Four things we don't know about scalar transfer from plant canopies
NASA Astrophysics Data System (ADS)
Finnigan, J. J.
2009-04-01
In terrestrial plant canopies, turbulent exchange of water through evapotranspiration is intimately bound up with exchange of other scalars, heat and carbon dioxide in particular. Turbulent transport is rarely the process limiting exchange of these scalars between the biosphere and the atmosphere. However, in measurement programs like FLUXNET or when we parameterise surface exchange at the canopy scale in climate or weather models we must understand the mechanism of turbulent exchange in detail. In this talk we survey four current obstacles to extending our understanding of canopy turbulence from the idealised case of homogeneous flow in neutral stratification to complex flows in stable and unstable conditions. 1. Canopy eddy structure and the hydrodynamic instability Recent analysis of canopy LES and wind tunnel simulations has revealed the ‘two hairpin' structure of a characteristic canopy eddy. This structure explains a large body of results from a wide range of canopies and redefines the Roughness Sub Layer (RSL) as an asymptotic layer similar to the logarithmic and outer layers of the Planetary Boundary Layer. However, the nature of the non-linear ‘mixing-layer' instability process that gives canopy/RSL eddies their coherence and enhanced transport efficiency (as compared to eddies in the logarithmic layer above) is poorly understood so we do not know how resilient this instability and the eddies that depend upon it are to large scale flow perturbations or to changes in stability. 2. Turbulent Schmidt and Prandtl Numbers The scalar RSL can be defined as the layer across which the turbulent Schmidt (Sc) and Prandtl (Pr) numbers in neutral stratification change from their canopy top values of ~0.5, typical of mixing layers, to their logarithmic layer values of ~1.0, typical of boundary layers. The value of Sc or Pr is a critical parameter when adjusting Monin-Obukhov similarity theory (MOST) for the proximity of the canopy. The need for such adjustments has been recognized for several decades but they are still often ignored with serious consequences for prognostic models. However, at the present time we have only weak experimental evidence for the values of Sc and Pr in neutral conditions. More importantly, our poor understanding of the processes that set Sc and Pr and control their variation with diabatic stability is a barrier to generalizing MOST for use above tall canopies. 3. Diabatic stability and canopy flows As radiative cooling proceeds after sundown, turbulence within dense canopies can collapse suddenly leading to decoupling of the canopy layer from the boundary layer above. Theory suggests that this process should occur because of the different transport mechanisms of scalars and momentum at leaf level. So far no definitive experimental results are available to confirm or refute this theory or to set bounds on its applicability. This has important implications for transport and canopy microclimate. In particular we need to know how the controlling time scales of this process depend upon canopy density and radiative transfer. 4. Gravity currents Deep coherent gravity currents are often observed on long hill slopes covered with tall canopies. The process of turbulent collapse after sundown mentioned in (3) above produces a deep stable layer which is decoupled from the boundary layer above and must come into a new dynamic balance involving the hydrostatic and hydrodynamic pressure gradients and canopy drag. Scale analysis suggests that the strength of such currents depends upon hill length rather than hill slope while wind tunnel experiments reveal that they can penetrate onto flat ground far upwind of the hills on which they originate. Many field sites where flow is well behaved during the day can, therefore, be affected by such gravity flows at night. The parameters controlling the unsteady dynamics of this situation are not known but are of critical importance to measurements of water and other trace gas exchange over the diurnal cycle. The four topics chosen move from the fundamentals of canopy eddy structure to the impact at large scale of microscale processes. Each requires us to consider simultaneously processes from the leaf to the whole canopy scale and each will require effort from the whole community if serious progress is to be made.
[Simulation of CO2 exchange between forest canopy and atmosphere].
Diao, Yiwei; Wang, Anzhi; Jin, Changjie; Guan, Dexin; Pei, Tiefan
2006-12-01
Estimating the scalar source/sink distribution of CO2 and its vertical fluxes within and above forest canopy continues to be a critical research problem in biosphere-atmosphere exchange processes and plant ecology. With broad-leaved Korean pine forest in Changbai Mountains as test object, and based on Raupach's localized near field theory, the source/sink and vertical flux distribution of CO2 within and above forest canopy were modeled through an inverse Lagrangian dispersion analysis. This model correctly predicted a strong positive CO2 source strength in the deeper layers of the canopy due to soil-plant respiration, and a strong CO2 sink in the upper layers of the canopy due to the assimilation by sunlit foliage. The foliage in the top layer of canopy changed from a CO2 source in the morning to a CO2 sink in the afternoon, while the soil constituted a strong CO2 source all the day. The simulation results accorded well with the eddy covariance CO2 flux measurements within and above the canopy, and the average precision was 89%. The CO2 exchange predicted by the analysis was averagely 15% higher than that of the eddy correlation, but exhibited identical temporal trend. Atmospheric stability remarkably affected the CO2 exchange between forest canopy and atmosphere.
Conghe Song; Matthew B. Dickinson; Lihong Su; Su Zhang; Daniel Yaussey
2010-01-01
The forest canopy is the medium for energy, mass, and momentum exchanges between the forest ecosystem and the atmosphere. Tree crown size is a critical aspect of canopy structure that significantly influences these biophysical processes in the canopy. Tree crown size is also strongly related to other canopy structural parameters, such as tree height, diameter at breast...
Resco de Dios, Víctor; Gessler, Arthur; Ferrio, Juan Pedro; Alday, Josu G; Bahn, Michael; Del Castillo, Jorge; Devidal, Sébastien; García-Muñoz, Sonia; Kayler, Zachary; Landais, Damien; Martín-Gómez, Paula; Milcu, Alexandru; Piel, Clément; Pirhofer-Walzl, Karin; Ravel, Olivier; Salekin, Serajis; Tissue, David T; Tjoelker, Mark G; Voltas, Jordi; Roy, Jacques
2016-10-20
Molecular clocks drive oscillations in leaf photosynthesis, stomatal conductance, and other cell and leaf-level processes over ~24 h under controlled laboratory conditions. The influence of such circadian regulation over whole-canopy fluxes remains uncertain; diurnal CO 2 and H 2 O vapor flux dynamics in the field are currently interpreted as resulting almost exclusively from direct physiological responses to variations in light, temperature and other environmental factors. We tested whether circadian regulation would affect plant and canopy gas exchange at the Montpellier European Ecotron. Canopy and leaf-level fluxes were constantly monitored under field-like environmental conditions, and under constant environmental conditions (no variation in temperature, radiation, or other environmental cues). We show direct experimental evidence at canopy scales of the circadian regulation of daytime gas exchange: 20-79 % of the daily variation range in CO 2 and H 2 O fluxes occurred under circadian entrainment in canopies of an annual herb (bean) and of a perennial shrub (cotton). We also observed that considering circadian regulation improved performance by 8-17 % in commonly used stomatal conductance models. Our results show that circadian controls affect diurnal CO 2 and H 2 O flux patterns in entire canopies in field-like conditions, and its consideration significantly improves model performance. Circadian controls act as a 'memory' of the past conditions experienced by the plant, which synchronizes metabolism across entire plant canopies.
NASA Astrophysics Data System (ADS)
Saylor, R. D.; Stein, A. F.
2012-12-01
The dynamic, bi-directional exchange of trace chemical species between forests and the atmosphere has important impacts on both the forest ecosystem and atmospheric composition, with potentially profound consequences on air quality, climate and global ecosystem functioning. Forests are a dominant source of biogenic volatile organic compound (BVOC) emissions into the earth's atmosphere and thus play an important role in the formation of secondary organic aerosol (SOA). To arrive at a better scientific understanding of the complex chemical and physical processes of forest-atmosphere exchange and provide a platform for robust analysis of field measurements of these processes, a process-level, multiphase model of the atmospheric chemistry and physics of forest canopies is being developed. This model, the Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS) is being used to investigate various aspects of forest-atmosphere exchange and chemistry including gas, aqueous and aerosol phases. ACCESS currently includes processes accounting for the emission of BVOCs from the canopy, turbulent vertical transport within and above the canopy and throughout the height of the planetary boundary layer, detailed chemical reactions, mixing with the background atmosphere and bi-directional exchange between the atmosphere and the canopy and the forest floor. The Walker Branch Watershed (WBW) is a dedicated ecosystem research area on the U. S. Department of Energy's Oak Ridge Reservation in eastern Tennessee. The 97.5 ha watershed has been the site of long-term ecosystem and atmospheric research activities since the mid-1960's. A flux tower located within the watershed (35°57'30"N, 84°17'15"W; 365 m above mean sea level) and 10 km southwest of Oak Ridge, Tennessee, has served as a focal point for previous atmospheric turbulence and chemical flux measurements and the canopy morphology of the forest surrounding the flux tower has been extensively documented. The forest is broadleaf deciduous consisting of chestnut oak (Quercus prinus), tulip poplar (Liriodendron tulipifera), white oak (Quercus alba), red oak (Quercus rubra), red maple (Acer rubrum), and various hickory species (Carya sp.) in order of decreasing biomass density. At the time of isoprene flux measurements made at the tower in 1999, the stand was approximately 50 years old, the overstory canopy height was 24 m, and the whole canopy leaf area index was 4.9 m2 leaf/m2 ground area. In this presentation, the model formulation is described and results from the application of ACCESS to the WBW forest are presented and compared to measurements made at the site to investigate the influence of background anthropogenic sources on above canopy fluxes of SOA precursors in an isoprene emission dominated landscape in the unique atmospheric chemical environment of the southeastern United States. In particular, levels of background NOx concentrations are found to significantly influence both the magnitude and chemical composition of fluxes of SOA precursors from the canopy.
NASA Astrophysics Data System (ADS)
Giambelluca, T. W.; Delay, J. K.; Takahashi, M.; Mudd, R. G.; Huang, M.; Asner, G. P.; Martin, R. E.; Nullet, M. A.
2009-12-01
Canopy wetness has profound effects on ecosystem processes. Canopy-atmosphere gas and energy exchanges are strongly altered when leaves are wetted by rainfall, fog, or dew. In some tropical forests, wet-canopy evaporation contributes a large portion of total evapotranspiration. On the other hand, transpiration is minimized when leaves are wet. The overall hydrological effects of canopy wetting depend on the canopy structure and on the frequency and duration of wetting events. At two field sites in Hawai‘i, one within native Metrosideros polymorpha forest and the other at a site heavily invaded by Psidium cattleianum, we are conducting measurements of canopy water balance, stand-level evapotranspiration (ET), transpiration (using sapflow techniques), energy balance, and related processes. Preliminary canopy water balance results show that wet canopy evaporation is 588 mm/yr (33% of potential ET) at the native site and 376 mm/yr (22% of potential ET) at the invaded site. Based on sapflow measurements in canopy branches, mean transpiration for partially and fully wetted canopy periods (categorized using leaf wetness sensor observations) was 47% and 17% of dry canopy transpiration at the native forest site. For the invaded site, transpiration for partially and fully wetted canopy periods was 67% and 33% of dry canopy transpiration. It appears that the invaded site is able to maintain higher transpiration rates, along with lower wet-canopy evaporation rates, during wet-canopy periods. Previously reported stand level measurements have shown that total ET represents a larger portion of available energy at the invaded site than the native site. These findings suggest that alien plant invasion is shifting evaporative water loss from wet-canopy evaporation to transpiration, while increasing overall water loss. Higher transpiration is likely to be associated with higher rates of carbon exchange, which may contribute to the success of this invasive tree.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Resco de Dios, Víctor; Gessler, Arthur; Ferrio, Juan Pedro
Background Molecular clocks drive oscillations in leaf photosynthesis, stomatal conductance, and other cell and leaf-level processes over ~24 h under controlled laboratory conditions. The influence of such circadian regulation over whole-canopy fluxes remains uncertain; diurnal CO 2 and H 2O vapor flux dynamics in the field are currently interpreted as resulting almost exclusively from direct physiological responses to variations in light, temperature and other environmental factors. We tested whether circadian regulation would affect plant and canopy gas exchange at the Montpellier European Ecotron. Canopy and leaf-level fluxes were constantly monitored under field-like environmental conditions, and under constant environmental conditions (nomore » variation in temperature, radiation, or other environmental cues). Results We show direct experimental evidence at canopy scales of the circadian regulation of daytime gas exchange: 20–79 % of the daily variation range in CO 2 and H 2O fluxes occurred under circadian entrainment in canopies of an annual herb (bean) and of a perennial shrub (cotton). We also observed that considering circadian regulation improved performance by 8–17 % in commonly used stomatal conductance models. Conclusions Our results show that circadian controls affect diurnal CO 2 and H 2O flux patterns in entire canopies in field-like conditions, and its consideration significantly improves model performance. Lastly, circadian controls act as a ‘memory’ of the past conditions experienced by the plant, which synchronizes metabolism across entire plant canopies.« less
Resco de Dios, Víctor; Gessler, Arthur; Ferrio, Juan Pedro; ...
2016-10-20
Background Molecular clocks drive oscillations in leaf photosynthesis, stomatal conductance, and other cell and leaf-level processes over ~24 h under controlled laboratory conditions. The influence of such circadian regulation over whole-canopy fluxes remains uncertain; diurnal CO 2 and H 2O vapor flux dynamics in the field are currently interpreted as resulting almost exclusively from direct physiological responses to variations in light, temperature and other environmental factors. We tested whether circadian regulation would affect plant and canopy gas exchange at the Montpellier European Ecotron. Canopy and leaf-level fluxes were constantly monitored under field-like environmental conditions, and under constant environmental conditions (nomore » variation in temperature, radiation, or other environmental cues). Results We show direct experimental evidence at canopy scales of the circadian regulation of daytime gas exchange: 20–79 % of the daily variation range in CO 2 and H 2O fluxes occurred under circadian entrainment in canopies of an annual herb (bean) and of a perennial shrub (cotton). We also observed that considering circadian regulation improved performance by 8–17 % in commonly used stomatal conductance models. Conclusions Our results show that circadian controls affect diurnal CO 2 and H 2O flux patterns in entire canopies in field-like conditions, and its consideration significantly improves model performance. Lastly, circadian controls act as a ‘memory’ of the past conditions experienced by the plant, which synchronizes metabolism across entire plant canopies.« less
B. J. Joyce; K. C. Steiner; J. M. Skelly
1996-01-01
Models of canopy gas exchange are needed to connect leaf-level measurement to higher scales. Because of the correspondence between leaf gas exchange and water use, it may be possible to predict variation in leaf gas exchange at the canopy level by monitoring rates of branch water use.
Estimating the source/sink distribution and vertical fluxes of air pollutants within and above forested canopies is critical for understanding biological, physical, and chemical processes influencing the soil-vegetation-atmosphere exchange. The vertical source-sink profiles of re...
Scaling leaf measurements to estimate cotton canopy gas exchange
USDA-ARS?s Scientific Manuscript database
Diurnal leaf and canopy gas exchange of well watered field grown cotton were measured. Leaf measurements were made with a portable photosynthesis system and canopy measurements with open Canopy Evapo-Transpiration and Assimilation (CETA) systems. Leaf level measurements were arithmetically scaled to...
USDA-ARS?s Scientific Manuscript database
Application of the Two-Source Energy Balance (TSEB) Model using land surface temperature (LST) requires aerodynamic resistance parameterizations for the flux exchange above the canopy layer, within the canopy air space and at the soil/substrate surface. There are a number of aerodynamic resistance f...
The role of stable isotopes in understanding rainfall ...
The isotopic composition of water transmitted by the canopy as throughfall or stemflow reflects important hydrologic processes occurring in the canopy. A synthesis of the literature shows that complex spatiotemporal variations of isotopic composition are created by canopy interception. As a whole, the studies suggest a set of controlling factors including fractionation, exchange among liquid and vapor phase water, and spatiotemporal redistribution along varying canopy flowpaths. However, our limited understanding of physical processes and water routing in the canopy limits the ability to discern all details for predicting interception isotope effects. We suggest that the isotopic composition of throughfall and stemflow may be the key to improve our understanding of water storage and transport in the canopy, similar to how isotopic analysis contributed to progress in our understanding of watershed runoff processes. While interception isotope effects have largely been studied under the premise that they are a source of error, previous works also indicate a wide range of possible interactions that intercepted water may have with the canopy and airspace. We identify new research questions that may be answered by stable isotopes as a path forward in examining and generalizing small-scale interception processes that could facilitate integration of interception into watershed ecohydrological concepts. Evaporation from forest canopies (interception loss) is a prominent
USDA-ARS?s Scientific Manuscript database
To determine the effects of timing and extent of regulated deficit irrigation (RDI) on grapevine (Vitis vinifera) canopies, whole-canopy transpiration (TrV) and canopy conductance to water vapor (gc) were calculated from whole-vine gas exchange near key stages of fruit development. The vines were ma...
Processes of Ammonia Air-Surface Exchange in a Fertilized Zea Mays Canopy
Recent incorporation of coupled soil biogeochemical and bi-directional NH3 air-surface exchange algorithms into regional air quality models holds promise for further reducing uncertainty in estimates of NH3 emissions from fertilized soils. While this advancement represents a sig...
Nizzetto, Luca; Perlinger, Judith A
2012-03-06
An ecophysiological model of a structured broadleaved forest canopy was coupled to a chemical fate model of the air-canopy exchange of gaseous semivolatile chemicals to dynamically assess the short-term (hours) and medium term (days to season) air-canopy exchange and the influence of biological, climatic, and land cover drivers on the dynamics of the air-canopy exchange and on the canopy storage for airborne semivolatile pollutants. The chemical fate model accounts for effects of short-term variations in air temperature, wind speed, stomatal opening, and leaf energy balance, all as a function of layer in the canopy. Simulations showed the potential occurrence of intense short/medium term re-emission of pollutants having log K(OA) up to 10.7 from the canopy as a result of environmental forcing. In addition, relatively small interannual variations in seasonally averaged air temperature, canopy biomass, and precipitation can produce relevant changes in the canopy storage capacity for the chemicals. It was estimated that possible climate change related variability in environmental parameters (e.g., an increase of 2 °C in seasonally averaged air temperature in combination with a 10% reduction in canopy biomass due to, e.g., disturbance or acclimatization) may cause a reduction in canopy storage capacity of up to 15-25%, favoring re-emission and potential for long-range atmospheric transport. On the other hand, an increase of 300% in yearly precipitation can increase canopy sequestration by 2-7% for the less hydrophobic compounds.
Modelling bidirectional fluxes of methanol and acetaldehyde with the FORCAsT canopy exchange model
Ashworth, Kirsti; Chung, Serena H.; McKinney, Karena A.; ...
2016-12-15
Here, the FORCAsT canopy exchange model was used to investigate the underlying mechanisms governing foliage emissions of methanol and acetaldehyde, two short chain oxygenated volatile organic compounds ubiquitous in the troposphere and known to have strong biogenic sources, at a northern mid-latitude forest site. The explicit representation of the vegetation canopy within the model allowed us to test the hypothesis that stomatal conductance regulates emissions of these compounds to an extent that its influence is observable at the ecosystem scale, a process not currently considered in regional- or global-scale atmospheric chemistry models. Here, we found that FORCAsT could only reproducemore » the magnitude and diurnal profiles of methanol and acetaldehyde fluxes measured at the top of the forest canopy at Harvard Forest if light-dependent emissions were introduced to the model. With the inclusion of such emissions, FORCAsT was able to successfully simulate the observed bidirectional exchange of methanol and acetaldehyde. Although we found evidence that stomatal conductance influences methanol fluxes and concentrations at scales beyond the leaf level, particularly at dawn and dusk, we were able to adequately capture ecosystem exchange without the addition of stomatal control to the standard parameterisations of foliage emissions, suggesting that ecosystem fluxes can be well enough represented by the emissions models currently used.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumagai, Tomo'omi; Mudd, Ryan; Miyazawa, Yoshiyuki
We developed a soil-vegetation-atmosphere transfer (SVAT) model applicable to simulating CO2 and H2O fluxes from the canopies of rubber plantations, which are characterized by distinct canopy clumping produced by regular spacing of plantation trees. Rubber (Hevea brasiliensis Müll. Arg.) plantations, which are rapidly expanding into both climatically optimal and sub-optimal environments throughout mainland Southeast Asia, potentially change the partitioning of water, energy, and carbon at multiple scales, compared with traditional land covers it is replacing. Describing the biosphere-atmosphere exchange in rubber plantations via SVAT modeling is therefore essential to understanding the impacts on environmental processes. The regular spacing of plantationmore » trees creates a peculiar canopy structure that is not well represented in most SVAT models, which generally assumes a non-uniform spacing of vegetation. Herein we develop a SVAT model applicable to rubber plantation and an evaluation method for its canopy structure, and examine how the peculiar canopy structure of rubber plantations affects canopy CO2 and H2O exchanges. Model results are compared with measurements collected at a field site in central Cambodia. Our findings suggest that it is crucial to account for intensive canopy clumping in order to reproduce observed rubber plantation fluxes. These results suggest a potentially optimal spacing of rubber trees to produce high productivity and water use efficiency.« less
Bi-directional exchange of ammonia in a pine forest ecosystem - a model sensitivity analysis
NASA Astrophysics Data System (ADS)
Moravek, Alexander; Hrdina, Amy; Murphy, Jennifer
2016-04-01
Ammonia (NH3) is a key component in the global nitrogen cycle and of great importance for atmospheric chemistry, neutralizing atmospheric acids and leading to the formation of aerosol particles. For understanding the role of NH3 in both natural and anthropogenically influenced environments, the knowledge of processes regulating its exchange between ecosystems and the atmosphere is essential. A two-layer canopy compensation point model is used to evaluate the NH3 exchange in a pine forest in the Colorado Rocky Mountains. The net flux comprises the NH3 exchange of leaf stomata, its deposition to leaf cuticles and exchange with the forest ground. As key parameters the model uses in-canopy NH3 mixing ratios as well as leaf and soil emission potentials measured at the site in summer 2015. A sensitivity analysis is performed to evaluate the major exchange pathways as well as the model's constraints. In addition, the NH3 exchange is examined for an extended range of environmental conditions, such as droughts or varying concentrations of atmospheric pollutants, in order to investigate their influence on the overall net exchange.
Continuous In-situ Measurements of Carbonyl Sulfide to Constrain Ecosystem Carbon and Water Exchange
NASA Astrophysics Data System (ADS)
Rastogi, B.; Kim, Y.; Berkelhammer, M. B.; Noone, D. C.; Lai, C. T.; Hollinger, D. Y.; Bible, K.; Leen, J. B.; Gupta, M.; Still, C. J.
2014-12-01
Understanding the processes that control the terrestrial exchange of carbon and water are critical for examining the role of forested ecosystems in changing climates. A small but increasing number of studies have identified Carbonyl Sulfide (OCS) as a potential tracer for photosynthesis. OCS is hydrolyzed by an irreversible reaction in leaf mesophyll cells that is catalyzed by the enzyme, carbonic anhydrase. Leaf-level field and greenhouse studies indicate that OCS uptake is controlled by stomatal activity and that the ratio of OCS and CO2 uptake is reasonably constant. Existing studies on ecosystem OCS exchange have been based on laboratory measurements or short field campaigns and therefore little information on OCS exchange in a natural ecosystem over longer timescales is available. The objective of this study is to further assess the stability of OCS as a tracer for canopy photosynthesis in an active forested ecosystem and also to assess its utility for constraining transpiration, since both fluxes are mediated by canopy stomatal conductance. An off-axis integrated cavity output spectroscopy analyzer (Los Gatos Research Inc.) was deployed at the Wind River Experimental Forest in Washington (45.8205°N, 121.9519°W). Canopy air was sampled from three heights to measure vertical gradients of OCS within the canopy, and OCS exchange between the forest and the atmosphere. Here we take advantage of simultaneous measurements of the stable isotopologues of H2O and CO2 at corresponding heights as well as NEE (Net Ecosystem Exchange) from eddy covariance measurements to compare GPP (Gross Primary Production) and transpiration estimates from a variety of independent techniques. Our findings seek to allow assessment of the environmental and ecophysicological controls on evapotranspiration rates, which are projected to change in coming decades, and are otherwise poorly constrained.
A one-dimensional canopy model was used to quantify the impact of photochemistry in modifying biosphere-atmosphere exchange of trace gases. Canopy escape efficiencies, defined as the fraction of emission that escapes into the well-mixed boundary layer, were calculated for reactiv...
Seasonal carbon fluxes for an old-growth temperate forest inferred from carbonyl sulphide
NASA Astrophysics Data System (ADS)
Rastogi, Bharat; Jiang, Yueyang; Berkelhammer, Maxwell; Wharton, Sonia; Noone, David; Still, Christopher
2017-04-01
Characterizing and quantifying the processes that control terrestrial ecosystem exchanges of carbon and water are critical for understanding how forested ecosystems respond to a changing climate. A small but increasing number of studies has identified carbonyl sulfide (OCS) as a potential tracer of canopy photosynthesis and stomatal function. Here we present seasonal fluxes of OCS from a 60m tall old-growth temperate forest. An off-axis integrated cavity output spectroscopy analyzer (Los Gatos Research Inc.) was deployed at the Wind River Experimental Forest in Washington (45.8205°N, 121.9519°W) in 2014 and 2015. GPP (Gross Primary Production) is inferred from OCS fluxes and compared with estimates derived from measurements of NEE (Net Ecosystem Exchange) from eddy flux data as well as GPP predictions using a process based model. Our findings seek to resolve scientific questions regarding ecosystem carbon exchange from tall old growth forests, which have a complicated vertical leaf area structure, high above ground biomass and amount and aerial cover of epiphytic vegetation. Estimates of canopy conductance calculated using tower flux data are also combined with measurements of stable isotopologues of CO2 to infer emergent ecosystem properties such as canopy ci/ca and water use efficiency.
Simulation of within-canopy radiation exchange
USDA-ARS?s Scientific Manuscript database
Radiation exchange at the surface plays a critical role in the surface energy balance, plant microclimate, and plant growth. The ability to simulate the surface energy balance and the microclimate within the plant canopy is contingent upon simulation of the surface radiation exchange. A validation a...
Reeves, Ian; Emery, R J Neil
2007-11-01
Seasonal patterns of cytokinins (CKs) and microclimate were examined in the upper, middle and lower canopy layers of mature Acer saccharum Marsh. (sugar maple) trees to elucidate the potential role of CKs in the mediation of gas exchange. The upper canopy showed a distinctly dissimilar microclimate from the middle and lower canopy layers with higher photosynthetically active radiation and wind speed, but showed no corresponding differences in transpiration (E) or stomatal conductance (g(s)). Although E and g(s) tended to be higher in the upper canopy than in the middle and lower canopies, the differences were not significant, indicating regulation beyond the passive response to changes in microclimate. The upper canopy accumulated significantly higher concentrations of CKs, predominantly as ribosides, and all canopy layers showed distinct seasonal patterns in CK profiles. Multiple regression models showed significant relationships between both g(s) and E and foliar CK concentration, although these relationships varied among canopy layers. The relationships were strongest in the middle and lower canopy layers where there was less fluctuation in leaf water status and less variability in abiotic variables. The relationships between gas exchange parameters and leaf CK concentration began to decouple near the end of the growing season as foliar phytohormone concentrations changed with the approach of dormancy.
[CO2 turbulent exchange in a broadleaved Korean pine forest in Changbai Mountains].
Wu, Jia-bing; Guan, De-xin; Sun, Xiao-min; Shi, Ting-ting; Han, Shi-jie; Jin, Chang-jie
2007-05-01
The measurement of CO2 turbulent exchange in a broadleaved Korean pine forest in Changbai Mountains by an open-path eddy covariance system showed that with near neutral atmospheric stratification, the CO2 and vertical wind components over canopy in inertial subrange followed the expected -2/3 power law, and the dominant vertical eddy scale was about 40 m. The frequency ranges of eddy contributions to CO2 fluxes were mostly within 0.01-2.0 Hz, and the eddy translated by low frequency over canopy contributed more of CO2 fluxes. The open-path eddy covariance system could satisfy the estimation of turbulent fluxes over canopy, but the CO2 fluxes between forest and atmosphere were generally underestimated at night because the increment of non turbulent processes, suggesting that the CO2 fluxes estimated under weak turbulence needed to revise correspondingly.
Field Evaluation of Open System Chambers for Measuring Whole Canopy Gas Exchanges
USDA-ARS?s Scientific Manuscript database
The ability to monitor whole canopy CO2 and H2O fluxes of crop plants in the field is needed for many research efforts ranging from plant breeding to the study of Climate Change effects on crops. Four portable, transparent, open system chambers for measuring canopy gas exchanges were field tested on...
NASA Astrophysics Data System (ADS)
Los, S.; Hipps, L.; Alfieri, J. G.; Prueger, J. H.; Kustas, W. P.
2017-12-01
Agriculture in semi-arid regions is globally facing increasing stress on water resources. Hence, knowledge of water used in irrigated crops is essential for water resource management. However, quantifying spatial and temporal distribution of evapotranspiration (ET) has proven difficult because of the inherent complexities involved. Understanding of the complex biophysical relationships that govern ET is incomplete, particularly for heterogeneous vegetation. The USDA-ARS is developing a remotely-sensed ET modeling system that utilizes a two-source energy balance (TSEB) model capable of simulating turbulent water and energy exchange from measurements of radiometric land surface temperature. The modeling system has been tested over a number of vegetated surfaces and is currently being validated for vineyard sites in the Central Valley of California through the Grape Remote sensing Atmospheric Profiling & Evapotranspiration eXperiment (GRAPEX). The highly variable, elevated canopy structure and semi-arid climatic conditions of these sites give the opportunity to gain knowledge of both turbulent exchange processes and the TSEB model's ability to simulate turbulent fluxes for heterogeneous vegetation. Analyzed are fast-response (20 Hz) 3-D velocity, temperature, and humidity measurements gathered over 4 years at two vineyard sites. These data were collected at a height of 5 m, within the surface layer but above the canopy, and at 1.5 m, below the canopy top. Power spectra and cross-spectra are used to study behavior of turbulent water vapor exchanges and coupling between the canopy layer and surface layer under various atmospheric conditions. Frequent light winds and unstable daytime conditions, combined with the complicated canopy structure, often induce intermittent and episodic turbulence transport. This resulted in a modal behavior alternating between periods of more continuous canopy venting and periods where water vapor fluxes are dominated by transient, low frequency events. Aerodynamic resistances derived by the TSEB model are examined, and modeled fluxes of water and energy are compared to measured values for various conditions. Efforts to characterize periods of intermittent behavior are presented and particular attention to model performance is given to these intermittent periods.
Wang, Yan; Wang, Shaorui; Luo, Chunling; Li, Jun; Ming, Lili; Zhang, Gan; Li, Xiangdong
2015-05-01
The rice canopy in paddy fields can influence the air-soil exchange of organic chemicals. We used paired passive air samplers to assess the exchange of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in a paddy field, South China. Levels of OCPs and light PAHs were generally higher under the canopy than above it. We found that the rice canopy can physically obstruct the evaporation of most OCPs and light PAHs, and can also act as a barrier to the gaseous deposition of p,p'-DDT and heavy PAHs. Paddy fields can behave as a secondary source of OCPs and light PAHs. The homolog patterns of these two types of chemical varied slightly between the air below and above the rice canopy, implying contributions of different sources. Paired passive air samplers can be used effectively to assess the in situ air-soil exchange of PAHs and OCPs in subtropical paddy fields. Copyright © 2015 Elsevier Ltd. All rights reserved.
Measurements of bi-directional ammonia exchange over a fertilized soybean canopy are presented for an 8 week period during the summer of 2002. This modified Bowen-ratio approach was used to determine fluxes from vertical NH3 and temperature gradients in combination with eddy cova...
Water Vapor Exchange in a Costa Rican Lower Montane Tropical Forest
NASA Astrophysics Data System (ADS)
Andrews, R.; Miller, G. R.; Cahill, A. T.; Moore, G. W.; Aparecido, L. M. T.
2015-12-01
Because of high canopy interception in tropical forests, evaporation from wet canopy surfaces makes up a sizeable portion of the total water vapor flux. The modeling complexities presented by changing canopy wetness, along with a scarcity of land-atmosphere flux exchange data from tropical forests, means evapotranspiration (ET) processes have been poorly represented in the tropics in land-surface modeling schemes. To better understand tropical forest ET, we will evaluate the influence of canopy wetness and various micrometeorological data on ET partitioning and total ET flux. We have collected flux data from a lower montane forest in Costa Rica at a newly established AmeriFlux site, which notably has the highest mean annual precipitation of any site in the network. The site features a 39-m canopy tower, equipped with two eddy covariance systems (LI-7200, LI-COR), a CO2/H2O atmospheric profile system (AP200, Campbell Scientific), leaf wetness sensors (LWS, Decagon Devices), sap flow sensors, and a soil respiration chamber (LI-8100A, LI-COR) as well as an array of other micrometeorological sensors. At the site, total ET is driven primarily by available energy, and to a lesser extent, by vapor pressure deficit. Average daily latent energy fluxes peak at values of 160, 75, and 35 W m-2 for dry, partially wet, and wet canopy conditions respectively. Correlations between latent energy flux and all other variables are strongest for drier canopy conditions. Complex relationships between canopy wetness and tropical forest ET cause the environmental controls on these fluxes to be significantly different from those in other biomes. As a result, a new modeling paradigm is needed to more accurately model ET differences between tropical forests and other vegetation types.
NASA Astrophysics Data System (ADS)
Rastogi, B.; Still, C. J.; Noone, D. C.; Berkelhammer, M. B.; Whelan, M.; Lai, C. T.; Hollinger, D. Y.; Gupta, M.; Leen, J. B.; Huang, Y. W.
2015-12-01
Understanding the processes that control the terrestrial exchange of carbon and water are critical for examining the role of forested ecosystems in changing climates. A small but increasing number of studies have identified Carbonyl Sulfide (OCS) as a potential tracer for photosynthesis. OCS is hydrolyzed by an irreversible reaction in leaf mesophyll cells that is catalyzed by the enzyme, carbonic anhydrase. Leaf- level field and greenhouse studies indicate that OCS uptake is controlled by stomatal activity and that the ratio of OCS and CO2 uptake is reasonably constant. Existing studies on ecosystem OCS exchange have been based on laboratory measurements or short field campaigns and therefore little information on OCS exchange in a natural ecosystem over longer timescales is available. The objective of this study is to further assess the stability of OCS as a tracer for canopy photosynthesis in an active forested ecosystem and also to assess its utility for constraining transpiration, since both fluxes are mediated by canopy stomatal conductance. An off-axis integrated cavity output spectroscopy analyzer (Los Gatos Research Inc.) was deployed at the Wind River Experimental Forest in Washington (45.8205°N, 121.9519°W). Canopy air was sampled from four heights as well as the soil to measure vertical gradients of OCS within the canopy, and OCS exchange between the forest and the atmosphere for the growing season. Here we take advantage of simultaneous measurements of the stable isotopologues of H2O and CO2 at corresponding heights as well as NEE (Net Ecosystem Exchange) from eddy covariance measurements to compare GPP (Gross Primary Production) and transpiration estimates from a variety of independent techniques. Our findings also seek to allow assessment of the environmental and ecophysicological controls on evapotranspiration rates, which are projected to change in coming decades, and are otherwise poorly constrained.
Organized turbulent motions in a hedgerow vineyard: effect of evolving canopy structure
NASA Astrophysics Data System (ADS)
Vendrame, Nadia; Tezza, Luca; Tha Paw U, Kyaw; Pitacco, Andrea
2017-04-01
Vegetation-atmosphere exchanges are determined by functional and structural properties of the plants together with environmental forcing. However, a fundamental aspect is the interaction of the canopy with the lower atmosphere. The vegetation deeply alters the composition and physical properties of the air flow, exchanging energy, matter and momentum with it. These processes take place in the bottom part of the atmospheric boundary layer where turbulence is the main mechanism transporting within-canopy air towards the mid- and upper atmospheric boundary layer and vice versa. Canopy turbulence is highly influenced by vegetation drag elements, determining the vertical profile of turbulent moments within the canopy. Canopies organized in rows, like vineyards, show peculiar turbulent transport dynamics. In addition, the morphological structure (phenology) of the vineyard is greatly variable seasonally, shifting from an empty canopy during vine dormancy to dense foliage in summer. The understanding of the canopy ventilation regime is related to several practical applications in vineyard management. For example, within-canopy turbulent motion is very important to predict small particles dispersion, like fungal spores, and minimize infection studying the effect on leaf wetness duration. Our study aims to follow the continuous evolution of turbulence characteristics and canopy structure during the growing season of a hedgerow vineyard, from bud break to fully developed canopy. The field experiment was conducted in a flat extensive vineyard in North-Eastern Italy, using a vertical array of five synchronous sonic anemometers within and above the canopy. Turbulent flow organization was greatly influenced by canopy structure. Turbulent coherent structures involved in momentum transport have been investigated using the classical quadrant analysis and a novel approach to identify dominant temporal scales. Momentum transport in the canopy was dominated by downward gusts showing increasing importance throughout the growing season. At the same time, transport intermittency increased with developing leaf density. The contribution by interaction terms, acting opposite to downward momentum flux, increased in the lower canopy. The analysis of event time scales revealed that momentum transport in the vineyard was dominated by sweeps of 2-4 s duration and ejections of 4-6 s duration, which can be summed to estimate an average duration of dominating coherent structures in the order of 6-10 s. The evolution of canopy morphology did not have any clear influence on structure duration.
Turbulent mixing and fluid transport within Florida Bay seagrass meadows
NASA Astrophysics Data System (ADS)
Hansen, Jennifer C. R.; Reidenbach, Matthew A.
2017-10-01
Seagrasses serve an important function in the ecology of Florida Bay, providing critical nursery habitat and a food source for a variety of organisms. They also create significant benthic structure that induces drag, altering local hydrodynamics that can influence mixing and nutrient dynamics. Thalassia testudinum seagrass meadows were investigated to determine how shoot density and morphometrics alter local wave conditions, the generation of turbulence, and fluid exchange above and within the canopy. Sparsely vegetated and densely vegetated meadows were monitored, with shoot densities of 259 ± 26 and 484 ± 78 shoots m-2, respectively. The temporal and spatial structure of velocity and turbulence were measured using acoustic Doppler velocimeters and an in situ particle image velocimetry (PIV) system positioned both above and within the seagrass canopy. The retention of fluid within the canopy was determined by examining e-folding times calculated from the concentration curves of dye plumes released within the seagrass canopy. Results show that a shear layer with an inflection point develops at the top of the seagrass canopy, which generates instabilities that impart turbulence into the seagrass meadow. Compared to the overlying water column, turbulence was enhanced within the sparse canopy due to flow interaction with the seagrass blades, but reduced within the dense canopy. Wave generated oscillatory motion penetrated deeper into the canopy than unidirectional currents, enhancing fluid exchange. Both shoot density and the relative magnitude of wave- versus current-driven flow conditions were found to be important controls on turbulent exchange of water masses across the canopy-water interface.
Smartphone based hemispherical photography for canopy structure measurement
NASA Astrophysics Data System (ADS)
Wan, Xuefen; Cui, Jian; Jiang, Xueqin; Zhang, Jingwen; Yang, Yi; Zheng, Tao
2018-01-01
The canopy is the most direct and active interface layer of the interaction between plant and environment, and has important influence on energy exchange, biodiversity, ecosystem matter and climate change. The measurement about canopy structure of plant is an important foundation to analyze the pattern, process and operation mechanism of forest ecosystem. Through the study of canopy structure of plant, solar radiation, ambient wind speed, air temperature and humidity, soil evaporation, soil temperature and other forest environmental climate characteristics can be evaluated. Because of its accuracy and effectiveness, canopy structure measurement based on hemispherical photography has been widely studied. However, the traditional method of canopy structure hemispherical photogrammetry based on SLR camera and fisheye lens. This method is expensive and difficult to be used in some low-cost occasions. In recent years, smartphone technology has been developing rapidly. The smartphone not only has excellent image acquisition ability, but also has the considerable computational processing ability. In addition, the gyroscope and positioning function on the smartphone will also help to measure the structure of the canopy. In this paper, we present a smartphone based hemispherical photography system. The system consists of smart phones, low-cost fisheye lenses and PMMA adapters. We designed an Android based App to obtain the canopy hemisphere images through low-cost fisheye lenses and provide horizontal collimation information. In addition, the App will add the acquisition location tag obtained by GPS and auxiliary positioning method in hemisphere image information after the canopy structure hemisphere image acquisition. The system was tested in the urban forest after it was completed. The test results show that the smartphone based hemispherical photography system can effectively collect the high-resolution canopy structure image of the plant.
Limitations on gas exchange recovery following natural drought in Californian oak woodlands.
NASA Astrophysics Data System (ADS)
Ackerly, D.; Skelton, R. P.; Dawson, T.; Thompson, S.; Feng, X.; Weitz, A.; McLaughlin, B.
2017-12-01
Abstract Background/Question/Methods Drought can cause major damage to plant communities, but species damage thresholds and post-drought recovery of forest productivity are not yet predictable. We asked the question how should forest net primary productivity recover following exposure to severe drought? We used a natural drought period to investigate whether drought responses and post-drought recovery of canopy health could be predicted by properties of the water transport system. We aimed to test the hypothesis that recovery of gas exchange and canopy health would be most severely limited by xylem embolism in stems. To do this we monitored leaf level gas exchange and water status for multiple individuals of two deciduous and two evergreen species for four years spanning a severe drought event and following subsequent rehydration. Results/Discussion Severe drought caused major declines in leaf water potential, reduced stomatal conductance and assimilation rates and increased canopy bareness in our four canopy species. Water potential surpassed levels associated with incipient embolism in leaves of most trees. In contrast, due to hydraulic segmentation, water potential only rarely surpassed critical thresholds in the stems of the study trees. Individuals that surpassed critical thresholds of embolism in the stem displayed significant canopy dieback and mortality. Thus, recovery of plant gas exchange and canopy health was predicted by xylem safety margin in stems, but not leaves, providing strong support for stem cavitation vulnerability as an index of damage under natural drought conditions.
Chun-Ta Lai; James R. Ehleringer; Pieter Tans; Steven C. Wofsy; Shawn P. Urbanski; David Y. Hollinger
2004-01-01
We determined δ13C values associated with canopy gross and net C02 fluxes from four U.S. sites sampled between 2001 and 2002. Annual mean, flux-weighted δ13C values of net ecosystem C02 exchange (NEE) were estimated for four contrasting ecosystems (three...
NASA Technical Reports Server (NTRS)
Bartlett, David S.; Whiting, Gary J.; Hartman, Jean M.
1989-01-01
Results are presented from field experiments relating spectral reflectance to intercepted photosynthetically active radiation (PAR) and net CO2 exchange in a natural canopy composed of the marsh cordgrass (Spartina alterniflora). Reflectance measurements made by a hand-held radiometer with Landsat TM spectral wavebands are used to compute remote sensing indices such as the normalized difference vegetation index. Consideration is given to the impact of standing dead canopy material on the relationship between intercepted PAR and spectral vegetation indices and the impact of changes in photosynthetic efficiency on the relationship between vegetation indices and CO2 exchange rates. The results suggest that quantitative remote assessment of photosynthesis and net gas exchange in natural vegetation is feasible, especially if the analysis incorporates information on biological responses to environmental variables.
3D Surface Temperature Measurement of Plant Canopies Using Photogrammetry Techniques From A UAV.
NASA Astrophysics Data System (ADS)
Irvine, M.; Lagouarde, J. P.
2017-12-01
Surface temperature of plant canopies and within canopies results from the coupling of radiative and energy exchanges processes which govern the fluxes at the interface soil-plant-atmosphere. As a key parameter, surface temperature permits the estimation of canopy exchanges using processes based modeling methods. However detailed 3D surface temperature measurements or even profile surface temperature measurements are rarely made as they have inherent difficulties. Such measurements would greatly improve multi-level canopy models such as NOAH (Chen and Dudhia 2001) or MuSICA (Ogée and Brunet 2002, Ogée et al 2003) where key surface temperature estimations, at present, are not tested. Additionally, at larger scales, canopy structure greatly influences satellite based surface temperature measurements as the structure impacts the observations which are intrinsically made at varying satellite viewing angles and solar heights. In order to account for these differences, again accurate modeling is required such as through the above mentioned multi-layer models or with several source type models such as SCOPE (Van der Tol 2009) in order to standardize observations. As before, in order to validate these models, detailed field observations are required. With the need for detailed surface temperature observations in mind we have planned a series of experiments over non-dense plant canopies to investigate the use of photogrammetry techniques. Photogrammetry is normally used for visible wavelengths to produce 3D images using cloud point reconstruction of aerial images (for example Dandois and Ellis, 2010, 2013 over a forest). From these cloud point models it should be possible to establish 3D plant surface temperature images when using thermal infrared array sensors. In order to do this our experiments are based on the use of a thermal Infrared camera embarked on a UAV. We adapt standard photogrammetry to account for limits imposed by thermal imaginary, especially the low image resolution compared with standard RGB sensors. At the session B081, we intend to present first results of our thermal photogrammetric experiments with 3D surface temperature plots in order to discuss and adapt our methods to the modelling community's needs.
BOREAS TE-5 Diurnal CO2 Canopy Profile Data
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry
2000-01-01
The BOREAS TE-5 team collected several data sets to investigate the vegetation-atmosphere CO2 and H2O exchange processes. These data were collected to provide detailed information within the canopy during times when TE-05 sampled canopy CO2 for carbon and oxygen isotope analysis. These measurements were made in both the NSA and SSA at the OJP, OBS, UBS, and OA sites from 25-May1994 to 08-Sep1994. CO2 profile data were not collected at SSA-OA during the first IFC. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).
Advances in understanding, models and parameterisations of biosphere-atmosphere ammonia exchange
NASA Astrophysics Data System (ADS)
Flechard, C. R.; Massad, R.-S.; Loubet, B.; Personne, E.; Simpson, D.; Bash, J. O.; Cooter, E. J.; Nemitz, E.; Sutton, M. A.
2013-03-01
Atmospheric ammonia (NH3) dominates global emissions of total reactive nitrogen (Nr), while emissions from agricultural production systems contribute about two thirds of global NH3 emissions; the remaining third emanates from oceans, natural vegetation, humans, wild animals and biomass burning. On land, NH3 emitted from the various sources eventually returns to the biosphere by dry deposition to sink areas, predominantly semi-natural vegetation, and by wet and dry deposition as ammonium (NH4+) to all surfaces. However, the land/atmosphere exchange of gaseous NH3 is in fact bi-directional over unfertilized as well as fertilized ecosystems, with periods and areas of emission and deposition alternating in time (diurnal, seasonal) and space (patchwork landscapes). The exchange is controlled by a range of environmental factors, including meteorology, surface layer turbulence, thermodynamics, air and surface heterogeneous-phase chemistry, canopy geometry, plant development stage, leaf age, organic matter decomposition, soil microbial turnover, and, in agricultural systems, by fertilizer application rate, fertilizer type, soil type, crop type, and agricultural management practices. We review the range of processes controlling NH3 emission and uptake in the different parts of the soil-canopy-atmosphere continuum, with NH3 emission potentials defined at the substrate and leaf levels by different [NH4+] / [H+] ratios (Γ). Surface/atmosphere exchange models for NH3 are necessary to compute the temporal and spatial patterns of emissions and deposition at the soil, plant, field, landscape, regional and global scales, in order to assess the multiple environmental impacts of air-borne and deposited NH3 and NH4+. Models of soil/vegetation/atmosphereem NH3 exchange are reviewed from the substrate and leaf scales to the global scale. They range from simple steady-state, "big leaf" canopy resistance models, to dynamic, multi-layer, multi-process, multi-chemical species schemes. Their level of complexity depends on their purpose, the spatial scale at which they are applied, the current level of parameterisation, and the availability of the input data they require. State-of-the-art solutions for determining the emission/sink Γ potentials through the soil/canopy system include coupled, interactive chemical transport models (CTM) and soil/ecosystem modelling at the regional scale. However, it remains a matter for debate to what extent realistic options for future regional and global models should be based on process-based mechanistic versus empirical and regression-type models. Further discussion is needed on the extent and timescale by which new approaches can be used, such as integration with ecosystem models and satellite observations.
Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange
NASA Astrophysics Data System (ADS)
Flechard, C. R.; Massad, R.-S.; Loubet, B.; Personne, E.; Simpson, D.; Bash, J. O.; Cooter, E. J.; Nemitz, E.; Sutton, M. A.
2013-07-01
Atmospheric ammonia (NH3) dominates global emissions of total reactive nitrogen (Nr), while emissions from agricultural production systems contribute about two-thirds of global NH3 emissions; the remaining third emanates from oceans, natural vegetation, humans, wild animals and biomass burning. On land, NH3 emitted from the various sources eventually returns to the biosphere by dry deposition to sink areas, predominantly semi-natural vegetation, and by wet and dry deposition as ammonium (NH4+) to all surfaces. However, the land/atmosphere exchange of gaseous NH3 is in fact bi-directional over unfertilized as well as fertilized ecosystems, with periods and areas of emission and deposition alternating in time (diurnal, seasonal) and space (patchwork landscapes). The exchange is controlled by a range of environmental factors, including meteorology, surface layer turbulence, thermodynamics, air and surface heterogeneous-phase chemistry, canopy geometry, plant development stage, leaf age, organic matter decomposition, soil microbial turnover, and, in agricultural systems, by fertilizer application rate, fertilizer type, soil type, crop type, and agricultural management practices. We review the range of processes controlling NH3 emission and uptake in the different parts of the soil-canopy-atmosphere continuum, with NH3 emission potentials defined at the substrate and leaf levels by different [NH4+] / [H+] ratios (Γ). Surface/atmosphere exchange models for NH3 are necessary to compute the temporal and spatial patterns of emissions and deposition at the soil, plant, field, landscape, regional and global scales, in order to assess the multiple environmental impacts of airborne and deposited NH3 and NH4+. Models of soil/vegetation/atmosphere NH3 exchange are reviewed from the substrate and leaf scales to the global scale. They range from simple steady-state, "big leaf" canopy resistance models, to dynamic, multi-layer, multi-process, multi-chemical species schemes. Their level of complexity depends on their purpose, the spatial scale at which they are applied, the current level of parameterization, and the availability of the input data they require. State-of-the-art solutions for determining the emission/sink Γ potentials through the soil/canopy system include coupled, interactive chemical transport models (CTM) and soil/ecosystem modelling at the regional scale. However, it remains a matter for debate to what extent realistic options for future regional and global models should be based on process-based mechanistic versus empirical and regression-type models. Further discussion is needed on the extent and timescale by which new approaches can be used, such as integration with ecosystem models and satellite observations.
USDA-ARS?s Scientific Manuscript database
Application of the Two-Source Energy Balance (TSEB) Model using land surface temperature (LST) requires aerodynamic resistance parameterizations for the flux exchange above the canopy layer, within the canopy air space and at the soil/substrate surface. There are a number of aerodynamic resistance f...
Romero, Pascual; Botía, Pablo; Keller, Markus
2017-09-01
Modifications of plant hydraulics and shoot resistances (R shoot ) induced by water withholding followed by rewatering, and their relationships with plant water status, leaf gas exchange and water use efficiency at the leaf level, were investigated in pot-grown and field-grown, own-rooted Syrah grapevines in an arid climate. Water stress induced anisohydric behavior, gradually reducing stomatal conductance (g s ) and leaf photosynthesis (A) in response to decreasing midday stem water potential (Ψ s ). Water stress also rapidly increased intrinsic water-use efficiency (A/g s ); this effect persisted for many days after rewatering. Whole-plant (K plant ), canopy (K canopy ), shoot (K shoot ) and leaf (K leaf ) hydraulic conductances decreased during water stress, in tune with the gradual decrease in Ψ s , leaf gas exchange and whole plant water use. Water-stressed vines also had a lower Ψ gradient between stem and leaf (ΔΨ l ), which was correlated with lower leaf transpiration rate (E). E and ΔΨ l increased with increasing vapour pressure deficit (VPD) in non-stressed control vines but not in stressed vines. Perfusion of xylem-mobile dye showed that water flow to petioles and leaves was substantially reduced or even stopped under moderate and severe drought stress. Leaf blade hydraulic resistance accounted for most of the total shoot resistance. However, hydraulic conductance of the whole root system (K root ) was not significantly reduced until water stress became very severe in pot-grown vines. Significant correlations between K plant , K canopy and Ψ s , K canopy and leaf gas exchange, K leaf and Ψ s , and K leaf and A support a link between water supply, leaf water status and gas exchange. Upon re-watering, Ψ s recovered faster than gas exchange and leaf-shoot hydraulics. A gradual recovery of hydraulic functionality of plant organs was also observed, the leaves being the last to recover after rewatering. In pot-grown vines, K canopy recovered rather quickly following restoration of Ψ s , although gas exchange recovery did not directly depend on recovery of K canopy . In field-grown vines, recovery of water status, gas exchange and hydraulic functionality was slower than in pot-grown plants, and low g s after rewatering was related to sustained decreased K plant , K canopy and K shoot and lower water transport to leaves. These results suggest that caution should be exercised when scaling up conclusions from experiments with small pot-grown plants to field conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.
Nikolov, Ned; Zeller, Karl F
2003-01-01
A new biophysical model (FORFLUX) is presented to study the simultaneous exchange of ozone, carbon dioxide, and water vapor between terrestrial ecosystems and the atmosphere. The model mechanistically couples all major processes controlling ecosystem flows trace gases and water implementing recent concepts in plant eco-physiology, micrometeorology, and soil hydrology. FORFLUX consists of four interconnected modules-a leaf photosynthesis model, a canopy flux model, a soil heat-, water- and CO2- transport model, and a snow pack model. Photosynthesis, water-vapor flux and ozone uptake at the leaf level are computed by the LEAFC3 sub-model. The canopy module scales leaf responses to a stand level by numerical integration of the LEAFC3model over canopy leaf area index (LAI). The integration takes into account (1) radiative transfer inside the canopy, (2) variation of foliage photosynthetic capacity with canopy depth, (3) wind speed attenuation throughout the canopy, and (4) rainfall interception by foliage elements. The soil module uses principles of the diffusion theory to predict temperature and moisture dynamics within the soil column, evaporation, and CO2 efflux from soil. The effect of soil heterogeneity on field-scale fluxes is simulated employing the Bresler-Dagan stochastic concept. The accumulation and melt of snow on the ground is predicted using an explicit energy balance approach. Ozone deposition is modeled as a sum of three fluxes- ozone uptake via plant stomata, deposition to non-transpiring plant surfaces, and ozone flux into the ground. All biophysical interactions are computed hourly while model projections are made at either hourly or daily time step. FORFLUX represents a comprehensive approach to studying ozone deposition and its link to carbon and water cycles in terrestrial ecosystems.
Carbon isotope composition of ambient CO2 and recycling: a matrix simulation model
da Silveira Lobo Sternberg, Leonel; DeAngelis, Donald L.
2002-01-01
The relationship between isotopic composition and concentration of ambient CO2 in a canopy and its associated convective boundary layer was modeled. The model divides the canopy and convective boundary layer into several layers. Photosynthesis, respiration, and exchange between each layer can be simulated by matrix equations. This simulation can be used to calculate recycling; defined here as the amount of respired CO2 re-fixed by photosynthesis relative to the total amount of respired CO2. At steady state the matrix equations can be solved for the canopy and convective boundary layer CO2 concentration and isotopic profile, which can be used to calculate a theoretical recycling index according to a previously developed equation. There is complete agreement between simulated and theoretical recycling indices for different exchange scenarios. Recycling indices from a simulation of gas exchange between a heterogeneous vegetation canopy and the troposphere also agreed with a more generalized form of the theoretical recycling equation developed here.
Effects of air current speed on gas exchange in plant leaves and plant canopies.
Kitaya, Y; Tsuruyama, J; Shibuya, T; Yoshida, M; Kiyota, M
2003-01-01
To obtain basic data on adequate air circulation to enhance plant growth in a closed plant culture system in a controlled ecological life support system (CELSS), an investigation was made of the effects of the air current speed ranging from 0.01 to 1.0 m s-1 on photosynthesis and transpiration in sweetpotato leaves and photosynthesis in tomato seedlings canopies. The gas exchange rates in leaves and canopies were determined by using a chamber method with an infrared gas analyzer. The net photosynthetic rate and the transpiration rate increased significantly as the air current speeds increased from 0.01 to 0.2 m s-1. The transpiration rate increased gradually at air current speeds ranging from 0.2 to 1.0 m s-1 while the net photosynthetic rate was almost constant at air current speeds ranging from 0.5 to 1.0 m s-1. The increase in the net photosynthetic and transpiration rates were strongly dependent on decreased boundary-layer resistances against gas diffusion. The net photosynthetic rate of the plant canopy was doubled by an increased air current speed from 0.1 to 1.0 m s-1 above the plant canopy. The results demonstrate the importance of air movement around plants for enhancing the gas exchange in the leaf, especially in plant canopies in the CELSS. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Radon 222 tracing of soil and forest canopy trace gas exchange in an open canopy boreal forest
NASA Technical Reports Server (NTRS)
Ussler, William, III; Chanton, Jeffrey P.; Kelley, Cheryl A.; Martens, Christopher S.
1994-01-01
A set of continuous, high-resolution atmospheric radon (Rn-222) concentration time series and radon soil flux measurements were acquired during the summer of 1990 at a micrometeorological tower site 13 km northwest of Schefferville, Quebec, Canada. The tower was located in a dry upland, open-canopy lichen-spruce woodland. For the period July 23 to August 1, 1990, the mean radon soil flux was 41.1 +/- 4.8 Bq m(exp -2)/h. Radon surface flux from the two end-member forest floor cover types (lichen mat and bare soil) were 38.8 +/- 5.1 and 61.8 +/- 15.6 Bq m(exp -2)/h, respectively. Average total forest canopy resistances computed using a simple 'flux box' model for radon exchange between the forest canopy and the overlying atmosphere range from 0.47 +/- 0.24 s cm(exp -1) to 2.65 +/- 1.61 cm(exp -1) for daytime hours (0900-1700 LT) and from 3.44 +/- 0.91 s cm(exp -1) to 10.55 +/- 7.16 s cm(exp -1) for nighttime hours (2000-0600) for the period July 23 to August 6, 1990. Continuous radon profiling of canopy atmospheres is a suitable approach for determining rates of biosphere/atmosphere trace gas exchange for remote field sites where daily equipment maintenance is not possible. where daily equipment maintenance is not possible.
Hamerlynck, Erik P; Scott, Russell L; Susan Moran, M; Schwander, Andrea M; Connor, Erin; Huxman, Travis E
2011-01-01
It is not clear if tree canopies in savanna ecosystems exert positive or negative effects on soil moisture, and how these might affect understory plant carbon balance. To address this, we quantified rooting-zone volumetric soil moisture (θ(25 cm)), plant size, leaf-level and whole-plant gas exchange of the bunchgrass, bush muhly (Muhlenbergia porteri), growing under and between mesquite (Prosopis velutina) in a southwestern US savanna. Across two contrasting monsoon seasons, bare soil θ(25 cm) was 1.0-2.5% lower in understory than in the intercanopy, and was consistently higher than in soils under grasses, where θ(25 cm) was similar between locations. Understory plants had smaller canopy areas and volumes with larger basal diameters than intercanopy plants. During an above-average monsoon, intercanopy and understory plants had similar seasonal light-saturated leaf-level photosynthesis (A(net-sat)), stomatal conductance (g(s-sat)), and whole-plant aboveground respiration (R(auto)), but with higher whole-plant photosynthesis (GEP(plant)) and transpiration (T(plant)) in intercanopy plants. During a below-average monsoon, intercanopy plants had higher diurnally integrated GEP(plant), R(auto), and T(plant). These findings showed little evidence of strong, direct positive canopy effects to soil moisture and attendant plant performance. Rather, it seems understory conditions foster competitive dominance by drought-tolerant species, and that positive and negative canopy effects on soil moisture and community and ecosystem processes depends on a suite of interacting biotic and abiotic factors.
Investigation of ammonia air-surface exchange processes in a ...
Recent assessments of atmospheric deposition in North America note the increasing importance of reduced (NHx = NH3 + NH4+) forms of nitrogen (N) relative to oxidized forms. This shift in in the composition of inorganic nitrogen deposition has both ecological and policy implications. Deposition budgets developed from inferential models applied at the landscape scale, as well as regional and global chemical transport models, indicate that NH3 dry deposition contributes a significant portion of inorganic N deposition in many areas. However, the bidirectional NH3 flux algorithms employed in these models have not been extensively evaluated for North American conditions (e.g, atmospheric chemistry, meteorology, biogeochemistry). Further understanding of the processes controlling NH3 air-surface exchange in natural systems is critically needed. Based on preliminary results from the Southern Appalachian Nitrogen Deposition Study (SANDS), this presentation examines processes of NH3 air-surface exchange in a deciduous montane forest at the Coweeta Hydrologic Laboratory in western North Carolina. A combination of measurements and modeling are used to investigate net fluxes of NH3 above the forest and sources and sinks of NH3 within the canopy and forest floor. Measurements of biogeochemical NH4+ pools are used to characterize emission potential and NH3 compensation points of canopy foliage (i.e., green vegetation), leaf litter, and soil and their relation to NH3 fluxes
Boreal forest BVOC exchange: emissions versus in-canopy sinks
NASA Astrophysics Data System (ADS)
Zhou, Putian; Ganzeveld, Laurens; Taipale, Ditte; Rannik, Üllar; Rantala, Pekka; Petteri Rissanen, Matti; Chen, Dean; Boy, Michael
2017-12-01
A multilayer gas dry deposition model has been developed and implemented into a one-dimensional chemical transport model SOSAA (model to Simulate the concentrations of Organic vapours, Sulphuric Acid and Aerosols) to calculate the dry deposition velocities for all the gas species included in the chemistry scheme. The new model was used to analyse in-canopy sources and sinks, including gas emissions, chemical production and loss, dry deposition, and turbulent transport of 12 featured biogenic volatile organic compounds (BVOCs) or groups of BVOCs (e.g. monoterpenes, isoprene+2-methyl-3-buten-2-ol (MBO), sesquiterpenes, and oxidation products of mono- and sesquiterpenes) in July 2010 at the boreal forest site SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations). According to the significance of modelled monthly-averaged individual source and sink terms inside the canopy, the selected BVOCs were classified into five categories: 1. Most of emitted gases are transported out of the canopy (monoterpenes, isoprene + MBO). 2. Chemical reactions remove a significant portion of emitted gases (sesquiterpenes). 3. Bidirectional fluxes occur since both emission and dry deposition are crucial for the in-canopy concentration tendency (acetaldehyde, methanol, acetone, formaldehyde). 4. Gases removed by deposition inside the canopy are compensated for by the gases transported from above the canopy (acetol, pinic acid, β-caryophyllene's oxidation product BCSOZOH). 5. The chemical production is comparable to the sink by deposition (isoprene's oxidation products ISOP34OOH and ISOP34NO3). Most of the simulated sources and sinks were located above about 0.2 hc (canopy height) for oxidation products and above about 0.4 hc for emitted species except formaldehyde. In addition, soil deposition (including deposition onto understorey vegetation) contributed 11-61 % to the overall in-canopy deposition. The emission sources peaked at about 0.8-0.9 hc, which was higher than 0.6 hc where the maximum of dry deposition onto overstorey vegetation was located. This study provided a method to enable the quantification of the exchange between atmosphere and biosphere for numerous BVOCs, which could be applied in large-scale models in future. With this more explicit canopy exchange modelling system, this study analysed both the temporal and spatial variations in individual in-canopy sources and sinks, as well as their combined effects on driving BVOC exchange. In this study 12 featured BVOCs or BVOC groups were analysed. Other compounds could also be investigated similarly by being classified into these five categories.
NASA Astrophysics Data System (ADS)
Wang, W.; Ganzeveld, L.; Helmig, D.; Hueber, J.; Rossabi, S.; Vogel, C. S.
2017-12-01
During the month-long PROPHET-AMOS campaign in July, 2016 we investigated NOx and ozone dynamics at the University of Michigan AmeriFlux Tower (US-UMB tower) and the PROPHET Tower research sites at the University of Michigan Biological Station (UMBS), using a multi-pronged experimental approach. The two sites are within 100 m of each other, located in a mixed forest on the northern lower peninsula of Michigan, USA. In a previous study, it was found that invoking a leaf-level compensation point for NOx uptake and emission provided better agreement between observed and model-simulated in- and above-canopy NOx concentrations in this forest. To further examine the role of foliar exchange relative to other in-canopy sources and sinks of NOx, we conducted detailed vertical gradient measurements of NOx and ozone at ten heights from the forest floor to above the canopy, along with micrometeorological conditions at the AmeriFlux Tower. In parallel, to investigate the leaf-level exchanges of NOx and ozone, we carried out branch enclosure experiments near the PROPHET tower on the dominant tree species of this forest. We combine these observations with micrometeorological data from the AmeriFlux Tower to constrain simulations with the Multi-Layer Canopy Chemical Exchange Model (MLC-CHEM) for investigation of sources, sinks, and dynamics that determine NOx concentrations, vertical gradients, and fluxes in this forest. We will compare our results with previous studies and other observations during the PHOPHET-AMOS campaign.
Zhang, X.; McGuire, A.D.; Ruess, Roger W.
2006-01-01
A major challenge confronting the scientific community is to understand both patterns of and controls over spatial and temporal variability of carbon exchange between boreal forest ecosystems and the atmosphere. An understanding of the sources of variability of carbon processes at fine scales and how these contribute to uncertainties in estimating carbon fluxes is relevant to representing these processes at coarse scales. To explore some of the challenges and uncertainties in estimating carbon fluxes at fine to coarse scales, we conducted a modeling analysis of canopy foliar maintenance respiration for black spruce ecosystems of Alaska by scaling empirical hourly models of foliar maintenance respiration (Rm) to estimate canopy foliar Rm for individual stands. We used variation in foliar N concentration among stands to develop hourly stand-specific models and then developed an hourly pooled model. An uncertainty analysis identified that the most important parameter affecting estimates of canopy foliar Rm was one that describes R m at 0??C per g N, which explained more than 55% of variance in annual estimates of canopy foliar Rm. The comparison of simulated annual canopy foliar Rm identified significant differences between stand-specific and pooled models for each stand. This result indicates that control over foliar N concentration should be considered in models that estimate canopy foliar Rm of black spruce stands across the landscape. In this study, we also temporally scaled the hourly stand-level models to estimate canopy foliar Rm of black spruce stands using mean monthly temperature data. Comparisons of monthly Rm between the hourly and monthly versions of the models indicated that there was very little difference between the estimates of hourly and monthly models, suggesting that hourly models can be aggregated to use monthly input data with little loss of precision. We conclude that uncertainties in the use of a coarse-scale model for estimating canopy foliar Rm at regional scales depend on uncertainties in representing needle-level respiration and on uncertainties in representing the spatial variability of canopy foliar N across a region. The development of spatial data sets of canopy foliar N represents a major challenge in estimating canopy foliar maintenance respiration at regional scales. ?? Springer 2006.
USDA-ARS?s Scientific Manuscript database
Given the difference of photosynthetic rate between the leaves in different positions of the canopy, leaf-level photosynthesis measurements can provide incomplete and potentially misleading information if extrapolated to quantify photosynthesis or infer differences in water demand and crop productiv...
Michael J Aspinwall; John S King; Jean-Christophe Domec; Steven E McKeand; Isik Fikret
2011-01-01
Physiological uniformity and genetic effects on canopy-level gas-exchange and hydraulic function could impact loblolly pine (Pinus taeda L.) plantation sustainability and ecosystem dynamics under projected changes in climate. Over a 1-year period, we examined genetic effects on mean and maximum mid-day canopy conductance (Gs, Gsmax...
USDA-ARS?s Scientific Manuscript database
Whole-canopy gas exchange measurement in papaya can provide a scientific basis to optimize irrigation, and fruit yield and quality. The objectives of this study were to: 1) verify the relationship between xylem sap flow measured by the heat coefficient method and whole canopy transpiration in ‘Gra...
The impact of changing the land surface scheme in ACCESS(v1.0/1.1) on the surface climatology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalczyk, Eva A.; Stevens, Lauren E.; Law, Rachel M.
The Community Atmosphere Biosphere Land Exchange (CABLE) model has been coupled to the UK Met Office Unified Model (UM) within the existing framework of the Australian Community Climate and Earth System Simulator (ACCESS), replacing the Met Office Surface Exchange Scheme (MOSES). Here we investigate how features of the CABLE model impact on present-day surface climate using ACCESS atmosphere-only simulations. The main differences attributed to CABLE include a warmer winter and a cooler summer in the Northern Hemisphere (NH), earlier NH spring runoff from snowmelt, and smaller seasonal and diurnal temperature ranges. The cooler NH summer temperatures in canopy-covered regions aremore » more consistent with observations and are attributed to two factors. Firstly, CABLE accounts for aerodynamic and radiative interactions between the canopy and the ground below; this placement of the canopy above the ground eliminates the need for a separate bare ground tile in canopy-covered areas. Secondly, CABLE simulates larger evapotranspiration fluxes and a slightly larger daytime cloud cover fraction. Warmer NH winter temperatures result from the parameterization of cold climate processes in CABLE in snow-covered areas. In particular, prognostic snow density increases through the winter and lowers the diurnally resolved snow albedo; variable snow thermal conductivity prevents early winter heat loss but allows more heat to enter the ground as the snow season progresses; liquid precipitation freezing within the snowpack delays the building of the snowpack in autumn and accelerates snow melting in spring. Altogether we find that the ACCESS simulation of surface air temperature benefits from the specific representation of the turbulent transport within and just above the canopy in the roughness sublayer as well as the more complex snow scheme in CABLE relative to MOSES.« less
The impact of changing the land surface scheme in ACCESS(v1.0/1.1) on the surface climatology
Kowalczyk, Eva A.; Stevens, Lauren E.; Law, Rachel M.; ...
2016-08-23
The Community Atmosphere Biosphere Land Exchange (CABLE) model has been coupled to the UK Met Office Unified Model (UM) within the existing framework of the Australian Community Climate and Earth System Simulator (ACCESS), replacing the Met Office Surface Exchange Scheme (MOSES). Here we investigate how features of the CABLE model impact on present-day surface climate using ACCESS atmosphere-only simulations. The main differences attributed to CABLE include a warmer winter and a cooler summer in the Northern Hemisphere (NH), earlier NH spring runoff from snowmelt, and smaller seasonal and diurnal temperature ranges. The cooler NH summer temperatures in canopy-covered regions aremore » more consistent with observations and are attributed to two factors. Firstly, CABLE accounts for aerodynamic and radiative interactions between the canopy and the ground below; this placement of the canopy above the ground eliminates the need for a separate bare ground tile in canopy-covered areas. Secondly, CABLE simulates larger evapotranspiration fluxes and a slightly larger daytime cloud cover fraction. Warmer NH winter temperatures result from the parameterization of cold climate processes in CABLE in snow-covered areas. In particular, prognostic snow density increases through the winter and lowers the diurnally resolved snow albedo; variable snow thermal conductivity prevents early winter heat loss but allows more heat to enter the ground as the snow season progresses; liquid precipitation freezing within the snowpack delays the building of the snowpack in autumn and accelerates snow melting in spring. Altogether we find that the ACCESS simulation of surface air temperature benefits from the specific representation of the turbulent transport within and just above the canopy in the roughness sublayer as well as the more complex snow scheme in CABLE relative to MOSES.« less
NASA Astrophysics Data System (ADS)
Spielmann, Felix M.; Kitz, Florian; Hammerle, Albin; Gerdel, Katharina; Wohlfahrt, Georg
2016-04-01
The trace gas carbonyl sulfide (COS) has been proposed as a tracer for canopy gross primary production (GPP), canopy transpiration and stomatal conductance of plant canopies in the last few years. COS enters the plant leaf through the stomata and diffuses through the intercellular space, the cell wall, the plasma membrane and the cytosol like CO2. It is then catalyzed by the enzyme carbonic anhydrase (CA) in a one-way reaction to H2S and CO2. This one-way flux into the leaf makes COS a promising tracer for the GPP. However there is growing evidence, that plant leaves aren't the only contributors to the ecosystem flux of COS. Therefor the COS uptake of soil microorganisms also containing CA and abiotic COS production might have to be accounted for when using COS as a tracer at the ecosystem scale. The overarching objective of this study was to quantify the relationship between the ecosystem-scale exchange of COS, CO2 and H2O and thus to test for the potential of COS to be used as a tracer for the plant canopy CO2 and H2O exchange. More specifically we aimed at quantifying the contribution of the soil to the ecosystem-scale COS exchange in order to understand complications that may arise due to a non-negligible soil COS exchange. In May 2015 we set up our quantum cascade laser (QCL) (Aerodyne Research Inc., MA, USA) at a temperate mountain grassland in Stubai Valley close to the village of Neustift, Austria. Our site lies at the valley bottom and is an intensively managed mountain grassland, which is cut 3-4 times a year. With the QCL we were able to measure concurrently the concentrations of COS, CO2, H2O (and CO) at a frequency of 10 Hz with minimal noise. This allowed us to conduct ecosystem-scale eddy covariance measurements. The eddy covariance flux measurements revealed that the COS uptake continues at night, which we confirmed was not caused by soil microorganisms, as the soil exchange was close to neutral during nighttime. Instead, the nocturnal COS uptake appears to be caused by incomplete stomatal closure and continuing catalytic CA activity in the absence of light. The resulting data also revealed a weaker correlation between COS- and CO2-fluxes than expected, which hints to further COS-exchange mechanisms at our site. To disentangle sources and sinks within and below the canopy, we measured vertical within-canopy profiles of COS and CO2 and inferred the vertical distribution of sources and sinks by means of an inverse Lagrangian analysis. The resulting data confirmed that soils at our site are sources for COS during daytime and close to neutral during nighttime and place the major COS/CO2 sink in the central part of the canopy, where a large amount of leaf area still receives enough light. Taken together our results suggest that using COS as a tracer for canopy CO2 and H2O exchange may be less straight forward than previously thought and that further work is required to better understand the ecosystem-scale COS exchange and its drivers.
NASA Astrophysics Data System (ADS)
Chen, Yiying; Ryder, James; Bastrikov, Vladislav; McGrath, Matthew J.; Naudts, Kim; Otto, Juliane; Ottlé, Catherine; Peylin, Philippe; Polcher, Jan; Valade, Aude; Black, Andrew; Elbers, Jan A.; Moors, Eddy; Foken, Thomas; van Gorsel, Eva; Haverd, Vanessa; Heinesch, Bernard; Tiedemann, Frank; Knohl, Alexander; Launiainen, Samuli; Loustau, Denis; Ogée, Jérôme; Vessala, Timo; Luyssaert, Sebastiaan
2016-09-01
Canopy structure is one of the most important vegetation characteristics for land-atmosphere interactions, as it determines the energy and scalar exchanges between the land surface and the overlying air mass. In this study we evaluated the performance of a newly developed multi-layer energy budget in the ORCHIDEE-CAN v1.0 land surface model (Organising Carbon and Hydrology In Dynamic Ecosystems - CANopy), which simulates canopy structure and can be coupled to an atmospheric model using an implicit coupling procedure. We aim to provide a set of acceptable parameter values for a range of forest types. Top-canopy and sub-canopy flux observations from eight sites were collected in order to conduct this evaluation. The sites crossed climate zones from temperate to boreal and the vegetation types included deciduous, evergreen broad-leaved and evergreen needle-leaved forest with a maximum leaf area index (LAI; all-sided) ranging from 3.5 to 7.0. The parametrization approach proposed in this study was based on three selected physical processes - namely the diffusion, advection, and turbulent mixing within the canopy. Short-term sub-canopy observations and long-term surface fluxes were used to calibrate the parameters in the sub-canopy radiation, turbulence, and resistance modules with an automatic tuning process. The multi-layer model was found to capture the dynamics of sub-canopy turbulence, temperature, and energy fluxes. The performance of the new multi-layer model was further compared against the existing single-layer model. Although the multi-layer model simulation results showed few or no improvements to both the nighttime energy balance and energy partitioning during winter compared with a single-layer model simulation, the increased model complexity does provide a more detailed description of the canopy micrometeorology of various forest types. The multi-layer model links to potential future environmental and ecological studies such as the assessment of in-canopy species vulnerability to climate change, the climate effects of disturbance intensities and frequencies, and the consequences of biogenic volatile organic compound (BVOC) emissions from the terrestrial ecosystem.
Characterization and Modeling of Atmospheric Flow Within and Above Plant Canopies
NASA Astrophysics Data System (ADS)
Souza Freire Grion, Livia
The turbulent flow within and above plant canopies is responsible for the exchange of momentum, heat, gases and particles between vegetation and the atmosphere. Turbulence is also responsible for the mixing of air inside the canopy, playing an important role in chemical and biophysical processes occurring in the plants' environment. In the last fifty years, research has significantly advanced the understanding of and ability to model the flow field within and above the canopy, but important issues remain unsolved. In this work, we focus on (i) the estimation of turbulent mixing timescales within the canopy from field data; and (ii) the development of new computationally efficient modeling approaches for the coupled canopy-atmosphere flow field. The turbulent mixing timescale represents how quickly turbulence creates a well-mixed environment within the canopy. When the mixing timescale is much smaller than the timescale of other relevant processes (e.g. chemical reactions, deposition), the system can be assumed to be well-mixed and detailed modeling of turbulence is not critical to predict the system evolution. Conversely, if the mixing timescale is comparable or larger than the other timescales, turbulence becomes a controlling factor for the concentration of the variables involved; hence, turbulence needs to be taken into account when studying and modeling such processes. In this work, we used a combination of ozone concentration and high-frequency velocity data measured within and above the canopy in the Amazon rainforest to characterize turbulent mixing. The eddy diffusivity parameter (used as a proxy for mixing efficiency) was applied in a simple theoretical model of one-dimensional diffusion, providing an estimate of turbulent mixing timescales as a function of height within the canopy and time-of-day. Results showed that, during the day, the Amazon rainforest is characterized by well-mixed conditions with mixing timescales smaller than thirty minutes in the upper-half of the canopy, and partially mixed conditions in the lower half of the canopy. During the night, most of the canopy (except for the upper 20%) is either partially or poorly mixed, resulting in mixing timescales of up to several hours. For the specific case of ozone, the mixing timescales observed during the day are much lower than the chemical and deposition timescales, whereas chemical processes and turbulence have comparable timescales during the night. In addition, the high day-to-day variability in mixing conditions and the fast increase in mixing during the morning transition period indicate that turbulence within the canopy needs to be properly investigated and modeled in many studies involving plant-atmosphere interactions. Motivated by the findings described above, this work proposes and tests a new approach for modeling canopy flows. Typically, vertical profiles of flow statistics are needed to represent canopy-atmosphere exchanges in chemical and biophysical processes happening within the canopy. Current single-column models provide only steady-state (equilibrium) profiles, and rely on closure assumptions that do not represent the dominant non-local turbulent fluxes present in canopy flows. We overcome these issues by adapting the one-dimensional turbulent (ODT) model to represent atmospheric flows from the ground up to the top of the atmospheric boundary layer (ABL). The ODT model numerically resolves the one-dimensional diffusion equation along a vertical line (representing a horizontally homogeneous ABL column), and the presence of three-dimensional turbulence is added through the effect of stochastic eddies. Simulations of ABL without canopy were performed for different atmospheric stabilities and a diurnal cycle, to test the capabilities of this modeling approach in representing unsteady flows with strong non-local transport. In addition, four different types of canopies were simulated, one of them including the transport of scalar with a point source located inside the canopy. The comparison of all simulations with theory and field data provided satisfactory results. The main advantages of using ODT compared to typical 1D canopy-flow models are the ability to represent the coupled canopy-ABL flow with one single modeling approach, the presence of non-local turbulent fluxes, the ability to simulate transient conditions, the straightforward representation of multiple scalar fields, and the presence of only one adjustable parameter (as opposed to the several adjustable constants and boundary conditions needed for other modeling approaches). The results obtained with ODT as a stand-alone model motivated its use as a surface parameterization for Large-Eddy Simulation (LES). In this two-way coupling between LES and ODT, the former is used to simulate the ABL in a case where a canopy is present but cannot be resolved by the LES (i.e., the LES first vertical grid point is above the canopy). ODT is used to represent the flow field between the ground and the first LES grid point, including the region within and just above the canopy. In this work, we tested the ODT-LES model for three different types of canopies and obtained promising results. Although more work is needed in order to improve first and second-order statistics within the canopy (i.e. in the ODT domain), the results obtained for the flow statistics in the LES domain and for the third order statistics in the ODT domain demonstrate that the ODT-LES model is capable of capturing some important features of the canopy-atmosphere interaction. This new surface superparameterization approach using ODT provides a new alternative for simulations that require complex interactions between the flow field and near-surface processes (e.g. sand and snow drift, waves over water surfaces) and can potentially be extended to other large-scale models, such as mesoscale and global circulation models.
USDA-ARS?s Scientific Manuscript database
For open orchard and vineyard canopies containing significant fractions of exposed soil (>50%), typical of Mediterranean agricultural regions, the energy balance of the vegetation elements is strongly influenced by heat exchange with the bare soil/substrate. For these agricultural systems a “two-sou...
Wehr, Richard; Commane, Roisin; Munger, J. William; ...
2017-01-26
Stomatal conductance influences both photosynthesis and transpiration, thereby coupling the carbon and water cycles and affecting surface–atmosphere energy exchange. The environmental response of stomatal conductance has been measured mainly on the leaf scale, and theoretical canopy models are relied on to upscale stomatal conductance for application in terrestrial ecosystem models and climate prediction. Here we estimate stomatal conductance and associated transpiration in a temperate deciduous forest directly on the canopy scale via two independent approaches: (i) from heat and water vapor exchange and (ii) from carbonyl sulfide (OCS) uptake. We use the eddy covariance method to measure the net ecosystem–atmosphere exchange ofmore » OCS, and we use a flux-gradient approach to separate canopy OCS uptake from soil OCS uptake. We find that the seasonal and diurnal patterns of canopy stomatal conductance obtained by the two approaches agree (to within ±6 % diurnally), validating both methods. Canopy stomatal conductance increases linearly with above-canopy light intensity (in contrast to the leaf scale, where stomatal conductance shows declining marginal increases) and otherwise depends only on the diffuse light fraction, the canopy-average leaf-to-air water vapor gradient, and the total leaf area. Based on stomatal conductance, we partition evapotranspiration (ET) and find that evaporation increases from 0 to 40 % of ET as the growing season progresses, driven primarily by rising soil temperature and secondarily by rainfall. Counterintuitively, evaporation peaks at the time of year when the soil is dry and the air is moist. Our method of ET partitioning avoids concerns about mismatched scales or measurement types because both ET and transpiration are derived from eddy covariance data. Neither of the two ecosystem models tested predicts the observed dynamics of evaporation or transpiration, indicating that ET partitioning such as that provided here is needed to further model development and improve our understanding of carbon and water cycling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehr, Richard; Commane, Roisin; Munger, J. William
Stomatal conductance influences both photosynthesis and transpiration, thereby coupling the carbon and water cycles and affecting surface–atmosphere energy exchange. The environmental response of stomatal conductance has been measured mainly on the leaf scale, and theoretical canopy models are relied on to upscale stomatal conductance for application in terrestrial ecosystem models and climate prediction. Here we estimate stomatal conductance and associated transpiration in a temperate deciduous forest directly on the canopy scale via two independent approaches: (i) from heat and water vapor exchange and (ii) from carbonyl sulfide (OCS) uptake. We use the eddy covariance method to measure the net ecosystem–atmosphere exchange ofmore » OCS, and we use a flux-gradient approach to separate canopy OCS uptake from soil OCS uptake. We find that the seasonal and diurnal patterns of canopy stomatal conductance obtained by the two approaches agree (to within ±6 % diurnally), validating both methods. Canopy stomatal conductance increases linearly with above-canopy light intensity (in contrast to the leaf scale, where stomatal conductance shows declining marginal increases) and otherwise depends only on the diffuse light fraction, the canopy-average leaf-to-air water vapor gradient, and the total leaf area. Based on stomatal conductance, we partition evapotranspiration (ET) and find that evaporation increases from 0 to 40 % of ET as the growing season progresses, driven primarily by rising soil temperature and secondarily by rainfall. Counterintuitively, evaporation peaks at the time of year when the soil is dry and the air is moist. Our method of ET partitioning avoids concerns about mismatched scales or measurement types because both ET and transpiration are derived from eddy covariance data. Neither of the two ecosystem models tested predicts the observed dynamics of evaporation or transpiration, indicating that ET partitioning such as that provided here is needed to further model development and improve our understanding of carbon and water cycling.« less
Desai, Ankur R
2014-02-01
Significant advances have been made over the past decades in capabilities to simulate diurnal and seasonal variation of leaf-level and canopy-scale photosynthesis in temperate and boreal forests. However, long-term prediction of future forest productivity in a changing climate may be more dependent on how climate and biological anomalies influence extremes in interannual to decadal variability of canopy ecosystem carbon exchanges. These exchanges can differ markedly from leaf level responses, especially owing to the prevalence of long lags in nutrient and water cycling. Until recently, multiple long-term (10+ year) high temporal frequency (daily) observations of canopy exchange were not available to reliably assess this claim. An analysis of one of the longest running North American eddy covariance flux towers reveals that single climate variables do not adequately explain carbon exchange anomalies beyond the seasonal timescale. Daily to weekly lagged anomalies of photosynthesis positively autocorrelate with daily photosynthesis. This effect suggests a negative feedback in photosynthetic response to climate extremes, such as anomalies in evapotranspiration and maximum temperature. Moisture stress in the prior season did inhibit photosynthesis, but mechanisms are difficult to assess. A complex interplay of integrated and lagged productivity and moisture-limiting factors indicate a critical role of seasonal thresholds that limit growing season length and peak productivity. These results lead toward a new conceptual framework for improving earth system models with long-term flux tower observations.
NASA Astrophysics Data System (ADS)
Mackay, D. Scott
Hydrologic equilibrium theory has been used to describe both short-term regulation of gas exchange and long-term adjustment of forest canopy density. However, by focusing on water and atmospheric conditions alone a hydrologic equilibrium may impose an oversimplification of the growth of forests adjusted to hydrology. In this study nitrogen is incorporated as a third regulation of catchment level forest dynamics and gas exchange. This was examined with an integrated distributed hydrology and forest growth model in a central Sierra Nevada watershed covered primarily by old-growth coniferous forest. Water and atmospheric conditions reasonably reproduced daily latent heat flux, and predicted the expected catenary trend of leaf area index (LAI). However, it was not until the model was provided a spatially detailed description of initial soil carbon and nitrogen pools that spatial patterns of LAI were generated. This latter problem was attributed to a lack of soil history or memory in the initialization of the simulations. Finally, by reducing stomatal sensitivity to vapor pressure deficit (VPD) the canopy density increased when water and nitrogen limitations were not present. The results support a three-control hydrologic equilibrium in the Sierra Nevada watershed. This has implications for modeling catchment level soil-vegetation-atmospheric interactions over interannual, decade, and century time-scales.
NASA Astrophysics Data System (ADS)
Gochis, D. J.; Brooks, P. D.; Harpold, A. A.; Ewers, B. E.; Pendall, E.; Barnard, H. R.; Reed, D.; Harley, P. C.; Hu, J.; Biederman, J.
