Science.gov

Sample records for cantilever beam subjected

  1. Numerical Simulation of Output Response of PVDF Sensor Attached on a Cantilever Beam Subjected to Impact Loading.

    PubMed

    Dung, Cao Vu; Sasaki, Eiichi

    2016-04-27

    Polyvinylidene Flouride (PVDF) is a film-type polymer that has been used as sensors and actuators in various applications due to its mechanical toughness, flexibility, and low density. A PVDF sensor typically covers an area of the host structure over which mechanical stress/strain is averaged and converted to electrical energy. This study investigates the fundamental "stress-averaging" mechanism for dynamic strain sensing in the in-plane mode. A numerical simulation was conducted to simulate the "stress-averaging" mechanism of a PVDF sensor attached on a cantilever beam subjected to an impact loading, taking into account the contribution of piezoelectricity, the cantilever beam's modal properties, and electronic signal conditioning. Impact tests and FEM analysis were also carried out to verify the numerical simulation results. The results of impact tests indicate the excellent capability of the attached PVDF sensor in capturing the fundamental natural frequencies of the cantilever beam. There is a good agreement between the PVDF sensor's output voltage predicted by the numerical simulation and that obtained in the impact tests. Parametric studies were conducted to investigate the effects of sensor size and sensor position and it is shown that a larger sensor tends to generate higher output voltage than a smaller one at the same location. However, the effect of sensor location seems to be more significant for larger sensors due to the cancelling problem. Overall, PVDF sensors exhibit excellent sensing capability for in-plane dynamic strain induced by impact loading.

  2. Numerical Simulation of Output Response of PVDF Sensor Attached on a Cantilever Beam Subjected to Impact Loading

    PubMed Central

    Dung, Cao Vu; Sasaki, Eiichi

    2016-01-01

    Polyvinylidene Flouride (PVDF) is a film-type polymer that has been used as sensors and actuators in various applications due to its mechanical toughness, flexibility, and low density. A PVDF sensor typically covers an area of the host structure over which mechanical stress/strain is averaged and converted to electrical energy. This study investigates the fundamental “stress-averaging” mechanism for dynamic strain sensing in the in-plane mode. A numerical simulation was conducted to simulate the “stress-averaging” mechanism of a PVDF sensor attached on a cantilever beam subjected to an impact loading, taking into account the contribution of piezoelectricity, the cantilever beam’s modal properties, and electronic signal conditioning. Impact tests and FEM analysis were also carried out to verify the numerical simulation results. The results of impact tests indicate the excellent capability of the attached PVDF sensor in capturing the fundamental natural frequencies of the cantilever beam. There is a good agreement between the PVDF sensor’s output voltage predicted by the numerical simulation and that obtained in the impact tests. Parametric studies were conducted to investigate the effects of sensor size and sensor position and it is shown that a larger sensor tends to generate higher output voltage than a smaller one at the same location. However, the effect of sensor location seems to be more significant for larger sensors due to the cancelling problem. Overall, PVDF sensors exhibit excellent sensing capability for in-plane dynamic strain induced by impact loading. PMID:27128919

  3. Forced Vibrations of a Cantilever Beam

    ERIC Educational Resources Information Center

    Repetto, C. E.; Roatta, A.; Welti, R. J.

    2012-01-01

    The theoretical and experimental solutions for vibrations of a vertical-oriented, prismatic, thin cantilever beam are studied. The beam orientation is "downwards", i.e. the clamped end is above the free end, and it is subjected to a transverse movement at a selected frequency. Both the behaviour of the device driver and the beam's weak-damping…

  4. Forced Vibrations of a Cantilever Beam

    ERIC Educational Resources Information Center

    Repetto, C. E.; Roatta, A.; Welti, R. J.

    2012-01-01

    The theoretical and experimental solutions for vibrations of a vertical-oriented, prismatic, thin cantilever beam are studied. The beam orientation is "downwards", i.e. the clamped end is above the free end, and it is subjected to a transverse movement at a selected frequency. Both the behaviour of the device driver and the beam's weak-damping…

  5. Effect of local buckling and work-hardening properties of the material on the hysteretic behavior of cantilever I-beam subjected to lateral cyclic load

    SciTech Connect

    Shaker, R.E.; Murakawa, Hidekazu; Ueda, Yukio

    1993-12-31

    The hysteretic behavior of cantilever I-beam subjected to cyclic lateral loads is investigated in this paper. Finite Element Method (FEM) considering the geometrical and material non-linearities is utilized in this study. Special attention is paid to the effects of local buckling occurring in the flanges and the web, and the material work-hardening properties on the performance of I-beam in view of a seismic design considerations. The behavior of I-beam subjected to cyclic lateral loads is closely examined with respect to the ductility, strength and absorbed energy. From this study, it is found that smaller slenderness ratios of the flange and web are recommended for improving the ductility, strength and absorbed energy. Also, the material having lower yield-to-tensile strength improves the ductility of I-beam under cyclic lateral loads as well as monotonically increasing load.

  6. Oscillations of end loaded cantilever beams

    NASA Astrophysics Data System (ADS)

    Macho-Stadler, E.; Elejalde-García, M. J.; Llanos-Vázquez, R.

    2015-09-01

    This article presents several simple experiments based on changing transverse vibration frequencies in a cantilever beam, when acted on by an external attached mass load at the free end. By using a mechanical wave driver, available in introductory undergraduate laboratories, we provide various experimental results for end loaded cantilever beams that fit reasonably well into a linear equation. The behaviour of the cantilever beam’s weak-damping resonance response is studied for the case of metal resonance strips. As the mass load increases, a more pronounced decrease occurs in the fundamental frequency of beam vibration. It is important to note that cantilever construction is often used in architectural design and engineering construction projects but current analysis also predicts the influence of mass load on the sound generated by musical free reeds with boundary conditions similar to a cantilever beam.

  7. Forced vibrations of a cantilever beam

    NASA Astrophysics Data System (ADS)

    Repetto, C. E.; Roatta, A.; Welti, R. J.

    2012-09-01

    The theoretical and experimental solutions for vibrations of a vertical-oriented, prismatic, thin cantilever beam are studied. The beam orientation is ‘downwards’, i.e. the clamped end is above the free end, and it is subjected to a transverse movement at a selected frequency. Both the behaviour of the device driver and the beam's weak-damping resonance response are compared for the case of an elastic beam made from PVC plastic excited over a frequency range from 1 to 30 Hz. The current analysis predicts the presence of ‘pseudo-nodes’ in the normal modes of oscillation. It is important to note that our results were obtained using very simple equipment, present in the teaching laboratory.

  8. Experimental investigation of fatigue in a cantilever energy harvesting beam

    NASA Astrophysics Data System (ADS)

    Avvari, Panduranga Vittal; Yang, Yaowen; Liu, Peiwen; Soh, Chee Kiong

    2015-03-01

    Over the last decade, cantilever energy harvesters gained immense popularity owing to the simplicity of the design and piezoelectric energy harvesting (PEH) using the cantilever design has undergone considerable evolution. The major drawback of a vibrating cantilever beam is its vulnerability to fatigue over a period of time. This article brings forth an experimental investigation into the phenomenon of fatigue of a PEH cantilever beam. As there has been very little literature reported in this area, an effort has been made to scrutinize the damage due to fatigue in a linear vibrating cantilever PEH beam consisting of an aluminum substrate with a piezoelectric macro-fiber composite (MFC) patch attached near the root of the beam and a tip mass attached to the beam. The beam was subjected to transverse vibrations and the behavior of the open circuit voltage was recorded with passing time. Moreover, electro-mechanical admittance readings were obtained periodically using the same MFC patch as a Structural health monitoring (SHM) sensor to assess the health of the PEH beam. The results show that with passing time the PEH beam underwent fatigue in both the substrate and MFC, which is observed in a complimentary trend in the voltage and admittance readings. The claim is further supported using the variation of root mean square deviation (RMSD) of the real part of admittance (conductance) readings. Thus, this study concludes that the fatigue issue should be addressed in the design of PEH for long term vibration energy harvesting.

  9. Soft Body Impact of Cantilever Beams.

    DTIC Science & Technology

    1980-03-01

    SOFT BODY IMPACT OF CANTILEVER BEAMS.(U) MAR S0 J D SHARP N CLASSIFIED AFML-TR-79169 NL mmh"hllhmlhlhlu BBBBhBBhmBhBBl EEEIIIIIIIIIIE IIIIIIIIIII- t...1 . 1111122 OO 136 IIIIIT 111111.25 11 1.4 111111.6 MfEROCOPY RESOLUTI(%, USI CIIARI NAINA I’ M \\I W I IA~NPAR\\I’l ’ AFML-TR-79-4169 SOFT BODY IMPACT ...document. AIR FORCE/56780/18 June 1980 -400 SECURITY CLASSIFICATION Of THIS PAGE (Ma.n. Dat. Enterod), EDISRCIN jOFT BODY IMPACT OF CANTILEVER B EAI4’ Oct

  10. Automatic Optical Crack Tracking for Double Cantilever Beam Specimens

    DTIC Science & Technology

    2015-01-01

    TECHN ICAL ART IC LE Automatic Optical Crack Tracking for Double Cantilever Beam Specimens B. Krull1,2, J. Patrick2,3, K. Hart2,4, S. White2,4, and N...Reinforced Composites, Mode I Fracture, Double Cantilever Beam , Machine Vision Correspondence N.R. Sottos, Department of Materials Science and...which contains a manual procedure to obtain GIc values from crack length data using a double cantilever beam (DCB) specimen. In this study, a custom

  11. Improved Force Spectroscopy Using Focused-Ion-Beam-Modified Cantilevers.

    PubMed

    Faulk, J K; Edwards, D T; Bull, M S; Perkins, T T

    2017-01-01

    Atomic force microscopy (AFM) is widely used in biophysics, including force-spectroscopy studies of protein folding and protein-ligand interactions. The precision of such studies increases with improvements in the underlying quality of the data. Currently, data quality is limited by the mechanical properties of the cantilever when using a modern commercial AFM. The key tradeoff is force stability vs short-term force precision and temporal resolution. Here, we present a method that avoids this compromise: efficient focused-ion-beam (FIB) modification of commercially available cantilevers. Force precision is improved by reducing the cantilever's hydrodynamic drag, and force stability is improved by reducing the cantilever stiffness and by retaining a cantilever's gold coating only at its free end. When applied to a commonly used short cantilever (L=40μm), we achieved sub-pN force precision over 5 decades of bandwidth (0.01-1000Hz) without significantly sacrificing temporal resolution (~75μs). Extending FIB modification to an ultrashort cantilever (L=9μm) also improved force precision and stability, while maintaining 1-μs-scale temporal resolution. Moreover, modifying ultrashort cantilevers also eliminated their inherent underdamped high-frequency motion and thereby avoided applying a rapidly oscillating force across the stretched molecule. Importantly, fabrication of FIB-modified cantilevers is accessible after an initial investment in training. Indeed, undergraduate researchers routinely modify 2-4 cantilevers per hour with the protocol detailed here. Furthermore, this protocol offers the individual user the ability to optimize a cantilever for a particular application. Hence, we expect FIB-modified cantilevers to improve AFM-based studies over broad areas of biophysical research. © 2017 Elsevier Inc. All rights reserved.

  12. Free torsional vibrations of tapered cantilever I-beams

    NASA Astrophysics Data System (ADS)

    Rao, C. Kameswara; Mirza, S.

    1988-08-01

    Torsional vibration characteristics of linearly tapered cantilever I-beams have been studied by using the Galerkin finite element method. A third degree polynomial is assumed for the angle of twist. The analysis presented is valid for long beams and includes the effect of warping. The individual as well as combined effects of linear tapers in the width of the flanges and the depth of the web on the torsional vibration of cantilever I-beams are investigated. Numerical results generated for various values of taper ratios are presented in graphical form.

  13. Flexural Vibration Test of a Cantilever Beam with a Force Sensor: Fast Determination of Young's Modulus

    ERIC Educational Resources Information Center

    Digilov, Rafael M.

    2008-01-01

    We describe a simple and very inexpensive undergraduate laboratory experiment for fast determination of Young's modulus at moderate temperatures with the aid of a force sensor. A strip-shaped specimen rigidly bolted to the force sensor forms a clamped-free cantilever beam. Placed in a furnace, it is subjected to free-bending vibrations followed by…

  14. Flexural Vibration Test of a Cantilever Beam with a Force Sensor: Fast Determination of Young's Modulus

    ERIC Educational Resources Information Center

    Digilov, Rafael M.

    2008-01-01

    We describe a simple and very inexpensive undergraduate laboratory experiment for fast determination of Young's modulus at moderate temperatures with the aid of a force sensor. A strip-shaped specimen rigidly bolted to the force sensor forms a clamped-free cantilever beam. Placed in a furnace, it is subjected to free-bending vibrations followed by…

  15. Atomic force microscope cantilever calibration using a focused ion beam.

    PubMed

    Slattery, Ashley D; Quinton, Jamie S; Gibson, Christopher T

    2012-07-20

    A calibration method is presented for determining the spring constant of atomic force microscope (AFM) cantilevers, which is a modification of the established Cleveland added mass technique. A focused ion beam (FIB) is used to remove a well-defined volume from a cantilever with known density, substantially reducing the uncertainty usually present in the added mass method. The technique can be applied to any type of AFM cantilever; but for the lowest uncertainty it is best applied to silicon cantilevers with spring constants above 0.7 N m(-1), where uncertainty is demonstrated to be typically between 7 and 10%. Despite the removal of mass from the cantilever, the calibration method presented does not impair the probes' ability to acquire data. The technique has been extensively tested in order to verify the underlying assumptions in the method. This method was compared to a number of other calibration methods and practical improvements to some of these techniques were developed, as well as important insights into the behavior of FIB modified cantilevers. These results will prove useful to research groups concerned with the application of microcantilevers to nanoscience, in particular for cases where maintaining pristine AFM tip condition is critical.

  16. Accurate Method for Determining Adhesion of Cantilever Beams

    SciTech Connect

    Michalske, T.A.; de Boer, M.P.

    1999-01-08

    Using surface micromachined samples, we demonstrate the accurate measurement of cantilever beam adhesion by using test structures which are adhered over long attachment lengths. We show that this configuration has a deep energy well, such that a fracture equilibrium is easily reached. When compared to the commonly used method of determining the shortest attached beam, the present method is much less sensitive to variations in surface topography or to details of capillary drying.

  17. Vibrating cantilever beam in a flowing soap film

    NASA Astrophysics Data System (ADS)

    Sajjanapu, Veera; Ward, Thomas

    2016-11-01

    We present an experimental study of the interaction between a flexible cantilever beam and a flowing fluid medium using a soap film. The vertically falling soap film is capable of attaining speeds ranging from 1.5 - 3 m/s with an operating test section width of 7.5 cm. Experiments were conducted for flexible cantilever beams of length L <= 10 mm yielding Reynolds number 5000 < Re < 10000 and of cantilever beam thickness ranging from 0.03 - 0.08 mm were placed at angles of attack ranging from 10° - 50°. We visualize the beam displacements and wake with a high-speed camera. Assuming small vibrational amplitudes, we consider the Euler-Bernoulli beam theory to understand the dynamics. From the analysis we find that the normalized average displacement is linear with respect to the square of the free-stream velocity. The vibrational amplitude is also discussed using a similar scaling. Finally, visualization of the downstream vortex structure is related to a beams displacement and vibrational frequency using dimensional analysis.

  18. Influence of axial loads on the nonplanar vibrations of cantilever beams

    NASA Astrophysics Data System (ADS)

    Carvalho, Eulher C.; Gonçalves, Paulo B.; Del Prado, Zenón; Rega, Giuseppe

    2012-11-01

    The three-dimensional motions of cantilever beams have been extensively studied in the past. This structural element can be found in several applications, including MEMS and NEMS. In many applications the beam is subjected to axial loads which can play an important role in the dynamics of very slender beams. In this paper a cantilever inextensible beam subject to a concentrated axial load and a lateral harmonic excitation is investigated. Special attention is given to the effect of axial load on the frequency-amplitude relation, bifurcations and instabilities of the beam, a problem not tackled in the previous literature on this subject. To this aim, the nonlinear integro-differential equations describing the flexural-flexural-torsional couplings of the beam are used, together with the Galerkin method, to obtain a set of discretized equations of motion, which are in turn solved by numerical integration using the Runge-Kutta method. Both inertial and geometric nonlinearities are considered in the present analysis. Due to symmetries of the beam cross section, the beam exhibits a 1:1 internal resonance which has an important role on the nonlinear oscillations and bifurcation scenario. The results show that the axial load influences the stiffness of the beam changing its nonlinear behavior from hardening to softening. A detailed parametric analysis using several tools of nonlinear dynamics, unveils the complex dynamics of the beam in the parametric or external resonance regions. Bifurcations leading to multiple coexisting solutions are observed.

  19. Cantilever-beam dynamic modulus for wood composite products. Part 1, apparatus

    Treesearch

    Chris Turk; John F. Hunt; David J. Marr

    2008-01-01

    A cantilever-beam vibration-testing apparatus has been developed to provide a means of dynamic and non-destructive evaluation of modulus of elasticity for small samples of wood or wood-composite material. The apparatus applies a known displacement to a cantilever beam and then releases the beam into its natural first-mode vibration and records displacement as a...

  20. Double Cantilever Beam Fracture Toughness Testing of Several Composite Materials

    NASA Technical Reports Server (NTRS)

    Kessler, Jeff A.; Adams, Donald F.

    1992-01-01

    Double-cantilever beam fracture toughness tests were performed by the Composite Materials Research Group on several different unidirectional composite materials provided by NASA Langley Research Center. The composite materials consisted of Hercules IM-7 carbon fiber and various matrix resin formulations. Multiple formulations of four different families of matrix resins were tested: LaRC - ITPI, LaRC - IA, RPT46T, and RP67/RP55. Report presents the materials tested and pertinent details supplied by NASA. For each material, three replicate specimens were tested. Multiple crack extensions were performed on each replicate.

  1. Large Area Microcorrals and Cavity Formation on Cantilevers using a Focused Ion Beam

    SciTech Connect

    Saraf, Laxmikant V.; Britt, David W.

    2011-09-14

    We utilize focused ion beam (FIB) to explore various sputtering parameters to form large area microcorrals and cavities on cantilevers. Microcorrals were rapidly created by modifying ion beam blur and overlaps. Modification in FIB sputtering parameters affects the periodicity and shape of corral microstructure. Cantilever deflections show ion beam amorphization effects as a function of sputtered area and cantilever base cavities with or without side walls. The FIB sputtering parameters address a method for rapid creation of a cantilever tensiometer with integrated fluid storage and delivery.

  2. The stress intensity factor for the double cantilever beam

    NASA Technical Reports Server (NTRS)

    Fichter, W. B.

    1983-01-01

    Fourier transforms and the Wiener-Hopf technique are used in conjunction with plane elastostatics to examine the singular crack tip stress field in the double cantilever beam (DCB) specimen. In place of the Dirac delta function, a family of functions which duplicates the important features of the concentrated forces without introducing unmanageable mathematical complexities is used as a loading function. With terms of order h-squared/a-squared retained in the series expansion, the dimensionless stress intensity factor is found to be K (h to the 1/2)/P = 12 to the 1/2 (a/h + 0.6728 + 0.0377 h-squared/a-squared), in which P is the magnitude of the concentrated forces per unit thickness, a is the distance from the crack tip to the points of load application, and h is the height of each cantilever beam. The result is similar to that obtained by Gross and Srawley by fitting a line to discrete results from their boundary collocation analysis.

  3. Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters

    NASA Astrophysics Data System (ADS)

    Tan, T.; Yan, Z.; Hajj, M.

    2016-09-01

    Analysis of cantilever-based piezoelectric energy harvesting systems is usually performed using coupled equations that represent the mechanical displacement and the voltage output. These equations are then solved simultaneously. In contrast to this representation, we use analytical solutions of the governing equation to derive an algebraic equation of the power as a function of the beam displacement, electromechanical coefficients, and the load resistance. Such an equation can be more useful in the design of such harvesters. Particularly, the mechanical displacement is computed from a mechanical governing equation with modified natural frequency and damping ratio that account for the electromechanical coupling. The voltage and the harvested power are then obtained by relating them directly to the mechanical displacement. We validate the proposed analysis by comparing its solution including the tip displacement and harvested power with those of numerical simulations of the governing equations. To demonstrate the generality of the proposed approach, we consider the cases of base excitation, galloping, and autoparametric vibration. The model proposed in this study simplifies the electromechanical coupling problem for practical applications of cantilever-beam piezoelectric energy harvesting systems.

  4. Bending stresses due to torsion in cantilever box beams

    NASA Technical Reports Server (NTRS)

    Kuhn, Paul

    1935-01-01

    The paper beings with a brief discussion on the origin of the bending stresses in cantilever box beams under torsion. A critical survey of existing theory is followed by a summary of design formulas; this summary is based on the most complete solution published but omits all refinements considered unnecessary at the present state of development. Strain-gage tests made by NACA to obtained some experimental verification of the formulas are described next. Finally, the formulas are applied to a series of box beams previously static-tested by the U.S. Army Air Corps; the results show that the bending stresses due to torsion are responsible to a large extent for the free-edge type of failure frequently experienced in these tests.

  5. Detection of atomic force microscopy cantilever displacement with a transmitted electron beam.

    PubMed

    Wagner, R; Woehl, T J; Keller, R R; Killgore, J P

    2016-07-25

    The response time of an atomic force microscopy (AFM) cantilever can be decreased by reducing cantilever size; however, the fastest AFM cantilevers are currently nearing the smallest size that can be detected with the conventional optical lever approach. Here, we demonstrate an electron beam detection scheme for measuring AFM cantilever oscillations. The oscillating AFM tip is positioned perpendicular to and in the path of a stationary focused nanometer sized electron beam. As the tip oscillates, the thickness of the material under the electron beam changes, causing a fluctuation in the number of scattered transmitted electrons that are detected. We demonstrate detection of sub-nanometer vibration amplitudes with an electron beam, providing a pathway for dynamic AFM with cantilevers that are orders of magnitude smaller and faster than the current state of the art.

  6. Detection of atomic force microscopy cantilever displacement with a transmitted electron beam

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Woehl, T. J.; Keller, R. R.; Killgore, J. P.

    2016-07-01

    The response time of an atomic force microscopy (AFM) cantilever can be decreased by reducing cantilever size; however, the fastest AFM cantilevers are currently nearing the smallest size that can be detected with the conventional optical lever approach. Here, we demonstrate an electron beam detection scheme for measuring AFM cantilever oscillations. The oscillating AFM tip is positioned perpendicular to and in the path of a stationary focused nanometer sized electron beam. As the tip oscillates, the thickness of the material under the electron beam changes, causing a fluctuation in the number of scattered transmitted electrons that are detected. We demonstrate detection of sub-nanometer vibration amplitudes with an electron beam, providing a pathway for dynamic AFM with cantilevers that are orders of magnitude smaller and faster than the current state of the art.

  7. Detection of atomic force microscopy cantilever displacement with a transmitted electron beam

    SciTech Connect

    Wagner, R.; Woehl, T. J.; Keller, R. R.; Killgore, J. P.

    2016-07-25

    The response time of an atomic force microscopy (AFM) cantilever can be decreased by reducing cantilever size; however, the fastest AFM cantilevers are currently nearing the smallest size that can be detected with the conventional optical lever approach. Here, we demonstrate an electron beam detection scheme for measuring AFM cantilever oscillations. The oscillating AFM tip is positioned perpendicular to and in the path of a stationary focused nanometer sized electron beam. As the tip oscillates, the thickness of the material under the electron beam changes, causing a fluctuation in the number of scattered transmitted electrons that are detected. We demonstrate detection of sub-nanometer vibration amplitudes with an electron beam, providing a pathway for dynamic AFM with cantilevers that are orders of magnitude smaller and faster than the current state of the art.

  8. Sensitivity of inelastic response to numerical integration of strain energy. [for cantilever beam

    NASA Technical Reports Server (NTRS)

    Kamat, M. P.

    1976-01-01

    The exact solution to the quasi-static, inelastic response of a cantilever beam of rectangular cross section subjected to a bending moment at the tip is obtained. The material of the beam is assumed to be linearly elastic-linearly strain-hardening. This solution is then compared with three different numerical solutions of the same problem obtained by minimizing the total potential energy using Gaussian quadratures of two different orders and a Newton-Cotes scheme for integrating the strain energy of deformation. Significant differences between the exact dissipative strain energy and its numerical counterpart are emphasized. The consequence of this on the nonlinear transient responses of a beam with solid cross section and that of a thin-walled beam on elastic supports under impulsive loads are examined.

  9. A Novel Approach to the Sensing of Liquid Density Using a Plastic Optical Fibre Cantilever Beam

    ERIC Educational Resources Information Center

    Kulkarni, Atul; Kim, Youngjin; Kim, Taesung

    2009-01-01

    This article reports for the first time the use of a plastic optical fibre (POF) cantilever beam to measure the density of a liquid. The sensor is based on the Archimedes buoyancy principle. The sensor consists of a POF bonded on the surface of a metal beam in the form of a cantilever configuration, and at the free end of the beam a displacer is…

  10. A Novel Approach to the Sensing of Liquid Density Using a Plastic Optical Fibre Cantilever Beam

    ERIC Educational Resources Information Center

    Kulkarni, Atul; Kim, Youngjin; Kim, Taesung

    2009-01-01

    This article reports for the first time the use of a plastic optical fibre (POF) cantilever beam to measure the density of a liquid. The sensor is based on the Archimedes buoyancy principle. The sensor consists of a POF bonded on the surface of a metal beam in the form of a cantilever configuration, and at the free end of the beam a displacer is…

  11. Mechanical behavior simulation of MEMS-based cantilever beam using COMSOL multiphysics

    NASA Astrophysics Data System (ADS)

    Acheli, A.; Serhane, R.

    2015-03-01

    This paper presents the studies of mechanical behavior of MEMS cantilever beam made of poly-silicon material, using the coupling of three application modes (plane strain, electrostatics and the moving mesh) of COMSOL Multi-physics software. The cantilevers playing a key role in Micro Electro-Mechanical Systems (MEMS) devices (switches, resonators, etc) working under potential shock. This is why they require actuation under predetermined conditions, such as electrostatic force or inertial force. In this paper, we present mechanical behavior of a cantilever actuated by an electrostatic force. In addition to the simplification of calculations, the weight of the cantilever was not taken into account. Different parameters like beam displacement, electrostatics force and stress over the beam have been calculated by finite element method after having defining the geometry, the material of the cantilever model (fixed at one of ends but is free to move otherwise) and his operational space.

  12. Mechanical behavior simulation of MEMS-based cantilever beam using COMSOL multiphysics

    SciTech Connect

    Acheli, A. Serhane, R.

    2015-03-30

    This paper presents the studies of mechanical behavior of MEMS cantilever beam made of poly-silicon material, using the coupling of three application modes (plane strain, electrostatics and the moving mesh) of COMSOL Multi-physics software. The cantilevers playing a key role in Micro Electro-Mechanical Systems (MEMS) devices (switches, resonators, etc) working under potential shock. This is why they require actuation under predetermined conditions, such as electrostatic force or inertial force. In this paper, we present mechanical behavior of a cantilever actuated by an electrostatic force. In addition to the simplification of calculations, the weight of the cantilever was not taken into account. Different parameters like beam displacement, electrostatics force and stress over the beam have been calculated by finite element method after having defining the geometry, the material of the cantilever model (fixed at one of ends but is free to move otherwise) and his operational space.

  13. A dynamic model of a cantilever beam with a closed, embedded horizontal crack including local flexibilities at crack tips

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zhu, W. D.; Charalambides, P. G.; Shao, Y. M.; Xu, Y. F.; Fang, X. M.

    2016-11-01

    As one of major failure modes of mechanical structures subjected to periodic loads, embedded cracks due to fatigue can cause catastrophic failure of machineries. Understanding the dynamic characteristics of a structure with an embedded crack is helpful for early crack detection and diagnosis. In this work, a new three-segment beam model with local flexibilities at crack tips is developed to investigate the vibration of a cantilever beam with a closed, fully embedded horizontal crack, which is assumed to be not located at its clamped or free end or distributed near its top or bottom side. The three-segment beam model is assumed to be a linear elastic system, and it does not account for the nonlinear crack closure effect; the top and bottom segments always stay in contact at their interface during the beam vibration. It can model the effects of local deformations in the vicinity of the crack tips, which cannot be captured by previous methods in the literature. The middle segment of the beam containing the crack is modeled by a mechanically consistent, reduced bending moment. Each beam segment is assumed to be an Euler-Bernoulli beam, and the compliances at the crack tips are analytically determined using a J-integral approach and verified using commercial finite element software. Using compatibility conditions at the crack tips and the transfer matrix method, the nature frequencies and mode shapes of the cracked cantilever beam are obtained. The three-segment beam model is used to investigate the effects of local flexibilities at crack tips on the first three natural frequencies and mode shapes of the cracked cantilever beam. A stationary wavelet transform (SWT) method is used to process the mode shapes of the cracked cantilever beam; jumps in single-level SWT decomposition detail coefficients can be used to identify the length and location of an embedded horizontal crack.

  14. Flutter and divergence instability of the multi-cracked cantilever beam-column

    NASA Astrophysics Data System (ADS)

    Caddemi, S.; Caliò, I.; Cannizzaro, F.

    2014-03-01

    For conservative systems instability can occur only by divergence and the presence of damage can produce both a reduction of the buckling loads and modification of the corresponding mode shapes, depending on the positions and intensities of the damage distribution. For nonconservative systems instability is found to occur by divergence, flutter, or both, characterised by multiple stable and unstable ranges of the loads whose boundary can be altered by the damage distribution. This paper focuses on the stability behaviour of multi-cracked cantilever Euler beam-column subjected to conservative or nonconservative axial loads. The exact flutter and divergence critical loads are obtained by means of the exact closed form solution of the multi-cracked beam-column, derived by the authors in a previous paper. The extensive numerical applications, reported in the paper, aimed at evaluating the influence of several damage scenarios for different values of the degree of nonconservativeness. It is shown how the presence of damage can strongly modify the ranges of divergence and flutter critical loads of the corresponding undamaged cantilever column, which has been the subject of several papers starting from the Pflüger paradoxical results.

  15. Investigation of fiber bridging in double cantilever beam specimens

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Managalgiri, P. D.

    1986-01-01

    The possibility to eliminate fiber bridging or at least to reduce it, and to evaluate an alternative approach for determination of in situ mode 7 fracture toughness values of composite matrix materials were investigated. Double cantilever beam (DCB) specimens were made using unidirectional lay-ups of T6C/Hx205 composite material in which the delaminating halves were placed at angles of 0, 1.5, and 3 degrees to each other. The small angles between the delaminating plies were used to avoid fiber nesting without significantly affecting mode I teflon insert. The DCB specimens were fabricated and it was found that: (1) the extent which fiber bridging and interlaminar toughness increase with crack length can be reduced by slight cross ply at the delamination plane to reduce fiber nesting; (2) some fiber bridging may occur even in the absence of fiber nesting; (3) the first values of toughness measured ahead of the thin teflon insert are very close to the toughness of the matrix material with no fiber bridging; (4) thin adhesive bondline of matrix material appears to give toughness values equal to the interlaminar toughness of the composite matrix without fiber bridging.

  16. Feedback Control of Vibrations in a Micromachined Cantilever Beam with Electrostatic Actuators

    NASA Astrophysics Data System (ADS)

    Wang, P. K. C.

    1998-06-01

    The problem of feedback control of vibrations in a micromachined cantilever beam with nonlinear electrostatic actuators is considered. Various forms of nonlinear feedback controls depending on localized spatial averages of the beam velocity and displacement near the beam tip are derived by considering the time rate-of-change of the total energy of the beam. The physical implementation of the derived feedback controls is discussed briefly. The dynamic behaviour of the beam with the derived feedback controls is determined by computer simulation.

  17. On the classification of normalized natural frequencies for damage detection in cantilever beam

    NASA Astrophysics Data System (ADS)

    Dahak, Mustapha; Touat, Noureddine; Benseddiq, Noureddine

    2017-08-01

    The presence of a damage on a beam causes changes in the physical properties, which introduce flexibility, and reduce the natural frequencies of the beam. Based on this, a new method is proposed to locate the damage zone in a cantilever beam. In this paper, the cantilever beam is discretized into a number of zones, where each zone has a specific classification of the first four normalized natural frequencies. The damaged zone is distinguished by only the classification of the normalized frequencies of the structure. In the case when the damage is symmetric to the vibration node, we use the unchanged natural frequency as a second information to obtain a more accurate location. The effectiveness of the proposed method is shown by a numerical simulation with ANSYS software and experimental investigation of a cantilever beam with different damage.

  18. Integrated motion measurement illustrated by a cantilever beam

    NASA Astrophysics Data System (ADS)

    Örtel, T.; Wagner, J. F.; Saupe, F.

    2013-01-01

    The combination of inertial sensors and satellite navigation receivers like those of GPS (Global Positioning System) represents a very typical integrated navigation system. Integrated navigation is the most common example of integrated motion measurement determining the translational and angular position, velocity, and acceleration of a vehicle. Traditionally, this object is assumed to be a rigid body and the signals of its closely spaced sensors are referenced to a single point of the structure. During periods of low vehicle dynamics such common navigation systems typically show stability problems due to a loss of observability of some of the motion variables. The range of applications for integrated navigation systems can be expanded due to the continuously increasing performance of data processing and cheap sensors. Further, it can be shown that the stability of such a navigation system (i. e. of the motion observer employed for the system, typically a Kalman filter) can be sustained by distributing appropriately additional sensors over the vehicle structures at distinct locations. This comprises the compensation of drift effects of the system by adding sensors that are drift-free and the guarantee of the observability of all estimated motion components. Large structures like airplanes, space stations, skyscrapers, and tower cranes with distributed sensors, however, have to take the flexibility of the structure into account. This includes an appropriate kinematical model of the structure. In this case, the theory of integrated systems has to be expanded to flexible structures. On the other hand, the additional system information obtained can be used not only for vehicle guidance but also for structural control. Within this work individual kinematical models especially of a cantilever beam, idealizing e.g. the wing of an airplane, are developed and investigated with regard to the observability of the motion variables to guarantee a stable integrated system

  19. Transverse vibration and buckling of a cantilevered beam with tip body under constant axial base acceleration

    NASA Technical Reports Server (NTRS)

    Storch, J.; Gates, S.

    1983-01-01

    The planar transverse bending behavior of a uniform cantilevered beam with rigid tip body subject to constant axial base acceleration was analyzed. The beam is inextensible and capable of small elastic transverse bending deformations only. Two classes of tip bodies are recognized: (1) mass centers located along the beam tip tangent line; and (2) mass centers with arbitrary offset towards the beam attachment point. The steady state response is studied for the beam end condition cases: free, tip mass, tip body with restricted mass center offset, and tip body with arbitrary mass center offset. The first three cases constitute classical Euler buckling problems, and the characteristic equation for the critical loads/accelerations are determined. For the last case a unique steady state solution exists. The free vibration response is examined for the two classes of tip body. The characteristic equation, eigenfunctions and their orthogonality properties are obtained for the case of restricted mass center offset. The vibration problem is nonhomogeneous for the case of arbitrary mass center offset. The exact solution is obtained as a sum of the steady state solution and a superposition of simple harmonic motions.

  20. Design Optimization of PZT-Based Piezoelectric Cantilever Beam by Using Computational Experiments

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Park, Sanghyun; Lim, Woochul; Jang, Junyong; Lee, Tae Hee; Hong, Seong Kwang; Song, Yewon; Sung, Tae Hyun

    2016-08-01

    Piezoelectric energy harvesting is gaining huge research interest since it provides high power density and has real-life applicability. However, investigative research for the mechanical-electrical coupling phenomenon remains challenging. Many researchers depend on physical experiments to choose devices with the best performance which meet design objectives through case analysis; this involves high design costs. This study aims to develop a practical model using computer simulations and to propose an optimized design for a lead zirconate titanate (PZT)-based piezoelectric cantilever beam which is widely used in energy harvesting. In this study, the commercial finite element (FE) software is used to predict the voltage generated from vibrations of the PZT-based piezoelectric cantilever beam. Because the initial FE model differs from physical experiments, the model is calibrated by multi-objective optimization to increase the accuracy of the predictions. We collect data from physical experiments using the cantilever beam and use these experimental results in the calibration process. Since dynamic analysis in the FE analysis of the piezoelectric cantilever beam with a dense step size is considerably time-consuming, a surrogate model is employed for efficient optimization. Through the design optimization of the PZT-based piezoelectric cantilever beam, a high-performance piezoelectric device was developed. The sensitivity of the variables at the optimum design is analyzed to suggest a further improved device.

  1. High Performance Open Loop Control of Scanning with a Small Cylindrical Cantilever Beam.

    PubMed

    Kundrat, Matthew J; Reinhall, Per G; Lee, Cameron M; Seibel, Eric J

    2011-04-11

    The steady state response motion of a base excited cantilever beam with circular cross-section excited by a unidirectional displacement will fall along a straight line. However, achieving straight-line motion with a real cantilever beam of circular cross-section is difficult to accomplish. This is due to the fact that nonlinear effects, small deviations from circularity, asymmetric boundary conditions, and actuator cross coupling can induce whirling. The vast majority of previous work on cantilever beam whirling has focused on the effects of system nonlinearities. We show that whirling is a much broader problem in the design of resonant beam scanners in that the onset of whirling does not depend on large amplitude of motion. Rather, whirling is the norm in real systems due to small system asymmetries and actuator cross coupling. It is therefore necessary to control the growth of the whirling motion when a unidirectional beam motion is desired. We have developed a novel technique to identify the two eigen directions of the beam. Base excitation generated by virtual electrodes along these orthogonal eigen axes of the cantilever beam system generates tip vibration without whirl. This leads to accurate open loop control of the motion of the beam through the combined actuation of two pairs of orthogonally placed actuator electrodes.

  2. Cantilever Beam Static and Dynamic Response Comparison with Mid-Point Bending for Thin MDF composite Panels

    Treesearch

    John F. Hunt; Houjiang Zhang; Zhiren Guo; Feng Fu

    2013-01-01

    A new cantilever beam apparatus has been developed to measure static and vibrational properties of small and thin samples of wood or composite panels. The apparatus applies a known displacement to a cantilever beam, measures its static load, then releases it into its natural first mode of transverse vibration. Free vibrational tip displacements as a function of time...

  3. A case study of analysis methods for large deflections of a cantilever beam

    NASA Technical Reports Server (NTRS)

    Craig, L. D.

    1994-01-01

    A load case study of geometric nonlinear large deflections of a cantilever beam is presented. The bending strain must remain elastic. Closed form solution and finite element methods of analysis are illustrated and compared for three common load cases. A nondimensional nomogram for each case is presented in the summary.

  4. Analysis of Cantilever-Beam Bending Stress Relaxation Properties of Thin Wood Composites

    Treesearch

    John F. Hunt; Houjiang Zhang; Yan Huang

    2015-01-01

    An equivalent strain method was used to analyze and determine material relaxation properties for specimens from particleboard, high density fiberboard, and medium density fiberboard. Cantilever beams were clamped and then deflected to 11 m and held for either 2 h or 3 h, while the load to maintain that deflection was measured vs. time. Plots of load relaxation for each...

  5. Determining shear modulus of thin wood composite materials using a cantilever beam vibration method

    Treesearch

    Cheng Guan; Houjiang Zhang; John F. Hunt; Haicheng Yan

    2016-01-01

    Shear modulus (G) of thin wood composite materials is one of several important indicators that characterizes mechanical properties. However, there is not an easy method to obtain this value. This study presents the use of a newly developed cantilever beam free vibration test apparatus to detect in-plane G of thin wood composite...

  6. SEMICONDUCTOR TECHNOLOGY Supercritical carbon dioxide process for releasing stuck cantilever beams

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Chaoqun, Gao; Lei, Wang; Yupeng, Jing

    2010-10-01

    The multi-SCCO2 (supercritical carbon dioxide) release and dry process based on our specialized SCCO2 semiconductor process equipment is investigated and the releasing mechanism is discussed. The experiment results show that stuck cantilever beams were held up again under SCCO2 high pressure treatment and the repeatability of this process is nearly 100%.

  7. An approximate solution for the free vibrations of rotating uniform cantilever beams

    NASA Technical Reports Server (NTRS)

    Peters, D. A.

    1973-01-01

    Approximate solutions are obtained for the uncoupled frequencies and modes of rotating uniform cantilever beams. The frequency approximations for flab bending, lead-lag bending, and torsion are simple expressions having errors of less than a few percent over the entire frequency range. These expressions provide a simple way of determining the relations between mass and stiffness parameters and the resultant frequencies and mode shapes of rotating uniform beams.

  8. Dentin erosion simulation by cantilever beam fatigue and pH change.

    PubMed

    Staninec, M; Nalla, R K; Hilton, J F; Ritchie, R O; Watanabe, L G; Nonomura, G; Marshall, G W; Marshall, S J

    2005-04-01

    Exposed root surfaces frequently exhibit non-carious notches representing material loss by abrasion, erosion, and/or abfraction. Although a contribution from mechanical stress is often mentioned, no definitive proof exists of a cause-effect relationship. To address this, we examined dimensional changes in dentin subjected to cyclic fatigue in two different pH environments. Human dentin cantilever-beams were fatigued under load control in pH = 6 (n = 13) or pH = 7 (n = 13) buffer, with a load ratio (R = minimum load/maximum load) of 0.1 and frequency of 2 Hz, and stresses between 5.5 and 55 MPa. Material loss was measured at high- and low-stress locations before and after cycling. Of the 23 beams, 7 withstood 1,000,000 cycles; others cracked earlier. Mean material loss in high-stress areas was greater than in low-stress areas, and losses were greater at pH = 6 than at pH = 7, suggesting that mechanical stress and lower pH both accelerate erosion of dentin surfaces.

  9. Position and mode dependent optical detection back-action in cantilever beam resonators

    NASA Astrophysics Data System (ADS)

    Larsen, T.; Schmid, S.; Dohn, S.; Sader, J. E.; Boisen, A.; Villanueva, L. G.

    2017-03-01

    Optical detection back-action in cantilever resonant or static detection presents a challenge when striving for state-of-the-art performance. The origin and possible routes for minimizing optical back-action have received little attention in literature. Here, we investigate the position and mode dependent optical back-action on cantilever beam resonators. A high power heating laser (100 µW) is scanned across a silicon nitride cantilever while its effect on the first three resonance modes is detected via a low-power readout laser (1 µW) positioned at the cantilever tip. We find that the measured effect of back-action is not only dependent on position but also the shape of the resonance mode. Relevant silicon nitride material parameters are extracted by fitting finite element (FE) simulations to the temperature-dependent frequency response of the first three modes. In a second round of simulations, using the extracted parameters, we successfully fit the FEM results with the measured mode and position dependent back-action. From the simulations, we can conclude that the observed frequency tuning is due to temperature induced changes in stress. Effects of changes in material properties and dimensions are negligible. Finally, different routes for minimizing the effect of this optical detection back-action are described, allowing further improvements of cantilever-based sensing in general.

  10. Application of a passive/active autoparametric cantilever beam absorber with PZT actuator for Duffing systems

    NASA Astrophysics Data System (ADS)

    Silva-Navarro, G.; Abundis-Fong, H. F.; Vazquez-Gonzalez, B.

    2013-04-01

    An experimental investigation is carried out on a cantilever-type passive/active autoparametric vibration absorber, with a PZT patch actuator, to be used in a primary damped Duffing system. The primary system consists of a mass, viscous damping and a cubic stiffness provided by a soft helical spring, over which is mounted a cantilever beam with a PZT patch actuator actively controlled to attenuate harmonic and resonant excitation forces. With the PZT actuator on the cantilever beam absorber, cemented to the base of the beam, the auto-parametric vibration absorber is made active, thus enabling the possibility to control the effective stiffness and damping associated to the passive absorber and, as a consequence, the implementation of an active vibration control scheme able to preserve, as possible, the autoparametric interaction as well as to compensate varying excitation frequencies and parametric uncertainty. This active vibration absorber employs feedback information from a high resolution optical encoder on the primary Duffing system and an accelerometer on the tip beam absorber, a strain gage on the base of the beam, feedforward information from the excitation force and on-line computations from the nonlinear approximate frequency response, parameterized in terms of a proportional gain provided by a voltage input to the PZT actuator, thus modifying the closed-loop dynamic stiffness and providing a mechanism to asymptotically track an optimal, robust and stable attenuation solution on the primary Duffing system. Experimental results are included to describe the dynamic and robust performance of the overall closed-loop system.

  11. High-throughput analysis of thin-film stresses using arrays of micromachined cantilever beams.

    PubMed

    Kim, Hyun-Jong; Han, Jun-Hyun; Kaiser, Roy; Oh, Kyu Hwan; Vlassak, Joost J

    2008-04-01

    We report on a technique for making high-throughput residual stress measurements on thin films by means of micromachined cantilever beams and an array of parallel laser beams. In this technique, the film of interest is deposited onto a silicon substrate with micromachined cantilever beams. The residual stress in the film causes the beams to bend. The curvature of the beams, which is proportional to the residual stress in the film, is measured by scanning an array of parallel laser beams generated with a diffraction grating along the length of the beams. The reflections of the laser beams are captured using a digital camera. A heating stage enables measurement of the residual stress as a function of temperature. As the curvature of each beam is determined by the local stress in the film, the film stress can be mapped across the substrate. This feature makes the technique a useful tool for the combinatorial analysis of phase transformations in thin films, especially when combined with the use of films with lateral composition gradients. As an illustration, we apply the technique to evaluate the thermomechanical behavior of Fe-Pd binary alloys as a function of composition.

  12. A simulation of the performance of a self-tuning energy harvesting cantilever beam

    NASA Astrophysics Data System (ADS)

    Kaplan, J. L.; Bonello, P.; Alalwan, M.

    2016-09-01

    A vibration energy harvester is typically a cantilever beam made up of one or two layers of piezoelectric material that is clamped at one end to a vibrating host structure. The harvester is typically tuned to the frequency of the ambient vibration to ensure maximum power generation. One method to ensure that the system stays tuned in the presence of a varying frequency is to attach a mass to the cantilever and apply a control system to adjust its position along the cantilever according to the ambient frequency. This paper presents a simulation of the performance of such a system, based on a distributed parameter electromechanical model of the sliding-mass beam. A variety of control systems are used to adjust the position of the movable mass during operation and are compared for their efficacy in maintaining resonance over a varying excitation frequency. It was found that the resonance frequency of a bimorph cantilever VEH (Vibration Energy Harvester) could be successfully tuned over a wide frequency range. Moreover, it is also found that much of the voltage output reduction at higher frequencies could be compensated for by a separate control system used to adjust the capacitor load.

  13. Interaction of a highly flexible cantilever beam with grid-generated turbulent flow

    NASA Astrophysics Data System (ADS)

    Goushcha, Oleg; Andreopoulos, Yiannis

    2016-11-01

    Experiments have been performed to study the fluid-structure interaction of a flexible cantilever beam with the free end facing upstream in anisotropic turbulent flow. Velocity fluctuations in the wind tunnel flow were generated by a turbulence grid. Time-Resolved Particle Image Velocimetry (TR-PIV) techniques were used to acquire velocity data on the plane of a CW laser illumination. Forces exerted on the beam were estimated based on the PIV data by analytically solving the Pressure Poisson Equation (PPE). Two types of interaction were observed. At a lower Reynolds number, fluid forces excite the beam into oscillations of small magnitude. At higher Reynolds number, the excitation is stronger, deflecting the beam sufficiently to cause flow separation and vortex shedding on one side of the beam. The resultant vortices exert additional forces on the beam producing large magnitude oscillations of the beam.

  14. Transverse vibrations of a linearly tapered cantilever beam with constraining springs

    NASA Astrophysics Data System (ADS)

    Craver, W. L., Jr.; Jampala, P.

    1993-09-01

    The free vibrations of a linearly tapered cantilever beam, elastically constrained at an arbitrary position along the length of the beam, have been investigated using the Bernoulli-Euler equation. The beam has a rectangular cross-section with equal taper in the horizontal and vertical planes, and the constraint is a translational spring. The characteristic determinant is derived in terms of dimensionless spring constant, and the eigenfrequencies are determined using a straight search and bisection method. The results are presented in tabular and graphical form.

  15. Analytical determination of coupled bending-torsion vibrations of cantilever beams by means of station functions

    NASA Technical Reports Server (NTRS)

    Mendelson, Alexander; Gendler, Selwyn

    1951-01-01

    A method based on the concept of station functions is presented for calculating the modes and the frequencies of nonuniform cantilever beams vibrating in torsion, bending, and coupled bending-torsion motion. The method combines some of the advantages of the Rayleigh-Ritz and Stodola methods, in that a continuous loading function for the beam is used, with the advantages of the influence-coefficient method, in that the continuous loading function is obtained in terms of the displacements of a finite number of stations along the beam.

  16. An Euler-Bernoulli second strain gradient beam theory for cantilever sensors

    NASA Astrophysics Data System (ADS)

    Amiot, F.

    2013-04-01

    This paper derives an Euler-Bernoulli beam theory for isotropic elastic materials based on a second strain gradient description. As such a description has been proved to allow for the definition of surface tension for solids, the equations satisfied by a beam featuring a through-thickness cohesion modulus gradient are established in order to describe the behaviour of micro cantilever sensors. Closed-form solutions are given for mechanical and chemical loadings. It is then shown that the involved material parameters seem virtually identifiable from full-field measurements and that the shape of the displacement field resulting from a chemical loading depends on the cantilever's thickness as well as on the material parameters. This makes such a theory potentially able to explain some of the experimental results found in the literature.

  17. Mechanics of cantilever beam: Implementation and comparison of FEM and MLPG approach

    SciTech Connect

    Trobec, Roman

    2016-06-08

    Two weak form solution approaches for partial differential equations, the well known meshbased finite element method and the newer meshless local Petrov Galerkin method are described and compared on a standard test case - mechanics of cantilever beam. The implementation, solution accuracy and calculation complexity are addressed for both approaches. We found out that FEM is superior in most standard criteria, but MLPG has some advantages because of its flexibility that results from its general formulation.

