Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index
NASA Astrophysics Data System (ADS)
Chen, Jing M.; Cihlar, Josef
1995-09-01
Optical instruments currently available for measuring the leaf-area index (LAI) of a plant canopy all utilize only the canopy gap-fraction information. These instruments include the Li-Cor LAI-2000 Plant Canopy Analyzer, Decagon, and Demon. The advantages of utilizing both the canopy gap-fraction and gap-size information are shown. For the purpose of measuring the canopy gap size, a prototype sunfleck-LAI instrument named Tracing Radiation and Architecture of Canopies (TRAC), has been developed and tested in two pure conifer plantations, red pine (Pinus resinosa Ait.) and jack pine (Pinus banksiana Lamb). A new gap-size-analysis theory is presented to quantify the effect of canopy architecture on optical measurements of LAI based on the gap-fraction principle. The theory is an improvement on that of Lang and Xiang [Agric. For. Meteorol. 37, 229 (1986)]. In principle, this theory can be used for any heterogeneous canopies.
On the accurate estimation of gap fraction during daytime with digital cover photography
NASA Astrophysics Data System (ADS)
Hwang, Y. R.; Ryu, Y.; Kimm, H.; Macfarlane, C.; Lang, M.; Sonnentag, O.
2015-12-01
Digital cover photography (DCP) has emerged as an indirect method to obtain gap fraction accurately. Thus far, however, the intervention of subjectivity, such as determining the camera relative exposure value (REV) and threshold in the histogram, hindered computing accurate gap fraction. Here we propose a novel method that enables us to measure gap fraction accurately during daytime under various sky conditions by DCP. The novel method computes gap fraction using a single DCP unsaturated raw image which is corrected for scattering effects by canopies and a reconstructed sky image from the raw format image. To test the sensitivity of the novel method derived gap fraction to diverse REVs, solar zenith angles and canopy structures, we took photos in one hour interval between sunrise to midday under dense and sparse canopies with REV 0 to -5. The novel method showed little variation of gap fraction across different REVs in both dense and spares canopies across diverse range of solar zenith angles. The perforated panel experiment, which was used to test the accuracy of the estimated gap fraction, confirmed that the novel method resulted in the accurate and consistent gap fractions across different hole sizes, gap fractions and solar zenith angles. These findings highlight that the novel method opens new opportunities to estimate gap fraction accurately during daytime from sparse to dense canopies, which will be useful in monitoring LAI precisely and validating satellite remote sensing LAI products efficiently.
The stochastic Beer-Lambert-Bouguer law for discontinuous vegetation canopies
NASA Astrophysics Data System (ADS)
Shabanov, N.; Gastellu-Etchegorry, J.-P.
2018-07-01
The 3D distribution of canopy foliage affects the radiation regime and retrievals of canopy biophysical parameters. The gap fraction is one primary indicator of a canopy structure. Historically the Beer-Lambert-Bouguer law and the linear mixture model have served as a basis for multiple technologies for retrievals of the gap (or vegetation) fraction and Leaf Area Index (LAI). The Beer-Lambert-Bouguer law is a form of the Radiative Transfer (RT) equation for homogeneous canopies, which was later adjusted for a correlation between fitoelements using concept of the clumping index. The Stochastic Radiative Transfer (SRT) approach has been developed specifically for heterogeneous canopies, however the approach lacks a proper model of the vegetation fraction. This study is focused on the implementation of the stochastic version of the Beer-Lambert-Bouguer law for heterogeneous canopies, featuring the following principles: 1) two mechanisms perform photon transport- transmission through the turbid medium of foliage crowns and direct streaming through canopy gaps, 2) the radiation field is influenced by a canopy structure (quantified by the statistical moments of a canopy structure) and a foliage density (quantified by the gap fraction as a function of LAI), 3) the notions of canopy transmittance and gap fraction are distinct. The derived stochastic Beer-Lambert-Bouguer law is consistent with the Geometrical Optical and Radiative Transfer (GORT) derivations. Analytical and numerical analysis of the stochastic Beer-Lambert-Bouguer law presented in this study provides the basis to reformulate widely used technologies for retrievals of the gap fraction and LAI from ground and satellite radiation measurements.
NASA Astrophysics Data System (ADS)
Leblanc, Sylvain G.
2002-12-01
A plant canopy gap-size analyzer, the Tracing Radiation and Architecture of Canopies (TRAC), developed by Chen and Cihlar [Appl. Opt. 34, 6211 (1995)] and commercialized by 3rd Wave Engineering (Nepean, Canada), has been used around the world to quantify the fraction of photosynthetically active radiation absorbed by plant canopies, the leaf area index (LAI), and canopy architectural parameters. The TRAC is walked under a canopy along transects to measure sunflecks that are converted into a gap-size distribution. A numerical gap-removal technique is performed to remove gaps that are not theoretically possible in a random canopy. The resulting reduced gap-size distribution is used to quantify the heterogeneity of the canopy and to improve LAI measurements. It is explicitly shown here that the original derivation of the clumping index was missing a normalization factor. For a very clumped canopy with a large gap fraction, the resulting LAI can be more than 100% smaller than previously estimated. A test case is used to demonstrate that the new clumping index derivation allows a more accurate change of LAI to be measured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurer, K. D.; Bohrer, G.; Kenny, W. T.
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.« less
Maurer, K. D.; Bohrer, G.; Kenny, W. T.; ...
2015-04-30
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.« less
NASA Astrophysics Data System (ADS)
Maurer, K. D.; Bohrer, G.; Kenny, W. T.; Ivanov, V. Y.
2015-04-01
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction. We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.
BOREAS TE-6 Multiband Vegetation Imager Data
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Kucharik, Christopher J.
2000-01-01
The BOREAS TE-6 team collected data in support of its efforts to examine the influence of vegetation and climate on the major carbon fluxes in boreal tree species. A newly developed ground-based canopy imaging system called an MVI was tested and used by the BOREAS TE-06 team to collect measurements of the canopy crap fraction (sky fraction), canopy gap-size distribution (size and frequency of gaps between foliage in canopy), branch architecture, and leaf angle distribution (fraction of leaf area in specific leaf inclination classes assuming azimuthal symmetry). Measurements of the canopy gap-size distribution are used to derive canopy clumping indices that can be used to adjust indirect LAI measurements made in nonrandom forests. These clumping factors will also help to describe the radiation penetration in clumped canopies more accurately by allowing for simple adjustments to Beer's law. Measurements of the above quantities were obtained at BOREAS NSA-OJP site in IFC-2 in 1994, at the SSA-OA in July 1995, and at the SSA-OBS and SSA-OA sites in IFC-2 in 1996. Modeling studies were also performed to further validate MVI measurements and to gain a more complete understanding of boreal forest canopy architecture. By using MVI measurements and Monte Carlo simulations, clumping indices as a function of zenith angle were derived for the three main boreal species studied during BOREAS. The analyzed data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).
Snowy backgrounds enhance the absorption of visible light in forest canopies
NASA Astrophysics Data System (ADS)
Pinty, B.; Widlowski, J.-L.; Verstraete, M. M.; Andredakis, I.; Arino, O.; Clerici, M.; Kaminski, T.; Taberner, M.
2011-03-01
The fraction of radiation absorbed in the canopy depends on the amount and angular distribution of the solar irradiance reaching the top of the canopy as well as the fraction of this irradiance that is transmitted through the canopy gaps and reflected back to the vegetation by the background. This contribution shows that the presence of snow on forest floors enhances the fraction of absorbed Photosynthetically Active Radiation (PAR). A global analysis of satellite-derived products reveals that this enhancement affects evergreen and deciduous forests of the boreal zone. This snow-related effect may usefully contribute to the photosynthesis process in evergreen forests especially during spring time when radiation conditions are marginal but other physiological constraints (such as temperature) permit the necessary biochemical functions to take place.
Estimation of leaf area index and foliage clumping in deciduous forests using digital photography
NASA Astrophysics Data System (ADS)
Chianucci, Francesco; Cutini, Andrea
2013-04-01
Rapid, reliable and meaningful estimates of leaf area index (LAI) are essential to the characterization of forest ecosystems. In this contribution the accuracy of both fisheye and non-fisheye digital photography for the estimation of forest leaf area in deciduous stands was evaluated. We compared digital hemispherical photography (DHP), the most widely used technique that measures the gap fraction at multiple zenith angles, with methods that measure the gap fraction at a single zenith angle, namely 57.5 degree photography and cover photography (DCP). Comparison with other different gap fraction methods used to calculate LAI such as canopy transmittance measurements from AccuPAR ceptometer and LAI- 2000 Plant Canopy Analyzer (PCA) were also performed. LAI estimated from all these indirect methods were compared with direct measurements obtained by litter traps (LAILT). We applied these methods in 10 deciduous stands of Quercus cerris, Castanea sativa and Fagus sylvatica, the most common deciduous species in Italy, where LAILT ranged from 3.9 to 7.3. DHP and DCP provided good indirect estimates of LAILT, and outperformed the other indirect methods. The DCP method provided estimates of crown porosity, crown cover, foliage cover and the clumping index at the zenith, but required assumptions about the light extinction coefficient at the zenith (k), to accurately estimate LAI. Cover photography provided good indirect estimates of LAI assuming a spherical leaf angle distribution, even though k appeared to decrease as LAI increased, thus affecting the accuracy of LAI estimates in DCP. In contrast, the accuracy of LAI estimates in DHP appeared insensitive to LAILT values, but the method was sensitive to photographic exposure, gamma-correction and was more time-consuming than DCP. Foliage clumping was estimated from all the photographic methods by analyzing either gap size distribution (DCP) or gap fraction distribution (DHP). Foliage clumping was also calculated from PCA and compared with DHP. The studied stands were characterized by fairly homogeneous canopies with higher within-crown clumping than between-crowns clumping; only the segmented analysis of gap fraction for each ring of the fisheye images was found to provide useful clumping index in such homogeneous canopies. By contrast, the 1-azimuth segment method employed in PCA poorly detected clumping in dense canopies. We conclude both fisheye and non-fisheye photographic methods are suitable for dense deciduous forests. Cover photography holds great promise as a means to quickly obtain inexpensive estimates of LAI over large areas. However, in situations where no direct reference measurements of k are available, we recommend using both DHP and DCP, in order to cross-calibrate the two methods; DCP could then be used for more routinely indirect measurement and monitoring of LAI. Keywords: digital hemispherical photography, cover photography, litter trap, AccuPAR ceptometer, LAI-2000.
Gregory P. Asner; Michael Keller; Rodrigo Pereira; Johan C. Zweede
2002-01-01
We combined a detailed field study of forest canopy damage with calibrated Landsat 7 Enhanced Thematic Mapper Plus (ETM+) reflectance data and texture analysis to assess the sensitivity of basic broadband optical remote sensing to selective logging in Amazonia. Our field study encompassed measurements of ground damage and canopy gap fractions along a chronosequence of...
Dynamics of composition and structure in an old Sequoia sempervirens forest
Busing, R.T.; Fujimori, T.
2002-01-01
Dynamics of a Sequoia sempervirens forest in northern California were studied with long-term plot data (1.44 ha) and recent transect data. The study was conducted in an old stand (> 1100 yr) on alluvial flats. Over three decades (1972-2001), changes in the composition and structure of the tree stratum were minor. Sequoia maintained a broad distribution of stem diameters throughout the period. Annual rates of Sequoia mortality (0.0029) and ingrowth (0.0029) were low, reflecting the great longevity of Sequoia and the slow canopy turnover of the study forest. Transect data also indicated a low frequency of canopy gap disturbance (??? 0.4% of total land area per yr), but gap size was potentially large (> 0.1 ha) and the fraction of area in gaps (ca. 20%) was similar to other temperate forests. Regeneration quadrats sampled along transects, in gap centers, and on logs revealed that Sequoia regeneration is elevated at gap edges. The longevity of Sequoia and its response to gap disturbances ensure that it will remain a dominant species in the study forest.
Gatti, Matteo; Dosso, Paolo; Maurino, Marco; Merli, Maria Clara; Bernizzoni, Fabio; José Pirez, Facundo; Platè, Bonfiglio; Bertuzzi, Gian Carlo; Poni, Stefano
2016-01-01
Ground-based proximal sensing of vineyard features is gaining interest due to its ability to serve in even quite small plots with the advantage of being conducted concurrently with normal vineyard practices (i.e., spraying, pruning or soil tilling) with no dependence upon weather conditions, external services or law-imposed limitations. The purpose of the present work was to test performance of the new terrestrial multi-sensor MECS-VINE® in terms of reliability and degree of correlation with several canopy growth and yield parameters in the grapevine. MECS-VINE®, once conveniently positioned in front of the tractor, can provide simultaneous assessment of growth features and microclimate of specific canopy sections of the two adjacent row sides. MECS-VINE® integrates a series of microclimate sensors (air relative humidity, air and surface temperature) with two (left and right) matrix-based optical RGB imaging sensors and a related algorithm, termed Canoyct). MECS-VINE® was run five times along the season in a mature cv. Barbera vineyard and a Canopy Index (CI, pure number varying from 0 to 1000), calculated through its built-in algorithm, validated vs. canopy structure parameters (i.e., leaf layer number, fractions of canopy gaps and interior leaves) derived from point quadrat analysis. Results showed that CI was highly correlated vs. any canopy parameter at any date, although the closest relationships were found for CI vs. fraction of canopy gaps (R2 = 0.97) and leaf layer number (R2 = 0.97) for data pooled over 24 test vines. While correlations against canopy light interception and total lateral leaf area were still unsatisfactory, a good correlation was found vs. cluster and berry weight (R2 = 0.76 and 0.71, respectively) suggesting a good potential also for yield estimates. Besides the quite satisfactory calibration provided, main improvements of MECS-VINE® usage versus other current equipment are: (i) MECS-VINE® delivers a segmented evaluation of the canopy up to 15 different sectors, therefore allowing to differentiate canopy structure and density at specific and crucial canopy segments (i.e., basal part where clusters are located) and (ii) the sensor is optimized to work at any time of the day with any weather condition without the need of any supplemental lighting system. PMID:27898049
Thirty-two years of change in an old-growth Ohio beech-maple forest.
Runkle, James R
2013-05-01
Old-growth forests dominated by understory-tolerant tree species are among forest types most likely to be in equilibrium. However, documentation of the degree to which they are in equilibrium over decades-long time periods is lacking. Changes in climate, pathogens, and land use all are likely to impact stand characteristics and species composition, even in these forests. Here, 32 years of vegetation changes in an old-growth beech (Fagus grandifolia)-sugar maple (Acer saccharum) forest in Hueston Woods, southwest Ohio, USA, are summarized. These changes involve canopy composition and structure, turnover in snags, and development of vegetation in treefall gaps. Stand basal area and canopy density have changed little in 32 years. However, beech has decreased in canopy importance (49% to 32%) while sugar maple has increased (32% to 47%). Annual mortality was about 1.3% throughout the study period. Mortality rates increased with stem size, but the fraction of larger stems increased due to ingrowth from smaller size classes. Beech was represented by more very large stems than small canopy stems: over time, death of those larger stems with inadequate replacement has caused the decrease in beech importance. Sugar maple was represented by more small canopy stems whose growth has increased its importance. The changes in beech and sugar maple relative importance are hypothesized to be due to forest fragmentation mostly from the early 1800s with some possible additional effects associated with the formation of the state park. Snag densities (12-16 snags/ha) and formation rates (1-3 snags.ha(-1).yr(-1)) remained consistent. The treefall gaps previously studied are closing, with a few, large stems remaining. Death of gap border trees occurs consistently enough to favor species able to combine growth in gaps and survival in the understory.
Fragmented Canopies Control the Regimes of Gravity Current Development
NASA Astrophysics Data System (ADS)
Barcelona, Aina; Serra, Teresa; Colomer, Jordi
2018-03-01
Coastal ecosystems (marine littoral regions, wetlands, and deltas) are regions of high biological productivity. However, they are also one of the world's most threatened ecosystems. Wetlands are characterized by aquatic vegetation adapted to high salinity levels and climatic variations. Wetland canopies buffer these hydrodynamic and atmospheric variations and help retain sediment by reducing current velocity during sea storms or runoff after periods of rain. This work focuses on the effect of the presence of a gap (i.e., nonvegetated zone) parallel to the direction of the main current has on the sedimentation and hydrodynamics of a gravity current. The study aims to (1) address the behavior of a gravity current in a vegetated region compared to one without vegetation (i.e., the gap), (2) determine the effect gap size has on how a gravity current evolves, and 3) determine the effect gap sizes have on the sedimentary rates from a gravity current. Laboratory experiments were carried out in a flume using four different sediment concentrations, four different canopy densities (884, 354, 177, and 0 plants·m-2) and three different gap widths (H/2, H, and 1.5H, where H is the height of the water). This work shows that a gravity current's evolution and its sedimentary rates depend on the fractional volume occupied by the vegetation. While current dynamics in experiments with wider gaps are similar to the nonvegetated case, for smaller gaps the dynamics are closer to the fully vegetated case. Nonetheless, the gravity current exhibits the same behavior in both the vegetated region and the gap.
Spatial contagiousness of canopy disturbance in tropical rain forest: an individual-tree-based test.
Jansen, Patrick A; van der Meer, Peter J; Bongers, Frans
2008-12-01
Spatial contagiousness of canopy dynamics-the tendency of canopy disturbances to occur nearby existing canopy openings due to an elevated risk of tree fall around gaps-has been demonstrated in many temperate-zone forests, but only inferentially for tropical forests. Hypothesized mechanisms increasing the risk of tree fall around tropical forest gaps are (1) increased tree exposure to wind around gaps, (2) reduced stability of trees alongside gaps due to crown asymmetry, or (3) reduced tree health around gaps due to damage from prior disturbances. One hypothesized consequence of elevated disturbance levels around gaps would be that gap-edge zones offer relatively favorable prospects for seedling recruitment, growth, and survival. We tested whether disturbance levels are indeed elevated around natural canopy gaps in a neotropical rain forest in French Guiana, and more so as gaps are larger. We followed the fate of 5660 trees >10 cm stem diameter over five years across 12 ha of old-growth forest and analyzed the risk and magnitude of canopy disturbance events in relation to tree diameter and the proximity and size of natural canopy gaps. We found that the cumulative incidence of disturbance over the five-year survey was not significantly elevated around preexisting gaps, and only weakly related to gap size. Also, neither the risk nor the magnitude of canopy disturbances increased significantly with the proximity of gaps. Moreover, canopy disturbance risk around gaps was independent of gap size, while the magnitude of disturbance events around gaps was weakly related to gap size. Tree size was the major driver of disturbance risk as well as magnitude. We did find an elevated incidence of disturbance inside preexisting gaps, but this "repeat disturbance" was due to an elevated disturbance risk inside gaps, not around gaps. Overall, we found no strong evidence for canopy dynamics in this rain forest being spatially contagious. Our findings are consistent with the traditional view of tropical rain forests as mosaics of patches with predictable regeneration cycles.
Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horn, Scott; Hanula, James L.; Ulyshen, Michael D.
2005-01-01
Horn, Scott, James L. Hanula, Michael D. Ulyshen, and John C. Kilgo. 2005. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest. Am. Midl. Nat. 153:321-326. Abstract: We found more green tree frogs (Hyla cinerea) in canopy gaps than in closed canopy forest. Of the 331 green tree frogs observed, 88% were in canopy gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat. Flies were the most commonly collected insect group accounting for 54% of the total capture. These data suggest that one reason green tree frogsmore » were more abundant in canopy gaps was the increased availability of prey and that small canopy gaps provide early successional habitats that are beneficial to green tree frog populations.« less
Groundlayer vegetation gradients across oak woodland canopy gaps
Pavlovic, N.B.; Grundel, R.; Sluis, W.
2006-01-01
Frequency of groundlayer plants was measured across oak woodland canopy gaps at three sites in northwest Indiana to examine how vegetation varied with gap size, direction along the gap edge, and microhabitat. Microhabitats were defined as under the canopy adjacent to the gap, along the gap edge, and within the gap. Gap-sites consisted of gaps plus adjacent tree canopy. Gaps were classified as small (16 ± 1 m2), medium (97 ± 8), and large (310 ± 32). Neither richness nor diversity differed among microhabitats, gap sizes, or edges. Similarity between microhabitats wthin a gap-site increased as the distance between plots decreased and as the difference in PAR decreased, the latter explaining twice the variation in percent dissimilarity compared to Mg concentration, A horizon depth, and litter cover. Diervilla lonicera, Frageria virginiana, Helianthus divaricatus, Polygonatum pubescens, Quercus velutina, Smilacena stellata, and Tradescantia ohiensis decreased, whileTephrosia virginiana and legumes increased in frequency, from canopy to gap, and C4 grasses peaked at the gap edge, independent of gap size. Additional species frequency varied across the microhabitat gradient within specific sites. Sorghastrum nutans was three times more frequent in gaps at large sites than elsewhere. The vegetation in medium-sized gap-sites was more variable than within small and large gap-sites, suggesting greater environmental heterogeneity at that scale. Within gap-sites, vegetation was more heterogeneous within edges and canopies than in gaps. Edges were more similar in composition to gaps than to canopy groundlayer within gap-sites. Few species varied significantly in frequency around the gap edge. The oak woodland groundlayer on sandy substrates can be characterized as a mosaic of forb dominated vegetation that varies across light gradients associated with canopy gaps, transitioning to islands of grassland vegetation when gaps exceed 160 m2.
Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest
Scott Horn; James L. Hanula; Michael D. Ulyshen; John C. Kilgo
2005-01-01
We found more green tree frogs (Hyla cinera) in canopy gaps than in closed canopy forest. Of the 331 gree ntree frogs observed, 88% were in canopy gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat. Flies were the most commonly collected insect group accounting for 54% of the total capture. These data...
NASA Astrophysics Data System (ADS)
Fotis, A. T.; Curtis, P.; Ricart, R.
2013-12-01
The notion that old-growth forests reach carbon neutrality has recently been challenged, but the mechanisms responsible for continued productivity have remained elusive. Increases in canopy structural complexity, defined by high horizontal and vertical variability in leaf distribution (rugosity), has been proposed as a mechanism for sustained high rates of above ground net primary production (ANPPw) in forests up to ~170 years by enhancing light use efficiency (LUE) and nitrogen use efficiency (NUE). However, a detailed understanding of how rugosity affects resource distribution within and among trees leading to greater LUE and NUE is not known. We propose that leaves in high rugosity plots receive greater photosynthetic photon flux density (PPFD) than leaves in low rugosity plots, causing shifts from shade- to sun- adapted leaves into deeper portions of the canopy, which is thought to increase the photosynthetic capacity of individuals and lead to higher carbon assimilation in forests. The goal of this research was to: 1) quantify different canopy structural characteristics using a portable canopy LiDAR (PCL) and; 2) assess how these structural characteristics affect resource distribution and subsequent changes in leaf morphological, physiological and biochemical traits in three broadleaf species (e.g., Acer rubrum, Quercus rubra and Fagus grandifolia) and one conifer species (e.g., Pinus strobus) at different levels in the canopy in plots with similar leaf are index (LAI) but highly contrasting rugosity levels. We found that gap fraction had a strong positive correlation with rugosity. High rugosity plots had a bimodal distribution of LAI that was concentrated at the top and bottom of the canopy with an open midstory (between 10-50% of total canopy height) whereas low rugosity plots had a more even distribution of leaves. Leaf mass per area (LMA) of all broadleaved species had a strong positive correlation with cumulative gap fraction (P. strobus had a relatively weaker, but strong positive correlation). On average, Q. rubra and F. grandifolia had greater LMA in high rugosity plots while LMA was greater for A. rubrum and P. strobus in low rugosity plots. These findings suggest that species are responding differently to canopy structural complexity and that leaf arrangement in space plays an important role in determining leaf level traits. Furthermore, this research demonstrates that PCL can be used for quick identification of canopy traits (e.g., average LMA) relevant to photosynthetic capacity, and thus, carbon sequestration potential, and therefore may become an important tool in forest management.
Selection of forest canopy gaps by male Cerulean Warblers in West Virginia
Perkins, Kelly A.; Wood, Petra Bohall
2014-01-01
Forest openings, or canopy gaps, are an important resource for many forest songbirds, such as Cerulean Warblers (Setophaga cerulea). We examined canopy gap selection by this declining species to determine if male Cerulean Warblers selected particular sizes, vegetative heights, or types of gaps. We tested whether these parameters differed among territories, territory core areas, and randomly-placed sample plots. We used enhanced territory mapping techniques (burst sampling) to define habitat use within the territory. Canopy gap densities were higher within core areas of territories than within territories or random plots, indicating that Cerulean Warblers selected habitat within their territories with the highest gap densities. Selection of regenerating gaps with woody vegetation >12 m within the gap, and canopy heights >24 m surrounding the gap, occurred within territory core areas. These findings differed between two sites indicating that gap selection may vary based on forest structure. Differences were also found regarding the placement of territories with respect to gaps. Larger gaps, such as wildlife food plots, were located on the periphery of territories more often than other types and sizes of gaps, while smaller gaps, such as treefalls, were located within territory boundaries more often than expected. The creations of smaller canopy gaps, <100 m2, within dense stands are likely compatible with forest management for this species.
Mapping forest canopy gaps using air-photo interpretation and ground surveys
Fox, T.J.; Knutson, M.G.; Hines, R.K.
2000-01-01
Canopy gaps are important structural components of forested habitats for many wildlife species. Recent improvements in the spatial accuracy of geographic information system tools facilitate accurate mapping of small canopy features such as gaps. We compared canopy-gap maps generated using ground survey methods with those derived from air-photo interpretation. We found that maps created from high-resolution air photos were more accurate than those created from ground surveys. Errors of omission were 25.6% for the ground-survey method and 4.7% for the air-photo method. One variable of inter est in songbird research is the distance from nests to gap edges. Distances from real and simulated nests to gap edges were longer using the ground-survey maps versus the air-photo maps, indicating that gap omission could potentially bias the assessment of spatial relationships. If research or management goals require location and size of canopy gaps and specific information about vegetation structure, we recommend a 2-fold approach. First, canopy gaps can be located and the perimeters defined using 1:15,000-scale or larger aerial photographs and the methods we describe. Mapped gaps can then be field-surveyed to obtain detailed vegetation data.
Convergent structural responses of tropical forests to diverse disturbance regimes.
Kellner, James R; Asner, Gregory P
2009-09-01
Size frequency distributions of canopy gaps are a hallmark of forest dynamics. But it remains unknown whether legacies of forest disturbance are influencing vertical size structure of landscapes, or space-filling in the canopy volume. We used data from LiDAR remote sensing to quantify distributions of canopy height and sizes of 434,501 canopy gaps in five tropical rain forest landscapes in Costa Rica and Hawaii. The sites represented a wide range of variation in structure and natural disturbance history, from canopy gap dynamics in lowland Costa Rica and Hawaii, to stages and types of stand-level dieback on upland Mauna Kea and Kohala volcanoes. Large differences in vertical canopy structure characterized these five tropical rain forest landscapes, some of which were related to known disturbance events. Although there were quantitative differences in the values of scaling exponents within and among sites, size frequency distributions of canopy gaps followed power laws at all sites and in all canopy height classes. Scaling relationships in gap size at different heights in the canopy were qualitatively similar at all sites, revealing a remarkable similarity despite clearly defined differences in species composition and modes of prevailing disturbance. These findings indicate that power-law gap-size frequency distributions are ubiquitous features of these five tropical rain forest landscapes, and suggest that mechanisms of forest disturbance may be secondary to other processes in determining vertical and horizontal size structure in canopies.
Abundance of Green Tree Frogs and Insects in Artificial Canopy Gaps in a Bottomland Hardwood Forest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horn, Scott; Hanula, James, L.; Ulyshen, Michael D.
2005-04-01
ABSTRACT - We found more green tree frogs ( Hyla cinerea) n canopv gaps than in closed canopy forest. Of the 331 green tree frogs observed, 88% were in canopv gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat Flies were the most commonlv collected insect group accounting for 54% of the total capture. These data suggest that one reason green tree frogs were more abundant in canopy gaps was the increased availability of prey and that small canopy gaps provide early successional habitats that are beneficial to green tree frog populations.
NASA Astrophysics Data System (ADS)
Kostadinov, T. S.; Harpold, A.; Hill, R.; McGwire, K.
2017-12-01
Seasonal snow cover is a key component of the hydrologic regime in many regions of the world, especially those in temperate latitudes with mountainous terrain and dry summers. Such regions support large human populations which depend on the mountain snowpack for their water supplies. It is thus important to quantify snow cover accurately and continuously in these regions. Optical remote-sensing methods are able to detect snow and leverage space-borne spectroradiometers with global coverage such as MODIS to produce global snow cover maps. However, snow is harder to detect accurately in mountainous forested terrain, where topography influences retrieval algorithms, and importantly - forest canopies complicate radiative transfer and obfuscate the snow. Current satellite snow cover algorithms assume that fractional snow-covered area (fSCA) under the canopy is the same as the fSCA in the visible portion of the pixel. In-situ observations and first principles considerations indicate otherwise, therefore there is a need for improvement of the under-canopy correction of snow cover. Here, we leverage multiple LIDAR overflights and in-situ observations with a distributed fiber-optic temperature sensor (DTS) to quantify snow cover under canopy as opposed to gap areas at the Sagehen Experimental Forest in the Northern Sierra Nevada, California, USA. Snow-off LIDAR overflights from 2014 are used to create a baseline high-resolution digital elevation model and classify pixels at 1 m resolution as canopy-covered or gap. Low canopy pixels are excluded from the analysis. Snow-on LIDAR overflights conducted by the Airborne Snow Observatory in 2016 are then used to classify all pixels as snow-covered or not and quantify fSCA under canopies vs. in gap areas over the Sagehen watershed. DTS observations are classified as snow-covered or not based on diel temperature fluctuations and used as validation for the LIDAR observations. LIDAR- and DTS-derived fSCA is also compared with retrievals from hyperspectral imaging spectroradiometer (AVIRIS) data. Initial evidence suggest fSCA was generally lower under canopy and that overall snow cover estimates were overestimated as a result. Implications for a canopy correction applicable to coarser-resolution sensors like MODIS are discussed, as are topography and view angle effects.
Twedt, Daniel J.; Somershoe, Scott G.; Guldin, James M.
2013-01-01
To promote desired forest conditions that enhance wildlife habitat in bottomland forests, managers prescribed and implemented variable-retention harvest, a.k.a. wildlife forestry, in four stands on Tensas River National Wildlife Refuge, LA. These treatments created canopy openings (gaps) within which managers sought to regenerate shade-intolerant trees. Six years after prescribed harvests, we assessed regeneration in 41 canopy gaps and 4 large (>0.5-ha) patch cut openings that resulted from treatments and in 21 natural canopy gaps on 2 unharvested control stands. Mean gap area of anthropogenic gaps (582 m²) was greater than that of natural gaps (262 m²). Sweetgum (Liquidambar styraciflua) and red oaks (Quercus nigra, Q. nuttallii, and Q. phellos) were common in anthropogenic gaps, whereas elms (Ulmus spp.) and sugarberry (Celtis laevigata) were numerous in natural gaps. We recommend harvest prescriptions include gaps with diameter >25 m, because the proportion of shade-intolerant regeneration increased with gap area up to 500 m². The proportion of shade-intolerant definitive gap fillers (individuals likely to occupy the canopy) increased with gap area: 35 percent in natural gaps, 54 percent in anthropogenic gaps, and 84 percent in patch cuts. Sweetgum, green ash (Fraxinus pennsylvanica), and red oaks were common definitive gap fillers.
NASA Astrophysics Data System (ADS)
Gough, C. M.; Hardiman, B. S.; Bohrer, G.; Maurer, K.; Nave, L. E.; Vogel, C. S.; Curtis, P.; University of Michigan Biological Station Forest Ecosystem STudy (FEST) Team
2011-12-01
Disturbances to forests such as those caused by herbivory, wind, pathogens, and age-related mortality may subtly alter canopy structure, with variable consequences for carbon (C) cycling. Forest C storage resilience following disturbance in which only a fraction of the canopy is defoliated may depend upon canopy structural shifts that compensate for lost leaf area by improving the efficiency of light-use by the altered canopy. In a forest at the University of Michigan Biological Station that is regionally representative of the northern Great Lakes, we initiated an experiment that examines forest C storage following subtle canopy disturbance. The Forest Accelerated Succession ExperimenT (FASET), in which >6,700 aspen and birch trees (~35 % LAI) were stem girdled within a 39 ha area, is investigating how C storage changes as Great Lakes forests broadly undergo a transition in which early successional canopy trees die and give way to an assemblage of later successional canopy dominants. The experiment employs a suite of paired C cycling measurements within separate treatment and control meteorological flux tower footprints. Forest carbon storage, quantified as annual net ecosystem production (NEP) and net primary production (NPP), was resilient to partial canopy defoliation, with rapid structural changes improving canopy light-use efficiency (LUE). Declining aspen and birch leaf area was offset by new foliar growth from later successional species already present in the canopy; however, the distribution of foliage within the canopy became more heterogeneous following disturbance as patchy aspen and birch mortality produced gaps and the vertical structure of the forest diversified. These canopy structural alterations prompted by small-scale patchy disturbance may have permitted deeper light penetration into the canopy, decreasing the fraction of absorbed photosynthetically active radiation (PAR) while increasing the efficiency in which absorbed light was used to drive canopy C uptake. The result was little change in forest C storage in the first several years following disturbance. We conclude that forest C storage resilience depends not only on replacement of lost leaf area, but also on shifts in forest structure that permit greater efficiency of light-use to drive C storage. These findings suggest that structural changes in the canopy should be considered in addition to trajectories of leaf area recovery when predicting the extent and duration of disturbance-related shifts in forest C storage.
Microsite controls on tree seedling establishment in conifer forest canopy gaps
Andrew N. Gray; Thomas A. Spies
1997-01-01
Tree seedling establishment and growth were studied in experimental canopy gaps to assess the effect of heterogeneity of regeneration microsites within and among gaps in mature conifer forests. Seedlings were studied for two years in closed-canopy areas and in recently created gaps ranging in size from 40 to 2000 m2 in four stands of mature (90-...
Canopy Gap Characteristics and Drought Influences in Oak Forests of the Coweeta Basin
B.D. Clinton; L.R. Boring
1993-01-01
Canopy gaps in southern Appalachian mixed-Quercus forests were characterized to assess the impact of the 1985-l988 record drought on patterns of tree mortality in relation to topographic variables and changes in overstory composition. Using permanent transects, we sampled 68 canopy gaps within the Coweeta Basin. Among l-5 yr old gaps, the most...
Effects of sub-Arctic shrub canopies on snowmelt energetics
NASA Astrophysics Data System (ADS)
Bewley, D.; Essery, R.; Pomeroy, J.
2006-12-01
Much of the low Arctic is covered with shrub tundra, and there is increasing evidence that snowmelt rates are substantially different between shrub tundra and poorly vegetated sites. The cause of this remains uncertain, however, and extends beyond simple differences in albedo. Results are presented in this study from a detailed field investigation at Wolf Creek Research Basin in 2004 to determine the effect of two different shrub canopy structures on both melt rates and the partitioning of melt energy. The low shrub site (LSS) was essentially an unvegetated snowfield prior to melt (mean albedo ~0.85), and shrubs only became exposed during the last few days of melt reaching a mean height of 0.31 m and mean Plant Area Index (PAI) of 0.32. Shrubs at the tall shrub site (TSS) were partially buried initially (shrub fraction, mean height and PAI of 0.2, 0.9 m and 0.41) but dominated the landscape by the end of melt (corresponding values of 0.71, 1.6 m and 0.6). Melt rates were higher at TSS up until the exposure of shrubs and bare ground at LSS, after which the rates converged. A Shrub-Snow Canopy Model (SSCM) is developed to improve snowmelt simulations for shrub canopies by parameterizing the key shrub effects on surface fluxes, including the extinction of shortwave irradiance beneath shrubs and in canopy gaps, and the enhancement of snow surface fluxes of longwave radiation and sensible heat. SSCM was run for LSS assuming no shrubs were present above the variable snow and bare ground tiles, whereas for TSS an increasing shrub fraction above each tile was prescribed from observations. Results from both sites suggest that sensible heat fluxes contributed more melt energy than net radiation, and were greater during early melt at TSS due to the warming of exposed shrubs. SWE was accurately predicted against transect measurements at TSS (rms error 4 mm), but was overestimated at LSS (rms error 13 mm) since both air temperatures and turbulent transport were underestimated by not incorporating shrubs. This demonstrates the need to incorporate the rapid change in surface conditions associated with any shrub canopy (low or tall) within land surface and hydrological models. Most of the information required for running SSCM at other (tall) shrub canopies can be obtained remotely from photos or images of sufficiently high resolution to delineate individual shrub patches and canopy gaps.
Mapping canopy gap fraction and leaf area index at continent-scale from satellite lidar
NASA Astrophysics Data System (ADS)
Mahoney, C.; Hopkinson, C.; Held, A. A.
2015-12-01
Information on canopy cover is essential for understanding spatial and temporal variability in vegetation biomass, local meteorological processes and hydrological transfers within vegetated environments. Gap fraction (GF), an index of canopy cover, is often derived over large areas (100's km2) via airborne laser scanning (ALS), estimates of which are reasonably well understood. However, obtaining country-wide estimates is challenging due to the lack of spatially distributed point cloud data. The Geoscience Laser Altimeter System (GLAS) removes spatial limitations, however, its large footprint nature and continuous waveform data measurements make derivations of GF challenging. ALS data from 3 Australian sites are used as a basis to scale-up GF estimates to GLAS footprint data by the use of a physically-based Weibull function. Spaceborne estimates of GF are employed in conjunction with supplementary predictor variables in the predictive Random Forest algorithm to yield country-wide estimates at a 250 m spatial resolution; country-wide estimates are accompanied with uncertainties at the pixel level. Preliminary estimates of effective Leaf Area Index (eLAI) are also presented by converting GF via the Beer-Lambert law, where an extinction coefficient of 0.5 is employed; deemed acceptable at such spatial scales. The need for such wide-scale quantification of GF and eLAI are key in the assessment and modification of current forest management strategies across Australia. Such work also assists Australia's Terrestrial Ecosystem Research Network (TERN), a key asset to policy makers with regards to the management of the national ecosystem, in fulfilling their government issued mandates.
Jin, Yi; Qian, Hong; Yu, Mingjian
2015-01-01
Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.
Jin, Yi; Qian, Hong; Yu, Mingjian
2015-01-01
Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate. PMID:26098916
A study of the influence of forest gaps on fire–atmosphere interactions
Michael T. Kiefer; Warren E. Heilman; Shiyuan Zhong; Joseph J. (Jay) Charney; Xindi (Randy) Bian
2016-01-01
Much uncertainty exists regarding the possible role that gaps in forest canopies play in modulating fireâatmosphere interactions in otherwise horizontally homogeneous forests. This study examines the influence of gaps in forest canopies on atmospheric perturbations induced by a low-intensity fire using the ARPS-CANOPY model, a version of the Advanced Regional...
NASA Astrophysics Data System (ADS)
Melin, M.; Korhonen, L.; Kukkonen, M.; Packalen, P.
2017-07-01
Canopy cover (CC) is a variable used to describe the status of forests and forested habitats, but also the variable used primarily to define what counts as a forest. The estimation of CC has relied heavily on remote sensing with past studies focusing on satellite imagery as well as Airborne Laser Scanning (ALS) using light detection and ranging (lidar). Of these, ALS has been proven highly accurate, because the fraction of pulses penetrating the canopy represents a direct measurement of canopy gap percentage. However, the methods of photogrammetry can be applied to produce point clouds fairly similar to airborne lidar data from aerial images. Currently there is little information about how well such point clouds measure canopy density and gaps. The aim of this study was to assess the suitability of aerial image point clouds for CC estimation and compare the results with those obtained using spectral data from aerial images and Landsat 5. First, we modeled CC for n = 1149 lidar plots using field-measured CCs and lidar data. Next, this data was split into five subsets in north-south direction (y-coordinate). Finally, four CC models (AerialSpectral, AerialPointcloud, AerialCombi (spectral + pointcloud) and Landsat) were created and they were used to predict new CC values to the lidar plots, subset by subset, using five-fold cross validation. The Landsat and AerialSpectral models performed with RMSEs of 13.8% and 12.4%, respectively. AerialPointcloud model reached an RMSE of 10.3%, which was further improved by the inclusion of spectral data; RMSE of the AerialCombi model was 9.3%. We noticed that the aerial image point clouds managed to describe only the outermost layer of the canopy and missed the details in lower canopy, which was resulted in weak characterization of the total CC variation, especially in the tails of the data.
LAI inversion algorithm based on directional reflectance kernels.
Tang, S; Chen, J M; Zhu, Q; Li, X; Chen, M; Sun, R; Zhou, Y; Deng, F; Xie, D
2007-11-01
Leaf area index (LAI) is an important ecological and environmental parameter. A new LAI algorithm is developed using the principles of ground LAI measurements based on canopy gap fraction. First, the relationship between LAI and gap fraction at various zenith angles is derived from the definition of LAI. Then, the directional gap fraction is acquired from a remote sensing bidirectional reflectance distribution function (BRDF) product. This acquisition is obtained by using a kernel driven model and a large-scale directional gap fraction algorithm. The algorithm has been applied to estimate a LAI distribution in China in mid-July 2002. The ground data acquired from two field experiments in Changbai Mountain and Qilian Mountain were used to validate the algorithm. To resolve the scale discrepancy between high resolution ground observations and low resolution remote sensing data, two TM images with a resolution approaching the size of ground plots were used to relate the coarse resolution LAI map to ground measurements. First, an empirical relationship between the measured LAI and a vegetation index was established. Next, a high resolution LAI map was generated using the relationship. The LAI value of a low resolution pixel was calculated from the area-weighted sum of high resolution LAIs composing the low resolution pixel. The results of this comparison showed that the inversion algorithm has an accuracy of 82%. Factors that may influence the accuracy are also discussed in this paper.
NASA Astrophysics Data System (ADS)
Qiu, J.; Gu, Z. L.; Wang, Z. S.
2008-05-01
High-accuracy large-eddy simulations of neutral atmospheric surface-layer flow over a gapped plant canopy strip have been performed. Subgrid-scale (SGS) motions are parameterized by the Sagaut mixed length SGS model, with a modification to compute the SGS characteristic length self-adaptively. Shaw’s plant canopy model, taking the vertical variation of leaf area density into account, is applied to study the response of the atmospheric surface layer to the gapped dense forest strip. Differences in the region far away from the gap and in the middle of the gap are investigated, according to the instantaneous velocity magnitude, the zero-plane displacement, the potential temperature and the streamlines. The large-scale vortex structure, in the form of a roll vortex, is revealed in the region far away from the gap. The nonuniform spatial distribution of plants appears to cause the formation of the coherent structure. The roll vortex starts in the wake of the canopy, and results in strong fluctuations throughout the entire canopy region. Wind sweeps and ejections in the plant canopy are also attributed to the large vortex structure.
Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp
NASA Astrophysics Data System (ADS)
Wedeux, B. M. M.; Coomes, D. A.
2015-07-01
Forest canopy structure is strongly influenced by environmental factors and disturbance, and in turn influences key ecosystem processes including productivity, evapotranspiration and habitat availability. In tropical forests increasingly modified by human activities, the interplaying effects of environmental factors and disturbance legacies on forest canopy structure across landscapes are practically unexplored. We used high-fidelity airborne laser scanning (ALS) data to measure the canopy of old-growth and selectively logged peat swamp forest across a peat dome in Central Kalimantan, Indonesia, and quantified how canopy structure metrics varied with peat depth and under logging. Several million canopy gaps in different height cross-sections of the canopy were measured in 100 plots of 1 km2 spanning the peat dome, allowing us to describe canopy structure with seven metrics. Old-growth forest became shorter and had simpler vertical canopy profiles on deeper peat, consistently with previous work linking deep peat to stunted tree growth. Gap Size Frequency Distributions (GSFDs) indicated fewer and smaller canopy gaps on the deeper peat (i.e. the scaling exponent of pareto functions increased from 1.76 to 3.76 with peat depth). Areas subjected to concessionary logging until 2000, and informal logging since then, had the same canopy top height as old-growth forest, indicating the persistence of some large trees, but mean canopy height was significantly reduced; the total area of canopy gaps increased and the GSFD scaling exponent was reduced. Logging effects were most evident on the deepest peat, where nutrient depletion and waterlogged conditions restrain tree growth and recovery. A tight relationship exists between canopy structure and the peat deph gradient within the old-growth tropical peat swamp. This relationship breaks down after selective logging, with canopy structural recovery being modulated by environmental conditions.
Wang, Dongliang; Xin, Xiaoping; Shao, Quanqin; Brolly, Matthew; Zhu, Zhiliang; Chen, Jin
2017-01-01
Accurate canopy structure datasets, including canopy height and fractional cover, are required to monitor aboveground biomass as well as to provide validation data for satellite remote sensing products. In this study, the ability of an unmanned aerial vehicle (UAV) discrete light detection and ranging (lidar) was investigated for modeling both the canopy height and fractional cover in Hulunber grassland ecosystem. The extracted mean canopy height, maximum canopy height, and fractional cover were used to estimate the aboveground biomass. The influences of flight height on lidar estimates were also analyzed. The main findings are: (1) the lidar-derived mean canopy height is the most reasonable predictor of aboveground biomass (R2 = 0.340, root-mean-square error (RMSE) = 81.89 g·m−2, and relative error of 14.1%). The improvement of multiple regressions to the R2 and RMSE values is unobvious when adding fractional cover in the regression since the correlation between mean canopy height and fractional cover is high; (2) Flight height has a pronounced effect on the derived fractional cover and details of the lidar data, but the effect is insignificant on the derived canopy height when the flight height is within the range (<100 m). These findings are helpful for modeling stable regressions to estimate grassland biomass using lidar returns. PMID:28106819
Wang, Dongliang; Xin, Xiaoping; Shao, Quanqin; Brolly, Matthew; Zhu, Zhiliang; Chen, Jin
2017-01-19
Accurate canopy structure datasets, including canopy height and fractional cover, are required to monitor aboveground biomass as well as to provide validation data for satellite remote sensing products. In this study, the ability of an unmanned aerial vehicle (UAV) discrete light detection and ranging (lidar) was investigated for modeling both the canopy height and fractional cover in Hulunber grassland ecosystem. The extracted mean canopy height, maximum canopy height, and fractional cover were used to estimate the aboveground biomass. The influences of flight height on lidar estimates were also analyzed. The main findings are: (1) the lidar-derived mean canopy height is the most reasonable predictor of aboveground biomass ( R ² = 0.340, root-mean-square error (RMSE) = 81.89 g·m -2 , and relative error of 14.1%). The improvement of multiple regressions to the R ² and RMSE values is unobvious when adding fractional cover in the regression since the correlation between mean canopy height and fractional cover is high; (2) Flight height has a pronounced effect on the derived fractional cover and details of the lidar data, but the effect is insignificant on the derived canopy height when the flight height is within the range (<100 m). These findings are helpful for modeling stable regressions to estimate grassland biomass using lidar returns.
A data-led comparison of simple canopy radiative transfer models for the boreal forest
NASA Astrophysics Data System (ADS)
Reid, T.; Essery, R.; Rutter, N.; King, M.
2012-12-01
Given the computational complexity of numerical weather and climate models, it is worthwhile developing very simple parameterizations for processes such as the transmission of radiation through forest canopies. For this reason, the land surface schemes in global models, and most snow hydrological models, tend to use simple one-dimensional approaches based on Beer's Law or two-stream approximations. Such approaches assume a continuous canopy structure that may not be suitable for the varied, heterogeneous forest cover in boreal regions, especially in winter when snow in the canopy and on the ground may either block radiation or produce multiple reflections between the ground and the trees. There is great benefit in comparing models to real transmissivity values calculated from radiation measurements below and above Arctic canopies. In particular, there is a lack of data for leafless boreal deciduous forests, where canopy gaps are prevalent even at low solar elevation angles near the horizon. In this study, models are compared to radiation data collected in an area of boreal birch forest near Abisko, Sweden in March/April 2011 and mixed conifer forest at Sodankylä, Finland in March/April 2012. Arrays comprising ten shortwave pyranometers were deployed for periods of up to 50 days, under forest plots of varying canopy structures and densities. In addition, global and diffuse shortwave irradiances were recorded at nearby open sites representing the top-of-canopy conditions. A model is developed that explicitly accounts for both diffuse radiation and direct beam transmission on a 5-minute timestep, by using upward-looking hemispherical photographs taken from every pyranometer site. This model reproduces measured transmissivity, although with a slight underestimation, especially at low solar elevations - this could be attributed to multiple reflections that are not accounted for in the model. On the other hand, models based on Beer's Law tend to underestimate the canopy transmissivity significantly, especially for leafless birch canopies where the required assumption of a continuous canopy breaks down. These findings are important for the often sparse, heterogeneous forest cover in boreal regions, where forest edges and canopy gaps are plentiful. They could also have an impact on estimations of overall land surface albedo. Moreover, all models are sensitive to the partitioning of top-of-canopy radiation into its direct and diffuse components, which is complicated by the low solar elevations in the Arctic. More research is required to decide the best way of quantifying the diffuse fraction, using data alongside both physical and empirical models.
Simulating Carbon Flux Dynamics with the Product of PAR Absorbed by Chlorophyll (fAPARchl)
NASA Astrophysics Data System (ADS)
Yao, T.; Zhang, Q.
2016-12-01
A common way to estimate the gross primary production (GPP) is to use the fraction of photosynthetically radiation (PAR) absorbed by vegetation (FPAR). However, only the PAR absorbed by chlorophyll of the canopy, not the PAR absorbed by the foliage or by the entire canopy, is used for photosynthesis. MODIS fAPARchl product, which refers to the fraction of PAR absorbed by chlorophyll of the canopy, is derived from Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance by using an advanced leaf-canopy-soil-water-snow coupled radiative transfer model PROSAIL4. PROSAIL4 can retrieve surface water cover fraction, snow cover fraction, and physiologically active canopy chemistry components (chlorophyll concentration and water content), fraction of photosynthetically active radiation (PAR) absorbed by a canopy (fAPARcanopy), fraction of PAR absorbed by photosynthetic vegetation (PV) component (mainly chlorophyll) throughout the canopy (fAPARPV, i.e., fAPARchl) and fraction of PAR absorbed by non-photosynthetic vegetation (NPV) component of the canopy (fAPARNPV). We have successfully retrieved these vegetation parameters for selected areas with PROSAIL4 and the MODIS images, or simulated spectrally MODIS-like images. In this study, the product of PAR absorbed by chlorophyll (fAPARchl) has been used to simulate carbon flux over different kinds of vegetation types. The results show that MODIS fAPARchl product has the ability to better characterize phenology than current phenology model in the Community Land Model and it also will likely be able to increase the accuracy of carbon fluxes simulations.
Lobo, Elena; Dalling, James W
2014-03-07
Treefall gaps play an important role in tropical forest dynamics and in determining above-ground biomass (AGB). However, our understanding of gap disturbance regimes is largely based either on surveys of forest plots that are small relative to spatial variation in gap disturbance, or on satellite imagery, which cannot accurately detect small gaps. We used high-resolution light detection and ranging data from a 1500 ha forest in Panama to: (i) determine how gap disturbance parameters are influenced by study area size, and the criteria used to define gaps; and (ii) to evaluate how accurately previous ground-based canopy height sampling can determine the size and location of gaps. We found that plot-scale disturbance parameters frequently differed significantly from those measured at the landscape-level, and that canopy height thresholds used to define gaps strongly influenced the gap-size distribution, an important metric influencing AGB. Furthermore, simulated ground surveys of canopy height frequently misrepresented the true location of gaps, which may affect conclusions about how relatively small canopy gaps affect successional processes and contribute to the maintenance of diversity. Across site comparisons need to consider how gap definition, scale and spatial resolution affect characterizations of gap disturbance, and its inferred importance for carbon storage and community composition.
Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp
NASA Astrophysics Data System (ADS)
Wedeux, B. M. M.; Coomes, D. A.
2015-11-01
Forest canopy structure is strongly influenced by environmental factors and disturbance, and in turn influences key ecosystem processes including productivity, evapotranspiration and habitat availability. In tropical forests increasingly modified by human activities, the interplay between environmental factors and disturbance legacies on forest canopy structure across landscapes is practically unexplored. We used airborne laser scanning (ALS) data to measure the canopy of old-growth and selectively logged peat swamp forest across a peat dome in Central Kalimantan, Indonesia, and quantified how canopy structure metrics varied with peat depth and under logging. Several million canopy gaps in different height cross-sections of the canopy were measured in 100 plots of 1 km2 spanning the peat dome, allowing us to describe canopy structure with seven metrics. Old-growth forest became shorter and had simpler vertical canopy profiles on deeper peat, consistent with previous work linking deep peat to stunted tree growth. Gap size frequency distributions (GSFDs) indicated fewer and smaller canopy gaps on the deeper peat (i.e. the scaling exponent of Pareto functions increased from 1.76 to 3.76 with peat depth). Areas subjected to concessionary logging until 2000, and illegal logging since then, had the same canopy top height as old-growth forest, indicating the persistence of some large trees, but mean canopy height was significantly reduced. With logging, the total area of canopy gaps increased and the GSFD scaling exponent was reduced. Logging effects were most evident on the deepest peat, where nutrient depletion and waterlogged conditions restrain tree growth and recovery. A tight relationship exists between canopy structure and peat depth gradient within the old-growth tropical peat swamp forest. This relationship breaks down after selective logging, with canopy structural recovery, as observed by ALS, modulated by environmental conditions. These findings improve our understanding of tropical peat swamp ecology and provide important insights for managers aiming to restore degraded forests.
Quantifying forest mortality with the remote sensing of snow
NASA Astrophysics Data System (ADS)
Baker, Emily Hewitt
Greenhouse gas emissions have altered global climate significantly, increasing the frequency of drought, fire, and pest-related mortality in forests across the western United States, with increasing area affected each year. Associated changes in forests are of great concern for the public, land managers, and the broader scientific community. These increased stresses have resulted in a widespread, spatially heterogeneous decline of forest canopies, which in turn exerts strong controls on the accumulation and melt of the snowpack, and changes forest-atmosphere exchanges of carbon, water, and energy. Most satellite-based retrievals of summer-season forest data are insufficient to quantify canopy, as opposed to the combination of canopy and undergrowth, since the signals of the two types of vegetation greenness have proven persistently difficult to distinguish. To overcome this issue, this research develops a method to quantify forest canopy cover using winter-season fractional snow covered area (FSCA) data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) snow covered area and grain size (MODSCAG) algorithm. In areas where the ground surface and undergrowth are completely snow-covered, a pixel comprises only forest canopy and snow. Following a snowfall event, FSCA initially rises, as snow is intercepted in the canopy, and then falls, as snow unloads. A select set of local minima in a winter F SCA timeseries form a threshold where canopy is snow-free, but forest understory is snow-covered. This serves as a spatially-explicit measurement of forest canopy, and viewable gap fraction (VGF) on a yearly basis. Using this method, we determine that MODIS-observed VGF is significantly correlated with an independent product of yearly crown mortality derived from spectral analysis of Landsat imagery at 25 high-mortality sites in northern Colorado. (r =0.96 +/-0.03, p =0.03). Additionally, we determine the lag timing between green-stage tree mortality and needlefall, showing that needlefall occurred an average of 2.6 +/- 1.2 years after green-stage mortality. We relate observed increases in the VGF with crown mortality, showing that a 1% increase in mortality area produces a 0.33 +/- 0.1 % increase in the VGF.
Canopy gaps and dead tree dynamics: poking holes in the forest.
Sally Duncan
2002-01-01
When large trees die, individually or in clumps, gaps are opened in the forest canopy. A shifting mosaic of patches, from small single-tree gaps to very large gaps caused by wildlife, is a natural part of the development of composition and structure in mature forests. Gaps increase the diversity of forests across the landscape and present local environments that...
Photosynthetic Potential Of Laurel Oak Seedlings Following Canopy Manipulation
K.W. McLeod
2004-01-01
Abstract The theory of forest gap dynamics predicts that replacement individuals are those that can most fully use the light environment of a gap. Along the Coosawhatchie River in South Carolina, 12 canopy gaps were identified in a bottomland hardwood forest dominated by laurel oak (Quercus laurifolia Michaux). Each gap was...
NASA Astrophysics Data System (ADS)
Gleicher, S.; Chamecki, M.; Isard, S.; Katul, G. G.
2012-12-01
Plant disease epidemics caused by pathogenic spores are a common and consequential threat to agricultural crops. In most cases, pathogenic spores are produced and released deep inside plant canopies and must be transported out of the canopy region in order to infect other fields and spread the disease. The fraction of spores that "escape" the canopy is crucial in determining how fast and far these plant diseases will spread. The goal of this work is to use a field experiment, coupled with a Lagrangian Stochastic Model (LSM), to investigate how properties of canopy turbulence impact the dispersion of spores inside the canopy and the fraction of spores that escape from the canopy. An extensive field experiment was conducted to study spore dispersion inside and outside a corn canopy. The spores were released from point sources located at various depths inside the canopy. Concentration measurements were obtained inside and above the canopy by a 3-dimensional grid of spore collectors. The experimental measurements of mean spore concentration are used to validate a LSM for spore dispersion. In the LSM, flow field statistics used to drive the particle dispersion are specified by a second-order closure model for turbulence within plant canopies. The dispersion model includes spore deposition on and rebound from canopy elements. The combination of experimental and numerical simulations is used to quantify the fraction of spores that escape the canopy. Effects of release height, friction velocity, and canopy architecture on the escape fraction of spores are explored using the LSM, and implications for disease propagation are discussed.
Perry, Kayla I; Herms, Daniel A
2016-04-22
Emerald ash borer (Agrilus planipennis Fairmaire), an invasive wood-boring beetle native to Asia, has killed hundreds of millions of ash trees since its accidental introduction into North America, resulting in widespread formation of canopy gaps and accumulations of coarse woody debris (CWD) in forests. The objective was to quantify effects of canopy gaps and CWD caused by early stages of emerald ash borer-induced ash mortality, and their interaction on ground beetle assemblages. The impact of canopy gaps and CWD varied, as gaps affected beetle assemblages in 2011, while effects of CWD were only observed in 2012. Gaps decreased beetle activity-abundance, and marginally decreased richness, driving changes in species composition, but evenness and diversity were unaffected. Effects of the CWD treatment alone were minimal, but CWD interacted with the canopy treatment, resulting in an increase in activity-abundance of ground beetles in canopy gaps without CWD, and a marginal increase in species richness in canopy gaps with CWD. Although there were some initial changes in species composition, these were ephemeral, suggesting that ground beetle assemblages may be resilient to disturbance caused by emerald ash borer. This study contributes to our understanding of the cascading ecological impacts of biological invasions on forest ecosystems. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Brian Beckage; James S. Clark; Barton D. Clinton; Bruce L. Haines
2000-01-01
We examined the importance of intermediate-sized gaps and a dense shrub layer on tree seedling recruitment in a Southern Appalachian deciduous forest. We created 12 canopy gaps under two contrasting understory conditions: 6 gaps were dominated by the dense, shade-producing shrub, Rhododendron maximum L., while the remaining gaps were relatively open...
Barton D. Clinton; Lindsay R. Boring; Wayne T. Swank
1994-01-01
Canopy gaps in southern Appalachian mixed-oak forests were assessed for the effects of topographic, gap and stand variables on density of wood seedlings. Seedling density was significantly correlated with percent slope and positively with gap age (l-5 yr). Density varied substantially among topographic positions and increased with gap size. Species richness...
Lobo, Elena; Dalling, James W.
2014-01-01
Treefall gaps play an important role in tropical forest dynamics and in determining above-ground biomass (AGB). However, our understanding of gap disturbance regimes is largely based either on surveys of forest plots that are small relative to spatial variation in gap disturbance, or on satellite imagery, which cannot accurately detect small gaps. We used high-resolution light detection and ranging data from a 1500 ha forest in Panama to: (i) determine how gap disturbance parameters are influenced by study area size, and the criteria used to define gaps; and (ii) to evaluate how accurately previous ground-based canopy height sampling can determine the size and location of gaps. We found that plot-scale disturbance parameters frequently differed significantly from those measured at the landscape-level, and that canopy height thresholds used to define gaps strongly influenced the gap-size distribution, an important metric influencing AGB. Furthermore, simulated ground surveys of canopy height frequently misrepresented the true location of gaps, which may affect conclusions about how relatively small canopy gaps affect successional processes and contribute to the maintenance of diversity. Across site comparisons need to consider how gap definition, scale and spatial resolution affect characterizations of gap disturbance, and its inferred importance for carbon storage and community composition. PMID:24452032
Differential effects of understory and overstory gaps on tree regeneration
Brian Beckage; Brian D. Kloppel; J. Alan Yenkley; Sharon F. Taylor; David C. Coleman
2008-01-01
Gaps in the forest canopy can increase the diversity of tree regeneration. Understory shrubs also compete with tree seedlings for limited resources and may depress tree recruitment We compared effects of shrub removal and canopy windthrow gups on seedling recruitment and understory resource levels. Shrub removal, with the canopy left intact, was associated with...
Nicholas R. Vaughn; Gregory P. Asner; Christian P. Giardina
2015-01-01
Fragmentation alters forest canopy structure through various mechanisms, which in turn drive subsequent changes to biogeochemical processes and biological diversity. Using repeated airborne LiDAR (Light Detection and Ranging) mappings, we investigated the size distribution and dynamics of forest canopy gaps across a topical montane forest landscape in Hawaii naturally...
Canopy gap dynamics of second-growth red spruce-northern hardwood stands in West Virginia
Rentch, J.S.; Schuler, T.M.; Nowacki, G.J.; Beane, N.R.; Ford, W.M.
2010-01-01
Forest restoration requires an understanding of the natural disturbance regime of the target community and estimates of the historic range of variability of ecosystem components (composition, structure, and disturbance processes). Management prescriptions that support specific restoration activities should be consistent with these parameters. In this study, we describe gap-phase dynamics of even-aged, second-growth red spruce-northern hardwood stands in West Virginia that have been significantly degraded following early Twentieth Century harvesting and wildfire. In the current stage of stand development, gaps tended to be small, with mean canopy gap and extended canopy gap sizes of 53.4m2 and 199.3m2, respectively, and a canopy turnover rate of 1.4%year-1. The majority of gaps resulted from the death of one or two trees. American beech snags were the most frequent gap maker, partially due to the elevated presence of beech-bark disease in the study area. Gaps ranged in age from 1 to 28 years, had a mean of 13 years, and were unimodal in distribution. We projected red spruce to be the eventual gap filler in approximately 40% of the gaps. However, we estimated that most average-sized gaps will close within 15-20 years before red spruce canopy ascension is projected (30-60 years). Accordingly, many understory red spruce will require more than one overhead release - an observation verified by the tree-ring record and consistent with red spruce life history characteristics. Based on our observations, silvicultural prescriptions that include overhead release treatments such as thinning from above or small gap creation through selection harvesting could be an appropriate activity to foster red spruce restoration in the central Appalachians. ?? 2010 Elsevier B.V.
Andrew N. Gray; Thomas A. Spies; Robert J. Pabst
2012-01-01
Canopy gaps created by tree mortality can affect the speed and trajectory of vegetation growth. Speciesâ population dynamics, and spatial heterogeneity in mature forests. Most studies focus on plant development within gaps, yet gaps also affect the mortality and growth of surrounding trees, which influence shading and root encroachment into gaps and determine whether,...
Christel C. Kern; Rebecca A. Montgomery; Peter B. Reich; Terry F. Strong
2013-01-01
The Gap Partitioning Hypothesis (GPH) posits that gaps create heterogeneity in resources crucial for tree regeneration in closed-canopy forests, allowing trees with contrasting strategies to coexist along resource gradients. Few studies have examined gap partitioning of temperate, ground-layer vascular plants. We used a ground-layer plant community of a temperate...
Influence of Canopy Density on Ground Vegetation in a Bottomland Hardwood Forest
Sarah E. Billups
1999-01-01
We investigated the influence of canopy density on ground vegetation in naturally formed gap and non-gap habitats (environments) in a blackwater river floodplain. Tree seedlings were more important (relatively more abundant) in the non-gap habitat, and grass was more important in the gap habitat, but there were elevation x habitat interactions. Also, there was an...
Characterizing the canopy gap structure of a disturbed forest using Fourier transform
R. A. Sommerfeld; J. E. Lundquist; J. Smith
2000-01-01
Diseases and other small-scale disturbances alter spatial patterns of heterogeneity in forests by killing trees. Canopy gaps caused by tree death are a common feature of forests. Because gaps are caused by different disturbances acting at different times and places, operationally determining the locations of gap edges is often difficult. In this study, digital image...
Gap size, within-gap position, and canopy structure effects on conifer seedling establishment
Andrew N. Gray; T.A. Spies
1996-01-01
Emergence, establishment and growth of Abies amabilis, Pseudotsuga menziesii and Tsuga heterophylla were studied for 2 years in variously sized canopy gaps created in four stands on the west slope of the Cascade Range in central Oregon and southern Washington, USA. Seedlings originating from seeds sown on...
Seasonal bird use of canopy gaps in a bottomland forest
Liessa T. Bowen; Christopher E. Moorman; John C. Kilgo
2007-01-01
Bird use of small canopy gaps within mature forests has not been well studied, particularly across multiple seasons. We investigated seasonal differences in bird use of gap and forest habitat within a bottomland hardwood forest in the Upper Coastal Plain of South Carolina. Gaps were 0.13- to 0.5-ha, 7- to 8- year-old group-selection timber harvest openings. Our study...
BOREAS RSS-7 LAI, Gap Fraction, and FPAR Data
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Chen, Jing
2000-01-01
The BOREAS RSS-7 team collected various data sets to develop and validate an algorithm to allow the retrieval of the spatial distribution of Leaf Area Index (LAI) from remotely sensed images. Ground measurements of LAI and Fraction of Photosynthetically Active Radiation (FPAR) absorbed by the plant canopy were made using the LAI-2000 and TRAC optical instruments during focused periods from 09-Aug-1993 to 19-Sep-1994. The measurements were intensive at the NSA and SSA tower sites, but were made just once or twice at auxiliary sites. The final processed LAI and FPAR data set is contained in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884).
Molina, Iñigo; Morillo, Carmen; García-Meléndez, Eduardo; Guadalupe, Rafael; Roman, Maria Isabel
2011-01-01
One of the main strengths of active microwave remote sensing, in relation to frequency, is its capacity to penetrate vegetation canopies and reach the ground surface, so that information can be drawn about the vegetation and hydrological properties of the soil surface. All this information is gathered in the so called backscattering coefficient (σ0). The subject of this research have been olive groves canopies, where which types of canopy biophysical variables can be derived by a specific optical sensor and then integrated into microwave scattering models has been investigated. This has been undertaken by means of hemispherical photographs and gap fraction procedures. Then, variables such as effective and true Leaf Area Indices have been estimated. Then, in order to characterize this kind of vegetation canopy, two models based on Radiative Transfer theory have been applied and analyzed. First, a generalized two layer geometry model made up of homogeneous layers of soil and vegetation has been considered. Then, a modified version of the Xu and Steven Water Cloud Model has been assessed integrating the canopy biophysical variables derived by the suggested optical procedure. The backscattering coefficients at various polarized channels have been acquired from RADARSAT 2 (C-band), with 38.5° incidence angle at the scene center. For the soil simulation, the best results have been reached using a Dubois scattering model and the VV polarized channel (r2 = 0.88). In turn, when effective LAI (LAIeff) has been taken into account, the parameters of the scattering canopy model are better estimated (r2 = 0.89). Additionally, an inversion procedure of the vegetation microwave model with the adjusted parameters has been undertaken, where the biophysical values of the canopy retrieved by this methodology fit properly with field measured values. PMID:22164028
Zhao, Dehua; Xie, Dong; Zhou, Hengjie; Jiang, Hao; An, Shuqing
2012-01-01
Non-destructive estimation using digital cameras is a common approach for estimating leaf area index (LAI) of terrestrial vegetation. However, no attempt has been made so far to develop non-destructive approaches to LAI estimation for aquatic vegetation. Using the submerged plant species Potamogeton malainus, the objective of this study was to determine whether the gap fraction derived from vertical photographs could be used to estimate LAI of aquatic vegetation. Our results suggested that upward-oriented photographs taken from beneath the water surface were more suitable for distinguishing vegetation from other objects than were downward-oriented photographs taken from above the water surface. Exposure settings had a substantial influence on the identification of vegetation in upward-oriented photographs. Automatic exposure performed nearly as well as the optimal trial exposure, making it a good choice for operational convenience. Similar to terrestrial vegetation, our results suggested that photographs taken for the purpose of distinguishing gap fraction in aquatic vegetation should be taken under diffuse light conditions. Significant logarithmic relationships were observed between the vertical gap fraction derived from upward-oriented photographs and plant area index (PAI) and LAI derived from destructive harvesting. The model we developed to depict the relationship between PAI and gap fraction was similar to the modified theoretical Poisson model, with coefficients of 1.82 and 1.90 for our model and the theoretical model, respectively. This suggests that vertical upward-oriented photographs taken from below the water surface are a feasible alternative to destructive harvesting for estimating PAI and LAI for the submerged aquatic plant Potamogeton malainus. PMID:23226557
Measurement and Modeling of the Optical Scattering Properties of Crop Canopies
NASA Technical Reports Server (NTRS)
Vanderbilt, V. C. (Principal Investigator)
1985-01-01
The specular reflection process is shown to be a key aspect of radiation transfer by plant canopies. Polarization measurements are demonstrated as the tool for determining the specular and diffuse portions of the canopy radiance. The magnitude of the specular fraction of the reflectance is significant compared to the magnitude of the diffuse fraction. Therefore, it is necessary to consider specularly reflected light in developing and evaluating light-canopy interaction models for wheat canopies. Models which assume leaves are diffuse reflectors correctly predict only the diffuse fraction of the canopy reflectance factor. The specular reflectance model, when coupled with a diffuse leaf model, would predict both the specular and diffuse portions of the reflectance factor. The specular model predicts and the data analysis confirms that the single variable, angle of incidence of specularly reflected sunlight on the leaf, explains much of variation in the polarization data as a function of view-illumination directions.
Long-term retention of (137)Cs in three forest soil types with different soil properties.
Suchara, Ivan; Sucharová, Julie; Holá, Marie; Pilátová, Helena; Rulík, Petr
2016-07-01
Current (137)Cs activity concentrations were studied at three localities in individual soil horizons of Stagnosol, Arenic Podzol and Haplic Cambisol soil units in soil blocks with dimensions of 20 × 20 × 40 cm situated below pine canopies (n = 3) and spruce canopies (n = 3), and below small canopy gaps, at least 15 × 15 m in area (n = 3 + 3), which have probably endured since 1986. The main zone of (137)Cs accumulation in all the localities was found to be in the organic horizons (H and F). No significant transport and accumulation of (137)Cs into illuvial soil horizons (Bm, Bs or Bhs, Bv and Bv/IIC) was found. The estimated current total (137)Cs activity concentrations in the soil blocks 40 cm in depth were only slightly higher below the coniferous canopy than they were below nearby canopy gaps. The inventory of (137)Cs in the soils was found to be in accordance with the estimated (137)Cs inputs from the Chernobyl fallout and from global fallout. The low amounts of (137)Cs found accumulated in the aboveground biomass (mosses, grasses, needles) did not substantially bias the studied radiocaesium balance in the soils. The vertical migration rate of (137)Cs in soils (cm/year) had a tendency to be higher below canopies than below canopy gaps and below pine canopies than below spruce canopies. We expected the current (137)Cs activity concentrations in the individual soil horizons to be related to the studied soil parameters: pH (H2O), pH (CaCl2), content of organic matter and mineral portion and portion of humic and fulvic acid contents (Q4/6). However, this was not confirmed. Similarly, we observed a weak tendency toward higher (137)Cs activity in soils below the canopy than in soils below canopy gaps. The available gaps used in our study may have been too small, and they may have been affected by an accumulation of litter and humus containing (137)Cs from the surrounding plots situated below neighbouring canopies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kane, Van R.; Lutz, James A.; Roberts, Susan L.; Smith, Douglas F.; McGaughey, Robert J.; Povak, Nicholas A.; Brooks, Matthew L.
2013-01-01
While fire shapes the structure of forests and acts as a keystone process, the details of how fire modifies forest structure have been difficult to evaluate because of the complexity of interactions between fires and forests. We studied this relationship across 69.2 km2 of Yosemite National Park, USA, that was subject to 32 fires ⩾40 ha between 1984 and 2010. Forests types included ponderosa pine (Pinus ponderosa), white fir-sugar pine (Abies concolor/Pinus lambertiana), and red fir (Abies magnifica). We estimated and stratified burned area by fire severity using the Landsat-derived Relativized differenced Normalized Burn Ratio (RdNBR). Airborne LiDAR data, acquired in July 2010, measured the vertical and horizontal structure of canopy material and landscape patterning of canopy patches and gaps. Increasing fire severity changed structure at the scale of fire severity patches, the arrangement of canopy patches and gaps within fire severity patches, and vertically within tree clumps. Each forest type showed an individual trajectory of structural change with increasing fire severity. As a result, the relationship between estimates of fire severity such as RdNBR and actual changes appears to vary among forest types. We found three arrangements of canopy patches and gaps associated with different fire severities: canopy-gap arrangements in which gaps were enclosed in otherwise continuous canopy (typically unburned and low fire severities); patch-gap arrangements in which tree clumps and gaps alternated and neither dominated (typically moderate fire severity); and open-patch arrangements in which trees were scattered across open areas (typically high fire severity). Compared to stands outside fire perimeters, increasing fire severity generally resulted first in loss of canopy cover in lower height strata and increased number and size of gaps, then in loss of canopy cover in higher height strata, and eventually the transition to open areas with few or no trees. However, the estimated fire severities at which these transitions occurred differed for each forest type. Our work suggests that low severity fire in red fir forests and moderate severity fire in ponderosa pine and white fir-sugar pine forests would restore vertical and horizontal canopy structures believed to have been common prior to the start of widespread fire suppression in the early 1900s. The fusion of LiDAR and Landsat data identified post-fire structural conditions that would not be identified by Landsat alone, suggesting a broad applicability of combining Landsat and LiDAR data for landscape-scale structural analysis for fire management.
Cathryn H. Greenberg; T.G. Forrest
2003-01-01
Arthropods compose a large proportion of biological diversity and play important ecological roles as decomposers, pollinators, predators, prey, and nutrient cyclers. We sampled ground-occurring macroarthropods in intact gaps created by wind disturbance, in salvage-logged gaps, and in closed canopy mature forest (controls) during June 1998-May 1999 using drift fences...
Gap-phase regeneration inlongleaf pine wiregrass ecosystems
D.G. Brockway; K.W. Outcalt
1998-01-01
Naturally regenerated seedlings of longleaf pine are typically observed to cluster in the center of tree fall canopy gaps and be encircled by a wide zone from which they are generally excluded. Twelve representative canopy gaps distributed across 600 ha of a naturally regenerated uneven-agedlongleaf pine forest in the sandhills of north central Florida were examined to...
Correcting the relationship between PRI and shadow fraction for the blue sky effect
NASA Astrophysics Data System (ADS)
Mõttus, Matti
2016-04-01
The Photochemical Reflectance Index (PRI) is defined as the normalized difference ratio of leaf reflectance at two specific wavelengths in the green spectral region. Its value depends on the status of leaf carotenoid content, and especially that of the xanthophyll cycle pigments. Due to the dependence on the xanthophyll cycle, when the photosynthetic apparatus of green leaves is close to the saturation limit, their PRI becomes dependent on light conditions. Therefore, by measuring the PRI of leaves in the same canopy under different local irradiance conditions on a sunny day, it should be possible to determine the saturation level of the leaves. In turn, this gives information on the light use efficiency (LUE) of the vegetation canopy. The average light conditions of visible foliage elements are often quantified with the shadow fraction -- the fraction of visible foliage not lit by direct sunlight. The dependence of PRI on the shadow fraction has been used to remotely measure canopy LUE on clear days. Variations in shadow fraction have been achieved with multiangular measurement. However, besides photosynthetic downregulation, the dependence of canopy PRI on shadow fraction is affected by the blue sky radiation caused by scattering in the atmosphere. To quantify this effect on remotely sensed PRI, we present the underlying definitions relating leaf and canopy PRI and perform the required calculations for typical midsummer conditions in Central Finland. We demonstrate that the effect of blue sky radiation on the variation of PRI with canopy shadow fraction is similar in shape and magnitude to that of LUE variations reported in literature. Next, we propose a new method to assess these PRI variations in structured vegetation. We investiagate this blue sky effect on the PRI -- shadow fraction relationship with high spatial (60 cm) and spectral (9.8 nm) resolution airborne imaging spectroscopy data from Hyytiälä, Finland. We evaluate the spectral irradiance in different locations inside the canopy and calculate a correction term for the canopy PRI estimates defined using top-of-canopy irradiances. We determine the maximum value of the correction term by sampling the most sunlit and shaded road surface locations adjacent to tree crowns. Results indicate that under the particular illumination-view geometry, irradiance variations decreased the canopy PRI by as much as 0.06. The correction depended only slightly on atmospheric correction parameters. Other than the blue sky effect, PRI showed no correlation with the shadow fraction, indicating a lack of down-regulation at the time of measurement.
Detecting tree-fall gap disturbances in tropical rain forests with airborne lidar
NASA Astrophysics Data System (ADS)
Espirito-Santo, F. D. B.; Saatchi, S.; Keller, M.
2017-12-01
Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of tree-fall gap disturbances in natural forests of tropical forests using a novel combination of forest inventory and airborne lidar data. We quantify gap size frequency distribution along vertical and horizontal dimensions in ten Neotropical forest canopies distributed across gradients of climate and landscapes using airborne lidar measurements. We assessed all canopy openings related to each class of tree height which yields a three dimensional structure of the distribution of canopy gaps. Gap frequency distributions from lidar CHM data vary markedly with minimum gap size thresholds, but we found that natural forest disturbances (tree-fall gaps) follow a power-law distribution with narrow range of power-law exponents (-1.2 to -1.3). These power-law exponents from gap frequency distributions provide insights into how natural forest disturbances are distributed over tropical forest landscape.
Seedfall and seed viability within artificial canopy gaps in a western Washington douglas-fir forest
Warren D. Devine; Timothy B. Harrington
2015-01-01
Seedfall of coast Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco var. menziesii) has been studied at the forest edge-clearcut interface and in small canopy gaps, but it has not been evaluated in gap sizes that would be typical of a group-selection method of regeneration. In a mature Douglas-fir forest in the Puget Sound...
Bartholomeus, Harm
2018-01-01
Terrestrial laser scanning (TLS) and unmanned aerial vehicles (UAVs) equipped with digital cameras have attracted much attention from the forestry community as potential tools for forest inventories and forest monitoring. This research fills a knowledge gap about the viability and dissimilarities of using these technologies for measuring the top of canopy structure in tropical forests. In an empirical study with data acquired in a Guyanese tropical forest, we assessed the differences between top of canopy models (TCMs) derived from TLS measurements and from UAV imagery, processed using structure from motion. Firstly, canopy gaps lead to differences in TCMs derived from TLS and UAVs. UAV TCMs overestimate canopy height in gap areas and often fail to represent smaller gaps altogether. Secondly, it was demonstrated that forest change caused by logging can be detected by both TLS and UAV TCMs, although it is better depicted by the TLS. Thirdly, this research shows that both TLS and UAV TCMs are sensitive to the small variations in sensor positions during data collection. TCMs rendered from UAV data acquired over the same area at different moments are more similar (RMSE 0.11–0.63 m for tree height, and 0.14–3.05 m for gap areas) than those rendered from TLS data (RMSE 0.21–1.21 m for trees, and 1.02–2.48 m for gaps). This study provides support for a more informed decision for choosing between TLS and UAV TCMs to assess top of canopy in a tropical forest by advancing our understanding on: (i) how these technologies capture the top of the canopy, (ii) why their ability to reproduce the same model varies over repeated surveying sessions and (iii) general considerations such as the area coverage, costs, fieldwork time and processing requirements needed. PMID:29503719
Roşca, Sabina; Suomalainen, Juha; Bartholomeus, Harm; Herold, Martin
2018-04-06
Terrestrial laser scanning (TLS) and unmanned aerial vehicles (UAVs) equipped with digital cameras have attracted much attention from the forestry community as potential tools for forest inventories and forest monitoring. This research fills a knowledge gap about the viability and dissimilarities of using these technologies for measuring the top of canopy structure in tropical forests. In an empirical study with data acquired in a Guyanese tropical forest, we assessed the differences between top of canopy models (TCMs) derived from TLS measurements and from UAV imagery, processed using structure from motion. Firstly, canopy gaps lead to differences in TCMs derived from TLS and UAVs. UAV TCMs overestimate canopy height in gap areas and often fail to represent smaller gaps altogether. Secondly, it was demonstrated that forest change caused by logging can be detected by both TLS and UAV TCMs, although it is better depicted by the TLS. Thirdly, this research shows that both TLS and UAV TCMs are sensitive to the small variations in sensor positions during data collection. TCMs rendered from UAV data acquired over the same area at different moments are more similar (RMSE 0.11-0.63 m for tree height, and 0.14-3.05 m for gap areas) than those rendered from TLS data (RMSE 0.21-1.21 m for trees, and 1.02-2.48 m for gaps). This study provides support for a more informed decision for choosing between TLS and UAV TCMs to assess top of canopy in a tropical forest by advancing our understanding on: (i) how these technologies capture the top of the canopy, (ii) why their ability to reproduce the same model varies over repeated surveying sessions and (iii) general considerations such as the area coverage, costs, fieldwork time and processing requirements needed.
NASA Astrophysics Data System (ADS)
Scarth, P.; Phinn, S. R.; Armston, J.; Lucas, R.