2010-12-01
Given the magnitude and spatial extent of recent forest mortality in the western U.S. there is a pressing need to improve representation of such influences on the exchange of energy, water, biogeochemical and momentum fluxes in land-atmosphere parameterizations coupled to weather and climate models. In this talk we present observational data and model results from a new study aimed at improving understanding the impacts of mountain pine beetle-induced forest mortality in the central Rocky Mountains. Baseline observations and model runs from undisturbed lodgepole pine forest conditions are developed as references against which new observations and model runs from infested stands are compared. We will specifically look at the structure and evolution of sub-canopy energy exchange variables such as shortwave and longwave radiation and sub-canopy turbulence as well as sub-canopy precipitation, sapflow fluxes, canopy-scale fluxes and soil moisture and temperature. In this manner we seek to lay the ground work for evaluating the recent generation of land surface model changes aimed at representing insect-related forest dynamics in the CLM-C/N and Noah land surface models.
Evaporation from a partially wet forest canopy
NASA Technical Reports Server (NTRS)
Hancock, N. H.; Sellers, P. J.; Crowther, J. M.
1983-01-01
The results of experimental studies of water storage in a Sitka-spruce canopy are presented and analyzed in terms of model simulations of evaporation. Wet-branch cantilever deflection was measured along with meteorological data on three days in August, 1976, to determine the relationship of canopy evaporation to wind speed and (hence) aerodynamic resistance. Two versions of a simple unilayer model of sensible and latent heat transport from a partially wet canopy were tested in the data analysis: model F1 forbids the exchange of heat between wet and dry foliage surfaces; model F2 assumes that this exchange is highly efficient. Model F1 is found to give results consistent with the rainfall-interception model of Rutter et al. (1971, 1975, 1977), but model F2 gives results which are more plausible and correspond to the multilayer simulations of Sellers and Lockwood (1981) and the experimental findings of Hancock and Crowther (1979). It is inferred that the role of eddy diffusivity for water vapor is enhanced relative to momentum transport, and that the similarity hypothesis used in conventional models may fail in the near vicinity of a forest canopy.
Circadian rhythms constrain leaf and canopy gas exchange in an Amazonian forest
NASA Astrophysics Data System (ADS)
Doughty, Christopher E.; Goulden, Michael L.; Miller, Scott D.; da Rocha, Humberto R.
2006-08-01
We used a controlled-environment leaf gas-exchange system and the micrometeorological technique eddy covariance to determine whether circadian rhythms constrain the rates of leaf and canopy gas exchange in an Amazonian forest over a day. When exposed to continuous and constant light for 20 to 48 hours leaves of eleven of seventeen species reduced their photosynthetic rates and closed their stomata during the normally dark period and resumed active gas exchange during the normally light period. Similarly, the rate of whole-forest CO2 uptake at a predetermined irradiance declined during the late afternoon and early morning and increased during the middle of the day. We attribute these cycles to circadian rhythms that are analogous to ones that have been reported for herbaceous plants in the laboratory. The importance of endogenous gas exchange rhythms presents a previously unrecognized challenge for efforts to both interpret and model land-atmosphere energy and mass exchange.
NASA Astrophysics Data System (ADS)
Garner, G.; Hannah, D. M.; Malcolm, I.; Sadler, J. P.
2012-12-01
Riparian forest is recognised as important for moderating stream temperature variability and has the potential to mitigate thermal extremes in a changing climate. Previous research on the heat exchanges controlling water column temperature has often been short-term or seasonally-constrained, with the few multi-year studies limited to a maximum of two years. This study advances previous work by providing a longer-term perspective which allows assessment of inter-annual variability in stream temperature, microclimate and heat exchange dynamics between a semi-natural woodland and a moorland (no trees) reach of the Girnock Burn, a tributary of the Scottish Dee. Automatic weather stations collected 15-minute data over seven consecutive years, which to our knowledge is a unique data set in providing the longest term perspective to date on stream temperature, microclimate and heat exchange processes. Results for spring-summer indicate that the presence of a riparian canopy has a consistent effect between years in reducing the magnitude and variability of mean daily water column temperature and daily net energy totals. Differences in the magnitude and variability in net energy fluxes between the study reaches were driven primarily by fluctuations in net radiation and latent heat fluxes in response to between- and within-year variability in growth of the riparian forest canopy at the forest and prevailing weather conditions at both the forest and moorland. This research provides new insights on the inter-annual variability of stream energy exchanges for moorland and forested reaches under a wide range of climatological and hydrological conditions. The findings therefore provide a more robust process basis for modelling the impact of changes in forest practice and climate change on river thermal dynamics.
Steady-state canopy gas exchange: system design and operation
NASA Technical Reports Server (NTRS)
Bugbee, B.
1992-01-01
This paper describes the use of a commercial growth chamber for canopy photosynthesis, respiration, and transpiration measurements. The system was designed to measure transpiration via water vapor fluxes, and the importance of this measurement is discussed. Procedures for continuous measurement of root-zone respiration are described, and new data is presented to dispel myths about sources of water vapor interference in photosynthesis and in the measurement of CO2 by infrared gas analysis. Mitchell (1992) has described the fundamentals of various approaches to measuring photosynthesis. Because our system evolved from experience with other types of single-leaf and canopy gas-exchange systems, it is useful to review advantages and disadvantages of different systems as they apply to various research objectives.
Characterization of vertical mixing in oscillatory vegetated flows
NASA Astrophysics Data System (ADS)
Abdolahpour, M.; Ghisalberti, M.; Lavery, P.; McMahon, K.
2016-02-01
Seagrass meadows are primary producers that provide important ecosystem services, such as improved water quality, sediment stabilisation and trapping and recycling of nutrients. Most of these ecological services are strongly influenced by the vertical exchange of water across the canopy-water interface. That is, vertical mixing is the main hydrodynamic process governing the large-scale ecological and environmental impact of seagrass meadows. The majority of studies into mixing in vegetated flows have focused on steady flow environments whereas many coastal canopies are subjected to oscillatory flows driven by surface waves. It is known that the rate of mass transfer will vary greatly between unidirectional and oscillatory flows, necessitating a specific investigation of mixing in oscillatory canopy flows. In this study, we conducted an extensive laboratory investigation to characterise the rate of vertical mixing through a vertical turbulent diffusivity (Dt,z). This has been done through gauging the evolution of vertical profiles of concentration (C) of a dye sheet injected into a wave-canopy flow. Instantaneous measurement of the variance of the vertical concentration distribution ( allowed the estimation of a vertical turbulent diffusivity (). Two types of model canopies, rigid and flexible, with identical heights and frontal areas, were subjected to a wide and realistic range of wave height and period. The results showed two important mechanisms that dominate vertical mixing under different conditions: a shear layer that forms at the top of the canopy and wake turbulence generated by the stems. By allowing a coupled contribution of wake and shear layer mixing, we present a relationship that can be used to predict the rate of vertical mixing in coastal canopies. The results further showed that the rate of vertical mixing within flexible vegetation was always lower than the corresponding rigid canopy, confirming the impact of plant flexibility on canopy-flow interactions.
NASA Astrophysics Data System (ADS)
Ashworth, K.; Chung, S. H.; Griffin, R. J.; Chen, J.; Forkel, R.; Bryan, A. M.; Steiner, A. L.
2015-07-01
Biosphere-atmosphere interactions play a critical role in governing atmospheric composition, mediating the concentration of key species such as ozone and aerosol, thereby influencing air quality and climate. The exchange of reactive trace gases and their oxidation products (both gas and particle phase) is of particular importance in this process. The FORCAsT (FORest Canopy AtmoSphere Transfer) one-dimensional model is developed to study the emission, deposition, chemistry and transport of volatile organic compounds (VOCs) and their oxidation products in the atmosphere within and above the forest canopy. We include an equilibrium partitioning scheme, making FORCAsT one of the few canopy models currently capable of simulating the formation of secondary organic aerosols (SOA) from VOC oxidation in a forest environment. We evaluate the capability of FORCAsT to reproduce observed concentrations of key gas-phase species and report modeled SOA concentrations within and above a mixed forest at the University of Michigan Biological Station (UMBS) during the Community Atmosphere-Biosphere Interactions Experiment (CABINEX) field campaign in summer 2009. We examine the impact of two different gas-phase chemical mechanisms on modelled concentrations of short-lived primary emissions, such as isoprene and monoterpenes, and their oxidation products. While the two chemistry schemes perform similarly under high-NOx conditions, they diverge at the low levels of NOx at UMBS. We identify peroxy radical and alkyl nitrate chemistry as the key causes of the differences, highlighting the importance of this chemistry in understanding the fate of biogenic VOCs (bVOCs) for both the modelling and measurement communities.
NASA Astrophysics Data System (ADS)
Ashworth, K.; Chung, S. H.; Griffin, R. J.; Chen, J.; Forkel, R.; Bryan, A. M.; Steiner, A. L.
2015-11-01
Biosphere-atmosphere interactions play a critical role in governing atmospheric composition, mediating the concentrations of key species such as ozone and aerosol, thereby influencing air quality and climate. The exchange of reactive trace gases and their oxidation products (both gas and particle phase) is of particular importance in this process. The FORCAsT (FORest Canopy Atmosphere Transfer) 1-D model is developed to study the emission, deposition, chemistry and transport of volatile organic compounds (VOCs) and their oxidation products in the atmosphere within and above the forest canopy. We include an equilibrium partitioning scheme, making FORCAsT one of the few canopy models currently capable of simulating the formation of secondary organic aerosols (SOAs) from VOC oxidation in a forest environment. We evaluate the capability of FORCAsT to reproduce observed concentrations of key gas-phase species and report modeled SOA concentrations within and above a mixed forest at the University of Michigan Biological Station (UMBS) during the Community Atmosphere-Biosphere Interactions Experiment (CABINEX) field campaign in the summer of 2009. We examine the impact of two different gas-phase chemical mechanisms on modelled concentrations of short-lived primary emissions, such as isoprene and monoterpenes, and their oxidation products. While the two chemistry schemes perform similarly under high-NOx conditions, they diverge at the low levels of NOx at UMBS. We identify peroxy radical and alkyl nitrate chemistry as the key causes of the differences, highlighting the importance of this chemistry in understanding the fate of biogenic VOCs (bVOCs) for both the modelling and measurement communities.
Sensitivity of mesquite shrubland CO2 exchange to precipitation in contrasting landscape settings.
Potts, Daniel L; Scott, Russell L; Cable, Jessica M; Huxman, Travis E; Williams, David G
2008-10-01
In semiarid ecosystems, physiography (landscape setting) may interact with woody-plant and soil microbe communities to constrain seasonal exchanges of material and energy at the ecosystem scale. In an upland and riparian shrubland, we examined the seasonally dynamic linkage between ecosystem CO2 exchange, woody-plant water status and photosynthesis, and soil respiration responses to summer rainfall. At each site, we compared tower-based measurements of net ecosystem CO2 exchange (NEE) with ecophysiological measurements among velvet mesquite (Prosopis velutina Woot.) in three size classes and soil respiration in sub-canopy and inter-canopy micro-sites. Monsoonal rainfall influenced a greater shift in the magnitude of ecosystem CO2 assimilation in the upland shrubland than in the riparian shrubland. Mesquite water status and photosynthetic gas exchange were closely linked to the onset of the North American monsoon in the upland shrubland. In contrast, the presence of shallow alluvial groundwater in the riparian shrubland caused larger size classes of mesquite to be physiologically insensitive to monsoonal rains. In both shrublands, soil respiration was greatest beneath mesquite canopies and was coupled to shallow soil moisture abundance. Physiography, through its constraint on the physiological sensitivity of deeply rooted woody plants, may interact with plant-mediated rates of soil respiration to affect the sensitivity of semiarid-ecosystem carbon exchange in response to episodic rainfall.
S. M. Goltz
1996-01-01
In order to develop and evaluate models of net carbon exchange, we have collected profiles of CO2 through and above the canopy for extended periods over three years as well as collected short-term trial data of diurnal CO2, water vapor, and sensible heat fluxes above the canopy as measured by eddy correlation.
Measurements of soil and canopy exchange rates in the Amazon rain forest using Rn-222
NASA Technical Reports Server (NTRS)
Trumbore, S. E.; Keller, M.; Wofsy, S. C.; Da Costa, J. M.
1990-01-01
Measurements were taken of the emission of Rn-222 from Amazon forest rocks and soils and used as a tracer of ventilation of the forest canopy layer at night. It was determined that the greatest resistance to transfer of trace gases from the soil to the atmosphere lies in the soil air space. Profiles of Rn-222 and CO2 showed steepest concentration gradients in the layer between 0 and 3 m above soil surface. Aerodynamic resistances calculated for this layer from Rn-222 and CO2 varied from 1.6 to 18 s/cm, with greater resistance during the afternoon than at night. The resistance to exchange with air from the entire 41 m layer below the canopy averaged 4.8 s/cm during 13 nights of CO2 profiles. The calculated average time to flush the layer below 41 m is 5.5 hr, and it is concluded that this indicates that significant exchange occurs despite nocturnal stratification.
Forest canopy temperatures: dynamics, controls, and relationships with ecosystem fluxes
NASA Astrophysics Data System (ADS)
Still, C. J.; Griffith, D.; Kim, Y.; Law, B. E.; Hanson, C. V.; Kwon, H.; Schulze, M.; Detto, M.; Pau, S.
2017-12-01
Temperature strongly affects enzymatic reactions, ecosystem biogeochemistry, and species distributions. Although most focus is on air temperature, the radiative or skin temperature of plants is more relevant. Canopy skin temperature dynamics reflect biophysical, physiological, and anatomical characteristics and interactions with the environment, and can be used to examine forest responses to stresses like droughts and heat waves. Thermal infrared (TIR) imaging allows for extensive temporal and spatial sampling of canopy temperatures, particularly compared to spot measurements using thermocouples. We present results of TIR imaging of forest canopies at eddy covariance flux tower sites in the US Pacific Northwest and in Panama. These forests range from an old-growth temperate rainforest to a second growth semi-arid pine forest to a semi-deciduous tropical forest. Canopy temperature regimes at these sites are highly variable. Canopy temperatures at all forest sites displayed frequent departures from air temperature, particularly during clear sky conditions, with elevated canopy temperatures during the day and depressed canopy temperatures at night compared to air temperature. Comparison of canopy temperatures to fluxes of carbon dioxide, water vapor, and energy reveals stronger relationships than those found with air temperature. Daytime growing season net ecosystem exchange at the pine forest site is better explained by canopy temperature (r2 = 0.61) than air temperature (r2 = 0.52). At the semi-deciduous tropical forest, canopy photosynthesis is highly correlated with canopy temperature (r2 = 0.51), with a distinct optimum temperature for photosynthesis ( 31 °C) that agrees with leaf-level measurements. During the peak of one heat wave at an old-growth temperate rainforest, hourly averaged air temperature exceeded 35 °C, 10 °C above average. Peak hourly canopy temperature approached 40 °C, and leaf-to-air vapor pressure deficit exceeded 6 kPa. These extreme conditions had a dramatic effect on forest carbon and energy exchanges: the canopy switched from daytime net carbon uptake prior to the heatwave to net carbon release during and immediately after the heat wave. The latent heat flux from evapotranspiration increased during the heat wave, while sensible heat fluxes were lower.
NASA Astrophysics Data System (ADS)
Desrochers, S. J.; Slade, J. H., Jr.; Shepson, P. B.; Alwe, H. D.; Millet, D. B.; Kavassalis, S.; Shi, Q.; Murphy, J. G.; Bloss, W.; Wood, E.; Stevens, P. S.; Mauldin, L.; Cantrell, C. A.; Kim, T.; Zhou, X.; Helmig, D.; Shutter, J. D.; Rivera, J. C.; Keutsch, F. N.; Flynn, J. H., III; Alvarez, S. L.; Erickson, M.; Wang, W.; Griffin, R. J.; Bui, A. T.; Kim, K.; Wallace, H. W., IV
2017-12-01
Isoprene is the most abundant biogenic volatile organic compound (BVOC) emitted in forest ecosystems. Isoprene hydroxynitrates (IN) can be produced via OH oxidation of isoprene in the presence of NOx, thereby sequestering NOx, and limiting ozone production. Furthermore, IN can lead to the formation of secondary organic aerosols (SOA), which affect air quality and radiative forcing. Forest environments are often complex in terms of isoprene emission as a function of height through the canopy, and to date, there has been little study of chemistry below the canopy. However, the above- and below-canopy environments can be quite different, e.g. in terms of irradiance, NOx, and temperature. Thus, for example, there can be significantly more nitrate radical chemistry below canopy during daytime. Here we present and discuss IN measurements from the 2016 PROPHET-AMOS summer field campaign at the University of Michigan Biological Station (UMBS). IN was sampled from inlets at two heights, below the canopy and within the canopy, using a single quadrupole chemical ionization mass spectrometer, using I- ion chemistry. Differences in [IN] measured from the two inlets varied throughout the campaign, indicating a difference in the importance of light and dark dominated IN production pathways. Measurements of isoprene, terpenes, OH, HONO, HCHO, NOx, O3, HO2, H2O, jO3, jNO2, and jNO3 values conducted during the campaign were used to constrain a 0-D box model to simulate IN concentrations in order to better understand the influence of local-scale chemistry on IN production and destruction, and mixing below and through the forest canopy. Here we will compare measurements with model results, and discuss the implications for IN processing and mixing under the canopy and for nitrogen exchange above and below the forest canopy environment.
Dispersion of a Passive Scalar Within and Above an Urban Street Network
NASA Astrophysics Data System (ADS)
Goulart, E. V.; Coceal, O.; Belcher, S. E.
2018-03-01
The transport of a passive scalar from a continuous point-source release in an urban street network is studied using direct numerical simulation (DNS). Dispersion through the network is characterized by evaluating horizontal fluxes of scalar within and above the urban canopy and vertical exchange fluxes through the canopy top. The relative magnitude and balance of these fluxes are used to distinguish three different regions relative to the source location: a near-field region, a transition region and a far-field region. The partitioning of each of these fluxes into mean and turbulent parts is computed. It is shown that within the canopy the horizontal turbulent flux in the street network is small, whereas above the canopy it comprises a significant fraction of the total flux. Vertical fluxes through the canopy top are predominantly turbulent. The mean and turbulent fluxes are respectively parametrized in terms of an advection velocity and a detrainment velocity and the parametrization incorporated into a simple box-network model. The model treats the coupled dispersion problem within and above the street network in a unified way and predictions of mean concentrations compare well with the DNS data. This demonstrates the usefulness of the box-network approach for process studies and interpretation of results from more detailed numerical simulations.
Measuring Tree Properties and Responses Using Low-Cost Accelerometers
van Emmerik, Tim; Steele-Dunne, Susan; Hut, Rolf; ...
2017-05-11
Trees play a crucial role in the water, carbon and nitrogen cycle on local, regional and global scales. Understanding the exchange of momentum, heat, water, and CO 2 between trees and the atmosphere is important to assess the impact of drought, deforestation and climate change. Unfortunately, ground measurements of tree properties such as mass and canopy interception of precipitation are often expensive or difficult due to challenging environments. This paper aims to demonstrate the concept of using robust and affordable accelerometers to measure tree properties and responses. Tree sway is dependent on mass, canopy structure, drag coefficient, and wind forcing.more » By measuring tree acceleration, we can relate the tree motion to external forcing (e.g., wind, precipitation and related canopy interception) and tree physical properties (e.g., mass, elasticity). Using five months of acceleration data of 19 trees in the Brazilian Amazon, we show that the frequency spectrum of tree sway is related to mass, canopy interception of precipitation, and canopy–atmosphere turbulent exchange.« less
Measuring Tree Properties and Responses Using Low-Cost Accelerometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Emmerik, Tim; Steele-Dunne, Susan; Hut, Rolf
Trees play a crucial role in the water, carbon and nitrogen cycle on local, regional and global scales. Understanding the exchange of momentum, heat, water, and CO 2 between trees and the atmosphere is important to assess the impact of drought, deforestation and climate change. Unfortunately, ground measurements of tree properties such as mass and canopy interception of precipitation are often expensive or difficult due to challenging environments. This paper aims to demonstrate the concept of using robust and affordable accelerometers to measure tree properties and responses. Tree sway is dependent on mass, canopy structure, drag coefficient, and wind forcing.more » By measuring tree acceleration, we can relate the tree motion to external forcing (e.g., wind, precipitation and related canopy interception) and tree physical properties (e.g., mass, elasticity). Using five months of acceleration data of 19 trees in the Brazilian Amazon, we show that the frequency spectrum of tree sway is related to mass, canopy interception of precipitation, and canopy–atmosphere turbulent exchange.« less
Measuring Tree Properties and Responses Using Low-Cost Accelerometers
van Emmerik, Tim; Steele-Dunne, Susan; Hut, Rolf; Gentine, Pierre; Guerin, Marceau; Oliveira, Rafael S.; Wagner, Jim; Selker, John; van de Giesen, Nick
2017-01-01
Trees play a crucial role in the water, carbon and nitrogen cycle on local, regional and global scales. Understanding the exchange of momentum, heat, water, and CO2 between trees and the atmosphere is important to assess the impact of drought, deforestation and climate change. Unfortunately, ground measurements of tree properties such as mass and canopy interception of precipitation are often expensive or difficult due to challenging environments. This paper aims to demonstrate the concept of using robust and affordable accelerometers to measure tree properties and responses. Tree sway is dependent on mass, canopy structure, drag coefficient, and wind forcing. By measuring tree acceleration, we can relate the tree motion to external forcing (e.g., wind, precipitation and related canopy interception) and tree physical properties (e.g., mass, elasticity). Using five months of acceleration data of 19 trees in the Brazilian Amazon, we show that the frequency spectrum of tree sway is related to mass, canopy interception of precipitation, and canopy–atmosphere turbulent exchange. PMID:28492477
NASA Astrophysics Data System (ADS)
van Stan, J. T.; Levia, D. F.; Inamdar, S. P.; Mitchell, M. J.; Mage, S. M.
2010-12-01
Dissolved organic carbon (DOC) inputs from canopy-derived hydrologic fluxes play a significant role in the terrestrial carbon budgets of forested ecosystems. However, no studies known to the authors have examined the variability of both DOC concentrations and quality for stemflow across time scales, nor has any study to date evaluated the effects of canopy structure on stemflow DOC characteristics. This investigation seeks to rectify this knowledge gap by examining the variability of stemflow DOC concentrations and quality across contrasting canopy morphologies and time scales (seasonal, storm and intrastorm). Bulk and intrastorm stemflow samples from a less dense, rough-barked, more plagiophile (Liriodendron tulipifera L. (tulip poplar)) and a denser, thin-barked, more erectophile (Fagus grandifolia Ehrh. (American beech)) canopy were collected and analyzed for DOC quality using metrics derived from UV-vis spectroscopy (E2:E3 ratio, SUVA254, select spectral slope (S), and spectral slope ratios (SR)). Our results suggest that stemflow DOC concentrations and quality change as crown architectural traits enhance or diminish hydrologic retention time within the canopy. The architecture of L. tulipifera canopies likely retards the flow of intercepted water, increasing chemical exchange with bark and foliar surfaces. UV-vis metrics indicated that this increased chemical exchange, particularly with bark surfaces, generally enhanced aromatic hydrocarbon content and increased molecular weight. Because leaf presence influenced DOC quality, stemflow DOC characteristics also varied seasonally in response to canopy condition. At the inter- and intrastorm scale, stemflow DOC concentration and quality varied with meteorological and antecedent canopy conditions. Since recent studies have linked stemflow production to preferential subsurface transport of dissolved chemistries, trends in DOC speciation and fluxes described in this study may impact soil environments within wooded ecosystems.
A GUI-based Tool for Bridging the Gap between Models and Process-Oriented Studies
NASA Astrophysics Data System (ADS)
Kornfeld, A.; Van der Tol, C.; Berry, J. A.
2014-12-01
Models used for simulation of photosynthesis and transpiration by canopies of terrestrial plants typically have subroutines such as STOMATA.F90, PHOSIB.F90 or BIOCHEM.m that solve for photosynthesis and associated processes. Key parameters such as the Vmax for Rubisco and temperature response parameters are required by these subroutines. These are often taken from the literature or determined by separate analysis of gas exchange experiments. It is useful to note however that subroutines can be extracted and run as standalone models to simulate leaf responses collected in gas exchange experiments. Furthermore, there are excellent non-linear fitting tools that can be used to optimize the parameter values in these models to fit the observations. Ideally the Vmax fit in this way should be the same as that determined by a separate analysis, but it may not because of interactions with other kinetic constants and the temperature dependence of these in the full subroutine. We submit that it is more useful to fit the complete model to the calibration experiments rather as disaggregated constants. We designed a graphical user interface (GUI) based tool that uses gas exchange photosynthesis data to directly estimate model parameters in the SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes) model and, at the same time, allow researchers to change parameters interactively to visualize how variation in model parameters affect predicted outcomes such as photosynthetic rates, electron transport, and chlorophyll fluorescence. We have also ported some of this functionality to an Excel spreadsheet, which could be used as a teaching tool to help integrate process-oriented and model-oriented studies.
The role of forest floor and trees to the ecosystem scale methane budget of boreal forests
NASA Astrophysics Data System (ADS)
Pihlatie, Mari; Halmeenmäki, Elisa; Peltola, Olli; Haikarainen, Iikka; Heinonsalo, Jussi; Santalahti, Minna; Putkinen, Anuliina; Fritze, Hannu; Urban, Otmar; Machacova, Katerina
2016-04-01
Boreal forests are considered as a sink of atmospheric methane (CH4) due to the activity of CH4 oxidizing bacteria (methanotrophs) in the soil. This soil CH4 sink is especially strong for upland forest soils, whereas forests growing on organic soils may act as small sources due to the domination of CH4 production by methanogens in the anaerobic parts of the soil. The role of trees to the ecosystem-scale CH4 fluxes has until recently been neglected due to the perception that trees do not contribute to the CH4 exchange, and also due to difficulties in measuring the CH4 exchange from trees. Findings of aerobic CH4 formation in plants and emissions from tree-stems in temperate and tropical forests during the past decade demonstrate that our understanding of CH4 cycling in forest ecosystems is not complete. Especially the role of forest canopies still remain unresolved, and very little is known of CH4 fluxes from trees in boreal region. We measured the CH4 exchange of tree-stems and tree-canopies from pine (Pinus sylvestris), spruce (Picea abies) and birch (Betula pubescens, Betula pendula) trees growing in Southern Finland (SMEAR II station) on varying soil conditions, from upland mineral soils to paludified soil. We compared the CH4 fluxes from trees to forest-floor CH4 exchange, both measured by static chambers, and to CH4 fluxes measured above the forest canopy by a flux gradient technique. We link the CH4 fluxes from trees and forest floor to physiological activity of the trees, such as transpiration, sap-flow, CO2 net ecosystem exchange (NEE), soil properties such as temperature and moisture, and to the presence of CH4 producing methanogens and CH4 oxidizing methanotrophs in trees or soil. The above canopy CH4 flux measurements show that the whole forest ecosystem was a small source of CH4 over extended periods in the spring and summer 2012, 2014 and 2015. Throughout the 2013-2014 measurements, the forest floor was in total a net sink of CH4, with variation between high CH4 uptake in the dominating dry upland areas and high emissions from the few wet spots of the forest. All the studied tree species emitted small amounts of CH4 from the stems and shoots, with emission rates depending on the season, tree species and soil conditions. Especially, CH4 emissions from birch canopies were high and can therefore contribute significantly to the ecosystem-scale CH4 fluxes. Processes behind the canopy and stem CH4emission remain unresolved, however, ongoing analysis of the methanogens and methanotrophs within the plant-soil systems will reveal whether CH4 production or consumption is of microbial origin. Also, comparison of the CH4 fluxes from trees and forest floor to sap-flow, transpiration, and NEE as well as soil parameters will help to explain the seasonality and mechanisms involved in the CH4 emissions.
Athletic field paint color impacts transpiration and canopy temperature in bermudagrass
USDA-ARS?s Scientific Manuscript database
Athletic field paints have varying impacts on turfgrass health which have been linked to their ability to alter photosynthetically active radiation (PAR) and photosynthesis based on color. It was further hypothesized they may also alter transpiration and canopy temperature by disrupting gas exchange...
Nighttime wind and scalar variability within and above an Amazonian canopy
NASA Astrophysics Data System (ADS)
Oliveira, Pablo E. S.; Acevedo, Otávio C.; Sörgel, Matthias; Tsokankunku, Anywhere; Wolff, Stefan; Araújo, Alessandro C.; Souza, Rodrigo A. F.; Sá, Marta O.; Manzi, Antônio O.; Andreae, Meinrat O.
2018-03-01
Nocturnal turbulent kinetic energy (TKE) and fluxes of energy, CO2 and O3 between the Amazon forest and the atmosphere are evaluated for a 20-day campaign at the Amazon Tall Tower Observatory (ATTO) site. The distinction of these quantities between fully turbulent (weakly stable) and intermittent (very stable) nights is discussed. Spectral analysis indicates that low-frequency, nonturbulent fluctuations are responsible for a large portion of the variability observed on intermittent nights. In these conditions, the low-frequency exchange may dominate over the turbulent transfer. In particular, we show that within the canopy most of the exchange of CO2 and H2O happens on temporal scales longer than 100 s. At 80 m, on the other hand, the turbulent fluxes are almost absent in such very stable conditions, suggesting a boundary layer shallower than 80 m. The relationship between TKE and mean winds shows that the stable boundary layer switches from the very stable to the weakly stable regime during intermittent bursts of turbulence. In general, fluxes estimated with long temporal windows that account for low-frequency effects are more dependent on the stability over a deeper layer above the forest than they are on the stability between the top of the canopy and its interior, suggesting that low-frequency processes are controlled over a deeper layer above the forest.
Small pollutant concentration gradients between levels above a plant canopy result in large uncertainties in estimated air–surface exchange fluxes when using existing micrometeorological gradient methods, including the aerodynamic gradient method (AGM) and the modified Bowen rati...
Turbulent Structures in a Pine Forest with a Deep and Sparse Trunk Space: Stand and Edge Regions
NASA Astrophysics Data System (ADS)
Dupont, Sylvain; Irvine, Mark R.; Bonnefond, Jean-Marc; Lamaud, Eric; Brunet, Yves
2012-05-01
Forested landscapes often exhibit large spatial variability in vertical and horizontal foliage distributions. This variability may affect canopy-atmosphere exchanges through its action on the development of turbulent structures. Here we investigate in neutral stratification the turbulent structures encountered in a maritime pine forest characterized by a high, dense foliated layer associated with a deep and sparse trunk space. Both stand and edge regions are considered. In situ measurements and the results of large-eddy simulations are used and analyzed together. In stand conditions, far from the edge, canopy-top structures appear strongly damped by the dense crown layer. Turbulent wind fluctuations within the trunk space, where the momentum flux vanishes, are closely related to these canopy-top structures through pressure diffusion. Consequently, autocorrelation and spectral analyses are not quite appropriate to characterize the vertical scale of coherent structures in this type of canopy, as pressure diffusion enhances the actual scale of structures. At frequencies higher than those associated with canopy-top structures, wind fluctuations related to wake structures developing behind tree stems are observed within the trunk space. They manifest themselves in wind velocity spectra as secondary peaks in the inertial subrange region, confirming the hypothesis of spectral short-cuts in vegetation canopies. In the edge region specific turbulent structures develop just below the crown layer, in addition to canopy-top structures. They are generated by the wind shear induced by the sub-canopy wind jet that forms at the edge. These structures provide a momentum exchange mechanism similar to that observed at the canopy top but in the opposite direction and with a lower magnitude. They may develop as in plane mixing-layer flows, with some perturbations induced by canopy-top structures. Wake structures are also observed within the trunk space in the edge region.
NASA Astrophysics Data System (ADS)
Heskel, M.; Tang, J.
2017-12-01
Leaf-level photosynthesis and respiration are sensitive to short- and long-term changed in temperature, and how these processes respond to phenological and seasonal transitions and daily temperature variation dictate how carbon is first assimilated and released in terrestrial ecosystems. We examined the short-term temperature response of daytime leaf carbon exchange at Harvard Forest across growing season, with the specific objective to quantify the light inhibition of dark respiration and photorespiration in leaves and use this to better inform daytime carbon assimilation and efflux estimates at the canopy scale. Dark and light respiration increased with measurement temperature and varied seasonally in a proportional manner, with the level of inhibition remaining relatively constant through the growing season. Higher rates of mitochondrial respiration and photorespiration at warmer temperatures drove a lower carbon use efficiency. Using temperature, light, and canopy leaf area index values to drive models, we estimate partitioned ecosystem fluxes and re-calculate gross primary production under multiple scenarios that include and exclude the impact of light inhibition, thermal acclimation, and seasonal variation in physiology. Quantifying the contribution of these `small fluxes' to ecosystem carbon exchange in forests provides a nuanced approach for integrating physiology into regional model estimates derived from eddy covariance and remote-sensing methods.
Towards physiologically meaningful water-use efficiency estimates from eddy covariance data.
Knauer, Jürgen; Zaehle, Sönke; Medlyn, Belinda E; Reichstein, Markus; Williams, Christopher A; Migliavacca, Mirco; De Kauwe, Martin G; Werner, Christiane; Keitel, Claudia; Kolari, Pasi; Limousin, Jean-Marc; Linderson, Maj-Lena
2018-02-01
Intrinsic water-use efficiency (iWUE) characterizes the physiological control on the simultaneous exchange of water and carbon dioxide in terrestrial ecosystems. Knowledge of iWUE is commonly gained from leaf-level gas exchange measurements, which are inevitably restricted in their spatial and temporal coverage. Flux measurements based on the eddy covariance (EC) technique can overcome these limitations, as they provide continuous and long-term records of carbon and water fluxes at the ecosystem scale. However, vegetation gas exchange parameters derived from EC data are subject to scale-dependent and method-specific uncertainties that compromise their ecophysiological interpretation as well as their comparability among ecosystems and across spatial scales. Here, we use estimates of canopy conductance and gross primary productivity (GPP) derived from EC data to calculate a measure of iWUE (G 1 , "stomatal slope") at the ecosystem level at six sites comprising tropical, Mediterranean, temperate, and boreal forests. We assess the following six mechanisms potentially causing discrepancies between leaf and ecosystem-level estimates of G 1 : (i) non-transpirational water fluxes; (ii) aerodynamic conductance; (iii) meteorological deviations between measurement height and canopy surface; (iv) energy balance non-closure; (v) uncertainties in net ecosystem exchange partitioning; and (vi) physiological within-canopy gradients. Our results demonstrate that an unclosed energy balance caused the largest uncertainties, in particular if it was associated with erroneous latent heat flux estimates. The effect of aerodynamic conductance on G 1 was sufficiently captured with a simple representation. G 1 was found to be less sensitive to meteorological deviations between canopy surface and measurement height and, given that data are appropriately filtered, to non-transpirational water fluxes. Uncertainties in the derived GPP and physiological within-canopy gradients and their implications for parameter estimates at leaf and ecosystem level are discussed. Our results highlight the importance of adequately considering the sources of uncertainty outlined here when EC-derived water-use efficiency is interpreted in an ecophysiological context. © 2017 John Wiley & Sons Ltd.
Schymanski, Stanislaus J; Roderick, Michael L; Sivapalan, Murugesu; Hutley, Lindsay B; Beringer, Jason
2007-12-01
Photosynthesis provides plants with their main building material, carbohydrates, and with the energy necessary to thrive and prosper in their environment. We expect, therefore, that natural vegetation would evolve optimally to maximize its net carbon profit (NCP), the difference between carbon acquired by photosynthesis and carbon spent on maintenance of the organs involved in its uptake. We modelled N(CP) for an optimal vegetation for a site in the wet-dry tropics of north Australia based on this hypothesis and on an ecophysiological gas exchange and photosynthesis model, and compared the modelled CO2 fluxes and canopy properties with observations from the site. The comparison gives insights into theoretical and real controls on gas exchange and canopy structure, and supports the optimality approach for the modelling of gas exchange of natural vegetation. The main advantage of the optimality approach we adopt is that no assumptions about the particular vegetation of a site are required, making it a very powerful tool for predicting vegetation response to long-term climate or land use change.
The role of pre-event canopy storage in throughfall and stemflow by using isotopic tracers
S.T. Allen; J.R. Brooks; R.F. Keim; B.J. Bond; J.J. McDonnell
2014-01-01
Stable isotopes can be a valuable tool for tracing the redistribution, storage, and evaporation of water associated with canopy interception of rainfall. Isotopic differences between throughfall and rainfall have been attributed to three mechanisms: evaporative fractionation, isotopic exchange with ambient vapor, and temporal redistribution. We demonstrate the...
NASA Astrophysics Data System (ADS)
Wu, Z.; Walker, J. T.; Chen, X.; Oishi, A. C.; Duman, T.
2017-12-01
Estimating the source/sink distribution and vertical fluxes of air pollutants within and above forested canopies is critical for understanding biological, physical, and chemical processes influencing the soil-vegetation-atmosphere exchange. The vertical source-sink profiles of reactive nitrogen and sulfur were examined using multiple inverse modeling methods in a mixed hardwood forest in the southern Appalachian Mountains where the ecosystem is highly sensitive to loads of pollutant from atmospheric depositions. Measurements of the vertical concentration profiles of ammonia (NH3), nitric acid (HNO3), sulfur dioxide (SO2), and ammonium (NH4+), nitrate (NO3-), and sulfate (SO42-) in PM2.5 were measured during five study periods between May 2015 and August 2016. The mean concentration of NH3 decreased with height in the upper canopy and increased below the understory toward the forest floor, indicating that the canopy was a sink for NH3 but the forest floor was a source. All other species exhibited patterns of monotonically decreasing concentration from above the canopy to the forest floor. Using the measured concentration profiles, we simulated the within-canopy flow fields and estimated the vertical source-sink flux profiles using three inverse approaches: a Eulerian high-order closure model (EUL), a Lagrangian localized near-field (LNF) model, and a new full Lagrangian stochastic model (LSM). The models were evaluated using the within- and above-canopy eddy covariance flux measurements of heat, CO2 and H2O. Differences between models were analyzed and the flux profiles were used to investigate the origin and fate of reactive nitrogen and sulfur compounds within the canopy. The knowledge gained in this study will benefit the development of soil-vegetation-atmosphere models capable of partitioning canopy-scale deposition of nitrogen and sulfur to specific ecosystem compartments.
NASA Technical Reports Server (NTRS)
Massman, William J.
1987-01-01
The semianalytical model outlined in a previous study (Massman, 1987) to describe momentum exchange between the atmosphere and vegetated surfaces is extended to include the exchange of heat. The methods employed are based on one-dimensional turbulent diffusivities, and use analytical solutions to the steady-state diffusion equation. The model is used to assess the influence that the canopy foliage structure and density, the wind profile structure within the canopy, and the shelter factor can have upon the inverse surface Stanton number (kB exp -1), as well as to explore the consequences of introducing a scalar displacement height which can be different from the momentum displacement height. In general, the triangular foliage area density function gives results which agree more closely with observations than that for constant foliage area density. The intended application of this work is for parameterizing the bulk aerodynamic resistances for heat and momentum exchange for use within large-scale models of plant-atmosphere exchanges.
Deposition pattern and throughfall fluxes in secondary cool temperate forest, South Korea
NASA Astrophysics Data System (ADS)
Kumar Gautam, Mukesh; Lee, Kwang-Sik; Song, Byeong-Yeol
2017-07-01
Chemistry and deposition fluxes in the rainfall and throughfall of red pine (Pinus densiflora), black locust (Robinia pseudoacacia), and chestnut (Castanea crenata) monocultures, and mixed red pine-black locust-chestnut stands were examined in a nutrient-limited cool temperate forest of central South Korea. Throughfall was enriched in both basic and acidic constituents relative to rainfall, suggesting that both dry deposition and canopy leaching are important sources of throughfall constituents. Net throughfall fluxes (NTFs) of cations and anions significantly differed among four different stands as well as seasonally. Red pine exhibited highest fluxes (TF and NTF) for Ca2+, black locust for K+, mixed stands for Mg2+, and chestnut for Na+. In contrast, NTF of SO42-, NO3-, and NH4+was highest in the red pine, intermediate in the chestnut and mixed stands, and lowest in the black locust. In general, canopy uptake of H+ and NH4+ for all stands was higher in summer than in winter. Dry deposition appears to play a major role in atmospheric deposition to this cool temperate forest, especially in summer. Dry deposition for both cations and anions displayed high spatial variability, even though stands were adjacent to one another and experienced identical atmospheric deposition loads. Canopy leaching of K+ (95-78% of NTF), Mg2+ (92-23% of NTF), and Ca2+ (91-12% of NTF) was highest for the black locust, lowest for chestnut, and intermediate for the red pine and mixed stands. The present study documented significant changes in throughfall chemistry and NTF among different forest stands, which presumably be related with the differences in the canopy characteristics and differences in their scavenging capacity for dry deposition and canopy exchange. Difference in the canopy retention of H+ and base cation leaching suggests that canopy exchange was mainly driven by weak acid excretion and lesser by H+ exchange reaction. Our results indicate that despite a high base cation deposition, a combination of higher input of acidifying constituents, low soil pH, and total acidic deposition approaching South Korean critical loads make regional forest vulnerable to acidification.
NASA Astrophysics Data System (ADS)
McGowan, L. E.; Dahlke, H. E.; Paw U, K. T.
2015-12-01
Snow cover is a critical driver of the Earth's surface energy budget, climate change, and water resources. Variations in snow cover not only affect the energy budget of the land surface but also represent a major water supply source. In California, US estimates of snow depth, extent, and melt in the Sierra Nevada are critical to estimating the amount of water available for both California agriculture and urban users. However, accurate estimates of snow cover and snow melt processes in forested area still remain a challenge. Canopy structure influences the vertical and spatiotemporal distribution of snow, and therefore ultimately determines the degree and extent by which snow alters both the surface energy balance and water availability in forested regions. In this study we use the Advanced Canopy-Atmosphere-Soil algorithm (ACASA), a multi-layer soil-vegetation-atmosphere numerical model, to simulate the effect of different snow-covered canopy structures on the energy budget, and temperature and other scalar profiles within different forest types in the Sierra Nevada, California. ACASA incorporates a higher order turbulence closure scheme which allows the detailed simulation of turbulent fluxes of heat and water vapor as well as the CO2 exchange of several layers within the canopy. As such ACASA can capture the counter gradient fluxes within canopies that may occur frequently, but are typically unaccounted for, in most snow hydrology models. Six different canopy types were modeled ranging from coniferous forests (e.g. most biomass near the ground) to top-heavy (e.g. most biomass near the top of the crown) deciduous forests to multi-layered forest canopies (e.g. mixture of young and mature trees). Preliminary results indicate that the canopy shape and structure associated with different canopy types fundamentally influence the vertical scalar profiles (including those of temperature, moisture, and wind speed) in the canopy and thus alter the interception and snow melt dynamics in forested land surfaces. The turbulent transport dynamics, including counter-gradient fluxes, and radiation features including land surface albedo, are discussed in the context of the snow energy balance.
Niglas, Aigar; Papp, Kaisa; Sekiewicz, Maciej; Sellin, Arne
2017-09-01
Leaves have to acclimatize to heterogeneous radiation fields inside forest canopies in order to efficiently exploit diverse light conditions. Short-term effects of light quality on photosynthetic gas exchange, leaf water use and hydraulic traits were studied on Betula pendula Roth shoots cut from upper and lower thirds of the canopy of 39- to 35-year-old trees growing in natural forest stand, and illuminated with white, red or blue light in the laboratory. Photosynthetic machinery of the leaves developed in different spectral conditions acclimated differently with respect to incident light spectrum: the stimulating effect of complete visible spectrum (white light) on net photosynthesis is more pronounced in upper-canopy layers. Upper-canopy leaves exhibit less water saving behaviour, which may be beneficial for the fast-growing pioneer species on a daily basis. Lower-canopy leaves have lower stomatal conductance resulting in more efficient water use. Spectral gradients existing within natural forest stands represent signals for the fine-tuning of stomatal conductance and tree water relations to afford lavish water use in sun foliage and enhance leaf water-use efficiency in shade foliage sustaining greater hydraulic limitations. Higher sensitivity of hydraulic conductance of shade leaves to blue light probably contributes to the efficient use of short duration sunflecks by lower-canopy leaves. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A field experiment was conducted to study the ammonia exchange between plants and the atmosphere in a soybean field in Duplin County, North Carolina during the summer of 2002. Measurements indicate that the net canopy-scale ammonia exchange is bi-directional and has a significant...
Characterizing photosynthesis and transpiration of plant communities in controlled environments
NASA Technical Reports Server (NTRS)
Monje, O.; Bugbee, B.
1996-01-01
CO2 and water vapor fluxes of hydroponically grown wheat and soybean canopies were measured continuously in several environments with an open gas exchange system. Canopy CO2 fluxes reflect the photosynthetic efficiency of a plant community, and provide a record of plant growth and health. There were significant diurnal fluctuations in root and shoot CO2 fluxes, and in shoot water vapor fluxes. Canopy stomatal conductance (Gc) to water vapor was calculated from simultaneous measurements of canopy temperature (Tcan) and transpiration rates (Tr). Tr in the dark was substantial, and there were large diurnal fluctuations in both Gc and Tr. Canopy net Photosynthesis (Pnet), Tr, and Gc increased with increasing net radiation. Gc increased with Tr, suggesting that the stomata of plants in controlled environments (CEs) behave differently from field-grown plants. A transpiration model based on measurements of Gc was developed for CEs. The model accurately predicted Tr from a soybean canopy.
Optimality and nitrogen allocation in a tree canopy
D.Y. Hollinger
1996-01-01
Physical and functional properties of foliage were measured at a variety of microsites in a broad-leaved Nothofagus fusca (Hook. f.) Orst. canopy. The light climate of the foliage at these sites was monitored for 39 days in the late sprlng and early summer with in situ sensors. Foliage nitrogen content (N), mean leaf angle, and gas exchange...
Leaf area and its spatial distribution are key parameters in describing canopy characteristics. They determine radiation regimes and influence mass and energy exchange with the atmosphere. The evaluation of leaf area in conifer stands is particularly challengi...
Estimates of forest canopy height and aboveground biomass using ICESat.
Michael A. Lefsky; David J. Harding; Michael Keller; Warren B. Cohen; Claudia C. Carabajal; Fernando Del Bom Espirito-Santo; Maria O. Hunter; Raimundo de Oliveira Jr.
2005-01-01
Exchange of carbon between forests and the atmosphere is a vital component of the global carbon cycle. Satellite laser altimetry has a unique capability for estimating forest canopy height, which has a direct and increasingly well understood relationship to aboveground carbon storage. While the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land...
NASA Astrophysics Data System (ADS)
Savi, Flavia; Juráň, Stanislav; Fares, Silvano
2015-04-01
Bi-directional exchanges of Volatile Organic Compounds (VOCs) were investigated on a Mediterranean Holm oak forest in Castelporziano presidential estate, a peri-urban forest near the coast of Tyrrhenian sea, 20 Km from Rome downtown, Italy. Two field campaigns were carried out in January and August 2014 to explore VOCs fluxes in two seasons with different climate conditions and physiological activity of plants. Concentration of 23 compounds was measured using a proton transfer reaction - mass spectrometer (PTR-MS). These included biogenic products (BVOC - isoprene, monoterpenes), oxygenated BVOC (OVOC - methanol, acetaldehyde acetone) and VOC of anthropogenic origin (AVOC - acetonitrile, benzene, hexenal, toluene, xylenes). Each half-hour, we switched between measurement at high frequency above the canopy and sampling through a 5-levels gradient from soil to above the canopy. We used the eddy covariance technique to calculate fluxes above the canopy, while gradient measurements were used to estimate in-canopy source and sink distribution by applying an Inverse Lagrangian Transport Model (Karl et al., 2004, J.Geophys.Res). Ozone and NOx concentrations were also measured to better correlate VOCs exchanges with this important secondary pollutant. Low temperatures lead to almost negligible BVOC fluxes during Winter. Summer fluxes were largely represented by BVOC (mainly monoterpenes). The highest fluxes (up to 2.4 nmol m-2 s-1) were recorded in the central hour of the day in response to high light and temperature. Oxygenated compounds (methanol and acetone) showed different behaviour during the two seasons: in Winter a net release of these compounds was observed, while in Summer the canopy acted as a sink for OVOC except for the hottest hours when we observed significant emissions. OVOC source-sink distribution analysis helped identifying the canopy layers which mostly contributed to VOCs exchanges, thus underlining the importance of forest canopies in VOCs exchanges in the soil-plant-atmosphere continuum. AVOC (xylene, toluene and benzene) concentration in Winter was double than in Summer, despite the intense vehicular traffic towards the beach nearby the forest stand in August. Both in Winter and Summer, emission of AVOC from the forest were measured, although we excluded a biogenic source but rather a resuspension of compounds previously accumulated at night under shallow atmospheric boundary layer. Photochemically produced ozone was high during the central hours of the day (up to 40 and 70 ppb in Winter and Summer, respectively), while nocturnal concentration went down to less than 20 ppb. Stomata explained almost the totality of ozone fluxes during day (Fares et al., 2014, Agr.Forest.Meteorol), while other non-stomatal sinks including chemical reactions with VOcs were responsible for nocturnal ozone removal. We discuss here the importance of forest canopies in the interaction between VOC and secondary pollutants, such as ozone and NOx in a peculiar Mediterranean site where the sea-land breeze circulation allows a strong mixing between contaminated air from the city and cleaner air from the sea under high UV radiations and air temperatures.
Stably stratified canopy flow in complex terrain
NASA Astrophysics Data System (ADS)
Xu, X.; Yi, C.; Kutter, E.
2015-07-01
Stably stratified canopy flow in complex terrain has been considered a difficult condition for measuring net ecosystem-atmosphere exchanges of carbon, water vapor, and energy. A long-standing advection error in eddy-flux measurements is caused by stably stratified canopy flow. Such a condition with strong thermal gradient and less turbulent air is also difficult for modeling. To understand the challenging atmospheric condition for eddy-flux measurements, we use the renormalized group (RNG) k-ϵ turbulence model to investigate the main characteristics of stably stratified canopy flows in complex terrain. In this two-dimensional simulation, we imposed persistent constant heat flux at ground surface and linearly increasing cooling rate in the upper-canopy layer, vertically varying dissipative force from canopy drag elements, buoyancy forcing induced from thermal stratification and the hill terrain. These strong boundary effects keep nonlinearity in the two-dimensional Navier-Stokes equations high enough to generate turbulent behavior. The fundamental characteristics of nighttime canopy flow over complex terrain measured by the small number of available multi-tower advection experiments can be reproduced by this numerical simulation, such as (1) unstable layer in the canopy and super-stable layers associated with flow decoupling in deep canopy and near the top of canopy; (2) sub-canopy drainage flow and drainage flow near the top of canopy in calm night; (3) upward momentum transfer in canopy, downward heat transfer in upper canopy and upward heat transfer in deep canopy; and (4) large buoyancy suppression and weak shear production in strong stability.
NASA Technical Reports Server (NTRS)
Sakai, Ricardo K.; Fitzjarrald, David R.; Moore, Kathleen E.; Sicker, John W.; Munger, Willian J.; Goulden, Michael L.; Wofsy, Steven C.
1996-01-01
Temperate deciduous forest exhibit dramatic seasonal changes in surface exchange properties following on the seasonal changes in leaf area index. The canopy resistance to water vapor transport r(sub c) decreased abruptly at leaf emergence in each year but then also continued to decrease slowly during the remaining growing season due to slowly increasing LAI. Canopy resistance and PAR-albedo (albedo from photosynthetically active radiation) began to increase about one month before leaf fall with the diminishment of CO2 gradient above the canopy as well. At this time evaporation begun to be controlled as if the canopy were leafless.
NASA Astrophysics Data System (ADS)
Kipnis, E. L.; Murphy, M.; Klatt, A. L.; Miller, S. N.; Williams, D. G.
2015-12-01
Session H103: The Hydrology-Vegetation-Climate Nexus: Identifying Process Interactions and Environmental Shifts in Mountain Catchments Influence of Terrain and Land Cover on the Isotopic Composition of Seasonal Snowpack in Rocky Mountain Headwater Catchments Affected by Bark Beetle Induced Tree Mortality Evan L Kipnis, Melanie A Murphey, Alan Klatt, Scott N Miller, David G Williams Snowpack accumulation and ablation remain difficult to estimate in forested headwater catchments. How physical terrain and forest cover separately and interactively influence spatial patterns of snow accumulation and ablation largely shapes the hydrologic response to land cover disturbances. Analysis of water isotopes in snowpack provides a powerful tool for examining integrated effects of water vapor exchange, selective redistribution, and melt. Snow water equivalence (SWE), δ2H, δ18O and deuterium excess (D-excess) of snowpack were examined throughout winter 2013-2014 across two headwater catchments impacted by bark beetle induced tree mortality. A USGS 10m DEM and a derived land cover product from 1m NAIP imagery were used to examine the effects of terrain features (e.g., elevation, slope, aspect) and canopy disturbance (e.g., live, bark-beetle killed) as predictors of D-excess, an expression of kinetic isotope effects, in snowpack. A weighting of Akaike's Information Criterion (AIC) values from multiple spatially lagged regression models describing D-excess variation for peak snowpack revealed strong effects of elevation and canopy mortality, and weaker, but significant effects of aspect and slope. Snowpack D-excess was lower in beetle-killed canopy patches compared to live green canopy patches, and at lower compared to high elevation locations, suggesting that integrated isotopic effects of vapor exchange, vertical advection of melted snow, and selective accumulation and redistribution varied systematically across the two catchments. The observed patterns illustrate the potential for using D-excess to identify origins and timing of snowmelt runoff in streams and assessing the relative magnitude of different accumulation and ablation processes in snowpack evolution.
Yamaguchi, Daisuke P; Nakaji, Tatsuro; Hiura, Tsutom; Hikosaka, Kouki
2016-10-01
The effects of warming on the temperature response of leaf photosynthesis have become an area of major concern in recent decades. Although growth temperature (GT) and day length (DL) affect leaf gas exchange characteristics, the way in which these factors influence the temperature dependence of photosynthesis remains uncertain. We established open-top canopy chambers at the canopy top of a deciduous forest, in which average daytime leaf temperature was increased by 1.0 °C. We conducted gas exchange measurements for the canopy leaves of deciduous trees exposed to artificial warming during different seasons. The carbon dioxide assimilation rate at 20 °C (A 20 ) was not affected by warming, whereas that at 25 °C (A 25 ) tended to be higher in leaves exposed to warming. Warming increased the optimal temperature of photosynthesis by increasing the activation energy for the maximum rate of carboxylation. Regression analysis indicated that both GT and DL strongly influenced gas exchange characteristics. Sensitivity analysis revealed that DL affected A without obvious effects on the temperature dependence of A, whereas GT almost maintained constant A 20 and strongly influenced the temperature dependence. These results indicate that GT and DL have different influences on photosynthesis; GT and DL affect the 'slope' and intercept' of the temperature dependence of photosynthesis, respectively. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Roth, Travis R.; Nolin, Anne W.
2017-11-01
Forest cover modifies snow accumulation and ablation rates via canopy interception and changes in sub-canopy energy balance processes. However, the ways in which snowpacks are affected by forest canopy processes vary depending on climatic, topographic and forest characteristics. Here we present results from a 4-year study of snow-forest interactions in the Oregon Cascades. We continuously monitored snow and meteorological variables at paired forested and open sites at three elevations representing the Low, Mid, and High seasonal snow zones in the study region. On a monthly to bi-weekly basis, we surveyed snow depth and snow water equivalent across 900 m transects connecting the forested and open pairs of sites. Our results show that relative to nearby open areas, the dense, relatively warm forests at Low and Mid sites impede snow accumulation via canopy snow interception and increase sub-canopy snowpack energy inputs via longwave radiation. Compared with the Forest sites, snowpacks are deeper and last longer in the Open site at the Low and Mid sites (4-26 and 11-33 days, respectively). However, we see the opposite relationship at the relatively colder High sites, with the Forest site maintaining snow longer into the spring by 15-29 days relative to the nearby Open site. Canopy interception efficiency (CIE) values at the Low and Mid Forest sites averaged 79 and 76 % of the total event snowfall, whereas CIE was 31 % at the lower density High Forest site. At all elevations, longwave radiation in forested environments appears to be the primary energy component due to the maritime climate and forest presence, accounting for 93, 92, and 47 % of total energy inputs to the snowpack at the Low, Mid, and High Forest sites, respectively. Higher wind speeds in the High Open site significantly increase turbulent energy exchanges and snow sublimation. Lower wind speeds in the High Forest site create preferential snowfall deposition. These results show the importance of understanding the effects of forest cover on sub-canopy snowpack evolution and highlight the need for improved forest cover model representation to accurately predict water resources in maritime forests.
NASA Astrophysics Data System (ADS)
Simon, E.; Meixner, F. X.; Ganzeveld, L.; Kesselmeier, J.
2005-04-01
Detailed one-dimensional multilayer biosphere-atmosphere models, also referred to as CANVEG models, are used for more than a decade to describe coupled water-carbon exchange between the terrestrial vegetation and the lower atmosphere. Within the present study, a modified CANVEG scheme is described. A generic parameterization and characterization of biophysical properties of Amazon rain forest canopies is inferred using available field measurements of canopy structure, in-canopy profiles of horizontal wind speed and radiation, canopy albedo, soil heat flux and soil respiration, photosynthetic capacity and leaf nitrogen as well as leaf level enclosure measurements made on sunlit and shaded branches of several Amazonian tree species during the wet and dry season. The sensitivity of calculated canopy energy and CO2 fluxes to the uncertainty of individual parameter values is assessed. In the companion paper, the predicted seasonal exchange of energy, CO2, ozone and isoprene is compared to observations.
A bi-modal distribution of leaf area density with a total leaf area index of 6 is inferred from several observations in Amazonia. Predicted light attenuation within the canopy agrees reasonably well with observations made at different field sites. A comparison of predicted and observed canopy albedo shows a high model sensitivity to the leaf optical parameters for near-infrared short-wave radiation (NIR). The predictions agree much better with observations when the leaf reflectance and transmission coefficients for NIR are reduced by 25-40%. Available vertical distributions of photosynthetic capacity and leaf nitrogen concentration suggest a low but significant light acclimation of the rain forest canopy that scales nearly linearly with accumulated leaf area.
Evaluation of the biochemical leaf model, using the enclosure measurements, showed that recommended parameter values describing the photosynthetic light response, have to be optimized. Otherwise, predicted net assimilation is overestimated by 30-50%. Two stomatal models have been tested, which apply a well established semi-empirical relationship between stomatal conductance and net assimilation. Both models differ in the way they describe the influence of humidity on stomatal response. However, they show a very similar performance within the range of observed environmental conditions. The agreement between predicted and observed stomatal conductance rates is reasonable. In general, the leaf level data suggests seasonal physiological changes, which can be reproduced reasonably well by assuming increased stomatal conductance rates during the wet season, and decreased assimilation rates during the dry season.
The sensitivity of the predicted canopy fluxes of energy and CO2 to the parameterization of canopy structure, the leaf optical parameters, and the scaling of photosynthetic parameters is relatively low (1-12%), with respect to parameter uncertainty. In contrast, modifying leaf model parameters within their uncertainty range results in much larger changes of the predicted canopy net fluxes (5-35%).
NASA Astrophysics Data System (ADS)
Simon, E.; Meixner, F. X.; Ganzeveld, L.; Kesselmeier, J.
2005-09-01
Detailed one-dimensional multilayer biosphere-atmosphere models, also referred to as CANVEG models, are used for more than a decade to describe coupled water-carbon exchange between the terrestrial vegetation and the lower atmosphere. Within the present study, a modified CANVEG scheme is described. A generic parameterization and characterization of biophysical properties of Amazon rain forest canopies is inferred using available field measurements of canopy structure, in-canopy profiles of horizontal wind speed and radiation, canopy albedo, soil heat flux and soil respiration, photosynthetic capacity and leaf nitrogen as well as leaf level enclosure measurements made on sunlit and shaded branches of several Amazonian tree species during the wet and dry season. The sensitivity of calculated canopy energy and CO2 fluxes to the uncertainty of individual parameter values is assessed. In the companion paper, the predicted seasonal exchange of energy, CO2, ozone and isoprene is compared to observations.
A bi-modal distribution of leaf area density with a total leaf area index of 6 is inferred from several observations in Amazonia. Predicted light attenuation within the canopy agrees reasonably well with observations made at different field sites. A comparison of predicted and observed canopy albedo shows a high model sensitivity to the leaf optical parameters for near-infrared short-wave radiation (NIR). The predictions agree much better with observations when the leaf reflectance and transmission coefficients for NIR are reduced by 25-40%. Available vertical distributions of photosynthetic capacity and leaf nitrogen concentration suggest a low but significant light acclimation of the rain forest canopy that scales nearly linearly with accumulated leaf area.
Evaluation of the biochemical leaf model, using the enclosure measurements, showed that recommended parameter values describing the photosynthetic light response, have to be optimized. Otherwise, predicted net assimilation is overestimated by 30-50%. Two stomatal models have been tested, which apply a well established semi-empirical relationship between stomatal conductance and net assimilation. Both models differ in the way they describe the influence of humidity on stomatal response. However, they show a very similar performance within the range of observed environmental conditions. The agreement between predicted and observed stomatal conductance rates is reasonable. In general, the leaf level data suggests seasonal physiological changes, which can be reproduced reasonably well by assuming increased stomatal conductance rates during the wet season, and decreased assimilation rates during the dry season.
The sensitivity of the predicted canopy fluxes of energy and CO2 to the parameterization of canopy structure, the leaf optical parameters, and the scaling of photosynthetic parameters is relatively low (1-12%), with respect to parameter uncertainty. In contrast, modifying leaf model parameters within their uncertainty range results in much larger changes of the predicted canopy net fluxes (5-35%).
NASA Astrophysics Data System (ADS)
Everard, K.; Christen, A.; Sturman, A.; Skaloud, P.
2016-12-01
Knowledge of the dynamics and thermodynamics of katabatic flow is relevant in vineyards, where grapevines are sensitive to temperature changes (frost protection and cooling). Basic understanding of the occurrence and evolution of, and turbulence within, katabatic flow is well known over bare slopes. However, little work has been completed to extend this understanding to mid-sized canopies and how the presence of a canopy affects the turbulent exchange of momentum and heat within the flow. Measurements were carried out over a 6° vineyard slope near Oliver, BC, Canada in the Okanagan Valley between July 5 and July 22, 2016. The set-up consisted of an array of five vertically arranged CSAT 3D (Campbell Scientific, Inc.) ultrasonic anemometers at z = 0.45 m, 0.90 m, 1.49 m, 2.34 m, and 4.73 m above ground level (AGL), and a 2-D grid of 40 Type-E (copper-constantan) fine-wire thermocouples (FWTC) arranged at the same heights as the CSAT 3D array on 8 masts extending in the upslope (flow) direction at locations x = 0.0 m (CSAT 3D tower), 0.5 m, 1.0 m, 2.0 m, 4.0 m, 8.0 m, 16.0 m, and 32.0 m. The FWTC array formed a sheet of 40 sampling points in the upslope-vertical plane. The height of the grapevine canopy (h) was approximately 2 m AGL, and rows were aligned along the local slope direction with a row spacing of 2.45 m. CSAT-3s were sampled at 60 Hz with 20 Hz data recording, the FWTCs were sampled at 2 Hz, all synchronized by a data logger. Katabatic flow was observed on several nights during the campaign, with a wind speed maximum located within the canopy. This contribution will focus on the measurement techniques, combining ultrasonic anemometer data with the spatially synchronized FWTC array using image process techniques. We identify the dynamics and structure of the katabatic flow, relevant for heat exchange, using the spatial coherence of the temperature field given by the FWTC array. Improved knowledge of the vertical structure and the dynamics of katabatic flow within canopies allows better understanding of how it influences mass transport and cold-air pooling within the immediate grapevine canopy. Such understanding allows for better vineyard planning and management, as well as parameterizing model approaches to assist in forecasting the effect of such events on the thermal environment.
Zhenmin Tang; Jim L. Chambers; Mary A. Sword Sayer; James P. Barnett
2003-01-01
To assess the effects of stand density and canopy environment on tree physiology, we measured gas exchange responses of the same needle age class of 16-year-old loblolly pines (Pinus taeda L.) in thinned (512 trees ha-1) and non-thinned treatment plots (2,863 trees ha-1) in central Louisiana....
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greco, S.; Baldocchi, D.D.
1994-06-01
Long-term monitoring of CO[sub 2] and water vapor exchange is needed to determine components of the carbon and hydrologic cycles and to provide data for parameterizing and testing assessment models. Responding to this need we initiated a continous field measurement campaign in April 1993 in a deciduous forest growing near Oak Ridge, TN. The micrometerological eddy correlation method was used to measure flux densities of CO[sub 2] and water vapor over the canopy. Periodic measurements were made of stomatal resistence and pre-dawn water potential to characterize the photosynthetic capacity of the canopy. Three factors accounted for a disproportionate amount ofmore » seasonal variance in CO[sub 2] flux densities: photon flux densities, leaf area and the occurrence of drought. Positive and increasing magnitudes of carbon gain were observed between April and June as leaves expanded, the canopy closed and daily insolation increased. At midsummer a drought and heat spell were experienced. This period caused CO[sub 2] flux densities to decline. By late summer adequate precipitation and replenishment of soil water resurrected carbon uptake rates until autumnal leaf senescence and leaf fall.« less
NASA Astrophysics Data System (ADS)
Loubet, Benjamin; Gonzaga, Lais; Buysse, Pauline; Ciuraru, Raluca; Lafouge, Florence; Decuq, Céline; Zurfluh, Olivier; Fortineau, Alain; Fanucci, Olivier; Sarda-Esteve, Roland; Zannoni, Nora; Truong, Francois; Boissard, Christophe; Gros, Valérie
2017-04-01
Volatile organic compounds (VOC) are essential drivers of atmospheric chemistry. Many VOCs are emitted from and deposited to ecosystems. While forests and grasslands have already been substantially studied, exchanges of VOCs with crops are less known, although these ecosystems represent more than 50% of the surface in France. In this study, we analyze sources and sinks of VOCs in a wheat field (at the ICOS FR-GRI site near Paris) at anthesis based on measurements of fluxes, concentration profiles and branch chambers. The VOCs were measured using a PTR-TOF-Qi-MS (where Qi stands for Quad Ion guide). Air was successively sampled through lines located at different heights within and above the canopy, of which one was used for Eddy Covariance and located near a sonic anemometer. Additional measurements included the standard ICOS meteorological data as well as leaf area index profiles and photosynthesis curves at several heights in the canopy. We report fluxes and profiles for more than 500 VOCs. The deposition velocities of depositing compounds are compared to the maximum exchange velocity and the ozone deposition velocity. The sources and sinks location and magnitude are evaluated by inverse Lagrangian modelling assuming no reaction and simple reaction schemes in the canopy. The sources and sinks of VOC in the canopy are interpreted in terms crop phenology and the potential for reaction with ozone and NOx is evaluated. This study takes place in the ADEME CORTEA COV3ER French project (http://www6.inra.fr/cov3er).
Leaf gas exchange of mature bottomland oak trees
Rico M. Gazal; Mark E. Kubiske; Kristina F. Connor
2009-01-01
We determined how changes in environmental moisture affected leaf gas exchange in Nuttall (Quercus texana Buckley), overcup (Q. lyrata Walt.), and dominant and codominant swamp chestnut (Q. michauxii Nutt.) oak trees in Mississippi and Louisiana. We used canopy access towers to measure leaf level gas...
Bark Beetle Impacts on Ecosystem Processes are Over Quickly and Muted Spatially
NASA Astrophysics Data System (ADS)
Ewers, B. E.; Norton, U.; Borkhuu, B.; Reed, D. E.; Peckham, S. D.; Biederman, J. A.; King, A.; Gochis, D. J.; Brooks, P. D.; Harpold, A. A.; Frank, J. M.; Massman, W. J.; Mackay, D. S.; Pendall, E. G.
2013-12-01
The recent epidemic of bark beetles across western North America has impacted conifers from low to high elevations from New Mexico to Yukon. The mechanism of mortality is clear, with both mountain pine and spruce beetles killing trees by introducing xylem occluding blue stain fungi which dramatically stops transpiration. The visual impact of this outbreak is stunning, with mortality of canopy trees over 90% in some stands. However, emerging work shows that the impact on ecosystem processes is not as dramatic. We hypothesize that increased soil water and nitrogen sets up rapid succession of plant communities, which quickly restores ecosystem processing of water, carbon and nitrogen, while spatial patchiness of mortality and belowground responses mutes the impact as spatial scale increases from stands to watersheds. In support of our hypothesis we found 1) Soil nitrogen and moisture increase within one growing season but decrease to the same as uninfested stands five years later. 2) Soil respiration is correlated with live tree basal area suggesting a large component of autotrophic respiration. 3) Once stands have more than 50% basal area mortality, seedling density increases up to five fold and total non-tree understory cover increased two fold both within five years after infestation. 4) Ecosystem scale estimates of water vapor fluxes do not decline as rapidly as overstory leaf area. 5) Stable isotopes of snow, soil and stream water suggest that increased below canopy evapotranspiration nearly compensates for reduced canopy transpiration. 6) Nested watershed data shows that precipitation variations are much more important in regulating streamflow than changes in canopies from bark beetle induced mortality. These results were tested in the Terrestrial Regional Ecosystem Exchange Simulator (TREES) model. TREES was able to predict annual changes in the carbon fluxes but had difficulty simulating soil moisture and annual water budgets likely due to inadequate abiotic water vapor flux mechanisms and an explicit understory canopy layer. Our results show that ecosystems are resilient to the bark beetle epidemic and the resulting ecosystem process change is much less dramatic than might be expected based on the visual impact.
Diurnal leaf gas exchange survey, Feb2016-May2016, PA-SLZ, PA-PNM: Panama
Rogers, Alistair [Brookhaven National Lab; Serbin, Shawn [Brookhaven National Lab; Ely, Kim [Brookhaven National Lab; Wu, Jin [BNL; Wolfe, Brett [Smithsonian; Dickman, Turin [Los Alamos National Lab; Collins, Adam [Los Alamos National Lab; Detto, Matteo [Princeton; Grossiord, Charlotte [Los Alamos National Lab; McDowell, Nate [Los Alamos National Lab; Michaletz, Sean
2017-01-01
Diurnal leaf gas exchange survey measured on sunlit canopy trees on a monthly basis from Feb to May 2016 at SLZ and PNM. This data was collected as part of the 2016 ENSO campaign. See related datasets (existing and future) for further sample details, leaf water potential, LMA, leaf spectra, other gas exchange and leaf chemistry.
NASA Astrophysics Data System (ADS)
Ehrnsperger, Laura; Wunder, Tobias; Thomas, Christoph
2017-04-01
Forests are one of the dominant vegetation types on Earth and are an important sink for carbon on our planet. Forests are special ecosystems due to their great canopy height und complex architecture consisting of a subcanopy and a canopy layer, which changes the mechanisms of turbulent exchange within the plant canopy. To date, the sinks and sources of turbulence in forest canopies are not completely understood, especially the role of the pressure transport remains unclear. The INTRAMIX experiment was conducted in a mountainous Norway spruce (Picea abies) forest at the Fluxnet Waldstein site (DE-Bay) in Bavaria, Germany, for a period of 10 weeks in order to experimentally evaluate the significance of the pressure transport to the TKE budget for the first time. The INTRAMIX data of the dense mountain forest was compared to observations from a sparse Ponderosa pine (Pinus ponderosa) stand in Oregon, USA, to study the influence of forest architecture. We hypothesized that the pressure transport is more important in dense forest canopies as the crown decouples the subcanopy from the buoyancy- and shear-driven flow above the canopy. It is also investigated how atmospheric stability influences the TKE budget. Based upon model results from literature we expect the pressure transport to act as a source for TKE especially under free convective and unstable dynamic stability. Results to date indicate that pressure transport is most important in the subcanopy with decreasing magnitude with increasing height. Nevertheless, pressure transport is a continuous source of TKE above the canopy, while in the canopy and subcanopy layer pressure transport acts both as a sink and source term for TKE. In the tree crown layer pressure transport is a source in the morning and afternoon hours and acts as a sink during the evening, while in the subcanopy pressure transport is a source around noon and during the night and acts as a sink in the early morning and afternoon hours. This complementary pattern suggests that the pressure transport is an important means for exchanging TKE across canopy layers.
Spatial Variation In Growing Season Heat Sums Within Northern Hardwood Forest Canopy Gaps
Brian E. Potter; Paul J. Croft
2000-01-01
When a gap forms in a forest canopy, the first and most immediate effect on the exposed area is an increase in radiative exchange near the ground. More sunlight reaches the ground during the daytime, and at nighttime the ground is more exposed to longwave radiation influences from the sky. These changes in radiation lead directly to a different near-ground temperature...
NASA Astrophysics Data System (ADS)
Drewry, D.; Kumar, P.; Long, S.; Sivapalan, M.; Bernacchi, C.; Liang, X.
2009-12-01
The acclimation of terrestrial vegetation to changes in ambient growth environment has significant implications for land-atmosphere exchange of carbon dioxide (CO2) and energy, as well as critical ecosystem services such as food production. Recent field campaigns at the SoyFACE Free Air Carbon Enrichment (FACE) facility in central Illinois have provided clear evidence of the modification of structural, biochemical and ecophysiological properties of key agricultural species at CO2 concentrations projected for the middle of this century. While these acclamatory responses have been linked to changes in leaf-level gas exchange and leaf states (ie. leaf temperature and stomatal conductance), determining the implications for these changes at the canopy-scale has remained a challenge. Here we present a simulation analysis that examines the role of observed plant acclimation in two key mid-west agricultural species, soy (C3 photosynthetic pathway) and corn (C4 photosynthetic pathway), in modifying future carbon uptake and surface energy partitioning, crop water use and resilience to water stress. The model canopies are divided into multiple layers, allowing for resolution of the shortwave and longwave radiation regimes that drive photosynthesis, stomatal conductance and leaf energy balance in each layer, along with the canopy microclimate. The canopy component of the model is coupled to a multi-layer soil-root model that computes soil moisture and root water uptake at each time period, accounting for the effects of moisture stress on canopy functioning. Model skill in capturing the sub-diurnal variability in canopy-atmosphere fluxes is demonstrated using multi-year records of eddy covariance CO2, water vapor and heat fluxes collected at the Bondville (Illinois) AmeriFlux site. An evaluation of the ability of the model to simulate observed changes in energy balance components, leaf-level photosynthetic assimilation, leaf temperature and stomatal conductance under elevated CO2 concentrations projected for 2050 (550 ppm) is conducted through observations collected at SoyFACE over several recent growing seasons. With this validated model we quantify the role of structural, biochemical and ecophysiological acclimation on canopy-atmosphere exchange of CO2, water vapor and heat, and examine the within-canopy variability of flux densities and states to elevated CO2 perturbations. The role of meteorological forcing conditions and soil moisture status on mediating the changes in canopy-atmosphere interactions is examined. The model is then used to investigate the magnitude and direction of changes in fluxes and water use efficiency as ambient CO2 is elevated across a range of concentrations expected through the coming century.
Stem and leaf gas exchange and their responses to fire in a north Australian tropical savanna.
Cernusak, Lucas A; Hutley, Lindsay B; Beringer, Jason; Tapper, Nigel J
2006-04-01
We measured stem CO2 efflux and leaf gas exchange in a tropical savanna ecosystem in northern Australia, and assessed the impact of fire on these processes. Gas exchange of mature leaves that flushed after a fire showed only slight differences from that of mature leaves on unburned trees. Expanding leaves typically showed net losses of CO2 to the atmosphere in both burned and unburned trees, even under saturating irradiance. Fire caused stem CO2 efflux to decline in overstory trees, when measured 8 weeks post-fire. This decline was thought to have resulted from reduced availability of C substrate for respiration, due to reduced canopy photosynthesis caused by leaf scorching, and to priority allocation of fixed C towards reconstruction of a new canopy. At the ecosystem scale, we estimated the annual above-ground woody-tissue CO2 efflux to be 275 g C m(-2) ground area year(-1) in a non-fire year, or approximately 13% of the annual gross primary production. We contrasted the canopy physiology of two co-dominant overstory tree species, one of which has a smooth bark on its branches capable of photosynthetic re-fixation (Eucalyptus miniata), and the other of which has a thick, rough bark incapable of re-fixation (Eucalyptus tetrodonta). Eucalyptus miniata supported a larger branch sapwood cross-sectional area in the crown per unit subtending leaf area, and had higher leaf stomatal conductance and photosynthesis than E. tetrodonta. Re-fixation by photosynthetic bark reduces the C cost of delivering water to evaporative sites in leaves, because it reduces the net C cost of constructing and maintaining sapwood. We suggest that re-fixation allowed leaves of E. miniata to photosynthesize at higher rates than those of E. tetrodonta, while the two invested similar amounts of C in the maintenance of branch sapwood.
NASA Technical Reports Server (NTRS)
Nemani, Ramakrishna R.; Running, Steven W.
1989-01-01
Infrared surface temperatures from satellite sensors have been used to infer evaporation and soil moisture distribution over large areas. However, surface energy partitioning to latent versus sensible heat changes with surface vegetation cover and water availability. The hypothesis that the relationship between surface temperature and canopy density is sensitivite to seasonal changes in canopy resistance of conifer forests is presently tested. Surface temperature and canopy density were computed for a 20 x 25 km forested region in Montana, from the NOAA/AVHRR for 8 days during the summer of 1985. A forest ecosystem model, FOREST-BGC, simulated canopy resistance for the same period. For all eight days, surface temperatures had high association with canopy density, measured as Normalized Difference Vegetation Index, implying that latent heat exchange is the major cause of spatial variations in surface radiant tmeperatures.
Hubbard, Robert M; Bond, Barbara J; Senock, Randy S; Ryan, Michael G
2002-06-01
Recent studies have shown that stomata respond to changes in hydraulic conductance of the flow path from soil to leaf. In open-grown tall trees, branches of different heights may have different hydraulic conductances because of differences in path length and growth. We determined if leaf gas exchange, branch sap flux, leaf specific hydraulic conductance, foliar carbon isotope composition (delta13C) and ratios of leaf area to sapwood area within branches were dependent on branch height (10 and 25 m) within the crowns of four open-grown ponderosa pine (Pinus ponderosa Laws.) trees. We found no difference in leaf gas exchange or leaf specific hydraulic conductance from soil to leaf between the upper and lower canopy of our study trees. Branch sap flux per unit leaf area and per unit sapwood area did not differ between the 10- and 25-m canopy positions; however, branch sap flux per unit sapwood area at the 25-m position had consistently lower values. Branches at the 25-m canopy position had lower leaf to sapwood area ratios (0.17 m2 cm-2) compared with branches at the 10-m position (0.27 m2 cm-2) (P = 0.03). Leaf specific conductance of branches in the upper crown did not differ from that in the lower crown. Other studies at our site indicate lower hydraulic conductance, sap flux, whole-tree canopy conductance and photosynthesis in old trees compared with young trees. This study suggests that height alone may not explain these differences.
NASA Astrophysics Data System (ADS)
Chen, Xuelong; Su, Bob
2017-04-01
Remote sensing has provided us an opportunity to observe Earth land surface with a much higher resolution than any of GCM simulation. Due to scarcity of information for land surface physical parameters, up-to-date GCMs still have large uncertainties in the coupled land surface process modeling. One critical issue is a large amount of parameters used in their land surface models. Thus remote sensing of land surface spectral information can be used to provide information on these parameters or assimilated to decrease the model uncertainties. Satellite imager could observe the Earth land surface with optical, thermal and microwave bands. Some basic Earth land surface status (land surface temperature, canopy height, canopy leaf area index, soil moisture etc.) has been produced with remote sensing technique, which already help scientists understanding Earth land and atmosphere interaction more precisely. However, there are some challenges when applying remote sensing variables to calculate global land-air heat and water exchange fluxes. Firstly, a global turbulent exchange parameterization scheme needs to be developed and verified, especially for global momentum and heat roughness length calculation with remote sensing information. Secondly, a compromise needs to be innovated to overcome the spatial-temporal gaps in remote sensing variables to make the remote sensing based land surface fluxes applicable for GCM model verification or comparison. A flux network data library (more 200 flux towers) was collected to verify the designed method. Important progress in remote sensing of global land flux and evaporation will be presented and its benefits for GCM models will also be discussed. Some in-situ studies on the Tibetan Plateau and problems of land surface process simulation will also be discussed.
NASA Astrophysics Data System (ADS)
Gong, Jinnan; Wang, Ben; Jia, Xin; Feng, Wei; Zha, Tianshan; Kellomäki, Seppo; Peltola, Heli
2018-01-01
We used process-based modelling to investigate the roles of carbon-flux (C-flux) components and plant-interspace heterogeneities in regulating soil CO2 exchanges (FS) in a dryland ecosystem with sparse vegetation. To simulate the diurnal and seasonal dynamics of FS, the modelling considered simultaneously the CO2 production, transport and surface exchanges (e.g. biocrust photosynthesis, respiration and photodegradation). The model was parameterized and validated with multivariate data measured during the years 2013-2014 in a semiarid shrubland ecosystem in Yanchi, northwestern China. The model simulation showed that soil rewetting could enhance CO2 dissolution and delay the emission of CO2 produced from rooting zone. In addition, an ineligible fraction of respired CO2 might be removed from soil volumes under respiration chambers by lateral water flows and root uptakes. During rewetting, the lichen-crusted soil could shift temporally from net CO2 source to sink due to the activated photosynthesis of biocrust but the restricted CO2 emissions from subsoil. The presence of plant cover could decrease the root-zone CO2 production and biocrust C sequestration but increase the temperature sensitivities of these fluxes. On the other hand, the sensitivities of root-zone emissions to water content were lower under canopy, which may be due to the advection of water flows from the interspace to canopy. To conclude, the complexity and plant-interspace heterogeneities of soil C processes should be carefully considered to extrapolate findings from chamber to ecosystem scales and to predict the ecosystem responses to climate change and extreme climatic events. Our model can serve as a useful tool to simulate the soil CO2 efflux dynamics in dryland ecosystems.
NASA Astrophysics Data System (ADS)
Ogée, Jerome; Wehr, Richard; Commane, Roisin; Launois, Thomas; Meredith, Laura; Munger, Bill; Nelson, David; Saleska, Scott; Zahniser, Mark; Wofsy, Steve; Wingate, Lisa
2016-04-01
The net flux of carbon dioxide between the land surface and the atmosphere is dominated by photosynthesis and soil respiration, two of the largest gross CO2 fluxes in the carbon cycle. More robust estimates of these gross fluxes could be obtained from the atmospheric budgets of other valuable tracers, such as carbonyl sulfide (COS) or the carbon and oxygen isotope compositions (δ13C and δ18O) of atmospheric CO2. Over the past decades, the global atmospheric flask network has measured the inter-annual and intra-annual variations in the concentrations of these tracers. However, knowledge gaps and a lack of high-resolution multi-tracer ecosystem-scale measurements have hindered the development of process-based models that can simulate the behaviour of each tracer in response to environmental drivers. We present novel datasets of net ecosystem COS, 13CO2 and CO18O exchange and vertical profile data collected over 3 consecutive growing seasons (2011-2013) at the Harvard forest flux site. We then used the process-based model MuSICA (multi-layer Simulator of the Interactions between vegetation Canopy and the Atmosphere) to include the transport, reaction, diffusion and production of each tracer within the forest and exchanged with the atmosphere. Model simulations over the three years captured well the impact of diurnally and seasonally varying environmental conditions on the net ecosystem exchange of each tracer. The model also captured well the dynamic vertical features of tracer behaviour within the canopy. This unique dataset and model sensitivity analysis highlights the benefit in the collection of multi-tracer high-resolution field datasets and the developement of multi-tracer land surface models to provide valuable constraints on photosynthesis and respiration across scales in the near future.
Deficit irrigation: Arriving at the crop water stress index via gas exchange measurements
USDA-ARS?s Scientific Manuscript database
Plant gas exchange provides a highly sensitive measure of the degree of drought stress. Canopy temperature (Tc) provides a much easier to acquire indication of crop water deficit that has been used in irrigation scheduling systems, but interpretation of this measurement has proven difficult. Our goa...
NASA Astrophysics Data System (ADS)
Jocher, Georg; Marshall, John; Nilsson, Mats B.; Linder, Sune; De Simon, Giuseppe; Hörnlund, Thomas; Lundmark, Tomas; Näsholm, Torgny; Ottosson Löfvenius, Mikaell; Tarvainen, Lasse; Wallin, Göran; Peichl, Matthias
2018-02-01
Apparent net uptake of carbon dioxide (CO2) during wintertime by an ˜ 90 year old Scots pine stand in northern Sweden led us to conduct canopy decoupling and subcanopy advection investigations over an entire year. Eddy covariance (EC) measurements ran simultaneously above and within the forest canopy for that purpose. We used the correlation of above- and below-canopy standard deviation of vertical wind speed (σw) as decoupling indicator. We identified 0.33 m s-1 and 0.06 m s-1 as site-specific σw thresholds for above- and below-canopy coupling during nighttime (global radiation <20 W m-2) and 0.23 m s-1 and 0.06 m s-1 as daytime (global radiation >20 W m-2) σw thresholds. Decoupling occurred in 53% of the annual nighttime and 14% of the annual daytime. The annual net ecosystem exchange (NEE), gross ecosystem exchange (GEE), and ecosystem respiration (Reco) derived via two-level filtered EC data were -357 g C m-2, -1,138 g C m-2, and 781 g C m-2, respectively. In comparison, both single-level friction velocity (u*) and quality filtering resulted in 22% higher NEE, mainly caused by 16% lower Reco. GEE remained similar among filtering regimes. Accounting for changes of CO2 storage across the canopy in the single-level filtered data could only marginally decrease these discrepancies. Consequently, advection appears to be responsible for the major part of this divergence. We conclude that the two-level filter is necessary to adequately address decoupling and subcanopy advection at our site, and we recommend this filter for all forested EC sites.
NASA Astrophysics Data System (ADS)
Tesfuhuney, Weldemichael A.; Walker, Sue; Van Rensburg, Leon D.; Steyn, A. Stephan
2016-08-01
In a cropped field, microclimate and thermal stability conditions depend on the canopy structures and the prevailing weather. The main aim of the study therefore was to characterize the vertical profiles of weather variables within and above a maize (Zea mays L.) canopy and to describe the water vapour pressure deficit (VPD) under different atmospheric and soil surface conditions for both wide and narrow runoff strips with the in-field rainwater harvesting (IRWH) system. Micrometeorological measurements of wind, temperature and relative humidity were performed at eight levels, within canopy (1.8 and 2.1 m), and just above the canopy (2.4, 2.7, 3.0, and 3.3 m) up to reference levels (3.9 and 4.5 m) when the maize reached a maximum height of 2.2 m. Under incomplete canopy cover of the IRWH system, two important factors complicated evapotranspiration estimation, namely the local advection and high temperatures of the bare soil between adjacent plant rows. Diurnal variations of water vapour related to turbulence at each locality and its position in the thermal internal boundary layers. Generally, advection was more pronounced in wide runoff strips than narrow strips. On wide runoff strips the wind was more effective in replacing the air between the rows and maintained a higher driving force for evaporation. The maximum VPD over the narrow strips was observed at reference level during a dry day, at about 2.2 kPa in the afternoon, while wet day VPD reached a maximum of 1.8 kPa. The VPD of the wide runoff strips correlated negatively with wind speed, but showed a fairly positive correlation with some scattered values on wet days after rain. Therefore, profile characteristics within and above plant canopies played a key role in determining the VPD and consequently, could help to explain transpiration rates of crops. Hence, VPD relations enhanced the understanding of the heat energy exchange processes under the heterogeneous nature of maize canopy of the IRWH tillage system.
