIMBAL affords the ability to localize and model functional sites. PMID:20102603
A Solution Space for a System of Null-State Partial Differential Equations: Part 1
NASA Astrophysics Data System (ADS)
Flores, Steven M.; Kleban, Peter
2015-01-01
This article is the first of four that completely and rigorously characterize a solution space for a homogeneous system of 2 N + 3 linear partial differential equations (PDEs) in 2 N variables that arises in conformal field theory (CFT) and multiple Schramm-Löwner evolution (SLE). In CFT, these are null-state equations and conformal Ward identities. They govern partition functions for the continuum limit of a statistical cluster or loop-gas model, such as percolation, or more generally the Potts models and O( n) models, at the statistical mechanical critical point. (SLE partition functions also satisfy these equations.) For such a lattice model in a polygon with its 2 N sides exhibiting a free/fixed side-alternating boundary condition , this partition function is proportional to the CFT correlation function where the w i are the vertices of and where is a one-leg corner operator. (Partition functions for "crossing events" in which clusters join the fixed sides of in some specified connectivity are linear combinations of such correlation functions.) When conformally mapped onto the upper half-plane, methods of CFT show that this correlation function satisfies the system of PDEs that we consider. In this first article, we use methods of analysis to prove that the dimension of this solution space is no more than C N , the Nth Catalan number. While our motivations are based in CFT, our proofs are completely rigorous. This proof is contained entirely within this article, except for the proof of Lemma 14, which constitutes the second article (Flores and Kleban, in Commun Math Phys, arXiv:1404.0035, 2014). In the third article (Flores and Kleban, in Commun Math Phys, arXiv:1303.7182, 2013), we use the results of this article to prove that the solution space of this system of PDEs has dimension C N and is spanned by solutions constructed with the CFT Coulomb gas (contour integral) formalism. In the fourth article (Flores and Kleban, in Commun Math Phys, arXiv:1405.2747, 2014), we prove further CFT-related properties about these solutions, some useful for calculating cluster-crossing probabilities of critical lattice models in polygons.
An efficient parallel algorithm for the calculation of unrestricted canonical MP2 energies.
Baker, Jon; Wolinski, Krzysztof
2011-11-30
We present details of our efficient implementation of full accuracy unrestricted open-shell second-order canonical Møller-Plesset (MP2) energies, both serial and parallel. The algorithm is based on our previous restricted closed-shell MP2 code using the Saebo-Almlöf direct integral transformation. Depending on system details, UMP2 energies take from less than 1.5 to about 3.0 times as long as a closed-shell RMP2 energy on a similar system using the same algorithm. Several examples are given including timings for some large stable radicals with 90+ atoms and over 3600 basis functions. Copyright © 2011 Wiley Periodicals, Inc.
Statistics of work performed on a forced quantum oscillator.
Talkner, Peter; Burada, P Sekhar; Hänggi, Peter
2008-07-01
Various aspects of the statistics of work performed by an external classical force on a quantum mechanical system are elucidated for a driven harmonic oscillator. In this special case two parameters are introduced that are sufficient to completely characterize the force protocol. Explicit results for the characteristic function of work and the corresponding probability distribution are provided and discussed for three different types of initial states of the oscillator: microcanonical, canonical, and coherent states. Depending on the choice of the initial state the probability distributions of the performed work may greatly differ. This result in particular also holds true for identical force protocols. General fluctuation and work theorems holding for microcanonical and canonical initial states are confirmed.
Mazengenya, P; Bhikha, R
2018-06-01
Ibn Sina (also known as Avicenna in the West) was the most famous physician and medical scientist of the medieval era. His book, the Canon of Medicine comprised a vast collection of medical information ranging from basic medical sciences to specialised medical fields. Herein, we present an analysis of the cardiovascular system, particularly giving an in-depth comparison of the structural and functional anatomy of the arteries and veins of the body as described by Avicenna in the Canon of Medicine and comparing them to modern extant anatomical literature. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Navigating the network: signaling cross-talk in hematopoietic cells
Fraser, Iain D C; Germain, Ronald N
2009-01-01
Recent studies in hematopoietic cells have led to a growing appreciation of the diverse modes of molecular and functional cross-talk between canonical signaling pathways. However, these intersections represent only the tip of the iceberg. Emerging global analytical methods are providing an even richer and more complete picture of the many components that measurably interact in a network manner to produce cellular responses. Here we highlight the pieces in this Focus, emphasize the limitations of the present canonical pathway paradigm, and discuss the value of a systems biology approach using more global, quantitative experimental design and data analysis strategies. Lastly, we urge caution about overly facile interpretation of genome- and proteome-level studies. PMID:19295628
Emerging and Diverse Functions of the EphA2 Noncanonical Pathway in Cancer Progression.