2015-12-01
Vertical plant profiles are important descriptors of canopy structure and are used to inform models of biomass, biodiversity and fire risk. In Australia, an approach has been developed to produce large area maps of vertical plant profiles by extrapolating waveform lidar estimates of vertical plant profiles from ICESat/GLAS using large area segmentation of ALOS PALSAR and Landsat satellite image products. The main assumption of this approach is that the vegetation height profiles are consistent across the segments defined from ALOS PALSAR and Landsat image products. More than 1500 field sites were used to develop an index of fractional cover using Landsat data. A time series of the green fraction was used to calculate the persistent green fraction continuously across the landscape. This was fused with ALOS PALSAR L-band Fine Beam Dual polarisation 25m data and used to segment the Australian landscapes. K-means clustering then grouped the segments with similar cover and backscatter into approximately 1000 clusters. Where GLAS-ICESat footprints intersected these clusters, canopy profiles were extracted and aggregated to produce a mean vertical vegetation profile for each cluster that was used to derive mean canopy and understorey height, depth and density. Due to the large number of returns, these retrievals are near continuous across the landscape, enabling them to be used for inventory and modelling applications. To validate this product, a radiative transfer model was adapted to map directional gap probability from airborne waveform lidar datasets to retrieve vertical plant profiles Comparison over several test sites show excellent agreement and work is underway to extend the analysis to improve national biomass mapping. The integration of the three datasets provide options for future operational monitoring of structure and AGB across large areas for quantifying carbon dynamics, structural change and biodiversity.
NASA Astrophysics Data System (ADS)
Link, T. E.; Kumar, M.; Pomeroy, J. W.; Seyednasrollah, B.; Ellis, C. R.; Lawler, R.; Essery, R.
2012-12-01
In mountainous, forested environments, vegetation exerts a strong control on snowcover dynamics that affect ecohydrological processes, streamflow regimes, and riparian health. Snowcover deposition and ablation patterns in forests are controlled by a complex combination of canopy interception processes coupled with radiative and turbulent heat flux patterns related to topographic and canopy cover variations. In seasonal snow environments, snowcover ablation dynamics in forests are dominated by net radiation. Recent research indicates that in small canopy gaps a net radiation minima relative to both open and forested environments can occur, but depends strongly on solar angle, gap size, slope, canopy height and stem density. The optimal gap size to minimize radiation to snow was estimated to have a diameter between 1 and 2 times the surrounding vegetation height. Physically-based snowmelt simulations indicate that gaps may increase SWE and desynchronize snowmelt by approximately 3 weeks between north and south facing slopes, relative to undisturbed forests. On east and west facing slopes, small gaps cause melt to be slightly delayed relative to intact forests, and have a minimal effect on melt synchronicity between slopes. Recent research focused on canopy thinning also indicates that a net radiation minima occurs in canopies of intermediate densities. Physically-based radiative transfer simulations using a discrete tree-based model indicate that in mid-latitude level forests, the annually-integrated radiative minima occurs at a tree spacing of 2.65 relative to the canopy height. The radiative minima was found to occur in denser forests on south-facing slopes and sparser forests on north-facing slopes. The radiative minimums in thinned forests are controlled by solar angle, crown geometry and density, tree spacing, slope, and aspect. These results indicate that both gap and homogeneous forest thinning may be used to reduce snowmelt rates or alter melt synchronicity, but the exact configuration will be highly spatially variable. Development of management strategies to conserve water on the landscape to enhance forest and riparian health in a changing climate must also rigorously evaluate the effects of canopy thinning and specific hydrometeorological conditions on net radiation, turbulent fluxes, and snow interception processes.
Employing lidar to detail vegetation canopy architecture for prediction of aeolian transport
Sankey, Joel B.; Law, Darin J.; Breshears, David D.; Munson, Seth M.; Webb, Robert H.
2013-01-01
The diverse and fundamental effects that aeolian processes have on the biosphere and geosphere are commonly generated by horizontal sediment transport at the land surface. However, predicting horizontal sediment transport depends on vegetation architecture, which is difficult to quantify in a rapid but accurate manner. We demonstrate an approach to measure vegetation canopy architecture at high resolution using lidar along a gradient of dryland sites ranging from 2% to 73% woody plant canopy cover. Lidar-derived canopy height, distance (gaps) between vegetation elements (e.g., trunks, limbs, leaves), and the distribution of gaps scaled by vegetation height were correlated with canopy cover and highlight potentially improved horizontal dust flux estimation than with cover alone. Employing lidar to estimate detailed vegetation canopy architecture offers promise for improved predictions of horizontal sediment transport across heterogeneous plant assemblages.
Cathryn H. Greenberg; J. Drew Lanham
2001-01-01
We studied breeding bird assemblages in forest gaps created in 1995 by Hurricane Opal at the Bent Creek Experimental Forest in Asheville, NC. We hypothesized that forest gaps and adjacent closed-canopy forest would differ in bird density, richness, diversity, and relative abundances of some species. To test this hypothesis we censused breeding bird assemblages for 2...
Interaction between photons and leaf canopies
NASA Technical Reports Server (NTRS)
Knyazikhin, Yuri V.; Marshak, Alexander L.; Myneni, Ranga B.
1991-01-01
The physics of neutral particle interaction for photons traveling in media consisting of finite-dimensional scattering centers that cross-shade mutually is investigated. A leaf canopy is a typical example of such media. The leaf canopy is idealized as a binary medium consisting of randomly distributed gaps (voids) and regions with phytoelements (turbid phytomedium). In this approach, the leaf canopy is represented by a combination of all possible open oriented spheres. The mathematical approach for characterizing the structure of the host medium is considered. The extinction coefficient at any phase-space location in a leaf canopy is the product of the extinction coefficient in the turbid phytomedium and the probability of absence gaps at that location. Using a similar approach, an expression for the differential scattering coefficient is derived.
BOREAS TE-23 Canopy Architecture and Spectral Data from Hemispherical Photographs
NASA Technical Reports Server (NTRS)
Rich, Paul M.; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)
2000-01-01
The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-23 (Terrestrial Ecology) team collected hemispherical photographs in support of its efforts to characterize and interpret information on estimates of canopy architecture and radiative transfer properties for most BOREAS study sites. Various Old Aspen (OA), Old Black Spruce (OBS), Old Jack Pine (OJP), Young Jack Pine (YJP), and Young Aspen (YA) sites in the boreal forest were measured from May to August 1994. The hemispherical photographs were used to derive values of leaf area index (LAI), leaf angle, gap fraction, and clumping index. This documentation describes these derived values. The derived data are stored in tabular ASCII files. The hemispherical photographs are stored in the original set of 42 CD-ROMs that were supplied by TE-23. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
Selkowitz, D.J.
2010-01-01
Shrub cover appears to be increasing across many areas of the Arctic tundra biome, and increasing shrub cover in the Arctic has the potential to significantly impact global carbon budgets and the global climate system. For most of the Arctic, however, there is no existing baseline inventory of shrub canopy cover, as existing maps of Arctic vegetation provide little information about the density of shrub cover at a moderate spatial resolution across the region. Remotely-sensed fractional shrub canopy maps can provide this necessary baseline inventory of shrub cover. In this study, we compare the accuracy of fractional shrub canopy (> 0.5 m tall) maps derived from multi-spectral, multi-angular, and multi-temporal datasets from Landsat imagery at 30 m spatial resolution, Moderate Resolution Imaging SpectroRadiometer (MODIS) imagery at 250 m and 500 m spatial resolution, and MultiAngle Imaging Spectroradiometer (MISR) imagery at 275 m spatial resolution for a 1067 km2 study area in Arctic Alaska. The study area is centered at 69 ??N, ranges in elevation from 130 to 770 m, is composed primarily of rolling topography with gentle slopes less than 10??, and is free of glaciers and perennial snow cover. Shrubs > 0.5 m in height cover 2.9% of the study area and are primarily confined to patches associated with specific landscape features. Reference fractional shrub canopy is determined from in situ shrub canopy measurements and a high spatial resolution IKONOS image swath. Regression tree models are constructed to estimate fractional canopy cover at 250 m using different combinations of input data from Landsat, MODIS, and MISR. Results indicate that multi-spectral data provide substantially more accurate estimates of fractional shrub canopy cover than multi-angular or multi-temporal data. Higher spatial resolution datasets also provide more accurate estimates of fractional shrub canopy cover (aggregated to moderate spatial resolutions) than lower spatial resolution datasets, an expected result for a study area where most shrub cover is concentrated in narrow patches associated with rivers, drainages, and slopes. Including the middle infrared bands available from Landsat and MODIS in the regression tree models (in addition to the four standard visible and near-infrared spectral bands) typically results in a slight boost in accuracy. Including the multi-angular red band data available from MISR in the regression tree models, however, typically boosts accuracy more substantially, resulting in moderate resolution fractional shrub canopy estimates approaching the accuracy of estimates derived from the much higher spatial resolution Landsat sensor. Given the poor availability of snow and cloud-free Landsat scenes in many areas of the Arctic and the promising results demonstrated here by the MISR sensor, MISR may be the best choice for large area fractional shrub canopy mapping in the Alaskan Arctic for the period 2000-2009.
NASA Astrophysics Data System (ADS)
Chen, M.; Butler, E. E.; Wythers, K. R.; Kattge, J.; Ricciuto, D. M.; Thornton, P. E.; Atkin, O. K.; Flores-Moreno, H.; Reich, P. B.
2017-12-01
In order to better estimate the carbon budget of the globe, accurately simulating gross primary productivity (GPP) in earth system models is critical. When upscaling leaf level photosynthesis to the canopy, climate models uses different big-leaf schemes. About half of the state-of-the-art earth system models use a "two-big-leaf" scheme that partitions canopies into direct and diffusively illuminated fractions to reduce high bias of GPP simulated by one-big-leaf models. Some two-big-leaf models, such as ACME (identical in this respect to CLM 4.5) add leaf area index (LAI) and stem area index (SAI) together when calculating canopy radiation transfer. This treatment, however, will result in higher fraction of sunlit leaves. It will also lead to an artificial overestimation of canopy nitrogen content. Here we introduce a new algorithm of simulating SAI in a two-big-leaf model. The new algorithm reduced the sunlit leave fraction of the canopy and conserved the nitrogen content from leaf to canopy level. The lower fraction of sunlit leaves reduced global GPP especially in tropical area. Compared to the default model, for the past 100 years (1909-2009), the averaged global annual GPP is lowered by 4.11 PgC year-1 using this new algorithm.
Scott Harris; Jeffrey Barnard
2017-01-01
This study assesses the understory plant response and associated effects on forage resources available to Sitka black-tailed deer (Odocoileus hemionus sitkensis), to the creation of artificial canopy gaps in a young-growth forest stand in the coastal temperate rain forest of southeast Alaska. The forest stand was approximately 58 years old when gaps were created and...
Cathryn H. Greenberg
2001-01-01
Reptile and amphibian communities were sampled in intact gaps created by wind disturbance, salvage-logged gaps, and closed canopy mature forest (controls). Sampling was conducted during JuneâOctober in 1997 and 1998 using drift fences with pitfall and funnel traps. Basal area of live trees, shade, leaf litter coverage, and litter depth was highest in controls and...
NASA Astrophysics Data System (ADS)
Roth, Lukas; Aasen, Helge; Walter, Achim; Liebisch, Frank
2018-07-01
Extraction of leaf area index (LAI) is an important prerequisite in numerous studies related to plant ecology, physiology and breeding. LAI is indicative for the performance of a plant canopy and of its potential for growth and yield. In this study, a novel method to estimate LAI based on RGB images taken by an unmanned aerial system (UAS) is introduced. Soybean was taken as the model crop of investigation. The method integrates viewing geometry information in an approach related to gap fraction theory. A 3-D simulation of virtual canopies helped developing and verifying the underlying model. In addition, the method includes techniques to extract plot based data from individual oblique images using image projection, as well as image segmentation applying an active learning approach. Data from a soybean field experiment were used to validate the method. The thereby measured LAI prediction accuracy was comparable with the one of a gap fraction-based handheld device (R2 of 0.92 , RMSE of 0.42 m 2m-2) and correlated well with destructive LAI measurements (R2 of 0.89 , RMSE of 0.41 m2 m-2). These results indicate that, if respecting the range (LAI ≤ 3) the method was tested for, extracting LAI from UAS derived RGB images using viewing geometry information represents a valid alternative to destructive and optical handheld device LAI measurements in soybean. Thereby, we open the door for automated, high-throughput assessment of LAI in plant and crop science.
Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan
2013-01-01
Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available.
Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan
2013-01-01
Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available. PMID:23382966
Survival of tree seedligns across space and time: estimates from long-term count data
Brian Beckage; Michael Lavina; James S. Clark
2005-01-01
Tree diversity in forests may be maintained by variability in seedling recruitment. Although forest ecologists have emphasized the importance of canopy gaps in generating spatial variability that might promote tree regeneration, the effects of canopy gaps on seedling recruitment may be offset by dense forest understories.Large annual...
NASA Astrophysics Data System (ADS)
Biederman, J. A.; Harpold, A. A.; Gochis, D. J.; Reed, D.; Brooks, P. D.
2010-12-01
Seasonal snowcover is a primary source of water to urban and agricultural regions in the western United States, where Mountain Pine Beetle (MPB) has caused rapid and extensive changes to vegetation in montane forests. Levels of MPB infestation in these seasonally snow-covered systems are unprecedented, and it is unknown how this will affect water yield, especially in changing climate conditions. To address this unknown we ask: How does snow accumulation and ablation vary across forest with differing levels of impact? Our study areas in the Rocky Mountains of CO and WY are similar in latitude, elevation and forest structure before infestation, but they vary in the intensity and timing of beetle infestation and tree mortality. We present a record for winter 2010 that includes continuous snow depth as well as stand-scale snow surveys at maximum accumulation. Additional measurements include snowfall, net radiation, temperature and wind speed as well as characterization of forest structure by leaf area index. In a stand uninfested by MPB, maximum snow depth was fairly uniform under canopy (mean = 86 cm, coefficient of variation = 0.021), while canopy gaps showed greater and more variable depth (mean = 117 cm, CV = 0.111). This is consistent with several studies demonstrating that snowfall into canopy gaps depends upon gap size, orientation, wind speed and storm size. In a stand impacted in 2007, snow depth under canopy was less uniform, and there were smaller differences in both mean depth and variability between canopy (mean = 93 cm, CV = 0.072) and gaps (mean = 97 cm, CV = 0.070), consistent with decreased canopy density. In a more recently infested (2009) stand with an intermediate level of MPB impact, mean snow depths were similar between canopy (96 cm, CV = 0.016) and gaps (95 cm, CV = 0.185) but gaps showed much greater variability, suggesting controls similar to those in effect in the uninfested stand. We further use these data to model snow accumulation and ablation as a function of vegetation, topography and fine-scale climate variability, with preliminary results presented at the meeting.
NASA Astrophysics Data System (ADS)
Liu, Jing; Skidmore, Andrew K.; Jones, Simon; Wang, Tiejun; Heurich, Marco; Zhu, Xi; Shi, Yifang
2018-02-01
Gap fraction (Pgap) and vertical gap fraction profile (vertical Pgap profile) are important forest structural metrics. Accurate estimation of Pgap and vertical Pgap profile is therefore critical for many ecological applications, including leaf area index (LAI) mapping, LAI profile estimation and wildlife habitat modelling. Although many studies estimated Pgap and vertical Pgap profile from airborne LiDAR data, the scan angle was often overlooked and a nadir view assumed. However, the scan angle can be off-nadir and highly variable in the same flight strip or across different flight strips. In this research, the impact of off-nadir scan angle on Pgap and vertical Pgap profile was evaluated, for several forest types. Airborne LiDAR data from nadir (0°∼7°), small off-nadir (7°∼23°), and large off-nadir (23°∼38°) directions were used to calculate both Pgap and vertical Pgap profile. Digital hemispherical photographs (DHP) acquired during fieldwork were used as references for validation. Our results show that angular Pgap from airborne LiDAR correlates well with angular Pgap from DHP (R2 = 0.74, 0.87, and 0.67 for nadir, small off-nadir and large off-nadir direction). But underestimation of Pgap from LiDAR amplifies at large off-nadir scan angle. By comparing Pgap and vertical Pgap profiles retrieved from different directions, it is shown that scan angle impact on Pgap and vertical Pgap profile differs amongst different forest types. The difference is likely to be caused by different leaf angle distribution and canopy architecture in these forest types. Statistical results demonstrate that the scan angle impact is more severe for plots with discontinuous or sparse canopies. These include coniferous plots, and deciduous or mixed plots with between-crown gaps. In these discontinuous plots, Pgap and vertical Pgap profiles are maximum when observed from nadir direction, and then rapidly decrease with increasing scan angle. The results of this research have many important practical implications. First, it is suggested that large off-nadir scan angle of airborne LiDAR should be avoided to ensure a more accurate Pgap and LAI estimation. Second, the angular dependence of vertical Pgap profiles observed from airborne LiDAR should be accounted for, in order to improve the retrieval of LAI profiles, and other quantitative canopy structural metrics. This is especially necessary when using multi-temporal datasets in discontinuous forest types. Third, the anisotropy of Pgap and vertical Pgap profile observed by airborne LiDAR, can potentially help to resolve the anisotropic behavior of canopy reflectance, and refine the inversion of biophysical and biochemical properties from passive multispectral or hyperspectral data.
NASA Astrophysics Data System (ADS)
Molotch, Noah P.; Barnard, David M.; Burns, Sean P.; Painter, Thomas H.
2016-09-01
The distribution of forest cover exerts strong controls on the spatiotemporal distribution of snow accumulation and snowmelt. The physical processes that govern these controls are poorly understood given a lack of detailed measurements of snow states. In this study, we address one of many measurement gaps by using contact spectroscopy to measure snow optical grain size at high spatial resolution in trenches dug between tree boles in a subalpine forest. Trenches were collocated with continuous measurements of snow depth and vertical profiles of snow temperature and supplemented with manual measurements of snow temperature, geometric grain size, grain type, and density from trench walls. There was a distinct difference in snow optical grain size between winter and spring periods. In winter and early spring, when facetted snow crystal types were dominant, snow optical grain size was 6% larger in canopy gaps versus under canopy positions; a difference that was smaller than the measurement uncertainty. By midspring, the magnitude of snow optical grain size differences increased dramatically and patterns of snow optical grain size became highly directional with 34% larger snow grains in areas south versus north of trees. In winter, snow temperature gradients were up to 5-15°C m-1 greater under the canopy due to shallower snow accumulation. However, in canopy gaps, snow depths were greater in fall and early winter and therefore more significant kinetic growth metamorphism occurred relative to under canopy positions, resulting in larger snow grains in canopy gaps. Our findings illustrate the novelty of our method of measuring snow optical grain size, allowing for future studies to advance the understanding of how forest and meteorological conditions interact to impact snowpack evolution.
Disturbance and diversity of wood-inhabiting fungi: effects of canopy gaps and downed woody debris
Nicholas J. Brazee; Daniel L. Lindner; Anthony W. D' Amato; Shawn Fraver; Jodi A. Forrester; David J. Mladenoff
2014-01-01
Experimental canopy gap formation and additions of coarse woody debris (CWD) are techniques intended to mimic the disturbance regime and accelerate the development of northern hardwood forests. The effects of these techniques on biodiversity and ecosystem functioning were investigated by surveying the abundance and diversity of wood-inhabiting fungi in six treatments...
NASA Astrophysics Data System (ADS)
Webster, Clare; Rutter, Nick; Jonas, Tobias
2017-09-01
A comprehensive analysis of canopy surface temperatures was conducted around a small and large gap at a forested alpine site in the Swiss Alps during the 2015 and 2016 snowmelt seasons (March-April). Canopy surface temperatures within the small gap were within 2-3°C of measured reference air temperature. Vertical and horizontal variations in canopy surface temperatures were greatest around the large gap, varying up to 18°C above measured reference air temperature during clear-sky days. Nighttime canopy surface temperatures around the study site were up to 3°C cooler than reference air temperature. These measurements were used to develop a simple parameterization for correcting reference air temperature for elevated canopy surface temperatures during (1) nighttime conditions (subcanopy shortwave radiation is 0 W m-2) and (2) periods of increased subcanopy shortwave radiation >400 W m-2 representing penetration of shortwave radiation through the canopy. Subcanopy shortwave and longwave radiation collected at a single point in the subcanopy over a 24 h clear-sky period was used to calculate a nighttime bulk offset of 3°C for scenario 1 and develop a multiple linear regression model for scenario 2 using reference air temperature and subcanopy shortwave radiation to predict canopy surface temperature with a root-mean-square error (RMSE) of 0.7°C. Outside of these two scenarios, reference air temperature was used to predict subcanopy incoming longwave radiation. Modeling at 20 radiometer locations throughout two snowmelt seasons using these parameterizations reduced the mean bias and RMSE to below 10 W m s-2 at all locations.
Sun and Shade leaves, SIF, and Photosynthetic Capacity
NASA Astrophysics Data System (ADS)
Berry, J. A.; Badgley, G.
2016-12-01
Recent advances in retrieval of solar induced chlorophyll fluorescence (SIF) have opened up new possibilities for remote sensing of canopy physiology and structure. To date most of the emphasis has been placed on SIF as an indicator of stress and photosynthetic capacity. However, it is clear that canopy structure can also have an influence. To this point, simulations of SIF in land surface models tend to under predict observed variation in SIF. Also, large, systematic differences in SIF from different canopy types seem to correlate well with the photosynthetic capacity of these canopies. SIF emissions from pampered crops can be several-fold that from evergreen, needle-leaf forests. Yet, these may have similar vegetation indices and absorb a similar fraction of incident PAR. SIF photons produced in a conifer canopy do have a lower probability of escaping its dense, clumped foliage. However, this does not explain the correlated differences in photosynthetic rate and SIF. It is useful, in this regard, to consider the separate contributions of sun and shade leaves to the SIF emitted by a canopy. Sun leaves tend to be displayed to intercept the direct solar beam, and these highly illuminated leaves are often visible from above the canopy. Sun leaves produce more SIF and a large fraction of it escapes. Therefore, the intensity of SIF may be a sensitive indicator of the partitioning of absorbed PAR to sun and shade leaves. Many models account tor the different photosynthetic capacity of sun and shade leaves in calculating canopy responses. However, the fraction of leaves in each category is usually parameterized by an assumed leaf angle distribution (e.g. spherical). In reality, the sun/shade fraction can vary over a wide range, and it has been difficult to measure. SIF and possibly near-IR reflectance of canopies can be used to specify this key parameter with obvious importance to understanding photosynthetic rate.
Daniel J. Twedt; Scott G. Somershoe
2013-01-01
To promote desired forest conditions that enhance wildlife habitat in bottomland forests, managers prescribed and implemented variable-retention harvest, a.k.a. wildlife forestry, in four stands on Tensas River National Wildlife Refuge, LA. These treatments created canopy openings (gaps) within which managers sought to regenerate shade-intolerant trees. Six years after...
Christel C. Kern; Rebecca A. Montgomery; Peter B. Reich; Terry F. Strong
2014-01-01
Biodiversity conservation within managed forests depends, in part, on management practices that restore or maintain plant community diversity and function. Because many plant communities are adapted to natural disturbances, gap-based management has potential to meet this need by using the historical range of variation in canopy disturbances to guide elements of harvest...
Canopy gap replacement failure in a Pennsylvania forest preserve subject to extreme deer herbivory
Brian S. Pedersen; Angela M. Wallis
2003-01-01
While research has demonstrated the adverse effects of deer herbivory on forest regeneration in forests managed for timber production, less study has been devoted to the long term effects of deer on the dynamics of forests set aside as natural areas. At sufficiently high population densities, deer could interrupt the typical cycle of canopy gap formation and...
The fire and oak hypothesis: incorporating the influence of deer browsing and canopy gaps
Rachel J. Collins; Walter P. Carson
2003-01-01
A century of fire suppression has altered tree species composition and is a commonly cited cause for the region-wide decline in oak abundance (the fire and oak hypothesis). Other explanations include alterations in canopy gap regimes and deer browsing that operate in conjunction with fire suppression. We examined the interactions among these processes by manipulating...
Disturbance and canopy gaps as indicators of forest health in the Blue Mountains of Oregon.
Jerome S. Beatty; Brian W. Geils; John E. Lundquist
1995-01-01
Disturbance profiles, indices based on both spatial and non-spatial statistics, are used to examine how small-scale disturbances and the resulting canopy gaps disrupt ecosystem patterns and processes in selected stands in the Blue Mountains of Oregon. The biological meaning of many indices remains undefined for small scale disturbance phenomena, but their disturbance...
Cathryn H. Greenberg; C. Reed Rossell; David B. Johnson
2002-01-01
Predation rates were compared during three 7-day trials on 742 artificial ground nests located in 10 hurricane-created canopy gaps and IO adjacent closed-canopy controls in the southern Appalachian mountains of North Carolina. White northern bobwhite (Colinus virginianus) eggs were used in trials 1 and 2, but brown-speckled Japanese Quail (...
Seasonal diets of insectivorous birds using canopy gaps in a bottomland forest
Christopher E. Moorman; Liessa T. Bowen; John C. Kilgo; Clyde E. Sorenson; James L. Hanula; Scott Horn; Mike D. Ulyshen
2007-01-01
Little is known about how insectivorous bird diets are influenced by arthropod availability and about how these relationships vary seasonally. We captured birds in forest-canopy gaps and adjacent mature forest during 2001 and 2002 at the Savannah River Site in Barnwell County, South Carolina, and flushed their crops to gather information about arthropods eaten during...
Overstory and Understory CO2 and Energy Fluxes of a Black Spruce Forest in Interior Alaska
NASA Astrophysics Data System (ADS)
Ikawa, H.; Nakai, T.; Busey, R.; Kim, Y.; Kobayashi, H.; Nagai, S.; Ueyama, M.; Saito, K.; Suzuki, R.; Hinzman, L. D.
2014-12-01
Eddy covariance techniques were used to quantify understory contributions to carbon and energy balances, and to evaluate the environmental responses of the overstory and understory at a black spruce forest in interior Alaska. Net ecosystem productivity (NEP), gross primary productivity (GPP), ecosystem respiration (RE), sensible heat flux (H), and latent heat flux (LE) were estimated for the ecosystem (subscripted by 'eco'), canopy (subscripted by 'cano') and forest floor (subscripted by 'floor') based on canopy gap fraction and footprint analyses for 3 years, 2011 - 2013. Fluxes per unit land surface area of black spruce overstory (subscripted by 'b') and that of understory (subscripted by 'u') were also evaluated their ecophysiological responses to micrometeorological environments. Overall, NEPfloor, GPPfloor, REfloor and LEfloor represented 60 (37, growing season in parenthesis) %, 47 (51) %, 47 (54) %, and 75 (76) % of NEPeco, GPPeco, REeco, and LEeco, respectively with the average canopy gap fraction of 0.52 (± 0.073 SD). The year, 2013 was characterized by high air temperature and vapor pressure deficit (VPD) during the growing season. The high temperature and VPD particularly reduced understory NEP and their growth inferred by low green excessive index (GEI), which was correlated to GPPu more strongly than GPPb. LEu linearly increased with vapor pressure deficit (VPD) whereas LEb was insensitive to VPD. Future warming and drying expected in the boreal forest will increase understory evapotranspiration disproportionately to that of black spruce and likely decrease the production of the current understory community. Acknowledgments This study was supported by the Japan Aerospace Exploration Agency (JAXA) and the JAMSTEC-IARC Collaboration Study, with funding provided by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) to the International Arctic Research Center (IARC). The Polar Geospatial Center, University of Minnesota provided the Quick Bird Image as a support for the NSF grand number 1107524. HI acknowledges J. H. Matthes for helping the footprint algorism, R. Hirata, D. McGuire, and E. Euskirchen for fruitful discussion, and Y. Harazono and H. Nagano for providing parts of meteorological data. We thank N. Bauer for editing.
Behavioral activities of male Cerulean Warblers in relation to habitat characteristics
Wood, Petra Bohall; Perkins, Kelly A.
2012-01-01
Activities of 29 male Cerulean Warblers (Setophaga cerulea) were quantified on two sites in West Virginia during May–June 2005. Singing and foraging were the most common of 11 observed behavioral activities (81.6%), while maintenance and mating behaviors were uncommonly observed. Male activity differed among vegetative strata (P = 0.02) with lower- and mid-canopy strata used most often (70% of observations), especially for foraging, perching, and preening. The upper-canopy was used primarily for singing, particularly within core areas of territories and in association with canopy gaps. Foraging occurred more than expected outside of core areas. Males were associated with canopy gaps during 30% of observations, but the distribution of behavioral activities was not significantly related (P = 0.06) to gap presence. Males used 23 different tree species for a variety of activities with oaks (Quercus spp.) used most often on the xeric site and black cherry (Prunus serotina) and black locust (Robinia pseudoacacia) on the mesic site. Tree species used for singing differed between core and non-core areas (P < 0.0001) but distribution of singing and foraging activity did not differ among tree species (P = 0.13). Cerulean Warblers appear to be flexible in use of tree species. Their use of different canopy strata for different behavioral activities provides an explanation for the affinity this species exhibits for a vertically stratified forest canopy.
Tree seedlings respond to both light and soil nutrients in a Patagonian evergreen-deciduous forest.
Promis, Alvaro; Allen, Robert B
2017-01-01
Seedlings of co-occurring species vary in their response to resource availability and this has implications for the conservation and management of forests. Differential shade-tolerance is thought to influence seedling performance in mixed Nothofagus betuloides-Nothofagus pumilio forests of Patagonia. However, these species also vary in their soil nutrient requirements. To determine the effects of light and soil nutrient resources on small seedlings we examined responses to an experimental reduction in canopy tree root competition through root trenching and restricting soil nutrient depletion through the addition of fertilizer. To understand the effect of light these treatments were undertaken in small canopy gaps and nearby beneath undisturbed canopy with lower light levels. Seedling diameter growth was greater for N. pumilio and height growth was greater for N. betuloides. Overall, diameter and height growth were greater in canopy gaps than beneath undisturbed canopy. Such growths were also greater with fertilizer and root trenching treatments, even beneath undisturbed canopy. Seedling survival was lower under such treatments, potentially reflecting thinning facilitated by resource induced growth. Finally, above-ground biomass did not vary among species although the less shade tolerant N. pumilio had higher below-ground biomass and root to shoot biomass ratio than the more shade tolerant N. betuloides. Above- and below-ground biomass were higher in canopy gaps so that the root to shoot biomass ratio was similar to that beneath undisturbed canopy. Above-ground biomass was also higher with fertilizer and root trenching treatments and that lowered the root to shoot biomass ratio. Restricting soil nutrient depletion allowed seedlings of both species to focus their responses above-ground. Our results support a view that soil nutrient resources, as well as the more commonly studied light resources, are important to seedlings of Nothofagus species occurring on infertile soils.
Spatial Variation In Growing Season Heat Sums Within Northern Hardwood Forest Canopy Gaps
Brian E. Potter; Paul J. Croft
2000-01-01
When a gap forms in a forest canopy, the first and most immediate effect on the exposed area is an increase in radiative exchange near the ground. More sunlight reaches the ground during the daytime, and at nighttime the ground is more exposed to longwave radiation influences from the sky. These changes in radiation lead directly to a different near-ground temperature...
Brian S. Hughett; Wayne K. Clatterbuck
2014-01-01
Differences in composition, structure, and growth under canopy gaps created by the mortality of a single stem were analyzed using analysis of variance under two scenarios, with stem removed or with stem left as a standing snag. There were no significant differences in composition and structure of large diameter residual stems within upper canopy strata. Some...
Kane, Van R.; North, Malcolm P.; Lutz, James A.; Churchill, Derek J.; Roberts, Susan L.; Smith, Douglas F.; McGaughey, Robert J.; Kane, Jonathan T.; Brooks, Matthew L.
2014-01-01
Mosaics of tree clumps and openings are characteristic of forests dominated by frequent, low- and moderate-severity fires. When restoring these fire-suppressed forests, managers often try to reproduce these structures to increase ecosystem resilience. We examined unburned and burned forest structures for 1937 0.81 ha sample areas in Yosemite National Park, USA. We estimated severity for fires from 1984 to 2010 using the Landsat-derived Relativized differenced Normalized Burn Ratio (RdNBR) and measured openings and canopy clumps in five height strata using airborne LiDAR data. Because our study area lacked concurrent field data, we identified methods to allow structural analysis using LiDAR data alone. We found three spatial structures, canopy-gap, clump-open, and open, that differed in spatial arrangement and proportion of canopy and openings. As fire severity increased, the total area in canopy decreased while the number of clumps increased, creating a patchwork of openings and multistory tree clumps. The presence of openings > 0.3 ha, an approximate minimum gap size needed to favor shade-intolerant pine regeneration, increased rapidly with loss of canopy area. The range and variation of structures for a given fire severity were specific to each forest type. Low- to moderate-severity fires best replicated the historic clump-opening patterns that were common in forests with frequent fire regimes. Our results suggest that managers consider the following goals for their forest restoration: 1) reduce total canopy cover by breaking up large contiguous areas into variable-sized tree clumps and scattered large individual trees; 2) create a range of opening sizes and shapes, including ~ 50% of the open area in gaps > 0.3 ha; 3) create multistory clumps in addition to single story clumps; 4) retain historic densities of large trees; and 5) vary treatments to include canopy-gap, clump-open, and open mosaics across project areas to mimic the range of patterns found for each forest type in our study.
NASA Technical Reports Server (NTRS)
Gallon, John C.; Clark, Ian G.; Witkowski, Allen
2015-01-01
During the first Supersonic Flight Dynamics Test (SFDT-1) for NASA's Low Density Supersonic Decelerator (LDSD) Program, the Parachute Decelerator System (PDS) was successfully tested. The main parachute in the PDS was a 30.5-meter supersonic Disksail parachute. The term Disksail is derived from the canopy's constructional geometry, as it combined the aspects of a ringsail and a flat circular round (disk) canopy. The crown area of the canopy contained the disk feature, as a large flat circular disk that extended from the canopy's vent down to the upper gap. From this upper gap to the skirt-band the canopy was constructed with characteristics of sails seen in a ringsail. There was a second lower gap present in this sail region. The canopy maintained a nearly 10x forebody diameter trailing distance with 1.7 Do suspension line lengths. During the test, the parachute was deployed at the targeted Mach and dynamic pressure. Although the supersonic Disksail parachute experienced an anomaly during the inflation process, the system was tested successfully in the environment it was designed to operate within. The nature of the failure seen originated in the disk portion of the canopy. High-speed and high-resolution imagery of the anomaly was captured and has been used to aid in the forensics of the failure cause. In addition to the imagery, an inertial measurement unit (IMU) recorded test vehicle dynamics and loadcells captured the bridle termination forces. In reviewing the imagery and load data a number of hypothesizes have been generated in an attempt to explain the cause of the anomaly.
Gap probability - Measurements and models of a pecan orchard
NASA Technical Reports Server (NTRS)
Strahler, Alan H.; Li, Xiaowen; Moody, Aaron; Liu, YI
1992-01-01
Measurements and models are compared for gap probability in a pecan orchard. Measurements are based on panoramic photographs of 50* by 135 view angle made under the canopy looking upwards at regular positions along transects between orchard trees. The gap probability model is driven by geometric parameters at two levels-crown and leaf. Crown level parameters include the shape of the crown envelope and spacing of crowns; leaf level parameters include leaf size and shape, leaf area index, and leaf angle, all as functions of canopy position.
NASA Astrophysics Data System (ADS)
Markiet, Vincent; Perheentupa, Viljami; Mõttus, Matti; Hernández-Clemente, Rocío
2016-04-01
Imaging spectroscopy is a remote sensing technology which records continuous spectral data at a very high (better than 10 nm) resolution. Such spectral images can be used to monitor, for example, the photosynthetic activity of vegetation. Photosynthetic activity is dependent on varying light conditions and varies within the canopy. To measure this variation we need very high spatial resolution data with resolution better than the dominating canopy element size (e.g., tree crown in a forest canopy). This is useful, e.g., for detecting photosynthetic downregulation and thus plant stress. Canopy illumination conditions are often quantified using the shadow fraction: the fraction of visible foliage which is not sunlit. Shadow fraction is known to depend on view angle (e.g., hot spot images have very low shadow fraction). Hence, multiple observation angles potentially increase the range of shadow fraction in the imagery in high spatial resolution imaging spectroscopy data. To investigate the potential of multi-angle imaging spectroscopy in investigating canopy processes which vary with shadow fraction, we obtained a unique multiangular airborne imaging spectroscopy data for the Hyytiälä forest research station located in Finland (61° 50'N, 24° 17'E) in July 2015. The main tree species are Norway spruce (Picea abies L. karst), Scots pine (Pinus sylvestris L.) and birch (Betula pubescens Ehrh., Betula pendula Roth). We used an airborne hyperspectral sensor AISA Eagle II (Specim - Spectral Imaging Ltd., Finland) mounted on a tilting platform. The tilting platform allowed us to measure at nadir and approximately 35 degrees off-nadir. The hyperspectral sensor has a 37.5 degrees field of view (FOV), 0.6m pixel size, 128 spectral bands with an average spectral bandwidth of 4.6nm and is sensitive in the 400-1000 nm spectral region. The airborne data was radiometrically, atmospherically and geometrically processed using the Parge and Atcor software (Re Se applications Schläpfer, Switzerland). However, even after meticulous geolocation, the canopy elements (needles) seen from the three view angles were different: at each overpass, different parts of the same crowns were observed. To overcome this, we used a 200m x 200m test site covered with pure pine stands. We assumed that for sunlit, shaded and understory spectral signatures are independent of viewing direction to the accuracy of a constant BRDF factor. Thus, we compared the spectral signatures for sunlit and shaded canopy and understory obtained for each view direction. We selected visually six hundred of the brightest and darkest canopy pixels. Next, we performed a minimum noise fraction (MNF) transformation, created a pixel purity index (PPI) and used Envi's n-D scatterplot to determine pure spectral signatures for the two classes. The pure endmembers for different view angles were compared to determine the BRDF factor and to analyze its spectral invariance. We demonstrate the compatibility of multi-angle data with high spatial resolution data. In principle, both carry similar information on structured (non-flat) targets thus as a vegetation canopy. Nevertheless, multiple view angles helped us to extend the range of shadow fraction in the images. Also, correct separation of shaded crown and shaded understory pixels remains a challenge.
Assessing the impact of Amazonia logging with a new ecosystem model
NASA Astrophysics Data System (ADS)
Huang, M.; Asner, G. P.; Keller, M.; Berry, J. A.; Bustamante, M. M.
2006-12-01
Old-growth Amazonian forests play a fundamental role in the global climate and carbon cycle. Land use in old- growth tropical forests contributes to the accumulation of CO2 in the atmosphere and can alter the hydrological cycle, locally, regionally, and globally. Although deforestation, largely for the conversion of land to food crops or pastures, is the major destructive force in tropical forests worldwide (Houghton et al., 2000), other forest disturbances such as the selective logging have also increased in frequency and extent. Selective logging causes widespread collateral damage to remaining trees, sub-canopy vegetation, and soils, with impacts on hydrological processes, erosion, fire, carbon storage, and plant and animal species. In this study, the impact of selective logging on the carbon budget of the Brazil Amazon region is assessed with a new 3-D version of the Carnegie-Ames-Stanford Approach (CASA) ecosystem model, which features: (1) an alternative way of estimating absorbed photosynthetically-active radiation (APAR) by taking advantage of new high-resolution maps of forest canopy gap fraction; (2) a pulse disturbance module to realistically modify the carbon pools after timber harvest; (3) a regrowth module considering changes in community composition; and (4) a radiative transfer module for charactering the dynamic 3-D light environment above the canopy and within gaps after logging. The model was calibrated and validated with field observations from the Large-scale Biosphere Atmosphere Experiment (LBA) and its sensitivity was evaluated with Monte Carlo simulations. The impacts of selected logging on regional carbon budget of the Brazilian Amazon were then assessed under different future climate change scenarios. Results from this study quantify the gross and net carbon storage effects of widespread logging practices throughout the Brazilian Amazon.
GREGORY P. ASNER; MICHAEL KELLER; JOSEN M. SILVA
2004-01-01
Selective logging is a dominant form of land use in the Amazon basin and throughout the humid tropics, yet little is known about the spatial variability of forest canopy gap formation and closure following timber harvests. We established chronosequences of large-area (14â158 ha) selective logging sites spanning a 3.5-year period of forest regeneration and two distinct...
Recovery of forest structure and spectral properties after selective logging in lowland Bolivia.
Broadbent, Eben N; Zarin, Daniel J; Asner, Gregory P; Peña-Claros, Marielos; Cooper, Amanda; Littell, Ramon
2006-06-01
Effective monitoring of selective logging from remotely sensed data requires an understanding of the spatial and temporal thresholds that constrain the utility of those data, as well as the structural and ecological characteristics of forest disturbances that are responsible for those constraints. Here we assess those thresholds and characteristics within the context of selective logging in the Bolivian Amazon. Our study combined field measurements of the spatial and temporal dynamics of felling gaps and skid trails ranging from <1 to 19 months following reduced-impact logging in a forest in lowland Bolivia with remote-sensing measurements from simultaneous monthly ASTER satellite overpasses. A probabilistic spectral mixture model (AutoMCU) was used to derive per-pixel fractional cover estimates of photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV), and soil. Results were compared with the normalized difference in vegetation index (NDVI). The forest studied had considerably lower basal area and harvest volumes than logged sites in the Brazilian Amazon where similar remote-sensing analyses have been performed. Nonetheless, individual felling-gap area was positively correlated with canopy openness, percentage liana coverage, rates of vegetation regrowth, and height of remnant NPV. Both liana growth and NPV occurred primarily in the crown zone of the felling gap, whereas exposed soil was limited to the trunk zone of the gap. In felling gaps >400 m2, NDVI, and the PV and NPV fractions, were distinguishable from unlogged forest values for up to six months after logging; felling gaps <400 m2 were distinguishable for up to three months after harvest, but we were entirely unable to distinguish skid trails from our analysis of the spectral data.
Yan, Qiao-Ling; Zhu, Jiao-Jun; Yu, Li-Zhong
2012-01-01
Promoting the seed regeneration potential of secondary forests undergoing gap disturbances is an important approach for achieving forest restoration and sustainable management. Seedling recruitment from seed banks strongly determines the seed regeneration potential, but the process is poorly understood in the gaps of secondary forests. The objectives of the present study were to evaluate the effects of gap size, seed availability, and environmental conditions on the seed regeneration potential in temperate secondary forests. It was found that gap formation could favor the invasion of more varieties of species in seed banks, but it also could speed up the turnover rate of seed banks leading to lower seed densities. Seeds of the dominant species, Fraxinus rhynchophylla, were transient in soil and there was a minor and discontinuous contribution of the seed bank to its seedling emergence. For Quercus mongolica, emerging seedling number was positively correlated with seed density in gaps (R = 0.32, P<0.01), especially in medium and small gaps (<500 m2). Furthermore, under canopies, there was a positive correlation between seedling number and seed density of Acer mono (R = 0.43, P<0.01). Gap formation could promote seedling emergence of two gap-dependent species (i.e., Q. mongolica and A. mono), but the contribution of seed banks to seedlings was below 10% after gap creation. Soil moisture and temperature were the restrictive factors controlling the seedling emergence from seeds in gaps and under canopies, respectively. Thus, the regeneration potential from seed banks is limited after gap formation. PMID:22745771
NASA Technical Reports Server (NTRS)
Smart, D. R.; Chatterton, N. J.; Bugbee, B.
1994-01-01
We grew 2.4 m2 wheat canopies in a large growth chamber under high photosynthetic photon flux (1000 micromoles m-2 s-1) and using two CO2 concentrations, 360 and 1200 micromoles mol-1. Photosynthetically active radiation (400-700 nm) was attenuated slightly faster through canopies grown in 360 micromoles mol-1 than through canopies grown in 1200 micromoles mol-1, even though high-CO2 canopies attained larger leaf area indices. Tissue fractions were sampled from each 5-cm layer of the canopies. Leaf tissue sampled from the tops of canopies grown in 1200 micromoles mol-1 accumulated significantly more total non-structural carbohydrate, starch, fructan, sucrose, and glucose (p < 0.05) than for canopies grown in 360 micromoles mol-1. Non-structural carbohydrate did not significantly increase in the lower canopy layers of the elevated CO2 treatment. Elevated CO2 induced fructan synthesis in all leaf tissue fractions, but fructan formation was greatest in the uppermost leaf area. A moderate temperature reduction of 10 degrees C over 5 d increased starch, fructan and glucose levels in canopies grown in 1200 micromoles mol-1, but concentrations of sucrose and fructose decreased slightly or remained unchanged. Those results may correspond with the use of fructosyl-residues and release of glucose when sucrose is consumed in fructan synthesis.
Identification of Lightning Gaps in Mangrove Forests Using Airborne LIDAR Measurements
NASA Astrophysics Data System (ADS)
Zhang, K.
2006-12-01
Mangrove forests are highly dynamic ecosystems and change frequently due to tropical storms, frost, and lightning. These factors can cause gaps in mangrove forests by damaging trees. Compared to gaps generated by storms and frost, gaps caused by lightning strikes are small, ranging from 50 to 300 m2. However, these small gaps may play a critical role in mangrove forest dynamics because of the frequent occurrence of lightning in tropical areas. It has been hypothesized that the turnover of mangrove forests is mainly due to the death and regeneration of trees in lightning gaps. However, there is a lack of data for gap occurrence in mangrove forests to verify this hypothesis. It is impractical to measure gaps through a field survey on a large scale because of the logistic difficulties of muddy mangrove forests. Airborne light detection and ranging (LIDAR) technology is an effective alternative because it provides direct measurements of ground and canopy elevations remotely. This study developed a method to identify lightning gaps in mangrove forests in terms of LIDAR measurements. First, LIDAR points are classified into vegetation and ground measurements using the progressive morphological filter. Second, a digital canopy model (DCM) is generated by subtracting a digital terrain model (DTM) from a digital surface model (DSM). The DSM is generated by interpolating raw LIDAR measurements, and DTM is produced by interpolating ground measurements. Third, a black top-hat mathematical morphological transformation is used to identify canopy gaps. Comparison of identified gap polygons with raw LIDAR measurements and field surveys shows that the proposed method identifies lightning gaps in mangrove forests successfully. The area of lightning gaps in mangrove forests in Everglades National Park is about 3% of total forest area, which verifies that lightning gaps play a critical role in mangrove forest turnover.
Air-Parcel Residence Times Within Forest Canopies
NASA Astrophysics Data System (ADS)
Gerken, Tobias; Chamecki, Marcelo; Fuentes, Jose D.
2017-10-01
We present a theoretical model, based on a simple model of turbulent diffusion and first-order chemical kinetics, to determine air-parcel residence times and the out-of-canopy export of reactive gases emitted within forest canopies under neutral conditions. Theoretical predictions of the air-parcel residence time are compared to values derived from large-eddy simulation for a range of canopy architectures and turbulence levels under neutral stratification. Median air-parcel residence times range from a few sec in the upper canopy to approximately 30 min near the ground and the distribution of residence times is skewed towards longer times in the lower canopy. While the predicted probability density functions from the theoretical model and large-eddy simulation are in good agreement with each other, the theoretical model requires only information on canopy height and eddy diffusivities inside the canopy. The eddy-diffusivity model developed additionally requires the friction velocity at canopy top and a parametrized profile of the standard deviation of vertical velocity. The theoretical model of air-parcel residence times is extended to include first-order chemical reactions over a range of of Damköhler numbers ( Da) characteristic of plant-emitted hydrocarbons. The resulting out-of-canopy export fractions range from near 1 for Da =10^{-3} to less than 0.3 at Da = 10. These results highlight the necessity for dense and tall forests to include the impacts of air-parcel residence times when calculating the out-of-canopy export fraction for reactive trace gases.
Aerodynamic Characterization of New Parachute Configurations for Low-Density Deceleration
NASA Technical Reports Server (NTRS)
Tanner, Christopher L.; Clark, Ian G.; Gallon, John C.; Rivellini, Tommaso P.; Witkowski, Allen
2013-01-01
The Low Density Supersonic Decelerator project performed a wind tunnel experiment on the structural design and geometric porosity of various sub-scale parachutes in order to inform the design of the 110ft nominal diameter flight test canopy. Thirteen different parachute configurations, including disk-gap-band, ring sail, disk sail, and star sail canopies, were tested at the National Full-scale Aerodynamics Complex 80- by 120-foot Wind Tunnel at NASA Ames Research Center. Canopy drag load, dynamic pressure, and canopy position data were recorded in order to quantify there lative drag performance and stability of the various canopies. Desirable designs would yield increased drag above the disk-gap-band with similar, or improved, stability characteristics. Ring sail parachutes were tested at geometric porosities ranging from 10% to 22% with most of the porosity taken from the shoulder region near the canopy skirt. The disk sail canopy replaced the rings lot portion of the ring sail canopy with a flat circular disk and wastested at geometric porosities ranging from 9% to 19%. The star sail canopy replaced several ringsail gores with solid gores and was tested at 13% geometric porosity. Two disk sail configurations exhibited desirable properties such as an increase of 6-14% in the tangential force coefficient above the DGB with essentially equivalent stability. However, these data are presented with caveats including the inherent differences between wind tunnel and flight behavior and qualitative uncertainty in the aerodynamic coefficients.
Simulated transient thermal infrared emissions of forest canopies during rainfall events
NASA Astrophysics Data System (ADS)
Ballard, Jerrell R.; Hawkins, William R.; Howington, Stacy E.; Kala, Raju V.
2017-05-01
We describe the development of a centimeter-scale resolution simulation framework for a theoretical tree canopy that includes rainfall deposition, evaporation, and thermal infrared emittance. Rainfall is simulated as discrete raindrops with specified rate. The individual droplets will either fall through the canopy and intersect the ground; adhere to a leaf; bounce or shatter on impact with a leaf resulting in smaller droplets that are propagated through the canopy. Surface physical temperatures are individually determined by surface water evaporation, spatially varying within canopy wind velocities, solar radiation, and water vapor pressure. Results are validated by theoretical canopy gap and gross rainfall interception models.
Inventory of File ndas.t12z.awip3d00.tm03.grib2
parameter in canopy conductance [Fraction] 529 surface RCSOL analysis Soil moisture parameter in canopy -0.1 m below ground TSOIL analysis Soil Temperature Validation to deprecate [K] 532 0-0.1 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 533 0.1-0.4 m below ground TSOIL
Vepakomma, Udayalakshmi; St-Onge, Benoit; Kneeshaw, Daniel
2011-01-01
Fine-scale height-growth response of boreal trees to canopy openings is difficult to measure from the ground, and there are important limitations in using stereophotogrammetry in defining gaps and determining individual crowns and height. However, precise knowledge on height growth response to different openings is critical for refining partial harvesting techniques. In this study, we question whether conifers and hardwoods respond equally in terms of sapling growth or lateral growth to openings. We also ask to what distance gaps affect tree growth into the forest. We use multi-temporal lidar to characterize tree/sapling height and lateral growth responses over five years to canopy openings and high resolution images to identify conifers and hardwoods. Species-class-wise height-growth patterns of trees/saplings in various neighborhood contexts were determined across a 6-km matrix of Canadian boreal mixed deciduous coniferous forests. We then use statistical techniques to probe how these growth responses vary by spatial location with respect to the gap edge. Results confirm that both mechanisms of gap closure contribute to the closing of canopies at a rate of 1.2% per annum. Evidence also shows that both hardwood and conifer gap edge trees have a similar lateral growth (average of 22 cm/yr) and similar rates of height growth irrespective of their location and initial height. Height growth of all saplings, however, was strongly dependent on their position within the gap and the size of the gap. Results suggest that hardwood and softwood saplings in gaps have greatest growth rates at distances of 0.5-2 m and 1.5-4 m from the gap edge and in openings smaller than 800 m2 and 250 m2, respectively. Gap effects on the height growth of trees in the intact forest were evident up to 30 m and 20 m from gap edges for hardwood and softwood overstory trees, respectively. Our results thus suggest that foresters should consider silvicultural techniques that create many small openings in mixed coniferous deciduous boreal forests to maximize the growth response of both residual and regenerating trees.
NASA Astrophysics Data System (ADS)
Van Stan, John; Rosier, Carl; Moore, Leslie; Gay, Trent; Reichard, James; Wu, Tiehang; Kan, Jinjun
2015-04-01
Identifying spatiotemporal influences on soil microbial community (SMC) structure is critical to our understanding of patterns in biogeochemical cycling and related ecological services (e.g., plant community structure, water quality, response to environmental change). Since forest canopy structure alters the spatiotemporal patterning of precipitation water and solute supplies to soils (via "throughfall"), is it possible that changes in SMC structure could arise from modifications in canopy elements? Our study investigates this question by monitoring throughfall water and dissolved ion supply to soils beneath a continuum of canopy structure: from large gaps (0% cover), to bare Quercus virginiana Mill. (southern live oak) canopy (~50-70%), to heavy Tillandsia usneoides L. (Spanish moss) canopy (>90% cover). Throughfall water supply diminished with increasing canopy cover, yet increased washoff/leaching of Na+, Cl-, PO43-, and SO42- from the canopy to the soils. Presence of T. usneoides diminished throughfall NO3-, but enhanced NH4+, concentrations supplied to subcanopy soils. The mineral soil horizon (0-10 cm) sampled in triplicate from locations receiving throughfall water and solutes from canopy gaps, bare canopy, and T. usneoides-laden canopy significantly differed in soil chemistry parameters (pH, Ca2+, Mg2+, CEC). Polymerase Chain Reaction-Denaturant Gradient Gel Electrophoresis (PCR-DGGE) banding patterns beneath similar canopy covers (experiencing similar throughfall dynamics) also produced high similarities per ANalyses Of SIMilarity (ANO-SIM), and clustered together when analyzed by Nonmetric Multidimensional Scaling (NMDS). These results suggest that modifications of forest canopy structures are capable of affecting mineral-soil horizon SMC structure via throughfall when canopies' biomass distribution is highly heterogeneous. As SMC structure, in many instances, relates to functional diversity, we suggest that future research seek to identify functional diversity shifts (e.g., nitrogen transformation) in response to canopy structural alterations of throughfall water/solute concentration
NASA Astrophysics Data System (ADS)
Van Stan, J. T., II; Rosier, C. L.; Schrom, J. O.; Wu, T.; Reichard, J. S.; Kan, J.
2014-12-01
Identifying spatiotemporal influences on soil microbial community (SMC) structure is critical to understanding of patterns in nutrient cycling and related ecological services. Since forest canopy structure alters the spatiotemporal patterning of precipitation water and solute supplies to soils (via the "throughfall" mechanism), is it possible changes in SMC structure variability could arise from modifications in canopy elements? Our study investigates this question by monitoring throughfall water and dissolved ion supply to soils beneath a continuum of canopy structure: from a large gap (0% cover) to heavy Tillandsia usneoides L. (Spanish moss) canopy (>90% cover). Throughfall water supply diminished with increasing canopy cover, yet increased washoff/leaching of Na+, Cl-, PO43-, and SO42- from the canopy to the soils (p < 0.01). Presence of T. usneoides diminished throughfall NO3-, but enhanced NH4+, concentrations supplied to subcanopy soils. The mineral soil horizon (0-10 cm) from canopy gaps, bare canopy, and T. usneoides-laden canopy significantly differed (p < 0.05) in soil chemistry parameters (pH, Ca2+, Mg2+, CEC). PCR-DGGE banding patterns beneath similar canopy covers (experiencing similar throughfall dynamics) also produced high similarities per ANalyses Of SIMilarity (ANO-SIM), and clustered together when analyzed by Nonmetric Multidimensional Scaling (NMDS). Correlation analysis of DGGE banding patterns, throughfall dynamics, and soil chemistry yielded significant correlations (p < 0.05) between fungal communities and soil chemical properties significantly differing between canopy cover types (pH: r2 = 0.50; H+ %-base saturation: r2 = 0.48; Ca2+ %-base saturation: r2 = 0.43). Bacterial community structure correlated with throughfall NO3-, NH4+, and Ca2+ concentrations (r2 = 0.37, p = 0.16). These results suggest that modifications of forest canopy structures are capable of affecting mineral-soil horizon SMC structure via the throughfall mechanism when canopies' biomass distribution is highly heterogeneous.
NASA Astrophysics Data System (ADS)
Srinivasan, V.; Yiwen, X.; Ellis, A.; Christensen, A.; Borkiewic, K.; Cox, D.; Hart, J.; Long, S.; Marshall-Colon, A.
2016-12-01
The distribution of absorbed solar radiation in the photosynthetically active region wavelength (PAR) within plant canopies plays a critical role in determining photosynthetic carbon uptake and its associated transpiration. The vertical distribution of leaf area, leaf angles, leaf absorptivity and reflectivity within the canopy, affect the distribution of PAR absorbed throughout the canopy. While the upper canopy sunlit leaves absorb most of the incoming PAR and hence contribute most towards total canopy carbon uptake, the lower canopy shaded leaves which receive mostly lower intensity diffuse PAR make significant contributions towards plant carbon uptake. Most detailed vegetation models use a 1-D vertical multi-layer approach to model the sunlight and shaded canopy leaf fractions, and quantify the direct and diffuse radiation absorbed by the respective leaf fractions. However, this approach is only applicable under canopy closure conditions, and furthermore it fails to accurately capture the effects of diurnally varying leaf angle distributions in some plant canopies. Here, we show by using a 3-D ray tracing model which uses an explicit 3-D canopy structure that enforces no conditions about canopy closure, that the effects of diurnal variation of canopy leaf angle distributions better match with observed data. Our comparative analysis performed on soybean crop canopies between 3-D ray tracing model and the multi-layer model shows that the distribution of absorbed direct PAR is not exponential while, the distribution of absorbed diffuse PAR radiation within plant canopies is exponential. These results show the multi-layer model to significantly over-predict canopy PAR absorbed, and in turn significantly overestimate photosynthetic carbon uptake by up to 13% and canopy transpiration by 7% under mid-day sun conditions as verified through our canopy chamber experiments. Our results indicate that current detailed 1-D multi-layer canopy radiation attenuation models significantly over predict canopy radiation absorption and its associated canopy photosynthetic and transpiration fluxes, and use of a 3-D ray tracing model provides more realistic predictions of leaf canopy integrated fluxes of carbon and water.
Estimating Leaf Area Index in Southeast Alaska: A Comparison of Two Techniques
Eckrich, Carolyn A.; Flaherty, Elizabeth A.; Ben-David, Merav
2013-01-01
The relationship between canopy structure and light transmission to the forest floor is of particular interest for studying the effects of succession, timber harvest, and silviculture prescriptions on understory plants and trees. Indirect measurements of leaf area index (LAI) estimated using gap fraction analysis with linear and hemispheric sensors have been commonly used to assess radiation interception by the canopy, although the two methods often yield inconsistent results. We compared simultaneously obtained measurements of LAI from a linear ceptometer and digital hemispheric photography in 21 forest stands on Prince of Wales Island, Alaska. We assessed the relationship between these estimates and allometric LAI based on tree diameter at breast height (LAIDBH). LAI values measured at 79 stations in thinned, un-thinned controls, old-growth and clearcut stands were highly correlated between the linear sensor (AccuPAR) and hemispheric photography, but the latter was more negatively biased compared to LAIDBH. In contrast, AccuPAR values were more similar to LAIDBH in all stands with basal area less than 30 m2ha−1. Values produced by integrating hemispheric photographs over the zenith angles 0–75° (Ring 5) were highly correlated with those integrated over the zenith angles 0–60° (Ring 4), although the discrepancies between the two measures were significant. On average, the AccuPAR estimates were 53% higher than those derived from Ring 5, with most of the differences in closed canopy stands (unthinned controls and old-growth) and less so in clearcuts. Following typical patterns of canopy closure, AccuPAR LAI values were higher in dense control stands than in old-growth, whereas the opposite was derived from Ring 5 analyses. Based on our results we advocate the preferential use of linear sensors where canopy openness is low, canopies are tall, and leaf distributions are clumped and angles are variable, as is common in the conifer forests of coastal Alaska. PMID:24223718
Barton D. Clinton
2003-01-01
Small canopy openings often alter understory microclimate, leading to changes in forest structure and composition. It is generally accepted that physical changes in the understory (i.e., microclimatic) due to canopy removal drive changes in basic forest processes, particularly seedling recruitment which is intrinsically linked to soil moisture availability, light and,...
Steven B. Castleberry; W. Mark Ford; Carl V. Miller; Winston P. Smith
2000-01-01
We examined the effects of white-tailed deer (Odocoileus virginianus) browsing and canopy opening size on relative abundance and diversity of woody and herbaceous regeneration in various sized forest openings in a southern, bottomland hardwood forest over three growing seasons (1995-1997). We created 36 canopy openings (gaps), ranging from 7 to 40m...
Modelling the effect of diffuse light on canopy photosynthesis in controlled environments
NASA Technical Reports Server (NTRS)
Cavazzoni, James; Volk, Tyler; Tubiello, Francesco; Monje, Oscar; Janes, H. W. (Principal Investigator)
2002-01-01
A layered canopy model was used to analyze the effects of diffuse light on canopy gross photosynthesis in controlled environment plant growth chambers, where, in contrast to the field, highly diffuse light can occur at high irradiance. The model suggests that high diffuse light fractions (approximately 0.7) and irradiance (1400 micromoles m-2 s-1) may enhance crop life-cycle canopy gross photosynthesis for hydroponic wheat by about 20% compared to direct light at the same irradiance. Our simulations suggest that high accuracy is not needed in specifying diffuse light fractions in chambers between approximately 0.7 and 1, because simulated photosynthesis for closed canopies plateau in this range. We also examined the effect of leaf angle distribution on canopy photosynthesis under growth chamber conditions, as these distributions determine canopy extinction coefficients for direct and diffuse light. We show that the spherical leaf angle distribution is not suitable for modeling photosynthesis of planophile canopies (e.g., soybean and peanut) in growth chambers. Also, the absorption of the light reflected from the surface below the canopy should generally be included in model simulations, as the corresponding albedo values in the photosynthetically active range may be quite high in growth chambers (e.g., approximately 0.5). In addition to the modeling implications, our results suggest that diffuse light conditions should be considered when drawing conclusions from experiments in controlled environments.
A one-dimensional canopy model was used to quantify the impact of photochemistry in modifying biosphere-atmosphere exchange of trace gases. Canopy escape efficiencies, defined as the fraction of emission that escapes into the well-mixed boundary layer, were calculated for reactiv...
Gap characteristics of southeastern Ohio second-growth forests
David M. Hix; Katherine K. Helfrich
2003-01-01
Transect sampling was used to assess the features of 30 gaps encountered in upland oak stands on the Wayne National Forest. Tip-ups caused the most canopy gaps (52 percent), two-thirds of which were small (
Beyond edge effects: landscape controls on forest structure in the southeastern US
NASA Astrophysics Data System (ADS)
Fagan, M. E.; Morton, D. C.; Cook, B.; Masek, J. G.; Zhao, F. A.; Nelson, R.; Huang, C.
2016-12-01
The structure of forest canopies (i.e., their height and complexity) is known to be influenced by a variety of factors, including forest age, species composition, disturbance, edaphic and topographical conditions, and exposure to edge environments. The combined impact of each of these factors on canopy structure is not well characterized for most forest ecosystems, however, which limits our ability to predict the regional impacts of forest fragmentation. The objective of this study was to elucidate the main biophysical drivers of canopy structure across two dominant ecosystems in the southeastern U.S: natural mixed deciduous forests, and industrial conifer plantations. We analyzed spatial changes in canopy structure along aerial transects of LiDAR data ( 3,000 km in all). High-resolution (1 m) LiDAR data from Goddard's LiDAR, Hyperspectral, and Thermal Airborne Imager (G-LiHT) were combined with time series of Landsat imagery to quantify forest type, age, composition, and fragmentation. Forest structural metrics (height, gap fraction, and canopy roughness) were examined across forest types, ages, topography, and decreasing edge exposure. We hypothesized that 1) structural edge effects would be weak in both natural and plantation forest types, and 2) age, composition, and topography would be the dominant influences on natural forest structure. We analyzed all large (>4 ha) fragments from the 8562 distinct forests measured during G-LiHT data collections in 2011 across the southeastern U.S. In general, the relationship between forest structural metrics and edge exposure was highly variable in both natural forests and plantations. However, variability in all structural metrics decreased with distance from an edge. Forest age and topography were strong predictors of canopy structure in natural forests. However plantations tended to be located in sites with limited topographical variation, and thinning disturbances of conifer plantations decreased the strength of the age-structure relationship. We found that canopy structure in our region is influenced by edge effects, but other factors played a larger role in determining forest characteristics. Our results highlight the importance of endogenous, stand-specific processes for forest structure, biomass, and biodiversity in the southeastern U.S.
Gap effects on leaf traits of tropical rainforest trees differing in juvenile light requirement.
Houter, Nico C; Pons, Thijs L
2014-05-01
The relationships of 16 leaf traits and their plasticity with the dependence of tree species on gaps for regeneration (gap association index; GAI) were examined in a Neotropical rainforest. Young saplings of 24 species with varying GAI were grown under a closed canopy, in a medium-sized and in a large gap, thus capturing the full range of plasticity with respect to canopy openness. Structural, biomechanical, chemical and photosynthetic traits were measured. At the chloroplast level, the chlorophyll a/b ratio and plasticity in this variable were not related to the GAI. However, plasticity in total carotenoids per unit chlorophyll was larger in shade-tolerant species. At the leaf level, leaf mass per unit area (LMA) decreased with the GAI under the closed canopy and in the medium gap, but did not significantly decrease with the GAI in the large gap. This was a reflection of the larger plasticity in LMA and leaf thickness of gap-dependent species. The well-known opposite trends in LMA for adaptation and acclimation to high irradiance in evergreen tropical trees were thus not invariably found. Although leaf strength was dependent on LMA and thickness, plasticity in this trait was not related to the GAI. Photosynthetic capacity expressed on each basis increased with the GAI, but the large plasticity in these traits was not clearly related to the GAI. Although gap-dependent species tended to have a greater plasticity overall, as evident from a principle component analysis, leaf traits of gap-dependent species are thus not invariably more phenotypically plastic.
Spatial and temporal trends of drought effects in a heterogeneous semi-arid forest ecosystem
Assal, Timothy J.; Anderson, Patrick J.; Sibold, Jason
2016-01-01
Drought has long been recognized as a driving mechanism in the forests of western North America and drought-induced mortality has been documented across genera in recent years. Given the frequency of these events are expected to increase in the future, understanding patterns of mortality and plant response to severe drought is important to resource managers. Drought can affect the functional, physiological, structural, and demographic properties of forest ecosystems. Remote sensing studies have documented changes in forest properties due to direct and indirect effects of drought; however, few studies have addressed this at local scales needed to characterize highly heterogeneous ecosystems in the forest-shrubland ecotone. We analyzed a 22-year Landsat time series (1985–2012) to determine changes in forest in an area that experienced a relatively dry decade punctuated by two years of extreme drought. We assessed the relationship between several vegetation indices and field measured characteristics (e.g. plant area index and canopy gap fraction) and applied these indices to trend analysis to uncover the location, direction and timing of change. Finally, we assessed the interaction of climate and topography by forest functional type. The Normalized Difference Moisture Index (NDMI), a measure of canopy water content, had the strongest correlation with short-term field measures of plant area index (R2 = 0.64) and canopy gap fraction (R2 = 0.65). Over the entire time period, 25% of the forested area experienced a significant (p-value < 0.05) negative trend in NDMI, compared to less than 10% in a positive trend. Coniferous forests were more likely to be associated with a negative NDMI trend than deciduous forest. Forests on southern aspects were least likely to exhibit a negative trend while north aspects were most prevalent. Field plots with a negative trend had a lower live density, and higher amounts of standing dead and down trees compared to plots with no trend. Our analysis identifies spatially explicit patterns of long-term trends anchored with ground based evidence to highlight areas of forest that are resistant, persistent or vulnerable to severe drought. The results provide a long-term perspective for the resource management of this area and can be applied to similar ecosystems throughout western North America.
Gap Shape Classification using Landscape Indices and Multivariate Statistics
Wu, Chih-Da; Cheng, Chi-Chuan; Chang, Che-Chang; Lin, Chinsu; Chang, Kun-Cheng; Chuang, Yung-Chung
2016-01-01
This study proposed a novel methodology to classify the shape of gaps using landscape indices and multivariate statistics. Patch-level indices were used to collect the qualified shape and spatial configuration characteristics for canopy gaps in the Lienhuachih Experimental Forest in Taiwan in 1998 and 2002. Non-hierarchical cluster analysis was used to assess the optimal number of gap clusters and canonical discriminant analysis was used to generate the discriminant functions for canopy gap classification. The gaps for the two periods were optimally classified into three categories. In general, gap type 1 had a more complex shape, gap type 2 was more elongated and gap type 3 had the largest gaps that were more regular in shape. The results were evaluated using Wilks’ lambda as satisfactory (p < 0.001). The agreement rate of confusion matrices exceeded 96%. Differences in gap characteristics between the classified gap types that were determined using a one-way ANOVA showed a statistical significance in all patch indices (p = 0.00), except for the Euclidean nearest neighbor distance (ENN) in 2002. Taken together, these results demonstrated the feasibility and applicability of the proposed methodology to classify the shape of a gap. PMID:27901127
Gap Shape Classification using Landscape Indices and Multivariate Statistics.
Wu, Chih-Da; Cheng, Chi-Chuan; Chang, Che-Chang; Lin, Chinsu; Chang, Kun-Cheng; Chuang, Yung-Chung
2016-11-30
This study proposed a novel methodology to classify the shape of gaps using landscape indices and multivariate statistics. Patch-level indices were used to collect the qualified shape and spatial configuration characteristics for canopy gaps in the Lienhuachih Experimental Forest in Taiwan in 1998 and 2002. Non-hierarchical cluster analysis was used to assess the optimal number of gap clusters and canonical discriminant analysis was used to generate the discriminant functions for canopy gap classification. The gaps for the two periods were optimally classified into three categories. In general, gap type 1 had a more complex shape, gap type 2 was more elongated and gap type 3 had the largest gaps that were more regular in shape. The results were evaluated using Wilks' lambda as satisfactory (p < 0.001). The agreement rate of confusion matrices exceeded 96%. Differences in gap characteristics between the classified gap types that were determined using a one-way ANOVA showed a statistical significance in all patch indices (p = 0.00), except for the Euclidean nearest neighbor distance (ENN) in 2002. Taken together, these results demonstrated the feasibility and applicability of the proposed methodology to classify the shape of a gap.
Seasonal relationships between birds and arthropods in bottomland forest canopy gaps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowen, Liessa, Thomas
2004-12-31
Bowen, Liessa, Thomas. 2004. Seasonal relationships between birds and arthropods in bottomland forest canopy gaps. PhD Dissertation. North Carolina State University. Raleigh, North Carolina. 98pp. I investigated the influence of arthropod availability and vegetation structure on avian habitat use at the center, edge, and adjacent to forest canopy gaps in 2001 and 2002. I used mist-netting and plot counts to estimate abundance of birds using three sizes (0.13, 0.26, and 0.5 ha) of 7-8 year old group-selection timber harvest openings during four seasons (spring migration, breeding, post-breeding, and fall migration) in a bottomland hardwood forest in the Upper Coastal Plainmore » of South Carolina. I used foliage clipping, Malaise trapping, and pitfall trapping to determine arthropod abundance within each habitat, and I used a warm water crop-flush on captured birds to gather information about arthropods eaten. I observed more birds, including forest interior species, forest-edge spedge species, and several individual species, in early-successional canopy gap and gap-edge habitats than in surrounding mature forest during all seasons. I found a significant interaction between season and habitat type for several groups and individual species, suggesting a seasonal shift in habitat use. Captures of all birds, insectivorous birds, foliage- gleaners, ground-gleaners, aerial salliers, Hooded Warbler (Wilsonia citrina), Northern Cardinal (Cardinalis cardinalis), White-eyed Vireo (Vireo griseus), and Black-throated Blue Warbler (Dendroica caerulescens) were positively correlated with understory vegetation density during two or more seasons. I found relationships between insectivorous birds and leaf-dwelling Lepidoptera, insectivorous birds and ground-dwelling arthropods, foliage-gleaning birds and foliage-dwelling arthropods, and aerial salliers and flying arthropods, as well as between individual bird species and arthropods. Relationships were inconsistent, however, with many species being negatively correlated with arthropod abundance. Coleopteran, Lepidopteran, and Aranid prey items represented the greatest proportions of crop-flush samples during all seasons. Proportional consumption of Coleopteran and Hemipteran prey items was higher than their proportional availability, and consumption of Aranid and Hymenopteran prey items was lower than their proportional availability during all seasons. Individual bird species and guilds consistently consumed similar proportions of certain groups of arthropods from spring through fall migration, with no apparent seasonal shift in diet composition. My research suggests that many species of birds selectively choose mid-successional gap and gap-edge habitat over surrounding mature forest during the non-breeding season, and the creation of small canopy gaps within a mature forest may increase local bird species richness. It is less obvious how arthropod availability affects bird habitat use across seasons. A structurally diverse mosaic of habitat types, including regenerating canopy gaps within a mature forest, may provide valuable habitat for birds and a variety of arthropod prey items across multiple seasons.« less
Guidelines and sample protocol for sampling forest gaps.
J.R. Runkle
1992-01-01
A protocol for sampling forest canopy gaps is presented. Methods used in published gap studies are reviewed. The sample protocol will be useful in developing a broader understanding of forest structure and dynamics through comparative studies across different forest ecosystems.
USDA-ARS?s Scientific Manuscript database
For open orchard and vineyard canopies containing significant fractions of exposed soil (>50%), typical of Mediterranean agricultural regions, the energy balance of the vegetation elements is strongly influenced by heat exchange with the bare soil/substrate. For these agricultural systems a “two-sou...
Canopy and knowledge gaps when invasive alien insects remove foundation species.
Marler, Thomas E; Lawrence, John H
2013-01-01
The armored scale Aulacaspis yasumatsui invaded the northern range of the cycad Cycas micronesica in 2003, and epidemic tree mortality ensued due to a lack of natural enemies of the insect. We quantified cycad demographic responses to the invasion, but the ecological responses to the selective removal of this foundation species have not been addressed. We use this case to highlight information gaps in our understanding of how alien invasive phytophagous insects force cascading adverse ecosystem changes. The mechanistic role of unique canopy gaps, oceanic island examples and threatened foundation species with distinctive traits are three issues that deserve research efforts in a quest to understand this facet of ecosystem change occurring across multiple settings globally.
On the Relationship Between Hyperspectral Data and Foliar Nitrogen Content in Closed Canopy Forests
NASA Astrophysics Data System (ADS)
Knyazikhin, Y.; Schull, M.; Lepine, L. C.; Stenberg, P.; Mõttus, M.; Rautiainen, M.; Latorre, P.; Myneni, R.; Kaufmann, R.
2011-12-01
The importance of nitrogen for terrestrial ecosystem carbon dynamics and its climate feedback has been well recognized by the ecological community. Interaction between carbon and nitrogen at leaf level is among the fundamental mechanisms that directly control the dynamics of terrestrial vegetation carbon. This process influences absorption and scattering of solar radiation by foliage, which in turn impacts radiation reflected by the vegetation and measured by satellite sensors. NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and ground based data on canopy structure and foliage nitrogen concentration acquired over six sites in Maine, New England, Florida, North Carolina and Washington were analyzed to assess the role of canopy structure, leaf optics and its biochemical constituents in the spectral variation of radiation reflected by the forest. The study sites represent closed canopy forests (LAI~5). Our results suggest: 1. Impact of canopy structure is so strong that it can significantly suppress the sensitivity of hyperspectral data to leaf optics. 2. Forest reflectance spectra in the interval [710, 790 nm] are required to obtain the fraction of the total leaf area that a "sensor sees" in a given direction. For closed canopy forests its retrieval does not require canopy reflectance models, suggesting that canopy reflectance spectra in this interval provide a direct estimate of the leaf area fraction. 3. The leaf area fraction fully explains variation in measured reflectance spectra due to variation in canopy structure. This variable is used to estimate the mean leaf scattering over foliage that the "sensor sees." For example the nadir-viewing AVIRIS sensor accumulates foliage optical properties over 25% of the total foliage area in needle leaf forest and about 50% in broadleaf forest. 4. Leaf surface properties have an impact on forest reflectivity, lowering its sensitivity to leaf absorbing pigments. 5. Variation in foliar nitrogen concentration can explain up to 55% of variation in AVIRIS spectra in the interval between 400 and 900 nm. The remaining factors could be due to (a) impact of leaf surface properties and/or (b) under-sampling of leaf optical properties due to the single view of the AVIRIS sensor. The theory of canopy spectral invariants underlies the separation of leaf scattering from the total canopy reflectance spectrum.
Forest Gaps Alter the Total Phenol Dynamics in Decomposing Litter in an Alpine Fir Forest
Li, Han; Xu, Liya; Wu, Fuzhong; Yang, Wanqin; Ni, Xiangyin; He, Jie; Tan, Bo; Hu, Yi
2016-01-01
The total phenol content in decomposing litter not only acts as a crucial litter quality indicator, but is also closely related to litter humification due to its tight absorption to clay particles. However, limited attention has been focused on the total phenol dynamics in foliar litter in relation to forest gaps. Here, the foliar litter of six representative tree species was incubated on the forest floor from the gap center to the closed canopy of an alpine Minjiang fir (Abies faxoniana) forest in the upper reaches of the Yangtze River and eastern Tibetan Plateau. The dynamics of total phenol concentration in the incubated litter was measured from November 2012 to October 2014. Over two-year incubation, 78.22% to 94.06% of total phenols were lost from the foliar litter, but 52.08% to 86.41% of this occurred in the first year. Forest gaps accelerated the loss of total phenols in the foliar litter in the winter, although they inhibited the loss of total phenols during the growing season in the first year. In comparison with the effects of forest gaps, the variations of litter quality among different species were much stronger on the dynamics of total phenols in the second year. Overall, the loss of total phenols in the foliar litter was slightly higher in both the canopy gap and the expanded gap than in the gap center and under the closed canopy. The results suggest that the predicted decline in snow cover resulting from winter warming or vanishing gaps caused by forest regeneration will retard the loss of total phenol content in the foliar litter of alpine forest ecosystems, especially in the first decomposition year. PMID:26849120
Soil properties in old-growth Douglas-fir gaps in the western Cascade Mountains of Oregon
Robert P. Griffiths; Andrew N. Gray; Thomas A. Spies
2010-01-01
This study had three objectives: (1) to determine if there are correlations between aboveground vegetation and belowground soil properties within large 50-m-diameter gaps, (2) to determine how large gaps influence forest soils compared with nongap soils, and (3) to measure the effects of differently sized gaps on gap soils. Circular canopy gaps were created in old-...
Effect of Stability on Mixing in Open Canopies. Chapter 4
NASA Technical Reports Server (NTRS)
Lee, Young-Hee; Mahrt, L.
2005-01-01
In open canopies, the within-canopy flux from the ground surface and understory can account for a significant fraction of the total flux above the canopy. This study incorporates the important influence of within-canopy stability on turbulent mixing and subcanopy fluxes into a first-order closure scheme. Toward this goal, we analyze within-canopy eddy-correlation data from the old aspen site in the Boreal Ecosystem - Atmosphere Study (BOREAS) and a mature ponderosa pine site in Central Oregon, USA. A formulation of within-canopy transport is framed in terms of a stability- dependent mixing length, which approaches Monin-Obukhov similarity theory above the canopy roughness sublayer. The new simple formulation is an improvement upon the usual neglect of the influence of within-canopy stability in simple models. However, frequent well-defined cold air drainage within the pine subcanopy inversion reduces the utility of simple models for nocturnal transport. Other shortcomings of the formulation are discussed.
Tracking the Creation of Tropical Forest Canopy Gaps with UAV Computer Vision Remote Sensing
NASA Astrophysics Data System (ADS)
Dandois, J. P.
2015-12-01
The formation of canopy gaps is fundamental for shaping forest structure and is an important component of ecosystem function. Recent time-series of airborne LIDAR have shown great promise for improving understanding of the spatial distribution and size of forest gaps. However, such work typically looks at gap formation across multiple years and important intra-annual variation in gap dynamics remains unknown. Here we present findings on the intra-annual dynamics of canopy gap formation within the 50 ha forest dynamics plot of Barro Colorado Island (BCI), Panama based on unmanned aerial vehicle (UAV) remote sensing. High-resolution imagery (7 cm GSD) over the 50 ha plot was obtained regularly (≈ every 10 days) beginning October 2014 using a UAV equipped with a point and shoot camera. Imagery was processed into three-dimensional (3D) digital surface models (DSMs) using automated computer vision structure from motion / photogrammetric methods. New gaps that formed between each UAV flight were identified by subtracting DSMs between each interval and identifying areas of large deviation. A total of 48 new gaps were detected from 2014-10-02 to 2015-07-23, with sizes ranging from less than 20 m2 to greater than 350 m2. The creation of new gaps was also evaluated across wet and dry seasons with 4.5 new gaps detected per month in the dry season (Jan. - May) and 5.2 per month outside the dry season (Oct. - Jan. & May - July). The incidence of gap formation was positively correlated with ground-surveyed liana stem density (R2 = 0.77, p < 0.001) at the 1 hectare scale. Further research will consider the role of climate in predicting gap formation frequency as well as site history and other edaphic factors. Future satellite missions capable of observing vegetation structure at greater extents and frequencies than airborne observations will be greatly enhanced by the high spatial and temporal resolution bridging scale made possible by UAV remote sensing.
Mark Chopping; Gretchen G. Moisen; Lihong Su; Andrea Laliberte; Albert Rango; John V. Martonchik; Debra P. C. Peters
2008-01-01
A rapid canopy reflectance model inversion experiment was performed using multi-angle reflectance data from the NASA Multi-angle Imaging Spectro-Radiometer (MISR) on the Earth Observing System Terra satellite, with the goal of obtaining measures of forest fractional crown cover, mean canopy height, and aboveground woody biomass for large parts of south-eastern Arizona...
NASA Astrophysics Data System (ADS)
Sicart, J. E.; Ramseyer, V.; Lejeune, Y.; Essery, R.; Webster, C.; Rutter, N.