Modeling the effect of photosynthetic vegetation properties on the NDVI--LAI relationship.
Steltzer, Heidi; Welker, Jeffrey M
2006-11-01
Developing a relationship between the normalized difference vegetation index (NDVI) and the leaf area index (LAI) is essential to describe the pattern of spatial or temporal variation in LAI that controls carbon, water, and energy exchange in many ecosystem process models. Photosynthetic vegetation (PV) properties can affect the estimation of LAI, but no models integrate the effects of multiple species. We developed four alternative NDVI-LAI models, three of which integrate PV effects: no PV effects, leaf-level effects, canopy-level effects, and effects at both levels. The models were fit to data across the natural range of variation in NDVI for a widespread High Arctic ecosystem. The weight of evidence supported the canopy-level model (Akaike weight, wr = 0.98), which includes species-specific canopy coefficients that primarily scale fractional PV cover to LAI by accounting for the area of unexposed PV. Modeling the canopy-level effects improved prediction of LAI (R2 = 0.82) over the model with no PV effect (R2 = 0.71) across the natural range of variation in NDVI but did not affect the site-level estimate of LAI. Satellite-based methods to estimate species composition, a variable in the model, will need to be developed. We expect that including the effects of PV properties in NDVI-LAI models will improve prediction of LAI where species composition varies across space or changes over time.
Wohlfahrt, Georg; Brilli, Federico; Hörtnagl, Lukas; Xu, Xiaobin; Bingemer, Heinz; Hansel, Armin; Loreto, Francesco
2012-01-01
The theoretical basis for the link between the leaf exchange of carbonyl sulfide (COS), carbon dioxide (CO2) and water vapour (H2O) and the assumptions that need to be made in order to use COS as a tracer for canopy net photosynthesis, transpiration and stomatal conductance, are reviewed. The ratios of COS to CO2 and H2O deposition velocities used to this end are shown to vary with the ratio of the internal to ambient CO2 and H2O mole fractions and the relative limitations by boundary layer, stomatal and internal conductance for COS. It is suggested that these deposition velocity ratios exhibit considerable variability, a finding that challenges current parameterizations, which treat these as vegetation-specific constants. COS is shown to represent a better tracer for CO2 than H2O. Using COS as a tracer for stomatal conductance is hampered by our present poor understanding of the leaf internal conductance to COS. Estimating canopy level CO2 and H2O fluxes requires disentangling leaf COS exchange from other ecosystem sources/sinks of COS. We conclude that future priorities for COS research should be to improve the quantitative understanding of the variability in the ratios of COS to CO2 and H2O deposition velocities and the controlling factors, and to develop operational methods for disentangling ecosystem COS exchange into contributions by leaves and other sources/sinks. To this end, integrated studies, which concurrently quantify the ecosystem-scale CO2, H2O and COS exchange and the corresponding component fluxes, are urgently needed. We investigate the potential of carbonyl sulfide (COS) for being used as a tracer for canopy net photosynthesis, transpiration and stomatal conductance by examining the theoretical basis of the link between leaf COS, carbon dioxide (CO2) and water vapour (H2O) exchange. Our analysis identifies several limitations that need to be overcome to this end, however at present we lack appropriate ecosystem-scale field measurements for assessing their practical significance. It however appears that COS represents a better tracer for CO2 than H2O. Concurrent measurements of ecosystem scale COS, CO2 and H2O exchange are advocated. PMID:22017586
Dynamic control of photosynthetic photon flux for lettuce production in CELSS
NASA Technical Reports Server (NTRS)
Chun, C.; Mitchell, C. A.
1996-01-01
A new dynamic control of photosynthetic photon flux (PPF) was tested using lettuce canopies growing in the Minitron II plant-growth/canopy gas-exchange system. Canopy photosynthetic rates (Pn) were measured in real time and fedback for further environment control. Pn can be manipulated by changing PPF, which is a good environmental parameter for dynamic control of crop production in a Controlled Ecological Life-Support Systems CELSS. Decision making that combines empirical mathematical models with rule sets developed from recent experimental data was tested. With comparable yield indices and potential for energy savings, dynamic control strategies will contribute greatly to the sustainability of space-deployed CELSS.
Forest Canopy Processes in a Regional Chemical Transport Model
NASA Astrophysics Data System (ADS)
Makar, Paul; Staebler, Ralf; Akingunola, Ayodeji; Zhang, Junhua; McLinden, Chris; Kharol, Shailesh; Moran, Michael; Robichaud, Alain; Zhang, Leiming; Stroud, Craig; Pabla, Balbir; Cheung, Philip
2016-04-01
Forest canopies have typically been absent or highly parameterized in regional chemical transport models. Some forest-related processes are often considered - for example, biogenic emissions from the forests are included as a flux lower boundary condition on vertical diffusion, as is deposition to vegetation. However, real forest canopies comprise a much more complicated set of processes, at scales below the "transport model-resolved scale" of vertical levels usually employed in regional transport models. Advective and diffusive transport within the forest canopy typically scale with the height of the canopy, and the former process tends to dominate over the latter. Emissions of biogenic hydrocarbons arise from the foliage, which may be located tens of metres above the surface, while emissions of biogenic nitric oxide from decaying plant matter are located at the surface - in contrast to the surface flux boundary condition usually employed in chemical transport models. Deposition, similarly, is usually parameterized as a flux boundary condition, but may be differentiated between fluxes to vegetation and fluxes to the surface when the canopy scale is considered. The chemical environment also changes within forest canopies: shading, temperature, and relativity humidity changes with height within the canopy may influence chemical reaction rates. These processes have been observed in a host of measurement studies, and have been simulated using site-specific one-dimensional forest canopy models. Their influence on regional scale chemistry has been unknown, until now. In this work, we describe the results of the first attempt to include complex canopy processes within a regional chemical transport model (GEM-MACH). The original model core was subdivided into "canopy" and "non-canopy" subdomains. In the former, three additional near-surface layers based on spatially and seasonally varying satellite-derived canopy height and leaf area index were added to the original model structure. Process methodology for deposition, biogenic emissions, shading, vertical diffusion, advection, chemical reactive environment and particle microphysics were modified to account for expected conditions within the forest canopy and the additional layers. The revised and original models were compared for a 10km resolution domain covering North America, for a one-month duration simulation. The canopy processes were found to have a very significant impact on model results. We will present a comparison to network observations which suggests that forest canopy processes may account for previously unexplained local and regional biases in model ozone predictions noted in GEM-MACH and other models. The impact of the canopy processes on NO2, PM2.5, and SO2 performance will also be presented and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, Alexander M.; Cheng, Susan J.; Ashworth, Kirsti
Foliar emissions of biogenic volatile organic compounds (BVOC)dimportant precursors of tropospheric ozone and secondary organic aerosolsdvary widely by vegetation type. Modeling studies to date typi-cally represent the canopy as a single dominant tree type or a blend of tree types, yet many forests are diverse with trees of varying height. To assess the sensitivity of biogenic emissions to tree height vari-ation, we compare two 1-D canopy model simulations in which BVOC emission potentials are homo-geneous or heterogeneous with canopy depth. The heterogeneous canopy emulates the mid-successional forest at the University of Michigan Biological Station (UMBS). In this case, high-isoprene-emitting fo-liagemore » (e.g., aspen and oak) is constrained to the upper canopy, where higher sunlight availability increases the light-dependent isoprene emission, leading to 34% more isoprene and its oxidation products as compared to the homogeneous simulation. Isoprene declines from aspen mortality are 10% larger when heterogeneity is considered. Overall, our results highlight the importance of adequately representing complexities of forest canopy structure when simulating light-dependent BVOC emissions and chemistry.« less
NASA Astrophysics Data System (ADS)
Hollinger, D. Y.; Aber, J.; Dail, B.; Davidson, E.; Fernandez, I.; Goltz, S.; LeClerc, M.; Sievering, H.
2001-12-01
We are conducting a large-scale ecosystem manipulation experiment to evaluate the hypothesis that anthropogenic nitrogen (N) deposition is enhancing forest ecosystem carbon sequestration. About 21 ha of spruce-hemlock forest in central Maine was fertilized at a rate of 18 kg N/ha/y in 2001 with additional applications planned in 2002-3. The N application is in liquid form to the canopy to more closely duplicate actual N deposition processes than previous studies that have applied fertilizer to the forest floor. The impact of this treatment on net ecosystem CO2 exchange (NEE) is being evaluated with the eddy covariance technique. Model simulations suggest that with low-moderate N uptake efficiency (20-50 percent), canopy photosynthesis (GEE) and NEE will each increase in the experimental treatment by readily detectable amounts (7-17 percent and 12-33 percent) after the first year of N addition, with further increases possible in subsequent years. We are using 15N labeled fertilizer on subplots in the treatment area and biomass measurements to independently assess C sequestration changes and partitioning following N addition.
Asko Noormets; Steve G. McNulty; Jared L. DeForest; Ge Sun; Qinglin Li; Jiquan Chen
2008-01-01
Climate change projections predict an intensifying hydrologic cycle and an increasing frequency of droughts, yet quantitative understanding of the effects on ecosystem carbon exchange remains limitedHere, the effect of contrasting precipitation and soil moisture dynamics were evaluated on forest carbon exchange using 2 yr of...
Van Stan, John T; Levia, Delphis F; Inamdar, Shreeram P; Lepori-Bui, Michelle; Mitchell, Myron J
2012-07-15
Seasonal variations in the washoff and leaching dynamics of throughfall ionic fluxes represent a significant process affecting the biogeochemical cycling of forested ecosystems-particularly for temperate deciduous forests with distinct phenological seasons (or "phenoseasons"). Most studies on temperate deciduous forests aggregate seasonal throughfall fluxes to the leafed (growing) and leafless (dormant) periods, yet the phenological conditions controlling seasonality demand finer-scale demarcations that include the transitional phenoseasons (leaf senescence and emergence). To fill these gaps our study examines the washoff and leaching dynamics of Na(+), Mg(2+), K(+), Ca(2+), Cl(-), SO(4)(2-), and NO(3)(-) throughfall derived from bulk and sequentially sampled rain events across leafed, leafless and both transitional phenoseasons over a 3-year period (2008-2010). As throughfall washoff and leached solute fluxes are also closely-coupled to rainfall conditions, we further examine the effects of storm characteristics on phenoseasonal washoff-dominated (Na(+) and Cl(-)) and leaching-dominated (K(+), Ca(2+), Mg(2+)) fluxes through intrastorm event comparison plots and factorial MANOVA. Highly significant differences in leached and washoff solute fluxes were found across meteorological conditions (p<0.001) nested within phenoseasonal divisions (p<0.00001). Phenoseasonal washoff Na(+) and Cl(-) fluxes seemed to be more closely related to leaf area; whereas, leaching flux and canopy exchange of all solutes to correspond more with major phenological changes (when the canopies tend to be most metabolically active). The greatest differences in leached Mg(2+), K(+), Ca(2+), and SO(4)(2-) fluxes were not between the full leafed and leafless phenoseasons (33-80% difference), but between the transitional periods (80 to 200 fold greater during leaf senescence than leaf emergence). Intrastorm average canopy NO(3)(-) leaching, however, ranged from low losses (1 μmol(c)m(-2)h(-1)) to canopy uptake (-2 μmol(c)m(-2)h(-1)) during both transitional phenoseasons. K(+), Ca(2+), Mg(2+) were all markedly more exchangeable during senescence, with Ca(2+) and Mg(2+) being more tightly held by the canopy. Leaching rates and fluxes for all measured solutes were negligible to negative during emergence, except for K(+) and SO(4)(2-). Our results indicate that much of the variance in timing and magnitude of throughfall solute fluxes to forest soils within temperate deciduous ecosystems may be ascribed to phenologically-delineated seasons and storm conditions. Copyright © 2012 Elsevier B.V. All rights reserved.
C. Song; M.B. Dickinson
2008-01-01
Leaves are the primary interface where energy, water and carbon exchanges occur between the forest ecosystems and the atmosphere. Leaf area index (LAI) is a measure of the amount of leaf area in a stand, and the tree crown size characterizes how leaves are clumped in the canopy. Both LAI and tree crown size are of essential ecological and management value. There is a...
NASA Astrophysics Data System (ADS)
Simon, E.; Meixner, F. X.; Rummel, U.; Ganzeveld, L.; Ammann, C.; Kesselmeier, J.
2005-10-01
A one-dimensional multi-layer scheme describing the coupled exchange of energy and CO2, the emission of isoprene and the dry deposition of ozone is applied to a rain forest canopy in southwest Amazonia. The model was constrained using mean diel cycles of micrometeorological quantities observed during two periods in the wet and dry season 1999. Calculated net fluxes and concentration profiles for both seasonal periods are compared to observations made at two nearby towers.
The modeled day- and nighttime thermal stratification of the canopy layer is consistent with observations in dense canopies. The observed and modeled net fluxes above and H2O and CO2 concentration profiles within the canopy show a good agreement. The predicted net carbon sink decreases from 2.5 t C ha-1 yr-1 for wet season conditions to 1 t C ha-1 yr-1 for dry season conditions, whereas observed and modeled midday Bowen ratio increases from 0.5 to 0.8. The evaluation results confirmed a seasonal variability of leaf physiological parameters, as already suggested in a companion study. The calculated midday canopy net flux of isoprene increased from 7.1 mg C m-2 h-1 during the wet season to 11.4 mg C m-2 h-1 during the late dry season. Applying a constant emission capacity in all canopy layers, resulted in a disagreement between observed and simulated profiles of isoprene concentrations, suggesting a smaller emission capacity of shade adapted leaves and deposition to the soil or leaf surfaces. Assuming a strong light acclimation of emission capacity, equivalent to a 66% reduction of the standard emission factor for leaves in the lower canopy, resulted in a better agreement of observed and modeled concentration profiles and a 30% reduction of the canopy net flux compared to model calculations with a constant emission factor. The mean calculated ozone flux for dry season conditions at noontime was ≍12 n mol m-2 s-1, agreeing well with observed values. The corresponding deposition velocity increased from 0.8 cm s-1 to >1.6 cm s-1 in the wet season, which can not be explained by increased stomatal uptake. Considering reasonable physiological changes in stomatal regulation, the modeled value was not larger than 1.05 cm s-1. Instead, the observed fluxes could be explained with the model by decreasing the cuticular resistance to ozone deposition from 5000 to 1000 s m-1.
Diurnal Reflectance Changes in Vegetation Observed with AVIRIS
NASA Technical Reports Server (NTRS)
Vanderbilt, V. C.; Ambrosia, V. G.; Ustin, S. L.
1998-01-01
Among the most important short-term dynamic biological processes are diurnal changes in canopy water relations. Plant regulation of water transport through stomatal openings affects other gaseous transport processes, often dramatically decreasing photosynthetic fixation of carbon dioxide during periods of water stress. Water stress reduces stomatal conductance of water vapor through the leaf surface and alters the diurnal timing of stomatal opening. Under non-water stressed conditions, stomates typically open soon after dawn and transpire water vapor throughout the daylight period. During stress periods, stomates may close for part of the day, generally near mid-day. Under prolonged stress conditions, stomatal closure shifts to earlier times during the day; stomates may close by mid-morning and remain closed until the following morning - or remain closed entirely. Under these conditions the relationship between canopy greenness (e.g., measured with a vegetation index or by spectral mixture analysis) and photosynthetic fixation of carbon is lost and the remotely sensed vegetation metric is a poor predictor of gas exchange. Prediction of stomatal regulation and exchange of water and trace gases is critical for ecosystem and climate models to correctly estimate budgets of these gases and understand or predict other processes like gross and net ecosystem primary production. Plant gas exchange has been extensively studied by physiologists at the leaf and whole plant level and by biometeorologists at somewhat larger scales. While these energy driven processes follow a predictable if somewhat asymmetric diurnal cycle dependent on soil water availability and the constraints imposed by the solar energy budget, they are nonetheless difficult to measure at the tree and stand levels using conventional methods. Ecologists have long been interested in the potential of remote sensing for monitoring physiological changes using multi-temporal images. Much of this research has focused on day-to-day changes in water use, especially for agricultural applications. Ustin et al. showed seasonal changes in canopy water content in chaparral shrub could be estimated using optical methods. Vanderbilt et al. followed asymmetric diurnal changes in the reflectance of a walnut orchard, but could not attribute specific reflectance changes to specific changes in canopy architecture or physiology. Forests and shrub lands in California experience prolonged periods of drought, sometimes extending six months without precipitation. The conifer and evergreen chaparral communities common to the foothill region around the central valley of California retain their foliage throughout the summer and have low transpiration rates despite high net radiation and temperature conditions. In contrast, grasslands and drought resistant deciduous species in the same habitat are seasonally dormant in summer. Because of differences in the mechanisms of drought tolerance, rooting depth and physiology between different plant communities in the region, it is likely that they display differences in diurnal water relations. The presence of diverse plant communities provides an opportunity to investigate possible diurnal landscape patterns in water relations that could be observed by an airborne hyperspectral scanner. This investigation of AVIRIS data collected over forest and shrub land represents the continuation of a prior investigation involving spectral mixture analysis of diurnal effects in the same AVIRIS data set.
NASA Astrophysics Data System (ADS)
Cammalleri, C.; Anderson, M. C.; Ciraolo, G.; Durso, G.; Kustas, W. P.; La Loggia, G.; Minacapilli, M.
2010-12-01
For open orchard and vineyard canopies containing significant fractions of exposed soil (>50%), typical of Mediterranean agricultural regions, the energy balance of the vegetation elements is strongly influenced by heat exchange with the bare soil/substrate. For these agricultural systems a "two-source" approach, where radiation and turbulent exchange between the soil and canopy elements are explicitly modelled, appears to be the only suitable methodology for reliably assessing energy fluxes. In strongly clumped canopies, the effective wind speed profile inside and below the canopy layer can strongly influence the partitioning of energy fluxes between the soil and vegetation components. To assess the impact of in-canopy wind profile on model flux estimates, an analysis of three different formulations is presented, including algorithms from Goudriaan (1977), Massman (1987) and Lalic et al. (2003). The in-canopy wind profile formulations are applied to the thermal-based two-source energy balance (TSEB) model developed by Norman et al. (1995) and modified by Kustas and Norman (1999). High resolution airborne remote sensing images, collected over an agricultural area located in the western part of Sicily (Italy) comprised primarily of vineyards, olive and citrus orchards, are used to derive all the input parameters needed to apply the TSEB. The images were acquired from June to October 2008 and include a relatively wide range of meteorological and soil moisture conditions. A preliminary sensitivity analysis of the three wind profile algorithms highlights the dependence of wind speed just above the soil/substrate to leaf area index and canopy height over the typical range of canopy properties encountered in these agricultural areas. It is found that differences among the models in wind just above the soil surface are most significant under sparse and medium fractional cover conditions (15-50%). The TSEB model heat flux estimates are compared with micro-meteorological measurements from a small aperture scintillometer and an eddy covariance tower collected over an olive orchard characterized by moderate fractional vegetation cover (≍35%) and relatively tall crop (≍3.5 m). TSEB fluxes for the 7 image acquisition dates generated using both the Massman and Goudriaan in-canopy wind profile formulations give close agreement with measured fluxes, while the Lalic et al. equations yield poor results. The Massman wind profile scheme slightly outperforms that of Goudriaan, but it requires an additional parameter accounting for the roughness sub-layer of the underlying vegetative surface. The analysis also suggests that within-canopy wind profile model discrepancies become important, in terms of impact on modelled sensible heat flux, only for sparse canopies with moderate vegetation coverage.
NASA Astrophysics Data System (ADS)
Cammalleri, C.; Anderson, M. C.; Ciraolo, G.; D'Urso, G.; Kustas, W. P.; La Loggia, G.; Minacapilli, M.
2010-07-01
For open orchard and vineyard canopies containing significant fractions of exposed soil (>50%), typical of Mediterranean agricultural regions, the energy balance of the vegetation elements is strongly influenced by heat exchange with the bare soil/substrate. For these agricultural systems a "two-source" approach, where radiation and turbulent exchange between the soil and canopy elements are explicitly modelled, appears to be the only suitable methodology for reliably assessing energy fluxes. In strongly clumped canopies, the effective wind speed profile inside and below the canopy layer can highly influence the partitioning of energy fluxes between the soil and vegetation components. To assess the impact of in-canopy wind profile on model flux estimates, an analysis of three different formulations is presented, including algorithms from Goudriaan (1977), Massman (1987) and Lalic et al. (2003). The in-canopy wind profile formulations are applied to the thermal-based Two-Source Energy Balance (TSEB) model developed by Norman et al. (1995) and modified by Kustas and Norman (1999). High resolution airborne remote sensing images, collected over an agricultural area located in the western part of Sicily (Italy) comprised primarily of vineyards, olive and citrus orchards, are used to derive all the input parameters need to apply the TSEB. The images were acquired from June to October 2008 and include a relatively wide range of meteorological and soil moisture conditions. A preliminary sensitivity analysis of the three wind profile algorithms highlight the dependence of wind speed just above the soil/substrate to leaf area index and canopy height over the typical canopy properties range of these agricultural area. It is found that differences in wind just above surface among the models is most significant under sparse and medium fractional cover conditions (20-60%). The TSEB model heat flux estimates are compared with micrometeorological measurements from a small aperture scintillometer and an eddy covariance tower collected over an olive orchard characterized by moderate fractional vegetation cover (≈35%) and relatively tall crop height (≈3.5 m). TSEB fluxes for the 7 image acquisition dates generated using both the Massman and Goudriaan in-canopy wind profile formulations give close agreement with measured fluxes, while the Lalic et al. equations yield poor results. The Massman wind profile scheme slightly outperforms that of Goudriaan, but it requires an additional parameter describing the roughness of the underlying vegetative surface. This parameter is not directly obtainable using remote sensing, hence this study suggests that the Goudriaan formulation for landscape applications is most suitable when detailed site-specific information regarding canopy architecture is unavailable.
NASA Astrophysics Data System (ADS)
Kowalska, Anna; Boczoń, Andrzej; Hildebrand, Robert; Polkowska, Żaneta
2016-07-01
Vegetation cover affects the amount of precipitation, its chemical composition and its spatial distribution, and this may have implications for the distribution of water, nutrients and contaminants in the subsurface soil layer. The aim of this study was a detailed diagnosis of the spatio-temporal variability in the amount of throughfall (TF) and its chemical components in a 72-year-old pine stand with an admixture of oak and birch. The spatio-temporal variability in the amount of TF water and the concentrations and deposition of the TF components were studied. The components that are exchanged in canopy (H+, K, Mg, Mn, DOC, NH4+) were more variable than the components whose TF deposition is the sum of wet and dry (including gas) deposition and which undergo little exchange in the canopy (Na, Cl, NO3-, SO42-). The spatial distribution was temporally stable, especially during the leafed period. This study also investigated the effect of the selected pine stand characteristics on the spatial distribution of throughfall and its chemical components; the characteristics included leaf area index (LAI), the proportion of the canopy covered by deciduous species and pine crowns, and the distance from the nearest tree trunk. The LAI measured during the leafed and leafless periods had the greatest effect on the spatial distribution of TF deposition. No relationship was found between the spatial distribution of the amount of TF water and (i) the LAI; (ii) the canopy cover of broadleaf species or pines; or (iii) the distance from the trunks.
NASA Technical Reports Server (NTRS)
Massman, William
1987-01-01
A semianalytical method for describing the mean wind profile and shear stress within plant canopies and for estimating the roughness length and the displacement height is presented. This method incorporates density and vertical structure of the canopy and includes simple parameterizations of the roughness sublayer and shelter factor. Some of the wind profiles examined are consistent with first-order closure techniques while others are consistent with second-order closure techniques. Some profiles show a shearless region near the base of the canopy; however, none displays a secondary maximum there. Comparing several different analytical expressions for the canopy wind profile against observations suggests that one particular type of profile (an Airy function which is associated with the triangular foliage surface area density distribution) is superior to the others. Because of the numerical simplicity of the methods outlined, it is suggested that they may be profitably used in large-scale models of plant-atmosphere exchanges.
Canopy Dynamics in Nanoscale Ionic Materials Probed by NMR
NASA Astrophysics Data System (ADS)
Mirau, Peter
2013-03-01
Nanoscale ionic materials (NIMs) are hybrids prepared from ionically functionalized nanoparticles (NP) neutralized by oligomeric polymer counter-ions. NIMs are designed to behave as liquids under ambient conditions in the absence of solvent and have no volatile organic content, making them useful for a number of applications. We have used NMR relaxation and pulse-field gradient NMR to probe local and collective canopy dynamics in NIMs based on silica nanoparticles (NP), fullerols and proteins in order to understand the relationship between the core and canopy structure and the bulk properties. The NMR studies show that the canopy dynamics depend on the degree of neutralization, the canopy radius of gyration and molecular crowding at the ionically modified NP surface. The viscosity in NIMs can be directly controlled with the addition of ions that enhance the exchange rate for polymers at the NP surface. These results show that NIMs for many applications can be prepared by controlling the dynamics of the NP interface.
Effect of vertical canopy architecture on transpiration, thermoregulation and carbon assimilation
Banerjee, Tirtha; Linn, Rodman Ray
2018-04-11
Quantifying the impact of natural and anthropogenic disturbances such as deforestation, forest fires and vegetation thinning among others on net ecosystem—atmosphere exchanges of carbon dioxide, water vapor and heat—is an important aspect in the context of modeling global carbon, water and energy cycles. The absence of canopy architectural variation in horizontal and vertical directions is a major source of uncertainty in current climate models attempting to address these issues. This work demonstrates the importance of considering the vertical distribution of foliage density by coupling a leaf level plant biophysics model with analytical solutions of wind flow and light attenuation inmore » a horizontally homogeneous canopy. It is demonstrated that plant physiological response in terms of carbon assimilation, transpiration and canopy surface temperature can be widely different for two canopies with the same leaf area index (LAI) but different leaf area density distributions, under several conditions of wind speed, light availability, soil moisture availability and atmospheric evaporative demand.« less
Effect of vertical canopy architecture on transpiration, thermoregulation and carbon assimilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Tirtha; Linn, Rodman Ray
Quantifying the impact of natural and anthropogenic disturbances such as deforestation, forest fires and vegetation thinning among others on net ecosystem—atmosphere exchanges of carbon dioxide, water vapor and heat—is an important aspect in the context of modeling global carbon, water and energy cycles. The absence of canopy architectural variation in horizontal and vertical directions is a major source of uncertainty in current climate models attempting to address these issues. This work demonstrates the importance of considering the vertical distribution of foliage density by coupling a leaf level plant biophysics model with analytical solutions of wind flow and light attenuation inmore » a horizontally homogeneous canopy. It is demonstrated that plant physiological response in terms of carbon assimilation, transpiration and canopy surface temperature can be widely different for two canopies with the same leaf area index (LAI) but different leaf area density distributions, under several conditions of wind speed, light availability, soil moisture availability and atmospheric evaporative demand.« less
Fast matrix treatment of 3-D radiative transfer in vegetation canopies: SPARTACUS-Vegetation 1.1
NASA Astrophysics Data System (ADS)
Hogan, Robin J.; Quaife, Tristan; Braghiere, Renato
2018-01-01
A fast scheme is described to compute the 3-D interaction of solar radiation with vegetation canopies. The canopy is split in the horizontal plane into one clear region and one or more vegetated regions, and the two-stream equations are used for each, but with additional terms representing lateral exchange of radiation between regions that are proportional to the area of the interface between them. The resulting coupled set of ordinary differential equations is solved using the matrix-exponential method. The scheme is compared to solar Monte Carlo calculations for idealized scenes from the RAMI4PILPS
intercomparison project, for open forest canopies and shrublands both with and without snow on the ground. Agreement is good in both the visible and infrared: for the cases compared, the root-mean-squared difference in reflectance, transmittance and canopy absorptance is 0.020, 0.038 and 0.033, respectively. The technique has potential application to weather and climate modelling.
Atmospheric deposition and canopy exchange processes in alpine forest ecosystems (northern Italy)
NASA Astrophysics Data System (ADS)
Balestrini, Raffaella; Tagliaferri, Antonio
Throughfall and bulk precipitation chemistry were studied for five years (June 1994-May 1999) at two high elevation forest sites (Val Gerola and Val Masino) which were known to differ in terms of tree health, as assessed by live crown condition. The ion concentration of bulk precipitation samples did not differ significantly between sites, except for Mg 2+, while the throughfall concentrations differed in the measured values of H +, N-NO 3-, Cl -, Na +, K +, DOC and weak organic acids. The results of the application of the canopy exchange model indicated a higher contribution from the dry deposition of N-NO 3-, N-NH 4+ and H + at Val Gerola, where the damage symptoms were more evident. In addition, the canopy leaching of Ca 2+, K + and weak organic acids were 47%, 21% and 27% higher at Val Gerola than at Val Masino. Annual SO 42- deposition fluxes (21.3 kg ha -1 yr -1 at Val Masino and 23.6 kg ha -1 yr -1 at Val Gerola) were similar to those reported for moderately polluted European and U.S. sites. Annual N loads were 13.6 and 13.1 kg ha -1 yr -1 in the bulk input, and 15.0 and 18.0 kg ha -1 yr -1 in throughfall inputs, at Val Masino and Val Gerola, respectively. The contribution of the organic fraction to the total N atmospheric deposition load is significant, constituting 17% of the bulk flux and 40% of the throughfall flux. Measured nitrogen loads exceed the critical nutrient loads by several kg N ha -1 at both stations. In particular the nitrogen throughfall load at Val Gerola was about 3 times higher than the critical values.
NASA Astrophysics Data System (ADS)
Bonan, Gordon B.; Patton, Edward G.; Harman, Ian N.; Oleson, Keith W.; Finnigan, John J.; Lu, Yaqiong; Burakowski, Elizabeth A.
2018-04-01
Land surface models used in climate models neglect the roughness sublayer and parameterize within-canopy turbulence in an ad hoc manner. We implemented a roughness sublayer turbulence parameterization in a multilayer canopy model (CLM-ml v0) to test if this theory provides a tractable parameterization extending from the ground through the canopy and the roughness sublayer. We compared the canopy model with the Community Land Model (CLM4.5) at seven forest, two grassland, and three cropland AmeriFlux sites over a range of canopy heights, leaf area indexes, and climates. CLM4.5 has pronounced biases during summer months at forest sites in midday latent heat flux, sensible heat flux, gross primary production, nighttime friction velocity, and the radiative temperature diurnal range. The new canopy model reduces these biases by introducing new physics. Advances in modeling stomatal conductance and canopy physiology beyond what is in CLM4.5 substantially improve model performance at the forest sites. The signature of the roughness sublayer is most evident in nighttime friction velocity and the diurnal cycle of radiative temperature, but is also seen in sensible heat flux. Within-canopy temperature profiles are markedly different compared with profiles obtained using Monin-Obukhov similarity theory, and the roughness sublayer produces cooler daytime and warmer nighttime temperatures. The herbaceous sites also show model improvements, but the improvements are related less systematically to the roughness sublayer parameterization in these canopies. The multilayer canopy with the roughness sublayer turbulence improves simulations compared with CLM4.5 while also advancing the theoretical basis for surface flux parameterizations.
Larbi, Ajmi; Vázquez, Saúl; El-Jendoubi, Hamdi; Msallem, Monji; Abadía, Javier; Abadía, Anunciación; Morales, Fermín
2015-02-01
In the field, leaves may face very different light intensities within the tree canopy. Leaves usually respond with light-induced morphological and photosynthetic changes, in a phenomenon known as phenotypic plasticity. Canopy light distribution, leaf anatomy, gas exchange, chlorophyll fluorescence, and pigment composition were investigated in an olive (Olea europaea, cvs. Arbequina and Arbosana) orchard planted with a high-density system (1,250 trees ha(-1)). Sampling was made from three canopy zones: a lower canopy (<1 m), a central one (1-2 m), and an upper one (>2 m). Light interception decreased significantly in the lower canopy when compared to the central and top ones. Leaf angle increased and photosynthetic rates and non-photochemical quenching (NPQ) decreased significantly and progressively from the upper canopy to the central and the lower canopies. The largest leaf areas were found in the lower canopy, especially in the cultivar Arbequina. The palisade and spongy parenchyma were reduced in thickness in the lower canopy when compared to the upper one, in the former due to a decrease in the number of cell layers from three to two (clearly distinguishable in the light and fluorescence microscopy images). In both cultivars, the concentration of violaxanthin-cycle pigments and β-carotene was higher in the upper than in the lower canopy. Furthermore, the de-epoxidized forms zeaxanthin and antheraxanthin increased significantly in those leaves from the upper canopy, in parallel to the NPQ increases. In conclusion, olive leaves react with morphological and photosynthetic changes to within-crown light gradients. These results strengthen the idea of olive trees as "modular organisms" that adjust the modules morphology and physiology in response to light intensity.
Concentrations and fluxes of isoprene and oxygenated VOCs at a French Mediterranean oak forest
NASA Astrophysics Data System (ADS)
Kalogridis, C.; Gros, V.; Sarda-Esteve, R.; Langford, B.; Loubet, B.; Bonsang, B.; Bonnaire, N.; Nemitz, E.; Genard, A.-C.; Boissard, C.; Fernandez, C.; Ormeño, E.; Baisnée, D.; Reiter, I.; Lathière, J.
2014-01-01
The CANOPEE project aims to better understand the biosphere-atmosphere exchanges of biogenic volatile organic compounds (BVOC) in the case of Mediterranean ecosystems and the impact of in-canopy processes on the atmospheric chemical composition above the canopy. Based on an intensive field campaign, the objective of our work was to determine the chemical composition of the air inside a canopy as well as the net fluxes of reactive species between the canopy and the boundary layer. Measurements were carried out during spring 2012 at the Oak Observatory of the Observatoire de Haute Provence (O3HP) located in the southeast of France. The field site presents one dominant tree species, Quercus pubescens L., a typical Mediterranean species which features large isoprene emission rates. Mixing ratios of isoprene, its degradation products methylvinylketone (MVK) and methacrolein (MACR) and several other oxygenated VOC (OxVOC) were measured above the canopy using an online proton transfer reaction mass spectrometer (PTR-MS), and fluxes were calculated by the disjunct eddy covariance approach. The O3HP site was found to be a very significant source of isoprene emissions, with daily maximum ambient concentrations ranging between 2-16 ppbv inside and 2-5 ppbv just above the top of the forest canopy. Significant isoprene fluxes were observed only during daytime, following diurnal cycles with midday net emission fluxes from the canopy ranging between 2-8 mg m-2 h1. Net isoprene normalised flux (at 30 °C, 1000 μmol m-2 s-1) was estimated at 6.6 mg m-2 h-1. The (MVK+MACR)-to-isoprene ratio was used to assess the degree of isoprene oxidation. In-canopy chemical oxidation of isoprene was found to be weak, as indicated by the low (MVK+MACR)-to-isoprene ratio (~ 0.13) and low MVK+MACR fluxes, and did not seem to have a significant impact on isoprene concentrations and fluxes above the canopy. Evidence of direct emission of methanol was also found exhibiting maximum daytime fluxes ranging between 0.2-0.4 mg m-2 h-1, whereas flux values for monoterpenes and others OxVOC such as acetone and acetaldehyde were below the detection limit.
Kenneth L. Clark; Michael Gallagher; Warren E. Heilman; Nicholas Skowronski; Eric Mueller; Albert. Simeoni
2017-01-01
Fuel loading and consumption during prescribed fires are well-characterized for many pine-dominated forests, but relationships between firing practices, consumption of specific fuel components, and above-canopy turbulence and energy exchange have received less attention (Ottmar et al. 2016, Clements et al. 2016). However, quantitative information on how firing patterns...
Wet and dry deposition in the AOSR collected by ion exchange resin samplers
Mark Fenn
2015-01-01
Atmospheric deposition of nitrogen (N), sulfur (S), and base cations was measured across the network of jack pine sites in the Athabasca Oil Sands Region using ion exchange resin (IER) collectors. Deposition was measured in forest clearings (bulk deposition) and under jack pine canopies (throughfall). As noted previously for other pollutants, throughfall deposition of...
NASA Astrophysics Data System (ADS)
Zhang, Y.; Shan, N.; Ju, W.; Chen, J.
2017-12-01
Transpiration is the process of plant water loss through the stomata on the leaf surface and plays a key role in the energy and water balance of the land surface. Plant stomata function as a control interface for regulating photosynthetic uptake of CO2 and transpiration, strongly linked to plant productivity. Stomatal conductance is fundamental to larger-scale regional prediction of carbon-water cycles and their feedbacks to climate. The widely used Ball-Berry model coupled photosynthesis to a semi-empirical model of stomatal conductance. However large uncertainties remain in simulation of carbon assimilation rate in ecosystem and regional scales. The strong correlations of solar-induced fluorescence (SIF) and GPP have been demonstrated and provides an important opportunity to accurately monitor photosynthetic activity and water exchange. In this presentation, we compared both canopy-observed SIF and satellite-derived SIF with tower-based canopy stomatal conductance from hourly to 8-day scales in forest and cropland ecosystem. Using the model of stomatal conductance based on SIF, the transpiration was estimated at hourly and daily scales and compared with flux tower measurements. The results showed that the seasonal pattern of canopy stomatal conductance agreed better with SIF compared to NDVI and their relationship was higher during sunny days for forest ecosystem. Canopy stomatal conductance correlated with both tower-observed SIF and SIF from the Global Ozone Monitoring Experiment-2. Estimation of transpiration from SIF performed well in both forest and cropland ecosystem. This remotely sensed approaches from SIF for modelling stomatal conductance opens a new era to analysis and simulation of coupled carbon and water cycles under climate change.
Modeling pulsed soil respiration in an African savanna ecosystem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Zhaosheng; Neff, Jason C.; Hanan, Niall P.
2015-01-01
Savannas cover 60% of the African continent and play an important role in the global carbon (C) emissions from fire and land use. To better characterize the biophysical controls over soil respiration in these settings, half-hourly observations of volumetric soil-water content, temperature, and the concentration of carbon dioxide (CO2) at different soil depths were continually measured from 2005 to 2007 under trees ("sub-canopy") and between trees ("inter-canopy") in a savanna vegetation near Skukuza, Kruger National Park, South Africa. The measured soil climate and CO2 concentration data were assimilated into a process-based model that estimates the CO2 production and flux withmore » coupled dynamics of dissolved organic C (DOC) and microbial biomass C. Our results show that temporal and spatial variations in CO2 flux were strongly influenced by precipitation and vegetation cover, with two times greater CO2 flux in the subcanopy plots (similar to 2421 g CO2 m(-2) yr(-1)) than in the inter-canopy plots (similar to 1290 g CO2 m(-2) yr(-1)). Precipitation influenced soil respiration by changing soil temperature and moisture; however, our modeling analysis suggests that the pulsed response of soil respiration to precipitation events (known as "Birch effect") is a key control on soil fluxes at this site. At this site, "Birch effect" contributed to approximately 50% and 65% of heterotrophic respiration or 20% and 39% of soil respiration in the sub-canopy and inter-canopy plots, respectively. These results suggest that pulsed response of respiration to precipitation events is an important component of the C cycle of savannas and should be considered in both measurement and modeling studies of carbon exchange in similar ecosystems. (C) 2014 Elsevier B.V. All rights reserved.« less
Spatial and Temporal Relationships of Stomatal Development and Function in a Temperate Forest Canopy
NASA Astrophysics Data System (ADS)
Dow, G.; Richardson, A. D.
2017-12-01
Mechanisms that control stomatal development ultimately constrain leaf physiology by determining the anatomical maximum rate for gas-exchange (gsmax). However, we know comparatively less about how these regulatory processes define stomatal conductance (gs) and photosynthesis or how this information translates between model systems and important crop or native plant species. Here, we test relationships between stomatal development and leaf physiology that have been established in model systems by sampling trees in a mature forest ecosystem. We found that plasticity in gsmax was limited throughout the canopy, despite other changes in leaf structure and function that are driven by environmental gradients in the canopy. However, the ratio between gs and gsmax was predictive of gas flux in the canopy and species-independent. Variation in the gs : gsmax ratio appeared to minimize the energy required to control aperture size via guard cell turgor pressure, thus compensating for the initial over-investment in stomatal production. gsmax also remained a strong predictor of photosynthetic potential and intrinsic water-use efficiency. The temporal relationship between gsmax and these functional leaf traits might depend on long-term adjustments in stomatal development, which was sensitive to increases in atmospheric CO2 in our study. The absence of a spatial response and the presence of a temporal response in stomatal development infers that multiple mechanisms may integrate environmental signaling in the developmental pathway. Collectively, this research helps to define the larger significance of the stomatal mechanisms being identified in model systems.
Rogers, Alistair [Brookhaven National Lab; Serbin, Shawn [Brookhaven National Lab; Ely, Kim [Brookhaven National Lab; Wu, Jin [BNL; Wolfe, Brett [Smithsonian; Dickman, Turin [Los Alamos National Lab; Collins, Adam [Los Alamos National Lab; Detto, Matteo [Princeton; Grossiord, Charlotte [Los Alamos National Lab; McDowell, Nate [Los Alamos National Lab; Michaletz, Sean
2017-01-01
CO2 response (ACi) gas exchange measured on leaves collected from sunlit canopy trees on a monthly basis from Feb to May 2016 at SLZ and PNM. Dataset includes calculated Vcmax and Jmax parameters. This data was collected as part of the 2016 ENSO campaign. See related datasets (existing and future) for further sample details, leaf water potential, LMA, leaf spectra, other gas exchange and leaf chemistry.
On the spatial coherence of temperature within and above a vineyard under drainage conditions
NASA Astrophysics Data System (ADS)
Everard, K.; Giometto, M. G.; Christen, A.; Oldroyd, H. J.; Parlange, M. B.
2017-12-01
We show that turbulent exchange within vineyards under nighttime drainage conditions is controlled by large-scale coherent structures arising from a mixing-layer type instability at the canopy top, h. A combination of measurements and large-eddy simulations (LESs) are here used to characterize the onset and development of such structures as a function of the approaching wind angle over an organized canopy during drainage flows. Measurements were carried out over a west-facing 7° vineyard slope near Oliver, BC, Canada in the Okanagan Valley between July 5 and July 22, 2016. The vineyard canopy had an average height of h = 2.3 m, with parallel rows oriented in the local downslope direction (i.e. east-west). The set-up consisted of an array of five vertically arranged ultrasonic anemometers at z/h = 0.19, 0.39, 0.65, 1.02, and 2.06, and a 2-D grid of 40 fine-wire thermocouples arranged at the same heights as the ultrasonic anemometer array on 8 separate masts extending in the upslope direction at locations up to x/h = 13.91 from the flux tower. To complement observations, pressure-driven open-channel flow LESs are performed over a regular domain where vegetation is accounted for via a space dependent drag force. The drainage flow regime is emulated via a tuned pressure-gradient forcing, and different approaching wind angles are considered. Linear stability analyses show that the most unstable mode at the canopy top strongly depends on the approaching wind angle. Space-lagged correlations from measurements show that the lifetime of such eddies within the canopy also depends on the approaching wind direction, with longer lifetimes observed when wind angles are directed along the vine-rows. LESs are compared with measured quantities to ensure matching, and then used to investigate in detail the influence of the above-canopy wind vectors on eddy lifetimes. The impact of the observed coherent structures on momentum and heat exchange coefficients are also discussed.
NASA Astrophysics Data System (ADS)
Fitzjarrald, D. R.; Kivalov, S. N.
2017-12-01
Cloud shadows lead to alternating light and dark periods at the surface. Understanding how clouds affect whole-canopy fluxes suffer from two knowledge gaps that limit scaling from leaf to canopy scales, an effort currently done by assertion alone. First, there is a lack a clear quantitative definition of the incident light time series that occur on specific types of cloudy days. Second, the characteristic time scales for leaves to respond to for stomatal opening and closing is 1-10 minutes, a period too short to allow accurate eddy fluxes. We help to close the first gap by linking the durations of alternating light and dark periods statistically to conventional meteorological sky types at a midlatitude mixed deciduous forest (Harvard Forest, MA, USA: 42.53N, 72.17W) and in a tropical rain forest (Tapajós National Forest, Brazil; 2.86S, 54.96W). The second gap is narrowed by measuring the dynamic response whole canopy exchanges in the flux footprint at intervals of only a few seconds using the classical ensemble average method, keying on step changes in light intensity. Combining light and shadow periods of different lengths we estimate ensemble fluxes sensible heat (H), net ecosystem exchange (NEE), and latent heat (LE) fluxes initiated by abrupt radiation changes at intervals of 30 s over 20 minutes. We present composite results of the transient behavior of whole-canopy fluxes at each forest, showing distinct features of each forest type. Observed time constants and transient flux parameterizations are then used to force a simple model to yield NEE, LE, WUE, and Bowen ratio extrema under periodic shadow-light conditions and given cloud amount. We offer the hypothesis that, at least on certain types of cloudy days, the well-known correlation between diffuse light and WUE does not represent a causal connection at the canopy scale.
NASA Astrophysics Data System (ADS)
Raczka, Brett; Duarte, Henrique F.; Koven, Charles D.; Ricciuto, Daniel; Thornton, Peter E.; Lin, John C.; Bowling, David R.
2016-09-01
Land surface models are useful tools to quantify contemporary and future climate impact on terrestrial carbon cycle processes, provided they can be appropriately constrained and tested with observations. Stable carbon isotopes of CO2 offer the potential to improve model representation of the coupled carbon and water cycles because they are strongly influenced by stomatal function. Recently, a representation of stable carbon isotope discrimination was incorporated into the Community Land Model component of the Community Earth System Model. Here, we tested the model's capability to simulate whole-forest isotope discrimination in a subalpine conifer forest at Niwot Ridge, Colorado, USA. We distinguished between isotopic behavior in response to a decrease of δ13C within atmospheric CO2 (Suess effect) vs. photosynthetic discrimination (Δcanopy), by creating a site-customized atmospheric CO2 and δ13C of CO2 time series. We implemented a seasonally varying Vcmax model calibration that best matched site observations of net CO2 carbon exchange, latent heat exchange, and biomass. The model accurately simulated observed δ13C of needle and stem tissue, but underestimated the δ13C of bulk soil carbon by 1-2 ‰. The model overestimated the multiyear (2006-2012) average Δcanopy relative to prior data-based estimates by 2-4 ‰. The amplitude of the average seasonal cycle of Δcanopy (i.e., higher in spring/fall as compared to summer) was correctly modeled but only when using a revised, fully coupled An - gs (net assimilation rate, stomatal conductance) version of the model in contrast to the partially coupled An - gs version used in the default model. The model attributed most of the seasonal variation in discrimination to An, whereas interannual variation in simulated Δcanopy during the summer months was driven by stomatal response to vapor pressure deficit (VPD). The model simulated a 10 % increase in both photosynthetic discrimination and water-use efficiency (WUE) since 1850 which is counter to established relationships between discrimination and WUE. The isotope observations used here to constrain CLM suggest (1) the model overestimated stomatal conductance and (2) the default CLM approach to representing nitrogen limitation (partially coupled model) was not capable of reproducing observed trends in discrimination. These findings demonstrate that isotope observations can provide important information related to stomatal function driven by environmental stress from VPD and nitrogen limitation. Future versions of CLM that incorporate carbon isotope discrimination are likely to benefit from explicit inclusion of mesophyll conductance.
BOREAS TE-9 In Situ Diurnal Gas Exchange of NAS Boreal Forest Stands
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Margolis, Hank; Coyea, Marie; Dang, Qinglai
2000-01-01
The BOREAS TE-9 team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. The purpose of the BOREAS TE-09 study was threefold: 1) to provide in situ gas exchange data that will be used to validate models of photosynthetic responses to light, temperature, and carbon dioxide (CO2); 2) to compare the photosynthetic responses of different tree crown levels (upper and lower); and 3) to characterize the diurnal water potential curves for these sites to get an indication of the extent to which soil moisture supply to leaves might be limiting photosynthesis. The gas exchange data of the BOREAS NSA were collected to characterize diurnal gas exchange and water potential of two canopy levels of five boreal canopy cover types: young jack pine, old jack pine, old aspen, lowland old black spruce, and upland black spruce. These data were collected between 27-May-1994 and 17-Sep-1994. The data are provided in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
E. Gaige; D.B. Dail; D.Y. Hollinger; E.A. Davidson; I.J. Fernandez; H. Sievering; A. White; W. Halteman
2007-01-01
Most experimental additions of nitrogen to forest ecosystems apply the N to the forest floor, bypassing important processes taking place in the canopy, including canopy retention of N and/or conversion of N from one form to another. To quantify these processes, we carried out a large-scale experiment and determined the fate of nitrogen applied directly to a mature...
NASA Astrophysics Data System (ADS)
Hardiman, B. S.; Atkins, J.; Dahlin, K.; Fahey, R. T.; Gough, C. M.
2016-12-01
Canopy physical structure - leaf quantity and arrangement - strongly affects light interception and distribution. As such, canopy physical structure is a key driver of forest carbon (C) dynamics. Terrestrial lidar systems (TLS) provide spatially explicit, quantitative characterizations of canopy physical structure at scales commensurate with plot-scale C cycling processes. As an example, previous TLS-based studies established that light use efficiency is positively correlated with canopy physical structure, influencing the trajectory of net primary production throughout forest development. Linking TLS measurements of canopy structure to multispectral satellite observations of forest canopies may enable scaling of ecosystem C cycling processes from leaves to continents. We will report on our study relating a suite of canopy structural metrics to well-established remotely sensed measurements (NDVI, EVI, albedo, tasseled cap indices, etc.) which are indicative of important forest characteristics (leaf area, canopy nitrogen, light interception, etc.). We used Landsat data, which provides observations at 30m resolution, a scale comparable to that of TLS. TLS data were acquired during 2009-2016 from forest sites throughout Eastern North America, comprised primarily of NEON and Ameriflux sites. Canopy physical structure data were compared with contemporaneous growing-season Landsat data. Metrics of canopy physical structure are expected to covary with forest composition and dominant PFT, likely influencing interaction strength between TLS and Landsat canopy metrics. More structurally complex canopies (those with more heterogeneous distributions of leaf area) are expected to have lower albedo, suggesting greater canopy light absorption (higher fAPAR) than simpler canopies. We expect that vegetation indices (NDVI, EVI) will increase with TLS metrics of spatial heterogeneity, and not simply quantity, of leaves, supporting our hypothesis that canopy light absorption is dependent on both leaf quantity and arrangement. Relating satellite observations of canopy properties to TLS metrics of canopy physical structure represents an important advance for modelling canopy energy balance and forest C cycling processes at large spatial scales.
NASA Astrophysics Data System (ADS)
Raczka, B. M.; Bowling, D. R.; Lin, J. C.; Lee, J. E.; Yang, X.; Duarte, H.; Zuromski, L.
2017-12-01
Forests of the Western United States are prone to drought, temperature extremes, forest fires and insect infestation. These disturbance render carbon stocks and land-atmosphere carbon exchanges highly variable and vulnerable to change. Regional estimates of carbon exchange from terrestrial ecosystem models are challenged, in part, by a lack of net ecosystem exchange observations (e.g. flux towers) due to the complex mountainous terrain. Alternatively, carbon estimates based on light use efficiency models that depend upon remotely-sensed greenness indices are challenged due to a weak relationship with GPP during the winter season. Recent advances in the retrieval of remotely sensed solar induced fluorescence (SIF) have demonstrated a strong seasonal relationship between GPP and SIF for deciduous, grass and, to a lesser extent, conifer species. This provides an important opportunity to use remotely-sensed SIF to calibrate terrestrial ecosystem models providing a more accurate regional representation of biomass and carbon exchange across mountainous terrain. Here we incorporate both leaf-level fluorescence and leaf-to-canopy radiative transfer represented by the SCOPE model into CLM 4.5 (CLM-SIF). We simulate canopy level fluorescence at a sub-alpine forest site (Niwot Ridge, Colorado) and test whether these simulations reproduce remotely-sensed SIF from a satellite (GOME2). We found that the average peak SIF during the growing season (yrs 2007-2013) was similar between the model and satellite observations (within 15%); however, simulated SIF during the winter season was significantly greater than the satellite observations (5x higher). This implies that the fluorescence yield is overestimated by the model during the winter season. It is important that the modeled representation of seasonal fluorescence yield is improved to provide an accurate seasonal representation of SIF across the Western United States.
NASA Astrophysics Data System (ADS)
Simon, E.; Meixner, F. X.; Rummel, U.; Ganzeveld, L.; Ammann, C.; Kesselmeier, J.
2005-04-01
A one-dimensional multi-layer scheme describing the coupled exchange of energy and CO2, the emission of isoprene and the dry deposition of ozone is applied to a rain forest canopy in southwest Amazonia. The model was constrained using mean diel cycles of micrometeorological quantities observed during two periods in the wet and dry season 1999. Predicted net fluxes and concentration profiles for both seasonal periods are compared to observations made at two nearby towers.
The predicted day- and nighttime thermal stratification of the canopy layer is consistent with observations in dense canopies. The observed and calculated net fluxes above and H2O and CO2 concentration profiles within the canopy show a good agreement. The predicted net carbon sink decreases from 2.5 t C ha-1yr-1 for wet season conditions to 1 t C ha-1yr-1 for dry season conditions, whereas observed and predicted midday Bowen ratio increases from 0.5 to 0.8. The evaluation results confirmed a seasonal variability of leaf physiological parameters, as already suggested in the companion study. The predicted midday canopy net flux of isoprene increased from 7.1 mg C m-2h-1 during the wet season to 11.4 mg C m-2h-1 during the late dry season. Applying a constant emission capacity in all canopy layers, resulted in a disagreement between observed and simulated profiles of isoprene concentrations, suggesting a smaller emission capacity of shade adapted leaves and deposition to the soil or leaf surfaces. Assuming a strong light acclimation of emission capacity, equivalent to a 66% reduction of the standard emission factor for leaves in the lower canopy, resulted in a better agreement of observed and calculated concentration profiles and a 30% reduction of the canopy net flux. The mean calculated ozone flux for dry season condition at noontime was ≍12 nmol m-2s-1, agreeing well with observed values. The corresponding deposition velocity increased from 0.8 cm s-1 to >1.6 cm s-1 in the wet season, which can not be explained by increased stomatal uptake. Considering reasonable physiological changes in stomatal regulation, the predicted value was not larger than 1.05 cm s-1. Instead, the observed fluxes could be explained with the model by decreasing the cuticular resistance to ozone deposition from 5000 to 1000 s m-1. For doubled atmospheric CO2 concentrations the model predicts a strong increase of surface temperatures (0.1-1°C) and net assimilation (22%), a considerable shift in the energy budget (≍25% decreasing transpiration and increasing sensible heat), a slight increase of isoprene emissions (10%) and a strong decrease of ozone deposition (35%).
Daytime turbulent exchange between the Amazon forest and the atmosphere
NASA Technical Reports Server (NTRS)
Fitzjarrald, David R.; Moore, Kathleen E.; Cabral, Osvaldo M. R.; Scolar, Jose; Manzi, Antonio O.; Deabreusa, Leonardo D.
1989-01-01
Detailed observations of turbulence just above and below the crown of the Amazon rain forest during the wet season are presented. The forest canopy is shown to remove high frequency turbulent fluctuations while passing lower frequencies. Filter characteristics of turbulent transfer into the Amazon rain forest canopy are quantified. Simple empirical relations that relate observed turbulent heat fluxes to horizontal wind variance are presented. Changes in the amount of turbulent coupling between the forest and the boundary layer associated with deep convective clouds are presented both as statistical averages and as a series of case studies. These convective processes during the rainy season are shown to alter the diurnal course of turbulent fluxes. In wake of giant coastal systems, no significant heat or moisture fluxes occur for up to a day after the event. Radar data is used to demonstrate that even small raining clouds are capable of evacuating the canopy of substances normally trapped by persistent static stability near the forest floor. Recovery from these events can take more than an hour, even during mid-day. In spite of the ubiquitous presence of clouds and frequent rain during this season, the average horizontal wind speed spectrum is well described by dry CBL similarity hypotheses originally found to apply in flat terrain.
Daytime turbulent exchange between the Amazon forest and the atmosphere
NASA Technical Reports Server (NTRS)
Fitzjarrald, David R.; Moore, Kathleen E.; Cabral, Osvaldo M. R.; Scolar, Jose; Manzi, Antonio
1990-01-01
Detailed observations of turbulence just above and below the crown of the Amazon rain forest during the wet season are presented. The forest canopy is shown to remove high frequency turbulent fluctuations while passing lower frequencies. Filter characteristics of turbulent transfer into the Amazon rain forest canopy are quantified. Simple empirical relations that relate observed turbulent heat fluxes to horizontal wind variance are presented. Changes in the amount of turbulent coupling between the forest and the boundary layer associated with deep convective clouds are presented both as statistical averages and as a series of case studies. These convective processes during the rainy season are shown to alter the diurnal course of turbulent fluxes. In wake of giant coastal systems, no significant heat or moisture fluxes occur for up to a day after the event. Radar data is used to demonstrate that even small raining clouds are capable of evacuating the canopy of substances normally trapped by persistent static stability near the forest floor. Recovery from these events can take more than an hour, even during mid-day. In spite of the ubiquitous presence of clouds and frequent rain during this season, the average horizontal wind speed spectrum is well described by dry CBL similarity hypotheses originally found to apply in flat terrain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grantz, D.A.; Vaughn, D.L.; Metheny, P.A.
1995-03-15
Plum trees (Prunus salicina cv. Casselman) were exposed to ozone in open-top chambers (OTC) or chamberless plots, and trace gas concentrations and microenvironmental conditions were monitored within tree canopies inside the outside the OTC. Concentrations of ozone, carbon dioxide and water vapor, leaf and air temperature, light intensity, and wind speed were measured at nine positions in the tree canopies. The objectives were to: (1) map the distribution of microenvironmental parameters within the canopies inside and outside the OTC; (2) determine transport parameters for gas exchange, and (3) calculate ozone flux. Significant vertical and horizontal gradients were observed; gradients weremore » diminished and often inverted inside relative to outside the OTC due to air distribution at the bottom of the OCT. Ozone flux was readily modeled from measures of stomatal conductance, nonstomatal conductance and ozone concentration at the leaf surface.« less
USDA-ARS?s Scientific Manuscript database
Canopy photosynthesis describes photosynthesis of an entire crop field and positively correlates with biomass production. Much effort in crop breeding has focused on improving canopy architecture and hence light distribution inside the canopy. Here, we develop a new integrated canopy photosynthesis ...
NASA Astrophysics Data System (ADS)
Gokkaya, Kemal
The use of satellite and airborne remote sensing data to predict foliar macronutrients and pigments for a boreal mixedwood forest composed of black and white spruce, balsam fir, northern white cedar, white birch, and trembling aspen was investigated. Specifically, imaging spectroscopy (IS) and light detection and ranging (LiDAR) are used to model the foliar N:P ratio, macronutrients (N, P, K, Ca, Mg) and chlorophyll. Measurement of both foliar macronutrients and foliar chlorophyll provide critical information about plant physiological and nutritional status, stress, as well as ecosystem processes such as carbon (C) exchange (photosynthesis and net primary production), decomposition and nutrient cycling. Results show that airborne and spaceborne IS data explained approximately 70% of the variance in the canopy N:P ratio with predictions errors of less than 8% in two consecutive years. LiDAR models explained more than 50% of the variance in the canopy N:P ratio with similar predictions errors. Predictive models using spaceborne Hyperion IS data were developed with adjusted R2 values of 0.73, 0.72, 0.62, 0.25, and 0.67 for N, P, K, Ca and Mg, respectively. The LiDAR model explained 80% of the variance in canopy Ca concentration with an RMSE of less than 10%, suggesting strong correlations between forest height and Ca. Two IS derivative indices emerged as good predictors of chlorophyll across time and space. When the models of these two indices with the same parameters as generated from Hyperion data were applied to other years' data for chlorophyll concentration prediction, they could explain 71, 63 and 6% and 61, 54 and 8 % of the variation in chlorophyll concentration in 2002, 2004 and 2008, respectively with prediction errors ranging from 11.7% to 14.6%. Results demonstrate that the N:P ratio, N, P, K, Mg and chlorophyll can be modeled by spaceborne IS data and Ca can only be predicted by LiDAR data in the canopy of this forest. The ability to model the N:P ratio and macronutrients using spaceborne Hyperion data demonstrates the potential for mapping them at the canopy scale across larger geographic areas and being able to integrate them in future studies of ecosystem processes.
Greer, Dennis H; Weedon, Mark M
2012-05-01
High-light intensities and temperatures of the warm climate regions of Australia and elsewhere have a major effect on the growth and development of grapevines (Vitis vinifera L.). The objective of this research was to assess interactions between the light and seasonal temperatures by shading some vines and comparing these with vines exposed to high-light intensities. Canopy temperatures were monitored using infrared radiometers and budbreak, phenology, growth, yield, berry ripening and gas exchange determined over three growing seasons. Results showed canopies were generally about 4 °C cooler than air and shading extended this cooling. Irradiance, irrespective of seasonal temperatures, had no effect on time of budbreak, shoot phenology, stem growth, yield and bunch fresh weights while bunch and leaf dry weights were reduced in low-light. Bunch ripening was initially delayed by low-light but thereafter the ripening process was highly temperature-dependent. Rates increased linearly with increasing temperature in both low and high-light and were optimal at about 35 °C. Maximum photosynthetic capacity was impaired by low irradiance, in accordance with shade leaf attributes, and attributable to stomatal closure. No effects of the low photosynthetic capacity apparently carried-over to sugar accumulation, consistent with the strong sink capacity of bunches. Crown Copyright © 2012. Published by Elsevier Masson SAS. All rights reserved.
An Overview of the Regional Experiments for Land-atmosphere Exchanges 2012 (REFLEX 2012) Campaign
NASA Astrophysics Data System (ADS)
Timmermans, Wim J.; van der Tol, Christiaan; Timmermans, Joris; Ucer, Murat; Chen, Xuelong; Alonso, Luis; Moreno, Jose; Carrara, Arnaud; Lopez, Ramon; de la Cruz Tercero, Fernando; Corcoles, Horacio L.; de Miguel, Eduardo; Sanchez, Jose A. G.; Pérez, Irene; Franch, Belen; Munoz, Juan-Carlos J.; Skokovic, Drazen; Sobrino, Jose; Soria, Guillem; MacArthur, Alasdair; Vescovo, Loris; Reusen, Ils; Andreu, Ana; Burkart, Andreas; Cilia, Chiara; Contreras, Sergio; Corbari, Chiara; Calleja, Javier F.; Guzinski, Radoslaw; Hellmann, Christine; Herrmann, Ittai; Kerr, Gregoire; Lazar, Adina-Laura; Leutner, Benjamin; Mendiguren, Gorka; Nasilowska, Sylwia; Nieto, Hector; Pachego-Labrador, Javier; Pulanekar, Survana; Raj, Rahul; Schikling, Anke; Siegmann, Bastian; von Bueren, Stefanie; Su, Zhongbo (Bob)
2015-12-01
The REFLEX 2012 campaign was initiated as part of a training course on the organization of an airborne campaign to support advancement of the understanding of land-atmosphere interaction processes. This article describes the campaign, its objectives and observations, remote as well as in situ. The observations took place at the experimental Las Tiesas farm in an agricultural area in the south of Spain. During the period of ten days, measurements were made to capture the main processes controlling the local and regional land-atmosphere exchanges. Apart from multi-temporal, multi-directional and multi-spatial space-borne and airborne observations, measurements of the local meteorology, energy fluxes, soil temperature profiles, soil moisture profiles, surface temperature, canopy structure as well as leaf-level measurements were carried out. Additional thermo-dynamical monitoring took place at selected sites. After presenting the different types of measurements, some examples are given to illustrate the potential of the observations made.
Sonia Wharton; Matt Schroeder; Kyaw Tha Paw U; Matthias Falk; Ken Bible
2009-01-01
Carbon dioxide (CO2), water vapor, and energy fluxes were measured using eddy covariance (EC) methodology over three adjacent evergreen forests in southern Washington State to identify stand-level age-effects on ecosystem exchange. The sites represent Douglas-fir forest ecosystems at two contrasting successional stages: old-growth (OG) and early...
NASA Astrophysics Data System (ADS)
Jaiswal, D.; Long, S.; Parton, W. J.; Hartman, M.
2012-12-01
A coupled modeling system of crop growth model (BioCro) and biogeochemical model (DayCent) has been developed to assess the two-way interactions between plant growth and biogeochemistry. Crop growth in BioCro is simulated using a detailed mechanistic biochemical and biophysical multi-layer canopy model and partitioning of dry biomass into different plant organs according to phenological stages. Using hourly weather records, the model partitions light between dynamically changing sunlit and shaded portions of the canopy and computes carbon and water exchange with the atmosphere and through the canopy for each hour of the day, each day of the year. The model has been parameterized for the bioenergy crops sugarcane, Miscanthus and switchgrass, and validation has shown it to predict growth cycles and partitioning of biomass to a high degree of accuracy. As such it provides an ideal input for a soil biogeochemical model. DayCent is an established model for predicting long-term changes in soil C & N and soil-atmosphere exchanges of greenhouse gases. At present, DayCent uses a relatively simple productivity model. In this project BioCro has replaced this simple model to provide DayCent with a productivity and growth model equal in detail to its biogeochemistry. Dynamic coupling of these two models to produce CroCent allows for differential C: N ratios of litter fall (based on rates of senescence of different plant organs) and calibration of the model for realistic plant productivity in a mechanistic way. A process-based approach to modeling plant growth is needed for bioenergy crops because research on these crops (especially second generation feedstocks) has started only recently, and detailed agronomic information for growth, yield and management is too limited for effective empirical models. The coupled model provides means to test and improve the model against high resolution data, such as that obtained by eddy covariance and explore yield implications of different crop and soil management.
Storm-scale dynamics of bacterial community composition in throughfall and stemflow
NASA Astrophysics Data System (ADS)
Van Stan, J. T., II; Teachey, M. E.; Pound, P.; Ottesen, E. A.
2017-12-01
Transport of bacteria between ecosystem spheres can significantly affect microbially-mediated biogeochemical processes. During rainfall, there is a large, temporally-concentrated exchange of bacteria between the forest phyllosphere and the pedosphere by rain dripping from canopy surfaces, as throughfall (TF), and draining to the stem, as stemflow (SF). Many phyllosphere bacteria possibly transported by TF and SF have been linked to important litter and soil processes (like cyanobacteria and actinobacteria). Despite this, no work has applied high throughput DNA sequencing to assess the community composition of bacteria transported by TF and SF. We characterized bacterial community composition for TF and SF from an epiphyte-laden (Tillandsia usneoides L., Spanish moss) southern live oak (Quercus virginiana) forest in southeastern Georgia (USA) to address two hypotheses: that bacterial community composition will differ between (1) TF and SF, and (2) TF sampled beneath bare and epiphyte-laden canopy. Variability in family-level bacterial abundance, Bray-Curtis dissimilarity, and Shannon diversity index was greater between storms than between net rainfall fluxes. In fact, TF and SF bacterial communities were relatively similar for individual storms and may be driven by pre-storm atmospheric deposition rather than the communities affixed to leaves, bark, and epiphyte surfaces.
Eddy covariance fluxes of the NO-NO2-O3 triad above a spruce forest canopy in south-eastern Germany.
NASA Astrophysics Data System (ADS)
Tsokankunku, A.; Zhu, Z.; Meixner, F. X.; Foken, T.; Andreae, M. O.
2009-04-01
We investigated the diel variability of the eddy covariance fluxes of the NO-NO2-O3 triad above a spruce forest canopy at the "Weidenbrunnen" research site (Fichtelgebirge, Germany). Measurements were part of the EGER project (ExchanGE processes in mountainous Regions), which focuses on the role of process interactions among the different scales of soil, in-canopy and atmospheric exchange processes of reactive and non-reactive trace gases and energy. The eddy covariance platform was at the top of a 32 m high tower (50Ë 08'31" N, 11Ë 52'1"E, elevation 755 m.a.s.l). The eddy covariance system consisted of a CSAT3 sonic anemometer and a high speed, high resolution NO-NO2two channel chemiluminescence analyzer (Ecophysics CLD 790 SR2). A solid-state blue-light photolytic converter was connected to the NO2 channel of the analyzer just behind the sample inlet. Ambient NO and NO2 mixing ratios were sampled via 52 m long tubes with the instrument itself located in a temperature-controlled container at the ground. The NO-NO2 analyzer was operated at 5 Hz. Additionally we measured eddy covariance fluxes of CO2 and H2O. An infrared absorption-based analyzer (LI-7000) was used to sample CO2 and H2O mixing ratios, and a fast solid-phase chemiluminescence ozone analyzer (GFAS) was deployed to measure O3 mixing ratios. All trace gas inlets were situated at 32.5 m, 20 cm below the path of the sonic anemometer. The 32m inlet of an independent NO, NO2, and O3 concentration profile measuring system was used as the calibration source for the fast ozone analyzer and the two channel NO-NO2chemiluminescence analyzer. Preliminary results show that NO and NO2advection plays a big role in the magnitude and direction of the fluxes at the site. The main source of the advection is a busy country road situated about 2 km west of the site. CO2 fluxes were also influenced by advection. Extended periods of stationarity usually occurred on Sundays when the amount of traffic was significantly lower. During the "golden days period" (29 June - 3 July 2008), there was mainly downward directed NO fluxes (within the margin of error). However there is also evidence of NO leaving the canopy in some instances. NO and NO2 fluxes ranged between +1.5 and -1.5 nmol m-2 s-1 (±45 ngNO m-2 s-1 and ±70 ngNO2 m-2 s-1).
NASA Astrophysics Data System (ADS)
Chen, Yiying; Ryder, James; Naudts, Kim; McGrath, Matthew J.; Otto, Juliane; Bastriko, Vladislav; Valade, Aude; Launiainen, Samuli; Ogée, Jérôme; Elbers, Jan A.; Foken, Thomas; Tiedemann, Frank; Heinesch, Bernard; Black, Andrew; Haverd, Vanessa; Loustau, Denis; Ottlé, Catherine; Peylin, Philippe; Polcher, Jan; Luyssaert, Sebastiaan
2015-04-01
Canopy structure is one of the most important vegetation characteristics for land-atmosphere interactions as it determines the energy and scalar exchanges between land surface and overlay air mass. In this study we evaluated the performance of a newly developed multi-layer energy budget (Ryder et al., 2014) in a land surface model, ORCHIDEE-CAN (Naudts et al., 2014), which simulates canopy structure and can be coupled to an atmospheric model using an implicit procedure. Furthermore, a vertical discrete drag parametrization scheme was also incorporated into this model, in order to obtain a better description of the sub-canopy wind profile simulation. Site level datasets, including the top-of-the-canopy and sub-canopy observations made available from eight flux observation sites, were collected in order to conduct this evaluation. The geo-location of the collected observation sites crossed climate zones from temperate to boreal and the vegetation types included deciduous, evergreen broad leaved and evergreen needle leaved forest with maximum LAI ranging from 2.1 to 7.0. First, we used long-term top-of-the-canopy measurements to analyze the performance of the current one-layer energy budget in ORCHIDEE-CAN. Three major processes were identified for improvement through the implementation of a multi-layer energy budget: 1) night time radiation balance, 2) energy partitioning during winter and 3) prediction of the ground heat flux. Short-term sub-canopy observations were used to calibrate the parameters in sub-canopy radiation, turbulence and resistances modules with an automatic tuning process following the maximum gradient of the user-defined objective function. The multi-layer model is able to capture the dynamic of sub-canopy turbulence, temperature and energy fluxes with imposed LAI profile and optimized parameter set at a site level calibration. The simulation result shows the improvement both on the nighttime energy balance and energy partitioning during winter and presents a better Taylor skill score, compared to the result from single layer simulation. The importance of using the multi-layer energy budget in a land surface model for coupling to the atmospheric model will also be discussed in this presentation. Reference: Ryder, J., J. Polcher, P. Peylin, C. Ottlé, Y. Chen, E. Van Gorsel, V. Haverd, M. J. McGrath, K.Naudts, J. Otto, A. Valade, and S. Luyssaert, 2014. "A multi-layer land surface energy budget model for implicit coupling with global atmospheric simulations", Geosci. Model Dev. Discuss. 7, 8649-8701 Naudts, K. J. Ryder, M. J. McGrath, J. Otto, Y. Chen, A. Valade, V. Bellasen, G. Berhongaray, G. Bönisch, M. Campioli, J. Ghattas, T. De Groote, V. Haverd, J. Kattge, N. MacBean, F. Maignan, P. Merilä, J. Penuelas, P. Peylin, B. Pinty, H. Pretzsch, E. D. Schulze, D. Solyga, N. Vuichard, Y. Yan, and S. Luyssaert, 2014. "A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes", Geosci. Model Dev. Discuss. 7, 8565-8647
NASA Technical Reports Server (NTRS)
Monje, O.; Bugbee, B.
1998-01-01
The effect of elevated [CO2] on wheat (Triticum aestivum L. Veery 10) productivity was examined by analysing radiation capture, canopy quantum yield, canopy carbon use efficiency, harvest index and daily C gain. Canopies were grown at either 330 or 1200 micromoles mol-1 [CO2] in controlled environments, where root and shoot C fluxes were monitored continuously from emergence to harvest. A rapidly circulating hydroponic solution supplied nutrients, water and root zone oxygen. At harvest, dry mass predicted from gas exchange data was 102.8 +/- 4.7% of the observed dry mass in six trials. Neither radiation capture efficiency nor carbon use efficiency were affected by elevated [CO2], but yield increased by 13% due to a sustained increase in canopy quantum yield. CO2 enrichment increased root mass, tiller number and seed mass. Harvest index and chlorophyll concentration were unchanged, but CO2 enrichment increased average life cycle net photosynthesis (13%, P < 0.05) and root respiration (24%, P < 0.05). These data indicate that plant communities adapt to CO2 enrichment through changes in C allocation. Elevated [CO2] increases sink strength in optimal environments, resulting in sustained increases in photosynthetic capacity, canopy quantum yield and daily C gain throughout the life cycle.
NASA Astrophysics Data System (ADS)
June, Tania; Meijide, Ana; Stiegler, Christian; Purba Kusuma, Alan; Knohl, Alexander
2018-05-01
Oil palm plantations are expanding vastly in Jambi, resulted in altered surface roughness and turbulence characteristics, which may influence exchange of heat and mass. Micrometeorological measurements above oil palm canopy were conducted for the period 2013–2015. The oil palms were 12.5 years old, canopy height 13 meters and 1.5 years old canopy height 2.5 m. We analyzed the influence of surface roughness and turbulence strenght on heat (sensible and latent) fluxes by investigating the profiles and gradient of wind speed, and temperature, surface roughness (roughness length, zo, and zero plane displacement, d), and friction velocity u*. Fluxes of heat were calculated using profile similarity methods taking into account atmospheric stability calculated using Richardson number Ri and the generalized stability factor ζ. We found that roughness parameters (zo, d, and u*) directly affect turbulence in oil palm canopy and hence heat fluxes; they are affected by canopy height, wind speed and atmospheric stability. There is a negative trend of d towards air temperature above the oil palm canopy, indicating the effect of plant volume and height in lowering air temperature. We propose studying the relation between zero plane displacement d with a remote sensing vegetation index for scaling up this point based analysis.
Soil emission and uptake of carbonyl sulfide at a temperate mountain grassland
NASA Astrophysics Data System (ADS)
Kitz, Florian; Hammerle, Albin; Laterza, Tamara; Spielmann, Felix M.; Wohlfahrt, Georg
2016-04-01
Flux partitioning, i.e. inferring gross primary productivity (GPP) and ecosystem respiration from the measured net ecosystem carbon dioxide (CO2) exchange, is one uncertainty in modelling the carbon cycle and in times where robust models are needed to assess future global changes a persistent problem. A promising new approach is to derive GPP by measuring carbonyl sulfide (COS), the most abundant sulfur-containing trace gas in the atmosphere, with a mean concentration of about 500 pptv in the troposphere. This is possible because COS and CO2 enter the leaf via a similar pathway and are processed by the same enzyme (carbonic anhydrase). A prerequisite to use COS as a proxy for canopy photosynthesis is a robust estimation of COS sources and sinks in an ecosystem. Past studies described soils either as a sink or source, depending on properties like soil temperature and soil water content. The main aim of this study was to quantify the soil COS exchange and its drivers of a temperate mountain grassland in order to aid the use of COS as tracer for canopy CO2 and water vapor exchange. We conducted a field campaign with a Quantum cascade laser at a temperate mountain grassland to estimate the soil COS fluxes under ambient conditions and while simulating a drought. We used self-built fused silica (i.e. light-transparent) soil chambers to avoid COS emissions from built-in materials and to assess the impact of radiation. Vegetation was removed within the chambers, therefor more radiation reached the soil surface compared to natural conditions. This might be the reason for highly positive fluxes during daytime more similar to agricultural study sites. To further investigate this large soil COS source we conducted within canopy concentration measurements near the soil surface and still recorded fluxes confirming the soil as a COS source during daytime. Results from the drought experiment suggested a strong impact of incoming radiation on soil COS fluxes followed by soil temperature, whereas the influence of soil water content (SWC) seemed to be negligible, even though the SWC dropped significantly due to rain exclusion. These results were bolstered by soil nighttime fluxes around zero and measurements with non-transparent chambers exhibiting much smaller fluxes compared to transparent ones. In the case that other ecosystems react in a similar fashion and biotic processes are negligible when parameterizing soil COS fluxes, we are a step closer to using COS as a proxy for GPP.
NASA Astrophysics Data System (ADS)
Lichiheb, N.; Myles, L.; Buban, M.; Heuer, M.; Nelson, A. J.; Koloutsou-Vakakis, S.; Rood, M. J.
2017-12-01
Agriculture is the main source of atmospheric emission of ammonia (NH3). The impact of these emissions on air quality is a rising subject of concern in the U.S. due to their adverse effect on human health and the environment. Emissions of NH3 from fertilized crop land occur as soon as fertilizer is applied on the farmed surface and emission can last from a few days to several weeks, depending on the properties of the specific fertilizer and environmental conditions. Because of the variability of these conditions, spatial and temporal variability of NH3 emissions is also variable and uncertain. Therefore, measurement of NH3 emissions is important for understanding the variables affecting the magnitude and temporal distribution of NH3 from fertilized fields. The aim of this study is to investigate the magnitude and the temporal characteristics of NH3 emission over a corn canopy fertilized with UAN and urease inhibitor NBPT, as well as their dependence on environmental variables. The NH3 fluxes above a corn canopy were measured using the flux-gradient (FG) and relaxed eddy accumulation (REA) methods over a period of approximately 3 months following fertilization in a corn field at the Energy Farm at the University of Illinois at Urbana-Champaign, IL, USA. NH3 fluxes were continuously monitored and averaged over 30 min with the FG method. For REA technique, NH3 fluxes were measured in four-hour periods during mornings and afternoons. During the first month after fertilization, prior to corn emergence and for relatively low LAI (<2), NH3 fluxes were positively correlated with soil surface temperature. Then the canopy recaptured NH3 emissions from the soil when the canopy has fully developed. A week after the fertilization, the highest volatilization peaks of 2300 ng Nm2s-1 using FG and 800 ng Nm2s-1 using REA were measured. The behavior of this fertilizer was explained by the urease inhibitor which reduced NH3 volatilization and delayed the time of the maximum rate of loss. This delay allows more time for the UAN to become incorporated into the soil. On the basis of this experimental study, urease inhibitor has a considerable effect on the rate and extent of NH3 volatilization. The effect of this inhibitor needs to be parameterized and implemented in the existing bi-directional NH3 exchange models for future models improvements.
The electrostatics of parachutes
NASA Astrophysics Data System (ADS)
Yu, Li; Ming, Xiao
2007-12-01
In the research of parachute, canopy inflation process modeling is one of the most complicated tasks. As canopy often experiences the largest deformations and loadings during a very short time, it is of great difficulty for theoretical analysis and experimental measurements. In this paper, aerodynamic equations and structural dynamics equations were developed for describing parachute opening process, and an iterative coupling solving strategy incorporating the above equations was proposed for a small-scale, flexible and flat-circular parachute. Then, analyses were carried out for canopy geometry, time-dependent pressure difference between the inside and outside of the canopy, transient vortex around the canopy and the flow field in the radial plane as a sequence in opening process. The mechanism of the canopy shape development was explained from perspective of transient flow fields during the inflation process. Experiments of the parachute opening process were conducted in a wind tunnel, in which instantaneous shape of the canopy was measured by high velocity camera and the opening loading was measured by dynamometer balance. The theoretical predictions were found in good agreement with the experimental results, validating the proposed approach. This numerical method can improve the situation of strong dependence of parachute research on wind tunnel tests, and is of significance to the understanding of the mechanics of parachute inflation process.
NASA Astrophysics Data System (ADS)
Launois, Thomas; Ogée, Jérôme; Commane, Roisin; Wehr, Rchard; Meredith, Laura; Munger, Bill; Nelson, David; Saleska, Scott; Wofsy, Steve; Zahniser, Mark; Wingate, Lisa
2016-04-01
The exchange of CO2 between the terrestrial biosphere and the atmosphere is driven by photosynthetic uptake and respiratory loss, two fluxes currently estimated with considerable uncertainty at large scales. Model predictions indicate that these biosphere fluxes will be modified in the future as CO2 concentrations and temperatures increase; however, it still unclear to what extent. To address this challenge there is a need for better constraints on land surface model parameterisations. Additional atmospheric tracers of large-scale CO2 fluxes have been identified as potential candidates for this task. In particular carbonyl sulphide (OCS) has been proposed as a complementary tracer of gross photosynthesis over land, since OCS uptake by plants is dominated by carbonic anhydrase (CA) activity, an enzyme abundant in leaves that catalyses CO2 hydration during photosynthesis. However, although the mass budget at the ecosystem is dominated by the flux of OCS into leaves, some OCS is also exchanged between the atmosphere and the soil and this component of the budget requires constraining. In this study, we adapted the process-based isotope-enabled model MuSICA (Multi-layer Simulator of the Interactions between a vegetation Canopy and the Atmosphere) to include the transport, reaction, diffusion and production of OCS within a forested ecosystem. This model was combined with 3 years (2011-2013) of in situ measurements of OCS atmospheric concentration profiles and fluxes at the Harvard Forest (Massachussets, USA) to test hypotheses on the mechanisms responsible for CA-driven uptake by leaves and soils as well as possible OCS emissions during litter decomposition. Model simulations over the three years captured well the impact of diurnally and seasonally varying environmental conditions on the net ecosystem OCS flux. A sensitivity analysis on soil CA activity and soil OCS emission rates was also performed to quantify their impact on the vertical profiles of OCS inside the canopy and the net OCS exchange with the atmosphere.
How do land management practices affect net ecosystem CO2 exchange of an invasive plant infestation?
NASA Astrophysics Data System (ADS)
Sonnentag, O.; Detto, M.; Runkle, B.; Kelly, M.; Baldocchi, D. D.
2009-12-01
Ecosystem gas and energy exchanges of invasive plant infestations under different land management practices have been subject of few studies and thus little is known. Our goal is to characterize seasonal changes in net ecosystem CO2 exchange (NEE) through the processes of photosynthesis (GEP) and ecosystem respiration (Reco) of a grassland used as pasture yet infested by perennial pepperweed (Lepidium latifolium) in California’s Sacramento-San Joaquin River Delta. We analyze eddy-covariance supported by environmental and canopy-scale hyperspectral reflectance measurements acquired in 2007-2009. Our study covers three summer drought periods with slightly different land management practices. Over the study period the site was subject to year-round grazing, and in 2008 the site was additionally mowed. Specific questions we address are a) how does pepperweed flowering affect GEP, b) does a mowing event affect NEE mainly through GEP or Reco, and c) can the combined effects of phenology and mowing on pepperweed NEE potentially be tracked using routinely applied remote sensing techniques? Preliminary results indicate that pepperweed flowering drastically decreases photosynthetic CO2 uptake due to shading by the dense arrangement of white flowers at the canopy top, causing the infestation to be almost CO2 neutral. In contrast, mowing causes the infestation to act as moderate net CO2 sink, mainly due to increased CO2 uptake during regrowth. We demonstrate that spectral regions other than commonly-used red and near-infrared might be more promising for pepperweed monitoring because of its spectral uniqueness during the flowering phase. Our results have important implications for land-use land-cover (LULC) change studies when biological invasions and their management alter ecosystem structure and functioning but not necessarily the respective LULC class.
NASA Technical Reports Server (NTRS)
Lemaster, E. W.
1975-01-01
The experimental bidirectional reflectance of cotton is presented and compared to the Suits vegetation model. Some wheat reflectance data are presented for a Mexican dwarf wheat. The general results are that the exchange of source position and detector position gives the same reflectance measurement if the irradiance is purely specular. This agrees with Suites. The reflectance versus sun angle and reflectance versus detector angle do not agree with the Suits predictions. There is qualitative agreement between the Suits model and reflectance versus wavelength, but quantitative agreement has not been observed. Reflectance of a vegetation canopy with detector azimuth shows a change of 10 to 40% for even sun angles near zenith, so it seems advisable to include azimuthal angles into models of vegetation.
NASA Astrophysics Data System (ADS)
Rowland, L.; Harper, A.; Christoffersen, B. O.; Galbraith, D. R.; Imbuzeiro, H. M. A.; Powell, T. L.; Doughty, C.; Levine, N. M.; Malhi, Y.; Saleska, S. R.; Moorcroft, P. R.; Meir, P.; Williams, M.
2014-11-01
Accurately predicting the response of Amazonia to climate change is important for predicting changes across the globe. However, changes in multiple climatic factors simultaneously may result in complex non-linear responses, which are difficult to predict using vegetation models. Using leaf and canopy scale observations, this study evaluated the capability of five vegetation models (CLM3.5, ED2, JULES, SiB3, and SPA) to simulate the responses of canopy and leaf scale productivity to changes in temperature and drought in an Amazonian forest. The models did not agree as to whether gross primary productivity (GPP) was more sensitive to changes in temperature or precipitation. There was greater model-data consistency in the response of net ecosystem exchange to changes in temperature, than in the response to temperature of leaf area index (LAI), net photosynthesis (An) and stomatal conductance (gs). Modelled canopy scale fluxes are calculated by scaling leaf scale fluxes to LAI, and therefore in this study similarities in modelled ecosystem scale responses to drought and temperature were the result of inconsistent leaf scale and LAI responses among models. Across the models, the response of An to temperature was more closely linked to stomatal behaviour than biochemical processes. Consequently all the models predicted that GPP would be higher if tropical forests were 5 °C colder, closer to the model optima for gs. There was however no model consistency in the response of the An-gs relationship when temperature changes and drought were introduced simultaneously. The inconsistencies in the An-gs relationships amongst models were caused by to non-linear model responses induced by simultaneous drought and temperature change. To improve the reliability of simulations of the response of Amazonian rainforest to climate change the mechanistic underpinnings of vegetation models need more complete validation to improve accuracy and consistency in the scaling of processes from leaf to canopy.