Zhou, Yue; Sakurai, Hiroaki
2017-01-01
Erythropoietin-producing hepatocellular receptor A2 (EphA2) receptor tyrosine kinase controls multiple physiological processes to maintain homeostasis in normal cells. In many types of solid tumors, it has been reported that EphA2 is overexpressed and plays a critical role in oncogenic signaling. However, in recent years, the opposing functions of EphA2 have been explained by the canonical and noncanonical signaling pathways. Ligand- and tyrosine kinase-dependent EphA2 activation (the canonical pathway) inhibits cancer cell proliferation and motility. In contrast, ligand- and tyrosine kinase-independent EphA2 signaling (the noncanonical pathway) promotes tumor survival and metastasis and controls acquired drug resistance and maintenance of cancer stem cell-like properties. Evidence has accumulated showing that the EphA2 noncanonical pathway is mainly regulated by inflammatory cytokines and growth factors via phosphorylation at Ser-897 in the intracellular C-tail region via some serine/threonine kinases, including p90 ribosomal S6 kinase. In this review, we focus on the regulation of Ser-897 phosphorylation and its functional importance in tumor malignancy and discuss future therapeutic targeting.
All-electron density functional calculation on insulin with quasi-canonical localized orbitals.
Inaba, Toru; Tahara, Saisei; Nisikawa, Nobutaka; Kashiwagi, Hiroshi; Sato, Fumitoshi
2005-07-30
An all-electron density functional (DF) calculation on insulin was performed by the Gaussian-based DF program, ProteinDF. Quasi-canonical localized orbitals (QCLOs) were used to improve the initial guess for the self-consistent field (SCF) calculation. All calculations were carried out by parallel computing on eight processors of an Itanium2 cluster (SGI Altix3700) with a theoretical peak performance of 41.6 GFlops. It took 35 h for the whole calculation. Insulin is a protein hormone consisting of two peptide chains linked by three disulfide bonds. The numbers of residues, atoms, electrons, orbitals, and auxiliary functions are 51, 790, 3078, 4439, and 8060, respectively. An all-electron DF calculation on insulin was successfully carried out, starting from connected QCLOs. Regardless of a large molecule with complicated topology, the differences in the total energy and the Mulliken atomic charge between initial and converged wavefunctions were very small. The calculation proceeded smoothly without any trial and error, suggesting that this is a promising method to obtain SCF convergence on large molecules such as proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuffey, R.J.; Pachut, J.F.
The Holocene reef-building coral Favia pallida was sampled at 4.5 m depth increments (to 40 m) from two reefs on Enewetak Atoll to examine intraspecific environmental effects. An exposed outer reef was massive and wall-like, whereas a sheltered lagoonal reef grew as a slender pinnacle. Corallite diameter and growth rate, two attributes retrievable in fossil corals, were measured with data partitioned into shallow (<20 m), intermediate (20 to 29 m), and deep-water (>29 m) subsets. Highly significant differences between depth zone populations were found for both corallite diameters and growth rates in analyses of individual and combined reef data sets.more » Canonical variates analyses (CVA) separated populations from depth zones along single, highly significant, functions. Centroids and 95% confidence intervals, calculated from CVA scores of colonies in each population, are widely separated for the lagoon reef and combined data sets. Conversely, populations from shallow and intermediate depths on the outer reef display overlapping confidence bars indicative of more gradational morphologic changes. When CV's were used to classify specimens to groups, misassignments of intermediate depth specimens to shallow or deep-water populations underscored the gradational nature of the environment. Completely intergrading populations of Favia pallida collected from different depths can be morphologically separated into statistically distinct groupings. A stratigraphic succession of such morphotypes might be interpreted as abruptly appearing separate species if sampling were not as uniform, systematic, and detailed as was possible on modern reefs. Analyses of evolutionary patterns must carefully assess potential effects of clinal variation if past evolutionary patterns are to be interpreted correctly.« less
Schmid, Rochus; Basting, Daniel
2005-03-24
Experimental evidence suggests that the energy of activation for the first homolytic Ga-C bond fission of GaMe3 of Ea = 249 kJ/mol, measured by Jacko and Price in a hot-wall tube reactor, is affected by surface catalytic effects. In this contribution, the rate constant for this crucial step in the gas-phase pyrolysis of GaMe3 has been calculated by variational transition state theory. By a basis set extrapolation on the MP2/cc-pVXZ level and a correlation correction from CCSD(T)/cc-pVDZ level, a theoretical "best estimate" for the bond energy of Delta H(289K) = 327.2 kJ/mol was derived. For the VTST calculation on the B3LYP/cc-pVDZ level, the energies were corrected to reproduce this bond energy. Partition functions of the transitional modes were approximated by a hindered rotor approximation to be valid along the whole reaction coordinate defined by the Ga-C bond length. On the basis of the canonical transition state theory, reaction rates were determined using the maxima of the free energy Delta G++. An Arrhenius-type rate law was fitted to these rate constants, yielding an apparent energy of activation of Ea = 316.7 kJ/mol. The preexponential factor A = 3.13 x 10(16) 1/s is an order of magnitude larger than the experimental results because of a larger release of entropy at the transition state as compared to that of the unknown surface catalyzed mechanism.