2017-12-01
At high altitudes and latitudes, snow has a large influence on hydrological processes. Large fractions of these regions are covered by forests, which have a strong influence on snow accumulation and melting processes. Trees absorb a large part of the incoming shortwave radiation and this heat load is mostly dissipated as longwave radiation. Trees shelter the snow surface from wind, so sub-canopy snowmelt depends mainly on the radiative fluxes: vegetation attenuates the transmission of shortwave radiation but enhances longwave irradiance to the surface. An array of 13 pyranometers and 11 pyrgeometers was deployed on the snow surface below a coniferous forest at the CEN-MeteoFrance Col de Porte station in the French Alps (1325 m asl) during the 2017 winter in order to investigate spatial and temporal variabilities of solar and infrared irradiances in different meteorological conditions. Sky view factors measured with hemispherical photographs at each radiometer location were in a narrow range from 0.2 to 0.3. The temperature of the vegetation was measured with IR thermocouples and an IR camera. In clear sky conditions, the attenuation of solar radiation by the canopy reached 96% and its spatial variability exceeded 100 W m-2. Longwave irradiance varied by 30 W m-2 from dense canopy to gap areas. In overcast conditions, the spatial variabilities of solar and infrared irradiances were reduced and remained closely related to the sky view factor. A simple radiative model taking into account the penetration through the canopy of the direct and diffuse solar radiation, and isotropic infrared emission of the vegetation as a blackbody emitter, accurately reproduced the dynamics of the radiation fluxes at the snow surface. Model results show that solar transmissivity of the canopy in overcast conditions is an excellent proxy of the sky view factor and the emitting temperature of the vegetation remained close to the air temperature in this typically dense Alpine forest.
Seasonal diets of insectivorous birds using canopy gaps in a bottomland forest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moorman, Christopher, E.; Bowen, Liessa, T.; Kilgo, John, C.
2007-07-01
ABSTRACT. Little is known about how insectivorous bird diets are influenced by arthropod availability and about how these relationships vary seasonally. We captured birds in forest-canopy gaps and adjacent mature forest during 2001 and 2002 at the Savannah River Site in Barnwell County, South Carolina, and flushed their crops to gather information about arthropods eaten during four periods: spring migration, breeding, postbreeding, and fall migration. Arthropod availability for foliage- and ground-gleaning birds was examined by leaf clipping and pitfall trapping. Coleopterans and Hemipterans were used by foliage- and ground-gleaners more than expected during all periods, whereas arthropods in the ordersmore » Araneae and Hymenoptera were used as, or less than, expected based on availability during all periods. Ground-gleaning birds used Homopterans and Lepidopterans in proportions higher than availability during all periods. Arthropod use by birds was consistent from spring through all migration, with no apparent seasonal shift in diet. Based on concurrent studies, heavily used orders of arthropods were equally abundant or slightly less abundant in canopy gaps than in the surrounding mature forest, but bird species were most frequently detected in gaps. Such results suggest that preferential feeding on arthropods by foliage-gleaning birds in p p habitats reduced arthropod densities or, alternatively, that bird use of gap and forest habitat was not determined y food resources. The abundance of arthropods across the stand may have allowed birds to remain in the densely vegetated gaps where thick cover provides protection from predators.« less
Reversing legacy effects in the understory of an oak-dominated forest
Melissa Thomas-Van Gundy; James Rentch; Mary Beth Adams; Walter Carson
2014-01-01
Current forests developed under conditions different from original forests, with higher deer densities, reduced fire frequency, denser canopies, and smaller canopy gaps. These alterations have led to understories dominated by species simultaneously browse tolerant, shade tolerant, and fire sensitive leading to difficulties in the regeneration of oak species (...
Wu, Jin; Kobayashi, Hideki; Stark, Scott C; Meng, Ran; Guan, Kaiyu; Tran, Ngoc Nguyen; Gao, Sicong; Yang, Wei; Restrepo-Coupe, Natalia; Miura, Tomoaki; Oliviera, Raimundo Cosme; Rogers, Alistair; Dye, Dennis G; Nelson, Bruce W; Serbin, Shawn P; Huete, Alfredo R; Saleska, Scott R
2018-03-01
Satellite observations of Amazon forests show seasonal and interannual variations, but the underlying biological processes remain debated. Here we combined radiative transfer models (RTMs) with field observations of Amazon forest leaf and canopy characteristics to test three hypotheses for satellite-observed canopy reflectance seasonality: seasonal changes in leaf area index, in canopy-surface leafless crown fraction and/or in leaf demography. Canopy RTMs (PROSAIL and FLiES), driven by these three factors combined, simulated satellite-observed seasonal patterns well, explaining c. 70% of the variability in a key reflectance-based vegetation index (MAIAC EVI, which removes artifacts that would otherwise arise from clouds/aerosols and sun-sensor geometry). Leaf area index, leafless crown fraction and leaf demography independently accounted for 1, 33 and 66% of FLiES-simulated EVI seasonality, respectively. These factors also strongly influenced modeled near-infrared (NIR) reflectance, explaining why both modeled and observed EVI, which is especially sensitive to NIR, captures canopy seasonal dynamics well. Our improved analysis of canopy-scale biophysics rules out satellite artifacts as significant causes of satellite-observed seasonal patterns at this site, implying that aggregated phenology explains the larger scale remotely observed patterns. This work significantly reconciles current controversies about satellite-detected Amazon phenology, and improves our use of satellite observations to study climate-phenology relationships in the tropics. No claim to original US Government works New Phytologist © 2017 New Phytologist Trust.
A Multi-temporal Analysis of Logging Impacts on Tropical Forest Structure Using Airborne Lidar Data
NASA Astrophysics Data System (ADS)
Keller, M. M.; Pinagé, E. R.; Duffy, P.; Longo, M.; dos-Santos, M. N.; Leitold, V.; Morton, D. C.
2017-12-01
The long-term impacts of selective logging on carbon cycling and ecosystem function in tropical-forests are still uncertain. Despite improvements in selective logging detection using satellite data, quantifying changes in forest structure from logging and recovery following logging is difficult using orbital data. We analyzed the dynamics of forest structure comparing logged and unlogged forests in the Eastern Brazilian Amazon (Paragominas Municipality, Pará State) using small footprint discrete return airborne lidar data acquired in 2012 and 2014. Logging operations were conducted at the 1200 ha study site from 2006 through 2013 using reduced impact logging techniques—management practices that minimize canopy and ground damage compared to more common conventional logging. Nevertheless, logging still reduced aboveground biomass by 10% to 20% in logged areas compared to intact forests. We aggregated lidar point-cloud data at spatial scales ranging from 50 m to 250 m and developed a binomial classification model based on the height distribution of lidar returns in 2012 and validated the model against the 2014 lidar acquisition. We accurately classified intact and logged forest classes compared with field data. Classification performance improved as spatial resolution increased (AUC = 0.974 at 250 m). We analyzed the differences in canopy gaps, understory damage (based on a relative density model), and biomass (estimated from total canopy height) of intact and logged classes. As expected, logging greatly increased both canopy gap formation and understory damage. However, while the area identified as canopy gap persisted for at least 8 years (from the oldest logging treatments in 2006 to the most recent lidar acquisition in 2014), the effects of ground damage were mostly erased by vigorous understory regrowth after about 5 years. The rate of new gap formation was 6 to 7 times greater in recently logged forests compared to undisturbed forests. New gaps opened at a rate of 1.8 times greater than background even 8 years following logging demonstrating the occurrence of delayed tree mortality. Our study showed that even low-intensity anthropogenic disturbances can cause persistent changes in tropical forest structure and dynamics.
NASA Technical Reports Server (NTRS)
Foughner, J. T., Jr.; Alexander, W. C.
1974-01-01
Transonic wind-tunnel studies were conducted with modified cross, hemisflo, and disk-gap-band parachute models in the wake of a cone-cylinder shape forebody. The basic cross design was modified with the addition of a circumferential constraining band at the lower edge of the canopy panels. The tests covered a Mach number range of 0.3 to 1.2 and a dynamic pressure range from 479 Newtons per square meter to 5746 Newtons per square meter. The parachute models were flexible textile-type structures and were tethered to a rigid forebody with a single flexible riser. Different size models of the modified cross and disk-gap-band canopies were tested to evaluate scale effects. Model reference diameters were 0.30, 0.61, and 1.07 meters (1.0, 2.0, and 3.5 ft) for the modified cross; and nominal diameters of 0.25 and 0.52 meter (0.83 and 1.7 ft) for the disk-gap-band; and 0.55 meter (1.8 ft) for the hemisflo. Reefing information is presented for the 0.61-meter-diameter cross and the 0.52-meter-diameter disk-gap-band. Results are presented in the form of the variation of steady-state average drag coefficient with Mach number. General stability characteristics of each parachute are discussed. Included are comments on canopy coning, spinning, and fluttering motions.
NASA Astrophysics Data System (ADS)
Pan, Ying
This work combines numerical, experimental, and theoretical methods to investigate the dispersion of particles inside and above plant canopies. The large-eddy simulation (LES) approach is used to reproduce turbulence statistics and three-dimensional particle dispersion within the canopy roughness sublayer. The Eulerian description of conservation laws of fluid momentum and particle concentration implies that the continuous concentration field is advected by the continuous flow field. Within the canopy, modifications are required for the filtered momentum and concentration equations, because spatial filtering of flow variables and concentration field is inapplicable to a control volume consisting of both fluid and solid elements. In this work, the canopy region is viewed as a space occupied by air only. The sink of airflow momentum induced by forces acting on the surfaces of canopy elements is parameterized as a non-conservative virtual body force that dissipates the kinetic energy of the air. This virtual body force must reflect the characteristic of the surface forces exerted by canopy elements within the control volume, and is parameterized as a "drag force" following standard practice in LES studies. Specifically, the "drag force" is calculated as a product of a drag coefficient, the projected leaf area density, and the square of velocity. Using a constant drag coefficient, this model allows first-order accuracy in reproducing the vertically integrated sink of momentum within the canopy layer for airflows of high Reynolds number. The corresponding LES results of first- and second-order turbulence statistics are in good agreement with experimental data obtained in the field interior, within and just above mature maize canopies. However, the distribution of momentum sink among weak and strong events has not been well reproduced, inferred from the significant underestition of streamwise and vertical velocity skewness as well as the fractions of vertical momentum flux transported by strong events. Using a velocity-dependent drag coefficient that accounts for the effect of plant reconfiguration, the "drag force" model leads to LES results of streamwise and vertical velocity skewness as well as the fractions of vertical momentum flux transported by strong events in better agreement with field experimental data. The link between plant reconfiguration and turbulence dynamics within the canopy roughness sublayer is further investigated. The "reconfiguration drag model" using velocity-dependent drag coefficient is revised to incorporate a theoretical model of the force balance on individual crosswind blades. In the LES, the dimension and degree of the reconfiguration of canopy elements affect the magnitude and position of peak streamwise velocity skewness within the canopy as well as the fractions of vertical momentum flux transported by strong events. The streamwise velocity skewness is shown to be related to the penetration of strong events into the canopy, which is associated with the passage of canopy-scale coherent eddies. With the profile of mean vertical momentum flux constrained by field experimental data, changing the model of drag coefficient induces negligible changes in the vertically integrated "drag force" within the canopy layer. Consequently, first- and second-order turbulence statistics remain approximately the same. However, enhancing the rate of decrease of drag coefficient with increasing velocity increases the streamwise and vertical velocity skewness, the fractions of vertical momentum flux transported by strong events, as well as the ratio between vertical momentum flux transported by relatively strong head-down "sweeps" and relatively weak head-up "ejections." These results confirmed the inadequacy of describing the effects of canopy-scale coherent structures using just first- and second-order turbulence statistics. The filtered concentration equation is applied to the dispersion of particles within the canopy roughness sublayer, assuming that a virtual continuous concentration field is advected by a virtual continuous velocity field. A canopy deposition model is used to model the sink of particle concentration associated with the impaction, sedimentation, retention, and re-entrainment of particles on the surfaces of canopy elements. LES results of mean particle concentration field and mean ground deposition rate were evaluated against data obtained during an artificial continuous point-source release experiment. Accounting for the effect of reconfiguration by using a velocity dependent drag coefficient leads to better agreement between LES results and field experimental data of the mean particle concentration field, suggesting the importance of reproducing the distribution of momentum sink among weak and strong events for reproducing the dispersion of particles. LES results obtained using a velocity-dependent drag coefficient are analyzed to estimate essential properties for the occurrence of plant disease epidemics. The most interesting finding is that an existing analytical function can be used to model the crosswind-integrated mean concentration field above the canopy normalized by the escape fraction for particles released from the field interior. (Abstract shortened by ProQuest.).
Use of UAVs for Remote Measurement of Vegetation Canopy Variables
NASA Astrophysics Data System (ADS)
Rango, A.; Laliberte, A.; Herrick, J.; Steele, C.; Bestelmeyer, B.; Chopping, M. J.
2006-12-01
Remote sensing with different sensors has proven useful for measuring vegetation canopy variables at scales ranging from landscapes down to individual plants. For use at landscape scales, such as desert grasslands invaded by shrubs, it is possible to use multi-angle imagery from satellite sensors, such as MISR and CHRIS/Proba, with geometric optical models to retrieve fractional woody plant cover. Vegetation community states can be mapped using visible and near infrared ASTER imagery at 15 m resolution. At finer scales, QuickBird satellite imagery with approximately 60 cm resolution and piloted aircraft photography with 25-80 cm resolution can be used to measure shrubs above a critical size. Tests conducted with the QuickBird data in the Jornada basin of southern New Mexico have shown that 87% of all shrubs greater than 2 m2 were detected whereas only about 29% of all shrubs less than 2 m2 were detected, even at these high resolutions. Because there is an observational gap between satellite/aircraft measurements and ground observations, we have experimented with Unmanned Aerial Vehicles (UAVs) producing digital photography with approximately 5 cm resolution. We were able to detect all shrubs greater than 2 m2, and we were able to map small subshrubs indicative of rangeland deterioration, as well as remnant grass patches, for the first time. None of these could be identified on the 60 cm resolution data. Additionally, we were able to measure canopy gaps, shrub patterns, percent bare soil, and vegetation cover over mixed rangeland vegetation. This approach is directly applicable to rangeland health monitoring, and it provides a quantitative way to assess shrub invasion over time and to detect the depletion or recovery of grass patches. Further, if the UAV images have sufficient overlap, it may be possible to exploit the stereo viewing capabilities to develop a digital elevation model from the orthophotos, with a potential for extracting canopy height. We envision two parallel routes for investigation: one which emphasizes utilization of the most technically advanced passive and active space and aircraft sensors (e.g., LIDAR, radar, Hyperion, ASTER, QuickBird follow-on) for modeling research, and a second which emphasizes minimization of costs and maximization of simplicity for monitoring purposes utilizing inexpensive sensors such as digital cameras on UAVs for arid and semiarid rangelands. The use of UAVs will provide management agencies a way to assess various vegetation canopy variables for a very reasonable cost.
On the use of phloem sap δ13C to estimate canopy carbon discrimination
NASA Astrophysics Data System (ADS)
Rascher, Katherine; Máguas, Cristina; Werner, Christiane
2010-05-01
Although the carbon stable isotope composition (d13C) of bulk leaf material is a good integrative parameter of photosynthetic discrimination and can be used as a reliable ecological index of plant functioning; it is not a good tracer of short-term changes in photosynthetic discrimination. In contrast, d13C of phloem sap is potentially useful as an indicator of short-term changes in canopy photosynthetic discrimination. However, recent research indicates that d13C signatures may be substantially altered by metabolic processes downstream of initial leaf-level carbon fixation (e.g. post-photosynthetic fractionation). Accordingly, before phloem sap d13C can be used as a proxy for canopy level carbon discrimination an understanding of factors influencing the degree and magnitude of post-photosynthetic fractionation and how these vary between species is of paramount importance. In this study, we measured the d13C signature along the basipetal transport pathway in two co-occurring tree species in the field - an understory invasive exotic legume, Acacia longifolia, and a native pine, Pinus pinaster. We measured d13C of bulk leaf and leaf water soluble organic matter (WSOM), phloem sap sampled at two points along the plant axis and leaf and root dark respiration. In general, species differences in photosynthetic discrimination resulted in more enriched d13C values in the water-conserving P. pinaster relative to the water-spending A. longifolia. Post-photosynthetic fractionation led to differences in d13C of carbon pools along the plant axis with progressively more depleted d13C from the canopy to the trunk (~6.5 per mil depletion in A. longifolia and ~0.8per mil depletion in P. pinaster). Leaf and root respiration, d13C, were consistently enriched relative to putative substrates. We hypothesize that the pronounced enrichment of leaf respired CO2 relative to leaf WSOM may have left behind relatively depleted carbon to be loaded into the phloem resulting in d13C depletion along the canopy to trunk continuum. We further hypothesize that pronounced depletion along the basipetal transport pathway in A. longifolia (more than 6 per mil from leaf water soluble organic matter to trunk phloem sap) may be due to high stem photosynthesis rates in this green-barked legume. Regardless of these fractionation effects, phloem sap d13C correlated well with environmental parameters driving photosynthesis (photosynthetic photon flux density, soil moisture, vapor pressure deficit) for both species indicating that phloem sap d13C is a good integrative tracer of changes in canopy-level carbon discrimination once species-specific differences in post-photosynthetic fractionation are accounted for. Furthermore, we illustrate that combining sap flow estimated canopy stomatal conductance (gs) with measurements of phloem sap d13C (adjusted for post-photosynthetic fractionation) has significant potential as a relatively non-intensive method for estimating canopy-level carbon assimilation rates in field studies.
Integration of ALS and TLS for calibration and validation of LAI profiles from large footprint lidar
NASA Astrophysics Data System (ADS)
Armston, J.; Tang, H.; Hancock, S.; Hofton, M. A.; Dubayah, R.; Duncanson, L.; Fatoyinbo, T. E.; Blair, J. B.; Disney, M.
2016-12-01
The Global Ecosystem Dynamics Investigation (GEDI) is designed to provide measurements of forest vertical structure and above-ground biomass density (AGBD) over tropical and temperate regions. The GEDI is a multi-beam waveform lidar that will acquire transects of forest canopy vertical profiles in conditions of up to 99% canopy cover. These are used to produce a number of canopy height and profile metrics to model habitat suitability and AGBD. These metrics include vertical leaf area index (LAI) profiles, which require some pre-launch refinement of large-footprint waveform processing methods for separating canopy and ground returns and estimation of their reflectance. Previous research developments in modelling canopy gap probability to derive canopy and ground reflectance from waveforms have primarily used data from small-footprint instruments, however development of a generalized spatial model with uncertainty will be useful for interpreting and modelling waveforms from large-footprint instruments such as the NASA Land Vegetation and Ice Sensor (LVIS) with a view to implementation for GEDI. Here we present an analysis of waveform lidar data from the NASA Land Vegetation and Ice Sensor (LVIS), which were acquired in Gabon in February 2016 to support the NASA/ESA AfriSAR campaign. AfriSAR presents a unique opportunity to test refined methods for retrieval of LAI profiles in high above-ground biomass rainforests (up to 600 Mg/ha) with dense canopies (>90% cover), where the greatest uncertainty exists. Airborne and Terrestrial Laser Scanning data (TLS) were also collected, enabling quantification of algorithm performance in plots of dense canopy cover. Refinement of canopy gap probability and LAI profile modelling from large-footprint lidar was based on solving for canopy and ground reflectance parameters spatially by penalized least-squares. The sensitivities of retrieved cover and LAI profiles to variation in canopy and ground reflectance showed improvement compared to assuming a constant ratio. We evaluated the use of spatially proximate simple waveforms to interpret more complex waveforms with poor separation of canopy and ground returns. This work has direct implications for GEDI algorithm refinement.
Zhang, Yan; Zhang, Dan Ju; Li, Xun; Liu, Hua; Zhang, Ming Jin; Yang, Wan Qin; Zhang, Jian
2016-04-22
The objective of the study was to evaluate the dynamics of recalcitrant components during foliar litter decomposition under edge effects of forest gap in Pinus massoniana plantations in the low hilly land, Sichuan basin. A field litterbag experiment was conducted in seven forest gaps with different sizes (100, 225, 400, 625, 900, 1225, 1600 m 2 ) which were generated by thinning P. massoniana plantations. The degradation rate of four recalcitrant components, i.e., condensed tannins, total phenol, lignin and cellulose in foliar litter of two native species (Cinnamomum camphora and Toona ciliata) at the gap edge and under the closed canopy were measured. The results showed that the degradation rate of recalcitrant components in T. ciliata litter except for cellulose at the gap edge were significantly higher than that under the closed canopy. For C. camphora litter, only the degradation of lignin at the gap edge was higher than that under the closed canopy. After one-year decomposition, four recalcitrant components in two types of foliar litter exhibited an increment of degradation rate, and the degradation rate of condensed tannin was the fastest, followed by total phenol and cellulose, but the lignin degradation rate was the slowest. With the increase of gap size, except for cellulose, the degradation rate ofthe other three recalcitrant components of the T. ciliata at the edge of medium sized gaps (400 and 625 m 2 ) were significantly higher than at the edge of other gaps. However, lignin in the C. camphora litter at the 625 m 2 gap edge showed the greatest degradation rate. Both temperature and litter initial content were significantly correlated with litter recalcitrant component degradation. Our results suggested that medium sized gaps (400-625 m 2 ) had a more significant edge effect on the degradation of litter recalcitrant components in the two native species in P. massoniana plantations, however, the effect also depended on species.
The shifting nature of vegetation controls on peak snowpack with varying slope and aspect
NASA Astrophysics Data System (ADS)
Biederman, J. A.; Harpold, A. A.; Broxton, P. D.; Brooks, P. D.
2012-12-01
The controls on peak seasonal snowpack are known to shift between forested and open environments as well as with slope and aspect. Peak snowpack is predicted well by interception models under uniformly dense canopy, while topography, wind and radiation are strong predictors in open areas. However, many basins have complex mosaics of forest canopy and small gaps, where snowpack controls involve complex interactions among climate, topography and forest structure. In this presentation we use a new fully distributed tree-scale model to investigate vegetation controls on snowpack for a range of slope and aspect, and we evaluate the energy balance in forest canopy and gap environments. The model is informed by airborne LiDAR and ground-based observations of climate, vegetation and snowpack. It represents interception, snow distribution by wind, latent and sensible heat fluxes, and radiative fluxes above and below the canopy at a grid scale of 1 m square on an hourly time step. First, the model is minimally calibrated using continuous records of snow depth and snow water equivalent (SWE). Next, the model is evaluated using distributed observations at peak accumulation. Finally, the domain is synthetically altered to introduce ranges of slope and aspect. Northerly aspects accumulate greater peak SWE than southerly aspects (e.g. 275 mm vs. 250 mm at a slope of 28 %) but show lower spatial variability (e. g. CV = 0.14 vs. CV = 0.17 at slope of 28 %). On northerly aspects, most of the snowpack remains shaded by vegetation, whereas on southerly aspects the northern portions of gaps and southern forest edges receive direct insolation during late winter. This difference in net radiation makes peak SWE in forest gaps and adjacent forest edges more sensitive to topography than SWE in areas under dense canopy. Tree-scale modeling of snow dynamics over synthetic terrain offers extensive possibilities to test interactions among vegetation and topographic controls.
THE ROLE OF PRE-EVENT CANOPY STORAGE IN THROUGHFALL AND STEMFLOW USING ISOTOPIC TRACERS
Stable isotopes can be a valuable tool for tracing the redistribution, storage, and evaporation of water associated with canopy interception of rainfall. Isotopic differences between throughfall and rainfall have been attributed to three mechanisms: evaporative fractionation, iso...
Effects of forest structure on hydrological processes in China
NASA Astrophysics Data System (ADS)
Sun, Jiamei; Yu, Xinxiao; Wang, Henian; Jia, Guodong; Zhao, Yang; Tu, Zhihua; Deng, Wenping; Jia, Jianbo; Chen, Jungang
2018-06-01
There are serious concerns between forest and water quantity, Chinese extensive land area makes the relationship more complicated, thus, the effects of forest structure on hydrological processes in China were not fully comprehended. In this research, forest's hydrological functions, including rainfall partitioning, litter interception, evapotranspiration (ET), were analyzed in China. The results showed that throughfall was the largest proportion of gross precipitation with fraction between 69.3 ± 8.8% and 84.4 ± 5.6%. Then was canopy interception which varied from 14.6 ± 1.4% to 29.1 ± 3.3%. Throughfall was correlated with gross precipitation, canopy thickness and canopy density. Canopy interception was correlated with gross precipitation, LAI, canopy density, biomass, mixed degree, uniform angle index, aggregation index. Stemflow accounted for only 1.2 ± 0.32% of gross precipitation, with the greatest fraction of 2.1 ± 0.2% in XBH site and the least fraction of 0.3 ± 0.1% in DB site. Gross precipitation was the main factor in determining stemflow. DB site had the greatest litter interception (7.7 ± 0.8 mm) and HB site had the least (0.9 ± 0.3 mm). Litter interception had closer correlation with undecomposed litter mass (0.66) than total litter mass (0.46). Path-coefficient analysis showed that stand density, Shannon-Wiener index, litter mass, size ratio had greater impact on litter interception than other factors. ET was mainly influenced by precipitation, and it also correlated with LAI, canopy density and biomass. In north China, ET percentage (the ratio of ET and precipitation) was 82.7-109.5%, while it decreased to 63.1-88.5% in south China, ET demand in XBS site was larger than precipitation. ET percentage increased with increasing latitude and elevation, decreased with increasing temperature.
The influence of canopy shading of snow on effective albedo in forested environments
NASA Astrophysics Data System (ADS)
Webster, C.; Jonas, T.
2017-12-01
The overlap of highly reflective snow and absorbent forested areas creates strong heterogeneity in the effective surface albedo compared to forest-free areas. Current errors in calculations of effective forest snow albedo arise due to uncertainties in how models should treat masking of snow by vegetation but improvement of local and large scale models is currently limited by a lack of measurements that demonstrate both spatial and temporal variability over forests. We present above-canopy measurements of winter-time effective forest snow albedo using up- and down-looking radiometers mounted on an octocopter UAV for a total of fifteen flights on eight different days. Ground-view fractions across the flight path were between 0.12 and 0.81. Correlations between effective albedo and both ground-view fraction and canopy height were statistically significant during 14 out of 15 flights, but varied between flights due to solar angle and snow cover. Measured effective albedo across the flight path differed by up to 0.33 during snow-on canopy conditions. A comparison between maximum interception and no interception showed effective albedo varied by up 0.17, which was the same variation between effective albedo during high (46°) and low (23°) solar elevation angles. Temporal and spatial variations in effective albedo caused by canopy shading of the snow surface are therefore as important as temporal variations caused by interception of snow by the canopy. Calculation of effective albedo over forested areas therefore requires careful consideration of canopy height, canopy coverage, solar angle and interception load. The results of this study should be used to inform snow albedo and canopy structure parametrisations in local and larger scale land surface models.
Canopy gaps decrease microbial densities and disease risk for a shade-intolerant tree species
Kurt O. Reinhart; Alejandro A. Royo; Stacie A. Kageyama; Keith. Clay
2010-01-01
Canopy disturbances such as windthrowevents have obvious impacts on forest structure and composition aboveground, but changes in soil microbial communities and the consequences of these changes are less understood.We characterized the densities of a soil-borne pathogenic oomycete (Pythium) and a common saprotrophic zygomycete (Mortierella...
[Response of forest bird communities to forest gap in winter in southwestern China].
Zhao, Dong-Dong; Wu, Ying-Huan; Lu, Zhou; Jiang, Guang-Wei; Zhou, Fang
2013-06-01
Although forest gap ecology is an important field of study, research remains limited. By plot setting and point counted observation, the response of birds to forest gaps in winter as well as bird distribution patterns in forest gaps and intact canopies were studied in a north tropical monsoon forest of southwestern China from November 2011 to February 2012 in the Fangcheng Golden Camellia National Nature Reserve, Guangxi. The regression equation of bird species diversity to habitat factor was Y1=0.611+0.002 X13+0.043 X2+0.002 X5-0.003 X8+0.006 X10+0.008 X1 and the regression equation of bird species dominance index to habitat factor was Y3=0.533+0.001 X13+0.019 X2+0.002 X3-0.017 X4+0.002 X1. There were 45 bird species (2 orders and 13 families) recorded in the forest gap, accounting for 84.9% of all birds (n=45), with an average of 9.6 species (range: 2-22). Thirty-nine bird species (5 orders and 14 families) were recorded in non-gap areas, accounting for 73.6% of all birds (n=39), with an average of 5.3 species (range: 1-12). These results suggested that gap size, arbor average height (10 m from gap margin), arbor quantity (10 m from gap margin), shrub quantity (10 m from gap margin), herbal average coverage (1 m from gap margin) and bare land ratio were the key forest gap factors that influenced bird diversities. On the whole, bird diversity in the forest gap was greater than in the intact canopy. Spatial distributions in the forest gaps were also observed in the bird community. Most birds foraged in the "middle" and "canopy" layers in the vertical stratification. In addition, "nearly from" and "close from" contained more birds in relation to horizontal stratification. Feeding niche differentiation was suggested as the main reason for these distribution patterns.
Viability of NLCD Products From IRS-P6, And From Landsat 7 Scan-gap Data
NASA Technical Reports Server (NTRS)
Coan, Michael
2007-01-01
Landcover test on Salt Lake test site illustrates potential issues with AWiFS/LISS-III for classification of certain land cover classes (evergreen, shrub/scrub, woody wetlands, emergent wetlands). Canopy and impervious graphs of product differences from source indicate slightly lower overall accuracies (shorter peaks, wider bases) for AWiFS/LISS-III, compared to L5/L7. Inspection of individual products from canopy and impervious estimate tests revealed issues with combining AWifs quadrants, and similar but less severe effects with combining multiple dates of L7 scan gap data.
NASA Astrophysics Data System (ADS)
Thomas, Valerie Anne
This research models canopy-scale photosynthesis at the Groundhog River Flux Site through the integration of high-resolution airborne remote sensing data and micrometeorological measurements collected from a flux tower. Light detection and ranging (lidar) data are analysed to derive models of tree structure, including: canopy height, basal area, crown closure, and average aboveground biomass. Lidar and hyperspectral remote sensing data are used to model canopy chlorophyll (Chl) and carotenoid concentrations (known to be good indicators of photosynthesis). The integration of lidar and hyperspectral data is applied to derive spatially explicit models of the fraction of photosynthetically active radiation (fPAR) absorbed by the canopy as well as a species classification for the site. These products are integrated with flux tower meteorological measurements (i.e., air temperature and global solar radiation) collected on a continuous basis over 2004 to apply the C-Fix model of carbon exchange to the site. Results demonstrate that high resolution lidar and lidar-hyperspectral integration techniques perform well in the boreal mixedwood environment. Lidar models are well correlated with forest structure, despite the complexities introduced in the mixedwood case (e.g., r2=0.84, 0.89, 0.60, and 0.91, for mean dominant height, basal area, crown closure, and average aboveground biomass). Strong relationships are also shown for canopy scale chlorophyll/carotenoid concentration analysis using integrated lidar-hyperspectral techniques (e.g., r2=0.84, 0.84, and 0.82 for Chl(a), Chl(a+b), and Chl(b)). Examination of the spatially explicit models of fPAR reveal distinct spatial patterns which become increasingly apparent throughout the season due to the variation in species groupings (and canopy chlorophyll concentration) within the 1 km radius surrounding the flux tower. Comparison of results from the modified local-scale version of the C-Fix model to tower gross ecosystem productivity (GEP) demonstrate a good correlation to flux tower measured GEP (r2=0.70 for 10 day averages), with the largest deviations occurring in June-July. This research has direct benefits for forest inventory mapping and management practices; mapping of canopy physiology and biochemical constituents related to forest health; and scaling and direct comparison to large resolution satellite models to help bridge the gap between the local-scale measurements at flux towers and predictions derived from continental-scale carbon models.
Leaf-on canopy closure in broadleaf deciduous forests predicted during winter
Twedt, Daniel J.; Ayala, Andrea J.; Shickel, Madeline R.
2015-01-01
Forest canopy influences light transmittance, which in turn affects tree regeneration and survival, thereby having an impact on forest composition and habitat conditions for wildlife. Because leaf area is the primary impediment to light penetration, quantitative estimates of canopy closure are normally made during summer. Studies of forest structure and wildlife habitat that occur during winter, when deciduous trees have shed their leaves, may inaccurately estimate canopy closure. We estimated percent canopy closure during both summer (leaf-on) and winter (leaf-off) in broadleaf deciduous forests in Mississippi and Louisiana using gap light analysis of hemispherical photographs that were obtained during repeat visits to the same locations within bottomland and mesic upland hardwood forests and hardwood plantation forests. We used mixed-model linear regression to predict leaf-on canopy closure from measurements of leaf-off canopy closure, basal area, stem density, and tree height. Competing predictive models all included leaf-off canopy closure (relative importance = 0.93), whereas basal area and stem density, more traditional predictors of canopy closure, had relative model importance of ≤ 0.51.
Christel C. Kern; Julia I. Burton; Patricia Raymond; Anthony W. D' Amato; William S. Keeton; Alex Royo; Michael B. Walters; Christopher R. Webster; John L. Willis
2017-01-01
Gap-based silvicultural systems were developed under the assumption that richness, and diversity of tree species and other biota positively respond to variation in size of harvest-created canopy gaps. However, varying gap size alone often does not meet diversity objectives and broader goals to address contemporary forest conditions. Recent research highlights the need...
2011-03-26
forest patches extracted from GAP landcover for Fort Bragg study area...7 7 Individual pine forest patches extracted from GAP landcover for Fort Bragg...University for their assis- tance in acquiring Gap Analysis Program (GAP) landcover maps for the study regions. Natalie Myers and James Westervelt of U.S
NASA Astrophysics Data System (ADS)
Fitzjarrald, D. R.; Kivalov, S. N.
2017-12-01
Cloud shadows lead to alternating light and dark periods at the surface. Understanding how clouds affect whole-canopy fluxes suffer from two knowledge gaps that limit scaling from leaf to canopy scales, an effort currently done by assertion alone. First, there is a lack a clear quantitative definition of the incident light time series that occur on specific types of cloudy days. Second, the characteristic time scales for leaves to respond to for stomatal opening and closing is 1-10 minutes, a period too short to allow accurate eddy fluxes. We help to close the first gap by linking the durations of alternating light and dark periods statistically to conventional meteorological sky types at a midlatitude mixed deciduous forest (Harvard Forest, MA, USA: 42.53N, 72.17W) and in a tropical rain forest (Tapajós National Forest, Brazil; 2.86S, 54.96W). The second gap is narrowed by measuring the dynamic response whole canopy exchanges in the flux footprint at intervals of only a few seconds using the classical ensemble average method, keying on step changes in light intensity. Combining light and shadow periods of different lengths we estimate ensemble fluxes sensible heat (H), net ecosystem exchange (NEE), and latent heat (LE) fluxes initiated by abrupt radiation changes at intervals of 30 s over 20 minutes. We present composite results of the transient behavior of whole-canopy fluxes at each forest, showing distinct features of each forest type. Observed time constants and transient flux parameterizations are then used to force a simple model to yield NEE, LE, WUE, and Bowen ratio extrema under periodic shadow-light conditions and given cloud amount. We offer the hypothesis that, at least on certain types of cloudy days, the well-known correlation between diffuse light and WUE does not represent a causal connection at the canopy scale.
NASA Technical Reports Server (NTRS)
Zhang, Qingyuan; Middleton, Elizabeth M.; Margolis, Hank A.; Drolet, Guillaume G.; Barr, Alan A.; Black, T. Andrew
2009-01-01
Gross primary production (GPP) is a key terrestrial ecophysiological process that links atmospheric composition and vegetation processes. Study of GPP is important to global carbon cycles and global warming. One of the most important of these processes, plant photosynthesis, requires solar radiation in the 0.4-0.7 micron range (also known as photosynthetically active radiation or PAR), water, carbon dioxide (CO2), and nutrients. A vegetation canopy is composed primarily of photosynthetically active vegetation (PAV) and non-photosynthetic vegetation (NPV; e.g., senescent foliage, branches and stems). A green leaf is composed of chlorophyll and various proportions of nonphotosynthetic components (e.g., other pigments in the leaf, primary/secondary/tertiary veins, and cell walls). The fraction of PAR absorbed by whole vegetation canopy (FAPAR(sub canopy)) has been widely used in satellite-based Production Efficiency Models to estimate GPP (as a product of FAPAR(sub canopy)x PAR x LUE(sub canopy), where LUE(sub canopy) is light use efficiency at canopy level). However, only the PAR absorbed by chlorophyll (a product of FAPAR(sub chl) x PAR) is used for photosynthesis. Therefore, remote sensing driven biogeochemical models that use FAPAR(sub chl) in estimating GPP (as a product of FAPAR(sub chl x PAR x LUE(sub chl) are more likely to be consistent with plant photosynthesis processes.
Remote Estimation of Vegetation Fraction and Yield in Oilseed Rape with Unmanned Aerial Vehicle Data
NASA Astrophysics Data System (ADS)
Peng, Y.; Fang, S.; Liu, K.; Gong, Y.
2017-12-01
This study developed an approach for remote estimation of Vegetation Fraction (VF) and yield in oilseed rape, which is a crop species with conspicuous flowers during reproduction. Canopy reflectance in green, red, red edge and NIR bands was obtained by a camera system mounted on an unmanned aerial vehicle (UAV) when oilseed rape was in the vegetative growth and flowering stage. The relationship of several widely-used Vegetation Indices (VI) vs. VF was tested and found to be different in different phenology stages. At the same VF when oilseed rape was flowering, canopy reflectance increased in all bands, and the tested VI decreased. Therefore, two algorithms to estimate VF were calibrated respectively, one for samples during vegetative growth and the other for samples during flowering stage. During the flowering season, we also explored the potential of using canopy reflectance or VIs to estimate Flower Fraction (FF) in oilseed rape. Based on FF estimates, rape yield can be estimated using canopy reflectance data. Our model was validated in oilseed rape planted under different nitrogen fertilization applications and in different phenology stages. The results showed that it was able to predict VF and FF accurately in oilseed rape with estimation error below 6% and predict yield with estimation error below 20%.
Forest structure of oak plantations after silvicultural treatment to enhance habitat for wildlife
Twedt, Daniel J.; Phillip, Cherrie-Lee P.; Guilfoyle, Michael P.; Wilson, R. Randy; Schweitzer, Callie Jo; Clatterbuck, Wayne K.; Oswalt, Christopher M.
2016-01-01
During the past 30 years, thousands of hectares of oak-dominated bottomland hardwood plantations have been planted on agricultural fields in the Mississippi Alluvial Valley. Many of these plantations now have closed canopies and sparse understories. Silvicultural treatments could create a more heterogeneous forest structure, with canopy gaps and increased understory vegetation for wildlife. Lack of volume sufficient for commercial harvest in hardwood plantations has impeded treatments, but demand for woody biomass for energy production may provide a viable means to introduce disturbance beneficial for wildlife. We assessed forest structure in response to prescribed pre-commercial perturbations in hardwood plantations resulting from silvicultural treatments: 1) row thinning by felling every fourth planted row; 2) multiple patch cuts with canopy gaps of <1 0.25 – 2 ha; and 3) tree removal on intersecting corridors diagonal to planted rows. These 3 treatments, and an untreated control, were applied to oak plantations (20 - 30 years post-planting) on three National Wildlife Refuges (Cache River, AR; Grand Cote, LA; and Yazoo, MS) during summer 2010. We sampled habitat using fixed-radius plots in 2009 (pre-treatment) and in 2012 (post-treatment) at random locations. Retained basal area was least in diagonal corridor treatments but had greater variance in patch-cut treatments. All treatments increased canopy openness and the volume of coarse woody debris. Occurrence of birds using early successional habitats was greater on sites treated with patch cuts and diagonal intersections. Canopy openings on row-thinned stands are being filled by lateral crown growth of retained trees whereas patch cut and diagonal intersection gaps appear likely to be filled by regenerating saplings.
NASA Astrophysics Data System (ADS)
Cammalleri, C.; Anderson, M. C.; Ciraolo, G.; Durso, G.; Kustas, W. P.; La Loggia, G.; Minacapilli, M.
2010-12-01
For open orchard and vineyard canopies containing significant fractions of exposed soil (>50%), typical of Mediterranean agricultural regions, the energy balance of the vegetation elements is strongly influenced by heat exchange with the bare soil/substrate. For these agricultural systems a "two-source" approach, where radiation and turbulent exchange between the soil and canopy elements are explicitly modelled, appears to be the only suitable methodology for reliably assessing energy fluxes. In strongly clumped canopies, the effective wind speed profile inside and below the canopy layer can strongly influence the partitioning of energy fluxes between the soil and vegetation components. To assess the impact of in-canopy wind profile on model flux estimates, an analysis of three different formulations is presented, including algorithms from Goudriaan (1977), Massman (1987) and Lalic et al. (2003). The in-canopy wind profile formulations are applied to the thermal-based two-source energy balance (TSEB) model developed by Norman et al. (1995) and modified by Kustas and Norman (1999). High resolution airborne remote sensing images, collected over an agricultural area located in the western part of Sicily (Italy) comprised primarily of vineyards, olive and citrus orchards, are used to derive all the input parameters needed to apply the TSEB. The images were acquired from June to October 2008 and include a relatively wide range of meteorological and soil moisture conditions. A preliminary sensitivity analysis of the three wind profile algorithms highlights the dependence of wind speed just above the soil/substrate to leaf area index and canopy height over the typical range of canopy properties encountered in these agricultural areas. It is found that differences among the models in wind just above the soil surface are most significant under sparse and medium fractional cover conditions (15-50%). The TSEB model heat flux estimates are compared with micro-meteorological measurements from a small aperture scintillometer and an eddy covariance tower collected over an olive orchard characterized by moderate fractional vegetation cover (≍35%) and relatively tall crop (≍3.5 m). TSEB fluxes for the 7 image acquisition dates generated using both the Massman and Goudriaan in-canopy wind profile formulations give close agreement with measured fluxes, while the Lalic et al. equations yield poor results. The Massman wind profile scheme slightly outperforms that of Goudriaan, but it requires an additional parameter accounting for the roughness sub-layer of the underlying vegetative surface. The analysis also suggests that within-canopy wind profile model discrepancies become important, in terms of impact on modelled sensible heat flux, only for sparse canopies with moderate vegetation coverage.
NASA Astrophysics Data System (ADS)
Cammalleri, C.; Anderson, M. C.; Ciraolo, G.; D'Urso, G.; Kustas, W. P.; La Loggia, G.; Minacapilli, M.
2010-07-01
For open orchard and vineyard canopies containing significant fractions of exposed soil (>50%), typical of Mediterranean agricultural regions, the energy balance of the vegetation elements is strongly influenced by heat exchange with the bare soil/substrate. For these agricultural systems a "two-source" approach, where radiation and turbulent exchange between the soil and canopy elements are explicitly modelled, appears to be the only suitable methodology for reliably assessing energy fluxes. In strongly clumped canopies, the effective wind speed profile inside and below the canopy layer can highly influence the partitioning of energy fluxes between the soil and vegetation components. To assess the impact of in-canopy wind profile on model flux estimates, an analysis of three different formulations is presented, including algorithms from Goudriaan (1977), Massman (1987) and Lalic et al. (2003). The in-canopy wind profile formulations are applied to the thermal-based Two-Source Energy Balance (TSEB) model developed by Norman et al. (1995) and modified by Kustas and Norman (1999). High resolution airborne remote sensing images, collected over an agricultural area located in the western part of Sicily (Italy) comprised primarily of vineyards, olive and citrus orchards, are used to derive all the input parameters need to apply the TSEB. The images were acquired from June to October 2008 and include a relatively wide range of meteorological and soil moisture conditions. A preliminary sensitivity analysis of the three wind profile algorithms highlight the dependence of wind speed just above the soil/substrate to leaf area index and canopy height over the typical canopy properties range of these agricultural area. It is found that differences in wind just above surface among the models is most significant under sparse and medium fractional cover conditions (20-60%). The TSEB model heat flux estimates are compared with micrometeorological measurements from a small aperture scintillometer and an eddy covariance tower collected over an olive orchard characterized by moderate fractional vegetation cover (≈35%) and relatively tall crop height (≈3.5 m). TSEB fluxes for the 7 image acquisition dates generated using both the Massman and Goudriaan in-canopy wind profile formulations give close agreement with measured fluxes, while the Lalic et al. equations yield poor results. The Massman wind profile scheme slightly outperforms that of Goudriaan, but it requires an additional parameter describing the roughness of the underlying vegetative surface. This parameter is not directly obtainable using remote sensing, hence this study suggests that the Goudriaan formulation for landscape applications is most suitable when detailed site-specific information regarding canopy architecture is unavailable.
NASA Technical Reports Server (NTRS)
Middleton, Elizabeth M.
1992-01-01
The fraction of photosynthetically active radiation (PAR) absorbed by a vegetated canopy (APARc) or landscape (APARs) is a critical parameter in climate processes. A grassland study examined: 1) whether APARs can be estimated from PAR bidirectional exitance fractions; and 2) whether APARs is correlated with spectral vegetation indices (SVIs). Data were acquired with a high resolution continuous spectroradiometer at 4 sun angles on grassland sites. APARs was computed from the scattered surface PAR exitance fractions. The nadir APARs value was the most variable diurnally; it provided a good estimate of the average surface APARs at 95 percent. APARc was best represented by exitance factors between 30-60* forward.
Forests and Their Canopies: Achievements and Horizons in Canopy Science.
Nakamura, Akihiro; Kitching, Roger L; Cao, Min; Creedy, Thomas J; Fayle, Tom M; Freiberg, Martin; Hewitt, C N; Itioka, Takao; Koh, Lian Pin; Ma, Keping; Malhi, Yadvinder; Mitchell, Andrew; Novotny, Vojtech; Ozanne, Claire M P; Song, Liang; Wang, Han; Ashton, Louise A
2017-06-01
Forest canopies are dynamic interfaces between organisms and atmosphere, providing buffered microclimates and complex microhabitats. Canopies form vertically stratified ecosystems interconnected with other strata. Some forest biodiversity patterns and food webs have been documented and measurements of ecophysiology and biogeochemical cycling have allowed analyses of large-scale transfer of CO 2 , water, and trace gases between forests and the atmosphere. However, many knowledge gaps remain. With global research networks and databases, and new technologies and infrastructure, we envisage rapid advances in our understanding of the mechanisms that drive the spatial and temporal dynamics of forests and their canopies. Such understanding is vital for the successful management and conservation of global forests and the ecosystem services they provide to the world. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Comparative physiology of a central hardwood old-growth forest canopy and forest gap
A. R. Gillespie; J. Waterman; K. Saylors
1993-01-01
Concerns of poor oak regeneration, changing climate, biodiversity patterns, and carbon cycling in the Central Hardwoods have prompted ecological and physiological studies of old-growth forests and their role in maintaining the landscape. To examine the effects of old-growth canopy structure on the physiological productivity of overstory and understory species, we...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jin; Serbin, Shawn P.; Xu, Xiangtao
Leaf quantity (i.e., canopy leaf area index, LAI), quality (i.e., per-area photosynthetic capacity), and longevity all influence the photosynthetic seasonality of tropical evergreen forests. However, these components of tropical leaf phenology are poorly represented in most terrestrial biosphere models (TBMs). Here in this paper, we explored alternative options for the representation of leaf phenology effects in TBMs that employ the Farquahar, von Caemmerer & Berry (FvCB) representation of CO 2 assimilation. We developed a two-fraction leaf (sun and shade), two-layer canopy (upper and lower) photosynthesis model to evaluate different modeling approaches and assessed three components of phenological variations (i.e., leafmore » quantity, quality, and within-canopy variation in leaf longevity). Our model was driven by the prescribed seasonality of leaf quantity and quality derived from ground-based measurements within an Amazonian evergreen forest. Modeled photosynthetic seasonality was not sensitive to leaf quantity, but was highly sensitive to leaf quality and its vertical distribution within the canopy, with markedly more sensitivity to upper canopy leaf quality. This is because light absorption in tropical canopies is near maximal for the entire year, implying that seasonal changes in LAI have little impact on total canopy light absorption; and because leaf quality has a greater effect on photosynthesis of sunlit leaves than light limited, shade leaves and sunlit foliage are more abundant in the upper canopy. Our two-fraction leaf, two-layer canopy model, which accounted for all three phenological components, was able to simulate photosynthetic seasonality, explaining ~90% of the average seasonal variation in eddy covariance-derived CO 2 assimilation. This work identifies a parsimonious approach for representing tropical evergreen forest photosynthetic seasonality in TBMs that utilize the FvCB model of CO 2 assimilation and highlights the importance of incorporating more realistic phenological mechanisms in models that seek to improve the projection of future carbon dynamics in tropical evergreen forests.« less
Wu, Jin; Serbin, Shawn P.; Xu, Xiangtao; ...
2017-04-18
Leaf quantity (i.e., canopy leaf area index, LAI), quality (i.e., per-area photosynthetic capacity), and longevity all influence the photosynthetic seasonality of tropical evergreen forests. However, these components of tropical leaf phenology are poorly represented in most terrestrial biosphere models (TBMs). Here in this paper, we explored alternative options for the representation of leaf phenology effects in TBMs that employ the Farquahar, von Caemmerer & Berry (FvCB) representation of CO 2 assimilation. We developed a two-fraction leaf (sun and shade), two-layer canopy (upper and lower) photosynthesis model to evaluate different modeling approaches and assessed three components of phenological variations (i.e., leafmore » quantity, quality, and within-canopy variation in leaf longevity). Our model was driven by the prescribed seasonality of leaf quantity and quality derived from ground-based measurements within an Amazonian evergreen forest. Modeled photosynthetic seasonality was not sensitive to leaf quantity, but was highly sensitive to leaf quality and its vertical distribution within the canopy, with markedly more sensitivity to upper canopy leaf quality. This is because light absorption in tropical canopies is near maximal for the entire year, implying that seasonal changes in LAI have little impact on total canopy light absorption; and because leaf quality has a greater effect on photosynthesis of sunlit leaves than light limited, shade leaves and sunlit foliage are more abundant in the upper canopy. Our two-fraction leaf, two-layer canopy model, which accounted for all three phenological components, was able to simulate photosynthetic seasonality, explaining ~90% of the average seasonal variation in eddy covariance-derived CO 2 assimilation. This work identifies a parsimonious approach for representing tropical evergreen forest photosynthetic seasonality in TBMs that utilize the FvCB model of CO 2 assimilation and highlights the importance of incorporating more realistic phenological mechanisms in models that seek to improve the projection of future carbon dynamics in tropical evergreen forests.« less
Avian distribution in treefall gaps and understorey of terra firme forest in the lowland Amazon
JR WUNDERLE; MICHAEL R. WILLIG; LUIZA MAGALLI PINTO HENRIQUES
2005-01-01
We compared the bird distributions in the understorey of treefall gaps and sites with intact canopy in Amazonian terra firme forest in Brazil. We compiled 2216 mist-net captures (116 species) in 32 gap and 32 forest sites over 22.3 months. Gap habitats differed from forest habitats in having higher capture rates, total captures, species richness and diversity....
He, Wei; Wu, Fuzhong; Yang, Wanqin; Zhang, Danju; Xu, Zhenfeng; Tan, Bo; Zhao, Yeyi; Justine, Meta Francis
2016-01-01
Gap formation favors the growth of understory plants and affects the decomposition process of plant debris inside and outside of gaps. Little information is available regarding how bioelement release from shrub litter is affected by gap formation during critical periods. The release of carbon (C), nitrogen (N), and phosphorus (P) in the foliar litter of Fargesia nitida and Salix paraplesia in response to gap locations was determined in an alpine forest of the eastern Qinghai-Tibet Plateau via a 2-year litter decomposition experiment. The daily release rates of C, N, and P increased from the closed canopy to the gap centers during the two winters, the two later growing seasons and the entire 2 years, whereas this trend was reversed during the two early growing seasons. The pairwise ratios among C, N, and P converged as the litter decomposition proceeded. Compared with the closed canopy, the gap centers displayed higher C:P and N:P ratio but a lower C:N ratio as the decomposition proceeded. Alpine forest gaps accelerate the release of C, N, and P in decomposing shrub litter, implying that reduced snow cover resulting from vanishing gaps may inhibit the release of these elements in alpine forests. PMID:26906762
Modeling gross primary production of an evergreen needleleaf forest using MODIS and climate data
Xiangming Xiao; Qingyuan Zhang; David Hollinger; John Aber; Berrien, III Moore
2005-01-01
Forest canopies are composed of photosynthetically active vegetation (PAV, chloroplasts) and nonphotosynthetic vegetation (NPV, e.g., cell wall, vein, branch). The fraction of photosynthetically active radiation (PAR) absorbed by the canopy (FAPAR) should be partitioned into FAPARPAV and FAPARNPV. Gross primary production (...
Detection and Distribution of Natural Gaps in Tropical Rainforest
NASA Astrophysics Data System (ADS)
Goulamoussène, Y.; Linguet, L.; Hérault, B.
2014-12-01
Forest management is important to assess biodiversity and ecological processes. Requirements for disturbance information have also been motivated by the scientific community. Therefore, understanding and monitoring the distribution frequencies of treefall gaps is relevant to better understanding and predicting the carbon budget in response to global change and land use change. In this work we characterize and quantify the frequency distribution of natural canopy gaps. We observe then interaction between environment variables and gap formation across tropical rainforest of the French Guiana region by using high resolution airborne Light Detection and Ranging (LiDAR). We mapped gaps with canopy model distribution on 40000 ha of forest. We used a Bayesian modelling framework to estimate and select useful covariate model parameters. Topographic variables are included in a model to predict gap size distribution. We discuss results from the interaction between environment and gap size distribution, mainly topographic indexes. The use of both airborne and space-based techniques has improved our ability to supply needed disturbance information. This work is an approach at plot scale. The use of satellite data will allow us to work at forest scale. The inclusion of climate variables in our model will let us assess the impact of global change on tropical rainforest.
NASA Astrophysics Data System (ADS)
Braghiere, Renato; Quaife, Tristan; Black, Emily
2016-04-01
Incoming shortwave radiation is the primary source of energy driving the majority of the Earth's climate system. The partitioning of shortwave radiation by vegetation into absorbed, reflected, and transmitted terms is important for most of biogeophysical processes, including leaf temperature changes and photosynthesis, and it is currently calculated by most of land surface schemes (LSS) of climate and/or numerical weather prediction models. The most commonly used radiative transfer scheme in LSS is the two-stream approximation, however it does not explicitly account for vegetation architectural effects on shortwave radiation partitioning. Detailed three-dimensional (3D) canopy radiative transfer schemes have been developed, but they are too computationally expensive to address large-scale related studies over long time periods. Using a straightforward one-dimensional (1D) parameterisation proposed by Pinty et al. (2006), we modified a two-stream radiative transfer scheme by including a simple function of Sun zenith angle, so-called "structure factor", which does not require an explicit description and understanding of the complex phenomena arising from the presence of vegetation heterogeneous architecture, and it guarantees accurate simulations of the radiative balance consistently with 3D representations. In order to evaluate the ability of the proposed parameterisation in accurately represent the radiative balance of more complex 3D schemes, a comparison between the modified two-stream approximation with the "structure factor" parameterisation and state-of-art 3D radiative transfer schemes was conducted, following a set of virtual scenarios described in the RAMI4PILPS experiment. These experiments have been evaluating the radiative balance of several models under perfectly controlled conditions in order to eliminate uncertainties arising from an incomplete or erroneous knowledge of the structural, spectral and illumination related canopy characteristics typical of model comparisons with in-situ observations. The structure factor parameters were obtained for each canopy structure through the inversion against direct and diffuse fraction of absorbed photosynthetically active radiation (fAPAR), and albedo PAR. Overall, the modified two-stream approximation consistently showed a good agreement with the RAMI4PILPS reference values under direct and diffuse illumination conditions. It is an efficient and accurate tool to derive PAR absorptance and reflectance for scenarios with different canopy densities, leaf densities and soil background albedos, with especial attention to brighter backgrounds, i.e., snowy. The major difficulty of its applicability in the real world is to acquire the parameterisation parameters from in-situ observations. The derivation of parameters from Digital Hemispherical Photographs (DHP) is highly promising at forest stands scales. DHP provide a permanent record and are a valuable information source for position, size, density, and distribution of canopy gaps. The modified two-stream approximation parameters were derived from gap probability data extracted from DHP obtained in a woody savannah in California, USA. Values of fAPAR and albedo PAR were evaluated against a tree-based vegetation canopy model, MAESPA, which used airborne LiDAR data to define the individual-tree locations, and extract structural information such as tree height and crown diameter. The parameterisation improved the performance of a two-stream approximation by making it achieves comparable results to complex 3D model calculations under observed conditions.
NASA Astrophysics Data System (ADS)
Arkebauer, T. J.; Walter-Shea, E. A.
2017-12-01
Vegetation indices, based on canopy spectral reflectance, are widely used to infer physical and biological characteristics of vegetation. Understanding the changes in remotely sensed signals as vegetation responds to its changing environment is essential for full assessment of canopy structure and function. Canopy-level reflectance has been measured at Nebraska AmeriFlux sites US-Ne1, US-Ne2 and US-Ne3 for most years since flux measurements were initiated in 2001. Tower-mounted spectral sensors provided 10-minute averaged reflectance (in PAR and NIR spectral regions) every half hour through the growing season for maize and soybean. Canopy reflectance varied over diurnal and seasonal time periods which led to variations in vegetation indices. One source of variation is due to the interaction of incident solar radiant energy with canopy structure (e.g., reflectance varies with changes in solar zenith angle and direct beam fraction, vegetative fraction, and leaf angle distribution). Another source of variation results from changes in canopy function (e.g., fluctuations in gross primary production and invocation of photoprotective mechanisms with plant stress). We present here a series of diurnal "patterns" of vegetation indices (including Normalized Difference Vegetation Index and Chlorophyll Index) for maize and soybean under mostly clear sky conditions. We demonstrate that diurnal patterns change as the LAI of the canopy changes through the course of the growing season in a somewhat predictable pattern from plant emergence (low vegetative cover) through peak green LAI (full vegetation cover). However, there are changes in the diurnal pattern that we have yet to fully understand; this variation in pattern may indicate variation in canopy function. Initially, we have explored the pattern changes qualitatively and are currently developing more quantitative approaches.
Arthropod abundance and seasonal bird use of bottomland forest harvest gaps
Christopher E. Moorman; Liessa T. Woen; John C. Kilgo; James L. Hanula; Scott Horn; Michael D. Ulyshen
2012-01-01
We investigated the influence of arthropod abundance and vegetation structure on shifts in avian use of canopy gap, gap edge, and surrounding forest understory in a bottomland hardwood forest in the Upper Coastal Plain of South Carolina. We compared captures of foliage-gleaning birds among locations during four periods (spring migration, breeding, post-breeding, and...
He, Jie; Yang, Wanqin; Li, Han; Xu, Liya; Ni, Xiangyin; Tan, Bo; Zhao, Yeyi; Wu, Fuzhong
2015-01-01
Aims The release of heavy metals (such as Pb and Cd) from foliar litter play an important role in element cycling in alpine forest ecosystems. Although natural forest gaps could play important roles in the release of heavy metals from foliar litter by affecting the snow cover during the winter and solar irradiation during the growing season, few studies have examined these potential roles. The objectives of this study were to document changes in Pb and Cd dynamics during litter decomposition in the center of gaps and under closed canopies and to investigate the factors that controlled these changes during the winter and growing seasons. Methods Senesced foliar litter from six dominant species, including Kangding willow (Salix paraplesia), Masters larch (Larix mastersiana), Mingjiang fir (Abies faxoniana), Alpine azalea (Rhododendron lapponicum), Red birch (Betula albosinensis) and Mourning cypress (Sabina saltuaria), was placed in litterbags and incubated between the gap center and closed canopy conditions in an alpine forest in the eastern region of the Tibetan Plateau. The litterbags were sampled at the snow formation stage, snow coverage stage, snow melt stage and during the growing season. The Pb and Cd concentrations in the sampled foliar litter were determined by acid digestion (HNO3/HClO4). Important findings Over one year of decomposition, Pb accumulation and Cd release from the foliar litter occurred, regardless of the foliar litter species. However, Pb and Cd were both released from the foliar litter during the winter and accumulated during the growing season. Compared with the gap center and the canopy gap edge, the extended gap edge and the closed canopy showed higher Pb and Cd release rates in winter and higher Pb and Cd accumulation rates during the growing season, respectively. Statistical analyses indicate that the dynamics of Pb were significantly influenced by frequent freeze–thaw cycles in winter and appropriate hydrothermal conditions during the growing season, the dynamics of Cd were strongly influenced by species and the presence of a forest gap at different decomposition stages. These results show that forest gaps could inhibit Pb and Cd release from foliar litter in the alpine forest of western Sichuan. In addition, a decrease in the snow depth in the winter warming scenario would promote the release of Pb during foliar litter decomposition. There exist some difference that may be influenced by litter quality, microenvironment and microtopography during litter decomposition. PMID:26115012
He, Jie; Yang, Wanqin; Li, Han; Xu, Liya; Ni, Xiangyin; Tan, Bo; Zhao, Yeyi; Wu, Fuzhong
2015-01-01
The release of heavy metals (such as Pb and Cd) from foliar litter play an important role in element cycling in alpine forest ecosystems. Although natural forest gaps could play important roles in the release of heavy metals from foliar litter by affecting the snow cover during the winter and solar irradiation during the growing season, few studies have examined these potential roles. The objectives of this study were to document changes in Pb and Cd dynamics during litter decomposition in the center of gaps and under closed canopies and to investigate the factors that controlled these changes during the winter and growing seasons. Senesced foliar litter from six dominant species, including Kangding willow (Salix paraplesia), Masters larch (Larix mastersiana), Mingjiang fir (Abies faxoniana), Alpine azalea (Rhododendron lapponicum), Red birch (Betula albosinensis) and Mourning cypress (Sabina saltuaria), was placed in litterbags and incubated between the gap center and closed canopy conditions in an alpine forest in the eastern region of the Tibetan Plateau. The litterbags were sampled at the snow formation stage, snow coverage stage, snow melt stage and during the growing season. The Pb and Cd concentrations in the sampled foliar litter were determined by acid digestion (HNO3/HClO4). Over one year of decomposition, Pb accumulation and Cd release from the foliar litter occurred, regardless of the foliar litter species. However, Pb and Cd were both released from the foliar litter during the winter and accumulated during the growing season. Compared with the gap center and the canopy gap edge, the extended gap edge and the closed canopy showed higher Pb and Cd release rates in winter and higher Pb and Cd accumulation rates during the growing season, respectively. Statistical analyses indicate that the dynamics of Pb were significantly influenced by frequent freeze-thaw cycles in winter and appropriate hydrothermal conditions during the growing season, the dynamics of Cd were strongly influenced by species and the presence of a forest gap at different decomposition stages. These results show that forest gaps could inhibit Pb and Cd release from foliar litter in the alpine forest of western Sichuan. In addition, a decrease in the snow depth in the winter warming scenario would promote the release of Pb during foliar litter decomposition. There exist some difference that may be influenced by litter quality, microenvironment and microtopography during litter decomposition.
NASA Technical Reports Server (NTRS)
Eckstrom, Clinton V.
1969-01-01
A 40-foot-nominal-diameter (12.2 meter) disk-gap-band parachute was flight tested as part of the NASA supersonic high altitude parachute experiment (SHAPE) program. The test parachute (which included an experimental energy absorber in the attachment riser) was deployed from an instrumented payload by means of a deployment mortar when the payload was at a Mach number of 3.31 and a free-stream dynamic pressure of 10.6 pounds per square foot (508 newtons per square meter). The parachute deployed properly, the canopy inflating to a full-open condition at 1.03 seconds after mortar firing. The first full inflation of the canopy was immediately followed by a partial collapse with subsequent oscillations of the frontal area from about 30 to 75 percent of the full-open frontal area. After 1.07 seconds of operation, a large tear appeared in the cloth near the canopy apex. This tear was followed by two additional tears shortly thereafter. It was later determined that a section of the canopy cloth was severely weakened by the effects of aerodynamic heating. As a result of the damage to the disk area of the canopy, the parachute performance was significantly reduced; however, the parachute remained operationally intact throughout the flight test and the instrumented payload was recovered undamaged.
Regional-scale drivers of forest structure and function in northwestern Amazonia.
Higgins, Mark A; Asner, Gregory P; Anderson, Christopher B; Martin, Roberta E; Knapp, David E; Tupayachi, Raul; Perez, Eneas; Elespuru, Nydia; Alonso, Alfonso
2015-01-01
Field studies in Amazonia have found a relationship at continental scales between soil fertility and broad trends in forest structure and function. Little is known at regional scales, however, about how discrete patterns in forest structure or functional attributes map onto underlying edaphic or geological patterns. We collected airborne LiDAR (Light Detection and Ranging) data and VSWIR (Visible to Shortwave Infrared) imaging spectroscopy measurements over 600 km2 of northwestern Amazonian lowland forests. We also established 83 inventories of plant species composition and soil properties, distributed between two widespread geological formations. Using these data, we mapped forest structure and canopy reflectance, and compared them to patterns in plant species composition, soils, and underlying geology. We found that variations in soils and species composition explained up to 70% of variation in canopy height, and corresponded to profound changes in forest vertical profiles. We further found that soils and plant species composition explained more than 90% of the variation in canopy reflectance as measured by imaging spectroscopy, indicating edaphic and compositional control of canopy chemical properties. We last found that soils explained between 30% and 70% of the variation in gap frequency in these forests, depending on the height threshold used to define gaps. Our findings indicate that a relatively small number of edaphic and compositional variables, corresponding to underlying geology, may be responsible for variations in canopy structure and chemistry over large expanses of Amazonian forest.
Repeated prescribed fires alter gap-phase regeneration in mixed-oak forests
Todd F. Hutchinson; Robert P. Long; Joanne Rebbeck; Elaine Kennedy Sutherland; Daniel A. Yaussy
2012-01-01
Oak dominance is declining in the central hardwoods region, as canopy oaks are being replaced by shade-tolerant trees that are abundant in the understory of mature stands. Although prescribed fire can reduce understory density, oak seedlings often fail to show increased vigor after fire, as the canopy remains intact. In this study, we examine the response of tree...
Canopy accession patterns of table mountain and pitch pines during the 19th and 20th centuries
Patrick H. Brose; Thomas A. Waldrop
2012-01-01
A dendrochronology study was conducted in three upland yellow pine stands in Georgia to determine whether the individual Table Mountain (Pinus pungens) and pitch (P. rigida) pines originated in sunny gaps or shaded understories, whether they grew uninterrupted into the canopy or were assisted by one or more releases, and whether...
Relating bat species presence to simple habitat measures in a central Appalachian forest
W. Mark Ford; Michael A. Menzel; Jane L. Rodrigue; Jennifer M. Menzel; Joshua B. Johnson; Joshua B. Johnson
2005-01-01
We actively sampled the bat community at 63 sites using detection and non- detection metrics on the Fernow Experimental Forest (FEF) in the central Appalachians of West Virginia using Anabat acoustical equipment May-June 2001-2003 to relate species presence to simple habitat measures such as proximity to riparian areas, forest canopy cover, forest canopy gap width, and...
Canopy arthropod response to density and distribution of green trees retained after partial harvest.
Timothy D. Schowalter; Yanli Zhang; Robert A. Progar
2005-01-01
We measured canopy arthropod responses to six contrasting green-tree retention treatments at six locations (blocks) in western Oregon and Washington as part of the Demonstration of Ecosystem Management Options (DEMO) study. Treatments were 100% retention (uncut), 75% retention with three 1-ha harvested gaps, 40% dispersed retention, 40% aggregated retention with five 1...
Rapid assessment of forest canopy and light regime using smartphone hemispherical photography.
Bianchi, Simone; Cahalan, Christine; Hale, Sophie; Gibbons, James Michael
2017-12-01
Hemispherical photography (HP), implemented with cameras equipped with "fisheye" lenses, is a widely used method for describing forest canopies and light regimes. A promising technological advance is the availability of low-cost fisheye lenses for smartphone cameras. However, smartphone camera sensors cannot record a full hemisphere. We investigate whether smartphone HP is a cheaper and faster but still adequate operational alternative to traditional cameras for describing forest canopies and light regimes. We collected hemispherical pictures with both smartphone and traditional cameras in 223 forest sample points, across different overstory species and canopy densities. The smartphone image acquisition followed a faster and simpler protocol than that for the traditional camera. We automatically thresholded all images. We processed the traditional camera images for Canopy Openness (CO) and Site Factor estimation. For smartphone images, we took two pictures with different orientations per point and used two processing protocols: (i) we estimated and averaged total canopy gap from the two single pictures, and (ii) merging the two pictures together, we formed images closer to full hemispheres and estimated from them CO and Site Factors. We compared the same parameters obtained from different cameras and estimated generalized linear mixed models (GLMMs) between them. Total canopy gap estimated from the first processing protocol for smartphone pictures was on average significantly higher than CO estimated from traditional camera images, although with a consistent bias. Canopy Openness and Site Factors estimated from merged smartphone pictures of the second processing protocol were on average significantly higher than those from traditional cameras images, although with relatively little absolute differences and scatter. Smartphone HP is an acceptable alternative to HP using traditional cameras, providing similar results with a faster and cheaper methodology. Smartphone outputs can be directly used as they are for ecological studies, or converted with specific models for a better comparison to traditional cameras.
NASA Astrophysics Data System (ADS)
Zhang, J.; Okin, G.
2017-12-01
Vegetation is one of the most important driving factors of different ecosystem processes in drylands. The structure of vegetation controls the spatial distribution of moisture and heat in the canopy and the surrounding area. Also, the structure of vegetation influences both airflow and boundary layer resistance above the land surface. Multispectral satellite remote sensing has been widely used to monitor vegetation coverage and its change; however, it can only capture 2D images, which do not contain the vertical information of vegetation. In situ observation uses different methods to measure the structure of vegetation, and their results are accurate; however, these methods are laborious and time-consuming, and susceptible to undersampling in spatial heterogeneity. Drylands are sparsely covered by short plants, which allows the drone fly at a relatively low height to obtain ultra-high resolution images. Structure-from-motion (SfM) is a photogrammetric method that was proved to produce 3D model based on 2D images. Drone-based remote sensing can obtain the multiangle images for one object, which can be used to constructed 3D models of vegetation in drylands. Using these images detected by the drone, the orthomosaics and digital surface model (DSM) can be built. In this study, the drone-based remote sensing was conducted in Jornada Basin, New Mexico, in the spring of 2016 and 2017, and three derived vegetation parameters (i.e., canopy size, bare soil gap size, and plant height) were compared with those obtained with field measurement. The correlation coefficient of canopy size, bare soil gap size, and plant height between drone images and field data are 0.91, 0.96, and 0.84, respectively. The two-year averaged root-mean-square error (RMSE) of canopy size, bare soil gap size, and plant height between drone images and field data are 0.61 m, 1.21 m, and 0.25 cm, respectively. The two-year averaged measure error (ME) of canopy size, bare soil gap size, and plant height between drone images and field data are 0.02 m, -0.03, and -0.1 m, respectively. These results indicate a good agreement between drone-based remote sensing and field measurement.
The role of pre-event canopy storage in throughfall and stemflow by using isotopic tracers
S.T. Allen; J.R. Brooks; R.F. Keim; B.J. Bond; J.J. McDonnell
2014-01-01
Stable isotopes can be a valuable tool for tracing the redistribution, storage, and evaporation of water associated with canopy interception of rainfall. Isotopic differences between throughfall and rainfall have been attributed to three mechanisms: evaporative fractionation, isotopic exchange with ambient vapor, and temporal redistribution. We demonstrate the...
Chamise Chaparral Dead Fuel Fraction Is Not Reliably Predicted by Age
Timothy E. Paysen; Jack D. Cohen
1990-01-01
Fire managers of southern California chaparral often assume that the amount of dead material in chaparral shrubs is closely related to canopy age. Analysis of chamise (Adenostoma fasciculatum), sampled from southern California shrublands, indicates that the ratio of dead to live components is not related reliably to age of shrub canopy. Further...
Abd Latif, Zulkiflee; Blackburn, George Alan
2010-03-01
The creation of gaps can strongly influence forest regeneration and habitat diversity within forest ecosystems. However, the precise characteristics of such effects depend, to a large extent, upon the way in which gaps modify microclimate and soil water content. Hence, the aim of this study was to understand the effects of gap creation and variations in gap size on forest microclimate and soil water content. The study site, in North West England, was a mixed temperate broadleaved deciduous forest dominated by mature sessile oak (Quercus petraea), beech (Fagus sylvatica) and ash (Fraxinus excelsior) with some representatives of sycamore (Acer pseudoplatanus). Solar radiation (I), air temperature (T(A)), soil temperature (T(S)), relative humidity (h), wind speed (v) and soil water content (Psi) were measured at four natural treefall gaps created after a severe storm in 2006 and adjacent sub-canopy sites. I, T(A), T(S), and Psi increased significantly with gap size; h was consistently lower in gaps than the sub-canopy but did not vary with gap size, while the variability of v could not be explained by the presence or size of gaps. There were systematic diurnal patterns in all microclimate variables in response to gaps, but no such patterns existed for Psi. These results further our understanding of the abiotic and consequent biotic responses to gaps in broadleaved deciduous forests created by natural treefalls, and provide a useful basis for evaluating the implications of forest management practices.
Herms, Daniel A
2017-01-01
Abstract Emerald ash borer (EAB; Agrilus planipennis Fairmaire) is an invasive wood-borer causing rapid, widespread ash tree mortality, formation of canopy gaps, and accumulation of coarse woody debris (CWD) in forest ecosystems. The objective of this study was to quantify the effects of canopy gaps and ash CWD on forest floor invertebrate communities during late stages of EAB-induced ash mortality, when the effects of gaps are predicted to be smallest and effects of CWD are predicted to be greatest, according to the model proposed by Perry and Herms 2016a. A 2-year study was conducted in forest stands that had experienced nearly 100% ash mortality in southeastern Michigan, USA, near where EAB first established in North America. In contrast to patterns documented during early stages of the EAB invasion, effects of gaps were minimal during late stages of ash mortality, but invertebrate communities were affected by accumulation and decomposition of CWD. Invertebrate activity-abundance, evenness, and diversity were highest near minimally decayed logs (decay class 1), but diverse taxon-specific responses to CWD affected community composition. Soil moisture class emerged as an important factor structuring invertebrate communities, often mediating the strength and direction of their responses to CWD and stages of decomposition. The results of this study were consistent with the predictions that the effects of CWD on invertebrate communities would be greater than those of canopy gaps during late stages of EAB-induced ash mortality. This research contributes to understanding of the cascading and long-term ecological impacts of invasive species on native forest ecosystems.
Soricid response to canopy gaps created by wind disturbance in the Southern Appalachians
Cathryn H. Greenberg; Stanlee Miller
2004-01-01
We used drift fences with pitfall traps to compare soricid abundance, richness, and demographic parameters among intact multiple-tree windthrow gaps, salvaged gaps, and mature forest in a xeric southern Appalachian forest type during 1997-1999. We also tested whether capture rates were correlated with rainfall, and whether similar-sized species did not co-occur as...
Stand development 18 years after gap creation in a uniform Douglas-fir plantation
Robert O. Curtis; Constance A. Harrington; Leslie C. Brodie
2017-01-01
This report gives early results, 18 years after treatment and 30 years after planting, from a trial of early thinning and gap creation intended to increase biodiversity in a very uniform extensive Douglas-fir plantation. Gap creation has introduced canopy irregularity and a substantial hemlock component into what was originally a very uniform pure Douglas-fir...
Michael D. Ulyshen; James L. Hanula; Scott Horn; John C. Kilgo; Christopher E. Moorman
2004-01-01
Malaise traps were used to sample beetles in artificial canopy gaps of different size (0.13 ha, 0.26 ha, and 0.50 ha) and age in a South Carolina bottomland hardwood forest. Traps were placed at the center, edge, and in the surrounding forest of each gap. Young gaps (~1 year) had large amounts of coarse woody debris compared to the surrounding forest, while older gaps...
Huifeng Hu; Benjamin O. Knapp; G. Geoff Wang; Joan L. Walker
2013-01-01
We installed a field experiment to support the development of protocols to restore longleaf pine (Pinus palustris Mill.) to existing mature loblolly pine (P. taeda L.) stands at Camp Lejeune, NC. Seven canopy treatments included four uniform and three gap treatments. The four uniform treatments were defined by target residual basal...
Nitrogen dynamics across silvicultural canopy gaps in young forests of western Oregon
Thiel, A.L.; Perakis, S.S.
2009-01-01
Silvicultural canopy gaps are emerging as an alternative management tool to accelerate development of complex forest structure in young, even-aged forests of the Pacific Northwest. The effect of gap creation on available nitrogen (N) is of concern to managers because N is often a limiting nutrient in Pacific Northwest forests. We investigated patterns of N availability in the forest floor and upper mineral soil (0-10 cm) across 6-8-year-old silvicultural canopy gaps in three 50-70-year-old Douglas-fir forests spanning a wide range of soil N capital in the Coast Range and Cascade Mountains of western Oregon. We used extractable ammonium (NH4+) and nitrate (NO3-) pools, net N mineralization and nitrification rates, and NH4+ and NO3- ion exchange resin (IER) concentrations to quantify N availability along north-south transects run through the centers of 0.4 and 0.1 ha gaps. In addition, we measured several factors known to influence N availability, including litterfall, moisture, temperature, and decomposition rates. In general, gap-forest differences in N availability were more pronounced in the mineral soil than in the forest floor. Mineral soil extractable NH4+ and NO3- pools, net N mineralization and nitrification rates, and NH4+ and NO3- IER concentrations were all significantly elevated in gaps relative to adjacent forest, and in several cases exhibited significantly greater spatial variability in gaps than forest. Nitrogen availability along the edges of gaps more often resembled levels in the adjacent forest than in gap centers. For the majority of response variables, there were no significant differences between northern and southern transect positions, nor between 0.4 and 0.1 ha gaps. Forest floor and mineral soil gravimetric percent moisture and temperature showed few differences along transects, while litterfall carbon (C) inputs and litterfall C:N ratios in gaps were significantly lower than in the adjacent forest. Reciprocal transfer incubations of mineral soil samples between gap and forest positions revealed that soil originating from gaps had greater net nitrification rates than forest samples, regardless of incubation environment. Overall, our results suggest that increased N availability in 6-8-year-old silvicultural gaps in young western Oregon forests may be due more to the quality and quantity of litterfall inputs resulting from early-seral species colonizing gaps than by changes in temperature and moisture conditions caused by gap creation.
Elevated CO2 response of photosynthesis depends on ozone concentration in aspen
A. Noormets; O. Kull; A. Sôber; M.E. Kubiske; D.F. Karnosky
2010-01-01
The effect of elevated CO2 and O3 on apparent quantum yield (f), maximum photosynthesis (Pmax), carboxylation efficiency (Vcmax) and electron transport capacity (Jmax) at different canopy locations was studied in two aspen (Populus tremuloides) clones of contrasting O3 tolerance. Local light climate at every leaf was characterized as fraction of above-canopy...
Estimation of pedestrian level UV exposure under trees
Richard H. Grant; Gordon M. Heisler; Wei Gao
2002-01-01
Trees influence the amount of solar UV radiation that reaches pedestrians. A three-dimensional model was developed to predict the ultraviolet-B (UV-B) irradiance fields in open-tree canopies where the spacing between trees is equal to or greater than the width of individual tree crowns. The model predicted the relative irradiance (fraction of above-canopy irradiance)...
Rentch, J.S.; Ford, W. Mark; Schuler, T.S.; Palmer, J.; Diggins, Corinne A.
2016-01-01
Red spruce (Picea rubens) and red spruce-northern hardwood mixed stands once covered as much as 300,000 ha in the Central Appalachians, but now comprise no more than 21,000 ha. Recently, interest in restoration of this forest type has increased because red spruce forests provide habitat for a number of rare animal species. Our study reports the results of an understory red spruce release experiment in hardwood-dominated stands that have a small component of understory red spruce. In 2005, 188 target spruce were identified in sample plots at six locations in central West Virginia. We projected a vertical cylinder above the crown of all target spruces, and in 2007, we performed a release treatment whereby overtopping hardwoods were treated with herbicide using a stem injection technique. Release treatments removed 0–10% (Control), 11–50% (Low), 51–89% (Medium), and ≤90% (High) of the basal area of overtopping trees. We also took canopy photographs at the time of each remeasurement in 2007, 2010, and 2013, and compared basal removal treatments and resulting 2010 canopy openness and understory light values. The high treatment level provided significantly greater six-year dbh and height growth than the other treatment levels. Based on these results, we propose that a tree-centered release approach utilizing small canopy gaps that emulate the historical, gap-phase disturbance regime provides a good strategy for red spruce restoration in hardwood forests where overstory spruce are virtually absent, and where red spruce is largely relegated to the understory.
NASA Technical Reports Server (NTRS)
Knyazikhin, Yuri; Lewis, Philip; Disney, Mathias I.; Stenberg, Pauline; Mottus, Matti; Rautianinen, Miina; Kaufmann, Robert K.; Marshak, Alexander; Schull, Mitchell A.; Carmona, Pedro Latorre;
2013-01-01
Townsend et al. (1) agree that we explained that the apparent relationship (2) between foliar nitrogen (%N) and near-infrared (NIR) canopy reflectance was largely attributable to structure (which is in turn caused by variation in fraction of broadleaf canopy). Our conclusion that the observed correlation with %N was spurious (i.e., lacking a causal basis) is, thus, clearly justified: we demonstrated that structure explained the great majority of observed correlation, where the structural influence was derived precisely via reconciling the observed correlation with radiative-transfer theory. What this also suggests is that such correlations, although observed, do not uniquely provide information on canopy biochemical constituents.
Regenerating oak-dominated forests using irregular, gap-based silvicultural systems
John M. Lhotka; Michael R. Saunders; John M. Kabrick; Daniel C. Dey
2013-01-01
Throughout the Eastern United States, practitioners have primarily focused on using uniformly applied even-aged approaches to regenerate oak species. Irregular, gap-based silvicultural systems offer an alternative that retains continuous canopy cover, creates heterogeneous forest structure, and provides multiple income flows over a rotation. Although commonly used in...
Regional-Scale Drivers of Forest Structure and Function in Northwestern Amazonia
Higgins, Mark A.; Asner, Gregory P.; Anderson, Christopher B.; Martin, Roberta E.; Knapp, David E.; Tupayachi, Raul; Perez, Eneas; Elespuru, Nydia; Alonso, Alfonso
2015-01-01
Field studies in Amazonia have found a relationship at continental scales between soil fertility and broad trends in forest structure and function. Little is known at regional scales, however, about how discrete patterns in forest structure or functional attributes map onto underlying edaphic or geological patterns. We collected airborne LiDAR (Light Detection and Ranging) data and VSWIR (Visible to Shortwave Infrared) imaging spectroscopy measurements over 600 km2 of northwestern Amazonian lowland forests. We also established 83 inventories of plant species composition and soil properties, distributed between two widespread geological formations. Using these data, we mapped forest structure and canopy reflectance, and compared them to patterns in plant species composition, soils, and underlying geology. We found that variations in soils and species composition explained up to 70% of variation in canopy height, and corresponded to profound changes in forest vertical profiles. We further found that soils and plant species composition explained more than 90% of the variation in canopy reflectance as measured by imaging spectroscopy, indicating edaphic and compositional control of canopy chemical properties. We last found that soils explained between 30% and 70% of the variation in gap frequency in these forests, depending on the height threshold used to define gaps. Our findings indicate that a relatively small number of edaphic and compositional variables, corresponding to underlying geology, may be responsible for variations in canopy structure and chemistry over large expanses of Amazonian forest. PMID:25793602
NASA Astrophysics Data System (ADS)
Chasmer, L.; Hopkinson, C.; Gynan, C.; Mahoney, C.; Sitar, M.