  18. Large deflections of a cantilever beam under arbitrarily directed tip load

    NASA Technical Reports Server (NTRS)

    Mccomb, H. E., Jr.

    1985-01-01

    The nonlinear beam equation was integrated numerically in a direct fashion to obtain results for large deflections of cantilevers under tip loads of arbitrary direction. A short BASIC computer program for performing this integration is presented. Results for selected load cases are presented. The numerical process is performed rapidly on a modern microcomputer, and comparisons with results from closed form solutions show that the process is accurate.

  19. Note: Determination of torsional spring constant of atomic force microscopy cantilevers: combining normal spring constant and classical beam theory.

    PubMed

    Álvarez-Asencio, R; Thormann, E; Rutland, M W

    2013-09-01

    A technique has been developed for the calculation of torsional spring constants for AFM cantilevers based on the combination of the normal spring constant and plate/beam theory. It is easy to apply and allow the determination of torsional constants for stiff cantilevers where the thermal power spectrum is difficult to obtain due to the high resonance frequency and low signal/noise ratio. The applicability is shown to be general and this simple approach can thus be used to obtain torsional constants for any beam shaped cantilever.

  20. Nanomechanical modeling of a (100)[001] crack in a single crystal bcc iron cantilever beam

    NASA Astrophysics Data System (ADS)

    Skogsrud, Jørn; Jørum, Marie; Thaulow, Christian

    2017-02-01

    An atomistic model of a fully 3D, nano-sized, pre-cracked cantilever beam has been made and MD simulations have been performed to deflect the beam and initiate crack growth. The crucial process zone in front of the crack has been investigated with respect to linear elastic and elastic-plastic fracture mechanics and plastic deformation mechanisms such as dislocations and twinning. The effect of crack geometry and loading rate has been studied. Two crack geometries were compared, one atomically sharp and one blunted. The sharper crack was shown to lead to a cleaner crack extension on (110)-planes, while the rounded crack showed extension along the initial (100)-plane in accordance with experiments on micro-sized 3 wt% Si α-Fe cantilevers. The effect of strain rate was also investigated, and it was found that lower strain rate correlated better with experimental observations. However, the strain rate used is still several magnitudes higher than for experiments, limiting the usefulness of strain rate observations for predicting behavior in experiments. A brief post-deformation comparison between simulations and SEM-images of focused ion beam-fabricated micro-cantilevers was also done, showing possible signs of similar deformation mechanisms and dislocation systems between them.

  1. Cantilever Beam Design for Projectile Internal Moving Mass Systems

    DTIC Science & Technology

    2010-09-01

    25 30 35 40 45 50 55 60 Beam Length (in) M ax im um A ng ul ar D is pl ac em en t ( de g ) 2 3 4 5 6 7 8 9 10 130 140 150 160 170 180 190 200 Beam...Actuated Kinetic Warheads. J. Guid. Control Dynam. 2004, 27 (1), 118–127. 8. Frost, G .; Costello, M . Linear Theory of a Projectile with a Rotating...Internal Part in Atmospheric Flight. J. Guid. Control Dynam. 2004, 27 (5), 898–906. 9. Frost, G .; Costello, M . Control Authority of a Projectile

  2. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging

    PubMed Central

    Dukic, Maja; Adams, Jonathan D.; Fantner, Georg E.

    2015-01-01

    Optical beam deflection (OBD) is the most prevalent method for measuring cantilever deflections in atomic force microscopy (AFM), mainly due to its excellent noise performance. In contrast, piezoresistive strain-sensing techniques provide benefits over OBD in readout size and the ability to image in light-sensitive or opaque environments, but traditionally have worse noise performance. Miniaturisation of cantilevers, however, brings much greater benefit to the noise performance of piezoresistive sensing than to OBD. In this paper, we show both theoretically and experimentally that by using small-sized piezoresistive cantilevers, the AFM imaging noise equal or lower than the OBD readout noise is feasible, at standard scanning speeds and power dissipation. We demonstrate that with both readouts we achieve a system noise of ≈0.3 Å at 20 kHz measurement bandwidth. Finally, we show that small-sized piezoresistive cantilevers are well suited for piezoresistive nanoscale imaging of biological and solid state samples in air. PMID:26574164

  3. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging

    NASA Astrophysics Data System (ADS)

    Dukic, Maja; Adams, Jonathan D.; Fantner, Georg E.

    2015-11-01

    Optical beam deflection (OBD) is the most prevalent method for measuring cantilever deflections in atomic force microscopy (AFM), mainly due to its excellent noise performance. In contrast, piezoresistive strain-sensing techniques provide benefits over OBD in readout size and the ability to image in light-sensitive or opaque environments, but traditionally have worse noise performance. Miniaturisation of cantilevers, however, brings much greater benefit to the noise performance of piezoresistive sensing than to OBD. In this paper, we show both theoretically and experimentally that by using small-sized piezoresistive cantilevers, the AFM imaging noise equal or lower than the OBD readout noise is feasible, at standard scanning speeds and power dissipation. We demonstrate that with both readouts we achieve a system noise of ≈0.3 Å at 20 kHz measurement bandwidth. Finally, we show that small-sized piezoresistive cantilevers are well suited for piezoresistive nanoscale imaging of biological and solid state samples in air.

  4. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging.

    PubMed

    Dukic, Maja; Adams, Jonathan D; Fantner, Georg E

    2015-11-17

    Optical beam deflection (OBD) is the most prevalent method for measuring cantilever deflections in atomic force microscopy (AFM), mainly due to its excellent noise performance. In contrast, piezoresistive strain-sensing techniques provide benefits over OBD in readout size and the ability to image in light-sensitive or opaque environments, but traditionally have worse noise performance. Miniaturisation of cantilevers, however, brings much greater benefit to the noise performance of piezoresistive sensing than to OBD. In this paper, we show both theoretically and experimentally that by using small-sized piezoresistive cantilevers, the AFM imaging noise equal or lower than the OBD readout noise is feasible, at standard scanning speeds and power dissipation. We demonstrate that with both readouts we achieve a system noise of ≈0.3 Å at 20 kHz measurement bandwidth. Finally, we show that small-sized piezoresistive cantilevers are well suited for piezoresistive nanoscale imaging of biological and solid state samples in air.

  5. Parametric study of cantilever walls subjected to seismic loading

    SciTech Connect

    Comina, Cesare; Foti, Sebastiano; Lancellotta, Renato; Leuzzi, Francesco; Pettiti, Alberto; Corigliano, Mirko; Lai, Carlo G.; Nicosia, Giovanni Li Destri; Psarropoulos, Prodromos N.; Paolucci, Roberto; Zanoli, Omar

    2008-07-08

    The design of flexible earth retaining structures under seismic loading is a challenging geotechnical problem, the dynamic soil-structure interaction being of paramount importance for this kind of structures. Pseudo-static approaches are often adopted but do not allow a realistic assessment of the performance of the structure subjected to the seismic motions. The present paper illustrates a numerical parametric study aimed at estimating the influence of the dynamic soil-structure interaction in the design. A series of flexible earth retaining walls have been preliminary designed according to the requirements of Eurocode 7 and Eurocode 8--Part 5; their dynamic behaviour has been then evaluated by means of dynamic numerical simulations in terms of bending moments, accelerations and stress state. The results obtained from dynamic analyses have then been compared with those determined using the pseudo-static approach.

  6. Measurement and Evaluation of the Gas Density and Viscosity of Pure Gases and Mixtures Using a Micro-Cantilever Beam

    PubMed Central

    Badarlis, Anastasios; Pfau, Axel; Kalfas, Anestis

    2015-01-01

    Measurement of gas density and viscosity was conducted using a micro-cantilever beam. In parallel, the validity of the proposed modeling approach was evaluated. This study also aimed to widen the database of the gases on which the model development of the micro-cantilever beams is based. The density and viscosity of gases are orders of magnitude lower than liquids. For this reason, the use of a very sensitive sensor is essential. In this study, a micro-cantilever beam from the field of atomic force microscopy was used. Although the current cantilever was designed to work with thermal activation, in the current investigation, it was activated with an electromagnetic force. The deflection of the cantilever beam was detected by an integrated piezo-resistive sensor. Six pure gases and sixteen mixtures of them in ambient conditions were investigated. The outcome of the investigation showed that the current cantilever beam had a sensitivity of 240 Hz/(kg/m3), while the accuracy of the determined gas density and viscosity in ambient conditions reached ±1.5% and ±2.0%, respectively. PMID:26402682

  7. Measurement and Evaluation of the Gas Density and Viscosity of Pure Gases and Mixtures Using a Micro-Cantilever Beam.

    PubMed

    Badarlis, Anastasios; Pfau, Axel; Kalfas, Anestis

    2015-09-22

    Measurement of gas density and viscosity was conducted using a micro-cantilever beam. In parallel, the validity of the proposed modeling approach was evaluated. This study also aimed to widen the database of the gases on which the model development of the micro-cantilever beams is based. The density and viscosity of gases are orders of magnitude lower than liquids. For this reason, the use of a very sensitive sensor is essential. In this study, a micro-cantilever beam from the field of atomic force microscopy was used. Although the current cantilever was designed to work with thermal activation, in the current investigation, it was activated with an electromagnetic force. The deflection of the cantilever beam was detected by an integrated piezo-resistive sensor. Six pure gases and sixteen mixtures of them in ambient conditions were investigated. The outcome of the investigation showed that the current cantilever beam had a sensitivity of 240 Hz/(kg/m³), while the accuracy of the determined gas density and viscosity in ambient conditions reached ±1.5% and ±2.0%, respectively.

  8. A versatile cantilever beam magnetometer for ex situ characterization of magnetic materials.

    PubMed

    Adhikari, R; Sarkar, A; Das, A K

    2012-01-01

    We have designed, fabricated, and made operational an ex situ cantilever beam magnetometer (CBM), which is versatile in the sense that it can measure most of the magnetic properties of a material in all probable shapes. The working principle of a CBM is discussed considering the magnetic torque into the beam theory. The individual components of the instrument are described in details and experiments were performed on the bulk materials, pellets of nanoparticles, ribbon samples, and thin films, and the magnetization, magnetostriction, and magnetocrystalline anisotropy were studied. This magnetometer is inexpensive, but versatile and would be suitable for the research as well as teaching laboratories.

  9. Application of GRASP (General Rotorcraft Aeromechanical Stability Program) to nonlinear analysis of a cantilever beam

    NASA Technical Reports Server (NTRS)

    Hinnant, Howard E.; Hodges, Dewey H.

    1987-01-01

    The General Rotorcraft Aeromechanical Stability Program (GRASP) was developed to analyse the steady-state and linearized dynamic behavior of rotorcraft in hovering and axial flight conditions. Because of the nature of problems GRASP was created to solve, the geometrically nonlinear behavior of beams is one area in which the program must perform well in order to be of any value. Numerical results obtained from GRASP are compared to both static and dynamic experimental data obtained for a cantilever beam undergoing large displacements and rotations caused by deformations. The correlation is excellent in all cases.

  10. Evaluation of the split cantilever beam for Mode 3 delamination testing

    NASA Technical Reports Server (NTRS)

    Martin, Roderick H.

    1989-01-01

    A test rig for testing a thick split cantilever beam for scissoring delamination (mode 3) fracture toughness was developed. A 3-D finite element analysis was conducted on the test specimen to determine the strain energy release rate, G, distribution along the delamination front. The virtual crack closure technique was used to calculate the G components resulting from interlaminar tension, GI, interlaminar sliding shear, GII, and interlaminar tearing shear, GIII. The finite element analysis showed that at the delamination front no GI component existed, but a GII component was present in addition to a GIII component. Furthermore, near the free edges, the GII component was significantly higher than the GIII component. The GII/GIII ratio was found to increase with delamination length but was insensitive to the beam depth. The presence of GII at the delamination front was verified experimentally by examination of the failure surfaces. At the center of the beam, where the failure was in mode 3, there was significant fiber bridging. However, at the edges of the beam where the failure was in mode 3, there was no fiber bridging and mode 2 shear hackles were observed. Therefore, it was concluded that the split cantilever beam configuration does not represent a pure mode 3 test. The experimental work showed that the mode 2 fracture toughness, GIIc, must be less than the mode 3 fracture toughness, GIIIc. Therefore, a conservative approach to characterizing mode 3 delamination is to equate GIIIc to GIIc.

  11. Investigation of fiber bridging in double cantilever beam specimens

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Mangalgiri, P. D.

    1987-01-01

    The possibility to eliminate fiber bridging or at least to reduce it, and to evaluate an alternative approach for determination of in situ mode 7 fracture toughness values of composite matrix materials were investigated. Double cantilver beam (DCB) specimens were made using unidirectional lay-ups of T6C/Hx205 composite material in which the delaminating halves were placed at angles of 0, 1.5, and 3 degrees to each other. The small angles between the delaminating plies were used to avoid fiber nesting without significantly affecting mode I teflon insert. The DCB specimens were fabricated and it was found that: (1) the extent which fiber bridging and interlaminar toughness increase with crack length can be reduced by slight cross ply at the delamination plane to reduce fiber nesting; (2) some fiber bridging may occur even in the absence of fiber nesting; (3) the first values of toughness measured ahead of the thin teflon insert are very close to the toughness of the matrix material with no fiber bridging; (4) thin adhesive bondline of matrix material appears to give toughness values equal to the interlaminar toughness of the composite matrix without fiber bridging.

  12. Note: High-efficiency broadband acoustic energy harvesting using Helmholtz resonator and dual piezoelectric cantilever beams.

    PubMed

    Yang, Aichao; Li, Ping; Wen, Yumei; Lu, Caijiang; Peng, Xiao; He, Wei; Zhang, Jitao; Wang, Decai; Yang, Feng

    2014-06-01

    A high-efficiency broadband acoustic energy harvester consisting of a compliant-top-plate Helmholtz resonator (HR) and dual piezoelectric cantilever beams is proposed. Due to the high mechanical quality factor of beams and the strong multimode coupling of HR cavity, top plate and beams, the high efficiency in a broad bandwidth is obtained. Experiment exhibits that the proposed harvester at 170-206 Hz has 28-188 times higher efficiency than the conventional harvester using a HR with a piezoelectric composite diaphragm. For input acoustic pressure of 2.0 Pa, the proposed harvester exhibits 0.137-1.43 mW output power corresponding to 0.035-0.36 μW cm(-3) volume power density at 170-206 Hz.

  13. Note: High-efficiency broadband acoustic energy harvesting using Helmholtz resonator and dual piezoelectric cantilever beams

    SciTech Connect

    Yang, Aichao; Li, Ping Wen, Yumei; Lu, Caijiang; Peng, Xiao; He, Wei; Zhang, Jitao; Wang, Decai; Yang, Feng

    2014-06-15

    A high-efficiency broadband acoustic energy harvester consisting of a compliant-top-plate Helmholtz resonator (HR) and dual piezoelectric cantilever beams is proposed. Due to the high mechanical quality factor of beams and the strong multimode coupling of HR cavity, top plate and beams, the high efficiency in a broad bandwidth is obtained. Experiment exhibits that the proposed harvester at 170–206 Hz has 28–188 times higher efficiency than the conventional harvester using a HR with a piezoelectric composite diaphragm. For input acoustic pressure of 2.0 Pa, the proposed harvester exhibits 0.137–1.43 mW output power corresponding to 0.035–0.36 μW cm{sup −3} volume power density at 170–206 Hz.

  14. Assessing the severity of fatigue crack using acoustics modulated by hysteretic vibration for a cantilever beam

    NASA Astrophysics Data System (ADS)

    He, Qingbo; Lin, Yin

    2016-05-01

    This paper investigates fatigue crack severity assessment using acoustics modulated by hysteretic vibration for a cantilever beam. In this study, a nonlinear oscillator system is constructed to induce the hysteretic frequency response of the cantilever beam in dynamics, and the hysteretic vibration is then used to modulate the acoustic waves to generate the vibro-acoustic modulation (VAM) effect. Through modulation of hysteretic vibration, the hysteretic response of the VAM can be achieved. The experimental results further validated that the VAM hysteresis phenomenon can be enhanced with the increase of crack severity owing to the change of beam's effective stiffness. Simulations in the proposed physical model explained the reason of enhancement of hysteresis phenomenon. Combined with nonlinear bistable structural model, a fatigue crack severity assessment approach was proposed by evaluating the hysteretic region (e.g., bandwidth or jumping frequency) in the vibration frequency response of the VAM effect. The reported study is valuable in building a monotonic relationship to assess the severity of fatigue crack by a nonlinear acoustics approach.

  15. Thermoelastic Analysis of a Vibrating TiB/Ti Cantilever Beam Using Differential Thermography

    SciTech Connect

    Byrd, Larry; Wyen, Travis; Byrd, Alex

    2008-02-15

    Differential thermography has been used to detect the fluctuating temperatures due the thermoelastic effect for a number of years. This paper examines functionally graded TiB/Ti cantilever beams excited on an electromechanical shaker in fully reversed bending. Finite difference analysis of specimens was used to look at the effect of heat conduction, convection and the fundamental frequency on the surface temperature distribution and compared to experimental data. The thermoelastic effect was also used to detect cracking and the stress field at the tip of the fixture during fatigue.

  16. Characterization of Interlaminar Crack Growth in Composites with the Double Cantilever Beam Specimen

    NASA Technical Reports Server (NTRS)

    Hunston, D. L.

    1984-01-01

    A project to examine the double cantilever beam specimen as a quantitative test method to assess the resistance of various composite materials to interlaminar crack growth is discussed. A second objective is to investigate the micromechanics of failure for composites with tough matrix resins from certain generic types of polymeric systems: brittle thermosets, toughened thermosets, and thermoplastics. Emphasis is given to a discussion of preliminary results in two areas: the effects of temperature and loading rate for woven composites, and the effects of matrix toughening in woven and unidirectional composites.

  17. Nonlinear Elastic J-Integral Measurements in Mode I Using a Tapered Double Cantilever Beam Geometry

    NASA Technical Reports Server (NTRS)

    Macon, David J.

    2006-01-01

    An expression for the J-integral of a nonlinear elastic material is derived for an advancing crack in a tapered double cantilever beam fracture specimen. The elastic and plastic fracture energies related to the test geometry and how these energies correlates to the crack position are discussed. The dimensionless shape factors eta(sub el and eta(sub p) are shown to be equivalent and the deformation J-integral is analyzed in terms of the eta(sub el) function. The fracture results from a structural epoxy are interpreted using the discussed approach. The magnitude of the plastic dissipation is found to strongly depend upon the initial crack shape.

  18. Analysis of the FELIX experiments with cantilevered beams and hollow cylinders

    SciTech Connect

    Turner, L.R.; Hua, T.Q.; Lee, S.Y.

    1986-01-01

    Experiments have been performed with the FELIX facility at Argonne National Laboratory to study the coupling between eddy currents and deflections and to provide data for validating eddy current computer programs. Experiments with cantilevered beams in crossed steady and decaying magnetic fields verify that coupling effects act to alleviate the large currents, deflections, and stresses predicted by uncoupled analyses. Measurements of magnetic fields induced in conducting hollow cylinders are analyzed by exponential fitting and by transfer functions. Spatial variation in the parameters of the exponential fit and in those of the one- and two-pole transfer functions suggests that several eddy current modes are acting in the cylinder test pieces.

  19. Rapid serial prototyping of magnet-tipped attonewton-sensitivity cantilevers by focused ion beam manipulation1

    PubMed Central

    Longenecker, Jonilyn G.; Moore, Eric W.; Marohn, John A.

    2011-01-01

    The authors report a method for rapidly prototyping attonewton-sensitivity cantilevers with custom-fabricated tips and illustrate the method by preparing tips consisting of a magnetic nanorod overhanging the leading edge of the cantilevers. Micron-long nickel nanorods with widths of 120–220 nm were fabricated on silicon chips by electron beam lithography, deposition, and lift-off. Each silicon chip, with its integral nanomagnet, was attached serially to a custom-fabricated attonewton-sensitivity cantilever using focused ion beam manipulation. The magnetic nanorod tips were prepared with and without an alumina capping layer, and the minimum detectable force and tip magnetic moment of the resulting cantilevers was characterized by cantilever magnetometry. The results indicate that this serial but high-yield approach is an effective way to rapidly prepare and characterize magnetic tips for the proposed single-electron-spin and single-proton magnetic resonance imaging experiments. The approach also represents a versatile route for affixing essentially any vacuum-compatible sample to the leading edge of an attonewton-sensitivity cantilever. PMID:23028212

  20. Stiffening and damping capacity of an electrostatically tuneable functional composite cantilever beam

    NASA Astrophysics Data System (ADS)

    Ginés, R.; Bergamini, A.; Motavalli, M.; Ermanni, P.

    2015-09-01

    The damping capacity of a novel composite film, designed to exhibit high dielectric strength and a high friction coefficient for an electrostatic tuneable friction damper, is tested on a cantilever beam. Such a system consists of a carbon fibre reinforced polymer stiffening element which is reversibly laminated onto a host structure with a dielectric material by means of electrostatic fields. Damping is achieved when the maximum shear at the interface between the stiffening element and structure exceeds the shear strength of the electrostatically laminated interface. The thin films tested consist of barium titanate particles and alumina platelets in an epoxy matrix. Their high dielectric constant and high coefficient of friction compared to a commercial available polymer film, polyvinylidene fluoride, lead to a reduction of the required electric field to stiffen and damp the cantilever beam. Reducing the operating voltage affects different aspects of the studied damper. The cost of possible applications of the frictional damper can be reduced, as the special components necessary at high voltages become redundant. Furthermore, the enhanced security positively affects the damping system’s appeal as an alternative damping method.

  1. Effect of continuous longitudinal glass fiber reinforcement on the cantilever beam strength of particulate filler composites.

    PubMed

    Kim, Sung-Hun; Christopher Watts, David

    2006-11-01

    The objective of this in vitro study was to investigate the effect of continuous longitudinal glass fibers on the bending properties of particulate filler composite resins. Four particulate filler composite resins (Tetric Ceram, Point 4, Z250, P60) and one continuous longitudinal glass fiber material (everStick) as reinforcement were selected. Three groups of beam specimens (5 x 5 x 25 mm) for each material were fabricated. For group I, specimens were not reinforced with fibers and were tested as the control group. For group II, specimens were reinforced with 2 layers of the fiber (6.5 vol%), and for group III with 3 layers (9.8 vol%). The specimens were stored at 37 degrees C for 30 days. One end of the beam specimen (14 mm) was fixed in a device, while the other (11 mm) was left free. Cantilever beam strength was measured using a universal testing machine, loading at a distance of 10 mm from the upright support through a steel ball of 2 mm diameter. The loads and deflection at initial failure and at final failure for each specimen were recorded. The data were statistically analyzed using one-way ANOVA and the multiple comparison Scheffé test (alpha = 0.05). The bending moments of particulate filler composite at final failure, when reinforced with 3 layers of the glass fibers (272.4-325.2 Ncm), were significantly higher than for the composites without fibers. However, the materials reinforced with 3 layers of fibers were not significantly different from the materials reinforced with 2 layers of fibers (234.1-282.6 Ncm). The materials reinforced with 3 layers of fibers exhibited severe deflection at final failure, ranging from 2.8 mm to 3.4 mm. The bending moments of the particulate composites increased linearly with the weight fraction of the fillers, but there was no linear correlation between them when reinforced with fibers. The cantilever beam strength of the particulate filler composites increased significantly when layers of fibers were added and as the

  2. Out-of-resonance vibration modulation of ultrasound with a nonlinear oscillator for microcrack detection in a cantilever beam

    SciTech Connect

    He, Qingbo Xu, Yanyan; Lu, Siliang; Dai, Daoyi

    2014-04-28

    This Letter reports an out-of-resonance vibro-acoustic modulation (VAM) effect in nonlinear ultrasonic evaluation of a microcracked cantilever beam. We design a model to involve the microcracked cantilever beam in a nonlinear oscillator system whose dynamics is introduced to extend the operating vibration excitation band of the VAM out of resonance. The prototype model exhibits an effective bandwidth four times that of the traditional linear model. The reported VAM effect allows efficiently enhancing the detection, localization, and imaging of various types of microcracks in solid materials at out-of-resonance vibration excitation frequencies.

  3. Focused Ion Beam patterning of suspended graphene for cantilever and kirigami devices

    NASA Astrophysics Data System (ADS)

    Rose, Peter; Huang, Pinshane; Blees, Melina; Barnard, Arthur; Muller, David; McEuen, Paul

    2014-03-01

    We have developed techniques that use a Focused Ion Beam (FIB) to cut and manipulate suspended graphene. Using a dual-beam FIB, we can make cuts with a resolution of tens of nanometers, manipulate and pick up finished devices using a micromanipulator, and remove device and micromanipulator from the vacuum chamber. Remarkably, we have demonstrated that singly clamped graphene cantilevers can be fabricated reliably and are robust enough to be freely manipulated in air. This gives us the potential to perform novel electrostatic and mechanical measurements of graphene. Using the FIB's direct writing capabilities, we are also able to cut out more complex shapes, drawing inspiration from kirigami, the art of paper cutting. Using specific cuts, we can create soft in-plane springs, which might be used to study tension. This exploration of the fabrication and manipulation of graphene in three dimensions is a promising new avenue toward harnessing graphene's unique properties, and also holds promise for other 2D materials.

  4. Mimicking the cochlear amplifier in a cantilever beam using nonlinear velocity feedback control

    NASA Astrophysics Data System (ADS)

    Joyce, Bryan S.; Tarazaga, Pablo A.

    2014-07-01

    The mammalian cochlea exhibits a nonlinear amplification which allows mammals to detect a large range of sound pressure levels while maintaining high frequency sensitivity. This work seeks to mimic the cochlea’s nonlinear amplification in a mechanical system. A nonlinear, velocity-based feedback control law is applied to a cantilever beam with piezoelectric actuators. The control law reduces the linear viscous damping of the system while introducing a cubic damping term. The result is a system which is positioned close to a Hopf bifurcation. Modelling and experimental results show that the beam with this control law undergoes a one-third amplitude scaling near the resonance frequency and an amplitude-dependent bandwidth. Both behaviors are characteristic of data obtained from the mammalian cochlea. This work could provide insight on the biological cochlea while producing bio-inspired sensors with a large dynamic range and sharp frequency sensitivity.

  5. Modal analysis of a cantilever beam by use of Brillouin based distributed dynamic strain measurements

    NASA Astrophysics Data System (ADS)

    Minardo, Aldo; Coscetta, Agnese; Pirozzi, Salvatore; Bernini, Romeo; Zeni, Luigi

    2012-12-01

    In this work we report an experimental modal analysis of a cantilever beam, carried out by use of a Brillouin optical time-domain analysis (BOTDA) setup operated at a fixed pump-probe frequency shift. The employed technique permitted us to carry out distributed strain measurements along the vibrating beam at a maximum acquisition rate of 108 Hz. The mode shapes of the first three bending modes (1.7, 10.8, 21.6 Hz) were measured for the structure under test. The good agreement between the experimental and numerical results based on a finite-element method (FEM) analysis demonstrates that Brillouin based distributed sensors are well suited to perform the modal analysis of a vibrating structure. This type of analysis may be useful for applications in structural health monitoring where changes in mode shapes are used as indicators of the damage to the structure.

  6. Identification of an unknown source term in a vibrating cantilevered beam from final overdetermination

    NASA Astrophysics Data System (ADS)

    Hasanov, Alemdar

    2009-11-01

    Inverse problems of determining the unknown source term F(x, t) in the cantilevered beam equation utt = (EI(x)uxx)xx + F(x, t) from the measured data μ(x) := u(x, T) or ν(x) := ut(x, T) at the final time t = T are considered. In view of weak solution approach, explicit formulae for the Fréchet gradients of the cost functionals J1(F) = ||u(x, T; w) - μ(x)||20 and J2(F) = ||ut(x, T; w) - ν(x)||20 are derived via the solutions of corresponding adjoint (backward beam) problems. The Lipschitz continuity of the gradients is proved. Based on these results the gradient-type monotone iteration process is constructed. Uniqueness and ill-conditionedness of the considered inverse problems are analyzed.

  7. Energy harvesting of cantilever beam system with linear and nonlinear piezoelectric model

    NASA Astrophysics Data System (ADS)

    Borowiec, Marek

    2015-11-01

    The nonlinear beam with vertical combined excitations is proposed as an energy harvester. The nonlinearities are included both, in the beam model and also in the electrical subsystem. The system is modelled as a cantilever beam with included a tip mass and piezoelectric patches which convert the bending strains induced by both, the harmonic and the additive stochastic forces. The excitation affects in vertical directions by kinematic forcing into electrical charge. The first main goal is to analyse the dynamics of the electro-mechanical beam system and the influence of the mixed excitation forces into an effectiveness of the energy harvesting. Overcoming the potential barrier by the beam system is also analysed, where large output amplitudes occur. Such region of the vibration affects more power generation, which is crucial in terms of load resistors sensitivities. By increasing the additive noise level with fixed harmonic force it is observed the transition from single well oscillations to inter-well stochastic jumps. The second mail goal is analysing the influence of the piezoelectric nonlinear characteristic and compare the results to the linear piezoelectric cases. The output power is measured during different system behaviours provided by different piezoelectric characteristic as well as introduced stochastic components by modulated tip mass of the system.

  8. Shear sensing in bonded composites with cantilever beam microsensors and dual-plane digital image correlation

    NASA Astrophysics Data System (ADS)

    Baur, Jeffery W.; Slinker, Keith; Kondash, Corey

    2017-04-01

    Understanding the shear strain, viscoelastic response, and onset of damage within bonded composites is critical to their design, processing, and reliability. This presentation will discuss the multidisciplinary research conducted which led to the conception, development, and demonstration of two methods for measuring the shear within a bonded joint - dualplane digital image correlation (DIC) and a micro-cantilever shear sensor. The dual plane DIC method was developed to measure the strain field on opposing sides of a transparent single-lap joint in order to spatially quantify the joint shear strain. The sensor consists of a single glass fiber cantilever beam with a radially-grown forest of carbon nanotubes (CNTs) within a capillary pore. When the fiber is deflected, the internal radial CNT array is compressed against an electrode within the pore and the corresponding decrease in electrical resistance is correlated with the external loading. When this small, simple, and low-cost sensor was integrated within a composite bonded joint and cycled in tension, the onset of damage prior to joint failure was observed. In a second sample configuration, both the dual plane DIC and the hair sensor detected viscoplastic changes in the strain of the sample in response to continued loading.

  9. Damage detection in a cantilever beam under dynamic conditions using a distributed, fast, and high spatial resolution Brillouin interrogator

    NASA Astrophysics Data System (ADS)

    Motil, A.; Davidi, R.; Bergman, A.; Botsev, Y.; Hahami, M.; Tur, M.

    2016-05-01

    The ability of Brillouin-based fiber-optic sensing to detect damage in a moving cantilever beam is demonstrated. A fully computerized, distributed and high spatial resolution (10cm) Fast-BOTDA interrogator (50 full-beam Brillouin-gain-spectra per second) successfully directly detected an abnormally stiffened (i.e., `damaged') 20cm long segment in a 6m Aluminum beam, while the beam was in motion. Damage detection was based on monitoring deviations of the measured strain distribution along the beam from that expected in the undamaged case.

  10. Multi-cracks identification method for cantilever beam structure with variable cross-sections based on measured natural frequency changes

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Yan, Xiaojun

    2017-01-01

    Cantilever beam's crack identification can provide critical information which is helpful to determine whether the structure be healthy or not. Among all crack identification methods, the methods based on measured structure's natural frequency changes own advantages of simplicity and easy for operation in practical engineering. To accurately identify multi-cracks' characteristics for cantilever beam structure with variable cross-sections, a mathematical model, which is based on the concept of modal strain energy, is established in this investigation. And to obtain cantilever beam's natural frequency result with higher resolution, a signal processing method based on Hilbert-Huang Transform (HHT) is also proposed, which can overcome the disadvantage of fast Fourier transform (FFT) in the aspect of frequency resolution and incapability of handling nonlinear vibration caused by crack breathing phenomenon. Based on above mathematical model and signal processing method, the method of identifying multi-cracks on cantilever beam with variable cross-sections is presented. To verify the accuracy of this multi-cracks identification method, experimental examples are conducted, and the results show that the method proposed in this investigation can accurately identify the cracks' characteristics, including their locations and relative depths.

  11. The Development of a Modified Double Cantilever Beam Specimen for Measuring the Fracture Energy of Rubber to Metal Bonds

    DTIC Science & Technology

    1986-11-20

    dissolved oxygen or water at the adhesive to metal oxide interface occurs and locally increases the pH. When these reaction products are sequestered inside...double cantilever beam (DCB) originally proposed by Ripling , it al. (7]. The specimen is shown with an extensometer mounted on the unit for measuring the

  12. Fabrication and tests of a MEMS-based double-beam cantilever flow sensor with clarifying of temperature effect

    NASA Astrophysics Data System (ADS)

    Pang, Junguo; Segawa, Takehiko; Ikehara, Tsuyoshi; Yoshida, Hiro; Kikushima, Yoshihiro; Abe, Hiroyuki; Meada, Ryutaro

    2005-02-01

    This paper presents the fabrication process of a MEMS-based cantilever flow sensor (CFS) with double cantilever beams and the test results of CFS in a wind-tunnel. Four boron-doped piezoresistive strain gauges at the base of each cantilever beam compose the four arms of the Wheatstone bridge. The output of CFS will change signs as piezoresistors at the base of the cantilever beam undergo compressive or tensile stresses. Analyses and experimental results suggest that double-beam CFS can be applied not only as a flow direction discriminator but also as a wall skin-friction sensor, which could be used in the system of active flow control for drag reduction and separation suppression in the boundary layers on a wing section. Temperature effect is commonly encountered in the application of MEMS-based piezoresistive strain gauges. By comparing the outputs of CFS when front side and back side of it facing the flow respectively, we are able to clarify the contribution of temperature effect on the output of CFS sensor and give more accurate results on flow measurement.

  13. Analyses of a Cantilever-Beam Based Instrument for Evaluating the Development of Polymerization Stresses

    PubMed Central

    Chiang, Martin Y.M.; Giuseppetti, Anthony A. M.; Qian, Jing; Dunkers, Joy P.; Antonucci, Joseph M.; Schumacher, Gary E.; Gibson, Sheng-Lin

    2011-01-01

    Polymerization stress (PS) remains one of the most critical properties of polymeric dental materials, yet methods that can accurately quantify PS has been limited in part due to the complexity of polymerization, and in part due to the instrumentation itself. In this study, we performed analytical and finite element analyses on a cantilever-beam based tensometer to evaluate shrinkage stresses during the polymerization of dental restorative composite. Results for these analyses were used to generate 1) guidelines for designing a tensometer that satisfies the necessary accuracy requirements, and 2) a formula for calculating PS and the instrument sensitivity. The PS generated by a commercial dental composite determined using our new tensometer agrees with the predicted trend when the beam length and/or specimen height is varied. An analytical solution is also derived for the vertical deflection of beam, which can be used for any combination of bending and shearing to properly calculate the PS. This work demonstrates the importance of beam dimension and component relative rigidity to the accuracy of PS evaluation. In addition, an easy-to-conduct calibration procedure is provided that is desirable for periodic tensometer recalibration. PMID:21714998

  14. An improved finite-difference analysis of uncoupled vibrations of tapered cantilever beams

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1983-01-01

    An improved finite difference procedure for determining the natural frequencies and mode shapes of tapered cantilever beams undergoing uncoupled vibrations is presented. Boundary conditions are derived in the form of simple recursive relations involving the second order central differences. Results obtained by using the conventional first order central differences and the present second order central differences are compared, and it is observed that the present second order scheme is more efficient than the conventional approach. An important advantage offered by the present approach is that the results converge to exact values rapidly, and thus the extrapolation of the results is not necessary. Consequently, the basic handicap with the classical finite difference method of solution that requires the Richardson's extrapolation procedure is eliminated. Furthermore, for the cases considered herein, the present approach produces consistent lower bound solutions.

  15. Measurement of thin film adhesion by single cantilever beam method equipped with adjustable jig

    NASA Astrophysics Data System (ADS)

    Shin, Dong-Kil; Lee, Jung-Ju; Hawong, Jai-Sug

    2015-03-01

    A new method to measure the tensile adhesion of thin film was proposed. A single cantilever beam method was used and an efficient adjustable jig was designed to minimize errors induced by misalignment of specimen. Applied load and displacement were recorded by data acquisition system. The dimensions of the specimen and conditions of test were preexamined by finite element analysis. Developed method was applied to measure the adhesion of thin film adhesive. Test results were independent of initial deviation of specimen alignment and showed consistent value with respect to crack length. Compared with shear test method, it was shown that the shear adhesion included the effect of thickness of adhesive, however, tensile adhesion was independent of the thickness of adhesive.

  16. Finite difference analysis of torsional vibrations of pretwisted, rotating, cantilever beams with effects of warping

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1985-03-01

    Theoretical natural frequencies of the first three modes of torsional vibration of pre-twisted, rotating cantilever beams are determined for various thickness and aspect ratios. Conclusions concerning individual and collective effects of warping, pretwist, tension-torsion coupling and tennis racket effect (twist-rotational coupling) terms on the natural frequencies are drawn from numerical results obtained by using a finite difference procedure with first order central differences. The relative importance of structural warping, inertial warping, pretwist, tension-torsion and twist-rotational coupling terms is discussed for various rotational speeds. The accuracy of results obtained by using the finite difference approach is verified by a comparison with the exact solution for specialized simple cases of the equation of motion used in this paper.

  17. The width-tapered double cantilever beam for interlaminar fracture testing

    NASA Technical Reports Server (NTRS)

    Bascom, W. D.; Jensen, R. M.; Bullman, G. W.; Hunston, D. L.

    1984-01-01

    The width-tapered double-cantilever-beam (WTDCB) specimen configuration used to determine the Mode-I interlaminar fracture energy (IFE) of composites has special advantages for routine development work and for quality-assurance purposes. These advantages come primarily from the simplicity of testing and the fact that the specimen is designed for constant change in compliance with crack length, so that the computation of Mode-I IFE is independent of crack length. In this paper, a simplified technique for fabrication and testing WTDCB specimens is described. Also presented are the effects of fiber orientation and specimen dimensions, a comparison of data obtained using the WTDCB specimens and other specimen geometries, and comparison of data obtained at different laboratories. It is concluded that the WTDCB gives interlaminar Mode-I IFE essentially equal to other type specimens, and that it can be used for rapid screening in resin-development work and for quality assurance of composite materials.

  18. Finite difference analysis of torsional vibrations of pretwisted, rotating, cantilever beams with effects of warping

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1985-01-01

    Theoretical natural frequencies of the first three modes of torsional vibration of pretwisted, rotating cantilever beams are determined for various thickness and aspect ratios. Conclusions concerning individual and collective effects of warping, pretwist, tension-torsion coupling and tennis racket effect (twist-rotational coupling) terms on the natural frequencies are drawn from numerical results obtained by using a finite difference procedure with first order central differences. The relative importance of structural warping, inertial warping, pretwist, tension-torsion and twist-rotational coupling terms is discussed for various rotational speeds. The accuracy of results obtained by using the finite difference approach is verified by a comparison with the exact solution for specialized simple cases of the equation of motion used in this paper.

  19. Sizing Single Cantilever Beam Specimens for Characterizing Facesheet/Core Peel Debonding in Sandwich Structure

    NASA Technical Reports Server (NTRS)

    Ratcliffe, James G.

    2010-01-01

    This paper details part of an effort focused on the development of a standardized facesheet/core peel debonding test procedure. The purpose of the test is to characterize facesheet/core peel in sandwich structure, accomplished through the measurement of the critical strain energy release rate associated with the debonding process. The specific test method selected for the standardized test procedure utilizes a single cantilever beam (SCB) specimen configuration. The objective of the current work is to develop a method for establishing SCB specimen dimensions. This is achieved by imposing specific limitations on specimen dimensions, with the objectives of promoting a linear elastic specimen response, and simplifying the data reduction method required for computing the critical strain energy release rate associated with debonding. The sizing method is also designed to be suitable for incorporation into a standardized test protocol. Preliminary application of the resulting sizing method yields practical specimen dimensions.

  20. Double Cantilever Beam and End Notched Flexure Fracture Toughness Testing of Two Composite Materials

    NASA Technical Reports Server (NTRS)

    Kessler, Jeff A.; Adams, Donald F.

    1993-01-01

    Two different unidirectional composite materials were provided by NASA Langley Research Center and tested by the Composite Materials Research Group within the Department of Mechanical Engineering at the University of Wyoming. Double cantilever beam and end notched flexure tests were performed to measure the mode I (crack opening) and mode II (sliding or shear) interlaminar fracture toughness of the two materials. The two composites consisted of IM7 carbon fiber combined with either RP46 resin toughened with special formulation of LaRC IA resin, known as JJS1356; or PES chain extended thermoplastic resin known as JJS1361. Double Cantilever Beam Specimen Configuration and Test Methods As received from NASA, the test specimens were nominally 0.5 inch wide, 6 inches long, and 0.2 inch thick. A 1 inch long Kapton insert at the midplane of one end of the specimen (placed during laminate fabrication) facilitated crack initiation and extension. It was noted that the specimens provided were smaller than the nominal 1.5 inch wide, 9.0 inch long configuration specified. Similarly, the Kapton inserts were of greater length than those in the present specimens. Hence, the data below should not be compared directly to those generated with the referenced methods. No preconditioning was performed on the specimens prior to testing. In general, the methodology was used for the present work. Crack opening loads were introduced to the specimens via piano hinges attached to the main specimen faces at a single end of each specimen. Hinges were bolted to the specimens using the technique presented. The cracks were extended a small distance from the end of the Kapton insert prior to testing. Just before precracking, the sides of the specimens were coated with water-soluble typewriter correction fluid to aid in crack visualization. Scribe marks were then made in the coating at half-inch intervals.

  1. The Role of Geometrically Necessary Dislocations in Cantilever Beam Bending Experiments of Single Crystals

    PubMed Central

    Husser, Edgar; Bargmann, Swantje

    2017-01-01

    The mechanical behavior of single crystalline, micro-sized copper is investigated in the context of cantilever beam bending experiments. Particular focus is on the role of geometrically necessary dislocations (GNDs) during bending-dominated load conditions and their impact on the characteristic bending size effect. Three different sample sizes are considered in this work with main variation in thickness. A gradient extended crystal plasticity model is presented and applied in a three-dimensional finite-element (FE) framework considering slip system-based edge and screw components of the dislocation density vector. The underlying mathematical model contains non-standard evolution equations for GNDs, crystal-specific interaction relations, and higher-order boundary conditions. Moreover, two element formulations are examined and compared with respect to size-independent as well as size-dependent bending behavior. The first formulation is based on a linear interpolation of the displacement and the GND density field together with a full integration scheme whereas the second is based on a mixed interpolation scheme. While the GND density fields are treated equivalently, the displacement field is interpolated quadratically in combination with a reduced integration scheme. Computational results indicate that GND storage in small cantilever beams strongly influences the evolution of statistically stored dislocations (SSDs) and, hence, the distribution of the total dislocation density. As a particular example, the mechanical bending behavior in the case of a physically motivated limitation of GND storage is studied. The resulting impact on the mechanical bending response as well as on the predicted size effect is analyzed. Obtained results are discussed and related to experimental findings from the literature. PMID:28772657

  2. Analytical modelling and extraction of the modal behaviour of a cantilever beam in fluid interaction

    NASA Astrophysics Data System (ADS)

    Gorman, Daniel G.; Trendafilova, Irina; Mulholland, Anthony J.; Horáček, Jaromír

    2007-11-01

    When carrying out vibration health monitoring (VHM) of a structure it is usually assumed that the structure is in the absence of fluid interaction and/or that any environmental effects which can cause changes in the vibration response of the structure either remain constant or are negligible. In general, the natural frequencies of a structure are the first candidates to be considered for damage features. But the natural frequencies would also change as a result of the interaction of the structure with a fluid/gas environment. For the purpose of VHM, one needs the pure structural natural frequencies corresponding to conditions when the structure does not interact with the environment. Therefore, in certain cases when the above assumptions cannot be made it becomes necessary to extract values of natural frequencies of the structure if it were in the absence of fluid interaction from those values measured. This paper considers the case of a cantilever beam in contact with a fluid cavity giving rise to strong structural/fluid vibration interaction and develops a method by which the natural frequencies of the beam in the absence of fluid interaction can be obtained from those of the beam in interaction.

  3. A frequency independent approximation and a sliding mode control scheme for a system of a micro-cantilever beam.

    PubMed

    Vagia, Marialena

    2012-03-01

    In the present article, a sliding mode controller is proposed for a micro-cantilever beam (μCB) with fringing and squeezed film damping effects. The narrow micro-cantilever beam can move via the application of an external electrically induced force. The introduction of the squeezed film parameters results in a frequency-dependent nonlinear system. Particular attention, has been paid, in order to approximate the frequency dependent μCB model, with a valid, frequency independent one, that would be incorporated in the design of a robust sliding mode controller. The suggested control technique enables compact realization of a robust controller tolerant in device characteristics' variations, nonlinearities and types of inherent instabilities. Robustness of the proposed control scheme against disturbances is proved by Lyapunov's second method. In addition, bifurcation analysis is carried on the beam's nonlinear model, and numerous simulation test cases are presented in order to test the suggested modeling and control techniques.

  4. Chemical sensor with oscillating cantilevered probe

    DOEpatents

    Adams, Jesse D

    2013-02-05

    The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.

  5. Detection of Cracks in a Cantilever Beam Using Signal Processing and Strain Energy Based Model

    NASA Astrophysics Data System (ADS)

    Mehta, P.; Kureshi, A.; Lad, S.; Patel, N.; Sharma, D.

    2017-09-01

    Structure health monitoring is one of the most important aspects in an industry, as structures should work safely during their service life. Cracks are the most common damage that initiates a breakdown phase and hence timely and accurate detection of these cracks is imperative. In this article, a vibration based non-destructive technique is presented to detect one or multiple edge cracks in beam like structures. This model is based on variation in mode shapes and natural frequencies that provide accuracy in results as well as ease in practical applications. The crack location is identified using mode shapes of damaged beam wherein an appropriate signal processing technique is implemented by using which the noise in the signal can be reduced. Along with this, the crack severity is also determined using a strain energy based mathematical model. The model presented in this study is capable of detecting an arbitrary number of cracks in cantilever or simply supported configuration. The results obtained using the proposed method is also validated by considering few case studies.

  6. Vibration responses analysis of an elastic-support cantilever beam with crack and offset boundary

    NASA Astrophysics Data System (ADS)

    Zhang, Wensheng; Ma, Hui; Zeng, Jin; Wu, Shuang; Wen, Bangchun

    2017-10-01

    In this study, a finite element model of an elastic-support cantilever beam with crack and offset boundary is established by using mixed elements in ANSYS software. In the proposed model, different contact elements are adopted to describe the breathing effect of crack and offset boundary, and spring elements are used to simulate the elastic support, and the model is also validated by comparing the natural frequencies with those in published literatures. Based on the developed model, the combined effects of the crack and offset boundary on the system dynamic characteristics are studied. The results indicate that the amplitude of double frequency component (2fe) firstly decreases and then increases with the offset values when the crack position is on the opposite side of offset boundary. 2fe may disappear when the crack and the offset boundary locate at a certain position. In addition, the more distant the offset boundary is, the more intense the system nonlinearity becomes. The amplitude of 2fe increases with the offset values when the crack position is on the same side of offset boundary under a constant crack depth and location. Moreover, it also shows some complicated frequency components due to the gradually strengthened nonlinearity of the system with the increasing offset values, and the obvious distortion phenomenon in the phase plane portraits can be observed near the super-harmonic resonance region. This study can provide some basis for the diagnosis of beam-like structures with crack.

  7. On use of double cantilever beam for coatings and adhesion tests

    NASA Astrophysics Data System (ADS)

    Troczynski, Tom; Camire, Jean

    1995-05-01

    The compliance model of Double Cantilever Beam (DCB) for testing coatings and adhesion has been proposed and verified experimentally. The model is based on the assumption that the coating modifies the stiffness of a foundation of DCB onto which the beam is fixed, according to a simple series-spring law. The model includes multi-coated specimens, in particular the specimen with thermal sprayed ceramic coating, with an additional layer of epoxy adhesive for attachment of a symmetrical DCB arm. It was found, that the compliance of DCB specimens with a coating is significantly increased for a coating thickness larger than approximately 1% of the arm thickness, and a coating Young's modulus smaller than approximately 50% of the arm modulus. The model results, verified by experiment, have profound consequences on calculations of the strain energy release rate in fracture tests for coatings, brazed joints etc. The total compliance of the arm and coating assembly scales with the coating stiffness, and thus the model can be utilised for rigidity evaluation of a variety of coatings on standard substrates, e.g. paints or polymer coatings on metals.

  8. Optimization of a right-angle piezoelectric cantilever using auxiliary beams with different stiffness levels for vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Xu, Jia Wen; Liu, Yong Bing; Shao, Wei Wei; Feng, Zhihua

    2012-06-01

    This paper presents experiments and models of a piezoelectric cantilever generator with a right-angle structure. Analysis shows that the extended part provides a large torque to the main beam, which can dramatically smoothen the strain distribution of the main beam. The auxiliary beam was fabricated with half the length of the main beam. When the auxiliary beam has a stiffness which is 0.02 times that of the main beam the piezoelectric element has a highly uniform strain distribution; in addition, its relative utilization efficiency (RUE) is 93% at the initial resonant frequency, whereas it is 50% for a conventional rectangular piezoelectric cantilever. The performances of three right-angle generators with auxiliary beams having different levels of stiffness, but constant-stiffness main beams are studied. The RUE of the piezoelements increases as the auxiliary beam’s stiffness decreases. A model based on the Rayleigh-Ritz method is established to demonstrate the principle of the strain-smoothing effect. The voltage and power outputs of the generators are measured. Finite element method simulations are also presented, and the result fits the experiments well.

  9. Bending and Shear Stresses Developed by the Instantaneous Arrest of the Root of a Moving Cantilever Beam

    NASA Technical Reports Server (NTRS)

    Stowell, Elbridge, Z; Schwartz, Edward B; Houbolt, John C

    1945-01-01

    A theoretical and experimental investigation has been made of the behavior of a cantilever beam in transverse motion when its root is suddenly brought to rest. Equations are given for determining the stresses, the deflections, and the accelerations that arise in the beam as a result of the impact. The theoretical equations, which have been confirmed experimentally, reveal that, at a given percentage of the distance from root to tip, the bending stresses for a particular mode are independent of the length of the beam, whereas the shear stresses vary inversely with the length.