A general ansatz for constructing quasi-diabatic states in electronically excited aggregated systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenlan; Köhn, Andreas; InnovationLab GmbH, Speyerer St. 4, D-69115 Heidelberg
2015-08-28
We present a general method for analyzing the character of singly excited states in terms of charge transfer (CT) and locally excited (LE) configurations. The analysis is formulated for configuration interaction singles (CIS) singly excited wave functions of aggregate systems. It also approximately works for the second-order approximate coupled cluster singles and doubles and the second-order algebraic-diagrammatic construction methods [CC2 and ADC(2)]. The analysis method not only generates a weight of each character for an excited state, but also allows to define the related quasi-diabatic states and corresponding coupling matrix elements. In the character analysis approach, we divide the targetmore » system into domains and use a modified Pipek-Mezey algorithm to localize the canonical MOs on each domain, respectively. The CIS wavefunction is then transformed into the localized basis, which allows us to partition the wavefunction into LE configurations within domains and CT configuration between pairs of different domains. Quasi-diabatic states are then obtained by mixing excited states subject to the condition of maximizing the weight of one single LE or CT configuration (localization in configuration space). Different aims of such a procedure are discussed, either the construction of pure LE and CT states for analysis purposes (by including a large number of excited states) or the construction of effective models for dynamics calculations (by including a restricted number of excited states). Applications are given to LE/CT mixing in π-stacked systems, charge-recombination matrix elements in a hetero-dimer, and excitonic couplings in multi-chromophoric systems.« less
Optimal steering for kinematic vehicles with applications to spatially distributed agents
NASA Astrophysics Data System (ADS)
Brown, Scott; Praeger, Cheryl E.; Giudici, Michael
While there is no universal method to address control problems involving networks of autonomous vehicles, there exist a few promising schemes that apply to different specific classes of problems, which have attracted the attention of many researchers from different fields. In particular, one way to extend techniques that address problems involving a single autonomous vehicle to those involving teams of autonomous vehicles is to use the concept of Voronoi diagram. The Voronoi diagram provides a spatial partition of the environment the team of vehicles operate in, where each element of this partition is associated with a unique vehicle from the team. The partition induces a graph abstraction of the operating space that is in an one-to-one correspondence with the network abstraction of the team of autonomous vehicles; a fact that can provide both conceptual and analytical advantages during mission planning and execution. In this dissertation, we propose the use of a new class of Voronoi-like partitioning schemes with respect to state-dependent proximity (pseudo-) metrics rather than the Euclidean distance or other generalized distance functions, which are typically used in the literature. An important nuance here is that, in contrast to the Euclidean distance, state-dependent metrics can succinctly capture system theoretic features of each vehicle from the team (e.g., vehicle kinematics), as well as the environment-vehicle interactions, which are induced, for example, by local winds/currents. We subsequently illustrate how the proposed concept of state-dependent Voronoi-like partition can induce local control schemes for problems involving networks of spatially distributed autonomous vehicles by examining a sequential pursuit problem of a maneuvering target by a group of pursuers distributed in the plane. The construction of generalized Voronoi diagrams with respect to state-dependent metrics poses some significant challenges. First, the generalized distance metric may be a function of the direction of motion of the vehicle (anisotropic pseudo-distance function) and/or may not be expressible in closed form. Second, such problems fall under the general class of partitioning problems for which the vehicles' dynamics must be taken into account. The topology of the vehicle's configuration space may be non-Euclidean, for example, it may be a manifold embedded in a Euclidean space. In other words, these problems may not be reducible to generalized Voronoi diagram problems for which efficient construction schemes, analytical and/or computational, exist in the literature. This research effort pursues three main objectives. First, we present the complete solution of different steering problems involving a single vehicle in the presence of motion constraints imposed by the maneuverability envelope of the vehicle and/or the presence of a drift field induced by winds/currents in its vicinity. The analysis of each steering problem involving a single vehicle provides us with a state-dependent generalized metric, such as the minimum time-to-go/come. We subsequently use these state-dependent generalized distance functions as the proximity metrics in the formulation of generalized Voronoi-like partitioning problems. The characterization of the solutions of these state-dependent Voronoi-like partitioning problems using either analytical or computational techniques constitutes the second main objective of this dissertation. The third objective of this research effort is to illustrate the use of the proposed concept of state-dependent Voronoi-like partition as a means for passing from control techniques that apply to problems involving a single vehicle to problems involving networks of spatially distributed autonomous vehicles. To this aim, we formulate the problem of sequential/relay pursuit of a maneuvering target by a group of spatially distributed pursuers and subsequently propose a distributed group pursuit strategy that directly derives from the solution of a state-dependent Voronoi-like partitioning problem. (Abstract shortened by UMI.)