NASA Technical Reports Server (NTRS)
Monje, O. A.; McCormack, Ann; Bugbee, Bruce; Jones, Harry W., Jr. (Technical Monitor)
1994-01-01
The objectives were to apply energy balance principles to plant canopies, and to determine which parameters are essential for predicting plant canopy transpiration (E) in controlled environments. Transpiration was accurately measured in a gas-exchange system. Absorbed radiation (R(sub abs)) by the canopy was measured with a net radiometer and calculated from short and long-wave radiation components. Average canopy foliar temperature T(sub L) can be measured with an infrared radiometer, but since T(sub L) is seldom uniform, a weighed average measurement of T(sub L) must be made. The effective canopy temperature T(sub C) is that temperature that balances the energy flux between absorbed radiation and latent heat L(sub E) and sensible heat (H) fluxes. TC should exactly equal air temperature T(sub A) when L(sub E) equals R(sub abs). When unnecessary thermal radiation from the lighting system is removed by a water filter, the magnitude of L(sub E) from transpiration approaches Rabs and T(sub C) is close to T(sub A). Unlike field models, we included the energy used in photosynthesis and found that up to 10% of Rabs was used in photosynthesis. We calculated aerodynamic conductance for H from measurements of wind speed and canopy height using the wind profile equation. Canopy aerodynamic conductance ranged from.03 to.04 m/s for wind speeds from.6 to 1 m/s; thus a 0.1 C canopy to air temperature difference results in a sensible heat flux of about 4 W/sq m, which is only 1% of R(sub abs). We examined the ability of wide angle infrared transducers to accurately integrate T(sub L) from the top to the bottom of the canopy. We measured evaporation from the hydroponic media to be approximately 1 micro mol/sq m s or 10% of R(sub abs). This result indicates that separating evaporation from transpiration is more important than exact measurement of canopy temperature.
The role of stable isotopes in understanding rainfall interception processes: a review
The isotopic composition of water transmitted by the canopy as throughfall or stemflow reflects important hydrologic processes occurring in the canopy. A synthesis of the literature shows that complex spatiotemporal variations of isotopic composition are created by canopy interce...
Impacts of a spring heat wave on canopy processes in a northern hardwood forest.
Filewod, Ben; Thomas, Sean C
2014-02-01
Heat wave frequency, duration, and intensity are predicted to increase with global warming, but the potential impacts of short-term high temperature events on forest functioning remain virtually unstudied. We examined canopy processes in a forest in Central Ontario following 3 days of record-setting high temperatures (31–33 °C) that coincided with the peak in leaf expansion of dominant trees in late May 2010. Leaf area dynamics, leaf morphology, and leaf-level gas-exchange were compared to data from prior years of sampling (2002–2008) at the same site, focusing on Acer saccharum Marsh., the dominant tree in the region. Extensive shedding of partially expanded leaves was observed immediately following high temperature days, with A. saccharum losing ca. 25% of total leaf production but subsequently producing an unusual second flush of neoformed leaves. Both leaf losses and subsequent reflushing were highest in the upper canopy; however, retained preformed leaves and neoformed leaves showed reduced size, resulting in an overall decline in end-of-season leaf area index of 64% in A. saccharum, and 16% in the entire forest. Saplings showed lower leaf losses, but also a lower capacity to reflush relative to mature trees. Both surviving preformed and neoformed leaves had severely depressed photosynthetic capacity early in the summer of 2010, but largely regained photosynthetic competence by the end of the growing season. These results indicate that even short-term heat waves can have severe impacts in northern forests, and suggest a particular vulnerability to high temperatures during the spring period of leaf expansion in temperate deciduous forests.
Land cover characterization and land surface parameterization research
Steyaert, Louis T.; Loveland, Thomas R.; Parton, William J.
1997-01-01
The understanding of land surface processes and their parameterization in atmospheric, hydrologic, and ecosystem models has been a dominant research theme over the past decade. For example, many studies have demonstrated the key role of land cover characteristics as controlling factors in determining land surface processes, such as the exchange of water, energy, carbon, and trace gases between the land surface and the lower atmosphere. The requirements for multiresolution land cover characteristics data to support coupled-systems modeling have also been well documented, including the need for data on land cover type, land use, and many seasonally variable land cover characteristics, such as albedo, leaf area index, canopy conductance, surface roughness, and net primary productivity. Recently, the developers of land data have worked more closely with the land surface process modelers in these efforts.
Incorporating Plant Phenology Dynamics in a Biophysical Canopy Model
NASA Technical Reports Server (NTRS)
Barata, Raquel A.; Drewry, Darren
2012-01-01
The Multi-Layer Canopy Model (MLCan) is a vegetation model created to capture plant responses to environmental change. Themodel vertically resolves carbon uptake, water vapor and energy exchange at each canopy level by coupling photosynthesis, stomatal conductance and leaf energy balance. The model is forced by incoming shortwave and longwave radiation, as well as near-surface meteorological conditions. The original formulation of MLCan utilized canopy structural traits derived from observations. This project aims to incorporate a plant phenology scheme within MLCan allowing these structural traits to vary dynamically. In the plant phenology scheme implemented here, plant growth is dependent on environmental conditions such as air temperature and soil moisture. The scheme includes functionality that models plant germination, growth, and senescence. These growth stages dictate the variation in six different vegetative carbon pools: storage, leaves, stem, coarse roots, fine roots, and reproductive. The magnitudes of these carbon pools determine land surface parameters such as leaf area index, canopy height, rooting depth and root water uptake capacity. Coupling this phenology scheme with MLCan allows for a more flexible representation of the structure and function of vegetation as it responds to changing environmental conditions.
A New Canopy Integration Factor
NASA Astrophysics Data System (ADS)
Badgley, G.; Anderegg, L. D. L.; Baker, I. T.; Berry, J. A.
2017-12-01
Ecosystem modelers have long debated how to best represent within-canopy heterogeneity. Can one big leaf represent the full range of canopy physiological responses? Or you need two leaves - sun and shade - to get things right? Is it sufficient to treat the canopy as a diffuse medium? Or would it be better to explicitly represent separate canopy layers? These are open questions that have been subject of an enormous amount of research and scrutiny. Yet regardless of how the canopy is represented, each model must grapple with correctly parameterizing its canopy in a way that properly translates leaf-level processes to the canopy and ecosystem scale. We present a new approach for integrating whole-canopy biochemistry by combining remote sensing with ecological theory. Using the Simple Biosphere model (SiB), we redefined how SiB scales photosynthetic processes from leaf-to-canopy as a function of satellite-derived measurements of solar-induced chlorophyll fluorescence (SIF). Across multiple long-term study sites, our approach improves the accuracy of daily modeled photosynthesis by as much as 25 percent. We share additional insights on how SIF might be more directly integrated into photosynthesis models, as well as present ideas for harnessing SIF to more accurately parameterize canopy biochemical variables.
NASA Technical Reports Server (NTRS)
Klassen, S. P.; Ritchie, G.; Frantz, J. M.; Pinnock, D.; Bugbee, B.
2003-01-01
Cumulative absorbed radiation is highly correlated with crop biomass and yield. In this chapter we describe the use of a digital camera and commercial imaging software for estimating daily radiation capture, canopy photosynthesis, and relative growth rate. Digital images were used to determine percentage of ground cover of lettuce (Lactuca sativa L.) communities grown at five temperatures. Plants were grown in a steady-state, 10-chamber CO2 gas exchange system, which was used to measure canopy photosynthesis and daily carbon gain. Daily measurements of percentage of ground cover were highly correlated with daily measurements of both absorbed radiation (r(sup 2) = 0.99) and daily carbon gain (r(sup 2) = 0.99). Differences among temperature treatments indicated that these relationships were influenced by leaf angle, leaf area index, and chlorophyll content. An analysis of the daily images also provided good estimates of relative growth rates, which were verified by gas exchange measurements of daily carbon gain. In a separate study we found that images taken at hourly intervals were effective for monitoring real-time growth. Our data suggests that hourly images can be used for early detection of plant stress. Applications, limitations, and potential errors are discussed. We have long known that crop yield is determined by the efficiency of four component processes: (i) radiation capture, (ii) quantum yield, (iii) carbon use efficiency, and (iv) carbon partitioning efficiency (Charles-Edwards, 1982; Penning de Vries & van Laar, 1982; Thornley, 1976). More than one-half century ago, Watson (1947, 1952) showed that variation in radiation capture accounted for almost all of the variation in yield between sites in temperate regions, because the three other components are relatively constant when the crop is not severely stressed. More recently, Monteith (1977) reviewed the literature on the close correlation between radiation capture and yield. Bugbee and Monje (1992) demonstrated the close relationship between absorbed radiation and yield in an optimal environment.
NASA Astrophysics Data System (ADS)
Drewry, D.; Kumar, P.; Sivapalan, M.; Long, S.; Liang, X.
2009-05-01
Recent local-scale observational studies have demonstrated significant modifications to the partitioning of incident energy by two key mid-west agricultural species, soy and corn, as ambient atmospheric CO2 concentrations are experimentally augmented to projected future levels. The uptake of CO2 by soy, which utilizes the C3 photosynthetic pathway, has likewise been observed to significantly increase under elevated growth CO2 concentrations. Changes to the sensible and latent heat exchanges between the land surface and the atmospheric boundary layer (ABL) across large portions of the mid-western US has the potential to affect ABL growth and composition, and consequently feed-back to the near-surface environment (air temperature and vapor content) experienced by the vegetation. Here we present a simulation analysis that examines the changes in land-atmosphere feedbacks associated with projected increases in ambient CO2 concentrations over extended soy/corn agricultural areas characteristic of the US mid-west. The model canopies are partitioned into several layers, allowing for resolution of the shortwave and longwave radiation regimes that drive photosynthesis, stomatal conductance and leaf energy balance in each layer, along with the canopy microclimate. The canopy component of the model is coupled to a multi-layer soil-root model that computes soil moisture and heat transport and root water uptake. Model skill in capturing the sub-diurnal variability in canopy-atmosphere exchange is evaluated through multi-year records of canopy-top eddy covariance CO2, water vapor and heat fluxes collected at the Bondville (Illinois) FluxNet site. An evaluation of the ability of the model to simulate observed changes in energy balance components (canopy temperature, net radiation and soil heat flux) under elevated CO2 concentrations projected for 2050 (550 ppm) is made using observations collected at the SoyFACE Free Air Carbon Enrichment (FACE) experimental facilities located in central Illinois, by incorporating observed acclimations in leaf biochemsitry and canopy structure. The simulation control volume is then extended by coupling the canopy models to a simple model of daytime mixed-layer (ML) growth and composition, ie. air temperature and vapor content. Through this coupled canopy-ABL model we quantify the impact of elevated CO2 and vegetation acclimation on ML growth, temperature and vapor content and the consequent feedbacks to the land surface by way of the near-surface environment experienced by the vegetation. Particular focus is placed on the role of short-term drought, and possible changes in land cover composition between soy, a C3 crop, and corn, a more water-use efficient C4 crop, on modulating the strength of these CO2-induced feedbacks.
Sullivan, T J; Lawrence, G B; Bailey, S W; McDonnell, T C; Beier, C M; Weathers, K C; McPherson, G T; Bishop, D A
2013-11-19
We documented the effects of acidic atmospheric deposition and soil acidification on the canopy health, basal area increment, and regeneration of sugar maple (SM) trees across the Adirondack region of New York State, in the northeastern United States, where SM are plentiful but not well studied and where widespread depletion of soil calcium (Ca) has been documented. Sugar maple is a dominant canopy species in the Adirondack Mountain ecoregion, and it has a high demand for Ca. Trees in this region growing on soils with poor acid-base chemistry (low exchangeable Ca and % base saturation [BS]) that receive relatively high levels of atmospheric sulfur and nitrogen deposition exhibited a near absence of SM seedling regeneration and lower crown vigor compared with study plots with relatively high exchangeable Ca and BS and lower levels of acidic deposition. Basal area increment averaged over the 20th century was correlated (p < 0.1) with acid-base chemistry of the Oa, A, and upper B soil horizons. A lack of Adirondack SM regeneration, reduced canopy condition, and possibly decreased basal area growth over recent decades are associated with low concentrations of nutrient base cations in this region that has undergone soil Ca depletion from acidic deposition.
Sullivan, Timothy J.; Lawrence, Gregory B.; Bailey, Scott W.; McDonnell, Todd C.; Beier, Colin M.; Weathers, K.C.; McPherson, G.T.; Bishop, Daniel A.
2013-01-01
We documented the effects of acidic atmospheric deposition and soil acidification on the canopy health, basal area increment, and regeneration of sugar maple (SM) trees across the Adirondack region of New York State, in the northeastern United States, where SM are plentiful but not well studied and where widespread depletion of soil calcium (Ca) has been documented. Sugar maple is a dominant canopy species in the Adirondack Mountain ecoregion, and it has a high demand for Ca. Trees in this region growing on soils with poor acid–base chemistry (low exchangeable Ca and % base saturation [BS]) that receive relatively high levels of atmospheric sulfur and nitrogen deposition exhibited a near absence of SM seedling regeneration and lower crown vigor compared with study plots with relatively high exchangeable Ca and BS and lower levels of acidic deposition. Basal area increment averaged over the 20th century was correlated (p < 0.1) with acid–base chemistry of the Oa, A, and upper B soil horizons. A lack of Adirondack SM regeneration, reduced canopy condition, and possibly decreased basal area growth over recent decades are associated with low concentrations of nutrient base cations in this region that has undergone soil Ca depletion from acidic deposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raczka, Brett; Duarte, Henrique F.; Koven, Charles D.
Land surface models are useful tools to quantify contemporary and future climate impact on terrestrial carbon cycle processes, provided they can be appropriately constrained and tested with observations. Stable carbon isotopes of CO 2 offer the potential to improve model representation of the coupled carbon and water cycles because they are strongly influenced by stomatal function. Recently, a representation of stable carbon isotope discrimination was incorporated into the Community Land Model component of the Community Earth System Model. Here, we tested the model's capability to simulate whole-forest isotope discrimination in a subalpine conifer forest at Niwot Ridge, Colorado, USA. Wemore » distinguished between isotopic behavior in response to a decrease of δ 13C within atmospheric CO 2 (Suess effect) vs. photosynthetic discrimination (Δ canopy), by creating a site-customized atmospheric CO 2 and δ 13C of CO 2 time series. We implemented a seasonally varying V cmax model calibration that best matched site observations of net CO 2 carbon exchange, latent heat exchange, and biomass. The model accurately simulated observed δ 13C of needle and stem tissue, but underestimated the δ 13C of bulk soil carbon by 1–2 ‰. The model overestimated the multiyear (2006–2012) average Δ canopy relative to prior data-based estimates by 2–4 ‰. The amplitude of the average seasonal cycle of Δ canopy (i.e., higher in spring/fall as compared to summer) was correctly modeled but only when using a revised, fully coupled A n- g s (net assimilation rate, stomatal conductance) version of the model in contrast to the partially coupled A n- g s version used in the default model. The model attributed most of the seasonal variation in discrimination to A n, whereas interannual variation in simulated Δ canopy during the summer months was driven by stomatal response to vapor pressure deficit (VPD). The model simulated a 10 % increase in both photosynthetic discrimination and water-use efficiency (WUE) since 1850 which is counter to established relationships between discrimination and WUE. The isotope observations used here to constrain CLM suggest (1) the model overestimated stomatal conductance and (2) the default CLM approach to representing nitrogen limitation (partially coupled model) was not capable of reproducing observed trends in discrimination. These findings demonstrate that isotope observations can provide important information related to stomatal function driven by environmental stress from VPD and nitrogen limitation. Future versions of CLM that incorporate carbon isotope discrimination are likely to benefit from explicit inclusion of mesophyll conductance.« less
Raczka, Brett; Duarte, Henrique F.; Koven, Charles D.; ...
2016-09-19
Land surface models are useful tools to quantify contemporary and future climate impact on terrestrial carbon cycle processes, provided they can be appropriately constrained and tested with observations. Stable carbon isotopes of CO 2 offer the potential to improve model representation of the coupled carbon and water cycles because they are strongly influenced by stomatal function. Recently, a representation of stable carbon isotope discrimination was incorporated into the Community Land Model component of the Community Earth System Model. Here, we tested the model's capability to simulate whole-forest isotope discrimination in a subalpine conifer forest at Niwot Ridge, Colorado, USA. Wemore » distinguished between isotopic behavior in response to a decrease of δ 13C within atmospheric CO 2 (Suess effect) vs. photosynthetic discrimination (Δ canopy), by creating a site-customized atmospheric CO 2 and δ 13C of CO 2 time series. We implemented a seasonally varying V cmax model calibration that best matched site observations of net CO 2 carbon exchange, latent heat exchange, and biomass. The model accurately simulated observed δ 13C of needle and stem tissue, but underestimated the δ 13C of bulk soil carbon by 1–2 ‰. The model overestimated the multiyear (2006–2012) average Δ canopy relative to prior data-based estimates by 2–4 ‰. The amplitude of the average seasonal cycle of Δ canopy (i.e., higher in spring/fall as compared to summer) was correctly modeled but only when using a revised, fully coupled A n- g s (net assimilation rate, stomatal conductance) version of the model in contrast to the partially coupled A n- g s version used in the default model. The model attributed most of the seasonal variation in discrimination to A n, whereas interannual variation in simulated Δ canopy during the summer months was driven by stomatal response to vapor pressure deficit (VPD). The model simulated a 10 % increase in both photosynthetic discrimination and water-use efficiency (WUE) since 1850 which is counter to established relationships between discrimination and WUE. The isotope observations used here to constrain CLM suggest (1) the model overestimated stomatal conductance and (2) the default CLM approach to representing nitrogen limitation (partially coupled model) was not capable of reproducing observed trends in discrimination. These findings demonstrate that isotope observations can provide important information related to stomatal function driven by environmental stress from VPD and nitrogen limitation. Future versions of CLM that incorporate carbon isotope discrimination are likely to benefit from explicit inclusion of mesophyll conductance.« less
Concurrent CO2 and COS fluxes across major biomes in Europe
NASA Astrophysics Data System (ADS)
Spielmann, Felix M.; Kitz, Florian; Hammerle, Albin; Gerdel, Katharina; Ibrom, Andreas; Kolle, Olaf; Migliavacca, Mirco; Moreno, Gerardo; Noe, Steffen M.; Wohlfahrt, Georg
2017-04-01
The trace gas carbonyl sulfide (COS) has been proposed as a tracer for canopy gross primary production (GPP), canopy transpiration and stomatal conductance of plant canopies in the last few years. COS enters the plant leaf through the stomata and diffuses through the intercellular space, the cell wall, the plasma membrane and the cytosol like carbon dioxide (CO2). It is then catalyzed by the enzyme carbonic anhydrase in a one-way reaction to hydrogen sulfide and CO2. This one-way flux into the leaf makes COS a promising tracer for the GPP. However, this approach assumes that the ratio of the deposition velocities between COS and CO2 is constant, which must be determined in field experiments covering a wide variety of ecosystems. The overarching objective of this study was to quantify the relationship between the ecosystem-scale exchange of COS and CO2 and thus, to test for the potential of COS to be used as a universal tracer for the plant canopy CO2 exchange. Between spring 2015 and summer 2016 we set up our quantum cascade laser at different field sites across Europe. These sites included a managed temperate mountain grassland (AUT), a savanna (ESP), a temperate beech forest (DEN) and a hemiboreal forest (EST). On each of these sites, we conducted ecosystem scale eddy covariance and soil chamber measurements. Since the soil COS flux contribution, especially in grass dominated ecosystems, could not be neglected, we had to derive the actual canopy COS fluxes for all the measurement sites. Using these fluxes we compared the ecosystem relative uptake (ERU) of the sites and searched for factors affecting its variability. We then used the influential factors to scale the ERU to be comparable under different field sites and conditions. Furthermore we also calculated the GPP using conventional CO2 flux partitioning and compared the results with the approach of using the leaf relative uptake.
Primary succession on slopes exposed to intense erosion: the case of Vesuvius Grand Cone
NASA Astrophysics Data System (ADS)
Stinca, Adriano; Battista Chirico, Giovanni; Bonanomi, Giuliano
2014-05-01
Mt. Vesuvius (1281 m a.s.l.) is an active volcano dominating the central part of the Campania Region coastline, with a distinctive barren crater summit, known as Grand Cone, formed during the eruption of AD 79. Local environmental factors hindered the colonization of the Vesuvius Grand Cone by vascular plants after the last eruptions of 1906 and 1944. The Grand Cone exhibits very steep planar slopes (33-35 degrees), covered by unconsolidated pyroclastic deposits, mainly formed by lapilli and gravels, characterized by an extremely low water holding capacity and very low organic matter and nitrogen contents, and exposed to intense water and wind erosion. In the last decade Genista aetnensis (Biv.) DC. (Fabaceae), has been expanding over the Grand Cone, facilitating the colonization by other species, especially herbaceous, with a dramatic change of the landscape appearance of the Vesuvius Grand Cone. G. aetnensis is a plant endemic of Mt. Etna and Eastern Sardinia and was firstly introduced at the base of Mt. Vesuvius within reforestation programs after the eruption of 1906. This plant is a nitrogen fixing species with a strong ability to colonize andosols, much more pronounced than the indigenous brooms (Cytisus scoparius and Spartium junceum). An intensive investigation has been conducted to explore the eco-hydrological processes driving the vegetation dynamics observed on the slopes of Grand Cone. Specific field surveys and laboratory experiments have been carried out to assess the effects of the G. aetnensis on soil physical and chemical properties, on the above- and below-ground microclimate, on the soil hydrological regime and on the distribution of coexisting species. The G. aetnensis triggers a pedogenetic process that contributes to a rapid increase of carbon and nitrogen stocks, available phosphorous, cation exchange capacity and a reduction of soil pH. The increase of carbon content also significantly improves the water retention properties in this coarse-textured soils, increasing the soil water content available for plants. Continuous monitoring of the microclimatic variables, both under and outside the canopy shading, reveals that the G. aetnensis canopy reduces the air and soil temperatures while keeping air humidity higher in the warmest hours of the day during the entire growing season, thus reducing soil water losses by evaporation. During the hottest day of the summer season, the canopy shading also mitigates the surface soil temperature maxima, which values outside the canopy shading are prohibitive for the survival of the vascular plants. Ultimately, the G. aetnensis creates an island of fertility under its canopy, by ameliorating the soil quality and by creating more favourable microclimate and soil hydrological conditions under its canopy, determining underneath the canopy a less stress prone environment that allows the colonization by less stress adapted species.
Tarvainen, Lasse; Räntfors, Mats; Wallin, Göran
2015-11-01
Previous leaf-scale studies of carbon assimilation describe short-term resource-use efficiency (RUE) trade-offs where high use efficiency of one resource requires low RUE of another. However, varying resource availabilities may cause long-term RUE trade-offs to differ from the short-term patterns. This may have important implications for understanding canopy-scale resource use and allocation. We used continuous gas exchange measurements collected at five levels within a Norway spruce, Picea abies (L.) karst., canopy over 3 years to assess seasonal differences in the interactions between shoot-scale resource availability (light, water and nitrogen), net photosynthesis (An ) and the use efficiencies of light (LUE), water (WUE) and nitrogen (NUE) for carbon assimilation. The continuous data set was used to develop and evaluate multiple regression models for predicting monthly shoot-scale An . These models showed that shoot-scale An was strongly dependent on light availability and was generally well described with simple one- or two-parameter models. WUE peaked in spring, NUE in summer and LUE in autumn. However, the relative importance of LUE for carbon assimilation increased with canopy depth at all times. Our results suggest that accounting for seasonal and within-canopy trade-offs may be important for RUE-based modelling of canopy carbon uptake. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Ferraretto, Daniele; Heal, Kate
2017-04-01
Temperate forest ecosystems are significant sinks for nitrogen deposition (Ndep) yielding benefits such as protection of waterbodies from eutrophication and enhanced sequestration of atmospheric CO2. Previous studies have shown evidence of biological nitrification and Ndep processing and retention in forest canopies. However, this was reported only at sites with high environmental or experimentally enhanced rates of Ndep (˜18 kg N ha-1 y-1) and has not yet been demonstrated in low Ndep environments. We have used bulk field hydrochemical measurements and labelled isotopic experiments to assess canopy processing in a lower Ndep environment (˜7 kg N ha-1 year-1) at a Sitka spruce plantation in Perthshire, Scotland, representing the dominant tree species (24%) in woodlands in Great Britain. Analysis of 4.5 years of measured N fluxes in rainfall (RF) and fogwater onto the canopy and throughfall (TF) and stemflow (SF) below the canopy suggests strong transformation and uptake of Ndep in the forest canopy. Annual canopy Ndep uptake was ˜4.7 kg N ha-1 year-1, representing 60-76% of annual Ndep. To validate these plot-scale results and track N uptake within the forest canopy in different seasons, double 15N-labelled NH4NO3 (98%) solution was sprayed in summer and winter onto the canopy of three trees at the measurement site. RF, TF and SF samples have been collected and analysed for 15NH4 and 15NO3. Comparing the amount of labelled N recovered under the sample trees with the measured δ15N signal is expected to provide further evidence of the role of forest canopies in actively processing and retaining atmospheric N deposition.
NASA Astrophysics Data System (ADS)
Glenn, N. F.; Uhlmann, Z.; Spaete, L.; Tennant, C.; Hiemstra, C. A.; McNamara, J.
2017-12-01
Predicting changes in forested seasonal snowpacks under altered climate scenarios is one of the most pressing hydrologic challenges facing today's society. Airborne- and satellite-based remote sensing methods hold the potential to transform measurements of terrestrial water stores in snowpack, improve process representations of snowpack accumulation and ablation, and to generate high quality predictions that inform potential strategies to better manage water resources. While the effects of forest on snowpack are well documented, many of the fine-scale processes influenced by the forest-canopy are not directly accounted for because most snow models don't explicitly represent canopy structure and canopy heterogeneity. This study investigates the influence of forest canopy on snowpack distribution at fine scales and quantifies the influence of canopy heterogeneity on snowpack accumulation and ablation processes. We use terrestrial laser scanning (TLS) data collected during the SnowEX campaign to discover how the relationships between canopy and snow distributions change across scales. Our sample scales range from individual trees to patches of trees across the Grand Mesa, CO, SnowEx site.
Evaluation of Growing Season Milestones, Using Eddy Covariance Time-Series of Net Ecosystem Exchange
NASA Astrophysics Data System (ADS)
Pastorello, G.; Faybishenko, B.; Poindexter, C.; Menzer, O.; Agarwal, D.; Papale, D.; Baldocchi, D. D.
2014-12-01
Common methods for determining timing of plants' developmental events, such as direct observation and remote sensing of NDVI, usually produce data of temporal resolution on the order of one week or more. This limitation can make observing subtle trends across years difficult. The goal of this presentation is to demonstrate a conceptual approach and a computational technique to quantify seasonal, annual and long-term phenological indices and patterns, based on continuous eddy covariance measurements of net ecosystem exchange (NEE) measured at eddy covariance towers in the AmeriFlux network. Using a comprehensive time series analysis of NEE fluxes in different climatic zones, we determined multiple characteristics (and their confidence intervals) of the growing season including: the initiation day—the day when canopy photosynthesis development starts, the photosynthesis stabilization day - the day when the development process of canopy photosynthesis starts to slow down and gradually moves toward stabilization, and the growing season effective termination day. We also determined the spring photosynthetic development velocity and the fall photosynthetic development velocity. The results of calculations using NEE were compared with those from temperature and precipitation data measured at the same AmeriFlux tower stations, as well as with the in-situ directly observed phenological records. The results of calculations of phenological indices from the NEE time-series collected at AmeriFlux sites can be used to constrain the application of other time- and labor-intensive sensing methods and to reduce the uncertainty in identifying trends in the timing of phenological indices.
Measurements of turbulence and vegetation structure across a forest clearing
NASA Astrophysics Data System (ADS)
Queck, R.; Bernhofer, C.; Bienert, A.; Maas, H.-G.
2012-04-01
Detailed knowledge of the energy and mass exchange between forests and atmosphere is essential for the assessment of carbon sequestration of forests and their capacity for absorption and emission of atmospheric trace gases. Compared to agricultural land uses the vegetation layer of forests is much larger, involves significant currents of air and acts as storage for energy and gases. Advective fluxes within and above a forest canopy occur as a result of the heterogeneity of the soil conditions and the vegetation composition. Turbulent and advective fluxes change with meteorological conditions (e.g. radiation, wind speed and direction) but also with the state of the canopy. The influence of the canopy structure on the fluxes is rarely investigated. To address this topic and to improve the parameterisation of unresolved exchange effects at inhomogeneities in numerical models the TurbEFA experiment was designed. TurbEFA is the acronym for the interdisciplinary project "Turbulent Exchange processes between Forested areas and the Atmosphere", it encompasses the work of five groups applying terrestrial laser scanning, meteorological field measurements, wind tunnel measurements, boundary layer modelling and large eddy simulation. Subject of investigation is the FluxNet site `Anchor Station Tharandt' which is located about 20 km southwest of the city of Dresden in Germany (N 50°57'49", E 13°34'01", 380 m a.s.l.). From May 2008 to May 2009 intensive measurements took place across the forest clearing "Wildacker" in the vicinity of the FluxNet site. Sonic anemometers at 32 measurement positions in total are used to record the turbulent flow at 4 towers (heights: 40m, 40m, 40m, 30m) and five ground level positions (2 m). The forest stands around the clearing (500 m x 60 m) were scanned applying a terrestrial laser scanner. Thereby scans from different ground positions and from the top of two towers (height: 40m) were accomplished. The scans were filtered and combined to a single 3D representation of the stands. The presentation describes the field measurements which are conducted in the frame of TurbEFA. They are part of a reference data set available at the project homepage. The aim of this presentation is to make the dataset public and to invite modellers to further data analysis.
Air Circulation and Heat Exchange Under Reduced Pressures
NASA Technical Reports Server (NTRS)
Rygalov, V.; Wheeler, R.; Dixon, M.; Fowler, P.; Hillhouse, L.
2010-01-01
Heat exchange rates decrease non-linearly with reductions in atmospheric pressure. This decrease creates risk of thermal stress (elevated leaf temperatures) for plants under reduced pressures. Forced convection (fans) significantly increases heat exchange rate under almost all pressures except below 10 kPa. Plant cultivation techniques under reduced pressures will require forced convection. The cooling curve technique is a reliable means of assessing the influence of environmental variables like pressure and gravity on gas exchange of plant. These results represent the extremes of gas exchange conditions for simple systems under variable pressures. In reality, dense plant canopies will exhibit responses in between these extremes. More research is needed to understand the dependence of forced convection on atmospheric pressure. The overall thermal balance model should include latent and radiative exchange components.
Burgess, Alexandra J.; Retkute, Renata; Herman, Tiara; Murchie, Erik H.
2017-01-01
The arrangement of leaf material is critical in determining the light environment, and subsequently the photosynthetic productivity of complex crop canopies. However, links between specific canopy architectural traits and photosynthetic productivity across a wide genetic background are poorly understood for field grown crops. The architecture of five genetically diverse rice varieties—four parental founders of a multi-parent advanced generation intercross (MAGIC) population plus a high yielding Philippine variety (IR64)—was captured at two different growth stages using a method for digital plant reconstruction based on stereocameras. Ray tracing was employed to explore the effects of canopy architecture on the resulting light environment in high-resolution, whilst gas exchange measurements were combined with an empirical model of photosynthesis to calculate an estimated carbon gain and total light interception. To further test the impact of different dynamic light patterns on photosynthetic properties, an empirical model of photosynthetic acclimation was employed to predict the optimal light-saturated photosynthesis rate (Pmax) throughout canopy depth, hypothesizing that light is the sole determinant of productivity in these conditions. First, we show that a plant type with steeper leaf angles allows more efficient penetration of light into lower canopy layers and this, in turn, leads to a greater photosynthetic potential. Second the predicted optimal Pmax responds in a manner that is consistent with fractional interception and leaf area index across this germplasm. However, measured Pmax, especially in lower layers, was consistently higher than the optimal Pmax indicating factors other than light determine photosynthesis profiles. Lastly, varieties with more upright architecture exhibit higher maximum quantum yield of photosynthesis indicating a canopy-level impact on photosynthetic efficiency. PMID:28567045
Technology base for microgravity horticulture
NASA Technical Reports Server (NTRS)
Sauer, R. L.; Magnuson, J. W.; Scruby, R. R.; Scheld, H. W.
1987-01-01
Advanced microgravity plant biology research and life support system development for the spacecraft environment are critically hampered by the lack of a technology base. This inadequacy stems primarily from the fact that microgravity results in a lack of convective currents and phase separation as compared to the one gravity environment. A program plan is being initiated to develop this technology base. This program will provide an iterative flight development effort that will be closely integrated with both basic science investigations and advanced life support system development efforts incorporating biological processes. The critical considerations include optimum illumination methods, root aeration, root and shoot support, and heat rejection and gas exchange in the plant canopy.
Agroecology: Implications for plant response to climate change
USDA-ARS?s Scientific Manuscript database
Agricultural ecosystems (agroecosystems) represent the balance between the physiological responses of plants and plant canopies and the energy exchanges. Rising temperature and increasing CO2 coupled with an increase in variability of precipitation will create a complex set of interactions on plant ...
NASA Astrophysics Data System (ADS)
Kovalets, Ivan; Avila, Rodolfo; Mölder, Meelis; Kovalets, Sophia; Lindroth, Anders
2018-02-01
A model of CO2 atmospheric transport in vegetated canopies is tested against measurements of the flow, as well as CO2 concentrations at the Norunda research station located inside a mixed pine-spruce forest. We present the results of simulations of wind-speed profiles and CO2 concentrations inside and above the forest canopy with a one-dimensional model of profiles of the turbulent diffusion coefficient above the canopy accounting for the influence of the roughness sub-layer on turbulent mixing according to Harman and Finnigan (Boundary-Layer Meteorol 129:323-351, 2008; hereafter HF08). Different modelling approaches are used to define the turbulent exchange coefficients for momentum and concentration inside the canopy: (1) the modified HF08 theory—numerical solution of the momentum and concentration equations with a non-constant distribution of leaf area per unit volume; (2) empirical parametrization of the turbulent diffusion coefficient using empirical data concerning the vertical profiles of the Lagrangian time scale and root-mean-square deviation of the vertical velocity component. For neutral, daytime conditions, the second-order turbulence model is also used. The flexibility of the empirical model enables the best fit of the simulated CO2 concentrations inside the canopy to the observations, with the results of simulations for daytime conditions inside the canopy layer only successful provided the respiration fluxes are properly considered. The application of the developed model for radiocarbon atmospheric transport released in the form of ^{14}CO2 is presented and discussed.
NASA Astrophysics Data System (ADS)
Kovalets, Ivan; Avila, Rodolfo; Mölder, Meelis; Kovalets, Sophia; Lindroth, Anders
2018-07-01
A model of CO2 atmospheric transport in vegetated canopies is tested against measurements of the flow, as well as CO2 concentrations at the Norunda research station located inside a mixed pine-spruce forest. We present the results of simulations of wind-speed profiles and CO2 concentrations inside and above the forest canopy with a one-dimensional model of profiles of the turbulent diffusion coefficient above the canopy accounting for the influence of the roughness sub-layer on turbulent mixing according to Harman and Finnigan (Boundary-Layer Meteorol 129:323-351, 2008; hereafter HF08). Different modelling approaches are used to define the turbulent exchange coefficients for momentum and concentration inside the canopy: (1) the modified HF08 theory—numerical solution of the momentum and concentration equations with a non-constant distribution of leaf area per unit volume; (2) empirical parametrization of the turbulent diffusion coefficient using empirical data concerning the vertical profiles of the Lagrangian time scale and root-mean-square deviation of the vertical velocity component. For neutral, daytime conditions, the second-order turbulence model is also used. The flexibility of the empirical model enables the best fit of the simulated CO2 concentrations inside the canopy to the observations, with the results of simulations for daytime conditions inside the canopy layer only successful provided the respiration fluxes are properly considered. The application of the developed model for radiocarbon atmospheric transport released in the form of ^{14}CO2 is presented and discussed.
NASA Astrophysics Data System (ADS)
Loranty, Michael M.; Mackay, D. Scott; Ewers, Brent E.; Traver, Elizabeth; Kruger, Eric L.
2010-12-01
We have used an ecosystem model, TREES (Terrestrial Regional Ecosystem Exchange Simulator), to test the hypothesis that competition for light limits reference canopy stomatal conductance (GSref; conductance at 1 kPa vapor pressure deficit) for individual tree crowns. Sap flux (JS) data was collected at an aspen-dominated unmanaged early successional site, and at a sugar maple dominated midsuccessional site managed for timber production. Using a Monte Carlo approach, JS scaled canopy transpiration (EC) estimates were used to parameterize two versions of the model for each tree individually; a control model treated trees as isolated individuals, and a modified version incorporated the shading effects of neighboring individuals on incident radiation. Agreement between simulated and observed EC was better for maple than for aspen using the control model. Accounting for canopy heterogeneity using a three-dimensional canopy representation had minimal effects on estimates of GSref or model performance for individual maples. At the Aspen site the modified model resulted in improved EC estimates, particularly for trees with lower GSref and more shading by neighboring individuals. Our results imply a link between photosynthetic capacity, as mediated by competitive light environment, and GSref. We conclude that accounting for the effects of canopy heterogeneity on incident radiation improves modeled estimates of canopy carbon and water fluxes, especially for shade intolerant species. Furthermore our results imply a link between ecosystem structure and function that may be exploited to elucidate the impacts of forest structural heterogeneity on ecosystem fluxes of carbon and water via LiDAR remote sensing.
NASA Astrophysics Data System (ADS)
Wang, S.; Zhang, L.; Guanter, L.; Huang, C.
2017-12-01
Photosynthesis and evapotranspiration (ET) are the two most important activities of vegetation and make a great contribution to carbon, water and energy exchanges. Remote sensing provides opportunities for monitoring these processes across time and space. This study focuses on tracking diurnal changes of photosynthesis and evapotranspiration over soybean using multiple measurement techniques. Diurnal changes of both remote sensing-based indicators, including active and passive chlorophyll fluorescence and biophysical-related parameters, including photosynthesis rate (photo) and leaf stomatal conductance (cond), were observed. Results showed that both leaf-level steady-state fluorescence (Fs) and canopy-level solar-induced chlorophyll fluorescence were linearly correlated to photosynthetically active radiation (PAR) during the daytime. A double-peak diurnal change curve was observed for leaf-level photo and cond but not for Fs or SIF. Photo and cond showed a strong nonlinear (second-order) correlation, indicating that photosynthesis, which might be remotely sensed by SIF, has the opportunity to track short-term changes of ET. Results presented in this report will be helpful for better understanding the relationship between remote-sensing-based indices and vegetation's biophysical processes.
Using explanatory crop models to develop simple tools for Advanced Life Support system studies
NASA Technical Reports Server (NTRS)
Cavazzoni, J.
2004-01-01
System-level analyses for Advanced Life Support require mathematical models for various processes, such as for biomass production and waste management, which would ideally be integrated into overall system models. Explanatory models (also referred to as mechanistic or process models) would provide the basis for a more robust system model, as these would be based on an understanding of specific processes. However, implementing such models at the system level may not always be practicable because of their complexity. For the area of biomass production, explanatory models were used to generate parameters and multivariable polynomial equations for basic models that are suitable for estimating the direction and magnitude of daily changes in canopy gas-exchange, harvest index, and production scheduling for both nominal and off-nominal growing conditions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Rodríguez-Calcerrada, Jesús; Limousin, Jean-Marc; Martin-StPaul, Nicolas K; Jaeger, Carsten; Rambal, Serge
2012-04-01
Leaves of Mediterranean evergreens experience large variations in gas exchange rates over their life span due to aging and seasonally changing environmental conditions. Accounting for the changing respiratory physiology of leaves over time will help improve estimations of leaf and whole-plant carbon balances. Here we examined seasonal variations in light-saturated net CO(2) assimilation (A(max)), dark respiration (R(d)) and the proportional change in R(d) per 10 °C change in temperature (Q(10) of R(d)) in previous-year (PY) and current-year (CY) leaves of the broadleaved evergreen tree Quercus ilex L. A(max) and R(d) were lower in PY than in CY leaves. Differences in nitrogen between cohorts only partly explained such differences, and rates of A(max) and R(d) expressed per unit of leaf nitrogen were still significantly different between cohorts. The decline in A(max) in PY leaves did not result in the depletion of total non-structural carbohydrates, whose concentration was in fact higher in PY than CY leaves. Leaf-level carbon balance modeled from gas exchange data was positive at all ages. Q(10) of R(d) did not differ significantly between leaf cohorts; however, failure to account for distinct R(d) between cohorts misestimated canopy leaf respiration by 13% across dates when scaling up leaf measurements to the canopy. In conclusion, the decline in A(max) in old leaves that are close to or exceed their mean life span does not limit the availability of carbohydrates, which are probably needed to sustain new growth, as well as R(d) and nutrient resorption during senescence. Accounting for leaf age as a source of variation of R(d) improves the estimation of foliar respiratory carbon release at the stand scale.
NASA Technical Reports Server (NTRS)
Wheeler, R. M.; Berry, W. L.; Mackowiak, C.; Corey, K. A.; Sager, J. C.; Heeb, M. M.; Knott, W. M.
1993-01-01
A data set is given describing the daily nutrient uptake, gas exchange, environmental conditions, and carbon (C), and nutrient partitioning at harvest for the entire canopy and root system of a wheat crop (Triticum aestivum, cv. Yecora Rojo). The data were obtained from a 20 m2 stand of wheat plants grown from planting to maturity in a closed, controlled environment, and include daily nutrient uptake [macronutrients, nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S); and micronutrients, iron (Fe), boron (B), manganese (Mn), zinc (Zn), copper (Cu), and molybdenum (Mo)], canopy carbon dioxide (CO2) exchange rates, and transpiration. Environmental factors such as relative humidity, air temperature, nutrient solution temperature, pH and electrical conductivity, and photoperiod were controlled in the chamber to specific set points. A detailed description of biomass yield for each of the 64 plant growth trays comprising the 20 m2 of growth area is also provided, and includes dry weights of grain, straw, chaff, and roots, along with the concentration of nutrients in different plant tissues and the percent carbohydrate, fat, and protein. To our knowledge, this information represents one of the most extensive data sets available for a canopy of wheat grown from seed to maturity under controlled environmental and nutritional conditions, and thus may provide useful information for model development and validation. A methods section is included to qualify any assumptions that might be required for the use of the data in plant growth models, along with a daily event calendar indicating when adjustments in set points and occasional equipment or sensor failures occurred.
NASA Technical Reports Server (NTRS)
Wheeler, Raymond M.; Berry, Wade L.; Mackowiak, Cheryl; Corey, Kenneth A.; Sager, John C.; Heeb, Margaret M.; Knott, William M.
1993-01-01
A data set is given describing the daily nutrient uptake, gas exchange, environmental conditions, and carbon (C), and nutrient partitioning at harvest for the entire canopy and root system of a wheat crop (Triticum aestivum, cv. Yecora Rojo). The data were obtained from a 20 sq m stand of wheat plants grown from planting to maturity in a closed, controlled environment, and include daily nutrient uptake [macronutrients, nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S); and micronutrients, iron (Fe), boron (B), manganese (Mn), zinc (Zn), copper (Cu), and molybdenum (Mo)], canopy carbon dioxide (CO2) exchange rates, and transpiration. Environmental factors such as relative humidity, air temperature, nutrient solution temperature, pH and electrical conductivity, and photoperiod were controlled in the chamber to specific set points. A detailed description of biomass yield for each of the 64 plant growth trays comprising the 20 sq m of growth area is also provided, and includes dry weights of grain, straw, chaff, and roots, along with the concentration of nutrients in different plant tissues and the percent carbohydrate, fat, and protein. To our knowledge, this information represents one of the most extensive data sets available for a canopy of wheat grown from seed to maturity under controlled environmental and nutritional conditions, and thus may provide useful information for model development and validation. A methods section is included to qualify any assumptions that might he required for the use of the data in plant growth models, along with a daily event calendar indicating when adjustments in set points and occasional equipment or sensor failures occurred.
NASA Astrophysics Data System (ADS)
Nemitz, E.; Sutton, M. A.; Wyers, G. P.; Jongejan, P. A. C.
2004-07-01
A field measurement campaign was carried out over a Dutch heathland to investigate the effect of gas-to-particle conversion and ammonium aerosol evaporation on surface/atmosphere fluxes of ammonia and related species. Continuous micrometeorological measurements of the surface exchange of NH3, SO2, HNO3 and HCl were made and are analyzed here with regard to average fluxes, deposition velocities (Vd), canopy resistances (Rc) and canopy compensation point for NH3. Gradients of SO2, HNO3 and HCl were measured with a novel wet-denuder system with online anion chromatography. Measurements of HNO3 and HCl indicate an Rc of 100 to 200 s m-1 during warm daytime periods, probably at least partly due to non-zero acid partial pressures above NH4NO3 and NH4Cl on the leaf surfaces. Although it is likely that this observation is exacerbated by the effect of the evaporation of airborne NH4+ on the gradient measurements, the findings nevertheless add to the growing evidence that HNO3 and HCl are not always deposited at the maximum rate. Ammonia (NH3) fluxes show mainly deposition, with some periods of significant daytime emission. The net exchange could be reproduced both with an Rc model (deposition fluxes only) using resistance parameterizations from former measurements, as well as with the canopy compensation point model, using parameterizations derived from the measurements. The apoplastic ratio of ammonium and hydrogen concentration (Γs=[NH4+]/[H+]) of 1200 estimated from the measurements is large for semi-natural vegetation, but smaller than indicated by previous measurements at this site.
NASA Astrophysics Data System (ADS)
Nemitz, E.; Sutton, M. A.; Wyers, G. P.; Jongejan, P. A. C.
2004-03-01
A field measurement campaign was carried out over a Dutch heathland to investigate the effect of gas-to-particle conversion and ammonium aerosol evaporation on surface/atmosphere fluxes of ammonia and related species. Continuous micrometeorological measurements of the surface exchange of NH3, SO2, HNO3 and HCl were made and are analyzed here with regard to average fluxes, deposition velocities (Vd), canopy resistances (Rc) and canopy compensation point for NH3. Gradients of SO2, HNO3 and HCl were measured with a novel wet-denuder system with online anion chromatography. Measurements of HNO3 and HCl indicate an Rc of 100 to 200 s m-1 during warm daytime periods, probably at least partly due to non-zero acid partial pressures above NH4NO3 and NH4Cl on the leaf surfaces. Although it is likely that this observation is exacerbated by the effect of the evaporation of airborne NH4+ on the gradient measurements, the findings nevertheless add to the growing evidence that HNO3 and HCl are not always deposited at the maximum rate. Ammonia (NH3) fluxes show mainly deposition, with some periods of significant daytime emission. The net exchange could be reproduced both with an Rc model (deposition fluxes only) using resistance parameterizations from former measurements, as well as with the canopy compensation point model, using parameterizations derived from the measurements. The apoplastic ratio of ammonium and hydrogen concentration (Γs=[NH4+]/[H+]) of 1200 estimated from the measurements is large for semi- natural vegetation, but smaller than indicated by previous measurements at this site.
NASA Astrophysics Data System (ADS)
Tsujimoto, K.; Kato, T.; Nakaji, T.
2016-12-01
As well as a proxy of ecosystem level photosynthesis, sun-induced fluorescence (SIF) is expected to be an indicator of plant physiological information in photosynthesis (Frankenberg et al., 2011). Zhang et al. (2014) especially suggested that the SIF can be used to estimate the capacity of RuBP carboxylation, Vcmax, at the ecosystem scale by the simple inversion approach with the combination of both observation and modeling. However, the seasonal pattern of the relationships between SIF and such gas exchange physiological parameters has not been confirmed by the direct field observation, yet. Here, we present the field observation results of both gas exchange based photosynthetic parameters and fluorescence properties of canopy leaves of Japanese oak (Quercus crispula) in a cool-temperate forest. In the Tomakomai experimental forest site (42°40'N, 141°36'E), Hokkaido University in Japan, we conducted the periodical measurements of the seasonality in photosynthetic parameters (Li-6400, Li-Cor, USA) and LED-induced fluorescence yield (USB4000, OceanOptics, USA and mini-PAM, WALZ, Germany) from June to October in 2016. Every two or three weeks, the in-situ single leaf data were collected for 10-16 leaves (consisting of 3-4 leaves x 3-4 individual trees) of Japanese oak at the top of canopy at 15-20m above ground surface with approaching by the tall canopy crane. After the in-situ data acquisition, the leaves are frozen in liquid nitrogen immediately followed by removable from shoots, and are going to be analyzed their chemical properties (ex. Chla, Chlb etc.). By analyzing seasonal pattern of those leaf traits, we are going to show how effectively the chlorophyll fluorescence can assess the carbon assimilation capacity of cool temperate forest.
Thompson, C.; Beringer, J.; Chapin, F. S.; McGuire, A.D.
2004-01-01
Question: Current climate changes in the Alaskan Arctic, which are characterized by increases in temperature and length of growing season, could alter vegetation structure, especially through increases in shrub cover or the movement of treeline. These changes in vegetation structure have consequences for the climate system. What is the relationship between structural complexity and partitioning of surface energy along a gradient from tundra through shrub tundra to closed canopy forest? Location: Arctic tundra-boreal forest transition in the Alaskan Arctic. Methods: Along this gradient of increasing canopy complexity, we measured key vegetation characteristics, including community composition, biomass, cover, height, leaf area index and stem area index. We relate these vegetation characteristics to albedo and the partitioning of net radiation into ground, latent, and sensible heating fluxes. Results: Canopy complexity increased along the sequence from tundra to forest due to the addition of new plant functional types. This led to non-linear changes in biomass, cover, and height in the understory. The increased canopy complexity resulted in reduced ground heat fluxes, relatively conserved latent heat fluxes and increased sensible heat fluxes. The localized warming associated with increased sensible heating over more complex canopies may amplify regional warming, causing further vegetation change in the Alaskan Arctic.
Turbulent transports over tundra
NASA Technical Reports Server (NTRS)
Fitzjarrald, David R.; Moore, Kathleen E.
1992-01-01
An extensive period of eddy correlation surface flux measurements was conducted at a site distant from the coast on the western Alaskan tundra. The surface exchange of heat and moisture over tundra during the summer was limited by a strong resistance to transfer from the upper soil layer through the ground cover, with canopy resistances to evaporation observed to be approximately 200 s/m. Though July 1988 was anomalously warm and dry in the region and August was close to normal temperature and rainfall, there was no appreciable difference in the canopy resistance between the periods. During the dry sunny period at the end of July, the observed evaporation rate was 2 mm/d. High canopy resistance led to an approximate equipartition of net radiation between latent and sensible heat, each accounting for 40 percent of the available energy, with heat balance apparently going into soil heat flux.
The hydraulic limitation hypothesis revisited.
Ryan, Michael G; Phillips, Nathan; Bond, Barbara J
2006-03-01
We proposed the hydraulic limitation hypothesis (HLH) as a mechanism to explain universal patterns in tree height, and tree and stand biomass growth: height growth slows down as trees grow taller, maximum height is lower for trees of the same species on resource-poor sites and annual wood production declines after canopy closure for even-aged forests. Our review of 51 studies that measured one or more of the components necessary for testing the hypothesis showed that taller trees differ physiologically from shorter, younger trees. Stomatal conductance to water vapour (g(s)), photosynthesis (A) and leaf-specific hydraulic conductance (K L) are often, but not always, lower in taller trees. Additionally, leaf mass per area is often greater in taller trees, and leaf area:sapwood area ratio changes with tree height. We conclude that hydraulic limitation of gas exchange with increasing tree size is common, but not universal. Where hydraulic limitations to A do occur, no evidence supports the original expectation that hydraulic limitation of carbon assimilation is sufficient to explain observed declines in wood production. Any limit to height or height growth does not appear to be related to the so-called age-related decline in wood production of forests after canopy closure. Future work on this problem should explicitly link leaf or canopy gas exchange with tree and stand growth, and consider a more fundamental assumption: whether tree biomass growth is limited by carbon availability.
NASA Astrophysics Data System (ADS)
Chan, W. S.; Fuentes, J. D.; Lerdau, M.
2010-12-01
This presentation will provide research findings to evaluate the hypothesis that the loss of biogenic volatile organic compound (BVOC) within plant canopies is dynamic and depends on factors such as plant canopy architecture (height and leaf area distribution), atmospheric turbulence, concentration of oxidants (OH, O3, NO3), and the reactivity of BVOC species. Results will be presented from a new one dimensional, multilevel canopy model that couples algorithms for canopy microclimate, leaf physiology, BVOC emission, turbulent transport, and atmospheric chemistry to investigate the relative importance of factors that impact BVOC loss within a forest canopy. Model sensitivity tests will be presented and discussed to identify factors driving canopy loss. Results show isoprene and monoterpene canopy losses as high as 9 and 18%, respectively, for tall canopies during the daytime. We hypothesize that canopy height and wind speed (i.e. canopy residence time) may be the most important in dictating within-canopy loss. This work will reduce the error in bottom-up flux estimates of BVOCs and ultimately improve parameterizations of BVOC sources in air quality models by accounting for within canopy processes.
NASA Astrophysics Data System (ADS)
Yetzer, Kenneth H.
A new one-dimensional (1D) soil-vegetation-atmospheric transport (SVAT) scheme is coupled to a nonlocal turbulence closure model in order to simulate the interactions between a forested canopy and the planetary boundary layer. The SVAT consists of mechanistic models for both physiological (photosynthesis, stomatal conductance and soil/root and bole respiration) and micrometeorological (radiative transfer and surface energy exchanges) processes. The turbulence closure model is a first-order, nonlocal turbulence closure called transilient turbulence theory (Stull, 1993; Inclan et al., 1995) which includes the effects of form drag, wake turbulence, and interference to vertical mixing by the plant elements. The submodel that accounts for radiative transfer inside the forest has been taken from Norman (1979) and Baldocchi (1989). It includes the effect of varying mean leaf inclination angle with height and it also accounts for leaf clumping The photosynthesis submodel is taken from Nikolov and others (1995). It accounts for both differences between shaded and sunlit leaves and the variation of photosynthetic capacity with height. The model was tested with data obtained from a deciduous forest in Pennsylvania. The results show reasonable agreement with the observations. They also demonstrate the model's ability to simulate phenomena that is characteristic of tall canopies like forests, including counter gradient-fluxes and local wind speed maxima in the trunk space.
Modeling runoff generation in a small snow-dominated mountainous catchment
USDA-ARS?s Scientific Manuscript database
Snowmelt in mountainous areas is an important contributor to river water flows in the western United States. We developed a distributed model that calculates solar radiation, canopy energy balance, surface energy balance, snow pack dynamics, soil water flow, snow–soil–bedrock heat exchange, soil wat...
NASA Astrophysics Data System (ADS)
VanLoocke, A. D.; Slattery, R.; Bernacchi, C.; Zhu, X.; Ort, D. R.
2013-12-01
Global food production will need to increase by approximately 70% by mid-century to meet the caloric and nutritional demand of population and economic growth. Achieving this goal will require successfully implementing a wide range of strategies, spanning the social and physical sciences. Here we will present opportunities for improving crop production through increasing photosynthetic rates for a crop canopy that do not require additional agronomic inputs. We will focus on a specific strategy related optimizing the distribution of light within a crop canopy because it is a possible way to improve canopy photosynthesis in crops that form dense canopies, such as soybean, by increasing the transmission of light within a canopy via reduced chlorophyll content. We hypothesized that if decreasing chlorophyll content in soybean leaves will result in greater light penetration into the canopy then this will enhance canopy photosynthesis and improve yields. In addition, if current chlorophyll content in soybean results in excess light absorption, then decreasing chlorophyll content will result in decreased photoprotection that results in the suppression of upper canopy photosynthesis associated with super-optimal light. These hypotheses were tested in 2012 and 2013 in the field on the soybean cultivar 'Clark' (WT) and a nearly isogenic chlorophyll-b deficient mutant (Y11y11). Throughout the season, profiles of light sensors measured incident and reflected light intensity at the canopy surface as well as light levels at ten heights within the canopy. Analyses of these data indicated greater reflectivity, transmissivity and within-canopy light levels for the Y11y11 canopy relative to WT especially in the top half of the canopy. A Gas exchange method was used to determine photosynthetic capacity and suppression high light levels. Daily integrals of leaf-level photosynthesis in sun leaves were greater in Y11y11 compared to WT at several times during the growing season and photoprotection in high light was greater in the WT compared to the chlorophyll mutant. However, despite greater photosynthetic rates and lower levels of photoprotection in the upper canopy of the mutants, seed yields did not increase with reduced chlorophyll content in 2012. The 2013 field season is currently underway with the aim of determining what factors, including possible side effects of the higher chlorophyll a/b ratio, limit the translation of greater photosynthesis at the top of the canopy into increased yield. The presentation will conclude with a discussion of future avenues to be pursued with regards to improving photosynthesis by reducing chlorophyll in a more targeted manner that may outperform the current generation of plants study in this experiment.
NASA Astrophysics Data System (ADS)
McGowan, L. E.; Paw U, K. T.; Dahlke, H. E.
2017-12-01
In the Western U.S., future water resources depend on the forested mountain snowpack. The variations in and estimates of forest mountain snow volume are vital to projecting annual water availability; yet, snow forest processes are not fully known. Most snow models calculate snow-canopy unloading based on time, temperature, Leaf Area Index (LAI), and/or wind speed. While models crudely consider the canopy shape via LAI, current models typically do not consider the vertical canopy structure or varied energetics within multiple canopy layers. Vertical canopy structure influences the spatiotemporal distribution of snow, and therefore ultimately determines the degree and extent by which snow alters both the surface energy balance and water availability. Within the canopy both the snowpack and energetic exposures to the snowpack (wind, shortwave and longwave radiation, turbulent heat fluxes etc.) vary widely in the vertical. The water and energy balance in each layer is dependent on all other layers. For example, increased snow canopy content in the top of the canopy will reduce available shortwave radiation at the bottom and snow unloading in a mid-layer can cascade and remove snow from all the lower layers. We examined vertical interactions and structures of the forest canopy on the impact of unloading utilizing the Advanced Canopy-Atmosphere-Soil-Algorithm (ACASA), a multilayer soil-vegetation-atmosphere numerical model based on higher-order closure of turbulence equations. Our results demonstrate how a multilayer model can be used to elucidate the physical processes of snow unloading, and could help researchers better parameterize unloading in snow-hydrology models.
NASA Astrophysics Data System (ADS)
Zhang, Q.; Yao, T.
2016-12-01
The climate is affected by the land surface through regulating the exchange of mass and energy with the atmosphere. The energy that reaches the land surface has three pathways: (1) reflected into atmosphere; (2) absorbed for photosynthesis; and (3) discarded as latent and sensible heat or emitted as fluorescence. Vegetation removes CO2 from the atmosphere during the process of photosynthesis, but also releases CO2 back into the atmosphere through the process of respiration. The complex set of vegetation-soil-atmosphere interactions requires that a realistic land-surface parameterization be included in any climate model or general circulation model (GCM) to accurately simulate canopy photosynthesis and stomatal conductance.We retrieve fraction of PAR absorbed by chlorophyll (fAPARchl) with an advanced canopy-leaf-soil-snow-water coupled radiative transfer model. Most ecological models and land-surface models that simulate vegetation GPP with remote sensing data utilize fraction of PAR absorbed by the whole canopy (fAPARcanopy). However, only the PAR absorbed by chlorophyll is potentially available for photosynthesis since the PAR absorbed by non-photosynthetic vegetation section (NPV) of the canopy is not used for photosynthesis. Therefore, fAPARchl (rather than fAPARcanopy) should be utilized to estimate fAPAR for photosynthesis (fAPARPSN), and thus in GPP simulation. Globally selected sites include those sites in tropical, Arctic/boreal, coastal, and wetland-dominant regions. The fAPARchl and fAPARcanopy products for a surrounding area 50 km x 50 km of each site are mapped. The fAPARchl is utilized to estimate GPP, and compared to tower flux GPP for validation. The GPP estimation performance with fAPARchl is also compared with the GPP estimation performance with MOD15A2 FPAR. The fAPARchl product is further implemented into ecological models and land-surface models to simulate vegetation GPP. NDVI is the other proxy of fAPARPSN in GPP estimation. We quantify the uncertainties in estimates of fAPARPSN when approximated with fAPARcanopy and NDVI. The uncertainties are significant and vary spatially, temporally, and with plant functional types.
Examining conifer canopy structural complexity across forest ages and elevations with LiDAR data
Van R. Kane; Jonathan D. Bakker; Robert J. McGaughey; James A. Lutz; Rolf F. Gersonde; Jerry F. Franklin
2010-01-01
LiDAR measurements of canopy structure can be used to classify forest stands into structural stages to study spatial patterns of canopy structure, identify habitat, or plan management actions. A key assumption in this process is that differences in canopy structure based on forest age and elevation are consistent with predictions from models of stand development. Three...
NASA Astrophysics Data System (ADS)
Kool, Dilia; Kustas, William P.; Agam, Nurit
2016-04-01
The partitioning of evapotranspiration (ET) into transpiration (T), a productive water use, and soil water evaporation (E), which is generally considered a water loss, is highly relevant to agriculture in the light of increasing desertification and water scarcity. This task is challenged by the complexity of soil and plant interactions, coupled with changes in atmospheric and soil water content conditions. Many of the processes controlling water/energy exchange are not adequately modeled. The two-source energy balance model (TSEB) was evaluated and adapted for independent E and T estimations in an isolated drip-irrigated wine vineyard in the arid Negev desert. The TSEB model estimates ET by computing vegetation and soil energy fluxes using remotely sensed composite surface temperature, local weather data (solar radiation, air temperature and humidity, and wind speed), and vegetation metrics (row spacing, canopy height and width, and leaf area). The soil and vegetation energy fluxes are computed numerically using a system of temperature gradient and resistance equations; where soil and canopy temperatures are derived from the composite surface temperature. For estimation of ET, the TSEB model has been shown to perform well for various agricultural crops under a wide range of environmental conditions, but validation of T and E fluxes is limited to one study in a well-watered cotton crop. Extending the TSEB approach to water-limited vineyards demands careful consideration regarding how the complex canopy structure of vineyards will influence the accuracy of the partitioning between E and T. Data for evaluation of the TSEB model were collected over a season (bud break till harvest). Composite, canopy, and soil surface temperatures were measured using infrared thermometers. The composite vegetation and soil surface energy fluxes were assessed using independent measurements of net radiation, and soil, sensible and latent heat flux. The below canopy energy balance was assessed at the dry midrow position as well as the wet irrigated position directly underneath the vine row, where net radiation and soil heat flux were measured, sensible heat flux was computed indirectly, and E was calculated as the residual. While the below canopy energy balance approach used in this study allowed continuous assessment of E at daily intervals, instantaneous E fluxes could not be assessed due to vertical variability in shading below the canopy. Seasonal partitioning indicated that total E amounted to 9-11% of ET. Initial evaluation of the TSEB model indicated that discrepancies between modeled and measured fluxes can largely be attributed to net radiation partitioning. In addition, large diurnal variation at the soil surface requires adaptation of the soil heat flux formulations. Improved estimation of energy fluxes by accounting for the relatively complex canopy structure of vineyards will be highlighted.
Characterizing tree canopy temperature heterogeneity using an unmanned aircraft-borne thermal imager
NASA Astrophysics Data System (ADS)
Messinger, M.; Powell, R.; Silman, M.; Wright, M.; Nicholson, W.
2013-12-01
Leaf temperature (Tleaf) is an important control on many physiological processes such as photosynthesis and respiration, is a key variable for characterizing canopy energy fluxes, and is a valuable metric for identifying plant water stress or disease. Traditional methods of Tleaf measurement involve either the use of thermocouples, a time and labor-intensive method that samples sparsely in space, or the use of air temperature (Tair) as a proxy measure, which can introduce inaccuracies due to near constant canopy-atmosphere energy flux. Thermal infrared (TIR) imagery provides an efficient means of collecting Tleaf for large areas. Existing satellite and aircraft-based TIR imagery is, however, limited by low spatial and/or temporal resolution, while crane-mounted camera systems have strictly limited spatial extents. Unmanned aerial systems (UAS) offer new opportunities to acquire high spatial and temporal resolution imagery on demand. Here, we demonstrate the feasibility of collecting tree canopy Tleaf data using a small multirotor UAS fitted with a high spatial resolution TIR imager. The goals of this pilot study were to a) characterize basic patterns of within crown Tleaf for 4 study species and b) identify trends in Tleaf between species with varying leaf morphologies and canopy structures. TIR imagery was acquired for individual tree crowns of 4 species common to the North Carolina Piedmont ecoregion (Quercus phellos, Pinus strobus, Liriodendron tulipifera, Magnolia grandiflora) in an urban park environment. Due to significantly above-average summer precipitation, we assumed that none of the sampled trees was limited by soil water availability. We flew the TIR imaging system over 3-4 individuals of each of the 4 target species on 3 separate days. Imagery of all individuals was collected within the same 2-hour period in the afternoon on all days. There was low wind and partly cloudy skies during imaging. Tair, relative humidity, and wind speed were recorded at each site. Emissivity was assumed to be 0.98 for all species. Acquired images had a pixel resolution of <3 cm and measurement accuracy of ×1° C. We found the UAS-borne TIR imaging system to be an effective tool for collection of high resolution canopy imagery. The system imaged all targeted crowns quickly and reliably, providing a viable alternative to current methods of canopy Tleaf measurement. Analysis of the imagery indicated significant variability in Tleaf both within and between crowns. We identified trends in Tleaf related to average leaf size, shape, and crown structural traits. These data on the heterogeneity of Tleaf can further our understanding of canopy-atmosphere energy exchange. This pilot study demonstrates the promise of UAS-borne TIR sensors for acquiring high spatial resolution imagery at the scale of individual tree crowns.
Investigating the Sustainability of Perennial Agriculture
NASA Astrophysics Data System (ADS)
Sutherlin, C. E.; Brunsell, N. A.; De Oliveira, G.; Crews, T.; Vico, G.
2017-12-01
The changing climate leads to uncertainties concerning the sustainability of certain agricultural resources, and with the additional stresses of an increasing global population, uncertainty in food security will greatly increase. To adhere to future food demands in the face of this changing climate, perennial agriculture has been a proposed solution. However, it is equally important to assure that perennial agriculture is not negatively affecting the climate in exchange for this proposed more robust food source. We chose to examine the interactions between perennial and annual agricultural crops by focusing on the efficiency of exchanges with the atmosphere. This is done using the omega decoupling factor for 4 different sites as a way of quantifying the contributions of radiation and stomatal conductance over the resulting water and carbon cycles. This gives us an indication of how the plant canopy is interacting with, and influencing the local microclimate. Ultimately, this should give us an indication of the ability of perennial crops to aid in the climate mitigation process. We hypothesized that the perennial site chosen would have omega values more similar to the omega values of a natural grassland rather than an annual crop site. Using AmeriFlux towers to determine the canopy values needed to calculate the omega decoupling factor, we focused on the Kernza perennial crops being grown at the Land Institute in Salina, Kansas (KLS), in comparison to a natural grassland in Manhattan, Kansas (KON), a typical land cover model in Lawrence, Kansas (KFS), and an annual crop site in Lamont, Oklahoma (ARM). These results will allow us to move forward in the investigation of perennial crops as a sustainable food source.
The canopy horizontal array turbulence study
Edward G. Patton; Thomas W. Horst; Peter P. Sullivan; Donald H. Lenschow; Steven P. Oncley; William O. J. Brown; Sean P. Burns; Alex B. Guenther; Andreas Held; Thomas Karl; Shane D. Mayor; Luciana V. Rizzo; Scott M. Spuler; Jielun Sun; Andrew A. Turnipsee; Eugene J. Allwine; Steven L. Edburg; Brian K. Lamb; Roni Avissar; Ronald J. Calhoun; Jan Kleissl; William J. Massman; Kyaw Tha Paw U; Jeffrey C. Weil
2011-01-01
Vegetation covers nearly 30% of Earth's land surface and influences climate through the exchanges of energy, water, carbon dioxide, and other chemical species with the atmosphere (Bonan 2008). The Earth's vegetation plays a critical role in the hydrological, carbon, and nitrogen cycles and also provides habitat and shelter for biota that deliver essential...
MEASUREMENT OF BI-DIRECTIONAL AMMONIA FLUXES OVER SOYBEAN USING MODIFIED BOWEN-RATIO TECHNIQUE
Measurements of bi-directional ammonia exchange over a fertilized soybean canopy are presented for an 8-week period during the summer of 2002. The modified Bowne-ratio approach was used to determine fluxes from vertical NH3 and temperature gradients in combination with eddy covar...
USDA-ARS?s Scientific Manuscript database
The ability to accurately predict land-atmosphere exchange of mass, energy, and momentum over the coming century requires the consideration of plant biochemical, ecophysiological and structural acclimation to modifications of the ambient environment. Amongst the most important environmental changes ...
NASA Technical Reports Server (NTRS)
Zhang, Qingyuan; Middleton, Elizabeth M.; Margolis, Hank A.; Drolet, Guillaume G.; Barr, Alan A.; Black, T. Andrew
2009-01-01
Gross primary production (GPP) is a key terrestrial ecophysiological process that links atmospheric composition and vegetation processes. Study of GPP is important to global carbon cycles and global warming. One of the most important of these processes, plant photosynthesis, requires solar radiation in the 0.4-0.7 micron range (also known as photosynthetically active radiation or PAR), water, carbon dioxide (CO2), and nutrients. A vegetation canopy is composed primarily of photosynthetically active vegetation (PAV) and non-photosynthetic vegetation (NPV; e.g., senescent foliage, branches and stems). A green leaf is composed of chlorophyll and various proportions of nonphotosynthetic components (e.g., other pigments in the leaf, primary/secondary/tertiary veins, and cell walls). The fraction of PAR absorbed by whole vegetation canopy (FAPAR(sub canopy)) has been widely used in satellite-based Production Efficiency Models to estimate GPP (as a product of FAPAR(sub canopy)x PAR x LUE(sub canopy), where LUE(sub canopy) is light use efficiency at canopy level). However, only the PAR absorbed by chlorophyll (a product of FAPAR(sub chl) x PAR) is used for photosynthesis. Therefore, remote sensing driven biogeochemical models that use FAPAR(sub chl) in estimating GPP (as a product of FAPAR(sub chl x PAR x LUE(sub chl) are more likely to be consistent with plant photosynthesis processes.
Dexter H. Locke; J. Morgan Grove; Michael Galvin; Jarlath P.M. ONeil-Dunne; Charles Murphy
2013-01-01
Urban Tree Canopy (UTC) Prioritizations can be both a set of geographic analysis tools and a planning process for collaborative decision-making. In this paper, we describe how UTC Prioritizations can be used as a planning process to provide decision support to multiple government agencies, civic groups and private businesses to aid in reaching a canopy target. Linkages...
Sullivan, Timothy J.; Lawrence, Gregory B.; Bailey, Scott W.; McDonnell, Todd C.; McPherson, G.T.
2013-01-01
This study documents the effects of acidic deposition and soil acid-base chemistry on the growth, regeneration, and canopy condition of sugar maple (SM) trees in the Adirondack Mountains of New York. Sugar maple is the dominant canopy species throughout much of the northern hardwood forest in the State. A field study was conducted in 2009 in which 50 study plots within 20 small Adirondack watersheds were sampled and evaluated for soil acid-base chemistry and SM growth, canopy condition, and regeneration. Atmospheric sulfur (S) and nitrogen (N) deposition were estimated for each plot. Trees growing on soils with poor acid-base chemistry (low exchangeable calcium and % base saturation) that receive relatively high levels of atmospheric S and N deposition exhibited little to no SM seedling regeneration, decreased canopy condition, and short-to long-term growth declines compared with study plots having better soil condition and lower levels of atmospheric deposition. These results suggest that the ecosystem services provided by SM in the western and central Adirondack Mountain region, including aesthetic, cultural, and monetary values, are at risk from ongoing soil acidification caused in large part by acidic deposition.
NASA Astrophysics Data System (ADS)
Martin, J.; Laughlin, M. M.; Olson, E.
2017-12-01
Canopy processes can be viewed at many scales and through many lenses. Fundamentally, we may wish to start by treating each canopy as a unique surface, an ecosystem unto itself. By doing so, we can may make some important observations that greatly influence our ability to scale canopies to landscape, regional and global scales. This work summarizes an ongoing endeavor to quantify various canopy level processes on individual old and large Eastern white pine trees (Pinus strobus). Our work shows that these canopies contain complex structures that vary with height and as the tree ages. This phenomenon complicates the allometric scaling of these large trees using standard methods, but detailed measurements from within the canopy provided a method to constrain scaling equations. We also quantified how these canopies change and respond to canopy disturbance, and documented disproportionate variation of growth compared to the lower stem as the trees develop. Additionally, the complex shape and surface area allow these canopies to act like ecosystems themselves; despite being relatively young and more commonplace when compared to the more notable canopies of the tropics and the Pacific Northwestern US. The white pines of these relatively simple, near boreal forests appear to house various species including many lichens. The lichen species can cover significant portions of the canopy surface area (which may be only 25 to 50 years old) and are a sizable source of potential nitrogen additions to the soils below, as well as a modulator to hydrologic cycles by holding significant amounts of precipitation. Lastly, the combined complex surface area and focused verticality offers important habitat to numerous animal species, some of which are quite surprising.
H.-E. Andersen; R.J. McGaughey; S.E. Reutebuch
2008-01-01
High resolution, active remote sensing technologies, such as interferometric synthetic aperture radar (IFSAR) and airborne laser scanning (LIDAR) have the capability to provide forest managers with direct measurements of 3-dimensional forest canopy surface structure. Although LIDAR systems can provide highly accurate measurements of canopy and terrain surfaces, high-...
Bell, David M; Ward, Eric J; Oishi, A Christopher; Oren, Ram; Flikkema, Paul G; Clark, James S
2015-07-01
Uncertainties in ecophysiological responses to environment, such as the impact of atmospheric and soil moisture conditions on plant water regulation, limit our ability to estimate key inputs for ecosystem models. Advanced statistical frameworks provide coherent methodologies for relating observed data, such as stem sap flux density, to unobserved processes, such as canopy conductance and transpiration. To address this need, we developed a hierarchical Bayesian State-Space Canopy Conductance (StaCC) model linking canopy conductance and transpiration to tree sap flux density from a 4-year experiment in the North Carolina Piedmont, USA. Our model builds on existing ecophysiological knowledge, but explicitly incorporates uncertainty in canopy conductance, internal tree hydraulics and observation error to improve estimation of canopy conductance responses to atmospheric drought (i.e., vapor pressure deficit), soil drought (i.e., soil moisture) and above canopy light. Our statistical framework not only predicted sap flux observations well, but it also allowed us to simultaneously gap-fill missing data as we made inference on canopy processes, marking a substantial advance over traditional methods. The predicted and observed sap flux data were highly correlated (mean sensor-level Pearson correlation coefficient = 0.88). Variations in canopy conductance and transpiration associated with environmental variation across days to years were many times greater than the variation associated with model uncertainties. Because some variables, such as vapor pressure deficit and soil moisture, were correlated at the scale of days to weeks, canopy conductance responses to individual environmental variables were difficult to interpret in isolation. Still, our results highlight the importance of accounting for uncertainty in models of ecophysiological and ecosystem function where the process of interest, canopy conductance in this case, is not observed directly. The StaCC modeling framework provides a statistically coherent approach to estimating canopy conductance and transpiration and propagating estimation uncertainty into ecosystem models, paving the way for improved prediction of water and carbon uptake responses to environmental change. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Seasonal change in CO2 and H2O exchange between grassland and atmosphere
NASA Astrophysics Data System (ADS)
Saigusa, N.; Liu, S.; Oikawa, T.; Watanabe, T.
1996-03-01
The seasonal change in CO2 flux over an artificial grassland was analyzed from the ecological and meteorological point of view. This grassland contains C3 and C4 plants; the three dominant species belonging to the Gramineae; Festuca elatior (C3) dominated in early spring, and Imperata cylindrica (C4) and Andropogon virginicus (C4) grew during early summer and became dominant in mid-summer. CO2 flux was measured by the gradient method, and the routinely observed data for the surface-heat budget were used to analyze the CO2 and H2O exchange between the grassland and atmosphere. From August to October in 1993, CO2 flux was reduced to around half under the same solar-radiation conditions, while H2O flux decreased 20% during the same period. The monthly values of water use efficiency, i.e., ratio of CO2 flux to H2O flux decreased from 5.8 to 3.3 mg CO2/g H2O from August to October, the Bowen ratio increased from 0.20 to 0.30, and the ratio of the bulk latent heat transfer coefficient CE to the sensible heat transfer coefficient CH was maintained around 0.40-0.50. The increase in the Bowen ratio was explained by the decrease in air temperature from 22.3 °C in August to 16.6 °C in October without considering biological effects such as stomatal closure on the individual leaves. The nearly constant CE/CH ratios suggested that the contribution ratio of canopy resistance to aerodynamic resistance did not change markedly, although the meteorological conditions changed seasonally. The decrease in the water use efficiency, however, suggested that the photosynthetic rate decreased for individual leaves from August to October under the same radiation conditions. Diurnal variations of CO2 exchange were simulated by the multi-layer canopy model taking into account the differences in the stomatal conductance and photosynthetic pathway between C3 and C4 plants. The results suggested that C4 plants played a major role in the CO2 exchange in August, the contribution of C4 plants decreased in September, and daily variations of CO2 exchange were mainly due to C3 plants in October. The results also suggested that the decrease in the net canopy CO2 exchange from August to October was induced partly by the decrease of net photosynthesis on the individual leaves in both C4 and C3 plants, which could be due to aging of the leaves.
NASA Astrophysics Data System (ADS)
Siqueira, M. B.; Katul, G. G.
2009-12-01
A one-dimensional analytical model that predicts foliage CO2 uptake rates, turbulent fluxes, and mean concentration throughout the roughness sub-layer (RSL), a layer that extends from the ground surface up to 5 times the canopy height (h), is proposed. The model combines the mean continuity equation for CO2 with first-order closure principles for turbulent fluxes and simplified physiological and radiative transfer schemes for foliage uptake. This combination results in a second-order ordinary differential equation in which it is imposed soil respiration (RE) as lower and CO2 concentration well above the RSL as upper boundary conditions. An inverse version of the model was tested against data sets from two contrasting ecosystems: a tropical forest (TF, h=40 m) and a managed irrigated rice canopy (RC, h=0.7 m) - with good agreement noted between modeled and measured mean CO2 concentration profiles within the entire RSL (see figure). Sensitivity analysis on the model parameters revealed a plausible scaling regime between them and a dimensionless parameter defined by the ratio between external (RE) and internal (stomatal conductance) characteristics controlling the CO2 exchange process. The model can be used to infer the thickness of the RSL for CO2 exchange, the inequality in zero-plane displacement between CO2 and momentum, and its consequences on modeled CO2 fluxes. A simplified version of the solution is well suited for being incorporated into large-scale climate models. Furthermore, the model framework here can be used to a priori estimate relative contributions from the soil surface and the atmosphere to canopy-air CO2 concentration thereby making it synergetic to stable isotopes studies. Panels a) and c): Profiles of normalized measured leaf area density distribution (a) for TF and RC, respectively. Continuous lines are the constant a used in the model and dashed lines represent data-derived profiles. Panels b) and d) are modeled and ensemble-averaged measured CO2 profiles reference to the uppermost measured point for TF and RC, respectively.
Georeferenced LiDAR 3D vine plantation map generation.
Llorens, Jordi; Gil, Emilio; Llop, Jordi; Queraltó, Meritxell
2011-01-01
The use of electronic devices for canopy characterization has recently been widely discussed. Among such devices, LiDAR sensors appear to be the most accurate and precise. Information obtained with LiDAR sensors during reading while driving a tractor along a crop row can be managed and transformed into canopy density maps by evaluating the frequency of LiDAR returns. This paper describes a proposed methodology to obtain a georeferenced canopy map by combining the information obtained with LiDAR with that generated using a GPS receiver installed on top of a tractor. Data regarding the velocity of LiDAR measurements and UTM coordinates of each measured point on the canopy were obtained by applying the proposed transformation process. The process allows overlap of the canopy density map generated with the image of the intended measured area using Google Earth(®), providing accurate information about the canopy distribution and/or location of damage along the rows. This methodology was applied and tested on different vine varieties and crop stages in two important vine production areas in Spain. The results indicate that the georeferenced information obtained with LiDAR sensors appears to be an interesting tool with the potential to improve crop management processes.
NASA Astrophysics Data System (ADS)
Sommar, J.; Zhu, W.; Shang, L.; Lin, C.-J.; Feng, X. B.
2015-09-01
Air-surface gas exchange of Hg0 was measured in five approximately bi-weekly campaigns (in total 87 days) over a wheat-corn rotation cropland located in the North China Plain using the relaxed eddy accumulation (REA) technique. The campaigns were separated over duration of a full year period (201-2013) aiming to capture the flux pattern over essential growing stages of the planting system with a low homogeneous topsoil Hg content (~ 45 ng g-1). Contrasting pollution regimes influenced air masses at the site and corresponding Hg0 concentration means (3.3 in late summer to 6.2 ng m-3 in winter) were unanimously above the typical hemispheric background of 1.5-1.7 ng m-3 during the campaigns. Extreme values in bi-directional net Hg0 exchange were primarily observed during episodes of peaking Hg0 concentrations. In tandem with under-canopy chamber measurements, the above-canopy REA measurements provided evidence for a balance between Hg0 ground emissions and uptake of Hg0 by the developed canopies. During the wheat growing season covering ~ 2/3 of the year at the site, net field-scale Hg0 emission was prevailing for periods of active plant growth until canopy senescence (mean flux: 20.0 ng m-3) disclosing the dominance of Hg0 soil efflux during warmer seasons. In the final vegetative stage of corn and wheat, ground and above-canopy Hg0 flux displayed inversed daytime courses with a near mid-day maximum (emission) and minimum (deposition), respectively. In contrast to wheat, Hg0 uptake of the corn canopy at this stage offset ground Hg0 emissions with additional removal of Hg0 from the atmosphere. Differential uptake of Hg0 between wheat (C3 species) and corn (C4 species) foliage is discernible from estimated Hg0 flux (per leaf area) and Hg content in mature cereal leaves being a factor of > 3 higher for wheat (at ~ 120 ng g-1 dry weight). Furthermore, this study shows that intermittent flood irrigation of the air-dry field induced a short pulse of Hg0 emission due to displacement of Hg0 present in the surface soil horizon. A more lingering effect of flood irrigation is however suppressed Hg0 soil emissions, which for wet soil (~ 30 %-vol) beneath the corn canopy was on an average a factor of ~ 3 lower than that for drier soil (< 10 %-vol) within wheat stands. Extrapolation of the campaign Hg0 flux data (mean: 7.1 ng m-2 h-1) to the whole year suggests the wheat-corn rotation cropland a net source of atmospheric Hg0. The observed magnitude of annual wet deposition flux (~ 8.8 μg Hg m-2) accounted for a minor fraction of soil Hg0 evasion flux prevailing over the majority of year. Therefore, we suggest that dry deposition of other forms of airborne Hg constitutes the dominant pathway of Hg input to this local ecosystem and that these deposited forms would be gradually transformed and re-emitted as Hg0 rather than being sequestered here. In addition, after crop harvesting, the practice of burning agricultural residue with considerable Hg content rather than straw return management yields seasonally substantial atmospheric Hg0 emissions from croplands in the NCP region.
Role of advection for the ecosystem-atmosphere CO2 exchange of alpine grasslands
NASA Astrophysics Data System (ADS)
Zhao, Peng; Wohlfahrt, Georg
2017-04-01
The neglect of the advection contribution could bring uncertainties to the estimation of the net ecosystem CO2 exchange (NEE) between ecosystems and the atmosphere, especially in complex terrain and stable atmospheric conditions. In order to quantify the advection flux of CO2, we carried out four monthly field campaigns at different grasslands in the mountainous areas of Italy, Austria, and Germany in 2015 and 2016. The measurement was based on the advection completed mass balance (ACMB) concept. A home-assembled solenoid valve system, together with multiple sampling inlets and a gas analyser, was used to measure CO2 concentration online at three heights on the four sides of a control volume of 20 m by 20 m. Advection of CO2 was then calculated from the measurement of wind components and CO2 gradients. The turbulent flux of CO2 was measured by the eddy-covariance technique. Three clear automatic chambers measured NEE as reference. Results showed that both the horizontal and vertical advection contributed more significantly to CO2 flux at night time than at daytime. At most sites, the horizontal advection played a more important role than the vertical advection. The above-canopy advection contributed more CO2 flux than within-canopy advection due to the short canopy heights. Large variability of NEE measured by the three chambers indicates the challenge of comparing chamber and micrometeorological fluxes resulting from the heterogeneity of the surface.
Kitaya, Y; Shibuya, T; Yoshida, M; Kiyota, M
2004-01-01
To obtain basic data for adequate air circulation for promoting plant growth in closed plant production modules in bioregenerative life support systems in space, effects of air velocities ranging from 0.1 to 0.8 m s-1 on photosynthesis in tomato seedlings canopies were investigated under atmospheric CO2 concentrations of 0.4 and 0.8 mmol mol-1. The canopy of tomato seedlings on a plug tray (0.4 x 0.4 m2) was set in a wind-tunnel-type chamber (0.6 x 0.4 x 0.3 m3) installed in a semi-closed-type assimilation chamber (0.9 x 0.5 x 0.4 m3). The net photosynthetic rate in the plant canopy was determined with the differences in CO2 concentrations between the inlet and outlet of the assimilation chamber multiplied by the volumetric air exchange rate of the chamber. Photosynthetic photon flux (PPF) on the plant canopy was kept at 0.25 mmol m-2 s-1, air temperature at 23 degrees C and relative humidity at 55%. The leaf area indices (LAIs) of the plant canopies were 0.6-2.5 and plant heights were 0.05-0.2 m. The net photosynthetic rate of the plant canopy increased with increasing air velocities inside plant canopies and saturated at 0.2 m s-1. The net photosynthetic rate at the air velocity of 0.4 m s-1 was 1.3 times that at 0.1 m s-1 under CO2 concentrations of 0.4 and 0.8 mmol mol-1. The net photosynthetic rate under CO2 concentrations of 0.8 mmol mol-1 was 1.2 times that under 0.4 mmol mol-1 at the air velocity ranging from 0.1 to 0.8 m s-1. The results confirmed the importance of controlling air movement for enhancing the canopy photosynthesis under an elevated CO2 level as well as under a normal CO2 level in the closed plant production modules. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Water limitations to carbon exchange in old-growth and young ponderosa pine stands.