2015-12-01
Airborne and terrestrial lidar are increasingly used in forest attribute modeling for carbon, ecosystem and resource monitoring. The near infra-red wavelength at 1064nm has been utilised most in airborne applications due to, for example, diode manufacture costs, surface reflectance and eye safety. Foliage reflects well at 1064nm and most of the literature on airborne lidar forest structure is based on data from this wavelength. However, lidar systems also operate at wavelengths further from the visible spectrum (e.g. 1550nm) for eye safety reasons. This corresponds to a water absorption band and can be sensitive to attenuation if surfaces contain moisture. Alternatively, some systems operate in the visible range (e.g. 532nm) for specialised applications requiring simultaneous mapping of terrestrial and bathymetric surfaces. All these wavelengths provide analogous 3D canopy structure reconstructions and thus offer the potential to be combined for spatial comparisons or temporal monitoring. However, a systematic comparison of wavelength-dependent foliage profile and gap probability (index of transmittance) is needed. Here we report on two multispectral lidar missions carried out in 2013 and 2015 over conifer, deciduous and mixed stands in Ontario, Canada. The first used separate lidar sensors acquiring comparable data at three wavelengths, while the second used a single sensor with 3 integrated laser systems. In both cases, wavelenegths sampled were 532nm, 1064nm and 1550nm. The experiment revealed significant differences in proportions of returns at ground level, the vertical foliage distribution and gap probability across wavelengths. Canopy attenuation was greatest at 532nm due to photosynthetic plant tissue absorption. Relative to 1064nm, foliage was systematically undersampled at the 10% to 60% height percentiles at both 1550nm and 532nm (this was confirmed with coincident terrestrial lidar data). When using all returns to calculate gap probability, all wavelengths were within 6% but when using first returns only, gap probability was overestimated by 67% at 532nm and 11% by 1550nm. These results demonstrate that each wavelength contains distinct information about canopy attributes and models must account for variations in wavelength if applied to data for monitoring purposes.
Robert A. York; John J. Battles; Robert C. Heald
2007-01-01
Experimental canopy gaps ranging in size from 0.1 to 1.0 ha (0.25 to 2.5 acres) were created in a mature mixed conifer forest at Blodgett Forest Research Station, California. Following gap creation, six species were planted in a wagon-wheel design and assessed for survival after two growing seasons. Study trees were measured after seven years to describe the effect of...
NASA Technical Reports Server (NTRS)
Sellers, P. J.
1987-01-01
The ability of satellite sensor systems to estimate area-averaged canopy photosynthetic and transpirative properties is evaluated. The near linear relationship between the simple ratio (SR) and normalized difference (ND) and the surface biophysical properties of canopy photosynthetically active radiation (PAR) absorption, photosynthesis, and bulk stomatal resistance is studied. The models utilized to illustrate the processes of canopy reflectance, photosynthesis, and resistance are described. The dependence of SR, the absorbed fraction of PAR, and canopy photosynthesis and resistance on total leaf area index is analyzed. It is noted that the SR and ND vegetation indices and vegetation-dependent qualities are near-linearly related due to the proportion of leaf scattering coefficient in visible and near IR wavelength regions. The data reveal that satellite sensor systems are useful for the estimation of photosynthesis and transpirative properties.
David W. McGill; Rachel J. Collins; Walter P. Carson
2003-01-01
We studied the impact of fire, canopy disturbance, and deer herbivory on the germination and development of pin cherry in four Appalachian hardwood stands located on the Westvaco Wildlife and Ecosystem Research Forest in Randolph County, West Virginia. Plots with simulated gaps and woven-wire fences were used to evaluate impacts of light and deer on regeneration. All...
Castellanos, Maria Clara; Stevenson, Pablo R
2011-06-01
Life history and recruitment information of tropical trees in natural populations is scarce even for important commercial species. This study focused on a widely exploited Neotropical canopy species, Pachira quinata (Malvaceae), at the southernmost, wettest limit of its natural distribution, in the Colombian Amazonia. We studied phenological patterns, seed production and natural densities; assessed the importance of seed dispersal and density-dependent effects on recruitment, using field experiments. At this seasonal forest P. quinata was overrepresented by large adult trees and had very low recruitment caused by the combination of low fruit production, high seed predation and very high seedling mortality under continuous canopies mostly due to damping off pathogens. There was no evidence of negative distance or density effects on recruitment, but a clear requirement of canopy gaps for seedling survival and growth, where pathogen incidence was drastically reduced. In spite of the strong dependence on light for survival of seedlings, seeds germinated readily in the dark. At the study site, the population of P. quinata appeared to be declining, likely because recruitment depended on the rare combination of large gap formation with the presence of reproductive trees nearby. The recruitment biology of this species makes it very vulnerable to any type of logging in natural populations.
NASA Technical Reports Server (NTRS)
Cheng, Yen-Ben; Middleton, Elizabeth M.; Zhang, Qingyuan; Corp, Lawrence A.; Dandois, Jonathan; Kustas, William P.
2012-01-01
The two-layer Markov chain Analytical Canopy Reflectance Model (ACRM) was linked with in situ hyperspectral leaf optical properties to simulate the Photochemical Reflectance Index (PRI) for a corn crop canopy at three different growth stages. This is an extended study after a successful demonstration of PRI simulations for a cornfield previously conducted at an early vegetative growth stage. Consistent with previous in situ studies, sunlit leaves exhibited lower PRI values than shaded leaves. Since sunlit (shaded) foliage dominates the canopy in the reflectance hotspot (coldspot), the canopy PRI derived from field hyperspectral observations displayed sensitivity to both view zenith angle and relative azimuth angle at all growth stages. Consequently, sunlit and shaded canopy sectors were most differentiated when viewed along the azimuth matching the solar principal plane. These directional PRI responses associated with sunlit/shaded foliage were successfully reproduced by the ACRM. As before, the simulated PRI values from the current study were closer to in situ values when both sunlit and shaded leaves were utilized as model input data in a two-layer mode, instead of a one-layer mode with sunlit leaves only. Model performance as judged by correlation between in situ and simulated values was strongest for the mature corn crop (r = 0.87, RMSE = 0.0048), followed by the early vegetative stage (r = 0.78; RMSE = 0.0051) and the early senescent stage (r = 0.65; RMSE = 0.0104). Since the benefit of including shaded leaves in the scheme varied across different growth stages, a further analysis was conducted to investigate how variable fractions of sunlit/shaded leaves affect the canopy PRI values expected for a cornfield, with implications for 20 remote sensing monitoring options. Simulations of the sunlit to shaded canopy ratio near 50/50 +/- 10 (e.g., 60/40) matching field observations at all growth stages were examined. Our results suggest in the importance of the sunlit/shaded fraction and canopy structure in understanding and interpreting PRI.
Schowalter, T D; Willig, M R; Presley, S J
2017-02-01
We quantified long-term successional trajectories of canopy arthropods on six tree species in a tropical rainforest ecosystem in the Luquillo Mountains of Puerto Rico that experienced repeated hurricane-induced disturbances during the 19-yr study (1991-2009). We expected: 1) differential performances of arthropod species to result in taxon- or guild-specific responses; 2) differences in initial conditions to result in distinct successional responses to each hurricane; and 3) the legacy of hurricane-created gaps to persist despite subsequent disturbances. At least one significant effect of gap, time after hurricane, or their interaction occurred for 53 of 116 analyses of taxon abundance, 31 of 84 analyses of guild abundance, and 21 of 60 analyses of biodiversity (e.g., richness, evenness, dominance, and rarity). Significant responses were ∼60% more common for time after hurricane than for gap creation, indicating that temporal changes in habitat during recovery were of primary importance. Both increases and decreases in abundance or diversity occurred in response to each factor. Guild-level responses were probably driven by changes in the abundance of resources on which they rely. For example, detritivores were most abundant soon after hurricanes when litter resources were elevated, whereas sap-suckers were most abundant in gaps where new foliage growth was the greatest. The legacy of canopy gaps created by Hurricane Hugo persisted for at least 19 yr, despite droughts and other hurricanes of various intensities that caused forest damage. This reinforces the need to consider historical legacies when seeking to understand responses to disturbance. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Estimation of Canopy Sunlit Fraction of Leaf Area from Ground-Based Measurements
NASA Astrophysics Data System (ADS)
Yang, B.; Knyazikhin, Y.; Yan, K.; Chen, C.; Park, T.; CHOI, S.; Mottus, M.; Rautiainen, M.; Stenberg, P.; Myneni, R.; Yan, L.
2015-12-01
The sunlit fraction of leaf area (SFLA) defined as the fraction of the total hemisurface leaf area illuminated by the direct solar beam is a key structural variable in many global models of climate, hydrology, biogeochemistry and ecology. SFLAI is expected to be a standard product from the Earth Polychromatic Imaging Camera (EPIC) on board the joint NOAA, NASA and US Air Force Deep Space Climate Observatory (DSCOVR) mission, which was successfully launched from Cape Canaveral, Florida on February 11, 2015. The DSCOVR EPIC sensor orbiting the Sun-Earth Lagrange L1 point provides multispectral measurements of the radiation reflected by Earth in retro-illumination directions. This poster discusses a methodology for estimating the SFLA using LAI-2000 Canopy Analyzer, which is expected to underlie the strategy for validation of the DSCOVR EPIC land surface products. LAI-2000 data collected over 18 coniferous and broadleaf sites in Hyytiälä, Central Finland, were used to estimate the SFLA. Field data on canopy geometry were used to simulate selected sites. Their SFLAI was calculated using a Monte Carlo (MC) technique. LAI-2000 estimates of SFLA showed a very good agreement with MC results, suggesting validity of the proposed approach.
Nagel, Thomas A; Svoboda, Miroslav; Kobal, Milan
2014-06-01
Much of our understanding of natural forest dynamics in the temperate region of Europe is based on observational studies in old-growth remnants that have emphasized small-scale gap dynamics and equilibrium stand structure and composition. Relatively little attention has been given to the role of infrequent disturbance events in forest dynamics. In this study, we analyzed dendroecological data from four stands and three windthrow patches in an old-growth landscape in the Dinaric Mountains of Bosnia and Herzegovina to examine disturbance history, tree life history traits, and compositional dynamics. Over all stands, most decades during the past 340 years experienced less than 10% canopy loss, yet each stand showed evidence of periodic intermediate-severity disturbances that removed > 40% of the canopy, some of which were synchronized over the study area landscape. Analysis of radial growth patterns indicated several life history differences among the dominant canopy trees; beech was markedly older than fir, while growth patterns of dead and dying trees suggested that fir was able to tolerate longer periods of suppressed growth in shade. Maple had the fastest radial growth and accessed the canopy primarily through rapid early growth in canopy gaps, whereas most beech and fir experienced a period of suppressed growth prior to canopy accession. Peaks in disturbance were roughly linked to increased recruitment, but mainly of shade-tolerant beech and fir; less tolerant species (i.e., maple, ash, and elm) recruited successfully on some of the windthown sites where advance regeneration of beech and fir was less abundant. The results challenge the traditional notions of stability in temperate old-growth forests of Europe and highlight the nonequilibrial nature of canopy composition due to unique histories of disturbance and tree life history differences. These findings provide valuable information for developing natural disturbance-based silvicultural systems, as well as insight into maintaining less shade-tolerant, but valuable broadleaved trees in temperate forests of Europe.
NASA Astrophysics Data System (ADS)
Diele, K.; Tran Ngoc, D. M.; Geist, S. J.; Meyer, F. W.; Pham, Q. H.; Saint-Paul, U.; Tran, T.; Berger, U.
2013-11-01
Mangrove crabs as key ecosystem engineers may play an important role in the recovery process of storm-damaged forests. Yet, their response to storm disturbance is largely unknown. Here we compare the ground-dwelling brachyuran crab community of intact mangrove stands with that of typhoon gaps having experienced 100% tree mortality. Field work was conducted in two adjacent areas in Can Gio Biosphere Reserve, southern Vietnam. In each area, an 18-20 yr old monoculture Rhizophora apiculata stand served as control and was compared with typhoon gaps where downed stems had been removed or left on-site. The gaps were 14 and 20 months old when studied in the dry and rainy season 2008, respectively. Time-based sampling of ground-dwelling crabs with hand or shovel was conducted by 4 persons inside 100 m2 plots for 30 min (7 replicate plots per area, treatment and month). Abiotic (sediment pH, salinity, temperature, grain size, water content, carbon and nitrogen content), and biotic measures (e.g. canopy coverage, woody debris, number of trees, leaf litter) were also taken. Despite complete canopy loss, total crab abundance has not changed significantly (in contrast to biomass) and all 12 species found in the forest were also found in the gaps, demonstrating their robustness. Another 9 gap-exclusive species were recorded and average species number and Shannon diversity were thus higher in the gaps. Perisesarma eumolpe was the most abundant species, both in the forest and in the gaps, and a shift from sesarmids (typical forest species) to ocypodids (generally more prominent in open areas) has not occurred. The persistence of litter-feeding sesarmid crabs prior to the re-establishment of a mangrove canopy is likely to depend on the availability of woody debris on the ground of the gaps, fuelling a mangrove detritus based food web, rather than one based on microphytobenthos and deposit-feeding ocypodids. The presence of burrowing crabs in the gaps suggests that important ecosystem engineering activities are still performed. However, bioturbation may be reduced as crab biomass and body size were smaller in the gaps. Follow-up assessments and field experiments are needed to understand the crabs' role in processing the woody debris, their long-term community dynamics and possible feed-backs between species shifts and gap regeneration.
Arthropod abundance and seasonal bird use of bottomland forest harvest gaps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moorman, Christopher, E.; Bowen, Liessa T.; Kilgo, John, C.
2012-03-01
We investigated the influence of arthropod abundance and vegetation structure on shifts in avian use of canopy gap, gap edge, and surrounding forest understory in a bottomland hardwood forest in the Upper Coastal Plain of South Carolina. We compared captures of foliage-gleaning birds among locations during four periods (spring migration, breeding, post-breeding, and fall migration). Foliage arthropod densities were greatest in the forest understory in all four seasons, but understory vegetation density was greatest in gaps. Foliage-gleaning bird abundance was positively associated with foliage-dwelling arthropods during the breeding (F = 18.5, P < 0.001) and post-breeding periods (F = 9.4,more » P = 0.004), and negatively associated with foliage-dwelling arthropods during fall migration (F = 5.4, P = 0.03). Relationships between birds and arthropods were inconsistent, but the arthropod prey base seemed to be least important during migratory periods. Conversely, bird captures were positively correlated with understory vegetation density during all four periods (P < 0.001). Our study suggests high bird abundance associated with canopy gaps during the non-breeding period resulted less from high arthropod food resource availability than from complex understory and midstory vegetation structure.« less
NASA Astrophysics Data System (ADS)
Köhler, P.; Huth, A.
2010-08-01
The canopy height h of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or LIDAR. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground life biomass (AGB) (and thus carbon content of vegetation) and leaf area index (LAI) and identify how correlation and uncertainty vary for two different spatial scales. The process-based forest growth model FORMIND2.0 was applied to simulate (a) undisturbed forest growth and (b) a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia) in South-East Asia. In both undisturbed and disturbed forests AGB can be expressed as a power-law function of canopy height h (AGB = a · hb) with an r2 ~ 60% if data are analysed in a spatial resolution of 20 m × 20 m (0.04 ha, also called plot size). The correlation coefficient of the regression is becoming significant better in the disturbed forest sites (r2 = 91%) if data are analysed hectare wide. There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2 ~ 60%) between AGB and the area fraction of gaps in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a comparison of the simulations with permanent sampling plot (PSP) data from the same region and with the large-scale forest inventory in Lambir. We conclude that the spaceborne remote sensing techniques such as LIDAR and radar interferometry have the potential to quantify the carbon contained in the vegetation, although this calculation contains due to the heterogeneity of the forest landscape structural uncertainties which restrict future applications to spatial averages of about one hectare in size. The uncertainties in AGB for a given canopy height are here 20-40% (95% confidence level) corresponding to a standard deviation of less than ± 10%. This uncertainty on the 1 ha-scale is much smaller than in the analysis of 0.04 ha-scale data. At this small scale (0.04 ha) AGB can only be calculated out of canopy height with an uncertainty which is at least of the magnitude of the signal itself due to the natural spatial heterogeneity of these forests.
Microclimatic and soil moisture responses to gap formation in coastal Douglas-fir forests
Andrew N Gray; Thomas A Spies; Mark J Easter
2002-01-01
The effects of gap formation on solar radiation, soil and air temperature, and soil moisture were studied in mature coniferous forests of the Pacific Northwest, U.S.A. Measurements were taken over a 6-year period in closed-canopy areas and recently created gaps in four stands of mature (90â140 years) and old-growth (>400 years) Douglas-fir (Pseudotsuga...
Community Composition in Canopy Gaps as Influenced by Presence or Absence of Rhododendron maximum
Christopher T. Rivers; David H. van Lear; Barton D. Clinton; Thomas A. Waldrop
1999-01-01
The process of gap formation and recolonization plays an important role in the structure and composition in southern Appalachian forests. The understory composition existing before a disturbance will shape successional patterns of the future stand. Rhododendron maximum is native to the southern Appalachians and exists as a major understory...
Tang, Hao; Dubayah, Ralph
2017-03-07
Light-regime variability is an important limiting factor constraining tree growth in tropical forests. However, there is considerable debate about whether radiation-induced green-up during the dry season is real, or an apparent artifact of the remote-sensing techniques used to infer seasonal changes in canopy leaf area. Direct and widespread observations of vertical canopy structures that drive radiation regimes have been largely absent. Here we analyze seasonal dynamic patterns between the canopy and understory layers in Amazon evergreen forests using observations of vertical canopy structure from a spaceborne lidar. We discovered that net leaf flushing of the canopy layer mainly occurs in early dry season, and is followed by net abscission in late dry season that coincides with increasing leaf area of the understory layer. Our observations of understory development from lidar either weakly respond to or are not correlated to seasonal variations in precipitation or insolation, but are strongly related to the seasonal structural dynamics of the canopy layer. We hypothesize that understory growth is driven by increased light gaps caused by seasonal variations of the canopy. This light-regime variability that exists in both spatial and temporal domains can better reveal the drought-induced green-up phenomenon, which appears less obvious when treating the Amazon forests as a whole.
NASA Astrophysics Data System (ADS)
Mesta, D. C.; Van Stan, J. T., II; Yankine, S. A.; Cote, J. F.; Jarvis, M. T.; Hildebrandt, A.; Friesen, J.; Maldonado, G.
2017-12-01
As urbanization expands, greater forest area is shifting from natural stand structures to urban stand structures, like forest fragments and landscaped tree rows. Changes in forest canopy structure have been found to drastically alter the amount of rainwater reaching the surface. However, stormwater management models generally treat all forest structures (beyond needle versus broadleaved) similarly. This study examines the rainfall partitioning of Pinus spp. canopies along a natural-to-urban forest gradient and compares these to canopy structural measurements using terrestrial LiDAR. Throughfall and meteorological observations were also used to estimate parameters of the commonly-used Gash interception model. Preliminary findings indicate that as forest structure changed from natural, closed canopy conditions to semi-closed canopy fragments and, ultimately, to exposed urban landscaping tree rows, the interchange between throughfall and rainfall interception also changed. This shift in partitioning between throughfall and rainfall interception may be linked to intuitive parameters, like canopy closure and density, as well as more complex metrics, like the fine-scale patterning of gaps (ie, lacunarity). Thus, results indicate that not all forests of the same species should be treated the same by stormwater models. Rather, their canopy structural characteristics should be used to vary their hydrometeorological interactions.
NASA Astrophysics Data System (ADS)
Zhang, Qian; Chen, Jing; Zhang, Yongguang; Qiu, Feng; Fan, Weiliang; Ju, Weimin
2017-04-01
The gross primary production (GPP) of terrestrial ecosystems constitutes the largest global land carbon flux and exhibits significant spatial and temporal variations. Due to its wide spatial coverage, remote sensing technology is shown to be useful for improving the estimation of GPP in combination with light use efficiency (LUE) models. Accurate estimation of LUE is essential for calculating GPP using remote sensing data and LUE models at regional and global scales. A promising method used for estimating LUE is the photochemical reflectance index (PRI = (R531-R570)/(R531 + R570), where R531 and R570 are reflectance at wavelengths 531 and 570 nm) through remote sensing. However, it has been documented that there are certain issues with PRI at the canopy scale, which need to be considered systematically. For this purpose, an improved tower-based automatic canopy multi-angle hyperspectral observation system was established at the Qianyanzhou flux station in China since January of 2013. In each 15-minute observation cycle, PRI was observed at four view zenith angles fixed at solar zenith angle and (37°, 47°, 57°) or (42°, 52°, 62°) in the azimuth angle range from 45° to 325° (defined from geodetic north). To improve the ability of directional PRI observation to track canopy LUE, the canopy is treated as two-big leaves, i.e. sunlit and shaded leaves. On the basis of a geometrical optical model, the observed canopy reflectance for each view angle is separated to four components, i.e. sunlit and shaded leaves and sunlit and shaded backgrounds. To determine the fractions of these four components at each view angle, three models based on different theories are tested for simulating the fraction of sunlit leaves. Finally, a ratio of canopy reflectance to leaf reflectance is used to represent the fraction of sunlit leaves, and the fraction of shaded leaves is calculated with the four-scale geometrical optical model. Thus, sunlit and shaded PRI are estimated using the least squares regression with multi-angle observations. In both the half-hourly and daily time steps, the canopy-level two-leaf PRI (PRIt) can effectively enhance (>50% and >35%, respectively) the correlation between PRI and LUE derived from the tower flux measurements over the big-leaf PRI (PRIb) taken as the arithmetic average of the multi-angle measurements in a given time interval. PRIt is very effective in detecting the low-moderate drought stress on LUE at half-hourly time steps, while ineffective in detecting severe atmospheric water and heat stresses, which is probably due to alternative radiative energy sink, i.e. photorespiration. Overall, the two-leaf approach well overcomes some external effects (e.g. sun-target-view geometry) that interfere with PRI signals.
Mapping forest canopy fuels in Yellowstone National Park using lidar and hyperspectral data
NASA Astrophysics Data System (ADS)
Halligan, Kerry Quinn
The severity and size of wildland fires in the forested western U.S have increased in recent years despite improvements in fire suppression efficiency. This, along with increased density of homes in the wildland-urban interface, has resulted in high costs for fire management and increased risks to human health, safety and property. Crown fires, in comparison to surface fires, pose an especially high risk due to their intensity and high rate of spread. Crown fire models require a range of quantitative fuel parameters which can be difficult and costly to obtain, but advances in lidar and hyperspectral sensor technologies hold promise for delivering these inputs. Further research is needed, however, to assess the strengths and limitations of these technologies and the most appropriate analysis methodologies for estimating crown fuel parameters from these data. This dissertation focuses on retrieving critical crown fuel parameters, including canopy height, canopy bulk density and proportion of dead canopy fuel, from airborne lidar and hyperspectral data. Remote sensing data were used in conjunction with detailed field data on forest parameters and surface reflectance measurements. A new method was developed for retrieving Digital Surface Model (DSM) and Digital Canopy Models (DCM) from first return lidar data. Validation data on individual tree heights demonstrated the high accuracy (r2 0.95) of the DCMs developed via this new algorithm. Lidar-derived DCMs were used to estimate critical crown fire parameters including available canopy fuel, canopy height and canopy bulk density with linear regression model r2 values ranging from 0.75 to 0.85. Hyperspectral data were used in conjunction with Spectral Mixture Analysis (SMA) to assess fuel quality in the form of live versus dead canopy proportions. Severity and stage of insect-caused forest mortality were estimated using the fractional abundance of green vegetation, non-photosynthetic vegetation and shade obtained from SMA. Proportion of insect attack was estimated with a linear model producing an r2 of 0.6 using SMA and bark endmembers from image and reference libraries. Fraction of red attack, with a possible link to increased crown fire risk, was estimated with an r2 of 0.45.
Kennedy, Peter G; Schouboe, Jesse L; Rogers, Rachel H; Weber, Marjorie G; Nadkarni, Nalini M
2010-02-01
The ecological importance of microbial symbioses in terrestrial soils is widely recognized, but their role in soils that accumulate in forest canopies is almost entirely unknown. To address this gap, this study investigated the Frankia-Alnus rubra symbiosis in canopy and forest floor roots at Olympic National Park, WA, USA. Sixteen mature A. rubra trees were surveyed and Frankia genetic diversity in canopy and forest floor nodules was assessed with sequence-based nifH analyses. A seedling bioassay experiment was conducted to determine Frankia propagule availability in canopy and forest floor soils. Total soil nitrogen from both environments was also quantified. Nodules were present in the canopies of nine of the 16 trees sampled. Across the study area, Frankia canopy and forest floor assemblages were similar, with both habitats containing the same two genotypes. The composition of forest floor and canopy genotypes on the same tree was not always identical, however, suggesting that dispersal was not a strictly local phenomenon. Frankia seedling colonization was similar in canopy soils regardless of the presence of nodules as well as in forest floor soils, indicating that dispersal was not likely to be a major limiting factor. The total soil nitrogen of canopy soils was higher than that of forest floor soils, but the presence of Frankia nodules in canopy soils did not significantly alter soil nitrogen levels. Overall, this study indicates that the Frankia-A. rubra symbiosis is similar in canopy and forest floor environments. Because canopy roots are exposed to different environmental conditions within very small spatial areas and because those areas can be easily manipulated (e.g., fertilizer or watering treatments), they present microbial ecologists with a unique arena to examine root-microbe interactions.
NASA Astrophysics Data System (ADS)
Nadeau, D.; Isabelle, P. E.; Asselin, M. H.; Parent, A. C.; Jutras, S.; Anctil, F.
2017-12-01
Solar irradiance is the largest driver of land-surface exchanges of energy, water and trace gases. Its absorption by a forest canopy generates considerable sensible and latent heat fluxes as well as tree temperature changes. A fraction of the irradiance gets transmitted through the canopy and powers another layer of energy fluxes, which can reach substantial values. Transmitted radiation is also of particular relevance to understory vegetation photosynthesis, snowpack energetics and soil temperature dynamics. Boreal forest canopy transmissivity needs to be quantified to properly reproduce land-atmosphere interactions in the circumpolar boreal biome, but its high spatiotemporal variability makes it a challenging task. The objective of this study is to characterize the spatiotemporal variability in under-canopy radiation and to evaluate the performance of various models in representing plot-scale observations. The study site is located in Montmorency Forest (47°N, 71°W), in southern Quebec, Canada. The vegetation includes mostly juvenile balsam firs, up to 6 to 8 m tall. Since January 2016, a 15-m flux tower measures the four components of radiation, as well as other relevant fluxes and meteorological variables, on a ≈10° northeast-facing slope. In summer 2016, 20 portable weather stations were mounted in a 150 m x 200 m grid around the flux tower. These stations were equipped with silicon-cell pyranometers and provided measurements of downwelling irradiance at a height of 2 m. This setup allowed us to compute irradiance transmissivity and to assess its spatiotemporal variability at the site. First, we show that the average of daily incoming energy varies tremendously across the sites, from 1 MJ/m2 to nearly 9 MJ/m2, due to large variations in canopy structure over short distances. Using a regression tree analysis, we show that transmissivity mostly depends on sun elevation, diffuse fraction of radiation, sky and sun view fraction and wind speed above canopy. We finally show that a simple Beer's law, describing the attenuation of light through a semi-transparent medium, does remarkably well at predicting the plot-scale transmissivity when driven with satellite-based leaf area index values.
NASA Astrophysics Data System (ADS)
Van Stan, J. T., II; Pypker, T. G.
2015-12-01
Interactions between precipitation and forest canopy elements (bark, leaves, and epiphytes) control the quantity, spatiotemporal patterning, and the chemical concentration, character and constituency of precipitation to soils. Canopy epiphytes are an element that exerts a range of storm-related hydrological and biogeochemical effects due to their diversity of morphological traits and nutrient acquisition mechanisms. We reviewed and evaluated the state of knowledge regarding epiphyte interactions with precipitation partitioning (into interception loss, throughfall, and stemflow) and the chemical alteration of net precipitation fluxes (throughfall and stemflow). As epiphyte species are quite diverse, this review categorized findings by common paraphyletic groups: lichens, bryophytes, and vascular epiphytes. Of these groups, vascular epiphytes have received the least attention and lichens the most. In general, epiphytes decrease throughfall and stemflow and increase interception loss. Epiphytes alter the spatiotemporal pattern of throughfall and increase the overall latent heat fluxes from the canopy. Epiphytes alter biogeochemical processes by impacting the transfer of solutes through the canopy; however, the change in solute concentration varies with epiphyte type and chemical species. We discuss several important knowledge gaps across all epiphyte groups. We also explore innovative methods that currently exist to confront these knowledge gaps and past techniques applied to gain our current understanding. Future research addressing the listed deficiencies will improve our knowledge of epiphyte roles in water and biogeochemical processes coupled within forest canopies—processes crucial to supporting microbe, plant, vertebrate and invertebrate communities within individual epiphytes/epiphyte assemblages, host trees, and even the forest ecosystem as a whole.
The Legacy of Episodic Climatic Events in Shaping Temperate, Broadleaf Forests
NASA Technical Reports Server (NTRS)
Pederson, Neil; Dyer, James M.; McEwan, Ryan W.; Hessl, Amy E.; Mock, Cary J.; Orwig, David A.; Rieder, Harald E.; Cook, Benjamin I.
2015-01-01
In humid, broadleaf-dominated forests where gap dynamics and partial canopy mortality appears to dominate the disturbance regime at local scales, paleoecological evidence shows alteration at regional-scales associated with climatic change. Yet, little evidence of these broad-scale events exists in extant forests. To evaluate the potential for the occurrence of large-scale disturbance, we used 76 tree-ring collections spanning approx. 840 000 sq km and 5327 tree recruitment dates spanning approx. 1.4 million sq km across the humid eastern United States. Rotated principal component analysis indicated a common growth pattern of a simultaneous reduction in competition in 22 populations across 61 000 km2. Growth-release analysis of these populations reveals an intense and coherent canopy disturbance from 1775 to 1780, peaking in 1776. The resulting time series of canopy disturbance is so poorly described by a Gaussian distribution that it can be described as ''heavy tailed,'' with most of the years from 1775 to 1780 comprising the heavy-tail portion of the distribution. Historical documents provide no evidence that hurricanes or ice storms triggered the 1775-1780 event. Instead, we identify a significant relationship between prior drought and years with elevated rates of disturbance with an intense drought occurring from 1772 to 1775. We further find that years with high rates of canopy disturbance have a propensity to create larger canopy gaps indicating repeated opportunities for rapid change in species composition beyond the landscape scale. Evidence of elevated, regional-scale disturbance reveals how rare events can potentially alter system trajectory: a substantial portion of old-growth forests examined here originated or were substantially altered more than two centuries ago following events lasting just a few years. Our recruitment data, comprised of at least 21 species and several shade-intolerant species, document a pulse of tree recruitment at the subcontinental scale during the late-1600s suggesting that this event was severe enough to open large canopy gaps. These disturbances and their climatic drivers support the hypothesis that punctuated, episodic, climatic events impart a legacy in broadleaf-dominated forests centuries after their occurrence. Given projections of future drought, these results also reveal the potential for abrupt, meso- to large-scale forest change in broadleaf-dominated forests over future decades.
The Impact of Atmospheric Aerosols on the Fraction of absorbed Photosynthetically Active Radiation
NASA Astrophysics Data System (ADS)
Veroustraete, Frank
2010-05-01
Aerosol pollution attracts a growing interest from atmospheric scientists with regard to their impact on health, the global climate and vegetation stress. A hypothesis, less investigated, is whether atmospheric aerosol interactions in the solar radiation field affect the amount of radiation absorbed by vegetation canopies and hence terrestrial vegetation productivity. Typically, aerosols affect vegetation canopy radiation absorption efficiency by altering the physical characteristics of solar radiation incoming on for example a forest canopy. It has been illustrated, that increasing mixing ratio's of atmospheric particulate matter lead to a higher fraction of diffuse sunlight as opposed to direct sunlight. It can be demonstrated, based on the application of atmospheric (MODTRAN) and leaf/canopy radiative transfer (LIBERTY/SPRINT) models, that radiation absorption efficiency in the PAR band of Picea like forests increases with increasing levels of diffuse radiation. It can be documented - on a theoretical basis - as well, that increasing aerosol loads in the atmosphere, induce and increased canopy PAR absorption efficiency. In this paper it is suggested, that atmospheric aerosols have to be taken into account when estimating vegetation gross primary productivity (GPP). The results suggest that Northern hemisphere vegetation CO2 uptake magnitude may increase with increasing atmospheric aerosol loads. Many climate impact scenario's related to vegetation productivity estimates, do not take this phenomenon into account. Boldly speaking, the results suggest a larger sink function for terrestrial vegetation than generally accepted. Keywords: Aerosols, vegetation, fAPAR, CO2 uptake, diffuse radiation.
Bat activity in selection harvests and intact forest canopy gaps at Indiana state forests
Scott Haulton; Kathryn L. DeCosta
2014-01-01
Forest managers often prescribe silvicultural methods based on how effectively they mimic the natural disturbance agents that have historically shaped the forests they manage. On Indiana state forests, selection systems are used on most harvested acreage and appear to structurally mimic the effects of naturally occurring, gap-forming disturbances affecting individual...
NASA Technical Reports Server (NTRS)
Couch, L. M.
1975-01-01
An investigation was conducted at Mach 1.80 in the Langley 4-foot supersonic pressure tunnel to determine the effects of variation in reefing ratio and geometric porosity on the drag and stability characteristics of four basic canopy types deployed in the wake of a cone-cylinder forebody. The basic designs included cross, hemisflo, disk-gap-band, and extended-skirt canopies; however, modular cross and standard flat canopies and a ballute were also investigated. An empirical correlation was determined which provides a fair estimation of the drag coefficients in transonic and supersonic flow for parachutes of specified geometric porosity and reefing ratio.
Monitoring tree health with a dual-wavelength terrestrial laser scanner
NASA Astrophysics Data System (ADS)
Hancock, S.
2013-12-01
Steven Hancock1, Rachel Gaulton1, Mark Danson2 1School of Civil Engineering and Geosciences, Newcastle University, UK, steven.hancock@ncl.ac.uk, rachel.gaulton@ncl.ac.uk 2 School of Environment and Life Sciences, University of Salford, UK, F.M.Danson@salford.ac.uk Forests are a vital part of the Earth's carbon cycle and drive interactions between the land and atmosphere. Accurate and repeatable measurement of forests is essential for understanding the Earth system. Terrestrial laser scanning can be a powerful tool for characterising forests. However, there are a number of issues that have yet to be resolved. Commercial laser scanners are optimised for measuring buildings and other hard targets. Vegetation canopies are complex and porous, confounding standard interpretation techniques. Commercial systems struggle with partial hits and cannot distinguish leaf from wood (Danson et al 2007). A new generation of terrestrial laser scanners, optimised for vegetation measurement, are in development. The Salford Advanced Laser Canopy Analyser (SALCA, Gaulton et al 2013) aims to overcome these issues using full-waveform analysis and two wavelengths (1064 nm and 1545 nm), allowing the characterisation of a porous canopy, the identification of leaf and wood and derivation of information on leaf biochemistry. Gaulton et al (2013) showed that SALCA is capable of measuring the Equivalent Water Thickness (EWT) of individual leaves in laboratory conditions. In this study, the method was applied to complete tree canopies. A controlled experiment simulating a small 'forest' of potted broadleaved (Tilia cordata) and coniferous trees (Pinus nigra) was established and groups subjected to different moisture stresses over a one month period. Trees were repeatedly scanned by SALCA and regular measurements were made of leaf EWT, stomatal conductance, chlorophyll content, spectral properties (using an ASD field spectroradiometer) and, for a limited number of trees, leaf area (by destructive harvesting). Trees were arranged so that some were clearly visible to the scanner and could be analysed individually (a best case scenario) whilst others were grouped to form a denser, more realistic canopy (a worse case scenario). A method was developed to simultaneously extract canopy structure (leaf area, tree height and clumping) and leaf biochemistry (EWT) from the laser scanner data. These results were compared to ground to assess their accuracy. References Danson, F. M., Hetherington D., Morsdorf F., Koetz B., Allgower B., 2007. Forest canopy gap fraction from terrestrial laser scanning. IEEE Geoscience and Remote Sensing Letters, 4, 157-160. Gaulton R., Danson F. M., Ramirez F. A., Gunawan O., 2013. The potential of dual-wavelength laser scanning for estimating vegetation moisture content. Remote Sensing of Environment, 132, 32-39.
The role of stable isotopes in understanding rainfall ...
The isotopic composition of water transmitted by the canopy as throughfall or stemflow reflects important hydrologic processes occurring in the canopy. A synthesis of the literature shows that complex spatiotemporal variations of isotopic composition are created by canopy interception. As a whole, the studies suggest a set of controlling factors including fractionation, exchange among liquid and vapor phase water, and spatiotemporal redistribution along varying canopy flowpaths. However, our limited understanding of physical processes and water routing in the canopy limits the ability to discern all details for predicting interception isotope effects. We suggest that the isotopic composition of throughfall and stemflow may be the key to improve our understanding of water storage and transport in the canopy, similar to how isotopic analysis contributed to progress in our understanding of watershed runoff processes. While interception isotope effects have largely been studied under the premise that they are a source of error, previous works also indicate a wide range of possible interactions that intercepted water may have with the canopy and airspace. We identify new research questions that may be answered by stable isotopes as a path forward in examining and generalizing small-scale interception processes that could facilitate integration of interception into watershed ecohydrological concepts. Evaporation from forest canopies (interception loss) is a prominent
Cristel C. Kern; Peter B. Reich; Rebecca A. Montgomery; Terry F. Strong
2012-01-01
Innovative forestry practices that use natural disturbance and stand developmental processes as models to increase forest complexity are now being considered as a way to conserve biodiversity while managing for a range of objectives.We evaluated the influence of harvest-created gap size (6, 10, 20, 30, and 46 m diameter gaps and uncut references) over 12 growing...
Duan, Wen-Biao; Wang, Li-Xia; Chen, Li-Xin; Du, Shan; Wei, Quan-Shuai; Zhao, Jian-Hui
2013-03-01
1 m x 1 m fixed quadrats were parallelly arranged with a space of 2 m in each of six forest gaps in Pinus koraiensis-dominated broadleaved mixed forest, taking the gap center as the starting point and along east-west and south-north directions. In each quadrat, the coverage and abundance of herbaceous plants at different height levels were investigated by estimation method in June and September 2011, and the matrix characteristics within the quadrats were recorded. Canopy analyzer was used to take fish-eye photos in the selected overcast days in each month from June to September, 2011, and the relative light intensity was calculated by using Gap Light Analyzer 2.0 software. The differences in the relative light intensity and herbaceous plants coverage and richness between different gaps as well as the correlations between the coverage of each species and the direct light, diffuse light, and matrix were analyzed. The results showed that in opening areas and under canopy, the relative light intensity in large gaps was higher than that in small gaps, and the variation ranges of diffuse light and direct light from gap center to gap edge were bigger in large gaps than in small gaps. The direct light reaching at the ground both in large gaps and in small gaps was higher in the north than in the south direction. In the Z1, Z2, Z3, and Z4 zones, both the coverage and the richness of herbaceous plants were larger in large gaps than in small gaps, and the differences of species richness between large and small gaps reached significant level. The coverage of the majority of the herbaceous plants had significant correlations with diffuse light and matrix, and only the coverage of a few herbaceous plants was correlated with direct light.
Rozendaal, Danaë M A; Kobe, Richard K
2016-01-01
In closed-canopy forests, gap formation and closure are thought to be major drivers of forest dynamics. Crown defoliation by insects, however, may also influence understory resource levels and thus forest dynamics. We evaluate the effect of a forest tent caterpillar outbreak on understory light availability, soil nutrient levels and tree seedling height growth in six sites with contrasting levels of canopy defoliation in a hardwood forest in northern lower Michigan. We compared resource levels and seedling growth of six hardwood species before, during and in the three years after the outbreak (2008-2012). Canopy openness increased strongly during the forest tent caterpillar outbreak in the four moderately and severely defoliated sites, but not in lightly defoliated sites. Total inorganic soil nitrogen concentrations increased in response to the outbreak in moderately and severely defoliated sites. The increase in total inorganic soil nitrogen was driven by a strong increase in soil nitrate, and tended to become stronger with increasing site defoliation. Seedling height growth increased for all species in the moderately and severely defoliated sites, but not in lightly defoliated sites, either during the outbreak year or in the year after the outbreak. Growth increases did not become stronger with increasing site defoliation, but were strongest in a moderately defoliated site with high soil nutrient levels. Growth increases tended to be strongest for the shade intolerant species Fraxinus americana and Prunus serotina, and the shade tolerant species Ostrya virginiana. The strong growth response of F. americana and P. serotina suggests that recurring forest tent caterpillar outbreaks may facilitate the persistence of shade intolerant species in the understory in the absence of canopy gaps. Overall, our results suggest that recurrent canopy defoliation resulting from cyclical forest insect outbreaks may be an additional driver of dynamics in temperate closed-canopy forests.
Rozendaal, Danaë M. A.; Kobe, Richard K.
2016-01-01
In closed-canopy forests, gap formation and closure are thought to be major drivers of forest dynamics. Crown defoliation by insects, however, may also influence understory resource levels and thus forest dynamics. We evaluate the effect of a forest tent caterpillar outbreak on understory light availability, soil nutrient levels and tree seedling height growth in six sites with contrasting levels of canopy defoliation in a hardwood forest in northern lower Michigan. We compared resource levels and seedling growth of six hardwood species before, during and in the three years after the outbreak (2008–2012). Canopy openness increased strongly during the forest tent caterpillar outbreak in the four moderately and severely defoliated sites, but not in lightly defoliated sites. Total inorganic soil nitrogen concentrations increased in response to the outbreak in moderately and severely defoliated sites. The increase in total inorganic soil nitrogen was driven by a strong increase in soil nitrate, and tended to become stronger with increasing site defoliation. Seedling height growth increased for all species in the moderately and severely defoliated sites, but not in lightly defoliated sites, either during the outbreak year or in the year after the outbreak. Growth increases did not become stronger with increasing site defoliation, but were strongest in a moderately defoliated site with high soil nutrient levels. Growth increases tended to be strongest for the shade intolerant species Fraxinus americana and Prunus serotina, and the shade tolerant species Ostrya virginiana. The strong growth response of F. americana and P. serotina suggests that recurring forest tent caterpillar outbreaks may facilitate the persistence of shade intolerant species in the understory in the absence of canopy gaps. Overall, our results suggest that recurrent canopy defoliation resulting from cyclical forest insect outbreaks may be an additional driver of dynamics in temperate closed-canopy forests. PMID:27870897
John C. Kilgo
2005-01-01
The effects of harvest-created canopy gaps in bottomland hardwood forests on arthropod abundance and, hence, the foraging ecology of birds are poorly understood. I predicted that arthropod abundance would be high near edges of group-selection harvest gaps and lower in the surrounding forest, and that male Hooded Warblers (Wilsonia citrina) foraging...
Stocktype and harvest gap size influence northern red oak regeneration success
Douglass F. Jacobs; Ron A. Rathfon; Anthony S. Davis; Don E. Carlson
2006-01-01
Four different northern red oak (Quercus rubra L.) stocktypes (standard- or low-nursery-density bareroot seedlings and 11.4 or 18.9 L container seedlings) were outplanted into large-, medium-, and small-harvested gap openings (0.400, 0.024, and 0.100 ha, respectively) and closed-canopy control plots in southern Indiana. Two-year survival, height, and...
Martin Barrette; Louis Bélanger; Louis De Grandpré; Alejandro A. Royo
2017-01-01
In the absence of large-scale stand replacing disturbances, boreal forests can remain in the old-growth stage over time because of a dynamic equilibrium between small-scale mortality and regeneration processes. Although this gap paradigm has been a cornerstone of forest dynamics theory and practice for decades, evidence suggests that it could be disrupted, threatening...
The Ontogeny of Gap Crossing Behaviour in Bornean Orangutans (Pongo pygmaeus wurmbii)
Chappell, Jackie; Phillips, Abigail C.; van Noordwijk, Maria A.; Mitra Setia, Tatang; Thorpe, Susannah K. S.
2015-01-01
For orangutans, the largest predominantly arboreal primates, discontinuous canopy presents a particular challenge. The shortest gaps between trees lie between thin peripheral branches, which offer the least stability to large animals. The affordances of the forest canopy experienced by orangutans of different ages however, must vary substantially as adult males are an order of magnitude larger in size than infants during the early stages of locomotor independence. Orangutans have developed a diverse range of locomotor behaviour to cross gaps between trees, which vary in their physical and cognitive demands. The aims of this study were to examine the ontogeny of orangutan gap crossing behaviours and to determine which factors influence the distance orangutans crossed. A non-invasive photographic technique was used to quantify forearm length as a measure of body size. We also recorded locomotor behaviour, support use and the distance crossed between trees. Our results suggest that gap crossing varies with both physical and cognitive development. More complex locomotor behaviours, which utilized compliant trunks and lianas, were used to cross the largest gaps, but these peaked in frequency much earlier than expected, between the ages of 4 and 5 years old, which probably reflects play behaviour to perfect locomotor techniques. Smaller individuals also crossed disproportionately large gaps relative to their size, by using support deformation. Our results suggest that orangutans acquire the full repertoire of gap crossing techniques, including the more cognitively demanding ones, before weaning, but adjust the frequency of the use of these techniques to their increasing body size. PMID:26154061
The Ontogeny of Gap Crossing Behaviour in Bornean Orangutans (Pongo pygmaeus wurmbii).
Chappell, Jackie; Phillips, Abigail C; van Noordwijk, Maria A; Mitra Setia, Tatang; Thorpe, Susannah K S
2015-01-01
For orangutans, the largest predominantly arboreal primates, discontinuous canopy presents a particular challenge. The shortest gaps between trees lie between thin peripheral branches, which offer the least stability to large animals. The affordances of the forest canopy experienced by orangutans of different ages however, must vary substantially as adult males are an order of magnitude larger in size than infants during the early stages of locomotor independence. Orangutans have developed a diverse range of locomotor behaviour to cross gaps between trees, which vary in their physical and cognitive demands. The aims of this study were to examine the ontogeny of orangutan gap crossing behaviours and to determine which factors influence the distance orangutans crossed. A non-invasive photographic technique was used to quantify forearm length as a measure of body size. We also recorded locomotor behaviour, support use and the distance crossed between trees. Our results suggest that gap crossing varies with both physical and cognitive development. More complex locomotor behaviours, which utilized compliant trunks and lianas, were used to cross the largest gaps, but these peaked in frequency much earlier than expected, between the ages of 4 and 5 years old, which probably reflects play behaviour to perfect locomotor techniques. Smaller individuals also crossed disproportionately large gaps relative to their size, by using support deformation. Our results suggest that orangutans acquire the full repertoire of gap crossing techniques, including the more cognitively demanding ones, before weaning, but adjust the frequency of the use of these techniques to their increasing body size.
Grulke, N E; Johnson, R; Monschein, S; Nikolova, P; Tausz, M
2003-09-01
Crown morphology and leaf tissue chemical and biochemical attributes associated with ozone (O3) injury were assessed in the lower, mid- and upper canopy of Jeffrey pine (Pinus jeffreyi Grev. & Balf.) growing in mesic and xeric microsites in Sequoia National Park, California. Microsites were designated mesic or xeric based on topography and bole growth in response to years of above-average precipitation. In mesic microsites, canopy response to O3 was characterized by thinner branches, earlier needle fall, less chlorotic leaf mottling, and lower foliar antioxidant capacity, especially of the aqueous fraction. In xeric microsites, canopy response to O3 was characterized by higher chlorotic leaf mottling, shorter needles, lower needle chlorophyll concentration, and greater foliar antioxidant capacity. Increased leaf chlorotic mottle in xeric microsites was related to drought stress and increased concurrent internal production of highly reactive oxygen species, and not necessarily to stomatal O3 uptake. Within-canopy position also influenced the expression of O3 injury in Jeffrey pine.
Royo, Alejandro A; Collins, Rachel; Adams, Mary Beth; Kirschbaum, Chad; Carson, Walter P
2010-01-01
Disruptions to historic disturbance and herbivory regimes have altered plant assemblages in forests worldwide. An emerging consensus suggests that these disruptions often result in impoverished forest biotas. This is particularly true for eastern U.S. deciduous forests where large gaps and understory fires were once relatively common and browsers were far less abundant. Although much research has focused on how disturbance and browsers affect tree diversity, far less attention has been devoted to forest understories where the vast majority (>75%) of the vascular species reside. Here we test the hypothesis that the reintroduction of disturbances resembling historic disturbance regimes and moderate levels of ungulate browsing enhance plant diversity. We explore whether once-common disturbances and their interaction with the top-down influence of browsers can create conditions favorable for the maintenance of a rich herbaceous layer in a region recognized as a temperate biodiversity hotspot in West Virginia, U.S.A. We tested this hypothesis via a factorial experiment whereby we manipulated canopy gaps (presence/absence) of a size typically found in old-growth stands, low-intensity understory fire (burned/unburned), and deer browsing (fenced/unfenced). We tracked the abundance and diversity of more than 140 herb species for six years. Interactions among our treatments were pervasive. The combination of canopy gaps and understory fire increased herbaceous layer richness, cover, and diversity well beyond either disturbance alone. Furthermore, we documented evidence that deer at moderate levels of abundance promote herbaceous richness and abundance by preferentially browsing fast-growing pioneer species that thrive following co-occurring disturbances (i.e., fire and gaps). This finding sharply contrasts with the negative impact browsers have when their populations reach levels well beyond those that occurred for centuries. Although speculative, our results suggest that interactions among fire, canopy gaps, and browsing provided a variable set of habitats and conditions across the landscape that was potentially capable of maintaining much of the plant diversity found in temperate forests.
Species data: National inventory of range maps and distribution models
Gergely, Kevin J.; McKerrow, Alexa
2013-01-01
The Gap Analysis Program (GAP) produces data and tools that help meet critical national challenges such as biodiversity conservation, renewable energy development, climate change adaptation, and infrastructure investment. The GAP species data includes vertebrate range maps and distribution models for the continental United States, as well as Alaska, Hawaii, Puerto Rico, and U.S. Virgin Islands. The vertebrate species include amphibians, birds, mammals, and reptiles. Furthermore, data used to create the distribution models (for example, percent canopy cover, elevation, and so forth) also are available.
NASA Astrophysics Data System (ADS)
Song, Jinling; Qu, Yonghua; Wang, Jindi; Wan, Huawei; Liu, Xiaoqing
2007-06-01
Radiosity method is based on the computer simulation of 3D real structures of vegetations, such as leaves, branches and stems, which are composed by many facets. Using this method we can simulate the canopy reflectance and its bidirectional distribution of the vegetation canopy in visible and NIR regions. But with vegetations are more complex, more facets to compose them, so large memory and lots of time to calculate view factors are required, which are the choke points of using Radiosity method to calculate canopy BRF of lager scale vegetation scenes. We derived a new method to solve the problem, and the main idea is to abstract vegetation crown shapes and to simplify their structures, which can lessen the number of facets. The facets are given optical properties according to the reflectance, transmission and absorption of the real structure canopy. Based on the above work, we can simulate the canopy BRF of the mix scenes with different species vegetation in the large scale. In this study, taking broadleaf trees as an example, based on their structure characteristics, we abstracted their crowns as ellipsoid shells, and simulated the canopy BRF in visible and NIR regions of the large scale scene with different crown shape and different height ellipsoids. Form this study, we can conclude: LAI, LAD the probability gap, the sunlit and shaded surfaces are more important parameter to simulate the simplified vegetation canopy BRF. And the Radiosity method can apply us canopy BRF data in any conditions for our research.
Use of spectral analogy to evaluate canopy reflectance sensitivity to leaf optical property
NASA Technical Reports Server (NTRS)
Baret, Frederic; Vanderbilt, Vern C.; Steven, Michael D.; Jacquemoud, Stephane
1993-01-01
The spectral variation of canopy reflectance is mostly governed by the absorption properties of the elements, hence the leaves, since their intrinsic scattering properties show very little spectral variation. The relationship between canopy reflectance and leaf reflectance measured at the red edge over sugar beet canopies was used to simulate canopy reflectance from leaf reflectance spectra measured over the whole spectral domain. The results show that the spectral analogies found allows accurate reconstruction of canopy reflectance spectra. Explicit assumptions about the very low spectral variation of leaf intrinsic scattering properties are thus indirectly justified. The sensitivity of canopy reflectance (rho(sub c)) to leaf optical properties can then be investigated from concurrent spectral variations of canopy (delta rho(sub c)/delta lambda) and leaf reflectance (delta rho(sub l)/delta lambda): (delta rho(sub c))/(delta rho(sub l)) = ((delta rho(sub c))/(delta lambda) ((delta rho( sub l))/(delta lambda))(sup -1)). This expression is strictly valid only when the optical properties of the soil background or the other vegetation elements such as bark are either spectrally flat or do not contribute significantly to canopy reflectance. Simulations using the SAIL and PROSPECT models demonstrate that the sensitivity of canopy reflectance to leaf reflectance is significant for large vegetation cover fractions in spectral domains where absorption is low. In these conditions, multiple, scattering enhances the leaf absorption features by a factor that can be greater than 2.0. To override the limitations of the SAIL model for the description of the canopy architecture, we tested the previous findings on experimental data. Concurrent canopy and leaf reflectance spectra were measured for a range of sugar beet canopies. The results show good agreement with the theoretical findings. Conclusions are drawn about the applicability of these findings, with particular attention to the potential detectability of leaf biochemical composition from canopy reflectance sensed from space.
NASA Astrophysics Data System (ADS)
Ustin, S.; Roth, K. L.; Huesca, M.; Casas, A.; Adeline, K.; Drewry, D.; Koltunov, A.; Ramirez, C.
2015-12-01
Given the known heterogeneity in ecological processes within plant communities in California, we questioned whether the concept of conventional plant functional types (cPFTs) was adequate to characterize the functionality of the dominant species in these communities. We examined seasonal (spring, summer, fall) airborne AVIRIS and MASTER imagery collected during three years of progressive drought in California, and airborne LiDAR acquired once, for ecosystems that represent a wide range of plant functional types, from annual agriculture and herbaceous perennial wetlands, to forests and shrublands, including broadleaf deciduous and evergreen species and conifer species. These data were used to determine the extent to which changes in canopy chemistry could be detected, quantified, and related to leaf and canopy traits that are indicators of physiological functioning (water content, Leaf Mass Area, total C, N, and pigments (chlorophyll a, b, and carotenoids). At the canopy scale we measured leaf area index, and for forests — species, height, canopy area, DBH, deciduous or evergreen, broadleaf or needleleaf, and gap size. Strong correlations between leaf and canopy traits were predictable and quantifiable from spectroscopy data. Key structural properties of canopy height, biomass and complexity, a measure of spatial and vertical heterogeneity, were predicted by AVIRIS and validated against LiDAR data. Our data supports the hypothesis that optical sensors provide more detailed information about the distribution and variability in leaf and canopy traits related to plant functionality than cPFTs.
Stephen D. Pecot; Robert J. Mitchell; Brian J. Palik; Barry Moser; J. Kevin Hiers
2007-01-01
A trenching study was used to investigate above- and below-ground competition in a longleaf pine (Pinus palustris P. Mill.) woodland. Trenched and nontrenched plots were replicated in the woodland matrix, at gap edges, and in gap centers representing a range of overstory stocking. One-half of each plot received a herbicide treatment to remove the...
Canopy structural complexity predicts forest canopy light absorption at continental scales
NASA Astrophysics Data System (ADS)
Atkins, J. W.; Fahey, R. T.; Hardiman, B. S.; Gough, C. M.
2017-12-01
Understanding how the physical structure of forest canopies influence light acquisition is a long-standing area of inquiry fundamental to advancing understanding of many areas of the physical sciences, including the modeling and interpretation of biogeochemical cycles. Conventional measures of forest canopy structure employed in earth system models are often limited to leaf area index (LAI)—a measure of the quantity of leaves in the canopy. However, more novel multi-dimensional measures of canopy structural complexity (CSC) that describe the arrangement of vegetation are now possible because of technological advances, and may improve modeled estimates of canopy light absorption. During 2016 and 2017, we surveyed forests at sites from across the eastern, southern, and midwestern United States using portable canopy LiDAR (PCL). This survey included 14 National Ecological Observation Network (NEON), Long-Term Ecological Research Network (LTER,) Ameriflux, and University affiliated sites. Our findings show that a composite model including CSC parameters and LAI explains 96.8% of the variance in light acquisition, measured as the fraction of photosynthetically absorbed radiation (fPAR) at the continental scale, and improvement of 12% over an LAI only model. Under high light sky conditions, measures of CSC are more strongly coupled with light acquisition than under low light, possibly because light scattering partially decouples CSC from canopy light absorption under low, predominately diffuse light conditions. We conclude that scalable estimates of CSC metrics may improve continent-wide estimates of canopy light absorption and, therefore, carbon uptake, with implications for remote sensing and earth system modeling.
Rainfall interception, and its modeling, in Pine and Eucalypt stands in Portugal
NASA Astrophysics Data System (ADS)
de Coninck, H. L.; Keizer, J. J.; Coelho, C. O. A.; van Dijck, S. J. E.; Jetten, V. G.; Warmerdam, P. M. M.; Ferreira, A. J. D.; Boulet, A. K.
2003-04-01
Within the framework of the EU-funded CLIMED project (ICA3-2000-30005), concerning the water management implications of foreseeable climate and land-use changes in central Portugal and northern Africa, the event-based Limburg Soil Erosion Model (LISEM; www.geog.uu.nl/lisem) is intended to provide further insight into water yields, peak flow and timing under possible future rainfall regimes. In the Portuguese study area, LISEM is being applied to two small (< 1km2) catchments with contrasting land covers, dominated by Pinus pinaster Ait. and Eucalyptus globulus Labill. tree stands, respectively. In LISEM, cumulative interception is modelled using the empirical formula by Ashton (1979), i.e. as a function of vegetation cover and canopy storage capacity, which in turn is estimated from the Leaf Area Index using the Von Hoyningen-Huenes (1981) formula. Besides that the appropriateness of the LISEM interception module for forested areas may be questioned, its (optional) substitution in LISEM by a more process-based model like that of Rutter would be more in line with LISEM’s overall model structure. This study has as main aims to assess the suitability of (1) the Ashton formula and (2) the sparse variants of the Gash and Rutter interception models to model rainfall interception measurements carried out in a Pinus pinaster Ait. stand as well as a Eucalyptus globulus Labill. stand. Unlike in the bulk of published studies on forest interception, the experimental set-up structures the sampling space in below-canopy and gaps. The below-canopy sampling space is further divided into two classes on the basis of dendrometric data from a prior inventory of 20x20 m. The two stands are equipped with 15 below-canopy and 5 gap rainfall collectors, 3 of which are automated tipping-buckets gauges. Stemflow is measured for 10 trees per stand, which includes 2 trees with automated tipping-bucket (0.5 l/tip). Between November 2002 and the present time, 31 rainfall events totaling about 850 mm were recorded. Interestingly, these preliminary results reveal that below-canopy rainfall may exceed gap rainfall. This phenomenon can be explained by non-vertical rainfall, increasing the probability of droplets hitting the tree canopy instead of the forest floor. If further measurements confirm it to occur regularly, the suitability of not only the LISEM interception module but also the sparse Rutter and Gash models will, at least conceptually, be in doubt.
New gap-filling and partitioning technique for H2O eddy fluxes measured over forests
NASA Astrophysics Data System (ADS)
Kang, Minseok; Kim, Joon; Malla Thakuri, Bindu; Chun, Junghwa; Cho, Chunho
2018-01-01
The continuous measurement of H2O fluxes using the eddy covariance (EC) technique is still challenging for forests because of large amounts of wet canopy evaporation (EWC), which occur during and following rain events when the EC systems rarely work correctly. We propose a new gap-filling and partitioning technique for the H2O fluxes: a model-statistics hybrid (MSH) method. It enables the recovery of the missing EWC in the traditional gap-filling method and the partitioning of the evapotranspiration (ET) into transpiration and (wet canopy) evaporation. We tested and validated the new method using the data sets from two flux towers, which are located at forests in hilly and complex terrains. The MSH reasonably recovered the missing EWC of 16-41 mm yr-1 and separated it from the ET (14-23 % of the annual ET). Additionally, we illustrated certain advantages of the proposed technique which enable us to understand better how ET responds to environmental changes and how the water cycle is connected to the carbon cycle in a forest ecosystem.
Watershed Land Use and Seasonal Variation Constrain the ...
While watershed and local scale controls on stream metabolism have been independently investigated, little is known about how controls exerted at these different scales interact to determine stream metabolic rates, or how these interactions vary across seasons. To address this knowledge gap, we measured ecosystem metabolism in four urban and four reference streams in northern Kentucky, USA, with paired closed and open riparian canopies, during each of the four seasons of the year. Gross primary production (GPP), ecosystem respiration (ER), and net ecosystem production (NEP) were all best predicted by models with season as a main effect, but interactions between season, canopy and watershed varied for each response. Urban streams exhibited higher GPP during most seasons, likely due to elevated nutrient loads. Open canopy reaches in both urban and forested streams supported higher rates of GPP than the closed canopy reaches during the summer and fall when the overhead vegetation shaded the closed reaches. Surprisingly, the effect of canopy cover on GPP was similar among urban and forested streams. The combination of watershed and local-scale controls resulted in urban streams that alternated between net heterotrophy (NEP 0) between seasons with and without dense canopy cover. This finding has management relevance because net production can lead to accumulation of algal biomass and associated issues like dissolved oxygen sags at night. Our study reinforces
Ding, Risheng; Kang, Shaozhong; Du, Taisheng; Hao, Xinmei; Zhang, Yanqun
2014-01-01
The dual-source Shuttleworth-Wallace model has been widely used to estimate and partition crop evapotranspiration (λET). Canopy stomatal conductance (Gsc), an essential parameter of the model, is often calculated by scaling up leaf stomatal conductance, considering the canopy as one single leaf in a so-called "big-leaf" model. However, Gsc can be overestimated or underestimated depending on leaf area index level in the big-leaf model, due to a non-linear stomatal response to light. A dual-leaf model, scaling up Gsc from leaf to canopy, was developed in this study. The non-linear stomata-light relationship was incorporated by dividing the canopy into sunlit and shaded fractions and calculating each fraction separately according to absorbed irradiances. The model includes: (1) the absorbed irradiance, determined by separately integrating the sunlit and shaded leaves with consideration of both beam and diffuse radiation; (2) leaf area for the sunlit and shaded fractions; and (3) a leaf conductance model that accounts for the response of stomata to PAR, vapor pressure deficit and available soil water. In contrast to the significant errors of Gsc in the big-leaf model, the predicted Gsc using the dual-leaf model had a high degree of data-model agreement; the slope of the linear regression between daytime predictions and measurements was 1.01 (R2 = 0.98), with RMSE of 0.6120 mm s-1 for four clear-sky days in different growth stages. The estimates of half-hourly λET using the dual-source dual-leaf model (DSDL) agreed well with measurements and the error was within 5% during two growing seasons of maize with differing hydrometeorological and management strategies. Moreover, the estimates of soil evaporation using the DSDL model closely matched actual measurements. Our results indicate that the DSDL model can produce more accurate estimation of Gsc and λET, compared to the big-leaf model, and thus is an effective alternative approach for estimating and partitioning λET.
Ding, Risheng; Kang, Shaozhong; Du, Taisheng; Hao, Xinmei; Zhang, Yanqun
2014-01-01
The dual-source Shuttleworth-Wallace model has been widely used to estimate and partition crop evapotranspiration (λET). Canopy stomatal conductance (Gsc), an essential parameter of the model, is often calculated by scaling up leaf stomatal conductance, considering the canopy as one single leaf in a so-called “big-leaf” model. However, Gsc can be overestimated or underestimated depending on leaf area index level in the big-leaf model, due to a non-linear stomatal response to light. A dual-leaf model, scaling up Gsc from leaf to canopy, was developed in this study. The non-linear stomata-light relationship was incorporated by dividing the canopy into sunlit and shaded fractions and calculating each fraction separately according to absorbed irradiances. The model includes: (1) the absorbed irradiance, determined by separately integrating the sunlit and shaded leaves with consideration of both beam and diffuse radiation; (2) leaf area for the sunlit and shaded fractions; and (3) a leaf conductance model that accounts for the response of stomata to PAR, vapor pressure deficit and available soil water. In contrast to the significant errors of Gsc in the big-leaf model, the predicted Gsc using the dual-leaf model had a high degree of data-model agreement; the slope of the linear regression between daytime predictions and measurements was 1.01 (R2 = 0.98), with RMSE of 0.6120 mm s−1 for four clear-sky days in different growth stages. The estimates of half-hourly λET using the dual-source dual-leaf model (DSDL) agreed well with measurements and the error was within 5% during two growing seasons of maize with differing hydrometeorological and management strategies. Moreover, the estimates of soil evaporation using the DSDL model closely matched actual measurements. Our results indicate that the DSDL model can produce more accurate estimation of Gsc and λET, compared to the big-leaf model, and thus is an effective alternative approach for estimating and partitioning λET. PMID:24752329
NASA Technical Reports Server (NTRS)
Zhang, Qingyuan; Middleton, Elizabeth M.; Gao, Bo-Cai; Cheng, Yen-Ben
2011-01-01
This study presents development of prototype products for terrestrial ecosystems in preparation for the future imaging spectrometer planned for the Hyperspectral Infrared Imager (HyspIRI) mission. We present a successful demonstration example in a coniferous forest of two product prototypes: fraction of photosynthetic active radiation (PAR) absorbed by chlorophyll of a canopy (fAPAR(sub chl)) and leaf water content (LWC), for future HyspIRI implementation at 60 m spatial resolution. For this, we used existing 30 m resolution imaging spectrometer data available from the Earth Observing One (EO-1) Hyperion satellite to simulate and prototype the level one radiometrically corrected radiance (L1R) images expected from the HyspIRI visible through shortwave infrared spectrometer. The HyspIRI-like images were atmospherically corrected to obtain surface reflectance, and spectrally resampled to produce 60 m reflectance images for wavelength regions that were comparable to all seven of the MODerate resolution Imaging Spectroradiometer (MODIS) land bands. Thus, we developed MODIS-like surface reflectance in seven spectral bands at the HyspIRI-like spatial scale, which was utilized to derive fAPARchl and LWC with a coupled canopy-leaf radiative transfer model (PROSAIL2) for the coniferous forest[1]. With this study, we provide additional evidence that the fAPARchl product is more realistic for describing the physiologically active canopy than the traditional fAPAR parameter for the whole canopy (fAPAR(sub canopy)), and thus should replace it in ecosystem process models to reduce uncertainties in terrestrial carbon cycle studies and ecosystem studies.
NASA Astrophysics Data System (ADS)
van Stan, J. T.; Levia, D. F.; Inamdar, S. P.; Mitchell, M. J.; Mage, S. M.
2010-12-01
Dissolved organic carbon (DOC) inputs from canopy-derived hydrologic fluxes play a significant role in the terrestrial carbon budgets of forested ecosystems. However, no studies known to the authors have examined the variability of both DOC concentrations and quality for stemflow across time scales, nor has any study to date evaluated the effects of canopy structure on stemflow DOC characteristics. This investigation seeks to rectify this knowledge gap by examining the variability of stemflow DOC concentrations and quality across contrasting canopy morphologies and time scales (seasonal, storm and intrastorm). Bulk and intrastorm stemflow samples from a less dense, rough-barked, more plagiophile (Liriodendron tulipifera L. (tulip poplar)) and a denser, thin-barked, more erectophile (Fagus grandifolia Ehrh. (American beech)) canopy were collected and analyzed for DOC quality using metrics derived from UV-vis spectroscopy (E2:E3 ratio, SUVA254, select spectral slope (S), and spectral slope ratios (SR)). Our results suggest that stemflow DOC concentrations and quality change as crown architectural traits enhance or diminish hydrologic retention time within the canopy. The architecture of L. tulipifera canopies likely retards the flow of intercepted water, increasing chemical exchange with bark and foliar surfaces. UV-vis metrics indicated that this increased chemical exchange, particularly with bark surfaces, generally enhanced aromatic hydrocarbon content and increased molecular weight. Because leaf presence influenced DOC quality, stemflow DOC characteristics also varied seasonally in response to canopy condition. At the inter- and intrastorm scale, stemflow DOC concentration and quality varied with meteorological and antecedent canopy conditions. Since recent studies have linked stemflow production to preferential subsurface transport of dissolved chemistries, trends in DOC speciation and fluxes described in this study may impact soil environments within wooded ecosystems.
NASA Astrophysics Data System (ADS)
Moore, L. D.; Van Stan, J. T., II; Rosier, C. L.; Gay, T. E.; Wu, T.
2014-12-01
Forest canopy structure controls the timing, amount and chemical character of precipitation supply to soils through interception and drainage along crown surfaces. Yet, few studies have examined forest canopy structural connections to soil microbial communities (SMCs), and none have measured how this affects SMC N functions. The maritime Quercus virginiana Mill. (southern live oak) forests of St Catherine's Island, GA, USA provide an ideal opportunity to examine canopy structural alterations to SMCs and their functioning, as their throughfall varies substantially across space due to dense Tillandsia usneoides L. (spanish moss) mats bestrewn throughout. To examine the impact of throughfall variability on SMC N functions, we examined points along the canopy coverage continuum: large canopy gaps (0%), bare canopy (50-60%), and canopy of heavy T. usneoides coverage (>=85%). Five sites beneath each of the canopy cover types were monitored for throughfall water/ions and soil leachates chemistry for one storm each month over the growing period (7 months, Mar-2014 to Sep-2014) to compare with soil chemistry and SMC communities sampled every two months throughout that same period (Mar, May, Jul, Sep). DGGE and QPCR analysis of the N functioning genes (NFGs) to characterize the ammonia oxidizing bacterial (AOB-amoA), archaea (AOA-amoA), and ammonification (chiA) communities were used to determine the nitrification and decomposition potential of these microbial communities. PRS™-probes (Western Ag Innovations Inc., Saskatoon, Canada) were then used to determine the availability of NO3-N and NH4+N in the soils over a 6-week period to evaluate whether the differing NFG abundance and community structures resulted in altered N cycling.
Sources of sulphur in rain collected below a wheat canopy.
Raybould, C C; Unsworth, M H; Gregory, P J
1977-05-12
Vegetation plays an important role in the cycle of sulphur between the atmosphere and the soil. We have measured the quantity of sulphur in rain collected below a maturing wheat canopy. This sulphur has three sources: first, the atmosphere, from which falling rain gains SO2 and sulphate; second, leaf surfaces, from which rain washes sulphur which was previously deposited by turbulent transfer ('dry deposition'), and third, leaf tissue, from which rain leaches sulphur. We have now deduced from field and laboratory measurements that leaching supplied nearly 90% of the sulphur gained by rain as it fell through the wheat canopy. Only a small fraction of sulphur which had been dry-deposited on the surface of leaves could be washed off.
NASA Astrophysics Data System (ADS)
Baker, E. H.; Raleigh, M. S.; Molotch, N. P.
2014-12-01
Since the mid-1990s, outbreaks of aggressive bark beetle species have caused extensive forest morality across 600,000 km2 of North-American forests, killing over 17,800 km2 of forest in Colorado alone. This mortality has resulted in a widespread, spatially heterogeneous decline of forest canopies, which in turn exerts strong controls on the accumulation and melt of the snowpack. In the Western United States, where approximately 70-80% of total annual runoff originates as mountain snowmelt, it is important to monitor and quantify changes in forest canopy in snow-dominated catchments. To quantify annual values of forest canopy cover, this research develops a metric from time series of daily fractional snow covered area (FSCA) from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) snow covered area and grain size (MODSCAG) algorithm. In areas where soil and rock are completely snow-covered, a land pixel is composed only of forest canopy and snow. Following a snowfall event, FSCA initially rises rapidly, as snow is intercepted in the canopy, and then declines, as snow unloads from the canopy. The lower of these local minima form a threshold representative of snow-free canopy conditions, which serves as a spatially explicit metric of forest canopy. Investigation of a site in southern Colorado with over 40% spruce beetle mortality shows a statistically significant decrease of canopy cover, from 76 (±4)% pre-infestation to 55 (±8)% post-infestation (t=-5.1, p<0.01). Additionally, this yearly parameterization of forest canopy is well correlated (ρ=0.76, p<0.01) with an independent product of yearly crown mortality derived from U.S. Forest Service Aerial Detection Surveys. Future work will examine this relationship across varied ecologic settings and geographic locations, and incorporate field measurements of species-specific canopy change after beetle kill.
NASA Technical Reports Server (NTRS)
Eckstrom, Clinton V.; Preisser, John S.
1967-01-01
A 30-foot (9.1 meter) nominal-diameter disk-gap-band parachute (reference area 707 sq ft (65.7 m(exp 2)) was flight tested with a 200-pound (90.7 kg) instrumented payload as part of the NASA Planetary Entry Parachute Program. A deployment mortar ejected the test parachute when the payload was at a Mach number of 1.56 and a dynamic pressure of 11.4 lb/sq ft (546 newtons per m 2 ) at an altitude of 127,500 feet (38.86 km). The parachute reached suspension line stretch in 0.37 second resulting in a snatch force loading of 1270 pounds (5650 N). Canopy inflation began 0.10 second after line stretch. A delay in the opening process occurred and was apparently due to a momentary interference of the glass-fiber shroud used in packing the parachute bag in the mortar. Continuous canopy inflation began 0.73 second after initiation of deployment and 0.21 second later full inflation was attained for a total elapsed time from mortar fire of 0.94 second. The maximum opening load of 3915 pounds (17,400 newtons) occurred at the time the canopy was first fully opened. The parachute exhibited an average drag coefficient of 0.52 during the deceleration period and pitch-yaw oscillations of the canopy were less than 5 degrees. During the steady-state descent portion of the test period, the average effective drag coefficient was about 0.47 (based on vertical descent velocity and total system weight).
Logging disturbance shifts net primary productivity and its allocation in Bornean tropical forests.
Riutta, Terhi; Malhi, Yadvinder; Kho, Lip Khoon; Marthews, Toby R; Huaraca Huasco, Walter; Khoo, MinSheng; Tan, Sylvester; Turner, Edgar; Reynolds, Glen; Both, Sabine; Burslem, David F R P; Teh, Yit Arn; Vairappan, Charles S; Majalap, Noreen; Ewers, Robert M
2018-01-24
Tropical forests play a major role in the carbon cycle of the terrestrial biosphere. Recent field studies have provided detailed descriptions of the carbon cycle of mature tropical forests, but logged or secondary forests have received much less attention. Here, we report the first measures of total net primary productivity (NPP) and its allocation along a disturbance gradient from old-growth forests to moderately and heavily logged forests in Malaysian Borneo. We measured the main NPP components (woody, fine root and canopy NPP) in old-growth (n = 6) and logged (n = 5) 1 ha forest plots. Overall, the total NPP did not differ between old-growth and logged forest (13.5 ± 0.5 and 15.7 ± 1.5 Mg C ha -1 year -1 respectively). However, logged forests allocated significantly higher fraction into woody NPP at the expense of the canopy NPP (42% and 48% into woody and canopy NPP, respectively, in old-growth forest vs 66% and 23% in logged forest). When controlling for local stand structure, NPP in logged forest stands was 41% higher, and woody NPP was 150% higher than in old-growth stands with similar basal area, but this was offset by structure effects (higher gap frequency and absence of large trees in logged forest). This pattern was not driven by species turnover: the average woody NPP of all species groups within logged forest (pioneers, nonpioneers, species unique to logged plots and species shared with old-growth plots) was similar. Hence, below a threshold of very heavy disturbance, logged forests can exhibit higher NPP and higher allocation to wood; such shifts in carbon cycling persist for decades after the logging event. Given that the majority of tropical forest biome has experienced some degree of logging, our results demonstrate that logging can cause substantial shifts in carbon production and allocation in tropical forests. © 2018 John Wiley & Sons Ltd.
Effects of foliage clumping on the estimation of global terrestrial gross primary productivity
NASA Astrophysics Data System (ADS)
Chen, Jing M.; Mo, Gang; Pisek, Jan; Liu, Jane; Deng, Feng; Ishizawa, Misa; Chan, Douglas
2012-03-01
Sunlit and shaded leaf separation proposed by Norman (1982) is an effective way to upscale from leaf to canopy in modeling vegetation photosynthesis. The Boreal Ecosystem Productivity Simulator (BEPS) makes use of this methodology, and has been shown to be reliable in modeling the gross primary productivity (GPP) derived from CO2flux and tree ring measurements. In this study, we use BEPS to investigate the effect of canopy architecture on the global distribution of GPP. For this purpose, we use not only leaf area index (LAI) but also the first ever global map of the foliage clumping index derived from the multiangle satellite sensor POLDER at 6 km resolution. The clumping index, which characterizes the degree of the deviation of 3-dimensional leaf spatial distributions from the random case, is used to separate sunlit and shaded LAI values for a given LAI. Our model results show that global GPP in 2003 was 132 ± 22 Pg C. Relative to this baseline case, our results also show: (1) global GPP is overestimated by 12% when accurate LAI is available but clumping is ignored, and (2) global GPP is underestimated by 9% when the effective LAI is available and clumping is ignored. The clumping effects in both cases are statistically significant (p < 0.001). The effective LAI is often derived from remote sensing by inverting the measured canopy gap fraction to LAI without considering the clumping. Global GPP would therefore be generally underestimated when remotely sensed LAI (actually effective LAI by our definition) is used. This is due to the underestimation of the shaded LAI and therefore the contribution of shaded leaves to GPP. We found that shaded leaves contribute 50%, 38%, 37%, 39%, 26%, 29% and 21% to the total GPP for broadleaf evergreen forest, broadleaf deciduous forest, evergreen conifer forest, deciduous conifer forest, shrub, C4 vegetation, and other vegetation, respectively. The global average of this ratio is 35%.
NASA Technical Reports Server (NTRS)
Harding, D. J.; Lefsky, M. A.; Parker, G. G.; Blair, J. B.
1999-01-01
Lidar altimeter observations of vegetated landscapes provide a time-resolved measure of laser pulse backscatter energy from canopy surfaces and the underlying ground. Airborne lidar altimeter data was acquired using the Scanning Lidar Imager of Canopies by Echo Recovery (SLICER) for a successional sequence of four, closed-canopy, deciduous forest stands in eastern Maryland. The four stands were selected so as to include a range of canopy structures of importance to forest ecosystem function, including variation in the height and roughness of the outer-most canopy surface and the vertical organization of canopy stories and gaps. The character of the SLICER backscatter signal is described and a method is developed that accounts for occlusion of the laser energy by canopy surfaces, transforming the backscatter signal to a canopy height profile (CHP) that quantitatively represents the relative vertical distribution of canopy surface area. The transformation applies an increased weighting to the backscatter amplitude as a function of closure through the canopy and assumes a horizontally random distribution of the canopy components. SLICER CHPs, averaged over areas of overlap where lidar ground tracks intersect, are shown to be highly reproducible. CHP transects across the four stands reveal spatial variations in vegetation, at the scale of the individual 10 m diameter laser footprints, within and between stands. Averaged SLICER CHPs are compared to analogous height profile results derived from ground-based sightings to plant intercepts measured on plots within the four stands. Tbe plots were located on the segments of the lidar ground tracks from which averaged SLICER CHPs were derived, and the ground observations were acquired within two weeks of the SLICER data acquisition to minimize temporal change. The differences in canopy structure between the four stands is similarly described by the SLICER and ground-based CHP results, however a Chi-square test of similarity documents differences that are statistically significant. The differences are discussed in terms of measurement properties that define the smoothness of the resulting CHPs and Lidar Altimeter Measurements of Canopy Structure - Harding et al. canopy properties that may vertically bias the CHP representations of canopy structure. The statistical differences are most likely due to the more noisy character of the ground-based CHPs, especially high in the canopy where ground-based sightings are rare resulting in an underestimate of canopy surface area and height, and to departures from the assumption of horizontal randomness which bias the CHPs toward the observer (upward for SLICER and downward for ground-based CHPs). The results demonstrate that the SLICER observations reliably provide a measure of canopy structure that reveals ecologically interesting structural variations such as those characterizing a successional sequence of closed-canopy, broadleaf forest stands.
Herbivorous insect response to group selection cutting in a southeastern bottomland hardwood forest
Michael D. Ulyshen; James L. Hanula; Scott Horn; John C. Kilgo; Christopher E. Moorman
2005-01-01
Malaise and pitfall traps were used to sample herbivorous insects in canopy gaps created by group-selection cutting in a bottomland hardwood forest in South Carolina. The traps were placed at the centers, edges, and in the forest adjacent to gaps of different sizes (0.13, 0.26, and 0.50 ha) and ages (1 and 7 yr old) during four sampling periods in 2001. Overall, the...
Comparison of modeled backscatter with SAR data at P-band
NASA Technical Reports Server (NTRS)
Wang, Yong; Davis, Frank W.; Melack, John M.
1992-01-01
In recent years several analytical models were developed to predict microwave scattering by trees and forest canopies. These models contribute to the understanding of radar backscatter over forested regions to the extent that they capture the basic interactions between microwave radiation and tree canopies, understories, and ground layers as functions of incidence angle, wavelength, and polarization. The Santa Barbara microwave model backscatter model for woodland (i.e. with discontinuous tree canopies) combines a single-tree backscatter model and a gap probability model. Comparison of model predictions with synthetic aperture radar (SAR) data and L-band (lambda = 0.235 m) is promising, but much work is still needed to test the validity of model predictions at other wavelengths. The validity of the model predictions at P-band (lambda = 0.68 m) for woodland stands at our Mt. Shasta test site was tested.