Acoustically Evoked Different Vibration Pattern Across the Width of the Cochlea Partition
NASA Astrophysics Data System (ADS)
Zha, Dingjun; Chen, Fangyi; Friderberg, Anders; Choudhury, Niloy; Nuttall, Alfred
2011-11-01
Using optical low coherence interferometry, the acoustically evoked vibration patterns of the basilar membrane (BM) and reticular lamina (RL) in the first turn of living guinea pigs were measured as function of the radial location. It was demonstrated that the vibration of the BM varied widely in amplitude, but little in phase across the width of the partition, while the RL had a different vibration pattern compared with the BM.
Resource partitioning by evergreen and deciduous species in a tropical dry forest.
Álvarez-Yépiz, Juan C; Búrquez, Alberto; Martínez-Yrízar, Angelina; Teece, Mark; Yépez, Enrico A; Dovciak, Martin
2017-02-01
Niche differentiation can lead to coexistence of plant species by partitioning limiting resources. Light partitioning promotes niche differentiation in tropical humid forests, but it is unclear how niche partitioning occurs in tropical dry forests where both light and soil resources can be limiting. We studied the adult niche of four dominant evergreen (cycad, palm) and drought-deciduous (legume, oak) species co-occurring along environmental gradients. We analyzed light intensity and soil fertility effects on key functional traits related to plant carbon and water economy, how these traits determine species' functional strategies, and how these strategies relate to relative species abundance and spatial patterns. Light intensity was negatively associated with a key trait linked to plant water economy (leaf δ 13 C, a proxy for long-term water-use efficiency-WUE), while soil fertility was negatively associated with a key trait for plant carbon economy (LNC, leaf nitrogen content). Evergreens were highly sclerophyllous and displayed an efficient water economy but poor carbon economy, in agreement with a conservative resource-use strategy (i.e., high WUE but low LNC, photosynthetic rates and stature). Conversely, deciduous species, with an efficient carbon economy but poor water economy, exhibited an exploitative resource-use strategy (i.e., high LNC, photosynthetic rates and stature, but low WUE). Evergreen and deciduous species segregated spatially, particularly at fine-scales, as expected for species with different resource-use strategies. The efficient water economy of evergreens was related to their higher relative abundance, suggesting a functional advantage against drought-deciduous species in water-limited environments within seasonally dry tropical forests.
Feller, Chrystel; Favre, Patrick; Janka, Ales; Zeeman, Samuel C; Gabriel, Jean-Pierre; Reinhardt, Didier
2015-01-01
Plants are highly plastic in their potential to adapt to changing environmental conditions. For example, they can selectively promote the relative growth of the root and the shoot in response to limiting supply of mineral nutrients and light, respectively, a phenomenon that is referred to as balanced growth or functional equilibrium. To gain insight into the regulatory network that controls this phenomenon, we took a systems biology approach that combines experimental work with mathematical modeling. We developed a mathematical model representing the activities of the root (nutrient and water uptake) and the shoot (photosynthesis), and their interactions through the exchange of the substrates sugar and phosphate (Pi). The model has been calibrated and validated with two independent experimental data sets obtained with Petunia hybrida. It involves a realistic environment with a day-and-night cycle, which necessitated the introduction of a transitory carbohydrate storage pool and an endogenous clock for coordination of metabolism with the environment. Our main goal was to grasp the dynamic adaptation of shoot:root ratio as a result of changes in light and Pi supply. The results of our study are in agreement with balanced growth hypothesis, suggesting that plants maintain a functional equilibrium between shoot and root activity based on differential growth of these two compartments. Furthermore, our results indicate that resource partitioning can be understood as the emergent property of many local physiological processes in the shoot and the root without explicit partitioning functions. Based on its encouraging predictive power, the model will be further developed as a tool to analyze resource partitioning in shoot and root crops.