  10. Determination of the Mode I Interlaminar Fracture Toughness by Using a Nonlinear Double-Cantilever Beam Specimen

    NASA Astrophysics Data System (ADS)

    Pavelko, V.; Lapsa, K.; Pavlovskis, P.

    2016-07-01

    The aim of this study is estimation of the effect of large deflections of a double-cantilever beam (DCB) on the accuracy of determination of the mode I interlaminar fracture toughness GIc of layered composites by using the nonlinear theory of bending of beams. The differential equation of the deflection curve of arm of the DCB specimen in the natural form was used to analyze the strain energy of the specimen and its strain energy release rate GI upon propagation of delamination under the action of cleavage forces at the ends of cantilevers. An algorithm for calculating the strain energy and its release rate in the DCB specimens is realized in the form of a MATLAB code. An experimental study was carried out on DCB specimens of a highly flexible carbon/epoxy laminate. The validity of the nonlinear model developed is demonstrated. The standard methods used to determine GIc are refined for the case of highly flexible specimens.

  11. Effect of surface stress on stress intensity factors of a nanoscale crack via double cantilever beam model.

    PubMed

    Wang, Hua; Li, Xianfang; Tang, Guojin; Shen, Zhibin

    2013-01-01

    This paper studies the influence of surface elasticity on crack growth for a nanoscale crack advance. A crack is modeled as a double cantilever beam with consideration of surface stress. Using the Euler-Bernoulli beam theory incorporating with surface effects, a governing equation of static bending is derived and bending solution of a cantilever nanowire is obtained for a concentrated force at the free end. Based on the viewpoint of energy balance, the elastic strain energy is given and energy release rate is determined. The influences of the Surface stress and the surface elasticity on crack growth are discussed. Obtained results indicate that consideration of the surface effects decreases stress intensity factors or energy release rates. The residual surface tension impedes propagation of a nanoscale crack and apparent fracture toughness of nanoscale materials is effectively enhanced.

  12. Modal analysis of a cantilever beam by use of the slope-assisted BOTDA method for damage identification

    NASA Astrophysics Data System (ADS)

    Minardo, A.; Coscetta, A.; Pirozzi, S.; Bernini, R.; Zeni, L.

    2013-05-01

    We report an experimental study on a cantilever beam, aimed to verify the feasibility of modal analysis by distributed Brillouin sensing for structural damage identification. Damage identification was carried out for three defect cases, analyzing the changes of the natural frequencies and mode shapes of the first two bending modes. Comparison with finite element method (FEM) analysis shows that the damage can be detected and localized, within the limitation dictated by the spatial resolution (30 cm) of our sensor.

  13. Active vibration control for piezoelectricity cantilever beam: an adaptive feedforward control method

    NASA Astrophysics Data System (ADS)

    Zhu, Qiao; Yue, Jun-Zhou; Liu, Wei-Qun; Wang, Xu-Dong; Chen, Jun; Hu, Guang-Di

    2017-04-01

    This work is focused on the active vibration control of piezoelectric cantilever beam, where an adaptive feedforward controller (AFC) is utilized to reject the vibration with unknown multiple frequencies. First, the experiment setup and its mathematical model are introduced. Due to that the channel between the disturbance and the vibration output is unknown in practice, a concept of equivalent input disturbance (EID) is employed to put an equivalent disturbance into the input channel. In this situation, the vibration control can be achieved by setting the control input be the identified EID. Then, for the EID with known multiple frequencies, the AFC is introduced to perfectly reject the vibration but is sensitive to the frequencies. In order to accurately identify the unknown frequencies of EID in presence of the random disturbances and un-modeled nonlinear dynamics, the time-frequency-analysis (TFA) method is employed to precisely identify the unknown frequencies. Consequently, a TFA-based AFC algorithm is proposed to the active vibration control with unknown frequencies. Finally, four cases are given to illustrate the efficiency of the proposed TFA-based AFC algorithm by experiment.

  14. A Mode-Shape-Based Fault Detection Methodology for Cantilever Beams

    NASA Technical Reports Server (NTRS)

    Tejada, Arturo

    2009-01-01

    An important goal of NASA's Internal Vehicle Health Management program (IVHM) is to develop and verify methods and technologies for fault detection in critical airframe structures. A particularly promising new technology under development at NASA Langley Research Center is distributed Bragg fiber optic strain sensors. These sensors can be embedded in, for instance, aircraft wings to continuously monitor surface strain during flight. Strain information can then be used in conjunction with well-known vibrational techniques to detect faults due to changes in the wing's physical parameters or to the presence of incipient cracks. To verify the benefits of this technology, the Formal Methods Group at NASA LaRC has proposed the use of formal verification tools such as PVS. The verification process, however, requires knowledge of the physics and mathematics of the vibrational techniques and a clear understanding of the particular fault detection methodology. This report presents a succinct review of the physical principles behind the modeling of vibrating structures such as cantilever beams (the natural model of a wing). It also reviews two different classes of fault detection techniques and proposes a particular detection method for cracks in wings, which is amenable to formal verification. A prototype implementation of these methods using Matlab scripts is also described and is related to the fundamental theoretical concepts.

  15. Sizing Single Cantilever Beam Specimens for Characterizing Facesheet/Core Peel Debonding in Sandwich Structure

    NASA Technical Reports Server (NTRS)

    Ratcliffe, James G.

    2010-01-01

    This technical publication details part of an effort focused on the development of a standardized facesheet/core peel debonding test procedure. The purpose of the test is to characterize facesheet/core peel in sandwich structure, accomplished through the measurement of the critical strain energy release rate associated with the debonding process. Following an examination of previously developed tests and a recent evaluation of a selection of these methods, a single cantilever beam (SCB) specimen was identified as being a promising candidate for establishing such a standardized test procedure. The objective of the work described here was to begin development of a protocol for conducting a SCB test that will render the procedure suitable for standardization. To this end, a sizing methodology was developed to ensure appropriate SCB specimen dimensions are selected for a given sandwich system. Application of this method to actual sandwich systems yielded SCB specimen dimensions that would be practical for use. This study resulted in the development of a practical SCB specimen sizing method, which should be well-suited for incorporation into a standardized testing protocol.

  16. Analysis of the dynamic characteristics of a slant-cracked cantilever beam

    NASA Astrophysics Data System (ADS)

    Ma, Hui; Zeng, Jin; Lang, Ziqiang; Zhang, Long; Guo, Yuzhu; Wen, Bangchun

    2016-06-01

    In this study, the dynamic characteristics of a slant-cracked cantilever beam are studied based on a new finite element (FE) model where both plane and beam elements are used to reduce the computational costs. Simulation studies show that the proposed model has the same system natural frequencies and vibration responses as those in the pure plane element model but is computationally more efficient. Based on the new model, the effects of loads such as gravity Fg, excitation force amplitude F0 and direction angles of excitation force φ, and crack parameters including slant crack angle θ, dimensionless crack depth s and dimensionless crack location p, on system dynamics have been analyzed. The results indicate that (1) the gravity has a more significant effect on the sub-harmonic resonance responses than on the super-harmonic resonance and resonance responses; (2) The amplitudes of the system responses at both excitation force frequencies fe and its harmonics such as 2fe and 3fe increase almost linearly with the increase of the excitation force amplitude F0; (3) Under the constant excitation force in the flexural direction, the tensile and compressive forces along the longitudinal direction can lead to opposite breathing behaviors of the crack within the super-harmonic and sub-harmonic resonance frequency regions; (4) Vibration is most severe under the straight crack angle (θ=90°) and near the straight crack angle such as θ=100° and 110°, and the vibration responses under smaller or larger crack angles such as θ=30° and θ=150° become weaker; (5) The resonance at 2fe is sensitive to the faint crack signals when s is small and p is large. In addition, the significant vibration responses at the multiple frequency of 3fe and the fractional frequency of 0.5fe can be regarded as a distinguishable feature of the serious crack with large s and small p.

  17. A Novel Method for Calculation of Strain Energy Release Rate of Asymmetric Double Cantilever Laminated Composite Beams

    NASA Astrophysics Data System (ADS)

    Shokrieh, M. M.; Zeinedini, A.

    2014-06-01

    In this research, a novel data reduction method for calculation of the strain energy release rate ( SERR) of asymmetric double cantilever beams ( ADCB) is presented. For this purpose the elastic beam theory ( EBT) is modified and the new method is called as the modified elastic beam theory ( MEBT). Also, the ADCB specimens are modeled using ABAQUS/Standard software. Then, the initiation of delamination of ADCB specimens is modeled using the virtual crack closure technique ( VCCT). Furthermore, magnitudes of the SERR for different samples are also calculated by an available data reduction method, called modified beam theory ( MBT). Using the hand lay-up method, different laminated composite samples are manufactured by E-glass/epoxy unidirectional plies. In order to measure the SERR, all samples are tested using an experimental setup. The results determined by the new data reduction method ( MEBT) show good agreements with the results of the VCCT and the MBT.

  18. Focussed ion beam machined cantilever aperture probes for near-field optical imaging.

    PubMed

    Jin, E X; Xu, X

    2008-03-01

    Near-field optical probe is the key element of a near-field scanning optical microscopy (NSOM) system. The key innovation in the first two NSOM experiments (Pohl et al., 1984; Lewis et al., 1984) is the fabrications of a sub-wavelength optical aperture at the apex of a sharply pointed transparent probe tip with a thin metal coating. This paper discusses the routine use of focussed ion beam (FIB) to micro-machine NSOM aperture probes from the commercial silicon nitride cantilevered atomic force microscopy probes. Two FIB micro-machining approaches are used to form a nanoaperture of controllable size and shape at the apex of the tip. The FIB side slicing produces a silicon nitride aperture on the flat-end tips with controllable sizes varying from 120 nm to 30 nm. The FIB head-on drilling creates holes on the aluminium-coated tips with sizes down to 50 nm. Nanoapertures in C and bow tie shapes can also be patterned using the FIB head-on milling method to possibly enhance the optical transmission. A transmission-collection NSOM system is constructed from a commercial atomic force microscopy to characterize the optical resolution of FIB-micro-machined aperture tips. The optical resolution of 78 nm is demonstrated by an aperture probe fabricated by FIB head-on drilling. Simultaneous topography imaging can also be realized using the same probe. By mapping the optical near-field from a bow-tie aperture, optical resolution as small as 59 nm is achieved by an aperture probe fabricated by the FIB side slicing method. Overall, high resolution and reliable optical imaging of routinely FIB-micro-machined aperture probes are demonstrated.

  19. Application of J-Integral in the Case of a Single Crack in Cantilever Beam

    NASA Astrophysics Data System (ADS)

    Mladensky, Angel S.; Rizov, Victor I.

    2012-12-01

    Mixed mode II/III crack investigation in cantilever bilayered unidirectional fiber reinforced composite beam is reported. The crack is situated between the layers. The two crack arms have different widths. Formula for the strain energy release rate is obtained by the linear elastic fracture mechanics methods using the magnitude of the applied forces, geometrical characteristics of the cross-section, and the elastic moduli of the layers. An equivalent shear modulus of the un-cracked beam portion is used. Several diagrams illustrating the results of parametrical analysis of the strain energy release rate are presented. The paper is a part of a research in the field of fracture behaviour of composite beams.

  20. A comparison of constant-load and constant-deflection stress-corrosion tests on precracked DCB specimens. [Double Cantilever Beam

    NASA Technical Reports Server (NTRS)

    Dorward, R. C.; Hasse, K. R.

    1978-01-01

    A comparison is made between measurements of stress-corrosion crack propagation made by a constant-load procedure and by a constant-deflection procedure. Precracked double cantilever beam specimens from 7075 aluminum alloy plate were used. The specimens were oriented in such a way that cracking would begin in the short-transverse plane and would propagate in the rolling direction. The specimens were subjected to a buffered salt-chromate solution and a 3.6% synthetic sea salt solution. The measurements were made optically with a binocular microscope. Stress intensities and crack lengths were calculated and crack velocities were obtained. Velocity was plotted against the average calculated stress intensity. Good agreement between the two methods was found for the salt-chromate solution, although some descrepancies were noted for the artificial sea salt solution.

  1. A comparison of constant-load and constant-deflection stress-corrosion tests on precracked DCB specimens. [Double Cantilever Beam

    NASA Technical Reports Server (NTRS)

    Dorward, R. C.; Hasse, K. R.

    1978-01-01

    A comparison is made between measurements of stress-corrosion crack propagation made by a constant-load procedure and by a constant-deflection procedure. Precracked double cantilever beam specimens from 7075 aluminum alloy plate were used. The specimens were oriented in such a way that cracking would begin in the short-transverse plane and would propagate in the rolling direction. The specimens were subjected to a buffered salt-chromate solution and a 3.6% synthetic sea salt solution. The measurements were made optically with a binocular microscope. Stress intensities and crack lengths were calculated and crack velocities were obtained. Velocity was plotted against the average calculated stress intensity. Good agreement between the two methods was found for the salt-chromate solution, although some descrepancies were noted for the artificial sea salt solution.

  2. A short pulse (7 {mu}s FWHM) and high repetition rate (dc-5kHz) cantilever piezovalve for pulsed atomic and molecular beams

    SciTech Connect

    Irimia, Daniel; Dobrikov, Dimitar; Kortekaas, Rob; Voet, Han; Janssen, Maurice H. M.; Ende, Daan A. van den; Groen, Wilhelm A.

    2009-11-15

    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms the vacuum seal. The valve can operate continuous (dc) and in pulsed mode with the same drive electronics. Pulsed operation has been tested at repetition frequencies up to 5 kHz. The static deflection of the cantilever, as mounted in the valve body, was measured as a function of driving field strength with a confocal microscope. The deflection and high speed dynamical response of the cantilever can be easily changed and optimized for a particular nozzle diameter or repetition rate by a simple adjustment of the free cantilever length. Pulsed molecular beams with a full width at half maximum pulse width as low as 7 {mu}s have been measured at a position 10 cm downstream of the nozzle exit. This represents a gas pulse with a length of only 10 mm making it well matched to for instance experiments using laser beams. Such a short pulse with 6 bar backing pressure behind a 150 {mu}m nozzle releases about 10{sup 16} particles/pulse and the beam brightness was estimated to be 4x10{sup 22} particles/(s str). The short pulses of the cantilever piezovalve result in a much reduced gas load in the vacuum system. We demonstrate operation of the pulsed valve with skimmer in a single vacuum chamber pumped by a 520 l/s turbomolecular pump maintaining a pressure of 5x10{sup -6} Torr, which is an excellent vacuum to have the strong and cold skimmed molecular beam interact with laser beams only 10 cm downstream of the nozzle to do velocity map slice imaging with a microchannel-plate imaging detector in a single chamber. The piezovalve produces cold and narrow ({Delta}v/v=2%-3%) velocity distributions of molecules seeded in helium or neon at modest backing pressures of only 6 bar. The low gas

  3. A short pulse (7 μs FWHM) and high repetition rate (dc-5kHz) cantilever piezovalve for pulsed atomic and molecular beams

    NASA Astrophysics Data System (ADS)

    Irimia, Daniel; Dobrikov, Dimitar; Kortekaas, Rob; Voet, Han; van den Ende, Daan A.; Groen, Wilhelm A.; Janssen, Maurice H. M.

    2009-11-01

    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms the vacuum seal. The valve can operate continuous (dc) and in pulsed mode with the same drive electronics. Pulsed operation has been tested at repetition frequencies up to 5 kHz. The static deflection of the cantilever, as mounted in the valve body, was measured as a function of driving field strength with a confocal microscope. The deflection and high speed dynamical response of the cantilever can be easily changed and optimized for a particular nozzle diameter or repetition rate by a simple adjustment of the free cantilever length. Pulsed molecular beams with a full width at half maximum pulse width as low as 7 μs have been measured at a position 10 cm downstream of the nozzle exit. This represents a gas pulse with a length of only 10 mm making it well matched to for instance experiments using laser beams. Such a short pulse with 6 bar backing pressure behind a 150 μm nozzle releases about 1016 particles/pulse and the beam brightness was estimated to be 4×1022 particles/(s str). The short pulses of the cantilever piezovalve result in a much reduced gas load in the vacuum system. We demonstrate operation of the pulsed valve with skimmer in a single vacuum chamber pumped by a 520 l/s turbomolecular pump maintaining a pressure of 5×10-6 Torr, which is an excellent vacuum to have the strong and cold skimmed molecular beam interact with laser beams only 10 cm downstream of the nozzle to do velocity map slice imaging with a microchannel-plate imaging detector in a single chamber. The piezovalve produces cold and narrow (Δv /v=2%-3%) velocity distributions of molecules seeded in helium or neon at modest backing pressures of only 6 bar. The low gas load of the cantilever

  4. A short pulse (7 micros FWHM) and high repetition rate (dc-5 kHz) cantilever piezovalve for pulsed atomic and molecular beams.

    PubMed

    Irimia, Daniel; Dobrikov, Dimitar; Kortekaas, Rob; Voet, Han; van den Ende, Daan A; Groen, Wilhelm A; Janssen, Maurice H M

    2009-11-01

    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms the vacuum seal. The valve can operate continuous (dc) and in pulsed mode with the same drive electronics. Pulsed operation has been tested at repetition frequencies up to 5 kHz. The static deflection of the cantilever, as mounted in the valve body, was measured as a function of driving field strength with a confocal microscope. The deflection and high speed dynamical response of the cantilever can be easily changed and optimized for a particular nozzle diameter or repetition rate by a simple adjustment of the free cantilever length. Pulsed molecular beams with a full width at half maximum pulse width as low as 7 micros have been measured at a position 10 cm downstream of the nozzle exit. This represents a gas pulse with a length of only 10 mm making it well matched to for instance experiments using laser beams. Such a short pulse with 6 bar backing pressure behind a 150 microm nozzle releases about 10(16) particles/pulse and the beam brightness was estimated to be 4x10(22) particles/(s str). The short pulses of the cantilever piezovalve result in a much reduced gas load in the vacuum system. We demonstrate operation of the pulsed valve with skimmer in a single vacuum chamber pumped by a 520 l/s turbomolecular pump maintaining a pressure of 5x10(-6) Torr, which is an excellent vacuum to have the strong and cold skimmed molecular beam interact with laser beams only 10 cm downstream of the nozzle to do velocity map slice imaging with a microchannel-plate imaging detector in a single chamber. The piezovalve produces cold and narrow (Delta v/v=2%-3%) velocity distributions of molecules seeded in helium or neon at modest backing pressures of only 6 bar. The low gas load of the

  5. Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters with inductive-resistive circuits and its application in galloping mode

    NASA Astrophysics Data System (ADS)

    Tan, Ting; Yan, Zhimiao

    2017-03-01

    The electromechanical decoupled distributed parameter model for cantilever-beam piezoelectric energy harvesters with inductive-resistive circuits is proposed. The modified natural frequency and electrical damping for series and parallel inductive-resistive cases are derived, which are functions of the first natural frequency of the cantilever beam, capacitance of the piezoelectric layers, load resistance, inductance and electromechanical coupling term. As a demonstration, we apply the decoupled model to cantilever-beam piezoelectric energy harvesters operated in the galloping mode. The average harvested power is derived as an algebraic expression of the electrical damping in addition to the wind speed, aerodynamic parameters of the bluff body and mechanical properties of the cantilever beam. Besides these impacts, the amplitude of the tip displacement also depends on its modified natural frequency. The electromechanical decoupled model and its analytical solutions are confirmed by the numerical solutions of the coupled model for the galloping mode. The theoretical expressions for the maximal harvested power and corresponding tip displacement at the optimal electrical damping are then developed. The cantilever-beam piezoelectric energy harvester with the inductive-resistive circuit has multiple solution sets of the modified natural frequency and electrical damping. Any optimal electrical damping can be realized by series or parallel inductive-resistive circuit, which cannot be accomplished by pure resistive circuit. By introducing the inductance to the circuit of the galloping piezoelectric energy harvester, the performance of such a system is improved with larger maximal harvested power at high wind speed and smaller amplitude of the tip displacement. This study provides a theoretical approach to capture the intrinsic effects of the inductance in addition to the load resistance on the performance of cantilever-beam piezoelectric energy harvesters.

  6. Development of fiber optic ferrule-top cantilevers for sensing and beam-steering applications

    NASA Astrophysics Data System (ADS)

    Gruca, G.; Chavan, D.; Cipullo, A.; Babaei Gavan, K.; De Filippis, F.; Minardo, A.; Rector, J.; Heek, K.; Zeni, L.; Iannuzzi, D.

    2012-04-01

    Ferrule-top (FT) cantilevers are a new generation of all optical micromechanical sensors obtained by carving microstructures on the top of ferrule terminated fibers. In this paper, we will demonstrate how this plug and play design can be used for the development of a new generation of sensors and actuators for harsh environments, where commercially available devices would be prone to failure. Ferrule-top sensors can work in two main modes - static and dynamic. The static mode is based on recording elastic deflection of the cantilever; the dynamic mode relies on tracking changes in its mechanical properties (resonance frequency, quality factor). Depending on the application, one can choose which mode is most suitable or combine both to achieve best performance. We will illustrate the relation between specific measured quantity (humidity, flow) and the behavior of the sensor. Further, we will show the setup in which the sensor can be actuated using light, giving the possibility to excite the cantilever without any electronics on the sensing head. This technique might by use for the development of fully optical beamsteering microdevices.

  7. Numerical simulation of the dynamics of a flexible cantilevered plate subjected to a perpendicular or a parallel fluid flow

    NASA Astrophysics Data System (ADS)

    Sansas, Fabien; Laurrendeau, Eric; Gosselin, Frederick

    2015-11-01

    We focus on the dynamic deformation of a cantilevered flexible plate immersed in a fluid flow. The following two-dimensional numerical study is based on a large deformation beam model solved by finite difference. The fluid is computed by an in-house Arbitrary Eulerian-Lagrangian (ALE) compressible CFD solver. After a validation and verification procedures confirming second order accuracy, two different cases are examined. The first case serves as a validation exercise for the coupling procedure with the flow parallel to the plate: its leading edge is clamped and the trailing end is free. This case models a flapping flag for which the stability of the plate as a function of its mass and flow velocity are investigated. Different vibration modes are compared to previous numerical and experimental results. The second case is that of a plate clamped at its middle, the flow being perpendicular to its initial shape. The plate deforms by bending in the flow direction. Streamlining and projected area reduction lead to fluid forces reduction but, at some point, dynamic instability occurs. Preliminary results of this instability phenomena are presented, namely the various dynamic behaviours and the trade-offs between streamlining and instability.

  8. The dynamic behavior of a cantilever beam coupled to a non-ideal unbalanced motor through numerical and experimental analysis

    NASA Astrophysics Data System (ADS)

    Gonçalves, P. J. P.; Silveira, M.; Pontes Junior, B. R.; Balthazar, J. M.

    2014-09-01

    An excitation force that is not influenced by the system state is said to be an ideal energy source. In real situations, a direct and feedback coupling between the excitation source and the system must always exist at a certain level. This manifestation of the law of conservation of energy is known as the Sommerfeld effect. In the case of obtaining a mathematical model for such a system, additional equations are usually necessary to describe the vibration sources with limited power and its coupling with the mechanical system. In this work, a cantilever beam and a non-ideal DC motor fixed to its free end are analyzed. The motor has an unbalanced mass that provides excitation to the system which is proportional to the current applied to the motor. During the coast up operation of the motor, if the drive power is increased slowly, making the excitation frequency pass through the first natural frequency of the beam, the DC motor speed will remain the same until it suddenly jumps to a much higher value (simultaneously its amplitude jumps to a much lower value) upon exceeding a critical input power. It was found that the Sommerfeld effect depends on some system parameters and the motor operational procedures. These parameters are explored to avoid the resonance capture in the Sommerfeld effect. Numerical simulations and experimental tests are used to help gather insight of this dynamic behavior.

  9. Micro-/nanosized cantilever beams and mass sensors under applied axial tensile/compressive force vibrating in vacuum and viscous fluid

    SciTech Connect

    Stachiv, Ivo; Fang, Te-Hua; Chen, Tao-Hsing

    2015-11-15

    Vibrating micro-/nanosized cantilever beams under an applied axial force are the key components of various devices used in nanotechnology. In this study, we perform a complete theoretical investigation of the cantilever beams under an arbitrary value of the axial force vibrating in a specific environment such as vacuum, air or viscous fluid. Based on the results easy accessible expressions enabling one the fast and highly accurate estimations of changes in the Q-factor and resonant frequencies of beam oscillating in viscous fluid caused by the applied axial force are derived and analyzed. It has been also shown that for beam-to-string and string vibrational regimes the mode shape starts to significantly deviate from the one known for a beam without axial force. Moreover, a linear dependency of the vibrational amplitude in resonance on the dimensionless tension parameter has been found. We revealed that only a large axial force, i.e. the string vibrational regime, significantly improves the Q-factor of beams submerged in fluid, while an increase of the axial force in beam and beam-to-string transition regimes has a negligibly small impact on the Q-factor enhancement. Experiments carried out on the carbon nanotubes and nanowires are in a good agreement with present theoretical predictions.

  10. Optimum structural sizing of conventional cantilever and joined wing configurations using equivalent beam models

    NASA Technical Reports Server (NTRS)

    Hajela, P.; Chen, J. L.

    1986-01-01

    The present paper describes an approach for the optimum sizing of single and joined wing structures that is based on representing the built-up finite element model of the structure by an equivalent beam model. The low order beam model is computationally more efficient in an environment that requires repetitive analysis of several trial designs. The design procedure is implemented in a computer program that requires geometry and loading data typically available from an aerodynamic synthesis program, to create the finite element model of the lifting surface and an equivalent beam model. A fully stressed design procedure is used to obtain rapid estimates of the optimum structural weight for the beam model for a given geometry, and a qualitative description of the material distribution over the wing structure. The synthesis procedure is demonstrated for representative single wing and joined wing structures.

  11. Natural Frequencies and Mode Shapes of a Nonlinear, Uniform Cantilevered Beam

    DTIC Science & Technology

    2006-09-01

    performed to measure natural frequencies and create a nonlinear elastic deformation model to improve helicopter main beam designs. These experiments used...element model in Nastran . 3 2. Literature Review 2.1 The Princeton Beam Experiments In 1975, Dowell and Traybar completed a series of... modeling and analysis capabilities, including [...] vibration” [12]. Nastran can analyze a structure’s natural frequencies with the geometry and material

  12. Nonlinear targeted energy transfer of two coupled cantilever beams coupled to a bistable light attachment

    NASA Astrophysics Data System (ADS)

    Mattei, P.-O.; Ponçot, R.; Pachebat, M.; Côte, R.

    2016-07-01

    In order to control the sound radiation by a structure, one aims to control vibration of radiating modes of vibration using "Energy Pumping" also named "Targeted Energy Transfer". This principle is here applied to a simplified model of a double leaf panel. This model is made of two beams coupled by a spring. One of the beams is connected to a nonlinear absorber. This nonlinear absorber is made of a 3D-printed support on which is clamped a buckled thin small beam with a small mass fixed at its centre having two equilibrium positions. The experiments showed that, once attached onto a vibrating system to be controlled, under forced excitation of the primary system, the light bistable oscillator allows a reduction of structural vibration up to 10 dB for significant amplitude and frequency range around the first two vibration modes of the system.

  13. A Novel Method for Characterizing Fatigue Delamination Growth Under Mode I Using the Double Cantilever Beam Specimen

    NASA Technical Reports Server (NTRS)

    Carvalho, Nelson; Murri, G.

    2014-01-01

    A novel method is proposed to obtain Mode I delamination growth rate from a Double Cantilever Beam (DCB) specimen. In the proposed method, Unidirectional (UD) DCB specimens are tested in fatigue at different initial maximum energy release rates levels. The growth rate data obtained in the first increments of crack growth at each maximum energy release rate level are used to generate a Paris Law equation, which characterizes delamination growth rate without fiber-bridging, and can also be used to determine a delamination onset curve. The remaining delamination growth rate data from each test are used to determine a modified Paris law, which characterizes the delamination growth rate in a DCB specimen, explicitly accounting for fiber-bridging. The proposed expression captures well the scatter in experimental data obtained using the DCB specimens, suggesting its adequacy. The Paris Law characterizing delamination growth rate without fiber-bridging predicts higher delamination growth rates for the same maximum energy release rate applied, leading to a conservative estimate for delamination growth. This is particularly relevant, since in generic ply interfaces, fiber-bridging is less predominant than in UD DCB specimens. Failing to account for fiber-bridging in UD DCB specimens may underestimate the delamination growth rate, yielding non-conservative predictions.

  14. Modeling energy transport in a cantilevered Euler-Bernoulli beam actively vibrating in Newtonian fluid

    NASA Astrophysics Data System (ADS)

    Faria, Cassio T.; Inman, Daniel J.

    2014-04-01

    When a mechanical and/or structural component is immersed in a fluid and it vibrates, the reasonable assumption is that part of the energy is transmitted to the adjacent media. For some engineering applications the energy transport between these two domains, i.e., structure and fluid, plays a central role. The work presented in this paper is focused on discussing the energy transport in beam-like structures as they can be used to represent flexible swimmers (fish-like pulsating mechanisms) in their simplest form. In order to expose the role of each of the fluid and beam properties effecting the energy transfer process, a simplified analytical fluid-structure interaction (FSI) model is derived. After analysis of the resulting coupled-systems' damping coefficient, a new energy transport component is added to the initial Euler-Bernoulli beam equation; a term associated with diffusion (fluid viscosity). In addition our modeling results in an added mass term, a characteristic consistent with previous literature. While deriving the model, an important assumption is made: beam mode shapes are not significantly affected by the domains' interaction. This hypothesis is experimentally tested in two different fluid media and confirmed to be reasonable for the first three vibration mode shapes.

  15. Cantilever biosensors.

    PubMed

    Fritz, Jürgen

    2008-07-01

    This review will provide a general introduction to the field of cantilever biosensors by discussing the basic principles and the basic technical background necessary to understand and evaluate this class of sensors. Microfabricated cantilever sensors respond to changes in their environment or changes on their surface with a mechanical bending in the order of nanometers which can easily be detected. They are able to detect pH and temperature changes, the formation of self-assembled monolayers, DNA hybridization, antibody-antigen interactions, or the adsorption of bacteria. The review will focus on the surface stress mode of microfabricated cantilever arrays and their application as biosensors in molecular life science. A general background on biosensors, an overview of the different modes of operation of cantilever sensors and some details on sensor functionalization will be given. Finally, key experiments and current theoretical efforts to describe the surface stress mode of cantilever sensors will be discussed.

  16. Uncertain boundary condition Bayesian identification from experimental data: A case study on a cantilever beam

    NASA Astrophysics Data System (ADS)

    Ritto, T. G.; Sampaio, R.; Aguiar, R. R.

    2016-02-01

    In many mechanical applications (wind turbine tower, substructure joints, etc.), the stiffness of the boundary conditions is uncertain and might decrease with time, due to wear and/or looseness. In this paper, a torsional stiffness parameter is used to model the clamped side of a Timoshenko beam. The goal is to perform the identification with experimental data. To represent the decreasing stiffness of the clamped side, an experimental test rig is constructed, where several rubber layers are added to the clamped side, making it softer. Increasing the number of layers decreases the stiffness, thus representing a loss in the stiffness. The Bayesian approach is applied to update the probabilistic model related to the boundary condition (torsional stiffness parameter). The proposed Bayesian strategy worked well for the problem analyzed, where the experimental natural frequencies were within the 95% confidence limits of the computed natural frequencies probability density functions.

  17. Bending and shear stresses developed by the instantaneous arrest of the root of a cantilever beam rotating with constant angular velocity about a transverse axis through the root

    NASA Technical Reports Server (NTRS)

    Stowell, Elbridge Z; Schwartz, Edward B; Houbolt, John C

    1945-01-01

    A theoretical investigation was made of the behavior of a cantilever beam in rotational motion about a transverse axis through the root determining the stresses, the deflections, and the accelerations that occur in the beam as a result of the arrest of motion. The equations for bending and shear stress reveal that, at a given percentage of the distance from root to tip and at a given trip velocity, the bending stresses for a particular mode are independent of the length of the beam and the shear stresses vary inversely with the length. When examined with respect to a given angular velocity instead of a given tip velocity, the equations reveal that the bending stress is proportional to the length of the beam whereas the shear stress is independent of the length. Sufficient experimental verification of the theory has previously been given in connection with another problem of the same type.

  18. Double-beam cantilever structure with embedded intelligent damping block: Dynamics and control

    NASA Astrophysics Data System (ADS)

    Szmidt, Tomasz; Pisarski, Dominik; Bajer, Czesław; Dyniewicz, Bartłomiej

    2017-08-01

    In this paper a semi-active method to control the vibrations of twin beams connected at their tips by a smart damping element is investigated. The damping element can be made of a magnetorheological elastomer or a smart material of another type, for instance vacuum packed particles. What is crucial is the ability to modify the storage and loss moduli of the damping block by means of devices attached directly to the vibrating structure. First, a simple dynamical model of the system is proposed. The continuous model is discretized using the Galerkin procedure. Then, a practical state-feedback control law is developed. The control strategy aims at achieving the best instantaneous energy dissipation of the system. Numerical simulations confirm its effectiveness in reducing free vibrations. The proposed control strategy appears to be robust in the sense that its application does not require any knowledge of the initial conditions imposed on the structure, and its performance is better than passive solutions, especially for the system induced in the first mode.

  19. 3D simulation of AFM non-uniform piezoelectric micro-cantilever with various geometries subjected to the tip-sample forces

    NASA Astrophysics Data System (ADS)

    Korayem, Alireza Habibnejad; Abdi, Moein

    2017-03-01

    Atomic force microscope (AFM) is a powerful instrument for investigation of surface topography at different workspaces. It is important to understand the dynamic behavior of AFM to improve its performance. 3D numerical method is suitable in order to simulate experimental conditions. This paper has investigated modeling and dynamic simulation of rectangular, Dagger and V-shaped geometries of AFM piezoelectric micro-cantilever (MC) with two electrode layers in the air environment. For a better understanding of the system dynamic, multi-layer MC dynamic equation has been derived. Euler-Bernoulli beam theory has been used for modeling the AFM cantilever. Hamilton's principle has been used for the MC modeling and the finite element method (FEM) has been applied for its discretization. In 3D, with respect to the tip-sample forces piezoelectric MC has been simulated via the COMSOL software. The frequency and time responses have been also investigated. The topographies have been performed on different surfaces with various roughness's types in the tapping and non-contact mode. The results of these two methods have been compared with experimental results. Moreover, the effects of MC geometrical parameters on surfaces topography and frequency responses have been studied and optimal dimensions of topographies have been obtained for each of the beam geometries. Simulations of various tip geometries have been performed in order to examine the effects of tip dimensions on the frequency and time responses. Furthermore, the effect of tip displacement on the frequency response has been investigated for different MC lengths.

  20. Lateral Torsional Buckling of Anisotropic Laminated Composite Beams Subjected to Various Loading and Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Ahmadi, Habiburrahman

    Thin-walled structures are major components in many engineering applications. When a thin-walled slender beam is subjected to lateral loads, causing moments, the beam may buckle by a combined lateral bending and twisting of cross-section, which is called lateral-torsional buckling. A generalized analytical approach for lateral-torsional buckling of anisotropic laminated, thin-walled, rectangular cross-section composite beams under various loading conditions (namely, pure bending and concentrated load) and boundary conditions (namely, simply supported and cantilever) was developed using the classical laminated plate theory (CLPT), with all considered assumptions, as a basis for the constitutive equations. Buckling of such type of members has not been addressed in the literature. Closed form buckling expressions were derived in terms of the lateral, torsional and coupling stiffness coefficients of the overall composite. These coefficients were obtained through dimensional reduction by static condensation of the 6x6 constitutive matrix mapped into an effective 2x2 coupled weak axis bending-twisting relationship. The stability of the beam under different geometric and material parameters, like length/height ratio, ply thickness, and ply orientation, was investigated. The analytical formulas were verified against finite element buckling solutions using ABAQUS for different lamination orientations showing excellent accuracy.

  1. SEM in situ MiniCantilever Beam Bending of U-10Mo/Zr/Al Fuel Elements

    SciTech Connect

    Mook, William; Baldwin, Jon K.; Martinez, Ricardo M.; Mara, Nathan A.

    2014-06-16

    In this work, the fracture behavior of Al/Zr and Zr/dU-10Mo interfaces was measured via the minicantilever bend technique. The energy dissipation rates were found to be approximately 3.7-5 mj/mm2 and 5.9 mj/mm2 for each interface, respectively. It was found that in order to test the Zr/U-10Mo interface, location of the hinge of the cantilever was a key parameter. While this test could be adapted to hot cell use through careful alignment fixturing and measurement of crack lengths with an optical microscope (as opposed to SEM, which was used here out of convenience), machining of the cantilevers via MiniMill in such a way as to locate the interfaces at the cantilever hinge, as well as proper placement of a femtosecond laser notch will continue to be key challenges in a hot cell environment.

  2. Tensile, Compression, Open-Hole Compression and Double Cantilever Beam Fracture Toughness Testing of Multiple NASA Langley Research Center Composite Materials

    NASA Technical Reports Server (NTRS)

    Adams, Donald F.

    1999-01-01

    The attached data summarizes the work performed by the Composite Materials Research Group at the University of Wyoming funded by the NASA LaRC Research Grant NAG-1-1294. The work consisted primarily of tension, compression, open-hole compression and double cantilever beam fracture toughness testing performed an a variety of NASA LaRC composite materials. Tests were performed at various environmental conditions and pre-conditioning requirements. The primary purpose of this work was to support the LaRC material development efforts. The data summaries are arranged in chronological order from oldest to newest.

  3. Bending of Beams Subjected to Transverse Impacts,

    DTIC Science & Technology

    1983-04-01

    and rotary inertia effects have been considered by Karunes and Onat [6] Symonds [7] and Jones and Gomes de Oliveira (8]. The main aspects of the...Phys. Sol., Vol. 2, 1954, pp. 92-102. 6. Karunes , B. and Onat, E.T., "On the Effect of Shear on Plastic Deformation of Beams Under Transverse Impact

  4. Approximate analysis of effects of large deflections and initial twist on torsional stiffness of a cantilever plate subjected to thermal stresses

    NASA Technical Reports Server (NTRS)

    Heldenfels, Richard R; Vosteen, Louis F

    1958-01-01

    An approximate analysis of the nonlinear effects of initial twist and large deflections on the torsional stiffness of a cantilever plate subjected to a nonuniform temperature distribution is presented. The Von Karman large-deflection equations are satisfied through the use of a variational principle. The results show that initial twist and applied moments can have significant effects on the changes in stiffness produced by nonuniform heating, particularly in the region of the buckling temperature difference. Results calculated by this approximate analysis are in satisfactory agreement with measured torsional deformations and changes in natural frequency. (author)

  5. Modeling and control of piezoelectric cantilever beam micro-mirror and micro-laser arrays to reduce image banding in electrophotographic processes

    NASA Astrophysics Data System (ADS)

    Cheng, Hung-Ming; Ewe, Michael T. S.; T-C Chiu, George; Bashir, Rashid

    2001-09-01

    This paper present a theoretical evaluation of the application of microelectromechanical technology to reduce banding artifacts in electrophotographic printing systems. The proposed system would consist of arrays of micro-mirrors and micro-lasers replacing conventional laser printing mechanisms. Several advantages of the new system include faster printing speeds, elimination of synchronization problems, improved image quality and lower production costs. Each micro-mirror can be a surface micro-machined piezoelectric cantilever beam with a reflective surface. An analytical model for the cantilever beam describing the dynamic relationship between scan line deflection and the applied voltage is derived. Using a closed-loop feedback control strategy, the effectiveness of the micro-mirror arrays in reducing banding was theoretically evaluated. Calculations show that each micro-mirror should be capable of deflecting the scan line a distance of 50 µm or approximately one 600 dots per inch (dpi) pixel by only using a 2 V voltage potential. Using an actual measured line spacing sequence, the operation of the system was simulated. The results demonstrated good tracking and significant reduction of the low-frequency banding components. Emulated images showed significant reduction in banding for a typical 600 dpi print resolution.

  6. Compliant cantilevered micromold

    DOEpatents

    Morales, Alfredo Martin; Domeier, Linda A.; Gonzales, Marcela G.; Keifer, Patrick N.; Garino, Terry Joseph

    2006-08-15

    A compliant cantilevered three-dimensional micromold is provided. The compliant cantilevered micromold is suitable for use in the replication of cantilevered microparts and greatly simplifies the replication of such cantilevered parts. The compliant cantilevered micromold may be used to fabricate microparts using casting or electroforming techniques. When the compliant micromold is used to fabricate electroformed cantilevered parts, the micromold will also comprise an electrically conducting base formed by a porous metal substrate that is embedded within the compliant cantilevered micromold. Methods for fabricating the compliant cantilevered micromold as well as methods of replicating cantilevered microparts using the compliant cantilevered micromold are also provided.

  7. Stochastic bifurcation and fractal and chaos control of a giant magnetostrictive film-shape memory alloy composite cantilever plate subjected to in-plane harmonic and stochastic excitation

    SciTech Connect

    Zhu, Zhiwen; Zhang, Qingxin Xu, Jia

    2014-05-07

    Stochastic bifurcation and fractal and chaos control of a giant magnetostrictive film–shape memory alloy (GMF–SMA) composite cantilever plate subjected to in-plane harmonic and stochastic excitation were studied. Van der Pol items were improved to interpret the hysteretic phenomena of both GMF and SMA, and the nonlinear dynamic model of a GMF–SMA composite cantilever plate subjected to in-plane harmonic and stochastic excitation was developed. The probability density function of the dynamic response of the system was obtained, and the conditions of stochastic Hopf bifurcation were analyzed. The conditions of noise-induced chaotic response were obtained in the stochastic Melnikov integral method, and the fractal boundary of the safe basin of the system was provided. Finally, the chaos control strategy was proposed in the stochastic dynamic programming method. Numerical simulation shows that stochastic Hopf bifurcation and chaos appear in the parameter variation process. The boundary of the safe basin of the system has fractal characteristics, and its area decreases when the noise intensifies. The system reliability was improved through stochastic optimal control, and the safe basin area of the system increased.

  8. Stochastic bifurcation and fractal and chaos control of a giant magnetostrictive film-shape memory alloy composite cantilever plate subjected to in-plane harmonic and stochastic excitation

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiwen; Zhang, Qingxin; Xu, Jia

    2014-05-01

    Stochastic bifurcation and fractal and chaos control of a giant magnetostrictive film-shape memory alloy (GMF-SMA) composite cantilever plate subjected to in-plane harmonic and stochastic excitation were studied. Van der Pol items were improved to interpret the hysteretic phenomena of both GMF and SMA, and the nonlinear dynamic model of a GMF-SMA composite cantilever plate subjected to in-plane harmonic and stochastic excitation was developed. The probability density function of the dynamic response of the system was obtained, and the conditions of stochastic Hopf bifurcation were analyzed. The conditions of noise-induced chaotic response were obtained in the stochastic Melnikov integral method, and the fractal boundary of the safe basin of the system was provided. Finally, the chaos control strategy was proposed in the stochastic dynamic programming method. Numerical simulation shows that stochastic Hopf bifurcation and chaos appear in the parameter variation process. The boundary of the safe basin of the system has fractal characteristics, and its area decreases when the noise intensifies. The system reliability was improved through stochastic optimal control, and the safe basin area of the system increased.

  9. Nonlocal and surface effects on the flutter instability of cantilevered nanotubes conveying fluid subjected to follower forces

    NASA Astrophysics Data System (ADS)

    Bahaadini, Reza; Hosseini, Mohammad; Jamalpoor, Ali

    2017-03-01

    On the basis of nonlocal elasticity theory, this paper studies the dynamic structural instability behavior of cantilever nanotubes conveying fluid incorporating end concentrated follower force and distributed tangential load, resting on the visco-Pasternak substrate. In order to improve the accuracy of the results, surface effects, i.e. surface elasticity and residual stresses are considered. Extended Hamilton's principle is implemented to obtain the nonlocal governing partial differential equation and related boundary conditions. Then, the extended Galerkin technique is used to convert partial differential equations into a general set of ordinary differential equations. Numerical results are expressed to reveal the variations of the critical flow velocity for flutter phenomenon of cantilever nanotubes with the various values of nonlocal parameter, mass ratios, nanotubes thickness, surface effects, various parameters of the visco-Pasternak medium, constant follower force and distributed compressive tangential load. Some numerical results of this research illustrated that the values of critical flutter flow velocity and stable region increase by considering surface effects. Also, critical flutter flow velocity decreases towards zero by increasing the value of the distributed compressive tangential load and constant follower force.

  10. Modeling effects of gas bubbles on the mechanical behaviors of Ag/Bi-2212 round wires using a double cantilever beam bridge model

    NASA Astrophysics Data System (ADS)

    Lu, Yurong; Wang, Zhongtong; Yong, Huadong; Zhou, Youhe

    2016-07-01

    Due to the larger current-carrying property, Bi2Sr2CaCu2Ox (Bi2212) superconductors have a great potential application in high field magnet. Bi2212 superconducting material can be fabricated as an isotropic round wire. However, there is 30% void space in the wire, such as gas bubbles. The void space has a larger influence on the property of the wire. In this paper, we will study the effect of gas bubble on the fracture behavior. Based on the double cantilever beam model and critical state theory, the mechanical behavior of Bi2212 wire is studied for decreasing field. Two different damage mechanisms are discussed using the strain energy release rate and strain of bridge. The results show that the large gas bubble can increase the strain of bridge. The central filaments with gas bubble are easier to be damaged than the edge filaments with gas bubble.

  11. Passive vibration control in a building-like structure using a tuned-mass-damper and an autoparametric cantilever beam absorber

    NASA Astrophysics Data System (ADS)

    Enriquez-Zarate, J.; Abundis-Fong, H. F.; Silva-Navarro, G.

    2015-04-01

    This article considers a theoretical and experimental comparative analysis in the responses of a three-story building-like structure using two different schemes of passive vibration control. These control schemes are designed to reduce the effects of resonant vibrations generated by an electromechanical shaker located in the base of the building-like structure. The first control scheme consists on the design of a Tuned-Mass-Damper located over the third floor of the structure, and the second control scheme considers the implementation of an autoparametric cantilever beam absorber. The mathematical model of the overall system is obtained using Euler-Lagrange method. In order to validate the frequency response of the main system a finite element model is completed. Some numerical and experimental results are included to show the dynamic behavior and stability performance of the overall mechanical system.

  12. Experimental Investigation of Effects of Random Loading on the Fatigue Life of Notched Cantilever-Beam Specimens of 7075-T6 Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Fralich, Robert W.

    1959-01-01

    Results of random-loading fatigue tests on 125 notched cantilever-beam specimens and constant-amplitude fatigue tests on 46 similar specimens are presented in terms of the root-mean-square value of peak stresses. The results from the two sets of tests are compared on the basis of time to failure, where the results from the constant-amplitude tests are expressed in terms of an equivalent time to failure based on the natural period of vibration. Compared on this basis, failure at the lower stress levels occurred in a shorter time for the random loading than for the constant-amplitude loading, whereas at the higher stress levels failure occurred in the reverse order. A theoretical result for random loading is also presented and compared with the experimental results. The theoretical result shows good agreement with experiment for low values of stress but underestimates the time to failure at the higher stresses.

  13. Toward Higher-Order Mass Detection: Influence of an Adsorbate's Rotational Inertia and Eccentricity on the Resonant Response of a Bernoulli-Euler Cantilever Beam.

    PubMed

    Heinrich, Stephen M; Dufour, Isabelle

    2015-11-19

    In this paper a new theoretical model is derived, the results of which permit a detailed examination of how the resonant characteristics of a cantilever are influenced by a particle (adsorbate) attached at an arbitrary position along the beam's length. Unlike most previous work, the particle need not be small in mass or dimension relative to the beam, and the adsorbate's geometric characteristics are incorporated into the model via its rotational inertia and eccentricity relative to the beam axis. For the special case in which the adsorbate's (translational) mass is indeed small, an analytical solution is obtained for the particle-induced resonant frequency shift of an arbitrary flexural mode, including the effects of rotational inertia and eccentricity. This solution is shown to possess the exact first-order behavior in the normalized particle mass and represents a generalization of analytical solutions derived by others in earlier studies. The results suggest the potential for "higher-order" nanobeam-based mass detection methods by which the multi-mode frequency response reflects not only the adsorbate's mass but also important geometric data related to its size, shape, or orientation (i.e., the mass distribution), thus resulting in more highly discriminatory techniques for discrete-mass sensing.

  14. Analysis of wood cantilever loaded at free end

    Treesearch

    Jen Y. Liu; Douglas R. Rammer

    2003-01-01

    A wood cantilever loaded at the free end was analyzed using the anisotropic elasticity theory. This report presents a two-dimensional numerical example of a Sitka spruce cantilever in the longitudinal-radial plane. When the grain slope is zero, ie., the beam axis coincides with the longitudinal axis of wood, the stresses in the beam and the deflection of the beam are...

  15. Toward Higher-Order Mass Detection: Influence of an Adsorbate’s Rotational Inertia and Eccentricity on the Resonant Response of a Bernoulli-Euler Cantilever Beam

    PubMed Central

    Heinrich, Stephen M.; Dufour, Isabelle

    2015-01-01

    In this paper a new theoretical model is derived, the results of which permit a detailed examination of how the resonant characteristics of a cantilever are influenced by a particle (adsorbate) attached at an arbitrary position along the beam’s length. Unlike most previous work, the particle need not be small in mass or dimension relative to the beam, and the adsorbate’s geometric characteristics are incorporated into the model via its rotational inertia and eccentricity relative to the beam axis. For the special case in which the adsorbate’s (translational) mass is indeed small, an analytical solution is obtained for the particle-induced resonant frequency shift of an arbitrary flexural mode, including the effects of rotational inertia and eccentricity. This solution is shown to possess the exact first-order behavior in the normalized particle mass and represents a generalization of analytical solutions derived by others in earlier studies. The results suggest the potential for “higher-order” nanobeam-based mass detection methods by which the multi-mode frequency response reflects not only the adsorbate’s mass but also important geometric data related to its size, shape, or orientation (i.e., the mass distribution), thus resulting in more highly discriminatory techniques for discrete-mass sensing. PMID:26610493

  16. Energy conservation in the transient response of nonlinear beam vibration problems subjected to pulse loading - A numerical approach

    NASA Technical Reports Server (NTRS)

    Moyer, E. T., Jr.