Bell, David M; Ward, Eric J; Oishi, A Christopher; Oren, Ram; Flikkema, Paul G; Clark, James S
2015-07-01
Uncertainties in ecophysiological responses to environment, such as the impact of atmospheric and soil moisture conditions on plant water regulation, limit our ability to estimate key inputs for ecosystem models. Advanced statistical frameworks provide coherent methodologies for relating observed data, such as stem sap flux density, to unobserved processes, such as canopy conductance and transpiration. To address this need, we developed a hierarchical Bayesian State-Space Canopy Conductance (StaCC) model linking canopy conductance and transpiration to tree sap flux density from a 4-year experiment in the North Carolina Piedmont, USA. Our model builds on existing ecophysiological knowledge, but explicitly incorporates uncertainty in canopy conductance, internal tree hydraulics and observation error to improve estimation of canopy conductance responses to atmospheric drought (i.e., vapor pressure deficit), soil drought (i.e., soil moisture) and above canopy light. Our statistical framework not only predicted sap flux observations well, but it also allowed us to simultaneously gap-fill missing data as we made inference on canopy processes, marking a substantial advance over traditional methods. The predicted and observed sap flux data were highly correlated (mean sensor-level Pearson correlation coefficient = 0.88). Variations in canopy conductance and transpiration associated with environmental variation across days to years were many times greater than the variation associated with model uncertainties. Because some variables, such as vapor pressure deficit and soil moisture, were correlated at the scale of days to weeks, canopy conductance responses to individual environmental variables were difficult to interpret in isolation. Still, our results highlight the importance of accounting for uncertainty in models of ecophysiological and ecosystem function where the process of interest, canopy conductance in this case, is not observed directly. The StaCC modeling framework provides a statistically coherent approach to estimating canopy conductance and transpiration and propagating estimation uncertainty into ecosystem models, paving the way for improved prediction of water and carbon uptake responses to environmental change. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sarlikioti, V; de Visser, P H B; Marcelis, L F M
2011-04-01
At present most process-based models and the majority of three-dimensional models include simplifications of plant architecture that can compromise the accuracy of light interception simulations and, accordingly, canopy photosynthesis. The aim of this paper is to analyse canopy heterogeneity of an explicitly described tomato canopy in relation to temporal dynamics of horizontal and vertical light distribution and photosynthesis under direct- and diffuse-light conditions. Detailed measurements of canopy architecture, light interception and leaf photosynthesis were carried out on a tomato crop. These data were used for the development and calibration of a functional-structural tomato model. The model consisted of an architectural static virtual plant coupled with a nested radiosity model for light calculations and a leaf photosynthesis module. Different scenarios of horizontal and vertical distribution of light interception, incident light and photosynthesis were investigated under diffuse and direct light conditions. Simulated light interception showed a good correspondence to the measured values. Explicitly described leaf angles resulted in higher light interception in the middle of the plant canopy compared with fixed and ellipsoidal leaf-angle distribution models, although the total light interception remained the same. The fraction of light intercepted at a north-south orientation of rows differed from east-west orientation by 10 % on winter and 23 % on summer days. The horizontal distribution of photosynthesis differed significantly between the top, middle and lower canopy layer. Taking into account the vertical variation of leaf photosynthetic parameters in the canopy, led to approx. 8 % increase on simulated canopy photosynthesis. Leaf angles of heterogeneous canopies should be explicitly described as they have a big impact both on light distribution and photosynthesis. Especially, the vertical variation of photosynthesis in canopy is such that the experimental approach of photosynthesis measurements for model parameterization should be revised.
Sarlikioti, V.; de Visser, P. H. B.; Marcelis, L. F. M.
2011-01-01
Background and Aims At present most process-based models and the majority of three-dimensional models include simplifications of plant architecture that can compromise the accuracy of light interception simulations and, accordingly, canopy photosynthesis. The aim of this paper is to analyse canopy heterogeneity of an explicitly described tomato canopy in relation to temporal dynamics of horizontal and vertical light distribution and photosynthesis under direct- and diffuse-light conditions. Methods Detailed measurements of canopy architecture, light interception and leaf photosynthesis were carried out on a tomato crop. These data were used for the development and calibration of a functional–structural tomato model. The model consisted of an architectural static virtual plant coupled with a nested radiosity model for light calculations and a leaf photosynthesis module. Different scenarios of horizontal and vertical distribution of light interception, incident light and photosynthesis were investigated under diffuse and direct light conditions. Key Results Simulated light interception showed a good correspondence to the measured values. Explicitly described leaf angles resulted in higher light interception in the middle of the plant canopy compared with fixed and ellipsoidal leaf-angle distribution models, although the total light interception remained the same. The fraction of light intercepted at a north–south orientation of rows differed from east–west orientation by 10 % on winter and 23 % on summer days. The horizontal distribution of photosynthesis differed significantly between the top, middle and lower canopy layer. Taking into account the vertical variation of leaf photosynthetic parameters in the canopy, led to approx. 8 % increase on simulated canopy photosynthesis. Conclusions Leaf angles of heterogeneous canopies should be explicitly described as they have a big impact both on light distribution and photosynthesis. Especially, the vertical variation of photosynthesis in canopy is such that the experimental approach of photosynthesis measurements for model parameterization should be revised. PMID:21355008
NASA Technical Reports Server (NTRS)
Strahler, Alan H.; Jupp, David L. B.
1990-01-01
Geometric-optical discrete-element mathematical models for forest canopies have been developed using the Boolean logic and models of Serra. The geometric-optical approach is considered to be particularly well suited to describing the bidirectional reflectance of forest woodland canopies, where the concentration of leaf material within crowns and the resulting between-tree gaps make plane-parallel, radiative-transfer models inappropriate. The approach leads to invertible formulations, in which the spatial and directional variance provides the means for remote estimation of tree crown size, shape, and total cover from remotedly sensed imagery.
Glenn, Edward P; Huete, Alfredo R; Nagler, Pamela L; Nelson, Stephen G
2008-03-28
Vegetation indices (VIs) are among the oldest tools in remote sensing studies. Although many variations exist, most of them ratio the reflection of light in the red and NIR sections of the spectrum to separate the landscape into water, soil, and vegetation. Theoretical analyses and field studies have shown that VIs are near-linearly related to photosynthetically active radiation absorbed by a plant canopy, and therefore to light-dependent physiological processes, such as photosynthesis, occurring in the upper canopy. Practical studies have used time-series VIs to measure primary production and evapotranspiration, but these are limited in accuracy to that of the data used in ground truthing or calibrating the models used. VIs are also used to estimate a wide variety of other canopy attributes that are used in Soil-Vegetation-Atmosphere Transfer (SVAT), Surface Energy Balance (SEB), and Global Climate Models (GCM). These attributes include fractional vegetation cover, leaf area index, roughness lengths for turbulent transfer, emissivity and albedo. However, VIs often exhibit only moderate, non-linear relationships to these canopy attributes, compromising the accuracy of the models. We use case studies to illustrate the use and misuse of VIs, and argue for using VIs most simply as a measurement of canopy light absorption rather than as a surrogate for detailed features of canopy architecture. Used this way, VIs are compatible with "Big Leaf" SVAT and GCMs that assume that canopy carbon and moisture fluxes have the same relative response to the environment as any single leaf, simplifying the task of modeling complex landscapes.
Michael D. Ulyshen; James L. Hanula; Scott Horn; John C. Kilgo; Christopher E. Moorman
2005-01-01
We compared the response of ground beetles (Coleoptera: Carabidae) to the creation of canopy gaps of different size (0.13, 0.26, and 0.50 ha) and age (1 and 7 years) in a bottomland hardwood forest (South Carolina, USA). Samples were collected four times in 2001 by malaise and pitfall traps placed at the center and edge of each gap, and 50 m into the surrounding forest...
Dumais, Daniel; Prévost, Marcel
2014-02-01
We examined the ecophysiology and growth of 0.3-1.3 m tall advance red spruce (Picea rubens Sarg.) and balsam fir (Abies balsamea [L.] Mill.) regeneration during a 5-year period following the application of different harvest types producing three sizes of canopy openings: (i) small gaps (<100 m(2) in area; SMA) created by partial uniform single-tree harvest; (ii) irregular gaps of intermediate size (100-300 m(2); INT) created by group-selection harvest (removal of groups of trees, mainly balsam fir, with uniform partial removal between groups); and (iii) large circular gaps (700 m(2); LAR) created by patch-selection harvest (removal of trees in 30-m diameter circular areas with uniform partial removal between gaps). An unharvested control (CON) was monitored for comparison. At the ecophysiological level, we mainly found differences in light-saturated photosynthesis of red spruce and specific leaf area of balsam fir among treatments. Consequently, we observed good height growth of both species in CON and INT, but fir surpassed spruce in SMA and LAR. Results suggest that intermediate 100-300 m(2) irregular openings create microenvironmental conditions that may promote short-term ecophysiology and growth of red spruce, allowing the species to compete with balsam fir advance regeneration. Finally, results observed for spruce in large 700-m(2) openings confirm its inability to grow as rapidly as fir in comparable open conditions.
NASA Technical Reports Server (NTRS)
Morton, Douglas C.; Nagol, Jyoteshwar; Carabajal, Claudia C.; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D.; Vermote, Eric F.; Harding, David J.; North, Peter R. J.
2016-01-01
Multiple mechanisms could lead to up-regulation of dry-season photosynthesis in Amazon forests, including canopy phenology and illumination geometry. We specifically tested two mechanisms for phenology-driven changes in Amazon forests during dry-season months, and the combined evidence from passive optical and lidar satellite data was incompatible with large net changes in canopy leaf area or leaf reflectance suggested by previous studies. We therefore hypothesized that seasonal changes in the fraction of sunlit and shaded canopies, one aspect of bidirectional reflectance effects in Moderate Resolution Imaging Spectroradiometer (MODIS) data, could alter light availability for dry-season photosynthesis and the photosynthetic capacity of Amazon forests without large net changes in canopy composition. Subsequent work supports the hypothesis that seasonal changes in illumination geometry and diffuse light regulate light saturation in Amazon forests. These studies clarify the physical mechanisms that govern light availability in Amazon forests from seasonal variability in direct and diffuse illumination. Previously, in the debate over light limitation of Amazon forest productivity, seasonal changes in the distribution of light within complex Amazon forest canopies were confounded with dry-season increases in total incoming photosynthetically active radiation. In the accompanying Comment, Saleska et al. do not fully account for this confounding effect of forest structure on photosynthetic capacity.
NASA Astrophysics Data System (ADS)
Akin, B. H.; Van Stan, J. T., II; Cote, J. F.; Jarvis, M. T.; Underwood, J.; Friesen, J.; Hildebrandt, A.; Maldonado, G.
2017-12-01
Trees' partitioning of rainfall is an important first process along the rainfall-to-runoff pathway that has economically significant influences on urban stormwater management. However, important knowledge gaps exist regarding (1) its role during extreme storms and (2) how this role changes as forest structure is altered by urbanization. Little research has been conducted on canopy rainfall partitioning during large, intense storms, likely because canopy water storage is rapidly overwhelmed (i.e., 1-3 mm) by short duration events exceeding, for example, 80 mm of rainfall. However, canopy structure controls more than just storage; it also affects the time for rain to drain to the surface (becoming throughfall) and the micrometeorological conditions that drive wet canopy evaporation. In fact, observations from an example extreme ( 100 mm with maximum 5-minute intensities exceeding 55 mm/h) storm across a urban-to-natural gradient in pine forests in southeast Georgia (USA), show that storm intensities were differentially dampened by 33% (tree row), 28% (forest fragment), and 17% (natural forests). In addition, maximum wet canopy evaporation rates were higher for the exposed tree row (0.18 mm/h) than for the partially-enclosed fragment canopy (0.14 mm/h) and the closed canopy natural forest site (0.11). This resulted in interception percentages decreasing from urban-to-natural stand structures (25% to 16%). A synoptic analysis of the extreme storm in this case study also shows that the mesoscale meteorological conditions that developed the heavy rainfall is expected to occur more often with projected climate changes.
NASA Technical Reports Server (NTRS)
Eckstrom, Clinton V.; Preisser, John S.
1968-01-01
A 40-foot-nominal-diameter (12.2 meter) disk-gap-band parachute was flight tested as part of the NASA Supersonic Planetary Entry Decelerator (SPED-I) Program. The test parachute was deployed from an instrumented payload by means of a deployment mortar when the payload was at an altitude of 158,500 feet (48.2 kilometers), a Mach number of 2.72, and a free-stream dynamic pressure of 9.7 pounds per foot(exp 2) (465 newtons per meter(exp 2)). Suspension line stretch occurred 0.46 second after mortar firing and the resulting snatch force loading was -8.lg. The maximum acceleration experienced by the payload due to parachute opening was -27.2g at 0.50 second after the snatch force peak for a total elapsed time from mortar firing of 0.96 second. Canopy-shape variations occurred during the higher Mach number portion of the flight test (M greater than 1.4) and the payload was subjected to large amplitude oscillatory loads. A calculated average nominal axial-force coefficient ranged from about 0.25 immediately after the first canopy opening to about 0.50 as the canopy attained a steady inflated shape. One gore of the test parachute was damaged when the deployment bag with mortar lid passed through it from behind approximately 2 seconds after deployment was initiated. Although the canopy damage caused by the deployment bag penetration had no apparent effect on the functional capability of the test parachute, it may have affected parachute performance since the average effective drag coefficient of 0.48 was 9 percent less than that of a previously tested parachute of the same configuration.
NASA Technical Reports Server (NTRS)
Choudhury, Bhaskar J.
1987-01-01
A two-stream approximation to the radiative-transfer equation is used to calculate the vegetation indices (simple ratio and normalized difference), the fraction of incident photosynthetically active radiation (PAR) absorbed by the canopy, and the daily mean canopy net photosynthesis under clear-sky conditions. The model calculations are tested against field observations over wheat, cotton, corn, and soybean. The relationships between the vegetation indices and radiation absorption or net photosynthesis are generally found to be curvilinear, and changes in the soil reflectance affected these relationships. The curvilinearity of the relationship between normalized differences and PAR absorption decreases as the magnitude of soil reflectance increases. The vegetation indices might provide the fractional radiation absorption with some a priori knowledge about soil reflectance. The relationship between the vegetation indices and net photosynthesis must be distinguished for C3 and C4 crops. Effects of spatial heterogeneity are discussed.
Large-scale wind disturbances promote tree diversity in a Central Amazon forest.
Marra, Daniel Magnabosco; Chambers, Jeffrey Q; Higuchi, Niro; Trumbore, Susan E; Ribeiro, Gabriel H P M; Dos Santos, Joaquim; Negrón-Juárez, Robinson I; Reu, Björn; Wirth, Christian
2014-01-01
Canopy gaps created by wind-throw events, or blowdowns, create a complex mosaic of forest patches varying in disturbance intensity and recovery in the Central Amazon. Using field and remote sensing data, we investigated the short-term (four-year) effects of large (>2000 m(2)) blowdown gaps created during a single storm event in January 2005 near Manaus, Brazil, to study (i) how forest structure and composition vary with disturbance gradients and (ii) whether tree diversity is promoted by niche differentiation related to wind-throw events at the landscape scale. In the forest area affected by the blowdown, tree mortality ranged from 0 to 70%, and was highest on plateaus and slopes. Less impacted areas in the region affected by the blowdown had overlapping characteristics with a nearby unaffected forest in tree density (583 ± 46 trees ha(-1)) (mean ± 99% Confidence Interval) and basal area (26.7 ± 2.4 m(2) ha(-1)). Highly impacted areas had tree density and basal area as low as 120 trees ha(-1) and 14.9 m(2) ha(-1), respectively. In general, these structural measures correlated negatively with an index of tree mortality intensity derived from satellite imagery. Four years after the blowdown event, differences in size-distribution, fraction of resprouters, floristic composition and species diversity still correlated with disturbance measures such as tree mortality and gap size. Our results suggest that the gradients of wind disturbance intensity encompassed in large blowdown gaps (>2000 m(2)) promote tree diversity. Specialists for particular disturbance intensities existed along the entire gradient. The existence of species or genera taking an intermediate position between undisturbed and gap specialists led to a peak of rarefied richness and diversity at intermediate disturbance levels. A diverse set of species differing widely in requirements and recruitment strategies forms the initial post-disturbance cohort, thus lending a high resilience towards wind disturbances at the community level.
Large-Scale Wind Disturbances Promote Tree Diversity in a Central Amazon Forest
Marra, Daniel Magnabosco; Chambers, Jeffrey Q.; Higuchi, Niro; Trumbore, Susan E.; Ribeiro, Gabriel H. P. M.; dos Santos, Joaquim; Negrón-Juárez, Robinson I.; Reu, Björn; Wirth, Christian
2014-01-01
Canopy gaps created by wind-throw events, or blowdowns, create a complex mosaic of forest patches varying in disturbance intensity and recovery in the Central Amazon. Using field and remote sensing data, we investigated the short-term (four-year) effects of large (>2000 m2) blowdown gaps created during a single storm event in January 2005 near Manaus, Brazil, to study (i) how forest structure and composition vary with disturbance gradients and (ii) whether tree diversity is promoted by niche differentiation related to wind-throw events at the landscape scale. In the forest area affected by the blowdown, tree mortality ranged from 0 to 70%, and was highest on plateaus and slopes. Less impacted areas in the region affected by the blowdown had overlapping characteristics with a nearby unaffected forest in tree density (583±46 trees ha−1) (mean±99% Confidence Interval) and basal area (26.7±2.4 m2 ha−1). Highly impacted areas had tree density and basal area as low as 120 trees ha−1 and 14.9 m2 ha−1, respectively. In general, these structural measures correlated negatively with an index of tree mortality intensity derived from satellite imagery. Four years after the blowdown event, differences in size-distribution, fraction of resprouters, floristic composition and species diversity still correlated with disturbance measures such as tree mortality and gap size. Our results suggest that the gradients of wind disturbance intensity encompassed in large blowdown gaps (>2000 m2) promote tree diversity. Specialists for particular disturbance intensities existed along the entire gradient. The existence of species or genera taking an intermediate position between undisturbed and gap specialists led to a peak of rarefied richness and diversity at intermediate disturbance levels. A diverse set of species differing widely in requirements and recruitment strategies forms the initial post-disturbance cohort, thus lending a high resilience towards wind disturbances at the community level. PMID:25099118
Large-Scale Wind Disturbances Promote Tree Diversity in a Central Amazon Forest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, Daniel Magnabosco; Chambers, Jeffrey Q.; Higuchi, Niro
Canopy gaps created by wind-throw events, or blowdowns, create a complex mosaic of forest patches varying in disturbance intensity and recovery in the Central Amazon. Using field and remote sensing data, we investigated the short-term (four-year) effects of large (>2000 m 2) blowdown gaps created during a single storm event in January 2005 near Manaus, Brazil, to study (i) how forest structure and composition vary with disturbance gradients and (ii) whether tree diversity is promoted by niche differentiation related to wind-throw events at the landscape scale. In the forest area affected by the blowdown, tree mortality ranged from 0 tomore » 70%, and was highest on plateaus and slopes. Less impacted areas in the region affected by the blowdown had overlapping characteristics with a nearby unaffected forest in tree density (583±46 trees ha -1) (mean±99% Confidence Interval) and basal area (26.7±2.4 m 2 ha -1). Highly impacted areas had tree density and basal area as low as 120 trees ha -1 and 14.9 m 2 ha -1, respectively. In general, these structural measures correlated negatively with an index of tree mortality intensity derived from satellite imagery. Four years after the blowdown event, differences in size-distribution, fraction of resprouters, floristic composition and species diversity still correlated with disturbance measures such as tree mortality and gap size. Our results suggest that the gradients of wind disturbance intensity encompassed in large blowdown gaps (>2000 m 2) promote tree diversity. Specialists for particular disturbance intensities existed along the entire gradient. The existence of species or genera taking an intermediate position between undisturbed and gap specialists led to a peak of rarefied richness and diversity at intermediate disturbance levels. A diverse set of species differing widely in requirements and recruitment strategies forms the initial post-disturbance cohort, thus lending a high resilience towards wind disturbances at the community level.« less
Large-Scale Wind Disturbances Promote Tree Diversity in a Central Amazon Forest
Marra, Daniel Magnabosco; Chambers, Jeffrey Q.; Higuchi, Niro; ...
2014-08-06
Canopy gaps created by wind-throw events, or blowdowns, create a complex mosaic of forest patches varying in disturbance intensity and recovery in the Central Amazon. Using field and remote sensing data, we investigated the short-term (four-year) effects of large (>2000 m 2) blowdown gaps created during a single storm event in January 2005 near Manaus, Brazil, to study (i) how forest structure and composition vary with disturbance gradients and (ii) whether tree diversity is promoted by niche differentiation related to wind-throw events at the landscape scale. In the forest area affected by the blowdown, tree mortality ranged from 0 tomore » 70%, and was highest on plateaus and slopes. Less impacted areas in the region affected by the blowdown had overlapping characteristics with a nearby unaffected forest in tree density (583±46 trees ha -1) (mean±99% Confidence Interval) and basal area (26.7±2.4 m 2 ha -1). Highly impacted areas had tree density and basal area as low as 120 trees ha -1 and 14.9 m 2 ha -1, respectively. In general, these structural measures correlated negatively with an index of tree mortality intensity derived from satellite imagery. Four years after the blowdown event, differences in size-distribution, fraction of resprouters, floristic composition and species diversity still correlated with disturbance measures such as tree mortality and gap size. Our results suggest that the gradients of wind disturbance intensity encompassed in large blowdown gaps (>2000 m 2) promote tree diversity. Specialists for particular disturbance intensities existed along the entire gradient. The existence of species or genera taking an intermediate position between undisturbed and gap specialists led to a peak of rarefied richness and diversity at intermediate disturbance levels. A diverse set of species differing widely in requirements and recruitment strategies forms the initial post-disturbance cohort, thus lending a high resilience towards wind disturbances at the community level.« less
Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation.
Asner, G P; Martin, R E; Knapp, D E; Tupayachi, R; Anderson, C B; Sinca, F; Vaughn, N R; Llactayo, W
2017-01-27
Functional biogeography may bridge a gap between field-based biodiversity information and satellite-based Earth system studies, thereby supporting conservation plans to protect more species and their contributions to ecosystem functioning. We used airborne laser-guided imaging spectroscopy with environmental modeling to derive large-scale, multivariate forest canopy functional trait maps of the Peruvian Andes-to-Amazon biodiversity hotspot. Seven mapped canopy traits revealed functional variation in a geospatial pattern explained by geology, topography, hydrology, and climate. Clustering of canopy traits yielded a map of forest beta functional diversity for land-use analysis. Up to 53% of each mapped, functionally distinct forest presents an opportunity for new conservation action. Mapping functional diversity advances our understanding of the biosphere to conserve more biodiversity in the face of land use and climate change. Copyright © 2017, American Association for the Advancement of Science.
Wood, Petra; Sheehan, James; Keyser, Patrick D.; Buehler, David A.; Larkin, Jeff; Rodewald, Amanda D.; Stoleson, Scott H.; Wigley, T. Bently; Mizel, Jeremy; Boves, Than J.; George, Greg; Bakermans, Marja H.; Beachy, Tiffany A.; Evans, Andrea; McDermott, Molly E.; Newell, Felicity L.; Perkins, Kelly A.; White, Matt
2013-01-01
The Cerulean Warbler (Setophaga cerulea) is a migratory songbird that breeds in mature deciduous forests of eastern North America. Cerulean Warblers (hereafter, ceruleans) require heavily forested landscapes for nesting and, within Appalachian forests, primarily occur on ridge tops and steep, upper slopes. They are generally associated with oakdominated (Quercus spp.) stands that contain gaps in the forest canopy, that have large diameter trees (>16 inches diameter breast height (dbh)), and that have well-developed understory-and upper-canopy layers. Ceruleans primarily use the midand upper-canopy where they glean insects from the surface of leaves and conceal their open cup nests. Because they are severely declining across much of their range (Fig. 1), habitat management is a high priority. Management for this species can also improve conditions for a number of other wildlife species that depend on the same structure.
NASA Technical Reports Server (NTRS)
Zhang, Qingyuan; Middleton, Elizabeth M.; Gao, Bo-Cai; Cheng, Yen-Ben
2012-01-01
This paper presents development of prototype products for terrestrial ecosystems in preparation for the future imaging spectrometer planned for the Hyperspectral Infrared Imager (HyspIRI) mission. We present a successful demonstration example in a coniferous forest of two product prototypes: fraction of photosynthetically active radiation (PAR) absorbed by chlorophyll of a canopy (fAPARchl) and leaf water content (LWC), for future HyspIRI implementation at 60-m spatial resolution. For this, we used existing 30-m resolution imaging spectrometer data available from the Earth Observing One (EO-1) Hyperion satellite to simulate and prototype the level one radiometrically corrected radiance (L1R) images expected from the HyspIRI visible through shortwave infrared spectrometer. The HyspIRIlike images were atmospherically corrected to obtain surface reflectance and spectrally resampled to produce 60-m reflectance images for wavelength regions that were comparable to all seven of the MODerate resolution Imaging Spectroradiometer (MODIS) land bands. Thus, we developed MODIS-like surface reflectance in seven spectral bands at the HyspIRI-like spatial scale, which was utilized to derive fAPARchl and LWC with a coupled canopy-leaf radiative transfer model (PROSAIL2) for the coniferous forest. With this paper, we provide additional evidence that the fAPARchl product is more realistic in describing the physiologically active canopy than the traditional fAPAR parameter for the whole canopy (fAPARcanopy), and thus, it should replace it in ecosystem process models to reduce uncertainties in terrestrial carbon cycle and ecosystem studies.
Clark, James S.; Soltoff, Benjamin D.; Powell, Amanda S.; Read, Quentin D.
2012-01-01
Background For competing species to coexist, individuals must compete more with others of the same species than with those of other species. Ecologists search for tradeoffs in how species might partition the environment. The negative correlations among competing species that would be indicative of tradeoffs are rarely observed. A recent analysis showed that evidence for partitioning the environment is available when responses are disaggregated to the individual scale, in terms of the covariance structure of responses to environmental variation. That study did not relate that variation to the variables to which individuals were responding. To understand how this pattern of variation is related to niche variables, we analyzed responses to canopy gaps, long viewed as a key variable responsible for species coexistence. Methodology/Principal Findings A longitudinal intervention analysis of individual responses to experimental canopy gaps with 12 yr of pre-treatment and 8 yr post-treatment responses showed that species-level responses are positively correlated – species that grow fast on average in the understory also grow fast on average in response to gap formation. In other words, there is no tradeoff. However, the joint distribution of individual responses to understory and gap showed a negative correlation – species having individuals that respond most to gaps when previously growing slowly also have individuals that respond least to gaps when previously growing rapidly (e.g., Morus rubra), and vice versa (e.g., Quercus prinus). Conclusions/Significance Because competition occurs at the individual scale, not the species scale, aggregated species-level parameters and correlations hide the species-level differences needed for coexistence. By disaggregating models to the scale at which the interaction occurs we show that individual variation provides insight for species differences. PMID:22393349
Fahey, Catherine; York, Robert A; Pawlowska, Teresa E
2012-01-01
Interactions with soil microbiota determine the success of restoring plants to their native habitats. The goal of our study was to understand the effects of restoration practices on interactions of giant sequoia Sequoiadendron giganteum with arbuscular mycorrhizal (AM) fungi (Glomeromycota). Natural regeneration of Sequoiadendron is threatened by the absence of severe fires that create forest canopy gaps. Generating artificial canopy gaps offers an alternative tool for giant sequoia restoration. We investigated the effect of regeneration practices, including (i) sapling location within gaps, (ii) gap size and (iii) soil substrate, on AM fungal colonization of giant sequoia sapling roots in a native giant sequoia grove of the Sierra Nevada, California. We found that the extent of AM fungal root colonization was positively correlated with sapling height and light availability, which were related to the location of the sapling within the gap and the gap size. While colonization frequency by arbuscules in saplings on ash substrate was higher relative to saplings in mineral soil, the total AM fungal root colonization was similar between the substrates. A negative correlation between root colonization by Glomeromycota and non-AM fungal species indicated antagonistic interactions between different classes of root-associated fungi. Using DNA genotyping, we identified six AM fungal taxa representing genera Glomus and Ambispora present in Sequoiadendron roots. Overall, we found that AM fungal colonization of giant sequoia roots was associated with availability of plant-assimilated carbon to the fungus rather than with the AM fungal supply of mineral nutrients to the roots. We conclude that restoration practices affecting light availability and carbon assimilation alter feedbacks between sapling growth and activity of AM fungi in the roots.
Gandhi, Kamal J K; Smith, Annemarie; Hartzler, Diane M; Herms, Daniel A
2014-06-01
Exotic herbivorous insects have drastically and irreversibly altered forest structure and composition of North American forests. For example, emerald ash borer (Agrilus planipennis Fairmaire) from Asia has caused wide-scale mortality of ash trees (Fraxinus spp.) in eastern United States and Canada. We studied the effects of forest changes resulting from emerald ash borer invasion on epigaeic or ground beetles (Coleoptera: Carabidae) along a gradient of ash dieback and gap sizes in southeastern Michigan. Ground beetles were sampled in hydric, mesic, and xeric habitats in which black (Fraxinus nigra Marshall), green (Fraxinus pennsylvanica Marshall), and white (Fraxinus americana L.) ash were the most common species, respectively. During 2006-2007, we trapped 2,545 adult ground beetles comprising 52 species. There was a negative correlation between percent ash tree mortality in 2006 and catches of all beetles. Catches of Agonum melanarium Dejean (in 2006) and Pterostichus mutus (Say) (in 2006-2007) were negatively correlated with tree mortality and gap size, respectively. However, catches of Pterostichus corvinus Dejean were positively correlated with gap size in 2006. As ash mortality and average gap size increased from 2006 to 2007, catches of all beetles as well as P. mutus and Pterostichus stygicus (Say) increased (1.3-3.9 times), while species diversity decreased, especially in mesic and xeric stands. Cluster analysis revealed that beetle assemblages in hydric and mesic stand diverged (25 and 40%, respectively) in their composition from 2006 to 2007, and that hydric stands had the most unique beetle assemblages. Overall, epigaeic beetle assemblages were altered in ash stands impacted by emerald ash borer; however, these impacts may dissipate as canopy gaps close.
NASA Astrophysics Data System (ADS)
Baker, S.; Berryman, E.; Hawbaker, T. J.; Ewers, B. E.
2015-12-01
While much attention has been focused on large scale forest disturbances such as fire, harvesting, drought and insect attacks, small scale forest disturbances that create gaps in forest canopies and below ground root and mycorrhizal networks may accumulate to impact regional scale carbon budgets. In a lodgepole pine (Pinus contorta) forest near Fox Park, WY, clusters of 15 and 30 trees were removed in 1988 to assess the effect of tree gap disturbance on fine root density and nitrogen transformation. Twenty seven years later the gaps remain with limited regeneration present only in the center of the 30 tree plots, beyond the influence of roots from adjacent intact trees. Soil respiration was measured in the summer of 2015 to assess the influence of these disturbances on carbon cycling in Pinus contorta forests. Positions at the centers of experimental disturbances were found to have the lowest respiration rates (mean 2.45 μmol C/m2/s, standard error 0.17 C/m2/s), control plots in the undisturbed forest were highest (mean 4.15 μmol C/m2/s, standard error 0.63 C/m2/s), and positions near the margin of the disturbance were intermediate (mean 3.7 μmol C/m2/s, standard error 0.34 C/m2/s). Fine root densities, soil nitrogen, and microclimate changes were also measured and played an important role in respiration rates of disturbed plots. This demonstrates that a long-term effect on carbon cycling occurs when gaps are created in the canopy and root network of lodgepole forests.
Effects of trees on momentum exchange within and above a real urban environment
NASA Astrophysics Data System (ADS)
Salesky, S.; Giometto, M. G.; Christen, A.; Egli, P. E.; Schmid, M. F.; Tooke, T. R.; Coops, N. C.; Parlange, M. B.
2017-12-01
Large-eddy simulations (LES) are used to gain insight into the effects of trees on momentum transfer rates characterizing the atmosphere within and above a real urban canopy. Several areas are considered that are part of a neighbourhood in the city of Vancouver, BC, Canada where a small fraction of trees are taller than buildings. In this area, eight years of continuous wind and turbulence measurements are available from a 30 m meteorological tower. Buildings and vegetation geometries are obtained from airborne light detection and ranging (LiDAR) data. In the LES algorithm, buildings are accounted through an immersed boundary method, whereas vegetation is parameterized via a location-specific leaf area density. LES are performed varying wind direction and leaf area densities. Surface roughness lengths (z0) from both LES and tower measurements are sensitive to the 0 ≤ LAI/λ < 3 parameter, where LAI is the leaf area index and λ is the frontal area fraction of buildings characterizing a given canopy. For instance, tower measurements predict a 19% seasonal increase in z0, slightly lower than the 27% increase featured by LES for the most representative canopy (leaves-off LAI/λ = 0.74, leaves-on LAI/λ = 2.24). Removing vegetation from such a canopy would cause a dramatic drop of approximately 50% in z0 when compared to the reference summer value. The momentum displacement height (d) from LES also consistently increases as LAI/λ increases, due to the disproportionate amount of drag that the (few) relatively taller trees exert on the flow. Within the urban canopy, the effects of trees are twofold: on one hand, they act as a direct momentum sink for the mean flow; on the other, they reduce downward turbulent transport of high-momentum fluid, significantly reducing the wind intensity at the heights where people live and buildings consume energy.
NASA Astrophysics Data System (ADS)
Huesca Martinez, M.; Garcia, M.; Roth, K. L.; Casas, A.; Ustin, S.
2015-12-01
There is a well-established need within the remote sensing community for improved estimation of canopy structure and understanding of its influence on the retrieval of leaf biochemical properties. The aim of this project was to evaluate the estimation of structural properties directly from hyperspectral data, with the broader goal that these might be used to constrain retrievals of canopy chemistry. We used NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) to discriminate different canopy structural types, defined in terms of biomass, canopy height and vegetation complexity, and compared them to estimates of these properties measured by LiDAR data. We tested a large number of optical metrics, including single narrow band reflectance and 1st derivative, sub-pixel cover fractions, narrow-band indices, spectral absorption features, and Principal Component Analysis components. Canopy structural types were identified and classified from different forest types by integrating structural traits measured by optical metrics using the Random Forest (RF) classifier. The classification accuracy was above 70% in most of the vegetation scenarios. The best overall accuracy was achieved for hardwood forest (>80% accuracy) and the lowest accuracy was found in mixed forest (~70% accuracy). Furthermore, similarly high accuracy was found when the RF classifier was applied to a spatially independent dataset, showing significant portability for the method used. Results show that all spectral regions played a role in canopy structure assessment, thus the whole spectrum is required. Furthermore, optical metrics derived from AVIRIS proved to be a powerful technique for structural attribute mapping. This research illustrates the potential for using optical properties to distinguish several canopy structural types in different forest types, and these may be used to constrain quantitative measurements of absorbing properties in future research.
Song, Yu; Jiang, Chengyao; Gao, Lihong
2016-01-01
Light insufficient stress caused by canopy interception and mutual shading is a major factor limiting plant growth and development in intensive crop cultivation. Supplemental lighting can be used to give light to the lower canopy leaves and is considered to be an effective method to cope with low irradiation stress. Leaf photosynthesis, stomatal regulation, and plant growth and development of young tomato plants were examined to estimate the effects of supplemental lighting with various composite spectra and different light orientations. Light-emitting diodes (LEDs) of polychromatic light quality, red + blue (R/B), white + red + blue (W/R/B), white + red + far-red (W/R/FR), and white + blue (W/B) were assembled from the underneath canopy or from the inner canopy as supplemental lighting resources. The results showed that the use of supplemental lighting significantly increased the photosynthetic efficiency, and reduced stomatal closure while promoting plant growth. Among all supplemental lighting treatments, the W/R/B and W/B from the underneath canopy had best performance. The different photosynthetic performances among the supplemental lighting treatments are resulted from variations in CO2 utilization. The enhanced blue light fraction in the W/R/B and W/B could better stimulate stomatal opening and promote photosynthetic electron transport activity, thus better improving photosynthetic rate. Compared with the inner canopy treatment, the supplemental lighting from the underneath canopy could better enhance the carbon dioxide assimilation efficiency and excessive energy dissipation, leading to an improved photosynthetic performance. Stomatal morphology was highly correlated to leaf photosynthesis and plant development, and should thus be an important determinant for the photosynthesis and the growth of greenhouse tomatoes. PMID:28018376
Glenn, Edward P.; Huete, Alfredo R.; Nagler, Pamela L.; Nelson, Stephen G.
2008-01-01
Vegetation indices (VIs) are among the oldest tools in remote sensing studies. Although many variations exist, most of them ratio the reflection of light in the red and NIR sections of the spectrum to separate the landscape into water, soil, and vegetation. Theoretical analyses and field studies have shown that VIs are near-linearly related to photosynthetically active radiation absorbed by a plant canopy, and therefore to light-dependent physiological processes, such as photosynthesis, occurring in the upper canopy. Practical studies have used time-series VIs to measure primary production and evapotranspiration, but these are limited in accuracy to that of the data used in ground truthing or calibrating the models used. VIs are also used to estimate a wide variety of other canopy attributes that are used in Soil-Vegetation-Atmosphere Transfer (SVAT), Surface Energy Balance (SEB), and Global Climate Models (GCM). These attributes include fractional vegetation cover, leaf area index, roughness lengths for turbulent transfer, emissivity and albedo. However, VIs often exhibit only moderate, non-linear relationships to these canopy attributes, compromising the accuracy of the models. We use case studies to illustrate the use and misuse of VIs, and argue for using VIs most simply as a measurement of canopy light absorption rather than as a surrogate for detailed features of canopy architecture. Used this way, VIs are compatible with “Big Leaf” SVAT and GCMs that assume that canopy carbon and moisture fluxes have the same relative response to the environment as any single leaf, simplifying the task of modeling complex landscapes. PMID:27879814
Burgess, Alexandra J.; Retkute, Renata; Herman, Tiara; Murchie, Erik H.
2017-01-01
The arrangement of leaf material is critical in determining the light environment, and subsequently the photosynthetic productivity of complex crop canopies. However, links between specific canopy architectural traits and photosynthetic productivity across a wide genetic background are poorly understood for field grown crops. The architecture of five genetically diverse rice varieties—four parental founders of a multi-parent advanced generation intercross (MAGIC) population plus a high yielding Philippine variety (IR64)—was captured at two different growth stages using a method for digital plant reconstruction based on stereocameras. Ray tracing was employed to explore the effects of canopy architecture on the resulting light environment in high-resolution, whilst gas exchange measurements were combined with an empirical model of photosynthesis to calculate an estimated carbon gain and total light interception. To further test the impact of different dynamic light patterns on photosynthetic properties, an empirical model of photosynthetic acclimation was employed to predict the optimal light-saturated photosynthesis rate (Pmax) throughout canopy depth, hypothesizing that light is the sole determinant of productivity in these conditions. First, we show that a plant type with steeper leaf angles allows more efficient penetration of light into lower canopy layers and this, in turn, leads to a greater photosynthetic potential. Second the predicted optimal Pmax responds in a manner that is consistent with fractional interception and leaf area index across this germplasm. However, measured Pmax, especially in lower layers, was consistently higher than the optimal Pmax indicating factors other than light determine photosynthesis profiles. Lastly, varieties with more upright architecture exhibit higher maximum quantum yield of photosynthesis indicating a canopy-level impact on photosynthetic efficiency. PMID:28567045
NASA Technical Reports Server (NTRS)
Jasinski, Michael F.
1990-01-01
An analytical framework is provided for examining the physically based behavior of the normalized difference vegetation index (NDVI) in terms of the variability in bulk subpixel landscape components and with respect to variations in pixel scales, within the context of the stochastic-geometric canopy reflectance model. Analysis focuses on regional scale variability in horizontal plant density and soil background reflectance distribution. Modeling is generalized to different plant geometries and solar angles through the use of the nondimensional solar-geometric similarity parameter. Results demonstrate that, for Poisson-distributed plants and for one deterministic distribution, NDVI increases with increasing subpixel fractional canopy amount, decreasing soil background reflectance, and increasing shadows, at least within the limitations of the geometric reflectance model. The NDVI of a pecan orchard and a juniper landscape is presented and discussed.
GAP SIZE AND SUCCESSIONAL PROCESSES IN SOUTHERN APPALACHIAN FORESTS
We used clearcut logging in establishing four replicated sizes of canopy openings (0.016, 0.08, 0.4, and 2.0 ha) in a southern Appalachian hardwood forest in 1981 to examine the long-term effects of disturbance size on plant community structure, biomass accumulation, aboveground ...
NASA Astrophysics Data System (ADS)
Musselman, K. N.; Molotch, N. P.; Margulis, S. A.
2012-12-01
Forest architecture dictates sub-canopy solar irradiance and the resulting patterns can vary seasonally and over short spatial distances. These radiation dynamics are thought to have significant implications on snowmelt processes, regional hydrology, and remote sensing signatures. The variability calls into question many assumptions inherent in traditional canopy models (e.g. Beer's Law) when applied at high resolution (i.e. 1 m). We present a method of estimating solar canopy transmissivity using airborne LiDAR data. The canopy structure is represented in 3-D voxel space (i.e. a cubic discretization of a 3-D domain analogous to a pixel representation of a 2-D space). The solar direct beam canopy transmissivity (DBT) is estimated with a ray-tracing algorithm and the diffuse component is estimated from LiDAR-derived effective LAI. Results from one year at five-minute temporal and 1 m spatial resolutions are presented from Sequoia National Park. Compared to estimates from 28 hemispherical photos, the ray-tracing model estimated daily mean DBT with a 10% average error, while the errors from a Beer's-type DBT estimate exceeded 20%. Compared to the ray-tracing estimates, the Beer's-type transmissivity method was unable to resolve complex spatial patterns resulting from canopy gaps, individual tree canopies and boles, and steep variable terrain. The snowmelt model SNOWPACK was applied at locations of ultrasonic snow depth sensors. Two scenarios were tested; 1) a nominal case where canopy model parameters were obtained from hemispherical photographs, and 2) an explicit scenario where the model was modified to accept LiDAR-derived time-variant DBT. The bulk canopy treatment was generally unable to simulate the sub-canopy snowmelt dynamics observed at the depth sensor locations. The explicit treatment reduced error in the snow disappearance date by one week and both positive and negative melt-season SWE biases were reduced. The results highlight the utility of LiDAR canopy measurements and physically based snowmelt models to simulate spatially distributed stand- and slope-scale snowmelt dynamics at resolutions necessary to capture the inherent underlying variability.iDAR-derived solar direct beam canopy transmissivity computed as the daily average for March 1st and May 1st.
Air Parcel Residence Times within Tropical Forest Canopies and Implications for Reactive Gases
NASA Astrophysics Data System (ADS)
Gerken, T.; Chamecki, M.; Fuentes, J. D.
2014-12-01
The Amazon rainforest is the world's largest natural emitter of reactive trace gases. Due to its dense vegetation (leaf area index > 4), turbulence fluctuations are highly attenuated deep inside the canopy. However, strong coherent eddies that penetrate the upper portion of the canopy can be very effective in transporting gases. Sweeps and ejections act in the order of seconds and transport air parcels into or out of the canopy. The effects of coherent structures on the air parcel residence times and associated chemical processing of reactive gases remain largely unquantified in tropical forests. We combine canopy resolving Large-Eddy Simulation (LES) and field observations in the Brazilian Amazon to study residence times of air parcels in the rainforest as a function of canopy structure and height (h). Good agreement is obtained between simulated and observed turbulence statistics within and above the forest. Coherent structure properties obtained from quadrant analysis are also well reproduced. A Lagrangian particle tracking algorithm is used to quantify the distribution of residence times of air parcels "released" at different heights. Canopy residence times were determined from the particle trajectories. The resulting probability density function (PDF) strongly depended on the particle release height (z). For particles released in the upper canopy (at z/h=0.75) the most frequent residence times were in the order of 30s, with 50% of all particles ejected from the canopy after ~2 minutes. The mean residence time was close to 5 minutes, indicating a very skewed PDF. At z/h=0.25 the PDF was more evenly distributed with its median and mean in the order of ~10 minutes. Due to sweeps, both simulations had a non- negligible fraction of particles transported deep into the canopy, thus increasing greatly their residence times. As the reaction timescales of many biogenic volatile organic compounds (BVOC) are in the order of seconds to minutes, significant chemical processing can take place before particles are transported out of the canopy. This result highlights the importance of coherent motions on the capability of BVOC to escape the canopy space. Hence, it is important to consider the real distribution of residence times, highlighting the need for accurate canopy representation in LES models.
Regional climate modulates the canopy mosaic of favourable and risky microclimates for insects.
Pincebourde, Sylvain; Sinoquet, Herve; Combes, Didier; Casas, Jerome
2007-05-01
1. One major gap in our ability to predict the impacts of climate change is a quantitative analysis of temperatures experienced by organisms under natural conditions. We developed a framework to describe and quantify the impacts of local climate on the mosaic of microclimates and physiological states of insects within tree canopies. This approach was applied to a leaf mining moth feeding on apple leaf tissues. 2. Canopy geometry was explicitly considered by mapping the 3D position and orientation of more than 26 000 leaves in an apple tree. Four published models for canopy radiation interception, energy budget of leaves and mines, body temperature and developmental rate of the leaf miner were integrated. Model predictions were compared with actual microclimate temperatures. The biophysical model accurately predicted temperature within mines at different positions within the tree crown. 3. Field temperature measurements indicated that leaf and mine temperature patterns differ according to the regional climatic conditions (cloudy or sunny) and depending on their location within the canopy. Mines in the sun can be warmer than those in the shade by several degrees and the heterogeneity of mine temperature was incremented by 120%, compared with that of leaf temperature. 4. The integrated model was used to explore the impact of both warm and exceptionally hot climatic conditions recorded during a heat wave on the microclimate heterogeneity at canopy scale. During warm conditions, larvae in sunlight-exposed mines experienced nearly optimal growth conditions compared with those within shaded mines. The developmental rate was increased by almost 50% in the sunny microhabitat compared with the shaded location. Larvae, however, experienced optimal temperatures for their development inside shaded mines during extreme climatic conditions, whereas larvae in exposed mines were overheating, leading to major risks of mortality. 5. Tree canopies act as both magnifiers and reducers of the climatic regime experienced in open air outside canopies. Favourable and risky spots within the canopy do change as a function of the climatic conditions at the regional scale. The shifting nature of the mosaic of suitable and risky habitats may explain the observed uniform distribution of leaf miners within tree canopies.
Lawrence, Gregory B.; McDonnell, Todd C.; Sullivan, Timothy J.; Dovciak, Martin; Bailey, Scott W.; Antidormi, Michael; Zarfos, Michael R.
2018-01-01
Sugar maple, an abundant and highly valued tree species in eastern North America, has experienced decline from soil calcium (Ca) depletion by acidic deposition, while beech, which often coexists with sugar maple, has been afflicted with beech bark disease (BBD) over the same period. To investigate how variations in soil base saturation combine with effects of BBD in influencing stand composition and structure, measurements of soils, canopy, subcanopy, and seedlings were taken in 21 watersheds in the Adirondack region of NY (USA), where sugar maple and beech were the predominant canopy species and base saturation of the upper B horizon ranged from 4.4 to 67%. The base saturation value corresponding to the threshold for Al mobilization (16.8%) helped to define the species composition of canopy trees and seedlings. Canopy vigor and diameter at breast height (DBH) were positively correlated (P < 0.05) with base saturation for sugar maple, but unrelated for beech. However, beech occupied lower canopy positions than sugar maple, and as base saturation increased, the average canopy position of beech decreased relative to sugar maple (P < 0.10). In low-base saturation soils, soil-Ca depletion and BBD may have created opportunities for gap-exploiting species such as red maple and black cherry, whereas in high-base saturation soils, sugar maple dominated the canopy. Where soils were beginning to recover from acidic deposition effects, sugar maple DBH and basal area increased progressively from 2000 to 2015, whereas for beech, average DBH did not change and basal area did not increase after 2010.
Experimental canopy removal enhances diversity of vernal pond amphibians.
Skelly, David K; Bolden, Susan R; Freidenburg, L Kealoha
2014-03-01
Vernal ponds are often treated as protected environments receiving special regulation and management. Within the landscapes where they are found, forest vegetation frequently dominates surrounding uplands and can grow to overtop and shade pond basins. Two bodies of research offer differing views of the role of forest canopy for vernal pond systems. Studies of landscape conversion suggest that removing forest overstory within uplands can cause local extinctions of amphibians by altering terrestrial habitat or hindering movement. Studies of canopy above pond basins imply an opposite relationship; encroachment of overstory vegetation can be associated with local extinctions potentially via changes in light, thermal, and food resource environments. Unresolved uncertainties about the role of forest canopy reveal significant gaps in our understanding of wetland species distributions and dynamics. Any misunderstanding of canopy influences is simultaneously important to managers because current practices emphasize promoting or conserving vegetation growth particularly within buffers immediately adjacent to ponds. We evaluated this apparent contradiction by conducting a landscape-scale, long-term experiment using 14 natural vernal ponds. Tree felling at six manipulated ponds was limited in spatial scope but was nevertheless effective in increasing water temperature. Compared with eight control ponds, manipulated ponds maintained more amphibian species during five years post-manipulation. There was little evidence that any species was negatively influenced, and the reproductive effort of species for which we estimated egg inputs maintained pretreatment population densities in manipulated compared with control ponds. Overall, our experiment shows that a carefully circumscribed reduction of overhead forest canopy can enhance the capacity of vernal ponds to support wildlife diversity and suggests a scale dependence of canopy influences on amphibians. These findings have implications for the connection between current wetland management practices and the goals of wetland stewardship and conservation of wetland-dependent species.
Ecophysiological variation of transpiration of pine forests: synthesis of new and published results
Pantana Tor-ngern; Ram Oren; Andrew C. Oishi; Joshua M. Uebelherr; Sari Palmroth; Lasse Tarvainen; Mikaell Ottosson-Löfvenius; Sune Linder; Jean-Christophe Domec; Torgny Näsholm
2017-01-01
Canopy transpiration (EC) is a large fraction of evapotranspiration, integrating physical and biological processes within the energy, water, and carbon cycles of forests. Quantifying EC is of both scientific and practical importance, providing information relevant to...
Xian, Jun-Ren; Hu, Ting-Xing; Zhang, Yuan-Bin; Wang, Kai-Yun
2007-04-01
By the method of strip transect sampling, the density, height, basal diameter, and components biomass of Abies faxoniana seedlings (H < or = 100 cm) lived in the forest gap (FG) and under the forest canopy (FC) of subalpine natural coniferous forest in West Sichuan were investigated, and the relationships among different components biomass were analyzed. The results indicated that the density and average height (H) of A. faxoniana seedlings were significantly different in FG and under FC, with the values being 12 903 and 2 017 per hectare, and 26.6 cm and 24.3 cm, respectively, while no significant differences were found in average basal diameter (D) and biomass. The biomass allocation in seedling's components was markedly affected by forest gap. In FG, the biomass ratio of branch to trunk (BRBT) reached the maximum (1.54) at 12th year, and then, declined and fluctuated at 0. 69. Under FC, the BRBT was increased with seedlings growth, and exceeded 1.0 at about 15th year. The total biomass and the biomass of leaf, stem, shoot and root grown in FG and under FC were significantly linearly correlated with D2H. There were significant positive correlations among the biomass of different seedling's components.
Development of laser-guided precision sprayers for tree crop applications
USDA-ARS?s Scientific Manuscript database
Tree crops in nurseries and orchards have great variations in shapes, sizes, canopy densities and gaps between in-row trees. The variability requires future sprayers to be flexible to spray the amount of chemicals that can match tree structures. A precision air-assisted sprayer was developed to appl...
Effects of group-selection timber harvest in bottomland hardwoods on fall migrant birds
John C. Kilgo; Karl V. Miller; Winston P. Smith
1999-01-01
Due to projected demands for hardwood timber, development of silvicultural practices that provide for adequate regeneration in southeastern bottomland hardwoods without causing undue harm to wildlife resources is critical. Group-selection silviculture involves harvesting a small group of trees, which creates a canopy gap (usually
NASA Technical Reports Server (NTRS)
Rosecrance, Richard C.; Johnson, Lee; Soderstrom, Dominic
2016-01-01
Canopy light interception is a main driver of water use and crop yield in almond and walnut production. Fractional green canopy cover (Fc) is a good indicator of light interception and can be estimated remotely from satellite using the normalized difference vegetation index (NDVI) data. Satellite-based Fc estimates could be used to inform crop evapotranspiration models, and hence support improvements in irrigation evaluation and management capabilities. Satellite estimates of Fc in almond and walnut orchards, however, need to be verified before incorporating them into irrigation scheduling or other crop water management programs. In this study, Landsat-based NDVI and Fc from NASA's Satellite Irrigation Management Support (SIMS) were compared with four estimates of canopy cover: 1. light bar measurement, 2. in-situ and image-based dimensional tree-crown analyses, 3. high-resolution NDVI data from low flying aircraft, and 4. orchard photos obtained via Google Earth and processed by an Image J thresholding routine. Correlations between the various estimates are discussed.
NASA Astrophysics Data System (ADS)
Rosecrance, R. C.; Johnson, L.; Soderstrom, D.
2016-12-01
Canopy light interception is a main driver of water use and crop yield in almond and walnut production. Fractional green canopy cover (Fc) is a good indicator of light interception and can be estimated remotely from satellite using the normalized difference vegetation index (NDVI) data. Satellite-based Fc estimates could be used to inform crop evapotranspiration models, and hence support improvements in irrigation evaluation and management capabilities. Satellite estimates of Fc in almond and walnut orchards, however, need to be verified before incorporating them into irrigation scheduling or other crop water management programs. In this study, Landsat-based NDVI and Fc from NASA's Satellite Irrigation Management Support (SIMS) were compared with four estimates of canopy cover: 1. light bar measurement, 2. in-situ and image-based dimensional tree-crown analyses, 3. high-resolution NDVI data from low flying aircraft, and 4. orchard photos obtained via Google Earth and processed by an Image J thresholding routine. Correlations between the various estimates are discussed.
NASA Astrophysics Data System (ADS)
Takizawa, Kenji; Tezduyar, Tayfun E.; Boben, Joseph; Kostov, Nikolay; Boswell, Cody; Buscher, Austin
2013-12-01
To increase aerodynamic performance, the geometric porosity of a ringsail spacecraft parachute canopy is sometimes increased, beyond the "rings" and "sails" with hundreds of "ring gaps" and "sail slits." This creates extra computational challenges for fluid-structure interaction (FSI) modeling of clusters of such parachutes, beyond those created by the lightness of the canopy structure, geometric complexities of hundreds of gaps and slits, and the contact between the parachutes of the cluster. In FSI computation of parachutes with such "modified geometric porosity," the flow through the "windows" created by the removal of the panels and the wider gaps created by the removal of the sails cannot be accurately modeled with the Homogenized Modeling of Geometric Porosity (HMGP), which was introduced to deal with the hundreds of gaps and slits. The flow needs to be actually resolved. All these computational challenges need to be addressed simultaneously in FSI modeling of clusters of spacecraft parachutes with modified geometric porosity. The core numerical technology is the Stabilized Space-Time FSI (SSTFSI) technique, and the contact between the parachutes is handled with the Surface-Edge-Node Contact Tracking (SENCT) technique. In the computations reported here, in addition to the SSTFSI and SENCT techniques and HMGP, we use the special techniques we have developed for removing the numerical spinning component of the parachute motion and for restoring the mesh integrity without a remesh. We present results for 2- and 3-parachute clusters with two different payload models.
Dispersion of a Passive Scalar Within and Above an Urban Street Network
NASA Astrophysics Data System (ADS)
Goulart, E. V.; Coceal, O.; Belcher, S. E.
2018-03-01
The transport of a passive scalar from a continuous point-source release in an urban street network is studied using direct numerical simulation (DNS). Dispersion through the network is characterized by evaluating horizontal fluxes of scalar within and above the urban canopy and vertical exchange fluxes through the canopy top. The relative magnitude and balance of these fluxes are used to distinguish three different regions relative to the source location: a near-field region, a transition region and a far-field region. The partitioning of each of these fluxes into mean and turbulent parts is computed. It is shown that within the canopy the horizontal turbulent flux in the street network is small, whereas above the canopy it comprises a significant fraction of the total flux. Vertical fluxes through the canopy top are predominantly turbulent. The mean and turbulent fluxes are respectively parametrized in terms of an advection velocity and a detrainment velocity and the parametrization incorporated into a simple box-network model. The model treats the coupled dispersion problem within and above the street network in a unified way and predictions of mean concentrations compare well with the DNS data. This demonstrates the usefulness of the box-network approach for process studies and interpretation of results from more detailed numerical simulations.
On interception modelling of a lowland coastal rainforest in northern Queensland, Australia
NASA Astrophysics Data System (ADS)
Wallace, Jim; McJannet, Dave
2006-10-01
SummaryRecent studies of the water balance of tropical rainforests in northern Queensland have revealed that large fractions of rainfall, up to 30%, are intercepted by the canopy and lost as evaporation. These loss rates are much higher than those reported for continental rainforests, for example, in the Amazon basin, where interception is around 9% of rainfall. Higher interception losses have been found in coastal and mountain rainforests and substantial advection of energy during rainfall is proposed to account for these results. This paper uses a process based model of interception to analyse the interception losses at Oliver Creek, a lowland coastal rainforest site in northern Queensland with a mean annual rainfall of 3952 mm. The observed interception loss of 25% of rainfall for the period August 2001 to January 2004 can be reproduced by the model with a suitable choice of the three key controlling variables, the canopy storage capacity, mean rainfall rate and mean wet canopy evaporation rate. Our analyses suggest that the canopy storage capacity of the Oliver Creek rainforest is between 3.0 and 3.5 mm, higher than reported for most other rainforests. Despite the high canopy capacity at our site, the interception losses can only be accounted for with energy advection during rainfall in the range 40-70% of the incident energy.
Different techniques of multispectral data analysis for vegetation fraction retrieval
NASA Astrophysics Data System (ADS)
Kancheva, Rumiana; Georgiev, Georgi
2012-07-01
Vegetation monitoring is one of the most important applications of remote sensing technologies. In respect to farmlands, the assessment of crop condition constitutes the basis of growth, development, and yield processes monitoring. Plant condition is defined by a set of biometric variables, such as density, height, biomass amount, leaf area index, and etc. The canopy cover fraction is closely related to these variables, and is state-indicative of the growth process. At the same time it is a defining factor of the soil-vegetation system spectral signatures. That is why spectral mixtures decomposition is a primary objective in remotely sensed data processing and interpretation, specifically in agricultural applications. The actual usefulness of the applied methods depends on their prediction reliability. The goal of this paper is to present and compare different techniques for quantitative endmember extraction from soil-crop patterns reflectance. These techniques include: linear spectral unmixing, two-dimensional spectra analysis, spectral ratio analysis (vegetation indices), spectral derivative analysis (red edge position), colorimetric analysis (tristimulus values sum, chromaticity coordinates and dominant wavelength). The objective is to reveal their potential, accuracy and robustness for plant fraction estimation from multispectral data. Regression relationships have been established between crop canopy cover and various spectral estimators.
Changes in reflectance anisotropy of wheat crop during different phenophases
NASA Astrophysics Data System (ADS)
Lunagaria, Manoj M.; Patel, Haridas R.
2017-04-01
The canopy structure of wheat changes significantly with growth stages and leads to changes in reflectance anisotropy. Bidirectional reflectance distribution function characterises the reflectance anisotropy of the targets, which can be approximated. Spectrodirectional reflectance measurements on wheat crop were acquired using a field goniometer system. The bidirectional reflectance spectra were acquired at 54 view angles to cover the hemispheric span up to 60° view zenith. The observations were made during early growth stages till maturity of the crop. The anisotropy was not constant for all wavelengths and anisotropic factors clearly revealed spectral dependence, which was more pronounced in near principal plane. In near infrared, wheat canopy expressed less reflectance anisotropy because of higher multiple scattering. The broad hotspot signature was noticeable in reflectance of canopy whenever view and solar angles were close. Distinct changes in bidirectional reflectance distribution function were observed during booting to flowering stages as the canopy achieves more uniformity, height and head emergence. The function clearly reveals bowl shape during heading to early milking growth stages of the crop. Late growth stages show less prominent gap and shadow effects. Anisotropy index revealed that wheat exhibits changes in reflectance anisotropy with phenological development and with spectral bands.
NASA Astrophysics Data System (ADS)
Chianucci, Francesco; Disperati, Leonardo; Guzzi, Donatella; Bianchini, Daniele; Nardino, Vanni; Lastri, Cinzia; Rindinella, Andrea; Corona, Piermaria
2016-05-01
Accurate estimates of forest canopy are essential for the characterization of forest ecosystems. Remotely-sensed techniques provide a unique way to obtain estimates over spatially extensive areas, but their application is limited by the spectral and temporal resolution available from these systems, which is often not suited to meet regional or local objectives. The use of unmanned aerial vehicles (UAV) as remote sensing platforms has recently gained increasing attention, but their applications in forestry are still at an experimental stage. In this study we described a methodology to obtain rapid and reliable estimates of forest canopy from a small UAV equipped with a commercial RGB camera. The red, green and blue digital numbers were converted to the green leaf algorithm (GLA) and to the CIE L*a*b* colour space to obtain estimates of canopy cover, foliage clumping and leaf area index (L) from aerial images. Canopy attributes were compared with in situ estimates obtained from two digital canopy photographic techniques (cover and fisheye photography). The method was tested in beech forests. UAV images accurately quantified canopy cover even in very dense stand conditions, despite a tendency to not detecting small within-crown gaps in aerial images, leading to a measurement of a quantity much closer to crown cover estimated from in situ cover photography. Estimates of L from UAV images significantly agreed with that obtained from fisheye images, but the accuracy of UAV estimates is influenced by the appropriate assumption of leaf angle distribution. We concluded that true colour UAV images can be effectively used to obtain rapid, cheap and meaningful estimates of forest canopy attributes at medium-large scales. UAV can combine the advantage of high resolution imagery with quick turnaround series, being therefore suitable for routine forest stand monitoring and real-time applications.
Throughfall patterns of a Subtropical Atlantic Forest in Brazil
NASA Astrophysics Data System (ADS)
Macedo Sá, João Henrique; Borges Chaffe, Pedro Luiz; Yuimi de Oliveira, Debora; Nery Giglio, Joana; Kobiyama, Masato
2017-04-01
The interception process is responsible for the spatial and temporal redistribution of the precipitation that reaches the ground. This process is important especially in forested areas since it influences recycling of moisture from the air and also the amount of water that effectively reaches the ground. The contact of the precipitation with the canopy influences on the water quality, increasing the concentration of various nutrients in the throughfall (Tf) and stemflow (Sf). Brazil, only about 8% of the original Atlantic Forest cover remains. That is an important biome and little is known about the characteristics of rainfall interception of this forest. The total interception loss in forested areas is usually formulated as the gross precipitation (P) minus the sum of the throughfall (Tf) and the stemflow (Sf). The stems characteristics influence on Sf, meanwhile, the value of Tf strongly depends on the canopy and leaf structures. Because of the complex structure of the canopy, these characteristics are usually expressed by the simpler Leaf Area Index (LAI) or the Canopy Cover Fraction (CCF). The Araponga river experimental catchment (ARA) with 5.3 ha is on the northern plateau of Santa Catarina State, southern Brazil. It is an area completely covered by secondary subtropical Atlantic Forest, the regional climate is the Köppen Cfb type, i.e., temperate climate without dry season and with warm summer (the mean temperature of the hottest month is always under 22°C). The objectives of the present study were (i) to evaluate the spatial and temporal variation of canopy cover; (ii) to influence of the interception process on the precipitation quality; and (iii) to explore the relation between canopy cover and throughfall. Inside the catchment, 9 Tf gauges were installed 40 cm above the soil surface in order to include the interception by shrub. 28 hand-made gauges were installed on a circular area of 3 m radius to analyze the spatial variability of throughfall. During 3 year in 2012 to 2014, digital images were taken every month with a camera installed horizontally 25 cm above the soil surface at each Tf gage. The total incident rainfall was 4624 mm, the throughfall volume was 3538 mm or 76% of incident rainfall. CCF and LAI ranged from 70 to 90% and from 3 to 5.5 m2/m2, respectively. We could not find any satisfactory relationship between Tf and canopy parameters (CCF and LAI). The analysis shows the significant difference in the water quality of the precipitation that reaches the ground after being intercepted. There was no significant relationship between the physicochemical parameters and the canopy cover fraction. The results indicate that the distribution of throughfall is not homogeneous, its spatial variation is not linked to any of the calculated parameters.
Mapping Topoclimate and Microclimate in the Monarch Butterfly Biosphere Reserve, Mexico
NASA Astrophysics Data System (ADS)
Weiss, S. B.
2006-12-01
Overwintering monarch butterflies in Mexico select areas of the high elevation Oyamel fir -pine forest providing a canopy that protects them from extremes of cold, heat, sun, and wind. These exacting microclimatic conditions are found in relatively small areas of forest with appropriate topography and canopy cover. The major goal of this investigation is to map topoclimatic and microclimatic conditions within the Monarch Butterfly Biosphere Reserve by combining temperature monitoring (iButton Thermochrons), hemispherical canopy photography, multiple regression, and GIS modeling. Temperature measurements included base weather stations and arrays of Thermochrons (on the north-side of trees at 2m height) across local topographic and canopy cover gradients. Topoclimatic models of minimum temperatures included topographic position, slope, and elevation, and predicted that thermal belts on slopes and cold air drainage into canyons create local minimum temperature gradients of 2°C. Topoclimatic models of maximum temperatures models included elevation, topographic position, and relative solar exposure, with local gradients of 3°C. These models, which are independent of forest canopy structure, were then projected across the entire region. Forest canopy structure, including direct and diffuse solar radiation, was assessed with hemispherical photography at each Thermochron site. Canopy cover affected minimum temperatures primarily on the calmest, coldest nights. Maximum temperatures were predicted by direct radiation below the canopy. Fine- scale grids (25 m spacing) at three overwintering sites characterized effects of canopy gaps and edges on temperature and wind exposure. The effects of temperature variation were considered for lipid loss rates, ability to take flight, and freezing mortality. Lipid loss rates were estimated by measured hourly temperatures. Many of the closed canopy sites allowed for substantial lipid reserves at the end of the season (March 15), but increases in average temperature could effectively deplete lipids by that time. The large influence of canopy cover on daytime maximum temperatures demonstrates that forest thinning directly reduces habitat suitability. Monarchs' flight behavior under warmer conditions suggests that daytime temperatures drive the dynamics of monarch distribution within colonies. Thinning also decreases nighttime minimum temperatures, and increases wind exposure. These results create a basis for quantitative understanding of the combinations of topography and forest structure that provide high quality overwintering habitat.
Within-canopy sesquiterpene ozonolysis in Amazonia
NASA Astrophysics Data System (ADS)
Jardine, K.; YañEz Serrano, A.; Arneth, A.; Abrell, L.; Jardine, A.; van Haren, J.; Artaxo, P.; Rizzo, L. V.; Ishida, F. Y.; Karl, T.; Kesselmeier, J.; Saleska, S.; Huxman, T.
2011-10-01
Through rapid reactions with ozone, which can initiate the formation of secondary organic aerosols, the emission of sesquiterpenes from vegetation in Amazonia may have significant impacts on tropospheric chemistry and climate. Little is known, however, about sesquiterpene emissions, transport, and chemistry within plant canopies owing to analytical difficulties stemming from very low ambient concentrations, high reactivities, and sampling losses. Here, we present ambient sesquiterpene concentration measurements obtained during the 2010 dry season within and above a primary tropical forest canopy in Amazonia. We show that by peaking at night instead of during the day, and near the ground instead of within the canopy, sesquiterpene concentrations followed a pattern different from that of monoterpenes, suggesting that unlike monoterpene emissions, which are mainly light dependent, sesquiterpene emissions are mainly temperature dependent. In addition, we observed that sesquiterpene concentrations were inversely related with ozone (with respect to time of day and vertical concentration), suggesting that ambient concentrations are highly sensitive to ozone. These conclusions are supported by experiments in a tropical rain forest mesocosm, where little atmospheric oxidation occurs and sesquiterpene and monoterpene concentrations followed similar diurnal patterns. We estimate that the daytime dry season ozone flux of -0.6 to -1.5 nmol m-2 s-1 due to in-canopy sesquiterpene reactivity could account for 7%-28% of the net ozone flux. Our study provides experimental evidence that a large fraction of total plant sesquiterpene emissions (46%-61% by mass) undergo within-canopy ozonolysis, which may benefit plants by reducing ozone uptake and its associated oxidative damage.
NASA Technical Reports Server (NTRS)
Huemmrich, Karl F.
2013-01-01
The leaf inclination angle distribution (LAD) is an important characteristic of vegetation canopy structure affecting light interception within the canopy. However, LADs are difficult and time consuming to measure. To examine possible global patterns of LAD and their implications in remote sensing, a model was developed to predict leaf angles within canopies. Canopies were simulated using the SAIL radiative transfer model combined with a simple photosynthesis model. This model calculated leaf inclination angles for horizontal layers of leaves within the canopy by choosing the leaf inclination angle that maximized production over a day in each layer. LADs were calculated for five latitude bands for spring and summer solar declinations. Three distinct LAD types emerged: tropical, boreal, and an intermediate temperate distribution. In tropical LAD, the upper layers have a leaf angle around 35 with the lower layers having horizontal inclination angles. While the boreal LAD has vertical leaf inclination angles throughout the canopy. The latitude bands where each LAD type occurred changed with the seasons. The different LADs affected the fraction of absorbed photosynthetically active radiation (fAPAR) and Normalized Difference Vegetation Index (NDVI) with similar relationships between fAPAR and leaf area index (LAI), but different relationships between NDVI and LAI for the different LAD types. These differences resulted in significantly different relationships between NDVI and fAPAR for each LAD type. Since leaf inclination angles affect light interception, variations in LAD also affect the estimation of leaf area based on transmittance of light or lidar returns.
NASA Astrophysics Data System (ADS)
Richardson, A. D.; Toomey, M. P.; Aubrecht, D.; Sonnentag, O.; Ryu, Y.; Hilker, T.
2013-12-01
Phenology - the annual rhythm of canopy development and senescence - is a key control on the seasonality of surface-atmosphere fluxes of CO2, water, and energy. Phenology is also a highly sensitive indicator of the biological impacts of climate change. In many biomes, there is strong evidence of trends towards earlier spring onset, and later autumn senescence, over the last four decades. These shifts in phenology may play an imprortant role in mitigating - or amplifying - feedbacks between terrestrial ecosystems and the climate system. To better understand relationships between canopy structure and function in a temperate deciduous forest, we installed a wide array of radiometric instruments and imaging sensors near the top of a 40-m high tower at Harvard Forest beginning in 2011. Our data set includes: - incoming and outgoing visible (including incoming direct and diffuse components), shortwave, and longwave radiation; - narrowband (five visible and three near-infrared channels) canopy reflectance; - leaf area index (LAI, from continuous below-canopy digital cover photography), fraction of absorbed photosynthetically active radiation (fAPAR, from above- and below-canopy quantum sensors), normalized difference vegetation index (NDVI, from broad- and narrow-band radiometric sensors), and photochemical reflectance index (PRI, from narrow-band radiometric sensors); - visible and near-infrared PhenoCam (http://phenocam.sr.unh.edu) canopy imagery; - multi-angular narrowband hyperspectral canopy reflectance (AMSPEC, in 2012); and - beginning in 2013, hyperspectral and thermal canopy imagery. Together with eddy covariance measurements of CO2 and water fluxes from the Harvard Forest AmeriFlux site, located in similar forest about 1 km to the east, on-the-ground visual observations of phenology, and continuous stem diameter measurements with automated band dendrometers, these data provide an unusually detailed view of phenological processes at scales from leaves to trees to the forest canopy. In this presentation I will discuss our efforts to use these data for model-based analyses that link phenology to biosphere-atmosphere interactions through the cycling of CO2, water and energy. As an example, I will describe how we are using a two-layer canopy model, in conjunction with both LAI data and narrowband reflectance indices, to improve model representation of the seasonal cycle of canopy photosynthesis and hence understanding of surface-atmosphere fluxes of CO2.
Classification of Tree Species in Overstorey Canopy of Subtropical Forest Using QuickBird Images.
Lin, Chinsu; Popescu, Sorin C; Thomson, Gavin; Tsogt, Khongor; Chang, Chein-I
2015-01-01
This paper proposes a supervised classification scheme to identify 40 tree species (2 coniferous, 38 broadleaf) belonging to 22 families and 36 genera in high spatial resolution QuickBird multispectral images (HMS). Overall kappa coefficient (OKC) and species conditional kappa coefficients (SCKC) were used to evaluate classification performance in training samples and estimate accuracy and uncertainty in test samples. Baseline classification performance using HMS images and vegetation index (VI) images were evaluated with an OKC value of 0.58 and 0.48 respectively, but performance improved significantly (up to 0.99) when used in combination with an HMS spectral-spatial texture image (SpecTex). One of the 40 species had very high conditional kappa coefficient performance (SCKC ≥ 0.95) using 4-band HMS and 5-band VIs images, but, only five species had lower performance (0.68 ≤ SCKC ≤ 0.94) using the SpecTex images. When SpecTex images were combined with a Visible Atmospherically Resistant Index (VARI), there was a significant improvement in performance in the training samples. The same level of improvement could not be replicated in the test samples indicating that a high degree of uncertainty exists in species classification accuracy which may be due to individual tree crown density, leaf greenness (inter-canopy gaps), and noise in the background environment (intra-canopy gaps). These factors increase uncertainty in the spectral texture features and therefore represent potential problems when using pixel-based classification techniques for multi-species classification.
Vegetation canopy structure from NASA EOS multiangle imaging
USDA-ARS?s Scientific Manuscript database
We used red band bidirectional reflectance data from the NASA Multiangle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS) mapped onto a 250 m grid in a multiangle approach to obtain estimates of woody plant fractional cover and crown height through adjus...
Drake, John E; Tjoelker, Mark G; Aspinwall, Michael J; Reich, Peter B; Barton, Craig V M; Medlyn, Belinda E; Duursma, Remko A
2016-08-01
Given the contrasting short-term temperature dependences of gross primary production (GPP) and autotrophic respiration, the fraction of GPP respired by trees is predicted to increase with warming, providing a positive feedback to climate change. However, physiological acclimation may dampen or eliminate this response. We measured the fluxes of aboveground respiration (Ra ), GPP and their ratio (Ra /GPP) in large, field-grown Eucalyptus tereticornis trees exposed to ambient or warmed air temperatures (+3°C). We report continuous measurements of whole-canopy CO2 exchange, direct temperature response curves of leaf and canopy respiration, leaf and branch wood respiration, and diurnal photosynthetic measurements. Warming reduced photosynthesis, whereas physiological acclimation prevented a coincident increase in Ra . Ambient and warmed trees had a common nonlinear relationship between the fraction of GPP that was respired above ground (Ra /GPP) and the mean daily temperature. Thus, warming significantly increased Ra /GPP by moving plants to higher positions on the shared Ra /GPP vs daily temperature relationship, but this effect was modest and only notable during hot conditions. Despite the physiological acclimation of autotrophic respiration to warming, increases in temperature and the frequency of heat waves may modestly increase tree Ra /GPP, contributing to a positive feedback between climate warming and atmospheric CO2 accumulation. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Tree Death Leading To Ecosystem Renewal? Forecasting Carbon Storage As Eastern Forests Age
NASA Astrophysics Data System (ADS)
Curtis, P.; Gough, C. M.; Bohrer, G.; Nadelhoffer, K. J.; Ivanov, V. Y.
2013-12-01
The future trajectory of North American carbon (C) stocks remains uncertain as a subset of maturing trees die in mixed deciduous forests of the U.S. Midwest and East transitioning from early to middle and late succession. We are studying disturbance-structure-function relationships of aging forests in northern Michigan using long-term ecological and meteorological C cycling studies, a large-scale disturbance experiment, a 200-year forest chronosequence, and flux comparisons across three tower sites. We find that ecosystem responses to mortality are characterized by several processes that affect structure-function relationships and alter the way ecosystem functioning interacts with meteorological forcing. We subjected 39 ha of forest to moderate experimental disturbance, similar to that of age-related or climatically induced tree mortality. We found that the mortality of a third of all canopy trees minimally altered the balance between forest C uptake and release, as growth-limiting light and nitrogen resources were rapidly reallocated from dead and dying trees to undisturbed trees. Although disturbance-induced mortality increased soil N mineralization rates, nitrification, and denitrification, N exports from soils remained low. Upper canopy gap formation and a rise in structural complexity allowed increased photosynthetic contribution of sub-canopy vegetation to compensate for the death of canopy dominant trees. However, we found large differences between the transpirational response of maples and oaks to VPD and soil moisture, which led to relative declines in maple transpiration post-disturbance. These hydrologic differences may affect a species' ability to compete for resources following such a disturbance. Changes to canopy structure had a relatively small effect on roughness length and the turbulence forcing of fluxes from the canopy. We currently are studying how tree mortality driven changes in canopy structure affects within-canopy resource distribution and subsequent changes in leaf morphological, physiological and biochemical traits, how disturbance severity relates to the magnitude of C storage resilience, the impacts of clouds and aerosols on surface diffuse light and how they interact with canopy structure to modify C uptake, and how these processes change overall C assimilation given different forest age and disturbance histories. Along a conceptual continuum from structural to functional attributes, our results show that leaf area distribution and its heterogeneity, canopy light, water and nutrient use efficiency, canopy roughness length and turbulent mixing of canopy air, and the coupling between soil moisture and canopy density, all change with successional and disturbance processes and affect ecosystem C fluxes. Patchy mortality and related increases in structural complexity could, against expectations, enhance the C storage of some forests. Our finding that increases in canopy structural complexity improve resource-use efficiency provides a mechanism for maintaining high rates of C storage in aging forests.
Contrasting Patterns of Damage and Recovery in Logged Amazon Forests From Small Footprint LiDAR Data
NASA Technical Reports Server (NTRS)
Morton, D. C.; Keller, M.; Cook, B. D.; Hunter, Maria; Sales, Marcio; Spinelli, L.; Victoria, D.; Andersen, H.-E.; Saleska, S.
2012-01-01
Tropical forests ecosystems respond dynamically to climate variability and disturbances on time scales of minutes to millennia. To date, our knowledge of disturbance and recovery processes in tropical forests is derived almost exclusively from networks of forest inventory plots. These plots typically sample small areas (less than or equal to 1 ha) in conservation units that are protected from logging and fire. Amazon forests with frequent disturbances from human activity remain under-studied. Ongoing negotiations on REDD+ (Reducing Emissions from Deforestation and Forest Degradation plus enhancing forest carbon stocks) have placed additional emphasis on identifying degraded forests and quantifying changing carbon stocks in both degraded and intact tropical forests. We evaluated patterns of forest disturbance and recovery at four -1000 ha sites in the Brazilian Amazon using small footprint LiDAR data and coincident field measurements. Large area coverage with airborne LiDAR data in 2011-2012 included logged and unmanaged areas in Cotriguacu (Mato Grosso), Fiona do Jamari (Rondonia), and Floresta Estadual do Antimary (Acre), and unmanaged forest within Reserva Ducke (Amazonas). Logging infrastructure (skid trails, log decks, and roads) was identified using LiDAR returns from understory vegetation and validated based on field data. At each logged site, canopy gaps from logging activity and LiDAR metrics of canopy heights were used to quantify differences in forest structure between logged and unlogged areas. Contrasting patterns of harvesting operations and canopy damages at the three logged sites reflect different levels of pre-harvest planning (i.e., informal logging compared to state or national logging concessions), harvest intensity, and site conditions. Finally, we used multi-temporal LiDAR data from two sites, Reserva Ducke (2009, 2012) and Antimary (2010, 2011), to evaluate gap phase dynamics in unmanaged forest areas. The rates and patterns of canopy gap formation at these sites illustrate potential issues for separating logging damages from natural forest disturbances over longer time scales. Multi-temporal airborne LiDAR data and coincident field measurements provide complementary perspectives on disturbance and recovery processes in intact and degraded Amazon forests. Compared to forest inventory plots, the large size of each individual site permitted analyses of landscape-scale processes that would require extremely high investments to study using traditional forest inventory methods.
Modeling Diurnal and Seasonal 3D Light Profiles in Amazon Forests
NASA Astrophysics Data System (ADS)
Morton, D. C.; Rubio, J.; Gastellu-Etchegorry, J.; Cook, B. D.; Hunter, M. O.; Yin, T.; Nagol, J. R.; Keller, M. M.
2013-12-01
The complex horizontal and vertical structure in tropical forests generates a diversity of light environments for canopy and understory trees. These 3D light profiles are dynamic on diurnal and seasonal time scales based on changes in solar illumination and the fraction of diffuse light. Understanding this variability is critical for improving ecosystem models and interpreting optical and LiDAR remote sensing data from tropical forests. Here, we initialized the Discrete Anisotropic Radiative Transfer (DART) model using dense airborne LiDAR data (>20 returns m2) from three forest sites in the central and eastern Amazon. Forest scenes derived from airborne LiDAR data were tested using modeled and observed large-footprint LiDAR data from the ICESat-GLAS sensor. Next, diurnal and seasonal profiles of photosynthetically active radiation (PAR) for each forest site were simulated under clear sky and cloudy conditions using DART. Incident PAR was summarized for canopy, understory, and ground levels. Our study illustrates the importance of realistic canopy models for accurate representation of LiDAR and optical radiative transfer. In particular, canopy rugosity and ground topography information from airborne LiDAR data provided critical 3D information that cannot be recreated using stem maps and allometric relationships for crown dimensions. The spatial arrangement of canopy trees altered PAR availability, even for dominant individuals, compared to downwelling measurements from nearby eddy flux towers. Pseudo-realistic branch and leaf architecture was also essential for recreating multiple scattering within canopies at near-infrared wavelengths commonly used for LiDAR remote sensing and quantifying PAR attenuation from shading within and between canopies. These findings point to the need for more spatial information on forest structure to improve the representation of light availability in models of tropical forest productivity.