TRL - A FORMAL TEST REPRESENTATION LANGUAGE AND TOOL FOR FUNCTIONAL TEST DESIGNS
NASA Technical Reports Server (NTRS)
Hops, J. M.
1994-01-01
A Formal Test Representation Language and Tool for Functional Test Designs (TRL) is an automatic tool and a formal language that is used to implement the Category-Partition Method and produce the specification of test cases in the testing phase of software development. The Category-Partition Method is particularly useful in defining the inputs, outputs and purpose of the test design phase and combines the benefits of choosing normal cases with error exposing properties. Traceability can be maintained quite easily by creating a test design for each objective in the test plan. The effort to transform the test cases into procedures is simplified by using an automatic tool to create the cases based on the test design. The method allows the rapid elimination of undesired test cases from consideration, and easy review of test designs by peer groups. The first step in the category-partition method is functional decomposition, in which the specification and/or requirements are decomposed into functional units that can be tested independently. A secondary purpose of this step is to identify the parameters that affect the behavior of the system for each functional unit. The second step, category analysis, carries the work done in the previous step further by determining the properties or sub-properties of the parameters that would make the system behave in different ways. The designer should analyze the requirements to determine the features or categories of each parameter and how the system may behave if the category were to vary its value. If the parameter undergoing refinement is a data-item, then categories of this data-item may be any of its attributes, such as type, size, value, units, frequency of change, or source. After all the categories for the parameters of the functional unit have been determined, the next step is to partition each category's range space into mutually exclusive values that the category can assume. In choosing partition values, all possible kinds of values should be included, especially the ones that will maximize error detection. The purpose of the final step, partition constraint analysis, is to refine the test design specification so that only the technically effective and economically feasible test cases are implied. TRL is written in C-language to be machine independent. It has been successfully implemented on an IBM PC compatible running MS DOS, a Sun4 series computer running SunOS, an HP 9000/700 series workstation running HP-UX, a DECstation running DEC RISC ULTRIX, and a DEC VAX series computer running VMS. TRL requires 1Mb of disk space and a minimum of 84K of RAM. The documentation is available in electronic form in Word Perfect format. The standard distribution media for TRL is a 5.25 inch 360K MS-DOS format diskette. Alternate distribution media and formats are available upon request. TRL was developed in 1993 and is a copyrighted work with all copyright vested in NASA.
NASA Astrophysics Data System (ADS)
Ise, Takeshi; Litton, Creighton M.; Giardina, Christian P.; Ito, Akihiko
2010-12-01
Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long-lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta-analysis of forest ecosystems suggests that carbon partitioning to leaves, stems, and roots varies consistently with GPP and that the ratio of net primary production (NPP) to GPP is conservative across environmental gradients. To examine influences of carbon partitioning schemes employed by global ecosystem models, we used this meta-analysis-based model and a satellite-based (MODIS) terrestrial GPP data set to estimate global woody NPP and equilibrium biomass, and then compared it to two process-based ecosystem models (Biome-BGC and VISIT) using the same GPP data set. We hypothesized that different carbon partitioning schemes would result in large differences in global estimates of woody NPP and equilibrium biomass. Woody NPP estimated by Biome-BGC and VISIT was 25% and 29% higher than the meta-analysis-based model for boreal forests, with smaller differences in temperate and tropics. Global equilibrium woody biomass, calculated from model-specific NPP estimates and a single set of tissue turnover rates, was 48 and 226 Pg C higher for Biome-BGC and VISIT compared to the meta-analysis-based model, reflecting differences in carbon partitioning to structural versus metabolically active tissues. In summary, we found that different carbon partitioning schemes resulted in large variations in estimates of global woody carbon flux and storage, indicating that stand-level controls on carbon partitioning are not yet accurately represented in ecosystem models.
A network function-based definition of communities in complex networks.
Chauhan, Sanjeev; Girvan, Michelle; Ott, Edward
2012-09-01
We consider an alternate definition of community structure that is functionally motivated. We define network community structure based on the function the network system is intended to perform. In particular, as a specific example of this approach, we consider communities whose function is enhanced by the ability to synchronize and/or by resilience to node failures. Previous work has shown that, in many cases, the largest eigenvalue of the network's adjacency matrix controls the onset of both synchronization and percolation processes. Thus, for networks whose functional performance is dependent on these processes, we propose a method that divides a given network into communities based on maximizing a function of the largest eigenvalues of the adjacency matrices of the resulting communities. We also explore the differences between the partitions obtained by our method and the modularity approach (which is based solely on consideration of network structure). We do this for several different classes of networks. We find that, in many cases, modularity-based partitions do almost as well as our function-based method in finding functional communities, even though modularity does not specifically incorporate consideration of function.