    1984-01-01

    The nonlinear vibration response of a double cantilevered beam subjected to pulse loading over a central sector is studied. The initial response is generated in detail to ascertain the energetics of the response. The total energy is used as a gauge of the stability and accuracy of the solution. It is shown that to obtain accurate and stable initial solutions an extremely high spatial and time resolution is required. This requirement was only evident through an examination of the energy of the system. It is proposed, therefore, to use the total energy of the system as a necessary stability and accuracy criterion for the nonlinear response of conservative systems. The results also demonstrate that even for moderate nonlinearities, the effects of membrane forces have a significant influence on the system. It is also shown that while the fundamental response is contained in a first mode envelope, the fluctuations caused by the higher order modes must be resolved.

  17. Energy conservation in the transient response of nonlinear beam vibration problems subjected to pulse loading - A numerical approach

    NASA Technical Reports Server (NTRS)

    Moyer, E. T., Jr.

    1984-01-01

    The nonlinear vibration response of a double cantilevered beam subjected to pulse loading over a central sector is studied. The initial response is generated in detail to ascertain the energetics of the response. The total energy is used as a gauge of the stability and accuracy of the solution. It is shown that to obtain accurate and stable initial solutions an extremely high spatial and time resolution is required. This requirement was only evident through an examination of the energy of the system. It is proposed, therefore, to use the total energy of the system as a necessary stability and accuracy criterion for the nonlinear response of conservative systems. The results also demonstrate that even for moderate nonlinearities, the effects of membrane forces have a significant influence on the system. It is also shown that while the fundamental response is contained in a first mode envelope, the fluctuations caused by the higher order modes must be resolved.

  18. Micromachined cantilevers-on-membrane topology for broadband vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Jia, Yu; Du, Sijun; Seshia, Ashwin A.

    2016-12-01

    The overwhelming majority of microelectromechanical piezoelectric vibration energy harvesting topologies have been based on cantilevers, doubly-clamped beams or basic membranes. While these conventional designs offer simplicity, their broadband responses have been limited thus far. This paper investigates the feasibility of a new integrated cantilevers-on-membrane design that explores the optimisation of piezoelectric strain distribution and improvement of the broadband power output. While a classic membrane has the potential to offer a broader resonant peak than its cantilever counterpart, the inclusion of a centred proof mass compromises its otherwise high strain energy regions. The proposed topology addresses this issue by relocating the proof mass onto subsidiary cantilevers and combines the merits of both the membrane and the cantilever designs. Numerical simulations, constructed using fitted values based on finite element models, were used to investigate the broadband response of the proposed design in contrast to a classic plain membrane. Experimentally, when subjected to a band-limited white noise excitation, the new cantilevers-on-membrane harvester exhibited nearly two fold power output enhancement when compared to a classic plain membrane harvester of a comparable size.

  19. Micromechanical cantilevers and scanning probe microscopes

    NASA Astrophysics Data System (ADS)

    Miller, Scott A.; Xu, Yang; MacDonald, Noel C.

    1995-09-01

    We have fabricated two microelectromechanical scanning tunneling microscopes (Micro- STMs) with 3D (xyz) actuators and integrated high aspects ratio tips. The reduction in the size of scanning probe microscopes allows for faster scanning speeds, array architectures, and massively parallel operation. The two Micro-STMs are fabricated from single crystal silicon using the high-aspect-ratio SCREAM process and are small enough to be used in array architectures. The torsional cantilever design used for out-of-plane (z) motion can be easily be adapted to scanning force microscopy. Typical atomic force microscope cantilevers have spring constants on the order of 0.01 - 10 N/m. To produce cantilevers with lower spring constants, ordinary thin film techniques would require longer (several mm) and thinner (sub- micrometers ) cantilevers. A mechanical analysis of torsional cantilevers reveals that high aspect ratio rectangular beams, such as the ones we fabricate, are easily twisted. By using the torsional design, we can achieve lower spring constants (10-1 - 10-7 N/m) without having to make a very thin film cantilever. We have demonstrated torsional cantilevers with spring constants on the order of 10-2 N/m. These cantilevers can be used as extremely sensitive force sensors for atomic force microscopy.

  20. Mode 1 and Mode 2 Analysis of Graphite/Epoxy Composites Using Double Cantilever Beam and End-Notched Flexure Tests

    NASA Technical Reports Server (NTRS)

    Hufnagel, Kathleen P.

    1995-01-01

    The critical strain energy release rates associated with debonding of the adhesive bondlines in graphite/epoxy IM6/3501-6 interlaminar fracture specimens were investigated. Two panels were manufactured for this investigation; however, panel two was layed-up incorrectly. As a result, data collected from Panel Two serves no real purpose in this investigation. Double Cantilever Beam (DCB) specimens were used to determine the opening Mode I interlaminar fracture toughness, G1(sub c), of uni-directional fiber re-inforced composites. The five specimens tested from Panel One had an average value of 946.42J/sq m for G1(sub c) with an acceptable coefficient of variation. The critical strain energy release rate, G2(sub c), for initiation of delamination under inplane shear loading was investigated using the End-Notched Flexure (ENF) Test. Four specimens were tested from Panel One and an average value of 584.98J/sq m for G2(sub c) was calculated. Calculations from the DCB and ENF test results for Panel One represent typical values of G1(sub c) and G2(sub c) for the adhesive debonding in the material studied in this investigation.

  1. Strain Measurements within Fibreboard. Part III: Analyzing the Process Zone at the Crack Tip of Medium Density Fiberboards (MDF) Double Cantilever I-Beam Specimens

    PubMed Central

    Rathke, Jörn; Müller, Ulrich; Konnerth, Johannes; Sinn, Gerhard

    2012-01-01

    This paper is the third part of a study dealing with the mechanical and fracture mechanical characterization of Medium Density Fiberboards (MDF). In the first part, an analysis of internal bond strength testing was performed and in the second part MDF was analyzed by means of the wedge splitting experiment; this part deals with the double cantilever I beam test, which is designed for measuring the fracture energy as well as stress intensity factor in Mode I. For a comparison of isotropic and orthotropic material behavior, finite element modeling was performed. In addition to the calculation of fracture energy the stress intensity factor was analyzed by means of finite elements simulation and calculation. In order to analyze strain deformations and the process zone, electronic speckle pattern interferometry measurements were performed. The results revealed an elongated process zone and lower results for KIC if compared to the wedge splitting experiment. The Gf numbers are higher compared to the wedge splitting results and can be explained by the thicker process zone formed during the crack propagation. The process zone width on its part is influenced by the stiff reinforcements and yields a similar crack surface as with the internal bond test.

  2. Investigation of the Effect of Material on Undamped Free Vibration of Cantilever Beams with Uniform Single Surface Crack

    NASA Astrophysics Data System (ADS)

    Mufazzal, Sameera; Muzakkir, S. M.; Zakir Jafri, Hasan

    2017-08-01

    Crack detection in structures is a critical area of research where the developments have been made out since decades. Various techniques are available for early identification and quantification of cracks to predict and prevent the unexpected sudden failure of structure and ensure uninterrupted service. Use of vibration analysis for detecting crack is one of the widely used techniques which offer lots of advantages over other like it is easier and less costly method and can be used for inaccessible components. The present work attempts to use modal analysis through FEA to investigate the effect of crack on natural frequency of vibration in beams of different materials, for three different crack location. From the result, it has been inferred that among Structural Steel (SS), Aluminium alloy (Al) and Gray Cast Iron (CI), the natural frequency is highest for Al beam and lowest for CI beam. Introduction of crack reduces the natural frequency of vibration, however, the effect of crack location on frequency is not uniform for different modes. Also, the trend is similar in beams of all the materials.

  3. Nonlinear flexural response of a slender cantilever beam of constant thickness and linearly-varying width to a primary resonance excitation

    NASA Astrophysics Data System (ADS)

    Silva, Clodoaldo J.; Daqaq, Mohammed F.

    2017-02-01

    Despite the shear amount of research studies on nonlinear flexural dynamics of cantilever beams, very few efforts address the practical geometry involving a constant thickness and linearly-varying width. This stems from the nature of the associated linear eigenvalue problem which cannot be easily solved in closed form. In this paper, we present a closed-form solution to this particular linear eigenvalue problem in the form of a general Meijer-G differential equation for which a solution is readily available in the shape of the Meijer-G functions. Using this approach, the exact linear modal frequencies and shapes are obtained and used in the discretization of the nonlinear partial-differential equation describing the dynamics of the system. The discretized system of ordinary-differential equations is then solved using the method of multiple scales to obtain an approximate analytical solution describing the primary resonance behavior of a given vibration mode. An analytical expression for the modal effective nonlinearity is obtained and used to analyze the influence of the beam's tapering on the nonlinear primary resonance behavior of the response (softening/hardening). Results are then compared to a finite element (FE) solution of the linear eigenvalue problem in which the modal shapes obtained using the FE method are fit into a set of orthogonal polynomial functions and used to discretize the nonlinear problem. It is shown that, while the modal frequencies obtained using the FE method approximate those obtained analytically with negligible error (less than 1%), there is a substantial error in the resulting estimates of the modal effective nonlinearity. This indicates that, even negligible errors in the approximate solution of the linear problem, can propagate to become significant when analyzing the nonlinear problem further reinforcing the importance of the exact solution.

  4. Multidomain piezo-ceramic cantilever

    NASA Astrophysics Data System (ADS)

    Sedorook, David P.

    PZT-5H is a ferroelectric and piezoelectric material that has many applications that are the subjects of current research. As a ferroelectric, PZT-5H has a permanent electrical polarization that arises from ferroelectric domains. In this thesis, numerical simulations were conducted via the well know Finite Element Method of several types of piezoelectric cantilevers that were made of PIC-181, a high quality PZT-5H made in Germany. Single crystal cantilever models with multiple polarization vectors were investigated with Q factors ranging from Q = 50 to Q = 1200, where the acoustical displacements were calculated. Further, the displacements were calculated for a multidomain cantilever model with inversely poled domains and uniform electrode configuration as well as a single crystal cantilever model with uniformly poled crystal and bipolar electrode configuration. It was shown that cantilevers that are less oblong in shape could benefit from the bipolar electrode configuration in applications where size may be an important parameter, for instance in small flying robotic insects. From the experimental measurements of the resonance and anti-resonance frequencies in various PIC-181 samples, the radial and longitudinal components of speed of sound in material were calculated. Experimental results of longitudinal speed of sound differed from the accepted value of 4.6 km/s by 1.6 % error.

  5. Numerical and reliability analysis of gravity cantilever retaining walls backfilled with shredded tires subjected to seismic loads

    NASA Astrophysics Data System (ADS)

    Huggins, Eleanor Lynn

    Shredded tires have been considered as a suitable alternative to conventional sand and gravel backfill materials as they offer benefits from their significantly lower unit weight, reductions in the cost of materials and construction, and because they utilize a common and potentially hazardous waste material. This research addresses some gaps in previous research in the implementation of shredded tires in this capacity by examining variation in material properties through a reliability analysis, developing an improved design technique for retaining walls tailored to shredded tire fills, and simulating how shredded tire backfill behaves in conjunction with retaining walls when subject to seismic loads. First, an in depth literature review was performed to determine previously defined material properties of shredded tires based on a myriad of standard and specialized lab tests performed for many sizes and types of shredded tires. Review of the literature also served to identify additional design considerations that, along with geotechnical properties and LRFD methods, were used to design a retaining wall that was optimized for use with shredded tire fills. This wall was then modeled with the shredded tire fill in the finite element software, PLAXIS, under seismic loadings and considering variations in the material properties as defined by the literature as well as utilizing different damping schemes at governing equation level and constitutive model for the materials. The conclusion was that shredded tires can be a very beneficial alternative to conventional fills and further benefit can be realized by designing walls specifically for shredded tire use thus reducing wall size and changing wall dimensions for optimum shredded tire fill performance.

  6. Optimum Shape Design against Flutter of a Cantilevered Column with AN End-Mass of Finite Size Subjected to a Non-Conservative Load

    NASA Astrophysics Data System (ADS)

    LANGTHJEM, MIKAEL A.; SUGIYAMA, YOSHIHIKO

    1999-09-01

    Optimum design for dynamic stability of slender cantilevered columns subjected to a follower force, due to a rocket thrust, is investigated. The aim is to determine the tapering of the column which maximizes the critical value of the rocket thrust (at which flutter is initiated) under the constraint of constant length and volume of the column. The rocket thrust is assumed to be produced by a solid rocket motor mounted at the tip end of the column. The rocket motor is simplified as a massive ball with the same material density as the column. Based on experimental evidence [1, 2] it is argued that a mathematical model without damping gives the practical stability limit if internal and external damping is small and the rocket thrust acts only in a short interval of time. Optimum columns are determined for various sizes of the end-ball (rocket motor). For small sizes, the critical thrust can be significantly increased by optimization, about eight times. By practical (experimental realizable) values of the mass ratio μ=(mass of end-ball)/(mass of column) the critical thrust can only be increased 1·3-1·4 times which is similar to the case of a pure conservative (dead) end load. Also, it is found that the great sensitivity to small changes in design parameters, which significantly complicates optimization of the pure Beck's column, is not present for practical values of μ. It is argued then, that the ‘pure’ Beck's column should be considered as a theoretical limit case of vanishing end-mass.

  7. Piezoelectric cantilever sensors

    NASA Technical Reports Server (NTRS)

    Shih, Wan Y. (Inventor); Shih, Wei-Heng (Inventor); Shen, Zuyan (Inventor)

    2008-01-01

    A piezoelectric cantilever with a non-piezoelectric, or piezoelectric tip useful as mass and viscosity sensors. The change in the cantilever mass can be accurately quantified by monitoring a resonance frequency shift of the cantilever. For bio-detection, antibodies or other specific receptors of target antigens may be immobilized on the cantilever surface, preferably on the non-piezoelectric tip. For chemical detection, high surface-area selective absorbent materials are coated on the cantilever tip. Binding of the target antigens or analytes to the cantilever surface increases the cantilever mass. Detection of target antigens or analytes is achieved by monitoring the cantilever's resonance frequency and determining the resonance frequency shift that is due to the mass of the adsorbed target antigens on the cantilever surface. The use of a piezoelectric unimorph cantilever allows both electrical actuation and electrical sensing. Incorporating a non-piezoelectric tip (14) enhances the sensitivity of the sensor. In addition, the piezoelectric cantilever can withstand damping in highly viscous liquids and can be used as a viscosity sensor in wide viscosity range.

  8. Tunnel junctions, cantilevers, and potentials

    NASA Astrophysics Data System (ADS)

    Tanner, Shawn

    We have developed a process for making sub-micrometer dimensional cantilevers, clamped beams, and more complicate electro-mechanical structures that carry integrated electrical leads. Such objects are perhaps useful as test structures for connecting to and measuring the electrical properties of molecular sized objects, as high frequency electromechanical components for radio and microwave frequency applications, and as sensor components for studying the fluctuation physics of small machines. Our process uses two realigned electron-beam lithography steps, a thin film angled deposition system, and differential removal of sacrificial aluminum layers to produce freely suspended sub-micron electromechanical components. We have produced cantilevers and beams on a variety of substrates (silica, silicon, and poly-imide) and have produced insulating, conductive, and multi-layer mechanical structures. We have measured mechanical resonances in the 10 MHz range by electrostatically actuating the cantilevers while in a magnetic field (3500 gauss) and measuring the voltage that results across the front edge of the cantilever. Two structures are fabricated sharing a common ground so that a balanced detection technique can be used to eliminate background signals. Due to the square dependence of the electrostatic force on the voltage, they can be resonated by a drive voltage of 1/2 the natural frequency or at the natural frequency. Two separate attempts have been made to apply these resonators. First, a process was developed to integrate a tunnel junction with the cantilever. These devices can possibly be used for probing small-scale systems such as molecules. We have verified the exponential variation of the tunneling resistance with both substrate flex and electrostatic gating. Second, a novel gate structure was developed to create a double potential well for resonator motion. This is accomplished by placing a multilayer structure in front of the hairpin cantilever consisting two

  9. Improved atomic force microscopy cantilever performance by partial reflective coating

    PubMed Central

    Miyahara, Yoichi; Aeschimann, Laure; Grütter, Peter

    2015-01-01

    Summary Optical beam deflection systems are widely used in cantilever based atomic force microscopy (AFM). Most commercial cantilevers have a reflective metal coating on the detector side to increase the reflectivity in order to achieve a high signal on the photodiode. Although the reflective coating is usually much thinner than the cantilever, it can still significantly contribute to the damping of the cantilever, leading to a lower mechanical quality factor (Q-factor). In dynamic mode operation in high vacuum, a cantilever with a high Q-factor is desired in order to achieve a lower minimal detectable force. The reflective coating can also increase the low-frequency force noise. In contact mode and force spectroscopy, a cantilever with minimal low-frequency force noise is desirable. We present a study on cantilevers with a partial reflective coating on the detector side. For this study, soft (≈0.01 N/m) and stiff (≈28 N/m) rectangular cantilevers were used with a custom partial coating at the tip end of the cantilever. The Q-factor, the detection and the force noise of fully coated, partially coated and uncoated cantilevers are compared and force distance curves are shown. Our results show an improvement in low-frequency force noise and increased Q-factor for the partially coated cantilevers compared to fully coated ones while maintaining the same reflectivity, therefore making it possible to combine the best of both worlds. PMID:26199849

  10. Improved atomic force microscopy cantilever performance by partial reflective coating.

    PubMed

    Schumacher, Zeno; Miyahara, Yoichi; Aeschimann, Laure; Grütter, Peter

    2015-01-01

    Optical beam deflection systems are widely used in cantilever based atomic force microscopy (AFM). Most commercial cantilevers have a reflective metal coating on the detector side to increase the reflectivity in order to achieve a high signal on the photodiode. Although the reflective coating is usually much thinner than the cantilever, it can still significantly contribute to the damping of the cantilever, leading to a lower mechanical quality factor (Q-factor). In dynamic mode operation in high vacuum, a cantilever with a high Q-factor is desired in order to achieve a lower minimal detectable force. The reflective coating can also increase the low-frequency force noise. In contact mode and force spectroscopy, a cantilever with minimal low-frequency force noise is desirable. We present a study on cantilevers with a partial reflective coating on the detector side. For this study, soft (≈0.01 N/m) and stiff (≈28 N/m) rectangular cantilevers were used with a custom partial coating at the tip end of the cantilever. The Q-factor, the detection and the force noise of fully coated, partially coated and uncoated cantilevers are compared and force distance curves are shown. Our results show an improvement in low-frequency force noise and increased Q-factor for the partially coated cantilevers compared to fully coated ones while maintaining the same reflectivity, therefore making it possible to combine the best of both worlds.

  11. Coupled elastic response of open section laminated composite beams subject to generalized beam loading

    NASA Technical Reports Server (NTRS)

    Zvarick, Albert G.; Cruse, Thomas A.

    1992-01-01

    A generalized beam theory for arbitrary open section laminated composite beams subjected to generalized beam loading is developed using a strength of materials approach. At present, the theory is limited to statistically determinate beams. Solution of the general system of equations yields strain and curvature distributions as functions of the axial coordinate x and the contour coordinate s. Average stresses on a given cross section or ply stresses in a local coordinate system are determined using these distributions. Data obtained for thin-walled open section composite beams reveal that elastic coupling occurs among curvatures, shearing strains, and axial strain, depending on the laminate stiffness parameters. Laminate ply layup does not affect the location of the shear center in the thin-wall approximation, but may have a significant impact for thicker walled open sections. The average axial stress distribution is found to be distinctly different from the isotropic distribution, but the average shear stress distribution is the same as that in the isotropic case.

  12. A Weed Cantilever

    ERIC Educational Resources Information Center

    Keller, Elhannan L.; Padalino, John

    1977-01-01

    Describes the Environmental Action Task activity, which may be used as a recreational game or an environmental perception experience, may be conducted indoors or out-of-doors, using weed stems (or spaghetti) and masking tape to construct a cantilever. Small groups of children work together to make the cantilever with the longest arm. Further…

  13. 4. SIDE VIEW OF BRIDGE, LOOKING SOUTHWEST, SHOWING ARCHES, CANTILEVERED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. SIDE VIEW OF BRIDGE, LOOKING SOUTHWEST, SHOWING ARCHES, CANTILEVERED WALKWAY, DECK BEAMS AND STREAMBED - Benson Street Concrete Bowstring Bridge, Spanning Mill Creek at Benson Street, Lockland, Hamilton County, OH

  14. Laminated beams of isotropic or orthotropic materials subjected to temperature change

    Treesearch

    Shun Cheng; T. Gerhardt

    1980-01-01

    This paper considers laminated beams with layers of different isotropic or orthotropic materials fastened together by thin adhesives. The stresses that result from subjecting each component layer of the beam to different temperature or moisture stimuli which may also vary along the length of the beam, are calculated. Two-dimensional elasticity theory is used so that a...

  15. Nanomechanical Cantilever Array Sensors

    NASA Astrophysics Data System (ADS)

    Lang, Hans; Hegner, Martin; Gerber, Christoph

    Microfabricated cantilever sensors have attracted much interest in recent years as devices for the fast and reliable detection of small concentrations of molecules in air and solution. In addition to application of such sensors for gas and chemical-vapor sensing, for example as an artificial nose, they have also been employed to measure physical properties of tiny amounts of materials in miniaturized versions of conventional standard techniques such as calorimetry, thermogravimetry, weighing, photothermal spectroscopy, as well as for monitoring chemical reactions such as catalysis on small surfaces. In the past few years, the cantilever-sensor concept has been extended to biochemical applications and as an analytical device for measurements of biomaterials. Because of the label-free detection principle of cantilever sensors, their small size and scalability, this kind of device is advantageous for diagnostic applications and disease monitoring, as well as for genomics or proteomics purposes. The use of microcantilever arrays enables detection of several analytes simultaneously and solves the inherent problem of thermal drift often present when using single microcantilever sensors, as some of the cantilevers can be used as sensor cantilevers for detection, and other cantilevers serve as passivated reference cantilevers that do not exhibit affinity to the molecules to be detected.

  16. Planar dynamics of a uniform beam with rigid bodies affixed to the ends

    NASA Technical Reports Server (NTRS)

    Storch, J.; Gates, S.

    1983-01-01

    The planar dynamics of a uniform elastic beam subject to a variety of geometric and natural boundary conditions and external excitations were analyzed. The beams are inextensible and capable of small transverse bending deformations only. Classical beam vibration eigenvalue problems for a cantilever with tip mass, a cantilever with tip body and an unconstrained beam with rigid bodies at each are examined. The characteristic equations, eigenfunctions and orthogonality relations for each are derived. The forced vibration of a cantilever with tip body subject to base acceleration is analyzed. The exact solution of the governing nonhomogeneous partial differential equation with time dependent boundary conditions is presented and compared with a Rayleigh-Ritz approximate solution. The arbitrary planar motion of an elastic beam with rigid bodies at the ends is addressed. Equations of motion are derived for two modal expansions of the beam deflection. The motion equations are cast in a first order form suitable for numerical integration. Selected FORTRAN programs are provided.

  17. Reconstructing the distributed force on an atomic force microscope cantilever

    NASA Astrophysics Data System (ADS)

    Wagner, Ryan; Killgore, Jason

    2017-03-01

    A methodology is developed to reconstruct the force applied to an atomic force microscopy (AFM) cantilever given the shape in which it vibrates. This is accomplished by rewriting Bernoulli-Euler beam theory such that the force on the cantilever is approximated as a linear superposition of the theoretical cantilever eigenmodes. The weighting factors in this summation are calculated from the amplitude and phase measured along the length of the cantilever. The accuracy of the force reconstruction is shown to depend on the frequency at which the measurement is performed, the number of discrete points measured along the length of the cantilever, and the signal-to-noise ratio of the measured signal. In contrast to other AFM force reconstruction techniques, this method can reconstruct the distribution of force applied over the length of the AFM cantilever. However, this method performs poorly for localized forces applied to the cantilever, such as is typical of most tip-sample interaction forces. Proof of concept experiments are performed on an electrostatically excited cantilever and the expected force distribution is recovered. This force reconstruction technique offers previously unavailable insight into the distributed forces experienced by an AFM cantilever.

  18. Reconstructing the distributed force on an atomic force microscope cantilever.

    PubMed

    Wagner, Ryan; Killgore, Jason

    2017-03-10

    A methodology is developed to reconstruct the force applied to an atomic force microscopy (AFM) cantilever given the shape in which it vibrates. This is accomplished by rewriting Bernoulli-Euler beam theory such that the force on the cantilever is approximated as a linear superposition of the theoretical cantilever eigenmodes. The weighting factors in this summation are calculated from the amplitude and phase measured along the length of the cantilever. The accuracy of the force reconstruction is shown to depend on the frequency at which the measurement is performed, the number of discrete points measured along the length of the cantilever, and the signal-to-noise ratio of the measured signal. In contrast to other AFM force reconstruction techniques, this method can reconstruct the distribution of force applied over the length of the AFM cantilever. However, this method performs poorly for localized forces applied to the cantilever, such as is typical of most tip-sample interaction forces. Proof of concept experiments are performed on an electrostatically excited cantilever and the expected force distribution is recovered. This force reconstruction technique offers previously unavailable insight into the distributed forces experienced by an AFM cantilever.

  19. Cantilever mounted resilient pad gas bearing

    NASA Technical Reports Server (NTRS)

    Etsion, I. (Inventor)

    1978-01-01

    A gas-lubricated bearing is described, employing at least one pad mounted on a rectangular cantilever beam to produce a lubricating wedge between the face of the pad and a moving surface. The load-carrying and stiffness characteristics of the pad are related to the dimensions and modulus of elasticity of the beam. The bearing is applicable to a wide variety of types of hydrodynamic bearings.

  20. Torsion and transverse bending of cantilever plates

    NASA Technical Reports Server (NTRS)

    Reissner, Eric; Stein, Manuel

    1951-01-01

    The problem of combined bending and torsion of cantilever plates of variable thickness, such as might be considered for solid thin high-speed airplane or missile wings, is considered in this paper. The deflections of the plate are assumed to vary linearly across the chord; minimization of the potential energy by means of the calculus of variations then leads to two ordinary linear differential equations for the bending deflections and the twist of the plate. Because the cantilever is analyzed as a plate rather than as a beam, the effect of constraint against axial warping in torsion is inherently included. The application of this method to specific problems involving static deflection, vibration, and buckling of cantilever plates is presented. In the static-deflection problems, taper and sweep are considered.

  1. Characterization of polymeric films subjected to lithium ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Groenewold, Gary S.; Cannon, W. Roger; Lessing, Paul A.; Avci, Recep; Deliorman, Muhammedin; Wolfenden, Mark; Akers, Doug W.; Jewell, J. Keith; Zuck, Larry D.

    2013-02-01

    Two different polymeric materials that are candidate materials for use as binders for mixed uranium-plutonium oxide nuclear fuel pellets were subjected to Li ion beam irradiation, in order to simulate intense alpha irradiation. The materials (a polyethylene glycol 8000 and a microcrystalline wax) were then analyzed using a combination of mass spectrometry (MS) approaches and X-ray photoelectron spectroscopy (XPS). Samples of the irradiated PEG materials were dissolved in H2O and then analyzed using electrospray ionization-MS, which showed the formation of a series of small oligomers in addition to intact large PEG oligomers. The small oligomers were likely formed by radiation-induced homolytic scissions of the C-O and C-C bonds, which furnish radical intermediates that react by radical recombination with Hrad and OHrad . Surface analysis using SIMS revealed a heterogeneous surface that contained not only PEG-derived polymers, but also hydrocarbon-based entities that are likely surface contaminants. XPS of the irradiated PEG samples indicated the emergence of different carbon species, with peak shifts suggesting the presence of sp2 carbon atoms. Analysis of the paraffinic film using XPS showed the emergence of oxygen on the surface of the sample, and also a broadening and shifting of the C1s peak, demonstrating a change in the chemistry on the surface. The paraffinic film did not dissolve in either H2O or a H2O-methanol solution, and hence the bulk of the material could not be analyzed using electrospray. However a series of oligomers was leached from the bulk material that produced ion series in the ESI-MS analyses that were identified octylphenyl ethoxylate oligomers. Upon Li ion bombardment, these shifted to a lower average molecular weight, but more importantly showed the emergence of three new ion series that are being formed as a result of radiation damage. Surface analysis of the paraffinic polymers using SIMS produced spectra that were wholly dominated by

  2. Characterization of polymeric films subjected to lithium ion beam irradiation

    SciTech Connect

    Gary S. Groenewold; W. Roger Cannon; Paul A. Lessing; Recep Avci; Muhammedin Deliorman; Mark Wolfenden; Doug W. Akers; J. Keith Jewell

    2013-02-01

    Two different polymeric materials that are candidate materials for use as binders for mixed uranium–plutonium oxide nuclear fuel pellets were subjected to Li ion beam irradiation, in order to simulate intense alpha irradiation. The materials (a polyethylene glycol 8000 and a microcrystalline wax) were then analyzed using a combination of mass spectrometry (MS) approaches and X-ray photoelectron spectroscopy (XPS). Samples of the irradiated PEG materials were dissolved in H2O and then analyzed using electrospray ionization-MS, which showed the formation of a series of small oligomers in addition to intact large PEG oligomers. The small oligomers were likely formed by radiation-induced homolytic scissions of the C–O and C–C bonds, which furnish radical intermediates that react by radical recombination with Hradical dot and OHradical dot. Surface analysis using SIMS revealed a heterogeneous surface that contained not only PEG-derived polymers, but also hydrocarbon-based entities that are likely surface contaminants. XPS of the irradiated PEG samples indicated the emergence of different carbon species, with peak shifts suggesting the presence of sp2 carbon atoms. Analysis of the paraffinic film using XPS showed the emergence of oxygen on the surface of the sample, and also a broadening and shifting of the C1s peak, demonstrating a change in the chemistry on the surface. The paraffinic film did not dissolve in either H2O or a H2O–methanol solution, and hence the bulk of the material could not be analyzed using electrospray. However a series of oligomers was leached from the bulk material that produced ion series in the ESI-MS analyses that were identified octylphenyl ethoxylate oligomers. Upon Li ion bombardment, these shifted to a lower average molecular weight, but more importantly showed the emergence of three new ion series that are being formed as a result of radiation damage. Surface analysis of the paraffinic polymers using SIMS produced spectra that were

  3. Accurate spring constant calibration for very stiff atomic force microscopy cantilevers

    SciTech Connect

    Grutzik, Scott J.; Zehnder, Alan T.; Gates, Richard S.; Gerbig, Yvonne B.; Smith, Douglas T.; Cook, Robert F.

    2013-11-15

    There are many atomic force microscopy (AFM) applications that rely on quantifying the force between the AFM cantilever tip and the sample. The AFM does not explicitly measure force, however, so in such cases knowledge of the cantilever stiffness is required. In most cases, the forces of interest are very small, thus compliant cantilevers are used. A number of methods have been developed that are well suited to measuring low stiffness values. However, in some cases a cantilever with much greater stiffness is required. Thus, a direct, traceable method for calibrating very stiff (approximately 200 N/m) cantilevers is presented here. The method uses an instrumented and calibrated nanoindenter to determine the stiffness of a reference cantilever. This reference cantilever is then used to measure the stiffness of a number of AFM test cantilevers. This method is shown to have much smaller uncertainty than previously proposed methods. An example application to fracture testing of nanoscale silicon beam specimens is included.

  4. Accurate spring constant calibration for very stiff atomic force microscopy cantilevers

    NASA Astrophysics Data System (ADS)

    Grutzik, Scott J.; Gates, Richard S.; Gerbig, Yvonne B.; Smith, Douglas T.; Cook, Robert F.; Zehnder, Alan T.

    2013-11-01

    There are many atomic force microscopy (AFM) applications that rely on quantifying the force between the AFM cantilever tip and the sample. The AFM does not explicitly measure force, however, so in such cases knowledge of the cantilever stiffness is required. In most cases, the forces of interest are very small, thus compliant cantilevers are used. A number of methods have been developed that are well suited to measuring low stiffness values. However, in some cases a cantilever with much greater stiffness is required. Thus, a direct, traceable method for calibrating very stiff (approximately 200 N/m) cantilevers is presented here. The method uses an instrumented and calibrated nanoindenter to determine the stiffness of a reference cantilever. This reference cantilever is then used to measure the stiffness of a number of AFM test cantilevers. This method is shown to have much smaller uncertainty than previously proposed methods. An example application to fracture testing of nanoscale silicon beam specimens is included.

  5. Accurate spring constant calibration for very stiff atomic force microscopy cantilevers.

    PubMed

    Grutzik, Scott J; Gates, Richard S; Gerbig, Yvonne B; Smith, Douglas T; Cook, Robert F; Zehnder, Alan T

    2013-11-01

    There are many atomic force microscopy (AFM) applications that rely on quantifying the force between the AFM cantilever tip and the sample. The AFM does not explicitly measure force, however, so in such cases knowledge of the cantilever stiffness is required. In most cases, the forces of interest are very small, thus compliant cantilevers are used. A number of methods have been developed that are well suited to measuring low stiffness values. However, in some cases a cantilever with much greater stiffness is required. Thus, a direct, traceable method for calibrating very stiff (approximately 200 N/m) cantilevers is presented here. The method uses an instrumented and calibrated nanoindenter to determine the stiffness of a reference cantilever. This reference cantilever is then used to measure the stiffness of a number of AFM test cantilevers. This method is shown to have much smaller uncertainty than previously proposed methods. An example application to fracture testing of nanoscale silicon beam specimens is included.

  6. Experimental Studies on Behaviour of Reinforced Geopolymer Concrete Beams Subjected to Monotonic Static Loading

    NASA Astrophysics Data System (ADS)

    Madheswaran, C. K.; Ambily, P. S.; Dattatreya, J. K.; Ramesh, G.

    2015-06-01

    This work describes the experimental investigation on behaviour of reinforced GPC beams subjected to monotonic static loading. The overall dimensions of the GPC beams are 250 mm × 300 mm × 2200 mm. The effective span of beam is 1600 mm. The beams have been designed to be critical in shear as per IS:456 provisions. The specimens were produced from a mix incorporating fly ash and ground granulated blast furnace slag, which was designed for a compressive strength of 40 MPa at 28 days. The reinforced concrete specimens are subjected to curing at ambient temperature under wet burlap. The parameters being investigated include shear span to depth ratio (a/d = 1.5 and 2.0). Experiments are conducted on 12 GPC beams and four OPCC control beams. All the beams are tested using 2000 kN servo-controlled hydraulic actuator. This paper presents the results of experimental studies.

  7. Study of Silicon Cantilevers by the Photoacoustic Elastic Bending Method

    NASA Astrophysics Data System (ADS)

    Todorovic, D. M.; Rabasovic, M. D.; Markushev, D. D.; Jovic, V.; Radulovic, K. T.

    2017-03-01

    Rectangular silicon cantilevers are studied by the photoacoustic (PA) elastic bending method. Experimental signals versus modulation frequency of the excitation optical beam are measured and analyzed in a frequency range from 20 Hz to 50 000 Hz. The procedure for experimental signal correction to eliminate the frequency characteristics of the measuring system is given. The corrected experimental signal shows a good correlation with theoretically calculated PA signal at frequencies below 32 000 Hz. The corrected experimental PA elastic bending signals for cantilevers with different thicknesses are analyzed. The experimental results allow identifying the resonant frequency (the first resonant mode) of the cantilever vibrations. These values are in good agreement with the theoretically computed values. A theoretical model of the optically excited Si cantilever is derived, taking into account plasmaelastic, thermoelastic, and thermodiffusion mechanisms. Dynamic relations for the amplitude and phase of electronic and thermal elastic vibrations in optically excited cantilevers are derived. The theoretical model is compared to the experimental results.

  8. Multimodal cantilevers with novel piezoelectric layer topology for sensitivity enhancement

    PubMed Central

    Ruppert, Michael G; Yong, Yuen Kuan

    2017-01-01

    Self-sensing techniques for atomic force microscope (AFM) cantilevers have several advantageous characteristics compared to the optical beam deflection method. The possibility of down scaling, parallelization of cantilever arrays and the absence of optical interference associated imaging artifacts have led to an increased research interest in these methods. However, for multifrequency AFM, the optimization of the transducer layout on the cantilever for higher order modes has not been addressed. To fully utilize an integrated piezoelectric transducer, this work alters the layout of the piezoelectric layer to maximize both the deflection of the cantilever and measured piezoelectric charge response for a given mode with respect to the spatial distribution of the strain. On a prototype cantilever design, significant increases in actuator and sensor sensitivities were achieved for the first four modes without any substantial increase in sensor noise. The transduction mechanism is specifically targeted at multifrequency AFM and has the potential to provide higher resolution imaging on higher order modes. PMID:28326225

  9. Note: A resonating reflector-based optical system for motion measurement in micro-cantilever arrays

    SciTech Connect

    Sathishkumar, P.; Punyabrahma, P.; Sri Muthu Mrinalini, R.; Jayanth, G. R.

    2015-09-15

    A robust, compact optical measurement unit for motion measurement in micro-cantilever arrays enables development of portable micro-cantilever sensors. This paper reports on an optical beam deflection-based system to measure the deflection of micro-cantilevers in an array that employs a single laser source, a single detector, and a resonating reflector to scan the measurement laser across the array. A strategy is also proposed to extract the deflection of individual cantilevers from the acquired data. The proposed system and measurement strategy are experimentally evaluated and demonstrated to measure motion of multiple cantilevers in an array.

  10. In-situ piezoresponse force microscopy cantilever mode shape profiling

    SciTech Connect

    Proksch, R.

    2015-08-21

    The frequency-dependent amplitude and phase in piezoresponse force microscopy (PFM) measurements are shown to be a consequence of the Euler-Bernoulli (EB) dynamics of atomic force microscope (AFM) cantilever beams used to make the measurements. Changes in the cantilever mode shape as a function of changes in the boundary conditions determine the sensitivity of cantilevers to forces between the tip and the sample. Conventional PFM and AFM measurements are made with the motion of the cantilever measured at one optical beam detector (OBD) spot location. A single OBD spot location provides a limited picture of the total cantilever motion, and in fact, experimentally observed cantilever amplitude and phase are shown to be strongly dependent on the OBD spot position for many measurements. In this work, the commonly observed frequency dependence of PFM response is explained through experimental measurements and analytic theoretical EB modeling of the PFM response as a function of both frequency and OBD spot location on a periodically poled lithium niobate sample. One notable conclusion is that a common choice of OBD spot location—at or near the tip of the cantilever—is particularly vulnerable to frequency dependent amplitude and phase variations stemming from dynamics of the cantilever sensor rather than from the piezoresponse of the sample.

  11. In-situ piezoresponse force microscopy cantilever mode shape profiling

    NASA Astrophysics Data System (ADS)

    Proksch, R.

    2015-08-01

    The frequency-dependent amplitude and phase in piezoresponse force microscopy (PFM) measurements are shown to be a consequence of the Euler-Bernoulli (EB) dynamics of atomic force microscope (AFM) cantilever beams used to make the measurements. Changes in the cantilever mode shape as a function of changes in the boundary conditions determine the sensitivity of cantilevers to forces between the tip and the sample. Conventional PFM and AFM measurements are made with the motion of the cantilever measured at one optical beam detector (OBD) spot location. A single OBD spot location provides a limited picture of the total cantilever motion, and in fact, experimentally observed cantilever amplitude and phase are shown to be strongly dependent on the OBD spot position for many measurements. In this work, the commonly observed frequency dependence of PFM response is explained through experimental measurements and analytic theoretical EB modeling of the PFM response as a function of both frequency and OBD spot location on a periodically poled lithium niobate sample. One notable conclusion is that a common choice of OBD spot location—at or near the tip of the cantilever—is particularly vulnerable to frequency dependent amplitude and phase variations stemming from dynamics of the cantilever sensor rather than from the piezoresponse of the sample.

  12. Improved Sensitivity MEMS Cantilever Sensor for Terahertz Photoacoustic Spectroscopy.

    PubMed

    Coutu, Ronald A; Medvedev, Ivan R; Petkie, Douglas T

    2016-02-19

    In this paper, a microelectromechanical system (MEMS) cantilever sensor was designed, modeled and fabricated to measure the terahertz (THz) radiation induced photoacoustic (PA) response of gases under low vacuum conditions. This work vastly improves cantilever sensitivity over previous efforts, by reducing internal beam stresses, minimizing out of plane beam curvature and optimizing beam damping. In addition, fabrication yield was improved by approximately 50% by filleting the cantilever's anchor and free end to help reduce high stress areas that occurred during device fabrication and processing. All of the cantilever sensors were fabricated using silicon-on-insulator (SOI) wafers and tested in a custom built, low-volume, vacuum chamber. The resulting cantilever sensors exhibited improved signal to noise ratios, sensitivities and normalized noise equivalent absorption (NNEA) coefficients of approximately 4.28 × 10(-10) cm(-1)·WHz(-1/2). This reported NNEA represents approximately a 70% improvement over previously fabricated and tested SOI cantilever sensors for THz PA spectroscopy.

  13. Vibration control in smart coupled beams subjected to pulse excitations

    NASA Astrophysics Data System (ADS)

    Pisarski, Dominik; Bajer, Czesław I.; Dyniewicz, Bartłomiej; Bajkowski, Jacek M.

    2016-10-01

    In this paper, a control method to stabilize the vibration of adjacent structures is presented. The control is realized by changes of the stiffness parameters of the structure's couplers. A pulse excitation applied to the coupled adjacent beams is imposed as the kinematic excitation. For such a representation, the designed control law provides the best rate of energy dissipation. By means of a stability analysis, the performance in different structural settings is studied. The efficiency of the proposed strategy is examined via numerical simulations. In terms of the assumed energy metric, the controlled structure outperforms its passively damped equivalent by over 50 percent. The functionality of the proposed control strategy should attract the attention of practising engineers who seek solutions to upgrade existing damping systems.

  14. Method for providing a compliant cantilevered micromold

    DOEpatents

    Morales, Alfredo M.; Domeier, Linda A.; Gonzales, Marcela G.; Keifer, Patrick N.; Garino, Terry J.

    2008-12-16

    A compliant cantilevered three-dimensional micromold is provided. The compliant cantilevered micromold is suitable for use in the replication of cantilevered microparts and greatly simplifies the replication of such cantilevered parts. The compliant cantilevered micromold may be used to fabricate microparts using casting or electroforming techniques. When the compliant micromold is used to fabricate electroformed cantilevered parts, the micromold will also comprise an electrically conducting base formed by a porous metal substrate that is embedded within the compliant cantilevered micromold. Methods for fabricating the compliant cantilevered micromold as well as methods of replicating cantilevered microparts using the compliant cantilevered micromold are also provided.

  15. The deformation behavior of commercially pure titanium subjected to electron beam treatment

    SciTech Connect

    Kazachenok, Marina Kozelskaya, Anna; Panin, Alexey; Ivanov, Yurii

    2015-10-27

    The effect of low-energy high-current pulsed electron beam treatment on the microstructure and mechanical properties of commercially pure titanium specimens is studied. Plastic deformation mechanisms of the specimens subjected to the electron beam treatment followed by uniaxial tension are demonstrated. The role of the interface between the hardened surface layer and the relatively soft parent metal in the slip band formation in the loaded specimens is revealed.

  16. A cantilever based optical fiber acoustic sensor fabricated by femtosecond laser micromachining

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Yuan, Lei; Huang, Jie; Xiao, Hai

    2016-04-01

    In this paper, we present a pure silica micro-cantilever based optical fiber sensor for acoustic wave detection. The cantilever is directly fabricated by fs laser micromachining on an optical fiber tip functioning as an inline Fabry-Perot interferometer (FPI). The applied acoustic wave pressurizes the micro-cantilever beam and the corresponding dynamic signals can be probed by the FPI. The thickness, length, and width of the micro-cantilever beam can be flexibly designed and fabricated so that the sensitivity, frequency response, and the total measurement range can be varied to fit many practical applications. Experimental results will be presented and analyzed. Due to the assembly free fabrication of the fs-laser, multiple micro-cantilever beams could be potentially fabricated in/on a single optical fiber for quasi-distributed acoustic mapping with high spatial resolution.

  17. Finite-Layer Method: Exact Numerical and Analytical Calculations of the Energy Release Rate for Unidirectional Composite Specimens in Double-Cantilever Beam and End-Notched Flexure Tests

    NASA Astrophysics Data System (ADS)

    Timonin, A. M.

    2016-09-01

    Based on the finite-layer method, a method for evaluating the stress-strain state and energy release rate for specimens with delaminations in double-cantilever beam and end-notched flexure tests is proposed. Exact numerical solutions of boundary-value problems for the "stiff" systems of differential equations describing deformations of test specimens are obtained. The distributions of forces, moments, displacements, and rotations in the specimens and the distributions of normal and tangential stresses on their midline are presented. New closed-form expressions for these functions and for compliance of the specimens are developed. Calculation results for the energy release rate obtained by a numerical differentiation and from analytical relations are presented. Two new techniques for estimating the energy release rate are proposed: (1) using the calculated values of peak stress and jumps of displacements at the tip of delamination; (2) by evaluation of indeterminacy at the tip of delamination with the use of stresses and derivatives of stresses and displacements. The effect of the transverse shear and Poisson ratio on the results is estimated. A comparison of the numerical and analytical solutions obtained with known results and the ASTM standard is presented.

  18. Improved Sensitivity MEMS Cantilever Sensor for Terahertz Photoacoustic Spectroscopy

    PubMed Central

    Coutu, Ronald A.; Medvedev, Ivan R.; Petkie, Douglas T.

    2016-01-01

    In this paper, a microelectromechanical system (MEMS) cantilever sensor was designed, modeled and fabricated to measure the terahertz (THz) radiation induced photoacoustic (PA) response of gases under low vacuum conditions. This work vastly improves cantilever sensitivity over previous efforts, by reducing internal beam stresses, minimizing out of plane beam curvature and optimizing beam damping. In addition, fabrication yield was improved by approximately 50% by filleting the cantilever’s anchor and free end to help reduce high stress areas that occurred during device fabrication and processing. All of the cantilever sensors were fabricated using silicon-on-insulator (SOI) wafers and tested in a custom built, low-volume, vacuum chamber. The resulting cantilever sensors exhibited improved signal to noise ratios, sensitivities and normalized noise equivalent absorption (NNEA) coefficients of approximately 4.28 × 10−10 cm−1·WHz−1/2. This reported NNEA represents approximately a 70% improvement over previously fabricated and tested SOI cantilever sensors for THz PA spectroscopy. PMID:26907280

  19. An approach towards 3D sensitive AFM cantilevers

    NASA Astrophysics Data System (ADS)

    Koops, Richard; Fokkema, Vincent

    2014-04-01

    scheme where both the position of the spot to excite the cantilever and the spot position of the read-out beam provide additional parameters to fully control and optimize the multi-mode structure required for 3D AFM measurements.

  20. Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance

    SciTech Connect

    Xu, J.; Tang, J.

    2015-11-23

    This letter reports a piezoelectric cantilever-pendulum design for multi-directional energy harvesting. A pendulum is attached to the tip of a piezoelectric cantilever-type energy harvester. This design aims at taking advantage of the nonlinear coupling between the pendulum motion in 3-dimensional space and the beam bending vibration at resonances. Experimental studies indicate that, under properly chosen parameters, 1:2 internal resonance can be induced, which enables the multi-directional energy harvesting with a single cantilever. The advantages of the design with respect to traditional piezoelectric cantilever are examined.

  1. Calculation of force distribution for a periodically supported beam subjected to moving loads

    NASA Astrophysics Data System (ADS)

    Hoang, T.; Duhamel, D.; Foret, G.; Yin, H. P.; Joyez, P.; Caby, R.

    2017-02-01

    In this study, a novel model for a periodically supported beam subjected to moving loads was developed using a periodicity condition on reaction forces. This condition, together with Fourier transforms and Dirac combs, forms a relation between the beam displacement and support reaction forces. This relation explains the force distribution at the supports, and holds for any type of support and foundation behaviors. Based on this relation, a system equivalence for a periodically supported beam is presented in this paper. An application to non-ballasted viscoelastic supports is presented as an example and the results clearly match the existing model. Next, an approximation of real-time responses was developed for the moving loads as periodic series. The comparison shows that this approximation can be used for a limited number of loads if the distances between loads are sufficiently large. The system equivalence for a periodically supported beam is efficient for supports with linear behavior, and could be extended to other behaviors.

  2. Design of prosthetic cantilever bridgework supported by osseointegrated implants using the finite element method.

    PubMed

    Young, F A; Williams, K R; Draughn, R; Strohaver, R

    1998-01-01

    The aim of the present work was to establish a design procedure for fixed metal prostheses supported by osseointegrated implants in order to prevent permanent deformation and hence failure following loading. Previously, the cantilever cross-sectional shape in the buccal lingual plane has been based on clinical experience and subjectivity. This work has relied on the use of linear elastic finite element analysis in order to generate a maximum effective stress at which permanent deformation commences on loading. A number of different cross-sectional shapes were investigated, both of conventional design as well as new innovative possibilities. Both straight and curved cantilever beams 26 mm long were examined. The design failure chosen was based on a von Mises plastic collapse principle by comparing the calculated effective stresses with the yield stress of the metal in simple tension. It was found that the "L" shaped design was more rigid than other designs for a given mass, while a framework based on an open "I" section offers good possibilities particularly when used as curved shapes. Assuming a failure criterion based on the von Mises principle, then "L" shaped Co/Cr or stainless steel frameworks, typically 26 mm of cantilever span, undergo permanent deformation at end loadings between 130 and 140 N depending on section curvature. Since it is known biting loads can exceed these values, good design is critical if such failures are to be avoided.

  3. Gland With Cantilever Seal

    NASA Technical Reports Server (NTRS)

    Melton, Patrick B.