Malcolm North; Brian Oakley; Jiquan Chen; Heather Erickson; Andrew Gray; Antonio Izzo; Dale Johnson; Siyan Ma; Jim Marra; Marc Meyer; Kathryn Purcell; Tom Rambo; Dave Rizzo; Brent Roath; Tim Schowalter
2002-01-01
Detailed analysis of mixed-conifer and red fir forests were made from extensive, large vegetation sampling, systematically conducted throughout the Teakettle Experimental Forest. Mixed conifer is characterized by distinct patch conditions of closed-canopy tree clusters, persistent gaps and shrub thickets. This heterogeneous spatial structure provides contrasting...
Food abundance does not determine bird use of early-successional habitat
Tracey B. Champlin; John C. Kilgo; Christopher E. Moorman
2009-01-01
Few attempts have been made to experimentally address the extent to which temporal or spatial variation in food availability influences avian habitat use. We used an experimental approach to investigate whether bird use differed between treated (arthropods reduced through insecticide application) and control (untreated) forest canopy gaps within a bottomland hardwood...
Canopy gap dynamics of second-growth red spruce-northern hardwood stands in West Virginia
James S. Rentch; Thomas M. Schuler; Gregory J. Nowacki; Nathan R. Beane; W. Mark Ford
2010-01-01
Forest restoration requires an understanding of the natural disturbance regime of the target community and estimates of the historic range of variability of ecosystem components (composition, structure, and disturbance processes). Management prescriptions that support specific restoration activities should be consistent with these parameters. In this study, we describe...
Vegetation composition and structure in two hemlock stands threatened by the hemlock woolly adelgid
John J. Battles; Natalie Cleavitt; Timothy J. Fahey; Richard A. Evans
2000-01-01
We quantified the vegetation composition and structure of two hemlock (Tsuga canadensis) ravines in the Delaware Water Gap National Recreation Area threatened by the hemlock woolly adelgid (Adelges tsugae). Hemlock accounted for more than 50% of the canopy basal area (ravine mean = 52.3 m² ha-1) and...
An examination of fire spread thresholds in discontinuous fuel beds
Mark A. Finney; Jack D. Cohen; Isaac C. Grenfell; Kara M. Yedinak
2010-01-01
Many fuel beds, especially live vegetation canopies (conifer forests, shrub fields, bunch-grasses) contain gaps between vegetation clumps. Fires burning in these fuel types often display thresholds for spread that are observed to depend on environmental factors like wind, slope, and fuel moisture content. To investigate threshold spread behaviours, we conducted a set...
Regeneration patterns of northern white cedar, an old-growth forest dominant
Scott, Michael L.; Murphy, Peter G.
1987-01-01
Regeneration of Thuja occidentalis L. was examined in an old-growth dune forest on South Manitou Island, Michigan. To estimate the current status of cedar regeneration, we determined size structure of seedlings and stems and analyzed present patterns of establishment and persistence relative to substrate type. There has been a shift in the pattern of cedar establishment from soil to log substrates. While 97% of all stems ≥15 cm dbh are associated with a soil substrate, 81% of stems ≥2.5cm-25 cm tall. There was no significant relationship between the state of log decay and the density of seedlings >25 cm in height, indicating that long-term survival is not dependent on the degree of log decomposition. However, survival on logs is associated with canopy openings. Seedlings >25 cm tall were associated with gaps, and 78% of cedar stems (≥2.5 cm dbh) on logs were associated with a single windthrow gap. Thus, current cedar regeneration in this old-growth forest depends on logs and the canopy openings associated with them.
Dellasala, Dominick A.; Hagar, Joan C.; Engel, Kathleen A.; McComb, W.C.; Fairbanks, Randal L.; Campbell, Ellen G.
1996-01-01
We inventoried breeding and wintering bird communities in four treatments of temperate rainforest on Prince of Wales Island, southeast Alaska during 1991-1992 and 1992-1993. The four forest treatments sampled included: (1) young growth (20 years) originating from clearcut logging with no silvicultural modification (non-modified), (2) young growth (20 years) precommercially thinned along uniformly-spaced thinning grids (thinned), (3) young growth (20 years) with gaps in the overstory canopy created by felling trees in 0.05-ha openings (gapped), and (4) virgin old growth (2 150 years). Of 16 common breeding bird species observed, six showed significant responses to young-growth modifications. One species was more abundant and two species were less abundant in thinned sites, while one species was more abundant and two species were less abundant in gapped sites than at least one of the other treatments. None of the three common wintering species of birds observed was influenced by young-growth modification. Breeding bird communities, in general, were less similar between young- and old-growth treatments than among young-growth treatments. Three of the 16 common breeding bird species were more abundant in old growth than each of the young-growth treatments and one uncommon species was detected almost exclusivelyi n old growth duringb oth the breedinga nd wintering seasonsF. our other breeding bird species were more abundant in young-growth treatments than in old growth. Higher use of old growth by wintering birds was related to winter severity. To enhance habitat for wintering and breeding birds we recommend: (1) thinning young growth along variablespaced grids to create additional canopy layers and improve snow-intercept properties of young growth for canopy-foraging birds, (2) retention of old-growth clumps in clearcuts for bird species associated with old-growth structure, and (3) long-term conservation of oldgrowth temperate rainforest for breeding and wintering birds positively associated with old growth.
Airborne Laser Scanning of Forest Stem Volume in a Mountainous Environment
Hollaus, Markus; Wagner, Wolfgang; Maier, Bernhard; Schadauer, Klemens
2007-01-01
Airborne laser scanning (ALS) is an active remote sensing technique that uses the time-of-flight measurement principle to capture the three-dimensional structure of the earth's surface with pulsed lasers that transmit nanosecond-long laser pulses with a high pulse repetition frequency. Over forested areas most of the laser pulses are reflected by the leaves and branches of the trees, but a certain fraction of the laser pulses reaches the forest floor through small gaps in the canopy. Thus it is possible to reconstruct both the three-dimensional structure of the forest canopy and the terrain surface. For the retrieval of quantitative forest parameters such as stem volume or biomass it is necessary to use models that combine ALS with inventory data. One approach is to use multiplicative regression models that are trained with local inventory data. This method has been widely applied over boreal forest regions, but so far little experience exists with applying this method for mapping alpine forest. In this study the transferability of this approach to a 128 km2 large mountainous region in Vorarlberg, Austria, was evaluated. For the calibration of the model, inventory data as operationally collected by Austrian foresters were used. Despite these inventory data are based on variable sample plot sizes, they could be used for mapping stem volume for the entire alpine study area. The coefficient of determination R2 was 0.85 and the root mean square error (RMSE) 90.9 m3ha−1 (relative error of 21.4%) which is comparable to results of ALS studies conducted over topographically less complex environments. Due to the increasing availability, ALS data could become an operational part of Austrian's forest inventories.
Yang, Hualei; Yang, Xi; Zhang, Yongguang; Heskel, Mary A; Lu, Xiaoliang; Munger, J William; Sun, Shucun; Tang, Jianwu
2017-07-01
Accurate estimation of terrestrial gross primary productivity (GPP) remains a challenge despite its importance in the global carbon cycle. Chlorophyll fluorescence (ChlF) has been recently adopted to understand photosynthesis and its response to the environment, particularly with remote sensing data. However, it remains unclear how ChlF and photosynthesis are linked at different spatial scales across the growing season. We examined seasonal relationships between ChlF and photosynthesis at the leaf, canopy, and ecosystem scales and explored how leaf-level ChlF was linked with canopy-scale solar-induced chlorophyll fluorescence (SIF) in a temperate deciduous forest at Harvard Forest, Massachusetts, USA. Our results show that ChlF captured the seasonal variations of photosynthesis with significant linear relationships between ChlF and photosynthesis across the growing season over different spatial scales (R 2 = 0.73, 0.77, and 0.86 at leaf, canopy, and satellite scales, respectively; P < 0.0001). We developed a model to estimate GPP from the tower-based measurement of SIF and leaf-level ChlF parameters. The estimation of GPP from this model agreed well with flux tower observations of GPP (R 2 = 0.68; P < 0.0001), demonstrating the potential of SIF for modeling GPP. At the leaf scale, we found that leaf F q '/F m ', the fraction of absorbed photons that are used for photochemistry for a light-adapted measurement from a pulse amplitude modulation fluorometer, was the best leaf fluorescence parameter to correlate with canopy SIF yield (SIF/APAR, R 2 = 0.79; P < 0.0001). We also found that canopy SIF and SIF-derived GPP (GPP SIF ) were strongly correlated to leaf-level biochemistry and canopy structure, including chlorophyll content (R 2 = 0.65 for canopy GPP SIF and chlorophyll content; P < 0.0001), leaf area index (LAI) (R 2 = 0.35 for canopy GPP SIF and LAI; P < 0.0001), and normalized difference vegetation index (NDVI) (R 2 = 0.36 for canopy GPP SIF and NDVI; P < 0.0001). Our results suggest that ChlF can be a powerful tool to track photosynthetic rates at leaf, canopy, and ecosystem scales. © 2016 John Wiley & Sons Ltd.
Wehr, Richard; Commane, Roisin; Munger, J. William; ...
2017-01-26
Stomatal conductance influences both photosynthesis and transpiration, thereby coupling the carbon and water cycles and affecting surface–atmosphere energy exchange. The environmental response of stomatal conductance has been measured mainly on the leaf scale, and theoretical canopy models are relied on to upscale stomatal conductance for application in terrestrial ecosystem models and climate prediction. Here we estimate stomatal conductance and associated transpiration in a temperate deciduous forest directly on the canopy scale via two independent approaches: (i) from heat and water vapor exchange and (ii) from carbonyl sulfide (OCS) uptake. We use the eddy covariance method to measure the net ecosystem–atmosphere exchange ofmore » OCS, and we use a flux-gradient approach to separate canopy OCS uptake from soil OCS uptake. We find that the seasonal and diurnal patterns of canopy stomatal conductance obtained by the two approaches agree (to within ±6 % diurnally), validating both methods. Canopy stomatal conductance increases linearly with above-canopy light intensity (in contrast to the leaf scale, where stomatal conductance shows declining marginal increases) and otherwise depends only on the diffuse light fraction, the canopy-average leaf-to-air water vapor gradient, and the total leaf area. Based on stomatal conductance, we partition evapotranspiration (ET) and find that evaporation increases from 0 to 40 % of ET as the growing season progresses, driven primarily by rising soil temperature and secondarily by rainfall. Counterintuitively, evaporation peaks at the time of year when the soil is dry and the air is moist. Our method of ET partitioning avoids concerns about mismatched scales or measurement types because both ET and transpiration are derived from eddy covariance data. Neither of the two ecosystem models tested predicts the observed dynamics of evaporation or transpiration, indicating that ET partitioning such as that provided here is needed to further model development and improve our understanding of carbon and water cycling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehr, Richard; Commane, Roisin; Munger, J. William
Stomatal conductance influences both photosynthesis and transpiration, thereby coupling the carbon and water cycles and affecting surface–atmosphere energy exchange. The environmental response of stomatal conductance has been measured mainly on the leaf scale, and theoretical canopy models are relied on to upscale stomatal conductance for application in terrestrial ecosystem models and climate prediction. Here we estimate stomatal conductance and associated transpiration in a temperate deciduous forest directly on the canopy scale via two independent approaches: (i) from heat and water vapor exchange and (ii) from carbonyl sulfide (OCS) uptake. We use the eddy covariance method to measure the net ecosystem–atmosphere exchange ofmore » OCS, and we use a flux-gradient approach to separate canopy OCS uptake from soil OCS uptake. We find that the seasonal and diurnal patterns of canopy stomatal conductance obtained by the two approaches agree (to within ±6 % diurnally), validating both methods. Canopy stomatal conductance increases linearly with above-canopy light intensity (in contrast to the leaf scale, where stomatal conductance shows declining marginal increases) and otherwise depends only on the diffuse light fraction, the canopy-average leaf-to-air water vapor gradient, and the total leaf area. Based on stomatal conductance, we partition evapotranspiration (ET) and find that evaporation increases from 0 to 40 % of ET as the growing season progresses, driven primarily by rising soil temperature and secondarily by rainfall. Counterintuitively, evaporation peaks at the time of year when the soil is dry and the air is moist. Our method of ET partitioning avoids concerns about mismatched scales or measurement types because both ET and transpiration are derived from eddy covariance data. Neither of the two ecosystem models tested predicts the observed dynamics of evaporation or transpiration, indicating that ET partitioning such as that provided here is needed to further model development and improve our understanding of carbon and water cycling.« less
Nadine Gobron; Bernard Pinty; Ophélie Aussedat; Jing M. Chen; Warren B. Cohen; Rasmus Fensholt; Valery Gond; Karl Fred Huemmrich; Thomas Lavergne; Frédéric Méline; Jeffrey L. Privette; Inge Sandholt; Malcolm Taberner; David P. Turner; Michael M. Verstraete; Jean-Luc Widlowski
2006-01-01
This paper discusses the quality and the accuracy of the Joint Research Center (JRC) fraction of absorbed photosynthetically active radiation (FAPAR) products generated from an analysis of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data. The FAPAR value acts as an indicator of the presence and state of the vegetation and it can be estimated from remote sensing...
Potential effects of forest management on surface albedo
NASA Astrophysics Data System (ADS)
Otto, J.; Bréon, F.-M.; Schelhaas, M.-J.; Pinty, B.; Luyssaert, S.
2012-04-01
Currently 70% of the world's forests are managed and this figure is likely to rise due to population growth and increasing demand for wood based products. Forest management has been put forward by the Kyoto-Protocol as one of the key instruments in mitigating climate change. For temperate and boreal forests, the effects of forest management on the stand-level carbon balance are reasonably well understood, but the biophysical effects, for example through changes in the albedo, remain elusive. Following a modeling approach, we aim to quantify the variability in albedo that can be attributed to forest management through changes in canopy structure and density. The modelling approach chains three separate models: (1) a forest gap model to describe stand dynamics, (2) a Monte-Carlo model to estimate the probability density function of the optical path length of photons through the canopy and (3) a physically-based canopy transfer model to estimate the interaction between photons and leaves. The forest gap model provides, on a monthly time step the position, height, diameter, crown size and leaf area index of individual trees. The Monte-Carlo model computes from this the probability density function of the distance a photon travels through crown volumes to determine the direct light reaching the forest floor. This information is needed by the canopy transfer model to calculate the effective leaf area index - a quantity that allows it to correctly represent a 3D process with a 1D model. Outgoing radiation is calculated as the result of multiple processes involving the scattering due to the canopy layer and the forest floor. Finally, surface albedo is computed as the ratio between incident solar radiation and calculated outgoing radiation. The study used two time series representing thinning from below of a beech and a Scots pine forest. The results show a strong temporal evolution in albedo during stand establishment followed by a relatively stable albedo once the canopy is closed. During this period, albedo is affected for a short time by forest operations. The modelling approach allowed us to estimate the importance of ground vegetation in the stand albedo. Given that ground vegetation depends on the light reaching the forest floor, ground vegetation could act as a natural buffer to dampen changes in albedo, allowing the stand to maintain optimal leaf temperature. Consequently, accounting for only the carbon balance component of forest management ignores albedo impacts and is thus likely to yield biased estimates of the climate benefits of forest ecosystems.
Burns, Sean P.; Sun, Jielun; Lenschow, D.H.; Oncley, S.P.; Stephens, B.B.; Yi, C.; Anderson, D.E.; Hu, Jiawen; Monson, Russell K.
2011-01-01
Air temperature Ta, specific humidity q, CO2 mole fraction ??c, and three-dimensional winds were measured in mountainous terrain from five tall towers within a 1 km region encompassing a wide range of canopy densities. The measurements were sorted by a bulk Richardson number Rib. For stable conditions, we found vertical scalar differences developed over a "transition" region between 0.05 < Rib < 0.5. For strongly stable conditions (Rib > 1), the vertical scalar differences reached a maximum and remained fairly constant with increasing stability. The relationships q and ??c have with Rib are explained by considering their sources and sinks. For winds, the strong momentum absorption in the upper canopy allows the canopy sublayer to be influenced by pressure gradient forces and terrain effects that lead to complex subcanopy flow patterns. At the dense-canopy sites, soil respiration coupled with wind-sheltering resulted in CO2 near the ground being 5-7 ??mol mol-1 larger than aloft, even with strong above-canopy winds (near-neutral conditions). We found Rib-binning to be a useful tool for evaluating vertical scalar mixing; however, additional information (e.g., pressure gradients, detailed vegetation/topography, etc.) is needed to fully explain the subcanopy wind patterns. Implications of our results for CO2 advection over heterogenous, complex terrain are discussed. ?? 2010 Springer Science+Business Media B.V.
Fluid{Structure Interaction Modeling of Modified-Porosity Parachutes and Parachute Clusters
NASA Astrophysics Data System (ADS)
Boben, Joseph J.
To increase aerodynamic performance, the geometric porosity of a ringsail spacecraft parachute canopy is sometimes increased, beyond the "rings" and "sails" with hundreds of "ring gaps" and "sail slits." This creates extra computational challenges for fluid-structure interaction (FSI) modeling of clusters of such parachutes, beyond those created by the lightness of the canopy structure, geometric complexities of hundreds of gaps and slits, and the contact between the parachutes of the cluster. In FSI computation of parachutes with such "modified geometric porosity," the ow through the "windows" created by the removal of the panels and the wider gaps created by the removal of the sails cannot be accurately modeled with the Homogenized Modeling of Geometric Porosity (HMGP), which was introduced to deal with the hundreds of gaps and slits. The ow needs to be actually resolved. All these computational challenges need to be addressed simultaneously in FSI modeling of clusters of spacecraft parachutes with modified geometric porosity. The core numerical technology is the Stabilized Space-Time FSI (SSTFSI) technique, and the contact between the parachutes is handled with the Surface-Edge-Node Contact Tracking (SENCT) technique. In the computations reported here, in addition to the SSTFSI and SENCT techniques and HMGP, we use the special techniques we have developed for removing the numerical spinning component of the parachute motion and for restoring the mesh integrity without a remesh. We present results for 2- and 3-parachute clusters with two different payload models. We also present the FSI computations we carried out for a single, subscale modified-porosity parachute.
NASA Astrophysics Data System (ADS)
Song, Wanjuan; Mu, Xihan; Ruan, Gaiyan; Gao, Zhan; Li, Linyuan; Yan, Guangjian
2017-06-01
Normalized difference vegetation index (NDVI) of highly dense vegetation (NDVIv) and bare soil (NDVIs), identified as the key parameters for Fractional Vegetation Cover (FVC) estimation, are usually obtained with empirical statistical methods However, it is often difficult to obtain reasonable values of NDVIv and NDVIs at a coarse resolution (e.g., 1 km), or in arid, semiarid, and evergreen areas. The uncertainty of estimated NDVIs and NDVIv can cause substantial errors in FVC estimations when a simple linear mixture model is used. To address this problem, this paper proposes a physically based method. The leaf area index (LAI) and directional NDVI are introduced in a gap fraction model and a linear mixture model for FVC estimation to calculate NDVIv and NDVIs. The model incorporates the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) model parameters product (MCD43B1) and LAI product, which are convenient to acquire. Two types of evaluation experiments are designed 1) with data simulated by a canopy radiative transfer model and 2) with satellite observations. The root-mean-square deviation (RMSD) for simulated data is less than 0.117, depending on the type of noise added on the data. In the real data experiment, the RMSD for cropland is 0.127, for grassland is 0.075, and for forest is 0.107. The experimental areas respectively lack fully vegetated and non-vegetated pixels at 1 km resolution. Consequently, a relatively large uncertainty is found while using the statistical methods and the RMSD ranges from 0.110 to 0.363 based on the real data. The proposed method is convenient to produce NDVIv and NDVIs maps for FVC estimation on regional and global scales.
NASA Astrophysics Data System (ADS)
Kobayashi, H.; Yang, W.; Ichii, K.
2015-12-01
Global simulation of canopy scale sun-induced chlorophyll fluorescence with a 3 dimensional radiative transfer modelHideki Kobayashi, Wei Yang, and Kazuhito IchiiDepartment of Environmental Geochemical Cycle Research, Japan Agency for Marine-Earth Science and Technology3173-25, Showa-machi, Kanazawa-ku, Yokohama, Japan.Plant canopy scale sun-induced chlorophyll fluorescence (SIF) can be observed from satellites, such as Greenhouse gases Observation Satellite (GOSAT), Orbiting Carbon Observatory-2 (OCO-2), and Global Ozone Monitoring Experiment-2 (GOME-2), using Fraunhofer lines in the near infrared spectral domain [1]. SIF is used to infer photosynthetic capacity of plant canopy [2]. However, it is not well understoond how the leaf-level SIF emission contributes to the top of canopy directional SIF because SIFs observed by the satellites use the near infrared spectral domain where the multiple scatterings among leaves are not negligible. It is necessary to quantify the fraction of emission for each satellite observation angle. Absorbed photosynthetically active radiation of sunlit leaves are 100 times higher than that of shaded leaves. Thus, contribution of sunlit and shaded leaves to canopy scale directional SIF emission should also be quantified. Here, we show the results of global simulation of SIF using a 3 dimensional radiative transfer simulation with MODIS atmospheric (aerosol optical thickness) and land (land cover and leaf area index) products and a forest landscape data sets prepared for each land cover category. The results are compared with satellite-based SIF (e.g. GOME-2) and the gross primary production empirically estimated by FLUXNET and remote sensing data.
Dynamic response functions, helical gaps, and fractional charges in quantum wires
NASA Astrophysics Data System (ADS)
Meng, Tobias; Pedder, Christopher J.; Tiwari, Rakesh P.; Schmidt, Thomas L.
We show how experimentally accessible dynamic response functions can discriminate between helical gaps due to magnetic field, and helical gaps driven by electron-electron interactions (''umklapp gaps''). The latter are interesting since they feature gapped quasiparticles of fractional charge e / 2 , and - when coupled to a standard superconductor - an 8 π-Josephson effect and topological zero energy states bound to interfaces. National Research Fund, Luxembourg (ATTRACT 7556175), Deutsche Forschungsgemeinschaft (GRK 1621 and SFB 1143), Swiss National Science Foundation.
USDA-ARS?s Scientific Manuscript database
The use of automated methods to estimate canopy cover (CC) from digital photographs has increased in recent years given its potential to produce accurate, fast and inexpensive CC measurements. Wide acceptance has been delayed because of the limitations of these methods. This work introduces a novel ...
A DIURNAL REFLECTANCE MODEL USING GRASS: SURFACE-SUBSTRATE INTERACTION AND INVERSE SOLUTION
The accuracy of using remote sensing data from earth orbiting radiometers can be improved by using a model that helps to separate the green-fraction in a canopy reflectance () from thatch and soil background, accounts for their diurnal changes, and inverts to a solution of a biop...
Prospects for quantifying structure, floristic composition and species richness of tropical forests
Gillespie, T.W.; Brock, J.; Wright, C.W.
2004-01-01
Airborne spectral and light detection and ranging (lidar) sensors have been used to quantify biophysical characteristics of tropical forests. Lidar sensors have provided high-resolution data on forest height, canopy topography, volume, and gap size; and provided estimates on number of strata in a forest, successional status of forests, and above-ground biomass. Spectral sensors have provided data on vegetation types, foliar biochemistry content of forest canopies, tree and canopy phenology, and spectral signatures for selected tree species. A number of advances are theoretically possible with individual and combined spectral and lidar sensors for the study of forest structure, floristic composition and species richness. Delineating individual canopies of over-storey trees with small footprint lidar and discrimination of tree architectural types with waveform distributions is possible and would provide scientists with a new method to study tropical forest structure. Combined spectral and lidar data can be used to identify selected tree species and identify the successional status of tropical forest fragments in order to rank forest patches by levels of species richness. It should be possible in the near future to quantify selected patterns of tropical forests at a higher resolution than can currently be undertaken in the field or from space. ?? 2004 Taylor and Francis Ltd.
Seedling survival and growth of three forest tree species: The role of spatial heterogeneity
Brian Beckage; James S. Clark
2003-01-01
Spatial heterogeneity in microenvironments may provide unique regeneration niches for trees and may promote forest diversity. We examined how heterogeneity in understory cover, mineral nutrients, and moisture and their interactions with canopy gaps contribute to the coexistence of three common, co-occuring tree species. We measured survival and height growth of 1080...
Trent A. Danley; Andrew W. Ezell; Emily B. Schultz; John D. Hodges
2015-01-01
Desired forest conditions, or DFCs, are recently created parameters which strive to create diverse stands of hardwoods of various species and age classes, along with varying densities and canopy gaps, through the use of uneven-aged silvicultural methods and repeated stand entries. Little research has been conducted to examine residual stand composition and hardwood...
Multiresolution quantification of deciduousness in West-Central African forests
NASA Astrophysics Data System (ADS)
Viennois, G.; Barbier, N.; Fabre, I.; Couteron, P.
2013-11-01
The characterization of leaf phenology in tropical forests is of major importance for forest typology as well as to improve our understanding of earth-atmosphere-climate interactions or biogeochemical cycles. The availability of satellite optical data with a high temporal resolution has permitted the identification of unexpected phenological cycles, particularly over the Amazon region. A primary issue in these studies is the relationship between the optical reflectance of pixels of 1 km or more in size and ground information of limited spatial extent. In this paper, we demonstrate that optical data with high to very-high spatial resolution can help bridge this scale gap by providing snapshots of the canopy that allow discernment of the leaf-phenological stage of trees and the proportions of leaved crowns within the canopy. We also propose applications for broad-scale forest characterization and mapping in West-Central Africa over an area of 141 000 km2. Eleven years of the Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) data were averaged over the wet and dry seasons to provide a data set of optimal radiometric quality at a spatial resolution of 250 m. Sample areas covered at a very-high (GeoEye) and high (SPOT-5) spatial resolution were used to identify forest types and to quantify the proportion of leaved trees in the canopy. The dry-season EVI was positively correlated with the proportion of leaved trees in the canopy. This relationship allowed the conversion of EVI into canopy deciduousness at the regional level. On this basis, ecologically important forest types could be mapped, including young secondary, open Marantaceae, Gilbertiodendron dewevrei and swamp forests. We show that in West-Central African forests, a large share of the variability in canopy reflectance, as captured by the EVI, is due to variation in the proportion of leaved trees in the upper canopy, thereby opening new perspectives for biodiversity and carbon-cycle applications.
Multiresolution quantification of deciduousness in West Central African forests
NASA Astrophysics Data System (ADS)
Viennois, G.; Barbier, N.; Fabre, I.; Couteron, P.
2013-04-01
The characterization of leaf phenology in tropical forests is of major importance and improves our understanding of earth-atmosphere-climate interactions. The availability of satellite optical data with a high temporal resolution has permitted the identification of unexpected phenological cycles, particularly over the Amazon region. A primary issue in these studies is the relationship between the optical reflectance of pixels of 1 km or more in size and ground information of limited spatial extent. In this paper, we demonstrate that optical data with high to very-high spatial resolution can help bridge this scale gap by providing snapshots of the canopy that allow discernment of the leaf-phenological stage of trees and the proportions of leaved crowns within the canopy. We also propose applications for broad-scale forest characterization and mapping in West Central Africa over an area of 141 000 km2. Eleven years of the Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) data were averaged over the wet and dry seasons to provide a dataset of optimal radiometric quality at a spatial resolution of 250 m. Sample areas covered at a very-high (GeoEye) and high (SPOT-5) spatial resolution were used to identify forest types and to quantify the proportion of leaved trees in the canopy. The dry season EVI was positively correlated with the proportion of leaved trees in the canopy. This relationship allowed the conversion of EVI into canopy deciduousness at the regional level. On this basis, ecologically important forest types could be mapped, including young secondary, open Marantaceae, Gilbertiodendron dewevrei and swamp forests. We show that in west central African forests, a large share of the variability in canopy reflectance, as captured by the EVI, is due to variation in the proportion of leaved trees in the upper canopy, thereby opening new perspectives for biodiversity and carbon-cycle applications.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Guanter, L.; Berry, J. A.; Tol, C. V. D.
2016-12-01
Solar-induced chlorophyll fluorescence (SIF) is a novel optical tool for assessment of terrestrial photosynthesis (GPP). Recent work have shown the strong link between GPP and satellite retrievals of SIF at broad scales. However, critical gaps remain between short term small-scale mechanistic understanding and seasonal global observations. In this presentation, we provide a model-based analysis of the relationship between SIF and GPP across scales for diverse vegetation types and a range of meteorological conditions, with the ultimate focus on reproducing the environmental conditions during remote sensing measurements. The coupled fluorescence-photosynthesis model SCOPE is used to simulate GPP and SIF at the both leaf and canopy levels for 13 flux sites. Analyses were conducted to investigate the effects of temporal scaling, canopy structure, overpass time, and spectral domain on the relationship between SIF and GPP. The simulated SIF is highly non-linear with GPP at the leaf level and instantaneous time scale and tends to linearize when scaling to the canopy level and daily to seasonal scales. These relationships are consistent across a wide range of vegetation types. The relationship between SIF and GPP is primarily driven by absorbed photosynthetically active radiation (APAR), especially at the seasonal scale, although the photosynthetic efficiency also contributes to strengthen the link between them. The linearization of their relationship from leaf to canopy and averaging over time is because the overall conditions of the canopy fall within the range of the linear responses of GPP and SIF to light and the photosynthetic capacity. Our results further show that the top-of-canopy relationships between simulated SIF and GPP have similar linearity regardless of whether we used the morning or midday satellite overpass times. These findings are confirmed by field measurements. In addition, the simulated red SIF at 685 nm has a similar relationship with GPP as that of far-red SIF at 740 nm at the canopy level.
Herbivorous insect response to group selection cutting in a southeastern bottomland hardwood forest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael D. Ulyshen; James L. Hanula; Scott Horn
2005-04-01
ABSTRACT Malaise and pitfall traps were used to sample herbivorous insects in canopy gaps created by group-selection cutting in a bottomland hardwood forest in South Carolina. The traps were placed at the centers, edges, and in the forest adjacent to gaps of different sizes (0.13, 0.26, and 0.50 ha) and ages (1 and 7 yr old) during four sampling periods in 2001. Overall, the abundance and species richness of insect herbivores were greater at the centers of young gaps than at the edge of young gaps or in the forest surrounding young gaps. There were no differences in abundance ormore » species richness among old gap locations (i.e., centers, edges, and forest), and we collected significantly more insects in young gaps than old gaps. The insect communities in old gaps were more similar to the forests surrounding them than young gap communities were to their respective forest locations, but the insect communities in the two forests locations (surrounding young and old gaps) had the highest percent similarity of all. Although both abundance and richness increased in the centers of young gaps with increasing gap size, these differences were not significant.Weattribute the increased numbers of herbivorous insects to the greater abundance of herbaceous plants available in young gaps.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zoran, Maria; Savastru, Roxana; Savastru, Dan
Satellite Earth observation data in the visible and near-infrared (VNIR) wavelengths represent a useful source of information for forest systems monitoring through derived biogeophysical parameters (vegetation index, leaf area index, canopy cover, fraction of absorbed photosynthetically active radiation, chlorophyll content, net primary production, canopy water stress, etc.). Use of satellite remote sensing data to assess forest spatio-temporal changes due to climatic or anthropogenic stressors is an excellent example of the value of multispectral and multitemporal observations. Fusion technique was applied to time-series multispectral and multitemporal satellite imagery (NOAA AVHRR, MODIS Terra/Aqua, Landsat ETM and IKONOS satellite data) for periurban forestmore » areas Cernica-Branesti, placed in the neighboring of Bucharest town, Romania, over 2002-2014 period.« less
NASA Astrophysics Data System (ADS)
Kobayashi, H.; Ryu, Y.; Ustin, S.; Baldocchi, D. D.
2009-12-01
B15: Remote Characterization of Vegetation Structure: Including Research to Inform the Planned NASA DESDynI and ESA BIOMASS Missions Title: Spatial radiation environment in a heterogeneous oak woodland using a three-dimensional radiative transfer model and multiple constraints from observations Hideki Kobayashi, Youngryel Ryu, Susan Ustin, and Dennis Baldocchi Abstract Accurate evaluations of radiation environments of visible, near infrared, and thermal infrared wavebands in forest canopies are important to estimate energy, water, and carbon fluxes. Californian oak woodlands are sparse and highly clumped so that radiation environments are extremely heterogeneous spatially. The heterogeneity of radiation environments also varies with wavebands which depend on scattering and emission properties. So far, most of modeling studies have been performed in one dimensional radiative transfer models with (or without) clumping effect in the forest canopies. While some studies have been performed by using three dimensional radiative transfer models, several issues are still unresolved. For example, some 3D models calculate the radiation field with individual tree basis, and radiation interactions among trees are not considered. This interaction could be important in the highly scattering waveband such as near infrared. The objective of this study is to quantify the radiation field in the oak woodland. We developed a three dimensional radiative transfer model, which includes the thermal waveband. Soil/canopy energy balances and canopy physiology models, CANOAK, are incorporated in the radiative transfer model to simulate the diurnal patterns of thermal radiation fields and canopy physiology. Airborne LiDAR and canopy gap data measured by the several methods (digital photographs and plant canopy analyzer) were used to constrain the forest structures such as tree positions, crown sizes and leaf area density. Modeling results were tested by a traversing radiometer system that measured incoming photosynthetically active radiation and net radiation at forest floor and spatial variations in canopy reflectances taken by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). In this study, we show how the model with available measurements can reproduce the spatially heterogeneous radiation environments in the oak woodland.
NASA Astrophysics Data System (ADS)
Broxton, P. D.; Harpold, A. A.; van Leeuwen, W.; Biederman, J. A.
2016-12-01
Quantifying the amount of snow in forested mountainous environments, as well as how it may change due to warming and forest disturbance, is critical given its importance for water supply and ecosystem health. Forest canopies affect snow accumulation and ablation in ways that are difficult to observe and model. Furthermore, fine-scale forest structure can accentuate or diminish the effects of forest-snow interactions. Despite decades of research demonstrating the importance of fine-scale forest structure (e.g. canopy edges and gaps) on snow, we still lack a comprehensive understanding of where and when forest structure has the largest impact on snowpack mass and energy budgets. Here, we use a hyper-resolution (1 meter spatial resolution) mass and energy balance snow model called the Snow Physics and Laser Mapping (SnowPALM) model along with LIDAR-derived forest structure to determine where spatial variability of fine-scale forest structure has the largest influence on large scale mass and energy budgets. SnowPALM was set up and calibrated at sites representing diverse climates in New Mexico, Arizona, and California. Then, we compared simulations at different model resolutions (i.e. 1, 10, and 100 m) to elucidate the effects of including versus not including information about fine scale canopy structure. These experiments were repeated for different prescribed topographies (i.e. flat, 30% slope north, and south-facing) at each site. Higher resolution simulations had more snow at lower canopy cover, with the opposite being true at high canopy cover. Furthermore, there is considerable scatter, indicating that different canopy arrangements can lead to different amounts of snow, even when the overall canopy coverage is the same. This modeling is contributing to the development of a high resolution machine learning algorithm called the Snow Water Artificial Network (SWANN) model to generate predictions of snow distributions over much larger domains, which has implications for improving land surface models that do not currently resolve or parameterize fine-scale canopy structure. In addition, these findings have implications for understanding the potential of different forest management strategies (i.e. thinning) based on local topography and climate to maximize the amount and retention of snow.
Impacts of Alien Tree Invasion on Evapotranspiration in Tropical Montane Cloud Forest in Hawai'i
NASA Astrophysics Data System (ADS)
Giambelluca, T. W.; Asner, G. P.; Martin, R. E.; Nullet, M. M.; Huang, M.; Delay, J. K.; Mudd, R. G.; Takahashi, M.
2007-12-01
Hawaiian tropical montane cloud forests (TMCFs) are ecologically and hydrologically valuable zones. TMCFs in Hawai'i serve as refugia for the remaining intact native terrestrial plant and animal ecosystems, and are major sources of hydrologic input to surface water and groundwater systems. Invasion of alien tree species, with obvious effects on the ecological integrity of TMCFs, also threatens to impact the hydrological services these forests provide. Much speculation has been made about the hydrological effects of replacing native forest tree species with alien trees in Hawai'i, but until now no measurements have been made to test these assertions. We established two study sites, each equipped with eddy covariance and other micrometeorological instrumentation, one within native Metrosideros polymorpha forest and the other at a site heavily invaded by Psidium cattleianum, in the cloud forest zone of Hawai'i Volcanoes National Park. We are conducting measurements of stand-level evapotranspiration, transpiration (using sapflow techniques), energy balance, throughfall, stemflow, and soil moisture at each site. Preliminary analysis of these measurements shows that the fraction of available energy used for evapotranspiration (ET Fraction) at the native site is much higher for wet canopy conditions. The ET Fraction at the native site has an annual cycle corresponding to the annual cycle in leaf area. Deviations from the annual cycle are more closely related to variations in canopy wetness than to variations in soil moisture. Overall, ET as a function of available energy is 27% higher at the invaded site than the native site. The difference in ET between the two sites is especially pronounced during dry canopy periods, during which the ET Fraction is 53% higher at the invaded site than the native site. Sapflow measurements using heat balance collars show that leaf-area-specific transpiration is much greater in invasive P. cattleianum trees than in remnant native M. polymorpha trees at the invaded site. These results indicate that the P. cattleianum invasion is altering the hydrological cycle of the TMCF where it is found, with potential significant negative consequences for island water supply.
A brief description of the simple biosphere model (SiB)
NASA Technical Reports Server (NTRS)
Sellers, P. J.; Mintz, Y.; Sud, Y. C.
1986-01-01
A biosphere model for calculating the transfer of energy, mass, and momentum between the atmosphere and the vegetated surface of the Earth was designed for atmospheric general circulation models. An upper vegetation layer represents the perennial canopy of trees or shrubs, a lower layer represents the annual ground cover of grasses and other herbacious species. The local coverage of each vegetation layer may be fractional or complete but as the individual vegetation elements are considered to be evenly spaced, their root systems are assumed to extend uniformly throughout the entire grid-area. The biosphere has seven prognostic physical-state variables: two temperatures (one for the canopy and one for the ground cover and soil surface); two interception water stores (one for the canopy and one for the ground cover); and three soil moisture stores (two of which can be reached by the vegetation root systems and one underlying recharge layer into and out of which moisture is transferred only by hydraulic diffusion).
NASA Astrophysics Data System (ADS)
Pikus, F. G.; Efros, A. L.
1993-06-01
A two-dimensional electron liquid (TDEL), subjected to a smooth random potential, is studied in the regime of the fractional quantum Hall effect. An analytical theory of the nonlinear screening is presented for the case when the fractional gap is much less than the magnitude of the unscreened random potential. In this ``narrow-gap approximation'' (NGA), we calculate the electron density distribution function, the fraction of the TDEL which is in the incompressible state, and the thermodynamic density of states. The magnetocapacitance is calculated to compare with the recent experiments. The NGA is found to be not accurate enough to describe the data. The results for larger fractional gaps are obtained by computer modeling. To fit the recent experimental data we have also taken into account the anyon-anyon interaction in the vicinity of a fractional singularity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendoza Navas, Luis Miguel
Measurements of the inclusive diffractive Z → μ +μ - cross section with gap requirement for M μμ > 40 GeV at √s = 1.96 TeV and fraction of Z bosons produced diffractively with gap requirement from Z inclusive production are presented. The measurements are performed using a data sample corresponding to an integrated luminosity of 820 pb -1, collected with the D0 detector at the Tevatron, between 2002 to 2005. A total of 39945 di-muons events are selected and final results of: σmore » $$gap\\atop{Diff}$$ x Br(Z/γ* → μ +μ -) = 4.09 ± 0.64(stat.) ± 0.88(syst.) ± 0.27(lumi.) pb and, R$$gap\\atop{Diff}$$ = 1.92 ± 0.30(stat.) ± 0.41(syst.) ± 0.12(lumi) % are obtained. In addition, dσ/dζ and dσ/dy distributions are presented and they are compared with diffractive montecarlo (POMWIG). A reasonable agreement is obtained in this comparation. Finally, comparison of fraction of Z bosons produced diffractively with gap requirement (gap fraction) as measured with D0 during Run I of the Tevatron is compared. A good agreement is found for gap fraction results.« less
Further Studies of Forest Structure Parameter Retrievals Using the Echidna® Ground-Based Lidar
NASA Astrophysics Data System (ADS)
Strahler, A. H.; Yao, T.; Zhao, F.; Yang, X.; Schaaf, C.; Wang, Z.; Li, Z.; Woodcock, C. E.; Culvenor, D.; Jupp, D.; Newnham, G.; Lovell, J.
2012-12-01
Ongoing work with the Echidna® Validation Instrument (EVI), a full-waveform, ground-based scanning lidar (1064 nm) developed by Australia's CSIRO and deployed by Boston University in California conifers (2008) and New England hardwood and softwood (conifer) stands (2007, 2009, 2010), confirms the importance of slope correction in forest structural parameter retrieval; detects growth and disturbance over periods of 2-3 years; provides a new way to measure the between-crown clumping factor in leaf area index retrieval using lidar range; and retrieves foliage profiles with more lower-canopy detail than a large-footprint aircraft scanner (LVIS), while simulating LVIS foliage profiles accurately from a nadir viewpoint using a 3-D point cloud. Slope correction is important for accurate retrieval of forest canopy structural parameters, such as mean diameter at breast height (DBH), stem count density, basal area, and above-ground biomass. Topographic slope can induce errors in parameter retrievals because the horizontal plane of the instrument scan, which is used to identify, measure, and count tree trunks, will intersect trunks below breast height in the uphill direction and above breast height in the downhill direction. A test of three methods at southern Sierra Nevada conifer sites improved the range of correlations of these EVI-retrieved parameters with field measurements from 0.53-0.68 to 0.85-0.93 for the best method. EVI scans can detect change, including both growth and disturbance, in periods of two to three years. We revisited three New England forest sites scanned in 2007-2009 or 2007-2010. A shelterwood stand at the Howland Experimental Forest, Howland, Maine, showed increased mean DBH, above-ground biomass and leaf area index between 2007 and 2009. Two stands at the Harvard Forest, Petersham, Massachusetts, suffered reduced leaf area index and reduced stem count density as the result of an ice storm that damaged the stands. At one stand, broken tops were visible in the 2010 point cloud canopy reconstruction. A new method for retrieval of the forest canopy between-crown clumping index from angular gaps in hemispherically-projected EVI data traces gaps as they narrow with range from the instrument, thus providing the approximate physical size, rather than angular size, of the gaps. In applying this method to a range of sites in the southern Sierra Nevada, element clumping index values are lower (more between-crown clumping effect) in more open stands, providing improved results as compared to conventional hemispherical photography. In dense stands with fewer gaps, the clumping index values were closer. Foliage profiles retrieved from EVI scans at five Sierra Nevada sites are closely correlated with those of the airborne Lidar Vegetation Imaging Sensor (LVIS) when averaged over a diameter of 100 m. At smaller diameters, the EVI scans have more detail in lower canopy layers and the LVIS and EVI foliage profiles are more distinct. Foliage profiles derived from processing 3-D site point clouds with a nadir view match the LVIS foliage profiles more closely than profiles derived from EVI in scan mode. Removal of terrain effects significantly enhances the match with LVIS profiles. This research was supported by the US National Science Foundation under grant MRI DBI-0923389.
Application and Evaluation of MODIS LAI, fPAR, and Albedo Products in the WRFCMAQ System
Leaf area index (LAI), vegetation fraction (VF), and surface albedo are important parameters in the land surface model (LSM) for meteorology and air quality modeling systems such as WRF/CMAQ. LAI and VF control not only leaf to canopy level evapotranspiration flux scaling but al...
We report an analysis of canopy reflectance (ρ) experiment, using hand-held radiometer to measure distribution of biomass in a grass field. The analysis: 1) separates the green-fraction from thatch and soil background, 2) accounts for the changing diurnal ρ with the sun elevation...
NASA Astrophysics Data System (ADS)
Cheng, Y.; Hilker, T.; Middleton, E. M.; Coops, N. C.; Black, T. A.; Krishnan, P.
2007-12-01
The use of remotely sensed measurements collected by satellite, aircraft, and ground instruments to improve our understanding of ecological and hydrological processes were successfully demonstrated through the First International Satellite Land Surface Climatology (ISLSCP) Field Experiment [FIFE] and the BOReal Ecosystem- Atmosphere Study [BOREAS]. Following the concept of FIFE and BOREAS, we analyzed hyperspectral reflectance measurements collected at a coastal forest in British Columbia, Canada through the 2006 growing season. Diurnal and seasonal dynamics of the Photochemical Reflectance Index (PRI), a normalized difference spectral band-ratio index based on the xanthophyll signal at 531 nm which expresses protective responses to high light stress, were studied. This index has been shown to correlate with photosynthetic light use efficiency (LUE), an essential variable to model carbon uptake efficiency by plants. The measurements were collected from an automated system mounted on a flux tower under different sun and view geometries and atmospheric conditions through the 2006 growing season. Canopy structure was modeled using Light Detection and Ranging (LiDAR) technology, from which the sunlit and shaded canopy fractions were calculated as a function of incoming photosynthetically active radiation (PAR). These automated directional observations allowed us to: 1) investigate diurnal and seasonal changes of the PRI under different sky conditions; 2) compare the PRI with tower-based micro-meteorological measurements; and 3) separately investigate the PRI dynamics for sunlit and shaded partitions of the canopy which differ in response to their light environments. The data were categorized into six different groups based on two sky conditions (sunny and cloudy) and three illumination conditions (sunlit, shaded and intermediate). PRI showed a clear correlation with the LiDAR-based shadow fraction estimates. In April, the commencement of the growing season, clear diurnal dynamics of the PRI were observed for the sunlit foliage subset which showed lower (more negative) PRI values and a more dramatic change with sun altitude than shaded leaves. This was expected since leaves exposed to direct sunlight in their natural environment are likely under higher light stress. Consequently, diurnal changes of PRI and the differences among foliage groups were less obvious on overcast days because of limited direct irradiance. In August, when water availability was at its lowest of the year, the PRI exhibited relatively constant values throughout the day but with clear distinguishable values among the three leaf groups on sunny days. For other tower based measurements, PAR and GEP both showed clear seasonal patterns. Better estimates of the actual PAR intensity illuminating the sunlit and shaded canopy fractions were retrieved using the shadow fraction to reduce the above-canopy PAR. A clear seasonal pattern emerged for this revised PAR that distinguished among the groups and was also used to estimate LUE for the leaf groups. The correlation between PRI and LUE was confirmed. From these results, better understandings of the dynamics of carbon exchange bio-indicators that can be derived from directional hyperspectral reflectance measurements were demonstrated. Keywords: PRI, photosynthesis, PAR, GEP, LUE
Effect of canopy and topography induced wakes on land-atmosphere fluxes of momentum and scalars
NASA Astrophysics Data System (ADS)
Markfort, C. D.; Zhang, W.; Porté-Agel, F.; Stefan, H. G.
2012-04-01
Wakes shed from natural and anthropogenic landscape features affect land-atmosphere fluxes of momentum and scalars, including water vapor and trace gases (e.g. CO2). Canopies and bluff bodies, such as forests, buildings and topography, cause boundary layer flow separation, and lead to a break down of standard Monin-Obukhov similarity relationships in the atmospheric boundary layer (ABL). Wakes generated by these land surface features persist for significant distances (>100 typical length scales) and affect a large fraction of the Earth's terrestrial surface. This effect is currently not accounted for in land-atmosphere models, and little is known about how heterogeneity of wake-generating features affect land surface fluxes. Additionally flux measurements, made in wake-affected regions, do not satisfy the homogeneous flow requirements for the standard eddy correlation (EC) method. This phenomenon, often referred to as wind sheltering, has been shown to affect momentum and kinetic energy fluxes at the lake-atmosphere interface (Markfort et al. 2010). This presentation will highlight results from controlled wind tunnel experiments of neutral and thermally stratified boundary layers, using particle image velocimetry (PIV) and custom x-wire/cold-wire anemometry, to understand how the physical structure of upstream bluff bodies and porous canopies as well as how thermal stability affect the flow separation zone, boundary layer recovery and surface fluxes. We have found that there is a nonlinear relationship between canopy length/porosity and flow separation downwind of a canopy to clearing transition. Results will provide the basis for new parameterizations to account for wake effects on land-atmosphere fluxes and corrections for the EC measurements over open fields, lakes, and wetlands. Key words: Atmospheric boundary layer; Wakes; Stratification; Land-Atmosphere Parameterization; Canopy
NASA Astrophysics Data System (ADS)
Dunkerley, David L.
2009-10-01
SummaryIntra-storm evaporation depths exceed post-storm evaporation depths in the interception of rainfall on plant canopies. An important fraction of the intra-storm evaporation may involve the small impact (or splash) droplets produced when raindrops, and perhaps gravity drops (drips released from plant parts), collide with wet plant surfaces. This idea has been presented as a new conception by Murakami [Murakami, S., 2006. A proposal for a new forest canopy interception mechanism: splash droplet evaporation. Journal of Hydrology 319, 72-82; Murakami, S., 2007a. Application of three canopy interception models to a young stand of Japanese cypress and interpretation in terms of interception mechanism. Journal of Hydrology 342, 305-319; Murakami, S., 2007b. A follow-up for the splash droplet evaporation hypothesis of canopy interception and remaining problems: why is humidity unsaturated during rainfall? In: Proceedings of the 20th Annual Conference. Japan Society of Hydrology and Water Resources (in Japanese). < http://www.jstage.jst.go.jp/article/jshwr/20/0/20_62/_article>] but was in fact advanced by Dunin [Dunin, F.X., O'Loughlin, E.M., Reyenga, W., 1988. Interception loss from eucalypt forest: lysimeter determination of hourly rates for long term evaluation. Hydrological Processes 2, 315-329] more than 20 years ago. In addition, Dunin et al. considered that canopy ventilation might be enhanced in intense rain. This note draws attention to the historical precedence of the work of Dunin et al. and also presents a short review of literature on impact droplet production, highlighting areas where data are still required for the full exploration of the role of droplet evaporation in canopy interception. Droplet production needs to be properly parameterised and included in models of interception processes and landsurface-atmosphere interactions.
NASA Astrophysics Data System (ADS)
de Moura, Yhasmin Mendes; Galvão, Lênio Soares; Hilker, Thomas; Wu, Jin; Saleska, Scott; do Amaral, Cibele Hummel; Nelson, Bruce Walker; Lopes, Aline Pontes; Wiedeman, Kenia K.; Prohaska, Neill; de Oliveira, Raimundo Cosme; Machado, Carolyne Bueno; Aragão, Luiz E. O. C.
2017-09-01
The association between spectral reflectance and canopy processes remains challenging for quantifying large-scale canopy phenological cycles in tropical forests. In this study, we used a tower-mounted hyperspectral camera in an eastern Amazon forest to assess how canopy spectral signals of three species are linked with phenological processes in the 2012 dry season. We explored different approaches to disentangle the spectral components of canopy phenology processes and analyze their variations over time using 17 images acquired by the camera. The methods included linear spectral mixture analysis (SMA); principal component analysis (PCA); continuum removal (CR); and first-order derivative analysis. In addition, three vegetation indices potentially sensitive to leaf flushing, leaf loss and leaf area index (LAI) were calculated: the Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI) and the entitled Green-Red Normalized Difference (GRND) index. We inspected also the consistency of the camera observations using Moderate Resolution Imaging Spectroradiometer (MODIS) and available phenological data on new leaf production and LAI of young, mature and old leaves simulated by a leaf demography-ontogeny model. The results showed a diversity of phenological responses during the 2012 dry season with related changes in canopy structure and greenness values. Because of the differences in timing and intensity of leaf flushing and leaf shedding, Erisma uncinatum, Manilkara huberi and Chamaecrista xinguensis presented different green vegetation (GV) and non-photosynthetic vegetation (NPV) SMA fractions; distinct PCA scores; changes in depth, width and area of the 681-nm chlorophyll absorption band; and variations over time in the EVI, GRND and NDVI. At the end of dry season, GV increased for Erisma uncinatum, while NPV increased for Chamaecrista xinguensis. For Manilkara huberi, the NPV first increased in the beginning of August and then decreased toward September with new foliage. Variations in red-edge position were not statistically significant between the species and across dates at the 95% confidence level. The camera data were affected by view-illumination effects, which reduced the SMA shade fraction over time. When MODIS data were corrected for these effects using the Multi-Angle Implementation of Atmospheric Correction Algorithm (MAIAC), we observed an EVI increase toward September that closely tracked the modeled LAI of mature leaves (3-5 months). Compared to the EVI, the GRND was a better indicator of leaf flushing because the modeled production of new leaves peaked in August and then declined in September following the GRND closely. While the EVI was more related to changes in mature leaf area, the GRND was more associated with new leaf flushing.
W. Henry McNab; Cathryn H. Greenberg; Erik C. Berg
2004-01-01
Hurricane-related winds are a major source of disturbance in coastal ecosystems of the southern United States, but their effects on forests in the southern Appalachian Mountains, >400 km inland, have seldom been documented. In October 1995, remnant winds of Hurricane Opal caused windthrow of individual and patches of trees throughout the mountainous region of...
Differential responses of Bolivian timber species to prescribed fire and other gap treatments
Debora K. Kennard; Francis E. Putz
2005-01-01
We followed the establishment and growth response of 13 commercial tree species to canopy opening, above-ground biomass removal, and experimental burns of low and high intensities in a lowland dry forest in Bolivia. Three patterns of response to treatments were observed among the most abundant commercial tree species. (1) Shade-intolerant species regenerated mostly...
Boris Zeide
2004-01-01
Estimation of stand density is based on a relationship between number of trees and their average diameter in fully stocked stands. Popular measures of density (Reinekeâs stand density index and basal area) assume that number of trees decreases as a power function of diameter. Actually, number of trees drops faster than predicted by the power function because the number...
Tim Nuttle; Alejandro A. Royo; Mary Beth Adams; Walter P. Carson
2013-01-01
Eastern deciduous forests are changing in species composition and diversity outside of classical successional trajectories. Three disturbance mechanisms appear central to this phenomenon: fire frequency is reduced, canopy gaps are smaller, and browsers are more abundant. Which factor is most responsible is a matter of great debate and remains unclear, at least partly...
David N. Appel; Kim S. Camilli
2010-01-01
A major epidemic of oak wilt, caused by Ceratocystis fagacearum (Bretz) Hunt, has been killing trees in Central Texas for at least 40 years. This has created large and expanding canopy gaps in the vast, homogenous live oak woodlands (Quercus fusiformis Small) in the Edwards Plateau region of Texas. The changes in stand...
Assembling a biogenic hydrocarbon emissions inventory for the SCOS97-NARSTO modeling domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benjamin, M.T.; Winer, A.M.; Karlik, J.
1998-12-31
To assist in developing ozone control strategies for Southern California, the California Air Resources Board is developing a biogenic hydrocarbon (BHC) emissions inventory model for the SCOS97-NARSTO domain. The basis for this bottom-up model is SCOS97-NARSTO-specific landuse and landcover maps, leafmass constants, and BHC emission rates. In urban areas, landuse maps developed by the Southern California Association of Governments, San Diego Association of Governments, and other local governments are used while in natural areas, landcover and plant community databases produced by the GAP Analysis Project (GAP) are employed. Plant identities and canopy volumes for species in each landuse and landcovermore » category are based on the most recent botanical field survey data. Where possible, experimentally determined leafmass constant and BHC emission rate measurements reported in the literature are used or, for those species where experimental data are not available, values are assigned based on taxonomic methods. A geographic information system is being used to integrate these databases, as well as the most recent environmental correction algorithms and canopy shading factors, to produce a spatially- and temporally-resolved BHC emission inventory suitable for input into the Urban Airshed Model.« less
NASA Astrophysics Data System (ADS)
Brooks, P. D.; Harpold, A. A.; Somor, A. J.; Troch, P. A.; Gochis, D. J.; Ewers, B. E.; Pendall, E.; Biederman, J. A.; Reed, D.; Barnard, H. R.; Whitehouse, F.; Aston, T.; Borkhuu, B.
2010-12-01
Unprecedented levels of bark beetle infestation over the last decade have radically altered forest structure across millions of hectares of Western U.S. montane environments. The widespread extent of this disturbance presents a major challenge for governments and resource managers who lack a predictive understanding of how water and biogeochemical cycles will respond to this disturbance over various temporal and spatial scales. There is a widespread perception, largely based on hydrological responses to fire or logging, that a reduction in both transpiration and interception following tree death will increase soil water availability and catchment water yield. However, few studies have directly addressed the effects of insect-induced forest decline on water and biogeochemical cycling. We address this knowledge gap using observations and modeling at scales from 100 to 109 m2 across study sites in CO and WY that vary in the intensity and timing of beetle infestation and tree death. Our focus on multiple sites with different levels of impact allows us to address two broad, organizing questions: How do changes in vegetation structure associated with MPB alter the partitioning of energy and water? And How do these changes in energy and water availability affect local to regional scale water and biogeochemical cycles? This presentation will focus primarily on energy balance and water partitioning, providing context for ongoing biogeochemical work. During the growing season, stand-scale transpiration declines rapidly and soil moisture increases following infestation, consistent with streamflow data from regional catchments that shows an increase in baseflow following widespread attack. During the winter and spring, stand scale snow surveys and continuous snow depth sensors suggested that the variability in snow cover decreased as the severity of beetle impact increases, but there were no significant stand-scale differences in snow depth among levels of impact. This is due both to an increase in snow under the canopies of dead trees and a decrease in snow cover in canopy gaps. For example, mean snow depth under the canopy was 86cm (CV 0.02) in unimpacted sites and 95cm (CV 0.05) in heavily impacted sites. In canopy gaps however, mean snow depth was 117cm (CV 0.11) in unimpacted sites but only 93cm (CV 0.07) in heavily impacted sites. At the watershed scale, bark beetle infestation was more likely to decrease the amount of both snowmelt and annual runoff, suggesting that the opening of the canopy increases sublimation and evaporation of the snow cover. These data suggest that the disturbance due to bark beetle infestation is both quantitatively and qualitatively different than either fire or logging. Using these observations, we develop a conceptual model for evaluating how biotic and abiotic processes couple water and biogeochemical cycles in forest ecosystems.
Universal Algorithms for Plant Phenotyping: Are we there yet?
NASA Astrophysics Data System (ADS)
Kakani, V. G.; Kambham, R. R.; Zhao, D.; Foster, A. J.; Gowda, P. H.
2017-12-01
Hyperspectral remote sensing offers ability to capture spectral signatures of plant morpho-physio-biochemical traits at multiple scales (leaf to canopy to aerial). Experimental results on plant phenotype from pot, growth chamber and field studies at multiple location were used in this study. Pigment, leaf/plant water status, plant nutrient status, plant height, leaf area, fresh and dry weights of biomass and its components are correlated with hyperspectral reflectance signatures. Leaf reflectance was collected with spectroradiometer having a light source. Canopy hyperspectral reflectance was collected from 1.5 m above the canopy using a spectroradiometer, while multispectral images were acquired from aerial platforms ( 400m). Several statistical methods including simple ratios, principal component analysis, and partial least squares regression were used to identify hyperspectral reflectance bands that were tightly associated with plant phenotypic traits. Leaf level spectra best described the morpho-physio-biochemical traits (R2 = 0.6-0.9), while canopy reflectance best described plant height (R2 = 0.65), leaf area index (R2 = 0.67-0.74) and biomass (R2 = 0.69-0.78), while aerial spectra improved canopy level regression coefficients for plant height (R2 = 0.93) and leaf area index (R2 = 0.89). The comparison of multi-level spectra and resolution, clearly showed the advantage of hyperspectral reflectance data over the multispectral reflectance data, particularly for understanding the basis for spectral reflectance differences among species and traits. In conclusion, high resolution (1-2 cm) spectral imagery can help to bridge the gap across multiple levels of phenotype measurement.
Patterns of Canopy and Surface Layer Consumption in a Boreal Forest Fire from Repeat Airborne Lidar
NASA Technical Reports Server (NTRS)
Alonzo, Michael; Morton, Douglas C.; Cook, Bruce D.; Andersen, Hans-Erik; Babcock, Chad; Pattison, Robert
2017-01-01
Fire in the boreal region is the dominant agent of forest disturbance with direct impacts on ecosystem structure, carbon cycling, and global climate. Global and biome-scale impacts are mediated by burn severity, measured as loss of forest canopy and consumption of the soil organic layer. To date, knowledge of the spatial variability in burn severity has been limited by sparse field sampling and moderate resolution satellite data. Here, we used pre- and post-fire airborne lidar data to directly estimate changes in canopy vertical structure and surface elevation for a 2005 boreal forest fire on Alaskas Kenai Peninsula. We found that both canopy and surface losses were strongly linked to pre-fire species composition and exhibited important fine-scale spatial variability at sub-30m resolution. The fractional reduction in canopy volume ranged from 0.61 in lowland black spruce stands to 0.27 in mixed white spruce and broad leaf forest. Residual structure largely reflects standing dead trees, highlighting the influence of pre-fire forest structure on delayed carbon losses from above ground biomass, post-fire albedo, and variability in understory light environments. Median loss of surface elevation was highest in lowland black spruce stands (0.18 m) but much lower in mixed stands (0.02 m), consistent with differences in pre-fire organic layer accumulation. Spatially continuous depth-of-burn estimates from repeat lidar measurements provide novel information to constrain carbon emissions from the surface organic layer and may inform related research on post-fire successional trajectories. Spectral measures of burn severity from Landsat were correlated with canopy (r = 0.76) and surface (r = -0.71) removal in black spruce stands but captured less of the spatial variability in fire effects for mixed stands (canopy r = 0.56, surface r = -0.26), underscoring the difficulty in capturing fire effects in heterogeneous boreal forest landscapes using proxy measures of burn severity from Landsat.
NASA Astrophysics Data System (ADS)
Thompson, A. D.; Kelly, R. E. J.
2017-12-01
The ability to measure the amount of water stored in Earth's terrestrial snowpack is important for human development, resource management, and environmental modelling. Active microwave remote sensing offers the promise to do so however we must better understand how forest, which accounts for a large fraction of snow-covered land, affects the microwave retrieval of snow water equivalent (SWE). This is a fundamental goal of the NASA SnowEx mission and one we address using data collected during the February 2017 campaign in Grand Mesa, Colorado. We deployed UWScat, a ground-based, polarimetric scatterometer operating at 9.6 and 17.2 GHz frequencies, at 8 sites on Grand Mesa, including 2 sites observed from a platform approximately 9 m above the ground overlooking a coniferous canopy. Ancillary snowpit and snow microstructure measurements were also made and include traditional snowpit measurements along with measurements of snow specific surface area (SSA) using IRIS and IceCube systems. A snow micropenetrometer (SMP) was used to provide stratigraphic information. First, we show the influence of forest canopy on the microwave backscatter response, and how backscatter alone is insufficient to distinguish between forested and non-forested landscapes. Secondly, we show how polarimetric data can be used to identify the presence of forest canopy within the scene by revealing the depolarization that occurs in the interaction between the microwaves and the canopy structure. This result illustrates the benefits of a dual frequency polarimetric approach. While depolarization from a canopy is evident at X-band, there is less evidence of depolarization from a snowpack. At Ku-band frequencies, however, depolarization is evident both from interaction with the snowpack and the canopy. Finally we explore the relationship between SWE and backscatter in forested and un-forested environments. Together these results provide useful insights that increase our understanding of the radar polarimetric response from SWE in a forested landscape using a dual frequency Ku and X-band active microwave system.
NASA Astrophysics Data System (ADS)
Zurita-Milla, R.; Laurent, V. C. E.; van Gijsel, J. A. E.
2015-12-01
Monitoring biophysical and biochemical vegetation variables in space and time is key to understand the earth system. Operational approaches using remote sensing imagery rely on the inversion of radiative transfer models, which describe the interactions between light and vegetation canopies. The inversion required to estimate vegetation variables is, however, an ill-posed problem because of variable compensation effects that can cause different combinations of soil and canopy variables to yield extremely similar spectral responses. In this contribution, we present a novel approach to visualise the ill-posed problem using self-organizing maps (SOM), which are a type of unsupervised neural network. The approach is demonstrated with simulations for Sentinel-2 data (13 bands) made with the Soil-Leaf-Canopy (SLC) radiative transfer model. A look-up table of 100,000 entries was built by randomly sampling 14 SLC model input variables between their minimum and maximum allowed values while using both a dark and a bright soil. The Sentinel-2 spectral simulations were used to train a SOM of 200 × 125 neurons. The training projected similar spectral signatures onto either the same, or contiguous, neuron(s). Tracing back the inputs that generated each spectral signature, we created a 200 × 125 map for each of the SLC variables. The lack of spatial patterns and the variability in these maps indicate ill-posed situations, where similar spectral signatures correspond to different canopy variables. For Sentinel-2, our results showed that leaf area index, crown cover and leaf chlorophyll, water and brown pigment content are less confused in the inversion than variables with noisier maps like fraction of brown canopy area, leaf dry matter content and the PROSPECT mesophyll parameter. This study supports both educational and on-going research activities on inversion algorithms and might be useful to evaluate the uncertainties of retrieved canopy biophysical and biochemical state variables.
Simulating ozone dry deposition at a boreal forest with a multi-layer canopy deposition model
NASA Astrophysics Data System (ADS)
Zhou, Putian; Ganzeveld, Laurens; Rannik, Üllar; Zhou, Luxi; Gierens, Rosa; Taipale, Ditte; Mammarella, Ivan; Boy, Michael
2017-01-01
A multi-layer ozone (O3) dry deposition model has been implemented into SOSAA (a model to Simulate the concentrations of Organic vapours, Sulphuric Acid and Aerosols) to improve the representation of O3 concentration and flux within and above the forest canopy in the planetary boundary layer. We aim to predict the O3 uptake by a boreal forest canopy under varying environmental conditions and analyse the influence of different factors on total O3 uptake by the canopy as well as the vertical distribution of deposition sinks inside the canopy. The newly implemented dry deposition model was validated by an extensive comparison of simulated and observed O3 turbulent fluxes and concentration profiles within and above the boreal forest canopy at SMEAR II (Station to Measure Ecosystem-Atmosphere Relations II) in Hyytiälä, Finland, in August 2010. In this model, the fraction of wet surface on vegetation leaves was parametrised according to the ambient relative humidity (RH). Model results showed that when RH was larger than 70 % the O3 uptake onto wet skin contributed ˜ 51 % to the total deposition during nighttime and ˜ 19 % during daytime. The overall contribution of soil uptake was estimated about 36 %. The contribution of sub-canopy deposition below 4.2 m was modelled to be ˜ 38 % of the total O3 deposition during daytime, which was similar to the contribution reported in previous studies. The chemical contribution to O3 removal was evaluated directly in the model simulations. According to the simulated averaged diurnal cycle the net chemical production of O3 compensated up to ˜ 4 % of dry deposition loss from about 06:00 to 15:00 LT. During nighttime, the net chemical loss of O3 further enhanced removal by dry deposition by a maximum ˜ 9 %. Thus the results indicated an overall relatively small contribution of airborne chemical processes to O3 removal at this site.
Patterns of canopy and surface layer consumption in a boreal forest fire from repeat airborne lidar
NASA Astrophysics Data System (ADS)
Alonzo, Michael; Morton, Douglas C.; Cook, Bruce D.; Andersen, Hans-Erik; Babcock, Chad; Pattison, Robert
2017-05-01
Fire in the boreal region is the dominant agent of forest disturbance with direct impacts on ecosystem structure, carbon cycling, and global climate. Global and biome-scale impacts are mediated by burn severity, measured as loss of forest canopy and consumption of the soil organic layer. To date, knowledge of the spatial variability in burn severity has been limited by sparse field sampling and moderate resolution satellite data. Here, we used pre- and post-fire airborne lidar data to directly estimate changes in canopy vertical structure and surface elevation for a 2005 boreal forest fire on Alaska’s Kenai Peninsula. We found that both canopy and surface losses were strongly linked to pre-fire species composition and exhibited important fine-scale spatial variability at sub-30 m resolution. The fractional reduction in canopy volume ranged from 0.61 in lowland black spruce stands to 0.27 in mixed white spruce and broadleaf forest. Residual structure largely reflects standing dead trees, highlighting the influence of pre-fire forest structure on delayed carbon losses from aboveground biomass, post-fire albedo, and variability in understory light environments. Median loss of surface elevation was highest in lowland black spruce stands (0.18 m) but much lower in mixed stands (0.02 m), consistent with differences in pre-fire organic layer accumulation. Spatially continuous depth-of-burn estimates from repeat lidar measurements provide novel information to constrain carbon emissions from the surface organic layer and may inform related research on post-fire successional trajectories. Spectral measures of burn severity from Landsat were correlated with canopy (r = 0.76) and surface (r = -0.71) removal in black spruce stands but captured less of the spatial variability in fire effects for mixed stands (canopy r = 0.56, surface r = -0.26), underscoring the difficulty in capturing fire effects in heterogeneous boreal forest landscapes using proxy measures of burn severity from Landsat.
Basement-driven strike-slip deformation involving a salt-stock canopy system
NASA Astrophysics Data System (ADS)
Dooley, Tim; Jackson, Martin; Hudec, Mike
2016-04-01
NW-striking basement-involved strike-slip zones have been reported or inferred from the northern Gulf of Mexico (GoM). This interpretation is uncertain, because the effects of strike-slip deformation are commonly difficult to recognize in cross sections. Recognition is doubly difficult if the strike-slip zone passes through a diapir field that complicates deformation, and an associated salt canopy that partially decouples shallow deformation from deep deformation. We use physical models to explore the effects of strike-slip deformation above and below a salt-stock canopy system. Canopies of varying maturity grew from a series of 14 feeders/diapirs located on and off the axis of a dextral basement fault. Strike-slip deformation styles in the overburden vary significantly depending on: (1) the location of the diapirs with respect to the basement fault trace, and; (2) the continuity of the canopy system. On-axis diapirs (where the diapirs lie directly above the basement fault) are typically strongly deformed and pinched shut at depth to form sharp S-shapes, whereas their shallow deformation style is that of a open-S-shaped pop-up structure in a restraining bend. The narrow diapir stem acts as a shear zone at depth. Pull-apart structures form between diapirs that are arranged in a right-stepping array tangental to the basement fault trace. These grade along strike into narrow negative flower structures. Off-axis diapirs (diapirs laterally offset from the basement fault but close enough to participate in the deformation) form zones of distributed deformation in the form of arrays of oblique faults (R shears) that converge along strike onto the narrower deformation zones associated with on-axis diapirs. Above an immature, or patchy, canopy system the strike-slip structures closely match sub canopy structures, with the exception of wrench fold formation where the supracanopy roof is thin. In contrast, the surface structures above a mature canopy system consist of a broad zone of PDZ-parallel faults and high-angle wrench folds, strongly decoupled from the subcanopy structure. The exception to this is where there are gaps (windows) in the canopy, allowing coupling to the deeper deformation field. In this mature canopy open-S planforms are muted as deformation is spread over a broader area of coalesced salt sheets, except at the canopy edge and where the supracanopy roof is thin. Supracanopy structures are also influenced by the sutures between the individual salt sheets. Results from this set of analog models are potentially useful as predictive tools to understand the origin and geometry of structures in areas where subsurface data is scarce or data quality is poor.
Ren, Huazhong; Liu, Rongyuan; Yan, Guangjian; Li, Zhao-Liang; Qin, Qiming; Liu, Qiang; Nerry, Françoise
2015-04-06
Land surface emissivity is a crucial parameter in the surface status monitoring. This study aims at the evaluation of four directional emissivity models, including two bi-directional reflectance distribution function (BRDF) models and two gap-frequency-based models. Results showed that the kernel-driven BRDF model could well represent directional emissivity with an error less than 0.002, and was consequently used to retrieve emissivity with an accuracy of about 0.012 from an airborne multi-angular thermal infrared data set. Furthermore, we updated the cavity effect factor relating to multiple scattering inside canopy, which improved the performance of the gap-frequency-based models.
Stephen D White; Justin L. Hart; Callie J. Schweitzer; Daniel C. Dey
2015-01-01
Natural disturbances play important roles in shaping the structure and composition of all forest ecosystems and can be used to inform silvicultural practices. Canopy disturbances are often classified along a gradient ranging from highly localized, gap-scale events to stand-replacing events. Wind storms such as downbursts, derechos, and low intensity tornadoes typically...
David M. Hix; P. Charles Goebel; Heather L. Whitman
2011-01-01
The increased importance of integrating concepts of natural disturbance regimes into forest management, as well as the need to manage for complex forest structures, requires an understanding of how forest stands develop following natural disturbances. One of the primary natural disturbance types occurring in beech-maple ecosystems of the Central Hardwood Forest is...
J.S. Rentch; W.M. Ford; Thomas Schuler; Jeff Palmer; C.A. Diggins
2016-01-01
Red spruce (Picea rubens) and red spruce-northern hardwood mixed stands once covered as much as 300,000 ha in the Central Appalachians, but now comprise no more than 21,000 ha. Recently, interest in restoration of this forest type has increased because red spruce forests provide habitat for a number of rare animal species. Our study reports the...
J. E. Lundquist; R. A. Sommerfeld
2002-01-01
Various disturbances such as disease and management practices cause canopy gaps that change patterns of forest stand structure. This study examined the usefulness of digital image analysis using aerial photos, Fourier Tranforms, and cluster analysis to investigate how different spatial statistics are affected by spatial scale. The specific aims were to: 1) evaluate how...
Colin A. Penn; Beverley C. Wemple; John L. Campbell
2012-01-01
Many factors influence snow depth, water content and duration in forest ecosystems. The effects of forest cover and canopy gap geometry on snow accumulation has been well documented in coniferous forests of western North America and other regions; however, few studies have evaluated these effects on snowpack dynamics in mixed deciduous forests of the northeastern USA....
Andrew N. Gray; Thomas R. Whittier; Mark E. Harmon
2016-01-01
Forest ecosystems are removing significant amounts of carbon from the atmosphere. Both abiotic resource availability and biotic interactions during forest succession affect C accumulation rates and maximum C stocks. However, the timing and controls on the peak and decline in C accumulation rates as stands age, trees increase in size, and canopy gaps become prevalent...
Michael B. Walters; John L. Willis; Kurt W. Gottschalk
2014-01-01
Tree species distributions and diversity could be explained by rank changes in performance over multiple spatiotemporal resource gradients, i.e., resource partitioning. For 14 species planted in 45 harvest gap and closed canopy locations in a mesic northern hardwood forest community, Michigan, USA, we asked the following questions: (i) are species growth responses to...
NASA Astrophysics Data System (ADS)
Zagyvai-Kiss, Katalin Anita; Kalicz, Péter; Csáfordi, Péter; Kucsara, Mihály; Gribovszki, Zoltán
2013-04-01
Precipitation is trapped and temporarily stored by the surfaces of forest crown (canopy interception) and forest litter (litter interception). The stemflow and throughfall reach the litter, thus theoretically the litter moisture content depends on these parts of precipitation. Nowadays the moisture pattern of the forest floor, both spatial and temporal scale, have growing respect for the forestry. The transition to the continuous cover forestry induce much higher variability compared to the even aged, more-less homogeneous, monocultural stands. The gap cutting is one of the key methods in the Hungarian forestry. There is an active discussion among the forest professionals how to determine the optimal gap size to maintain the optimal conditions for the seedlings. Among the open questions is how to modify surrounding trees the moisture pattern of the forest floor in the gap? In the early steps of a multidisciplinary project we processed some available data, to estimate the spatial dependency between the water content of forest litter and the spatial pattern of the canopy represented by the tree trunk. The maximum water content depends on dry weight of litter, thus we also analysed that parameter. Data were measured in three different forest ecosystems: a middle age beech (Fagus sylvatica), a sessile oak (Quercus petraea) and a spruce (Picea abies) stand. The study site (Hidegvíz Valley Research Cathcment) is located in Sopron Hills at the eastern border of the Alps. Litter samples were collected under each stand (occasionally 10-10 pieces from 40?40 cm area) and locations of the samples and neighbouring trees were mapped. We determined dry weight and the water content of litter in laboratory. The relationship between water content and the distance of tree trunks in case of spruce and oak stands were not significant and in case of the beech stand was weakly significant. Climate change effects can influence significantly forest floor moisture content, therefore this factor has also taken into account. Acknowledgement: The research was financially supported by the TÁMOP-4.2.2.A-11/1/KONV-2012-0004 and TÁMOP-4.2.2.A-11/1/KONV-2012-0013 joint EU-national research projects.
Qin, Haiming; Wang, Cheng; Zhao, Kaiguang; Xi, Xiaohuan
2018-01-01
Accurate estimation of the fraction of absorbed photosynthetically active radiation (fPAR) for maize canopies are important for maize growth monitoring and yield estimation. The goal of this study is to explore the potential of using airborne LiDAR and hyperspectral data to better estimate maize fPAR. This study focuses on estimating maize fPAR from (1) height and coverage metrics derived from airborne LiDAR point cloud data; (2) vegetation indices derived from hyperspectral imagery; and (3) a combination of these metrics. Pearson correlation analyses were conducted to evaluate the relationships among LiDAR metrics, hyperspectral metrics, and field-measured fPAR values. Then, multiple linear regression (MLR) models were developed using these metrics. Results showed that (1) LiDAR height and coverage metrics provided good explanatory power (i.e., R2 = 0.81); (2) hyperspectral vegetation indices provided moderate interpretability (i.e., R2 = 0.50); and (3) the combination of LiDAR metrics and hyperspectral metrics improved the LiDAR model (i.e., R2 = 0.88). These results indicate that LiDAR model seems to offer a reliable method for estimating maize fPAR at a high spatial resolution and it can be used for farmland management. Combining LiDAR and hyperspectral metrics led to better performance of maize fPAR estimation than LiDAR or hyperspectral metrics alone, which means that maize fPAR retrieval can benefit from the complementary nature of LiDAR-detected canopy structure characteristics and hyperspectral-captured vegetation spectral information.
NASA Astrophysics Data System (ADS)
Queck, Ronald; Bernhofer, Christian; Bienert, Anne; Schlegel, Fabian
2016-09-01
Forest ecosystems play an important role in the interaction between the land surface and the atmosphere. Measurements and modelling efforts have revealed significant uncertainties in state-of-the-art flux assessments due to spatial inhomogeneities in the airflow and land surface. Here, a field experiment is used to describe the turbulent flow across a typical Central European forest clearing. A three-dimensional model of the inhomogeneous forest stand was developed using an innovative approach based on terrestrial laser-scanner technology. The comparison of the wind statistics of two measurement campaigns (5 and 12 months long) showed the spatial and temporal representativeness of the ultrasonic anemometer measurements within the canopy. An improved method for the correction of the vertical velocity enables the distinction between the instrumental offsets and the vertical winds due to the inclination of the instrument. Despite a 13 % fraction of deciduous plants within the otherwise evergreen canopy, the effects of phenological seasons on the velocity profiles were small. The data classified according to the wind speed revealed the intermittent nature of recirculating air in the clearing. Furthermore, the development of sub-canopy wind-speed maxima is explained by considering the velocity moments and the momentum equation (including measurements of the local pressure gradient). Clearings deflect the flow downward and feed the sub-canopy flow, i.e., advective fluxes, according to wind speed and, likely, clearing size, whereas local pressure gradients play an important role in the development of sub-canopy flow. The presented dataset is freely available at the project homepage.
[The research on bidirectional reflectance computer simulation of forest canopy at pixel scale].
Song, Jin-Ling; Wang, Jin-Di; Shuai, Yan-Min; Xiao, Zhi-Qiang
2009-08-01
Computer simulation is based on computer graphics to generate the realistic 3D structure scene of vegetation, and to simulate the canopy regime using radiosity method. In the present paper, the authors expand the computer simulation model to simulate forest canopy bidirectional reflectance at pixel scale. But usually, the trees are complex structures, which are tall and have many branches. So there is almost a need for hundreds of thousands or even millions of facets to built up the realistic structure scene for the forest It is difficult for the radiosity method to compute so many facets. In order to make the radiosity method to simulate the forest scene at pixel scale, in the authors' research, the authors proposed one idea to simplify the structure of forest crowns, and abstract the crowns to ellipsoids. And based on the optical characteristics of the tree component and the characteristics of the internal energy transmission of photon in real crown, the authors valued the optical characteristics of ellipsoid surface facets. In the computer simulation of the forest, with the idea of geometrical optics model, the gap model is considered to get the forest canopy bidirectional reflectance at pixel scale. Comparing the computer simulation results with the GOMS model, and Multi-angle Imaging SpectroRadiometer (MISR) multi-angle remote sensing data, the simulation results are in agreement with the GOMS simulation result and MISR BRF. But there are also some problems to be solved. So the authors can conclude that the study has important value for the application of multi-angle remote sensing and the inversion of vegetation canopy structure parameters.
Estimation of crop gross primary production (GPP): fAPAR_chl versus MOD15A2 FPAR
USDA-ARS?s Scientific Manuscript database
Within leaf chloroplasts chlorophylls absorb photosynthetically active radiation (PAR) for photosynthesis (PSN). The MOD15A2 FPAR (fraction of PAR absorbed by canopy, i.e., fAPARcanopy) product has been widely used to compute absorbed PAR for PSN (APARPSN). The MOD17A2 algorithm uses MOD15A2 FPAR i...
NASA Astrophysics Data System (ADS)
Frost, E. E.; Levia, D. F.
2011-12-01
Stemflow, a critical localized point source of both water and nutrients in forested ecosystems, was examined as a function of species and mortality in a mid-Atlantic deciduous forest. Thirty trees across two species, Fagus grandifolia [American beech] and Liriodendron tulipifera [yellow poplar], and three mortality classes, live, stressed, and dead, were sampled and analyzed on an event basis for one year. Significant interspecific differences in volume and nutrient content of stemflow were found that were attributable to differences in canopy structure between the species. Funneling ratios across all three mortality classes were significantly different for F. grandifolia and between dead and live/stressed classes for L. tulipifera. Stemflow volumes from the dead trees of both species were a fraction of that from live and stressed trees. This was attributable to increased relative water storage capacities, canopy crown position, and the lack of surface area contributing to stemflow generation in upper canopy. Concentrations of nutrients in stemflow from dead trees were significantly higher than those found in both live and stressed stems for most nutrients analyzed. Enrichment ratios from dead stems were generally lower given the reduced volumes observed. Given the multi-decadal impact of standing dead trees in forest ecosystems and the uncertainty of changes in morality patterns in forests, additional research is warranted to further quantify the hydrobiochemical impact of stemflow from dying stems over their entire lifecycle.