Partitioning of functional and taxonomic diversity in surface-associated microbial communities.
Roth-Schulze, Alexandra J; Zozaya-Valdés, Enrique; Steinberg, Peter D; Thomas, Torsten
2016-12-01
Surfaces, including those submerged in the marine environment, are subjected to constant interactions and colonisation by surrounding microorganisms. The principles that determine the assembly of those epibiotic communities are however poorly understood. In this study, we employed a hierarchical design to assess the functionality and diversity of microbial communities on different types of host surfaces (e.g. macroalgae, seagrasses). We found that taxonomic diversity was unique to each type of host, but that the majority of functions (> 95%) could be found in any given surface community, suggesting a high degree of functional redundancy. However, some community functions were enriched on certain surfaces and were related to host-specific properties (e.g. the degradation of specific polysaccharides). Together these observations support a model, whereby communities on surfaces are assembled from guilds of microorganisms with a functionality that is partitioned into general properties for a surface-associated life-style, but also specific features that mediate host-specificity. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Nontrivial thermodynamics in 't Hooft's large-N limit
NASA Astrophysics Data System (ADS)
Cubero, Axel Cortés
2015-05-01
We study the finite volume/temperature correlation functions of the (1 +1 )-dimensional SU (N ) principal chiral sigma model in the planar limit. The exact S-matrix of the sigma model is known to simplify drastically at large N , and this leads to trivial thermodynamic Bethe ansatz (TBA) equations. The partition function, if derived using the TBA, can be shown to be that of free particles. We show that the correlation functions and expectation values of operators at finite volume/temperature are not those of the free theory, and that the TBA does not give enough information to calculate them. Our analysis is done using the Leclair-Mussardo formula for finite-volume correlators, and knowledge of the exact infinite-volume form factors. We present analytical results for the one-point function of the energy-momentum tensor, and the two-point function of the renormalized field operator. The results for the energy-momentum tensor can be used to define a nontrivial partition function.
ERIC Educational Resources Information Center
Shigenaga, Yasumasa
2014-01-01
There have been three competing analyses regarding the canonical word order of Japanese ditransitive sentences: a) "S-'ga' IO-'ni' DO-'o' V" is the canonical word order rather than "S-'ga' DO-'o' IO-'ni' V", b) both word orders are canonical, and c) the canonical word order depends on the type of the verb. The present study…
Data approximation using a blending type spline construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalmo, Rune; Bratlie, Jostein
2014-11-18
Generalized expo-rational B-splines (GERBS) is a blending type spline construction where local functions at each knot are blended together by C{sup k}-smooth basis functions. One way of approximating discrete regular data using GERBS is by partitioning the data set into subsets and fit a local function to each subset. Partitioning and fitting strategies can be devised such that important or interesting data points are interpolated in order to preserve certain features. We present a method for fitting discrete data using a tensor product GERBS construction. The method is based on detection of feature points using differential geometry. Derivatives, which aremore » necessary for feature point detection and used to construct local surface patches, are approximated from the discrete data using finite differences.« less
Applications of CCSDS recommendations to Integrated Ground Data Systems (IGDS)
NASA Technical Reports Server (NTRS)
Mizuta, Hiroshi; Martin, Daniel; Kato, Hatsuhiko; Ihara, Hirokazu
1993-01-01
This paper describes an application of the CCSDS Principle Network (CPH) service model to communications network elements of a postulated Integrated Ground Data System (IGDS). Functions are drawn principally from COSMICS (Cosmic Information and Control System), an integrated space control infrastructure, and the Earth Observing System Data and Information System (EOSDIS) Core System (ECS). From functional requirements, this paper derives a set of five communications network partitions which, taken together, support proposed space control infrastructures and data distribution systems. Our functional analysis indicates that the five network partitions derived in this paper should effectively interconnect the users, centers, processors, and other architectural elements of an IGDS. This paper illustrates a useful application of the CCSDS (Consultive Committee for Space Data Systems) Recommendations to ground data system development.
Structural and functional partitioning of bread wheat chromosome 3B.