Irvine, J; Law, B E; Anthoni, P M; Meinzer, F C
2002-02-01
We investigated the impact of seasonal soil water deficit on the processes driving net ecosystem exchange of carbon (NEE) in old-growth and recently regenerating ponderosa pine (Pinus ponderosa Doug. ex Laws.) stands in Oregon. We measured seasonal patterns of transpiration, canopy conductance and NEE, as well as soil water, soil temperature and soil respiration. The old-growth stand (O) included two primary age classes (50 and 250 years), had a leaf area index (LAI) of 2.1 and had never been logged. The recently regenerating stand (Y) consisted predominantly of 14-year-old ponderosa pine with an LAI of 1.0. Both stands experienced similar meteorological conditions with moderately cold wet winters and hot dry summers. By August, soil volumetric water content within the upper 30 cm had declined to a seasonal minimum of 0.07 at both sites. Between April and June, both stands showed similar rates of transpiration peaking at 0.96 mm day(-1); thereafter, trees at the Y site showed increasing drought stress with canopy stomatal resistance increasing 6-fold by mid-August relative to values for trees at the O site. Over the same period, predawn water potential (psi(pd)) of trees at the Y site declined from -0.54 to -1.24 MPa, whereas psi(pd) of trees at the O site remained greater than -0.8 MPa throughout the season. Soil respiration at the O site showed a strong seasonal correlation with soil temperature with no discernible constraints imposed by declining soil water. In contrast, soil respiration at the Y site peaked before seasonal maximal soil temperatures and declined thereafter with declining soil water. No pronounced seasonal pattern in daytime NEE was observed at either site between April and September. At the Y site this behavior was driven by concurrent soil water limitations on soil respiration and assimilation, whereas there was no evidence of seasonal soil water limitations on either process at the O site.
Induced spatial heterogeneity in forest canopies: responses of small mammals.
A.B. Carey
2001-01-01
We hypothesized that creating a mosaic of interspersed patches of different densities of canopy trees in a second-growth Douglas-fir (Pseudotsuga menziesiz) forest would accelerate development of biocomplexity (diversity in ecosystem structure, composition, and processes) by promoting spatial heterogeneity in understory, midstory, and canopy,...
Swiss needle cast (SNC) is an endemic disease of Douglas-fir caused by Phaeocryptopus gaeumannii. The fungus infects newly emerged needles between May and August. As the fungus develops, its fruiting bodies (pseudothecia) block the stomata and inhibit gas exchange, reducing the p...
Modeling of the bi-directional fluxes (BDFs) of ammonia (NH3) over fertilized soybean and corn canopies was evaluated for three intensive sampling periods: the first, during the summer of 2002 in Warsaw, North Carolina (NC), USA; and the second and third during the summer of 2007...
Contrasting effects of invasive insects and fire on ecosystem water use efficiency
K.L. Clark; N.S. Skowronski; M.R. Gallagher; H. Renninger; K.V.R. Schäfer
2014-01-01
We used eddy covariance and meteorological measurements to estimate net ecosystem exchange of CO2 (NEE), gross ecosystem production (GEP), evapotranspiration (Et), and ecosystem water use efficiency (WUEe; calculated as GEP / Et during dry canopy conditions) in three upland forests in the New Jersey Pinelands, USA, that were defoliated by gypsy...
Amazon forest structure generates diurnal and seasonal variability in light utilization
Douglas C. Morton; Jeremy Rubio; Bruce D. Cook; Jean-Philippe Gastellu-Etchegorry; Marcos Longo; Hyeungu Choi; Maria Hunter; Michael Keller
2016-01-01
The complex three-dimensional (3-D) structure of tropical forests generates a diversity of light environments for canopy and understory trees. Understanding diurnal and seasonal changes in light availability is critical for interpreting measurements of net ecosystem exchange and improving ecosystem models. Here, we used the Discrete Anisotropic Radiative Transfer (DART...
Demonstration of a Porous Tube Hydroponic System to Control Plant Moisture and Growth
NASA Technical Reports Server (NTRS)
Dreschel, T. W.; Hall, C. R.; Foster, T. E.
2003-01-01
Accurate remote detection of plant health indicators such as moisture, plant pigment concentrations, photosynthetic flux, and other biochemicals in canopies is a major goal in plant research. Influencing factors include complex interactions between wavelength dependent absorbing and scattering features from backgrounds as well as canopy biochemical and biophysical constituents. Accurately controlling these factors in outdoor field studies is difficult. Early testing of a porous tube plant culture system has indicated that plant biomass production, biomass partitioning, and leaf moisture of plants can be controlled by precisely managing the root water potential. Managing nutrient solution chemistry can also control plant pigments, biochemical concentrations, plant biomass production, and photosynthetic rates. A test bed was developed which utilized the porous tube technology with the intent of evaluating remote sensing systems, spectral analyses procedures, gas-exchange, and fluorescence measurements for their ability to detect small differences in plant water status. Spectral analysis was able to detect small differences in the mean leaf water content between the treatments. However these small differences were not detectable in the gas-exchange or fluorescence measurements.
Barbara A. Richardson; Michael J. Richardson; Grizelle Gonzalez; Aaron B. Shiels; Diane S. Srivastava
2010-01-01
Hurricanes cause canopy removal and deposition of pulses of litter to the forest floor. A Canopy Trimming Experiment (CTE) was designed to decouple these two factors, and to investigate the separate abiotic and biotic consequences of hurricane-type damage and monitor recovery processes. As part of this experiment, effects on forest floor invertebrate communities were...
NASA Astrophysics Data System (ADS)
Gochis, D. J.; Gutmann, E. D.; Brooks, P. D.; Reed, D. E.; Ewers, B. E.; Pendall, E.; Biederman, J. A.; Harpold, A. A.; Barnard, H. R.; Hu, J.
2011-12-01
Forest dynamics induced by insect infestation can have a significant, local impact on plant physiological regulation of water, energy and carbon fluxes. Rapid mortality succeeded by more gradually varying land cover changes are presently thought to initiate a cascade of changes to water, energy and carbon budgets at the forest stand scale. Initial model sensitivity results have suggested very strong changes in land-atmosphere exchanges of these variables. Specifically, model results from the Noah land surface model, a relatively simple model, have suggested that loss of transpiration function may result in a nearly 50% increase in seasonal soil moisture values and similar increases in runoff production for locations in the central Rocky Mountains. However, differing model structures, such as the representation of plant canopy architecture, snowpack dynamics, dynamic vegetation and hillslope hydrologic processes, may significantly confound the synthesis of results from different modeling systems. We assess the performance of new suite of model simulations from three different land surface models of differing model structures and complexity levels against a comprehensive set of field observations of land surface flux and state variables. The focus of the analysis is in diagnosing how model structure influences changes in energy, water and carbon budget partitioning prior to and following insect infestation. Specific emphasis in this presentation is placed on verifying variables that characterize top of canopy and within canopy energy and water fluxes. We conclude the presentation with a set of recommendations about the advantages and disadvantages of various model structures in their simulation of insect driven forest dynamics.
Kosugi, Yoshiko; Takanashi, Satoru; Matsuo, Naoko; Nik, Abdul Rahim
2009-04-01
We observed diurnal and seasonal patterns of leaf-scale gas exchange within the crown of a Dipterocarpus sublamellatus Foxw. tree growing in a lowland dipterocarp forest at Pasoh, Peninsular Malaysia. Observations were carried out nine times over 6 years, from September 2002 to December 2007. Observation periods included both wet and mild-dry periods, and natural and saturated photosynthetic photon flux density (PPFD) light conditions. In situ measurements of the diurnal change in net photosynthetic rate and in stomatal conductance were carried out on canopy leaves of a 40-m-tall D. sublamellatus tree, which was accessed from a canopy corridor. A diurnal change in electron transport rate was observed under saturated PPFD conditions. The maximum net assimilation rate was approximately 10 micromol m(-2) s(-1). There was a clear inhibition of the net assimilation rate coupled with stomatal closure after late morning and this inhibition occurred year-round. Although the electron transport rate decreased alongside this inhibition, it sometimes followed on. Numerical analysis showed that the main factor in the inhibition of the net assimilation rate was patchy bimodal stomatal closure, which occurred in both mild-dry and wet periods. The midday depression occurred year-round, though there are fluctuations in soil moisture during the mild-dry and wet periods. The magnitude of the inhibition was not related to soil water content but was related to vapor pressure deficit (VPD): that is, whether the days were sunny and hot or cloudy and cool. On cloudy, cool days in the wet period, the net photosynthesis was only moderately inhibited, but it still decreased in the afternoon and was coupled with patchy stomatal closure, even in quite moderate VPD, leaf temperature and PPFD conditions. Our results suggest that patchy stomatal closure signaled by the increase in VPD, in transpiration and by circadian rhythms, was the key factor in constraining midday leaf gas exchange of the D. sublamellatus canopy leaves.
NASA Astrophysics Data System (ADS)
Iwaoka, C.; Hyodo, F.; Taniguchi, T.; Shi, W.; Du, S.; Yamanaka, N.; Tateno, R.
2017-12-01
The symbiotic relationship between dominant canopy trees and soil microbes such as mycorrhiza or nitrogen (N) fixer are important determinants of soil N dynamics of a forest. However, it is not known how and to what extent the symbiotic relationship of dominant canopy trees with soil microbes affect the N source of co-existing trees in forest. We measured the δ15N of surface soils (0-10 cm), leaves, and roots of the dominant canopy trees and common understory trees in an arbuscular mycorrhizal N-fixing black locust (Robinia pseudoacacia) plantation and an ectomycorrhizal oak (Quercus liaotungensis) natural forest in a China dryland. We also analyzed the soil dissolved N content in soil extracts and absorbed by ion exchange resin, and soil ammonia-oxidizer abundance using real-time PCR. The δ15N of soil and leaves were higher in the black locust forest than in the oak forest, although the δ15N of fine roots was similar in the two forests, in co-existing understory trees as well as dominant canopy trees. Accordingly, the δ15N of leaves was similar to or higher than that of fine roots in the black locust forest, whereas it was consistently lower than that of fine roots in the oak forest. In the black locust forest, the soil dissolved organic N and ammonium N contents were less abundant but the nitrate N contents in soils and absorbed by the ion exchange resin and ammonia-oxidizer abundance were greater, due to N fixation or less uptake of organic N from arbuscular mycorrhiza. In contrast, the soil dissolved organic N and ammonium N contents were more abundant in the oak forest, whereas the N content featured very low nitrate, due to ectomycorrhizal ability to access organic N. These results suggest that the main N source is nitrate N in the black locust forest, but dissolved organic N or ammonium N in the oak forest. N fixation or high N loss due to high N availability would cause high δ15N in soil and leaves in black locust forest. On the other hand, low soil N availability in the oak forest may make 15N fractionation more active in roots via mycorrhizal association, resulting in higher δ15N in fine roots than in leaves. In conclusion, the symbiotic relationship between dominant canopy trees and soil microbes affected the N source of not only the dominant trees but also co-existing understory trees via the control of soil N dynamics.
Specular, diffuse and polarized imagery of an oat canopy
NASA Technical Reports Server (NTRS)
Vanderbilt, Vern C.; De Venecia, Kurt J.
1988-01-01
Light, polarized by specular reflection, has been found to be an important part of the light scattered by several measured plant canopies. The authors investigate for one canopy the relative importance of specularly reflected sunlight, specularly reflected light from other sources including skylight, and diffusely upwelling light. Polarization images are used to gain increased understanding of the radiation transfer process in a plant canopy. Analysis of the results suggests that properly analyzed polarized remotely sensed data, acquired under specific atmospheric conditions by a specially designed sensor, potentially provide measures of physiological and morphological states of plants in a canopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Roo, Frederik; Banerjee, Tirtha
Under non-neutral stratification and in the presence of topography the dynamics of turbulent flow within a canopy is not yet completely understood. This has, among others, serious implications for the measurement of surface – atmosphere exchange by means of eddy-covariance: for example the measurement of carbon dioxide fluxes are strongly influenced if drainage flows occur during night, when the flow within the canopy decouples from the flow aloft. An improved physical understanding of the behavior of scalars under canopy turbulence in complex terrain is urgently needed. In the present work, we investigate the dynamics of turbulent flow within sloped canopies,more » focusing on the slope wind and potential temperature. We concentrate on the presence of oscillatory behavior in the flow variables in terms of switching of flow regimes by conducting linear stability analysis. We revisit and correct the simplified theory that exists in the literature, which is based on the interplay between the drag force and the buoyancy. We find that the simplified description of this dynamical system cannot exhibit the observed richness of the dynamics. To augment the simplified dynamical system’s analysis, we make use of large-eddy simulation of a three-dimensional hill covered by a homogeneous forest and analyze the phase synchronization behavior of the buoyancy and drag forces in the momentum budget to explore the turbulent dynamics in more detail.« less
De Roo, Frederik; Banerjee, Tirtha
2018-02-23
Under non-neutral stratification and in the presence of topography the dynamics of turbulent flow within a canopy is not yet completely understood. This has, among others, serious implications for the measurement of surface – atmosphere exchange by means of eddy-covariance: for example the measurement of carbon dioxide fluxes are strongly influenced if drainage flows occur during night, when the flow within the canopy decouples from the flow aloft. An improved physical understanding of the behavior of scalars under canopy turbulence in complex terrain is urgently needed. In the present work, we investigate the dynamics of turbulent flow within sloped canopies,more » focusing on the slope wind and potential temperature. We concentrate on the presence of oscillatory behavior in the flow variables in terms of switching of flow regimes by conducting linear stability analysis. We revisit and correct the simplified theory that exists in the literature, which is based on the interplay between the drag force and the buoyancy. We find that the simplified description of this dynamical system cannot exhibit the observed richness of the dynamics. To augment the simplified dynamical system’s analysis, we make use of large-eddy simulation of a three-dimensional hill covered by a homogeneous forest and analyze the phase synchronization behavior of the buoyancy and drag forces in the momentum budget to explore the turbulent dynamics in more detail.« less
Turbulent mixing and removal of ozone within an Amazon rainforest canopy
NASA Astrophysics Data System (ADS)
Freire, L. S.; Gerken, T.; Ruiz-Plancarte, J.; Wei, D.; Fuentes, J. D.; Katul, G. G.; Dias, N. L.; Acevedo, O. C.; Chamecki, M.
2017-03-01
Simultaneous profiles of turbulence statistics and mean ozone mixing ratio are used to establish a relation between eddy diffusivity and ozone mixing within the Amazon forest. A one-dimensional diffusion model is proposed and used to infer mixing time scales from the eddy diffusivity profiles. Data and model results indicate that during daytime conditions, the upper (lower) half of the canopy is well (partially) mixed most of the time and that most of the vertical extent of the forest can be mixed in less than an hour. During nighttime, most of the canopy is predominantly poorly mixed, except for periods with bursts of intermittent turbulence. Even though turbulence is faster than chemistry during daytime, both processes have comparable time scales in the lower canopy layers during nighttime conditions. Nonchemical loss time scales (associated with stomatal uptake and dry deposition) for the entire forest are comparable to turbulent mixing time scale in the lower canopy during the day and in the entire canopy during the night, indicating a tight coupling between turbulent transport and dry deposition and stomatal uptake processes. Because of the significant time of day and height variability of the turbulent mixing time scale inside the canopy, it is important to take it into account when studying chemical and biophysical processes happening in the forest environment. The method proposed here to estimate turbulent mixing time scales is a reliable alternative to currently used models, especially for situations in which the vertical distribution of the time scale is relevant.
Rapid assessment of forest canopy and light regime using smartphone hemispherical photography.
Bianchi, Simone; Cahalan, Christine; Hale, Sophie; Gibbons, James Michael
2017-12-01
Hemispherical photography (HP), implemented with cameras equipped with "fisheye" lenses, is a widely used method for describing forest canopies and light regimes. A promising technological advance is the availability of low-cost fisheye lenses for smartphone cameras. However, smartphone camera sensors cannot record a full hemisphere. We investigate whether smartphone HP is a cheaper and faster but still adequate operational alternative to traditional cameras for describing forest canopies and light regimes. We collected hemispherical pictures with both smartphone and traditional cameras in 223 forest sample points, across different overstory species and canopy densities. The smartphone image acquisition followed a faster and simpler protocol than that for the traditional camera. We automatically thresholded all images. We processed the traditional camera images for Canopy Openness (CO) and Site Factor estimation. For smartphone images, we took two pictures with different orientations per point and used two processing protocols: (i) we estimated and averaged total canopy gap from the two single pictures, and (ii) merging the two pictures together, we formed images closer to full hemispheres and estimated from them CO and Site Factors. We compared the same parameters obtained from different cameras and estimated generalized linear mixed models (GLMMs) between them. Total canopy gap estimated from the first processing protocol for smartphone pictures was on average significantly higher than CO estimated from traditional camera images, although with a consistent bias. Canopy Openness and Site Factors estimated from merged smartphone pictures of the second processing protocol were on average significantly higher than those from traditional cameras images, although with relatively little absolute differences and scatter. Smartphone HP is an acceptable alternative to HP using traditional cameras, providing similar results with a faster and cheaper methodology. Smartphone outputs can be directly used as they are for ecological studies, or converted with specific models for a better comparison to traditional cameras.
NASA Astrophysics Data System (ADS)
Hurdebise, Quentin; Heinesch, Bernard; De Ligne, Anne; Vincke, Caroline; Aubinet, Marc
2017-04-01
Long-term data series of carbon dioxide and other gas exchanges between terrestrial ecosystems and atmosphere become more and more numerous. Long-term analyses of such exchanges require a good understanding of measurement conditions during the investigated period. Independently of climate drivers, measurements may indeed be influenced by measurement conditions themselves subjected to long-term variability due to vegetation growth or set-up changes. The present research refers to the Vielsalm Terrestrial Observatory (VTO) an ICOS candidate site located in a mixed forest (beech, silver fir, Douglas fir, Norway spruce) in the Belgian Ardenne. Fluxes of momentum, carbon dioxide and sensible heat have been continuously measured there by eddy covariance for more than 20 years. During this period, changes in canopy height and measurement height occurred. The correlation coefficients (for momemtum, sensible heat and CO2) and the normalized standard deviations measured for the past 20 years at the Vielsalm Terrestrial Observatory (VTO) were analysed in order to define how the fluxes, independently of climate conditions, were affected by the surrounding environment evolution, including tree growth, forest thinning and tower height change. A relationship between canopy aerodynamic distance and the momentum correlation coefficient was found which is characteristic of the roughness sublayer, and suggests that momentum transport processes were affected by z-d. In contrast, no relationship was found for sensible heat and CO2 correlation coefficients, suggesting that the z-d variability observed did not affect their turbulent transport. There were strong differences in these coefficients, however, between two wind sectors, characterized by contrasted stands (height differences, homogeneity) and different hypotheses were raised to explain it. This study highlighted the importance of taking the surrounding environment variability into account in order to ensure the spatio-temporal consistency of datasets.
Smith, Nicholas G; Dukes, Jeffrey S
2017-11-01
Leaf canopy carbon exchange processes, such as photosynthesis and respiration, are substantial components of the global carbon cycle. Climate models base their simulations of photosynthesis and respiration on an empirical understanding of the underlying biochemical processes, and the responses of those processes to environmental drivers. As such, data spanning large spatial scales are needed to evaluate and parameterize these models. Here, we present data on four important biochemical parameters defining leaf carbon exchange processes from 626 individuals of 98 species at 12 North and Central American sites spanning ~53° of latitude. The four parameters are the maximum rate of Rubisco carboxylation (V cmax ), the maximum rate of electron transport for the regeneration of Ribulose-1,5,-bisphosphate (J max ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (V pmax ), and leaf dark respiration (R d ). The raw net photosynthesis by intercellular CO 2 (A/C i ) data used to calculate V cmax , J max , and V pmax rates are also presented. Data were gathered on the same leaf of each individual (one leaf per individual), allowing for the examination of each parameter relative to others. Additionally, the data set contains a number of covariates for the plants measured. Covariate data include (1) leaf-level traits (leaf mass, leaf area, leaf nitrogen and carbon content, predawn leaf water potential), (2) plant-level traits (plant height for herbaceous individuals and diameter at breast height for trees), (3) soil moisture at the time of measurement, (4) air temperature from nearby weather stations for the day of measurement and each of the 90 d prior to measurement, and (5) climate data (growing season mean temperature, precipitation, photosynthetically active radiation, vapor pressure deficit, and aridity index). We hope that the data will be useful for obtaining greater understanding of the abiotic and biotic determinants of these important biochemical parameters and for evaluating and improving large-scale models of leaf carbon exchange. © 2017 by the Ecological Society of America.
Ollinger, S V; Richardson, A D; Martin, M E; Hollinger, D Y; Frolking, S E; Reich, P B; Plourde, L C; Katul, G G; Munger, J W; Oren, R; Smith, M-L; Paw U, K T; Bolstad, P V; Cook, B D; Day, M C; Martin, T A; Monson, R K; Schmid, H P
2008-12-09
The availability of nitrogen represents a key constraint on carbon cycling in terrestrial ecosystems, and it is largely in this capacity that the role of N in the Earth's climate system has been considered. Despite this, few studies have included continuous variation in plant N status as a driver of broad-scale carbon cycle analyses. This is partly because of uncertainties in how leaf-level physiological relationships scale to whole ecosystems and because methods for regional to continental detection of plant N concentrations have yet to be developed. Here, we show that ecosystem CO(2) uptake capacity in temperate and boreal forests scales directly with whole-canopy N concentrations, mirroring a leaf-level trend that has been observed for woody plants worldwide. We further show that both CO(2) uptake capacity and canopy N concentration are strongly and positively correlated with shortwave surface albedo. These results suggest that N plays an additional, and overlooked, role in the climate system via its influence on vegetation reflectivity and shortwave surface energy exchange. We also demonstrate that much of the spatial variation in canopy N can be detected by using broad-band satellite sensors, offering a means through which these findings can be applied toward improved application of coupled carbon cycle-climate models.
Ollinger, S. V.; Richardson, A. D.; Martin, M. E.; Hollinger, D. Y.; Frolking, S. E.; Reich, P. B.; Plourde, L. C.; Katul, G. G.; Munger, J. W.; Oren, R.; Smith, M.-L.; Paw U, K. T.; Bolstad, P. V.; Cook, B. D.; Day, M. C.; Martin, T. A.; Monson, R. K.; Schmid, H. P.
2008-01-01
The availability of nitrogen represents a key constraint on carbon cycling in terrestrial ecosystems, and it is largely in this capacity that the role of N in the Earth's climate system has been considered. Despite this, few studies have included continuous variation in plant N status as a driver of broad-scale carbon cycle analyses. This is partly because of uncertainties in how leaf-level physiological relationships scale to whole ecosystems and because methods for regional to continental detection of plant N concentrations have yet to be developed. Here, we show that ecosystem CO2 uptake capacity in temperate and boreal forests scales directly with whole-canopy N concentrations, mirroring a leaf-level trend that has been observed for woody plants worldwide. We further show that both CO2 uptake capacity and canopy N concentration are strongly and positively correlated with shortwave surface albedo. These results suggest that N plays an additional, and overlooked, role in the climate system via its influence on vegetation reflectivity and shortwave surface energy exchange. We also demonstrate that much of the spatial variation in canopy N can be detected by using broad-band satellite sensors, offering a means through which these findings can be applied toward improved application of coupled carbon cycle–climate models. PMID:19052233
NASA Astrophysics Data System (ADS)
De Roo, Frederik; Banerjee, Tirtha
2017-04-01
Under non-neutral conditions and in the presence of topography the dynamics of turbulent flow within a canopy is not yet completely understood. This has implications for the measurement of surface-atmosphere exchange by means of eddy-covariance. For example the measurement of carbon dioxide fluxes are strongly influenced if drainage flows happen during night, when the flow within the canopy decouples from the flow aloft. In the present work, we investigate the dynamics of terrain-induced turbulent flow within sloped canopies. We concentrate on the presence of oscillatory behavior in the flow variables in terms of switching of flow regimes by conducting linear stability analysis. We revisit and correct the simplified theory that exists in the literature, which is based on the interplay between the drag force and the buoyancy. We find that the simplified description of this dynamical system cannot exhibit the observed richness of the dynamics. To tackle the full spatiotemporal dynamical system theoretically is beyond the scope of this work, although we can make some qualitative arguments. Additionally, we make use of large-eddy simulation of a three-dimensional hill covered by a homogeneous forest and analyze phase synchronization behavior of the major terms in the momentum budget to explore the turbulent dynamics in more detail.
Greater deciduous shrub abundance extends tundra peak season and increases modeled net CO2 uptake.
Sweet, Shannan K; Griffin, Kevin L; Steltzer, Heidi; Gough, Laura; Boelman, Natalie T
2015-06-01
Satellite studies of the terrestrial Arctic report increased summer greening and longer overall growing and peak seasons since the 1980s, which increases productivity and the period of carbon uptake. These trends are attributed to increasing air temperatures and reduced snow cover duration in spring and fall. Concurrently, deciduous shrubs are becoming increasingly abundant in tundra landscapes, which may also impact canopy phenology and productivity. Our aim was to determine the influence of greater deciduous shrub abundance on tundra canopy phenology and subsequent impacts on net ecosystem carbon exchange (NEE) during the growing and peak seasons in the arctic foothills region of Alaska. We compared deciduous shrub-dominated and evergreen/graminoid-dominated community-level canopy phenology throughout the growing season using the normalized difference vegetation index (NDVI). We used a tundra plant-community-specific leaf area index (LAI) model to estimate LAI throughout the green season and a tundra-specific NEE model to estimate the impact of greater deciduous shrub abundance and associated shifts in both leaf area and canopy phenology on tundra carbon flux. We found that deciduous shrub canopies reached the onset of peak greenness 13 days earlier and the onset of senescence 3 days earlier compared to evergreen/graminoid canopies, resulting in a 10-day extension of the peak season. The combined effect of the longer peak season and greater leaf area of deciduous shrub canopies almost tripled the modeled net carbon uptake of deciduous shrub communities compared to evergreen/graminoid communities, while the longer peak season alone resulted in 84% greater carbon uptake in deciduous shrub communities. These results suggest that greater deciduous shrub abundance increases carbon uptake not only due to greater leaf area, but also due to an extension of the period of peak greenness, which extends the period of maximum carbon uptake. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wu, Z. Y.; Zhang, L.; Wang, X. M.; Munger, J. W.
2015-07-01
Small pollutant concentration gradients between levels above a plant canopy result in large uncertainties in estimated air-surface exchange fluxes when using existing micrometeorological gradient methods, including the aerodynamic gradient method (AGM) and the modified Bowen ratio method (MBR). A modified micrometeorological gradient method (MGM) is proposed in this study for estimating O3 dry deposition fluxes over a forest canopy using concentration gradients between a level above and a level below the canopy top, taking advantage of relatively large gradients between these levels due to significant pollutant uptake in the top layers of the canopy. The new method is compared with the AGM and MBR methods and is also evaluated using eddy-covariance (EC) flux measurements collected at the Harvard Forest Environmental Measurement Site, Massachusetts, during 1993-2000. All three gradient methods (AGM, MBR, and MGM) produced similar diurnal cycles of O3 dry deposition velocity (Vd(O3)) to the EC measurements, with the MGM method being the closest in magnitude to the EC measurements. The multi-year average Vd(O3) differed significantly between these methods, with the AGM, MBR, and MGM method being 2.28, 1.45, and 1.18 times that of the EC, respectively. Sensitivity experiments identified several input parameters for the MGM method as first-order parameters that affect the estimated Vd(O3). A 10% uncertainty in the wind speed attenuation coefficient or canopy displacement height can cause about 10% uncertainty in the estimated Vd(O3). An unrealistic leaf area density vertical profile can cause an uncertainty of a factor of 2.0 in the estimated Vd(O3). Other input parameters or formulas for stability functions only caused an uncertainly of a few percent. The new method provides an alternative approach to monitoring/estimating long-term deposition fluxes of similar pollutants over tall canopies.
Bradley S. Osbon; Michael A. Blazier; Michael C. Tyree; Mary Anne Sword-Sayer
2012-01-01
Planting of artificially selected, improved seedlings has led to large increases in productivity of intensively managed loblolly pine (Pinus taeda L.) forests in the southeastern United States. However, more data are needed to give a deeper understanding of how physiology and crown architecture affect productivity of diverse genotypes. The objective...
Thomas L. Powell; Gregory Starr; Kenneth L. Clark; Timothy A. Martin; Henry L. Gholz
2005-01-01
Eddy covariance was used to measure energy fluxes from July 2000 - June 2002 above the tree canopy and above the understory in a mature, naturally regenerated slash pine (Pinus elliottii Engelm. var. elliottii) - longleaf pine (Pinus palustris Mill.) flatwoods forest. Understory latent energy (eE) and sensible...
Carbon dioxide fluxes in a central hardwoods oak-hickory forest ecosystem
Stephen G. Pallardy; Lianhong Gu; Paul J. Hanson; Tilden Myers; Stan D. Wullschleger; Bai Yang; Jeffery S. Riggs; Kevin P. Hosman; Mark Heuer
2007-01-01
A long-term experiment to measure carbon and water fluxes was initiated in 2004 as part of the Ameriflux network in a second-growth oak-hickory forest in central Missouri. Ecosystem-scale (~ 1 km2) canopy gas exchange (measured by eddy-covariance methods), vertical CO2 profile sampling and soil respiration along with...
Soil heterogeneity in Mojave Desert shrublands: Biotic and abiotic processes
NASA Astrophysics Data System (ADS)
Caldwell, Todd G.; Young, Michael H.; McDonald, Eric V.; Zhu, Jianting
2012-09-01
Geological and ecological processes play critical roles in the evolution of desert piedmonts. Feedback between fast cyclic biotic and slow cumulative pedogenic processes on arid alluvial fan systems results in a heterogeneous landscape of interspace and canopy microsites. Defining the spatial extent between these processes will allow a better connection to ecosystem service and climate change. We use a soil chronosequence in the Mojave Desert and high spatial resolution infiltrometer measurements along transects radiating from canopies of perennial shrubs to assess the extent of biotic and abiotic processes and the heterogeneity of soil properties in arid shrublands. Results showed higher saturated conductivity under vegetation regardless of surface age, but it was more conspicuous on older, developed soils. At proximal locations to the shrub, bulk density, soil structure grade, silt, and clay content significantly increased radially from the canopy, while sand and organic material decreased. Soil properties at distal locations 2-5 times the canopy radius had no significant spatial correlation. The extent of the biotic influence of the shrub was 1.34 ± 0.32 times the canopy radius. Hydraulic properties were weakly correlated in space, but 75% of the variance could be attributed to sand content, soil structure grade, mean-particle diameter, and soil organic material, none of which are exclusively biotic or abiotic. The fast cyclic biotic processes occurring under vegetation are clearly overprinted on slow cumulative abiotic processes, resulting in the deterministic variability observed at the plant scale.
Tree Death Leading To Ecosystem Renewal? Forecasting Carbon Storage As Eastern Forests Age
NASA Astrophysics Data System (ADS)
Curtis, P.; Gough, C. M.; Bohrer, G.; Nadelhoffer, K. J.; Ivanov, V. Y.
2013-12-01
The future trajectory of North American carbon (C) stocks remains uncertain as a subset of maturing trees die in mixed deciduous forests of the U.S. Midwest and East transitioning from early to middle and late succession. We are studying disturbance-structure-function relationships of aging forests in northern Michigan using long-term ecological and meteorological C cycling studies, a large-scale disturbance experiment, a 200-year forest chronosequence, and flux comparisons across three tower sites. We find that ecosystem responses to mortality are characterized by several processes that affect structure-function relationships and alter the way ecosystem functioning interacts with meteorological forcing. We subjected 39 ha of forest to moderate experimental disturbance, similar to that of age-related or climatically induced tree mortality. We found that the mortality of a third of all canopy trees minimally altered the balance between forest C uptake and release, as growth-limiting light and nitrogen resources were rapidly reallocated from dead and dying trees to undisturbed trees. Although disturbance-induced mortality increased soil N mineralization rates, nitrification, and denitrification, N exports from soils remained low. Upper canopy gap formation and a rise in structural complexity allowed increased photosynthetic contribution of sub-canopy vegetation to compensate for the death of canopy dominant trees. However, we found large differences between the transpirational response of maples and oaks to VPD and soil moisture, which led to relative declines in maple transpiration post-disturbance. These hydrologic differences may affect a species' ability to compete for resources following such a disturbance. Changes to canopy structure had a relatively small effect on roughness length and the turbulence forcing of fluxes from the canopy. We currently are studying how tree mortality driven changes in canopy structure affects within-canopy resource distribution and subsequent changes in leaf morphological, physiological and biochemical traits, how disturbance severity relates to the magnitude of C storage resilience, the impacts of clouds and aerosols on surface diffuse light and how they interact with canopy structure to modify C uptake, and how these processes change overall C assimilation given different forest age and disturbance histories. Along a conceptual continuum from structural to functional attributes, our results show that leaf area distribution and its heterogeneity, canopy light, water and nutrient use efficiency, canopy roughness length and turbulent mixing of canopy air, and the coupling between soil moisture and canopy density, all change with successional and disturbance processes and affect ecosystem C fluxes. Patchy mortality and related increases in structural complexity could, against expectations, enhance the C storage of some forests. Our finding that increases in canopy structural complexity improve resource-use efficiency provides a mechanism for maintaining high rates of C storage in aging forests.
Quantifying forest mortality with the remote sensing of snow
NASA Astrophysics Data System (ADS)
Baker, Emily Hewitt
Greenhouse gas emissions have altered global climate significantly, increasing the frequency of drought, fire, and pest-related mortality in forests across the western United States, with increasing area affected each year. Associated changes in forests are of great concern for the public, land managers, and the broader scientific community. These increased stresses have resulted in a widespread, spatially heterogeneous decline of forest canopies, which in turn exerts strong controls on the accumulation and melt of the snowpack, and changes forest-atmosphere exchanges of carbon, water, and energy. Most satellite-based retrievals of summer-season forest data are insufficient to quantify canopy, as opposed to the combination of canopy and undergrowth, since the signals of the two types of vegetation greenness have proven persistently difficult to distinguish. To overcome this issue, this research develops a method to quantify forest canopy cover using winter-season fractional snow covered area (FSCA) data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) snow covered area and grain size (MODSCAG) algorithm. In areas where the ground surface and undergrowth are completely snow-covered, a pixel comprises only forest canopy and snow. Following a snowfall event, FSCA initially rises, as snow is intercepted in the canopy, and then falls, as snow unloads. A select set of local minima in a winter F SCA timeseries form a threshold where canopy is snow-free, but forest understory is snow-covered. This serves as a spatially-explicit measurement of forest canopy, and viewable gap fraction (VGF) on a yearly basis. Using this method, we determine that MODIS-observed VGF is significantly correlated with an independent product of yearly crown mortality derived from spectral analysis of Landsat imagery at 25 high-mortality sites in northern Colorado. (r =0.96 +/-0.03, p =0.03). Additionally, we determine the lag timing between green-stage tree mortality and needlefall, showing that needlefall occurred an average of 2.6 +/- 1.2 years after green-stage mortality. We relate observed increases in the VGF with crown mortality, showing that a 1% increase in mortality area produces a 0.33 +/- 0.1 % increase in the VGF.
BOREAS TE-5 Leaf Gas Exchange Data
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry
2000-01-01
The BOREAS TE-5 team collected measurements in the NSA and SSA on gas exchange, gas composition, and tree growth. The leaf photosynthetic gas exchange data were collected in the BOREAS NSA and the SSA from 06-Jun- 1994 to 13-Sep- 1994 using a LI-COR 6200 portable photosynthesis system. The data were collected to compare the photosynthetic capacity, stomata] conductance, and leaf intercellular CO, concentrations among the major tree species at the BOREAS sites. The data are average values from diurnal measurements on the upper canopy foliage (sun leaves). The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).
Biodiversity Meets the Atmosphere: A Global View of Forest Canopies
C. M. P. Ozanne; D. Anhuf; S. L. Boulter; M. Keller; R. L. Kitching; C. Korner; F. C. Meinzer; A. W. Mitchell; T. Nakashizuka; P. L. Silva Dias; N. E. Stork; S. J. Wright; M Yoshimura
2003-01-01
The forest canopy is the functional interface between 90% of Earthâs terrestrial biomass and the atmosphere. Multidisciplinary research in the canopy has expanded concepts of global species richness, physiological processes, and the provision of ecosystem services. Trees respond in a species-specific manner to elevated carbon dioxide levels, while climate change...
Gregory P. Asner; Michael Palace; Michael Keller; Rodrigo Pereira Jr.; Jose N. M. Silva; Johan C. Zweede
2002-01-01
Canopy structural data can be used for biomass estimation and studies of carbon cycling, disturbance, energy balance, and hydrological processes in tropical forest ecosystems. Scarce information on canopy dimensions reflects the difficulties associated with measuring crown height, width, depth, and area in tall, humid tropical forests. New field and spaceborne...
Nicholas R. Vaughn; Gregory P. Asner; Christian P. Giardina
2015-01-01
Fragmentation alters forest canopy structure through various mechanisms, which in turn drive subsequent changes to biogeochemical processes and biological diversity. Using repeated airborne LiDAR (Light Detection and Ranging) mappings, we investigated the size distribution and dynamics of forest canopy gaps across a topical montane forest landscape in Hawaii naturally...
Reduced impact logging minimally alters tropical rainforest carbon and energy exchange.
Miller, Scott D; Goulden, Michael L; Hutyra, Lucy R; Keller, Michael; Saleska, Scott R; Wofsy, Steven C; Figueira, Adelaine Michela Silva; da Rocha, Humberto R; de Camargo, Plinio B
2011-11-29
We used eddy covariance and ecological measurements to investigate the effects of reduced impact logging (RIL) on an old-growth Amazonian forest. Logging caused small decreases in gross primary production, leaf production, and latent heat flux, which were roughly proportional to canopy loss, and increases in heterotrophic respiration, tree mortality, and wood production. The net effect of RIL was transient, and treatment effects were barely discernable after only 1 y. RIL appears to provide a strategy for managing tropical forest that minimizes the potential risks to climate associated with large changes in carbon and water exchange.
Reduced impact logging minimally alters tropical rainforest carbon and energy exchange
Miller, Scott D.; Goulden, Michael L.; Hutyra, Lucy R.; Keller, Michael; Saleska, Scott R.; Wofsy, Steven C.; Figueira, Adelaine Michela Silva; da Rocha, Humberto R.; de Camargo, Plinio B.
2011-01-01
We used eddy covariance and ecological measurements to investigate the effects of reduced impact logging (RIL) on an old-growth Amazonian forest. Logging caused small decreases in gross primary production, leaf production, and latent heat flux, which were roughly proportional to canopy loss, and increases in heterotrophic respiration, tree mortality, and wood production. The net effect of RIL was transient, and treatment effects were barely discernable after only 1 y. RIL appears to provide a strategy for managing tropical forest that minimizes the potential risks to climate associated with large changes in carbon and water exchange. PMID:22087005
A Distributed Snow Evolution Modeling System (SnowModel)
NASA Astrophysics Data System (ADS)
Liston, G. E.; Elder, K.
2004-12-01
A spatially distributed snow-evolution modeling system (SnowModel) has been specifically designed to be applicable over a wide range of snow landscapes, climates, and conditions. To reach this goal, SnowModel is composed of four sub-models: MicroMet defines the meteorological forcing conditions, EnBal calculates surface energy exchanges, SnowMass simulates snow depth and water-equivalent evolution, and SnowTran-3D accounts for snow redistribution by wind. While other distributed snow models exist, SnowModel is unique in that it includes a well-tested blowing-snow sub-model (SnowTran-3D) for application in windy arctic, alpine, and prairie environments where snowdrifts are common. These environments comprise 68% of the seasonally snow-covered Northern Hemisphere land surface. SnowModel also accounts for snow processes occurring in forested environments (e.g., canopy interception related processes). SnowModel is designed to simulate snow-related physical processes occurring at spatial scales of 5-m and greater, and temporal scales of 1-hour and greater. These include: accumulation from precipitation; wind redistribution and sublimation; loading, unloading, and sublimation within forest canopies; snow-density evolution; and snowpack ripening and melt. To enhance its wide applicability, SnowModel includes the physical calculations required to simulate snow evolution within each of the global snow classes defined by Sturm et al. (1995), e.g., tundra, taiga, alpine, prairie, maritime, and ephemeral snow covers. The three, 25-km by 25-km, Cold Land Processes Experiment (CLPX) mesoscale study areas (MSAs: Fraser, North Park, and Rabbit Ears) are used as SnowModel simulation examples to highlight model strengths, weaknesses, and features in forested, semi-forested, alpine, and shrubland environments.
NASA Astrophysics Data System (ADS)
Rowland, L.; Harper, A.; Christoffersen, B. O.; Galbraith, D. R.; Imbuzeiro, H. M. A.; Powell, T. L.; Doughty, C.; Levine, N. M.; Malhi, Y.; Saleska, S. R.; Moorcroft, P. R.; Meir, P.; Williams, M.
2015-04-01
Accurately predicting the response of Amazonia to climate change is important for predicting climate change across the globe. Changes in multiple climatic factors simultaneously result in complex non-linear ecosystem responses, which are difficult to predict using vegetation models. Using leaf- and canopy-scale observations, this study evaluated the capability of five vegetation models (Community Land Model version 3.5 coupled to the Dynamic Global Vegetation model - CLM3.5-DGVM; Ecosystem Demography model version 2 - ED2; the Joint UK Land Environment Simulator version 2.1 - JULES; Simple Biosphere model version 3 - SiB3; and the soil-plant-atmosphere model - SPA) to simulate the responses of leaf- and canopy-scale productivity to changes in temperature and drought in an Amazonian forest. The models did not agree as to whether gross primary productivity (GPP) was more sensitive to changes in temperature or precipitation, but all the models were consistent with the prediction that GPP would be higher if tropical forests were 5 °C cooler than current ambient temperatures. There was greater model-data consistency in the response of net ecosystem exchange (NEE) to changes in temperature than in the response to temperature by net photosynthesis (An), stomatal conductance (gs) and leaf area index (LAI). Modelled canopy-scale fluxes are calculated by scaling leaf-scale fluxes using LAI. At the leaf-scale, the models did not agree on the temperature or magnitude of the optimum points of An, Vcmax or gs, and model variation in these parameters was compensated for by variations in the absolute magnitude of simulated LAI and how it altered with temperature. Across the models, there was, however, consistency in two leaf-scale responses: (1) change in An with temperature was more closely linked to stomatal behaviour than biochemical processes; and (2) intrinsic water use efficiency (IWUE) increased with temperature, especially when combined with drought. These results suggest that even up to fairly extreme temperature increases from ambient levels (+6 °C), simulated photosynthesis becomes increasingly sensitive to gs and remains less sensitive to biochemical changes. To improve the reliability of simulations of the response of Amazonian rainforest to climate change, the mechanistic underpinnings of vegetation models need to be validated at both leaf- and canopy-scales to improve accuracy and consistency in the quantification of processes within and across an ecosystem.
NASA Astrophysics Data System (ADS)
Bui, A. T.; Wallace, H. W., IV; Alvarez, S. L.; Erickson, M.; Alwe, H. D.; May, N.; Cook, R.; Connor, M.; Slade, J. H., Jr.; Shi, Q.; Kavassalis, S.; Tyndall, G. S.; Shepson, P. B.; Pratt, K.; Ault, A. P.; Millet, D. B.; Murphy, J. G.; Usenko, S.; Sheesley, R. J.; Flynn, J. H., III; Griffin, R. J.; Wang, W.
2017-12-01
Forests are a rich source of biogenic volatile organic compounds (BVOCs). Oxidation of BVOCs can result in the formation of secondary organic aerosol (SOA) and in the presence of NOx (NO+NO2) produce organic nitrate-containing particles. However, the distribution of both BVOCs and oxidants can be dramatically altered by the physical barriers provided by a forest canopy. Global models currently neglect the effect of these canopies on SOA formation in forested regions. In this work, we characterize non-refractory submicron aerosol (NR-PM1) using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) during the 2016 Program on Oxidants: Photochemistry, Emissions, and Transport-Atmospheric Measurements of Oxidants in Summer (PROPHET-AMOS) campaign. This site is located in a rural forest in northern Michigan and features a tower that allowed for both above and below canopy measurements. Our results indicate that organic aerosols (OA) account for a substantial portion of the NR-PM1 measured at this site. Organic nitrate aerosol can contribute up to 18% of the total OA and an average of 75% of the total measured nitrate aerosol. Episodes of above- and below-canopy NR-PM1 concentration differences indicate that above-canopy OA concentrations can be up to 40% greater than below-canopy, which represents an increase of up to 1.5 µg/m3. Organic fragment ions such as CxHy, CxHyOz, and CxHyO1 contribute to enhanced above-canopy OA concentrations. Positive matrix factorization analysis of the high-resolution OA mass spectra identified three SOA factors: low volatility oxygenated OA (LVOOA), isoprene-derived OOA (ISOOA), and oxygenated organic aerosol. Analysis of air mass backward trajectories and correlations with external data indicate that LVOOA correlates well with sulfate and aged, urban-influenced air masses, whereas ISOOA correlates well with isoprene SOA tracers and air masses originating from semi-remote areas. Our results indicate that the OA at this site is dominated by SOA formation and that vertical differences in OA can exist in the presence of a forest canopy. Results from this work have important implications in understanding the role that canopies play in SOA formation and provide useful data to help accurately validate biosphere-atmosphere exchange models.
Hedley, John D; McMahon, Kathryn; Fearns, Peter
2014-01-01
A three-dimensional computer model of canopies of the seagrass Amphibolis griffithii was used to investigate the consequences of variations in canopy structure and benthic light environment on leaf-level photosynthetic saturation state. The model was constructed using empirical data of plant morphometrics from a previously conducted shading experiment and validated well to in-situ data on light attenuation in canopies of different densities. Using published values of the leaf-level saturating irradiance for photosynthesis, results show that the interaction of canopy density and canopy-scale photosynthetic response is complex and non-linear, due to the combination of self-shading and the non-linearity of photosynthesis versus irradiance (P-I) curves near saturating irradiance. Therefore studies of light limitation in seagrasses should consider variation in canopy structure and density. Based on empirical work, we propose a number of possible measures for canopy scale photosynthetic response that can be plotted to yield isoclines in the space of canopy density and light environment. These plots can be used to interpret the significance of canopy changes induced as a response to decreases in the benthic light environment: in some cases canopy thinning can lead to an equivalent leaf level light environment, in others physiological changes may also be required but these alone may be inadequate for canopy survival. By providing insight to these processes the methods developed here could be a valuable management tool for seagrass conservation during dredging or other coastal developments.
Hedley, John D.; McMahon, Kathryn; Fearns, Peter
2014-01-01
A three-dimensional computer model of canopies of the seagrass Amphibolis griffithii was used to investigate the consequences of variations in canopy structure and benthic light environment on leaf-level photosynthetic saturation state. The model was constructed using empirical data of plant morphometrics from a previously conducted shading experiment and validated well to in-situ data on light attenuation in canopies of different densities. Using published values of the leaf-level saturating irradiance for photosynthesis, results show that the interaction of canopy density and canopy-scale photosynthetic response is complex and non-linear, due to the combination of self-shading and the non-linearity of photosynthesis versus irradiance (P-I) curves near saturating irradiance. Therefore studies of light limitation in seagrasses should consider variation in canopy structure and density. Based on empirical work, we propose a number of possible measures for canopy scale photosynthetic response that can be plotted to yield isoclines in the space of canopy density and light environment. These plots can be used to interpret the significance of canopy changes induced as a response to decreases in the benthic light environment: in some cases canopy thinning can lead to an equivalent leaf level light environment, in others physiological changes may also be required but these alone may be inadequate for canopy survival. By providing insight to these processes the methods developed here could be a valuable management tool for seagrass conservation during dredging or other coastal developments. PMID:25347849
Turbulent Transfer Between Street Canyons and the Overlying Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Salizzoni, Pietro; Marro, Massimo; Soulhac, Lionel; Grosjean, Nathalie; Perkins, Richard J.
2011-12-01
The turbulent exchange of momentum between a two-dimensional cavity and the overlying boundary layer has been studied experimentally, using hot-wire anemometry and particle image velocimetry (PIV). Conditions within the boundary layer were varied by changing the width of the canyons upstream of the test canyon, whilst maintaining the square geometry of the test canyon. The results show that turbulent transfer is due to the coupling between the instabilities generated in the shear layer above the canyons and the turbulent structures in the oncoming boundary layer. As a result, there is no single, unique velocity scale that correctly characterizes all the processes involved in the turbulent exchange of momentum across the boundary layer. Similarly, there is no single velocity scale that can characterize the different properties of the turbulent flow within the canyon, which depends strongly on the way in which turbulence from the outer flow is entrained into the cavity and carried round by the mean flow. The results from this study will be useful in developing simple parametrizations for momentum exchange in the urban canopy, in situations where the street geometry consists principally of relatively long, uniform streets arranged in grid-like patterns; they are unlikely to be applicable to sparse geometries composed of isolated three-dimensional obstacles.
Accuracy and precision of two indirect methods for estimating canopy fuels
Abran Steele-Feldman; Elizabeth Reinhardt; Russell A. Parsons
2006-01-01
We compared the accuracy and precision of digital hemispherical photography and the LI-COR LAI-2000 plant canopy analyzer as predictors of canopy fuels. We collected data on 12 plots in western Montana under a variety of lighting and sky conditions, and used a variety of processing methods to compute estimates. Repeated measurements from each method displayed...
Barton D. Clinton
2003-01-01
Small canopy openings often alter understory microclimate, leading to changes in forest structure and composition. It is generally accepted that physical changes in the understory (i.e., microclimatic) due to canopy removal drive changes in basic forest processes, particularly seedling recruitment which is intrinsically linked to soil moisture availability, light and,...
Analyzing canopy structure in Pacific Northwest old-growth forests with a stand-scale crown model
Robert Van Pelt; Malcolm P. North
1996-01-01
I n forests, the canopy is the locale of critical ecosystem processes such as photosynthesis and evapotranspiration. and it provides essential habitat for a highly diverse array of animals, plants, and other organisms. Despite its importance, the structure of the canopy as a whole has had little quantitative study because limited access makes quantification difficult...
Hydro-chemical cycle of forest ecosystem in the Norikura Highlands
NASA Astrophysics Data System (ADS)
Muramoto, Michiko; Nara, Maiko; Asari, Tomoko; Suzuki, Keisuke
Because of precipitation serves as a major vehicle of nutrient input into the forest ecosystem, the accurate measurement of its volume and ion concentration is of prime importance in an evaluation of any bio-geochemical cycle. Therefore, chemistry of the precipitation and throughfall of forest ecosystem was investigated in the Norikura Highlands. The investigation period was from January, 2003 to October, 2006. The throughfall volume in growing season and dormant season were 86 % and 93 % of the precipitation volume. Throughfall pH increased with increasing K+ concentration showed that H+ was held within the canopy by cation exchange reaction. And the concentration level of K+, Mg2+ and Ca2+ in the throughfall was much higher than that in the precipitation. It was the cause of canopy leaching. In growing season, proportions of canopy leaching of K+, Mg2+ and Ca2+ were 95 %, 70 % and 43 % of the throughfall deposition respectively. At Coniferous site, the flux of dry deposition was higher in dormant season than growing season. It is suggested that aerosol of the atmosphere and leaf area might be influenced.
Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp
NASA Astrophysics Data System (ADS)
Wedeux, B. M. M.; Coomes, D. A.
2015-07-01
Forest canopy structure is strongly influenced by environmental factors and disturbance, and in turn influences key ecosystem processes including productivity, evapotranspiration and habitat availability. In tropical forests increasingly modified by human activities, the interplaying effects of environmental factors and disturbance legacies on forest canopy structure across landscapes are practically unexplored. We used high-fidelity airborne laser scanning (ALS) data to measure the canopy of old-growth and selectively logged peat swamp forest across a peat dome in Central Kalimantan, Indonesia, and quantified how canopy structure metrics varied with peat depth and under logging. Several million canopy gaps in different height cross-sections of the canopy were measured in 100 plots of 1 km2 spanning the peat dome, allowing us to describe canopy structure with seven metrics. Old-growth forest became shorter and had simpler vertical canopy profiles on deeper peat, consistently with previous work linking deep peat to stunted tree growth. Gap Size Frequency Distributions (GSFDs) indicated fewer and smaller canopy gaps on the deeper peat (i.e. the scaling exponent of pareto functions increased from 1.76 to 3.76 with peat depth). Areas subjected to concessionary logging until 2000, and informal logging since then, had the same canopy top height as old-growth forest, indicating the persistence of some large trees, but mean canopy height was significantly reduced; the total area of canopy gaps increased and the GSFD scaling exponent was reduced. Logging effects were most evident on the deepest peat, where nutrient depletion and waterlogged conditions restrain tree growth and recovery. A tight relationship exists between canopy structure and the peat deph gradient within the old-growth tropical peat swamp. This relationship breaks down after selective logging, with canopy structural recovery being modulated by environmental conditions.
Chris A. Maier; R.O. Teskey
1992-01-01
Leaf gas exchange and water relations were monitored in the upper canopy of two 25 m tall eastern white pine (Pinus strobus L.) trees over two consecutive growing seasons (1986 and 1987). Examination of the seasonal and diurnal patterns of net photosynthesis and leaf conductance showed that both internal and external (environmental) factors were...
California black oak response to nitrogen amendment at a high O3, nitrogen-saturated site
Nancy Grulke; W. Dobrowolski; P. Mingus; M.E. Fenn
2005-01-01
In a nitrogen (N) saturated forest downwind from Los Angeles, California, the cumulative response to long-term background-N and N-amendment on black oak (Quercus kelloggii) was described in a below-average and average precipitation year. Monthly measurements of leaf and branch growth, gas exchange, and canopy health attributes were conducted. The...
Whole canopy gas exchange among elite loblolly pine families subjected to drought stress
Wilson G. Hood; Michael C. Tyree; Dylan N. Dillaway; Michael A. Blazier; Mary Anne Sword Sayer
2012-01-01
Future climate change simulations predict that the southeastern United States will experience hydrologic patterns similar to that currently found in the Western Gulf Region, meaning, that planted elite loblolly families may be subject to drier, hotter summers (Ruosteenoja et al. 2003, Field et al. 2007). Currently, there is little research on how these fast-growing...
NASA Astrophysics Data System (ADS)
Tsokankunku, Anywhere; Wolff, Stefan; Sörgel, Matthias; Berger, Martina; Zelger, Michael; Dlugi, Ralf
2017-04-01
Nitrogen monoxide (NO) and nitrogen dioxide (NO2) (denoted together as NOx) determine the abundance of the tropospheric oxidants OH, O3 and NO3 that regulate atmospheric self-cleaning. The three reactive trace gases NO, NO2 and O3 undergo a series of interconnected photochemical reactions and are often referred to as the NO-O3-NO2 triad. Ozone deposition is mainly controlled by stomatal uptake, thus contributes to oxidative stress for the plants. Similarly, nitrogen dioxide from above or below the canopy is deposited to leaves through stomatal uptake. NO emissions from soils contribute to above canopy O3 formation and accelerate OH recycling. Therefore, quantification of the exchange fluxes of these species between the atmosphere and the biosphere are important for atmospheric chemistry and ecosystem research as well. The eddy covariance method is state of the art for direct measurements of ecosystem fluxes of trace gases. Eddy covariance measurements of NOx in pristine environments are rare because of lack of availability of instruments with the required precision to resolve concentrations characteristic of these environments. The Amazon Tall Tower Observatory (ATTO) is located in a pristine rainforest environment in the Amazon basin about 150 km northeast of the city of Manaus. It is the ideal site for studying the biosphere-atmosphere exchange of the NO-O3-NO2 triad, being largely undisturbed by anthropogenic sources. During an intensive measurement campaign in November 2015 at the ATTO site, measurements of NO, NO2 and O3 were carried out at 42 m above ground level on the 80 m walk-up tower with a fast (5 Hz) and sensitive (< 30 ppt) instrument (CLD790SR2, Eco Physics) for NO and NO2 and with 10 Hz for O3 (Enviscope). Additionally, measurements of turbulent and micrometeorological parameters were conducted with a profile of 3-dimensional sonic anemometers and meteorological sensors for temperature, humidity and radiation. Vertical concentration profile measurements of NO, NO2 and O3 were available at 8 levels on the INSTANT tower from a reactive trace gas profile system which has been operational at the site since 2012. From these measurements, we present eddy covariance fluxes of the NO-O3-NO2 triad. We relate the fluxes to the canopy-atmosphere exchange of the trace gases and other scalars using the profile data along the tower. Chemical and turbulent transport timescales of the triad constituents are also presented. Coherent structures and canopy-atmosphere coupling is discussed, particularly in relation to the dynamics of O3 and its subsequent influence on the NOx fluxes. As far as we know, these are the first full simultaneous measurements of NO, NO2 and O3 fluxes using the eddy covariance method above an Amazonian rainforest.
Plant phenology and composition controls of carbon fluxes in a boreal peatland
NASA Astrophysics Data System (ADS)
Peichl, Matthias; Gažovič, Michal; Vermeij, Ilse; De Goede, Eefje; Sonnentag, Oliver; Limpens, Juul; Nilsson, Mats B.
2016-04-01
Vegetation drives the peatland carbon (C) cycle via the processes of photosynthesis, plant respiration and decomposition as well as by providing substrate for methane (CH4) and dissolved organic carbon production. However, due to the lack of comprehensive vegetation data, variations in the peatland C fluxes are commonly related to temperature and other more easily measured abiotic (i.e. weather and soil) variables. Due to the temporal co-linearity between plant development and abiotic variables, these relationships may describe the variations in C fluxes reasonably well, however, without representing the true mechanistic processes driving the peatland C cycle. As a consequence, current process-based models are poorly parameterized and unable to adequately predict the responses of the peatland C cycle to climate change, extreme events and anthropogenic impacts. To fill this knowledge gap, we explored vegetation phenology and composition effects on the peatland C cycle at the Degerö peatland located in northern Sweden. We used a greenness index derived from digital repeat photography to quantitatively describe plant canopy development with high temporal (i.e. daily) and spatial (plot to ecosystem) resolution. In addition, eddy covariance and static chamber measurements of carbon dioxide (CO2) and CH4 fluxes over an array of vegetation manipulation plots were conducted over multiple years. Our results suggest that vascular plant phenology controls the onset and pattern of eddy covariance-derived gross primary production (GPP) during the spring period, while abiotic conditions modify GPP during the summer period when plant canopy cover is fully developed. Inter-annual variations in the spring onset and patterns of plant canopy development were best explained by differences in the preceding growing degree day sum. We also observed strong correlations of canopy greenness with the net ecosystem CO2 exchange and ecosystem respiration. On average, vascular plant and moss production accounted for ~60 and 40% of GPP, respectively. However, while the seasonal variation of vascular plant productivity was driven by plant phenology, water table level was the strongest control of moss productivity. Across vegetation manipulation plots, highest chamber-derived GPP and net CO2 uptake occurred when both vascular and moss species were present. Furthermore, CH4 fluxes increased with the amount of sedge species leaf area; however, their seasonal flux patterns were more closely related to water table level than to plant phenology. Overall these findings highlight the need for better understanding the separate controls of biotic and abiotic drivers of the peatland C fluxes to improve predictions of ecosystem processes and the peatland C sink strength in response to future climate change and management impacts.
NASA Astrophysics Data System (ADS)
Tsokankunku, A.; Wolff, S.; Berger, M.; Zelger, M.; Dlugi, R. J. W.; Andreae, M. O.; Sörgel, M.
2017-12-01
Nitrogen monoxide (NO) and nitrogen dioxide (NO2) (denoted together as NOx) determine the abundance of the tropospheric oxidants OH, O3 and NO3 that regulate atmospheric self-cleaning. The three reactive trace gases NO, NO2 and O3 undergo a series of interconnected photochemical reactions and are therefore often referred to as the NO-O3-NO2 triad. Ozone deposition is mainly controlled by stomatal uptake, therefore resulting in oxidative stress for the plants. Similarly, nitrogen dioxide from above or below the canopy is deposited to leaves through stomatal uptake. NO emissions from soils contribute to above canopy O3 formation and accelerate OH recycling. Therefore, quantification of the biosphere-atmosphere exchange fluxes of these species is important for atmospheric chemistry and ecosystem research. The eddy covariance method is state of the art for direct measurements of ecosystem fluxes of trace gases. Eddy covariance measurements of NOx in pristine environments are rare because of lack of availability of instruments with the required precision to resolve concentrations characteristic of these environments with the required high time resolution. The Amazon Tall Tower Observatory (ATTO) is located in a pristine rainforest environment in the Amazon basin about 150 km northeast of the city of Manaus. It is the ideal site for studying the biosphere-atmosphere exchange of the NO-O3-NO2 triad, because of the absence of nearby anthropogenic sources. During an intensive measurement campaign in November 2015 at the ATTO site, measurements of NO, NO2 and O3 were carried out at 42 m above ground level on the 80 m walk-up tower with a fast (5 Hz) and sensitive (< 30 ppt) instrument (CLD790SR2, Eco Physics) for NO and NO2 and with 10 Hz for O3 (Enviscope GmbH). Additionally, a suite of micrometeorological instruments was installed, including a profile of 3-dimensional sonic anemometers and meteorological sensors. Vertical concentration profile measurements of NO, NO2 and O3 were available at 8 levels on the tower. From these measurements, we present eddy covariance fluxes of the NO-O3-NO2 triad. We relate the fluxes to the canopy-atmosphere exchange of the trace gases and other scalars using the profile data along the tower. Chemical and turbulent transport timescales of the triad constituents are presented and discussed.
NASA Astrophysics Data System (ADS)
Wohlfahrt, Georg; Hammerle, Albin; Tomelleri, Enrico
2015-04-01
Radiation reflected back from an ecosystem carries a spectral signature resulting from the interaction of radiation with the vegetation canopy and the underlying soil and thus allows drawing conclusions about the structure and functioning of an ecosystem. When this information is linked to a model of the leaf CO2 exchange, the ecosystem-scale CO2 exchange can be simulated. A well-known and very simplistic example for this approach is the light-use efficiency (LUE) model proposed by Monteith which links the flux of absorbed photosynthetically active radiation times a LUE parameter, both of which may be estimated based on remote sensing data, to predict the ecosystem gross photosynthesis. Here we explore the ability of a more elaborate approach by using near-surface remote sensing of hyperspectral reflected radiation, eddy covariance CO2 and energy flux measurements and a coupled radiative transfer and soil-vegetation-atmosphere-transfer (SVAT) model. Our main objective is to understand to what degree the joint assimilation of hyperspectral reflected radiation and eddy covariance flux measurements into the model helps to better constrain model parameters. To this end we use the SCOPE model, a combination of the well-known PROSAIL model and a SVAT model, and the Bayesian inversion algorithm DREAM. In order to explicitly link reflectance in the visible light and the leaf CO2 exchange, a novel parameterisation of the maximum carboxylation capacity parameter (Vcmax) on the leaf a+b chlorophyll content parameter of PROSAIL is introduced. Results are discussed with respect to the additional information content the hyperspectral data yield for simulating canopy photosynthesis.
Measurement of gas exchange in intensive care: laboratory and clinical validation of a new device.
Takala, J; Keinänen, O; Väisänen, P; Kari, A
1989-10-01
The performance of a new gas exchange monitor was assessed both in laboratory simulation and in ICU patients. Laboratory simulation using N2 and CO2 injections resulted in a mean error of 2 +/- 2% in CO2 production (VCO2) and 4 +/- 4% in oxygen consumption (VO2) in respirator measurements (n = 55) and in a mean error of 3 +/- 2% in VCO2 and 4 +/- 2% in VO2 in canopy measurements (n = 25). The mean error in RQ during ethanol burning was 2 +/- 2% in respirator measurements (n = 45) and 1 +/- 1% in canopy measurements. FIO2 had little effect on the accuracy of VCO2, whereas the accuracy on high rates of VO2 (VO2 = 400 ml/min) was reduced, when FIO2 increased: the error ranged from 1 +/- 1% to 6 +/- 1%, except at VO2 400 ml/min during FIO2 0.8, where the error was 16 +/- 3%. Neither peak airway pressure (+13 to +63 cm H2O) nor PEEP (0 to +20 cm H2O) had an effect on the accuracy. The highest level of minute ventilation studied (22.5 L/min) reduced the accuracy slightly (mean error of VCO2 4 +/- 1% and VO2 7 +/- 2%). In patients during controlled mechanical ventilation, increasing FIO2 from 0.4 to 0.6 had no effect on the results. VO2 was consistently higher by gas exchange than by the Fick principle: 16 +/- 9% during controlled ventilation (n = 20), 21 +/- 8% on synchronized intermittent mandatory ventilation (n = 10) and 25 +/- 8% during spontaneous breathing. We conclude that the device proved to be accurate for gas exchange measurements in the ICU.
Losciale, Pasquale; Chow, Wah Soon; Corelli Grappadelli, Luca
2010-01-01
The productivity of fruit trees is a linear function of the light intercepted, although the relationship is less tight when greater than 50% of available light is intercepted. This paper investigates the management of light energy in peach using the measurement of whole-tree light interception and gas exchange, along with the absorbed energy partitioning at the leaf level by concurrent measurements of gas exchange and chlorophyll fluorescence. These measurements were performed on trees of a custom-built ‘asymmetric’ orchard. Whole-tree gas exchange for north–south, vertical canopies (C) was similar to that for canopies intercepting the highest irradiance in the morning hours (W), but trees receiving the highest irradiance in the afternoon (E) had the highest net photosynthesis and transpiration while maintaining a water use efficiency (WUE) comparable to the other treatments. In the W trees, 29% and 8% more photosystems were damaged than in C and E trees, respectively. The quenching partitioning revealed that the non-photochemical quenching (NPQ) played the most important role in excess energy dissipation, but it was not fully active at low irradiance, possibly due to a sub-optimal trans-thylakoid ΔpH. The non-net carboxylative mechanisms (NC) appeared to be the main photoprotective mechanisms at low irradiance levels and, probably, they could facilitate the establishment of a trans-thylakoid ΔpH more appropriate for NPQ. These findings support the conclusion that irradiance impinging on leaves may be excessive and can cause photodamage, whose repair requires energy in the form of carbohydrates that are thereby diverted from tree growth and productivity. PMID:20124356
Wu, Jin; Kobayashi, Hideki; Stark, Scott C; Meng, Ran; Guan, Kaiyu; Tran, Ngoc Nguyen; Gao, Sicong; Yang, Wei; Restrepo-Coupe, Natalia; Miura, Tomoaki; Oliviera, Raimundo Cosme; Rogers, Alistair; Dye, Dennis G; Nelson, Bruce W; Serbin, Shawn P; Huete, Alfredo R; Saleska, Scott R
2018-03-01
Satellite observations of Amazon forests show seasonal and interannual variations, but the underlying biological processes remain debated. Here we combined radiative transfer models (RTMs) with field observations of Amazon forest leaf and canopy characteristics to test three hypotheses for satellite-observed canopy reflectance seasonality: seasonal changes in leaf area index, in canopy-surface leafless crown fraction and/or in leaf demography. Canopy RTMs (PROSAIL and FLiES), driven by these three factors combined, simulated satellite-observed seasonal patterns well, explaining c. 70% of the variability in a key reflectance-based vegetation index (MAIAC EVI, which removes artifacts that would otherwise arise from clouds/aerosols and sun-sensor geometry). Leaf area index, leafless crown fraction and leaf demography independently accounted for 1, 33 and 66% of FLiES-simulated EVI seasonality, respectively. These factors also strongly influenced modeled near-infrared (NIR) reflectance, explaining why both modeled and observed EVI, which is especially sensitive to NIR, captures canopy seasonal dynamics well. Our improved analysis of canopy-scale biophysics rules out satellite artifacts as significant causes of satellite-observed seasonal patterns at this site, implying that aggregated phenology explains the larger scale remotely observed patterns. This work significantly reconciles current controversies about satellite-detected Amazon phenology, and improves our use of satellite observations to study climate-phenology relationships in the tropics. No claim to original US Government works New Phytologist © 2017 New Phytologist Trust.
Soper, Fiona M; Sullivan, Benjamin W; Nasto, Megan K; Osborne, Brooke B; Bru, David; Balzotti, Christopher S; Taylor, Phillip G; Asner, Gregory P; Townsend, Alan R; Philippot, Laurent; Porder, Stephen; Cleveland, Cory C
2018-06-21
Tropical forests exhibit significant heterogeneity in plant functional and chemical traits that may contribute to spatial patterns of key soil biogeochemical processes, such as carbon storage and greenhouse gas emissions. Although tropical forests are the largest ecosystem source of nitrous oxide (N 2 O), drivers of spatial patterns within forests are poorly resolved. Here, we show that local variation in canopy foliar N, mapped by remote-sensing image spectroscopy, correlates with patterns of soil N 2 O emission from a lowland tropical rainforest. We identified ten 0.25 ha plots (assemblages of 40-70 individual trees) in which average remotely-sensed canopy N fell above or below the regional mean. The plots were located on a single minimally-dissected terrace (<1 km 2 ) where soil type, vegetation structure and climatic conditions were relatively constant. We measured N 2 O fluxes monthly for one year and found that high canopy N species assemblages had on average three-fold higher total mean N 2 O fluxes than nearby lower canopy N areas. These differences are consistent with strong differences in litter stoichiometry, nitrification rates and soil nitrate concentrations. Canopy N status was also associated with microbial community characteristics: lower canopy N plots had two-fold greater soil fungal to bacterial ratios and a significantly lower abundance of ammonia-oxidizing archaea, although genes associated with denitrification (nirS, nirK, nosZ) showed no relationship with N 2 O flux. Overall, landscape emissions from this ecosystem are at the lowest end of the spectrum reported for tropical forests, consist with multiple metrics indicating that these highly productive forests retain N tightly and have low plant-available losses. These data point to connections between canopy and soil processes that have largely been overlooked as a driver of denitrification. Defining relationships between remotely-sensed plant traits and soil processes offers the chance to map these processes at large scales, potentially increasing our ability to predict N 2 O emissions in heterogeneous landscapes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Becker, J.
2015-12-01
The savannah biome is a hotspot for biodiversity and wildlife conservation in Africa and recently got in the focus of research on carbon sequestration. Savannah ecosystems are under strong pressure from climate and land-use change, especially around populous areas like the Mt. Kilimanjaro region. Savannah vegetation consists of grassland with isolated trees and is therefore characterized by high spatial variation of canopy cover, aboveground biomass and root structure. The canopy structure is a major regulator for soil ecological parameters and soil-atmospheric trace gas exchange (CO2, N2O, CH4) in water limited environments. The spatial distribution of these parameters and the connection between above and belowground processes are important to understand and predict ecosystem changes and estimate its vulnerability. Our objective was to determine spatial trends and changes of soil parameters and relate their variability to the vegetation structure. We chose three trees from each of the two most dominant species (Acacia nilotica and Balanites aegyptiaca) in our research area. For each tree, we selected transects with nine sampling points of the same relative distances to the stem. At these each sampling point a soil core was taken and separated in 0-10 cm and 10-30 cm depth. We measured soil carbon (C) and nitrogen (N) storage, microbial biomass C and N, Natural δ13C, soil respiration, available nutrients, pH, cation exchange capacity (CEC) as well as root biomass and -density, soil temperature and soil water content. Concentrations and stocks of C and N fractions, CEC and K+ decreased up to 50% outside the crown covered area. Microbial C:N ratio and CO2 efflux was about 30% higher outside the crown. This indicates N limitation and low C use efficiency in soil outside the crown area. We conclude that the spatial structure of aboveground biomass in savanna ecosystems leads to a spatial variance in nutrient limitation. Therefore, the capability of a savanna ecosystem to act as a C sink is directly and indirectly dependent on the vegetation structure.
Employing lidar to detail vegetation canopy architecture for prediction of aeolian transport
Sankey, Joel B.; Law, Darin J.; Breshears, David D.; Munson, Seth M.; Webb, Robert H.
2013-01-01
The diverse and fundamental effects that aeolian processes have on the biosphere and geosphere are commonly generated by horizontal sediment transport at the land surface. However, predicting horizontal sediment transport depends on vegetation architecture, which is difficult to quantify in a rapid but accurate manner. We demonstrate an approach to measure vegetation canopy architecture at high resolution using lidar along a gradient of dryland sites ranging from 2% to 73% woody plant canopy cover. Lidar-derived canopy height, distance (gaps) between vegetation elements (e.g., trunks, limbs, leaves), and the distribution of gaps scaled by vegetation height were correlated with canopy cover and highlight potentially improved horizontal dust flux estimation than with cover alone. Employing lidar to estimate detailed vegetation canopy architecture offers promise for improved predictions of horizontal sediment transport across heterogeneous plant assemblages.
AmeriFlux US-UMd UMBS Disturbance
Curtis, Peter [Ohio State University; Gough, Christopher [Virginia Commonwealth University
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site US-UMd UMBS Disturbance. Site Description - The UMBS Disturbance site is an artificial disturbance site that has recently been created as part of the Forest Accelerate Succession ExperimenT (FASET). In Spring 2008, every aspen and birch tree (>6,700, ~35% canopy LAI), the dominant early successional trees, were girdled over 39 ha of the FASET treatment plot to stimulate a disturbance that will move the forest into a later successional stage, dominated by maples, oaks, and white pine. This treatment caused aspen and birch mortality within 2 - 3 years. As a result of the changed canopy structure, there is a divergence in net ecosystem exchange between the control plot (enhanced carbon uptake) and the treatment plot (reduced carbon uptake).
The influence of grazing on surface climatological variables of tallgrass prairie
NASA Technical Reports Server (NTRS)
Seastedt, T. R.; Dyer, M. I.; Turner, Clarence L.
1992-01-01
Mass and energy exchange between most grassland canopies and the atmosphere are mediated by grazing activities. Ambient temperatures can be increased or decreased by grazers. Data have been assembled from simulated grazing experiments on Konza Prairie Research Natural Area and observations on adjacent pastures grazed by cattle show significant changes in primary production, nutrient content, and bidirectional reflectance characteristics as a function of grazing intensity. The purpose of this research was to provide algorithms that would allow incorporation of grazing effects into models of energy budgets using remote sensing procedures. The approach involved: (1) linking empirical measurements of plant biomass and grazing intensities to remotely sensed canopy reflectance, and (2) using a higher resolution, mechanistic grazing model to derive plant ecophysiological parameters that influence reflectance and other surface climatological variables.
NASA Astrophysics Data System (ADS)
Ney, Patrizia; Schmidt, Marius; Klosterhalfen, Anne; Graf, Alexander
2017-04-01
We present a portable elevator-based setup for measuring CO2, water vapor, temperature and wind profiles from the soil surface to the surface layer above crop canopies. The end of a tube connected to a closed-path gas analyzer is continuously moved up and down over the profile height (currently 2 m), while concentrations are logged at a frequency of 20 Hz. Temperature and wind speed are measured at the same frequency by a ventilated finewire thermocouple and a hotwire, respectively, and all measurements are duplicated as a continuous fixed-height measurement at the top of the profile. Test measurements were carried out at the TERENO research site of Selhausen (50°52'09"N, 06°27'01"E, 104.5 m MSL, Germany, ICOS site DE-RuS) in winter wheat, winter barley and a catch crop mixture during different stages of crop development and different times of the day (spring 2015 to autumn 2016). We demonstrate a simple approach to correct for time lags, and the resulting half-hourly mean profiles of CO2 and H2O over height increments of 2.5 cm. These results clearly show the effects of soil respiration and photosynthetic carbon assimilation, varying both during the daily cycle and during the growing season. Post-harvest measurements over bare soil and short intercrop canopy (<20 cm) were analyzed in the framework of Monin-Obukhov similarity theory to check the validity of the measurement and raw data processing approach. Derived CO2 and latent heat fluxes show a good agreement to eddy-covariance measurements. In a next step, we applied a dispersion matrix inversion (modified after Warland and Thurtell 2000, Santos et al. 2011) to the concentration profiles to estimate the vertical source and sink distribution of CO2 and H2O. First results showed reasonable values for evaporation, transpiration and aboveground net primary production, but a likely overestimation of soil respiration. We discuss possible causes associated with exchange processes near the soil surface below a dense canopy, and the potential use of the wind and temperature profiles in efforts to improve the dispersion parametrization in this region. Santos, E.A., Wagner-Riddle, C., Warland, J.S. and Brown, S. (2011): Applying a Lagrangian dispersion analysis to infer carbon dioxide and latent heat fluxes in a corn canopy. Agricultural and Forest Meteorology 151: 620-632. Warland, J.S. and Thurtell, G.W. (2000): A Lagrangian solution to the relationship between a distributed source and concentration profile. Boundary-Layer Meteorology 96: 453-471.
Is There Ecological Information in Optical Polarization Data?
NASA Technical Reports Server (NTRS)
Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert
2015-01-01
Optical linear polarization? In remote sensing it's due to specular reflection. The first surface that incident light encounters - a smooth water surface or the waxy first surface of a leaf's cuticle, if it's even somewhat smooth (i.e. shiny) - will specularly reflect and linearly polarize the incident light. We provide three examples of the types of ecological information contained in remotely sensed optical linear polarization measurements. Remove the surface reflection to better see the interior. The linearly polarized light reflected by leaf surfaces contains no information about cellular pigments, metabolites, or water contained in the leaf interiors of a plant canopy, because it never enters the leaf interior to interact with them. Thus, for purposes of remotely sensing the leaf interiors of a plant canopy, the linearly polarized light should be subtracted from the total reflected light, because including it would add noise to the measurement. In particular 'minus specular' vegetation indices should allow improved monitoring of a plant canopy's physiological processes. Estimate plant development stage and yield. Wheat and sorghum grain heads, following emergence, rapidly extend upward and very quickly tower over nearby leaves, partially blocking our view of the sunlight reflected by those leaf surfaces. The resulting decrease in the amount of surface reflected and polarized sunlight, if monitored over time, potentially allows per-field estimates of the dates of the heading and flowering development stages to be interleaved with weather data in models, which is key to better estimating per-field grain yield. Similar polarization changes may occur in other grasses, such as oats, barley, corn and rice, each a crop so widely grown that it potentially affects climate at the regional scale. Wetlands Mapping. The sunlight specularly reflected by surface waters is blindingly bright, spectrally flat and polarized - all of which telegraphs that the ground area is inundated. Inundated soils exchange methane with the atmosphere; non-inundated soils, carbon dioxide. Aquatic plants growing through the water surface pipe the soil-produced methane via the stomata to the atmosphere, enhancing exchanges rates by factors of 10-20 compared to ebullition (bubbling) or diffusion through the water column to the atmosphere. Thus, mapping wetland areas into three community types - inundated areas with emergent vegetation, open water and uplands - provides potentially key information to water, carbon and energy budgets at landscape to global scales.
Air Parcel Residence Times within Tropical Forest Canopies and Implications for Reactive Gases
NASA Astrophysics Data System (ADS)
Gerken, T.; Chamecki, M.; Fuentes, J. D.
2014-12-01
The Amazon rainforest is the world's largest natural emitter of reactive trace gases. Due to its dense vegetation (leaf area index > 4), turbulence fluctuations are highly attenuated deep inside the canopy. However, strong coherent eddies that penetrate the upper portion of the canopy can be very effective in transporting gases. Sweeps and ejections act in the order of seconds and transport air parcels into or out of the canopy. The effects of coherent structures on the air parcel residence times and associated chemical processing of reactive gases remain largely unquantified in tropical forests. We combine canopy resolving Large-Eddy Simulation (LES) and field observations in the Brazilian Amazon to study residence times of air parcels in the rainforest as a function of canopy structure and height (h). Good agreement is obtained between simulated and observed turbulence statistics within and above the forest. Coherent structure properties obtained from quadrant analysis are also well reproduced. A Lagrangian particle tracking algorithm is used to quantify the distribution of residence times of air parcels "released" at different heights. Canopy residence times were determined from the particle trajectories. The resulting probability density function (PDF) strongly depended on the particle release height (z). For particles released in the upper canopy (at z/h=0.75) the most frequent residence times were in the order of 30s, with 50% of all particles ejected from the canopy after ~2 minutes. The mean residence time was close to 5 minutes, indicating a very skewed PDF. At z/h=0.25 the PDF was more evenly distributed with its median and mean in the order of ~10 minutes. Due to sweeps, both simulations had a non- negligible fraction of particles transported deep into the canopy, thus increasing greatly their residence times. As the reaction timescales of many biogenic volatile organic compounds (BVOC) are in the order of seconds to minutes, significant chemical processing can take place before particles are transported out of the canopy. This result highlights the importance of coherent motions on the capability of BVOC to escape the canopy space. Hence, it is important to consider the real distribution of residence times, highlighting the need for accurate canopy representation in LES models.
Elizabeth A. Freeman; Gretchen G. Moisen; John W. Coulston; Barry T. (Ty) Wilson
2015-01-01
As part of the development of the 2011 National Land Cover Database (NLCD) tree canopy cover layer, a pilot project was launched to test the use of high-resolution photography coupled with extensive ancillary data to map the distribution of tree canopy cover over four study regions in the conterminous US. Two stochastic modeling techniques, random forests (RF...
Glenn, Edward P; Huete, Alfredo R; Nagler, Pamela L; Nelson, Stephen G
2008-03-28
Vegetation indices (VIs) are among the oldest tools in remote sensing studies. Although many variations exist, most of them ratio the reflection of light in the red and NIR sections of the spectrum to separate the landscape into water, soil, and vegetation. Theoretical analyses and field studies have shown that VIs are near-linearly related to photosynthetically active radiation absorbed by a plant canopy, and therefore to light-dependent physiological processes, such as photosynthesis, occurring in the upper canopy. Practical studies have used time-series VIs to measure primary production and evapotranspiration, but these are limited in accuracy to that of the data used in ground truthing or calibrating the models used. VIs are also used to estimate a wide variety of other canopy attributes that are used in Soil-Vegetation-Atmosphere Transfer (SVAT), Surface Energy Balance (SEB), and Global Climate Models (GCM). These attributes include fractional vegetation cover, leaf area index, roughness lengths for turbulent transfer, emissivity and albedo. However, VIs often exhibit only moderate, non-linear relationships to these canopy attributes, compromising the accuracy of the models. We use case studies to illustrate the use and misuse of VIs, and argue for using VIs most simply as a measurement of canopy light absorption rather than as a surrogate for detailed features of canopy architecture. Used this way, VIs are compatible with "Big Leaf" SVAT and GCMs that assume that canopy carbon and moisture fluxes have the same relative response to the environment as any single leaf, simplifying the task of modeling complex landscapes.
Process Model for Studying Regional 13C Stable Isotope Exchange between Vegetation and Atmosphere
NASA Astrophysics Data System (ADS)
Chen, J. M.; Chen, B.; Huang, L.; Tans, P.; Worthy, D.; Ishizawa, M.; Chan, D.
2007-12-01
The variation of the stable isotope 13CO2 in the air in exchange with land ecosystems results from fractionation processes in both plants and soil during photosynthesis and respiration. Its diurnal and seasonal variations therefore contain information on the carbon cycle. We developed a model (BEPS-iso) to simulate its exchange between vegetation and the atmosphere. To be useful for regional carbon cycle studies, the model has the following characteristics: (i) it considers the turbulent mixing in the vertical profile from the soil surface to the top of the planetary boundary layer (PBL); (ii) it scales individual leaf photosynthetic discrimination to the whole canopy through the separation of sunlit and shaded leaf groups; (iii) through simulating leaf-level photosynthetic processes, it has the capacity to mechanistically examine isotope discrimination resulting from meteorological forcings, such as radiation, precipitation and humidity; and (iv) through complete modeling of radiation, energy and water fluxes, it also simulates soil moisture and temperature needed for estimating ecosystem respiration and the 13C signal from the soil. After validation using flask data acquired at 20 m level on a tower near Fraserdale, Ontario, Canada, during intensive campaigns (1998-2000), the model has been used for several purposes: (i) to investigate the diurnal and seasonal variations in the disequilibrium in 13C fractionation between ecosystem respiration and photosynthesis, which is an important step in using 13C measurements to separate these carbon cycle components; (ii) to quantify the 13C rectification in the PBL, which differs significantly from CO2 rectification because of the diurnal and seasonal disequilibriums; and (iii) to model the 13C spatial and temporal variations over the global land surface for the purpose of CO2 inversion using 13C as an additional constraint.
Remote canopy hemispherical image collection system
NASA Astrophysics Data System (ADS)
Wan, Xuefen; Liu, Bingyu; Yang, Yi; Han, Fang; Cui, Jian
2016-11-01
Canopies are major part of plant photosynthesis and have distinct architectural elements such as tree crowns, whorls, branches, shoots, etc. By measuring canopy structural parameters, the solar radiation interception, photosynthesis effects and the spatio-temporal distribution of solar radiation under the canopy can be evaluated. Among canopy structure parameters, Leaf Area Index (LAI) is the key one. Leaf area index is a crucial variable in agronomic and environmental studies, because of its importance for estimating the amount of radiation intercepted by the canopy and the crop water requirements. The LAI can be achieved by hemispheric images which are obtained below the canopy with high accuracy and effectiveness. But existing hemispheric images canopy-LAI measurement technique is based on digital SLR camera with a fisheye lens. Users need to collect hemispheric image manually. The SLR camera with fisheye lens is not suit for long-term canopy-LAI outdoor measurement too. And the high cost of SLR limits its capacity. In recent years, with the development of embedded system and image processing technology, low cost remote canopy hemispheric image acquisition technology is becoming possible. In this paper, we present a remote hemispheric canopy image acquisition system with in-field/host configuration. In-field node based on imbed platform, low cost image sensor and fisheye lens is designed to achieve hemispherical image of plant canopy at distance with low cost. Solar radiation and temperature/humidity data, which are important for evaluating image data validation, are obtained for invalid hemispherical image elimination and node maintenance too. Host computer interacts with in-field node by 3G network. The hemispherical image calibration and super resolution are used to improve image quality in host computer. Results show that the remote canopy image collection system can make low cost remote canopy image acquisition for LAI effectively. It will be a potential technology candidate for low-cost remote canopy hemispherical image collection to measure canopy LAI.