    1989-01-01

    Single-piece gland forms tight seal on probe or tube containing liquid or gas at high pressure. Gland and probe align as assembled by simple torquing procedure. Disconnected easily and reused at same site. Made from any of wide variety of materials so compatible with application. Cantilever ring at top of gland bites into wall of tube or probe, sealing it. Wall of tube or probe must be thick enough to accommodate deformation without rupturing. Maximum deformation designed in coordination with seating and deformation of boss or conical seal.

  4. Harmonic detection of resonance in micro- and nano-cantilevers

    NASA Astrophysics Data System (ADS)

    Gaillard, Jay B.

    Over the past decade there has been an explosion in the study of cantilevered beams on the micron and submicron dimension. The applications and research that involve these structures include state-of-the-art electronic components, sensors, and more recently, studies aimed at elucidating the mechanical properties of cantilevered carbon nanotubes and semiconducting nanowires. In nanoelectro-mechanical systems (NEMS), it is desirable to develop a capacitive readout method involving only two electrodes that are fully compliant with standard CMOS technology. However, the main drawback with this method is the ability to detect resonance in the presence of parasitic capacitance, which is due to the fringing electric fields present between the electrodes (cantilever and the counter electrode). The work presented in this thesis deals with the electrical actuation/detection of mechanical resonance in individual micron and sub-micron sized cantilevers. The aim is to overcome parasitic capacitance which masks the detection of resonance signal in these cantilevers thereby increasing the signal-to-background ratio (SBR). In our method, a silicon microcantilever, or cantilevered multi-walled carbon nanotube (MWNT), is placed close to a counter electrode whose potential is varied at a frequency o. An electrical signal comes from the flow of charge on and off of the cantilever when o equals a resonant frequency o 0 of the cantilever. Higher harmonics of o0 are measured to overcome the parasitic capacitance. This technique, termed harmonic detection of resonance (HDR), allows detection at frequencies well removed from the driving frequency thereby increasing the SBR by ~3 orders of magnitude. It is shown that HDR allows the detection of resonance even in multi-walled carbon nanotubes, which have diameters on the order of 50 nm. Furthermore, superharmonics inherent to electrostatic actuation, are shown to occur at driving frequencies of o0/n where n = 1,2,3,....

  5. Transmission electron microscopy of deformed Ti-6Al-4 V micro-cantilevers

    NASA Astrophysics Data System (ADS)

    Ding, Rengen; Gong, Jicheng; Wilkinson, Angus J.; Jones, Ian P.

    2012-09-01

    Single α-β colony micro-cantilevers were machined from a polycrystalline commercial Ti-6Al-4 V sample using a focussed ion beam. Each cantilever contained several alpha lamellae separated by thin fillets of beta. A nanoindenter was used to perform micro-bending tests. The a3 prismatic slip system was selectively activated in the cantilevers by controlling the crystal orientation along the micro-cantilever. Specimens for transmission electron microscopy (TEM) were prepared using a dual-beam focussed ion beam from a series of micro-cantilevers deformed to various extents. Bright field scanning transmission electron microscopy (BF-STEM) was used to investigate the processes of slip nucleation, propagation and transmission through the α/β interface. The cantilevers had an equilateral triangular cross-section with the bar at the top and the apex at the bottom. The compressive stresses developed near the apex were thus twice the tensile stresses near the top. Dislocations initiate first from the bottom and then from the top and move toward the neutral line. Even in the sample with a small deflection, i.e. 0.5 µm, dislocations were observed at the bottom of the cantilever, but dislocations were not observed at the top until the deflection reached 3 µm. Pile-ups pushed the dislocations past the neutral line when the micro-cantilevers were deflected to more than 4 µm.

  6. Cantilever clamp fitting

    NASA Technical Reports Server (NTRS)

    Melton, Patrick B. (Inventor)

    1989-01-01

    A device is disclosed for sealing and clamping a cylindrical element which is to be attached to an object such as a wall, a pressurized vessel or another cylindrical element. The device includes a gland having an inner cylindrical wall, which is threaded at one end and is attached at a bendable end to a deformable portion, which in turn is attached to one end of a conical cantilever structure. The other end of the cantilever structure connects at a bendable area to one end of an outer cylindrical wall. The opposite end of cylindrical wall terminates in a thickened portion, the radially outer surface of which is adapted to accommodate a tool for rotating the gland. The terminal end of cylindrical wall also includes an abutment surface, which is adapted to engage a seal, which in turn engages a surface of a receiver. The receiver further includes a threaded portion for engagement with the threaded portion of gland whereby a tightening rotation of gland relative to receiver will cause relative movement between cylindrical walls and of gland. This movement causes a rotation of the conical structure and thus a bending action at bending area and at the bending end of the upper end of inner cylindrical wall. These rotational and bending actions result in a forcing of the deformable portion radially inwardly so as to contact and deform a pipe. This forcible contact creates a seal between gland and pipe, and simultaneously clamps the pipe in position.

  7. Biosensors based on cantilevers.

    PubMed

    Alvarez, Mar; Carrascosa, Laura G; Zinoviev, Kiril; Plaza, Jose A; Lechuga, Laura M

    2009-01-01

    Microcantilevers based-biosensors are a new label-free technique that allows the direct detection of biomolecular interactions in a label-less way and with great accuracy by translating the biointeraction into a nanomechanical motion. Low cost and reliable standard silicon technologies are widely used for the fabrication of cantilevers with well-controlled mechanical properties. Over the last years, the number of applications of these sensors has shown a fast growth in diverse fields, such as genomic or proteomic, because of the biosensor flexibility, the low sample consumption, and the non-pretreated samples required. In this chapter, we report a dedicated design and a fabrication process of highly sensitive microcantilever silicon sensors. We will describe as well an application of the device in the environmental field showing the immunodetection of an organic toxic pesticide as an example. The cantilever biofunctionalization process and the subsequent pesticide determination are detected in real time by monitoring the nanometer-scale bending of the microcantilever due to a differential surface stress generated between both surfaces of the device.

  8. Vibration analysis of magnetostrictive thin-film composite cantilever actuator

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Shang, Xinchun

    2016-09-01

    The transverse vibration of a composed cantilever beam with magnetostrictive layer is analyzed, which is employed to simulate dynamic response of an actuator. The high-order shear deformation theory of beam and the coupling magnetoelastic constitutive relationship are introduced to construct the governing equations, all interface conditions between magnetostrictive film and elastic substrate as well as the free stress condition on the top and bottom surfaces of the beam can be satisfied. In order to demonstrate validity of the presented mathematical modeling, the verification examples are also given. Furthermore, the effect of geometry and material parameters on dynamic characteristics of magnetostrictive cantilever beam, such as the nature frequency and amplitude, is discussed. Moreover, through computing the magneto-mechanical coupling factor of the beam structure, the variation tendency curves of the factor along with different parameters and frequencies of magnetostrictive cantilever beam actuator have been presented. These numerical results should be useful for the design of beam-type with magnetostrictive thin-film actuators.

  9. Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load

    NASA Astrophysics Data System (ADS)

    Wang, Yuewu; Wu, Dafang

    2016-10-01

    Dynamic response of an axially functionally graded (AFG) beam under thermal environment subjected to a moving harmonic load is investigated within the frameworks of classical beam theory (CBT) and Timoshenko beam theory (TBT). The Lagrange method is employed to derive the equations of thermal buckling for AFG beam, and then with the critical buckling temperature as a parameter the Newmark-β method is adopted to evaluate the dynamic response of AFG beam under thermal environments. Admissible functions denoting transverse displacement are expressed in simple algebraic polynomial forms. Temperature-dependency of material constituent is considered. The rule of mixture (Voigt model) and Mori-Tanaka (MT) scheme are used to evaluate the beam's effective material properties. A ceramic-metal AFG beam with immovable boundary condition is considered as numerical illustration to show the thermal effects on the dynamic behaviors of the beam subjected to a moving harmonic load.

  10. Multiple-mode large deflection random response of beams with nonlinear damping subjected to acoustic excitation

    NASA Technical Reports Server (NTRS)

    Prasad, C. B.; Mei, Chuh

    1987-01-01

    Multiple-mode nonlinear analysis is carried out for beams subjected to acoustic excitation. Effects of both nonlinear damping and large-deflection are included in the analysis in an attempt to explain the experimental phenomena of aircraft panels excited at high sound pressure levels; that is the broadening of the strain response peaks and the increase of modal frequency. An amplitude dependent nonlinear damping model is used in the anlaysis to study the effects and interactions of multiple modes, nonlinear stiffness and nonlinear damping on the random response of beams. Mean square maximum deflection, mean square maximum strain, and spectral density function of maximum strain for simple supported and clamped beams are obtained. It is shown analytically that nonlinear damping contributes significantly to the broadening of the response peak and to the mean square deflection and strain.

  11. Thermal behaviour of beams with slant end-plate connection subjected to nonsymmetric gravity load.

    PubMed

    Zahmatkesh, Farshad; Osman, Mohd Hanim; Talebi, Elnaz

    2014-01-01

    Research on the steel structures with confining of axial expansion in fixed beams has been quite intensive in the past decade. It is well established that the thermal behaviour has a key influence on steel structural behaviours. This paper describes mechanical behaviour of beams with bolted slant end-plate connection with nonsymmetric gravity load, subjected to temperature increase. Furthermore, the performance of slant connections of beams in steel moment frame structures in the elastic field is investigated. The proposed model proved that this flexible connection system could successfully decrease the extra thermal induced axial force by both of the friction force dissipation among two faces of slant connection and a small upward movement on the slant plane. The applicability of primary assumption is illustrated. The results from the proposed model are examined within various slant angles, thermal and friction factors. It can be concluded that higher thermal conditions are tolerable when slanting connection is used.

  12. Thermal Behaviour of Beams with Slant End-Plate Connection Subjected to Nonsymmetric Gravity Load

    PubMed Central

    Osman, Mohd Hanim; Talebi, Elnaz

    2014-01-01

    Research on the steel structures with confining of axial expansion in fixed beams has been quite intensive in the past decade. It is well established that the thermal behaviour has a key influence on steel structural behaviours. This paper describes mechanical behaviour of beams with bolted slant end-plate connection with nonsymmetric gravity load, subjected to temperature increase. Furthermore, the performance of slant connections of beams in steel moment frame structures in the elastic field is investigated. The proposed model proved that this flexible connection system could successfully decrease the extra thermal induced axial force by both of the friction force dissipation among two faces of slant connection and a small upward movement on the slant plane. The applicability of primary assumption is illustrated. The results from the proposed model are examined within various slant angles, thermal and friction factors. It can be concluded that higher thermal conditions are tolerable when slanting connection is used. PMID:24587720

  13. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy.

    PubMed

    Loganathan, Muthukumaran; Bristow, Douglas A

    2014-04-01

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  14. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy

    SciTech Connect

    Loganathan, Muthukumaran; Bristow, Douglas A.

    2014-04-15

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  15. Nonlinear vibration and stability of a beam subjected to planar excitations

    NASA Astrophysics Data System (ADS)

    Lee, Yung-Ming

    1994-01-01

    The dynamic response of a beam subjected to an axial acceleration and transverse, planar impulsive loading has been investigated to characterize the nonlinear vibration and stability. The equations of motion were derived using Hamilton's principle. After applying Galerkin's procedure they were reduced to a system of nonlinear coupled ordinary differential equations, which in turn were solved numerically for numerous loading and boundary conditions. Determining the oscillatory motion of a beam in an axial acceleration field has applications in the micromechanics area, where resonating beams are used as accelerometers. Here the frequency response is of interest and the equations of motion reduce to a special eigenvalue problem. Both linear and nonlinear analyses were performed and the corresponding frequencies were identified. Transverse, planar excitation of the beam has applications in the design of fusion reaction chambers. Here the beams are used as cooling tubes inside the chamber as part of the first wall protection scheme. The external loading of these tubes (beams) consists of a series of impulsive pressures that occur at the repetition rate of the reactor. The dynamic response of the tubes, both planar and nonplanar, is necessary to aid in the design of the tube bank and the supporting constraints. The equations of motion were coded to simulate the response numerically. Amplitude-frequency curves were determined, from which the nonlinear jump phenomena could easily be observed. The conditions under which nonplanar motion could occur were also identified. Calculations were performed for both inextensional and extensional beams. Comparison of the responses for both cases were presented for the transient and steady state displacements.

  16. Cantilever epitaxial process

    DOEpatents

    Ashby, Carol I.; Follstaedt, David M.; Mitchell, Christine C.; Han, Jung

    2003-07-29

    A process of growing a material on a substrate, particularly growing a Group II-VI or Group III-V material, by a vapor-phase growth technique where the growth process eliminates the need for utilization of a mask or removal of the substrate from the reactor at any time during the processing. A nucleation layer is first grown upon which a middle layer is grown to provide surfaces for subsequent lateral cantilever growth. The lateral growth rate is controlled by altering the reactor temperature, pressure, reactant concentrations or reactant flow rates. Semiconductor materials, such as GaN, can be produced with dislocation densities less than 10.sup.7 /cm.sup.2.

  17. 77 FR 826 - Cantilever Capital, LLC and Cantilever Group, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... COMMISSION Cantilever Capital, LLC and Cantilever Group, LLC; Notice of Application December 29, 2011. AGENCY: Securities and Exchange Commission (``Commission''). ACTIONS: Notice of application for an order under... Cantilever Group, LLC (the ``Adviser''). Summary of Application: Cantilever, or any successor to Cantilever...

  18. Mechanical response of thick laminated beams and plates subject to out-of-plane loading

    NASA Technical Reports Server (NTRS)

    Hiel, C. C.; Brinson, . F.

    1989-01-01

    The use of simplified elasticity solutions to determine the mechanical response of thick laminated beams and plates subject to out-of-plane loading is demonstrated. Excellent results were obtained which compare favorably with theoretical, numerical and experimental analyses from other sources. The most important characteristic of the solution methodology presented is that it combines great mathematical precision with simplicity. This symbiosis has been needed for design with advanced composite materials.

  19. The stability of a flexible cantilever in viscous channel flow

    NASA Astrophysics Data System (ADS)

    Cisonni, Julien; Lucey, Anthony D.; Elliott, Novak S. J.; Heil, Matthias

    2017-05-01

    Most studies of the flow-induced flutter instability of a flexible cantilever have assumed inviscid flow because of the high flow speeds and the large scale of the structures encountered in the wide range of applications of this fluid-structure interaction (FSI) system. However, for instance, in the fields of energy harvesting and biomechanics, low flow speeds and small- and micro-scale systems can give relatively low Reynolds numbers so that fluid viscosity needs to be explicitly accounted for to provide reliable predictions of channel-immersed-cantilever stability. In this study, we employ a numerical model coupling the Navier-Stokes equations and a one-dimensional elastic beam model. We conduct a parametric investigation to determine the conditions leading to flutter instability of a slender flexible cantilever immersed in two-dimensional viscous channel flow for Reynolds numbers lower than 1000. The large set of numerical simulations carried out allows predictions of the influence of decreasing Reynolds numbers and of the cantilever confinement on the single-mode neutral stability of the FSI system and on the pre- and post-critical cantilever motion. This model's predictions are also compared to those of a FSI model containing a two-dimensional solid model in order to assess, primarily, the effect of the cantilever slenderness in the simulations. Results show that an increasing contribution of viscosity to the hydrodynamic forces significantly alters the instability boundaries. In general, a decrease in Reynolds number is predicted to produce a stabilisation of the FSI system, which is more pronounced for high fluid-to-solid mass ratios. For particular fluid-to-solid mass ratios, viscous effects can lower the critical velocity and lead to a change in the first unstable structural mode. However, at constant Reynolds number, the effects of viscosity on the system stability are diminished by the confinement of the cantilever, which strengthens the importance of

  20. Design and fabrication of vibration based energy harvester using microelectromechanical system piezoelectric cantilever for low power applications.

    PubMed

    Kim, Moonkeun; Lee, Sang-Kyun; Yang, Yil Suk; Jeong, Jaehwa; Min, Nam Ki; Kwon, Kwang-Ho

    2013-12-01

    We fabricated dual-beam cantilevers on the microelectromechanical system (MEMS) scale with an integrated Si proof mass. A Pb(Zr,Ti)O3 (PZT) cantilever was designed as a mechanical vibration energy-harvesting system for low power applications. The resonant frequency of the multilayer composition cantilevers were simulated using the finite element method (FEM) with parametric analysis carried out in the design process. According to simulations, the resonant frequency, voltage, and average power of a dual-beam cantilever was 69.1 Hz, 113.9 mV, and 0.303 microW, respectively, at optimal resistance and 0.5 g (gravitational acceleration, m/s2). Based on these data, we subsequently fabricated cantilever devices using dual-beam cantilevers. The harvested power density of the dual-beam cantilever compared favorably with the simulation. Experiments revealed the resonant frequency, voltage, and average power density to be 78.7 Hz, 118.5 mV, and 0.34 microW, respectively. The error between the measured and simulated results was about 10%. The maximum average power and power density of the fabricated dual-beam cantilever at 1 g were 0.803 microW and 1322.80 microW cm(-3), respectively. Furthermore, the possibility of a MEMS-scale power source for energy conversion experiments was also tested.

  1. Shear force microscopy using piezoresistive cantilevers in surface metrology

    NASA Astrophysics Data System (ADS)

    Gotszalk, Teodor; Kopiec, Daniel; Sierakowski, Andrzej; Janus, Paweł; Grabiec, Piotr; Rangelow, Ivo W.

    2014-09-01

    In this article we describe application of piezoresistive cantilevers in surface investigations carried out with the use of shear force microscopy (ShFM). The novel piezoresistive cantilevers integrate a Wheatstone piezoresistive bridge was used to detect the cantilever deflection, thermal deflection detector and planar tip protruding out of the spring beam. Because the planar tip deflection can be detected and controlled electronically the described technology is very flexible and can be applied in many surface investigations. In this article we will present operation theory of the described solution, experimental setup, methods for calibration of the tip deflection detection and actuation The analysis will be illustrated with example results of topography measurements performed using the described technology.

  2. High throughput reproducible cantilever functionalization

    SciTech Connect

    Evans, Barbara R; Lee, Ida

    2014-01-21

    A method for functionalizing cantilevers is provided that includes providing a holder having a plurality of channels each having a width for accepting a cantilever probe and a plurality of probes. A plurality of cantilever probes are fastened to the plurality of channels of the holder by the spring clips. The wells of a well plate are filled with a functionalization solution, wherein adjacent wells in the well plate are separated by a dimension that is substantially equal to a dimension separating adjacent channels of the plurality of channels. Each cantilever probe that is fastened within the plurality of channels of the holder is applied to the functionalization solution that is contained in the wells of the well plate.

  3. High throughout reproducible cantilever functionalization

    SciTech Connect

    Evans, Barbara R; Lee, Ida

    2014-11-25

    A method for functionalizing cantilevers is provided that includes providing a holder having a plurality of channels each having a width for accepting a cantilever probe and a plurality of probes. A plurality of cantilever probes are fastened to the plurality of channels of the holder by the spring clips. The wells of a well plate are filled with a functionalization solution, wherein adjacent wells in the well plate are separated by a dimension that is substantially equal to a dimension separating adjacent channels of the plurality of channels. Each cantilever probe that is fastened within the plurality of channels of the holder is applied to the functionalization solution that is contained in the wells of the well plate.

  4. Stress wave propagation in a composite beam subjected to transverse impact.

    SciTech Connect

    Lu, Wei-Yang; Song, Bo; Jin, Huiqing

    2010-08-01

    Composite materials, particularly fiber reinforced plastic composites, have been extensively utilized in many military and industrial applications. As an important structural component in these applications, the composites are often subjected to external impact loading. It is desirable to understand the mechanical response of the composites under impact loading for performance evaluation in the applications. Even though many material models for the composites have been developed, experimental investigation is still needed to validate and verify the models. It is essential to investigate the intrinsic material response. However, it becomes more applicable to determine the structural response of composites, such as a composite beam. The composites are usually subjected to out-of-plane loading in applications. When a composite beam is subjected to a sudden transverse impact, two different kinds of stress waves, longitudinal and transverse waves, are generated and propagate in the beam. The longitudinal stress wave propagates through the thickness direction; whereas, the propagation of the transverse stress wave is in-plane directions. The longitudinal stress wave speed is usually considered as a material constant determined by the material density and Young's modulus, regardless of the loading rate. By contrast, the transverse wave speed is related to structural parameters. In ballistic mechanics, the transverse wave plays a key role to absorb external impact energy [1]. The faster the transverse wave speed, the more impact energy dissipated. Since the transverse wave speed is not a material constant, it is not possible to be calculated from stress-wave theory. One can place several transducers to track the transverse wave propagation. An alternative but more efficient method is to apply digital image correlation (DIC) to visualize the transverse wave propagation. In this study, we applied three-pointbending (TPB) technique to Kolsky compression bar to facilitate

  5. Tuning the Spring Constant of Cantilever-free Probe Arrays

    NASA Astrophysics Data System (ADS)

    Eichelsdoerfer, Daniel J.; Brown, Keith A.; Boya, Radha; Shim, Wooyoung; Mirkin, Chad A.

    2013-03-01

    The versatility of atomic force microscope (AFM) based techniques such as scanning probe lithography is due in part to the utilization of a cantilever that can be fabricated to match a desired application. In contrast, cantilever-free scanning probe lithography utilizes a low cost array of probes on a compliant backing layer that allows for high throughput nanofabrication but lacks the tailorability afforded by the cantilever in traditional AFM. Here, we present a method to measure and tune the spring constant of probes in a cantilever-free array by adjusting the mechanical properties of the underlying elastomeric layer. Using this technique, we are able to fabricate large-area silicon probe arrays with spring constants that can be tuned in the range from 7 to 150 N/m. This technique offers an advantage in that the spring constant depends linearly on the geometry of the probe, which is in contrast to traditional cantilever-based lithography where the spring constant varies as the cube of the beam width and thickness. To illustrate the benefit of utilizing a probe array with a lower spring constant, we pattern a block copolymer on a delicate 50 nm thick silicon nitride window.

  6. Nonlinear resonances of a single-wall carbon nanotube cantilever

    NASA Astrophysics Data System (ADS)

    Kim, I. K.; Lee, S. I.

    2015-03-01

    The dynamics of an electrostatically actuated carbon nanotube (CNT) cantilever are discussed by theoretical and numerical approaches. Electrostatic and intermolecular forces between the single-walled CNT and a graphene electrode are considered. The CNT cantilever is analyzed by the Euler-Bernoulli beam theory, including its geometric and inertial nonlinearities, and a one-mode projection based on the Galerkin approximation and numerical integration. Static pull-in and pull-out behaviors are adequately represented by an asymmetric two-well potential with the total potential energy consisting of the CNT elastic energy, electrostatic energy, and the Lennard-Jones potential energy. Nonlinear dynamics of the cantilever are simulated under DC and AC voltage excitations and examined in the frequency and time domains. Under AC-only excitation, a superharmonic resonance of order 2 occurs near half of the primary frequency. Under both DC and AC loads, the cantilever exhibits linear and nonlinear primary and secondary resonances depending on the strength of the excitation voltages. In addition, the cantilever has dynamic instabilities such as periodic or chaotic tapping motions, with a variation of excitation frequency at the resonance branches. High electrostatic excitation leads to complex nonlinear responses such as softening, multiple stability changes at saddle nodes, or period-doubling bifurcation points in the primary and secondary resonance branches.

  7. Efficiency enhancement of a cantilever-based vibration energy harvester.

    PubMed

    Kubba, Ali E; Jiang, Kyle

    2013-12-23

    Extracting energy from ambient vibration to power wireless sensor nodes has been an attractive area of research, particularly in the automotive monitoring field. This article reports the design, analysis and testing of a vibration energy harvesting device based on a miniature asymmetric air-spaced cantilever. The developed design offers high power density, and delivers electric power that is sufficient to support most wireless sensor nodes for structural health monitoring (SHM) applications. The optimized design underwent three evolutionary steps, starting from a simple cantilever design, going through an air-spaced cantilever, and ending up with an optimized air-spaced geometry with boosted power density level. Finite Element Analysis (FEA) was used as an initial tool to compare the three geometries' stiffness (K), output open-circuit voltage (V(ave)), and average normal strain in the piezoelectric transducer (ε(ave)) that directly affect its output voltage. Experimental tests were also carried out in order to examine the energy harvesting level in each of the three designs. The experimental results show how to boost the power output level in a thin air-spaced cantilever beam for energy within the same space envelope. The developed thin air-spaced cantilever (8.37 cm3), has a maximum power output of 2.05 mW (H = 29.29 μJ/cycle).

  8. SU-8 hollow cantilevers for AFM cell adhesion studies

    NASA Astrophysics Data System (ADS)

    Martinez, Vincent; Behr, Pascal; Drechsler, Ute; Polesel-Maris, Jérôme; Potthoff, Eva; Vörös, Janos; Zambelli, Tomaso

    2016-05-01

    A novel fabrication method was established to produce flexible, transparent, and robust tipless hollow atomic force microscopy (AFM) cantilevers made entirely from SU-8. Channels of 3 μm thickness and several millimeters length were integrated into 12 μm thick and 40 μm wide cantilevers. Connected to a pressure controller, the devices showed high sealing performance with no leakage up to 6 bars. Changing the cantilever lengths from 100 μm to 500 μm among the same wafer allowed the targeting of various spring constants ranging from 0.5 to 80 N m-1 within a single fabrication run. These hollow polymeric AFM cantilevers were operated in the optical beam deflection configuration. To demonstrate the performance of the device, single-cell force spectroscopy experiments were performed with a single probe detaching in a serial protocol more than 100 Saccharomyces cerevisiae yeast cells from plain glass and glass coated with polydopamine while measuring adhesion forces in the sub-nanoNewton range. SU-8 now offers a new alternative to conventional silicon-based hollow cantilevers with more flexibility in terms of complex geometric design and surface chemistry modification.

  9. Efficiency Enhancement of a Cantilever-Based Vibration Energy Harvester

    PubMed Central

    Kubba, Ali E.; Jiang, Kyle

    2014-01-01

    Extracting energy from ambient vibration to power wireless sensor nodes has been an attractive area of research, particularly in the automotive monitoring field. This article reports the design, analysis and testing of a vibration energy harvesting device based on a miniature asymmetric air-spaced cantilever. The developed design offers high power density, and delivers electric power that is sufficient to support most wireless sensor nodes for structural health monitoring (SHM) applications. The optimized design underwent three evolutionary steps, starting from a simple cantilever design, going through an air-spaced cantilever, and ending up with an optimized air-spaced geometry with boosted power density level. Finite Element Analysis (FEA) was used as an initial tool to compare the three geometries' stiffness (K), output open-circuit voltage (Vave), and average normal strain in the piezoelectric transducer (εave) that directly affect its output voltage. Experimental tests were also carried out in order to examine the energy harvesting level in each of the three designs. The experimental results show how to boost the power output level in a thin air-spaced cantilever beam for energy within the same space envelope. The developed thin air-spaced cantilever (8.37 cm3), has a maximum power output of 2.05 mW (H = 29.29 μJ/cycle). PMID:24366177

  10. Dynamic response of concrete beams externally reinforced with carbon fiber reinforced plastic (CFRP) subjected to impulsive loads

    SciTech Connect

    Jerome, D.M.; Ross, C.A.

    1996-12-31

    A series of 54 laboratory scale concrete beams 3 x 3 x 30 in. in size were impulsively loaded to failure in a drop weight impact machine. The beams had no internal reinforcement, but instead were externally reinforced on the bottom or tension side of the beams with 1, 2, and 3 ply AS4C/1919 graphite epoxy panels. In addition, several of the beams were also reinforced on the sides with 3 ply CFRP. The beams were simply supported in a drop weight machine and subjected to impact loads with amplitudes up to 10 kips, and durations less than 1 ms, at beam midspan. Measurements made during the loading event included beam total load, midspan displacement, as well as midspan strain at 3 locations in the beam`s cross-section. A high speed framing camera was also used to record the beam`s displacement-time behavior as well as to gain insight into the failure mechanisms. Beam midspan accelerations were determined by double differentiation of the displacement versus time data, and in turn, the beam`s inertial loads were calculated using the beam`s equivalent mass. Beam dynamic bending loads versus time were determined from the difference between the total load versus time and the inertial load versus time data. Bending loads versus displacements were also determined along with fracture energies. Failure to correct the loads for inertia will result in incorrect conclusions being drawn from the data, especially for bending resistance of brittle concrete test specimens. A comparison with quasistatic bending (fracture) energy data showed that the dynamic failure energy absorbed by the beams was always less than the static fracture energy, due to the brittle nature of concrete when impulsively loaded.

  11. Decoupled cantilever arms for highly versatile and sensitive temperature and heat flux measurements

    NASA Astrophysics Data System (ADS)

    Burg, Brian R.; Tong, Jonathan K.; Hsu, Wei-Chun; Chen, Gang

    2012-10-01

    Microfabricated cantilever beams have been used in microelectromechanical systems for a variety of sensor and actuator applications. Bimorph cantilevers accurately measure temperature change and heat flux with resolutions several orders of magnitude higher than those of conventional sensors such as thermocouples, semiconductor diodes, as well as resistance and infrared thermometers. The use of traditional cantilevers, however, entails a series of important measurement limitations, because their interactions with the sample and surroundings often create parasitic deflection forces and the typical metal layer degrades the thermal sensitivity of the cantilever. The paper introduces a design to address these issues by decoupling the sample and detector section of the cantilever, along with a thermomechanical model, the fabrication, system integration, and characterization. The custom-designed bi-arm cantilever is over one order of magnitude more sensitive than current commercial cantilevers due to the significantly reduced thermal conductance of the cantilever sample arm. The rigid and immobile sample section offers measurement versatility ranging from photothermal absorption, near-field thermal radiation down to contact, conduction, and material thermal characterization measurements in nearly identical configurations.

  12. Enhancing amplitudes of higher-order eigenmodes of atomic force microscope cantilevers by laser for better mass sensing

    NASA Astrophysics Data System (ADS)

    Hoang, Chu Manh; Duy Vy, Nguyen; Dat, Le Tri; Iida, Takuya

    2017-06-01

    We theoretically study the dynamics of an atomic force microscope cantilever under various irradiation configurations of a laser. By conveying a stream of photons and its momenta, the laser beam whose geometrical intensity profile has a Gaussian form will exert a nonuniform radiation pressure on the cantilever surface and modify its vibration. The dependences of cantilever modeshapes on the laser spot position and waist reveal a possibility of diminishing or exciting a specific eigenmode. For cantilevers of ˜200 µm length, the vibration amplitude of higher-order eigenmodes can be increased 4-5 times. This implies the change in cantilever effective mass once the interaction with the ambient is taken into account. The study gives a deeper understanding of soft cantilever dynamics in liquids and can be applied in the modern measurement configuration where high frequencies are required.

  13. Repetitive impact response of a beam structure subjected to harmonic base excitation

    NASA Astrophysics Data System (ADS)

    Ervin, Elizabeth K.; Wickert, J. A.

    2007-10-01

    This paper investigates the forced response dynamics of a clamped-clamped beam to which a rigid body is attached, and in the presence of periodic or non-periodic impacts between the body and a comparatively compliant base structure. The assembly is subjected to base excitation at specified frequency and acceleration, and the potentially complex responses that occur are examined analytically. The two sets of natural frequencies and vibration modes of the beam-rigid body structure (in its in-contact state, and in its not-in-contact state), are used to treat the forced response problem through a series of algebraic mappings among those states. A modal analysis based on extended operators for the (continuous) beam and (discrete) rigid body establishes a piecewise linear state-to-state mapping for transition between the in-contact and not-in-contact conditions. The contact force, impulse, and displacement each exhibit complex response characteristics as a function of the excitation frequency. Periodic responses occurring at the excitation frequency, period-doubling bifurcations, grazing impacts, sub-harmonic regions, fractional harmonic resonances, and apparently chaotic responses each occur at various combinations of damping, excitation frequency, and contact stiffness. The results of parameter studies in structural asymmetry and the eccentricity of the contact point's location are discussed.

  14. Static deflection analysis of non prismatic multilayer p-NEMS cantilevers under electrical load

    SciTech Connect

    Pavithra, M.; Muruganand, S.

    2016-04-13

    Deflection of Euler-Bernoulli non prismatic multilayer piezoelectric nano electromechanical (p-NEMS) cantilever beams have been studied theoretically for various profiles of p-NEMS cantilevers by applying the electrical load. This problem has been answered by applying the boundary conditions derived by simple polynomials. This method is applied for various profiles like rectangular and trapezoidal by varying the thickness of the piezoelectric layer as well as the material. The obtained results provide the better deflection for trapezoidal profile with ZnO piezo electric layer of suitable nano cantilevers for nano scale applications.

  15. Nonlinear Dynamics of Cantilever-Sample Interactions in Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Cantrell, Sean A.

    2010-01-01

    The interaction of the cantilever tip of an atomic force microscope (AFM) with the sample surface is obtained by treating the cantilever and sample as independent systems coupled by a nonlinear force acting between the cantilever tip and a volume element of the sample surface. The volume element is subjected to a restoring force from the remainder of the sample that provides dynamical equilibrium for the combined systems. The model accounts for the positions on the cantilever of the cantilever tip, laser probe, and excitation force (if any) via a basis set of set of orthogonal functions that may be generalized to account for arbitrary cantilever shapes. The basis set is extended to include nonlinear cantilever modes. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a matrix iteration procedure. The effects of oscillatory excitation forces applied either to the cantilever or to the sample surface (or to both) are obtained from the solution set and applied to the to the assessment of phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) modalities. The influence of bistable cantilever modes of on AFM signal generation is discussed. The effects on the cantilever-sample surface dynamics of subsurface features embedded in the sample that are perturbed by surface-generated oscillatory excitation forces and carried to the cantilever via wave propagation are accounted by the Bolef-Miller propagating wave model. Expressions pertaining to signal generation and image contrast in A-AFM are obtained and applied to amplitude modulation (intermittent contact) atomic force microscopy and resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM). The influence of phase accumulation in A-AFM on image contrast is discussed, as is the effect of hard contact and maximum nonlinearity regimes of A-AFM operation.

  16. Nonlinear Dynamics of Cantilever-Sample Interactions in Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Cantrell, Sean A.

    2010-01-01

    The interaction of the cantilever tip of an atomic force microscope (AFM) with the sample surface is obtained by treating the cantilever and sample as independent systems coupled by a nonlinear force acting between the cantilever tip and a volume element of the sample surface. The volume element is subjected to a restoring force from the remainder of the sample that provides dynamical equilibrium for the combined systems. The model accounts for the positions on the cantilever of the cantilever tip, laser probe, and excitation force (if any) via a basis set of set of orthogonal functions that may be generalized to account for arbitrary cantilever shapes. The basis set is extended to include nonlinear cantilever modes. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a matrix iteration procedure. The effects of oscillatory excitation forces applied either to the cantilever or to the sample surface (or to both) are obtained from the solution set and applied to the to the assessment of phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) modalities. The influence of bistable cantilever modes of on AFM signal generation is discussed. The effects on the cantilever-sample surface dynamics of subsurface features embedded in the sample that are perturbed by surface-generated oscillatory excitation forces and carried to the cantilever via wave propagation are accounted by the Bolef-Miller propagating wave model. Expressions pertaining to signal generation and image contrast in A-AFM are obtained and applied to amplitude modulation (intermittent contact) atomic force microscopy and resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM). The influence of phase accumulation in A-AFM on image contrast is discussed, as is the effect of hard contact and maximum nonlinearity regimes of A-AFM operation.

  17. Optical fiber accelerometer based on a silicon micromachined cantilever

    NASA Astrophysics Data System (ADS)

    Malki, Abdelrafik; Lecoy, Pierre; Marty, Jeanine; Renouf, Christine; Ferdinand, Pierre

    1995-12-01

    An intensity-modulated fiber-optic accelerometer based on backreflection effects has been manufactured and tested. It uses a multimode fiber placed at a spherical mirror center, and the beam intensity is modulated by a micromachined silicon cantilever. This device has applications as an accelerometer and vibrometer for rotating machines. It exhibits an amplitude linearity of +/-1.2% in the range of 0.1-22 m s-2, a frequency linearity of +/-1% in the

  18. Performance evaluation of perforated micro-cantilevers for MEMS applications

    NASA Astrophysics Data System (ADS)

    Swamy, Kenkere Balashanthamurthy Mruthyunjaya; Mukherjee, Banibrata; Ali Syed Mohammed, Zishan; Chakraborty, Suman; Sen, Siddhartha

    2014-04-01

    Miniaturized cantilevers are one of the elementary structures that are widely used in many micro-devices and systems. The dynamic performance of micro-cantilevers having process dictated through perforations is investigated. High-aspect ratio, long silicon cantilevers, intended for improved performance through lowered stiffness are designed with a series of through holes and simulated along with similar nonperforated/solid cantilevers for comparison. A few perforated structures are also fabricated using silicon-on-insulator-based multiproject MEMS processes from MEMSCAP Inc. (Durham, North Carolina) by reduced mask level and eliminating complex substrate trenching step. The dynamic behavior of these fabricated structures is experimentally studied for both in-plane and out-of-plane directions. It is shown that, due to the presence of perforations, stiffness in planar direction is lightly affected, whereas in out-of-plane direction it is significantly reduced by >35%. Similarly, the variation of damping in both perforated and nonperforated beams, too, is thoroughly analyzed for the first few modes of vibration. Nevertheless, their frequency response variation of <10% for modal frequencies in both planar and out-of-plane directions as compared to the nonperforated counterparts, points to potential applications in several micro-systems including those based on comb drives.

  19. A new detection system for extremely small vertically mounted cantilevers.

    PubMed

    Antognozzi, M; Ulcinas, A; Picco, L; Simpson, S H; Heard, P J; Szczelkun, M D; Brenner, B; Miles, M J

    2008-09-24

    Detection techniques currently used in scanning force microscopy impose limitations on the geometrical dimensions of the probes and, as a consequence, on their force sensitivity and temporal response. A new technique, based on scattered evanescent electromagnetic waves (SEW), is presented here that can detect the displacement of the extreme end of a vertically mounted cantilever. The resolution of this method is tested using different cantilever sizes and a theoretical model is developed to maximize the detection sensitivity. The applications presented here clearly show that the SEW detection system enables the use of force sensors with sub-micron size, opening new possibilities in the investigation of biomolecular systems and high speed imaging. Two types of cantilevers were successfully tested: a high force sensitivity lever with a spring constant of 0.17 pN nm(-1) and a resonant frequency of 32 kHz; and a high speed lever with a spring constant of 50 pN nm(-1) and a resonant frequency of 1.8 MHz. Both these force sensors were fabricated by modifying commercial microcantilevers in a focused ion beam system. It is important to emphasize that these modified cantilevers could not be detected by the conventional optical detection system used in commercial atomic force microscopes.

  20. Cantilevered probe detector with piezoelectric element

    SciTech Connect

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2014-04-29

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  1. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2013-04-30

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  2. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D.; Sulchek, Todd A.; Feigin, Stuart C.

    2010-04-06

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  3. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2013-04-30

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  4. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D [Reno, NV; Sulchek, Todd A [Oakland, CA; Feigin, Stuart C [Reno, NV

    2012-07-10

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  5. Real-time moving horizon estimation for a vibrating active cantilever

    NASA Astrophysics Data System (ADS)

    Abdollahpouri, Mohammad; Takács, Gergely; Rohaľ-Ilkiv, Boris

    2017-03-01

    Vibrating structures may be subject to changes throughout their operating lifetime due to a range of environmental and technical factors. These variations can be considered as parameter changes in the dynamic model of the structure, while their online estimates can be utilized in adaptive control strategies, or in structural health monitoring. This paper implements the moving horizon estimation (MHE) algorithm on a low-cost embedded computing device that is jointly observing the dynamic states and parameter variations of an active cantilever beam in real time. The practical behavior of this algorithm has been investigated in various experimental scenarios. It has been found, that for the given field of application, moving horizon estimation converges faster than the extended Kalman filter; moreover, it handles atypical measurement noise, sensor errors or other extreme changes, reliably. Despite its improved performance, the experiments demonstrate that the disadvantage of solving the nonlinear optimization problem in MHE is that it naturally leads to an increase in computational effort.

  6. The Influence of the Form of a Wooden Beam on Its Stiffness and Strength III : Stresses in Wood Members Subjected to Combined Column and Beam Action

    NASA Technical Reports Server (NTRS)

    Newlin, J A; Trayer, G W

    1925-01-01

    The general purpose in this study was to determine the stresses in a wooden member subjected to combined beam and column action. What may be considered the specific purpose, as it relates more directly to the problem of design, was to determine the particular stress that obtains at maximum load which, for combined loading, does not occur simultaneously with maximum stress.

  7. Electromechanical properties of single-walled carbon nanotube devices on micromachined cantilevers

    NASA Astrophysics Data System (ADS)

    Jeon, Eun-Kyoung; Park, Chan-Hyun; Lee, Jung A.; Kim, Min-Seok; Lee, Kwang-Cheol; So, Hye-Mi; Ahn, Chiwon; Chang, Hyunju; Kong, Ki-jeong; Kim, Ju-Jin; Lee, Jeong-O.

    2012-11-01

    We have investigated the electromechanical properties of single-walled carbon nanotubes (SWNTs) by constructing carbon nanotube transistors on micro-cantilevers. SWNTs and ultra-long carbon nanotubes (UNTs) were grown on free-standing Si3N4 membranes by using chemical vapor deposition, and electrical contacts were generated with electron beam lithography and lift-off. The cantilevers bearing SWNT devices were micromachined so that hybrid cantilevers with various spring constants were fabricated. To measure the electromechanical properties of the SWNTs, precisely controlled forces were generated by a microbalance and applied to the hybrid cantilever devices. Upon bending, the conductances of the metallic and large-gap semiconducting UNTs showed no notable change, whereas the conductances of the small-gap semiconducting UNTs and networks of SWNTs increased. Numerical simulations of bended SWNT made using a multiscale simulator supported the hypothesis that the small-gap semiconducting SWNTs undergo a metallic transformation upon bending.

  8. Analytic and laser vibrometry study of squeeze film damping of MEMS cantilevers

    NASA Astrophysics Data System (ADS)

    Vignola, Joseph F.; Judge, John A.; Lawrence, Eric; Jarzynski, Jacek; Houston, Brian

    2006-06-01

    This study compares theoretical predictions to experimental measurements of squeeze film damping of MEMS cantilevers in a fluid environment. A series of MEMS cantilevers were fabricated on a silicon wafer. Each of the silicon beams was 2 μm thick and 18 μm wide. The lengths range from 100 to 800 μm and the air-filled gap between the cantilever and the substrate was 6 μm. An analytic model for squeeze film damping was used to predict the corresponding quality factor Q squeeze film (the ratio of the mechanical energy stored in the oscillator to the energy dissipated per cycle) for these cantilevers. The results from the modeling are compared to experimental results obtained using a Polytec MSA-400 Micro System Analyzer.

  9. Controlled generation of intrinsic localized modes in microelectromechanical cantilever arrays

    NASA Astrophysics Data System (ADS)

    Chen, Qingfei; Lai, Ying-Cheng; Dietz, David

    2010-12-01

    We propose a scheme to induce intrinsic localized modes (ILMs) at an arbitrary site in microelectromechanical cantilever arrays. The idea is to locate the particular cantilever beam in the array that one wishes to drive to an oscillating state with significantly higher amplitude than the average and then apply small adjustments to the electrical signal that drives the whole array system. Our scheme is thus a global closed-loop control strategy. We argue that the dynamical mechanism on which our global driving scheme relies is spatiotemporal chaos and we develop a detailed analysis based on the standard averaging method in nonlinear dynamics to understand the working of our control scheme. We also develop a Markov model to characterize the transient time required for inducing ILMs.

  10. Vibrations of cantilevered shallow cylindrical shells of rectangular planform

    NASA Technical Reports Server (NTRS)

    Leissa, A. W.; Lee, J. K.; Wang, A. J.

    1981-01-01

    A cantilevered, shallow shell of circular cylindrical curvature and rectangular planform exhibits free vibration behavior which differs considerably from that of a cantilevered beam or of a flat plate. Some numerical results can be found for the problem in the previously published literature, mainly obtained by using various finite element methods. The present paper is the first definitive study of the problem, presenting accurate non-dimensional frequency parameters for wide ranges of aspect ratio, shallowness ratio and thickness ratio. The analysis is based upon shallow shell theory. Numerical results are obtained by using the Ritz method, with algebraic polynomial trial functions for the displacements. Convergence is investigated, with attention being given both to the number of terms taken for each co-ordinate direction and for each of the three components of displacement. Accuracy of the results is also established by comparison with finite element results for shallow shells and with other accurate flat plate solutions.

  11. Laser Actuation of Cantilevers for Picometre Amplitude Dynamic Force Microscopy

    PubMed Central

    Evans, Drew R.; Tayati, Ponlawat; An, Hongjie; Lam, Ping Koy; Craig, Vincent S. J.; Senden, Tim J.

    2014-01-01

    As nanoscale and molecular devices become reality, the ability to probe materials on these scales is increasing in importance. To address this, we have developed a dynamic force microscopy technique where the flexure of the microcantilever is excited using an intensity modulated laser beam to achieve modulation on the picoscale. The flexure arises from thermally induced bending through differential expansion and the conservation of momentum when the photons are reflected and absorbed by the cantilever. In this study, we investigated the photothermal and photon pressure responses of monolithic and layered cantilevers using a modulated laser in air and immersed in water. The developed photon actuation technique is applied to the stretching of single polymer chains. PMID:24993548

  12. Vibrations of cantilevered shallow cylindrical shells of rectangular planform

    NASA Astrophysics Data System (ADS)

    Leissa, A. W.; Lee, J. K.; Wang, A. J.

    1981-10-01

    A cantilevered, shallow shell of circular cylindrical curvature and rectangular planform exhibits free vibration behavior which differs considerably from that of a cantilevered beam or of a flat plate. Some numerical results can be found for the problem in the previously published literature, mainly obtained by using various finite element methods. The present paper is the first definitive study of the problem, presenting accurate non-dimensional frequency parameters for wide ranges of aspect ratio, shallowness ratio and thickness ratio. The analysis is based upon shallow shell theory. Numerical results are obtained by using the Ritz method, with algebraic polynomial trial functions for the displacements. Convergence is investigated, with attention being given both to the number of terms taken for each co-ordinate direction and for each of the three components of displacement. Accuracy of the results is also established by comparison with finite element results for shallow shells and with other accurate flat plate solutions.

  13. Approximate method for predicting the permanent set in a beam in vacuo and in water subject to a shock wave

    NASA Technical Reports Server (NTRS)

    Stiehl, A. L.; Haberman, R. C.; Cowles, J. H.

    1988-01-01

    An approximate method to compute the maximum deformation and permanent set of a beam subjected to shock wave laoding in vacuo and in water was investigated. The method equates the maximum kinetic energy of the beam (and water) to the elastic plastic work done by a static uniform load applied to a beam. Results for the water case indicate that the plastic deformation is controlled by the kinetic energy of the water. The simplified approach can result in significant savings in computer time or it can expediently be used as a check of results from a more rigorous approach. The accuracy of the method is demonstrated by various examples of beams with simple support and clamped support boundary conditions.

  14. Assessment of precast beam-column using capacity demand response spectrum subject to design basis earthquake and maximum considered earthquake

    NASA Astrophysics Data System (ADS)

    Ghani, Kay Dora Abd.; Tukiar, Mohd Azuan; Hamid, Nor Hayati Abdul

    2017-08-01

    Malaysia is surrounded by the tectonic feature of the Sumatera area which consists of two seismically active inter-plate boundaries, namely the Indo-Australian and the Eurasian Plates on the west and the Philippine Plates on the east. Hence, Malaysia experiences tremors from far distant earthquake occurring in Banda Aceh, Nias Island, Padang and other parts of Sumatera Indonesia. In order to predict the safety of precast buildings in Malaysia under near field ground motion the response spectrum analysis could be used for dealing with future earthquake whose specific nature is unknown. This paper aimed to develop of capacity demand response spectrum subject to Design Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE) in order to assess the performance of precast beam column joint. From the capacity-demand response spectrum analysis, it can be concluded that the precast beam-column joints would not survive when subjected to earthquake excitation with surface-wave magnitude, Mw, of more than 5.5 Scale Richter (Type 1 spectra). This means that the beam-column joint which was designed using the current code of practice (BS8110) would be severely damaged when subjected to high earthquake excitation. The capacity-demand response spectrum analysis also shows that the precast beam-column joints in the prototype studied would be severely damaged when subjected to Maximum Considered Earthquake (MCE) with PGA=0.22g having a surface-wave magnitude of more than 5.5 Scale Richter, or Type 1 spectra.

  15. High-speed imaging upgrade for a standard sample scanning atomic force microscope using small cantilevers

    SciTech Connect

    Adams, Jonathan D.; Nievergelt, Adrian; Erickson, Blake W.; Yang, Chen; Dukic, Maja; Fantner, Georg E.

    2014-09-15

    We present an atomic force microscope (AFM) head for optical beam deflection on small cantilevers. Our AFM head is designed to be small in size, easily integrated into a commercial AFM system, and has a modular architecture facilitating exchange of the optical and electronic assemblies. We present two different designs for both the optical beam deflection and the electronic readout systems, and evaluate their performance. Using small cantilevers with our AFM head on an otherwise unmodified commercial AFM system, we are able to take tapping mode images approximately 5–10 times faster compared to the same AFM system using large cantilevers. By using additional scanner turnaround resonance compensation and a controller designed for high-speed AFM imaging, we show tapping mode imaging of lipid bilayers at line scan rates of 100–500 Hz for scan areas of several micrometers in size.

  16. Damage evaluation in metal structures subjected to high energy deposition due to particle beams

    NASA Astrophysics Data System (ADS)

    Scapin, Martina; Peroni, Lorenzo; Dallocchio, Alessandro

    2011-07-01

    The unprecedented energy intensities of modern hadron accelerators yield special problems with the materials that are placed close to or into the high intensity beams. The energy stored in a single beam of LHC particle accelerator is equivalent to about 80 kg of TNT explosive, stored in a transverse beam area with a typical value of 0.2 mm×0.2 mm. The materials placed close to the beam are used at, or even beyond, their damage limits. However, it is very difficult to predict structural efficiency and robustness accurately: beam-induced damage for high energy and high intensity occurs in a regime where practical experience does not exist. The interaction between high energy particle beams and metals induces a sudden non uniform temperature increase. This provokes a dynamic response of the structure entailing thermal stress waves and thermally induced vibrations or even the failure of the component. This study is performed in order to estimate the damage on a copper component due to the impact with a 7 TeV proton beam generated by LHC. The case study represents an accidental case consequent to an abnormal release of the beam: the energy delivered on the component is calculated using the FLUKA code and then used as input in the numerical simulations, that are carried out via the FEM code LS-DYNA.