Choulet, Frédéric; Alberti, Adriana; Theil, Sébastien; Glover, Natasha; Barbe, Valérie; Daron, Josquin; Pingault, Lise; Sourdille, Pierre; Couloux, Arnaud; Paux, Etienne; Leroy, Philippe; Mangenot, Sophie; Guilhot, Nicolas; Le Gouis, Jacques; Balfourier, Francois; Alaux, Michael; Jamilloux, Véronique; Poulain, Julie; Durand, Céline; Bellec, Arnaud; Gaspin, Christine; Safar, Jan; Dolezel, Jaroslav; Rogers, Jane; Vandepoele, Klaas; Aury, Jean-Marc; Mayer, Klaus; Berges, Hélène; Quesneville, Hadi; Wincker, Patrick; Feuillet, Catherine
2014-07-18
We produced a reference sequence of the 1-gigabase chromosome 3B of hexaploid bread wheat. By sequencing 8452 bacterial artificial chromosomes in pools, we assembled a sequence of 774 megabases carrying 5326 protein-coding genes, 1938 pseudogenes, and 85% of transposable elements. The distribution of structural and functional features along the chromosome revealed partitioning correlated with meiotic recombination. Comparative analyses indicated high wheat-specific inter- and intrachromosomal gene duplication activities that are potential sources of variability for adaption. In addition to providing a better understanding of the organization, function, and evolution of a large and polyploid genome, the availability of a high-quality sequence anchored to genetic maps will accelerate the identification of genes underlying important agronomic traits. Copyright © 2014, American Association for the Advancement of Science.
Astudillo, Pablo; Carrasco, Héctor; Larraín, Juan
2014-01-01
Regulation of Wnt signaling is crucial for embryonic development and adult homeostasis. Here we study the role of Syndecan-4 (SDC4), a cell-surface heparan sulphate proteoglycan, and Fibronectin (FN), in Wnt/β-catenin signaling. Gain- and loss-of-function experiments in mammalian cell lines and Xenopus embryos demonstrate that SDC4 and FN inhibit Wnt/β-catenin signaling. Epistatic and biochemical experiments show that this inhibition occurs at the cell membrane level through regulation of LRP6. R-spondin 3, a ligand that promotes canonical and non-canonical Wnt signaling, is more prone to potentiate Wnt/β-catenin signaling when SDC4 levels are reduced, suggesting a model whereby SDC4 tunes the ability of R-spondin to modulate the different Wnt signaling pathways. Since SDC4 has been previously related to non-canonical Wnt signaling, our results also suggest that this proteoglycan can be a key component in the regulation of Wnt signaling. Copyright © 2013 Elsevier Ltd. All rights reserved.
Raspberry Pi camera with intervalometer used as crescograph
NASA Astrophysics Data System (ADS)
Albert, Stefan; Surducan, Vasile
2017-12-01
The intervalometer is an attachment or facility on a photo-camera that operates the shutter regularly at set intervals over a period. Professional cameras with built in intervalometers are expensive and quite difficult to find. The Canon CHDK open source operating system allows intervalometer implementation on Canon cameras only. However finding a Canon camera with near infra-red (NIR) photographic lens at affordable price is impossible. On experiments requiring several cameras (used to measure growth in plants - the crescographs, but also for coarse evaluation of the water content of leaves), the costs of the equipment are often over budget. Using two Raspberry Pi modules each equipped with a low cost NIR camera and a WIFI adapter (for downloading pictures stored on the SD card) and some freely available software, we have implemented two low budget intervalometer cameras. The shutting interval, the number of pictures to be taken, image resolution and some other parameters can be fully programmed. Cameras have been in use continuously for three months (July-October 2017) in a relevant environment (outside), proving the concept functionality.
Fu, Jing; Qu, Zhaoxia; Yan, Pengrong; Ishikawa, Chie; Aqeilan, Rami I.; Rabson, Arnold B.
2011-01-01
Both the canonical and noncanonical nuclear factor κB (NF-κB) pathways have been linked to tumorigenesis. However, it remains unknown whether and how the 2 signaling pathways cooperate during tumorigenesis. We report that inhibition of the noncanonical NF-κB pathway significantly delays tumorigenesis mediated by the viral oncoprotein Tax. One function of noncanonical NF-κB activation was to repress expression of the WWOX tumor suppressor gene. Notably, WWOX specifically inhibited Tax-induced activation of the canonical, but not the noncanonical NF-κB pathway. Mechanistic studies indicated that WWOX blocked Tax-induced inhibitors of κB kinaseα (IKKα) recruitment to RelA and subsequent RelA phosphorylation at S536. In contrast, WWOX Y33R, a mutant unable to block the IKKα recruitment and RelA phosphorylation, lost the ability to inhibit Tax-mediated tumorigenesis. These data provide one important mechanism by which Tax coordinates the 2 NF-κB pathways for tumorigenesis. These data also suggest a novel role of WWOX in NF-κB regulation and viral tumorigenesis. PMID:21115974
Data analytics using canonical correlation analysis and Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Rickman, Jeffrey M.; Wang, Yan; Rollett, Anthony D.; Harmer, Martin P.; Compson, Charles
2017-07-01
A canonical correlation analysis is a generic parametric model used in the statistical analysis of data involving interrelated or interdependent input and output variables. It is especially useful in data analytics as a dimensional reduction strategy that simplifies a complex, multidimensional parameter space by identifying a relatively few combinations of variables that are maximally correlated. One shortcoming of the canonical correlation analysis, however, is that it provides only a linear combination of variables that maximizes these correlations. With this in mind, we describe here a versatile, Monte-Carlo based methodology that is useful in identifying non-linear functions of the variables that lead to strong input/output correlations. We demonstrate that our approach leads to a substantial enhancement of correlations, as illustrated by two experimental applications of substantial interest to the materials science community, namely: (1) determining the interdependence of processing and microstructural variables associated with doped polycrystalline aluminas, and (2) relating microstructural decriptors to the electrical and optoelectronic properties of thin-film solar cells based on CuInSe2 absorbers. Finally, we describe how this approach facilitates experimental planning and process control.