Fowler, David; Nemitz, Eiko; Misztal, Pawel; Di Marco, Chiara; Skiba, Ute; Ryder, James; Helfter, Carole; Cape, J. Neil; Owen, Sue; Dorsey, James; Gallagher, Martin W.; Coyle, Mhairi; Phillips, Gavin; Davison, Brian; Langford, Ben; MacKenzie, Rob; Muller, Jennifer; Siong, Jambery; Dari-Salisburgo, Cesare; Di Carlo, Piero; Aruffo, Eleonora; Giammaria, Franco; Pyle, John A.; Hewitt, C. Nicholas
2011-01-01
This paper reports measurements of land–atmosphere fluxes of sensible and latent heat, momentum, CO2, volatile organic compounds (VOCs), NO, NO2, N2O and O3 over a 30 m high rainforest canopy and a 12 m high oil palm plantation in the same region of Sabah in Borneo between April and July 2008. The daytime maximum CO2 flux to the two canopies differs by approximately a factor of 2, 1200 mg C m−2 h−1 for the oil palm and 700 mg C m−2 h−1 for the rainforest, with the oil palm plantation showing a substantially greater quantum efficiency. Total VOC emissions are also larger over the oil palm than over the rainforest by a factor of 3. Emissions of isoprene from the oil palm canopy represented 80 per cent of the VOC emissions and exceeded those over the rainforest in similar light and temperature conditions by on average a factor of 5. Substantial emissions of estragole (1-allyl-4-methoxybenzene) from the oil palm plantation were detected and no trace of this VOC was detected in or above the rainforest. Deposition velocities for O3 to the rainforest were a factor of 2 larger than over oil palm. Emissions of nitrous oxide were larger from the soils of the oil palm plantation than from the soils of the rainforest by approximately 25 per cent. It is clear from the measurements that the large change in the species composition generated by replacing rainforest with oil palm leads to profound changes in the net exchange of most of the trace gases measured, and thus on the chemical composition of the boundary layer over these surfaces. PMID:22006962
Fowler, David; Nemitz, Eiko; Misztal, Pawel; Di Marco, Chiara; Skiba, Ute; Ryder, James; Helfter, Carole; Cape, J Neil; Owen, Sue; Dorsey, James; Gallagher, Martin W; Coyle, Mhairi; Phillips, Gavin; Davison, Brian; Langford, Ben; MacKenzie, Rob; Muller, Jennifer; Siong, Jambery; Dari-Salisburgo, Cesare; Di Carlo, Piero; Aruffo, Eleonora; Giammaria, Franco; Pyle, John A; Hewitt, C Nicholas
2011-11-27
This paper reports measurements of land-atmosphere fluxes of sensible and latent heat, momentum, CO(2), volatile organic compounds (VOCs), NO, NO(2), N(2)O and O(3) over a 30 m high rainforest canopy and a 12 m high oil palm plantation in the same region of Sabah in Borneo between April and July 2008. The daytime maximum CO(2) flux to the two canopies differs by approximately a factor of 2, 1200 mg C m(-2) h(-1) for the oil palm and 700 mg C m(-2) h(-1) for the rainforest, with the oil palm plantation showing a substantially greater quantum efficiency. Total VOC emissions are also larger over the oil palm than over the rainforest by a factor of 3. Emissions of isoprene from the oil palm canopy represented 80 per cent of the VOC emissions and exceeded those over the rainforest in similar light and temperature conditions by on average a factor of 5. Substantial emissions of estragole (1-allyl-4-methoxybenzene) from the oil palm plantation were detected and no trace of this VOC was detected in or above the rainforest. Deposition velocities for O(3) to the rainforest were a factor of 2 larger than over oil palm. Emissions of nitrous oxide were larger from the soils of the oil palm plantation than from the soils of the rainforest by approximately 25 per cent. It is clear from the measurements that the large change in the species composition generated by replacing rainforest with oil palm leads to profound changes in the net exchange of most of the trace gases measured, and thus on the chemical composition of the boundary layer over these surfaces.
Water use efficiency and functional traits of a semiarid shrubland
NASA Astrophysics Data System (ADS)
Perez-Priego, Oscar; Lopez-Ballesteros, Ana; Sánchez-Cañete, Enrique P.; Serrano-Ortiz, Penélope; Carrara, Arnaud; Palomares-Palacio, Agustí; Oyonarte, Cecilio; Domingo, Francisco; Kowalski, Andrew S.
2013-04-01
In semiarid climates, water is the fundamental factor determining ecosystem productivity and thereby the capacity for carbon sequestration. Increased water use efficiency (WUE), the ratio of carbon dioxide assimilation (canopy photosynthesis, Pc) to water transpired (canopy evaporation, Ec), is assumed to be an adaptive strategy for sclerophyll shrublands to improve productivity and stress resistance in water-limited environments. However, the real complexity of WUE lies in its dependence on both plant physiological traits (e.g. stomatal resistance, photosynthetic capacity, leaf chemical composition, structure) and on environmental conditions (e.g. atmospheric CO2 concentration, vapour pressure deficit, temperature, light, soil water availability). We used a transient-state closed canopy-chamber to characterise CO2 and water vapour exchanges at the whole plant scale under different environmental conditions and phenological stages. Diurnal and seasonal variations in Pc, Ec and WUE were explained by both physiological and environmental variables. All species showed symmetric patterns in both Pc and Ec when not water limited, but asymmetry during summer drought when leaf water potential was low. During drought, grasses (Festuca sp.) showed a marked decline in functioning (Pc and Ec), whereas shrubs (Genista sp., Hormathophylla sp.) maintained spring-like assimilation rates all morning until stomatal controls shut down gas exchanges. While grasses showed the highest WUE when not water limited, their near senescence during summer drought yielded the lowest WUE. Shrubs showed reduced WUE under moderate drought stress, in contradiction to the assumptions made in global ecosystem models. The importance of the appropriate time-scale for calculating WUE (daily versus hourly), together with water use strategies and ecological functions of individual species, will be further discussed.
Measurement and Modeling of the Optical Scattering Properties of Crop Canopies
NASA Technical Reports Server (NTRS)
Vanderbilt, V. C. (Principal Investigator)
1985-01-01
The specular reflection process is shown to be a key aspect of radiation transfer by plant canopies. Polarization measurements are demonstrated as the tool for determining the specular and diffuse portions of the canopy radiance. The magnitude of the specular fraction of the reflectance is significant compared to the magnitude of the diffuse fraction. Therefore, it is necessary to consider specularly reflected light in developing and evaluating light-canopy interaction models for wheat canopies. Models which assume leaves are diffuse reflectors correctly predict only the diffuse fraction of the canopy reflectance factor. The specular reflectance model, when coupled with a diffuse leaf model, would predict both the specular and diffuse portions of the reflectance factor. The specular model predicts and the data analysis confirms that the single variable, angle of incidence of specularly reflected sunlight on the leaf, explains much of variation in the polarization data as a function of view-illumination directions.
NASA Technical Reports Server (NTRS)
Sellers, P. J.; Berry, J. A.; Collatz, G. J.; Field, C. B.; Hall, F. G.
1992-01-01
The theoretical analyses of Sellers (1985, 1987), which linked canopy spectral reflectance properties to (unstressed) photosynthetic rates and conductances, are critically reviewed and significant shortcomings are identified. These are addressed in this article principally through the incorporation of a more sophisticated and realistic treatment of leaf physiological processes within a new canopy integration scheme. The results indicate that area-averaged spectral vegetation indices, as obtained from coarse resolution satellite sensors, may give good estimates of the area-integrals of photosynthesis and conductance even for spatially heterogenous (though physiologically uniform) vegetation covers.
NASA Astrophysics Data System (ADS)
Houborg, R.; Anderson, M. C.; Kustas, W. P.
2008-12-01
A light-use efficiency (LUE) based model of canopy resistance was recently implemented within a thermal- based Two-Source Energy Balance (TSEB) scheme facilitating coupled simulations of land-surface fluxes of water, energy and CO2 exchange from field to regional scales (Anderson et al., 2008). The LUE model component computes canopy-scale carbon assimilation and transpiration fluxes and incorporates LUE modifications from biome specific nominal values (Bn) in response to variations in humidity, CO2 concentration, temperature (soil and air), wind speed, and direct beam vs. diffuse light composition. Here we incorporate leaf chlorophyll content (Cab) as a determinant of spatial and temporal variations in Bn as Cab is related to key LUE modulating factors such as crop phenology, vegetation stress and photosynthetic capacity. A linear relationship between Bn and Cab, established from stand-level measurement of LUE for unstressed environmental conditions and a representative set of Cab values for a range of agricultural and natural vegetation groups, is used to distribute Bn over the modeling domain. The technique is tested for an agricultural area near Bushland, Texas by fusing reflective and thermal based remote sensing inputs from SPOT, Landsat, ASTER and aircraft sensor systems. Maps of LAI and Cab are generated by using at-sensor radiances in green, red and near-infrared wavelengths as input to a REGularized canopy reFLECtance (REGFLEC) modeling tool that couples leaf optics (PROSPECT), canopy reflectance (ACRM), and atmospheric radiative transfer (6SV1) model components. Modeled carbon and water fluxes are compared with eddy covariance measurements made in stands of cotton and with fluxes measured by an aircraft flying transects over irrigated and non-irrigated agricultural land and natural vegetation. The technique is flexible and scalable and is portable to continental scales using GOES and MODIS data products. The results demonstrate utility in combining remotely sensed observations in the reflective solar and thermal domains for estimating carbon and water fluxes within a coupled framework.
Slusher, Tina M; Olusanya, Bolajoko O; Vreman, Hendrik J; Wong, Ronald J; Brearley, Ann M; Vaucher, Yvonne E; Stevenson, David K
2013-12-28
Severe neonatal jaundice and its progression to kernicterus is a leading cause of death and disability among newborns in poorly-resourced countries, particularly in sub-Saharan Africa. The standard treatment for jaundice using conventional phototherapy (CPT) with electric artificial blue light sources is often hampered by the lack of (functional) CPT devices due either to financial constraints or erratic electrical power. In an attempt to make phototherapy (PT) more readily available for the treatment of pathologic jaundice in underserved tropical regions, we set out to test the hypothesis that filtered sunlight phototherapy (FS-PT), in which potentially harmful ultraviolet and infrared rays are appropriately screened, will be as efficacious as CPT. This prospective, non-blinded randomized controlled non-inferiority trial seeks to enroll infants with elevated total serum/plasma bilirubin (TSB, defined as 3 mg/dl below the level recommended by the American Academy of Pediatrics for high-risk infants requiring PT) who will be randomly and equally assigned to receive FS-PT or CPT for a total of 616 days at an inner-city maternity hospital in Lagos, Nigeria. Two FS-PT canopies with pre-tested films will be used. One canopy with a film that transmits roughly 33% blue light (wavelength range: 400 to 520 nm) will be used during sunny periods of a day. Another canopy with a film that transmits about 79% blue light will be used during overcast periods of the day. The infants will be moved from one canopy to the other as needed during the day with the goal of keeping the blue light irradiance level above 8 μW/cm²/nm. FS-PT will be as efficacious as CPT in reducing the rate of rise in bilirubin levels. Secondary outcome: The number of infants requiring exchange transfusion under FS-PT will not be more than those under CPT. This novel study offers the prospect of an effective treatment for infants at risk of severe neonatal jaundice and avoidable exchange transfusion in poorly-resourced settings without access to (reliable) CPT in the tropics. ClinicalTrials.gov Identifier: NCT01434810.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wharton, S; Schroeder, M; Bible, K
This study examines how stand age affects ecosystem mass and energy exchange response to seasonal drought in three adjacent Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests. The sites include two early seral stands (ES) (0-15 years old) and an old-growth (OG) ({approx} 450-500) forest in the Wind River Experiment Forest, Washington, USA. We use eddy covariance flux measurements of carbon dioxide (F{sub NEE}), latent energy ({lambda}E) and sensible heat (H) to derive evapotranspiration rate (E{sub T}), bowen ratio ({beta}), water use efficiency (WUE), canopy conductance (G{sub c}), the Priestley-Taylor coefficient ({alpha}) and a canopy decoupling factor ({Omega}). The canopy and bulkmore » parameters are examined to see how ecophysiological responses to water stress, including changes in available soil water ({theta}{sub r}) and vapor pressure deficit ({delta}e) differ among the two forest successional-stages. Despite very different rainfall patterns in 2006 and 2007, we observed distinct successional-stage relationships between E{sub T}, {alpha}, and G{sub c} to {delta}e and {theta}{sub r} during both years. The largest stand differences were (1) higher morning G{sub c} (> 10 mm s{sup -1}) at the OG forest coinciding with higher CO{sub 2} uptake (F{sub NEE} = -9 to -6 {micro}mol m{sup -2} s{sup -1}) but a strong negative response in G{sub c} to moderate {delta}e later in the day and a subsequent reduction in E{sub T}, and (2) higher E{sub T} at the ES stands because midday canopy conductance did not decrease until very low water availability levels (<30%) were reached at the end of the summer. Our results suggest that early seral stands are more likely than mature forests to experience declines in production if the summer drought becomes longer or intensifies because water conserving ecophysiological responses were only observed at the very end of the seasonal drought period in the youngest stands.« less
Mark E. Fenn; Christopher S. Ross; Susan L. Schilling; William D. Baccus; Michael A. Larrabee; Rebecca A. Lofgren
2013-01-01
Wet,dry and throughfall deposition of N and S were measured for 2 years in three national parks in Washington State:Olympic,Mount Rainier,and North Cascades.Throughfall was measured using ion exchange resin (IER) collectors. A major objective of the study was to evaluate the effectiveness of IER throughfall measurements for monitoring deposition inputs,including...
Launiainen, Samuli; Katul, Gabriel G; Kolari, Pasi; Lindroth, Anders; Lohila, Annalea; Aurela, Mika; Varlagin, Andrej; Grelle, Achim; Vesala, Timo
2016-12-01
Earth observing systems are now routinely used to infer leaf area index (LAI) given its significance in spatial aggregation of land surface fluxes. Whether LAI is an appropriate scaling parameter for daytime growing season energy budget, surface conductance (G s ), water- and light-use efficiency and surface-atmosphere coupling of European boreal coniferous forests was explored using eddy-covariance (EC) energy and CO 2 fluxes. The observed scaling relations were then explained using a biophysical multilayer soil-vegetation-atmosphere transfer model as well as by a bulk G s representation. The LAI variations significantly alter radiation regime, within-canopy microclimate, sink/source distributions of CO 2 , H 2 O and heat, and forest floor fluxes. The contribution of forest floor to ecosystem-scale energy exchange is shown to decrease asymptotically with increased LAI, as expected. Compared with other energy budget components, dry-canopy evapotranspiration (ET) was reasonably 'conservative' over the studied LAI range 0.5-7.0 m 2 m -2 . Both ET and G s experienced a minimum in the LAI range 1-2 m 2 m -2 caused by opposing nonproportional response of stomatally controlled transpiration and 'free' forest floor evaporation to changes in canopy density. The young forests had strongest coupling with the atmosphere while stomatal control of energy partitioning was strongest in relatively sparse (LAI ~2 m 2 m -2 ) pine stands growing on mineral soils. The data analysis and model results suggest that LAI may be an effective scaling parameter for net radiation and its partitioning but only in sparse stands (LAI <3 m 2 m -2 ). This finding emphasizes the significance of stand-replacing disturbances on the controls of surface energy exchange. In denser forests, any LAI dependency varies with physiological traits such as light-saturated water-use efficiency. The results suggest that incorporating species traits and site conditions are necessary when LAI is used in upscaling energy exchanges of boreal coniferous forests. © 2016 John Wiley & Sons Ltd.
Drought Legacy and the Impacts on the Amazon Forest Carbon Exchange
NASA Astrophysics Data System (ADS)
Saatchi, S. S.
2015-12-01
Sassan Saatchi1,2, Yifan Yu1, Xiang Xu2, Luiz Aragao3, Liana Anderson31Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA2Institute of Environment and Sustainability, University of California, Los Angeles, CA 90045. USA3 Remote Sensing Division, National Institute for Space Research, São José dos Campos, Brazil, 12227-010, BrazilRecent Amazonian droughts have drawn attention to the vulnerability of tropical forests to climate perturbations. Ground and satellite observations of 2005 and 2010 mega-droughts have shown an increase in fire occurrence and tree mortality during the period of drought. Here, we use a combination of satellite observations over a period of about 15 years to examine the legacy of the droughts in terms of impacts on the ecological structure and function of the forests in years following the droughts and the subsequent carbon exchange. Using data from microwave satellite sensors of rainfall, canopy backscatter (2000-2014) and GRACE and GOSAT, we show that the 2005 drought has a legacy of 2-5 years in western Amazonia, by increasing the disturbance in canopy trees and impacting the gross primary production of the forest significantly. Amazonian forests, particularly in the southern region were again impacted by the 2010 mega-drought, causing a legacy of 2-4 years with potential decrease in GPP and productivity observed by GOSAT fluorescence. The persistent of low canopy water content observed by a joint QSCAT and OceanSAT observations were linked to a delay in recharging of the hydrological system observed by GRACE over a period of 2-5 years. The results suggest that Amazonian forests with distinct dry seasons in southern and western regions of the basin are potentially more vulnerable to droughts compared to regions with less seasonality. The long recovery time from the 2005 and 2010 droughts suggests that the occurence of droughts in Amazonia at 5-10 year frequency may lead to long-term alteration of the forest structure and function. Keywords: Amazonia, drought, carbon exchange, biomass loss, GPP
González-Ferreiro, Eduardo; Arellano-Pérez, Stéfano; Castedo-Dorado, Fernando; Hevia, Andrea; Vega, José Antonio; Vega-Nieva, Daniel; Álvarez-González, Juan Gabriel; Ruiz-González, Ana Daría
2017-01-01
The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the present study were to model the vertical profile of available canopy fuel in pine stands by using data from the Spanish national forest inventory plus low-density airborne laser scanning (ALS) metrics. In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, two different systems of models were fitted to estimate the canopy variables defining the vertical distributions; the first system related these variables to stand variables obtained in a field inventory, and the second system related the canopy variables to airborne laser scanning metrics. The models of each system were fitted simultaneously to compensate the effects of the inherent cross-model correlation between the canopy variables. Heteroscedasticity was also analyzed, but no correction in the fitting process was necessary. The estimated canopy fuel load profiles from field variables explained 84% and 86% of the variation in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the same species. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard.
NASA Astrophysics Data System (ADS)
Wolff, Stefan; Ganzeveld, Laurens; Tsokankunku, Anywhere; Saturno, Jorge; Souza, Rodrigo; Trebs, Ivonne; Sörgel, Matthias
2017-04-01
The ATTO (Amazon Tall Tower Observatory) site (02°08'38.8''S, 58°59'59.5''W) is located in the remote Amazon rainforest, allowing atmospheric and forest studies away from nearby anthropogenic emission sources. Starting with continuous measurements of vertical mixing ratio profiles of H2O, CO2 and O3 in April 2012 at 8 heights between 0.05 m and 80 m above ground, the longest continuous record of near surface O3 in the Amazon rainforest was established. Black carbon (BC), CO and micrometeorological measurements are available for the same period. During intensive campaigns, NOx was measured as well using the same profile system, and therefore several month of parallel NOx measurements are available. This data allows the analyses of diverse patterns regarding emission, deposition, turbulence and chemical reactions of trace gases within and above the rainforest for several rainy and dry seasons. The remote Amazon generally serves as a sink for O3 which is mainly deposited to the canopy. The deposition depends to a large extent on the aperture of the leaf stomata, which is correlated to temperature, humidity, solar radiation and water availability. Comparing these parameters with the in-canopy and above canopy gradients of O3, considering the turbulent conditions and further chemical reactions of O3 with NOx and VOC molecules, we estimated the role of the forest for the removal of ozone from the atmosphere under different meteorological conditions. We applied the Multi-Layer Canopy Chemical Exchange Model - MLC-CHEM to support the analysis of the observed profiles of NOx and O3. Under pristine conditions, the forest soil is the major source for NO emissions, which are directly reacting with O3 molecules, affecting the O3 gradient within the sub-canopy. We have analyzed differences between model and measurements in sub-canopy NO and O3 mixing ratios by the application of different NO soil emission scenarios and by the performance of several sensitivity analyses to investigate the deposition of O3 and NO2 in the canopy.
Convergent structural responses of tropical forests to diverse disturbance regimes.
Kellner, James R; Asner, Gregory P
2009-09-01
Size frequency distributions of canopy gaps are a hallmark of forest dynamics. But it remains unknown whether legacies of forest disturbance are influencing vertical size structure of landscapes, or space-filling in the canopy volume. We used data from LiDAR remote sensing to quantify distributions of canopy height and sizes of 434,501 canopy gaps in five tropical rain forest landscapes in Costa Rica and Hawaii. The sites represented a wide range of variation in structure and natural disturbance history, from canopy gap dynamics in lowland Costa Rica and Hawaii, to stages and types of stand-level dieback on upland Mauna Kea and Kohala volcanoes. Large differences in vertical canopy structure characterized these five tropical rain forest landscapes, some of which were related to known disturbance events. Although there were quantitative differences in the values of scaling exponents within and among sites, size frequency distributions of canopy gaps followed power laws at all sites and in all canopy height classes. Scaling relationships in gap size at different heights in the canopy were qualitatively similar at all sites, revealing a remarkable similarity despite clearly defined differences in species composition and modes of prevailing disturbance. These findings indicate that power-law gap-size frequency distributions are ubiquitous features of these five tropical rain forest landscapes, and suggest that mechanisms of forest disturbance may be secondary to other processes in determining vertical and horizontal size structure in canopies.
NASA Astrophysics Data System (ADS)
Brilli, Federico; Gioli, Beniamino; Fares, Silvano; Zenone, Terenzio; Zona, Donatella; Gielen, Bert; Loreto, Francesco; Janssens, Ivan; Ceulemans, Reinhart
2015-04-01
The declining cost of many renewable energy technologies and changes in the prices of fossil fuels have recently encouraged governments policies to subsidize the use of biomass as a sustainable source of energy. Deciduous poplars (Populus spp.) trees are often selected for biomass production in short rotation coppiced (SRC) for their high CO2 photosynthetic assimilation rates and their capacity to develop dense canopies with high values of leaf area index (LAI). So far, observations and projections of seasonal variations of many VOC fluxes has been limited to strong isoprenoids emitting evergreen ecosystems such tropical and Mediterranean forests as well as Citrus and oil palm plantation, all having constant values of LAI. We run a long-term field campaign where the exchange of VOC, together with CO2 and water vapor was monitored during an entire growing season (June - November, 2012) above a SRC-based poplar plantation. Our results confirmed that isoprene and methanol were the most abundant fluxes emitted, accounting for more than 90% of the total carbon released in form of VOC. However, Northern climates characterized by fresh summertime temperatures and recurring precipitations favored poplar growth while inhibiting the development of isoprene emission that resulted in only 0.7% of the net ecosystem carbon exchange (NEE). Besides, measurements of a multitude of VOC fluxes by PTR-TOF-MS showed bi-directional exchange of oxygenated-VOC (OVOC) such as: formaldehyde, acetaldehyde, acetone, isoprene oxidation products (iox, namely MVK, MAC and MEK) as well as ethanol and formic acid. The application of Self Organizing Maps to visualize the relationship between the full time-series of many VOC fluxes and the observed seasonal variations of environmental, physiological and structural parameters proved the most abundant isoprene ad methanol fluxes to occur mainly on the hottest days under mid-high light intensities when also NEE and evapotraspiration reached the highest rates. However, the seasonal pattern of methanol emission was also highly correlated with high VPD and NEE, whereas the highest isoprene emissions were mostly associated with the highest values of LAI. During the hottest and sunniest days we observed iox production triggered by photochemical reactions and deposition to the canopies. Nevertheless, peaks in formaldehyde deposition did not match with those of iox and isoprene emission. The emission of other OVOC species was mainly related to low values of LAI, most likely as a result of leaf senescence. We have compared the observed time-series of isoprene and methanol fluxes with the simulated seasonal patterns obtained from the canopy-scale model of emissions of gases and aerosols from nature (MEGAN). The model accuracy increased when a dynamic function to predict seasonal changes in the basal emission factor was applied. However, the simulated cumulative carbon emitted in form of isoprene underestimated the observed amount by 30% on a seasonal basis, whereas good agreement was found between observed and prediceted methanol emissions. Current research is aimed at improving process-based models that account for the ontogeny of leaves in order to predict the impact of VOC emitted from deciduous SRC-poplar plantations on air chemistry and quality.
Song, Qingfeng; Wang, Yu; Qu, Mingnan; Ort, Donald R.
2017-01-01
Abstract Canopy photosynthesis (Ac) describes photosynthesis of an entire crop field and the daily and seasonal integrals of Ac positively correlate with daily and seasonal biomass production. Much effort in crop breeding has focused on improving canopy architecture and hence light distribution inside the canopy. Here, we develop a new integrated canopy photosynthesis model including canopy architecture, a ray tracing algorithm, and C3 photosynthetic metabolism to explore the option of manipulating leaf chlorophyll concentration ([Chl]) for greater Ac and nitrogen use efficiency (NUE). Model simulation results show that (a) efficiency of photosystem II increased when [Chl] was decreased by decreasing antenna size and (b) the light received by leaves at the bottom layers increased when [Chl] throughout the canopy was decreased. Furthermore, the modelling revealed a modest ~3% increase in Ac and an ~14% in NUE was accompanied when [Chl] reduced by 60%. However, if the leaf nitrogen conserved by this decrease in leaf [Chl] were to be optimally allocated to other components of photosynthesis, both Ac and NUE can be increased by over 30%. Optimizing [Chl] coupled with strategic reinvestment of conserved nitrogen is shown to have the potential to support substantial increases in Ac, biomass production, and crop yields. PMID:28755407
Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp
NASA Astrophysics Data System (ADS)
Wedeux, B. M. M.; Coomes, D. A.
2015-11-01
Forest canopy structure is strongly influenced by environmental factors and disturbance, and in turn influences key ecosystem processes including productivity, evapotranspiration and habitat availability. In tropical forests increasingly modified by human activities, the interplay between environmental factors and disturbance legacies on forest canopy structure across landscapes is practically unexplored. We used airborne laser scanning (ALS) data to measure the canopy of old-growth and selectively logged peat swamp forest across a peat dome in Central Kalimantan, Indonesia, and quantified how canopy structure metrics varied with peat depth and under logging. Several million canopy gaps in different height cross-sections of the canopy were measured in 100 plots of 1 km2 spanning the peat dome, allowing us to describe canopy structure with seven metrics. Old-growth forest became shorter and had simpler vertical canopy profiles on deeper peat, consistent with previous work linking deep peat to stunted tree growth. Gap size frequency distributions (GSFDs) indicated fewer and smaller canopy gaps on the deeper peat (i.e. the scaling exponent of Pareto functions increased from 1.76 to 3.76 with peat depth). Areas subjected to concessionary logging until 2000, and illegal logging since then, had the same canopy top height as old-growth forest, indicating the persistence of some large trees, but mean canopy height was significantly reduced. With logging, the total area of canopy gaps increased and the GSFD scaling exponent was reduced. Logging effects were most evident on the deepest peat, where nutrient depletion and waterlogged conditions restrain tree growth and recovery. A tight relationship exists between canopy structure and peat depth gradient within the old-growth tropical peat swamp forest. This relationship breaks down after selective logging, with canopy structural recovery, as observed by ALS, modulated by environmental conditions. These findings improve our understanding of tropical peat swamp ecology and provide important insights for managers aiming to restore degraded forests.
Differences in BVOC oxidation and SOA formation above and below the forest canopy
NASA Astrophysics Data System (ADS)
Schulze, Benjamin C.; Wallace, Henry W.; Flynn, James H.; Lefer, Barry L.; Erickson, Matt H.; Jobson, B. Tom; Dusanter, Sebastien; Griffith, Stephen M.; Hansen, Robert F.; Stevens, Philip S.; VanReken, Timothy; Griffin, Robert J.
2017-02-01
Gas-phase biogenic volatile organic compounds (BVOCs) are oxidized in the troposphere to produce secondary pollutants such as ozone (O3), organic nitrates (RONO2), and secondary organic aerosol (SOA). Two coupled zero-dimensional models have been used to investigate differences in oxidation and SOA production from isoprene and α-pinene, especially with respect to the nitrate radical (NO3), above and below a forest canopy in rural Michigan. In both modeled environments (above and below the canopy), NO3 mixing ratios are relatively small (< 0.5 pptv); however, daytime (08:00-20:00 LT) mixing ratios below the canopy are 2 to 3 times larger than those above. As a result of this difference, NO3 contributes 12 % of total daytime α-pinene oxidation below the canopy while only contributing 4 % above. Increasing background pollutant levels to simulate a more polluted suburban or peri-urban forest environment increases the average contribution of NO3 to daytime below-canopy α-pinene oxidation to 32 %. Gas-phase RONO2 produced through NO3 oxidation undergoes net transport upward from the below-canopy environment during the day, and this transport contributes up to 30 % of total NO3-derived RONO2 production above the canopy in the morning (˜ 07:00). Modeled SOA mass loadings above and below the canopy ultimately differ by less than 0.5 µg m-3, and extremely low-volatility organic compounds dominate SOA composition. Lower temperatures below the canopy cause increased partitioning of semi-volatile gas-phase products to the particle phase and up to 35 % larger SOA mass loadings of these products relative to above the canopy in the model. Including transport between above- and below-canopy environments increases above-canopy NO3-derived α-pinene RONO2 SOA mass by as much as 45 %, suggesting that below-canopy chemical processes substantially influence above-canopy SOA mass loadings, especially with regard to monoterpene-derived RONO2.
NASA Astrophysics Data System (ADS)
Guerrieri, R.; Avila, A.; Barceló, A.; Elustondo, D.; Hellstein, S.; Magnani, F.; Mattana, S.; Matteucci, G.; Merilä, P.; Michalski, G. M.; Nicolas, M.; Vanguelova, E.; Verstraeten, A.; Waldner, P.; Watanabe, M.; Penuelas, J.; Mencuccini, M.
2017-12-01
Forest canopies influence our climate through carbon, water and energy exchanges with the atmosphere. However, less investigated is whether and how tree canopies change the chemical composition of precipitation, with important implications on forest nutrient cycling. Recently, we provided for the first time isotopic evidence that biological nitrification in tree canopies was responsible for significant changes in the amount of nitrate from rainfall to throughfall across two UK forests at high nitrogen (N) deposition [1]. This finding strongly suggested that bacteria and/or Archaea species of the phyllosphere are responsible for transforming atmospheric N before it reaches the soil. Despite microbial epiphytes representing an important component of tree canopies, attention has been mostly directed to their role as pathogens, while we still do not know whether and how they affect nutrient cycling. Our study aims to 1) characterize microbial communities harboured in tree canopies for two of the most dominant species in Europe (Fagus sylvatica L. and Pinus sylvestris L.) using metagenomic techniques, 2) quantify the functional genes related to nitrification but also to denitrification and N fixation, and 3) estimate the contribution of NO3 derived from biological canopy nitrification vs. atmospheric NO3 input by using δ15N, δ18O and δ17O of NO3in forest water. We considered i) twelve sites included in the EU ICP long term intensive forest monitoring network, chosen along a climate and nitrogen deposition gradient, spanning from Fennoscandia to the Mediterranean and ii) a manipulation experiment where N mist treatments were carried out either to the soil or over tree canopies. We will present preliminary results regarding microbial diversity in the phyllosphere, water (rainfall and throughfall) and soil samples over the gradient. Furthermore, we will report differences between the two investigated tree species for the phyllosphere core microbiome in terms of relative abundance of bacterial and Archaea classes and those species related to N cycling. Finally we will assess whether there are differences among tree species and sites in the number of functional genes related to N cycling and how they are related to the N deposition and/or climate. [1] Guerrieri et al. 2015 Global Change and Biology 21 (12): 4613-4626.
NASA Astrophysics Data System (ADS)
Shi, Mingjie; Liu, Junjie; Zhao, Maosheng; Yu, Yifan; Saatchi, Sassan
2017-12-01
The long-term impact of Amazonian drought on canopy structure has been observed in ground and remote sensing measurements. However, it is still unclear whether it is caused by biotic (e.g., plant structure damage) or environmental (e.g., water deficiency) factors. We used the Community Land Model version 4.5 (CLM4.5) and radar backscatter observations from SeaWinds Scatterometer on board QuikSCAT (QSCAT) satellite to investigate the relative role of biotic and environmental factors in controlling the forest canopy disturbance and recovery processes after the 2005 Amazonian drought. We validated the CLM4.5 simulation of the drought impact and the recovery of leaf carbon (C) pool, an indicator of canopy structure, over southwestern Amazonia with QSCAT backscatter observations, which are sensitive to canopy structure change. We found that the leaf C pool simulated by CLM4.5 recovered to the 2000-2009 mean level (343 g C m-2) in 3 years after a sharp decrease in 2005, consistent with the QSCAT observed slow recovery. Through sensitivity experiments, we found that the slow C recovery was primarily due to biotic factors represented by the canopy damage and reduction of plant C pools. The recovery of soil water and the coupling between water and C pools, which is an environmental factor, only contributes 24% to the leaf C recovery. The results showed (1) the strength of scatterometer backscatter measurements in capturing canopy damage over tropical forests and in validating C cycle models and (2) the biotic factors play the dominant role in regulating the drought induced disturbance and persistent canopy changes in CLM4.5.
Glenn, Edward P.; Huete, Alfredo R.; Nagler, Pamela L.; Nelson, Stephen G.
2008-01-01
Vegetation indices (VIs) are among the oldest tools in remote sensing studies. Although many variations exist, most of them ratio the reflection of light in the red and NIR sections of the spectrum to separate the landscape into water, soil, and vegetation. Theoretical analyses and field studies have shown that VIs are near-linearly related to photosynthetically active radiation absorbed by a plant canopy, and therefore to light-dependent physiological processes, such as photosynthesis, occurring in the upper canopy. Practical studies have used time-series VIs to measure primary production and evapotranspiration, but these are limited in accuracy to that of the data used in ground truthing or calibrating the models used. VIs are also used to estimate a wide variety of other canopy attributes that are used in Soil-Vegetation-Atmosphere Transfer (SVAT), Surface Energy Balance (SEB), and Global Climate Models (GCM). These attributes include fractional vegetation cover, leaf area index, roughness lengths for turbulent transfer, emissivity and albedo. However, VIs often exhibit only moderate, non-linear relationships to these canopy attributes, compromising the accuracy of the models. We use case studies to illustrate the use and misuse of VIs, and argue for using VIs most simply as a measurement of canopy light absorption rather than as a surrogate for detailed features of canopy architecture. Used this way, VIs are compatible with “Big Leaf” SVAT and GCMs that assume that canopy carbon and moisture fluxes have the same relative response to the environment as any single leaf, simplifying the task of modeling complex landscapes. PMID:27879814
Estimating Chemical Exchange between Atmospheric Deposition and Forest Canopy in Guizhou, China.
Li, Wei; Gao, Fang; Liao, Xueqin
2013-01-01
To evaluate the effects of atmospheric deposition on forest ecosystems, wet-only precipitation and throughfall samples were collected in two forest types (Masson pine [ Lamb.] forests and mixed conifer and broadleaf forests) in the Longli forest in the Guizhou province of southwestern China for a period of 21 successive months from April 2007 to December 2008. The pH and chemical components of precipitation and throughfall were analyzed. In addition, the canopy budget model was applied to distinguish between in-canopy and atmospheric sources of chemical compounds. Canopy leaching and total potentially acidifying deposition fluxes were calculated. The results showed that the average pH and the concentration of ions in throughfall were higher than those in precipitation, with the exception of the NH concentration. Dry deposition of S and N accumulated more in Masson pine forests than in mixed conifer and broadleaf forests. Canopy leaching was the most significant source of base cations in forest throughfall, which was higher in the mixed forests than in the coniferous forests. Anions in throughfall deposition in Masson pine forests exceeded those in the mixed forests. Higher total potentially acidifying deposition fluxes reflected the more effective amounts of acid delivered to Masson pine forests compared with mixed conifer and broadleaf forests. In addition, acid deposition induced the leaching and loss of nutrient ions such as Mg, K, and Ca. Although the trees of the studied areas have not shown any symptoms of cation loss, a potentially harmful influence was engendered by atmospheric deposition in the two forest types in the Longli area. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
He, L.; Ivanov, V. Y.; Bohrer, G.; Maurer, K.; Vogel, C. S.; Moghaddam, M.
2011-12-01
Vegetation is heterogeneous at different scales, influencing spatially variable energy and water exchanges between land-surface and atmosphere. Current land surface parameterizations of large-scale models consider spatial variability at a scale of a few kilometers and treat vegetation cover as aggregated patches with uniform properties. However, the coupling mechanisms between fine-scale soil moisture, vegetation, and energy fluxes such as evapotranspiration are strongly nonlinear; the aggregation of surface variations may produce biased energy fluxes. This study aims to improve the understanding of the scale impact in atmosphere-biosphere-hydrosphere interactions, which affects predictive capabilities of land surface models. The study uses a high-resolution, physically-based ecohydrological model tRIBS + VEGGIE as a data integration tool to upscale the heterogeneity of canopy distribution resolved at a few meters to the watershed scale. The study was carried out for a spatially heterogeneous, temperate mixed forest environment of Northern Michigan located near the University of Michigan Biological Station (UMBS). Energy and soil water dynamics were simulated at the tree-canopy resolution in the horizontal plane for a small domain (~2 sq. km) located within a footprint of the AmeriFlux tower. A variety of observational data were used to constrain and confirm the model, including a 3-m profile continuous soil moisture dataset and energy flux data (measured at the AmeriFlux tower footprint). A scenario with a spatially uniform canopy, corresponding to the commonly used 'big-leaf' scheme in land surface parameterizations was used to infer the effects of coarse-scale averaging. To gain insights on how heterogeneous canopy and soil moisture interact and contribute to the domain-averaged transpiration, several scenarios of tree-scale leaf area and soil moisture spatial variability were designed. Specifically, for the same mean states, the scenarios of variability of canopy biomass account for the spatial distribution of photosynthesis (and thus the stomatal resistance), the aerodynamic and leaf boundary layer resistances as well as the differential radiation forcing due to tall tree exposure and lateral shading of short trees. The numerical experiments show that by transpiring spatially varying amounts of water, heterogeneous canopies adjust the spatial soil water state to the scaled inverse of the canopy biomass regardless of the initial moisture state. Such a spatial distribution can be further wiped out because of the differential water stress. The aggregation of canopy-scale atmosphere-biosphere-hydrosphere interactions demonstrates non-linear relationship between soil moisture and evapotranspiration, influencing domain-averaged energy fluxes.
Köstner, B; Falge, E; Tenhunen, J D
2002-06-01
Stand age is an important structural determinant of canopy transpiration (E(c)) and carbon gain. Another more functional parameter of forest structure is the leaf area/sapwood area relationship, A(L)/A(S), which changes with site conditions and has been used to estimate leaf area index of forest canopies. The interpretation of age-related changes in A(L)/A(S) and the question of how A(L)/A(S) is related to forest functions are of current interest because they may help to explain forest canopy fluxes and growth. We conducted studies in mature stands of Picea abies (L.) Karst. varying in age from 40 to 140 years, in tree density from 1680 to 320 trees ha(-1), and in tree height from 15 to 30 m. Structural parameters were measured by biomass harvests of individual trees and stand biometry. We estimated E(c) from scaled-up xylem sap flux of trees, and canopy-level fluxes were predicted by a three-dimensional microclimate and gas exchange model (STANDFLUX). In contrast to pine species, A(L)/A(S) of P. abies increased with stand age from 0.26 to 0.48 m(2) cm(-2). Agreement between E(c) derived from scaled-up sap flux and modeled canopy transpiration was obtained with the same parameterization of needle physiology independent of stand age. Reduced light interception per leaf area and, as a consequence, reductions in net canopy photosynthesis (A(c)), canopy conductance (g(c)) and E(c) were predicted by the model in the older stands. Seasonal water-use efficiency (WUE = A(c)/E(c)), derived from scaled-up sap flux and stem growth as well as from model simulation, declined with increasing A(L)/A(S) and stand age. Based on the different behavior of age-related A(L)/A(S) in Norway spruce stands compared with other tree species, we conclude that WUE rather than A(L)/A(S) could represent a common age-related property of all species. We also conclude that, in addition to hydraulic limitations reducing carbon gain in old stands, a functional change in A(L)/A(S) that is related to reduced light interception per leaf area provides another potential explanation for reduced carbon gain in old stands of P. abies, even when hydraulic constraints increase in response to changes in canopy architecture and aging.
Heather R. McCarthy; Ram Oren; Adrien C. Finzi; David S. Ellsworth; Hyun-Seok Kim; Kurt H. Johnsen; Bonnie Millar
2007-01-01
Increased canopy leaf area (L) may lead to higher forest productivity and alter processes such as species dynamics and ecosystem mass and energy fluxes. Few CO2enrichment studies have been conducted in closed canopy forests and none have shown a sustained enhancement of L. We reconstructed 8 years (1996â2003) of L at Dukeâs Free Air CO...
Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales
Madritch, Michael D.; Kingdon, Clayton C.; Singh, Aditya; Mock, Karen E.; Lindroth, Richard L.; Townsend, Philip A.
2014-01-01
Fine-scale biodiversity is increasingly recognized as important to ecosystem-level processes. Remote sensing technologies have great potential to estimate both biodiversity and ecosystem function over large spatial scales. Here, we demonstrate the capacity of imaging spectroscopy to discriminate among genotypes of Populus tremuloides (trembling aspen), one of the most genetically diverse and widespread forest species in North America. We combine imaging spectroscopy (AVIRIS) data with genetic, phytochemical, microbial and biogeochemical data to determine how intraspecific plant genetic variation influences below-ground processes at landscape scales. We demonstrate that both canopy chemistry and below-ground processes vary over large spatial scales (continental) according to aspen genotype. Imaging spectrometer data distinguish aspen genotypes through variation in canopy spectral signature. In addition, foliar spectral variation correlates well with variation in canopy chemistry, especially condensed tannins. Variation in aspen canopy chemistry, in turn, is correlated with variation in below-ground processes. Variation in spectra also correlates well with variation in soil traits. These findings indicate that forest tree species can create spatial mosaics of ecosystem functioning across large spatial scales and that these patterns can be quantified via remote sensing techniques. Moreover, they demonstrate the utility of using optical properties as proxies for fine-scale measurements of biodiversity over large spatial scales. PMID:24733949
Wang, Shan; Liao, Tingting; Wang, Lili; Sun, Yang
2016-02-01
Ground observation data from 8 meteorological stations in Xi'an, air mass concentration data from 13 environmental quality monitoring sites in Xi'an, as well as radiosonde observation and wind profile radar data, were used in this study. Thereby, the process, causes and boundary layer meteorological characteristics of a heavy haze episode occurring from 16 to 25 December 2013 in Xi'an were analyzed. Principal component analysis showed that this haze pollution was mainly caused by the high-intensity emission and formation of gaseous pollutants (NO2, CO and SO2) and atmospheric particles (PM2.5 (fine particles) and PM10 (respirable suspended particle). The second cause was the relative humidity and continuous low temperature. The third cause was the allocation of the surface pressure field. The presence of a near-surface temperature inversion at the boundary layer formed favorable stratification conditions for the formation and maintenance of heavy haze pollution. The persistent thick haze layer weakened the solar radiation. Meanwhile, a warming effect in the urban canopy layer and in the transition zone from the urban friction sublayer to the urban canopy was indicated. All these conditions facilitated the maintenance and reinforcement of temperature inversion. The stable atmospheric stratification finally acted on the wind field in the boundary layer, and further weakened the exchange capacity of vertical turbulence. The superposition of a wind field with the horizontal gentle wind induced the typical air stagnation and finally caused the deterioration of air quality during this haze event. Copyright © 2015. Published by Elsevier B.V.
Reich, Peter B.; Rich, Roy L.; Lu, Xingjie; Wang, Ying-Ping; Oleksyn, Jacek
2014-01-01
Leaf life span is an important plant trait associated with interspecific variation in leaf, organismal, and ecosystem processes. We hypothesized that intraspecific variation in gymnosperm needle traits with latitude reflects both selection and acclimation for traits adaptive to the associated temperature and moisture gradient. This hypothesis was supported, because across 127 sites along a 2,160-km gradient in North America individuals of Picea glauca, Picea mariana, Pinus banksiana, and Abies balsamea had longer needle life span and lower tissue nitrogen concentration with decreasing mean annual temperature. Similar patterns were noted for Pinus sylvestris across a north–south gradient in Europe. These differences highlight needle longevity as an adaptive feature important to ecological success of boreal conifers across broad climatic ranges. Additionally, differences in leaf life span directly affect annual foliage turnover rate, which along with needle physiology partially regulates carbon cycling through effects on gross primary production and net canopy carbon export. However, most, if not all, global land surface models parameterize needle longevity of boreal evergreen forests as if it were a constant. We incorporated temperature-dependent needle longevity and %nitrogen, and biomass allocation, into a land surface model, Community Atmosphere Biosphere Land Exchange, to assess their impacts on carbon cycling processes. Incorporating realistic parameterization of these variables improved predictions of canopy leaf area index and gross primary production compared with observations from flux sites. Finally, increasingly low foliage turnover and biomass fraction toward the cold far north indicate that a surprisingly small fraction of new biomass is allocated to foliage under such conditions. PMID:25225397
NASA Astrophysics Data System (ADS)
Loozen, Yasmina; Rebel, Karin T.; Karssenberg, Derek; Wassen, Martin J.; Sardans, Jordi; Peñuelas, Josep; De Jong, Steven M.
2018-05-01
Canopy nitrogen (N) concentration and content are linked to several vegetation processes. Therefore, canopy N concentration is a state variable in global vegetation models with coupled carbon (C) and N cycles. While there are ample C data available to constrain the models, widespread N data are lacking. Remotely sensed vegetation indices have been used to detect canopy N concentration and canopy N content at the local scale in grasslands and forests. Vegetation indices could be a valuable tool to detect canopy N concentration and canopy N content at larger scale. In this paper, we conducted a regional case-study analysis to investigate the relationship between the Medium Resolution Imaging Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI) time series from European Space Agency (ESA) Envisat satellite at 1 km spatial resolution and both canopy N concentration (%N) and canopy N content (N g m-2, of ground area) from a Mediterranean forest inventory in the region of Catalonia, in the northeast of Spain. The relationships between the datasets were studied after resampling both datasets to lower spatial resolutions (20, 15, 10 and 5 km) and at the original spatial resolution of 1 km. The results at higher spatial resolution (1 km) yielded significant log-linear relationships between MTCI and both canopy N concentration and content: r2 = 0.32 and r2 = 0.17, respectively. We also investigated these relationships per plant functional type. While the relationship between MTCI and canopy N concentration was strongest for deciduous broadleaf and mixed plots (r2 = 0.24 and r2 = 0.44, respectively), the relationship between MTCI and canopy N content was strongest for evergreen needleleaf trees (r2 = 0.19). At the species level, canopy N concentration was strongly related to MTCI for European beech plots (r2 = 0.69). These results present a new perspective on the application of MTCI time series for canopy N detection.
Castedo-Dorado, Fernando; Hevia, Andrea; Vega, José Antonio; Vega-Nieva, Daniel; Ruiz-González, Ana Daría
2017-01-01
The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the present study were to model the vertical profile of available canopy fuel in pine stands by using data from the Spanish national forest inventory plus low-density airborne laser scanning (ALS) metrics. In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, two different systems of models were fitted to estimate the canopy variables defining the vertical distributions; the first system related these variables to stand variables obtained in a field inventory, and the second system related the canopy variables to airborne laser scanning metrics. The models of each system were fitted simultaneously to compensate the effects of the inherent cross-model correlation between the canopy variables. Heteroscedasticity was also analyzed, but no correction in the fitting process was necessary. The estimated canopy fuel load profiles from field variables explained 84% and 86% of the variation in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the same species. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard. PMID:28448524
Estimating the vegetation canopy height using micro-pulse photon-counting LiDAR data.
Nie, Sheng; Wang, Cheng; Xi, Xiaohuan; Luo, Shezhou; Li, Guoyuan; Tian, Jinyan; Wang, Hongtao
2018-05-14
The upcoming space-borne LiDAR satellite Ice, Cloud and land Elevation Satellite-2 (ICESat-2) is scheduled to launch in 2018. Different from the waveform LiDAR system onboard the ICESat, ICESat-2 will use a micro-pulse photon-counting LiDAR system. Thus new data processing algorithms are required to retrieve vegetation canopy height from photon-counting LiDAR data. The objective of this paper is to develop and validate an automated approach for better estimating vegetation canopy height. The new proposed method consists of three key steps: 1) filtering out the noise photons by an effective noise removal algorithm based on localized statistical analysis; 2) separating ground returns from canopy returns using an iterative photon classification algorithm, and then determining ground surface; 3) generating canopy-top surface and calculating vegetation canopy height based on canopy-top and ground surfaces. This automatic vegetation height estimation approach was tested to the simulated ICESat-2 data produced from Sigma Space LiDAR data and Multiple Altimeter Beam Experimental LiDAR (MABEL) data, and the retrieved vegetation canopy heights were validated by canopy height models (CHMs) derived from airborne discrete-return LiDAR data. Results indicated that the estimated vegetation canopy heights have a relatively strong correlation with the reference vegetation heights derived from airborne discrete-return LiDAR data (R 2 and RMSE values ranging from 0.639 to 0.810 and 4.08 m to 4.56 m respectively). This means our new proposed approach is appropriate for retrieving vegetation canopy height from micro-pulse photon-counting LiDAR data.
A New, Two-layer Canopy Module For The Detailed Snow Model SNOWPACK
NASA Astrophysics Data System (ADS)
Gouttevin, I.; Lehning, M.; Jonas, T.; Gustafsson, D.; Mölder, M.
2014-12-01
A new, two-layer canopy module with thermal inertia for the detailed snow model SNOWPACK is presented. Compared to the old, one-layered canopy formulation with no heat mass, this module now offers a level of physical detail consistent with the detailed snow and soil representation in SNOWPACK. The new canopy model is designed to reproduce the difference in thermal regimes between leafy and woody canopy elements and their impact on the underlying snowpack energy balance. The new model is validated against data from an Alpine and a boreal site. Comparisons of modelled sub-canopy thermal radiations to stand-scale observations at Alptal, Switzerland, demonstrate the improvements induced by our new parameterizations. The main effect is a more realistic simulation of the canopy night-time drop in temperatures. The lower drop is induced by both thermal inertia and the two-layer representation. A specific result is that such a performance cannot be achieved by a single-layered canopy model. The impact of the new parameterizations on the modelled dynamics of the sub-canopy snowpack is analysed and yields consistent results, but the frequent occurrence of mixed-precipitation events at Alptal prevents a conclusive assessment of model performances against snow data.Without specific tuning, the model is also able to reproduce the measured summertime tree trunk temperatures and biomass heat storage at the boreal site of Norunda, Sweden, with an increased accuracy in amplitude and phase. Overall, the SNOWPACK model with its enhanced canopy module constitutes a unique (in its physical process representation) atmosphere-to-soil-through-canopy-and-snow modelling chain.
Alder (Alnus crispa) effects on soils in ecosystems of the Agashashok River valley, northwest Alaska
Rhoades, Charles; Oskarsson, Hlynur; Binkley, Dan; Stottlemeyer, Robert
2001-01-01
At the northern limit of the boreal forest biome, alder (Alnus crispa [Ait.] Pursh) shrubs occur in a variety of ecosystems. We assessed the effects of individual alder shrubs on soil properties and understory plant tissue nitrogen in floodplain terraces, valley slopes and tussock tundra ridges. The three ecosystems differed with respect to soil properties and abiotic conditions and supported distinct plant communities. Alder increased resin-exchangeable soil N and NO3 production significantly in each ecosystem. The greatest difference between alder canopy and surrounding soil NO3 measured both under field and laboratory conditions occurred in floodplain sites. The shrub effect on soil pH and soil organic matter was greatest on tundra ridges. Alder shrubs also influenced the nitrogen nutrition of plants growing beneath their canopies. Plants growing below alder canopies had higher foliar nitrogen concentration and natural abundance 15N composition and lower carbon to nitrogen ratio than open-grown plants. Similar to soil N availability, understory plant leaf chemistry responded more to alder on floodplains than on slope or tundra ecosystems. This pattern suggests that understory plants rely more heavily on alder-fixed-N in this resource-poor ecosystem.
Statistical and wavelet analysis of the ATTO experiment in Amazonia rainforest
NASA Astrophysics Data System (ADS)
Bolzan, Mauricio
The study of the turbulence over a roughness surface is the most important subject in exchange of the gases between surface and atmosphere. This fact turns most important over surfaces like the Amazonia rainforest due its importance on local and regional climate. The Amazon Tall Tower Observatory - ATTO started its in February, 2012, with 10 dimensional ultrasonic anemometers bi and tri, in an 80 m tower of height. These anemometers were positioned in 78 m; 70 m; 62 m; 41 m; 57 m; 50 m; 45 m; 36 m; 30 m and 23 m of height and collected data were sampled at 1 Hz, 4 Hz and 10 Hz. The quadrant analysis and Wavelet transform were used to study the behavior of the Coherent Structure (CSs) over the Amazonia forest canopy in different atmospheric stability conditions. The results showed a fairly unique feature of the vertical wind profile near and below the inflection point. According to observations, the geometry of the canopy and terrain contributed to main influences for this aerodynamic effect of wind profile, as well as for the formation of coherent structures like "rolls" on the forest canopy in ATTO-CLAIRE site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jurik, T.W.; Weber, J.A.; Gates, D.M.
1988-06-01
The response of CO{sub 2} exchange rate (CER) to temperature and light was determined for 14 dominant plant species of a northern deciduous hardwood forest in northern lower Michigan. Leaves at the top of the canopy had temperature optima near 25 C for CER, whereas leaves in the understory had optima near 20 C. There was no change in optimum temperature over the growing season, and overall shapes of response curves were similar among species. The lack of change in temperature optima may be a result of little change in growing conditions rather than a lack of ability to acclimatize.more » Nine of 11 species in the understory had no significant differences in light-saturated, maximum CERs, whereas at the top of the canopy Populus grandidentata had a higher maximum CER than Quercus rubra and Betula papyrifera. The species in the understory also differed little in light-saturation points for CER. Species at the top of the canopy had higher values for maximum CER, light-saturation point for CER, and maximum conductance than did species in the understory.« less
Quantitative Analysis of Cotton Canopy Size in Field Conditions Using a Consumer-Grade RGB-D Camera.
Jiang, Yu; Li, Changying; Paterson, Andrew H; Sun, Shangpeng; Xu, Rui; Robertson, Jon
2017-01-01
Plant canopy structure can strongly affect crop functions such as yield and stress tolerance, and canopy size is an important aspect of canopy structure. Manual assessment of canopy size is laborious and imprecise, and cannot measure multi-dimensional traits such as projected leaf area and canopy volume. Field-based high throughput phenotyping systems with imaging capabilities can rapidly acquire data about plants in field conditions, making it possible to quantify and monitor plant canopy development. The goal of this study was to develop a 3D imaging approach to quantitatively analyze cotton canopy development in field conditions. A cotton field was planted with 128 plots, including four genotypes of 32 plots each. The field was scanned by GPhenoVision (a customized field-based high throughput phenotyping system) to acquire color and depth images with GPS information in 2016 covering two growth stages: canopy development, and flowering and boll development. A data processing pipeline was developed, consisting of three steps: plot point cloud reconstruction, plant canopy segmentation, and trait extraction. Plot point clouds were reconstructed using color and depth images with GPS information. In colorized point clouds, vegetation was segmented from the background using an excess-green (ExG) color filter, and cotton canopies were further separated from weeds based on height, size, and position information. Static morphological traits were extracted on each day, including univariate traits (maximum and mean canopy height and width, projected canopy area, and concave and convex volumes) and a multivariate trait (cumulative height profile). Growth rates were calculated for univariate static traits, quantifying canopy growth and development. Linear regressions were performed between the traits and fiber yield to identify the best traits and measurement time for yield prediction. The results showed that fiber yield was correlated with static traits after the canopy development stage ( R 2 = 0.35-0.71) and growth rates in early canopy development stages ( R 2 = 0.29-0.52). Multi-dimensional traits (e.g., projected canopy area and volume) outperformed one-dimensional traits, and the multivariate trait (cumulative height profile) outperformed univariate traits. The proposed approach would be useful for identification of quantitative trait loci (QTLs) controlling canopy size in genetics/genomics studies or for fiber yield prediction in breeding programs and production environments.
NASA Astrophysics Data System (ADS)
Lefebvre, A.; Thompson, C. E. L.; Amos, C. L.
2010-09-01
Seagrasses develop extensive or patchy underwater meadows in coastal areas around the world, forming complex, highly productive ecosystems. Seagrass canopies exert strong effects on water flow inside and around them, thereby affecting flow structure, sediment transport and benthic ecology. The influence of Zostera marina canopies on flow velocity, turbulence, hydraulic roughness and sediment movement was evaluated through laboratory experiments in 2 flumes and using live Z. marina and a mobile sand bed. Profiles of instantaneous velocities were measured and sediment movement was identified upstream, within and downstream of patches of different sizes and shoot density and at different free-stream velocities. Flow structure was characterised by time-averaged velocity, turbulence intensity and Turbulent Kinetic Energy (TKE). When velocity data were available above the canopy, they were fitted to the Law of the Wall and shear velocities and roughness lengths were calculated. When a seagrass canopy was present, three layers were distinguishable in the water column: (1) within canopy represented by low velocities and high turbulence; (2) transition zone around the height of the canopy, where velocities increased, turbulence decreased and TKE was high; and (3) above canopy where velocities were equal or higher than free-stream velocities and turbulence and TKE were lower than below. Shoot density and patch-width influenced this partitioning of the flow when the canopy was long enough (based on flume experiments, at least more than 1 m-long). The enhanced TKE observed at the canopy/water interface suggests that large-scale turbulence is generated at the canopy surface. These oscillations, likely to be related to the canopy undulations, are then broken down within the canopy and high-frequency turbulence takes place near the bed. This turbulence 'cascade' through the canopy may have an important impact on biogeochemical processes. The velocity above the canopy generally followed a logarithmic profile. Roughness lengths were higher above the canopy than over bare sand and increased with increasing distance from the leading edge of the canopy; however, they were still small (<1 cm) compared to other studies in the literature. Within and downstream of the canopy, sediment movement was observed at velocities below the threshold of motion. It was likely caused by the increased turbulence at those positions. This has large implications for sediment transport in coastal zones where seagrass beds develop.
Chris A. Maier; Sari Palmroth; Eric Ward
2008-01-01
We examined effects of a first nitrogen (N) fertilizer application on upper-canopy needle morphology and gas exchange in ~20-m-tall loblolly pine (Pinus taeda L.) exposed to elevated carbon dioxide concentration ([CO2]) for 9 years. Duke Forest free-air CO2 enrichment (FACE) plots were split and half of...
NASA Astrophysics Data System (ADS)
Link, T. E.; Kumar, M.; Pomeroy, J. W.; Seyednasrollah, B.; Ellis, C. R.; Lawler, R.; Essery, R.
2012-12-01
In mountainous, forested environments, vegetation exerts a strong control on snowcover dynamics that affect ecohydrological processes, streamflow regimes, and riparian health. Snowcover deposition and ablation patterns in forests are controlled by a complex combination of canopy interception processes coupled with radiative and turbulent heat flux patterns related to topographic and canopy cover variations. In seasonal snow environments, snowcover ablation dynamics in forests are dominated by net radiation. Recent research indicates that in small canopy gaps a net radiation minima relative to both open and forested environments can occur, but depends strongly on solar angle, gap size, slope, canopy height and stem density. The optimal gap size to minimize radiation to snow was estimated to have a diameter between 1 and 2 times the surrounding vegetation height. Physically-based snowmelt simulations indicate that gaps may increase SWE and desynchronize snowmelt by approximately 3 weeks between north and south facing slopes, relative to undisturbed forests. On east and west facing slopes, small gaps cause melt to be slightly delayed relative to intact forests, and have a minimal effect on melt synchronicity between slopes. Recent research focused on canopy thinning also indicates that a net radiation minima occurs in canopies of intermediate densities. Physically-based radiative transfer simulations using a discrete tree-based model indicate that in mid-latitude level forests, the annually-integrated radiative minima occurs at a tree spacing of 2.65 relative to the canopy height. The radiative minima was found to occur in denser forests on south-facing slopes and sparser forests on north-facing slopes. The radiative minimums in thinned forests are controlled by solar angle, crown geometry and density, tree spacing, slope, and aspect. These results indicate that both gap and homogeneous forest thinning may be used to reduce snowmelt rates or alter melt synchronicity, but the exact configuration will be highly spatially variable. Development of management strategies to conserve water on the landscape to enhance forest and riparian health in a changing climate must also rigorously evaluate the effects of canopy thinning and specific hydrometeorological conditions on net radiation, turbulent fluxes, and snow interception processes.
Devlaeminck, Rebecca; De Schrijver, An; Hermy, Martin
2005-01-20
Throughfall deposition and canopy exchange of acidifying and eutrophying compounds and major base cations were studied by means of throughfall analysis in a deciduous beech (Fagus sylvatica L.) forest edge in Belgium over a period of 1 year. Throughfall fluxes of Cl(-), NH(4)(+) and Na(+) were significantly elevated at the forest edge compared to the forest interior. As no edge effect on throughfall water volume could be detected, the observed edge enhancement effects were mainly due to dry deposition and canopy exchange patterns. Indeed, there was an elevated dry deposition of Cl(-), Na(+), K(+), Ca(2+) and Mg(2+) up to 50 m from the field/forest border. Within the forest, throughfall and dry deposition of SO(4)(2-) were highly variable and no significant differences were observed between the forest edge and the forest interior. Leaching of K(+) and Ca(2+) was reduced in the forest edge up to a distance of 30 m from the border. The measured nitrogen and acidic depositions far exceeded the current Flemish critical loads with respect to the protection of biodiversity in forests, especially at the forest edge. This points to an urgent need for controlling emissions as well as the need to consider the elevated deposition load in forest edges when calculating the critical loads in forests.
Song, Qingfeng; Wang, Yu; Qu, Mingnan; Ort, Donald R; Zhu, Xin-Guang
2017-12-01
Canopy photosynthesis (A c ) describes photosynthesis of an entire crop field and the daily and seasonal integrals of A c positively correlate with daily and seasonal biomass production. Much effort in crop breeding has focused on improving canopy architecture and hence light distribution inside the canopy. Here, we develop a new integrated canopy photosynthesis model including canopy architecture, a ray tracing algorithm, and C 3 photosynthetic metabolism to explore the option of manipulating leaf chlorophyll concentration ([Chl]) for greater A c and nitrogen use efficiency (NUE). Model simulation results show that (a) efficiency of photosystem II increased when [Chl] was decreased by decreasing antenna size and (b) the light received by leaves at the bottom layers increased when [Chl] throughout the canopy was decreased. Furthermore, the modelling revealed a modest ~3% increase in A c and an ~14% in NUE was accompanied when [Chl] reduced by 60%. However, if the leaf nitrogen conserved by this decrease in leaf [Chl] were to be optimally allocated to other components of photosynthesis, both A c and NUE can be increased by over 30%. Optimizing [Chl] coupled with strategic reinvestment of conserved nitrogen is shown to have the potential to support substantial increases in A c , biomass production, and crop yields. © 2017 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.
Modelling rainfall interception by a lowland tropical rain forest in northeastern Puerto Rico
NASA Astrophysics Data System (ADS)
Schellekens, J.; Scatena, F. N.; Bruijnzeel, L. A.; Wickel, A. J.
1999-12-01
Recent surveys of tropical forest water use suggest that rainfall interception by the canopy is largest in wet maritime locations. To investigate the underlying processes at one such location—the Luquillo Experimental Forest in eastern Puerto Rico—66 days of detailed throughfall and above-canopy climatic data were collected in 1996 and analysed using the Rutter and Gash models of rainfall interception. Throughfall occurred on 80% of the days distributed over 80 rainfall events. Measured interception loss was 50% of gross precipitation. When Penman-Monteith based estimates for the wet canopy evaporation rate (0.11 mm h -1 on average) and a canopy storage of 1.15 mm were used, both models severely underestimated measured interception loss. A detailed analysis of four storms using the Rutter model showed that optimizing the model for the wet canopy evaporation component yielded much better results than increasing the canopy storage capacity. However, the Rutter model failed to properly estimate throughfall amounts during an exceptionally large event. The analytical model, on the other hand, was capable of representing interception during the extreme event, but once again optimizing wet canopy evaporation rates produced a much better fit than optimizing the canopy storage capacity. As such, the present results support the idea that it is primarily a high rate of evaporation from a wet canopy that is responsible for the observed high interception losses.
Sharwood, Robert E.; Crous, Kristine Y.; Whitney, Spencer M.; Ellsworth, David S.
2017-01-01
Abstract Leaf-level photosynthetic processes and their environmental dependencies are critical for estimating CO2 uptake from the atmosphere. These estimates use biochemical-based models of photosynthesis that require accurate Rubisco kinetics. We investigated the effects of canopy position, elevated atmospheric CO2 [eC; ambient CO2 (aC)+240 ppm] and elevated air temperature (eT; ambient temperature (aT)+3 °C) on Rubisco content and activity together with the relationship between leaf N and Vcmax (maximal Rubisco carboxylation rate) of 7 m tall, soil-grown Eucalyptus globulus trees. The kinetics of E. globulus and tobacco Rubisco at 25 °C were similar. In vitro estimates of Vcmax derived from measures of E. globulus Rubisco content and kinetics were consistent, although slightly lower, than the in vivo rates extrapolated from gas exchange. In E. globulus, the fraction of N invested in Rubisco was substantially lower than for crop species and varied with treatments. Photosynthetic acclimation of E. globulus leaves to eC was underpinned by reduced leaf N and Rubisco contents; the opposite occurred in response to eT coinciding with growth resumption in spring. Our findings highlight the adaptive capacity of this key forest species to allocate leaf N flexibly to Rubisco and other photosynthetic proteins across differing canopy positions in response to future, warmer and elevated [CO2] climates. PMID:28064178
Leaf ontogeny and demography explain photosynthetic seasonality in Amazon evergreen forests
NASA Astrophysics Data System (ADS)
Wu, J.; Albert, L.; Lopes, A. P.; Restrepo-Coupe, N.; Hayek, M.; Wiedemann, K. T.; Guan, K.; Stark, S. C.; Prohaska, N.; Tavares, J. V.; Marostica, S. F.; Kobayashi, H.; Ferreira, M. L.; Campos, K.; Silva, R. D.; Brando, P. M.; Dye, D. G.; Huxman, T. E.; Huete, A. R.; Nelson, B. W.; Saleska, S. R.
2015-12-01
Photosynthetic seasonality couples the evolutionary ecology of plant leaves to large-scale rhythms of carbon and water exchanges that are important feedbacks to climate. However, the extent, magnitude, and controls on photosynthetic seasonality of carbon-rich tropical forests are poorly resolved, controversial in the remote sensing literature, and inadequately represented in most earth system models. Here we show that ecosystem-scale phenology (measured by photosynthetic capacity), rather than environmental seasonality, is the primary driver of photosynthetic seasonality at four Amazon evergreen forests spanning gradients in rainfall seasonality, forest composition, and flux seasonality. We further demonstrate that leaf ontogeny and demography explain most of this ecosystem phenology at two central Amazon evergreen forests, using a simple leaf-cohort canopy model that integrates eddy covariance-derived CO2 fluxes, novel near-surface camera-detected leaf phenology, and ground observations of litterfall and leaf physiology. The coordination of new leaf growth and old leaf divestment (litterfall) during the dry season shifts canopy composition towards younger leaves with higher photosynthetic efficiency, driving large seasonal increases (~27%) in ecosystem photosynthetic capacity. Leaf ontogeny and demography thus reconciles disparate observations of forest seasonality from leaves to eddy flux towers to satellites. Strategic incorporation of such whole-plant coordination processes as phenology and ontogeny will improve ecological, evolutionary and earth system theories describing tropical forests structure and function, allowing more accurate representation of forest dynamics and feedbacks to climate in earth system models.
A Comparison of Two Chemical Mechanisms Using Data from the Southern Oxidant and Aerosol Study
NASA Astrophysics Data System (ADS)
Green, S. B.; Saylor, R. D.
2016-12-01
The Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS) is a 1-D column model of the physical and chemical processes occurring from the Earth's surface to the top of the planetary boundary layer (PBL). In this study, we couple ACCESS with environmental data from the Southern Oxidant and Aerosol Study (SOAS) intensive field measurement campaign to simulate the chemical evolution of biogenic hydrocarbons above a forest canopy over two time periods: a four-day period from June 29-July 2, 2013 and a three-day period from June 21-23, 2013. We quantify the efficacy of the model by calculating R2 values between SOAS chemical measurements and simulation results of isoprene, methyl vinyl ketone (MVK), methacrolein (MACR), α-pinene, and limonene. Two kinetic mechanisms, one from Browne et al. (2014) (RACM2+) and another from Schwantes et al. (2015) (CIT), were implemented in ACCESS and used in independent simulations to determine which mechanism better represents the SOAS data through daytime and nighttime periods. The results demonstrate that RACM2+ and CIT perform at comparable levels for simulating the evolution of isoprene, MVK, and MACR, but both differ substantially from measurements of α-pinene and limonene. The mechanisms perform equally well during both daytime and nighttime periods and thus, substantiated by our results, there is no strong justification for implementing one mechanism over the other.
Physical-biological coupling in spore dispersal of kelp forest macroalgae
NASA Astrophysics Data System (ADS)
Gaylord, Brian; Reed, Daniel C.; Washburn, Libe; Raimondi, Peter T.
2004-08-01
The physical-biological linkages controlling the dispersal of spores produced by macroalgae that reside in kelp forests are complicated and laced with feedbacks. Here we discuss the fundamental elements of these interactions. Biological considerations include spore swimming and sinking speeds, their periods of viability in the plankton, and the height of spore release above the seafloor, which together determine the durations over which spores can be swept by horizontal currents before they contact the seafloor. Morphologies and material properties of canopy forming kelps may also influence the drag exerted on passing waters by the kelps, the plants' ability to persist in the face of rapid flows, and thereby the degree to which impinging currents are redirected around, or slowed within, kelp forests. Macroalgal life histories, and the size of spore sources as controlled by the dimensions of kelp forests and the density and fecundity of individuals within them, influence effective dispersal distances as well. Physical considerations encompass the mean speed, direction, and timescales of variability of currents relative to spore suspension times, the interaction of surface gravity waves with currents in producing turbulence in the benthic boundary layer, wind-driven surface mixing, water stratification, and shoreline bathymetry and substratum roughness, all of which can affect the interplay of vertical and horizontal transport of macroalgal spores. Intricate within-forest processes may induce attenuation of current speeds and consequent reductions in seabed shear, along with simultaneous production of small-scale turbulence in kelp wakes. Slower mean currents and smaller eddy scales in turn may attenuate vertical mixing within forests, thus extending spore suspension times. Further complexities likely arise due to changes in the relative rates of horizontal and vertical dispersion, modifications to the overall profiles of vertical mixing, and the creation of fine-scale secondary flows around kelp individuals and substratum features. Under conditions of more rapid currents, submergence of the surface canopy and the establishment of skimming flows at the canopy-fluid interface may introduce additional coherent flow structures that alter rates of fluid exchange to and from the forest. Many of these coupled physical-biological processes are just beginning to be examined in a rigorous fashion in kelp forests, but their potential importance is clear.
NASA Astrophysics Data System (ADS)
Porcar-Castell, A.; Atherton, J.; Rajewicz, P. A.; Riikonen, A.; Gebre, S.; Liu, W.; Aalto, J.; Bendoula, R.; Burkart, A.; Chen, H.; Erkkilä, K. M.; Feret, J. B.; Fernández-Marín, B.; García-Plazaola, J. I.; Hakala, T.; Hartikainen, S.; Honkavaara, E.; Ihalainen, J.; Julitta, T.; Kolari, P.; Kooijmans, L.; Levula, J.; Loponen, M.; Mac Arthur, A.; Magney, T.; Maseyk, K. S.; Mottus, M.; Neimane, S.; Oksa, E.; Osterman, G. B.; Robinson, I.; Robson, M. T.; Sabater, N.; Solanki, T.; Tikkanen, M.; Mäkipää, R.; Aro, E. M.; Rascher, U.; Frankenberg, C.; Kulmala, M. T.; Vesala, T.; Back, J. K.
2017-12-01
The use of solar-induced chlorophyll fluorescence (ChlF) as a tracer of photosynthesis is rapidly expanding with increasing numbers of measurements from towers, drones, aircrafts, or satellites. But how to integrate all the informative potential of these multiscale datasets? The connection between ChlF and photosynthesis takes place via multiple mechansisms that depend on the scale. At the leaf level, diurnal variations in ChlF may indicate changes in photochemical or non-photochemical quenching processes, whereas seasonal variations may indicate changes in the protein structure or pigment composition of the photosynthetic apparatus. At the canopy level, variations in ChlF may also reflect changes in total leaf area, canopy structure, species composition, changes in illumination or sun-target-sensor geometry, background properties, etc. At the pixel level, the dynamics of the atmosphere are also important. It is therefore essential to characterize the impact of factors that control ChlF and photosynthesis at each scale. A combination of multiscale and continuous experimentation and modelling is probably the best option to close the remaining knowledge gaps. The goal of the FAST campaign was to characterize the processes that control the ChlF signal dynamics at each scale, establishing a comprehensive dataset for multiscale hypothesis and model validation. The campaign took place in Hyytiälä (Southern Finland) and lasted for 6 months. Measurements expanded from the molecular to the satellite pixel level and from the picosecond to the seasonal scale, including multiple species, and providing a unique optical and phenomenological record of the multiscale spring recovery of photosynthesis in a boreal forest. Amongst others we measured and registered: leaf ChlF spectra, OJIP kinetics, PSI and PSII activity, photosynthetic gas exchange, carbonyl sulphide (COS), volatile organic compounds (VOCs), total leaf absorption, pigment concentrations, photosynthetic proteins, fluorescence lifetime, canopy SIF, CO2, water, COS, and VOC fluxes, as well as vertical profiles of forest SIF using a drone and target OCO-2 observations at 1x2km pixel resolution. We here present preliminary results from the FAST campaign which emphasize the variability and role of different controls across scales.
NASA Technical Reports Server (NTRS)
Sellers, P. J.
1987-01-01
The ability of satellite sensor systems to estimate area-averaged canopy photosynthetic and transpirative properties is evaluated. The near linear relationship between the simple ratio (SR) and normalized difference (ND) and the surface biophysical properties of canopy photosynthetically active radiation (PAR) absorption, photosynthesis, and bulk stomatal resistance is studied. The models utilized to illustrate the processes of canopy reflectance, photosynthesis, and resistance are described. The dependence of SR, the absorbed fraction of PAR, and canopy photosynthesis and resistance on total leaf area index is analyzed. It is noted that the SR and ND vegetation indices and vegetation-dependent qualities are near-linearly related due to the proportion of leaf scattering coefficient in visible and near IR wavelength regions. The data reveal that satellite sensor systems are useful for the estimation of photosynthesis and transpirative properties.
NASA Astrophysics Data System (ADS)
Kirchner, P. B.; Bales, R. C.; Musselman, K. N.; Molotch, N. P.
2012-12-01
We investigated the influence of canopy on snow accumulation and melt in a mountain forest using paired snow on and snow off scanning LiDAR altimetry, synoptic measurement campaigns and in-situ time series data of snow depth, SWE, and radiation collected from the Kaweah River watershed, Sierra Nevada, California. Our analysis of forest cover classified by dominant species and 1 m2 grided mean under canopy snow accumulation calculated from airborne scanning LiDAR, demonstrate distinct relationships between forest class and under-canopy snow depth. The five forest types were selected from carefully prepared 1 m vegetation classifications and named for their dominant tree species, Giant Sequoia, Jeffrey Pine, White Fir, Red Fir, Sierra Lodgepole, Western White Pine, and Foxtail Pine. Sufficient LiDAR returns for calculating mean snow depth per m2 were available for 31 - 44% of the canopy covered area and demonstrate a reduction in snow depth of 12 - 24% from adjacent open areas. The coefficient of variation in snow depth under canopies ranged from 0.2 - 0.42 and generally decreased as elevation increased. Our analysis of snow density snows no statistical significance between snow under canopies and in the open at higher elevations with a weak significance for snow under canopies at lower elevations. Incident radiation measurements made at 15 minute intervals under forest canopies show an input of up to 150 w/m2 of thermal radiation from vegetation to the snow surface on forest plots. Snow accumulated on the mid to high elevation forested slopes of the Sierra Nevada represents the majority of winter snow storage. However snow estimates in forested environments demonstrate a high level of uncertainty due to the limited number of in-situ observations and the inability of most remote sensing platforms to retrieve reflectance under dense vegetation. Snow under forest canopies is strongly mediated by forest cover and decoupled from the processes that dictate accumulation and ablation of snow in open locations, where almost all precipitation and meteorlogic measurements concerning snow are made. Snow accumulation is intercepted by vegetation until it accumulates to a depth equal to or greater than the height of the vegetation, is reduced by the amount of sublimation or evaporation occurring while on the canopy and is redistributed beneath the canopy at a different density or as liquid water. Ablation processes are dictated by the energy environment surrounding vegetation where sensible heat is mediated by shading of short wave radiation.
Determining the potential productivity of food crops in controlled environments
NASA Technical Reports Server (NTRS)
Bugbee, Bruce
1992-01-01
The quest to determine the maximum potential productivity of food crops is greatly benefitted by crop growth models. Many models have been developed to analyze and predict crop growth in the field, but it is difficult to predict biological responses to stress conditions. Crop growth models for the optimal environments of a Controlled Environment Life Support System (CELSS) can be highly predictive. This paper discusses the application of a crop growth model to CELSS; the model is used to evaluate factors limiting growth. The model separately evaluates the following four physiological processes: absorption of PPF by photosynthetic tissue, carbon fixation (photosynthesis), carbon use (respiration), and carbon partitioning (harvest index). These constituent processes determine potentially achievable productivity. An analysis of each process suggests that low harvest index is the factor most limiting to yield. PPF absorption by plant canopies and respiration efficiency are also of major importance. Research concerning productivity in a CELSS should emphasize: (1) the development of gas exchange techniques to continuously monitor plant growth rates and (2) environmental techniques to reduce plant height in communities.
NASA Astrophysics Data System (ADS)
Dunkerley, David L.
2009-10-01
SummaryIntra-storm evaporation depths exceed post-storm evaporation depths in the interception of rainfall on plant canopies. An important fraction of the intra-storm evaporation may involve the small impact (or splash) droplets produced when raindrops, and perhaps gravity drops (drips released from plant parts), collide with wet plant surfaces. This idea has been presented as a new conception by Murakami [Murakami, S., 2006. A proposal for a new forest canopy interception mechanism: splash droplet evaporation. Journal of Hydrology 319, 72-82; Murakami, S., 2007a. Application of three canopy interception models to a young stand of Japanese cypress and interpretation in terms of interception mechanism. Journal of Hydrology 342, 305-319; Murakami, S., 2007b. A follow-up for the splash droplet evaporation hypothesis of canopy interception and remaining problems: why is humidity unsaturated during rainfall? In: Proceedings of the 20th Annual Conference. Japan Society of Hydrology and Water Resources (in Japanese). < http://www.jstage.jst.go.jp/article/jshwr/20/0/20_62/_article>] but was in fact advanced by Dunin [Dunin, F.X., O'Loughlin, E.M., Reyenga, W., 1988. Interception loss from eucalypt forest: lysimeter determination of hourly rates for long term evaluation. Hydrological Processes 2, 315-329] more than 20 years ago. In addition, Dunin et al. considered that canopy ventilation might be enhanced in intense rain. This note draws attention to the historical precedence of the work of Dunin et al. and also presents a short review of literature on impact droplet production, highlighting areas where data are still required for the full exploration of the role of droplet evaporation in canopy interception. Droplet production needs to be properly parameterised and included in models of interception processes and landsurface-atmosphere interactions.
NASA Astrophysics Data System (ADS)
Zhou, T.; Popescu, S. C.; Krause, K.; Sheridan, R.; Ku, N. W.
2014-12-01
Increasing attention has been paid in the remote sensing community to the next generation Light Detection and Ranging (lidar) waveform data systems for extracting information on topography and the vertical structure of vegetation. However, processing waveform lidar data raises some challenges compared to analyzing discrete return data. The overall goal of this study was to present a robust de-convolution algorithm- Gold algorithm used to de-convolve waveforms in a lidar dataset acquired within a 60 x 60m study area located in the Harvard Forest in Massachusetts. The waveform lidar data was collected by the National Ecological Observatory Network (NEON). Specific objectives were to: (1) explore advantages and limitations of various waveform processing techniques to derive topography and canopy height information; (2) develop and implement a novel de-convolution algorithm, the Gold algorithm, to extract elevation and canopy metrics; and (3) compare results and assess accuracy. We modeled lidar waveforms with a mixture of Gaussian functions using the Non-least squares (NLS) algorithm implemented in R and derived a Digital Terrain Model (DTM) and canopy height. We compared our waveform-derived topography and canopy height measurements using the Gold de-convolution algorithm to results using the Richardson-Lucy algorithm. Our findings show that the Gold algorithm performed better than the Richardson-Lucy algorithm in terms of recovering the hidden echoes and detecting false echoes for generating a DTM, which indicates that the Gold algorithm could potentially be applied to processing of waveform lidar data to derive information on terrain elevation and canopy characteristics.
NASA Astrophysics Data System (ADS)
Čeburnis, D.; Steinnes, E.
Concentrations of seven elements (As, Cd, Cr, Mn, Pb, V, Zn) in mosses ( Hylocomium splendens, Pleurozium schreberi, Eurhynchium angustirete) and needles of Norway spruce ( Picea abies) and juniper ( Juniperus communis) were determined at 48 sites in Lithuania. Conifer needles consistently showed many times lower concentrations than mosses collected at the same site. Correlations between heavy-metal concentrations in needles and mosses indicated that accumulation processes may be similar, but mosses appear to be clearly preferable as biomonitors of atmospheric deposition because of their higher elemental concentrations and more quantitative reflection of deposition rates. Precipitation in the open field and under the canopy was investigated at two stations with respect to the same metals. The canopy was shown to retain a considerable part of lead, whereas elements such as Zn and Mn were enriched in precipitation under the canopy. Study of metal concentrations in moss growing, respectively, below and outside the canopy showed that none of so studied elements was significantly retained by the canopy. Most of the metals (Cu, Fe, Zn, Cr, Ni, V) were leached from the canopy to a smaller or greater extent.
Method for refurbishing and processing parachutes
NASA Technical Reports Server (NTRS)
Crowell, R. T. (Inventor)
1982-01-01
A system and method for refurbishing and processing parachutes is discussed including an overhead monorail conveyor system on which the parachute is suspended for horizontal conveyance. The parachute is first suspended in partially open tented configuration wherein open inspection of the canopy is permitted to remove debris and inspect all areas. Following inspection, the parachute is transported by the monorail conveyor to a washing and drying station with the parachute canopy mounted on the conveyor ina systematic arrangement which permits water and air to pass through the ribbonlike material of the canopy. Following drying of the parachute, the parachute is conveyed into an interior space where it is finally inspected and removed from the monorail conveyor and laid upon a table for folding.
NASA Astrophysics Data System (ADS)
Thomas, Valerie Anne
This research models canopy-scale photosynthesis at the Groundhog River Flux Site through the integration of high-resolution airborne remote sensing data and micrometeorological measurements collected from a flux tower. Light detection and ranging (lidar) data are analysed to derive models of tree structure, including: canopy height, basal area, crown closure, and average aboveground biomass. Lidar and hyperspectral remote sensing data are used to model canopy chlorophyll (Chl) and carotenoid concentrations (known to be good indicators of photosynthesis). The integration of lidar and hyperspectral data is applied to derive spatially explicit models of the fraction of photosynthetically active radiation (fPAR) absorbed by the canopy as well as a species classification for the site. These products are integrated with flux tower meteorological measurements (i.e., air temperature and global solar radiation) collected on a continuous basis over 2004 to apply the C-Fix model of carbon exchange to the site. Results demonstrate that high resolution lidar and lidar-hyperspectral integration techniques perform well in the boreal mixedwood environment. Lidar models are well correlated with forest structure, despite the complexities introduced in the mixedwood case (e.g., r2=0.84, 0.89, 0.60, and 0.91, for mean dominant height, basal area, crown closure, and average aboveground biomass). Strong relationships are also shown for canopy scale chlorophyll/carotenoid concentration analysis using integrated lidar-hyperspectral techniques (e.g., r2=0.84, 0.84, and 0.82 for Chl(a), Chl(a+b), and Chl(b)). Examination of the spatially explicit models of fPAR reveal distinct spatial patterns which become increasingly apparent throughout the season due to the variation in species groupings (and canopy chlorophyll concentration) within the 1 km radius surrounding the flux tower. Comparison of results from the modified local-scale version of the C-Fix model to tower gross ecosystem productivity (GEP) demonstrate a good correlation to flux tower measured GEP (r2=0.70 for 10 day averages), with the largest deviations occurring in June-July. This research has direct benefits for forest inventory mapping and management practices; mapping of canopy physiology and biochemical constituents related to forest health; and scaling and direct comparison to large resolution satellite models to help bridge the gap between the local-scale measurements at flux towers and predictions derived from continental-scale carbon models.
Matson, Amanda L; Corre, Marife D; Veldkamp, Edzo
2014-12-01
Although the canopy can play an important role in forest nutrient cycles, canopy-based processes are often overlooked in studies on nutrient deposition. In areas of nitrogen (N) and phosphorus (P) deposition, canopy soils may retain a significant proportion of atmospheric inputs, and also receive indirect enrichment through root uptake followed by throughfall or recycling of plant litter in the canopy. We measured net and gross rates of N cycling in canopy soils of tropical montane forests along an elevation gradient and assessed indirect effects of elevated nutrient inputs to the forest floor. Net N cycling rates were measured using the buried bag method. Gross N cycling rates were measured using (15) N pool dilution techniques. Measurements took place in the field, in the wet and dry season, using intact cores of canopy soil from three elevations (1000, 2000 and 3000 m). The forest floor had been fertilized biannually with moderate amounts of N and P for 4 years; treatments included control, N, P, and N + P. In control plots, gross rates of NH4 (+) transformations decreased with increasing elevation; gross rates of NO3 (-) transformations did not exhibit a clear elevation trend, but were significantly affected by season. Nutrient-addition effects were different at each elevation, but combined N + P generally increased N cycling rates at all elevations. Results showed that canopy soils could be a significant N source for epiphytes as well as contributing up to 23% of total (canopy + forest floor) mineral N production in our forests. In contrast to theories that canopy soils are decoupled from nutrient cycling in forest floor soil, N cycling in our canopy soils was sensitive to slight changes in forest floor nutrient availability. Long-term atmospheric N and P deposition may lead to increased N cycling, but also increased mineral N losses from the canopy soil system. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Still, C. J.; Kim, Y.; Hanson, C. V.; Law, B. E.; Kwon, H.; Schulze, M.; Pau, S.; Detto, M.
2015-12-01
Temperature is a primary environmental control on plant processes at a range of spatial and temporal scales, affecting enzymatic reactions, ecosystem biogeochemistry, and species distributions. Although most focus is on air temperature, the radiative or skin temperature of plants is more relevant. Canopy skin temperature dynamics reflect biophysical, physiological, and anatomical characteristics and interactions with environmental drivers, and can be used to examine forest responses to stresses like droughts and heat waves. Direct measurements of plant canopy temperatures using thermocouple sensors have been challenging and offer limited information. Such measurements are usually conducted over short periods of time and a limited spatial extent of the canopy. By contrast, thermal infrared (TIR) imaging allows for extensive temporal and spatial measurement of canopy temperature regimes. We present results of TIR imaging of forest canopies at a range of well-studied forest sites in the United States and Panama. These forest types include temperate rainforests, a semiarid pine forest, and a semideciduous tropical forest. Canopy temperature regimes at these sites are highly variable spatially and temporally and display frequent departures from air temperature, particularly during clear sky conditions. Canopy tissue temperatures are often warmer (daytime) and colder (nighttime) than air temperature, and canopy structure seems to have a large influence on the thermal regime. Additionally, comparison of canopy temperatures to eddy covariance fluxes of carbon dioxide, water vapor, and energy reveals relationships not apparent using air temperature. Initial comparisons between our forest canopy temperatures and remotely sensed skin temperature using Landsat and MODIS data show reasonably good agreement. We conclude that temporal and spatial changes in canopy temperature and its relationship to biological and environmental factors can improve our understanding of how climate change is affecting forest function, and argue for wider deployment of thermal cameras in other ecosystems.