  17. Study of node and mass sensitivity of resonant mode based cantilevers with concentrated mass loading

    SciTech Connect

    Zhang, Kewei Chai, Yuesheng; Fu, Jiahui

    2015-12-15

    Resonant-mode based cantilevers are an important type of acoustic wave based mass-sensing devices. In this work, the governing vibration equation of a bi-layer resonant-mode based cantilever attached with concentrated mass is established by using a modal analysis method. The effects of resonance modes and mass loading conditions on nodes and mass sensitivity of the cantilever were theoretically studied. The results suggested that the node did not shift when concentrated mass was loaded on a specific position. Mass sensitivity of the cantilever was linearly proportional to the square of the point displacement at the mass loading position for all the resonance modes. For the first resonance mode, when mass loading position x{sub c} satisfied 0 < x{sub c} < ∼ 0.3l (l is the cantilever beam length and 0 represents the rigid end), mass sensitivity decreased as the mass increasing while the opposite trend was obtained when mass loading satisfied ∼0.3l ≤ x{sub c} ≤ l. Mass sensitivity did not change when concentrated mass was loaded at the rigid end. This work can provide scientific guidance to optimize the mass sensitivity of a resonant-mode based cantilever.

  18. Determining the thermal expansion coefficient of thin films for a CMOS MEMS process using test cantilevers

    NASA Astrophysics Data System (ADS)

    Cheng, Chao-Lin; Tsai, Ming-Han; Fang, Weileun

    2015-02-01

    Many standard CMOS processes, provided by existing foundries, are available. These standard CMOS processes, with stacking of various metal and dielectric layers, have been extensively applied in integrated circuits as well as micro-electromechanical systems (MEMS). It is of importance to determine the material properties of the metal and dielectric films to predict the performance and reliability of micro devices. This study employs an existing approach to determine the coefficients of thermal expansion (CTEs) of metal and dielectric films for standard CMOS processes. Test cantilevers with different stacking of metal and dielectric layers for standard CMOS processes have been designed and implemented. The CTEs of standard CMOS films can be determined from measurements of the out-of-plane thermal deformations of the test cantilevers. To demonstrate the feasibility of the present approach, thin films prepared by the Taiwan Semiconductor Manufacture Company 0.35 μm 2P4M CMOS process are characterized. Eight test cantilevers with different stacking of CMOS layers and an auxiliary Si cantilever on a SOI wafer are fabricated. The equivalent elastic moduli and CTEs of the CMOS thin films including the metal and dielectric layers are determined, respectively, from the resonant frequency and static thermal deformation of the test cantilevers. Moreover, thermal deformations of cantilevers with stacked layers different to those of the test beams have been employed to verify the measured CTEs and elastic moduli.

  19. Micro electro-mechanical system piezoelectric cantilever array for a broadband vibration energy harvester.

    PubMed

    Chun, Inwoo; Lee, Hyun-Woo; Kwon, Kwang-Ho

    2014-12-01

    Limited energy sources of ubiquitous sensor networks (USNs) such as fuel cells and batteries have grave drawbacks such as the need for replacements and re-charging owing to their short durability and environmental pollution. Energy harvesting which is converting environmental mechanical vibration into electrical energy has been researched with some piezoelectric materials and various cantilever designs to increase the efficiency of energy-harvesting devices. In this study, we focused on an energy-harvesting cantilever with a broadband vibration frequency. We fabricated a lead zirconate titanate (PZT) cantilever array with various Si proof masses on small beams (5.5 mm x 0.5 mm x 0.5 mm). We obtained broadband resonant frequencies ranging between 127 Hz and 136 Hz using a micro electro-mechanical system (MEMS) process. In order to obtain broadband resonant characteristics, the cantilever array was comprised of six cantilevers with different resonant frequencies. We obtained an output power of about 2.461 μW at an acceleration of 0.23 g and a resistance of 4 kΩ. The measured bandwidth of the resonant frequency was approximately 9 Hz (127-136 Hz), which is about six times wider than the bandwidth of a single cantilever.

  20. V-shaped metallic-wire cantilevers for combined atomic force microscopy and Fowler-Nordheim imaging

    NASA Astrophysics Data System (ADS)

    Peterson, Charles A.; Workman, Richard K.; Yao, Xiaowei; Hunt, Jeffery P.; Sarid, Dror

    1998-12-01

    A method for fabricating V-shaped cantilevers from a flattened Pt/Ir metal wire for combined atomic force microscopy and Fowler-Nordheim imaging is described. These novel cantilevers have been found to be more robust then conventional ones used for scanning capacitance and magnetic force microscopy as their conductivity is maintained even after a large number of surface scans. The use of a V-shaped geometry improves on earlier single-beam geometries by reducing rms imaging noise. Characterization of these cantilevers and combined atomic force microscopy and Fowler-Nordheim images are reported.

  1. MEMS-based silicon cantilevers with integrated electrothermal heaters for airborne ultrafine particle sensing

    NASA Astrophysics Data System (ADS)

    Wasisto, Hutomo Suryo; Merzsch, Stephan; Waag, Andreas; Peiner, Erwin

    2013-05-01

    The development of low-cost and low-power MEMS-based cantilever sensors for possible application in hand-held airborne ultrafine particle monitors is described in this work. The proposed resonant sensors are realized by silicon bulk micromachining technology with electrothermal excitation, piezoresistive frequency readout, and electrostatic particle collection elements integrated and constructed in the same sensor fabrication process step of boron diffusion. Built-in heating resistor and full Wheatstone bridge are set close to the cantilever clamp end for effective excitation and sensing, respectively, of beam deflection. Meanwhile, the particle collection electrode is located at the cantilever free end. A 300 μm-thick, phosphorus-doped silicon bulk wafer is used instead of silicon-on-insulator (SOI) as the starting material for the sensors to reduce the fabrication costs. To etch and release the cantilevers from the substrate, inductively coupled plasma (ICP) cryogenic dry etching is utilized. By controlling the etching parameters (e.g., temperature, oxygen content, and duration), cantilever structures with thicknesses down to 10 - 20 μm are yielded. In the sensor characterization, the heating resistor is heated and generating thermal waves which induce thermal expansion and further cause mechanical bending strain in the out-of-plane direction. A resonant frequency of 114.08 +/- 0.04 kHz and a quality factor of 1302 +/- 267 are measured in air for a fabricated rectangular cantilever (500x100x13.5 μm3). Owing to its low power consumption of a few milliwatts, this electrothermal cantilever is suitable for replacing the current external piezoelectric stack actuator in the next generation of the miniaturized cantilever-based nanoparticle detector (CANTOR).

  2. Contractile cell forces deform macroscopic cantilevers and quantify biomaterial performance.

    PubMed

    Allenstein, U; Mayr, S G; Zink, M

    2015-07-07

    Cells require adhesion to survive, proliferate and migrate, as well as for wound healing and many other functions. The strength of contractile cell forces on an underlying surface is a highly relevant quantity to measure the affinity of cells to a rigid surface with and without coating. Here we show with experimental and theoretical studies that these forces create surface stresses that are sufficient to induce measurable bending of macroscopic cantilevers. Since contractile forces are linked to the formation of focal contacts, results give information on adhesion promoting qualities and allow a comparison of very diverse materials. In exemplary studies, in vitro fibroblast adhesion on the magnetic shape memory alloy Fe-Pd and on the l-lysine derived plasma-functionalized polymer PPLL was determined. We show that cells on Fe-Pd are able to induce surface stresses three times as high as on pure titanium cantilevers. A further increase was observed for PPLL, where the contractile forces are four times higher than on the titanium reference. In addition, we performed finite element simulations on the beam bending to back up the calculation of contractile forces from cantilever bending under non-homogenous surface stress. Our findings consolidate the role of contractile forces as a meaningful measure of biomaterial performance.

  3. Vibration of Timoshenko beam on hysteretically damped elastic foundation subjected to moving load

    NASA Astrophysics Data System (ADS)

    Luo, WeiLi; Xia, Yong; Weng, Shun

    2015-08-01

    The vibration of beams on foundations under moving loads has many applications in several fields, such as pavements in highways or rails in railways. However, most of the current studies only consider the energy dissipation mechanism of the foundation through viscous behavior; this assumption is unrealistic for soils. The shear rigidity and radius of gyration of the beam are also usually excluded. Therefore, this study investigates the vibration of an infinite Timoshenko beam resting on a hysteretically damped elastic foundation under a moving load with constant or harmonic amplitude. The governing differential equations of motion are formulated on the basis of the Hamilton principle and Timoshenko beam theory, and are then transformed into two algebraic equations through a double Fourier transform with respect to moving space and time. Beam deflection is obtained by inverse fast Fourier transform. The solution is verified through comparison with the closed-form solution of an Euler-Bernoulli beam on a Winkler foundation. Numerical examples are used to investigate: (a) the effect of the spatial distribution of the load, and (b) the effects of the beam properties on the deflected shape, maximum displacement, critical frequency, and critical velocity. These findings can serve as references for the performance and safety assessment of railway and highway structures.

  4. Cantilevers orthodontics forces measured by fiber sensors

    NASA Astrophysics Data System (ADS)

    Schneider, Neblyssa; Milczewski, Maura S.; de Oliveira, Valmir; Guariza Filho, Odilon; Lopes, Stephani C. P. S.; Kalinowski, Hypolito J.

    2015-09-01

    Fibers Bragg Gratings were used to evaluate the transmission of the forces generates by orthodontic mechanic based one and two cantilevers used to move molars to the upright position. The results showed levels forces of approximately 0,14N near to the root of the molar with one and two cantilevers.

  5. Prototype cantilevers for quantitative lateral force microscopy

    SciTech Connect

    Reitsma, Mark G.; Gates, Richard S.; Friedman, Lawrence H.; Cook, Robert F.

    2011-09-15

    Prototype cantilevers are presented that enable quantitative surface force measurements using contact-mode atomic force microscopy (AFM). The ''hammerhead'' cantilevers facilitate precise optical lever system calibrations for cantilever flexure and torsion, enabling quantifiable adhesion measurements and friction measurements by lateral force microscopy (LFM). Critically, a single hammerhead cantilever of known flexural stiffness and probe length dimension can be used to perform both a system calibration as well as surface force measurements in situ, which greatly increases force measurement precision and accuracy. During LFM calibration mode, a hammerhead cantilever allows an optical lever ''torque sensitivity'' to be generated for the quantification of LFM friction forces. Precise calibrations were performed on two different AFM instruments, in which torque sensitivity values were specified with sub-percent relative uncertainty. To examine the potential for accurate lateral force measurements using the prototype cantilevers, finite element analysis predicted measurement errors of a few percent or less, which could be reduced via refinement of calibration methodology or cantilever design. The cantilevers are compatible with commercial AFM instrumentation and can be used for other AFM techniques such as contact imaging and dynamic mode measurements.

  6. Resonance response of scanning force microscopy cantilevers

    SciTech Connect

    Chen, G.Y.; Warmack, R.J.; Thundat, T.; Allison, D.P. ); Huang, A. )

    1994-08-01

    A variational method is used to calculate the deflection and the fundamental and harmonic resonance frequencies of commercial V-shaped and rectangular atomic force microscopy cantilevers. The effective mass of V-shaped cantilevers is roughly half that calculated for the equivalent rectangular cantilevers. Damping by environmental gases, including air, nitrogen, argon, and helium, affects the frequency of maximum response and to a much greater degree the quality factor [ital Q]. Helium has the lowest viscosity, resulting in the highest [ital Q], and thus provides the best sensitivity in noncontact force microscopy. Damping in liquids is dominated by an increase in effective mass of the cantilever due to an added mass of the liquid being dragged with that cantilever.

  7. Static instability of beam-type NEMS subjected to symmetric electrostatic actuation based on couple stress theory and Timoshenko beam theory

    NASA Astrophysics Data System (ADS)

    Shojaeian, M.; Zeighampour, H.

    2017-06-01

    The behavior of nanoelectromechanical systems subjected to symmetrical electrostatic actuation and symmetrical Casimir intermolecular force has been investigated. Two different phenomena (i.e. electromechanical bifurcation and electromechanical buckling) have been considered to explore the static electromechanical instability of such systems. The Timoshenko beam model has been employed to find the effect of shear deformation on these systems. Modified couple stress theory has been used to investigate size-dependency. Besides, the compressive and tensile residual stresses of nanobridges have been measured on the basis of electromechanical buckling. The governing equations and corresponding boundary conditions have been obtained by means of the principle of minimum potential energy. Finally, following validation of results, the effects of material length scale, length, shear deformation, beam geometry, and gap distance on the symmetric electromechanical behavior have been discussed and examined.

  8. Static instability of beam-type NEMS subjected to symmetric electrostatic actuation based on couple stress theory and Timoshenko beam theory

    NASA Astrophysics Data System (ADS)

    Shojaeian, M.; Zeighampour, H.

    2017-02-01

    The behavior of nanoelectromechanical systems subjected to symmetrical electrostatic actuation and symmetrical Casimir intermolecular force has been investigated. Two different phenomena (i.e. electromechanical bifurcation and electromechanical buckling) have been considered to explore the static electromechanical instability of such systems. The Timoshenko beam model has been employed to find the effect of shear deformation on these systems. Modified couple stress theory has been used to investigate size-dependency. Besides, the compressive and tensile residual stresses of nanobridges have been measured on the basis of electromechanical buckling. The governing equations and corresponding boundary conditions have been obtained by means of the principle of minimum potential energy. Finally, following validation of results, the effects of material length scale, length, shear deformation, beam geometry, and gap distance on the symmetric electromechanical behavior have been discussed and examined.

  9. Test Method for the Fatigue Life of Layered TiB/Ti Functionally Graded Beams Subjected to Fully Reversed Bending

    NASA Astrophysics Data System (ADS)

    Byrd, Larry; Rickerd, Greg; Wyen, Travis; Cooley, Glenn; Quast, Jeff

    2008-02-01

    Sonic fatigue of aircraft is characterized by fully reversed bending of components subjected to acoustic excitation. This problem is compounded in high temperature environments because solutions for acoustics which tend to result in stiff structures make thermal problems worse. Conversely solutions to the thermal problem which allow expansion often fail in the presence of high acoustic levels. Errors in fatigue life prediction in the combined environment often range from a factor of 4 to 10. This results in either heavy, overly stiff structure or premature failure. This work will test the hypothesis that the fatigue life of a layered functionally graded material (FGM) will be dominated by the failure of the stiffest outer layer. This is based on the observation that for isotropic materials the life is approximately 90% crack initiation and only 10% crack growth before failure. Four sets of cantilever specimens will be tested using an electro-mechanical shaker for base excitation. The excitation will be narrow band random around the fundamental frequency. Two sets of specimens are of uniform composition consisting of 85%TiB/Ti and two are graded specimens consisting of layers that vary from commercially pure titanium to 85%TiB/Ti. Strain vs number of cycles to failure curves will be generated with both constant amplitude sine and narrow band random around the fundamental frequency excitation. The results will be examined to compare life of the uniform material to the functionally graded material. Also to be studied will be the use of Miner's rule to predict the fatigue life of the randomly excited specimens.

  10. An optimization approach for design of RC beams subjected to flexural and shear effects

    NASA Astrophysics Data System (ADS)

    Nigdeli, Sinan Melih; Bekdaş, Gebrail

    2013-10-01

    A random search technique (RST) is proposed for the optimum design of reinforced concrete (RC) beams with minimum material cost. Cross-sectional dimensions and reinforcement bars are optimized for different flexural moments and shear forces. The optimization of reinforcement bars includes number and diameter of longitudinal bars for flexural moments. Also, stirrup reinforcements are designed for shear forces. The optimization is performed according to design procedure given in ACI-318 (Building Code Requirements for Structural Concrete). The approach is effective for the detailed design of RC beams ensuring safety and application conditions.

  11. Modeling and experimental vibration analysis of nanomechanical cantilever active probes

    NASA Astrophysics Data System (ADS)

    Salehi-Khojin, Amin; Bashash, Saeid; Jalili, Nader

    2008-08-01

    Nanomechanical cantilever (NMC) active probes have recently received increased attention in a variety of nanoscale sensing and measurement applications. Current modeling practices call for a uniform cantilever beam without considering the intentional jump discontinuities associated with the piezoelectric layer attachment and the NMC cross-sectional step. This paper presents a comprehensive modeling framework for modal characterization and dynamic response analysis of NMC active probes with geometrical discontinuities. The entire length of the NMC is divided into three segments of uniform beams followed by applying appropriate continuity conditions. The characteristics matrix equation is then used to solve for system natural frequencies and mode shapes. Using an equivalent electromechanical moment of a piezoelectric layer, forced motion analysis of the system is carried out. An experimental setup consisting of a commercial NMC active probe from Veeco and a state-of-the-art microsystem analyzer, the MSA-400 from Polytec, is developed to verify the theoretical developments proposed here. Using a parameter estimation technique based on minimizing the modeling error, optimal values of system parameters are identified. Mode shapes and the modal frequency response of the system for the first three modes determined from the proposed model are compared with those obtained from the experiment and commonly used theory for uniform beams. Results indicate that the uniform beam model fails to accurately predict the actual system response, especially in multiple-mode operation, while the proposed discontinuous beam model demonstrates good agreement with the experimental data. Such detailed and accurate modeling framework can lead to significant enhancement in the sensitivity of piezoelectric-based NMC sensors for use in variety of sensing and imaging applications.

  12. Evaluation of critical interlaminar SIF of DCB specimen made of slender cantilever

    NASA Astrophysics Data System (ADS)

    Verma, S. K.; Kumar, Prashant; Kishore, N. N.; Potty, P. K. Kesavan

    1995-02-01

    A method has been developed involving combined numerical and experimental techniques to evaluate interlaminar fracture toughness (K(sub 1c)) of the double cantilever beam specimen with slender cantilevers. Using FEM, a relationship is developed between the critical stress intensity factor and strain at a point near the crack tip. The strain is measured through a strain gauge of 0.2 mm gauge length. The location and the orientation for the strain gauge are optimized by the numerical analysis. Experiments were conducted on a DCB specimen prepared by bonding two thin plates of a hardened steel alloy. K(sub 1c) of the interlaminar crack was determined by (1) the combined numencal and experimental technique knowing the strain near the crack tip; and (2) the numerical method knowing the loads at the cantilever ends. The experimental results were found to be within 18 percent of the predicted values.

  13. Investigation of the Frequency Shift of a SAD Circuit Loop and the Internal Micro-Cantilever in a Gas Sensor

    PubMed Central

    Guan, Liu; Zhao, Jiahao; Yu, Shijie; Li, Peng; You, Zheng

    2010-01-01

    Micro-cantilever sensors for mass detection using resonance frequency have attracted considerable attention over the last decade in the field of gas sensing. For such a sensing system, an oscillator circuit loop is conventionally used to actuate the micro-cantilever, and trace the frequency shifts. In this paper, gas experiments are introduced to investigate the mechanical resonance frequency shifts of the micro-cantilever within the circuit loop(mechanical resonance frequency, MRF) and resonating frequency shifts of the electric signal in the oscillator circuit (system working frequency, SWF). A silicon beam with a piezoelectric zinc oxide layer is employed in the experiment, and a Self-Actuating-Detecting (SAD) circuit loop is built to drive the micro-cantilever and to follow the frequency shifts. The differences between the two resonating frequencies and their shifts are discussed and analyzed, and a coefficient α related to the two frequency shifts is confirmed. PMID:22163588

  14. Investigation of the frequency shift of a SAD circuit loop and the internal micro-cantilever in a gas sensor.

    PubMed

    Guan, Liu; Zhao, Jiahao; Yu, Shijie; Li, Peng; You, Zheng

    2010-01-01

    Micro-cantilever sensors for mass detection using resonance frequency have attracted considerable attention over the last decade in the field of gas sensing. For such a sensing system, an oscillator circuit loop is conventionally used to actuate the micro-cantilever, and trace the frequency shifts. In this paper, gas experiments are introduced to investigate the mechanical resonance frequency shifts of the micro-cantilever within the circuit loop(mechanical resonance frequency, MRF) and resonating frequency shifts of the electric signal in the oscillator circuit (system working frequency, SWF). A silicon beam with a piezoelectric zinc oxide layer is employed in the experiment, and a Self-Actuating-Detecting (SAD) circuit loop is built to drive the micro-cantilever and to follow the frequency shifts. The differences between the two resonating frequencies and their shifts are discussed and analyzed, and a coefficient α related to the two frequency shifts is confirmed.

  15. Investigation of static and dynamic behavior of functionally graded piezoelectric actuated Poly-Si micro cantilever probe

    SciTech Connect

    Pandey, Vibhuti Bhushan; Parashar, Sandeep Kumar

    2016-04-13

    In the present paper a novel functionally graded piezoelectric (FGP) actuated Poly-Si micro cantilever probe is proposed for atomic force microscope. The shear piezoelectric coefficient d{sub 15} has much higher value than coupling coefficients d{sub 31} and d{sub 33}, hence in the present work the micro cantilever beam actuated by d{sub 15} effect is utilized. The material properties are graded in the thickness direction of actuator by a simple power law. A three dimensional finite element analysis has been performed using COMSOL Multiphysics® (version 4.2) software. Tip deflection and free vibration analysis for the micro cantilever probe has been done. The results presented in the paper shall be useful in the design of micro cantilever probe and their subsequent utilization in atomic force microscopes.

  16. Experimental Analysis of Steel Beams Subjected to Fire Enhanced by Brillouin Scattering-Based Fiber Optic Sensor Data

    PubMed Central

    Bao, Yi; Chen, Yizheng; Hoehler, Matthew S.; Smith, Christopher M.; Bundy, Matthew; Chen, Genda

    2016-01-01

    This paper presents high temperature measurements using a Brillouin scattering-based fiber optic sensor and the application of the measured temperatures and building code recommended material parameters into enhanced thermomechanical analysis of simply supported steel beams subjected to combined thermal and mechanical loading. The distributed temperature sensor captures detailed, nonuniform temperature distributions that are compared locally with thermocouple measurements with less than 4.7% average difference at 95% confidence level. The simulated strains and deflections are validated using measurements from a second distributed fiber optic (strain) sensor and two linear potentiometers, respectively. The results demonstrate that the temperature-dependent material properties specified in the four investigated building codes lead to strain predictions with less than 13% average error at 95% confidence level and that the Europe building code provided the best predictions. However, the implicit consideration of creep in Europe is insufficient when the beam temperature exceeds 800°C. PMID:28239230

  17. Static analysis of offshore risers with a geometrically-exact 3D beam model subjected to unilateral contact

    NASA Astrophysics Data System (ADS)

    Neto, Alfredo Gay; Martins, Clóvis A.; Pimenta, Paulo M.

    2014-01-01

    In offshore applications there are elements that can be modeled as long beams, such as umbilical cables, flexible and rigid pipes and hoses, immersed in the sea water, suspended from the floating unit to the seabed. The suspended part of these elements is named "riser" and is subjected to the ocean environment loads, such as waves and sea current. This work presents a structural geometrically-exact 3D beam model, discretized using the finite element method for riser modeling. An updated Lagrangian framework for the rotation parameterization has been used for the description of the exact kinematics. The goal is to perform a complete static analysis, considering the oceanic loads and the unilateral contact with the seabed, extending the current standard analysis for situations in which very large rotations occurs, in particular, large torsion. Details of the nonlinear 3D model and loads from oceanic environment are discussed, including the contact unilateral constraint.

  18. Experimental Analysis of Steel Beams Subjected to Fire Enhanced by Brillouin Scattering-Based Fiber Optic Sensor Data.

    PubMed

    Bao, Yi; Chen, Yizheng; Hoehler, Matthew S; Smith, Christopher M; Bundy, Matthew; Chen, Genda

    2017-01-01

    This paper presents high temperature measurements using a Brillouin scattering-based fiber optic sensor and the application of the measured temperatures and building code recommended material parameters into enhanced thermomechanical analysis of simply supported steel beams subjected to combined thermal and mechanical loading. The distributed temperature sensor captures detailed, nonuniform temperature distributions that are compared locally with thermocouple measurements with less than 4.7% average difference at 95% confidence level. The simulated strains and deflections are validated using measurements from a second distributed fiber optic (strain) sensor and two linear potentiometers, respectively. The results demonstrate that the temperature-dependent material properties specified in the four investigated building codes lead to strain predictions with less than 13% average error at 95% confidence level and that the Europe building code provided the best predictions. However, the implicit consideration of creep in Europe is insufficient when the beam temperature exceeds 800°C.

  19. Generation of squeezing: magnetic dipoles on cantilevers

    NASA Astrophysics Data System (ADS)

    Seok, Hyojun; Singh, Swati; Steinke, Steven; Meystre, Pierre

    2011-05-01

    We investigate the generation of motional squeezed states in a nano-mechanical cantilever. Our model system consists of a nanoscale cantilever - whose center-of-mass motion is initially cooled to its quantum mechanical ground state - magnetically coupled a classically driven mechanical tuning fork. We show that the magnetic dipole-dipole interaction can produce significant phonon squeezing of the center-of-mass motion of the cantilever, and evaluate the effect of various dissipation channels, including the coupling of the cantilever to a heat bath and phase and amplitude fluctuations in the oscillating field driving the tuning fork. US National Science Foundation, the US Army Research Office, DARPA ORCHID program through a grant from AFOSR.

  20. Design of piezoelectric MEMS cantilever for low-frequency vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Takei, Ryohei; Makimoto, Natsumi; Okada, Hironao; Itoh, Toshihiro; Kobayashi, Takeshi

    2016-06-01

    We report the design of piezoelectric MEMS cantilevers formed on a silicon-on-insulator wafer to efficiently harvest electrical power from harmonic vibration with a frequency of approximately 30 Hz. Numerical simulation indicates that a >4-µm-thick top silicon layer and >3-µm-thick piezoelectric film are preferable to maximize the output electrical power. An in-plane structure of the cantilever is also designed retaining the footprint of the cantilever. The simulation results indicate that the output power is maximized when the length ratio of the proof mass to the cantilever beam is 1.5. To ensure the accuracy of the simulation, we fabricated and characterized cantilevers with a 10-µm-thick top silicon layer and a 1.8-µm-thick piezoelectric film, resulting in 0.21 µW at a vibration of 0.5 m/s2 and 25.1 Hz. The measured output power is in agreement with the simulated value, meaning that the design is significantly reliable for low-frequency vibration energy harvesters.

  1. Measurement and reliability issues in resonant mode cantilever for bio-sensing application in fluid medium

    NASA Astrophysics Data System (ADS)

    Kathel, G.; Shajahan, M. S.; Bhadra, P.; Prabhakar, A.; Chadha, A.; Bhattacharya, E.

    2016-09-01

    Cantilevers immersed in liquid experience viscous damping and hydrodynamic loading. We report on the use of such cantilevers, operating in the dynamic mode with, (i) frequency sweeping and (ii) phase locked loop methods. The solution to reliability issues such as random drift in the resonant peak values, and interference of spurious modes in the resonance frequency spectrum, are explained based on the actuation signal provided and laser spot size. The laser beam spot size and its position on the cantilever were found to have an important role, on the output signal and resonance frequency. We describe a method to distinguish the normal modes from the spurious modes for a cantilever. Uncertainties in the measurements define the lower limit of mass detection (m min). The minimum detection limits of the two measurement methods are investigated by measuring salt adsorption from phosphate buffer solution, as an example, a mass of 14 pg was measured using the 14th transverse mode of a 500~μ m  ×  100 μm  ×  1 μm silicon cantilever. The optimized measurement was used to study the interaction between antibody and antigen.

  2. Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials

    PubMed Central

    Qureshi, Awais; Li, Bing; Tan, K. T.

    2016-01-01

    In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes. PMID:27329828

  3. Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials

    NASA Astrophysics Data System (ADS)

    Qureshi, Awais; Li, Bing; Tan, K. T.

    2016-06-01

    In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes.

  4. Fabrication and characterization of large arrays of mesoscopic gold rings on large-aspect-ratio cantilevers

    SciTech Connect

    Ngo, D. Q.; Petković, I. Lollo, A.; Castellanos-Beltran, M. A.; Harris, J. G. E.

    2014-10-15

    We have fabricated large arrays of mesoscopic metal rings on ultrasensitive cantilevers. The arrays are defined by electron beam lithography and contain up to 10{sup 5} rings. The rings have a circumference of 1 μm, and are made of ultrapure (6N) Au that is deposited onto a silicon-on-insulator wafer without an adhesion layer. Subsequent processing of the SOI wafer results in each array being supported at the end of a free-standing cantilever. To accommodate the large arrays while maintaining a low spring constant, the cantilevers are nearly 1 mm in both lateral dimensions and 100 nm thick. The extreme aspect ratio of the cantilevers, the large array size, and the absence of a sticking layer are intended to enable measurements of the rings' average persistent current in the presence of relatively small magnetic fields. We describe the motivation for these measurements, the fabrication of the devices, and the characterization of the cantilevers' mechanical properties. We also discuss the devices' expected performance in measurements of .

  5. Implant-supported fixed cantilever prosthesis in partially edentulous jaws: a cohort prospective study.

    PubMed

    Romeo, Eugenio; Tomasi, Cristiano; Finini, Igor; Casentini, Paolo; Lops, Diego

    2009-11-01

    Reconstructive procedures present a higher rate of biological costs due to the necessity of bone harvest and grafts, use of semipermeable barriers etc. On the hand, implant supported cantilever prostheses could allow a simpler rehabilitation procedure. The aim of the present study was to assess the clinical outcome of patients treated with implant-supported fixed partial dentures (FPD) with cantilever after a mean follow-up time of 8 years. The study included 45 consecutive partially edentulous patients treated between January 1994 and August 2006 with 59 partial cantilever fixed prostheses supported by 116 ITI implants. The primary outcome variable considered was the presence of complications at the subject and bridge level; the secondary outcome variable was marginal bone loss (MBL). The frequency of complications was analyzed according to cantilever location and opposite dentition and tested by Fisher's exact test. A multilevel regression model was constructed to analyze the factors influencing MBL with three levels: subject as the highest, and then implant and site. During the follow-up period, 11 implants showed a bone loss exceeding the limit for success, out of which two implants showed an infection of the peri-implant tissue. After an average observation of 8.2 years of cantilever prostheses loading, the implant success and survival rates were 90.5% and 100%, respectively. Besides, the prosthetic success and survival rate were 57.7% and 100%, respectively. None of the predictors included in the multilevel model presented a significant impact on the bone loss between baseline and the follow-up examination. The authors concluded that the prognosis of implant-supported FPDs and marginal bone loss at implants were not influenced by the position or the length of the cantilever, the location of the bridge and type of opposite dentition. Implant-supported fixed cantilever prosthesis can be considered a suitable treatment choice.

  6. Grating Loaded Cantilevers for Displacement Measurements

    NASA Astrophysics Data System (ADS)

    Karademir, Ertugrul; Olcum, Selim; Atalar, Abdullah; Aydinli, Atilla

    2010-03-01

    A cantilever with a grating coupler engraved on its tip is used for measuring displacement. The coupled light in the cantilever is guided to a single mode optical waveguide defined at the base of the cantilever. The grating period is 550 nm and is fabricated on a SOI wafer using nanoimprint lithography. The waveguide and the cantilever are defined by an RIE and cantilevers released by KOH and HF solutions. Light with 1550 nm wavelength, is directed onto the grating coupler and detected at the cleaved end of the SOI waveguide. The angle of incidence is controlled by a motorized rotary stage. Light couples into the waveguide at a characteristic angle with a full width at half maximum of approximately 6.9 mrads translating into a Q factor of 87.5. The displacement sensitivity is measured by driving the cantilever with a frequency controlled piezoelectric element. The modulation of the light at the waveguide output is lock-in detected by a biased infrared detector. The resulting 43%mrad-1 sensitivity can be increased with further optimization.

  7. Multi-resonant wideband energy harvester based on a folded asymmetric M-shaped cantilever

    SciTech Connect

    Wu, Meng; Mao, Haiyang; Li, Zhigang; Liu, Ruiwen; Ming, Anjie; Ou, Yi; Ou, Wen

    2015-07-15

    This article reports a compact wideband piezoelectric vibration energy harvester consisting of three proof masses and an asymmetric M-shaped cantilever. The M-shaped beam comprises a main beam and two folded and dimension varied auxiliary beams interconnected through the proof mass at the end of the main cantilever. Such an arrangement constitutes a three degree-of-freedom vibrating body, which can tune the resonant frequencies of its first three orders close enough to obtain a utility wide bandwidth. The finite element simulation results and the experimental results are well matched. The operation bandwidth comprises three adjacent voltage peaks on account of the frequency interval shortening mechanism. The result shows that the proposed piezoelectric energy harvester could be efficient and adaptive in practical vibration circumstance based on multiple resonant modes.

  8. Fractography of Fatigue Fracture Surface in Silumin Subjected to Electron-Beam Processing

    NASA Astrophysics Data System (ADS)

    Konovalov, S. V.; Aksenova, K. V.; Gromov, V. E.; Ivanov, Yu F.; Semina, O. A.

    2016-08-01

    The surface modification of the eutectic silumin with high-intensity pulsed electron beam has been carried out. Multi-cycle fatigue tests were performed and irradiation mode made possible the increase in the silumin fatigue life more than 3.5 times was determined. Studies of the structure of the surface irradiation and surface fatigue fracture of silumin in the initial (unirradiated) state and after modification with intense pulsed electron beam were carried out by methods of scanning electron microscopy. It has been shown, that in mode of partial melting of the irradiation surface the modification process of silicon plates is accompanied by the formation of numerous large micropores along the boundary plate/matrix and microcracks located in the silicon plates. A multi-modal structure (grain size within 30-50 μm with silicon particles up to 10 μm located on the boundaries) is formed in stable melting mode, as well as subgrain structure in the form of crystallization cells from 100 to 250 μm in size). Formation of a multi-modal, multi-phase, submicro- and nanosize structure assisting to a significant increase in the critical length of the crack, the safety coefficient and decrease in step of cracks for loading cycle was the main cause for the increase in silumin fatigue life.

  9. Hydrogen-enhanced cracking revealed by in situ micro-cantilever bending test inside environmental scanning electron microscope.

    PubMed

    Deng, Yun; Hajilou, Tarlan; Barnoush, Afrooz

    2017-07-28

    To evaluate the hydrogen (H)-induced embrittlement in iron aluminium intermetallics, especially the one with stoichiometric composition of 50 at.% Al, a novel in situ micro-cantilever bending test was applied within an environmental scanning electron microscope (ESEM), which provides both a full process monitoring and a clean, in situ H-charging condition. Two sets of cantilevers were analysed in this work: one set of un-notched cantilevers, and the other set with focused ion beam-milled notch laying on two crystallographic planes: (010) and (110). The cantilevers were tested under two environmental conditions: vacuum (approximately 5 × 10(-4) Pa) and ESEM (450 Pa water vapour). Crack initiation at stress-concentrated locations and propagation to cause catastrophic failure were observed when cantilevers were tested in the presence of H; while no cracking occurred when tested in vacuum. Both the bending strength for un-notched beams and the fracture toughness for notched beams were reduced under H exposure. The hydrogen embrittlement (HE) susceptibility was found to be orientation dependent: the (010) crystallographic plane was more fragile to HE than the (110) plane.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).

  10. Hydrogen-enhanced cracking revealed by in situ micro-cantilever bending test inside environmental scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Deng, Yun; Hajilou, Tarlan; Barnoush, Afrooz

    2017-06-01

    To evaluate the hydrogen (H)-induced embrittlement in iron aluminium intermetallics, especially the one with stoichiometric composition of 50 at.% Al, a novel in situ micro-cantilever bending test was applied within an environmental scanning electron microscope (ESEM), which provides both a full process monitoring and a clean, in situ H-charging condition. Two sets of cantilevers were analysed in this work: one set of un-notched cantilevers, and the other set with focused ion beam-milled notch laying on two crystallographic planes: (010) and (110). The cantilevers were tested under two environmental conditions: vacuum (approximately 5 × 10-4 Pa) and ESEM (450 Pa water vapour). Crack initiation at stress-concentrated locations and propagation to cause catastrophic failure were observed when cantilevers were tested in the presence of H; while no cracking occurred when tested in vacuum. Both the bending strength for un-notched beams and the fracture toughness for notched beams were reduced under H exposure. The hydrogen embrittlement (HE) susceptibility was found to be orientation dependent: the (010) crystallographic plane was more fragile to HE than the (110) plane. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  11. Study of sensitivity and noise in the piezoelectric self-sensing and self-actuating cantilever with an integrated Wheatstone bridge circuit.

    PubMed

    Shin, ChaeHo; Jeon, InSu; Khim, Zheong G; Hong, J W; Nam, HyoJin

    2010-03-01

    A detection method using a self-sensing cantilever is more desirable than other detection methods (optical fiber and laser beam bounce detection) that are bulky and require alignment. The advantage of the self-sensing cantilever is its simplicity, particularly its simple structure. It can be used for the construction of an atomic force microscopy system with a vacuum, fluids, and a low temperature chamber. Additionally, the self-actuating cantilever can be used for a high speed scanning system because the bandwidth is larger than the bulk scanner. Frequently, ZnO film has been used as an actuator in a self-actuating cantilever. In this paper, we studied the characteristics of the self-sensing and self-actuating cantilever with an integrated Wheatstone bridge circuit substituting the ZnO film with a lead zirconate titanate (PZT) film as the actuator. We can reduce the leakage current (to less than 10(-4) A/cm(2)) in the PZT cantilever and improve sensor sensitivity through a reduction of noise level from the external sensor circuit using the Wheatstone bridge circuit embedded into the cantilever. The self-sensing and actuating cantilever with an integrated Wheatstone bridge circuit was compared with a commercial self-sensing cantilever or self-sensing and actuating cantilever without an integrated Wheatstone bridge circuit. The measurement results have shown that sensing the signal to noise level and the minimum detectable deflection improved to 4.78 mV and 1.18 nm, respectively. We believe that this cantilever allows for easier system integration and miniaturization, provides better controllability and higher scan speeds, and offers the potential for full automation.

  12. Interactions of vortices with a flexible beam with applications in fluidic energy harvesting

    SciTech Connect

    Goushcha, O.; Elvin, N.; Andreopoulos, Y.

    2014-01-13

    A cantilever piezoelectric beam immersed in a flow and subjected to naturally occurring vortices such as those formed in the wake of bluff bodies can be used to generate electrical energy harvested in fluid flows. In this paper, we present the pressure distribution and deflection of a piezoelectric beam subjected to controlled vortices. A custom designed experimental facility is set up to study the interaction of individual and multiple vortices with the beam. Vortex tori are generated by an audio speaker and travel at controlled rates over the beam. Particle image velocimetry is used to measure the 2-D flow field induced by each vortex and estimate the effect of pressure force on the beam deflection.

  13. Application of nonlocal models to nano beams. Part I: Axial length scale effect.

    PubMed

    Kim, Jun-Sik

    2014-10-01

    Applicability of nonlocal models to nano-beams is discussed in terms of physical implications via the similarity between a nonlocal Euler-Bernoulli (EB) beam theory and a classical Rankine-Timoshenko (RT) beam theory. The nonlocal EB beam model, Eringen's model, is briefly reviewed and the classical RT beam theory is recast by the primary variables of the EB model. A careful comparison of these two models reveals that the scale parameter used to the Eringen's model has a strike resemblance to the shear flexibility in the RT model. This implies that the nonlocal model employed in literature consider the axial length scale effect only. In addition, the paradox for a cantilevered nano-beam subjected to tip shear force is clearly explained by finding appropriate displacement prescribed boundary conditions.

  14. A Refined Zigzag Beam Theory for Composite and Sandwich Beams

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Sciuva, Marco Di; Gherlone, Marco

    2009-01-01

    A new refined theory for laminated composite and sandwich beams that contains the kinematics of the Timoshenko Beam Theory as a proper baseline subset is presented. This variationally consistent theory is derived from the virtual work principle and employs a novel piecewise linear zigzag function that provides a more realistic representation of the deformation states of transverse-shear flexible beams than other similar theories. This new zigzag function is unique in that it vanishes at the top and bottom bounding surfaces of a beam. The formulation does not enforce continuity of the transverse shear stress across the beam s cross-section, yet is robust. Two major shortcomings that are inherent in the previous zigzag theories, shear-force inconsistency and difficulties in simulating clamped boundary conditions, and that have greatly limited the utility of these previous theories are discussed in detail. An approach that has successfully resolved these shortcomings is presented herein. Exact solutions for simply supported and cantilevered beams subjected to static loads are derived and the improved modelling capability of the new zigzag beam theory is demonstrated. In particular, extensive results for thick beams with highly heterogeneous material lay-ups are discussed and compared with corresponding results obtained from elasticity solutions, two other zigzag theories, and high-fidelity finite element analyses. Comparisons with the baseline Timoshenko Beam Theory are also presented. The comparisons clearly show the improved accuracy of the new, refined zigzag theory presented herein over similar existing theories. This new theory can be readily extended to plate and shell structures, and should be useful for obtaining relatively low-cost, accurate estimates of structural response needed to design an important class of high-performance aerospace structures.

  15. Adaptive control of force microscope cantilever dynamics

    NASA Astrophysics Data System (ADS)

    Jensen, S. E.; Dougherty, W. M.; Garbini, J. L.; Sidles, J. A.

    2007-09-01

    Magnetic resonance force microscopy (MRFM) and other emerging scanning probe microscopies entail the detection of attonewton-scale forces. Requisite force sensitivities are achieved through the use of soft force microscope cantilevers as high resonant-Q micromechanical oscillators. In practice, the dynamics of these oscillators are greatly improved by the application of force feedback control computed in real time by a digital signal processor (DSP). Improvements include increased sensitive bandwidth, reduced oscillator ring up/down time, and reduced cantilever thermal vibration amplitude. However, when the cantilever tip and the sample are in close proximity, electrostatic and Casimir tip-sample force gradients can significantly alter the cantilever resonance frequency, foiling fixed-gain narrow-band control schemes. We report an improved, adaptive control algorithm that uses a Hilbert transform technique to continuously measure the vibration frequency of the thermally-excited cantilever and seamlessly adjust the DSP program coefficients. The closed-loop vibration amplitude is typically 0.05 nm. This adaptive algorithm enables narrow-band formally-optimal control over a wide range of resonance frequencies, and preserves the thermally-limited signal to noise ratio (SNR).

  16. Finite versus small strain discrete dislocation analysis of cantilever bending of single crystals

    NASA Astrophysics Data System (ADS)

    Irani, Nilgoon; Remmers, Joris J. C.; Deshpande, Vikram S.

    2017-08-01

    Plastic size effects in single crystals are investigated by using finite strain and small strain discrete dislocation plasticity to analyse the response of cantilever beam specimens. Crystals with both one and two active slip systems are analysed, as well as specimens with different beam aspect ratios. Over the range of specimen sizes analysed here, the bending stress versus applied tip displacement response has a strong hardening plastic component. This hardening rate increases with decreasing specimen size. The hardening rates are slightly lower when the finite strain discrete dislocation plasticity (DDP) formulation is employed as curving of the slip planes is accounted for in the finite strain formulation. This relaxes the back-stresses in the dislocation pile-ups and thereby reduces the hardening rate. Our calculations show that in line with the pure bending case, the bending stress in cantilever bending displays a plastic size dependence. However, unlike pure bending, the bending flow strength of the larger aspect ratio cantilever beams is appreciably smaller. This is attributed to the fact that for the same applied bending stress, longer beams have lower shear forces acting upon them and this results in a lower density of statistically stored dislocations.

  17. A theoretical study of a nano-opto-mechanical sensor using a photonic crystal-cantilever cavity

    SciTech Connect

    Mao, Depeng; Liu, Peng; Ho, Kai-Ming; Dong, Liang

    2012-07-09

    In this simulation study, integration of a nanocantilever inside a two-dimensional (2D) photonic crystal (PC) cavity resulted in a unique photonic crystal-cantilever cavity (PC3), where the cantilever served as a tunable mechanical defect of the PC slab. Strong nano-opto-mechanical interactions between the cantilever and the defect-mode field inside the PC3 gave rise to a high sensitivity of the resonance wavelength to surface stress-induced cantilever deflection. Mechanical and optical responses of the PC3 to surface stress changes on the cantilever surface were studied by using a finite-element method (FEM) and a finite-difference time-domain (FDTD) method, respectively. Theoretical analysis revealed that the devised PC3 sensor could resolve a conservative minimum surface stress at the level of ~0.8 mN m−1, representing state-of-the-art cantilever sensor performance. Also, the PC3 sensor design used an ultracompact structure with an on-chip optical length of only several microns, while a conventional reflected laser beam detection scheme requires a ~1 m long free-space optical path.

  18. Experimental Observations of Nuclear Activity in Deuterated Materials Subjected to a Low-Energy Photon Beam

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Benyo, Theresa L.; Pines, Vladimir; Pines, Marianna; Forsley, Lawrence P.; Westmeyer, Paul A.; Chait, Arnon; Becks, Michael D.; Martin, Richard E.; Hendricks, Robert C.; hide

    2017-01-01

    Exposure of highly deuterated materials to a low-energy (nom. 2 MeV) photon beam resulted in nuclear activity of both the parent metals of hafnium and erbium and a witness material (molybdenum) mixed with the reactants. Gamma spectral analysis of all deuterated materials, ErD2.8+C36D74+Mo and HfD2+C36D74+Mo, showed that nuclear processes had occurred as shown by unique gamma signatures. For the deuterated erbium specimens, posttest gamma spectra showed evidence of radioisotopes of erbium ((163)Er and (171)Er) and of molybdenum ((99)Mo and (101)Mo) and by beta decay, technetium (99mTc and 101Tc). For the deuterated hafnium specimens, posttest gamma spectra showed evidence of radioisotopes of hafnium (180mHf and 181Hf) and molybdenum ((99)Mo and (101)Mo), and by beta decay, technetium ((99m)Tc and (101)Tc). In contrast, when either the hydrogenated or non-gas-loaded erbium or hafnium materials were exposed to the gamma flux, the gamma spectra revealed no new isotopes. Neutron activation materials showed evidence of thermal and epithermal neutrons. CR-39 solid-state nuclear track detectors showed evidence of fast neutrons with energies between 1.4 and 2.5 MeV and several instances of triple tracks, indicating (is) greater than 10 MeV neutrons. Further study is required to determine the mechanism causing the nuclear activity.

  19. Maximizing direct current power delivery from bistable vibration energy harvesting beams subjected to realistic base excitations

    NASA Astrophysics Data System (ADS)

    Dai, Quanqi; Harne, Ryan L.

    2017-04-01

    Effective development of vibration energy harvesters is required to convert ambient kinetic energy into useful electrical energy as power supply for sensors, for example in structural health monitoring applications. Energy harvesting structures exhibiting bistable nonlinearities have previously been shown to generate large alternating current (AC) power when excited so as to undergo snap-through responses between stable equilibria. Yet, most microelectronics in sensors require rectified voltages and hence direct current (DC) power. While researchers have studied DC power generation from bistable energy harvesters subjected to harmonic excitations, there remain important questions as to the promise of such harvester platforms when the excitations are more realistic and include both harmonic and random components. To close this knowledge gap, this research computationally and experimentally studies the DC power delivery from bistable energy harvesters subjected to such realistic excitation combinations as those found in practice. Based on the results, it is found that the ability for bistable energy harvesters to generate peak DC power is significantly reduced by introducing sufficient amount of stochastic excitations into an otherwise harmonic input. On the other hand, the elimination of a low amplitude, coexistent response regime by way of the additive noise promotes power delivery if the device was not originally excited to snap-through. The outcomes of this research indicate the necessity for comprehensive studies about the sensitivities of DC power generation from bistable energy harvester to practical excitation scenarios prior to their optimal deployment in applications.

  20. 2. DETAIL OF STRUCTURAL SYSTEM FOR CANTILEVERED HOG RUN; BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. DETAIL OF STRUCTURAL SYSTEM FOR CANTILEVERED HOG RUN; BUILDING 168 (1960 HOG KILL) IS BENEATH HOG RUN - Rath Packing Company, Cantilevered Hog Run, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  1. Active buckling control of beams using piezoelectric actuators and strain gauge sensors

    NASA Astrophysics Data System (ADS)

    Wang, Q. S.

    2010-06-01

    In this paper, a finite element model incorporating active control techniques has been developed to stabilize the first two buckling modes of both a simply supported and a cantilevered beam. The goal is to increase the corresponding beam buckling loads by using piezoelectric actuators along with optimal feedback control. The uniform beams are bonded with two pairs of segmented piezoelectric actuators at the top and bottom. Resistive strain gauges are attached to the centres of the actuators as sensors. Measurements are taken using these, to estimate the system states. The beams are simply supported or cantilevered and subjected to a slowly increasing axial compressive load. Finite element formulations based on the classical Euler-Bernoulli beam theory and linear piezoelectric constitutive equations for the actuators are presented. The associated reduced-order modal equations and the state-space equations are derived for the design of a standard linear quadratic regulator (LQR). The finite element analysis and the active control simulation results are consistent with both theoretical analysis results and experimental data. The designed full state feedback LQR controller is shown to be successful in stabilizing the first two buckling modes of the beams. Also the control simulation shows that the present optimally located segmented actuator pairs along the beam are more effective for buckling control.

  2. Physics-based signal processing algorithms for micromachined cantilever arrays

    DOEpatents

    Candy, James V; Clague, David S; Lee, Christopher L; Rudd, Robert E; Burnham, Alan K; Tringe, Joseph W

    2013-11-19

    A method of using physics-based signal processing algorithms for micromachined cantilever arrays. The methods utilize deflection of a micromachined cantilever that represents the chemical, biological, or physical element being detected. One embodiment of the method comprises the steps of modeling the deflection of the micromachined cantilever producing a deflection model, sensing the deflection of the micromachined cantilever and producing a signal representing the deflection, and comparing the signal representing the deflection with the deflection model.