Modeling the effect of photosynthetic vegetation properties on the NDVI--LAI relationship.
Steltzer, Heidi; Welker, Jeffrey M
2006-11-01
Developing a relationship between the normalized difference vegetation index (NDVI) and the leaf area index (LAI) is essential to describe the pattern of spatial or temporal variation in LAI that controls carbon, water, and energy exchange in many ecosystem process models. Photosynthetic vegetation (PV) properties can affect the estimation of LAI, but no models integrate the effects of multiple species. We developed four alternative NDVI-LAI models, three of which integrate PV effects: no PV effects, leaf-level effects, canopy-level effects, and effects at both levels. The models were fit to data across the natural range of variation in NDVI for a widespread High Arctic ecosystem. The weight of evidence supported the canopy-level model (Akaike weight, wr = 0.98), which includes species-specific canopy coefficients that primarily scale fractional PV cover to LAI by accounting for the area of unexposed PV. Modeling the canopy-level effects improved prediction of LAI (R2 = 0.82) over the model with no PV effect (R2 = 0.71) across the natural range of variation in NDVI but did not affect the site-level estimate of LAI. Satellite-based methods to estimate species composition, a variable in the model, will need to be developed. We expect that including the effects of PV properties in NDVI-LAI models will improve prediction of LAI where species composition varies across space or changes over time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Moura, Yhasmin Mendes; Galvão, Lênio Soares; Hilker, Thomas
The association between spectral reflectance and canopy processes remains challenging for quantifying large-scale canopy phenological cycles in tropical forests. In this paper, we used a tower-mounted hyperspectral camera in an eastern Amazon forest to assess how canopy spectral signals of three species are linked with phenological processes in the 2012 dry season. We explored different approaches to disentangle the spectral components of canopy phenology processes and analyze their variations over time using 17 images acquired by the camera. The methods included linear spectral mixture analysis (SMA); principal component analysis (PCA); continuum removal (CR); and first-order derivative analysis. In addition, threemore » vegetation indices potentially sensitive to leaf flushing, leaf loss and leaf area index (LAI) were calculated: the Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI) and the entitled Green-Red Normalized Difference (GRND) index. We inspected also the consistency of the camera observations using Moderate Resolution Imaging Spectroradiometer (MODIS) and available phenological data on new leaf production and LAI of young, mature and old leaves simulated by a leaf demography-ontogeny model. The results showed a diversity of phenological responses during the 2012 dry season with related changes in canopy structure and greenness values. Because of the differences in timing and intensity of leaf flushing and leaf shedding, Erisma uncinatum, Manilkara huberi and Chamaecrista xinguensis presented different green vegetation (GV) and non-photosynthetic vegetation (NPV) SMA fractions; distinct PCA scores; changes in depth, width and area of the 681-nm chlorophyll absorption band; and variations over time in the EVI, GRND and NDVI. At the end of dry season, GV increased for Erisma uncinatum, while NPV increased for Chamaecrista xinguensis. For Manilkara huberi, the NPV first increased in the beginning of August and then decreased toward September with new foliage. Variations in red-edge position were not statistically significant between the species and across dates at the 95% confidence level. The camera data were affected by view-illumination effects, which reduced the SMA shade fraction over time. When MODIS data were corrected for these effects using the Multi-Angle Implementation of Atmospheric Correction Algorithm (MAIAC), we observed an EVI increase toward September that closely tracked the modeled LAI of mature leaves (3–5 months). Compared to the EVI, the GRND was a better indicator of leaf flushing because the modeled production of new leaves peaked in August and then declined in September following the GRND closely. Finally, while the EVI was more related to changes in mature leaf area, the GRND was more associated with new leaf flushing.« less
de Moura, Yhasmin Mendes; Galvão, Lênio Soares; Hilker, Thomas; ...
2017-09-01
The association between spectral reflectance and canopy processes remains challenging for quantifying large-scale canopy phenological cycles in tropical forests. In this paper, we used a tower-mounted hyperspectral camera in an eastern Amazon forest to assess how canopy spectral signals of three species are linked with phenological processes in the 2012 dry season. We explored different approaches to disentangle the spectral components of canopy phenology processes and analyze their variations over time using 17 images acquired by the camera. The methods included linear spectral mixture analysis (SMA); principal component analysis (PCA); continuum removal (CR); and first-order derivative analysis. In addition, threemore » vegetation indices potentially sensitive to leaf flushing, leaf loss and leaf area index (LAI) were calculated: the Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI) and the entitled Green-Red Normalized Difference (GRND) index. We inspected also the consistency of the camera observations using Moderate Resolution Imaging Spectroradiometer (MODIS) and available phenological data on new leaf production and LAI of young, mature and old leaves simulated by a leaf demography-ontogeny model. The results showed a diversity of phenological responses during the 2012 dry season with related changes in canopy structure and greenness values. Because of the differences in timing and intensity of leaf flushing and leaf shedding, Erisma uncinatum, Manilkara huberi and Chamaecrista xinguensis presented different green vegetation (GV) and non-photosynthetic vegetation (NPV) SMA fractions; distinct PCA scores; changes in depth, width and area of the 681-nm chlorophyll absorption band; and variations over time in the EVI, GRND and NDVI. At the end of dry season, GV increased for Erisma uncinatum, while NPV increased for Chamaecrista xinguensis. For Manilkara huberi, the NPV first increased in the beginning of August and then decreased toward September with new foliage. Variations in red-edge position were not statistically significant between the species and across dates at the 95% confidence level. The camera data were affected by view-illumination effects, which reduced the SMA shade fraction over time. When MODIS data were corrected for these effects using the Multi-Angle Implementation of Atmospheric Correction Algorithm (MAIAC), we observed an EVI increase toward September that closely tracked the modeled LAI of mature leaves (3–5 months). Compared to the EVI, the GRND was a better indicator of leaf flushing because the modeled production of new leaves peaked in August and then declined in September following the GRND closely. Finally, while the EVI was more related to changes in mature leaf area, the GRND was more associated with new leaf flushing.« less
Quaking aspen reproduce from seed after wildfire in the mountains of southeastern Arizona
Ronald D. Quinn; Lin Wu
2001-01-01
Quaking aspen regenerated from seed after a stand replacement wildfire in the Chiricahua Mountains of southeastern Arizona. The wildfire had created gaps in the canopy so that aspen were able to establish from seed. Seedlings were found at a mean density of 0.17 m-2, 30 m or more from the nearest potential seed trees. Six clumps of aspen seedlings contained 18-186...
Effects of gap size, duration of daylight, and presence of leaf litter on forest regeneration
G. Andrew Bartholomay; Todd W. Bowersox
2003-01-01
Selection systems are used to manage multi-cohort forest stands by removing individual and/or groups of trees to create 0.01- to 1.0-ha openings in the canopy. Inherent in the selection system are the dual roles of tending the residual trees and regenerating a new cohort of tree seedlings. Research of silvicultural selection systems has historically focused on the...
Walkup, Ward G.; Washburn, Lorraine; Sweredoski, Michael J.; Carlisle, Holly J.; Graham, Robert L.; Hess, Sonja; Kennedy, Mary B.
2015-01-01
synGAP is a neuron-specific Ras and Rap GTPase-activating protein (GAP) found in high concentrations in the postsynaptic density (PSD) fraction from the mammalian forebrain. We have previously shown that, in situ in the PSD fraction or in recombinant form in Sf9 cell membranes, synGAP is phosphorylated by Ca2+/calmodulin-dependent protein kinase II (CaMKII), another prominent component of the PSD. Here, we show that recombinant synGAP (r-synGAP), lacking 102 residues at the N terminus, can be purified in soluble form and is phosphorylated by cyclin-dependent kinase 5 (CDK5) as well as by CaMKII. Phosphorylation of r-synGAP by CaMKII increases its HRas GAP activity by 25% and its Rap1 GAP activity by 76%. Conversely, phosphorylation by CDK5 increases r-synGAP's HRas GAP activity by 98% and its Rap1 GAP activity by 20%. Thus, phosphorylation by both kinases increases synGAP activity; CaMKII shifts the relative GAP activity toward inactivation of Rap1, and CDK5 shifts the relative activity toward inactivation of HRas. GAP activity toward Rap2 is not altered by phosphorylation by either kinase. CDK5 phosphorylates synGAP primarily at two sites, Ser-773 and Ser-802. Phosphorylation at Ser-773 inhibits r-synGAP activity, and phosphorylation at Ser-802 increases it. However, the net effect of concurrent phosphorylation of both sites, Ser-773 and Ser-802, is an increase in GAP activity. synGAP is phosphorylated at Ser-773 and Ser-802 in the PSD fraction, and its phosphorylation by CDK5 and CaMKII is differentially regulated by activation of NMDA-type glutamate receptors in cultured neurons. PMID:25533468
Canopy gaps decrease microbial densities and disease risk for a shade-intolerant tree species
NASA Astrophysics Data System (ADS)
Reinhart, Kurt O.; Royo, Alejandro A.; Kageyama, Stacie A.; Clay, Keith
2010-11-01
Canopy disturbances such as windthrow events have obvious impacts on forest structure and composition aboveground, but changes in soil microbial communities and the consequences of these changes are less understood. We characterized the densities of a soil-borne pathogenic oomycete ( Pythium) and a common saprotrophic zygomycete ( Mortierella) in nine pairs of forest gaps created by windthrows and adjacent forest understories. We determined the levels of Pythium necessary to cause disease by performing pathogenicity experiments using two Pythium species, a range of Pythium densities, and two common tree species ( Acer rubrum and Prunus serotina) from the study sites. Three years post-disturbance, densities of Mortierella remained suppressed in soil from forest gaps compared to levels in intact forest understories while varying across sites and sampling dates. Pythium were infrequently detected likely because of soil handling effects. Expression of disease symptoms increased with increasing inoculum density for seedlings of P. serotina with each Pythium spp. having a similar effect on this species. Conversely, A. rubrum appeared resistant to the two species of Pythium. These results suggest that Pythium densities at sites where they were detected are sufficient to cause disease and possibly affect establishment of susceptible species like P. serotina. Because early seral environments have lower loads of the saprotrophic Mortierella, pathogen loads may follow a similar pattern, causing susceptible species to establish more frequently in those habitats than in late-seral forests. Forest disturbances that alter the disease landscape may provide an additional mechanism for explaining succession of temperate forests in addition to the shade-tolerance paradigm.
NASA Astrophysics Data System (ADS)
Kotchenova, Svetlana Y.; Shabanov, Nikolay V.; Knyazikhin, Yuri; Davis, Anthony B.; Dubayah, Ralph; Myneni, Ranga B.
2003-08-01
Large footprint waveform-recording laser altimeters (lidars) have demonstrated a potential for accurate remote sensing of forest biomass and structure, important for regional and global climate studies. Currently, radiative transfer analyses of lidar data are based on the simplifying assumption that only single scattering contributes to the return signal, which may lead to errors in the modeling of the lower portions of recorded waveforms in the near-infrared spectrum. In this study we apply time-dependent stochastic radiative transfer (RT) theory to model the propagation of lidar pulses through forest canopies. A time-dependent stochastic RT equation is formulated and solved numerically. Such an approach describes multiple scattering events, allows for realistic representation of forest structure including foliage clumping and gaps, simulates off-nadir and multiangular observations, and has the potential to provide better approximations of return waveforms. The model was tested with field data from two conifer forest stands (southern old jack pine and southern old black spruce) in central Canada and two closed canopy deciduous forest stands (with overstory dominated by tulip poplar) in eastern Maryland. Model-simulated signals were compared with waveforms recorded by the Scanning Lidar Imager of Canopies by Echo Recovery (SLICER) over these regions. Model simulations show good agreement with SLICER signals having a slow decay of the waveform. The analysis of the effects of multiple scattering shows that multiply scattered photons magnify the amplitude of the reflected signal, especially that originating from the lower portions of the canopy.
Leaf-rolling in maize crops: from leaf scoring to canopy-level measurements for phenotyping
Madec, Simon; Irfan, Kamran; Lopez, Jeremy; Comar, Alexis; Hemmerlé, Matthieu; Dutartre, Dan; Praud, Sebastien; Tixier, Marie Helene
2018-01-01
Abstract Leaf rolling in maize crops is one of the main plant reactions to water stress that can be visually scored in the field. However, leaf-scoring techniques do not meet the high-throughput requirements needed by breeders for efficient phenotyping. Consequently, this study investigated the relationship between leaf-rolling scores and changes in canopy structure that can be determined by high-throughput remote-sensing techniques. Experiments were conducted in 2015 and 2016 on maize genotypes subjected to water stress. Leaf-rolling was scored visually over the whole day around the flowering stage. Concurrent digital hemispherical photographs were taken to evaluate the impact of leaf-rolling on canopy structure using the computed fraction of intercepted diffuse photosynthetically active radiation, FIPARdif. The results showed that leaves started to roll due to water stress around 09:00 h and leaf-rolling reached its maximum around 15:00 h (the photoperiod was about 05:00–20:00 h). In contrast, plants maintained under well-watered conditions did not show any significant rolling during the same day. A canopy-level index of rolling (CLIR) is proposed to quantify the diurnal changes in canopy structure induced by leaf-rolling. It normalizes for the differences in FIPARdif between genotypes observed in the early morning when leaves are unrolled, as well as for yearly effects linked to environmental conditions. Leaf-level rolling score was very strongly correlated with changes in canopy structure as described by the CLIR (r2=0.86, n=370). The daily time course of rolling was characterized using the amplitude of variation, and the rate and the timing of development computed at both the leaf and canopy levels. Results obtained from eight genotypes common between the two years of experiments showed that the amplitude of variation of the CLIR was the more repeatable trait (Spearman coefficient ρ=0.62) as compared to the rate (ρ=0.29) and the timing of development (ρ=0.33). The potential of these findings for the development of a high-throughput method for determining leaf-rolling based on aerial drone observations are considered. PMID:29617837
NASA Astrophysics Data System (ADS)
Demuzere, Matthias; Coutts, Andrew; Goehler, Maren; Broadbent, Ashley; Wouters, Hendrik; van Lipzig, Nicole; Gebert, Luke
2015-04-01
Urban vegetation is generally considered as a key tool to modify the urban energy balance through enhanced evapotranspiration (ET). Given that vegetation is most effective when it is healthy, stormwater harvesting and retention strategies (such as water sensitive urban design) could be used to support vegetation and promote ET. This study presents the implementation of a vegetated lined bio-filtration system (BFS) combined with a rainwater tank (RWT) and urban irrigation system in the single-layer urban canopy model Community Land Model-Urban. Runoff from roof and impervious road surface fractions is harvested and used to support an adequate soil moisture level for vegetation in the BFS. In a first stage, modelled soil moisture dynamics are evaluated and found reliable compared to observed soil moisture levels from biofiltration pits in Smith Street, Melbourne (Australia). Secondly, the impact of BFS, RWT and urban irrigation on ET is illustrated for a two-month period in 2012 using varying characteristics for all components. Results indicate that (i) a large amount of stormwater is potentially available for indoor and outdoor water demands, including irrigation of urban vegetation, (ii) ET from the BFS is an order of magnitude larger compared to the contributions from the impervious surfaces, even though the former only covers 10% of the surface fraction and (iii) attention should be paid to the cover fraction and soil texture of the BFS, size of the RWT and the surface fractions contributing to the collection of water in the RWT. Overall, this study reveals that this model development can effectuate future research with state-of-the-art urban climate models to further explore the benefits of vegetated biofiltration systems as a water sensitive urban design tool optimised with an urban irrigation system to maintain healthy vegetation.
Use of digital webcam images to track spring green-up in a deciduous broadleaf forest.
Richardson, Andrew D; Jenkins, Julian P; Braswell, Bobby H; Hollinger, David Y; Ollinger, Scott V; Smith, Marie-Louise
2007-05-01
Understanding relationships between canopy structure and the seasonal dynamics of photosynthetic uptake of CO(2) by forest canopies requires improved knowledge of canopy phenology at eddy covariance flux tower sites. We investigated whether digital webcam images could be used to monitor the trajectory of spring green-up in a deciduous northern hardwood forest. A standard, commercially available webcam was mounted at the top of the eddy covariance tower at the Bartlett AmeriFlux site. Images were collected each day around midday. Red, green, and blue color channel brightness data for a 640 x 100-pixel region-of-interest were extracted from each image. We evaluated the green-up signal extracted from webcam images against changes in the fraction of incident photosynthetically active radiation that is absorbed by the canopy (f (APAR)), a broadband normalized difference vegetation index (NDVI), and the light-saturated rate of canopy photosynthesis (A(max)), inferred from eddy flux measurements. The relative brightness of the green channel (green %) was relatively stable through the winter months. A steady rising trend in green % began around day 120 and continued through day 160, at which point a stable plateau was reached. The relative brightness of the blue channel (blue %) also responded to spring green-up, although there was more day-to-day variation in the signal because blue % was more sensitive to changes in the quality (spectral distribution) of incident radiation. Seasonal changes in blue % were most similar to those in f (APAR) and broadband NDVI, whereas changes in green % proceeded more slowly, and were drawn out over a longer period of time. Changes in A(max) lagged green-up by at least a week. We conclude that webcams offer an inexpensive means by which phenological changes in the canopy state can be quantified. A network of cameras could offer a novel opportunity to implement a regional or national phenology monitoring program.
NASA Astrophysics Data System (ADS)
Throop, H. L.; Archer, S.
2004-12-01
The abundance of woody species in grasslands and savannas has increased globally over the past century. Recent estimates suggest that this proliferation of woody plants may account for a significant fraction of the Northern Hemisphere C sink, although a large degree of uncertainty exists in the magnitude and spatial distribution of these plant and soil pools. While field-based inventories have made progress in assessing the role of aboveground woody growth in ecosystem C inventories, the effect of woody proliferation on soil organic carbon (SOC) remains controversial, despite the fact that the majority of ecosystem C in these systems is typically belowground. Elevated levels of SOC underneath woody plant canopies have been widely reported, but little is known about the spatial distribution of SOC relative to tree canopies. Understanding the spatial distribution of SOC is critical, however, to developing accurate landscape-scale assessments of woody proliferation impacts on ecosystem C pools. We quantified the influence of encroaching mesquite trees (Fabaceae: Prosopis velutina) on the concentration of SOC and total nitrogen (TN) in a semi-desert grassland in southern Arizona. SOC concentrations near the boles of large trees (basal diameter 85-102 cm) were approximately double that of SOC in intercanopy zones (0.9% vs. 0.4% SOC by weight). SOC declined moving out from the bole to the canopy edge, at which point it was equivalent to inter-canopy spaces. Small to medium-sized trees (basal diameters less than 85 cm) had minimal influence on SOC concentrations. Patterns of TN values mirrored those of SOC in all cases, although TN values were roughly an order of magnitude lower than SOC values. These data suggest that accurate accounting of landscape-level SOC stocks will require developing area-weighting algorithms that account for tree size and bole-to-canopy gradients.
Urban forest ecosystem analysis using fused airborne hyperspectral and lidar data
NASA Astrophysics Data System (ADS)
Alonzo, Mike Gerard
Urban trees are strategically important in a city's effort to mitigate their carbon footprint, heat island effects, air pollution, and stormwater runoff. Currently, the most common method for quantifying urban forest structure and ecosystem function is through field plot sampling. However, taking intensive structural measurements on private properties throughout a city is difficult, and the outputs from sample inventories are not spatially explicit. The overarching goal of this dissertation is to develop methods for mapping urban forest structure and function using fused hyperspectral imagery and waveform lidar data at the individual tree crown scale. Urban forest ecosystem services estimated using the USDA Forest Service's i-Tree Eco (formerly UFORE) model are based largely on tree species and leaf area index (LAI). Accordingly, tree species were mapped in my Santa Barbara, California study area for 29 species comprising >80% of canopy. Crown-scale discriminant analysis methods were introduced for fusing Airborne Visible Infrared Imaging Spectrometry (AVIRIS) data with a suite of lidar structural metrics (e.g., tree height, crown porosity) to maximize classification accuracy in a complex environment. AVIRIS imagery was critical to achieving an overall species-level accuracy of 83.4% while lidar data was most useful for improving the discrimination of small and morphologically unique species. LAI was estimated at both the field-plot scale using laser penetration metrics and at the crown scale using allometry. Agreement of the former with photographic estimates of gap fraction and the latter with allometric estimates based on field measurements was examined. Results indicate that lidar may be used reasonably to measure LAI in an urban environment lacking in continuous canopy and characterized by high species diversity. Finally, urban ecosystem services such as carbon storage and building energy-use modification were analyzed through combination of aforementioned methods and the i-Tree Eco modeling framework. The remote sensing methods developed in this dissertation will allow researchers to more precisely constrain urban ecosystem spatial analyses and equip cities to better manage their urban forest resource.
Approximating Reflectance and Transmittance of Vegetation Using Multiple Spectral Invariants
NASA Astrophysics Data System (ADS)
Mottus, M.
2011-12-01
Canopy spectral invariants, eigenvalues of the radiative transfer equation and photon recollision probability are some of the new theoretical tools that have been applied in remote sensing of vegetation and atmosphere. The theoretical approach based on spectral invariants, informally also referred to as the p-theory, owns its attractivity to several factors. Firstly, it provides a rapid and physically-based way of describing canopy scattering. Secondly, the p-theory aims at parameterizing canopy structure in reflectance models using a simple and intuitive concept which can be applied at various structural levels, from shoot to tree crown. The theory has already been applied at scales from the molecular level to forest stands. The most important shortcoming of the p-theory lies in its inability to predict the directionality of scattering. The theory is currently based on only one physical parameter, the photon recollision probability p. It is evident that one parameter cannot contain enough information to reasonably predict the observed complex reflectance patterns produced by natural vegetation canopies. Without estimating scattering directionality, however, the theory cannot be compared with even the most simple (and well-tested) two-stream vegetation reflectance models. In this study, we evaluate the possibility to use additional parameters to fit the measured reflectance and transmittance of a vegetation stand. As a first step, the parameters are applied to separate canopy scattering into reflectance and transmittance. New parameters are introduced following the general approach of eigenvector expansion. Thus, the new parameters are coined higher-order spectral invariants. Calculation of higher-order invariants is based on separating first-order scattering from total scattering. Thus, the method explicitly accounts for different view geometries with different fractions of visible sunlit canopy (e.g., hot-spot). It additionally allows to produce different irradiation levels on leaf surfaces for direct and diffuse incidence, thus (in theory) allowing more accurate calculation of potential photosynthesis rates. Similarly to the p-theory, the use of multiple spectral invariants facilitates easy parametrization of canopy structure and scaling between different structural levels (leaf-shoot-stand). Spectral invariant-based remote sensing approaches are well suited for relatively large pixels even when no detailed ground truth information is available. In a case study, the theory of multiple spectral invariants was applied to measured canopy scattering. Spectral reflectance and transmittance measurements were carried out in gray alder (Alnus incana) plantation at Tartu Observatory, Estonia, in August 2006. The equations produced by the theory of spectral invariants were fitted to measured radiation fluxes. Preliminary results indicate that quantities with invariant-like behavior may indeed be used to approximate canopy scattering directionality.
NASA Astrophysics Data System (ADS)
Kato, T.; Tsujimoto, K.; Nasahara, K. N.; Akitsu, T.; Murayama, S.; Noda, H.; Muraoka, H.
2016-12-01
Strong representation of Sun-Induced Fluorescence (SIF) for the ecosystem-level photosynthesis activity has been confirmed by satellite studies [Frankenberg et al., 2011; Joiner et al., 2013] and by field studies [Porcar-Castell, 2011, Yang et al., 2015]. However, the lack of taking care of SIF emission below the tree canopy top may underestimate the contribution of sub-canopy and the understory species to total ecosystem CO2dynamics. To examine the potential contribution of SIF emission from lower part of tree ecosystem to total ecosystem SIF emission, the downward SIF from tree canopy and upward SIF from understory were calculated from the spectrum data in a cool temperate forest in in central Japan (36°08'N, 137°25'E, 1420 masl) as well as the upward SIF from canopy top, and the fractional ratios among them are compared on half-hourly and daily bases from 2006 to 2007. The top canopy is dominated by Oak and Birches, and the sub-canopy layer and shrub layers are dominated by Acer, Hydrangea and Viburnum species. The understory is dominated by an evergreen dwarf bamboo Sasa senanensis, and covered partially by the seedlings of oak and maple, and herbaceous species [Muraoka and Koizumi, 2005]. The SIF was estimated from the spectrums of downward and upward irradiances measured at two heights of 18m and 2m above ground by HemiSpherical Spectro-Radiometer, consisting of the spectroradiometer (MS700, Eko inc., Tokyo, Japan) with the FWHM of 10 nm and wavelength interval of 3.3 nm. The SIF around 760nm (O2-A band) was calculated according to the Fraunhofer Line Depth principle with additional arrangements. Our preliminary results show that the SIF emission intensity was kept in the order as canopy upward > canopy downward > understory upward for most of growing season, except for short spring time between snow melt and canopy greening because of the evergreen Sasa bamboo grass at the forest floor. On the other hand, the relative intensities among three SIF emissions seem to change diurnally and seasonally. The temporal changes in these relative SIF emissions would be showed to understand the contributions of ecosystem vertical layers to total SIF emissions, only top layer SIF emission of which is considered by satellites and field observations in previous studies, and to ecosystem photosynthesis (GPP) in this presentation.
The influence of clouds and diffuse radiation on ecosystem-atmosphere CO2 and CO18O exhanges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Still, C.J.; Riley, W.J.; Biraud, S.C.
2009-05-01
This study evaluates the potential impact of clouds on ecosystem CO{sub 2} and CO{sub 2} isotope fluxes ('isofluxes') in two contrasting ecosystems (a broadleaf deciduous forest and a C{sub 4} grassland), in a region for which cloud cover, meteorological, and isotope data are available for driving the isotope-enabled land surface model, ISOLSM. Our model results indicate a large impact of clouds on ecosystem CO{sub 2} fluxes and isofluxes. Despite lower irradiance on partly cloudy and cloudy days, predicted forest canopy photosynthesis was substantially higher than on clear, sunny days, and the highest carbon uptake was achieved on the cloudiest day.more » This effect was driven by a large increase in light-limited shade leaf photosynthesis following an increase in the diffuse fraction of irradiance. Photosynthetic isofluxes, by contrast, were largest on partly cloudy days, as leaf water isotopic composition was only slightly depleted and photosynthesis was enhanced, as compared to adjacent clear sky days. On the cloudiest day, the forest exhibited intermediate isofluxes: although photosynthesis was highest on this day, leaf-to-atmosphere isofluxes were reduced from a feedback of transpiration on canopy relative humidity and leaf water. Photosynthesis and isofluxes were both reduced in the C{sub 4} grass canopy with increasing cloud cover and diffuse fraction as a result of near-constant light limitation of photosynthesis. These results suggest that some of the unexplained variation in global mean {delta}{sup 18}O of CO{sub 2} may be driven by large-scale changes in clouds and aerosols and their impacts on diffuse radiation, photosynthesis, and relative humidity.« less
NASA Astrophysics Data System (ADS)
Zhang, Q.; Yao, T.
2016-12-01
The climate is affected by the land surface through regulating the exchange of mass and energy with the atmosphere. The energy that reaches the land surface has three pathways: (1) reflected into atmosphere; (2) absorbed for photosynthesis; and (3) discarded as latent and sensible heat or emitted as fluorescence. Vegetation removes CO2 from the atmosphere during the process of photosynthesis, but also releases CO2 back into the atmosphere through the process of respiration. The complex set of vegetation-soil-atmosphere interactions requires that a realistic land-surface parameterization be included in any climate model or general circulation model (GCM) to accurately simulate canopy photosynthesis and stomatal conductance.We retrieve fraction of PAR absorbed by chlorophyll (fAPARchl) with an advanced canopy-leaf-soil-snow-water coupled radiative transfer model. Most ecological models and land-surface models that simulate vegetation GPP with remote sensing data utilize fraction of PAR absorbed by the whole canopy (fAPARcanopy). However, only the PAR absorbed by chlorophyll is potentially available for photosynthesis since the PAR absorbed by non-photosynthetic vegetation section (NPV) of the canopy is not used for photosynthesis. Therefore, fAPARchl (rather than fAPARcanopy) should be utilized to estimate fAPAR for photosynthesis (fAPARPSN), and thus in GPP simulation. Globally selected sites include those sites in tropical, Arctic/boreal, coastal, and wetland-dominant regions. The fAPARchl and fAPARcanopy products for a surrounding area 50 km x 50 km of each site are mapped. The fAPARchl is utilized to estimate GPP, and compared to tower flux GPP for validation. The GPP estimation performance with fAPARchl is also compared with the GPP estimation performance with MOD15A2 FPAR. The fAPARchl product is further implemented into ecological models and land-surface models to simulate vegetation GPP. NDVI is the other proxy of fAPARPSN in GPP estimation. We quantify the uncertainties in estimates of fAPARPSN when approximated with fAPARcanopy and NDVI. The uncertainties are significant and vary spatially, temporally, and with plant functional types.
The impact of changing the land surface scheme in ACCESS(v1.0/1.1) on the surface climatology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalczyk, Eva A.; Stevens, Lauren E.; Law, Rachel M.
The Community Atmosphere Biosphere Land Exchange (CABLE) model has been coupled to the UK Met Office Unified Model (UM) within the existing framework of the Australian Community Climate and Earth System Simulator (ACCESS), replacing the Met Office Surface Exchange Scheme (MOSES). Here we investigate how features of the CABLE model impact on present-day surface climate using ACCESS atmosphere-only simulations. The main differences attributed to CABLE include a warmer winter and a cooler summer in the Northern Hemisphere (NH), earlier NH spring runoff from snowmelt, and smaller seasonal and diurnal temperature ranges. The cooler NH summer temperatures in canopy-covered regions aremore » more consistent with observations and are attributed to two factors. Firstly, CABLE accounts for aerodynamic and radiative interactions between the canopy and the ground below; this placement of the canopy above the ground eliminates the need for a separate bare ground tile in canopy-covered areas. Secondly, CABLE simulates larger evapotranspiration fluxes and a slightly larger daytime cloud cover fraction. Warmer NH winter temperatures result from the parameterization of cold climate processes in CABLE in snow-covered areas. In particular, prognostic snow density increases through the winter and lowers the diurnally resolved snow albedo; variable snow thermal conductivity prevents early winter heat loss but allows more heat to enter the ground as the snow season progresses; liquid precipitation freezing within the snowpack delays the building of the snowpack in autumn and accelerates snow melting in spring. Altogether we find that the ACCESS simulation of surface air temperature benefits from the specific representation of the turbulent transport within and just above the canopy in the roughness sublayer as well as the more complex snow scheme in CABLE relative to MOSES.« less
The impact of changing the land surface scheme in ACCESS(v1.0/1.1) on the surface climatology
Kowalczyk, Eva A.; Stevens, Lauren E.; Law, Rachel M.; ...
2016-08-23
The Community Atmosphere Biosphere Land Exchange (CABLE) model has been coupled to the UK Met Office Unified Model (UM) within the existing framework of the Australian Community Climate and Earth System Simulator (ACCESS), replacing the Met Office Surface Exchange Scheme (MOSES). Here we investigate how features of the CABLE model impact on present-day surface climate using ACCESS atmosphere-only simulations. The main differences attributed to CABLE include a warmer winter and a cooler summer in the Northern Hemisphere (NH), earlier NH spring runoff from snowmelt, and smaller seasonal and diurnal temperature ranges. The cooler NH summer temperatures in canopy-covered regions aremore » more consistent with observations and are attributed to two factors. Firstly, CABLE accounts for aerodynamic and radiative interactions between the canopy and the ground below; this placement of the canopy above the ground eliminates the need for a separate bare ground tile in canopy-covered areas. Secondly, CABLE simulates larger evapotranspiration fluxes and a slightly larger daytime cloud cover fraction. Warmer NH winter temperatures result from the parameterization of cold climate processes in CABLE in snow-covered areas. In particular, prognostic snow density increases through the winter and lowers the diurnally resolved snow albedo; variable snow thermal conductivity prevents early winter heat loss but allows more heat to enter the ground as the snow season progresses; liquid precipitation freezing within the snowpack delays the building of the snowpack in autumn and accelerates snow melting in spring. Altogether we find that the ACCESS simulation of surface air temperature benefits from the specific representation of the turbulent transport within and just above the canopy in the roughness sublayer as well as the more complex snow scheme in CABLE relative to MOSES.« less
Bat activity in harvested and intact forest stands in the allegheny mountains
Owen, S.F.; Menzel, M.A.; Edwards, J.W.; Ford, W.M.; Menzel, J.M.; Chapman, B.R.; Wood, P.B.; Miller, K.V.
2004-01-01
We used Anabat acoustical monitoring devices to examine bat activity in intact canopy forests, complex canopy forests with gaps, forests subjected to diameter-limit harvests, recent deferment harvests, clearcuts and unmanaged forested riparian areas in the Allegheny Mountains of West Virginia in the summer of 1999. We detected eight species of bats, including the endangered Indiana bat (Myotis sodalis). Most bat activity was concentrated in forested riparian areas. Among upland habitats, activity of silver-haired bats (Lasionycteris noctivagans) and hoary bats (Lasiurus cinereus) was higher in open, less cluttered vegetative types such as recent deferment harvests and clearcuts. Our results suggest that bat species in the central Appalachians partially segregate themselves among vegetative conditions based on differences in body morphology and echolocation call characteristics. From the standpoint of conserving bat foraging habitat for the maximum number of species in the central Appalachians, special emphasis should be placed on protecting forested riparian areas.
How deep does disturbance go? The legacy of hurricanes on tropical forest soil biogeochemistry
NASA Astrophysics Data System (ADS)
Gutiérrez del Arroyo, O.; Silver, W. L.
2016-12-01
Ecosystem-scale disturbances, such as hurricanes and droughts, are periodic events with the capacity to cycle vast amounts of energy and matter. Such is the case of hurricanes in wet tropical forests, where intense winds defoliate the forest canopy and deposit large quantities of debris on the forest floor. These disturbances strongly affect soil biogeochemistry by altering soil moisture and temperature regimes, as well as litterfall, decomposition rates, and ultimately soil carbon (C) pools. Although these impacts are mostly concentrated near the soil surface, it is critical to consider the long-term effects on hurricanes on the deep soil profile, given the potential for soil C sequestration to occur at depth. Our study was conducted in the Canopy Trimming Experiment, an ongoing experiment within the Luquillo LTER in Puerto Rico. Ten years prior to our study, treatments including canopy trimming and debris deposition, independently and in combination, were imposed on 30 x 30 m plots within Tabonuco forests. We sampled 12 soil profiles (4 treatments, n=3) from 0 to 100 cm, at 10 cm intervals, and measured a suite of biogeochemical properties to explore treatment effects, as well as changes with depth. After a decade of recovery from the imposed treatments, there were no significant differences in soil moisture or soil pH among treatments at any depth, although significant changes with depth occurred for both variables. Iron concentrations, despite showing no treatment effects, decreased markedly with depth, highlighting the biogeochemical thresholds that occur along the soil profile. Notably, debris deposition resulted in significantly higher soil C, nitrogen (N), and phosphorus (P) concentrations in bulk soils, with effects being detected even at depths >50 cm. Moreover, density fractionation analyses of surface and deep soils revealed potential pathways for the measured increases in C, N, and P, including the accumulation of organic matter in the light fraction, as well as physiochemical interactions between organic molecules and minerals in the heavy fraction. Together, our data suggests that hurricane disturbances, by providing unusually large quantities of litterfall, can serve as a periodic subsidy of organic matter to the soil, which helps to maintain soil fertility and promote soil C sequestration.
James S. Rentch
2011-01-01
This study examined the relationship between direction of treefall and slope-aspect, and prevailing wind in eight old-growth stands where single-tree canopy gaps characterize the dominant disturbance regime. All live and downed trees were inventoried in 0.45-ha sample plots. To determine crown asymmetry, crown sizes of live trees were measured along two perpendicular...
Dunham, Amy E.; Duncan, Richard P.; Rogers, Haldre S.
2017-01-01
Dispersal is thought to be a key process underlying the high spatial diversity of tropical forests. Just how important dispersal is in structuring plant communities is nevertheless an open question because it is very difficult to isolate dispersal from other processes, and thereby measure its effect. Using a unique situation, the loss of vertebrate seed dispersers on the island of Guam and their presence on the neighboring islands of Saipan and Rota, we quantify the contribution of vertebrate seed dispersal to spatial patterns of diversity of tree seedlings in treefall gaps. The presence of vertebrate seed dispersers approximately doubled seedling species richness within canopy gaps and halved species turnover among gaps. Our study demonstrates that dispersal plays a key role in maintaining local and regional patterns of diversity, and highlights the potential for ongoing declines in vertebrate seed dispersers to profoundly alter tropical forest composition. PMID:28847937
Wandrag, Elizabeth M; Dunham, Amy E; Duncan, Richard P; Rogers, Haldre S
2017-10-03
Dispersal is thought to be a key process underlying the high spatial diversity of tropical forests. Just how important dispersal is in structuring plant communities is nevertheless an open question because it is very difficult to isolate dispersal from other processes, and thereby measure its effect. Using a unique situation, the loss of vertebrate seed dispersers on the island of Guam and their presence on the neighboring islands of Saipan and Rota, we quantify the contribution of vertebrate seed dispersal to spatial patterns of diversity of tree seedlings in treefall gaps. The presence of vertebrate seed dispersers approximately doubled seedling species richness within canopy gaps and halved species turnover among gaps. Our study demonstrates that dispersal plays a key role in maintaining local and regional patterns of diversity, and highlights the potential for ongoing declines in vertebrate seed dispersers to profoundly alter tropical forest composition.
Villagra, Mariana; Campanello, Paula I; Montti, Lia; Goldstein, Guillermo
2013-03-01
A 4-year fertilization experiment with nitrogen (N) and phosphorus (P) was carried out in natural gaps of a subtropical forest in northeastern Argentina. Saplings of six dominant canopy species differing in shade tolerance were grown in five control and five N + P fertilized gaps. Hydraulic architectural traits such as wood density, the leaf area to sapwood area ratio (LA : SA), vulnerability to cavitation (P50) and specific and leaf-specific hydraulic conductivity were measured, as well as the relative growth rate, specific leaf area (SLA) and percentage of leaf damage by insect herbivores. Plant growth rates and resistance to drought-induced embolisms increased when nutrient limitations were removed. On average, the P50 of control plants was -1.1 MPa, while the P50 of fertilized plants was -1.6 MPa. Wood density and LA : SA decreased with N + P additions. A trade-off between vulnerability to cavitation and efficiency of water transport was not observed. The relative growth rate was positively related to the total leaf surface area per plant and negatively related to LA : SA, while P50 was positively related to SLA across species and treatments. Plants with higher growth rates and higher total leaf area in fertilized plots were able to avoid hydraulic dysfunction by becoming less vulnerable to cavitation (more negative P50). Two high-light-requiring species exhibited relatively low growth rates due to heavy herbivore damage. Contrary to expectations, shade-tolerant plants with relatively high resistance to hydraulic dysfunction and reduced herbivory damage were able to grow faster. These results suggest that during the initial phase of sapling establishment in gaps, species that were less vulnerable to cavitation and exhibited reduced herbivory damage had faster realized growth rates than less shade-tolerant species with higher potential growth rates. Finally, functional relationships between hydraulic traits and growth rate across species and treatments were maintained regardless of soil nutrient status.
NASA Astrophysics Data System (ADS)
Giometto, M. G.; Christen, A.; Egli, P. E.; Schmid, M. F.; Tooke, R. T.; Coops, N. C.; Parlange, M. B.
2017-08-01
Large-eddy simulations (LES) are used to gain insight into the effects of trees on turbulence, aerodynamic parameters, and momentum transfer rates characterizing the atmosphere within and above a real urban canopy. Several areas are considered that are part of a neighborhood in the city of Vancouver, BC, Canada where a small fraction of trees are taller than buildings. In this area, eight years of continuous wind and turbulence measurements are available from a 30 m meteorological tower. Data from airborne light detection and ranging (LiDAR) are used to represent both buildings and vegetation at the LES resolution. In the LES algorithm, buildings are accounted through an immersed boundary method, whereas vegetation is parameterized via a location-specific leaf area density. LES are performed including and excluding vegetation from the considered urban areas, varying wind direction and leaf area density. Surface roughness lengths (z0) from both LES and tower measurements are sensitive to the 0 ≤ LAI /λfb < 3 parameter, where LAI is the leaf area index and λfb is the frontal area fraction of buildings characterizing a given canopy. For instance, tower measurements predict a 19% seasonal increase in z0, slightly lower than the 27% increase featured by LES for the most representative canopy (leaves-off LAI / λfSUP>b = 0.74 , leaves-on LAI /λfb = 2.24). Removing vegetation from such a canopy would cause a dramatic drop of approximately 50% in z0 when compared to the reference summer value. The momentum displacement height (d) from LES also consistently increases as LAI / λfb increases, due in large part to the disproportionate amount of drag that the (few) relatively taller trees exert on the flow. LES and measurements both predict an increase in the ratio of turbulent to mean kinetic energy (TKE/MKE) at the tower sampling height going from winter to summer, and LES also show how including vegetation results in a more (positive) negatively skewed (horizontal) vertical velocity distribution - reflecting a more intermittent velocity field which favors sweep motions when compared to ejections. Within the urban canopy, the effects of trees are twofold: on one hand, they act as a direct momentum sink for the mean flow; on the other, they reduce downward turbulent transport of high-momentum fluid, significantly reducing the wind intensity at the heights where people live and buildings consume energy.
Isotopic characteristics of canopies in simulated leaf assemblages
NASA Astrophysics Data System (ADS)
Graham, Heather V.; Patzkowsky, Mark E.; Wing, Scott L.; Parker, Geoffrey G.; Fogel, Marilyn L.; Freeman, Katherine H.
2014-11-01
The geologic history of closed-canopy forests is of great interest to paleoecologists and paleoclimatologists alike. Closed canopies have pronounced effects on local, continental and global rainfall and temperature patterns. Although evidence for canopy closure is difficult to reconstruct from the fossil record, the characteristic isotope gradients of the ;canopy effect; could be preserved in leaves and proxy biomarkers. To assess this, we employed new carbon isotopic data for leaves collected in diverse light environments within a deciduous, temperate forest (Maryland, USA) and for leaves from a perennially closed canopy, moist tropical forest (Bosque Protector San Lorenzo, Panamá). In the tropical forest, leaf carbon isotope values range 10‰, with higher δ13Cleaf values occurring both in upper reaches of the canopy, and with higher light exposure and lower humidity. Leaf fractionation (Δleaf) varied negatively with height and light and positively with humidity. Vertical 13C enrichment in leaves largely reflects changes in Δleaf, and does not trend with δ13C of CO2 within the canopy. At the site in Maryland, leaves express a more modest δ13C range (∼6‰), with a clear trend that follows both light and leaf height. Using a model we simulate leaf assemblage isotope patterns from canopy data binned by elevation. The re-sampling (bootstrap) model determined both the mean and range of carbon isotope values for simulated leaf assemblages ranging in size from 10 to over 1000 leaves. For the tropical forest data, the canopy's isotope range is captured with 50 or more randomly sampled leaves. Thus, with a sufficient number of fossil leaves it is possible to distinguish isotopic gradients in an ancient closed canopy forest from those in an open forest. For very large leaf assemblages, mean isotopic values approximate the δ13C of carbon contributed by leaves to soil and are similar to observed δ13Clitter values at forested sites within Panamá, including the site where leaves were sampled. The model predicts a persistent ∼1‰ difference in δ13Clitter for the two sites which is consistent with higher water availability in the tropical forests. This work provides a new framework for linking contemporary ecological observations to the geochemical record using flux-weighted isotope data and lends insights to the effect of forest architecture on organic and isotopic records of ancient terrestrial ecosystems. How many leaves from a litter assemblage are necessary to distinguish the isotopic gradient characteristics of canopy closure? Are mean δ13Cleaf values for a litter assemblage diagnostic of a forest biome? Can we predict the δ13C values of cumulative litter, soil organic matter, and organic carbon in sedimentary archives using litter flux and isotope patterns in canopies? We determined the δ13C range and mean for different sized assemblages of leaves sampled from data for each forest. We re-sampled very high numbers of leaves in order to estimate the isotopic composition of cumulative carbon delivered to soils as litter, and compared these results to available data from forest soils. Modeled leaf and soil organic carbon isotope patterns in this study offer insights to how forest structure can be derived from carbon isotope measurements of fossil leaves, as well as secondary material - such as teeth, hair, paleosol carbonates, or organic soil carbon (van der Merwe and Medina, 1989; Koch, 1998; Secord et al., 2008; Levin et al., 2011).Distinct climate and seasonal difference in the Panamá and Maryland, USA forests are reflected in their canopy isotope gradients. In the tropical forest of Panamá, leaves are produced throughout the year within a canopy that is both extensively and persistently closed (Leigh, 1975; Lowman and Wittman, 1996). In the temperate forest of Maryland leaves are produced during the spring when canopy conditions are relatively open (Korner and Basler, 2010).
NASA Astrophysics Data System (ADS)
Maurer, Thomas; Gustavos Trujillo Siliézar, Carlos; Oeser, Anne; Pohle, Ina; Hinz, Christoph
2016-04-01
In evolving initial landscapes, vegetation development depends on a variety of feedback effects. One of the less understood feedback loops is the interaction between throughfall and plant canopy development. The amount of throughfall is governed by the characteristics of the vegetation canopy, whereas vegetation pattern evolution may in turn depend on the spatio-temporal distribution of throughfall. Meteorological factors that may influence throughfall, while at the same time interacting with the canopy, are e.g. wind speed, wind direction and rainfall intensity. Our objective is to investigate how throughfall, vegetation canopy and meteorological variables interact in an exemplary eco-hydrological system in its initial development phase, in which the canopy is very heterogeneous and rapidly changing. For that purpose, we developed a methodological approach combining field methods, raster image analysis and multivariate statistics. The research area for this study is the Hühnerwasser ('Chicken Creek') catchment in Lower Lusatia, Brandenburg, Germany, where after eight years of succession, the spatial distribution of plant species is highly heterogeneous, leading to increasingly differentiated throughfall patterns. The constructed 6-ha catchment offers ideal conditions for our study due to the rapidly changing vegetation structure and the availability of complementary monitoring data. Throughfall data were obtained by 50 tipping bucket rain gauges arranged in two transects and connected via a wireless sensor network that cover the predominant vegetation types on the catchment (locust copses, dense sallow thorn bushes and reeds, base herbaceous and medium-rise small-reed vegetation, and open areas covered by moss and lichens). The spatial configuration of the vegetation canopy for each measurement site was described via digital image analysis of hemispheric photographs of the canopy using the ArcGIS Spatial Analyst, GapLight and ImageJ software. Meteorological data from two on-site weather stations (wind direction, wind speed, air temperature, air humidity, insolation, soil temperature, precipitation) were provided by the 'Research Platform Chicken Creek' (https://www.tu-cottbus.de/projekte/en/oekosysteme/startseite.html). Data were combined and multivariate statistical analysis (PCA, cluster analysis, regression trees) were conducted using the R-software to i) obtain statistical indices describing the relevant characteristics of the data and ii) to identify the determining factors for throughfall intensity. The methodology is currently tested and results will be presented. Preliminary evaluation of the image analysis approach showed only marginal, systematic deviation of results for the different software tools applied, which makes the developed workflow a viable tool for canopy characterization. Results from this study will have a broad spectrum of possible applications, for instance the development / calibration of rainfall interception models, the incorporation into eco-hydrological models, or to test the fault tolerance of wireless rainfall sensor networks.
Interplay of Hofstadter and quantum Hall states in bilayer graphene
NASA Astrophysics Data System (ADS)
Spanton, Eric M.; Zibrov, Alexander A.; Zhou, Haoxin; Taniguchi, Takashi; Watanabe, Kenji; Young, Andrea
Electron interactions in ultraclean systems such as graphene lead to the fractional quantum Hall effect in an applied magnetic field. Long wavelength periodic potentials from a moiré pattern in aligned boron nitride-graphene heterostructures may compete with such interactions and favor spatially ordered states (e.g. Wigner crystals orcharge density waves). To investigate this competition, we studied the bulk phase diagram of asymmetrically moiré-coupled bilayer graphene via multi-terminal magnetocapacitance measurements at ultra-high magnetic fields. Two quantum numbers characterize energy gaps in this regime: t, which indexes the Bloch bands, and s, which indexes the Landau level. Similar to past experiments, we observe the conventional integer and fractional quantum Hall gaps (t = 0), integer Hofstadter gaps (integer s and integer t ≠ 0), and fractional Bloch states associated with an expanded superlattice unit cell (fractional s and integer t). Additionally, we find states with fractional values for both s and t. Measurement of the capacitance matrix shows that these states occur on the layer exposed to the strong periodic potential. We discuss the results in terms of possible fractional quantum hall states unique to periodically modulated systems.
NASA Astrophysics Data System (ADS)
Lee, Heezin
Scanning laser ranging technology is well suited for measuring point-to-point distances because of its ability to generate small beam divergences. As a result, many of the laser pulses emitted from airborne light detection and ranging (LiDAR) systems are able to reach the ground underneath tree canopies through small (10 cm scale) gaps in the foliage. Using high pulse rate lasers and fast optical scanners, airborne LiDAR systems can provide both high spatial resolution and canopy penetration, and these data have become more widely available in recent years for use in environmental and forestry applications. The small-footprint, discrete-return Airborne Laser Swath Mapping (ALSM) system at the University of Florida (UF) is used to directly measure ground surface elevations and the three-dimensional (3D) distribution of the vegetative material above the soil surface. Field of view geometric mappings are explored to find optical gaps inside forests. First, a method is developed to detect walking trails in natural forests that are obscured from above by the canopy. Several features are derived from the ALSM data and used to constrain the search space and infer the location of trails. Second, a robust and simple procedure for estimating intercepted photosynthetically active radiation (IPAR), which is an important measure of forest timber productivity and of daylight visibility in forested terrain, is presented. Simple scope functions that isolate the relevant LiDAR reflections between observer locations and the sun are defined and shown to give good agreement between the LiDAR-derived estimates and values of IPAR measured in situ. A conical scope function with an angular divergence from the centerline of +/-7° provided the best agreement with the in situ measurements. This scope function yielded remarkably consistent IPAR estimates for different pine species and growing conditions. The developed idea could be extended, through potential future work, to characterize the spatial distribution of attenuation of GPS (L-band) microwave signals and of detectability from the sky for military personnel operating in forested terrain. Measuring individual trees can provide valuable information about forests, and airborne LiDAR sensors have been recently used to identify individual trees and measure structural tree parameters. Past results, however, have been mixed because of reliance on interpolated (image) versions of the LiDAR measurements and search methods that do not adapt to variations in canopies. In this work, an adaptive clustering method is developed using 3D airborne LiDAR data acquired over two distinctly different managed pine forests in North-Central Florida, USA. A critical issue in isolating individual trees is determining the appropriate size of the moving window (search radius) when locating seed points. The proposed approach works directly on the 3D "cloud" of LiDAR points and adapts to irregular canopy sizes. The region growing step yields collectively exhaustive sets in an initial segmentation of tree canopies. An agglomerative clustering step is then used to merge clusters that represent parts of whole canopies using the locally varying height distribution. The overall tree detection accuracy achieved is 95.1% with no significant bias. The tree detection enables subsequent estimation of tree height and vertical crown length to an accuracy of better than 0.8 m and 1.5 m, respectively. Lastly, a compact representation of the different geometric characteristics of the segmented LiDAR points is introduced using spin images as a new tool that can potentially help tree detection in complex natural forests.
Ecohydrological optimality in the Northeast China Transect
NASA Astrophysics Data System (ADS)
Cong, Zhentao; Li, Qinshu; Mo, Kangle; Zhang, Lexin; Shen, Hong
2017-05-01
The Northeast China Transect (NECT) is one of the International Geosphere-Biosphere Program (IGBP) terrestrial transects, where there is a significant precipitation gradient from east to west, as well as a vegetation transition of forest-grassland-desert. It is remarkable to understand vegetation distribution and dynamics under climate change in this transect. We take canopy cover (M), derived from Normalized Difference Vegetation Index (NDVI), as an index to describe the properties of vegetation distribution and dynamics in the NECT. In Eagleson's ecohydrological optimality theory, the optimal canopy cover (M*) is determined by the trade-off between water supply depending on water balance and water demand depending on canopy transpiration. We apply Eagleson's ecohydrological optimality method in the NECT based on data from 2000 to 2013 to get M*, which is compared with M from NDVI to further discuss the sensitivity of M* to vegetation properties and climate factors. The result indicates that the average M* fits the actual M well (for forest, M* = 0.822 while M = 0.826; for grassland, M* = 0.353 while M = 0.352; the correlation coefficient between M and M* is 0.81). Results of water balance also match the field-measured data in the references. The sensitivity analyses show that M* decreases with the increase of leaf area index (LAI), stem fraction and temperature, while it increases with the increase of leaf angle and precipitation amount. Eagleson's ecohydrological optimality method offers a quantitative way to understand the impacts of climate change on canopy cover and provides guidelines for ecorestoration projects.
Pignon, Charles P.; Jaiswal, Deepak; McGrath, Justin M.
2017-01-01
Abstract The wild progenitors of major C4 crops grew as individuals subjected to little shading. Today they are grown in dense stands where most leaves are shaded. Do they maintain photosynthetic efficiency in these low light conditions produced by modern cultivation? The apparent maximum quantum yield of CO2 assimilation (ΦCO2max,app), a key determinant of light-limited photosynthesis, has not been systematically studied in field stands of C4 crops. ΦCO2max,app was derived from the initial slope of the response of leaf CO2 uptake (A) to photon flux (Q). Leaf fractional light absorptance (α) was measured to determine the absolute maximum quantum yield of CO2 assimilation on an absorbed light basis (ΦCO2max,abs). Light response curves were determined on sun and shade leaves of 49 field plants of Miscanthus × giganteus and Zea mays following canopy closure. ΦCO2max,app and ΦCO2max,abs declined significantly by 15–27% (P<0.05) with canopy depth. Experimentally, leaf age was shown unlikely to cause this loss. Modeling canopy CO2 assimilation over diurnal courses suggested that the observed decline in ΦCO2max,app with canopy depth costs 10% of potential carbon gain. Overcoming this limitation could substantially increase the productivity of major C4 crops. PMID:28110277
Spectral mixture analyses of hyperspectral data acquired using a tethered balloon
Chen, Xuexia; Vierling, Lee
2006-01-01
Tethered balloon remote sensing platforms can be used to study radiometric issues in terrestrial ecosystems by effectively bridging the spatial gap between measurements made on the ground and those acquired via airplane or satellite. In this study, the Short Wave Aerostat-Mounted Imager (SWAMI) tethered balloon-mounted platform was utilized to evaluate linear and nonlinear spectral mixture analysis (SMA) for a grassland-conifer forest ecotone during the summer of 2003. Hyperspectral measurement of a 74-m diameter ground instantaneous field of view (GIFOV) attained by the SWAMI was studied. Hyperspectral spectra of four common endmembers, bare soil, grass, tree, and shadow, were collected in situ, and images captured via video camera were interpreted into accurate areal ground cover fractions for evaluating the mixture models. The comparison between the SWAMI spectrum and the spectrum derived by combining in situ spectral data with video-derived areal fractions indicated that nonlinear effects occurred in the near infrared (NIR) region, while nonlinear influences were minimal in the visible region. The evaluation of hyperspectral and multispectral mixture models indicated that nonlinear mixture model-derived areal fractions were sensitive to the model input data, while the linear mixture model performed more stably. Areal fractions of bare soil were overestimated in all models due to the increased radiance of bare soil resulting from side scattering of NIR radiation by adjacent grass and trees. Unmixing errors occurred mainly due to multiple scattering as well as close endmember spectral correlation. In addition, though an apparent endmember assemblage could be derived using linear approaches to yield low residual error, the tree and shade endmember fractions calculated using this technique were erroneous and therefore separate treatment of endmembers subject to high amounts of multiple scattering (i.e. shadows and trees) must be done with caution. Including the short wave infrared (SWIR) region in the hyperspectral and multispectral endmember data significantly reduced the Pearson correlation coefficient values among endmember spectra. Therefore, combination of visible, NIR, and SWIR information is likely to further improve the utility of SMA in understanding ecosystem structure and function and may help narrow uncertainties when utilizing remotely sensed data to extrapolate trace glas flux measurements from the canopy scale to the landscape scale.
NASA Astrophysics Data System (ADS)
Stuart-Haëntjens, E. J.; Ricart, R. D.; Fahey, R. T.; Fotis, A. T.; Gough, C. M.
2016-12-01
Ecological theory maintains that as forests age, the rate at which carbon (C) is stored declines because C released through organic matter decomposition offsets declining C sequestration in new vegetative growth. Recent observational studies are challenging this long-held hypothesis, with limited evidence suggesting higher-than-expected rates in late-successional forests could be, counterintuitively, tied to canopy structural changes associated with low intensity tree mortality. As forests age, canopy structural complexity may increase when old trees die and form upper canopy gaps that release subcanopy vegetation. This provides one explanation for observations of sustained high production in old forests. Recent studies have found that this increased structural complexity and resource-use efficiency maintain C storage in mid-successional deciduous forests; whether a similar mechanism extends to late-successional forests is unknown. We will present how a slow, moderate disturbance affects the structure and C sequestration of late-successional forests. Our study site is a forest recently infected by Beech Bark Disease (BBD), which will result in the eventual mortality of American beech trees in this late successional forest in Northern Michigan, at the University of Michigan Biological Station. American Beech, Hemlock, Sugar Maple, and White Pine dominate the landscape, with American Beech making up 30% of the canopy trees on average. At the plot scale American Beech is distributed heterogeneously, comprising 1% to 60% of total plot basal area, making it possible to examine the interplay between disturbance severity, canopy structural change, and primary production resilience in this forest. Within each of the 13 plots, species and stem diameter were collected in 1992, 1994, 2014, and 2016, with future remeasurements planned. We will discuss how ground-based lidar coupled with airborne spectral (IR and RGB) imagery are being used to track canopy BBD-related structural changes over time and space, and to link structural changes with late-successional primary production. Our hypothesis is that, up to a presently unknown disturbance threshold, moderate disturbance from BBD sustains primary production in this late successional forest by partially, but not fully, rewinding ecological succession.
Throughfall and stemflow dynamics in a riparian cedar swamp: possible ecohydrological feedbacks
NASA Astrophysics Data System (ADS)
Duval, T. P.
2012-12-01
Partitioning of rainfall through forest canopies as throughfall and stemflow have deservedly been the subject of much research in the past; however, very little is known about the fluxes of water and solutes through forested wetland communities. Temperate swamps are characterized by intermittent canopy coverage, with areas that are denser than upland forests of similar species, but also contain canopy gaps of meadow and marsh communities,. Understanding the role of vegetation on the distribution of precipitation in these ecosystems is necessary to effectively constrain water balance estimates and predict possible community responses to shifting climate regimes. This study examines throughfall, stemflow, and interception dynamics in a riparian cedar swamp in Alliston, Ontario, Canada over the 2012 growing season. Throughfall averaged 76 % of above-canopy rainfall; however, there were spatial-magnitude interaction variations within the swamp. For events less than 20 mm, between 17 and 75 % of the measured swamp floor received greater depth of rain than above the canopy, whereas for events greater than 20 mm only between 2 and 23 % of the sampled swamp floor received more water than the actual event. The observed spatial variability in throughfall was not related to leaf area index, suggesting remote sensing modelling efforts may not be an accurate method for quantification of wetland precipitation dynamics. Stemflow along the predominantly cedar trees averaged 5 %; therefore, net precipitation on a seasonal basis in this cedar swamp was 81 % of above canopy rainfall. Throughfall DOC and total nitrogen concentrations averaged 31 and 2.2 mg/L, respectively, with stemflow DOC and TN concentrations averaging 109 and 6.5 mg/L, respectively. These values are much higher than reported for upland forest species. In general, throughfall magnitudes increased and solute concentrations decreased with increasing distance from the existing forest boles. The delivery of high reactive-solute concentrations through stemflow and comparatively reduced throughfall water fluxes closer to the trees may represent an ecohydrological feedback to cedar maintenance in swamp ecosystems by enriching the root zone soil with nutrients and shedding water away from the roots in a system where the presence of water is viewed as a stress to optimal growth.
Kitaoka, Satoshi; Watanabe, Yoko; Koike, Takayoshi
2009-12-01
To understand the leaf-level responses of successional tree species to forest gap formation and nitrogen deposition, we performed canopy clearing and nitrogen-amendment treatments in larch plantations and investigated the changes in the light-use characteristics and the leaf structure of the invading deciduous broad-leaved tree seedlings. We hypothesized that the responses of the tree seedlings to clearing and nitrogen input would reflect specific traits in the shoot development that would be related to the species-specific successional characteristics. The gap phase species Magnolia hyporeuca Siebold et Zucc. and the mid-late successional tree species Quercus mongolica Fischer ex Ledeb. var. crispula (Blume) Ohashi., which grow in or near the forest gaps, had higher light-saturated photosynthetic rates (Psat), enhanced mesophyll surface area (Smes) and increased leaf mass per area (LMA) under both the clearing treatment and the clearing with nitrogen-amendment treatment. These two species therefore increased their Psat via an increase in Smes and LMA. The LMA values of the late successional tree species Prunus ssiori F. Schmidt and Carpinus cordata Blume, which grow in the forest understory, were enhanced by the clearing treatment. However, they displayed lesser responses to the clearing treatment under which there were no marked increases in Psat or Smes values in the second year. These results indicate distinct and varied responses to disturbance regimes among the four seral tree seedlings. The Psat value largely increased in line with the increase in Smes value during the second year in M. hyporeuca and Q. mongolica. The nitrogen supply accelerated the change in LMA and increased the Smes value in the leaves of Q. mongolica.
Paquette, Alain; Fontaine, Bastien; Berninger, Frank; Dubois, Karine; Lechowicz, Martin J; Messier, Christian; Posada, Juan M; Valladares, Fernando; Brisson, Jacques
2012-11-01
Norway maple (Acer platanoides L), which is among the most invasive tree species in forests of eastern North America, is associated with reduced regeneration of the related native species, sugar maple (Acer saccharum Marsh) and other native flora. To identify traits conferring an advantage to Norway maple, we grew both species through an entire growing season under simulated light regimes mimicking a closed forest understorey vs. a canopy disturbance (gap). Dynamic shade-houses providing a succession of high-intensity direct-light events between longer periods of low, diffuse light were used to simulate the light regimes. We assessed seedling height growth three times in the season, as well as stem diameter, maximum photosynthetic capacity, biomass allocation above- and below-ground, seasonal phenology and phenotypic plasticity. Given the north European provenance of Norway maple, we also investigated the possibility that its growth in North America might be increased by delayed fall senescence. We found that Norway maple had significantly greater photosynthetic capacity in both light regimes and grew larger in stem diameter than sugar maple. The differences in below- and above-ground biomass, stem diameter, height and maximum photosynthesis were especially important in the simulated gap where Norway maple continued extension growth during the late fall. In the gap regime sugar maple had a significantly higher root : shoot ratio that could confer an advantage in the deepest shade of closed understorey and under water stress or browsing pressure. Norway maple is especially invasive following canopy disturbance where the opposite (low root : shoot ratio) could confer a competitive advantage. Considering the effects of global change in extending the potential growing season, we anticipate that the invasiveness of Norway maple will increase in the future.
Tree root dynamics in montane and sub-alpine mixed forest patches.
Wang, Y; Kim, J H; Mao, Z; Ramel, M; Pailler, F; Perez, J; Rey, H; Tron, S; Jourdan, C; Stokes, A
2018-02-28
The structure of heterogeneous forests has consequences for their biophysical environment. Variations in the local climate significantly affect tree physiological processes. We hypothesize that forest structure also alters tree root elongation and longevity through temporal and spatial variations in soil temperature and water potential. We installed rhizotrons in paired vegetation communities of closed forest (tree islands) and open patches (canopy gaps), along a soil temperature gradient (elevations of 1400, 1700 and 2000 m) in a heterogeneous mixed forest. We measured the number of growing tree roots, elongation and mortality every month over 4 years. The results showed that the mean daily root elongation rate (RER) was not correlated with soil water potential but was significantly and positively correlated with soil temperature between 0 and 8 °C only. The RER peaked in spring, and a smaller peak was usually observed in the autumn. Root longevity was dependent on altitude and the season in which roots were initiated, and root diameter was a significant factor explaining much of the variability observed. The finest roots usually grew faster and had a higher risk of mortality in gaps than in closed forest. At 2000 m, the finest roots had a higher risk of mortality compared with the lower altitudes. The RER was largely driven by soil temperature and was lower in cold soils. At the treeline, ephemeral fine roots were more numerous, probably in order to compensate for the shorter growing season. Differences in soil climate and root dynamics between gaps and closed forest were marked at 1400 and 1700 m, but not at 2000 m, where canopy cover was more sparse. Therefore, heterogeneous forest structure and situation play a significant role in determining root demography in temperate, montane forests, mostly through impacts on soil temperature.
Optical band gap in a cholesteric elastomer doped by metallic nanospheres
NASA Astrophysics Data System (ADS)
Hernández, Julio C.; Reyes, J. Adrián
2017-12-01
We analyzed the optical band gaps for axially propagating electromagnetic waves throughout a metallic doped cholesteric elastomer. The composed medium is made of metallic nanospheres (silver) randomly dispersed in a cholesteric elastomer liquid crystal whose dielectric properties can be represented by a resonant effective uniaxial tensor. We found that the band gap properties of the periodic system greatly depend on the volume fraction of nanoparticles in the cholesteric elastomer. In particular, we observed a displacement of the reflection band for quite small fraction volumes whereas for larger values of this fraction there appears a secondary band in the higher frequency region. We also have calculated the transmittance and reflectance spectra for our system. These calculations verify the mentioned band structure and provide additional information about the polarization features of the radiation.
Tree species effects on topsoil properties in an old tropical plantation
NASA Astrophysics Data System (ADS)
Bauters, Marijn; Boeckx, Pascal; Ampoorter, Evy; Verbeeck, Hans; Döetterl, Sebastian; Baert, Geert; Verheyen, Kris
2016-04-01
Forest biogeochemistry is strongly linked to the functional strategies of the tree community and the topsoil. Research has long documented that tree species affect soil properties in forests. Our current understanding on this interaction is mainly based on common garden experiments in temperate forest and needs to be extended to other ecosystems if we want to understand this interaction in natural forests worldwide. Using a 77-year-old tropical experimental plantation from central Africa, we examined the relationship between canopy and litter chemical traits and topsoil properties. By the current diversity in this site, the unique setup allowed us to extend the current knowledge from temperate and simplified systems to near-natural tropical forests, and thus bridge the gap between planted monocultures in common gardens, and correlative studies in natural systems. We linked the species-specific leaf and litter chemical traits to the topsoil cation composition, acidity, pH and soil organic matter. We found that average canopy trait values were a better predictor for the topsoil than the litter chemistry. Canopy base cation content positively affected topsoil pH and negatively affected acidity. These, in turn strongly determined the soil organic carbon contents of the topsoil, which ranged a tree-fold in the experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Kilgo
2005-04-20
The effects of harvest-created canopy gaps in bottomland hardwood forests on arthropod abundance and, hence, the foraging ecology of birds are poorly understood. I predicted that arthropod abundance would be high near edges of group-selection harvest gaps and lower in the surrounding forest, and that male Hooded Warblers (Wilsonia citrina) foraging near gaps would find more prey per unit time than those foraging in the surrounding forest. In fact, arthropod abundance was greater >100 m from a gap edge than at 0-30 m or 30-100 m from an edge, due to their abundance on switchcane (Arundinaria gigantea); arthropods did notmore » differ in abundance among distances from gaps on oaks (Quercus spp.) or red maple (Acer rubrum). Similarly, Hooded Warbler foraging attack rates were not higher near gap edges: when foraging for fledglings, attack rate did not differ among distances from gaps, but when foraging for themselves, attack rates actually were lower 0-30 m from gap edges than 30-100 m or >100 m from a gap edge. Foraging attack rate was positively associated with arthropod abundance. Hooded Warblers apparently encountered fewer prey and presumably foraged less efficiently where arthropods were least abundant, i.e., near gaps. That attack rates among birds foraging for fledglings were not affected by distance from gap (and hence arthropod abundance) suggests that prey availability may not be limiting at any location across the forest, despite the depressing effects of gaps on arthropod abundance.« less
Wind Tunnel Test of Subscale Ringsail and Disk-Gap-Band Parachutes
NASA Technical Reports Server (NTRS)
Zumwalt, Carlie H.; Cruz, Juan R.; Keller, Donald F.; O'Farrell, Clara
2016-01-01
A subsonic wind tunnel test was conducted to determine the drag and static aerodynamic coefficients, as well as to capture the dynamic motions of a new Supersonic Ringsail parachute developed by the Low Density Supersonic Decelerator Project. To provide a comparison against current Mars parachute technology, the Mars Science Laboratory's Disk-Gap-Band parachute was also included in the test. To account for the effect of fabric permeability, two fabrics ("low" and "standard" permeability) were used to fabricate each parachute canopy type, creating four combinations of canopy type and fabric material. A wide range of test conditions were covered during the test, spanning Mach numbers from 0.09 to 0.5, and static pressures from 103 to 2116 pounds per square inch (psf) (nominal values). The fabric permeability is shown to have a first-order effect on the aerodynamic coefficients and dynamic motions of the parachutes. For example, for a given parachute type and test condition, models fabricated from "low" permeability fabric always have a larger drag coefficient than models fabricated from "standard" permeability material. This paper describes the test setup and conditions, how the results were analyzed, and presents and discusses a sample of the results. The data collected during this test is being used to create and improve parachute aerodynamic databases for use in flight dynamics simulations for missions to Mars.
NASA Technical Reports Server (NTRS)
Jasinski, Michael F.; Crago, Richard
1994-01-01
Parameterizations of the frontal area index and canopy area index of natural or randomly distributed plants are developed, and applied to the estimation of local aerodynamic roughness using satellite imagery. The formulas are expressed in terms of the subpixel fractional vegetation cover and one non-dimensional geometric parameter that characterizes the plant's shape. Geometrically similar plants and Poisson distributed plant centers are assumed. An appropriate averaging technique to extend satellite pixel-scale estimates to larger scales is provided. ne parameterization is applied to the estimation of aerodynamic roughness using satellite imagery for a 2.3 sq km coniferous portion of the Landes Forest near Lubbon, France, during the 1986 HAPEX-Mobilhy Experiment. The canopy area index is estimated first for each pixel in the scene based on previous estimates of fractional cover obtained using Landsat Thematic Mapper imagery. Next, the results are incorporated into Raupach's (1992, 1994) analytical formulas for momentum roughness and zero-plane displacement height. The estimates compare reasonably well to reference values determined from measurements taken during the experiment and to published literature values. The approach offers the potential for estimating regionally variable, vegetation aerodynamic roughness lengths over natural regions using satellite imagery when there exists only limited knowledge of the vegetated surface.
Estimating tropical forest structure using LIDAR AND X-BAND INSAR
NASA Astrophysics Data System (ADS)
Palace, M. W.; Treuhaft, R. N.; Keller, M. M.; Sullivan, F.; Roberto dos Santos, J.; Goncalves, F. G.; Shimbo, J.; Neumann, M.; Madsen, S. N.; Hensley, S.
2013-12-01
Tropical forests are considered the most structurally complex of all forests and are experiencing rapid change due to anthropogenic and climatic factors. The high carbon stocks and fluxes make understanding tropical forests highly important to both regional and global studies involving ecosystems and climate. Large and remote areas in the tropics are prime targets for the use of remotely sensed data. Radar and lidar have previously been used to estimate forest structure, with an emphasis on biomass. These two remote sensing methods have the potential to yield much more information about forest structure, specifically through the use of X-band radar and waveform lidar data. We examined forest structure using both field-based and remotely sensed data in the Tapajos National Forest, Para, Brazil. We measured multiple structural parameters for about 70 plots in the field within a 25 x 15 km area that have TanDEM-X single-pass horizontally and vertically polarized radar interferometric data. High resolution airborne lidar were collected over a 22 sq km portion of the same area, within which 33 plots were co-located. Preliminary analyses suggest that X-band interferometric coherence decreases by about a factor of 2 (from 0.95 to 0.45) with increasing field-measured vertical extent (average heights of 7-25 m) and biomass (10-430 Mg/ha) for a vertical wavelength of 39 m, further suggesting, as has been observed at C-band, that interferometric synthetic aperture radar (InSAR) is substantially more sensitive to forest structure/biomass than SAR. Unlike InSAR coherence versus biomass, SAR power at X-band versus biomass shows no trend. Moreover, airborne lidar coherence at the same vertical wavenumbers as InSAR is also shown to decrease as a function of biomass, as well. Although the lidar coherence decrease is about 15% more than the InSAR, implying that lidar penetrates more than InSAR, these preliminary results suggest that X-band InSAR may be useful for structure and biomass estimation over large spatial scales not attainable with airborne lidar. In this study, we employed a set of less commonly used lidar metrics that we consider analogous to field-based measurements, such as the number of canopy maxima, measures of canopy vegetation distribution diversity and evenness (entropy), and estimates of gap fraction. We incorporated these metrics, as well as lidar coherence metrics pulled from discrete Fourier transforms of pseudowaveforms, and hypothetical stand characteristics of best-fit synthetic vegetation profiles into multiple regression analysis of forest biometric properties. Among simple and complex measures of forest structure, ranging from tree density, diameter at breast height, and various canopy geometry parameters, we found strong relationships with lidar canopy vegetation profile parameters. We suggest that the sole use of lidar height is limited in understanding biomass in a forest with little variation across the landscape and that there are many parameters that may be gleaned by lidar data that inform on forest biometric properties.
Bače, Radek; Svoboda, Miroslav; Janda, Pavel; Morrissey, Robert C.; Wild, Jan; Clear, Jennifer L.; Čada, Vojtěch; Donato, Daniel C.
2015-01-01
Background Severe canopy-removing disturbances are native to many temperate forests and radically alter stand structure, but biotic legacies (surviving elements or patterns) can lend continuity to ecosystem function after such events. Poorly understood is the degree to which the structural complexity of an old-growth forest carries over to the next stand. We asked how pre-disturbance spatial pattern acts as a legacy to influence post-disturbance stand structure, and how this legacy influences the structural diversity within the early-seral stand. Methods Two stem-mapped one-hectare forest plots in the Czech Republic experienced a severe bark beetle outbreak, thus providing before-and-after data on spatial patterns in live and dead trees, crown projections, down logs, and herb cover. Results Post-disturbance stands were dominated by an advanced regeneration layer present before the disturbance. Both major species, Norway spruce (Picea abies) and rowan (Sorbus aucuparia), were strongly self-aggregated and also clustered to former canopy trees, pre-disturbance snags, stumps and logs, suggesting positive overstory to understory neighbourhood effects. Thus, although the disturbance dramatically reduced the stand’s height profile with ~100% mortality of the canopy layer, the spatial structure of post-disturbance stands still closely reflected the pre-disturbance structure. The former upper tree layer influenced advanced regeneration through microsite and light limitation. Under formerly dense canopies, regeneration density was high but relatively homogeneous in height; while in former small gaps with greater herb cover, regeneration density was lower but with greater heterogeneity in heights. Conclusion These findings suggest that pre-disturbance spatial patterns of forests can persist through severe canopy-removing disturbance, and determine the spatial structure of the succeeding stand. Such patterns constitute a subtle but key legacy effect, promoting structural complexity in early-seral forests as well as variable successional pathways and rates. This influence suggests a continuity in spatial ecosystem structure that may well persist through multiple forest generations. PMID:26421726
Ibáñez, Beatriz; Gómez-Aparicio, Lorena; Stoll, Peter; Ávila, José M; Pérez-Ramos, Ignacio M; Marañón, Teodoro
2015-01-01
In forests, the vulnerable seedling stage is largely influenced by the canopy, which modifies the surrounding environment. Consequently, any alteration in the characteristics of the canopy, such as those promoted by forest dieback, might impact regeneration dynamics. Our work analyzes the interaction between canopy neighbors and seedlings in Mediterranean forests affected by the decline of their dominant species (Quercus suber). Our objective was to understand how the impacts of neighbor trees and shrubs on recruitment could affect future dynamics of these declining forests. Seeds of the three dominant tree species (Quercus suber, Olea europaea and Quercus canariensis) were sown in six sites during two consecutive years. Using a spatially-explicit, neighborhood approach we developed models that explained the observed spatial variation in seedling emergence, survival, growth and photochemical efficiency as a function of the size, identity, health, abundance and distribution of adult trees and shrubs in the neighborhood. We found strong neighborhood effects for all the performance estimators, particularly seedling emergence and survival. Tree neighbors positively affected emergence, independently of species identity or health. Alternatively, seedling survival was much lower in neighborhoods dominated by defoliated and dead Q. suber trees than in neighborhoods dominated by healthy trees. For the two oak species, these negative effects were consistent over the three years of the experimental seedlings. These results indicate that ongoing changes in species' relative abundance and canopy trees' health might alter the successional trajectories of Mediterranean oak-forests through neighbor-specific impacts on seedlings. The recruitment failure of dominant late-successional oaks in the gaps opened after Q. suber death would indirectly favor the establishment of other coexisting woody species, such as drought-tolerant shrubs. This could lead current forests to shift into open systems with lower tree cover. Adult canopy decline would therefore represent an additional factor threatening the recruitment of Quercus forests worldwide.
Modeling a historical mountain pine beetle outbreak using Landsat MSS and multiple lines of evidence
Assal, Timothy J.; Sibold, Jason; Reich, Robin M.
2014-01-01
Mountain pine beetles are significant forest disturbance agents, capable of inducing widespread mortality in coniferous forests in western North America. Various remote sensing approaches have assessed the impacts of beetle outbreaks over the last two decades. However, few studies have addressed the impacts of historical mountain pine beetle outbreaks, including the 1970s event that impacted Glacier National Park. The lack of spatially explicit data on this disturbance represents both a major data gap and a critical research challenge in that wildfire has removed some of the evidence from the landscape. We utilized multiple lines of evidence to model forest canopy mortality as a proxy for outbreak severity. We incorporate historical aerial and landscape photos, aerial detection survey data, a nine-year collection of satellite imagery and abiotic data. This study presents a remote sensing based framework to (1) relate measurements of canopy mortality from fine-scale aerial photography to coarse-scale multispectral imagery and (2) classify the severity of mountain pine beetle affected areas using a temporal sequence of Landsat data and other landscape variables. We sampled canopy mortality in 261 plots from aerial photos and found that insect effects on mortality were evident in changes to the Normalized Difference Vegetation Index (NDVI) over time. We tested multiple spectral indices and found that a combination of NDVI and the green band resulted in the strongest model. We report a two-step process where we utilize a generalized least squares model to account for the large-scale variability in the data and a binary regression tree to describe the small-scale variability. The final model had a root mean square error estimate of 9.8% canopy mortality, a mean absolute error of 7.6% and an R2 of 0.82. The results demonstrate that a model of percent canopy mortality as a continuous variable can be developed to identify a gradient of mountain pine beetle severity on the landscape.
NASA Astrophysics Data System (ADS)
Köhler, P.; Huth, A.
2010-05-01
The canopy height of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or lidar. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground biomass (AGB) (and thus carbon content of vegetation) and leaf area index (LAI). The process-based forest growth model FORMIND2.0 was applied to simulate (a) undisturbed forest growth and (b) a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia) in South-East Asia. It is found that for undisturbed forest and a variety of disturbed forests situations AGB can be expressed as a power-law function of canopy height h (AGB=a·hb) with an r2~60% for a spatial resolution of 20 m×20 m (0.04 ha, also called plot size). The regression is becoming significant better for the hectare wide analysis of the disturbed forest sites (r2=91%). There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2~60%) between AGB and the area fraction in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a comparison of the simulations with permanent sampling plot data from the same region and with the large-scale forest inventory in Lambir. We conclude that the spaceborne remote sensing techniques have the potential to quantify the carbon contained in the vegetation, although this calculation contains due to the heterogeneity of the forest landscape structural uncertainties which restrict future applications to spatial averages of about one hectare in size. The uncertainties in AGB for a given canopy height are here 20-40% (95% confidence level) corresponding to a standard deviation of less than ±10%. This uncertainty on the 1 ha-scale is much smaller than in the analysis of 0.04 ha-scale data. At this small scale (0.04 ha) AGB can only be calculated out of canopy height with an uncertainty which is at least of the magnitude of the signal itself due to the natural spatial heterogeneity of these forests.
NASA Astrophysics Data System (ADS)
Hirl, Regina; Schnyder, Hans; Auerswald, Karl; Vetter, Sylvia; Ostler, Ulrike; Schleip, Inga; Wingate, Lisa; Ogée, Jérôme
2015-04-01
The oxygen isotope composition (δ18O) of water in terrestrial ecosystems usually shows strong and dynamic variations within and between the various compartments. These variations originate from changes in the δ18O of water inputs (e.g. rain or water vapour) and from 18O fractionation phenomena in the soil-plant-atmosphere continuum. Investigations of δ18O in ecosystem water pools and of their main drivers can help us understand water relations at plant, canopy or ecosystem scale and interpret δ18O signals in plant and animal tissues as paleo-climate proxies. During the vegetation periods of 2006 to 2012, soil, leaf and stem water as well as atmospheric humidity, rain water and groundwater were sampled at bi-weekly intervals in a temperate humid pasture of the Grünschwaige Grassland Research Station near Munich (Germany). The sampling was performed following standardised MIBA (Moisture Isotopes in the Biosphere and Atmosphere) protocols. Leaf water samples were prepared from a mixture of co-dominant species in the plant community in order to obtain a canopy-scale leaf water δ18O signal. All samples were then analysed for their δ18O compositions. The measured δ18O of leaf, stem and soil water were then compared with the δ18O signatures simulated by the process-based isotope-enabled ecosystem model MuSICA (Multi-layer Simulator of the Interactions between a vegetation Canopy and the Atmosphere). MuSICA integrates current mechanistic understanding of processes in the soil-plant-atmosphere continuum. Hence, the comparison of modelled and measured data allows the identification of gaps in current knowledge and of questions to be tackled in the future. Soil and plant characteristics for model parameterisation were derived from investigations at the experimental site and supplemented by values from the literature. Eddy-covariance measurements of ecosystem CO2 (GPP, NEE) and energy (H, LE) fluxes and soil temperature data were used for model evaluation. The comparison of measured and predicted ecosystem fluxes showed that the model captured the main features of the diurnal cycles of GPP, NEE, LE and H, as well as the soil temperature dynamics. In this presentation I will present the main results of this model-data comparison, as well as results from a model sensitivity analysis performed over a range of soil, plant and meteorological parameters to evaluate the relative importance of each parameter on the δ18O signatures of the various water pools.