Schaeffer, Sean M.; Anderson, Dean E.; Burns, Sean P.; Monson, Russell K.; Sun, Jielun; Bowling, David R.
2008-01-01
Stable isotopes provide insight into ecosystem carbon cycling, plant physiological processes, atmospheric boundary-layer dynamics, and are useful for the integration of processes over multiple scales. Of particular interest is the carbon isotope content (δ13C) of nocturnal ecosystem-respired CO2 (δR). Recent advances in technology have made it possible to continuously examine the variation in δR within a forest canopy over relatively long time-scales (months–years). We used tunable diode laser spectroscopy to examine δR at within- and below-canopy spatial locations in a Colorado subalpine forest (the Niwot Ridge AmeriFlux site). We found a systematic pattern of increased δR within the forest canopy (δR-c) compared to that near the ground (δR-g). Values of δR-c were weakly correlated with the previous day's mean maximum daytime vapor pressure deficit (VPD). Conversely, there was a negative but still weak correlation between δR-g and time-lagged (0–5 days) daily mean soil moisture. The topography and presence of sustained nightly drainage flows at the Niwot Ridge forest site suggests that, on nights with stable atmospheric conditions, there is little mixing of air near the ground with that in the canopy. Atmospheric stability was assessed using thresholds of friction velocity, stability above the canopy, and bulk Richardson number within the canopy. When we selectively calculated δR-g and δR-c by removing time periods when ground and canopy air were well mixed, we found stronger correlations between δR-c and VPD, and δR-g and soil moisture. This suggests that there may be fundamental differences in the environmental controls on δR at sub-canopy spatial scales. These results may help explain the wide variance observed in the correlation of δR with different environmental parameters in other studies.
NASA Astrophysics Data System (ADS)
Gerken, T.; Chamecki, M.; Fuentes, J. D.; Stoy, P. C.; Trowbridge, A.; Wei, D.
2016-12-01
The Amazon rainforest and other rainforests emit large quantities of biogenic volatile organic compounds (BVOCs), including isoprene and monoterpenes, which react with and produce atmospheric oxidants such as ozone and the hydroxyl radical. Some of the resulting reaction products condense to form secondary organic aerosols, which due to the typically clean tropical air can make up a large portion of the total atmospheric aerosols and may thus impact cloud development and regional climate. To better understand the role of tropical forests on cloud development and climate, it is necessary to quantify not only BVOC emissions, but also turbulent transport and the resulting atmospheric chemistry within both the forest canopy and atmospheric boundary-layer. To date, most research has ignored within-canopy chemical processes that are typically not resolved in regional models that treat the forest as a lower boundary condition. We use canopy-resolving Large Eddy Simulation (LES) to study the role of turbulence and chemistry in the isoprene lifetime under conditions observed during a 2014 field campaign in central Amazonia. The LES includes a simple chemical mechanism for the oxidation of isoprene and aggregated monoterpenes (34 reactions), which we use to quantify the impact of within-canopy and boundary-layer processes on the transport and air chemistry of isoprene, monoterpenes, and primary reaction products on their export at the top of the boundary layer. LES results show air parcel residence times in the dense Amazon rainforest, which govern the time available for in-canopy reactions, to range from a few seconds near the canopy top to 30 minutes near the ground. Such residence times are comparable to chemical lifetimes of many reactive species and the convective eddy turnover timescale. Additionally, monoterpene oxidation with ambient ozone levels can increase within-canopy hydroxyl radical concentrations from 5 x 104 to 3 x 105 radicals cm-3, thus greatly increasing the oxidative capacity of the near surface air; within-canopy oxidation is significant for isoprene (5%) and monoterpene chemistry (25%). Results demonstrate that monoterpene chemistry - in addition to isoprene chemistry - needs to be considered when investigating the role of BVOCs to surface-atmosphere interactions in tropical rainforests.
NASA Astrophysics Data System (ADS)
Emmel, C.; Bowler, R.; Black, T. A.; Christen, A.
2012-12-01
Disturbance of forests caused by insect attacks, such as the mountain pine beetle (Dendroctonus ponderosae, MPB) outbreak in Western North America may lead to a conversion of affected forests from a net carbon dioxide (CO2) sink to a net source. Informed management of forests can help reduce the associated CO2 emissions. The objective of this study is to determine the vertical distribution of sources and sinks of CO2 in an open MPB attacked lodgepole pine (Pinus contorta var. latifolia) canopy (stand height h = 17 m, leaf areas index LAI = 0.55 m2 m-2) in the Interior of British Columbia. The stand has a considerable living secondary structure with a maximum height of 12 m while 99% of the mature pine trees composing the upper canopy are dead. We compared two different methods to accomplish the goal of determining the vertical divergence of the CO2 flux and relate it to the different vegetation layers. Data from a field campaign in July / August 2010 were used. The first method employs eddy-covariance (EC) measurements to determine the vertical source/sink distribution within and above the canopy. The instrumentation included open-path infrared gas analyzers and 3D ultrasonic anemometers. With simultaneous EC measurements at seven heights (z/h = 0.05, 0.15, 0.40, 0.60, 0.85, 1.05 and 1.30) we determined the CO2 uptake or release of the layers between the measurement levels by calculating the flux density divergence and the CO2 storage change in the air of each layer. The second method uses an ecophysiological approach developing a canopy CO2 exchange model. CO2 exchange was directly measured on tree boles and the soil using a portable non-steady-state CO2 chamber system and on leaves using a LI-COR LI-6400 photosynthesis system. Measurements were made during different times of the day and under varying temperature and moisture conditions over the course of the campaign. Airborne light detection and ranging (LIDAR) measurements, and vertical, horizontal and species-specific LAI measurements provided necessary information about the stand structure. We combined this information with measurements of photosynthetically active radiation (PAR) at 6 levels, soil moisture and temperature measurements to model the vertical CO2 source/sink distribution over the course of the campaign. In earlier research, it was found that this stand made the transition from a carbon source to a sink faster than expected (Brown et al., 2010, Agric For Meteorol 150, 254-264). The flux profile showed substantial daytime CO2 uptake below z/h = 0.5, while in the upper canopy there was respiratory CO2 loss. PAR penetrates deep into the canopy with on average almost 60% reaching the ground level (z/h = 0.05). Our study demonstrates that the secondary structure is responsible for significant CO2 uptake, while the understory together with the soil and the dead lodgepole pine trees in the upper canopy are weak CO2 sources, resulting in the stand being a carbon sink. We will discuss the strengths and weaknesses of the two proposed methods with regard to technical challenges and uncertainties, and how the two methods compared overall.
Numerical Simulation of Parachute Inflation Process by IB Method
NASA Astrophysics Data System (ADS)
Miyoshi, Masaya; Mori, Koichi; Nakamura, Yoshiaki
In the present study the deformation and motion of a parachute in the process of inflation are simulated by applying the immersed boundary technique in a fluid-structure coupling solver. It was found from simulated results that the canopy is first inflated in the normal direction to the uniform flow (in the lateral direction), and then its apex is pulled by a vortex ring generated near the canopy's outer surface due to its negative pressure. After the end of this inflation process, the canopy moves in the tangential direction to the spherical surface, the center of which is located at the payload location. This motion is caused by the breakup of an initial axisymmetric vortex, where many vortices are generated from the shear layer. The predicted maximum parachute opening force is twice as large as the payload force in the steady state, which is in good agreement with experiment.
NASA Astrophysics Data System (ADS)
Nadeau, D.; Isabelle, P. E.; Asselin, M. H.; Parent, A. C.; Jutras, S.; Anctil, F.
2017-12-01
Solar irradiance is the largest driver of land-surface exchanges of energy, water and trace gases. Its absorption by a forest canopy generates considerable sensible and latent heat fluxes as well as tree temperature changes. A fraction of the irradiance gets transmitted through the canopy and powers another layer of energy fluxes, which can reach substantial values. Transmitted radiation is also of particular relevance to understory vegetation photosynthesis, snowpack energetics and soil temperature dynamics. Boreal forest canopy transmissivity needs to be quantified to properly reproduce land-atmosphere interactions in the circumpolar boreal biome, but its high spatiotemporal variability makes it a challenging task. The objective of this study is to characterize the spatiotemporal variability in under-canopy radiation and to evaluate the performance of various models in representing plot-scale observations. The study site is located in Montmorency Forest (47°N, 71°W), in southern Quebec, Canada. The vegetation includes mostly juvenile balsam firs, up to 6 to 8 m tall. Since January 2016, a 15-m flux tower measures the four components of radiation, as well as other relevant fluxes and meteorological variables, on a ≈10° northeast-facing slope. In summer 2016, 20 portable weather stations were mounted in a 150 m x 200 m grid around the flux tower. These stations were equipped with silicon-cell pyranometers and provided measurements of downwelling irradiance at a height of 2 m. This setup allowed us to compute irradiance transmissivity and to assess its spatiotemporal variability at the site. First, we show that the average of daily incoming energy varies tremendously across the sites, from 1 MJ/m2 to nearly 9 MJ/m2, due to large variations in canopy structure over short distances. Using a regression tree analysis, we show that transmissivity mostly depends on sun elevation, diffuse fraction of radiation, sky and sun view fraction and wind speed above canopy. We finally show that a simple Beer's law, describing the attenuation of light through a semi-transparent medium, does remarkably well at predicting the plot-scale transmissivity when driven with satellite-based leaf area index values.
NASA Astrophysics Data System (ADS)
Andreasen, M.; Looms, M. C.; Bogena, H. R.; Desilets, D.; Zreda, M. G.; Sonnenborg, T. O.; Jensen, K. H.
2014-12-01
The water stored in the various compartments of the terrestrial ecosystem (in snow, canopy interception, soil and litter) controls the exchange of the water and energy between the land surface and the atmosphere. Therefore, measurements of the water stored within these pools are critical for the prediction of e.g. evapotranspiration and groundwater recharge. The detection of cosmic-ray neutron intensity is a novel non-invasive method for the quantification of continuous intermediate-scale soil moisture. The footprint of the cosmic-ray neutron probe is a hemisphere of a few hectometers and subsurface depths of 10-70 cm depending on wetness. The cosmic-ray neutron method offers measurements at a scale between the point-scale measurements and large-scale satellite retrievals. The cosmic-ray neutron intensity is inversely correlated to the hydrogen stored within the footprint. Overall soil moisture represents the largest pool of hydrogen and changes in the soil moisture clearly affect the cosmic-ray neutron signal. However, the neutron intensity is also sensitive to variations of hydrogen in snow, canopy interception and biomass offering the potential to determine water content in such pools from the signal. In this study we tested the potential of determining canopy interception and biomass using cosmic-ray neutron intensity measurements within the framework of the Danish Hydrologic Observatory (HOBE) and the Terrestrial Environmental Observatories (TERENO). Continuous measurements at the ground and the canopy level, along with profile measurements were conducted at towers at forest field sites. Field experiments, including shielding the cosmic-ray neutron probes with cadmium foil (to remove lower-energy neutrons) and measuring reference intensity rates at complete water saturated conditions (on the sea close to the HOBE site), were further conducted to obtain an increased understanding of the physics controlling the cosmic-ray neutron transport and the equipment used. Additionally, neutron transport modeling, using the extended version of the Monte Carlo N-Particle Transport Code, was conducted. The responses of the reference condition, different amounts of biomass, soil moisture and canopy interception on the cosmic-ray neutron intensity were simulated and compared to the measurements.
Evaluation of a laser scanning sensor for variable-rate tree sprayer development
USDA-ARS?s Scientific Manuscript database
Accurate canopy measurement capabilities are prerequisites to automate variable-rate sprayers. A 270° radial range laser scanning sensor was tested for its scanning accuracy to detect tree canopy profiles. Signals from the laser sensor and a ground speed sensor were processed with an embedded comput...
Foliar Moisture Contents of North American Conifers
Christopher R. Keyes
2006-01-01
Foliar moisture content (FMC) is a primary factor in the canopy ignition process as surface fire transitions to crown fire. In combination with measured stand data and assumed environmental conditions, reasonable estimates of foliar moisture content are necessary to determine and justify silvicultural targets for canopy fuels management strategies. FMC values reported...
Jin, Yi; Qian, Hong; Yu, Mingjian
2015-01-01
Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.
Jin, Yi; Qian, Hong; Yu, Mingjian
2015-01-01
Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate. PMID:26098916
NASA Astrophysics Data System (ADS)
Storck, Pascal; Lettenmaier, Dennis P.; Bolton, Susan M.
2002-11-01
The results of a 3 year field study to observe the processes controlling snow interception by forest canopies and under canopy snow accumulation and ablation in mountain maritime climates are reported. The field study was further intended to provide data to develop and test models of forest canopy effects on beneath-canopy snowpack accumulation and melt and the plot and stand scales. Weighing lysimeters, cut-tree experiments, and manual snow surveys were deployed at a site in the Umpqua National Forest, Oregon (elevation 1200 m). A unique design for a weighing lysimeter was employed that allowed continuous measurements of snowpack evolution beneath a forest canopy to be taken at a scale unaffected by variability in canopy throughfall. Continuous observations of snowpack evolution in large clearings were made coincidentally with the canopy measurements. Large differences in snow accumulation and ablation were observed at sites beneath the forest canopy and in large clearings. These differences were not well described by simple relationships between the sites. Over the study period, approximately 60% of snowfall was intercepted by the canopy (up to a maximum of about 40 mm water equivalent). Instantaneous sublimation rates exceeded 0.5 mm per hour for short periods. However, apparent average sublimation from the intercepted snow was less than 1 mm per day and totaled approximately 100 mm per winter season. Approximately 72 and 28% of the remaining intercepted snow was removed as meltwater drip and large snow masses, respectively. Observed differences in snow interception rate and maximum snow interception capacity between Douglas fir (Pseudotsuga menziesii), white fir (Abies concolor), ponderosa pine (Pinus ponderosa), and lodgepole pine (Pinus contorta) were minimal.
Controls of streamwater dissolved inorganic carbon dynamics in a forested watershed
Finlay, J.C.
2003-01-01
I investigated controls of stream dissolved inorganic carbon (DIC) sources and cycling along a stream size and productivity gradient in a temperate forested watershed in northern California. Dissolved CO2 (CO2 (aq)) dynamics in heavily shaded streams contrasted strongly with those of larger, open canopied sites. In streams with canopy cover > 97%, CO2 (aq) was highest during baseflow periods (up to 540 ??M) and was negatively related to discharge. Effects of algal photosynthesis on CO2 (aq) were minimal and stream CO2 (aq) was primarily controlled by groundwater CO2 (aq) inputs and degassing losses to the atmosphere. In contrast to the small streams. CO2 (aq) in larger, open-canopied streams was often below atmospheric levels at midday during baseflow and was positively related to discharge. Here, stream CO2 (aq) was strongly influenced by the balance between autotrophic and heterotrophic processes. Dynamics of HCO3- were less complex. HCO3- and Ca2+ were positively correlated, negatively related to discharge, and showed no pattern with stream size. Stable carbon isotope ratios of DIC (i.e. ??13C DIC) increased with stream size and discharge, indicating contrasting sources of DIC to streams and rivers. During summer baseflows, ??13C DIC were 13C-depleted in the smallest streams (minimum of -17.7???) due to the influence of CO2 (aq) derived from microbial respiration and HCO3- derived from carbonate weathering. ??13C DIC were higher (up to -6.6???) in the larger streams and rivers due to invasion of atmospheric CO2 enhanced by algal CO2 (aq) uptake. While small streams were influenced by groundwater inputs, patterns in CO2 (aq) and evidence from stable isotopes demonstrate the strong influence of stream metabolism and CO2 exchange with the atmosphere on stream and river carbon cycles.
Development of a New Model for Accurate Prediction of Cloud Water Deposition on Vegetation
NASA Astrophysics Data System (ADS)
Katata, G.; Nagai, H.; Wrzesinsky, T.; Klemm, O.; Eugster, W.; Burkard, R.
2006-12-01
Scarcity of water resources in arid and semi-arid areas is of great concern in the light of population growth and food shortages. Several experiments focusing on cloud (fog) water deposition on the land surface suggest that cloud water plays an important role in water resource in such regions. A one-dimensional vegetation model including the process of cloud water deposition on vegetation has been developed to better predict cloud water deposition on the vegetation. New schemes to calculate capture efficiency of leaf, cloud droplet size distribution, and gravitational flux of cloud water were incorporated in the model. Model calculations were compared with the data acquired at the Norway spruce forest at the Waldstein site, Germany. High performance of the model was confirmed by comparisons of calculated net radiation, sensible and latent heat, and cloud water fluxes over the forest with measurements. The present model provided a better prediction of measured turbulent and gravitational fluxes of cloud water over the canopy than the Lovett model, which is a commonly used cloud water deposition model. Detailed calculations of evapotranspiration and of turbulent exchange of heat and water vapor within the canopy and the modifications are necessary for accurate prediction of cloud water deposition. Numerical experiments to examine the dependence of cloud water deposition on the vegetation species (coniferous and broad-leaved trees, flat and cylindrical grasses) and structures (Leaf Area Index (LAI) and canopy height) are performed using the presented model. The results indicate that the differences of leaf shape and size have a large impact on cloud water deposition. Cloud water deposition also varies with the growth of vegetation and seasonal change of LAI. We found that the coniferous trees whose height and LAI are 24 m and 2.0 m2m-2, respectively, produce the largest amount of cloud water deposition in all combinations of vegetation species and structures in the experiments.
Precipitation pulses and carbon fluxes in semiarid and arid ecosystems.
Huxman, Travis E; Snyder, Keirith A; Tissue, David; Leffler, A Joshua; Ogle, Kiona; Pockman, William T; Sandquist, Darren R; Potts, Daniel L; Schwinning, Susan
2004-10-01
In the arid and semiarid regions of North America, discrete precipitation pulses are important triggers for biological activity. The timing and magnitude of these pulses may differentially affect the activity of plants and microbes, combining to influence the C balance of desert ecosystems. Here, we evaluate how a "pulse" of water influences physiological activity in plants, soils and ecosystems, and how characteristics, such as precipitation pulse size and frequency are important controllers of biological and physical processes in arid land ecosystems. We show that pulse size regulates C balance by determining the temporal duration of activity for different components of the biota. Microbial respiration responds to very small events, but the relationship between pulse size and duration of activity likely saturates at moderate event sizes. Photosynthetic activity of vascular plants generally increases following relatively larger pulses or a series of small pulses. In this case, the duration of physiological activity is an increasing function of pulse size up to events that are infrequent in these hydroclimatological regions. This differential responsiveness of photosynthesis and respiration results in arid ecosystems acting as immediate C sources to the atmosphere following rainfall, with subsequent periods of C accumulation should pulse size be sufficient to initiate vascular plant activity. Using the average pulse size distributions in the North American deserts, a simple modeling exercise shows that net ecosystem exchange of CO2 is sensitive to changes in the event size distribution representative of wet and dry years. An important regulator of the pulse response is initial soil and canopy conditions and the physical structuring of bare soil and beneath canopy patches on the landscape. Initial condition influences responses to pulses of varying magnitude, while bare soil/beneath canopy patches interact to introduce nonlinearity in the relationship between pulse size and soil water response. Building on this conceptual framework and developing a greater understanding of the complexities of these eco-hydrologic systems may enhance our ability to describe the ecology of desert ecosystems and their sensitivity to global change.
NASA Astrophysics Data System (ADS)
Naudts, Kim; Ryder, James; McGrath, Matthew J.; Otto, Juliane; Chen, Yiying; Valade, Aude; Bellasen, Valentin; Ghattas, Josefine; Haverd, Vanessa; MacBean, Natasha; Maignan, Fabienne; Peylin, Philippe; Pinty, Bernard; Solyga, Didier; Vuichard, Nicolas; Luyssaert, Sebastiaan
2015-04-01
Since 70% of global forests are managed and forests impact the global carbon cycle and the energy exchange with the overlying atmosphere, forest management has the potential to mitigate climate change. Yet, none of the land surface models used in Earth system models, and therefore none of today's predictions of future climate, account for the interactions between climate and forest management. We addressed this gap in modelling capability by developing and parametrizing a version of the land surface model ORCHIDEE to simulate the biogeochemical and biophysical effects of forest management. The most significant changes between the new model called ORCHIDEE-CAN and the standard version of ORCHIDEE are the allometric-based allocation of carbon to leaf, root, wood, fruit and reserve pools; the transmittance, absorbance and reflectance of radiation within the canopy; and the vertical discretisation of the energy budget calculations. In addition, conceptual changes towards a better process representation occurred for the interaction of radiation with snow, the hydraulic architecture of plants, the representation of forest management and a numerical solution for the photosynthesis formalism of Farquhar, von Caemmerer and Berry. For consistency reasons, these changes were extensively linked throughout the code. Parametrization was revisited after introducing twelve new parameter sets that represent specific tree species or genera rather than a group of unrelated species, as is the case in widely used plant functional types. Performance of the new model was compared against the trunk and validated against independent spatially explicit data for basal area, tree height, canopy structure, GPP, albedo and evapotranspiration over Europe. For all tested variables ORCHIDEE-CAN outperformed the trunk regarding its ability to reproduce large-scale spatial patterns as well as their inter-annual variability over Europe. Depending on the data stream, ORCHIDEE-CAN had a 67 to 92% chance to reproduce the spatial and temporal variability of the validation data.
NASA Astrophysics Data System (ADS)
Naudts, K.; Ryder, J.; McGrath, M. J.; Otto, J.; Chen, Y.; Valade, A.; Bellasen, V.; Berhongaray, G.; Bönisch, G.; Campioli, M.; Ghattas, J.; De Groote, T.; Haverd, V.; Kattge, J.; MacBean, N.; Maignan, F.; Merilä, P.; Penuelas, J.; Peylin, P.; Pinty, B.; Pretzsch, H.; Schulze, E. D.; Solyga, D.; Vuichard, N.; Yan, Y.; Luyssaert, S.
2015-07-01
Since 70 % of global forests are managed and forests impact the global carbon cycle and the energy exchange with the overlying atmosphere, forest management has the potential to mitigate climate change. Yet, none of the land-surface models used in Earth system models, and therefore none of today's predictions of future climate, accounts for the interactions between climate and forest management. We addressed this gap in modelling capability by developing and parametrising a version of the ORCHIDEE land-surface model to simulate the biogeochemical and biophysical effects of forest management. The most significant changes between the new branch called ORCHIDEE-CAN (SVN r2290) and the trunk version of ORCHIDEE (SVN r2243) are the allometric-based allocation of carbon to leaf, root, wood, fruit and reserve pools; the transmittance, absorbance and reflectance of radiation within the canopy; and the vertical discretisation of the energy budget calculations. In addition, conceptual changes were introduced towards a better process representation for the interaction of radiation with snow, the hydraulic architecture of plants, the representation of forest management and a numerical solution for the photosynthesis formalism of Farquhar, von Caemmerer and Berry. For consistency reasons, these changes were extensively linked throughout the code. Parametrisation was revisited after introducing 12 new parameter sets that represent specific tree species or genera rather than a group of often distantly related or even unrelated species, as is the case in widely used plant functional types. Performance of the new model was compared against the trunk and validated against independent spatially explicit data for basal area, tree height, canopy structure, gross primary production (GPP), albedo and evapotranspiration over Europe. For all tested variables, ORCHIDEE-CAN outperformed the trunk regarding its ability to reproduce large-scale spatial patterns as well as their inter-annual variability over Europe. Depending on the data stream, ORCHIDEE-CAN had a 67 to 92 % chance to reproduce the spatial and temporal variability of the validation data.
NASA Astrophysics Data System (ADS)
Caldararu, S.; Kern, M.; Engel, J.; Zaehle, S.
2016-12-01
Despite recent advances in global vegetation models, we still lack the capacity to predict observed vegetation responses to experimental environmental changes such as elevated CO2, increased temperature or nutrient additions. In particular for elevated CO2 (FACE) experiments, studies have shown that this is related in part to the models' inability to represent plastic changes in nutrient use and biomass allocation. We present a newly developed vegetation model which aims to overcome these problems by including optimality processes to describe nitrogen (N) and carbon allocation within the plant. We represent nitrogen allocation to the canopy and within the canopy between photosynthetic components as an optimal processes which aims to maximize net primary production (NPP) of the plant. We also represent biomass investment into aboveground and belowground components (root nitrogen uptake , biological N fixation) as an optimal process that maximizes plant growth by considering plant carbon and nutrient demands as well as acquisition costs. The model can now represent plastic changes in canopy N content and chlorophyll and Rubisco concentrations as well as in belowground allocation both on seasonal and inter-annual time scales. Specifically, we show that under elevated CO2 conditions, the model predicts a lower optimal leaf N concentration, which, combined with a redistribution of leaf N between the Rubisco and chlorophyll components, leads to a continued NPP response under high CO2, where models with a fixed canopy stoichiometry would predicts a quick onset of N limitation. In general, our model aims to include physiologically-based plant processes and avoid arbitrarily imposed parameters and thresholds in order to improve our predictive capability of vegetation responses under changing environmental conditions.
Loranty, Michael M; Berner, Logan T; Taber, Eric D; Kropp, Heather; Natali, Susan M; Alexander, Heather D; Davydov, Sergey P; Zimov, Nikita S
2018-01-01
Arctic ecosystems are characterized by a broad range of plant functional types that are highly heterogeneous at small (~1-2 m) spatial scales. Climatic changes can impact vegetation distribution directly, and also indirectly via impacts on disturbance regimes. Consequent changes in vegetation structure and function have implications for surface energy dynamics that may alter permafrost thermal dynamics, and are therefore of interest in the context of permafrost related climate feedbacks. In this study we examine small-scale heterogeneity in soil thermal properties and ecosystem carbon and water fluxes associated with varying understory vegetation in open-canopy larch forests in northeastern Siberia. We found that lichen mats comprise 16% of understory vegetation cover on average in open canopy larch forests, and lichen abundance was inversely related to canopy cover. Relative to adjacent areas dominated by shrubs and moss, lichen mats had 2-3 times deeper permafrost thaw depths and surface soils warmer by 1-2°C in summer and less than 1°C in autumn. Despite deeper thaw depths, ecosystem respiration did not differ across vegetation types, indicating that autotrophic respiration likely dominates areas with shrubs and moss. Summertime net ecosystem exchange of CO2 was negative (i.e. net uptake) in areas with high shrub cover, while positive (i.e. net loss) in lichen mats and areas with less shrub cover. Our results highlight relationships between vegetation and soil thermal dynamics in permafrost ecosystems, and underscore the necessity of considering both vegetation and permafrost dynamics in shaping carbon cycling in permafrost ecosystems.
NASA Astrophysics Data System (ADS)
Miao, G.; Guan, K.; Yang, X.; Bernacchi, C.; DeLucia, E. H.; Cai, Y.; Masters, M. D.; Peng, B.
2016-12-01
Plants emitted photons of red and far-red light, called chlorophyll fluorescence, after sunlight absorption for photosynthesis. This solar-induced fluorescence (SIF) is generated simultaneously while plants actively photosynthesize. The link between photosynthesis and SIF resulting from the competition for the same excitation energy has long been investigated and applied for inferring the rate of photosynthesis. Recent development of continuous SIF observational technology is furthering the inferring potential as well as our understandings of fluctuations of SIF and photosynthesis with changes in environmental conditions. To better understand this photosynthesis-SIF link at multiple time scales and their relationships with environmental drivers, we deployed two newly developed tower-based SIF systems (FluoSpec) in a corn (Zea mays L., C4 plant) field and a soybean (Glycine max L., C3 plant) field at University of Illinois Energy Farm and conducted continuous near-surface SIF measurements at canopy scale from mid-growing season of 2016. Eddy covariance flux towers were installed in parallel at both sites for canopy-scale gas exchange measurements. Relationship between SIF and flux tower photosynthesis will be analyzed to derive the empirical models for photosynthesis retrieval from SIF signals. Preliminary results indicate that canopy SIF can reflect diurnal and seasonal dynamics of photosynthesis. Mechanistic analysis on SIF fluctuations and responses to environmental variations will be conducted as well for a closer look at mechanism of photosynthetic responses. Corn and soybean SIF and photosynthesis-SIF relationship will be compared to investigate the difference between C4 and C3 plants.
Modelling Pollutant Dispersion in a Street Network
NASA Astrophysics Data System (ADS)
Salem, N. Ben; Garbero, V.; Salizzoni, P.; Lamaison, G.; Soulhac, L.
2015-04-01
This study constitutes a further step in the analysis of the performances of a street network model to simulate atmospheric pollutant dispersion in urban areas. The model, named SIRANE, is based on the decomposition of the urban atmosphere into two sub-domains: the urban boundary layer, whose dynamics is assumed to be well established, and the urban canopy, represented as a series of interconnected boxes. Parametric laws govern the mass exchanges between the boxes under the assumption that the pollutant dispersion within the canopy can be fully simulated by modelling three main bulk transfer phenomena: channelling along street axes, transfers at street intersections, and vertical exchange between street canyons and the overlying atmosphere. Here, we aim to evaluate the reliability of the parametrizations adopted to simulate these phenomena, by focusing on their possible dependence on the external wind direction. To this end, we test the model against concentration measurements within an idealized urban district whose geometrical layout closely matches the street network represented in SIRANE. The analysis is performed for an urban array with a fixed geometry and a varying wind incidence angle. The results show that the model provides generally good results with the reference parametrizations adopted in SIRANE and that its performances are quite robust for a wide range of the model parameters. This proves the reliability of the street network approach in simulating pollutant dispersion in densely built city districts. The results also show that the model performances may be improved by considering a dependence of the wind fluctuations at street intersections and of the vertical exchange velocity on the direction of the incident wind. This opens the way for further investigations to clarify the dependence of these parameters on wind direction and street aspect ratios.
Barthel, Matthias; Sturm, Patrick; Knohl, Alexander
2011-09-01
When conducting (13)CO(2) plant-soil pulse labelling experiments, tracer material might cause unwanted side effects which potentially affect δ(13)C measurements of soil respiration (δ(13)C(SR)) and the subsequent data interpretation. First, when the soil matrix is not isolated from the atmosphere, contamination of the soil matrix with tracer material occurs leading to a physical back-diffusion from soil pores. Second, when using canopy chambers continuously, (13)CO(2) is permanently re-introduced into the atmosphere due to leaf respiration which then aids re-assimilation of tracer material by the canopy. Accordingly, two climate chamber experiments on European beech saplings (Fagus sylvatica L.) were conducted to evaluate the influence of soil matrix (13)CO(2) contamination and canopy recycling on soil (13)CO(2) efflux during (13)CO(2) plant-soil pulse labelling experiments. For this purpose, a combined soil/canopy chamber system was developed which separates soil and canopy compartments in order to (a) prevent diffusion of (13)C tracer into the soil chamber during a (13)CO(2) canopy pulse labelling and (b) study stable isotope processes in soil and canopy individually and independently. In combination with laser spectrometry measuring CO(2) isotopologue mixing ratios at a rate of 1 Hz, we were able to measure δ(13)C in canopy and soil at very high temporal resolution. For the soil matrix contamination experiment, (13)CO(2) was applied to bare soil, canopy only or, simultaneously, to soil and canopy of the beech trees. The obtained δ(13)C(SR) fluxes from the different treatments were then compared with respect to label re-appearance, first peak time and magnitude. By determining the δ(13)C(SR) decay of physical (13)CO(2) back-diffusion from bare soils (contamination), it was possible to separate biological and physical components in δ(13)C(SR) of a combined flux of both. A second pulse labelling experiment, with chambers permanently enclosing the canopy, revealed that (13)CO(2) recycling at canopy level had no effect on δ(13)C(SR) dynamics.
Modeling Environmental Controls on Tree Water Use at Different Temporal scales
NASA Astrophysics Data System (ADS)
Guan, H.; Wang, H.; Simmons, C. T.
2014-12-01
Vegetation covers 70% of land surface, significantly influencing water and carbon exchange between land surface and the atmosphere. Vegetation transpiration (Et) contributes 80% of the global terrestrial evapotranspiration, making an adequate illustration of how important vegetation is to any hydrological or climatological applications. Transpiration can be estimated through upscaling from sap flow measurements on selected trees. Alternatively, transpiration (or tree water use for forests) can be correlated with environmental variables or estimated in land surface simulations in which a canopy conductance (gc) model is often used. Transpiration and canopy conductance are constrained by supply and demand control factors. Some previous studies estimated Et and gc considering the stresses from both the supply (soil water condition) and demand (e.g. temperature, vapor pressure deficit, solar radiation) factors, while some only considered the demand controls. In this study, we examined the performance of two types of models at daily and half-hourly scales for transpiration and canopy conductance modelling based on a native species in South Australia. The results show that the significance of soil water condition for Et and gc modelling varies with time scales. The model parameter values also vary across time scales. This result calls for attention in choosing models and parameter values for soil-plant-atmosphere continuum and land surface modeling.
NASA Technical Reports Server (NTRS)
Bakwin, Peter S.; Wofsy, Steven C.; Fan, Song-Miao; Keller, Michael; Trumbore, Susan E.
1990-01-01
Emissions of NO from soils in the Amazon rain forest were measured at 66 locations using an enclosure technique, and continuous vertical profiles of NO and O3 were measured between the ground and 41-m altitude. Fluxes of NO averaged 8.9 (+ or - 1.5) x 10 to the 9th molecules/sq cm per sec from the dominant (yellow clay) soils of the region, with larger fluxes observed from adjacent white sand soils. Fluxes from clay soils were lower by more than a factor of 5 than fluxes observed during the dry season at a nearby site. Low soil emission rates were reflected in lower concentrations of NO at the top of the forest canopy in the wet season, only 30-50 parts per trillion by volume during the daytime. The measured fluxes are consistent with chemical mass balances for NO within the forest canopy, calculated from the NO and O3 profiles taken at night, and with observations of NO between 150 and 5000 m altitude. Measurements of NO emission rates from soil plots fertilized using NaNO3, NH4Cl, or sucrose indicated that a reductive pathway (denitrification) may have been primarily responsible for production of the NO released by both clay and sand soils.
Fracasso, Alessandra; Magnanini, Eugenio; Marocco, Adriano; Amaducci, Stefano
2017-01-01
Plant growth and productivity are strongly affected by limited water availability in drought prone environments. The current climate change scenario, characterized by long periods without precipitations followed by short but intense rainfall, forces plants to implement different strategies to cope with drought stress. Understanding how plants use water during periods of limited water availability is of primary importance to identify and select the best adapted genotypes to a certain environment. Two sorghum genotypes IS22330 and IS20351, previously characterized as drought tolerant and drought sensitive genotypes, were subjected to progressive drought stress through a dry-down experiment. A whole-canopy multi-chamber system was used to determine the in vivo water use efficiency (WUE). This system records whole-canopy net photosynthetic and transpiration rate of 12 chambers five times per hour allowing the calculation of whole-canopy instantaneous WUE daily trends. Daily net photosynthesis and transpiration rates were coupled with gene expression dynamics of five drought related genes. Under drought stress, the tolerant genotype increased expression level for all the genes analyzed, whilst the opposite trend was highlighted by the drought sensitive genotype. Correlation between gene expression dynamics and gas exchange measurements allowed to identify three genes as valuable candidate to assess drought tolerance in sorghum.
Fracasso, Alessandra; Magnanini, Eugenio; Marocco, Adriano; Amaducci, Stefano
2017-01-01
Plant growth and productivity are strongly affected by limited water availability in drought prone environments. The current climate change scenario, characterized by long periods without precipitations followed by short but intense rainfall, forces plants to implement different strategies to cope with drought stress. Understanding how plants use water during periods of limited water availability is of primary importance to identify and select the best adapted genotypes to a certain environment. Two sorghum genotypes IS22330 and IS20351, previously characterized as drought tolerant and drought sensitive genotypes, were subjected to progressive drought stress through a dry-down experiment. A whole-canopy multi-chamber system was used to determine the in vivo water use efficiency (WUE). This system records whole-canopy net photosynthetic and transpiration rate of 12 chambers five times per hour allowing the calculation of whole-canopy instantaneous WUE daily trends. Daily net photosynthesis and transpiration rates were coupled with gene expression dynamics of five drought related genes. Under drought stress, the tolerant genotype increased expression level for all the genes analyzed, whilst the opposite trend was highlighted by the drought sensitive genotype. Correlation between gene expression dynamics and gas exchange measurements allowed to identify three genes as valuable candidate to assess drought tolerance in sorghum. PMID:28620409
NASA Astrophysics Data System (ADS)
Tse, I.; Poindexter, C.; Variano, E. A.
2013-12-01
Among the numerous ecological benefits of restoring wetlands is carbon sequestration. As emergent vegetation thrive, atmospheric CO2 is removed and converted into biomass that gradually become additional soil. Forecasts and management for these systems rely on accurate knowledge of gas exchange between the atmosphere and the wetland surface waters. Our previous work showed that the rate of gas transfer across the air-water interface is affected by the amount of water column mixing caused by winds penetrating through the plant canopy. Here, we present the first direct measurements of wind-water momentum coupling made within a tule marsh. This work in Twitchell Island in the California Delta shows how momentum is imparted into the water from wind stress and that this wind stress interacts with the surface waters in an interesting way. By correlating three-component velocity signals from a sonic anemometer placed within the plant canopy with data from a novel Volumetric Particle Imager (VoPI) placed in the water, we measure the flux of kinetic energy through the plant canopy and the time-scale of the response. We also use this unique dataset to estimate the air-water drag coefficient using an adjoint method.
Belowground carbon trade among tall trees in a temperate forest.
Klein, Tamir; Siegwolf, Rolf T W; Körner, Christian
2016-04-15
Forest trees compete for light and soil resources, but photoassimilates, once produced in the foliage, are not considered to be exchanged between individuals. Applying stable carbon isotope labeling at the canopy scale, we show that carbon assimilated by 40-meter-tall spruce is traded over to neighboring beech, larch, and pine via overlapping root spheres. Isotope mixing signals indicate that the interspecific, bidirectional transfer, assisted by common ectomycorrhiza networks, accounted for 40% of the fine root carbon (about 280 kilograms per hectare per year tree-to-tree transfer). Although competition for resources is commonly considered as the dominant tree-to-tree interaction in forests, trees may interact in more complex ways, including substantial carbon exchange. Copyright © 2016, American Association for the Advancement of Science.
Raza, Shan-e-Ahmed; Smith, Hazel K.; Clarkson, Graham J. J.; Taylor, Gail; Thompson, Andrew J.; Clarkson, John; Rajpoot, Nasir M.
2014-01-01
Thermal imaging has been used in the past for remote detection of regions of canopy showing symptoms of stress, including water deficit stress. Stress indices derived from thermal images have been used as an indicator of canopy water status, but these depend on the choice of reference surfaces and environmental conditions and can be confounded by variations in complex canopy structure. Therefore, in this work, instead of using stress indices, information from thermal and visible light imagery was combined along with machine learning techniques to identify regions of canopy showing a response to soil water deficit. Thermal and visible light images of a spinach canopy with different levels of soil moisture were captured. Statistical measurements from these images were extracted and used to classify between canopies growing in well-watered soil or under soil moisture deficit using Support Vector Machines (SVM) and Gaussian Processes Classifier (GPC) and a combination of both the classifiers. The classification results show a high correlation with soil moisture. We demonstrate that regions of a spinach crop responding to soil water deficit can be identified by using machine learning techniques with a high accuracy of 97%. This method could, in principle, be applied to any crop at a range of scales. PMID:24892284
NASA Astrophysics Data System (ADS)
Bauerle, William L.; Daniels, Alex B.; Barnard, David M.
2014-05-01
Sensitivity of carbon uptake and water use estimates to changes in physiology was determined with a coupled photosynthesis and stomatal conductance ( g s) model, linked to canopy microclimate with a spatially explicit scheme (MAESTRA). The sensitivity analyses were conducted over the range of intraspecific physiology parameter variation observed for Acer rubrum L. and temperate hardwood C3 (C3) vegetation across the following climate conditions: carbon dioxide concentration 200-700 ppm, photosynthetically active radiation 50-2,000 μmol m-2 s-1, air temperature 5-40 °C, relative humidity 5-95 %, and wind speed at the top of the canopy 1-10 m s-1. Five key physiological inputs [quantum yield of electron transport ( α), minimum stomatal conductance ( g 0), stomatal sensitivity to the marginal water cost of carbon gain ( g 1), maximum rate of electron transport ( J max), and maximum carboxylation rate of Rubisco ( V cmax)] changed carbon and water flux estimates ≥15 % in response to climate gradients; variation in α, J max, and V cmax input resulted in up to ~50 and 82 % intraspecific and C3 photosynthesis estimate output differences respectively. Transpiration estimates were affected up to ~46 and 147 % by differences in intraspecific and C3 g 1 and g 0 values—two parameters previously overlooked in modeling land-atmosphere carbon and water exchange. We show that a variable environment, within a canopy or along a climate gradient, changes the spatial parameter effects of g 0, g 1, α, J max, and V cmax in photosynthesis- g s models. Since variation in physiology parameter input effects are dependent on climate, this approach can be used to assess the geographical importance of key physiology model inputs when estimating large scale carbon and water exchange.
Carbonyl sulfide exchange in a temperate loblolly pine forest grown under ambient and elevated CO2
NASA Astrophysics Data System (ADS)
White, M. L.; Zhou, Y.; Russo, R. S.; Mao, H.; Talbot, R.; Varner, R. K.; Sive, B. C.
2009-08-01
Vegetation, soil and ecosystem level carbonyl sulfide (COS) exchange was observed at Duke Forest, a temperate loblolly pine forest, grown under ambient (Ring 1, R1) and elevated (Ring 2, R2) carbon dioxide (CO2). During calm meteorological conditions, ambient COS mixing ratios at the top of the forest canopy followed a distinct diurnal pattern in both CO2 growth regimes, with maximum COS mixing ratios during the day (R1=380±4 pptv and R2=373±3 pptv, daytime mean ±standard error) and minimums at night (R1=340±6 pptv and R2=346±5 pptv, nighttime mean ±standard error) reflecting a significant nighttime sink. Nocturnal vegetative uptake (-11 to -21 pmol m-2 s-1, negative values indicate uptake from the atmosphere) dominated nighttime net ecosystem COS flux estimates (-10 to -30 pmol m-2 s-1) in both CO2 regimes. In comparison, soil uptake (-0.8 to -1.7 pmol m-2 s-1) was a minor component of net ecosystem COS flux. In both CO2 regimes, loblolly pine trees exhibited substantial COS consumption overnight (50% of daytime rates) that was independent of CO2 assimilation. This suggests current estimates of the global vegetative COS sink, which assume that COS and CO2 are consumed simultaneously, may need to be reevaluated. Ambient COS mixing ratios, species specific diurnal patterns of stomatal conductance, temperature and canopy position were the major factors influencing the vegetative COS flux at the branch level. While variability in branch level vegetative COS consumption measurements in ambient and enhanced CO2 environments could not be attributed to CO2 enrichment effects, estimates of net ecosystem COS flux based on ambient canopy mixing ratio measurements suggest less nighttime uptake of COS in R2, the CO2 enriched environment.
Carbonyl sulfide exchange in a temperate loblolly pine forest grown under ambient and elevated CO2
NASA Astrophysics Data System (ADS)
White, M. L.; Zhou, Y.; Russo, R. S.; Mao, H.; Talbot, R.; Varner, R. K.; Sive, B. C.
2010-01-01
Vegetation, soil and ecosystem level carbonyl sulfide (COS) exchange was observed at Duke Forest, a temperate loblolly pine forest, grown under ambient (Ring 1, R1) and elevated (Ring 2, R2) CO2. During calm meteorological conditions, ambient COS mixing ratios at the top of the forest canopy followed a distinct diurnal pattern in both CO2 growth regimes, with maximum COS mixing ratios during the day (R1=380±4 pptv and R2=373±3 pptv, daytime mean ± standard error) and minimums at night (R1=340±6 pptv and R2=346±5 pptv, nighttime mean ± standard error) reflecting a significant nighttime sink. Nocturnal vegetative uptake (-11 to -21 pmol m-2s-1, negative values indicate uptake from the atmosphere) dominated nighttime net ecosystem COS flux estimates (-10 to -30 pmol m-2s-1) in both CO2 regimes. In comparison, soil uptake (-0.8 to -1.7 pmol m-2 s-1) was a minor component of net ecosystem COS flux. In both CO2 regimes, loblolly pine trees exhibited substantial COS consumption overnight (50% of daytime rates) that was independent of CO2 assimilation. This suggests current estimates of the global vegetative COS sink, which assume that COS and CO2 are consumed simultaneously, may need to be reevaluated. Ambient COS mixing ratios, species specific diurnal patterns of stomatal conductance, temperature and canopy position were the major factors influencing the vegetative COS flux at the branch level. While variability in branch level vegetative COS consumption measurements in ambient and enhanced CO2 environments could not be attributed to CO2 enrichment effects, estimates of net ecosystem COS flux based on ambient canopy mixing ratio measurements suggest less nighttime uptake of COS in R2, the CO2 enriched environment.
Snyder, K A; Donovan, L A; James, J J; Tiller, R L; Richards, J H
2004-10-01
Plant species and functionally related species groups from arid and semi-arid habitats vary in their capacity to take up summer precipitation, acquire nitrogen quickly after summer precipitation, and subsequently respond with ecophysiological changes (e.g. water and nitrogen relations, gas exchange). For species that respond ecophysiologically, the use of summer precipitation is generally assumed to affect long-term plant growth and thus alter competitive interactions that structure plant communities and determine potential responses to climate change. We assessed ecophysiological and growth responses to large short-term irrigation pulses over one to three growing seasons for several widespread Great Basin and northern Mojave Desert shrub species: Chrysothamnus nauseosus, Sarcobatus vermiculatus, Atriplex confertifolia, and A. parryi. We compared control and watered plants in nine case studies that encompassed adults of all four species, juveniles for three of the species, and two sites for two of the species. In every comparison, plants used summer water pulses to improve plant water status or increase rates of functioning as indicated by other ecophysiological characters. Species and life history stage responses of ecophysiological parameters (leaf N, delta15N, delta13C, gas exchange, sap flow) were consistent with several previous short-term studies. However, use of summer water pulses did not affect canopy growth in eight out of nine comparisons, despite the range of species, growth stages, and site conditions. Summer water pulses affected canopy growth only for C. nauseosus adults. The general lack of growth effects for these species might be due to close proximity of groundwater at these sites, co-limitation by nutrients, or inability to respond due to phenological canalization. An understanding of the connections between short-term ecophysiological responses and growth, for different habitats and species, is critical for determining the significance of summer precipitation for desert community dynamics.
Modeling ozone uptake by urban and peri-urban forest: a case study in the Metropolitan City of Rome.
Fusaro, Lina; Mereu, Simone; Salvatori, Elisabetta; Agliari, Elena; Fares, Silvano; Manes, Fausto
2018-03-01
Urban and peri-urban forests are green infrastructures (GI) that play a substantial role in delivering ecosystem services such as the amelioration of air quality by the removal of air pollutants, among which is ozone (O 3 ), which is the most harmful pollutant in Mediterranean metropolitan areas. Models may provide a reliable estimate of gas exchanges between vegetation and atmosphere and are thus a powerful tool to quantify and compare O 3 removal in different contexts. The present study modeled the O 3 stomatal uptake at canopy level of an urban and a peri-urban forest in the Metropolitan City of Rome in two different years. Results show different rates of O 3 fluxes between the two forests, due to different exposure to the pollutant, management practice effects on forest structure and functionality, and environmental conditions, namely, different stressors affecting the gas exchange rates of the two GIs. The periodic components of the time series calculated by means of the spectral analysis show that seasonal variation of modeled canopy transpiration is driven by precipitation in peri-urban forests, whereas in the urban forest seasonal variations are driven by vapor pressure deficit of ambient air. Moreover, in the urban forest high water availability during summer months, owing to irrigation practice, leads to an increase in O 3 uptake, thus suggesting that irrigation may enhance air phytoremediation in urban areas.
Moss Mediates the Influence of Shrub Species on Soil Properties and Processes in Alpine Tundra.
Bueno, C Guillermo; Williamson, Scott N; Barrio, Isabel C; Helgadóttir, Ágústa; HiK, David S
2016-01-01
In tundra ecosystems, bryophytes influence soil processes directly and indirectly through interactions with overstory shrub species. We experimentally manipulated moss cover and measured seasonal soil properties and processes under two species of deciduous shrubs with contrasting canopy structures, Salix planifolia pulchra and Betula glandulosa-nana complex. Soil properties (seasonal temperature, moisture and C:N ratios) and processes (seasonal litter decomposition and soil respiration) were measured over twelve months. Shrub species identity had the largest influence on summer soil temperatures and soil respiration rates, which were higher under Salix canopies. Mosses were associated with lower soil moisture irrespective of shrub identity, but modulated the effects of shrubs on winter soil temperatures and soil C:N ratios so that moss cover reduced differences in soil winter temperatures between shrub species and reduced C:N ratios under Betula but not under Salix canopies. Our results suggest a central role of mosses in mediating soil properties and processes, with their influence depending on shrub species identity. Such species-dependent effects need to be accounted for when forecasting vegetation dynamics under ongoing environmental changes.
Moss Mediates the Influence of Shrub Species on Soil Properties and Processes in Alpine Tundra
Williamson, Scott N.; Barrio, Isabel C.; Helgadóttir, Ágústa; HiK, David S.
2016-01-01
In tundra ecosystems, bryophytes influence soil processes directly and indirectly through interactions with overstory shrub species. We experimentally manipulated moss cover and measured seasonal soil properties and processes under two species of deciduous shrubs with contrasting canopy structures, Salix planifolia pulchra and Betula glandulosa-nana complex. Soil properties (seasonal temperature, moisture and C:N ratios) and processes (seasonal litter decomposition and soil respiration) were measured over twelve months. Shrub species identity had the largest influence on summer soil temperatures and soil respiration rates, which were higher under Salix canopies. Mosses were associated with lower soil moisture irrespective of shrub identity, but modulated the effects of shrubs on winter soil temperatures and soil C:N ratios so that moss cover reduced differences in soil winter temperatures between shrub species and reduced C:N ratios under Betula but not under Salix canopies. Our results suggest a central role of mosses in mediating soil properties and processes, with their influence depending on shrub species identity. Such species-dependent effects need to be accounted for when forecasting vegetation dynamics under ongoing environmental changes. PMID:27760156
Use of ground-based radiometers for L-Band Freeze/Thaw retrieval in a boreal forest site
NASA Astrophysics Data System (ADS)
Roy, A.; Sonnentag, O.; Derksen, C.; Toose, P.; Pappas, C.; Mavrovic, A.; El Amine, M.; Royer, A.; Berg, A. A.; Rowlandson, T. L.; Barr, A.; Black, T. A.
2017-12-01
The boreal forest is the second largest land biome in the world and thus plays a major role in the global and regional climate systems. The extent, timing and duration of the seasonal freeze/thaw (F/T) state influences vegetation developmental stages (phenology) and, consequently, constitutes an important control on how boreal forest ecosystems exchange carbon, water and energy with the atmosphere. Recently, new L-Band satellite-derived F/T information has become available. However, disentangling the seasonally differing contributions from forest overstory and understory vegetation, and the ground surface to the satellite signal remains challenging. Here we present results from an ongoing campaign with two L-Band surface-based radiometers (SBR) installed on a micrometeorological tower at the Southern Old Black Spruce site (53.99°N / 105.12°W) in central Saskatchewan. One radiometer unit is installed on top of the tower viewing the multi-layer vegetation canopy from above. A second radiometer unit is installed within the multi-layer canopy, viewing the understory and the ground surface only. The objectives of our study are to (i) disentangle the L-Band F/T signal contribution of boreal forest overstory from the combined understory and ground surface contribution, and (ii) link the L-Band F/T signal to related boreal forest structural and functional characteristics. Analysis of these radiometer measurements made from September to November 2016 shows that when the ground surface is thawed, the main contributor to both radiometer signals is soil moisture. The Pearson correlation coefficient between brightness temperature (TB) at vertical polarization (V-pol) and soil permittivity is 0.79 for the radiometer above the canopy and 0.74 for the radiometer below the canopy. Under cold conditions when the soil was thawed (snow insulation) and the trees were frozen (below 0°C), TB at V-pol is negatively correlated with tree permittivity. The freezing tree contribution to the L-Band signal is however confirmed with L-Band coaxial probe measurements that show significant changes in tree L-Band permittivity when the tree temperature falls below 0 °C. This study will help develop freeze/thaw product and ecosystemic processes in boreal forest from satellite based remote sensing.
Shi, Ling; Zhang, Junying; Cheng, Jue; Wang, Xiaodong
2018-01-01
This paper reports a new route to synthesize calcium carbonate (CaCO3)-based nanoscale ionic materials (NIMs) via an in situ formation method to form the CaCO3 nanoparticles with a polysiloxane quaternary ammonium salt (PQAC) corona (PQAC-CaCO3 nanoparticles), followed by an ionic exchange reaction to fabricate a poly(ethylene glycol)-tailed sulfonate anion (NPEP) canopy. The chemical compositions and structures of the CaCO3-based NIMs synthesized in this work were confirmed by Fourier-transform infrared spectroscopy and solid-state 13C NMR spectroscopy. Transmission electron microscopic observation indicated that the CaCO3-based NIMs presented a rhombohedral shape with a well-defined core-shell structure, and they also obtained an NPEP canopy with a thickness of 4–6 nm. X-ray powder diffraction investigation confirmed that the CaCO3 inner core had a calcite crystalline structure, whereas the NPEP canopy was amorphous. The NPEP canopy was found to show a characteristic crystallization–melting behaviour in the presence of the ion bonding with PQAC-CaCO3 nanoparticles according to the characterization of differential scanning calorimetry. Thermogravimetric analysis indicated that the CaCO3-based NIMs achieved a high content of NPEP canopy as well as an improvement in thermal stability owing to the ion-bonding effect. Most of all, the CaCO3-based NIMs demonstrated a liquid-like behaviour above the critical temperature in the absence of solvent. Moreover, the CaCO3-based NIMs also showed a relatively high electrical conductivity with a temperature dependency due to the ionic conductive effect. This work will provide a more feasible and energy-saving methodology for the preparation of CaCO3-based NIMs to promote their industrialization and extensive applications. PMID:29410797
Pangle, Robert E; Limousin, Jean-Marc; Plaut, Jennifer A; Yepez, Enrico A; Hudson, Patrick J; Boutz, Amanda L; Gehres, Nathan; Pockman, William T; McDowell, Nate G
2015-04-01
Plant hydraulic conductance (k s) is a critical control on whole-plant water use and carbon uptake and, during drought, influences whether plants survive or die. To assess long-term physiological and hydraulic responses of mature trees to water availability, we manipulated ecosystem-scale water availability from 2007 to 2013 in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) woodland. We examined the relationship between k s and subsequent mortality using more than 5 years of physiological observations, and the subsequent impact of reduced hydraulic function and mortality on total woody canopy transpiration (E C) and conductance (G C). For both species, we observed significant reductions in plant transpiration (E) and k s under experimentally imposed drought. Conversely, supplemental water additions increased E and k s in both species. Interestingly, both species exhibited similar declines in k s under the imposed drought conditions, despite their differing stomatal responses and mortality patterns during drought. Reduced whole-plant k s also reduced carbon assimilation in both species, as leaf-level stomatal conductance (g s) and net photosynthesis (A n) declined strongly with decreasing k s. Finally, we observed that chronically low whole-plant k s was associated with greater canopy dieback and mortality for both piñon and juniper and that subsequent reductions in woody canopy biomass due to mortality had a significant impact on both daily and annual canopy E C and G C. Our data indicate that significant reductions in k s precede drought-related tree mortality events in this system, and the consequence is a significant reduction in canopy gas exchange and carbon fixation. Our results suggest that reductions in productivity and woody plant cover in piñon-juniper woodlands can be expected due to reduced plant hydraulic conductance and increased mortality of both piñon pine and juniper under anticipated future conditions of more frequent and persistent regional drought in the southwestern United States.
Pangle, Robert E; Limousin, Jean-Marc; Plaut, Jennifer A; Yepez, Enrico A; Hudson, Patrick J; Boutz, Amanda L; Gehres, Nathan; Pockman, William T; McDowell, Nate G
2015-01-01
Plant hydraulic conductance (ks) is a critical control on whole-plant water use and carbon uptake and, during drought, influences whether plants survive or die. To assess long-term physiological and hydraulic responses of mature trees to water availability, we manipulated ecosystem-scale water availability from 2007 to 2013 in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) woodland. We examined the relationship between ks and subsequent mortality using more than 5 years of physiological observations, and the subsequent impact of reduced hydraulic function and mortality on total woody canopy transpiration (EC) and conductance (GC). For both species, we observed significant reductions in plant transpiration (E) and ks under experimentally imposed drought. Conversely, supplemental water additions increased E and ks in both species. Interestingly, both species exhibited similar declines in ks under the imposed drought conditions, despite their differing stomatal responses and mortality patterns during drought. Reduced whole-plant ks also reduced carbon assimilation in both species, as leaf-level stomatal conductance (gs) and net photosynthesis (An) declined strongly with decreasing ks. Finally, we observed that chronically low whole-plant ks was associated with greater canopy dieback and mortality for both piñon and juniper and that subsequent reductions in woody canopy biomass due to mortality had a significant impact on both daily and annual canopy EC and GC. Our data indicate that significant reductions in ks precede drought-related tree mortality events in this system, and the consequence is a significant reduction in canopy gas exchange and carbon fixation. Our results suggest that reductions in productivity and woody plant cover in piñon–juniper woodlands can be expected due to reduced plant hydraulic conductance and increased mortality of both piñon pine and juniper under anticipated future conditions of more frequent and persistent regional drought in the southwestern United States. PMID:25937906
Effects of trees on momentum exchange within and above a real urban environment
NASA Astrophysics Data System (ADS)
Salesky, S.; Giometto, M. G.; Christen, A.; Egli, P. E.; Schmid, M. F.; Tooke, T. R.; Coops, N. C.; Parlange, M. B.
2017-12-01
Large-eddy simulations (LES) are used to gain insight into the effects of trees on momentum transfer rates characterizing the atmosphere within and above a real urban canopy. Several areas are considered that are part of a neighbourhood in the city of Vancouver, BC, Canada where a small fraction of trees are taller than buildings. In this area, eight years of continuous wind and turbulence measurements are available from a 30 m meteorological tower. Buildings and vegetation geometries are obtained from airborne light detection and ranging (LiDAR) data. In the LES algorithm, buildings are accounted through an immersed boundary method, whereas vegetation is parameterized via a location-specific leaf area density. LES are performed varying wind direction and leaf area densities. Surface roughness lengths (z0) from both LES and tower measurements are sensitive to the 0 ≤ LAI/λ < 3 parameter, where LAI is the leaf area index and λ is the frontal area fraction of buildings characterizing a given canopy. For instance, tower measurements predict a 19% seasonal increase in z0, slightly lower than the 27% increase featured by LES for the most representative canopy (leaves-off LAI/λ = 0.74, leaves-on LAI/λ = 2.24). Removing vegetation from such a canopy would cause a dramatic drop of approximately 50% in z0 when compared to the reference summer value. The momentum displacement height (d) from LES also consistently increases as LAI/λ increases, due to the disproportionate amount of drag that the (few) relatively taller trees exert on the flow. Within the urban canopy, the effects of trees are twofold: on one hand, they act as a direct momentum sink for the mean flow; on the other, they reduce downward turbulent transport of high-momentum fluid, significantly reducing the wind intensity at the heights where people live and buildings consume energy.
Sarlikioti, V; de Visser, P H B; Marcelis, L F M
2011-04-01
At present most process-based models and the majority of three-dimensional models include simplifications of plant architecture that can compromise the accuracy of light interception simulations and, accordingly, canopy photosynthesis. The aim of this paper is to analyse canopy heterogeneity of an explicitly described tomato canopy in relation to temporal dynamics of horizontal and vertical light distribution and photosynthesis under direct- and diffuse-light conditions. Detailed measurements of canopy architecture, light interception and leaf photosynthesis were carried out on a tomato crop. These data were used for the development and calibration of a functional-structural tomato model. The model consisted of an architectural static virtual plant coupled with a nested radiosity model for light calculations and a leaf photosynthesis module. Different scenarios of horizontal and vertical distribution of light interception, incident light and photosynthesis were investigated under diffuse and direct light conditions. Simulated light interception showed a good correspondence to the measured values. Explicitly described leaf angles resulted in higher light interception in the middle of the plant canopy compared with fixed and ellipsoidal leaf-angle distribution models, although the total light interception remained the same. The fraction of light intercepted at a north-south orientation of rows differed from east-west orientation by 10 % on winter and 23 % on summer days. The horizontal distribution of photosynthesis differed significantly between the top, middle and lower canopy layer. Taking into account the vertical variation of leaf photosynthetic parameters in the canopy, led to approx. 8 % increase on simulated canopy photosynthesis. Leaf angles of heterogeneous canopies should be explicitly described as they have a big impact both on light distribution and photosynthesis. Especially, the vertical variation of photosynthesis in canopy is such that the experimental approach of photosynthesis measurements for model parameterization should be revised.
Sarlikioti, V.; de Visser, P. H. B.; Marcelis, L. F. M.
2011-01-01
Background and Aims At present most process-based models and the majority of three-dimensional models include simplifications of plant architecture that can compromise the accuracy of light interception simulations and, accordingly, canopy photosynthesis. The aim of this paper is to analyse canopy heterogeneity of an explicitly described tomato canopy in relation to temporal dynamics of horizontal and vertical light distribution and photosynthesis under direct- and diffuse-light conditions. Methods Detailed measurements of canopy architecture, light interception and leaf photosynthesis were carried out on a tomato crop. These data were used for the development and calibration of a functional–structural tomato model. The model consisted of an architectural static virtual plant coupled with a nested radiosity model for light calculations and a leaf photosynthesis module. Different scenarios of horizontal and vertical distribution of light interception, incident light and photosynthesis were investigated under diffuse and direct light conditions. Key Results Simulated light interception showed a good correspondence to the measured values. Explicitly described leaf angles resulted in higher light interception in the middle of the plant canopy compared with fixed and ellipsoidal leaf-angle distribution models, although the total light interception remained the same. The fraction of light intercepted at a north–south orientation of rows differed from east–west orientation by 10 % on winter and 23 % on summer days. The horizontal distribution of photosynthesis differed significantly between the top, middle and lower canopy layer. Taking into account the vertical variation of leaf photosynthetic parameters in the canopy, led to approx. 8 % increase on simulated canopy photosynthesis. Conclusions Leaf angles of heterogeneous canopies should be explicitly described as they have a big impact both on light distribution and photosynthesis. Especially, the vertical variation of photosynthesis in canopy is such that the experimental approach of photosynthesis measurements for model parameterization should be revised. PMID:21355008
Models for estimation and simulation of crown and canopy cover
John D. Shaw
2005-01-01
Crown width measurements collected during Forest Inventory and Analysis and Forest Health Monitoring surveys are being used to develop individual tree crown width models and plot-level canopy cover models for species and forest types in the Intermountain West. Several model applications are considered in the development process, including remote sensing of plot...
Automated mosaicking of sub-canopy video incorporating ancillary data
E. Kee; N.E. Clark; A.L. Abbott
2002-01-01
This work investigates the process of mosaicking overlapping video frames of individual tree stems in sub-canopy scenes captured with a portable multisensor instrument. The robust commercial computer vision systems that are in use today typically rely on precisely controlled conditions. Inconsistent lighting as well as image distortion caused by varying interior and...
NASA Astrophysics Data System (ADS)
Jones, Matthew O.; Kimball, John S.; Nemani, Ramakrishna R.
2014-12-01
Amazon forests represent nearly half of all tropical vegetation biomass and, through photosynthesis and respiration, annually process more than twice the amount of estimated carbon (CO2) from fossil fuel emissions. Yet the seasonality of Amazon canopy cover, and the extent to which seasonal fluctuations in water availability and photosynthetically available radiation influence these processes, is still poorly understood. Implementing six remotely sensed data sets spanning nine years (2003-2011), with reported field and flux tower data, we show that southern equatorial Amazon forests exhibit a distinctive seasonal signal. Seasonal timing of water availability, canopy biomass growth and net leaf flush are asynchronous in regions with short dry seasons and become more synchronous across a west-to-east longitudinal moisture gradient of increasing dry season. Forest cover is responsive to seasonal disparities in both water and solar radiation availability, temporally adjusting net leaf flush to maximize use of these generally abundant resources, while reducing drought susceptibility. An accurate characterization of this asynchronous behavior allows for improved understanding of canopy phenology across contiguous tropical forests and their sensitivity to climate variability and drought.
Kokaly, R.F.; Asner, Gregory P.; Ollinger, S.V.; Martin, M.E.; Wessman, C.A.
2009-01-01
For two decades, remotely sensed data from imaging spectrometers have been used to estimate non-pigment biochemical constituents of vegetation, including water, nitrogen, cellulose, and lignin. This interest has been motivated by the important role that these substances play in physiological processes such as photosynthesis, their relationships with ecosystem processes such as litter decomposition and nutrient cycling, and their use in identifying key plant species and functional groups. This paper reviews three areas of research to improve the application of imaging spectrometers to quantify non-pigment biochemical constituents of plants. First, we examine recent empirical and modeling studies that have advanced our understanding of leaf and canopy reflectance spectra in relation to plant biochemistry. Next, we present recent examples of how spectroscopic remote sensing methods are applied to characterize vegetation canopies, communities and ecosystems. Third, we highlight the latest developments in using imaging spectrometer data to quantify net primary production (NPP) over large geographic areas. Finally, we discuss the major challenges in quantifying non-pigment biochemical constituents of plant canopies from remotely sensed spectra.
Gargallo-Garriga, Albert; Wright, S Joseph; Sardans, Jordi; Pérez-Trujillo, Míriam; Oravec, Michal; Večeřová, Kristýna; Urban, Otmar; Fernández-Martínez, Marcos; Parella, Teodor; Peñuelas, Josep
2017-01-01
Tropical rainforests are frequently limited by soil nutrient availability. However, the response of the metabolic phenotypic plasticity of trees to an increase of soil nutrient availabilities is poorly understood. We expected that increases in the ability of a nutrient that limits some plant processes should be detected by corresponding changes in plant metabolome profile related to such processes. We studied the foliar metabolome of saplings of three abundant tree species in a 15 year field NPK fertilization experiment in a Panamanian rainforest. The largest differences were among species and explained 75% of overall metabolome variation. The saplings of the large canopy species, Tetragastris panamensis, had the lowest concentrations of all identified amino acids and the highest concentrations of most identified secondary compounds. The saplings of the "mid canopy" species, Alseis blackiana, had the highest concentrations of amino acids coming from the biosynthesis pathways of glycerate-3P, oxaloacetate and α-ketoglutarate, and the saplings of the low canopy species, Heisteria concinna, had the highest concentrations of amino acids coming from the pyruvate synthesis pathways. The changes in metabolome provided strong evidence that different nutrients limit different species in different ways. With increasing P availability, the two canopy species shifted their metabolome towards larger investment in protection mechanisms, whereas with increasing N availability, the sub-canopy species increased its primary metabolism. The results highlighted the proportional distinct use of different nutrients by different species and the resulting different metabolome profiles in this high diversity community are consistent with the ecological niche theory.
NASA Astrophysics Data System (ADS)
Martin, Kael A.; Van Stan, John T.; Dickerson-Lange, Susan E.; Lutz, James A.; Berman, Jeffrey W.; Gersonde, Rolf; Lundquist, Jessica D.
2013-06-01
Tree canopy snow interception is a significant hydrological process, capable of removing up to 60% of snow from the ground snowpack. Our understanding of canopy interception has been limited by our ability to measure whole canopy water storage in an undisturbed forest setting. This study presents a relatively inexpensive technique for directly measuring snow canopy water storage using an interceptometer, adapted from Friesen et al. (2008). The interceptometer is composed of four linear motion position sensors distributed evenly around the tree trunk. We incorporate a trunk laser-mapping installation method for precise sensor placement to reduce signal error due to sensor misalignment. Through calibration techniques, the amount of canopy snow required to produce the measured displacements can be calculated. We demonstrate instrument performance on a western hemlock (Tsuga heterophylla) for a snow interception event in November 2011. We find a snow capture efficiency of 83 ± 15% of accumulated ground snowfall with a maximum storage capacity of 50 ± 8 mm snow water equivalent (SWE). The observed interception event is compared to simulated interception, represented by the variable infiltration capacity (VIC) hydrologic model. The model generally underreported interception magnitude by 33% using a leaf area index (LAI) of 5 and 16% using an LAI of 10. The interceptometer captured intrastorm accumulation and melt rates up to 3 and 0.75 mm SWE h-1, respectively, which the model failed to represent. While further implementation and validation is necessary, our preliminary results indicate that forest interception magnitude may be underestimated in maritime areas.
NASA Astrophysics Data System (ADS)
Van Stan, J. T., II; Pypker, T. G.
2015-12-01
Interactions between precipitation and forest canopy elements (bark, leaves, and epiphytes) control the quantity, spatiotemporal patterning, and the chemical concentration, character and constituency of precipitation to soils. Canopy epiphytes are an element that exerts a range of storm-related hydrological and biogeochemical effects due to their diversity of morphological traits and nutrient acquisition mechanisms. We reviewed and evaluated the state of knowledge regarding epiphyte interactions with precipitation partitioning (into interception loss, throughfall, and stemflow) and the chemical alteration of net precipitation fluxes (throughfall and stemflow). As epiphyte species are quite diverse, this review categorized findings by common paraphyletic groups: lichens, bryophytes, and vascular epiphytes. Of these groups, vascular epiphytes have received the least attention and lichens the most. In general, epiphytes decrease throughfall and stemflow and increase interception loss. Epiphytes alter the spatiotemporal pattern of throughfall and increase the overall latent heat fluxes from the canopy. Epiphytes alter biogeochemical processes by impacting the transfer of solutes through the canopy; however, the change in solute concentration varies with epiphyte type and chemical species. We discuss several important knowledge gaps across all epiphyte groups. We also explore innovative methods that currently exist to confront these knowledge gaps and past techniques applied to gain our current understanding. Future research addressing the listed deficiencies will improve our knowledge of epiphyte roles in water and biogeochemical processes coupled within forest canopies—processes crucial to supporting microbe, plant, vertebrate and invertebrate communities within individual epiphytes/epiphyte assemblages, host trees, and even the forest ecosystem as a whole.
A radiosity model for heterogeneous canopies in remote sensing
NASA Astrophysics Data System (ADS)
GarcíA-Haro, F. J.; Gilabert, M. A.; Meliá, J.
1999-05-01
A radiosity model has been developed to compute bidirectional reflectance from a heterogeneous canopy approximated by an arbitrary configuration of plants or clumps of vegetation, placed on the ground surface in a prescribed manner. Plants are treated as porous cylinders formed by aggregations of layers of leaves. This model explicitly computes solar radiation leaving each individual surface, taking into account multiple scattering processes between leaves and soil, and occlusion of neighboring plants. Canopy structural parameters adopted in this study have served to simplify the computation of the geometric factors of the radiosity equation, and thus this model has enabled us to simulate multispectral images of vegetation scenes. Simulated images have shown to be valuable approximations of satellite data, and then a sensitivity analysis to the dominant parameters of discontinuous canopies (plant density, leaf area index (LAI), leaf angle distribution (LAD), plant dimensions, soil optical properties, etc.) and scene (sun/ view angles and atmospheric conditions) has been undertaken. The radiosity model has let us gain a deep insight into the radiative regime inside the canopy, showing it to be governed by occlusion of incoming irradiance, multiple scattering of radiation between canopy elements and interception of upward radiance by leaves. Results have indicated that unlike leaf distribution, other structural parameters such as LAI, LAD, and plant dimensions have a strong influence on canopy reflectance. In addition, concepts have been developed that are useful to understand the reflectance behavior of the canopy, such as an effective LAI related to leaf inclination.
NASA Astrophysics Data System (ADS)
Ustin, S.; Roth, K. L.; Huesca, M.; Casas, A.; Adeline, K.; Drewry, D.; Koltunov, A.; Ramirez, C.
2015-12-01
Given the known heterogeneity in ecological processes within plant communities in California, we questioned whether the concept of conventional plant functional types (cPFTs) was adequate to characterize the functionality of the dominant species in these communities. We examined seasonal (spring, summer, fall) airborne AVIRIS and MASTER imagery collected during three years of progressive drought in California, and airborne LiDAR acquired once, for ecosystems that represent a wide range of plant functional types, from annual agriculture and herbaceous perennial wetlands, to forests and shrublands, including broadleaf deciduous and evergreen species and conifer species. These data were used to determine the extent to which changes in canopy chemistry could be detected, quantified, and related to leaf and canopy traits that are indicators of physiological functioning (water content, Leaf Mass Area, total C, N, and pigments (chlorophyll a, b, and carotenoids). At the canopy scale we measured leaf area index, and for forests — species, height, canopy area, DBH, deciduous or evergreen, broadleaf or needleleaf, and gap size. Strong correlations between leaf and canopy traits were predictable and quantifiable from spectroscopy data. Key structural properties of canopy height, biomass and complexity, a measure of spatial and vertical heterogeneity, were predicted by AVIRIS and validated against LiDAR data. Our data supports the hypothesis that optical sensors provide more detailed information about the distribution and variability in leaf and canopy traits related to plant functionality than cPFTs.
Remote sensing of sagebrush canopy nitrogen
Mitchell, Jessica J.; Glenn, Nancy F.; Sankey, Temuulen T.; Derryberry, DeWayne R.; Germino, Matthew J.
2012-01-01
This paper presents a combination of techniques suitable for remotely sensing foliar Nitrogen (N) in semiarid shrublands – a capability that would significantly improve our limited understanding of vegetation functionality in dryland ecosystems. The ability to estimate foliar N distributions across arid and semi-arid environments could help answer process-driven questions related to topics such as controls on canopy photosynthesis, the influence of N on carbon cycling behavior, nutrient pulse dynamics, and post-fire recovery. Our study determined that further exploration into estimating sagebrush canopy N concentrations from an airborne platform is warranted, despite remote sensing challenges inherent to open canopy systems. Hyperspectral data transformed using standard derivative analysis were capable of quantifying sagebrush canopy N concentrations using partial least squares (PLS) regression with an R2 value of 0.72 and an R2 predicted value of 0.42 (n = 35). Subsetting the dataset to minimize the influence of bare ground (n = 19) increased R2 to 0.95 (R2 predicted = 0.56). Ground-based estimates of canopy N using leaf mass per unit area measurements (LMA) yielded consistently better model fits than ground-based estimates of canopy N using cover and height measurements. The LMA approach is likely a method that could be extended to other semiarid shrublands. Overall, the results of this study are encouraging for future landscape scale N estimates and represent an important step in addressing the confounding influence of bare ground, which we found to be a major influence on predictions of sagebrush canopy N from an airborne platform.
Bidirectional Reflectance Modeling of Non-homogeneous Plant Canopies
NASA Technical Reports Server (NTRS)
Norman, J. M.
1984-01-01
Efforts to develop a three dimensional model to predict canopy, bidirectional reflectance for heterogenous plant stands using incident radiation and canopy structural descriptions as inputs are described. Utility programs were developed to cope with the complex output from the 3 dimensional model. In addition an attempt was made to define leaf and soil properties, which are appropriate to the mode, by measuring leaf and soil bidirectional reflectance distribution functions; since almost no data exist on these distributions. In the process it was realized that most models probably are using the wrong leaf spectral properties, and that off-nadir reflectance measurements are difficult to make because of non-Lambertian properties of reference surfaces. Also, in the visible wavebands, rough soil may not be distinguishable from canopies when viewed from above.
Snowy backgrounds enhance the absorption of visible light in forest canopies
NASA Astrophysics Data System (ADS)
Pinty, B.; Widlowski, J.-L.; Verstraete, M. M.; Andredakis, I.; Arino, O.; Clerici, M.; Kaminski, T.; Taberner, M.
2011-03-01
The fraction of radiation absorbed in the canopy depends on the amount and angular distribution of the solar irradiance reaching the top of the canopy as well as the fraction of this irradiance that is transmitted through the canopy gaps and reflected back to the vegetation by the background. This contribution shows that the presence of snow on forest floors enhances the fraction of absorbed Photosynthetically Active Radiation (PAR). A global analysis of satellite-derived products reveals that this enhancement affects evergreen and deciduous forests of the boreal zone. This snow-related effect may usefully contribute to the photosynthesis process in evergreen forests especially during spring time when radiation conditions are marginal but other physiological constraints (such as temperature) permit the necessary biochemical functions to take place.
A UAS-based remote sensing platform for crop water stress detection
NASA Astrophysics Data System (ADS)
Zhang, H.; Wang, D.; Ayars, J. E.
2014-12-01
The remote detection of water stress in a biofuel crop field was investigated using canopy temperature measurements. An experimental trial was set up in the central valley of Maui, Hawaii, comprising different sugarcane varieties and irrigation regimes. An unmanned aerial system (UAS) was equipped with a FLIR A615 thermal camera to acquire canopy temperature imagery. Images were mosaicked and processed to show spatial temperature difference of entire field. A weather station was installed in a full irrigation plot to collect meteorological parameters. The sensitivity of canopy to air temperature difference and crop water stress index were investigated on detecting cop water stress levels. The results showed that low irrigation level treatment plots resulted in higher canopy temperatures compared to the high irrigation level treatment plots. Canopy temperatures also showed differences in water stress in different sugarcane varieties. The study demonstrated the feasibility of UAS-based thermal method to quantify plant water status of sugar canes used for biofuel crops.
Canopy and physiological controls of GPP during drought and heat wave
NASA Astrophysics Data System (ADS)
Zhang, Yao; Xiao, Xiangming; Zhou, Sha; Ciais, Philippe; McCarthy, Heather; Luo, Yiqi
2016-04-01
Vegetation indices (VIs) derived from satellite reflectance measurements are often used as proxies of canopy activity to evaluate the impacts of drought and heat wave on gross primary production (GPP) through production efficiency models. However, GPP is also regulated by physiological processes that cannot be directly detected using reflectance measurements. This study analyzes the co-limitation of canopy and plant physiology (represented by VIs and climate anomalies, respectively) on GPP during the 2003 European summer drought and heat wave for 15 Euroflux sites. During the entire drought period, spatial pattern of GPP anomalies can be quantified by relative changes in VIs. We also find that GPP sensitivity to relative canopy changes is higher for nonforest ecosystems (1.81 ± 0.32%GPP/%enhanced vegetation index), while GPP sensitivity to physiological changes is higher for forest ecosystems (-0.18 ± 0.05 g C m-2 d-1/hPa). A conceptual model is further built to better illustrate the canopy and physiological controls on GPP during drought periods.
Sharwood, Robert E; Crous, Kristine Y; Whitney, Spencer M; Ellsworth, David S; Ghannoum, Oula
2017-02-01
Leaf-level photosynthetic processes and their environmental dependencies are critical for estimating CO2 uptake from the atmosphere. These estimates use biochemical-based models of photosynthesis that require accurate Rubisco kinetics. We investigated the effects of canopy position, elevated atmospheric CO2 [eC; ambient CO2 (aC)+240 ppm] and elevated air temperature (eT; ambient temperature (aT)+3 °C) on Rubisco content and activity together with the relationship between leaf N and Vcmax (maximal Rubisco carboxylation rate) of 7 m tall, soil-grown Eucalyptus globulus trees. The kinetics of E. globulus and tobacco Rubisco at 25 °C were similar. In vitro estimates of Vcmax derived from measures of E. globulus Rubisco content and kinetics were consistent, although slightly lower, than the in vivo rates extrapolated from gas exchange. In E. globulus, the fraction of N invested in Rubisco was substantially lower than for crop species and varied with treatments. Photosynthetic acclimation of E. globulus leaves to eC was underpinned by reduced leaf N and Rubisco contents; the opposite occurred in response to eT coinciding with growth resumption in spring. Our findings highlight the adaptive capacity of this key forest species to allocate leaf N flexibly to Rubisco and other photosynthetic proteins across differing canopy positions in response to future, warmer and elevated [CO2] climates. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Gonzalez-Meler, Miquel A; Rucks, Jessica S; Aubanell, Gerard
2014-09-01
Scaling up leaf processes to canopy/ecosystem level fluxes is critical for examining feedbacks between vegetation and climate. Collectively, studies from Biosphere 2 Laboratory have provided important insight of leaf-to-ecosystem investigations of multiple environmental parameters that were not before possible in enclosed or field studies. B2L has been a testing lab for the applicability of new technologies such as spectral approaches to detect spatial and temporal changes in photosynthesis within canopies, or for the development of cavity ring-down isotope applications for ecosystem evapotranspiration. Short and long term changes in atmospheric CO2, drought or temperature allowed for intensive investigation of the interactions between photosynthesis and leaf, soil and ecosystem respiration. Experiments conducted in the rainforest biome have provided some of the most comprehensive dataset to date on the effects of climate change variables on tropical ecosystems. Results from these studies have been later corroborated in natural rainforest ecosystems and have improved the predictive capabilities of models that now show increased resilience of tropics to climate change. Studies of temperature and CO2 effects on ecosystem respiration and its leaf and soil components have helped reconsider the use of simple first-order kinetics for characterizing respiration in models. The B2L also provided opportunities to quantify the rhizosphere priming effect, or establish the relationships between net primary productivity, atmospheric CO2 and isoprene emissions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Rastetter, Edward B; Williams, Mathew; Griffin, Kevin L; Kwiatkowski, Bonnie L; Tomasky, Gabrielle; Potosnak, Mark J; Stoy, Paul C; Shaver, Gaius R; Stieglitz, Marc; Hobbie, John E; Kling, George W
2010-07-01
Continuous time-series estimates of net ecosystem carbon exchange (NEE) are routinely made using eddy covariance techniques. Identifying and compensating for errors in the NEE time series can be automated using a signal processing filter like the ensemble Kalman filter (EnKF). The EnKF compares each measurement in the time series to a model prediction and updates the NEE estimate by weighting the measurement and model prediction relative to a specified measurement error estimate and an estimate of the model-prediction error that is continuously updated based on model predictions of earlier measurements in the time series. Because of the covariance among model variables, the EnKF can also update estimates of variables for which there is no direct measurement. The resulting estimates evolve through time, enabling the EnKF to be used to estimate dynamic variables like changes in leaf phenology. The evolving estimates can also serve as a means to test the embedded model and reconcile persistent deviations between observations and model predictions. We embedded a simple arctic NEE model into the EnKF and filtered data from an eddy covariance tower located in tussock tundra on the northern foothills of the Brooks Range in northern Alaska, USA. The model predicts NEE based only on leaf area, irradiance, and temperature and has been well corroborated for all the major vegetation types in the Low Arctic using chamber-based data. This is the first application of the model to eddy covariance data. We modified the EnKF by adding an adaptive noise estimator that provides a feedback between persistent model data deviations and the noise added to the ensemble of Monte Carlo simulations in the EnKF. We also ran the EnKF with both a specified leaf-area trajectory and with the EnKF sequentially recalibrating leaf-area estimates to compensate for persistent model-data deviations. When used together, adaptive noise estimation and sequential recalibration substantially improved filter performance, but it did not improve performance when used individually. The EnKF estimates of leaf area followed the expected springtime canopy phenology. However, there were also diel fluctuations in the leaf-area estimates; these are a clear indication of a model deficiency possibly related to vapor pressure effects on canopy conductance.
Integration of ALS and TLS for calibration and validation of LAI profiles from large footprint lidar
NASA Astrophysics Data System (ADS)
Armston, J.; Tang, H.; Hancock, S.; Hofton, M. A.; Dubayah, R.; Duncanson, L.; Fatoyinbo, T. E.; Blair, J. B.; Disney, M.
2016-12-01
The Global Ecosystem Dynamics Investigation (GEDI) is designed to provide measurements of forest vertical structure and above-ground biomass density (AGBD) over tropical and temperate regions. The GEDI is a multi-beam waveform lidar that will acquire transects of forest canopy vertical profiles in conditions of up to 99% canopy cover. These are used to produce a number of canopy height and profile metrics to model habitat suitability and AGBD. These metrics include vertical leaf area index (LAI) profiles, which require some pre-launch refinement of large-footprint waveform processing methods for separating canopy and ground returns and estimation of their reflectance. Previous research developments in modelling canopy gap probability to derive canopy and ground reflectance from waveforms have primarily used data from small-footprint instruments, however development of a generalized spatial model with uncertainty will be useful for interpreting and modelling waveforms from large-footprint instruments such as the NASA Land Vegetation and Ice Sensor (LVIS) with a view to implementation for GEDI. Here we present an analysis of waveform lidar data from the NASA Land Vegetation and Ice Sensor (LVIS), which were acquired in Gabon in February 2016 to support the NASA/ESA AfriSAR campaign. AfriSAR presents a unique opportunity to test refined methods for retrieval of LAI profiles in high above-ground biomass rainforests (up to 600 Mg/ha) with dense canopies (>90% cover), where the greatest uncertainty exists. Airborne and Terrestrial Laser Scanning data (TLS) were also collected, enabling quantification of algorithm performance in plots of dense canopy cover. Refinement of canopy gap probability and LAI profile modelling from large-footprint lidar was based on solving for canopy and ground reflectance parameters spatially by penalized least-squares. The sensitivities of retrieved cover and LAI profiles to variation in canopy and ground reflectance showed improvement compared to assuming a constant ratio. We evaluated the use of spatially proximate simple waveforms to interpret more complex waveforms with poor separation of canopy and ground returns. This work has direct implications for GEDI algorithm refinement.
NASA Astrophysics Data System (ADS)
Fiorella, R.; Poulsen, C. J.; Matheny, A. M.; Rey Sanchez, C.; Fotis, A. T.; Morin, T. H.; Vogel, C. S.; Gough, C. M.; Aron, P.; Bohrer, G.
2016-12-01
Forest structure, age, and species composition modulate fluxes of carbon and water between the land surface and the atmosphere. The response of forests to intermediate disturbances such as ecological succession, species-specific insect invasion, or selective logging that disrupt the canopy but do not promote complete stand replacement, shape how these fluxes evolve through time. We investigate the impact of an intermediate disturbance to water cycling processes by comparing vertical profiles of stable water isotopes in two closely located forest canopies in the northern lower peninsula of Michigan using cavity ring-down spectroscopy. In one of the canopies, an intermediate disturbance was prescribed in 2008 by inducing mortality in all canopy-dominant early successional species. Isotopic compositions of atmospheric water vapor are measured at six heights during two time periods (summer and early fall) at two flux towers and compared with local meteorology and calculated atmospheric back-trajectories. Disturbance has little impact on low-frequency changes in isotopic composition (e.g., >1 day); at these timescales, isotopic composition is strongly related to large-scale moisture transport. In contrast, disturbance has substantial impacts on the vertical distribution of water isotopes throughout the canopy when transpiration rates are high during the summer, but impact is muted during early fall. Sub-diurnal differences in canopy water vapor cycling are likely related to differences in species composition and response to disturbance and changes in canopy structure. Predictions of transpiration fluxes by land-surface models that do not account species-specific relationships and canopy structure are unlikely to capture these relationships, but addition of stable isotopes to land surface models may provide a useful parameter to improve these predictions.