  3. Self-heating in piezoresistive cantilevers

    PubMed Central

    Doll, Joseph C.; Corbin, Elise A.; King, William P.; Pruitt, Beth L.

    2011-01-01

    We report experiments and models of self-heating in piezoresistive microcantilevers that show how cantilever measurement resolution depends on the thermal properties of the surrounding fluid. The predicted cantilever temperature rise from a finite difference model is compared with detailed temperature measurements on fabricated devices. Increasing the fluid thermal conductivity allows for lower temperature operation for a given power dissipation, leading to lower force and displacement noise. The force noise in air is 76% greater than in water for the same increase in piezoresistor temperature. PMID:21731884

  4. Natural vibration of pre-twisted shear deformable beam systems subject to multiple kinds of initial stresses

    NASA Astrophysics Data System (ADS)

    Leung, A. Y. T.; Fan, J.

    2010-05-01

    Free vibration and buckling of pre-twisted beams exhibit interesting coupling phenomena between compression, moments and torque and have been the subject of extensive research due to their importance as models of wind turbines and helicopter rotor blades. The paper investigates the influence of multiple kinds of initial stresses due to compression, shears, moments and torque on the natural vibration of pre-twisted straight beam based on the Timoshenko theory. The derivation begins with the three-dimensional Green strain tensor. The nonlinear part of the strain tensor is expressed as a product of displacement gradient to derive the strain energy due to initial stresses. The Frenet formulae in differential geometry are employed to treat the pre-twist. The strain energy due to elasticity and the linear kinetic energy are obtained in classical sense. From the variational principle, the governing equations and the associated natural boundary conditions are derived. It is noted that the first mode increases together with the pre-twisted angle but the second decreases seeming to close the first two modes together for natural frequencies and compressions. The gaps close monotonically as the angle of twist increases for natural frequencies and buckling compressions. However, unlike natural frequencies and compressions, the closeness is not monotonic for buckling shears, moments and torques.

  5. Characterization of piesoelectric ZnO thin films and the fabrication of piezoelectric micro-cantilevers

    SciTech Connect

    Johnson, Raegan Lynn

    2005-01-01

    In Atomic Force Microscopy (AFM), a microcantilever is raster scanned across the surface of a sample in order to obtain a topographical image of the sample's surface. In a traditional, optical AFM, the sample rests on a bulk piezoelectric tube and a control loop is used to control the tip-sample separation by actuating the piezo-tube. This method has several disadvantages--the most noticeable one being that response time of the piezo-tube is rather long which leads to slow imaging speeds. One possible solution aimed at improving the speed of imaging is to incorporate a thin piezoelectric film on top of the cantilever beam. This design not only improves the speed of imaging because the piezoelectric film replaces the piezo-tube as an actuator, but the film can also act as a sensor. In addition, the piezoelectric film can excite the cantilever beam near its resonance frequency. This project aims to fabricate piezoelectric microcantilevers for use in the AFM. Prior to fabricating the cantilevers and also part of this project, a systematic study was performed to examine the effects of deposition conditions on the quality of piezoelectric ZnO thin films deposited by RF sputtering. These results will be presented. The deposition parameters that produced the highest quality ZnO film were used in the fabrication of the piezoelectric cantilevers. Unfortunately, the fabricated cantilevers warped due to the intrinsic stress of the ZnO film and were therefore not usable in the AFM. The complete fabrication process will be detailed, the results will be discussed and reasons for the warping will be examined.

  6. Vitrification of photo-curing resins by embedded cantilever and Fizeau interferometer

    NASA Astrophysics Data System (ADS)

    Arenas, Gustavo F.; Duchowicz, Ricardo

    2011-09-01

    We present a method for estimating the relative viscosity and vitrification degree of photo-curing polymeric materials. Real-time knowing of solidification transition provides important information for many scientific areas. The technique involves the embedding of one end of a small aluminum cantilever subjected to oscillations of constant amplitude and frequency, into blends made of unfilled dental resins based on bis-GMA-TEGDMA. These resins were activated for visible light polymerization by the addition of camphorquinone (CQ) in combination with dimethylamino ethylmethacrylate (DMAEMA), or ethyl-4-dimethyl aminobenzoate (EDMAB). As the polymerization process progresses, the embedded end of the beam ceases to be free. Thus, changes in the oscillation amplitude at a given point near the lower end measured by a Fizeau fiber optic interferometer can be interpreted as a proportional indicator of solidification in the resin being photocured. Proper measurement of this phenomenon provides a more quantitative support in the early stages of photo-polymerization. Our results show that the resin passes from liquid to gel, and then to a vitreous state, in a short time compared with the total photo-curing evolution. As a consequence, after this transition, polymerization seems to develop mainly by diffusive processes.

  7. Operating characteristics of a cantilever-mounted resilient-pad gas-lubricated thrust bearing

    NASA Technical Reports Server (NTRS)

    Nemeth, Z. N.

    1979-01-01

    A resilient-pad gas thrust bearing consisting of pads mounted on cantilever beams was tested to determine its operating characteristic. The bearing was run at a thrust load of 74 newtons to a speed of 17000 rpm. The pad film thickness and bearing friction torque were measured and compared with theory. The measured film thickness was less than that predicted by theory. The bearing friction torque was greater than that predicted by theory.

  8. Analysis and design of a cantilever-mounted resilient-pad gas-lubricated thrust bearing

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1976-01-01

    A thrust bearing consisting of pads mounted on resilient, metallic, cantilever beams is described and analyzed. Compliance and stiffness of the bearing assembly are discussed, and the effects of bearing design parameters on performance are shown. After the general analysis, a design example is presented for a flat sector-shaped gas bearing. A special case where zero axial movement of the runner can be obtained is pointed out.

  9. Interdisciplinary cantilever physics: Elasticity of carrot, celery, and plasticware

    NASA Astrophysics Data System (ADS)

    Pestka, Kenneth A.

    2014-05-01

    This article presents several simple cantilever-based experiments using common household items (celery, carrot, and a plastic spoon) that are appropriate for introductory undergraduate laboratories or independent student projects. By applying Hooke's law and Euler beam theory, students are able to determine Young's modulus, fracture stress, yield stress, strain energy, and sound speed of these apparently disparate materials. In addition, a cellular foam elastic model is introduced—applicable to biologic materials as well as an essential component in the development of advanced engineering composites—that provides a mechanism to determine Young's modulus of the cell wall material found in celery and carrot. These experiments are designed to promote exploration of the similarities and differences between common inorganic and organic materials, fill a void in the typical undergraduate curriculum, and provide a foundation for more advanced material science pursuits within biology, botany, and food science as well as physics and engineering.

  10. Peculiarities of the Third Natural Frequency Vibrations of a Cantilever for the Improvement of Energy Harvesting

    PubMed Central

    Ostasevicius, Vytautas; Janusas, Giedrius; Milasauskaite, Ieva; Zilys, Mindaugas; Kizauskiene, Laura

    2015-01-01

    This paper focuses on several aspects extending the dynamical efficiency of a cantilever beam vibrating in the third mode. A few ways of producing this mode stimulation, namely vibro-impact or forced excitation, as well as its application for energy harvesting devices are proposed. The paper presents numerical and experimental analyses of novel structural dynamics effects along with an optimal configuration of the cantilever beam. The peculiarities of a cantilever beam vibrating in the third mode are related to the significant increase of the level of deformations capable of extracting significant additional amounts of energy compared to the conventional harvester vibrating in the first mode. Two types of a piezoelectric vibrating energy harvester (PVEH) prototype are analysed in this paper: the first one without electrode segmentation, while the second is segmented using electrode segmentation at the strain nodes of the third vibration mode to achieve effective operation at the third resonant frequency. The results of this research revealed that the voltage generated by any segment of the segmented PVEH prototype excited at the third resonant frequency demonstrated a 3.4–4.8-fold increase in comparison with the non-segmented prototype. Simultaneously, the efficiency of the energy harvester prototype also increased at lower resonant frequencies from 16% to 90%. The insights presented in the paper may serve for the development and fabrication of advanced piezoelectric energy harvesters which would be able to generate a considerably increased amount of electrical energy independently of the frequency of kinematical excitation. PMID:26029948

  11. Note: Improved calibration of atomic force microscope cantilevers using multiple reference cantilevers

    SciTech Connect

    Sader, John E.; Friend, James R.

    2015-05-15

    Overall precision of the simplified calibration method in J. E. Sader et al., Rev. Sci. Instrum. 83, 103705 (2012), Sec. III D, is dominated by the spring constant of the reference cantilever. The question arises: How does one take measurements from multiple reference cantilevers, and combine these results, to improve uncertainty of the reference cantilever’s spring constant and hence the overall precision of the method? This question is addressed in this note. Its answer enables manufacturers to specify of a single set of data for the spring constant, resonant frequency, and quality factor, from measurements on multiple reference cantilevers. With this data set, users can trivially calibrate cantilevers of the same type.

  12. An analytic model for accurate spring constant calibration of rectangular atomic force microscope cantilevers

    PubMed Central

    Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang

    2015-01-01

    Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson’s ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers. PMID:26510769

  13. An analytic model for accurate spring constant calibration of rectangular atomic force microscope cantilevers

    NASA Astrophysics Data System (ADS)

    Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang

    2015-10-01

    Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson’s ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers.

  14. All-Optical Cantilever-Enhanced Photoacoustic Spectroscopy in the Open Environment

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Zhu, Yong; Lin, Cheng; Tian, Li; Xu, Zhuwen; Nong, Jinpeng

    2015-06-01

    A novel all-optical cantilever-enhanced photoacoustic spectroscopy technique for trace gas detection in the open environment is proposed. A cantilever is set off-beam to "listen to" the photoacoustic signal, and an improved quadrature-point stabilization Fabry-Perot demodulation unit is used to pick up the vibration signal of the acoustic transducer instead of a complicated Michelson interferometer. The structure parameters of the cantilever are optimized to make the sensing system work more stably and reliably using a finite element method, which is then fabricated by surface micro-machining technology. Finally, related experiments are carried out to detect the absorption of water vapor at one atmosphere in the open environment. It was found that the normalized noise-equivalent absorption coefficient obtained by a traditional Fabry-Perot demodulation unit is , while that by a quadrature- point stabilization Fabry-Perot demodulation unit is , which indicates that the sensitivity is increased by a factor of 3.1 using improved cantilever-enhanced photoacoustic spectroscopy.

  15. An analytic model for accurate spring constant calibration of rectangular atomic force microscope cantilevers.

    PubMed

    Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang

    2015-10-29

    Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson's ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers.

  16. Calibration of higher eigenmodes of cantilevers

    SciTech Connect

    Labuda, Aleksander; Kocun, Marta; Walsh, Tim; Meinhold, Jieh; Proksch, Tania; Meinhold, Waiman; Anderson, Caleb; Proksch, Roger; Lysy, Martin

    2016-07-15

    A method is presented for calibrating the higher eigenmodes (resonant modes) of atomic force microscopy cantilevers that can be performed prior to any tip-sample interaction. The method leverages recent efforts in accurately calibrating the first eigenmode by providing the higher-mode stiffness as a ratio to the first mode stiffness. A one-time calibration routine must be performed for every cantilever type to determine a power-law relationship between stiffness and frequency, which is then stored for future use on similar cantilevers. Then, future calibrations only require a measurement of the ratio of resonant frequencies and the stiffness of the first mode. This method is verified through stiffness measurements using three independent approaches: interferometric measurement, AC approach-curve calibration, and finite element analysis simulation. Power-law values for calibrating higher-mode stiffnesses are reported for several cantilever models. Once the higher-mode stiffnesses are known, the amplitude of each mode can also be calibrated from the thermal spectrum by application of the equipartition theorem.

  17. Calibration of higher eigenmodes of cantilevers

    NASA Astrophysics Data System (ADS)

    Labuda, Aleksander; Kocun, Marta; Lysy, Martin; Walsh, Tim; Meinhold, Jieh; Proksch, Tania; Meinhold, Waiman; Anderson, Caleb; Proksch, Roger

    2016-07-01

    A method is presented for calibrating the higher eigenmodes (resonant modes) of atomic force microscopy cantilevers that can be performed prior to any tip-sample interaction. The method leverages recent efforts in accurately calibrating the first eigenmode by providing the higher-mode stiffness as a ratio to the first mode stiffness. A one-time calibration routine must be performed for every cantilever type to determine a power-law relationship between stiffness and frequency, which is then stored for future use on similar cantilevers. Then, future calibrations only require a measurement of the ratio of resonant frequencies and the stiffness of the first mode. This method is verified through stiffness measurements using three independent approaches: interferometric measurement, AC approach-curve calibration, and finite element analysis simulation. Power-law values for calibrating higher-mode stiffnesses are reported for several cantilever models. Once the higher-mode stiffnesses are known, the amplitude of each mode can also be calibrated from the thermal spectrum by application of the equipartition theorem.

  18. Cone-Beam Computed Tomographic Assessment of Mandibular Condylar Position in Patients with Temporomandibular Joint Dysfunction and in Healthy Subjects.

    PubMed

    Paknahad, Maryam; Shahidi, Shoaleh; Iranpour, Shiva; Mirhadi, Sabah; Paknahad, Majid

    2015-01-01

    Statement of the Problem. The clinical significance of condyle-fossa relationships in the temporomandibular joint is a matter of controversy. Different studies have evaluated whether the position of the condyle is a predictor of the presence of temporomandibular disorder. Purpose. The purpose of the present study was to investigate the condylar position according to gender in patients with temporomandibular disorder (TMD) and healthy controls using cone-beam computed tomography. Materials and Methods. CBCT of sixty temporomandibular joints in thirty patients with TMD and sixty joints of thirty subjects without TMJ disorder was evaluated in this study. The condylar position was assessed on the CBCT images. The data were analyzed using Pearson chi-square test. Results. No statistically significant differences were found regarding the condylar position between symptomatic and asymptomatic groups. Posterior condylar position was more frequently observed in women and anterior condylar position was more prevalent in men in the symptomatic group. However, no significant differences in condylar position were found in asymptomatic subjects according to gender. Conclusion. This study showed no apparent association between condylar positioning and clinical findings in TMD patients.

  19. Cone-Beam Computed Tomographic Assessment of Mandibular Condylar Position in Patients with Temporomandibular Joint Dysfunction and in Healthy Subjects

    PubMed Central

    Paknahad, Maryam; Shahidi, Shoaleh; Iranpour, Shiva; Mirhadi, Sabah; Paknahad, Majid

    2015-01-01

    Statement of the Problem. The clinical significance of condyle-fossa relationships in the temporomandibular joint is a matter of controversy. Different studies have evaluated whether the position of the condyle is a predictor of the presence of temporomandibular disorder. Purpose. The purpose of the present study was to investigate the condylar position according to gender in patients with temporomandibular disorder (TMD) and healthy controls using cone-beam computed tomography. Materials and Methods. CBCT of sixty temporomandibular joints in thirty patients with TMD and sixty joints of thirty subjects without TMJ disorder was evaluated in this study. The condylar position was assessed on the CBCT images. The data were analyzed using Pearson chi-square test. Results. No statistically significant differences were found regarding the condylar position between symptomatic and asymptomatic groups. Posterior condylar position was more frequently observed in women and anterior condylar position was more prevalent in men in the symptomatic group. However, no significant differences in condylar position were found in asymptomatic subjects according to gender. Conclusion. This study showed no apparent association between condylar positioning and clinical findings in TMD patients. PMID:26681944

  20. Direct and alignment-insensitive measurement of cantilever curvature

    SciTech Connect

    Hermans, Rodolfo I.; Aeppli, Gabriel; Bailey, Joe M.

    2013-07-15

    We analytically derive and experimentally demonstrate a method for the simultaneous measurement of deflection for large arrays of cantilevers. The Fresnel diffraction patterns of a cantilever independently reveal tilt, curvature, cubic, and higher order bending of the cantilever. It provides a calibrated absolute measurement of the polynomial coefficients describing the cantilever shape, without careful alignment and could be applied to several cantilevers simultaneously with no added complexity. We show that the method is easily implemented, works in both liquid media and in air, for a broad range of displacements and is especially suited to the requirements for multi-marker biosensors.

  1. Deflection in Tapered Cantilever Beams Deflection (Gap Opening) in Double Cantilever Type Fracture Toughness Specimens.

    DTIC Science & Technology

    1985-08-01

    o10 ------- --------- tx] (26) t 5 t bE ho 2(h0+tx) 2 and as before 12 9 1 p ho + tx 2ho + 3tx bend3 + bE ho 2(ho+tX)2 txcos2 At the limit, as t...h0+tx) 2tx Therefore P 1 x P x lim 6 bend3 n2 -(-) - 4 -(;) t+o bE 3ho bE h 22 which, except for the sign, is the same as that arrived at in Eq. (9

  2. Aptamer-based cantilever array sensors for oxytetracycline detection.

    PubMed

    Hou, Hui; Bai, Xiaojing; Xing, Chunyan; Gu, Ningyu; Zhang, Bailin; Tang, Jilin

    2013-02-19

    We present a new method for specific detection of oxytetracycline (OTC) at nanomolar concentrations based on a microfabricated cantilever array. The sensing cantilevers in the array are functionalized with self-assembled monolayers (SAMs) of OTC-specific aptamer, which acts as a recognition molecule for OTC. While the reference cantilevers in the array are functionalized with 6-mercapto-1-hexanol SAMs to eliminate the influence of environmental disturbances. The cantilever sensor shows a good linear relationship between the deflection amplitude and the OTC concentration in the range of 1.0-100 nM. The detection limit of the cantilever array sensor is as low as 0.2 nM, which is comparable to some traditional methods. Other antibiotics such as doxycycline and tetracycline do not cause significant deflection of the cantilevers. It is demonstrated that the cantilever array sensors can be used as a powerful tool to detect drugs with high sensitivity and selectivity.

  3. Cone-Beam Computed Tomography Analysis of the Nasopharyngeal Airway in Nonsyndromic Cleft Lip and Palate Subjects.

    PubMed

    Al-Fahdawi, Mahmood Abd; Farid, Mary Medhat; El-Fotouh, Mona Abou; El-Kassaby, Marwa Abdelwahab

    2017-03-01

      To assess the nasopharyngeal airway volume, cross-sectional area, and depth in previously repaired nonsyndromic unilateral cleft lip and palate versus bilateral cleft lip and palate patients compared with noncleft controls using cone-beam computed tomography with the ultimate goal of finding whether cleft lip and palate patients are more liable to nasopharyngeal airway obstruction.   A retrospective analysis comparing bilateral cleft lip and palate, unilateral cleft lip and palate, and control subjects. Significance at P ≤ .05.   Cleft Care Center and the outpatient clinic that are both affiliated with our faculty.   Cone-beam computed tomography data were selected of 58 individuals aged 9 to 12 years: 14 with bilateral cleft lip and palate and 20 with unilateral cleft lip and palate as well as 24 age- and gender-matched noncleft controls.   Volume, depth, and cross-sectional area of nasopharyngeal airway were measured.   Patients with bilateral cleft lip and palate showed significantly larger nasopharyngeal airway volume than controls and patients with unilateral cleft lip and palate (P < .001). Patients with bilateral cleft lip and palate showed significantly larger cross-sectional area than those with unilateral cleft lip and palate (P < .001) and insignificant cross-sectional area compared with controls (P > .05). Patients with bilateral cleft lip and palate showed significantly larger depth than controls and those with unilateral cleft lip and palate (P < .001). Patients with unilateral cleft lip and palate showed insignificant nasopharyngeal airway volume, cross-sectional area, and depth compared with controls (P > .05).   Unilateral and bilateral cleft lip and palate patients did not show significantly less volume, cross-sectional area, or depth of nasopharyngeal airway than controls. From the results of this study we conclude that unilateral and bilateral cleft lip and palate patients at the studied age and stage of repaired clefts are not

  4. Modeling and experimental study of a honeycomb beam filled with damping particles

    NASA Astrophysics Data System (ADS)

    Ahmad, Nazeer; Ranganath, R.; Ghosal, Ashitava

    2017-03-01

    Honeycomb sandwich laminates which are the basic structural element of spacecraft have inherently low damping. In this paper, we propose to improve the damping characteristics of such structures by adding damping particles in the cells of the honeycomb. This paper presents modeling of a cantilever beam constructed with honeycomb structure with the hexagonal honeycomb cells, filled with particles. The beam is subjected to external dynamic loads and the interactions of damping particles with the walls of the cells and its overall effect on the frequency response function (FRF) and the damping of the beam are obtained. The discrete-element-method (DEM) is used to model the dynamics of the particles in conjunction with the governing equations of motion of the beam and the cell-walls. The particle-particle and particle-wall impact is modeled using Hertz's non-linear dissipative contact model for normal component and Coulomb's laws of friction for tangential component. Contiguous block of cells near the tip of the cantilever beam were filled with the damping particles and the beam was excited with a random signal near the fixed end. The damping and transfer functions obtained experimentally are compared to those obtained from the mathematical model and they are found to match very well. Further the model was used to study the effect of fill fraction, mass ratio, and the level of excitation signal on transfer function. Depending on the mass ratio and fill fraction, significant reductions in vibration levels are observed.

  5. The Influence of the Form of a Wooden Beam on Its Stiffness and Strength II : Form Factors of Beams Subjected to Transverse Loading Only

    NASA Technical Reports Server (NTRS)

    Newlin, J A; Trayer, G W

    1924-01-01

    The general aim of the investigation described in this report is the achievement of efficient design in wing beams. The purpose of the tests was to determine factors to apply to the usual beam formula in order that the properties of wood based on tests of rectangular sections might be used as a basis of design for beams of any sections and if practical to develop formulas for determining such factors and to verify them by experiment. Such factors for various sections have been determined from test by comparing properties of the beam in question to similar properties of matched beams 2 by 2 inches in section. Furthermore, formulas were worked out, more or less empirical in character, which check all of these test values remarkably well.

  6. Expanded beam deflection method for simultaneous measurement of displacement and vibrations of multiple microcantilevers

    SciTech Connect

    Nieradka, K.; MaloziePc, G.; Kopiec, D.; Gotszalk, T.

    2011-10-15

    Here we present an extension of optical beam deflection (OBD) method for measuring displacement and vibrations of an array of microcantilevers. Instead of focusing on the cantilever, the optical beam is either focused above or below the cantilever array, or focused only in the axis parallel to the cantilevers length, allowing a wide optical line to span multiple cantilevers in the array. Each cantilever reflects a part of the incident beam, which is then directed onto a photodiode array detector in a manner allowing distinguishing between individual beams. Each part of reflected beam behaves like a single beam of roughly the same divergence angle in the bending sensing axis as the incident beam. Since sensitivity of the OBD method depends on the divergence angle of deflected beam, high sensitivity is preserved in proposed expanded beam deflection (EBD) method. At the detector, each spot's position is measured at the same time, without time multiplexing of light sources. This provides real simultaneous readout of entire array, unavailable in most of competitive methods, and thus increases time resolution of the measurement. Expanded beam can also span another line of cantilevers allowing monitoring of specially designed two-dimensional arrays. In this paper, we present first results of application of EBD method to cantilever sensors. We show how thermal noise resolution can be easily achieved and combined with thermal noise based resonance frequency measurement.

  7. Expanded beam deflection method for simultaneous measurement of displacement and vibrations of multiple microcantilevers.

    PubMed

    Nieradka, K; Małozięć, G; Kopiec, D; Grabiec, P; Janus, P; Sierakowski, A; Gotszalk, T

    2011-10-01

    Here we present an extension of optical beam deflection (OBD) method for measuring displacement and vibrations of an array of microcantilevers. Instead of focusing on the cantilever, the optical beam is either focused above or below the cantilever array, or focused only in the axis parallel to the cantilevers length, allowing a wide optical line to span multiple cantilevers in the array. Each cantilever reflects a part of the incident beam, which is then directed onto a photodiode array detector in a manner allowing distinguishing between individual beams. Each part of reflected beam behaves like a single beam of roughly the same divergence angle in the bending sensing axis as the incident beam. Since sensitivity of the OBD method depends on the divergence angle of deflected beam, high sensitivity is preserved in proposed expanded beam deflection (EBD) method. At the detector, each spot's position is measured at the same time, without time multiplexing of light sources. This provides real simultaneous readout of entire array, unavailable in most of competitive methods, and thus increases time resolution of the measurement. Expanded beam can also span another line of cantilevers allowing monitoring of specially designed two-dimensional arrays. In this paper, we present first results of application of EBD method to cantilever sensors. We show how thermal noise resolution can be easily achieved and combined with thermal noise based resonance frequency measurement.

  8. Expanded beam deflection method for simultaneous measurement of displacement and vibrations of multiple microcantilevers

    NASA Astrophysics Data System (ADS)

    Nieradka, K.; Małozieć, G.; Kopiec, D.; Grabiec, P.; Janus, P.; Sierakowski, A.; Gotszalk, T.

    2011-10-01

    Here we present an extension of optical beam deflection (OBD) method for measuring displacement and vibrations of an array of microcantilevers. Instead of focusing on the cantilever, the optical beam is either focused above or below the cantilever array, or focused only in the axis parallel to the cantilevers length, allowing a wide optical line to span multiple cantilevers in the array. Each cantilever reflects a part of the incident beam, which is then directed onto a photodiode array detector in a manner allowing distinguishing between individual beams. Each part of reflected beam behaves like a single beam of roughly the same divergence angle in the bending sensing axis as the incident beam. Since sensitivity of the OBD method depends on the divergence angle of deflected beam, high sensitivity is preserved in proposed expanded beam deflection (EBD) method. At the detector, each spot's position is measured at the same time, without time multiplexing of light sources. This provides real simultaneous readout of entire array, unavailable in most of competitive methods, and thus increases time resolution of the measurement. Expanded beam can also span another line of cantilevers allowing monitoring of specially designed two-dimensional arrays. In this paper, we present first results of application of EBD method to cantilever sensors. We show how thermal noise resolution can be easily achieved and combined with thermal noise based resonance frequency measurement.

  9. 3D finite element analysis of electrostatic deflection of commercial and FIB-modified cantilevers for electric and Kelvin force microscopy: I. Triangular shaped cantilevers with symmetric pyramidal tips

    NASA Astrophysics Data System (ADS)

    Valdrè, Giovanni; Moro, Daniele

    2008-10-01

    The investigation of the nanoscale distribution of electrostatic forces on material surfaces is of paramount importance for the development of nanotechnology, since these confined forces govern many physical processes on which a large number of technological applications are based. For instance, electric force microscopy (EFM) and micro-electro-mechanical-systems (MEMS) are technologies based on an electrostatic interaction between a cantilever and a specimen. In the present work we report on a 3D finite element analysis of the electrostatic deflection of cantilevers for electric and Kelvin force microscopy. A commercial triangular shaped cantilever with a symmetric pyramidal tip was modelled. In addition, the cantilever was modified by a focused ion beam (FIB) in order to reduce its parasitic electrostatic force, and its behaviour was studied by computation analysis. 3D modelling of the electrostatic deflection was realized by using a multiphysics finite element analysis software and it was applied to the real geometry of the cantilevers and probes obtained by using basic CAD tools. The results of the modelling are in good agreement with experimental data.

  10. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations

    NASA Astrophysics Data System (ADS)

    Erturk, A.; Inman, D. J.

    2009-02-01

    Piezoelectric transduction has received great attention for vibration-to-electric energy conversion over the last five years. A typical piezoelectric energy harvester is a unimorph or a bimorph cantilever located on a vibrating host structure, to generate electrical energy from base excitations. Several authors have investigated modeling of cantilevered piezoelectric energy harvesters under base excitation. The existing mathematical modeling approaches range from elementary single-degree-of-freedom models to approximate distributed parameter solutions in the sense of Rayleigh-Ritz discretization as well as analytical solution attempts with certain simplifications. Recently, the authors have presented the closed-form analytical solution for a unimorph cantilever under base excitation based on the Euler-Bernoulli beam assumptions. In this paper, the analytical solution is applied to bimorph cantilever configurations with series and parallel connections of piezoceramic layers. The base excitation is assumed to be translation in the transverse direction with a superimposed small rotation. The closed-form steady state response expressions are obtained for harmonic excitations at arbitrary frequencies, which are then reduced to simple but accurate single-mode expressions for modal excitations. The electromechanical frequency response functions (FRFs) that relate the voltage output and vibration response to translational and rotational base accelerations are identified from the multi-mode and single-mode solutions. Experimental validation of the single-mode coupled voltage output and vibration response expressions is presented for a bimorph cantilever with a tip mass. It is observed that the closed-form single-mode FRFs obtained from the analytical solution can successfully predict the coupled system dynamics for a wide range of electrical load resistance. The performance of the bimorph device is analyzed extensively for the short circuit and open circuit resonance

  11. A wall shear stress sensor using a pair of sidewall doped cantilevers

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh-Vinh; Kazama, Ryohei; Takahashi, Hidetoshi; Takahata, Tomoyuki; Matsumoto, Kiyoshi; Shimoyama, Isao

    2017-07-01

    In this paper, we report on a micro-electro mechanical system (MEMS)-based piezoresistive sensor for measuring shear stress induced by an airflow. The advantages of the proposed sensor include a simple sensing method and a high resonance frequency due to the small size of the sensing elements. Our sensor consists of a pair of 3 µm thick cantilevers with piezoresistors formed on the sidewall of their hinges to detect lateral deformation in the cantilevers induced by an airflow. Each cantilever has a 200 µm  ×  400 µm plate supported by two 150 µm long, 4 µm wide beams. The piezoresistors on the two cantilevers are designed to deform in opposite manners when a shear stress is applied and in the same manner when a pressure is applied. Therefore, the applied shear stress can be detected from the difference in the responses of the two cantilevers without becoming conflated with pressure. In this paper, the design, fabrication and evaluation of the proposed sensor are reported and compared to numerical simulation results. From the experimental results, the resolution of the sensor and its first resonance frequency are 1.3 Pa and 3.9 kHz, respectively. Moreover, we show that the effect of temperature on the readout of the sensor can be eliminated using a temperature-compensating piezoresistor fabricated on the same sensor chip. Finally, using the fabricated sensor, the measurement of the shear stress induced by an airflow with velocity between  -10 and 10 m s-1 is demonstrated.

  12. Evaluation of subjective image quality in relation to diagnostic task for cone beam computed tomography with different fields of view.

    PubMed

    Lofthag-Hansen, Sara; Thilander-Klang, Anne; Gröndahl, Kerstin

    2011-11-01

    To evaluate subjective image quality for two diagnostic tasks, periapical diagnosis and implant planning, for cone beam computed tomography (CBCT) using different exposure parameters and fields of view (FOVs). Examinations were performed in posterior part of the jaws on a skull phantom with 3D Accuitomo (FOV 3 cm×4 cm) and 3D Accuitomo FPD (FOVs 4 cm×4 cm and 6 cm×6 cm). All combinations of 60, 65, 70, 75, 80 kV and 2, 4, 6, 8, 10 mA with a rotation of 180° and 360° were used. Dose-area product (DAP) value was determined for each combination. The images were presented, displaying the object in axial, cross-sectional and sagittal views, without scanning data in a random order for each FOV and jaw. Seven observers assessed image quality on a six-point rating scale. Intra-observer agreement was good (κw=0.76) and inter-observer agreement moderate (κw=0.52). Stepwise logistic regression showed kV, mA and diagnostic task to be the most important variables. Periapical diagnosis, regardless jaw, required higher exposure parameters compared to implant planning. Implant planning in the lower jaw required higher exposure parameters compared to upper jaw. Overall ranking of FOVs gave 4 cm×4 cm, 6 cm×6 cm followed by 3 cm×4 cm. This study has shown that exposure parameters should be adjusted according to diagnostic task. For this particular CBCT brand a rotation of 180° gave good subjective image quality, hence a substantial dose reduction can be achieved without loss of diagnostic information. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Development of a piezo-cantilever transducer and measuring method for evaluation of a temperature-sensitive polymer gel membrane

    NASA Astrophysics Data System (ADS)

    Li, Fenlan; Jiang, Zhongwei

    2007-06-01

    This paper is concerned with the development of a cantilever transducer patched with a piezoelectric element for evaluating the characteristics of a temperature-sensitive polymer gel membrane. The transducer consists of an aluminum cantilever beam patched with a piezoelectric ceramic and a probe coated by a polymer gel membrane. The probe can be easily attached to the cantilever transducer with double-sided sticky tape. The piezo-cantilever transducer is first simulated with the aid of a finite element method and the relation between the natural frequency change of the transducer and the absorbed mass on the polymer gel membrane is obtained theoretically. For measuring the temperature characteristics of the polymer gel membrane, the experiments are conducted in liquid and out of liquid. The temperature-sensitive poly(N-isopropylacrylamide) gel membrane hydrophilic-hydrophobic characteristics can be explained clearly by the results. Furthermore, two kinds of membrane coating method were proposed. The results indicate that the coating gel membrane has a better effect than the pasted gel membrane. The results also show that the piezo-cantilever transducer has a potential application for detecting polymer gel membrane characteristics conveniently and accurately.

  14. A Novel Micro-cantilever Based Angular Speed Sensor Controlled Piezoelectrically and Tuned by Electrostatic Actuators

    NASA Astrophysics Data System (ADS)

    Shah-Mohammadi-Azar, A.; Shabani, R.; Rezazadeh, G.

    2015-11-01

    In this paper a novel sensor is proposed to measure rotational shafts speed. The sensor is composed of a micro-cantilever, with a piezoelectric actuator layer on the upper surface and a sensor layer on the lower surface. The sensor is attached to the shaft while the deflection of the micro-cantilever, due to centrifugal force of the rotating shaft, is actively controlled. Therefore the sensor deflection is suppressed and the controller output or the piezoelectric actuating voltage is employed to measure the angular speed of the shaft (Force balance technique). The micro-cantilever is symmetrically located between two electrodes giving it a wider operating range and also increasing its sensitivity. Imposing different electrostatic bias voltages alters the equivalent stiffness of the structure and consequently affects the micro-beam deflections and the controller outputs. Simulation results reveal that for lower velocities the resolution increases by increasing the bias voltages. It is shown that decreasing the micro-beam length increases the measurable velocity range and conversely decreasing the electrodes gap decreases the maximum measurable speed.

  15. Cantilever RF-MEMS for monolithic integration with phased array antennas on a PCB

    NASA Astrophysics Data System (ADS)

    Aguilar-Armenta, C. J.; Porter, S. J.

    2015-12-01

    This article presents the development and operation of a novel electrostatic metal-to-metal contact cantilever radio-frequency microelectromechanical system (RF-MEMS) switch for monolithic integration with microstrip phased array antennas (PAAs) on a printed circuit board. The switch is fabricated using simple photolithography techniques on a Rogers 4003c substrate, with a footprint of 200 µm × 100 µm, based on a 1 µm-thick copper cantilever. An alternative wet-etching technique for effectively releasing the cantilever is described. Electrostatic and electromagnetic measurements show that the RF-MEMS presents an actuation voltage of 90 V for metal-to-metal contact, an isolation of -8.7 dB, insertion loss of -2.5 dB and a return loss of -15 dB on a 50 Ω microstrip line at 12.5 GHz. For proof-of-concept, a beam-steering 2 × 2 microstrip PAA, based on two 1-bit phase shifters suitable for the monolithic integration of the RF-MEMS, has been designed and measured at 12.5 GHz. Measurements show that the beam-steering system presents effective radiation characteristics with scanning capabilities from broadside towards 29° in the H-plane.

  16. Dynamic properties of magneto-sensitive elastomer cantilevers as adaptive sensor elements

    NASA Astrophysics Data System (ADS)

    Becker, T. I.; Raikher, Yu L.; Stolbov, O. V.; Böhm, V.; Zimmermann, K.

    2017-09-01

    In engineering applications, one of the actual scientific challenges is a development of sensor systems with complex adaptive behaviour and operating sensitivity. Smart materials like magneto-sensitive elastomers (MSEs) offer great potential for designing such intelligent devices, because they possess unique magnetic-field dependent properties. This paper deals with the investigation of the free vibrational behaviour displayed by cantilever beams made of MSEs containing magnetically soft particles in the presence of a uniform magnetic field. The presented setup is considered as a prototype of a sensitive unit for transforming mechanical stimuli of the base into vibrations of the MSE element, which could be converted in a facile way into electromagnetic signals for measuring and analysing. It is shown experimentally that for the MSE beams of several different lengths and compositions, the first eigenfrequency depends strongly on the strength of the applied magnetic field. The developed theoretical model extends the conventional vibrational dynamics of thin rods to allow for the ponderomotive torque induced by magneto-mechanical interactions experienced by an MSE beam. The model has two adjustable parameters that characterise the geometric configuration of the cantilever beam and its magnetic material properties. It is found that the values of these parameters are ‘universally’ valid, i.e., they provide good agreement between the theoretical eigenfrequency dependencies and the experimental results for all used MSE beams. The evidence presented ensures a good basis for further investigations of the sensitivity and amplitude-frequency characteristics of MSE vibration sensor elements.

  17. Linear and Nonlinear Photoinduced Deformations of Cantilevers

    NASA Astrophysics Data System (ADS)

    Corbett, D.; Warner, M.

    2007-10-01

    Glassy and elastomeric nematic networks with dye molecules present can be very responsive to illumination, huge reversible strains being possible. If absorption is appreciable, strain decreases with depth into a cantilever, leading to bend that is the basis of micro-opto-mechanical systems (MOMS). Bend actually occurs even when Beer’s law suggests a tiny penetration of light into a heavily dye-doped system. We model the nonlinear opto-elastic processes behind this effect. In the regime of cantilever thickness giving optimal bending for a given incident light intensity, there are three neutral surfaces. In practice such nonlinear absorptive effects are very important since heavily doped systems are commonly used.

  18. The output characteristic of cantilever-like tactile sensor based on the inverse magnetostrictive effect

    NASA Astrophysics Data System (ADS)

    Wan, Lili; Wang, Bowen; Wang, Qilong; Han, Jianhui; Cao, Shuying

    2017-05-01

    The output characteristic model of a magnetostrictive cantilever-like tactile sensor has been founded based on the inverse-magnetostrictive effect, the flexure mode, and the Jiles-Atherton model. The magnetostrictive sensor has been designed and an output voltage is analyzed under the conditions of bias magnetic field, contact pressure and deflection of cantilever beam. The experiment has been performed to determine the relation among the induced output voltage, bias magnetic field, and pressure. It is found that the peak of the induced output voltage increases with an increasing pressure under the bias magnetic field of 4.8kA/m. The experimental result agrees well with the theoretical one and it means that the model can describe the relation among the induced output voltage, bias magnetic field, and pressure. The sensor with a Galfenol sheet may hold potentials in sample characterization and deformation predication in artificial intelligence area.

  19. Aeroelastic Flutter Behavior of a Cantilever and Elastically Mounted Plate within a Nozzle-Diffuser Geometry

    NASA Astrophysics Data System (ADS)

    Tosi, Luis Phillipe; Colonius, Tim; Lee, Hyeong Jae; Sherrit, Stewart; Jet Propulsion Laboratory Collaboration; California Institute of Technology Collaboration

    2016-11-01

    Aeroelastic flutter arises when the motion of a structure and its surrounding flowing fluid are coupled in a constructive manner, causing large amplitudes of vibration in the immersed solid. A cantilevered beam in axial flow within a nozzle-diffuser geometry exhibits interesting resonance behavior that presents good prospects for internal flow energy harvesting. Different modes can be excited as a function of throat velocity, nozzle geometry, fluid and cantilever material parameters. Similar behavior has been also observed in elastically mounted rigid plates, enabling new designs for such devices. This work explores the relationship between the aeroelastic flutter instability boundaries and relevant non-dimensional parameters via experiments, numerical, and stability analyses. Parameters explored consist of a non-dimensional stiffness, a non-dimensional mass, non-dimensional throat size, and Reynolds number. A map of the system response in this parameter space may serve as a guide to future work concerning possible electrical output and failure prediction in harvesting devices.

  20. Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy

    SciTech Connect

    Fukuma, Takeshi; Kimura, Masayuki; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi

    2005-05-15

    We have developed a low noise cantilever deflection sensor with a deflection noise density of 17 fm/{radical}(Hz) by optimizing the parameters used in optical beam deflection (OBD) method. Using this sensor, we have developed a multienvironment frequency-modulation atomic force microscope (FM-AFM) that can achieve true molecular resolution in various environments such as in moderate vacuum, air, and liquid. The low noise characteristic of the deflection sensor makes it possible to obtain a maximum frequency sensitivity limited by the thermal Brownian motion of the cantilever in every environment. In this paper, the major noise sources in OBD method are discussed in both theoretical and experimental aspects. The excellent noise performance of the deflection sensor is demonstrated in deflection and frequency measurements. True molecular-resolution FM-AFM images of a polydiacetylene single crystal taken in vacuum, air, and water are presented.

  1. Experimental characterization of cantilever-type piezoelectric generator operating at resonance for vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Montanini, Roberto; Quattrocchi, Antonino

    2016-06-01

    A cantilever-type resonant piezoelectric generator (RPG) has been designed by gluing a PZT patch working in d31 mode onto a glass fibre reinforced composite cantilever beam with a discrete mass applied on its free end. The electrical and dynamic behaviour of the RPG prototype has been investigated by carrying out laboratory tests aimed to assess the effect of definite design parameters, specifically the electric resistance load and the excitation frequency. Results showed that an optimum resistance load exists, at which power generation is maximized. Moreover, it has been showed that power generation is strongly influenced by the vibration frequency highlighting that, at resonance, output power can be increased by more than one order of magnitude. Possible applications include inertial resonant harvester for energy recovery from vibrating machines, sea waves or wind flux and self-powering of wireless sensor nodes.

  2. Experimental characterization of cantilever-type piezoelectric generator operating at resonance for vibration energy harvesting

    SciTech Connect

    Montanini, Roberto Quattrocchi, Antonino

    2016-06-28

    A cantilever-type resonant piezoelectric generator (RPG) has been designed by gluing a PZT patch working in d{sub 31} mode onto a glass fibre reinforced composite cantilever beam with a discrete mass applied on its free end. The electrical and dynamic behaviour of the RPG prototype has been investigated by carrying out laboratory tests aimed to assess the effect of definite design parameters, specifically the electric resistance load and the excitation frequency. Results showed that an optimum resistance load exists, at which power generation is maximized. Moreover, it has been showed that power generation is strongly influenced by the vibration frequency highlighting that, at resonance, output power can be increased by more than one order of magnitude. Possible applications include inertial resonant harvester for energy recovery from vibrating machines, sea waves or wind flux and self-powering of wireless sensor nodes.

  3. Recording oscillations of sub-micron size cantilevers by extreme ultraviolet Fourier transform holography.

    PubMed

    Monserud, Nils C; Malm, Erik B; Wachulak, Przemyslaw W; Putkaradze, Vakhtang; Balakrishnan, Ganesh; Chao, Weilun; Anderson, Erik; Carlton, David; Marconi, Mario C

    2014-02-24

    We recorded the fast oscillation of sub-micron cantilevers using time-resolved extreme ultraviolet (EUV) Fourier transform holography. A tabletop capillary discharge EUV laser with a wavelength of 46.9 nm provided a large flux of coherent illumination that was split using a Fresnel zone plate to generate the object and the reference beams. The reference wave was produced by the first order focus while a central opening in the zone plate provided a direct illumination of the cantilevers. Single-shot holograms allowed for the composition of a movie featuring the fast oscillation. Three-dimensional displacements of the object were determined as well by numerical back-propagation, or "refocusing" of the electromagnetic fields during the reconstruction of a single hologram.

  4. Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Fukuma, Takeshi; Kimura, Masayuki; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi

    2005-05-01

    We have developed a low noise cantilever deflection sensor with a deflection noise density of 17fm/√Hz by optimizing the parameters used in optical beam deflection (OBD) method. Using this sensor, we have developed a multienvironment frequency-modulation atomic force microscope (FM-AFM) that can achieve true molecular resolution in various environments such as in moderate vacuum, air, and liquid. The low noise characteristic of the deflection sensor makes it possible to obtain a maximum frequency sensitivity limited by the thermal Brownian motion of the cantilever in every environment. In this paper, the major noise sources in OBD method are discussed in both theoretical and experimental aspects. The excellent noise performance of the deflection sensor is demonstrated in deflection and frequency measurements. True molecular-resolution FM-AFM images of a polydiacetylene single crystal taken in vacuum, air, and water are presented.

  5. Simultaneous Scanning Ion Conductance Microscopy and Atomic Force Microscopy with Microchanneled Cantilevers

    NASA Astrophysics Data System (ADS)

    Ossola, Dario; Dorwling-Carter, Livie; Dermutz, Harald; Behr, Pascal; Vörös, János; Zambelli, Tomaso

    2015-12-01

    We combined scanning ion conductance microscopy (SICM) and atomic force microscopy (AFM) into a single tool using AFM cantilevers with an embedded microchannel flowing into the nanosized aperture at the apex of the hollow pyramid. An electrode was positioned in the AFM fluidic circuit connected to a second electrode in the bath. We could thus simultaneously measure the ionic current and the cantilever bending (in optical beam deflection mode). First, we quantitatively compared the SICM and AFM contact points on the approach curves. Second, we estimated where the probe in SICM mode touches the sample during scanning on a calibration grid and applied the finding to image a network of neurites on a Petri dish. Finally, we assessed the feasibility of a double controller using both the ionic current and the deflection as input signals of the piezofeedback. The experimental data were rationalized in the framework of finite elements simulations.

  6. A gap method for increasing the sensitivity of cantilever biosensors

    NASA Astrophysics Data System (ADS)

    Leahy, Stephane; Lai, Yongjun

    2017-08-01

    Dynamic-mode cantilever biosensors are an attractive technology for biological sensing. However, researchers are constantly seeking ways to increase their sensitivity, especially in liquids, in order to rapidly detect biological particles in dilute samples. Here, we investigate a novel gap method for increasing their sensitivity. We design cantilevers with a micron-sized gap between their free end and a supporting structure that constrains the motion of individual particles deposited across the gap. When individual particles are deposited across the gap, they form a bridge between the free end of the cantilever and the supporting structure and generate fundamental resonant frequency shifts that are two orders of magnitude higher than when they are deposited on conventional cantilevers. Through experiments and simulation in air, we show that cantilevers based on the gap method rely on stiffness-change instead of mass-change, and that they are significantly more sensitive than conventional cantilevers.

  7. Understanding interferometry for micro-cantilever displacement detection.

    PubMed

    von Schmidsfeld, Alexander; Nörenberg, Tobias; Temmen, Matthias; Reichling, Michael

    2016-01-01

    Interferometric displacement detection in a cantilever-based non-contact atomic force microscope (NC-AFM) operated in ultra-high vacuum is demonstrated for the Michelson and Fabry-Pérot modes of operation. Each mode is addressed by appropriately adjusting the distance between the fiber end delivering and collecting light and a highly reflective micro-cantilever, both together forming the interferometric cavity. For a precise measurement of the cantilever displacement, the relative positioning of fiber and cantilever is of critical importance. We describe a systematic approach for accurate alignment as well as the implications of deficient fiber-cantilever configurations. In the Fabry-Pérot regime, the displacement noise spectral density strongly decreases with decreasing distance between the fiber-end and the cantilever, yielding a noise floor of 24 fm/Hz(0.5) under optimum conditions.

  8. Understanding interferometry for micro-cantilever displacement detection

    PubMed Central

    Nörenberg, Tobias; Temmen, Matthias; Reichling, Michael

    2016-01-01

    Summary Interferometric displacement detection in a cantilever-based non-contact atomic force microscope (NC-AFM) operated in ultra-high vacuum is demonstrated for the Michelson and Fabry–Pérot modes of operation. Each mode is addressed by appropriately adjusting the distance between the fiber end delivering and collecting light and a highly reflective micro-cantilever, both together forming the interferometric cavity. For a precise measurement of the cantilever displacement, the relative positioning of fiber and cantilever is of critical importance. We describe a systematic approach for accurate alignment as well as the implications of deficient fiber–cantilever configurations. In the Fabry–Pérot regime, the displacement noise spectral density strongly decreases with decreasing distance between the fiber-end and the cantilever, yielding a noise floor of 24 fm/Hz0.5 under optimum conditions. PMID:27547601

  9. Collapse of a composite beam made from ultra high molecular-weight polyethylene fibres

    NASA Astrophysics Data System (ADS)

    Liu, G.; Thouless, M. D.; Deshpande, V. S.; Fleck, N. A.

    2014-02-01

    Hot-pressed laminates with a [0/90]48 lay-up, consisting of 83% by volume of ultra high molecular-weight polyethylene (UHMWPE) fibres, and 17% by volume of polyurethane (PU) matrix, were cut into cantilever beams and subjected to transverse end-loading. The collapse mechanisms were observed both visually and by X-ray scans. Short beams deform elastically and collapse plastically in longitudinal shear, with a shear strength comparable to that observed in double notch, interlaminar shear tests. In contrast, long cantilever beams deform in bending and collapse via a plastic hinge at the built-in end of the beam. The plastic hinge is formed by two wedge-shaped microbuckle zones that grow in size and in intensity with increasing hinge rotation. This new mode of microbuckling under macroscopic bending involves both elastic bending and shearing of the plies, and plastic shear of the interface between each ply. The double-wedge pattern contrasts with the more usual parallel-sided plastic microbuckle that occurs in uniaxial compression. Finite element simulations and analytical models give additional insight into the dominant material and geometric parameters that dictate the collapse response of the UHMWPE composite beam in bending. Detailed comparisons between the observed and predicted collapse responses are used in order to construct a constitutive model for laminated UHMWPE composites.

  10. Comparison of Wood Composite Properties Using Cantilever-Beam Bending

    Treesearch

    Houjiang Zhang; John F. Hunt; Lujing Zhou

    2015-01-01

    Wood-based composite panels generally are first tested out-of-plane in the primarypanel directionfollowed by the cross panel direction, but rarely edgewise. While most applications use wood-based composites in the flat-wise orientation and only need the out-of-plane properties, there are construction configurations where edgewise properties are needed for improved...