A New Ensemble Canonical Correlation Prediction Scheme for Seasonal Precipitation
NASA Technical Reports Server (NTRS)
Kim, Kyu-Myong; Lau, William K. M.; Li, Guilong; Shen, Samuel S. P.; Lau, William K. M. (Technical Monitor)
2001-01-01
Department of Mathematical Sciences, University of Alberta, Edmonton, Canada This paper describes the fundamental theory of the ensemble canonical correlation (ECC) algorithm for the seasonal climate forecasting. The algorithm is a statistical regression sch eme based on maximal correlation between the predictor and predictand. The prediction error is estimated by a spectral method using the basis of empirical orthogonal functions. The ECC algorithm treats the predictors and predictands as continuous fields and is an improvement from the traditional canonical correlation prediction. The improvements include the use of area-factor, estimation of prediction error, and the optimal ensemble of multiple forecasts. The ECC is applied to the seasonal forecasting over various parts of the world. The example presented here is for the North America precipitation. The predictor is the sea surface temperature (SST) from different ocean basins. The Climate Prediction Center's reconstructed SST (1951-1999) is used as the predictor's historical data. The optimally interpolated global monthly precipitation is used as the predictand?s historical data. Our forecast experiments show that the ECC algorithm renders very high skill and the optimal ensemble is very important to the high value.
Non-canonical autophagy: an exception or an underestimated form of autophagy?
Scarlatti, Francesca; Maffei, Roberta; Beau, Isabelle; Ghidoni, Riccardo; Codogno, Patrice
2008-11-01
Macroautophagy (hereafter called autophagy) is a dynamic and evolutionarily conserved process used to sequester and degrade cytoplasm and entire organelles in a sequestering vesicle with a double membrane, known as the autophagosome, which ultimately fuses with a lysosome to degrade its autophagic cargo. Recently, we have unraveled two distinct forms of autophagy in cancer cells, which we term canonical and non-canonical autophagy. In contrast to classical or canonical autophagy, non-canonical autophagy is a process that does not require the entire set of autophagy-related (Atg) proteins in particular Beclin 1, to form the autophagosome. Non-canonical autophagy is therefore not blocked by the knockdown of Beclin 1 or of its binding partner hVps34. Moreover overexpression of Bcl-2, which is known to block canonical starvation-induced autophagy by binding to Beclin 1, is unable to reverse the non-canonical autophagy triggered by the polyphenol resveratrol in the breast cancer MCF-7 cell line. In MCF-7 cells, at least, non-canonical autophagy is involved in the caspase-independent cell death induced by resveratrol.
Entanglement, replicas, and Thetas
NASA Astrophysics Data System (ADS)
Mukhi, Sunil; Murthy, Sameer; Wu, Jie-Qiang
2018-01-01
We compute the single-interval Rényi entropy (replica partition function) for free fermions in 1+1d at finite temperature and finite spatial size by two methods: (i) using the higher-genus partition function on the replica Riemann surface, and (ii) using twist operators on the torus. We compare the two answers for a restricted set of spin structures, leading to a non-trivial proposed equivalence between higher-genus Siegel Θ-functions and Jacobi θ-functions. We exhibit this proposal and provide substantial evidence for it. The resulting expressions can be elegantly written in terms of Jacobi forms. Thereafter we argue that the correct Rényi entropy for modular-invariant free-fermion theories, such as the Ising model and the Dirac CFT, is given by the higher-genus computation summed over all spin structures. The result satisfies the physical checks of modular covariance, the thermal entropy relation, and Bose-Fermi equivalence.