Müller-Linow, Mark; Pinto-Espinosa, Francisco; Scharr, Hanno; Rascher, Uwe
2015-01-01
Three-dimensional canopies form complex architectures with temporally and spatially changing leaf orientations. Variations in canopy structure are linked to canopy function and they occur within the scope of genetic variability as well as a reaction to environmental factors like light, water and nutrient supply, and stress. An important key measure to characterize these structural properties is the leaf angle distribution, which in turn requires knowledge on the 3-dimensional single leaf surface. Despite a large number of 3-d sensors and methods only a few systems are applicable for fast and routine measurements in plants and natural canopies. A suitable approach is stereo imaging, which combines depth and color information that allows for easy segmentation of green leaf material and the extraction of plant traits, such as leaf angle distribution. We developed a software package, which provides tools for the quantification of leaf surface properties within natural canopies via 3-d reconstruction from stereo images. Our approach includes a semi-automatic selection process of single leaves and different modes of surface characterization via polygon smoothing or surface model fitting. Based on the resulting surface meshes leaf angle statistics are computed on the whole-leaf level or from local derivations. We include a case study to demonstrate the functionality of our software. 48 images of small sugar beet populations (4 varieties) have been analyzed on the base of their leaf angle distribution in order to investigate seasonal, genotypic and fertilization effects on leaf angle distributions. We could show that leaf angle distributions change during the course of the season with all varieties having a comparable development. Additionally, different varieties had different leaf angle orientation that could be separated in principle component analysis. In contrast nitrogen treatment had no effect on leaf angles. We show that a stereo imaging setup together with the appropriate image processing tools is capable of retrieving the geometric leaf surface properties of plants and canopies. Our software package provides whole-leaf statistics but also a local estimation of leaf angles, which may have great potential to better understand and quantify structural canopy traits for guided breeding and optimized crop management.
NASA Astrophysics Data System (ADS)
Woodgate, W.; van Gorsel, E.; Hughes, D.; Suarez, L.; Cabello-Leblic, A.; Held, A. A.; Norton, A.; Dempsey, R.
2017-12-01
To better understand the vegetation response to climate extremes we have developed a fully automated hyperspectral and thermal monitoring system installed on a flux tower at a mature Eucalypt forest site - Tumbarumba, Australia. The automated system bridges spatial, spectral and temporal scales between satellite and in situ observations. Here, we have been acquiring high resolution panoramic hyperspectral and thermal images of the forest canopy three times per day since mid-2014.A specific focus of the work to date has been linking light use efficiency (LUE) as measured by the flux tower to remote sensing observations from the leaf, to crown, to canopy scale. Specifically, targeted field campaigns were conducted in 2016 to establish the interrelationship between structure, function, and spectra. At the leaf level destructive sampling to quantify photosynthetic pigments was conducted to pick apart the mechanisms contributing to photosynthetic processes of non-photochemical quenching and the resultant changes in observed leaf spectra. At the crown level, Terrestrial Laser Scanning data was used to derive canopy structural information, enabling distance to crown and crown foliage density to be calculated to a fine degree of detail. This information is critical for correcting attenuation of the thermal signal from atmospheric transmission, and to distinguish the relative foliage-to-soil contribution to the thermal and hyperspectral imagery. Ancillary data streams from sap flow and dendrometer devices serve to link leaf, crown and canopy observations.Preliminary results of the leaf and crown level relationships between function and spectra will be discussed. We will demonstrate that operating in a tall canopy (40m) forest can lead to additional complexities. We have found the relationship strength between traditional remote sensing LUE proxies and photosynthetic proxies derived from pigments varies strongly with canopy height and pigment pool size. Additionally, the significance of the relationship between some leaf pigments and spectra hinged upon the inclusion of juvenile or unhealthy leaf samples, which were not representative of the canopy. This has implications for temporal scaling of remote sensing proxies from diurnal to seasonal time frames.
Automated protocols for spaceborne sub-meter resolution "Big Data" products for Earth Science
NASA Astrophysics Data System (ADS)
Neigh, C. S. R.; Carroll, M.; Montesano, P.; Slayback, D. A.; Wooten, M.; Lyapustin, A.; Shean, D. E.; Alexandrov, O.; Macander, M. J.; Tucker, C. J.
2017-12-01
The volume of available remotely sensed data has grown exceeding Petabytes per year and the cost for data, storage systems and compute power have both dropped exponentially. This has opened the door for "Big Data" processing systems with high-end computing (HEC) such as the Google Earth Engine, NASA Earth Exchange (NEX), and NASA Center for Climate Simulation (NCCS). At the same time, commercial very high-resolution (VHR) satellites have grown into a constellation with global repeat coverage that can support existing NASA Earth observing missions with stereo and super-spectral capabilities. Through agreements with the National Geospatial-Intelligence Agency NASA-Goddard Space Flight Center is acquiring Petabytes of global sub-meter to 4 meter resolution imagery from WorldView-1,2,3 Quickbird-2, GeoEye-1 and IKONOS-2 satellites. These data are a valuable no-direct cost for the enhancement of Earth observation research that supports US government interests. We are currently developing automated protocols for generating VHR products to support NASA's Earth observing missions. These include two primary foci: 1) on demand VHR 1/2° ortho mosaics - process VHR to surface reflectance, orthorectify and co-register multi-temporal 2 m multispectral imagery compiled as user defined regional mosaics. This will provide an easy access dataset to investigate biodiversity, tree canopy closure, surface water fraction, and cropped area for smallholder agriculture; and 2) on demand VHR digital elevation models (DEMs) - process stereo VHR to extract VHR DEMs with the NASA Ames stereo pipeline. This will benefit Earth surface studies on the cryosphere (glacier mass balance, flow rates and snow depth), hydrology (lake/water body levels, landslides, subsidence) and biosphere (forest structure, canopy height/cover) among others. Recent examples of products used in NASA Earth Science projects will be provided. This HEC API could foster surmounting prior spatial-temporal limitations while providing broad benefits to Earth Science.
System and method for refurbishing and processing parachutes. [monorial conveyor system
NASA Technical Reports Server (NTRS)
Crowell, R. T. (Inventor)
1980-01-01
A system and method for refurbishing and processing parachutes is disclosed including an overhead monorail conveyor system on which the parachute is suspended for horizontal conveyance. The parachute is first suspended in a partially opened tented configuration wherein open inspection of the canopy is permitted to remove debris and inspect all areas. Following inspection, the parachute is transported by the monorail conveyor to a washing and drying station with the parachute canopy mounted on the conveyor in a systematic arrangement which permits water and air to pass through the ribbon-like materials of the canopy. Following drying, the chute is conveyed into an interior space where it is finally inspected and removed from the monorial conveyor for folding. The chute is once again mounted on the conveyor and conveyed to a packing area.
Leaf sample detail, Feb2016-May2016, PA-SLZ, PA-PNM, PA-BCI: Panama
Ely, Kim [Brookhaven National Lab; Rogers, Alistair [Brookhaven National Lab; Serbin, Shawn [Brookhaven National Lab; Wu, Jin [BNL; Wolfe, Brett [Smithsonian; Dickman, Turin [Los Alamos National Lab; Collins, Adam [Los Alamos National Lab; Detto, Matteo [Princeton; Grossiord, Charlotte [Los Alamos National Lab; McDowell, Nate [Los Alamos National Lab; Michaletz, Sean
2017-01-01
Date, location, species and photographs of leaf samples collected on a monthly basis from Feb to May 2016 at SLZ and PNM. Data from BCI only available for March. This data was collected as part of the 2016 ENSO campaign. Data to be used as a reference to linking related datasets (existing and future) including leaf water potential, leaf spectra, LMA, gas exchange and leaf chemistry (CHN, NSC, P). Most leaves were sampled from sunlit canopy trees.
Influence of the forest canopy on total and methyl mercury deposition in the boreal forest
E.L. Witt; R.K. Kolka; E.A. Nater; T.R. Wickman
2009-01-01
Atmospheric mercury deposition by wet and dry processes contributes mercury to terrestrial and aquatic systems. Factors influencing the amount of mercury deposited to boreal forests were identified in this study. Throughfall and open canopy precipitation samples were collected in 2005 and 2006 using passive precipitation collectors from pristine sites located across...
Summary of the Blackmo 88 spray experiment
D. R. Miller; W. E. Yendol; M. L. McManus; D. E. Anderson; K. Mierzejewski
1991-01-01
The Blackmo 88 spray trial experiment was conducted for two primary purposes: To quantify the effects of local micrometeorological processes, in and near the canopy, on the deposition patterns of aerially applied BT in a mature oak forest; To generate a data set containing simultaneous measurements of spray deposition and detailed micrometeorology, in a canopy of known...
S. Panda; D.M. Amatya; G. Hoogenboom
2014-01-01
Remotely sensed images including LANDSAT, SPOT, NAIP orthoimagery, and LiDAR and relevant processing tools can be used to predict plant stomatal conductance (gs), leaf area index (LAI), and canopy temperature, vegetation density, albedo, and soil moisture using vegetation indices like normalized difference vegetation index (NDVI) or soil adjusted...
Effect of canopy architectural variation on transpiration and thermoregulation
NASA Astrophysics Data System (ADS)
Linn, R.; Banerjee, T.
2017-12-01
One of the major scientific questions identified by the NGEE - Tropics campaign is the effect of disturbances such as forest fires, vegetation thinning and land use change on carbon, water and energy fluxes. Answers to such questions can help develop effective forest management strategies and shape policies to mitigate damages under natural and anthropogenic climate change. The absence of horizontal and vertical variation of forest canopy structure in current models is a major source of uncertainty in answering these questions. The current work addresses this issue through a bottom up process based modeling approach to systematically investigate the effect of forest canopy architectural variation on plant physiological response as well as canopy level fluxes. A plant biophysics formulation is used which is based on the following principles: (1) a model for the biochemical demand for CO2 as prescribed by photosynthesis models. This model can differentiate between photosynthesis under light-limited and nutrient-limited scenarios. (2) A Fickian mass transfer model including transfer through the laminar boundary layer on leaves that may be subjected to forced or free convection depending upon the mean velocity and the radiation load; (3) an optimal leaf water use strategy that maximizes net carbon gain for a given transpiration rate to describe the stomatal aperture variation; (4) a leaf-level energy balance to accommodate evaporative cooling. Such leaf level processes are coupled to solutions of atmospheric flow through vegetation canopies. In the first test case, different scenarios of top heavy and bottom heavy (vertical) foliage distributions are investigated within a one-dimensional framework where no horizontal heterogeneity of canopy structure is considered. In another test case, different spatial distributions (both horizontal and vertical) of canopy geometry (land use) are considered, where flow solutions using large eddy simulations (LES) are coupled to the aforementioned leaf level physiological model. The systematic differences observed across these simulated scenarios provide a clear insight of disturbance effects of forest-atmosphere interaction.
Bartholomeus, Harm
2018-01-01
Terrestrial laser scanning (TLS) and unmanned aerial vehicles (UAVs) equipped with digital cameras have attracted much attention from the forestry community as potential tools for forest inventories and forest monitoring. This research fills a knowledge gap about the viability and dissimilarities of using these technologies for measuring the top of canopy structure in tropical forests. In an empirical study with data acquired in a Guyanese tropical forest, we assessed the differences between top of canopy models (TCMs) derived from TLS measurements and from UAV imagery, processed using structure from motion. Firstly, canopy gaps lead to differences in TCMs derived from TLS and UAVs. UAV TCMs overestimate canopy height in gap areas and often fail to represent smaller gaps altogether. Secondly, it was demonstrated that forest change caused by logging can be detected by both TLS and UAV TCMs, although it is better depicted by the TLS. Thirdly, this research shows that both TLS and UAV TCMs are sensitive to the small variations in sensor positions during data collection. TCMs rendered from UAV data acquired over the same area at different moments are more similar (RMSE 0.11–0.63 m for tree height, and 0.14–3.05 m for gap areas) than those rendered from TLS data (RMSE 0.21–1.21 m for trees, and 1.02–2.48 m for gaps). This study provides support for a more informed decision for choosing between TLS and UAV TCMs to assess top of canopy in a tropical forest by advancing our understanding on: (i) how these technologies capture the top of the canopy, (ii) why their ability to reproduce the same model varies over repeated surveying sessions and (iii) general considerations such as the area coverage, costs, fieldwork time and processing requirements needed. PMID:29503719
Roşca, Sabina; Suomalainen, Juha; Bartholomeus, Harm; Herold, Martin
2018-04-06
Terrestrial laser scanning (TLS) and unmanned aerial vehicles (UAVs) equipped with digital cameras have attracted much attention from the forestry community as potential tools for forest inventories and forest monitoring. This research fills a knowledge gap about the viability and dissimilarities of using these technologies for measuring the top of canopy structure in tropical forests. In an empirical study with data acquired in a Guyanese tropical forest, we assessed the differences between top of canopy models (TCMs) derived from TLS measurements and from UAV imagery, processed using structure from motion. Firstly, canopy gaps lead to differences in TCMs derived from TLS and UAVs. UAV TCMs overestimate canopy height in gap areas and often fail to represent smaller gaps altogether. Secondly, it was demonstrated that forest change caused by logging can be detected by both TLS and UAV TCMs, although it is better depicted by the TLS. Thirdly, this research shows that both TLS and UAV TCMs are sensitive to the small variations in sensor positions during data collection. TCMs rendered from UAV data acquired over the same area at different moments are more similar (RMSE 0.11-0.63 m for tree height, and 0.14-3.05 m for gap areas) than those rendered from TLS data (RMSE 0.21-1.21 m for trees, and 1.02-2.48 m for gaps). This study provides support for a more informed decision for choosing between TLS and UAV TCMs to assess top of canopy in a tropical forest by advancing our understanding on: (i) how these technologies capture the top of the canopy, (ii) why their ability to reproduce the same model varies over repeated surveying sessions and (iii) general considerations such as the area coverage, costs, fieldwork time and processing requirements needed.
Forest canopy height estimation using double-frequency repeat pass interferometry
NASA Astrophysics Data System (ADS)
Karamvasis, Kleanthis; Karathanassi, Vassilia
2015-06-01
In recent years, many efforts have been made in order to assess forest stand parameters from remote sensing data, as a mean to estimate the above-ground carbon stock of forests in the context of the Kyoto protocol. Synthetic aperture radar interferometry (InSAR) techniques have gained traction in last decade as a viable technology for vegetation parameter estimation. Many works have shown that forest canopy height, which is a critical parameter for quantifying the terrestrial carbon cycle, can be estimated with InSAR. However, research is still needed to understand further the interaction of SAR signals with forest canopy and to develop an operational method for forestry applications. This work discusses the use of repeat pass interferometry with ALOS PALSAR (L band) HH polarized and COSMO Skymed (X band) HH polarized acquisitions over the Taxiarchis forest (Chalkidiki, Greece), in order to produce accurate digital elevation models (DEMs) and estimate canopy height with interferometric processing. The effect of wavelength-dependent penetration depth into the canopy is known to be strong, and could potentially lead to forest canopy height mapping using dual-wavelength SAR interferometry at X- and L-band. The method is based on scattering phase center separation at different wavelengths. It involves the generation of a terrain elevation model underneath the forest canopy from repeat-pass L-band InSAR data as well as the generation of a canopy surface elevation model from repeat pass X-band InSAR data. The terrain model is then used to remove the terrain component from the repeat pass interferometric X-band elevation model, so as to enable the forest canopy height estimation. The canopy height results were compared to a field survey with 6.9 m root mean square error (RMSE). The effects of vegetation characteristics, SAR incidence angle and view geometry, and terrain slope on the accuracy of the results have also been studied in this work.
Directional Canopy Emissivity Estimation Based on Spectral Invariants
NASA Astrophysics Data System (ADS)
Guo, M.; Cao, B.; Ren, H.; Yongming, D.; Peng, J.; Fan, W.
2017-12-01
Land surface emissivity is a crucial parameter for estimating land surface temperature from remote sensing data and also plays an important role in the physical process of surface energy and water balance from local to global scales. To our knowledge, the emissivity varies with surface type and cover. As for the vegetation, its canopy emissivity is dependent on vegetation types, viewing zenith angle and structure that changes in different growing stages. Lots of previous studies have focused on the emissivity model, but few of them are analytic and suited to different canopy structures. In this paper, a new physical analytic model is proposed to estimate the directional emissivity of homogenous vegetation canopy based on spectral invariants. The initial model counts the directional absorption in six parts: the direct absorption of the canopy and the soil, the absorption of the canopy and soil after a single scattering and after multiple scattering within the canopy-soil system. In order to analytically estimate the emissivity, the pathways of photons absorbed in the canopy-soil system are traced using the re-collision probability in Fig.1. After sensitive analysis on the above six absorptions, the initial complicated model was further simplified as a fixed mathematic expression to estimate the directional emissivity for vegetation canopy. The model was compared with the 4SAIL model, FRA97 model, FRA02 model and DART model in Fig.2, and the results showed that the FRA02 model is significantly underestimated while the FRA97 model is a little underestimated, on basis of the new model. On the contrary, the emissivity difference between the new model with the 4SAIL model and DART model was found to be less than 0.002. In general, since the new model has the advantages of mathematic expression with accurate results and clear physical meaning, the model is promising to be extended to simulate the directional emissivity for the discrete canopy in further study.
NASA Astrophysics Data System (ADS)
Zhu, X.
2016-12-01
Mangrove wetlands play an important role in global carbon cycle due to their strong carbon sequestration resulting from high plant carbon assimilation and low soil respiration. However, temporal variability of carbon sequestration in mangrove wetlands is less understood since carbon processes of mangrove wetlands are influenced by many complicated and concurrent environmental controls including tidal activities, site climate and soil conditions. Canopy light use efficiency (LUE), is the most important plant physiological parameter that can be used to describe the temporal dynamics of canopy photosynthesis, and therefore a better characterization of temporal variability of canopy LUE will improve our understanding in mangrove photosynthesis and carbon balance. One of our aims is to study the temporal variability of canopy LUE and its environmental controls in a subtropical mangrove wetland. Half-hourly canopy LUE is derived from eddy covariance (EC) carbon flux and photosynthesis active radiation observations, and half-hourly environmental controls we measure include temperature, humidity, precipitation, radiation, tidal height, salinity, etc. Another aim is to explore the links between canopy LUE and spectral indices derived from near-surface tower-based remote sensing (normalized difference vegetation index, enhanced vegetation index, photochemical reflectance index, solar-induced chlorophyll fluorescence, etc.), and then identify potential quantitative relationships for developing remote sensing-based estimation methods of canopy LUE. At present, some instruments in our in-situ observation system have not yet been installed (planned in next months) and therefore we don't have enough measurements to support our analysis. However, a preliminary analysis of our historical EC and climate observations in past several years indicates that canopy LUE shows strong temporal variability and is greatly affected by environmental factors such as tidal activity. Detailed and systematic analyses of temporal variability of canopy LUE and its environmental controls and potential remote sensing estimation methods will be conducted when our in-situ observation system is ready in near future.
Direct Scaling of Leaf-Resolving Biophysical Models from Leaves to Canopies
NASA Astrophysics Data System (ADS)
Bailey, B.; Mahaffee, W.; Hernandez Ochoa, M.
2017-12-01
Recent advances in the development of biophysical models and high-performance computing have enabled rapid increases in the level of detail that can be represented by simulations of plant systems. However, increasingly detailed models typically require increasingly detailed inputs, which can be a challenge to accurately specify. In this work, we explore the use of terrestrial LiDAR scanning data to accurately specify geometric inputs for high-resolution biophysical models that enables direct up-scaling of leaf-level biophysical processes. Terrestrial LiDAR scans generate "clouds" of millions of points that map out the geometric structure of the area of interest. However, points alone are often not particularly useful in generating geometric model inputs, as additional data processing techniques are required to provide necessary information regarding vegetation structure. A new method was developed that directly reconstructs as many leaves as possible that are in view of the LiDAR instrument, and uses a statistical backfilling technique to ensure that the overall leaf area and orientation distribution matches that of the actual vegetation being measured. This detailed structural data is used to provide inputs for leaf-resolving models of radiation, microclimate, evapotranspiration, and photosynthesis. Model complexity is afforded by utilizing graphics processing units (GPUs), which allows for simulations that resolve scales ranging from leaves to canopies. The model system was used to explore how heterogeneity in canopy architecture at various scales affects scaling of biophysical processes from leaves to canopies.
NASA Astrophysics Data System (ADS)
Daniel, M.; Lemonsu, Aude; Déqué, M.; Somot, S.; Alias, A.; Masson, V.
2018-06-01
Most climate models do not explicitly model urban areas and at best describe them as rock covers. Nonetheless, the very high resolutions reached now by the regional climate models may justify and require a more realistic parameterization of surface exchanges between urban canopy and atmosphere. To quantify the potential impact of urbanization on the regional climate, and evaluate the benefits of a detailed urban canopy model compared with a simpler approach, a sensitivity study was carried out over France at a 12-km horizontal resolution with the ALADIN-Climate regional model for 1980-2009 time period. Different descriptions of land use and urban modeling were compared, corresponding to an explicit modeling of cities with the urban canopy model TEB, a conventional and simpler approach representing urban areas as rocks, and a vegetated experiment for which cities are replaced by natural covers. A general evaluation of ALADIN-Climate was first done, that showed an overestimation of the incoming solar radiation but satisfying results in terms of precipitation and near-surface temperatures. The sensitivity analysis then highlighted that urban areas had a significant impact on modeled near-surface temperature. A further analysis on a few large French cities indicated that over the 30 years of simulation they all induced a warming effect both at daytime and nighttime with values up to + 1.5 °C for the city of Paris. The urban model also led to a regional warming extending beyond the urban areas boundaries. Finally, the comparison to temperature observations available for Paris area highlighted that the detailed urban canopy model improved the modeling of the urban heat island compared with a simpler approach.
Nay-Htoon, Bhone; Xue, Wei; Lindner, Steve; Cuntz, Matthias; Ko, Jonghan; Tenhunen, John; Werner, Christiane; Dubbert, Maren
2018-01-01
Agricultural crops play an important role in the global carbon and water cycle. Global climate change scenarios predict enhanced water scarcity and altered precipitation pattern in many parts of the world. Hence, a mechanistic understanding of water fluxes, productivity and water use efficiency of cultivated crops is of major importance, i.e. to adapt management practices. We compared water and carbon fluxes of paddy and rainfed rice by canopy scale gas exchange measurements, crop growth, daily evapotranspiration, transpiration and carbon flux modeling. Throughout a monsoon rice growing season, soil evaporation in paddy rice contributed strongly to evapotranspiration (96.6% to 43.3% from initial growth to fully developed canopy and amounted to 57.9% of total water losses over the growing seasons. Evaporation of rainfed rice was significantly lower (by 65% on average) particularly before canopy closure. Water use efficiency (WUE) was significantly higher in rainfed rice both from an agronomic (WUEagro, i.e. grain yield per evapotranspiration) and ecosystem (WUEeco, i.e. gross primary production per evapotranspiration) perspective. However, our results also show that higher WUE in rainfed rice comes at the expense of higher respiration losses compared to paddy rice (26% higher on average). Hence, suggestions on water management depend on the regional water availability (i.e. Mediterranean vs. Monsoon climate) and the balance between higher respiratory losses versus a potential reduction in CH4 and other greenhouse gas emissions. Our results suggest that a shift from rainfed/unsaturated soil to waterlogged paddy conditions after closure of the rice canopy might be a good compromise towards a sustainable use of water while preserving grain yield, particularly for water-limited production areas.
Zhang, J-L; Meng, L-Z; Cao, K-F
2009-02-01
Diurnal and seasonal changes in gas exchange and chlorophyll fluorescence of the uppermost-canopy leaves of four evergreen dipterocarp species were measured on clear days. The trees, that were growing in a plantation stand in southern Yunnan, China, had canopy heights ranging from 17 to 22 m. In the rainy season, Dipterocarpus retusus Bl. had higher photosynthetic capacity (A(max)) than Hopea hainanensis Merr. et Chun, Parashorea chinensis Wang Hsie and Vatica xishuangbannaensis G.D. Tao et J.H. Zhang (17.7 versus 13.9, 11.8 and 7.7 micromol m(-2) s(-1), respectively). In the dry season, A(max) in all species decreased by 52-64%, apparent quantum yield and dark respiration rate decreased in three species, and light saturation point decreased in two species. During the diurnal courses, all species exhibited sustained photosynthetic depression from midmorning onward in both seasons. The trees were able to regulate light energy allocation dynamically between photochemistry and heat dissipation during the day, with reduced actual photochemistry and increased heat dissipation in the dry season. Photorespiration played an important role in photoprotection in all species in both seasons, as indicated by a continuous increase in photorespiration rate in the morning toward midday and a high proportion of electron flow (about 30-65% of total electron flow) allocated to oxygenation for most of the day. None of the species suffered irreversible photoinhibition, even in the dry season. The sustained photosynthetic depression in the uppermost-canopy leaves of these species could be a protective response to prevent excessive water loss and consequent catastrophic leaf hydraulic dysfunction.
NASA Astrophysics Data System (ADS)
Potužníková, K.; Sedlák, P.; Šauli, P.
2009-09-01
Airflow and turbulence within and above the forest canopy determine the forest - atmosphere exchange of atmospheric constituents and pollutants. Our investigation is related to the existence of large-scale intermittent coherent structures, which have been detected in turbulence time series measured at the Experimental Ecological Study Site Bílý Kříž (800-900 m a.s.l.) in the Czech Republic. The site is situated on a steep (13°) SSW-faced slope near the top of a mountain ridge forested by a young Norway spruce plantation. Flow directions across the ridge (along the slope) strongly prevail at the site. Results based on a recent study reveal significant differences between the cases when the site is on the upwind vs. downwind side of the ridge. Typical downwind cases are characterized by a low wind speed above the canopy and by relatively higher friction velocity than in the upwind cases. This is explained by the flow retardation by the upslope-directed hydrodynamic pressure gradient and by the large wind shear in the upper part of the wake behind the ridge top. This contribution concentrates on the vertical coherency of the turbulent flow within the forest canopy. Analysed variables include the high-frequency wind velocity components and sonic temperature measured during periods of neutral thermal stratification at two different levels. Wavelet analysis was used for detection of characteristic temporal scale of coherent structures, their persistence and effectivity parameter. Special attention is paid to the differences between the upwind and downwind cases. Acknowledgements: The study is supported by the grant IAA300420803 and IAA300420704 from Grant Agency of Academy of Sciences of the Czech Republic.
Nay‐Htoon, Bhone; Xue, Wei; Lindner, Steve; Cuntz, Matthias; Ko, Jonghan; Tenhunen, John; Werner, Christiane
2018-01-01
Agricultural crops play an important role in the global carbon and water cycle. Global climate change scenarios predict enhanced water scarcity and altered precipitation pattern in many parts of the world. Hence, a mechanistic understanding of water fluxes, productivity and water use efficiency of cultivated crops is of major importance, i.e. to adapt management practices. We compared water and carbon fluxes of paddy and rainfed rice by canopy scale gas exchange measurements, crop growth, daily evapotranspiration, transpiration and carbon flux modeling. Throughout a monsoon rice growing season, soil evaporation in paddy rice contributed strongly to evapotranspiration (96.6% to 43.3% from initial growth to fully developed canopy and amounted to 57.9% of total water losses over the growing seasons. Evaporation of rainfed rice was significantly lower (by 65% on average) particularly before canopy closure. Water use efficiency (WUE) was significantly higher in rainfed rice both from an agronomic (WUEagro, i.e. grain yield per evapotranspiration) and ecosystem (WUEeco, i.e. gross primary production per evapotranspiration) perspective. However, our results also show that higher WUE in rainfed rice comes at the expense of higher respiration losses compared to paddy rice (26% higher on average). Hence, suggestions on water management depend on the regional water availability (i.e. Mediterranean vs. Monsoon climate) and the balance between higher respiratory losses versus a potential reduction in CH4 and other greenhouse gas emissions. Our results suggest that a shift from rainfed/unsaturated soil to waterlogged paddy conditions after closure of the rice canopy might be a good compromise towards a sustainable use of water while preserving grain yield, particularly for water-limited production areas. PMID:29624613
NASA Astrophysics Data System (ADS)
Magney, T. S.; Griffin, K. L.; Boelman, N.; Eitel, J.; Greaves, H.; Prager, C.; Logan, B.; Oliver, R.; Fortin, L.; Vierling, L. A.
2014-12-01
Because changes in vegetation structure and function in the Arctic are rapid and highly dynamic phenomena, efforts to understand the C balance of the tundra require repeatable, objective, and accurate remote sensing methods for estimating aboveground C pools and fluxes over large areas. A key challenge addressing the modelling of aboveground C is to utilize process-level information from fine-scale studies. Utilizing information obtained from high resolution remote sensing systems could help to better understand the C source/sink strength of the tundra, which will in part depend on changes in photosynthesis resulting from the partitioning of photosynthetic machinery within and among deciduous shrub canopies. Terrestrial LiDAR and passive hyperspectral remote sensing measurements offer an effective, repeatable, and scalable method to understand photosynthetic performance and partitioning at the canopy scale previously unexplored in arctic systems. Using a 3-D shrub canopy model derived from LiDAR, we quantified the light regime of leaves within shrub canopies to gain a better understanding of how light interception varies in response to the Arctic's complex radiation regime. This information was then coupled with pigment sampling (i.e., xanthophylls, and Chl a/b) to evaluate the optimization of foliage photosynthetic capacity within shrub canopies due to light availability. In addition, a lab experiment was performed to validate evidence of canopy level optimization via gradients of light intensity and leaf light environment. For this, hyperspectral reflectance (photochemical reflectance index (PRI)), and solar induced fluorescence (SIF)) was collected in conjunction with destructive pigment samples (xanthophylls) and chlorophyll fluorescence measurements in both sunlit and shaded canopy positions.
NASA Astrophysics Data System (ADS)
Zhang, Ya-Feng; Wang, Xin-Ping; Pan, Yan-Xia; Hu, Rui; Zhang, Hao
2013-06-01
Variation characteristics of the soil surface temperature induced by shrub canopy greatly affects the near-surface biological and biochemical processes in desert ecosystems. However, information regarding the effects of shrub upon the heterogeneity of soil surface temperature is scarce. Here we aimed to characterize the effects of shrub ( Caragana korshinskii) canopy on the soil surface temperature heterogeneity at areas under shrub canopy and the neighbouring bare ground. Diurnal variations of soil surface temperature were measured at areas adjacent to the shrub base (ASB), beneath the midcanopy (BMC), and in the bare intershrub spaces (BIS) at the eastern, southern, western and northern aspects of shrub, respectively. Results indicated that diurnal mean soil surface temperature under the C. korshinskii canopy (ASB and BMC) was significantly lower than in the BIS, with the highest in the BIS, followed by the BMC and ASB. The diurnal maximum and diurnal variations of soil surface temperatures under canopy vary strongly with different aspects of shrub with the diurnal variation in solar altitude, which could be used as cues to detect safe sites for under-canopy biota. A significant empirical linear relationship was found between soil surface temperature and solar altitude, suggesting an empirical predicator that solar altitude can serve for soil surface temperature. Lower soil surface temperatures under the canopy than in the bare intershrub spaces imply that shrubs canopy play a role of `cool islands' in the daytime in terms of soil surface temperature during hot summer months in the desert ecosystems characterized by a mosaic of sparse vegetation and bare ground.
Effects of forest structure on hydrological processes in China
NASA Astrophysics Data System (ADS)
Sun, Jiamei; Yu, Xinxiao; Wang, Henian; Jia, Guodong; Zhao, Yang; Tu, Zhihua; Deng, Wenping; Jia, Jianbo; Chen, Jungang
2018-06-01
There are serious concerns between forest and water quantity, Chinese extensive land area makes the relationship more complicated, thus, the effects of forest structure on hydrological processes in China were not fully comprehended. In this research, forest's hydrological functions, including rainfall partitioning, litter interception, evapotranspiration (ET), were analyzed in China. The results showed that throughfall was the largest proportion of gross precipitation with fraction between 69.3 ± 8.8% and 84.4 ± 5.6%. Then was canopy interception which varied from 14.6 ± 1.4% to 29.1 ± 3.3%. Throughfall was correlated with gross precipitation, canopy thickness and canopy density. Canopy interception was correlated with gross precipitation, LAI, canopy density, biomass, mixed degree, uniform angle index, aggregation index. Stemflow accounted for only 1.2 ± 0.32% of gross precipitation, with the greatest fraction of 2.1 ± 0.2% in XBH site and the least fraction of 0.3 ± 0.1% in DB site. Gross precipitation was the main factor in determining stemflow. DB site had the greatest litter interception (7.7 ± 0.8 mm) and HB site had the least (0.9 ± 0.3 mm). Litter interception had closer correlation with undecomposed litter mass (0.66) than total litter mass (0.46). Path-coefficient analysis showed that stand density, Shannon-Wiener index, litter mass, size ratio had greater impact on litter interception than other factors. ET was mainly influenced by precipitation, and it also correlated with LAI, canopy density and biomass. In north China, ET percentage (the ratio of ET and precipitation) was 82.7-109.5%, while it decreased to 63.1-88.5% in south China, ET demand in XBS site was larger than precipitation. ET percentage increased with increasing latitude and elevation, decreased with increasing temperature.
Three-Dimensional Mapping of Air Flow at an Urban Canyon Intersection
NASA Astrophysics Data System (ADS)
Carpentieri, Matteo; Robins, Alan G.; Baldi, Sandro
2009-11-01
In this experimental work both qualitative (flow visualisation) and quantitative (laser Doppler anemometry) methods were applied in a wind tunnel in order to describe the complex three-dimensional flow field in a real environment (a street canyon intersection). The main aim was an examination of the mean flow, turbulence and flow pathlines characterising a complex three-dimensional urban location. The experiments highlighted the complexity of the observed flows, particularly in the upwind region of the intersection. In this complex and realistic situation some details of the upwind flow, such as the presence of two tall towers, play an important role in defining the flow field within the intersection, particularly at roof level. This effect is likely to have a strong influence on the mass exchange mechanism between the canopy flow and the air aloft, and therefore the distribution of pollutants. This strong interaction between the flows inside and outside the urban canopy is currently neglected in most state-of-the-art local scale dispersion models.
Regulating plant/insect interactions using CO2 enrichment in model ecosystems
NASA Astrophysics Data System (ADS)
Grodzinski, B.; Schmidt, J. M.; Watts, B.; Taylor, J.; Bates, S.; Dixon, M. A.; Staines, H.
1999-01-01
The greenhouse environment is a challenging artificial ecosystem in which it is possible to study selected plant/insect interaction in a controlled environment. Due to a combination of ``direct'' and ``indirect'' effects of CO2 enrichment on plant photosynthesis and plant development, canopy productivity is generally increased. In this paper, we discuss the effects of daytime and nighttime CO2 enrichment protocols on gas exchange of pepper plants (Capsicum annuum L, cv Cubico) grown in controlled environments. In addition, we present the effects of thrips, a common insect pest, on the photosynthetic and respiratory activity of these plant canopies. Carbon dioxide has diverse effects on the physiology and mortality of insects. However, our data indicate that thrips and whiteflies, at least, are not killed ``directly'' by CO2 levels used to enhance photosynthesis and plant growth. Together the data suggest that the insect population is affected ``indirectly'' by CO2 and that the primary effect of CO2 is via its effects on plant metabolism.
Nitrogen Deposition to and Cycling in a Deciduous Forest
Pryor, Sara C.; Barthelmie, Rebecca J.; Carreiro, Margaret; ...
2001-01-01
The project described here seeks to answer questions regarding the role increased nitrogen (N) deposition is playing in enhanced carbon (C) sequestration in temperate mid-latitude forests, using detailed measurements from an AmeriFlux tower in southern Indiana (Morgan-Monroe State Forest, or MMSF). The measurements indicate an average atmosphere-surface N flux of approximately 6 mg-N m -2 day -1 during the 2000 growing season, with approximately 40% coming from dry deposition of ammonia (NH 3 ), nitric acid (HNO 3 ), and particle-bound N. Wet deposition and throughfall measurements indicate significant canopy uptake of N (particularly NH 4 +) at the site,more » leading to a net canopy exchange (NCE) of –6 kg-N ha -1 for the growing season. These data are used in combination with data on the aboveground C:N ratio, litterfall flux, and soil net N mineralization rates to indicate the level of potential perturbation of C sequestration at this site.« less
NASA Astrophysics Data System (ADS)
Wentworth, G. R.; Murphy, J. G.; Gregoire, P. K.; Cheyne, C. A. L.; Tevlin, A. G.; Hems, R.
2014-10-01
A 50-day field study was carried out in a semi-natural, non-fertilized grassland in south-western Ontario, Canada during the late summer and early autumn of 2012. The purpose was to explore surface-atmosphere exchange processes of ammonia (NH3) with a focus on bi-directional fluxes between the soil and atmosphere. Measurements of soil pH and ammonium concentration ([NH4+]) yielded the first direct quantification of soil emission potential (Γsoil = [NH4+]/[H+]) for this land type, with values ranging from 35 to 1850 (an average of 290). The soil compensation point, the atmospheric NH3 mixing ratio below which net emission from the soil will occur, exhibited both a seasonal trend and diurnal trend. Higher daytime and August compensation points were attributed to higher soil temperature. Soil-atmosphere fluxes were estimated using NH3 measurements from the Ambient Ion Monitor Ion Chromatograph (AIM-IC) and a simple resistance model. Vegetative effects were ignored due to the short canopy height and significant Γsoil. Inferred fluxes were, on average, 2.6 ± 4.5 ng m-2 s-1 in August (i.e. net emission) and -5.8 ± 3.0 ng m-2 s-1 in September (i.e. net deposition). These results are in good agreement with the only other bi-directional exchange study in a semi-natural, non-fertilized grassland. A Lagrangian dispersion model (Hybrid Single-Particle Lagrangian Integrated Trajectory - HYSPLIT) was used to calculate air parcel back-trajectories throughout the campaign and revealed that NH3 mixing ratios had no directional bias throughout the campaign, unlike the other atmospheric constituents measured. This implies that soil-atmosphere exchange over a non-fertilized grassland can significantly moderate near-surface NH3 concentrations. In addition, we provide indirect evidence that dew and fog evaporation can cause a morning increase of [NH3]g. Implications of our findings on current NH3 bi-directional exchange modelling efforts are also discussed.
Ecohydrological implications of aeolian sediment trapping by sparse vegetation in drylands
Gonzales, Howell B.; Ravi, Sujith; Li, Junran; Sankey, Joel B.
2018-01-01
Aeolian processes are important drivers of ecosystem dynamics in drylands, and important feedbacks exist among aeolian – hydrological processes and vegetation. The trapping of wind-borne sediments by vegetation may result in changes in soil properties beneath the vegetation, which, in turn, can alter hydrological and biogeochemical processes. Despite the relevance of aeolian transport to ecosystem dynamics, the interactions between aeolian transport and vegetation in shaping dryland landscapes where sediment distribution is altered by relatively rapid changes in vegetation composition such as shrub encroachment, is not well understood. Here, we used a computational fluid dynamics (CFD) modeling framework to investigate the sediment trapping efficiencies of vegetation canopies commonly found in a shrub-grass ecotone in the Chihuahuan Desert (New Mexico, USA) and related the results to spatial heterogeneity in soil texture and infiltration measured in the field. A CFD open-source software package was used to simulate aeolian sediment movement through three-dimensional architectural depictions of Creosote shrub (Larrea tridentata) and Black Grama grass (Bouteloua eriopoda) vegetation types. The vegetation structures were created using a computer-aided design software (Blender), with inherent canopy porosities, which were derived using LIDAR (Light Detection and Ranging) measurements of plant canopies. Results show that considerable heterogeneity in infiltration and soil grain size distribution exist between the microsites, with higher infiltration and coarser soil texture under shrubs. Numerical simulations also indicate that the differential trapping of canopies might contribute to the observed heterogeneity in soil texture. In the early stages of encroachment, the shrub canopies, by trapping coarser particles more efficiently, might maintain higher infiltration rates leading to faster development of the microsites (among other factors) with enhanced ecological productivity, which might provide positive feedbacks to shrub encroachment.
Leistra, Minze; Wolters, André; van den Berg, Frederik
2008-06-01
Volatilisation of pesticides from crop canopies can be an important emission pathway. In addition to pesticide properties, competing processes in the canopy and environmental conditions play a part. A computation model is being developed to simulate the processes, but only some of the input data can be obtained directly from the literature. Three well-defined experiments on the volatilisation of radiolabelled parathion-methyl (as example compound) from plants in a wind tunnel system were simulated with the computation model. Missing parameter values were estimated by calibration against the experimental results. The resulting thickness of the air boundary layer, rate of plant penetation and rate of phototransformation were compared with a diversity of literature data. The sequence of importance of the canopy processes was: volatilisation > plant penetration > phototransformation. Computer simulation of wind tunnel experiments, with radiolabelled pesticide sprayed on plants, yields values for the rate coefficients of processes at the plant surface. As some input data for simulations are not required in the framework of registration procedures, attempts to estimate missing parameter values on the basis of divergent experimental results have to be continued. Copyright (c) 2008 Society of Chemical Industry.
The fire and oak hypothesis: incorporating the influence of deer browsing and canopy gaps
Rachel J. Collins; Walter P. Carson
2003-01-01
A century of fire suppression has altered tree species composition and is a commonly cited cause for the region-wide decline in oak abundance (the fire and oak hypothesis). Other explanations include alterations in canopy gap regimes and deer browsing that operate in conjunction with fire suppression. We examined the interactions among these processes by manipulating...
Disturbance and canopy gaps as indicators of forest health in the Blue Mountains of Oregon.
Jerome S. Beatty; Brian W. Geils; John E. Lundquist
1995-01-01
Disturbance profiles, indices based on both spatial and non-spatial statistics, are used to examine how small-scale disturbances and the resulting canopy gaps disrupt ecosystem patterns and processes in selected stands in the Blue Mountains of Oregon. The biological meaning of many indices remains undefined for small scale disturbance phenomena, but their disturbance...
Sun, Jinwei; Wu, Jiabing; Guan, Dexin; Yao, Fuqi; Yuan, Fenghui; Wang, Anzhi; Jin, Changjie
2014-01-01
Leaf respiration is an important component of carbon exchange in terrestrial ecosystems, and estimates of leaf respiration directly affect the accuracy of ecosystem carbon budgets. Leaf respiration is inhibited by light; therefore, gross primary production (GPP) will be overestimated if the reduction in leaf respiration by light is ignored. However, few studies have quantified GPP overestimation with respect to the degree of light inhibition in forest ecosystems. To determine the effect of light inhibition of leaf respiration on GPP estimation, we assessed the variation in leaf respiration of seedlings of the dominant tree species in an old mixed temperate forest with different photosynthetically active radiation levels using the Laisk method. Canopy respiration was estimated by combining the effect of light inhibition on leaf respiration of these species with within-canopy radiation. Leaf respiration decreased exponentially with an increase in light intensity. Canopy respiration and GPP were overestimated by approximately 20.4% and 4.6%, respectively, when leaf respiration reduction in light was ignored compared with the values obtained when light inhibition of leaf respiration was considered. This study indicates that accurate estimates of daytime ecosystem respiration are needed for the accurate evaluation of carbon budgets in temperate forests. In addition, this study provides a valuable approach to accurately estimate GPP by considering leaf respiration reduction in light in other ecosystems. PMID:25419844
Drake, John E; Tjoelker, Mark G; Aspinwall, Michael J; Reich, Peter B; Barton, Craig V M; Medlyn, Belinda E; Duursma, Remko A
2016-08-01
Given the contrasting short-term temperature dependences of gross primary production (GPP) and autotrophic respiration, the fraction of GPP respired by trees is predicted to increase with warming, providing a positive feedback to climate change. However, physiological acclimation may dampen or eliminate this response. We measured the fluxes of aboveground respiration (Ra ), GPP and their ratio (Ra /GPP) in large, field-grown Eucalyptus tereticornis trees exposed to ambient or warmed air temperatures (+3°C). We report continuous measurements of whole-canopy CO2 exchange, direct temperature response curves of leaf and canopy respiration, leaf and branch wood respiration, and diurnal photosynthetic measurements. Warming reduced photosynthesis, whereas physiological acclimation prevented a coincident increase in Ra . Ambient and warmed trees had a common nonlinear relationship between the fraction of GPP that was respired above ground (Ra /GPP) and the mean daily temperature. Thus, warming significantly increased Ra /GPP by moving plants to higher positions on the shared Ra /GPP vs daily temperature relationship, but this effect was modest and only notable during hot conditions. Despite the physiological acclimation of autotrophic respiration to warming, increases in temperature and the frequency of heat waves may modestly increase tree Ra /GPP, contributing to a positive feedback between climate warming and atmospheric CO2 accumulation. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Coupled hydraulic and photosynthetic feedbacks on forest transpiration throughout the growing season
NASA Astrophysics Data System (ADS)
Mackay, D. S.; Ewers, B. E.
2007-12-01
Ecosystem models account for vegetative controls on water fluxes using environmental drivers and hydraulic and/or biochemical limits on canopy stomatal conductance (Gs), variations in space and time of leaf area index (L), and species or biome specific parameters. However, some parameters, such as maximum stomatal conductance or its reference proxy at vapor pressure deficit of 1 kPa (Gsref), may not be strictly time-independent suggesting as yet undefined mechanisms in the models. We developed a model of coupled canopy water and carbon exchange, which allowed us to examine photosynthetic and hydraulic feedbacks on Gsref spanning the whole growing season for several dominant tree species in wetland and upland positions that collectively account for most a 1600 square km region centered on the WLEF AmeriFlux tower in Wisconsin, USA. The model assimilated half-hourly sap flux and micrometeorological data to quantify and explain temporal variations in Gsref for trembling aspen, sugar maple, and red pine in upland sites, and speckled alder and white cedar in wetland sites. Results show (1) phenological effects on photosynthetic activity with feedback on Gsref in all species, and (2) lags of up to two months between maximum per unit leaf area photosynthetic rates for conifer versus deciduous species. These results show that for given environmental conditions canopy transpiration depends on both L and timing of biochemical activation, both of which have implications for regional ecosystem water cycling.
NASA Astrophysics Data System (ADS)
Kitaya, Yoshiaki; Shibuya, Toshio; Tsuruyama, Joshin
A fundamental study was conducted to obtain the knowledge for culturing plants and exchanging gases with plants under restricted air circulation conditions in space agriculture. The effects of air velocities less than 1.3 m s-1 on net photosynthetic rates (Pn), transpiration rates (Tr) and Pn/Tr, water use efficiencies (WUE), of a canopy of cucumber seedlings and of single leaves of cucumber, sweet potato and barley were assessed with assimilation chamber methods in ground based experiments. The cucumber seedling canopy, which had a LAI of 1.4 and height of 0.1 m, was set in a wind tunnel installed in a plant canopy assimilation chamber. Each of the attached single leaves was set in a leaf assimilation chamber. The Pn and Tr of the plant canopy increased to 1.2 and 2.8 times, respectively, and WUE decreased to 0.4 times with increasing the air velocity from 0.02 to 1.3 m s-1. The Pn and Tr of the single leaves of all the species increased by 1.3-1.7 and 1.9-2.2 times, respectively, and WUE decreased to 0.6-0.8 times as the air velocity increased from 0.05 to 0.8 m s-1. The effect of air velocity was more significant on Tr than on Pn and thus WUE decreased with increasing air velocity in both the plant canopy and the individual leaves. The leaf boundary layer resistance was approximately proportional to the minus 1/3 power of the air velocity. Stomatal resistance was almost constant during the experiment. The CO2 concentrations in the sub-stomatal cavity in leaves of cucumber, sweet potato and barley, respectively, were 43, 31 and 58 mmol mol-1 lower at the air velocity of 0.05 m s-1 than at the air velocity of 0.8 m s-1, while the water vapor pressure in the sub-stomatal cavity was constant. We concluded that the change in the CO2 concentration in the sub-stomatal cavity was a cause of the different effect of the air velocity on Pn and Tr, and thus on WUE. The phenomenon will be more remarkable under restricted air convection conditions at lower gravity in space.
NASA Astrophysics Data System (ADS)
Yebra, Marta; van Dijk, Albert
2015-04-01
Water use efficiency (WUE, the amount of transpiration or evapotranspiration per unit gross (GPP) or net CO2 uptake) is key in all areas of plant production and forest management applications. Therefore, mutually consistent estimates of GPP and transpiration are needed to analysed WUE without introducing any artefacts that might arise by combining independently derived GPP and ET estimates. GPP and transpiration are physiologically linked at ecosystem level by the canopy conductance (Gc). Estimates of Gc can be obtained by scaling stomatal conductance (Kelliher et al. 1995) or inferred from ecosystem level measurements of gas exchange (Baldocchi et al., 2008). To derive large-scale or indeed global estimates of Gc, satellite remote sensing based methods are needed. In a previous study, we used water vapour flux estimates derived from eddy covariance flux tower measurements at 16 Fluxnet sites world-wide to develop a method to estimate Gc using MODIS reflectance observations (Yebra et al. 2013). We combined those estimates with the Penman-Monteith combination equation to derive transpiration (T). The resulting T estimates compared favourably with flux tower estimates (R2=0.82, RMSE=29.8 W m-2). Moreover, the method allowed a single parameterisation for all land cover types, which avoids artefacts resulting from land cover classification. In subsequent research (Yebra et al, in preparation) we used the same satellite-derived Gc values within a process-based but simple canopy GPP model to constrain GPP predictions. The developed model uses a 'big-leaf' description of the plant canopy to estimate the mean GPP flux as the lesser of a conductance-limited and radiation-limited GPP rate. The conductance-limited rate was derived assuming that transport of CO2 from the bulk air to the intercellular leaf space is limited by molecular diffusion through the stomata. The radiation-limited rate was estimated assuming that it is proportional to the absorbed photosynthetically active radiation (PAR), calculated as the product of the fraction of absorbed PAR (fPAR) and PAR flux. The proposed algorithm performs well when evaluated against flux tower GPP (R2=0.79, RMSE= 1.93 µmol m2 s-1). Here we use GPP and T estimates previously derived at the same 16 Fluxnet sites to analyse WUE. Satellite-derived WUE explained variation in (long-term average) WUE among plant functional types but evergreen needleleaf had higher WUE than predicted. The benefit of our approach is that it uses mutually consistent estimates of GPP and T to derive canopy-level WUE without any land cover classification artefacts. References Baldocchi, D. (2008). Turner Review No. 15: 'Breathing' of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Australian Journal of Botany, 56, 26 Kelliher, F.M., Leuning, R., Raupach, M.R., & Schulze, E.D. (1995). Maximum conductances for evaporation from global vegetation types. Agricultural and Forest Meteorology, 73, 1-16 Yebra, M., Van Dijk, A., Leuning, R., Huete, A., & Guerschman, J.P. (2013). Evaluation of optical remote sensing to estimate actual evapotranspiration and canopy conductance. Remote Sensing of Environment, 129, 250-261
System for refurbishing and processing parachutes
NASA Technical Reports Server (NTRS)
Crowell, Russell T. (Inventor)
1980-01-01
A system and method for refurbishing and processing parachutes is disclosed including an overhead monorail conveyor system on which the parachute is suspended for horizontal conveyance. The parachute is first suspended in partially open tented configuration wherein open inspection of the canopy is permitted to remove debris and inspect all areas. Following inspection, the parachute is transported by the monorail conveyor to a washing and drying station with the parachute canopy mounted on the conveyor in a systematic arrangement which permits water and air to pass through the ribbon-like material of the canopy. Following drying of the parachute, the parachute is conveyed into an interior space where it is finally inspected and removed from the monorail conveyor and laid upon a table for folding. Following folding operations, the parachute is once again mounted on the conveyor in an elongated horizontal configuration and conveyed to a packing area for stowing the parachute in a deployment bag.
Sensitivity Analysis of Biome-Bgc Model for Dry Tropical Forests of Vindhyan Highlands, India
NASA Astrophysics Data System (ADS)
Kumar, M.; Raghubanshi, A. S.
2011-08-01
A process-based model BIOME-BGC was run for sensitivity analysis to see the effect of ecophysiological parameters on net primary production (NPP) of dry tropical forest of India. The sensitivity test reveals that the forest NPP was highly sensitive to the following ecophysiological parameters: Canopy light extinction coefficient (k), Canopy average specific leaf area (SLA), New stem C : New leaf C (SC:LC), Maximum stomatal conductance (gs,max), C:N of fine roots (C:Nfr), All-sided to projected leaf area ratio and Canopy water interception coefficient (Wint). Therefore, these parameters need more precision and attention during estimation and observation in the field studies.
Improved Monitoring of Vegetation Productivity using Continuous Assimilation of Radiometric Data
NASA Astrophysics Data System (ADS)
Baret, F.; Lauvernet, C.; Weiss, M.; Prevot, L.; Rochdi, N.
Canopy functioning models describe crop production from meteorological and soil inputs. However, because of the large number of variables and parameters used, and the poor knowledge of the actual values of some of them, the time course of the canopy and thus final production simulated by these models is often not very accurate. Satellite observations sensors allow controlling the simulations through assimilation of the radiometric data within radiative transfer models coupled to canopy functioning models. An assimilation scheme is presented with application to wheat crops. The coupling between radiative transfer models and canopy functioning models is described. The assimilation scheme is then applied to an experiment achieved within the ReSeDA project. Several issues relative to the assimilation process are discussed. They concern the type of canopy functioning model used, the possibility to assimilate biophysical products rather than radiances, and the use of ancillary information. Further, considerations associated to the problems linked to high spatial and temporal resolution data are listed and illustrated by preliminary results acquired within the ADAM project. Further discussion is made on the required temporal sampling for space observations.
The potential role of habitat-forming seaweeds in modeling benthic ecosystem properties
NASA Astrophysics Data System (ADS)
Bustamante, María; Tajadura, Javier; Díez, Isabel; Saiz-Salinas, José Ignacio
2017-12-01
Canopy-forming seaweeds provide specific habitats with key ecological properties and are facing severe declines worldwide with unforeseeable consequences for ecosystem processes. Investigating the loss of such natural habitats in order to develop management strategies for conservation is a major challenge in marine ecological research. This study investigated the shallow rocky bottoms of the southern Bay of Biscay at two sampling times with a view to identifying the effect of canopy seaweed availability on the taxonomic and functional properties of invertebrate multivariate structure, abundance, density, diversity and evenness. The multivariate taxonomic and functional structure of assemblages changed significantly according to canopy availability in terms of taxa and functional groups abundance, but no substantial change was observed in composition. Biogenic habitat simplification resulted in a decrease in total invertebrate abundance and in taxonomic and functional density and diversity, whilst no effects were observed in taxonomic and functional evenness. Loss of canopy involved an impoverishment of the whole community particularly for epiphytic colonial sessile suspension-feeders, but it also extended to non-epiphytic forms. Our results emphasize the importance of canopy decline as a major driver of changes in benthic ecosystem properties and highlight that biogenic space provided by canopy is a limiting resource for the development of rocky subtidal invertebrates.
NASA Astrophysics Data System (ADS)
Musselman, K. N.; Molotch, N. P.; Margulis, S. A.
2012-12-01
Forest architecture dictates sub-canopy solar irradiance and the resulting patterns can vary seasonally and over short spatial distances. These radiation dynamics are thought to have significant implications on snowmelt processes, regional hydrology, and remote sensing signatures. The variability calls into question many assumptions inherent in traditional canopy models (e.g. Beer's Law) when applied at high resolution (i.e. 1 m). We present a method of estimating solar canopy transmissivity using airborne LiDAR data. The canopy structure is represented in 3-D voxel space (i.e. a cubic discretization of a 3-D domain analogous to a pixel representation of a 2-D space). The solar direct beam canopy transmissivity (DBT) is estimated with a ray-tracing algorithm and the diffuse component is estimated from LiDAR-derived effective LAI. Results from one year at five-minute temporal and 1 m spatial resolutions are presented from Sequoia National Park. Compared to estimates from 28 hemispherical photos, the ray-tracing model estimated daily mean DBT with a 10% average error, while the errors from a Beer's-type DBT estimate exceeded 20%. Compared to the ray-tracing estimates, the Beer's-type transmissivity method was unable to resolve complex spatial patterns resulting from canopy gaps, individual tree canopies and boles, and steep variable terrain. The snowmelt model SNOWPACK was applied at locations of ultrasonic snow depth sensors. Two scenarios were tested; 1) a nominal case where canopy model parameters were obtained from hemispherical photographs, and 2) an explicit scenario where the model was modified to accept LiDAR-derived time-variant DBT. The bulk canopy treatment was generally unable to simulate the sub-canopy snowmelt dynamics observed at the depth sensor locations. The explicit treatment reduced error in the snow disappearance date by one week and both positive and negative melt-season SWE biases were reduced. The results highlight the utility of LiDAR canopy measurements and physically based snowmelt models to simulate spatially distributed stand- and slope-scale snowmelt dynamics at resolutions necessary to capture the inherent underlying variability.iDAR-derived solar direct beam canopy transmissivity computed as the daily average for March 1st and May 1st.
NASA Astrophysics Data System (ADS)
Richardson, A. D.; Toomey, M. P.; Aubrecht, D.; Sonnentag, O.; Ryu, Y.; Hilker, T.
2013-12-01
Phenology - the annual rhythm of canopy development and senescence - is a key control on the seasonality of surface-atmosphere fluxes of CO2, water, and energy. Phenology is also a highly sensitive indicator of the biological impacts of climate change. In many biomes, there is strong evidence of trends towards earlier spring onset, and later autumn senescence, over the last four decades. These shifts in phenology may play an imprortant role in mitigating - or amplifying - feedbacks between terrestrial ecosystems and the climate system. To better understand relationships between canopy structure and function in a temperate deciduous forest, we installed a wide array of radiometric instruments and imaging sensors near the top of a 40-m high tower at Harvard Forest beginning in 2011. Our data set includes: - incoming and outgoing visible (including incoming direct and diffuse components), shortwave, and longwave radiation; - narrowband (five visible and three near-infrared channels) canopy reflectance; - leaf area index (LAI, from continuous below-canopy digital cover photography), fraction of absorbed photosynthetically active radiation (fAPAR, from above- and below-canopy quantum sensors), normalized difference vegetation index (NDVI, from broad- and narrow-band radiometric sensors), and photochemical reflectance index (PRI, from narrow-band radiometric sensors); - visible and near-infrared PhenoCam (http://phenocam.sr.unh.edu) canopy imagery; - multi-angular narrowband hyperspectral canopy reflectance (AMSPEC, in 2012); and - beginning in 2013, hyperspectral and thermal canopy imagery. Together with eddy covariance measurements of CO2 and water fluxes from the Harvard Forest AmeriFlux site, located in similar forest about 1 km to the east, on-the-ground visual observations of phenology, and continuous stem diameter measurements with automated band dendrometers, these data provide an unusually detailed view of phenological processes at scales from leaves to trees to the forest canopy. In this presentation I will discuss our efforts to use these data for model-based analyses that link phenology to biosphere-atmosphere interactions through the cycling of CO2, water and energy. As an example, I will describe how we are using a two-layer canopy model, in conjunction with both LAI data and narrowband reflectance indices, to improve model representation of the seasonal cycle of canopy photosynthesis and hence understanding of surface-atmosphere fluxes of CO2.
Moreaux, Virginie; Lamaud, Eric; Bosc, Alexandre; Bonnefond, Jean-Marc; Medlyn, Belinda E; Loustau, Denis
2011-09-01
The effects of management practices on energy, water and carbon exchanges were investigated in a young pine plantation in south-west France. In 2009-10, carbon dioxide (CO(2)), H(2)O and heat fluxes were monitored using the eddy covariance and sap flow techniques in a control plot (C) with a developed gorse layer, and an adjacent plot that was mechanically weeded and thinned (W). Despite large differences in the total leaf area index and canopy structure, the annual net radiation absorbed was only 4% lower in plot W. We showed that higher albedo in this plot was offset by lower emitted long-wave radiation. Annual evapotranspiration (ET) from plot W was 15% lower, due to lower rainfall interception and transpiration by the tree canopy, partly counterbalanced by the larger evaporation from both soil and regrowing weedy vegetation. The drainage belowground from plot W was larger by 113 mm annually. The seasonal variability of ET was driven by the dynamics of the soil and weed layers, which was more severely affected by drought in plot C. Conversely, the temporal changes in pine transpiration and stem diameter growth were synchronous between sites despite higher soil water content in the weeded plot. At the annual scale, both plots were carbon sinks, but thinning and weeding reduced the carbon uptake by 73%: annual carbon uptake was 243 and 65 g C m(-2) on plots C and W, respectively. Summer drought dramatically impacted the net ecosystem exchange: plot C became a carbon source as the gross primary production (GPP) severely decreased. However, plot W remained a carbon sink during drought, as a result of decreases in both GPP and ecosystem respiration (R(E)). In winter, both plots were carbon sources, plots C and W emitting 67.5 and 32.4 g C m(-2), respectively. Overall, this study highlighted the significant contribution of the gorse layer to mass and energy exchange in young pine plantations.
Effects of vegetation canopy on the radar backscattering coefficient
NASA Technical Reports Server (NTRS)
Mo, T.; Blanchard, B. J.; Schmugge, T. J.
1983-01-01
Airborne L- and C-band scatterometer data, taken over both vegetation-covered and bare fields, were systematically analyzed and theoretically reproduced, using a recently developed model for calculating radar backscattering coefficients of rough soil surfaces. The results show that the model can reproduce the observed angular variations of radar backscattering coefficient quite well via a least-squares fit method. Best fits to the data provide estimates of the statistical properties of the surface roughness, which is characterized by two parameters: the standard deviation of surface height, and the surface correlation length. In addition, the processes of vegetation attenuation and volume scattering require two canopy parameters, the canopy optical thickness and a volume scattering factor. Canopy parameter values for individual vegetation types, including alfalfa, milo and corn, were also determined from the best-fit results. The uncertainties in the scatterometer data were also explored.
Analysis of field measurements of carbon dioxide and water vapor fluxes
NASA Technical Reports Server (NTRS)
Verma, Shashi B.
1991-01-01
Analysis of the field measurements of carbon dioxide and water vapor fluxes is discussed. These data were examined in conjunction with reflectance obtained from helicopter mounted Modular Multiband Radiometer. These measurements are representative of the canopy scale (10 to 100 m)(exp 2) and provide a good basis for investigating the hypotheses/relationship potentially useful in remote sensing applications. All the micrometeorological data collected during FIFE-89 were processed and fluxes of CO2, water vapor, and sensible heat were calculated. Soil CO2 fluxes were also estimated. Employing these soil CO2 flux values, in conjunction with micrometeorological measurements, canopy photosynthesis is being estimated. A biochemical model of leaf photosynthesis was adapted to the prairie vegetation. The modeled leaf photosynthesis rates were scaled up to the canopy level. This model and a multiplicative stomatal conductance model are also used to calculate canopy conductance.
NASA Technical Reports Server (NTRS)
Middleton, Elizabeth M.; Rascher, Uwe; Corp, Lawrence A.; Huemmrich, K. Fred; Cook, Bruce D.; Noormets, Asko; Schickling, Anke; Pinto, Francisco; Alonso, Luis; Damm, Alexander;
2017-01-01
The first European Space Agency (ESA) and NASA collaboration in an airborne campaign to support ESA's FLuorescence EXplorer (FLEX) mission was conducted in North Carolina, USA during September-October 2013 (FLEX-US 2013) at the Parker Tract Loblolly Pine (LP) Plantation (Plymouth, NC, USA). This campaign combined two unique airborne instrument packages to obtain simultaneous observations of solar-induced fluorescence (SIF), LiDAR-based canopy structural information, visible through shortwave infrared (VSWIR) reflectance spectra, and surface temperature, to advance vegetation studies of carbon cycle dynamics and ecosystem health. We obtained statistically significant results for fluorescence, canopy temperature, and tower fluxes from data collected at four times of day over two consecutive autumn days across an age class chronosequence. Both the red fluorescence (F685) and far-red fluorescence (F740) radiances had highest values at mid-day, but their fluorescence yields exhibited different diurnal responses across LP age classes. The diurnal trends for F685 varied with forest canopy temperature difference (canopy minus air), having a stronger daily amplitude change for young vs. old canopies. The Photochemical Reflectance Index (PRI) was positively correlated with this temperature variable over the diurnal cycle. Tower measurements from mature loblolly stand showed the red/far-red fluorescence ratio was linearly related to canopy light use efficiency (LUE) over the diurnal cycle, but performed even better for the combined morning/afternoon (without midday) observations. This study demonstrates the importance of diurnal observations for interpretation of fluorescence dynamics, the need for red fluorescence to understand canopy physiological processes, and the benefits of combining fluorescence, reflectance, and structure information to clarify canopy function versus structure characteristics for a coniferous forest.
Wills, Jarrah; Herbohn, John; Hu, Jing; Sohel, Shawkat; Baynes, Jack; Firn, Jennifer
2018-06-01
Can morphological plant functional traits predict demographic rates (e.g., growth) within plant communities as diverse as tropical forests? This is one of the most important next-step questions in trait-based ecology and particularly for global reforestation efforts. Due to the diversity of tropical tree species and their longevity, it is difficult to predict their performance prior to reforestation efforts. In this study, we investigate if simple leaf traits are predictors of the more complex ecological process of plant growth in regenerating selectively logged natural forest within the Wet Tropics (WTs) bioregion of Australia. This study used a rich historical data set to quantify tree growth within plots located at Danbulla National Park and State Forest on the Atherton Tableland. Leaf traits were collected from trees that have exhibited fast or slow growth over the last ~50 yr of measurement. Leaf traits were found to be poor predictors of tree growth for trees that have entered the canopy; however, for sub-canopy trees, leaf traits had a stronger association with growth rates. Leaf phosphorus concentrations were the strongest predictor of Periodic Annual Increment (PAI) for trees growing within the sub-canopy, with trees with higher leaf phosphorus levels showing a higher PAI. Sub-canopy tree leaves also exhibited stronger trade-offs between leaf traits and adhere to theoretical predictions more so than for canopy trees. We suggest that, in order for leaf traits to be more applicable to reforestation, size dependence of traits and growth relationships need to be more carefully considered, particularly when reforestation practitioners assign mean trait values to tropical tree species from multiple canopy strata. © 2018 by the Ecological Society of America.
Vitousek, Peter; Asner, Gregory P; Chadwick, Oliver A; Hotchkiss, Sara
2009-11-01
We compared forest canopy heights and nitrogen concentrations in long-term research sites and in 2 x 2 km landscapes surrounding these sites along a substrate age gradient in the Hawaiian Islands. Both remote airborne and ground-based measurements were used to characterize processes that control landscape-level variation in canopy properties. We integrated a waveform light detection and ranging (LiDAR) system, a high-resolution imaging spectrometer, and a global positioning system/inertial measurement unit to provide highly resolved images of ground topography, canopy heights, and canopy nitrogen concentrations (1) within a circle 50 m in radius focused on a long-term study site in the center of each landscape; (2) for the entire 2 x 2 km landscape regardless of land cover; and (3) after stratification, for our target cover class, native-dominated vegetation on constructional geomorphic surfaces throughout each landscape. Remote measurements at all scales yielded the same overall patterns as did ground-based measurements in the long-term sites. The two younger landscapes supported taller trees than did older landscapes, while the two intermediate-aged landscapes had higher canopy nitrogen (N) concentrations than did either young or old landscapes. However, aircraft-based analyses detected substantial variability in canopy characteristics on the landscape level, even within the target cover class. Canopy heights were more heterogeneous on the older landscapes, with coefficients of variation increasing from 23-41% to 69-78% with increasing substrate age. This increasing heterogeneity was associated with a larger patch size of canopy turnover and with dominance of most secondary successional stands by the mat-forming fern Dicranopteris linearis in the older landscapes.
A data-led comparison of simple canopy radiative transfer models for the boreal forest
NASA Astrophysics Data System (ADS)
Reid, T.; Essery, R.; Rutter, N.; King, M.
2012-12-01
Given the computational complexity of numerical weather and climate models, it is worthwhile developing very simple parameterizations for processes such as the transmission of radiation through forest canopies. For this reason, the land surface schemes in global models, and most snow hydrological models, tend to use simple one-dimensional approaches based on Beer's Law or two-stream approximations. Such approaches assume a continuous canopy structure that may not be suitable for the varied, heterogeneous forest cover in boreal regions, especially in winter when snow in the canopy and on the ground may either block radiation or produce multiple reflections between the ground and the trees. There is great benefit in comparing models to real transmissivity values calculated from radiation measurements below and above Arctic canopies. In particular, there is a lack of data for leafless boreal deciduous forests, where canopy gaps are prevalent even at low solar elevation angles near the horizon. In this study, models are compared to radiation data collected in an area of boreal birch forest near Abisko, Sweden in March/April 2011 and mixed conifer forest at Sodankylä, Finland in March/April 2012. Arrays comprising ten shortwave pyranometers were deployed for periods of up to 50 days, under forest plots of varying canopy structures and densities. In addition, global and diffuse shortwave irradiances were recorded at nearby open sites representing the top-of-canopy conditions. A model is developed that explicitly accounts for both diffuse radiation and direct beam transmission on a 5-minute timestep, by using upward-looking hemispherical photographs taken from every pyranometer site. This model reproduces measured transmissivity, although with a slight underestimation, especially at low solar elevations - this could be attributed to multiple reflections that are not accounted for in the model. On the other hand, models based on Beer's Law tend to underestimate the canopy transmissivity significantly, especially for leafless birch canopies where the required assumption of a continuous canopy breaks down. These findings are important for the often sparse, heterogeneous forest cover in boreal regions, where forest edges and canopy gaps are plentiful. They could also have an impact on estimations of overall land surface albedo. Moreover, all models are sensitive to the partitioning of top-of-canopy radiation into its direct and diffuse components, which is complicated by the low solar elevations in the Arctic. More research is required to decide the best way of quantifying the diffuse fraction, using data alongside both physical and empirical models.
Field observations of volatile organic compound (VOC) exchange in red oaks
NASA Astrophysics Data System (ADS)
Cappellin, Luca; Algarra Alarcon, Alberto; Herdlinger-Blatt, Irina; Sanchez, Juaquin; Biasioli, Franco; Martin, Scot T.; Loreto, Francesco; McKinney, Karena A.
2017-03-01
Volatile organic compounds (VOCs) emitted by forests strongly affect the chemical composition of the atmosphere. While the emission of isoprenoids has been largely characterized, forests also exchange many oxygenated VOCs (oVOCs), including methanol, acetone, methyl ethyl ketone (MEK), and acetaldehyde, which are less well understood. We monitored total branch-level exchange of VOCs of a strong isoprene emitter (Quercus rubra L.) in a mixed forest in New England, where canopy-level fluxes of VOCs had been previously measured. We report daily exchange of several oVOCs and investigated unknown sources and sinks, finding several novel insights. In particular, we found that emission of MEK is linked to uptake of methyl vinyl ketone (MVK), a product of isoprene oxidation. The link was confirmed by corollary experiments proving in vivo detoxification of MVK, which is harmful to plants. Comparison of MEK, MVK, and isoprene fluxes provided an indirect indication of within-plant isoprene oxidation. Furthermore, besides confirming bidirectional exchange of acetaldehyde, we also report for the first time direct evidence of benzaldehyde bidirectional exchange in forest plants. Net emission or deposition of benzaldehyde was found in different periods of measurements, indicating an unknown foliar sink that may influence atmospheric concentrations. Other VOCs, including methanol, acetone, and monoterpenes, showed clear daily emission trends but no deposition. Measured VOC emission and deposition rates were generally consistent with their ecosystem-scale flux measurements at a nearby site.
E. Freeman; G. Moisen; J. Coulston; B. Wilson
2014-01-01
Random forests (RF) and stochastic gradient boosting (SGB), both involving an ensemble of classification and regression trees, are compared for modeling tree canopy cover for the 2011 National Land Cover Database (NLCD). The objectives of this study were twofold. First, sensitivity of RF and SGB to choices in tuning parameters was explored. Second, performance of the...
Midhun Mohan; Carlos Alberto Silva; Carine Klauberg; Prahlad Jat; Glenn Catts; Adrian Cardil; Andrew Thomas Hudak; Mahendra Dia
2017-01-01
Advances in Unmanned Aerial Vehicle (UAV) technology and data processing capabilities have made it feasible to obtain high-resolution imagery and three dimensional (3D) data which can be used for forest monitoring and assessing tree attributes. This study evaluates the applicability of low consumer grade cameras attached to UAVs and structure-from-motion (SfM)...
Rosi Dagit; A. James Downer
2002-01-01
A total of 62 coast live oaks (Quercus agrifolia) were monitored since they were initially boxed for transplantation in 1993. At that time, only branches injured during the moving process and deadwood were removed, leaving the entire canopy intact. This was a departure from the usual transplanting methodology that traditionally removes up to 70...
John Tipton; Gretchen Moisen; Paul Patterson; Thomas A. Jackson; John Coulston
2012-01-01
There are many factors that will determine the final cost of modeling and mapping tree canopy cover nationwide. For example, applying a normalization process to Landsat data used in the models is important in standardizing reflectance values among scenes and eliminating visual seams in the final map product. However, normalization at the national scale is expensive and...
David Bryan Dail; David Y. Hollinger; Eric A. Davidson; Ivan Fernandez; Herman C. Sievering; Neal A. Scott; Elizabeth Gaige
2009-01-01
In N-limited ecosystems, fertilization by N deposition may enhance plant growth and thus impact C sequestration. In many N deposition-C sequestration experiments, N is added directly to the soil, bypassing canopy processes and potentially favoring N immobilization by the soil. To understand the impact of enhanced N deposition on a low fertility unmanaged forest and...
C.B. Halpern; J.A. Lutz
2013-01-01
Stem exclusion and understory reinitiation are commonly described, but poorly understood, stages of forest development. It is assumed that overstory trees exert strong controls on understory herbs and shrubs during the transition from open- to closed-canopy forests, but long-term observations of this process are rare. We use long-term data from 188 plots to explore...
Baptist, Florence; Choler, Philippe
2008-01-01
Background and Aims Along snowmelt gradients, the canopies of temperate alpine meadows differ strongly in their structural and biochemical properties. Here, a study is made of the effects of these canopy dissimilarities combined with the snow-induced changes in length of growing season on seasonal gross primary production (GPP). Methods Leaf area index (LAI) and community-aggregated values of leaf angle and leaf nitrogen content were estimated for seven alpine plant canopies distributed along a marked snowmelt gradient, and these were used as input variables in a sun–shade canopy bulk-photosynthesis model. The model was validated for plant communities of early and late snowmelt sites by measuring the instantaneous CO2 fluxes with a canopy closed-chamber technique. A sensitivity analysis was conducted to estimate the relative impact of canopy properties and environmental factors on the daily and seasonal GPP. Key Results Carbon uptake was primarily related to the LAI and total canopy nitrogen content, but not to the leaf angle. For a given level of photosynthetically active radiation, CO2 assimilation was higher under overcast conditions. Sensitivity analysis revealed that increase of the length of the growing season had a higher effect on the seasonal GPP than a similar increase of any other factor. It was also found that the observed greater nitrogen content and larger LAI of canopies in late-snowmelt sites largely compensated for the negative impact of the reduced growing season. Conclusions The results emphasize the primary importance of snow-induced changes in length of growing season on carbon uptake in alpine temperate meadows. It was also demonstrated how using leaf-trait values of the dominants is a useful approach for modelling ecosystem carbon-cycle-related processes, particularly when continuous measurements of CO2 fluxes are technically difficult. The study thus represents an important step in addressing the challenge of using a plant functional-trait approach for biogeochemical modelling. PMID:18182383
Throughfall patterns of a Subtropical Atlantic Forest in Brazil
NASA Astrophysics Data System (ADS)
Macedo Sá, João Henrique; Borges Chaffe, Pedro Luiz; Yuimi de Oliveira, Debora; Nery Giglio, Joana; Kobiyama, Masato
2017-04-01
The interception process is responsible for the spatial and temporal redistribution of the precipitation that reaches the ground. This process is important especially in forested areas since it influences recycling of moisture from the air and also the amount of water that effectively reaches the ground. The contact of the precipitation with the canopy influences on the water quality, increasing the concentration of various nutrients in the throughfall (Tf) and stemflow (Sf). Brazil, only about 8% of the original Atlantic Forest cover remains. That is an important biome and little is known about the characteristics of rainfall interception of this forest. The total interception loss in forested areas is usually formulated as the gross precipitation (P) minus the sum of the throughfall (Tf) and the stemflow (Sf). The stems characteristics influence on Sf, meanwhile, the value of Tf strongly depends on the canopy and leaf structures. Because of the complex structure of the canopy, these characteristics are usually expressed by the simpler Leaf Area Index (LAI) or the Canopy Cover Fraction (CCF). The Araponga river experimental catchment (ARA) with 5.3 ha is on the northern plateau of Santa Catarina State, southern Brazil. It is an area completely covered by secondary subtropical Atlantic Forest, the regional climate is the Köppen Cfb type, i.e., temperate climate without dry season and with warm summer (the mean temperature of the hottest month is always under 22°C). The objectives of the present study were (i) to evaluate the spatial and temporal variation of canopy cover; (ii) to influence of the interception process on the precipitation quality; and (iii) to explore the relation between canopy cover and throughfall. Inside the catchment, 9 Tf gauges were installed 40 cm above the soil surface in order to include the interception by shrub. 28 hand-made gauges were installed on a circular area of 3 m radius to analyze the spatial variability of throughfall. During 3 year in 2012 to 2014, digital images were taken every month with a camera installed horizontally 25 cm above the soil surface at each Tf gage. The total incident rainfall was 4624 mm, the throughfall volume was 3538 mm or 76% of incident rainfall. CCF and LAI ranged from 70 to 90% and from 3 to 5.5 m2/m2, respectively. We could not find any satisfactory relationship between Tf and canopy parameters (CCF and LAI). The analysis shows the significant difference in the water quality of the precipitation that reaches the ground after being intercepted. There was no significant relationship between the physicochemical parameters and the canopy cover fraction. The results indicate that the distribution of throughfall is not homogeneous, its spatial variation is not linked to any of the calculated parameters.
Plant leaf traits, canopy processes, and global atmospheric chemistry interactions.
NASA Astrophysics Data System (ADS)
Guenther, A. B.
2017-12-01
Plants produce and emit a diverse array of volatile metabolites into the atmosphere that participate in chemical reactions that influence distributions of air pollutants and short-lived climate forcers including organic aerosol, ozone and methane. It is now widely accepted that accurate estimates of these emissions are required as inputs for regional air quality and global climate models. Predicting these emissions is complicated by the large number of volatile organic compounds, driving variables (e.g., temperature, solar radiation, abiotic and biotic stresses) and processes operating across a range of scales. Modeling efforts to characterize emission magnitude and variations will be described along with an assessment of the observations available for parameterizing and evaluating these models including discussion of the limitations and challenges associated with existing model approaches. A new approach for simulating canopy scale organic emissions on regional to global scales will be described and compared with leaf, canopy and regional scale flux measurements. The importance of including additional compounds and processes as well as improving estimates of existing ones will also be discussed.
Modeling snow accumulation and ablation processes in forested environments
NASA Astrophysics Data System (ADS)
Andreadis, Konstantinos M.; Storck, Pascal; Lettenmaier, Dennis P.
2009-05-01
The effects of forest canopies on snow accumulation and ablation processes can be very important for the hydrology of midlatitude and high-latitude areas. A mass and energy balance model for snow accumulation and ablation processes in forested environments was developed utilizing extensive measurements of snow interception and release in a maritime mountainous site in Oregon. The model was evaluated using 2 years of weighing lysimeter data and was able to reproduce the snow water equivalent (SWE) evolution throughout winters both beneath the canopy and in the nearby clearing, with correlations to observations ranging from 0.81 to 0.99. Additionally, the model was evaluated using measurements from a Boreal Ecosystem-Atmosphere Study (BOREAS) field site in Canada to test the robustness of the canopy snow interception algorithm in a much different climate. Simulated SWE was relatively close to the observations for the forested sites, with discrepancies evident in some cases. Although the model formulation appeared robust for both types of climates, sensitivity to parameters such as snow roughness length and maximum interception capacity suggested the magnitude of improvements of SWE simulations that might be achieved by calibration.
Gatti, Matteo; Pirez, Facundo J.; Chiari, Giorgio; Tombesi, Sergio; Palliotti, Alberto; Merli, Maria C.; Poni, Stefano
2016-01-01
Manipulating or shifting annual grapevine growing cycle to offset limitations imposed by global warming is a must today, and delayed winter pruning is a tool to achieve it. However, no information is available about its physiological background, especially in relation to modifications in canopy phenology, demography and seasonal carbon budget. Mechanistic hypothesis underlying this work was that very late winter pruning (LWP) can achieve significant postponement of phenological stages so that ripening might occur in a cooler period and, concurrently, ripening potential can be improved due to higher efficiency and prolonged longevity of the canopy. Variability in the dynamics of the annual cycle was created in mature potted cv. Sangiovese grapevines subjected to either standard winter pruning (SWP) or late and very late winter pruning (LWP, VLWP) performed when apical shoots on the unpruned canes were at the stage of 2 and 7 unfolded leaves. Vegetative growth, phenology and canopy net CO2 exchange (NCER) were followed throughout the season. Despite LWP and VLWP induced a bud-burst delay of 17 and 31 days vs. SWP, the delay was fully offset at harvest for LWP and was reduced to 6 days in VLWP. LWP showed notably higher canopy efficiency as shorter time needed to reach maximum NCER/leaf area (22 days vs. 34 in SWP), highest maximum NCER/leaf area (+37% as compared to SWP) and higher NCER/leaf area rates from veraison to end of season. As a result, seasonal cumulated carbon in LWP was 17% higher than SWP. A negative functional relationship was also established between amount of leaf area removed at winter pruning and yield per vine and berry number per cluster. Although retarded winter pruning was not able to postpone late-season phenological stages under the warm conditions of this study, it showed a remarkable potential to limit yield while improving grape quality, thereby fostering the hypothesis that it could be used to replace time-consuming and costly cluster thinning. This preliminary study indicates that proper winter pruning date should be timed so as not to exceed the stage of two unfolded leaves. PMID:27242860
Pangle, Robert E.; Limousin, Jean -Marc; Plaut, Jennifer A.; ...
2015-03-23
Plant hydraulic conductance (k s) is a critical control on whole-plant water use and carbon uptake and, during drought, influences whether plants survive or die. To assess long-term physiological and hydraulic responses of mature trees to water availability, we manipulated ecosystem-scale water availability from 2007 to 2013 in a piñon pine ( Pinus edulis) and juniper ( Juniperus monosperma) woodland. We examined the relationship between k s and subsequent mortality using more than 5 years of physiological observations, and the subsequent impact of reduced hydraulic function and mortality on total woody canopy transpiration (E C) and conductance (G C). Formore » both species, we observed significant reductions in plant transpiration (E) and k s under experimentally imposed drought. Conversely, supplemental water additions increased E and k s in both species. Interestingly, both species exhibited similar declines in k s under the imposed drought conditions, despite their differing stomatal responses and mortality patterns during drought. Reduced whole-plant k s also reduced carbon assimilation in both species, as leaf-level stomatal conductance (g s) and net photosynthesis (A n) declined strongly with decreasing k s. Finally, we observed that chronically low whole-plant k s was associated with greater canopy dieback and mortality for both piñon and juniper and that subsequent reductions in woody canopy biomass due to mortality had a significant impact on both daily and annual canopy E C and G C. Our data indicate that significant reductions in k s precede drought-related tree mortality events in this system, and the consequence is a significant reduction in canopy gas exchange and carbon fixation. Our results suggest that reductions in productivity and woody plant cover in piñon–juniper woodlands can be expected due to reduced plant hydraulic conductance and increased mortality of both piñon pine and juniper under anticipated future conditions of more frequent and persistent regional drought in the southwestern United States.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pangle, Robert E.; Limousin, Jean -Marc; Plaut, Jennifer A.
Plant hydraulic conductance (k s) is a critical control on whole-plant water use and carbon uptake and, during drought, influences whether plants survive or die. To assess long-term physiological and hydraulic responses of mature trees to water availability, we manipulated ecosystem-scale water availability from 2007 to 2013 in a piñon pine ( Pinus edulis) and juniper ( Juniperus monosperma) woodland. We examined the relationship between k s and subsequent mortality using more than 5 years of physiological observations, and the subsequent impact of reduced hydraulic function and mortality on total woody canopy transpiration (E C) and conductance (G C). Formore » both species, we observed significant reductions in plant transpiration (E) and k s under experimentally imposed drought. Conversely, supplemental water additions increased E and k s in both species. Interestingly, both species exhibited similar declines in k s under the imposed drought conditions, despite their differing stomatal responses and mortality patterns during drought. Reduced whole-plant k s also reduced carbon assimilation in both species, as leaf-level stomatal conductance (g s) and net photosynthesis (A n) declined strongly with decreasing k s. Finally, we observed that chronically low whole-plant k s was associated with greater canopy dieback and mortality for both piñon and juniper and that subsequent reductions in woody canopy biomass due to mortality had a significant impact on both daily and annual canopy E C and G C. Our data indicate that significant reductions in k s precede drought-related tree mortality events in this system, and the consequence is a significant reduction in canopy gas exchange and carbon fixation. Our results suggest that reductions in productivity and woody plant cover in piñon–juniper woodlands can be expected due to reduced plant hydraulic conductance and increased mortality of both piñon pine and juniper under anticipated future conditions of more frequent and persistent regional drought in the southwestern United States.« less
A specific PFT and sub-canopy structure for simulating oil palm in the Community Land Model
NASA Astrophysics Data System (ADS)
Fan, Y.; Knohl, A.; Roupsard, O.; Bernoux, M.; LE Maire, G.; Panferov, O.; Kotowska, M.; Meijide, A.
2015-12-01
Towards an effort to quantify the effects of rainforests to oil palm conversion on land-atmosphere carbon, water and energy fluxes, a specific plant functional type (PFT) and sub-canopy structure are developed for simulating oil palm within the Community Land Model (CLM4.5). Current global land surface models only simulate annual crops beside natural vegetation. In this study, a multilayer oil palm subroutine is developed in CLM4.5 for simulating oil palm's phenology and carbon and nitrogen allocation. The oil palm has monopodial morphology and sequential phenology of around 40 stacked phytomers, each carrying a large leaf and a fruit bunch, forming a natural multilayer canopy. A sub-canopy phenological and physiological parameterization is thus introduced, so that multiple phytomer components develop simultaneously but according to their different phenological steps (growth, yield and senescence) at different canopy layers. This specific multilayer structure was proved useful for simulating canopy development in terms of leaf area index (LAI) and fruit yield in terms of carbon and nitrogen outputs in Jambi, Sumatra (Fan et al. 2015). The study supports that species-specific traits, such as palm's monopodial morphology and sequential phenology, are necessary representations in terrestrial biosphere models in order to accurately simulate vegetation dynamics and feedbacks to climate. Further, oil palm's multilayer structure allows adding all canopy-level calculations of radiation, photosynthesis, stomatal conductance and respiration, beside phenology, also to the sub-canopy level, so as to eliminate scale mismatch problem among different processes. A series of adaptations are made to the CLM model. Initial results show that the adapted multilayer radiative transfer scheme and the explicit represention of oil palm's canopy structure improve on simulating photosynthesis-light response curve. The explicit photosynthesis and dynamic leaf nitrogen calculations per canopy layer also enhance simulated CO2 flux when compared to eddy covariance flux data. More investigations on energy and water fluxes and nitrogen balance are being conducted. These new schemes would hopefully promote the understanding of climatic effects of the tropical land use transformation system.