The Impacts of Pine Tree Die-Off on Snow Accumulation and Distribution at Plot to Catchment Scales
NASA Astrophysics Data System (ADS)
Biederman, J. A.; Harpold, A. A.; Gutmann, E. D.; Reed, D. E.; Gochis, D. J.; Brooks, P. D.
2011-12-01
Seasonal snow cover is a primary water source throughout much of Western North America, where insect-induced tree die-off is changing the montane landscape. Widespread mortality from insects or drought differs from well-studied cases of fire and logging in that tree mortality is not accompanied by other immediate biophysical changes. Much of the impacted landscape is a mosaic of stands of varying species, structure, management history and health overlain on complex terrain. To address the challenge of predicting the effects of forest die-off on snow water input, we quantified snow accumulation and ablation at scales ranging from individual trees, through forest stands, to nested small catchments. Our study sites in Northern Colorado and Southern Wyoming are dominated by lodgepole pine, but they include forest stands that are naturally developed, managed and clear-cut with varying mortality from Mountain Pine Beetle (MPB). Our record for winters 2010 and 2011 includes continuous meteorological data and snow depth in plots with varying MPB impact as well as stand- to catchment-scale snow surveys mid-winter and near maximal accumulation. At the plot scale, snow depth sensors in healthy stands recorded greater inputs during storms (21-42% of depth) and greater seasonal accumulation (15-40%) in canopy gaps than under trees, whereas no spatial effects of canopy geometry were observed in stands with heavy mortality. Similar patterns were observed in snow surveys near peak accumulation. At both impacted and thinned sites, spatial variability in snow depth was more closely associated with larger scale topography and changes in stand structure than with canopy cover. The role of aspect in ablation was observed to increase in impacted stands as both shading and wind attenuation decreased. Evidence of wind-controlled snow distribution was found 80-100 meters from exposed stand edges in impacted forest as compared to 10-15 meters in healthy forest. Integrating from the scale of stands to small catchments, maximal snow water equivalent (SWE) as a fraction of winter precipitation (P) ranged from 62 to 74%. Despite an expectation of decreased interception and increased snow accumulation with advanced mortality, surveys at stand and catchment scales found no significant increases in net snow water input between healthy and impacted forests. These observations suggest that the spatial scale of processes affecting net snow accumulation and ablation increase following die-off. Using data from our sites and other studies, this presentation will develop a predictive model of how interception, shading, and wind redistribution interact to control net snow water input following large-scale forest mortality.
NASA Astrophysics Data System (ADS)
Yan, Hao; Wang, Shao-Qiang; Yu, Kai-Liang; Wang, Bin; Yu, Qin; Bohrer, Gil; Billesbach, Dave; Bracho, Rosvel; Rahman, Faiz; Shugart, Herman H.
2017-10-01
Diffuse radiation can increase canopy light use efficiency (LUE). This creates the need to differentiate the effects of direct and diffuse radiation when simulating terrestrial gross primary production (GPP). Here, we present a novel GPP model, the diffuse-fraction-based two-leaf model (DTEC), which includes the leaf response to direct and diffuse radiation, and treats maximum LUE for shaded leaves (ɛmsh defined as a power function of the diffuse fraction (Df)) and sunlit leaves (ɛmsu defined as a constant) separately. An Amazonian rainforest site (KM67) was used to calibrate the model by simulating the linear relationship between monthly canopy LUE and Df. This showed a positive response of forest GPP to atmospheric diffuse radiation, and suggested that diffuse radiation was more limiting than global radiation and water availability for Amazon rainforest GPP on a monthly scale. Further evaluation at 20 independent AmeriFlux sites showed that the DTEC model, when driven by monthly meteorological data and MODIS leaf area index (LAI) products, explained 70% of the variability observed in monthly flux tower GPP. This exceeded the 51% accounted for by the MODIS 17A2 big-leaf GPP product. The DTEC model's explicit accounting for the impacts of diffuse radiation and soil water stress along with its parameterization for C4 and C3 plants was responsible for this difference. The evaluation of DTEC at Amazon rainforest sites demonstrated its potential to capture the unique seasonality of higher GPP during the diffuse radiation-dominated wet season. Our results highlight the importance of diffuse radiation in seasonal GPP simulation.
NASA Astrophysics Data System (ADS)
Kleinbaum, Ethan; Kumar, Ashwani; Pfeiffer, L. N.; West, K. W.; Csáthy, G. A.
2015-02-01
In the region of the second Landau level several theories predict fractional quantum Hall states with novel topological order. We report the opening of an energy gap at the filling factor ν =3 +1 /3 , firmly establishing the ground state as a fractional quantum Hall state. This and other odd-denominator states unexpectedly break particle-hole symmetry. Specifically, we find that the relative magnitudes of the energy gaps of the ν =3 +1 /3 and 3 +1 /5 states from the upper spin branch are reversed when compared to the ν =2 +1 /3 and 2 +1 /5 counterpart states in the lower spin branch. Our findings raise the possibility that at least one of the former states is of an unusual topological order.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulyshen, M., D.; Hanula, J., L.; Horn, S.
2004-05-13
For. Ecol. and Mgt. 199:259-272. Malaise traps were used to sample beetles in artificial canopy gaps of different size (0.13 ha, 0.26 ha, and0.50 ha) and age in a South Carolina bottomland hardwood forest. Traps were placed at the center, edge, and in the surrounding forest of each gap. Young gaps (ý 1 year) had large amounts of coarse woody debris compared to the surrounding forest, while older gaps (ý 6 years) had virtually none. The total abundance and diversity of wood-dwelling beetles (Buprestidae, Cerambycidae, Brentidae, Bostrichidae, and Curculionidae (Scolytinae and Platypodinae)) was higher in the center of young gapsmore » than in the center of old gaps. The abundance was higher in the center of young gaps than in the surrounding forest, while the forest surrounding old gaps and the edge of old gaps had a higher abundance and diversity of wood-dwelling beetles than did the center of old gaps. There was no difference in wood-dwelling beetle abundance between gaps of different size, but diversity was lower in 0.13 ha old gaps than in 0.26 ha or 0.50 ha old gaps. We suspect that gap size has more of an effect on woodborer abundance than indicated here because malaise traps sample a limited area. The predaceous beetle family Cleridae showed a very similar trend to that of the woodborers. Coarse woody debris is an important resource for many organisms, and our results lend further support to forest management practices that preserve coarse woody debris created during timber removal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cromer R.B.; Lanham J.D.; Hanlin H.H.
2002-05-01
Herpetofaunal Response to Gap and Skidder-Rut Wetland Creation in a Southern Bottomland Hardwood Forest. Cromer R.B., J.D.Lanham, and H.H. Hanlin.Forest Science, 1 May 2002, vol. 48, iss. 2, pp. 407-413(7) We compared herpetofaunal communities in recently harvested gaps, skidder trails, and unharvested depressional wetlands to assess the effects of group-selection harvesting and skidder traffic on reptiles and amphibians in a southern bottomland hardwood forest. From January 1, 1997 to December 31, 1998 we captured 24,292 individuals representing 55 species of reptiles and amphibians at the Savannah River Site in Barnwell County, South Carolina. Forty-two species (n = 6,702 individuals) weremore » captured in gaps, 43 species (n = 8,863 individuals) were captured along skid trails between gaps and 43 species (n = 8,727 individuals) were captured in bottomland depressions over the 2 yr period. Three vegetation variables and six environmental variables were correlated with herpetofaunal abundance. Salamander abundance, especially for species in the genus Ambystoma, was negatively associated with areas with less canopy cover and pronounced rutting (i.e., gaps and skidder trails). Alternatively, treefrog (Hylidae) abundance was positively associated with gap creation. Results from this study suggest that group selection harvests and skidder rutting may alter the herpetofaunal species composition in southern bottomland hardwoods by increasing habitat suitability for some species while diminishing it for others.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jena, Puru; Kandalam, Anil K.; Christian, Theresa M.
Gallium phosphide bismide (GaP1-xBix) epilayers with bismuth fractions from 0.9% to 3.2%, as calculated from lattice parameter measurements, were studied with Rutherford backscattering spectrometry (RBS) to directly measure bismuth incorporation. The total bismuth fractions found by RBS were higher than expected from the lattice parameter calculations. Furthermore, in one analyzed sample grown by molecular beam epitaxy at 300 degrees C, 55% of incorporated bismuth was found to occupy interstitial sites. We discuss implications of this high interstitial incorporation fraction and its possible relationship to x-ray diffraction and photoluminescence measurements of GaP0.99Bi0.01.
NASA Astrophysics Data System (ADS)
Repellin, Cécile; Cook, Ashley M.; Neupert, Titus; Regnault, Nicolas
2018-03-01
Fractional quantum Hall-superconductor heterostructures may provide a platform towards non-abelian topological modes beyond Majoranas. However their quantitative theoretical study remains extremely challenging. We propose and implement a numerical setup for studying edge states of fractional quantum Hall droplets with a superconducting instability. The fully gapped edges carry a topological degree of freedom that can encode quantum information protected against local perturbations. We simulate such a system numerically using exact diagonalization by restricting the calculation to the quasihole-subspace of a (time-reversal symmetric) bilayer fractional quantum Hall system of Laughlin ν = 1/3 states. We show that the edge ground states are permuted by spin-dependent flux insertion and demonstrate their fractional 6π Josephson effect, evidencing their topological nature and the Cooper pairing of fractionalized quasiparticles. The versatility and efficiency of our setup make it a well suited method to tackle wider questions of edge phases and phase transitions in fractional quantum Hall systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, G. Y.; Gao, X. -L.; Bishop, J. E.
Here, a new model for determining band gaps for elastic wave propagation in a periodic composite beam structure is developed using a non-classical Bernoulli–Euler beam model that incorporates the microstructure, surface energy and rotational inertia effects. The Bloch theorem and transfer matrix method for periodic structures are employed in the formulation. The new model reduces to the classical elasticity-based model when both the microstructure and surface energy effects are not considered. The band gaps predicted by the new model depend on the microstructure and surface elasticity of each constituent material, the unit cell size, the rotational inertia, and the volumemore » fraction. To quantitatively illustrate the effects of these factors, a parametric study is conducted. The numerical results reveal that the band gap predicted by the current non-classical model is always larger than that predicted by the classical model when the beam thickness is very small, but the difference is diminishing as the thickness becomes large. Also, it is found that the first frequency for producing the band gap and the band gap size decrease with the increase of the unit cell length according to both the current and classical models. In addition, it is observed that the effect of the rotational inertia is larger when the exciting frequency is higher and the unit cell length is smaller. Furthermore, it is seen that the volume fraction has a significant effect on the band gap size, and large band gaps can be obtained by tailoring the volume fraction and material parameters.« less
Zhang, G. Y.; Gao, X. -L.; Bishop, J. E.; ...
2017-11-20
Here, a new model for determining band gaps for elastic wave propagation in a periodic composite beam structure is developed using a non-classical Bernoulli–Euler beam model that incorporates the microstructure, surface energy and rotational inertia effects. The Bloch theorem and transfer matrix method for periodic structures are employed in the formulation. The new model reduces to the classical elasticity-based model when both the microstructure and surface energy effects are not considered. The band gaps predicted by the new model depend on the microstructure and surface elasticity of each constituent material, the unit cell size, the rotational inertia, and the volumemore » fraction. To quantitatively illustrate the effects of these factors, a parametric study is conducted. The numerical results reveal that the band gap predicted by the current non-classical model is always larger than that predicted by the classical model when the beam thickness is very small, but the difference is diminishing as the thickness becomes large. Also, it is found that the first frequency for producing the band gap and the band gap size decrease with the increase of the unit cell length according to both the current and classical models. In addition, it is observed that the effect of the rotational inertia is larger when the exciting frequency is higher and the unit cell length is smaller. Furthermore, it is seen that the volume fraction has a significant effect on the band gap size, and large band gaps can be obtained by tailoring the volume fraction and material parameters.« less
NASA Technical Reports Server (NTRS)
Chopping, Mark; North, Malcolm; Chen, Jiquan; Schaaf, Crystal B.; Blair, J. Bryan; Martonchik, John V.; Bull, Michael A.
2012-01-01
This study addresses the retrieval of spatially contiguous canopy cover and height estimates in southwestern USforests via inversion of a geometric-optical (GO) model against surface bidirectional reflectance factor (BRF) estimates from the Multi-angle Imaging SpectroRadiometer (MISR). Model inversion can provide such maps if good estimates of the background bidirectional reflectance distribution function (BRDF) are available. The study area is in the Sierra National Forest in the Sierra Nevada of California. Tree number density, mean crown radius, and fractional cover reference estimates were obtained via analysis of QuickBird 0.6 m spatial resolution panchromatic imagery usingthe CANopy Analysis with Panchromatic Imagery (CANAPI) algorithm, while RH50, RH75 and RH100 (50, 75, and 100 energy return) height data were obtained from the NASA Laser Vegetation Imaging Sensor (LVIS), a full waveform light detection and ranging (lidar) instrument. These canopy parameters were used to drive a modified version of the simple GO model (SGM), accurately reproducing patterns ofMISR 672 nm band surface reflectance (mean RMSE 0.011, mean R2 0.82, N 1048). Cover and height maps were obtained through model inversion against MISR 672 nm reflectance estimates on a 250 m grid.The free parameters were tree number density and mean crown radius. RMSE values with respect to reference data for the cover and height retrievals were 0.05 and 6.65 m, respectively, with of 0.54 and 0.49. MISR can thus provide maps of forest cover and height in areas of topographic variation although refinements are required to improve retrieval precision.
Effect of wakes on land-atmosphere fluxes
NASA Astrophysics Data System (ADS)
Markfort, C. D.; Zhang, W.; Porte-Agel, F.; Stefan, H. G.
2011-12-01
Wakes affect land-atmosphere fluxes of momentum and scalars, including water vapor and trace gases. Canopies and bluff bodies, including forests, buildings and topography, cause boundary layer flow separation, significantly extend flow recovery, and lead to a break down of standard Monin-Obukhov similarity relationships in the atmospheric boundary layer (ABL). Wakes generated by these land surface features persist for significant distances affecting a large fraction of the Earth's terrestrial surface. This effect is currently not accounted for in land-atmosphere modeling, and little is known about how heterogeneity of wake-generating features effect land surface fluxes. Additionally flux measurements, made in wake-affected regions, do not satisfy the homogeneous requirements for the standard eddy correlation (EC) method. This phenomenon often referred to as sheltering has been shown to affect momentum and kinetic energy fluxes into lakes from the atmosphere (Markfort et al. 2010). This presentation will highlight results from controlled wind tunnel experiments of neutral and thermally stratified boundary layers, using PIV and custom x-wire/cold-wire anemometry, designed to understand how the physical structure of upstream bluff bodies or porous canopies and thermal stability affect the separation zone, boundary layer recovery and surface fluxes. We also compare these results to field measurements taken with a Doppler LiDAR in the wake of a canopy and a building. We have found that there is a nonlinear relationship between porosity and flow separation behind a canopy to clearing transition. Results will provide the basis for new parameterizations to account for wake effects on land-atmosphere fluxes and corrections for EC measurements over open fields, lakes, and wetlands.
Interaction between fractional Josephson vortices in multi-gap superconductor tunnel junctions
NASA Astrophysics Data System (ADS)
Kim, Ju H.
In a long Josephson junction (LJJ) with two-band superconductors, fractionalization of Josephson vortices (fluxons) can occur in the broken time reversal symmetry state when spatial phase textures (i-solitons) are excited. Excitation of i-solitons in each superconductor layer of the junction, arising due to the presence of two condensates and the interband Josephson effect, leads to spatial variation of the critical current density between the superconductor layers. Similar to the situation in a YBa2 Cu3O7 - x superconductor film grain boundary, this spatial dependence of the crtitical current density can self-generate magnetic flux in the insulator layer, resulting in fractional fluxons with large and small fraction of flux quantum. Similar to fluxons in one-band superconductor LJJ, these fractional fluxons are found to interact with each other. The interaction between large and small fractional fluxons determines the size of a fluxon which includes two (one large and one small) fractional fluxons. We discuss the nature of interaction between fractional fluxons and suggest that i-soliton excitations in multi-gap superconductor LJJs may be probed by using magnetic flux measurements.
NASA Astrophysics Data System (ADS)
Feret, J.; Asner, G. P.
2013-12-01
Mapping regional canopy diversity will greatly advance our understanding as well as the conservation of tropical rainforests. Changes in species composition across space and time are particularly important to understand the influence of climate, human activity and environmental factors on these ecosystems, but to date such monitoring is extremely challenging and is facing a scale gap between small-scale, highly detailed field studies and large-scale, low-resolution satellite observations. Advances were recently made in the field of spectroscopic imagery for the estimation of canopy alpha-diversity, and an original approach based on the segmentation of the spectral space proved its ability to estimate Shannon diversity index with unprecedented accuracy. We adapted this method in order to estimate spectral dissimilarity across landscape as a proxy for changes in species composition. We applied this approach and mapped species composition over four sites located in lowland rainforest of Peruvian Amazon. This study was based on spectroscopic imagery acquired using the Carnegie Airborne Observatory (CAO) Airborne Taxonomic Mapping System (AToMS), operating a unique sensor combining the fine spectral and spatial resolution required for such task. We obtained accurate estimation of Bray-Curtis distance between pairs of plots, which is the most commonly used metric to estimate dissimilarity in species composition (n=497 pairs, r=0.63). The maps of species composition were then compared to topo-hydrographic properties. Our results indicated a strong shift in species composition and community diversity between floodplain and terra firme terrain conditions as well as a significantly higher diversity of species communities within Amazonian floodplains. These results pave the way for global mapping of tropical canopy diversity at fine geographic resolution.
NASA Astrophysics Data System (ADS)
Kobayashi, H.; Kato, T.; Saitoh, Y.; Noda, H.; Kikosaka, K.; Ichii, K.; Nasahara, K. N.
2016-12-01
Satellite-derived sun-induced chlorophyll fluorescence (SIF) is expected to provides a pathway to link leaf level photosynthesis to global GPP. Existing studies have stressed how well the satellite-derived SIF is correlated with the eddy covariance and/or modeled GPPs. There are some challenges in SIF interpretation because the satellite-derived SIF is a mixture of fluorescence emission from sunlit and shaded leaves and multiple scatterings of fluorescence within plant canopies. In this presentation, we show observation and modeling results around Japan and discuss how the integrative observing and modeling approach potentially overcomes the gaps in-between satellite SIF and photosynthesis reaction within leaves. We have analyzed ground-based SIF monitoring systems "Phenological Eye Network (PEN)". PEN covers several eddy flux sites in Japan and is equipped with spectroradiometer (MS-700) since 2003 (at an earliest site). The computed seasonal SIF variations in the different ecosystems show environmental dependency of SIF and GPP. Another ground-based system we are now developing is the vegetation lidar system named LIFS (Laser-Induced Fluorescence Spectrum), which can offer eco-physiological information of plants. LIFS is consisted of a pulsed UV (355 nm) laser, a telescope, a spectrometer/filter, and a gated image-intensified CCD detector. This system has been using to remotely monitor tree growth status, chlorophyll contents in leaves and so on. The physical and physiological theories are necessary for understanding the observed SIF under various environmental conditions. We have been developing leaf to plant canopy scale photosynthesis and SIF models as precise as possible. The developed model has been used to understand how the leaf-level SIF emission can be related to the canopy scale SIF, which enables to investigate the top of canopy SIF observed from ground-based and satellite-derived SIF measurements.
NASA Astrophysics Data System (ADS)
Ueyama, Masahito; Yoshikawa, Kota; Takagi, Kentaro
2018-07-01
Upland forests are thought to be methane (CH4) sinks due to oxidation by methanotrophs in aerobic soils. However, CH4 budget for upland forests are not well quantified at the ecosystem scale, when possible CH4 sources, such as small wet areas, exists in the ecosystem. Here, we quantified CH4 fluxes in a cool-temperate larch plantation based on four-year continuous measurements using the hyperbolic relaxed eddy accumulation (HREA) method and dynamic closed chambers with a laser-based analyzer. After filling data gaps for half-hourly data using machine-learning-based regressions, we found that the forest acted as a net CH4 source at the canopy scale: 30 ± 11 mg CH4 m-2 yr-1 in 2014, 56 ± 8 mg CH4 m-2 yr-1 in 2015, 154 ± 5 mg CH4 m-2 yr-1 in 2016, and 132 ± 6 mg CH4 m-2 yr-1 in 2017. Hotspot emissions from the edge of the pond could strongly contribute to the canopy-scale emissions. The magnitude of the hotspot emissions was 10-100 times greater than the order of the canopy-scale and chamber-based CH4 fluxes at the dry soils. The high temperatures with wet conditions stimulated the hotspot emissions, and thus induced canopy-scale CH4 emissions in the summer. Understanding and modeling the dynamics of hotspot emissions are important for quantifying CH4 budgets of upland forests. Micrometeorological measurements at various forests are required for revisiting CH4 budget of upland forests.
NASA Astrophysics Data System (ADS)
Campbell, J. L.; Rustad, L.; Driscoll, C. T.; Fahey, T.; Garlick, S.; Groffman, P.; Schaberg, P. G.
2016-12-01
It is increasingly evident that human-induced climate change is altering the prevalence and severity of extreme weather events. Ice storms are an example of a rare and typically localized extreme weather event that is difficult to predict and has impacts that are poorly understood. We used long-term data and a field manipulation experiment to evaluate how ice storms alter the structure, function, and composition of forest ecosystems. Plots established after a major ice storm in the Northeast in 1998 were re-sampled to evaluate longer-term (17 yr) responses of tree health, productivity, and species composition. Results indicate, that despite changes in herbaceous vegetation in the years immediately after the ice storm, the forest canopy recovered, albeit with some changes in composition, most notably a release of American Beech. An ice storm field manipulation experiment was used to evaluate mechanistic understanding of short term ecological responses. Water from a stream was sprayed above the forest canopy when air temperatures were below freezing, which was effective in simulating a natural ice storm. The experimental design consisted of three levels of ice thickness treatment with two replicates per treatment. The plots with the two more severe icing treatments experienced significant damage to the forest canopy, creating gaps. These plots also had large inputs of fine and coarse woody debris to the forest floor. The exposure to light and presence of brush piles in the more heavily damaged plots resulted in warming with increased spatial variability of soil temperature. Preliminary results from the early growing season have shown no significant changes in soil respiration or soil solution losses of nutrients despite significant forest canopy damage. Further monitoring will determine whether these trends continue in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Ran; Dennison, Philip E.; Zhao, Feng
Defoliation by herbivorous insects is a widespread forest disturbance driver, affecting global forest health and ecosystem dynamics. Additionally, compared with time- and labor-intensive field surveys, remote sensing provides the only realistic approach to mapping canopy defoliation by herbivorous insects over large spatial and temporal scales. However, the spectral and structural signatures of defoliation by insects at the individual tree level have not been well studied. Additionally, the predictive power of spectral and structural metrics for mapping canopy defoliation has seldom been compared. These critical knowledge gaps prevent us from consistently detecting and mapping canopy defoliation by herbivorous insects across multiplemore » scales. During the peak of a gypsy moth outbreak in Long Island, New York in summer 2016, we leveraged bi-temporal airborne imaging spectroscopy (IS, i.e., hyperspectral imaging) and LiDAR measurements at 1m spatial resolution to explore the spectral and structural signatures of canopy defoliation in a mixed oak-pine forest. We determined that red edge and near-infrared spectral regions within the IS data were most sensitive to crown-scale defoliation severity. LiDAR measurements including B70 (i.e., 70th bincentile height), intensity skewness, and kurtosis were effectively able to detect structural changes caused by herbivorous insects. In addition to canopy leaf loss, increased exposure of understory and non-photosynthetic materials contributed to the detected spectral and structural signatures. Comparing the ability of individual sensors to map canopy defoliation, the LiDAR-only Ordinary Least-Square (OLS) model performed better than the IS-only model (Adj. R-squared = 0.77, RMSE = 15.37% vs. Adj. R- squared = 0.63, RMSE = 19.11%). The IS+LiDAR model improved on performance of the individual sensors (Adj. R-squared = 0.81, RMSE = 14.46%). Our study improves our understanding of spectral and structural signatures of defoliation by herbivorous insects and presents a novel approach for mapping insect defoliation at the individual tree level. Furthermore, with the current and next generation of spaceborne sensors (e.g., WorldView-3, Landsat, Sentinel-2, HyspIRI, and GEDI), higher accuracy and frequent monitoring of insect defoliation may become more feasible across a range of spatial scales, which are critical for ecological research and management of forest resources including the economic consequences of forest insect infestations (e.g., reduced growth and increased mortality), as well as for informing and testing of carbon cycle models.« less
Meng, Ran; Dennison, Philip E.; Zhao, Feng; ...
2018-06-19
Defoliation by herbivorous insects is a widespread forest disturbance driver, affecting global forest health and ecosystem dynamics. Additionally, compared with time- and labor-intensive field surveys, remote sensing provides the only realistic approach to mapping canopy defoliation by herbivorous insects over large spatial and temporal scales. However, the spectral and structural signatures of defoliation by insects at the individual tree level have not been well studied. Additionally, the predictive power of spectral and structural metrics for mapping canopy defoliation has seldom been compared. These critical knowledge gaps prevent us from consistently detecting and mapping canopy defoliation by herbivorous insects across multiplemore » scales. During the peak of a gypsy moth outbreak in Long Island, New York in summer 2016, we leveraged bi-temporal airborne imaging spectroscopy (IS, i.e., hyperspectral imaging) and LiDAR measurements at 1m spatial resolution to explore the spectral and structural signatures of canopy defoliation in a mixed oak-pine forest. We determined that red edge and near-infrared spectral regions within the IS data were most sensitive to crown-scale defoliation severity. LiDAR measurements including B70 (i.e., 70th bincentile height), intensity skewness, and kurtosis were effectively able to detect structural changes caused by herbivorous insects. In addition to canopy leaf loss, increased exposure of understory and non-photosynthetic materials contributed to the detected spectral and structural signatures. Comparing the ability of individual sensors to map canopy defoliation, the LiDAR-only Ordinary Least-Square (OLS) model performed better than the IS-only model (Adj. R-squared = 0.77, RMSE = 15.37% vs. Adj. R- squared = 0.63, RMSE = 19.11%). The IS+LiDAR model improved on performance of the individual sensors (Adj. R-squared = 0.81, RMSE = 14.46%). Our study improves our understanding of spectral and structural signatures of defoliation by herbivorous insects and presents a novel approach for mapping insect defoliation at the individual tree level. Furthermore, with the current and next generation of spaceborne sensors (e.g., WorldView-3, Landsat, Sentinel-2, HyspIRI, and GEDI), higher accuracy and frequent monitoring of insect defoliation may become more feasible across a range of spatial scales, which are critical for ecological research and management of forest resources including the economic consequences of forest insect infestations (e.g., reduced growth and increased mortality), as well as for informing and testing of carbon cycle models.« less
NASA Astrophysics Data System (ADS)
Calvet, Jean-Christophe; Carrer, Dominique; Roujean, Jean-Louis; Lafont, Sébastien
2013-04-01
The ISBA-A-gs land surface model is a component of the SURFEX modeling platform developed by Meteo-France, used for research and operational applications in meteorology, hydrology, and climate modeling. ISBA-A-gs simulates hourly water and CO2 fluxes together with soil moisture. An option of the model permits the simulation of the vegetation biomass and of the leaf area index (LAI). The simulated photosynthesis depends on atmospheric CO2 concentration, air temperature and humidity, soil moisture, radiant solar energy, the photosynthetic capacity of the leaves and on factors that condition the distribution of solar radiation over the leaves. In the original version of the model (Jacobs et al. (Agr. Forest Meteorol., 1996), Calvet et al. (Agr. Forest Meteorol., 1998)), the radiative transfer scheme within the canopy was implemented according to a self shading approach. The incident fluxes at the top of the canopy go through a multi-layer vegetation cover. Then, the attenuated flux in the PAR wavelength domain of each layer is used by the photosynthesis model to calculate the leaf net assimilation of CO2 (An). The leaf-level An values are then integrated at the canopy level. In this study, an upgraded version of the radiative transfer model is implemented. An assessment of the vegetation transmittance functions and of various canopy light-response curves is made. The fluxes produced by the new version of ISBA-A-gs are evaluated using data from a number of FLUXNET forest sites. The new model presents systematically better scores than the previous version. Moreover, ISBA-A-gs is now able to simulate prognostic values of the fraction of absorbed PAR (FAPAR). As FAPAR can be observed from space, this new capability permits the validation of the model simulations at a global scale, and the integration of measured FAPAR values in the model through data assimilation techniques.
Fractional Josephson vortices in two-gap superconductor long Josephson junctions
NASA Astrophysics Data System (ADS)
Kim, Ju
2014-03-01
We investigated the phase dynamics of long Josephson junctions (LJJ) with two-gap superconductors in the broken time reversal symmetry state. In this LJJ, spatial phase textures (i-solitons) can be excited due to the presence of two condensates and the interband Joesphson effect between them. The presence of a spatial phase texture in each superconductor layer leads to a spatial variation of the critical current density between the superconductor layers. We find that this spatial dependence of the crtitical current density can self-generate magnetic flux in the insulator layer, resulting in Josephson vortices with fractional flux quanta. Similar to the situation in a YBa2 Cu3O7 - x superconductor film grain boundary, the fractionalization of a Josephson vortex arises as a response to either periodic or random excitation of i-solitions. This suggests that magnetic flux measurements may be used to probe i-soliton excitations in multi-gap superconductor LJJs.
Ogutu, Booker O; Dash, Jadunandan; Dawson, Terence P
2013-09-01
This article develops a new carbon exchange diagnostic model [i.e. Southampton CARbon Flux (SCARF) model] for estimating daily gross primary productivity (GPP). The model exploits the maximum quantum yields of two key photosynthetic pathways (i.e. C3 and C4 ) to estimate the conversion of absorbed photosynthetically active radiation into GPP. Furthermore, this is the first model to use only the fraction of photosynthetically active radiation absorbed by photosynthetic elements of the canopy (i.e. FAPARps ) rather than total canopy, to predict GPP. The GPP predicted by the SCARF model was comparable to in situ GPP measurements (R(2) > 0.7) in most of the evaluated biomes. Overall, the SCARF model predicted high GPP in regions dominated by forests and croplands, and low GPP in shrublands and dry-grasslands across USA and Europe. The spatial distribution of GPP from the SCARF model over Europe and conterminous USA was comparable to those from the MOD17 GPP product except in regions dominated by croplands. The SCARF model GPP predictions were positively correlated (R(2) > 0.5) to climatic and biophysical input variables indicating its sensitivity to factors controlling vegetation productivity. The new model has three advantages, first, it prescribes only two quantum yield terms rather than species specific light use efficiency terms; second, it uses only the fraction of PAR absorbed by photosynthetic elements of the canopy (FAPARps ) hence capturing the actual PAR used in photosynthesis; and third, it does not need a detailed land cover map that is a major source of uncertainty in most remote sensing based GPP models. The Sentinel satellites planned for launch in 2014 by the European Space Agency have adequate spectral channels to derive FAPARps at relatively high spatial resolution (20 m). This provides a unique opportunity to produce global GPP operationally using the Southampton CARbon Flux (SCARF) model at high spatial resolution. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Chen, J. M.; He, L.; Chou, S.; Ju, W.; Zhang, Y.; Joiner, J.; Liu, J.; Mo, G.
2017-12-01
Sun-induced chlorophyll fluorescence (SIF) measured from plant canopies originates mostly from sunlit leaves. Observations of SIF by satellite sensors, such as GOME-2 and GOSAT, are often made over large view zenith angle ranges, causing large changes in the viewed sunlit leaf fraction across the scanning swath. Although observations made by OCO-2 are near nadir, the observed sunlit leaf fraction could still vary greatly due to changes in the solar zenith angle with latitude and time of overpass. To demonstrate the importance of considering the satellite-target-view geometry in using SIF for assessing vegetation productivity, we conducted multi-angle measurements of SIF using a hyperspectral sensor mounted on an automated rotating system over a rice field near Nanjing, China. A method is developed to separate SIF measurements at each angle into sunlit and shaded leaf components, and an angularly normalized canopy-level SIF is obtained as the weighted sum of sunlit and shaded SIF. This normalized SIF is shown to be a much better proxy of GPP of the rice field measured by an eddy covariance system than the unnormalized SIF observations. The same normalization scheme is also applied to the far-red GOME-2 SIF observations on sunny days, and we found that the normalized SIF is better correlated with model-simulated GPP than the original SIF observations. The coefficient of determination (R2) is improved by 0.07±0.04 on global average using the normalization scheme. The most significant improvement in R2 by 0.09±0.04 is found in deciduous broadleaf forests, where the observed sunlit leaf fraction is highly sensitive to solar zenith angle.
Seed and vegetative production of shrubs and growth of understory conifer regeneration
Wender, B.; Harrington, C.; Tappeiner, J. C.
2004-01-01
We observed flower and fruit production for nine understory shrub species in western Washington and Oregon and examined the relationships between shrub reproductive output and plant size, plant age, site factors, and overstory density to determine the factors that control flowering or fruiting in understory shrubs. In Washington, 50 or more shrubs or microplots (for rhizomatous species) were sampled for each of eight species. The variables examined were more useful for explaining abundance of flowers or fruit on shrubs than they were for explaining the probability that a shrub would produce flowers or fruit. Plant size was consistently the most useful predictor of flower/fruit abundance in all species; plant age was also a good predictor of abundance and was strongly correlated with plant size. Site variables (e.g., slope) and overstory competition variables (e.g., presence/absence of a canopy gap) also helped explain flower/fruit abundance for some species. At two Oregon sites, the responses of five species to four levels of thinning were observed for 2-4 yr (15 shrubs or microplots per treatment per year). Thinning increased the probability and abundance of flowering/fruiting for two species, had no effect on one species, and responses for two other species were positive but inconsistent between sites or from year to year. We believe reducing overstory density or creating canopy gaps may be useful tools for enhancing shrub size and vigor, thus, increasing the probability and abundance of fruiting in some understory shrub species.
Flower and fruit production of understory shrubs in western Washington and Oregon
Wender, B.; Harrington, C.; Tappeiner, J. C.
2004-01-01
We observed flower and fruit production for nine understory shrub species in western Washington and Oregon and examined the relationships between shrub reproductive output and plant size, plant age, site factors, and overstory density to determine the factors that control flowering or fruiting in understory shrubs. In Washington, 50 or more shrubs or microplots (for rhizomatous species) were sampled for each of eight species. The variables examined were more useful for explaining abundance of flowers or fruit on shrubs than they were for explaining the probability that a shrub would produce flowers or fruit. Plant size was consistently the most useful predictor of flower/fruit abundance in all species; plant age was also a good predictor of abundance and was strongly correlated with plant size. Site variables (e.g., slope) and overstory competition variables (e.g., presence/absence of a canopy gap) also helped explain flower/fruit abundance for some species. At two Oregon sites, the responses of five species to four levels of thinning were observed for 2-4 yr (15 shrubs or microplots per treatment per year). Thinning increased the probability and abundance of flowering/fruiting for two species, had no effect on one species, and responses for two other species were positive but inconsistent between sites or from year to year. We believe reducing overstory density or creating canopy gaps may be useful tools for enhancing shrub size and vigor, thus, increasing the probability and abundance of fruiting in some understory shrub species.
Volpe, Noelia L.; Robinson, W. Douglas; Frey, Sarah J. K.; Hadley, Adam S.; Betts, Matthew G.
2016-01-01
Habitat loss and fragmentation influence species distributions and therefore ecological processes that depend upon them. Pollination may be particularly susceptible to fragmentation, as it depends on frequent pollinator movement. Unfortunately, most pollinators are too small to track efficiently which has precluded testing the hypothesis that habitat fragmentation reduces or eliminates pollen flow by disrupting pollinator movement. We used radio-telemetry to examine space use of the green hermit hummingbird (Phaethornis guy), an important ‘hub’ pollinator of understory flowering plants across substantial portions of the neotropics and the primary pollinator of a keystone plant which shows reduced pollination success in fragmented landscapes. We found that green hermits strongly avoided crossing large stretches of non-forested matrix and preferred to move along stream corridors. Forest gaps as small as 50 m diminished the odds of movement by 50%. Green hermits occurred almost exclusively inside the forest, with the odds of occurrence being 8 times higher at points with >95% canopy cover compared with points having <5% canopy cover. Nevertheless, surprisingly. the species occurred in fragmented landscapes with low amounts of forest (~30% within a 2 km radius). Our results indicate that although green hermits are present even in landscapes with low amounts of tropical forest, movement within these landscapes ends up strongly constrained by forest gaps. Restricted movement of pollinators may be an underappreciated mechanism for widespread declines in pollination and plant fitness in fragmented landscapes, even when in the presence of appropriate pollinators. PMID:27941984
Formulation of Subgrid Variability and Boundary-Layer Cloud Cover in Large-Scale Models
1999-02-28
related to burned and unburned landscapes, saline and non-saline soils, and irrigated and nonirrigated crops. Escuela de Agrono’mia Universidad de Talca...Piso 2 Departamento de Ciencias de la Atmosfera 1428 Capital Federal ARGENTINA Juan Carlos TORRES, torres@cima.uba.ar Coupled land-surface...evaporation fraction, and qc,sat is the canopy saturation specific humidity, a function of Tc. Using (21) - (22) we then de - termine qc qc = qca
Wang, Yan; Luo, Chunling; Wang, Shaorui; Liu, Junwen; Pan, Suhong; Li, Jun; Ming, Lili; Zhang, Gan; Li, Xiangdong
2015-01-06
Rice, one of the most widely cultivated crops, has received great attention in contaminant uptake from soil and air, especially for the special approaches used for its cultivation. The dry-wet alternation method can influence the air-soil partitioning of semivolatile organic compounds (SVOCs) in the paddy ecosystem. Here, we modified a fugacity sampler to investigate the air-surface in situ partitioning of ubiquitous polycyclic aromatic hydrocarbons (PAHs) at different growth stages in a suburban paddy field in South China. The canopy of rice can form a closed space, which acts like a chamber that can force the air under the canopy to equilibrate with the field surface. When we compared the fugacities calculated using a fugacity model of the partition coefficients to the measured fugacities, we observed similar trends in the variation, but significantly different values between different growing stages, especially during the flooding stages. However, the measured and calculated fugacity fractions were comparable when uncertainties in our calculations were considered, with the exception of the high molecular weight (HMW) PAHs. The measured fugacity fractions suggested that the HMW PAHs were also closed to equilibrium between the paddy field and atmosphere. The modified fugacity sampler provided a novel way of accurately determining the in situ air-soil partitioning of SVOCs in a wet paddy field.
NASA Technical Reports Server (NTRS)
Franklin, Janet; Duncan, Jeff; Huete, Alfredo R.; vanLeeuwen, W. J. D.; Li, Xiaowen; Begue, Agnes
1994-01-01
To use optical remote sensing to monitor land surface-climate interactions over large areas, algorithms must be developed to relate multispectral measurements to key variables controlling the exchange of matter (water, carbon dioxide) and energy between the land surface and the atmosphere. The proportion of the ground covered by vegetation and the interception of photosynthetically active radiation (PAR) by vegetation are examples of two variables related to evapotranspiration and primary production, respectively. An areal-proportion model of the multispectral reflectance of shrub savanna, composed of scattered shrubs with a grass, forb or soil understory, predicted the reflectance of two 0.5 km(exp 2) sites as the area-weighted average of the shrub and understory or 'background' reflectances. Although the shaded crown and shaded background have darker reflectances, ignoring them in the area-weighted model is not serious when shrub cover is low and solar zenith angle is small. A submodel predicted the reflectance of the shrub crown as a function of the foliage reflectance and amount of plant material within the crown, and the background reflectance scattered or transmitted through canopy gaps (referred to as a soil-plant 'spectral interaction' term). One may be able to combine these two models to estimate both the fraction of vegetation cover and interception of PAR by green vegetation in a shrub savanna.
NASA Astrophysics Data System (ADS)
Liu, J.; Wang, T.; Skidmore, A. K.; Heurich, M.
2016-12-01
The plant area index (PAI) profile is a quantitative description of how plants (including leaves and woody materials) are distributed vertically, as a function of height. PAI profiles can be used for many applications including biomass estimation, radiative transfer modelling, fire fuel modelling and wildlife habitat assessment. With airborne laser scanning (ALS), forest structure underneath the canopy surface can be detected. PAI profiles can be calculated through estimates of the vertically resolved gap fraction from ALS data. In this process, a gridding or aggregation step is often involved. Most current research neglects local topographic change, and utilizes a height normalization algorithm to achieve a local or relative height, implying a flat local terrain assumption inside the grid or aggregation area. However, in mountainous forest, this assumption is often not valid. Therefore, in this research, the local topographic effect on the PAI profile calculation was studied. Small footprint discrete multi-return ALS data was acquired over the Bavarian Forest National Park under leaf-off and leaf-on conditions. Ground truth data, including tree height, canopy cover, DBH as well as digital hemispherical photos, were collected in 30 plots. These plots covered a wide range of forest structure, plant species, local topography condition and understory coverage. PAI profiles were calculated both with and without height normalization. The difference between height normalized and non-normalized profiles were evaluated with the coefficient of variation of root mean squared difference (CV-RMSD). The derived metric PAI values from PAI profiles were also evaluated with ground truth PAI from the hemispherical photos. Results showed that change in local topography had significant effects on the PAI profile. The CV-RMSD between PAI profile results calculated with or without height normalization ranged from 24.5% to 163.9%. Height normalization (neglecting topography change) can lead to offsets in the height of plant material that could potentially cause large errors and uncertainty when used in applications utilizing absolute height such as radiative transfer modeling and fire fuel modelling. This research demonstrates that when calculating the PAI profile from ALS, local topography has to be taken into account.
Seasonal and interannual variability of canopy transpiration of a hedgerow in southern England.
Herbst, Mathias; Roberts, John M; Rosier, Paul T W; Gowing, David J
2007-03-01
Transpiration from a hawthorn (Crataegus monogyna L.) dominated hedgerow in southern England was measured continuously over two growing seasons by the sap flow technique. Accompanying measurements of structural parameters, microclimate and leaf stomatal and boundary layer conductances were used to establish the driving factors of hedgerow transpiration. Observed transpiration rates, reaching peak values of around 8 mm day(-1) and a seasonal mean of about 3.5 mm day(-1), were higher than those reported for most other temperate deciduous woodlands, except short-rotation coppice and wet woodlands. The high rates were caused by the structural and physiological characteristics of hawthorn leaves, which exhibited much higher stomatal and boundary-layer conductances than those of the second-most abundant woody species in the hedgerow, field maple (Acer campestre L.). Only in the hot summer of 2003 did stomatal conductance, and thus transpiration, decrease substantially. The hedgerow canopy was always closely coupled to the atmosphere. Hedgerow transpiration equaled potential evaporation (calculated by the Priestley-Taylor formula) in 2003 and exceeded it in 2004, which meant that a substantial fraction of the energy (21% in 2003 and more than 37% in 2004) came from advection. Hedgerow canopy conductance (g(c)), as inferred from the sap flow data by inverting the Penman-Monteith equation, responded to solar radiation (R(G)) and vapor pressure deficit (D). Although the response to R(G) showed no systematic temporal variation, the response to D, described as g(c)(D) = g(cref) - mln(D), changed seasonally. The reference g(c) depended on leaf area index and the ratio of -m/g(cref) on long-term mean daytime D. A model is proposed based on these observations that predicts canopy conductance for the hawthorn hedge from standard weather data.
NASA Astrophysics Data System (ADS)
Vogt, Juliane; Kautz, Markus; Fontalvo Herazo, Martha Liliana; Triet, Tran; Walther, Denny; Saint-Paul, Ulrich; Diele, Karen; Berger, Uta
2013-11-01
Large areas of mangrove forests were devastated in South Viet Nam during the second Indochina war. After its end in 1975, extensive reforestation with monocultures took place. Can Gio, one of the biggest replanted sites with about 20,000 ha of mangroves mainly Rhizophora apiculata, was declared a biosphere reserve by the UNESCO in 2000. Although this status now enables progressive forest dynamics, there are still drawbacks resulting from the unnatural character of the plantations. For example, the homogeneous size and age structure as well as the regular arrangement of the planted trees make larger forest stands more vulnerable to synchronized collapsing which can be triggered by stronger winds and storms. A transformation into a more natural forest characterized by a heterogeneous age and size structure and a mixed species composition is of urgent need to avoid a synchronized dieback. In this study we test the capability of natural canopy disturbances (e.g. lightning strikes) to facilitate this transformation.Canopy gaps created by lightning strikes were detected and quantified by remote sensing techniques. SPOT satellite images from the years 2003, 2005 and 2007 provided information about the spatial distribution, size, shape, and formation frequency of the gaps. Lightning strike gaps were identified based on their shape and size. They form small openings (mean: 0.025 ha) and their yearly probability of occurrence was determined to be approximately 0.012 per hectare. Selected gaps were surveyed in the field in 2008 to complement the remote sensing data and to provide information upon forest structure and regeneration.Simulation experiments were carried out with the individual-based KiWi mangrove model for quantifying the influence of different lightning regimes on the vertical and horizontal structure of the R. apiculata plantation. In addition, we conducted simulations with a natural and thus randomly generated forest to compare the structure of the two different cultivation types (i.e. plantation and natural forest). The simulation shows that even small disturbances can already partly buffer the risk of cohort senescence of monospecific even-aged plantations. However, after the decline of the plantation, the disturbance regime does not play an important role for further stand development. After the break-up of the initial strongly regular structure of the simulated plantation, a vertical pattern, i.e. height distribution of the trees, similar to the one of the natural forest, emerged quickly. However, the convergence for the horizontal structure i.e. the distance of trees to their nearest neighbor, took twice as long as for the vertical structure. Our results highlight the importance of small disturbances such as lightning strikes to mitigate vulnerability against synchronous windfall in homogenous forest structures. Hence, creating small openings artificially may be an appropriate management measure in areas where the frequency of natural small-scale disturbances is low.
Feher, Laura C.; Osland, Michael J.; Griffith, Kereen T.; Grace, James B.; Howard, Rebecca J.; Stagg, Camille L.; Enwright, Nicholas M.; Krauss, Ken W.; Gabler, Christopher A.; Day, Richard H.; Rogers, Kerrylee
2017-01-01
Climate greatly influences the structure and functioning of tidal saline wetland ecosystems. However, there is a need to better quantify the effects of climatic drivers on ecosystem properties, particularly near climate-sensitive ecological transition zones. Here, we used climate- and literature-derived ecological data from tidal saline wetlands to test hypotheses regarding the influence of climatic drivers (i.e., temperature and precipitation regimes) on the following six ecosystem properties: canopy height, biomass, productivity, decomposition, soil carbon density, and soil carbon accumulation. Our analyses quantify and elucidate linear and nonlinear effects of climatic drivers. We quantified positive linear relationships between temperature and above-ground productivity and strong positive nonlinear (sigmoidal) relationships between (1) temperature and above-ground biomass and canopy height and (2) precipitation and canopy height. Near temperature-controlled mangrove range limits, small changes in temperature are expected to trigger comparatively large changes in biomass and canopy height, as mangrove forests grow, expand, and, in some cases, replace salt marshes. However, within these same transition zones, temperature-induced changes in productivity are expected to be comparatively small. Interestingly, despite the significant above-ground height, biomass, and productivity relationships across the tropical–temperate mangrove–marsh transition zone, the relationships between temperature and soil carbon density or soil carbon accumulation were not significant. Our literature review identifies several ecosystem properties and many regions of the world for which there are insufficient data to fully evaluate the influence of climatic drivers, and the identified data gaps can be used by scientists to guide future research. Our analyses indicate that near precipitation-controlled transition zones, small changes in precipitation are expected to trigger comparatively large changes in canopy height. However, there are scant data to evaluate the influence of precipitation on other ecosystem properties. There is a need for more decomposition data across climatic gradients, and to advance understanding of the influence of changes in precipitation and freshwater availability, additional ecological data are needed from tidal saline wetlands in arid climates. Collectively, our results can help scientists and managers better anticipate the linear and nonlinear ecological consequences of climate change for coastal wetlands.
NASA Technical Reports Server (NTRS)
Sengupta, Anita; Wernet, Mark; Roeder, James; Kelsch, Richard; Witkowski, Al; Jones, Thomas
2009-01-01
Supersonic wind tunnel testing of Viking-type 0.8 m Disk-Gap-Band (DGB) parachutes was conducted in the NASA Glenn Research Center 10'x10' wind-tunnel. The tests were conducted in support of the Mars Science Laboratory Parachute Decelerator System development and qualification program. The aerodynamic coupling of the entry-vehicle wake to parachute flow-field is under investigation to determine the cause and functional dependence of a supersonic canopy breathing phenomenon referred to as area oscillations, characteristic of DGB's above Mach 1.5 operation. Four percent of full-scale parachutes (0.8 m) were constructed similar to the flight-article in material and construction techniques. The parachutes were attached to a 70-deg sphere-cone entry-vehicle to simulate the Mars flight configuration. The parachutes were tested in the wind-tunnel from Mach 2 to 2.5 in a Reynolds number range of 2x105 to 1x106, representative of a Mars deployment. Three different test configurations were investigated. In the first two configurations, the parachutes were constrained horizontally through the vent region to measure canopy breathing and wake interaction for fixed trim angles of 0 and 10 degrees from the free-stream. In the third configuration the parachute was unconstrained, permitted to trim and cone, similar to free-flight (but capsule motion is constrained), varying its alignment relative to the entry-vehicle wake. Non-intrusive test diagnostics were chosen to quantify parachute performance and provide insight into the flow field structure. An in-line loadcell provided measurement of unsteady and mean drag. Shadowgraph of the upstream parachute flow field was used to capture bow-shock motion and wake coupling. Particle image velocimetry provided first and second order flow field statistics over a planar region of the flow field, just upstream of the parachute. A photogrammetric technique was used to quantify fabric motion using multiple high speed video cameras to record the location in time and space of reflective targets placed on the canopy interior. The experimental findings including an updated drag model and the physical basis of the area oscillation phenomenon will be discussed.
High manoeuvring costs force narrow-winged molossid bats to forage in open space.
Voigt, Christian C; Holderied, Marc W
2012-04-01
Molossid bats are specialised aerial-hawkers that, like their diurnal ecological counterparts, swallows and swifts, hunt for insects in open spaces. The long and narrow wings of molossids are considered energetically adapted to fast flight between resource patches, but less suited for manoeuvring in more confined spaces, such as between tree-tops or in forest gaps. To understand whether a potential increase in metabolic costs of manoeuvring excludes molossids from foraging in more confined spaces, we measured energy costs and speed of manoeuvring flight in two tropical molossids, 18 g Molossus currentium and 23 g Molossus sinaloae, when flying in a ~500 m(3) hexagonal enclosure (~120 m(2) area), which is of similar dimensions as typical forest gaps. Flight metabolism averaged 10.21 ± 3.00 and 11.32 ± 3.54 ml CO(2) min(-1), and flight speeds 5.65 ± 0.47 and 6.27 ± 0.68 m s(-1) for M. currentium and M. sinaloae respectively. Metabolic rate during flight was higher for the M. currentium than for the similar-sized, but broader-winged frugivore Carollia sowelli, corroborating that broad-winged bats are better adapted to flying in confined spaces. These higher metabolic costs of manoeuvring flight may be caused by having to fly slower than the optimal foraging speed, and by the additional metabolic costs for centripetal acceleration in curves. This may preclude molossids from foraging efficiently between canopy trees or in forest gaps. The surprisingly brief burst of foraging activity at dusk of many molossids might be related to the cooling of the air column after sunset, which drives airborne insects to lower strata. Accordingly, foraging activity of molossids may quickly turn unprofitable when the abundance of insects decreases above the canopy.
Spatial Configuration of Drought Disturbance and Forest Gap Creation across Environmental Gradients
Andrew, Margaret E.; Ruthrof, Katinka X.; Matusick, George; Hardy, Giles E. St. J.
2016-01-01
Climate change is increasing the risk of drought to forested ecosystems. Although drought impacts are often anecdotally noted to occur in discrete patches of high canopy mortality, the landscape effects of drought disturbances have received virtually no study. This study characterized the landscape configuration of drought impact patches and investigated the relationships between patch characteristics, as indicators of drought impact intensity, and environmental gradients related to water availability to determine factors influencing drought vulnerability. Drought impact patches were delineated from aerial surveys following an extreme drought in 2011 in southwestern Australia, which led to patchy canopy dieback of the Northern Jarrah Forest, a Mediterranean forest ecosystem. On average, forest gaps produced by drought-induced dieback were moderate in size (6.6 ± 9.7 ha, max = 85.7 ha), compact in shape, and relatively isolated from each other at the scale of several kilometers. However, there was considerable spatial variation in the size, shape, and clustering of forest gaps. Drought impact patches were larger and more densely clustered in xeric areas, with significant relationships observed with topographic wetness index, meteorological variables, and stand height. Drought impact patch clustering was more strongly associated with the environmental factors assessed (R2 = 0.32) than was patch size (R2 = 0.21); variation in patch shape remained largely unexplained (R2 = 0.02). There is evidence that the xeric areas with more intense drought impacts are ‘chronic disturbance patches’ susceptible to recurrent drought disturbance. The spatial configuration of drought disturbances is likely to influence ecological processes including forest recovery and interacting disturbances such as fire. Regime shifts to an alternate, non-forested ecosystem may occur preferentially in areas with large or clustered drought impact patches. Improved understanding of drought impacts and their patterning in space and time will expand our knowledge of forest ecosystems and landscape processes, informing management of these dynamic systems in an uncertain future. PMID:27275744
NASA Astrophysics Data System (ADS)
Eliades, Marinos; Bruggeman, Adriana; Lubczynski, Maciek W.; Christou, Andreas; Camera, Corrado; Djuma, Hakan
2018-07-01
Pines in semi-arid mountain environments manage to survive and thrive despite the limited soil water, due to shallow soil depths, and overall water scarcity. This study aims to develop a method for computing soil evaporation, bedrock water uptake and transpiration from a natural, open forest, based on sap flow (Heat Ratio Method), soil moisture and meteorological observations. The water balance of individual trees was conceptualized with a geometric approach, using canopy projected areas and Voronoi (Thiesen) polygons. The canopy approach assumes that the tree's root area extent is equal to its canopy projected area, while the Voronoi approach assumes that the tree roots exploit the open area that is closer to the tree than to any other tree. The methodology was applied in an open Pinus brutia forest (68% canopy cover) in Cyprus, characterized by steep slopes and fractured bedrock, during two hydrologically contrasting years (2015 wet, 2016 dry). Sap flow sensors, soil moisture sensors, throughfall and stemflow gauges were installed on and around eight trees. Rainfall was 507 mm in 2015 and 359 mm in 2016. According to the canopy approach, the sum of tree transpiration and soil evaporation exceeded the throughfall in both years, which implies that the trees' bedrock water uptake exceeds the surface runoff and drainage losses. This indicated that trees extend their roots beyond the canopy-projected areas and the use of the Voronoi polygons captures this effect. According to the stand scale water balance, average throughfall during the two years was 81% of the rainfall. Transpiration was 61% of the rainfall in 2015, but only 32% in 2016. On the contrary, the soil evaporation fraction increased from 26% in 2015 to 35% in the dry year of 2016. The contribution of bedrock water to tree transpiration was 77% of rainfall in 2015 and 66% in 2016. During the summer months, trees relied 100% on the uptake of water from the fractured bedrock to cover their transpiration needs. Average monthly transpiration areas ranged between 0.1 mm d-1 in October 2016 and 1.7 mm d-1 in April 2015. This study shows that bedrock uptake could be an essential water balance component of semi-arid, mountainous pine forests and should be accounted for in hydrologic models.
NASA Astrophysics Data System (ADS)
Gutiérrez del Arroyo, O.; Silver, W. L.
2015-12-01
We used the Canopy Trimming Experiment (CTE), an ongoing ecosystem manipulation study in the Luquillo Experimental Forest (LEF), Puerto Rico to determine the decadal-scale effects of canopy disturbance and debris deposition on biogeochemistry throughout the soil profile of a wet tropical forest. These manipulations represent the most significant effects of hurricanes, which may increase in frequency or intensity with warming, strengthening their ecosystem-level effects on carbon (C) and nutrient cycling. Four replicated treatments were applied in 2005 using a complete randomized block design: canopy trimming + debris deposition, canopy trimming only, debris deposition only, and untreated control. In 2015, we sampled soils at 10 cm intervals to 1 m depth in each of 12 plots (3 per treatment). We measured gravimetric moisture content, pH, HCl and citrate-ascorbate (CA) extractable iron (Fe) species, organic (Po) and inorganic fractions of NaHCO3 and NaOH phosphorus (P), as well as total C and nitrogen (N). Soil moisture decreased markedly with depth up to ~60-70 cm, and then stabilized at ~33% down to 1 m. Across all treatments, pH increased significantly with depth, ranging from 4.6 in surface soils (0-10 cm) of trimmed plots to 5.2 in deep soils (80-90 cm) of control plots. Canopy trimming decreased pH significantly, possibly due to increased root activity in surface soils as vegetation recovered. Both HCl and CA extractable Fe showed strong depth dependance, decreasing linearly to 50 cm, and stabilizing at very low concentrations (<0.2 mg/g) down to 1 m. Inorganic P concentrations were low and did not vary significantly with depth. The majority of P was associated with organic matter, with significantly higher values in the upper soil profile (<50 cm). Debris deposition significantly increased Po, revealing the role of hurricanes in subsidizing the available soil P pool in these highly productive, low-P wet tropical forests. Debris deposition also increased soil C and N concentrations in surface soils (<20 cm). Our results suggest that the dominant effects of disturbance are limited to the upper soil profile in this wet tropical forest. However, effects were persistent and detectable after ten years of the CTE, suggesting that hurricanes result in long-term changes in tropical forest biogeochemistry.
NASA Astrophysics Data System (ADS)
Zhang, Yao; Xiao, Xiangming; Wolf, Sebastian; Wu, Jin; Wu, Xiaocui; Gioli, Beniamino; Wohlfahrt, Georg; Cescatti, Alessandro; van der Tol, Christiaan; Zhou, Sha; Gough, Christopher M.; Gentine, Pierre; Zhang, Yongguang; Steinbrecher, Rainer; Ardö, Jonas
2018-04-01
Light-use efficiency (LUE), which quantifies the plants' efficiency in utilizing solar radiation for photosynthetic carbon fixation, is an important factor for gross primary production estimation. Here we use satellite-based solar-induced chlorophyll fluorescence as a proxy for photosynthetically active radiation absorbed by chlorophyll (APARchl) and derive an estimation of the fraction of APARchl (fPARchl) from four remotely sensed vegetation indicators. By comparing maximum LUE estimated at different scales from 127 eddy flux sites, we found that the maximum daily LUE based on PAR absorption by canopy chlorophyll (ɛmaxchl), unlike other expressions of LUE, tends to converge across biome types. The photosynthetic seasonality in tropical forests can also be tracked by the change of fPARchl, suggesting the corresponding ɛmaxchl to have less seasonal variation. This spatio-temporal convergence of LUE derived from fPARchl can be used to build simple but robust gross primary production models and to better constrain process-based models.
Investigation of Soil Erosion and Phosphorus Transport within an Agricultural Watershed
NASA Astrophysics Data System (ADS)
Klik, A.; Jester, W.; Muhar, A.; Peinsitt, A.; Rampazzo, N.; Mentler, A.; Staudinger, B.; Eder, M.
2003-04-01
In a 40 ha agricultural used watershed in Austria, surface runoff, soil erosion and nutrient losses are measured spatially distributed with 12 small erosion plots. Crops during growing season 2002 are canola, corn, sunflower, winter wheat, winter barley, rye, sugar beets, and pasture. Canopy height and canopy cover are observed in 14-day intervals. Four times per year soil water content, shear stress and random roughness of the surface are measured in a 25 x 25 m grid (140 points). The same raster is sampled for soil texture analyses and content of different phosphorus fractions in the 0-10 cm soil depth. Spatially distributed data are used for geostatistical analysis. Along three transects hydrologic conditions of the hillslope position (top, middle, foot) are investigated by measuring soil water content and soil matrix potential. After erosive events erosion features (rills, deposition, ...) are mapped using GPS. All measured data will be used as input parameters for the Limburg Soil Erosion Model (LISEM).
Medhurst, Jane L; Battaglia, Michael; Beadle, Christopher L
2002-08-01
We investigated changes in the pattern of water use of an 8-year-old Eucalyptus nitens (Deane and Maiden) Maiden plantation soon after thinning. Sap flow sensors using heat pulse technology were deployed across three stands thinned to a final density of 100, 250 or 600 trees ha-1 plus an unthinned control (1250 trees ha-1). Changes in the relationship between tree size and daily water use were measured for 4 to 7 months after thinning. Thinning had no effect on sapwood water content. The increase in tree water use as a result of thinning was driven largely by significant changes in the radial pattern of sap velocity through the sapwood. The use of a canopy fraction factor in the Penman-Monteith equation to account for discontinuous canopies showed promise as a simple and effective method of scaling the model to predict transpiration from thinned plantations.
NASA Technical Reports Server (NTRS)
Asner, Gregory P.; Heidebrecht, Kathleen B.
2001-01-01
Remote sensing of vegetation cover and condition is critically needed to understand the impacts of land use and climate variability in and and semi-arid regions. However, remote sensing of vegetation change in these environments is difficult for several reasons. First, individual plant canopies are typically small and do not reach the spatial scale of typical Landsat-like satellite image pixels. Second, the phenological status and subsequent dry carbon (or non-photosynthetic) fraction of plant canopies varies dramatically in both space and time throughout and and semi-arid regions. Detection of only the 'green' part of the vegetation using a metric such as the normalized difference vegetation index (NDVI) thus yields limited information on the presence and condition of plants in these ecosystems. Monitoring of both photosynthetic vegetation (PV) and non-photosynthetic vegetation (NPV) is needed to understand a range of ecosystem characteristics including vegetation presence, cover and abundance, physiological and biogeochemical functioning, drought severity, fire fuel load, disturbance events and recovery from disturbance.
Impact of Land Cover Characterization and Properties on Snow Albedo in Climate Models
NASA Astrophysics Data System (ADS)
Wang, L.; Bartlett, P. A.; Chan, E.; Montesano, P.
2017-12-01
The simulation of winter albedo in boreal and northern environments has been a particular challenge for land surface modellers. Assessments of output from CMIP3 and CMIP5 climate models have revealed that many simulations are characterized by overestimation of albedo in the boreal forest. Recent studies suggest that inaccurate representation of vegetation distribution, improper simulation of leaf area index, and poor treatment of canopy-snow processes are the primary causes of albedo errors. While several land cover datasets are commonly used to derive plant functional types (PFT) for use in climate models, new land cover and vegetation datasets with higher spatial resolution have become available in recent years. In this study, we compare the spatial distribution of the dominant PFTs and canopy cover fractions based on different land cover datasets, and present results from offline simulations of the latest version Canadian Land Surface Scheme (CLASS) over the northern Hemisphere land. We discuss the impact of land cover representation and surface properties on winter albedo simulations in climate models.
Forest tree species clssification based on airborne hyper-spectral imagery
NASA Astrophysics Data System (ADS)
Dian, Yuanyong; Li, Zengyuan; Pang, Yong
2013-10-01
Forest precision classification products were the basic data for surveying of forest resource, updating forest subplot information, logging and design of forest. However, due to the diversity of stand structure, complexity of the forest growth environment, it's difficult to discriminate forest tree species using multi-spectral image. The airborne hyperspectral images can achieve the high spatial and spectral resolution imagery of forest canopy, so it will good for tree species level classification. The aim of this paper was to test the effective of combining spatial and spectral features in airborne hyper-spectral image classification. The CASI hyper spectral image data were acquired from Liangshui natural reserves area. Firstly, we use the MNF (minimum noise fraction) transform method for to reduce the hyperspectral image dimensionality and highlighting variation. And secondly, we use the grey level co-occurrence matrix (GLCM) to extract the texture features of forest tree canopy from the hyper-spectral image, and thirdly we fused the texture and the spectral features of forest canopy to classify the trees species using support vector machine (SVM) with different kernel functions. The results showed that when using the SVM classifier, MNF and texture-based features combined with linear kernel function can achieve the best overall accuracy which was 85.92%. It was also confirm that combine the spatial and spectral information can improve the accuracy of tree species classification.
NASA Astrophysics Data System (ADS)
Forbes, K. A.; Kienzle, S. W.; Coburn, C. A.; Byrne, J. M.
2006-12-01
Multiple threats, including intensification of agricultural production, non-renewable resource extraction and climate change, are threatening Southern Alberta's water supply. The objective of this research is to calibrate/evaluate the Agricultural Catchments Research Unit (ACRU) agrohydrological model; with the end goal of forecasting the impacts of a changing environment on water quantity. The strength of this model is the intensive multi-layered soil water budgeting routine that integrates water movement between the surface and atmosphere. The ACRU model was parameterized using data from Environment Canada's climate database for a twenty year period (1984-2004) and was used to simulate streamflow for Beaver Creek. The simulated streamflow was compared to Environment Canada's historical streamflow database to validate the model output. The Beaver Creek Watershed, located in the Porcupine Hills southwestern Alberta, Canada contains a heterogeneous cover of deciduous, coniferous, native prairie grasslands and forage crops. In a catchment with highly diversified land cover, canopy architecture cannot be overlooked in rainfall interception parameterization. Preliminary testing of ACRU suggests that streamflows were sensitive to varied levels of leaf area index (LAI), a representative fraction of canopy foliage. Further testing using remotely sensed LAI's will provide a more accurate representation of canopy foliage and ultimately best represent this important element of the hydrological cycle and the associated processes which govern the natural hydrology of the Beaver Creek watershed.
NASA Astrophysics Data System (ADS)
Ney, Patrizia; Graf, Alexander
2018-03-01
We present a portable elevator-based facility for measuring CO2, water vapour, temperature and wind-speed profiles between the soil surface and the atmospheric surface layer above crop canopies. The end of a tube connected to a closed-path gas analyzer is continuously moved up and down over the profile range (in our case, approximately 2 m) while concentrations are logged at a frequency of 20 s^{-1}. Using campaign measurements in winter wheat, winter barley and a catch crop mixture (spring 2015 to autumn 2016) during different stages of crop development and different times of the day, we demonstrate a simple approach to correct for time lags, and the resulting profiles of 30-min mean mole fractions of CO2 and H2O over height increments of 0.025 m. The profiles clearly show the effects of soil respiration and photosynthetic carbon assimilation, varying both during the diurnal cycle and during the growing season. Profiles of temperature and wind speed are based on a ventilated finewire thermocouple and a hot-wire anemometer, respectively. Measurements over bare soil and a short plant canopy were analyzed in the framework of Monin-Obukhov similarity theory to check the validity of the measurements and raw-data-processing approach. Derived fluxes of CO2, latent and sensible heat and momentum show good agreement with eddy-covariance measurements.
Bögelein, Rebekka; Thomas, Frank M; Kahmen, Ansgar
2017-07-01
Distinguishing meteorological and plant-mediated drivers of leaf water isotopic enrichment is prerequisite for ecological interpretations of stable hydrogen and oxygen isotopes in plant tissue. We measured input and leaf water δ 2 H and δ 18 O as well as micrometeorological and leaf morpho-physiological variables along a vertical gradient in a mature angiosperm (European beech) and gymnosperm (Douglas fir) tree. We used these variables and different enrichment models to quantify the influence of Péclet and non-steady state effects and of the biophysical drivers on leaf water enrichment. The two-pool model accurately described the diurnal variation of leaf water enrichment. The estimated unenriched water fraction was linked to leaf dry matter content across the canopy heights. Non-steady state effects and reduced stomatal conductance caused a higher enrichment of Douglas fir compared to beech leaf water. A dynamic effect analyses revealed that the light-induced vertical gradients of stomatal conductance and leaf temperature outbalanced each other in their effects on evaporative enrichment. We conclude that neither vertical canopy gradients nor the Péclet effect is important for estimates and interpretation of isotopic leaf water enrichment in hypostomatous trees. Contrarily, species-specific non-steady state effects and leaf temperatures as well as the water vapour isotope composition need careful consideration. © 2017 John Wiley & Sons Ltd.
Shi, Yanmeng; Lee, Yongjin; Che, Shi; Pi, Ziqi; Espiritu, Timothy; Stepanov, Petr; Smirnov, Dmitry; Lau, Chun Ning; Zhang, Fan
2016-02-05
Owing to the spin, valley, and orbital symmetries, the lowest Landau level in bilayer graphene exhibits multicomponent quantum Hall ferromagnetism. Using transport spectroscopy, we investigate the energy gaps of integer and fractional quantum Hall (QH) states in bilayer graphene with controlled layer polarization. The state at filling factor ν=1 has two distinct phases: a layer polarized state that has a larger energy gap and is stabilized by high electric field, and a hitherto unobserved interlayer coherent state with a smaller gap that is stabilized by large magnetic field. In contrast, the ν=2/3 quantum Hall state and a feature at ν=1/2 are only resolved at finite electric field and large magnetic field. These results underscore the importance of controlling layer polarization in understanding the competing symmetries in the unusual QH system of BLG.
Are temperate mature forests buffered from invasive lianas?
Pavlovic, Noel B.; Leicht-Young, Stacey A.
2011-01-01
Mature and old-growth forests are often thought to be buffered against invasive species due to low levels of light and infrequent disturbance. Lianas (woody vines) and other climbing plants are also known to exhibit lower densities in older forests. As part of a larger survey of the lianas of the southern Lake Michigan region in mature and old-growth forests, the level of infestation by invasive lianas was evaluated. The only invasive liana detected in these surveys was Celastrus orbiculatus Thunb. (Celastraceae). Although this species had only attached to trees and reached the canopy in a few instances, it was present in 30% of transects surveyed, mostly as a component of the ground layer. Transects with C. orbiculatus had higher levels of soil potassium and higher liana richness than transects without. In contrast, transects with the native C. scandens had higher pH, sand content, and soil magnesium and lower organic matter compared to transects where it was absent. Celastrus orbiculatus appears to be a generalist liana since it often occurs with native lianas. Celastrus orbiculatus poses a substantial threat to mature forests as it will persist in the understory until a canopy gap or other disturbance provides the light and supports necessary for it to ascend to the canopy and damage tree species. As a result, these forests should be monitored by land managers so that C. orbiculatus eradication can occur while invasions are at low densities and restricted to the ground layer.
NASA Technical Reports Server (NTRS)
Blair, J. Bryan; Nelson, B.; dosSantos, J.; Valeriano, D.; Houghton, R.; Hofton, M.; Lutchke, S.; Sun, Q.
2002-01-01
A flight mission of NASA GSFC's Laser Vegetation Imaging Sensor (LVIS) is planned for June-August 2003 in the Amazon region of Brazil. The goal of this flight mission is to map the vegetation height and structure and ground topography of a large area of the Amazon. This data will be used to produce maps of true ground topography, vegetation height, and estimated above-ground biomass and for comparison with and potential calibration of Synthetic Aperture Radar (SAR) data. Approximately 15,000 sq. km covering various regions of the Amazon will be mapped. The LVIS sensor has the unique ability to accurately sense the ground topography beneath even the densest of forest canopies. This is achieved by using a high signal-to-noise laser altimeter to detect the very weak reflection from the ground that is available only through small gaps in between leaves and between tree canopies. Often the amount of ground signal is 1% or less of the total returned echo. Once the ground elevation is identified, that is used as the reference surface from which we measure the vertical height and structure of the vegetation. Test data over tropical forests have shown excellent correlation between LVIS measurements and biomass, basal area, stem density, ground topography, and canopy height. Examples of laser altimetry data over forests and the relationships to biophysical parameters will be shown. Also, recent advances in the LVIS instrument will be discussed.
Topological gapped edge states in fractional quantum Hall-superconductor heterostructures
NASA Astrophysics Data System (ADS)
Cook, Ashley; Repellin, Cécile; Regnault, Nicolas; Neupert, Titus
We propose and implement a numerical setup for studying edge states of fractional quantum Hall droplets with a superconducting instability. We focus on a time-reversal symmetric bilayer fractional quantum Hall system of Laughlin ν = 1 / 3 states. The fully gapped edges carry a topological parafermionic degree of freedom that can encode quantum information protected against local perturbations. We numerically simulate such a system using exact diagonalization by restricting the calculation to the Laughlin quasihole subspace. We study the quantization of the total charge on each edge and show that the ground states are permuted by spin flux insertion and the parafermionic Josephson effect, evidencing their topological nature and the Cooper pairing of fractionalized quasiparticles. The full affiliation for Author 3 is: Laboratoire Pierre Aigrain, Ecole Normale Supérieure-PSL Research University, CNRS, Université Pierre et Marie Curie-Sorbonne Universités, Université Paris Diderot-Sorbonne Paris Cité, 24 rue Lhomond, 75231 Paris.
NASA Astrophysics Data System (ADS)
Székely, B.; Kania, A.; Standovár, T.; Heilmeier, H.
2016-06-01
The horizontal variation and vertical layering of the vegetation are important properties of the canopy structure determining the habitat; three-dimensional (3D) distribution of objects (shrub layers, understory vegetation, etc.) is related to the environmental factors (e.g., illumination, visibility). It has been shown that gaps in forests, mosaic-like structures are essential to biodiversity; various methods have been introduced to quantify this property. As the distribution of gaps in the vegetation is a multi-scale phenomenon, in order to capture it in its entirety, scale-independent methods are preferred; one of these is the calculation of lacunarity. We used Airborne Laser Scanning point clouds measured over a forest plantation situated in a former floodplain. The flat topographic relief ensured that the tree growth is independent of the topographic effects. The tree pattern in the plantation crops provided various quasi-regular and irregular patterns, as well as various ages of the stands. The point clouds were voxelized and layers of voxels were considered as images for two-dimensional input. These images calculated for a certain vicinity of reference points were taken as images for the computation of lacunarity curves, providing a stack of lacunarity curves for each reference points. These sets of curves have been compared to reveal spatial changes of this property. As the dynamic range of the lacunarity values is very large, the natural logarithms of the values were considered. Logarithms of lacunarity functions show canopy-related variations, we analysed these variations along transects. The spatial variation can be related to forest properties and ecology-specific aspects.
Simulation of Longwave Enhancement beneath Montane and Boreal Forests in CLM4.5
NASA Astrophysics Data System (ADS)
Todt, M.; Rutter, N.; Fletcher, C. G.; Wake, L. M.; Loranty, M. M.
2017-12-01
CMIP5 models have been shown to underestimate both trend and variability in northern hemisphere spring snow cover extent. A substantial fraction of this area is covered by boreal forests, in which the snow energy balance is dominated by radiation. Forest coverage impacts the surface radiation budget by shading the ground and enhancing longwave radiation. Longwave enhancement in boreal forests is a potential mechanism that contributes to uncertainty in snowmelt modelling, however, its impact on snowmelt in global land models has not been analysed yet. This study assesses the simulation of sub-canopy longwave radiation and longwave enhancement by CLM4.5, the land component of the NCAR Community Earth System Model, in which boreal forests are represented by three plant functional types (PFT): evergreen needleleaf trees (ENT), deciduous needleleaf trees (DNT), and deciduous broadleaf trees (DBT). Simulation of sub-canopy longwave enhancement is evaluated at boreal forest sites covering the three boreal PFT in CLM4.5 to assess the dependence of simulation errors on meteorological forcing, vegetation type and vegetation density. ENT are evaluated over a total of six snowmelt seasons in Swiss alpine and subalpine forests, as well as a single season at a Finnish arctic site with varying vegetation density. A Swedish artic site features varying vegetation density for DBT for a single winter, and two sites in Eastern Siberia are included covering a total of four snowmelt seasons in DNT forests. CLM4.5 overestimates the diurnal range of sub-canopy longwave radiation and consequently longwave enhancement, overestimating daytime values and underestimating nighttime values. Simulation errors result mainly from clear sky conditions, due to high absorption of shortwave radiation during daytime and radiative cooling during nighttime. Using recent improvements to the canopy parameterisations of SNOWPACK as a guideline, CLM4.5 simulations of sub-canopy longwave radiation improved through the implementation of a heat mass parameterisation, i.e. including thermal inertia due to biomass. However, this improvement does not substantially reduce the amplitude of the diurnal cycle, a result also found during the development of SNOWPACK.
NASA Astrophysics Data System (ADS)
Flanagan, L. B.; Geske, N.; Emrick, C.; Johnson, B. G.
2006-12-01
Grassland ecosystems typically exhibit very large annual fluctuations in above-ground biomass production and net ecosystem productivity (NEP). Eddy covariance flux measurements, plant stable isotope analyses, and canopy spectral reflectance techniques have been applied to study environmental constraints on grassland ecosystem productivity and the acclimation responses of the ecosystem at a site near Lethbridge, Alberta, Canada. We have observed substantial interannual variation in grassland productivity during 1999-2005. In addition, there was a strong correlation between peak above-ground biomass production and NEP calculated from eddy covariance measurements. Interannual variation in NEP was strongly controlled by the total amount of precipitation received during the growing season (April-August). We also observed significant positive correlations between a multivariate ENSO index and total growing season precipitation, and between the ENSO index and annual NEP values. This suggested that a significant fraction of the annual variability in grassland productivity was associated with ENSO during 1999-2005. Grassland productivity varies asymmetrically in response to changes in precipitation with increases in productivity during wet years being much more pronounced than reductions during dry years. Strong increases in plant water-use efficiency, based on carbon and oxygen stable isotope analyses, contribute to the resilience of productivity during times of drought. Within a growing season increased stomatal limitation of photosynthesis, associated with improved water-use efficiency, resulted in apparent shifts in leaf xanthophyll cycle pigments and changes to the Photochemical Reflectance Index (PRI) calculated from hyper-spectral reflectance measurements conducted at the canopy-scale. These shifts in PRI were apparent before seasonal drought caused significant reductions in leaf area index (LAI) and changes to canopy-scale "greenness" based on NDVI values. With further progression of the seasonal drought, LAI and canopy-scale NDVI also declined in strong correlation. In addition, we have observed strong correlation between NDVI calculated from canopy-scale reflectance measurements and NDVI determined by MODIS. Continued reflectance measurements will help to understand and document the response of the grassland to seasonal and annual environmental change.
Chmura, Daniel J; Tjoelker, Mark G
2008-05-01
Crown architecture and size influence leaf area distribution within tree crowns and have large effects on the light environment in forest canopies. The use of selected genotypes in combination with silvicultural treatments that optimize site conditions in forest plantations provide both a challenge and an opportunity to study the biological and environmental determinants of forest growth. We investigated tree growth, crown development and leaf traits of two elite families of loblolly pine (Pinus taeda L.) and one family of slash pine (P. elliottii Mill.) at canopy closure. Two contrasting silvicultural treatments -- repeated fertilization and control of competing vegetation (MI treatment), and a single fertilization and control of competing vegetation treatment (C treatment) -- were applied at two experimental sites in the West Gulf Coastal Plain in Texas and Louisiana. At a common tree size (diameter at breast height), loblolly pine trees had longer and wider crowns, and at the plot-level, intercepted a greater fraction of photosynthetic photon flux than slash pine trees. Leaf-level, light-saturated assimilation rates (A(max)) and both mass- and area-based leaf nitrogen (N) decreased, and specific leaf area (SLA) increased with increasing canopy depth. Leaf-trait gradients were steeper in crowns of loblolly pine trees than of slash pine trees for SLA and leaf N, but not for A(max). There were no species differences in A(max), except in mass-based photosynthesis in upper crowns, but the effect of silvicultural treatment on A(max) differed between sites. Across all crown positions, A(max) was correlated with leaf N, but the relationship differed between sites and treatments. Observed patterns of variation in leaf properties within crowns reflected acclimation to developing light gradients in stands with closing canopies. Tree growth was not directly related to A(max), but there was a strong correlation between tree growth and plot-level light interception in both species. Growth efficiency was unaffected by silvicultural treatment. Thus, when coupled with leaf area and light interception at the crown and canopy levels, A(max) provides insight into family and silvicultural effects on tree growth.
NASA Astrophysics Data System (ADS)
Fan, Yuanchao; Koukal, Tatjana; Weisberg, Peter J.
2014-10-01
Canopy shadowing mediated by topography is an important source of radiometric distortion on remote sensing images of rugged terrain. Topographic correction based on the sun-canopy-sensor (SCS) model significantly improved over those based on the sun-terrain-sensor (STS) model for surfaces with high forest canopy cover, because the SCS model considers and preserves the geotropic nature of trees. The SCS model accounts for sub-pixel canopy shadowing effects and normalizes the sunlit canopy area within a pixel. However, it does not account for mutual shadowing between neighboring pixels. Pixel-to-pixel shadowing is especially apparent for fine resolution satellite images in which individual tree crowns are resolved. This paper proposes a new topographic correction model: the sun-crown-sensor (SCnS) model based on high-resolution satellite imagery (IKONOS) and high-precision LiDAR digital elevation model. An improvement on the C-correction logic with a radiance partitioning method to address the effects of diffuse irradiance is also introduced (SCnS + C). In addition, we incorporate a weighting variable, based on pixel shadow fraction, on the direct and diffuse radiance portions to enhance the retrieval of at-sensor radiance and reflectance of highly shadowed tree pixels and form another variety of SCnS model (SCnS + W). Model evaluation with IKONOS test data showed that the new SCnS model outperformed the STS and SCS models in quantifying the correlation between terrain-regulated illumination factor and at-sensor radiance. Our adapted C-correction logic based on the sun-crown-sensor geometry and radiance partitioning better represented the general additive effects of diffuse radiation than C parameters derived from the STS or SCS models. The weighting factor Wt also significantly enhanced correction results by reducing within-class standard deviation and balancing the mean pixel radiance between sunlit and shaded slopes. We analyzed these improvements with model comparison on the red and near infrared bands. The advantages of SCnS + C and SCnS + W on both bands are expected to facilitate forest classification and change detection applications.