  11. Stress corrosion cracking tests using double-cantilever-beam specimens

    SciTech Connect

    Roy, A

    1996-10-25

    Although a wide variety of degradation modes can occur in aqueous environments for corrosion-resistant metallic materials, localized corrosion such as pitting corrosion, crevice corrosion, SCC, and hydrogen embrinlement (HE) is considered to be the primary mode. The evaluation of the susceptibility of candidate corrosion-resistant container materials to pitting and crevice corrosion is well underway using electrochemical polarization techniques described in the Activity Plan E-20-43144. The proposed activity (E-20-56) is aimed at evaluating the SCC behavior of these materials in susceptible environments using the linearelastic-fracture-mechanics (LEFM) concept. The mechanical driving force for crack growth, or the stress distribution at the crack tip is quantified by the stress intensity factor, K, for the specific crack and loading geometry. The critical stress intensity factor for SCC, KISCC for candidate materials will be evaluated in environments of interest, and their comparisons will be made to select the waste package inner container material having an optimum SCC resistance.

  12. Lorentz force actuation of a heated atomic force microscope cantilever

    NASA Astrophysics Data System (ADS)

    Lee, Byeonghee; Prater, Craig B.; King, William P.

    2012-02-01

    We report Lorentz force-induced actuation of a silicon microcantilever having an integrated resistive heater. Oscillating current through the cantilever interacts with the magnetic field around a NdFeB permanent magnet and induces a Lorentz force that deflects the cantilever. The same current induces cantilever heating. With AC currents as low as 0.2 mA, the cantilever can be oscillated as much as 80 nm at resonance with a DC temperature rise of less than 5 °C. By comparison, the AC temperature variation leads to a thermomechanical oscillation that is about 1000 times smaller than the Lorentz deflection at the cantilever resonance. The cantilever position in the nonuniform magnetic field affects the Lorentz force-induced deflection, with the magnetic field parallel to the cantilever having the largest effect on cantilever actuation. We demonstrate how the cantilever actuation can be used for imaging, and for measuring the local material softening temperature by sensing the contact resonance shift.

  13. Size, effect of flexible proof mass on the mechanical behavior of micron-scale cantilevers for energy harvesting appications.

    SciTech Connect

    Kim, M.; Hong, S.; Miller, D. J.; Dugundji, J.; Wardle, B. L.

    2011-12-15

    Mechanical behavior of micron-scale cantilevers with a distributed, flexible proof mass is investigated to understand proof mass size effects on the performance of microelectromechanical system energy harvesters. Single-crystal silicon beams with proof masses of various lengths were fabricated using focused ion beam milling and tested using atomic force microscopy. Comparison of three different modeling results with measured data reveals that a 'two-beam' method has the most accurate predictive capability in terms of both resonant frequency and strain. Accurate strain prediction is essential because energy harvested scales with strain squared and maximum strain will be a design limit in fatigue.

  14. Structural stability of a rectangular, simply-supported beam subject to a sudden air temperature change next to one surface

    SciTech Connect

    Landram, C. S.

    1997-07-03

    For a simply-supported, rectangular beam suddenly heated on one of its surfaces by surrounding air, both elongational and flexural thermal distortions occur. For steel beams of order 10 to 30 cm thick and about 3 m long, flexural displacements, developing in minutes, occur much faster than elongational displacements which occur in hours. The rapid response of the flexural modes is caused by the early-time surface heating of the side of the beam exposed to the suddenly-heated, warmer air. The slower response of the elongation modes is a consequence of a much slower change in the average temperature of the beam. At a span of 3.05 m, the maximum steady state flexural distortions in micrometers were 0.22, 0.78 and 1.56 for respective one-sided air temperature changes in degrees C of 0.28, 1 and 2.

  15. Dynamic response of RC beams strengthened with near surface mounted Carbon-FRP rods subjected to damage

    NASA Astrophysics Data System (ADS)

    Capozucca, R.; Blasi, M. G.; Corina, V.

    2015-07-01

    Near surface mounted (NSM) technique with fiber reinforced polymer (FRP) is becoming a common method in the strengthening of concrete beams. The availability of NSM FRP technique depends on many factors linked to materials and geometry - dimensions of the rods used, type of FRP material employed, rods’ surface configuration, groove size - and to adhesion between concrete and FRP rods. In this paper detection of damage is investigated measuring the natural frequency values of beam in the case of free-free ends. Damage was due both to reduction of adhesion between concrete and carbon-FRP rectangular and circular rods and cracking of concrete under static bending tests on beams. Comparison between experimental and theoretical frequency values evaluating frequency changes due to damage permits to monitor actual behaviour of RC beams strengthened by NSM CFRP rods.

  16. Direct calibration of colloidal probe cantilevers via Derjaguin, Landau, Verwey, and Overbeek surface forces in electrolyte solution.

    PubMed

    Hong, Xiaoting; Willing, Gerold A

    2008-12-01

    The development of colloidal probe microscopy has made it possible to directly measure the interaction forces between two different surfaces in solution. Cantilever calibration is presently a subject of intense experimental and theoretical interest due to the need for accurate force measurement. We developed a novel and direct calibration method for colloidal probe cantilevers to which a silica microsphere has been previously attached based on fitting experimental force curves for the interaction between the silica sphere and a silica flat in dilute KBr solutions to the theoretical Derjaguin, Landau, Verwey, and Overbeek force curves using the measured zeta potential of the silica surfaces.

  17. Analytical model of the nonlinear dynamics of cantilever tip-sample surface interactions for various acoustic atomic force microscopies

    NASA Astrophysics Data System (ADS)

    Cantrell, John H.; Cantrell, Sean A.

    2008-04-01

    An analytical model is developed of the interaction of the cantilever tip of an atomic force microscope with the sample surface that treats the cantilever and sample as independent systems coupled by a nonlinear force acting between the cantilever tip and a volume element of the sample surface. To maintain equilibrium, the volume element is subjected to a restoring force from the remainder of the sample. The model accounts for the positions on the cantilever of the cantilever tip, laser probe, and excitation force (if any). The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a matrix iteration procedure. Solutions are obtained for the phase and amplitude signals generated by various acoustic atomic force microscope (A-AFM) techniques including force modulation microscopy, atomic force acoustic microscopy, ultrasonic force microscopy, heterodyne force microscopy, resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), and amplitude modulation-atomic force microscopy (AM-AFM) (intermittent contact mode). The solutions are used to obtain a quantitative measure of A-AFM image contrast resulting from variations in the Young modulus of the sample. Applications of the model to measurements of LaRC™-CP2 polyimide film using RDF-AFUM and AM-AFM images predict maximum variations in the Young modulus of 24% and 18%, respectively, over a common scan area. Both predictions are in good agreement with the value of 21% obtained from independent mechanical stretching measurements of the polyimide sheet material.

  18. Coupled bending-torsion vibration of a homogeneous beam with a single delamination subjected to axial loads and static end moments

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Shu, Dong-Wei

    2014-08-01

    Delaminations in structures may significantly reduce the stiffness and strength of the structures and may affect their vibration characteristics. As structural components, beams have been used for various purposes, in many of which beams are often subjected to axial loads and static end moments. In the present study, an analytical solution is developed to study the coupled bending-torsion vibration of a homogeneous beam with a single delamination subjected to axial loads and static end moments. Euler-Bernoulli beam theory and the "free mode" assumption in delamination vibration are adopted. This is the first study of the influences of static end moments upon the effects of delaminations on natural frequencies, critical buckling loads and critical moments for lateral instability. The results show that the effects of delamination on reducing natural frequencies, critical buckling load and critical moment for lateral instability are aggravated by the presence of static end moment. In turn, the effects of static end moments on vibration and instability characteristics are affected by the presence of delamination. The analytical results of this study can serve as a benchmark for finite element method and other numerical solutions.

  19. Cantilevered single walled boron nitride nanotube based nanomechanical resonators of zigzag and armchair forms

    NASA Astrophysics Data System (ADS)

    Panchal, Mitesh B.; Upadhyay, S. H.

    2013-05-01

    In this paper, the dynamic response analysis of single walled boron nitride nanotubes (SWBNNTs) has been done using a finite element method (FEM). To this end, different types of zigzag and armchair layups of SWBNNTs are considered with cantilever configuration to analyze the mass detection application, as a SWBNNT based nanomechanical resonator. Using three dimensional elastic beams and point masses, single walled boron nitride nanotubes are approximated as atomistic finite element models. Implementing the finite element simulation approach, the resonant frequency of cantilevered nanotubes obtained and observed the shifts in it mainly due to an additional nanoscale mass to the nanotube tip. The effect on resonant frequency shift due to dimensional variation in terms of length as well as diameter is explored by considering different aspect ratios of nanotubes. The effect of intermediate landing positions of added mass on resonant frequency shift is also analyzed by considering excitations of different modes of vibration. Also, the effect of chiralities compared for resonant frequency variations to check the effect on sensitivity due to different forms of SWBNNTs. The present approach is found to be effectual in terms of dealing different chiralities, boundary conditions and consideration of added mass to analyze the dynamic behavior of cantilevered SWBNNT based nanomechanical resonators. The simulation results are compared with the analytical results based on continuum mechanics and found in good agreement as one of the toolkits for systematic analysis approach for novel design of SWBNNT based nanomechanical resonators for wide range of applications.

  20. Resonating cantilever mass sensor with mechanical on-plane excitation

    NASA Astrophysics Data System (ADS)

    Teva, Jordi; Abadal, Gabriel; Jordà, Xavier; Borrise, Xavier; Davis, Zachary; Barniol, Nuria

    2003-04-01

    The aim of this paper is to report the experimental setup designed, developed and tested in order to achieve the first vibrating mode of a lateral cantilever with mechanical excitation. The on-plane oscillating cantilever is the basis of a proposed mass sensor with an expected resolution in the atto-gram scale. In a first system design, the cantilever is driven electrostatically by an electrode, which is placed parallel to the cantilever. The cantilever is driven to its first resonant mode applying an AC voltage between the cantilever and a driver. Also, a DC voltage is applied to increase the system response. The signal read-out of the transducer is the capacitive current of the cantilever-driver system. The mass sensor proposed, based on this cantilever-driver structure (CDS), is integrated with a CMOS circuitry in order to minimize the parasitic capacitances, that in this case take special relevance because of the low level output current coming from the transducer. Moreover, the electrostatic excitation introduces a parasitic current that overlaps the current due to the resonance. The mechanical excitation is an alternative excitation method which aim is to eliminate the excitation current. Here we describe the experimental facilities developed to achieve mechanical excitation and report preliminary results obtained by this excitation technique. The results are complemented with dynamic simulations of an equivalent system model that are in accordance with the experimental values.

  1. 11. VIEW, LOOKING SOUTHEAST, ALONG CENTERLINE FROM SOUTH CANTILEVER TOWARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW, LOOKING SOUTHEAST, ALONG CENTERLINE FROM SOUTH CANTILEVER TOWARD TOWARD NORTH PORTAL. Note vertical displacement in deck caused by partial collapse at point of connection between south cantilever arm and suspended span. - Smith River Bridge, CA State Highway 199 Spanning Smith River, Crescent City, Del Norte County, CA

  2. Interlaboratory round robin on cantilever calibration for AFM force spectroscopy.

    PubMed

    te Riet, Joost; Katan, Allard J; Rankl, Christian; Stahl, Stefan W; van Buul, Arend M; Phang, In Yee; Gomez-Casado, Alberto; Schön, Peter; Gerritsen, Jan W; Cambi, Alessandra; Rowan, Alan E; Vancso, G Julius; Jonkheijm, Pascal; Huskens, Jurriaan; Oosterkamp, Tjerk H; Gaub, Hermann; Hinterdorfer, Peter; Figdor, Carl G; Speller, Sylvia

    2011-12-01

    Single-molecule force spectroscopy studies performed by Atomic Force Microscopes (AFMs) strongly rely on accurately determined cantilever spring constants. Hence, to calibrate cantilevers, a reliable calibration protocol is essential. Although the thermal noise method and the direct Sader method are frequently used for cantilever calibration, there is no consensus on the optimal calibration of soft and V-shaped cantilevers, especially those used in force spectroscopy. Therefore, in this study we aimed at establishing a commonly accepted approach to accurately calibrate compliant and V-shaped cantilevers. In a round robin experiment involving eight different laboratories we compared the thermal noise and the Sader method on ten commercial and custom-built AFMs. We found that spring constants of both rectangular and V-shaped cantilevers can accurately be determined with both methods, although the Sader method proved to be superior. Furthermore, we observed that simultaneous application of both methods on an AFM proved an accurate consistency check of the instrument and thus provides optimal and highly reproducible calibration. To illustrate the importance of optimal calibration, we show that for biological force spectroscopy studies, an erroneously calibrated cantilever can significantly affect the derived (bio)physical parameters. Taken together, our findings demonstrated that with the pre-established protocol described reliable spring constants can be obtained for different types of cantilevers. Copyright © 2011. Published by Elsevier B.V.

  3. Cantilever transducers as a platform for chemical and biological sensors

    NASA Astrophysics Data System (ADS)

    Lavrik, Nickolay V.; Sepaniak, Michael J.; Datskos, Panos G.

    2004-07-01

    Since the late 1980s there have been spectacular developments in micromechanical or microelectro-mechanical (MEMS) systems which have enabled the exploration of transduction modes that involve mechanical energy and are based primarily on mechanical phenomena. As a result an innovative family of chemical and biological sensors has emerged. In this article, we discuss sensors with transducers in a form of cantilevers. While MEMS represents a diverse family of designs, devices with simple cantilever configurations are especially attractive as transducers for chemical and biological sensors. The review deals with four important aspects of cantilever transducers: (i) operation principles and models; (ii) microfabrication; (iii) figures of merit; and (iv) applications of cantilever sensors. We also provide a brief analysis of historical predecessors of the modern cantilever sensors.

  4. Serial weighting of micro-objects with resonant microchanneled cantilevers

    NASA Astrophysics Data System (ADS)

    Ossola, Dario; Dörig, Pablo; Vörös, János; Zambelli, Tomaso; Vassalli, Massimo

    2016-10-01

    Atomic force microscopy (AFM) cantilevers have proven to be very effective mass sensors. The attachment of a small mass to a vibrating cantilever produces a resonance frequency shift that can be monitored, providing the ability to measure mass changes down to a few molecules resolution. Nevertheless, the lack of a practical method to handle the catch and release process required for dynamic weighting of microobjects strongly hindered the application of the technology beyond proof of concept measurements. Here, a method is proposed in which FluidFM hollow cantilevers are exploited to overcome the standard limitations of AFM-based mass sensors, providing high throughput single object weighting with picogram accuracy. The extension of the dynamic models of AFM cantilevers to hollow cantilevers was discussed and the effectiveness of mass weighting in air was validated on test samples.

  5. Orthodontic Traction of Impacted Canine Using Cantilever

    PubMed Central

    Gonçalves, João Roberto; Cassano, Daniel Serra; Bianchi, Jonas

    2016-01-01

    The impaction of the maxillary canines causes relevant aesthetic and functional problems. The multidisciplinary approach to the proper planning and execution of orthodontic traction of the element in question is essential. Many strategies are cited in the literature; among them is the good biomechanical control in order to avoid possible side effects. The aim of this paper is to present a case report in which a superior canine impacted by palatine was pulled out with the aid of the cantilever on the Segmented Arch Technique (SAT) concept. A 14.7-year-old female patient appeared at clinic complaining about the absence of the upper right permanent canine. The proposed treatment prioritized the traction of the upper right canine without changing the occlusion and aesthetics. For this, it only installed the upper fixed appliance (Roth with slot 0.018), opting for SAT in order to minimize unwanted side effects. The use of cantilever to the traction of the upper right canine has enabled an efficient and predictable outcome, because it is of statically determined mechanics. PMID:27800192

  6. Multi-material bio-fabrication of hydrogel cantilevers and actuators with stereolithography.

    PubMed

    Chan, Vincent; Jeong, Jae Hyun; Bajaj, Piyush; Collens, Mitchell; Saif, Taher; Kong, Hyunjoon; Bashir, Rashid

    2012-01-07

    Cell-based biohybrid actuators are integrated systems that use biological components including proteins and cells to power material components by converting chemical energy to mechanical energy. The latest progress in cell-based biohybrid actuators has been limited to rigid materials, such as silicon and PDMS, ranging in elastic moduli on the order of mega (10(6)) to giga (10(9)) Pascals. Recent reports in the literature have established a correlation between substrate rigidity and its influence on the contractile behavior of cardiomyocytes (A. J. Engler, C. Carag-Krieger, C. P. Johnson, M. Raab, H. Y. Tang and D. W. Speicher, et al., J. Cell Sci., 2008, 121(Pt 22), 3794-3802, P. Bajaj, X. Tang, T. A. Saif and R. Bashir, J. Biomed. Mater. Res., Part A, 2010, 95(4), 1261-1269). This study explores the fabrication of a more compliant cantilever, similar to that of the native myocardium, with elasticity on the order of kilo (10(3)) Pascals. 3D stereolithographic technology, a layer-by-layer UV polymerizable rapid prototyping system, was used to rapidly fabricate multi-material cantilevers composed of poly(ethylene glycol) diacrylate (PEGDA) and acrylic-PEG-collagen (PC) mixtures. The incorporation of acrylic-PEG-collagen into PEGDA-based materials enhanced cell adhesion, spreading, and organization without altering the ability to vary the elastic modulus through the molecular weight of PEGDA. Cardiomyocytes derived from neonatal rats were seeded on the cantilevers, and the resulting stresses and contractile forces were calculated using finite element simulations validated with classical beam equations. These cantilevers can be used as a mechanical sensor to measure the contractile forces of cardiomyocyte cell sheets, and as an early prototype for the design of optimal cell-based biohybrid actuators.

  7. Global nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation

    NASA Astrophysics Data System (ADS)

    Leadenham, Stephen; Erturk, Alper

    2014-04-01

    Inherent nonlinearities of piezoelectric materials are inevitably pronounced in various engineering applications such as sensing, actuation, their combined applications for vibration control, and most recently, energy harvesting from dynamical systems. The existing literature focusing on the dynamics of electroelastic structures made of piezoelectric materials have explored such nonlinearities in a disconnected way for the separate problems of mechanical and electrical excitation such that nonlinear resonance trends have been assumed to be due to different additional terms in constitutive equations by different researchers. Similar manifestations of softening nonlinearities have been attributed to purely elastic nonlinear terms, coupling nonlinearities, hysteresis, or a combination of these effects, by various authors. However, a reliable nonlinear constitutive equation for a given piezoelectric material is expected to be rather unique and valid regardless of the application, e.g. energy harvesting, sensing, or actuation. A systematic approach focusing on the two-way coupling can result in a sound mathematical framework. To this end, the present work investigates the nonlinear dynamic behavior of a bimorph piezoelectric cantilever under low-to-high mechanical and electrical excitation levels in energy harvesting, sensing, and actuation. A physical model is proposed including both ferroelastic hysteresis, stiffness, and electromechanical coupling nonlinearities. A lumped parameter electroelastic model is developed by accounting for these nonlinearities to analyze the primary resonance of a cantilever using the method of harmonic balance. Strong agreement between the model and experimental investigation is found, providing solid evidence that the the dominant source of observed softening nonlinear effects in geometrically linear piezolectric cantilever beams is well represented by a quadratic term resulting from ferroelastic hysteresis. Electromechanical coupling and

  8. A macroscopic non-destructive testing system based on the cantilever-sample contact resonance

    NASA Astrophysics Data System (ADS)

    Fu, Ji; Lin, Lizhi; Zhou, Xilong; Li, Yingwei; Li, Faxin

    2012-12-01

    Detecting the inside or buried defects in materials and structures is always a challenge in the field of nondestructive testing (NDT). In this paper, enlightened by the operation principle of the contact resonance force microscopy or atomic force acoustic microscopy (AFAM), we proposed a macroscopic NDT system based on contact resonance of the cantilever-sample surface to detect the local stiffness variations in materials or structures. We fabricated a piezoelectric unimorph with the dimension typically of 150 mm × 8 mm × 2 mm to act as a macroscopic cantilever, whose flexural mode vibration was driven by a wideband power amplifier together with a signal generator. The vibration signal of the macroscopic cantilever is detected by a high sensitive strain gauge bonded on the cantilever surface which is much more stable than the laser diode sensor in AFAM, thus making it very suitable for outdoor operations. Scanning is realized by a three-dimensional motorized stage with the Z axis for pressing force setting. The whole system is controlled by a LabVIEW-based homemade software. Like the AFAM, this NDT system can also work in two modes, i.e., the single-frequency mode and the resonance-tracking mode. In the latter mode, the contact stiffness at each pixel of the sample can be obtained by using the measured contact resonance frequency and a beam dynamics model. Testing results of this NDT system on a grid structure with an opaque panel show that in both modes the prefabricated defect beneath the panel can be detected and the grid structures can be clearly "seen," which indicates the validity of this NDT system. The sensitivity of this NDT system was also examined.

  9. A macroscopic non-destructive testing system based on the cantilever-sample contact resonance.

    PubMed

    Fu, Ji; Lin, Lizhi; Zhou, Xilong; Li, Yingwei; Li, Faxin

    2012-12-01

    Detecting the inside or buried defects in materials and structures is always a challenge in the field of nondestructive testing (NDT). In this paper, enlightened by the operation principle of the contact resonance force microscopy or atomic force acoustic microscopy (AFAM), we proposed a macroscopic NDT system based on contact resonance of the cantilever-sample surface to detect the local stiffness variations in materials or structures. We fabricated a piezoelectric unimorph with the dimension typically of 150 mm × 8 mm × 2 mm to act as a macroscopic cantilever, whose flexural mode vibration was driven by a wideband power amplifier together with a signal generator. The vibration signal of the macroscopic cantilever is detected by a high sensitive strain gauge bonded on the cantilever surface which is much more stable than the laser diode sensor in AFAM, thus making it very suitable for outdoor operations. Scanning is realized by a three-dimensional motorized stage with the Z axis for pressing force setting. The whole system is controlled by a LabVIEW-based homemade software. Like the AFAM, this NDT system can also work in two modes, i.e., the single-frequency mode and the resonance-tracking mode. In the latter mode, the contact stiffness at each pixel of the sample can be obtained by using the measured contact resonance frequency and a beam dynamics model. Testing results of this NDT system on a grid structure with an opaque panel show that in both modes the prefabricated defect beneath the panel can be detected and the grid structures can be clearly "seen," which indicates the validity of this NDT system. The sensitivity of this NDT system was also examined.

  10. Cantilever arrays with self-aligned nanotips of uniform height

    NASA Astrophysics Data System (ADS)

    Koelmans, W. W.; Peters, T.; Berenschot, E.; de Boer, M. J.; Siekman, M. H.; Abelmann, L.

    2012-04-01

    Cantilever arrays are employed to increase the throughput of imaging and manipulation at the nanoscale. We present a fabrication process to construct cantilever arrays with nanotips that show a uniform tip-sample distance. Such uniformity is crucial, because in many applications the cantilevers do not feature individual tip-sample spacing control. Uniform cantilever arrays lead to very similar tip-sample interaction within an array, enable non-contact modes for arrays and give better control over the load force in contact modes. The developed process flow uses a single mask to define both tips and cantilevers. An additional mask is required for the back side etch. The tips are self-aligned in the convex corner at the free end of each cantilever. Although we use standard optical contact lithography, we show that the convex corner can be sharpened to a nanometre scale radius by an isotropic underetch step. The process is robust and wafer-scale. The resonance frequencies of the cantilevers within an array are shown to be highly uniform with a relative standard error of 0.26% or lower. The tip-sample distance within an array of up to ten cantilevers is measured to have a standard error around 10 nm. An imaging demonstration using the AFM shows that all cantilevers in the array have a sharp tip with a radius below 10 nm. The process flow for the cantilever arrays finds application in probe-based nanolithography, probe-based data storage, nanomanufacturing and parallel scanning probe microscopy.

  11. Uncooled Cantilever Microbolometer Focal Plane Arrays with mK Temperature Resolution: Engineering Mechanics for the Next Generation

    DTIC Science & Technology

    2009-11-25

    Suppression of Inelastic deformation Constraint Force III. Micro/nano- Mechanics of Cantilevers with Nanocoating I. Mechanical Behavior...device operation. Nanocoating techniques, namely atomic layer deposition (ALD), have been demonstrated to be promising solutions for reliability...ALD Al2O3 (a) (b) (c) (d) Fig. X-2: The schematic fabrication process flow of the Au/SiNx bilayer microcantilever beams with nanocoating : (a

  12. Bandwidth increasing mechanism by introducing a curve fixture to the cantilever generator

    SciTech Connect

    Liu, Weiqun Liu, Congzhi; Ren, Bingyu; Zhu, Qiao; Hu, Guangdi; Yang, Weiqing

    2016-07-25

    A nonlinear wideband generator architecture by clamping the cantilever beam generator with a curve fixture is proposed. Devices with different nonlinear stiffness can be obtained by properly choosing the fixture curve according to the design requirements. Three available generator types are presented and discussed for polynomial curves. Experimental investigations show that the proposed mechanism effectively extends the operation bandwidth with good power performance. Especially, the simplicity and easy feasibility allow the mechanism to be widely applied for vibration generators in different scales and environments.

  13. SI-traceable determination of spring constants of various atomic force microscope cantilevers with a small uncertainty of 1%

    NASA Astrophysics Data System (ADS)

    Kim, Min-Seok; Choi, Jae-Hyuk; Kim, Jong-Ho; Park, Yon-Kyu

    2007-11-01

    We have demonstrated the feasibility of using the nano force calibrator (NFC), consisting of a microbalance and a nano-stage, as a calibration device, which can accurately determine normal spring constants (k) of various atomic force microscope (AFM) cantilevers with traceability to the Système International d'Unités (SI units). From very compliant (k < 0.1 N m-1) to stiff (k > 10 N m-1) cantilevers, three types of commercial levers with different shapes (beam and V) and operating modes (contact and tapping) were chosen to test NFC calibration performances. We have found that all types of levers could be well characterized by the NFC even when a small force (approximately 500 nN) was used to calibrate a soft cantilever (k < 0.1 N m-1). We declared the relative standard uncertainty of the spring constant calibration of our method to be better than 1%, based on calibration results and uncertainty analysis. Because of its small calibration uncertainty, the NFC is recommendable for accurate calibration of AFM cantilevers and as a reference method for assessing other popularly used calibration methods.

  14. A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans.

    PubMed

    Meier, Tobias; Förste, Alexander; Tavassolizadeh, Ali; Rott, Karsten; Meyners, Dirk; Gröger, Roland; Reiss, Günter; Quandt, Eckhard; Schimmel, Thomas; Hölscher, Hendrik

    2015-01-01

    We describe an atomic force microscope (AFM) for the characterization of self-sensing tunneling magnetoresistive (TMR) cantilevers. Furthermore, we achieve a large scan-range with a nested scanner design of two independent piezo scanners: a small high resolution scanner with a scan range of 5 × 5 × 5 μm(3) is mounted on a large-area scanner with a scan range of 800 × 800 × 35 μm(3). In order to characterize TMR sensors on AFM cantilevers as deflection sensors, the AFM is equipped with a laser beam deflection setup to measure the deflection of the cantilevers independently. The instrument is based on a commercial AFM controller and capable to perform large-area scanning directly without stitching of images. Images obtained on different samples such as calibration standard, optical grating, EPROM chip, self-assembled monolayers and atomic step-edges of gold demonstrate the high stability of the nested scanner design and the performance of self-sensing TMR cantilevers.

  15. A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans

    PubMed Central

    Förste, Alexander; Tavassolizadeh, Ali; Rott, Karsten; Meyners, Dirk; Gröger, Roland; Reiss, Günter; Quandt, Eckhard; Schimmel, Thomas; Hölscher, Hendrik

    2015-01-01

    Summary We describe an atomic force microscope (AFM) for the characterization of self-sensing tunneling magnetoresistive (TMR) cantilevers. Furthermore, we achieve a large scan-range with a nested scanner design of two independent piezo scanners: a small high resolution scanner with a scan range of 5 × 5 × 5 μm3 is mounted on a large-area scanner with a scan range of 800 × 800 × 35 μm3. In order to characterize TMR sensors on AFM cantilevers as deflection sensors, the AFM is equipped with a laser beam deflection setup to measure the deflection of the cantilevers independently. The instrument is based on a commercial AFM controller and capable to perform large-area scanning directly without stitching of images. Images obtained on different samples such as calibration standard, optical grating, EPROM chip, self-assembled monolayers and atomic step-edges of gold demonstrate the high stability of the nested scanner design and the performance of self-sensing TMR cantilevers. PMID:25821686

  16. Cantilevered multilevel LIGA devices and methods

    DOEpatents

    Morales, Alfredo Martin; Domeier, Linda A.

    2002-01-01

    In the formation of multilevel LIGA microstructures, a preformed sheet of photoresist material, such as polymethylmethacrylate (PMMA) is patterned by exposure through a mask to radiation, such as X-rays, and developed using a developer to remove the exposed photoresist material. A first microstructure is then formed by electroplating metal into the areas from which the photoresist has been removed. Additional levels of microstructure are added to the initial microstructure by covering the first microstructure with a conductive polymer, machining the conductive polymer layer to reveal the surface of the first microstructure, sealing the conductive polymer and surface of the first microstructure with a metal layer, and then forming the second level of structure on top of the first level structure. In such a manner, multiple layers of microstructure can be built up to allow complex cantilevered microstructures to be formed.

  17. Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers.

    PubMed

    Ozbey, Burak; Aktas, Ozgur

    2011-03-28

    Terahertz metamaterial structures that employ flexing microelectromechanical cantilevers for tuning the resonance frequency of an electric split-ring resonator are presented. The tuning cantilevers are coated with a magnetic thin-film and are actuated by an external magnetic field. The use of cantilevers enables continuous tuning of the resonance frequency over a large frequency range. The use of an externally applied magnetic field for actuation simplifies the metamaterial structure and its use for sensor or filter applications. A structure for minimizing the actuating field is derived. The dependence of the tunable bandwidth on frequency is discussed.

  18. Characterization of magnetically actuated resonant cantilevers in viscous fluids

    NASA Astrophysics Data System (ADS)

    Vančura, Cyril; Lichtenberg, Jan; Hierlemann, Andreas; Josse, Fabien

    2005-10-01

    The vibration behavior of magnetically actuated resonant microcantilevers immersed in viscous fluids has been studied. A dependence of the resonance frequency and the quality factor (Q factor) on the fluid properties, such as density and viscosity and on the cantilever geometry is described. Various cantilever geometries are analyzed in pure water and glycerol solutions, and the results are explained in terms of the added displaced fluid mass and the fluid damping force for both the resonance frequency and the quality factor. An in-depth knowledge and understanding of such systems is necessary when analyzing resonant cantilevers as biochemical sensors in liquid environments.

  19. Voltage generation of piezoelectric cantilevers by laser heating

    PubMed Central

    Hsieh, Chun-Yi; Liu, Wei-Hung; Chen, Yang-Fang; Shih, Wan Y.; Gao, Xiaotong; Shih, Wei-Heng

    2012-01-01

    Converting ambient thermal energy into electricity is of great interest in harvesting energy from the environment. Piezoelectric cantilevers have previously been shown to be an effective biosensor and a tool for elasticity mapping. Here we show that a single piezoelectric (lead-zirconate titanate (PZT)) layer cantilever can be used to convert heat to electricity through pyroelectric effect. Furthermore, piezoelectric-metal (PZT-Ti) bi-layer cantilever showed an enhanced induced voltage over the single PZT layer alone due to the additional piezoelectric effect. This type of device can be a way for converting heat energy into electricity. PMID:23258941

  20. Piezoresistive cantilever array sensor for consolidated bioprocess monitoring

    SciTech Connect

    Kim, Seonghwan Sam; Rahman, Touhidur; Senesac, Larry R; Davison, Brian H; Thundat, Thomas George

    2009-01-01

    Cellulolytic microbes occur in diverse natural niches and are being screened for industrial modification and utility. A microbe for Consolidated bioprocessing (CBP) development can rapidly degrade pure cellulose and then ferment the resulting sugars into fuels. To identify and screen for novel microbes for CBP, we have developed a piezoresistive cantilever array sensor which is capable of simultaneous monitoring of glucose and ethanol concentration changes in a phosphate buffer solution. 4-mercaptophenylboronic acid (4-MPBA) and polyethyleneglycol (PEG)-thiol are employed to functionalize each piezoresistive cantilever for glucose and ethanol sensing, respectively. Successful concentration measurements of glucose and ethanol with minimal interferences are obtained with our cantilever array sensor.

  1. Energy harvesting from radio frequency propagation using piezoelectric cantilevers

    NASA Astrophysics Data System (ADS)

    Ahmad, Mahmoud Al; Alshareef, H. N.

    2012-02-01

    This work reports an induced strain in a piezoelectric cantilever due to radio frequency signal propagation. The piezoelectric actuator is coupled to radio frequency (RF) line through a gap of 0.25 mm. When a voltage signal of 10 Vpp propagates in the line it sets an alternating current in the actuator electrodes. This flowing current drives the piezoelectric cantilever to mechanical movement, especially when the frequency of the RF signal matches the mechanical resonant frequency of the cantilever. Output voltage signals versus frequency for both mechanical vibrational and RF signal excitations have been measured using different loads.

  2. Use of thermal cycling to reduce adhesion of OTS coated coated MEMS cantilevers

    NASA Astrophysics Data System (ADS)

    Ali, Shaikh M.; Phinney, Leslie M.

    2003-01-01

    °Microelectromechanical systems (MEMS) have enormous potential to contribute in diverse fields such as automotive, health care, aerospace, consumer products, and biotechnology, but successful commercial applications of MEMS are still small in number. Reliability of MEMS is a major impediment to the commercialization of laboratory prototypes. Due to the multitude of MEMS applications and the numerous processing and packaging steps, MEMS are exposed to a variety of environmental conditions, making the prediction of operational reliability difficult. In this paper, we investigate the effects of operating temperature on the in-use adhesive failure of electrostatically actuated MEMS microcantilevers coated with octadecyltrichlorosilane (OTS) films. The cantilevers are subjected to repeated temperature cycles and electrostatically actuated at temperatures between 25°C and 300°C in ambient air. The experimental results indicate that temperature cycling of the OTS coated cantilevers in air reduces the sticking probability of the microcantilevers. The sticking probability of OTS coated cantilevers was highest during heating, which decreased during cooling, and was lowest during reheating. Modifications to the OTS release method to increase its yield are also discussed.

  3. A paper-based cantilever array sensor: Monitoring volatile organic compounds with naked eye.

    PubMed

    Fraiwan, Arwa; Lee, Hankeun; Choi, Seokheun

    2016-09-01

    Volatile organic compound (VOC) detection is critical for controlling industrial and commercial emissions, environmental monitoring, and public health. Simple, portable, rapid and low-cost VOC sensing platforms offer the benefits of on-site and real-time monitoring anytime and anywhere. The best and most practically useful approaches to monitoring would include equipment-free and power-free detection by the naked eye. In this work, we created a novel, paper-based cantilever sensor array that allows simple and rapid naked-eye VOC detection without the need for power, electronics or readout interface/equipment. This simple VOC detection method was achieved using (i) low-cost paper materials as a substrate and (ii) swellable thin polymers adhered to the paper. Upon exposure to VOCs, the polymer swelling adhered to the paper-based cantilever, inducing mechanical deflection that generated a distinctive composite pattern of the deflection angles for a specific VOC. The angle is directly measured by the naked eye on a 3-D protractor printed on a paper facing the cantilevers. The generated angle patterns are subjected to statistical algorithms (linear discriminant analysis (LDA)) to classify each VOC sample and selectively detect a VOC. We classified four VOC samples with 100% accuracy using LDA.

  4. Material Transport and Synthesis by Cantilever-free Scanning Probe Lithography

    NASA Astrophysics Data System (ADS)

    Liao, Xing

    Reliably synthesizing and transporting materials in nanoscale is the key question in many fields of nanotechnology. Cantilever-free scanning probe lithography, by replacing fragile and costly cantilevers with a robust and low cost elastomeric structure, fundamentally solved the low-throughput nature of scanning probe lithography, which has great potential to be a powerful and point-of-use tool for high throughput synthesis of various kinds of nanomaterials. Two nanolithographic methods, polymer pen lithography (PPL) and beam pen lithography (BPL), have been developed based on the cantilever-free architecture to directly deliver materials and transfer energy to substrates, respectively. The first portion of my thesis, including chapter two and chapter three, addresses major challenges remaining in the cantilever-free scanning probe lithographic techniques. Chapter two details the role of contact force in polymer pen lithography. A geometric model was developed to quantitatively explain the relationship between the z-piezo extension, the contact force and the resulted feature size. With such a model, force can be used as the in-situ feedback during the patterning and a new method for leveling the pen arrays was developed, which utilizes the total force between the pen arrays and the surface to achieve leveling with a tilt of less than 0.004°. In chapter three, massively multiplexed near-field photolithography has been demonstrated by combining BPL with a batch method to fabricate nanometer scale apertures in parallel fashion and a strategy to individually actuation of each pen in the pen array are discussed. This transformative combination enables one to writing arbitrary patterns composed of diffraction-unlimited features over square centimeter areas that are in registry with existing patterns and nanostructures, creating a unified tool for constructing and studying nanomaterials. The second portion of this thesis focuses on applications of cantilever-free scanning

  5. View from underneath bridge on west side shows cantilevered steel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from underneath bridge on west side shows cantilevered steel supports for sidewalk above. - Raging River Bridge No. 234A, Preston-Fall City Road & Southeast Forty-fourth Place, Fall City, King County, WA

  6. 14. DETAIL VIEW OF THE CANTILEVER & 'S' BRACKETS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. DETAIL VIEW OF THE CANTILEVER & 'S' BRACKETS AND THE SOUTH HANDRAIL, PANEL 1, NEAR THE SOUTHEAST ABUTMENT, LOOKING NORTHWEST Harms - Benton Street Bridge, Spanning Iowa River at Benton Street, Iowa City, Johnson County, IA

  7. 22. DETAIL OF EAST (CANADIAN) CANTILEVER AND ANCHOR ARMS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. DETAIL OF EAST (CANADIAN) CANTILEVER AND ANCHOR ARMS OF MAIN SPAN, SHOWING PIER C. VIEW TO NORTH. - Blue Water Bridge, Spanning St. Clair River at I-69, I-94, & Canadian Route 402, Port Huron, St. Clair County, MI

  8. 21. DETAIL OF WEST (AMERICAN) CANTILEVER AND ANCHOR ARMS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. DETAIL OF WEST (AMERICAN) CANTILEVER AND ANCHOR ARMS OF MAIN SPAN, SHOWING PIER M. VIEW TO NORTH. - Blue Water Bridge, Spanning St. Clair River at I-69, I-94, & Canadian Route 402, Port Huron, St. Clair County, MI

  9. Superstructure Main Bridge, Cross Sections, Cantilever Structure Huey ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Superstructure - Main Bridge, Cross Sections, Cantilever Structure - Huey P. Long Bridge, Spanning Mississippi River approximately midway between nine & twelve mile points upstream from & west of New Orleans, Jefferson, Jefferson Parish, LA

  10. OBLIQUE VIEW OF THE NORTHEAST SIDE. NOTE THE CANTILEVERED CANOPY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF THE NORTHEAST SIDE. NOTE THE CANTILEVERED CANOPY OVER THE FRONT DOOR AND BELT COURSE OF THREE FLARED BANDS. VIEW FACING SOUTHEAST. - Hickam Field, Officers' Housing Type M, 113 Beard Avenue, Honolulu, Honolulu County, HI

  11. DETAIL OF CANTILEVERED MEZZANINE OBSERVATION ROOM ON SOUTH WEST CORNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF CANTILEVERED MEZZANINE OBSERVATION ROOM ON SOUTH- WEST CORNER OF BUILDING. VIEW TO NORTHEAST. - Plattsburgh Air Force Base, Base Engineer Pavement & Grounds Facility, Off Colorado Street, Plattsburgh, Clinton County, NY

  12. 26. DETAIL OF SOUTH CANTILEVER FIXED BEARING AT PIER No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. DETAIL OF SOUTH CANTILEVER FIXED BEARING AT PIER No. 5 AND CONNECTION L-16, LOOKING NORTHEAST - Jackson's Ferry Bridge, Route 52 over New River, 6.3 miles south of Route 94, Austinville, Wythe County, VA

  13. 258. Dennis Hill, Photographer April 1998 VIEW OF CANTILEVER TRUSS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    258. Dennis Hill, Photographer April 1998 VIEW OF CANTILEVER TRUSS ANCHOR ARM AT PIERS E- AND E-2, SOUTH SIDE, FACING NORTH. - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  14. 7. Detail of sidewalk cantilevers and walkway between viaduct and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Detail of sidewalk cantilevers and walkway between viaduct and livestock exchange building. View to southwest. - South Omaha Union Stock Yards, Buckingham Road Viaduct, Twenty-ninth Street spanning Stockyard Cattle Pens, Omaha, Douglas County, NE

  15. DETAIL OF SOUTH SAN GABRIEL RIVER BRIDGE, CANTILEVER SPAN CONNECTION, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF SOUTH SAN GABRIEL RIVER BRIDGE, CANTILEVER SPAN CONNECTION, LOOKING NORTHWEST. - South San Gabriel River Bridge, Spanning South Fork of San Gabriel River at Georgetown at Business Route 35, Georgetown, Williamson County, TX

  16. DETAIL OF NORTH SAN GABRIEL RIVER BRIDGE, CANTILEVER SPAN CONNECTION, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF NORTH SAN GABRIEL RIVER BRIDGE, CANTILEVER SPAN CONNECTION, LOOKING SOUTHEAST. - North San Gabriel River Bridge, Spanning North Fork of San Gabriel River at Business Route 35, Georgetown, Williamson County, TX

  17. 20. DETAIL OF WEST ANCHOR SPAN, CANTILEVER ARMS AND WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DETAIL OF WEST ANCHOR SPAN, CANTILEVER ARMS AND WEST HALF OF SUSPENDED SPAN OF THROUGH TRUSS. VIEW TO NORTHEAST. - MacArthur Bridge, Spanning Mississippi River on Highway 34 between IA & IL, Burlington, Des Moines County, IA

  18. 29. DECK / WEB / LATERAL BRACING DETAIL OF CANTILEVER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. DECK / WEB / LATERAL BRACING DETAIL OF CANTILEVER ARM OF THROUGH TRUSS. VIEW TO WEST. - MacArthur Bridge, Spanning Mississippi River on Highway 34 between IA & IL, Burlington, Des Moines County, IA

  19. MEMS Cantilever Sensor for THz Photoacoustic Chemical Sensing and Spectroscopy

    DTIC Science & Technology

    2013-12-26

    texture for the preferential crystal formation of the PZT. Deposited by chemical solution deposition (sol-gel), a 1 μm thick PZT film was used as the...constructed out of stainless steel . The test chamber consisted of two segments; a front and back half with the cantilever sensor mounted in between them...that can be used with a piezoelectric cantilever design. A single 1/4 in stainless steel vacuum line connection is also welded to the PA chamber

  20. Health monitoring of carbon cantilever using femtosecond laser inscribed FBG array in gradient-index CYTOP polymer fibre

    NASA Astrophysics Data System (ADS)

    Theodosiou, Antreas; Kalli, Kyriacos; Komodromos, Michael

    2017-04-01

    We report on the femtosecond laser inscription of a fibre Bragg grating array in multimode, gradient-index, CYTOP polymer optical fibre and its demonstration as a quasi-distributed sensor for cantilever health monitoring measurements. We exploit the key advantage of polymer optical fibres, having a significantly lower Young's modulus compared with silica fibres, for vibration measurements. We also modify the typical multi-mode Bragg grating spectrum through control of the femtosecond laser inscription process, thereby producing gratings having single peak wavelength spectra. The sensor array is used to recover the time-dependent, wavelength response from each Bragg grating sensor and extract the mode shape of the beam. The mode shapes of the beam were used to observe "damage" introduced to the cantilever by adding masses to its surface; adjusting the level of damage by using different weights and placing them at different point across the beam. We show that health monitoring measurements are feasible with polymer based fibre Bragg gratings. The accurate and rapid detection of damage points on structural beams and the damage level is an important parameter for improved maintenance and servicing of beams under load and for the prevention of long-term damage.

  1. Deflection of a viscoelastic cantilever under a uniform surface stress: Applications to static-mode microcantilever sensors undergoing adsorption

    NASA Astrophysics Data System (ADS)

    Wenzel, M. J.; Josse, F.; Heinrich, S. M.

    2009-03-01

    The equation governing the curvature of a viscoelastic microcantilever beam loaded with a uniform surface stress is derived. The present model is applicable to static-mode microcantilever sensors made with a rigid polymer, such as SU-8. An analytical solution to the differential equation governing the curvature is given for a specific surface stress representing adsorption of analyte onto the viscoelastic beam's surface. The solution for the bending of the microcantilever shows that, in many cases, the use of Stoney's equation to analyze stress-induced deflection of viscoelastic microcantilevers (in the present case due to surface analyte adsorption) can lead to poor predictions of the beam's response. It is shown that using a viscoelastic substrate can greatly increase sensitivity (due to a lower modulus), but at the cost of a longer response time due to viscoelastic creep in the microcantilever. In addition, the effects of a coating on the cantilever are considered. By defining effective moduli for the coated-beam case, the analytical solution for the uncoated case can still be used. It is found that, unlike the case of a silicon microcantilever, the stress in the coating due to bending of a polymer cantilever can be significant, especially for metal coatings. The theoretical results presented here can also be used to extract time-domain viscoelastic properties of the polymer material from beam response data.

  2. Dynamics and stability of an extending beam attached to an axially moving base immersed in dense fluid

    NASA Astrophysics Data System (ADS)

    Yan, H.; Ni, Q.; Dai, H. L.; Wang, L.; Li, M.; Wang, Y.; Luo, Y.

    2016-11-01

    In the present study, we construct a theoretical model for investigating the dynamics and stability of a flexible slender cantilever which is attached to an axially moving base fully immersed in an incompressible fluid. Meanwhile, the cantilevered beam is subjected to a time dependent axial extension. The coordinate transformation is utilized to derive the governing equations with consideration of an axial added mass coefficient and realistic initial conditions. Based on the Galerkin approach and Runge-Kutta technique, the numerical results for the dynamical behavior of the system under conditions of steady rate of extension and speed of the moving base are displayed. It is demonstrated that there is a critical value of extension rate at which the beam loses stability in the case when the base is fixed. As the base moves beyond a certain speed, however, the beam returns to be stable even if the extension rate is above the critical value. Furthermore, the beam system can exhibit peak response as the base moving speed is much higher than the extension rate.

  3. Differences in the mandibular premolar positions in Angle Class I subjects with different vertical facial types: A cone-beam computed tomography study

    PubMed Central

    Duan, Jun; Deng, Feng; Li, Wan-Shan; Li, Xue-Lei; Zheng, Lei-Lei; Li, Gui-Yuan

    2015-01-01

    Objective To compare the positions of the mandibular premolars in Angle Class I subjects according to vertical facial type. The results will provide a theoretical basis for predicting effective tooth movement in orthodontic treatment. Methods Cephalometric parameters were determined using cone-beam computed tomography in 120 Angle Class I subjects. Subjects were categorized as short, normal, and long face types according to the Frankfort mandibular angle. Parameters indicating the position of the mandibular right premolars and the mandible were also measured. Results The angle between the mandibular first premolar axis and buccal cortex, the distance between the root apex and buccal cortex, angle of vestibularization, arc of vestibularization, and root apex maximum movable distance were significantly greater in the short face type than in the long and norm face types. The angle between the mandibular second premolar axis and buccal cortex, the distance from root apex to buccal cortex, and the arc of vestibularization were significantly greater in the short face type than in the normal face type. Conclusions There are significant differences in the mandibular premolar positions in Class I subjects according to vertical facial type. PMID:26258064

  4. Multiwell micromechanical cantilever array reader for biotechnology

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Best, A.; Berger, R.; Cherian, S.; Lorenzoni, S.; Macis, E.; Raiteri, R.; Cain, R.

    2007-08-01

    We use a multiwell micromechanical cantilever sensor (MCS) device to measure surface stress changes induced by specific adsorption of molecules. A multiplexed assay format facilitates the monitoring of the bending of 16 MCSs in parallel. The 16 MCSs are grouped within four separate wells. Each well can be addressed independently by different analyte liquids. This enables functionalization of MCS separately by flowing different solutions through each well. In addition, each well contains a fixed reference mirror which allows measuring the absolute bending of MCS. In addition, the mirror can be used to follow refractive index changes upon mixing of different solutions. The effect of the flow rate on the MCS bending change was found to be dependent on the absolute bending value of MCS. Experiments and finite element simulations of solution exchange in wells were performed. Both revealed that one solution can be exchanged by another one after 200μl volume has flown through. Using this device, the adsorption of thiolated DNA molecules and 6-mercapto-1-hexanol on gold surfaces was performed to test the nanomechanical response of MCS.

  5. Piezoresistive cantilever force-clamp system

    SciTech Connect

    Park, Sung-Jin; Petzold, Bryan C.; Pruitt, Beth L.; Goodman, Miriam B.

    2011-04-15

    We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or ''clamps'' the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to a sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of {mu}N force and nm up to tens of {mu}m displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode.

  6. Measurement of Mechanical Properties of Cantilever Shaped Materials

    PubMed Central

    Finot, Eric; Passian, Ali; Thundat, Thomas

    2008-01-01

    Microcantilevers were first introduced as imaging probes in Atomic Force Microscopy (AFM) due to their extremely high sensitivity in measuring surface forces. The versatility of these probes, however, allows the sensing and measurement of a host of mechanical properties of various materials. Sensor parameters such as resonance frequency, quality factor, amplitude of vibration and bending due to a differential stress can all be simultaneously determined for a cantilever. When measuring the mechanical properties of materials, identifying and discerning the most influential parameters responsible for the observed changes in the cantilever response are important. We will, therefore, discuss the effects of various force fields such as those induced by mass loading, residual stress, internal friction of the material, and other changes in the mechanical properties of the microcantilevers. Methods to measure variations in temperature, pressure, or molecular adsorption of water molecules are also discussed. Often these effects occur simultaneously, increasing the number of parameters that need to be concurrently measured to ensure the reliability of the sensors. We therefore systematically investigate the geometric and environmental effects on cantilever measurements including the chemical nature of the underlying interactions. To address the geometric effects we have considered cantilevers with a rectangular or circular cross section. The chemical nature is addressed by using cantilevers fabricated with metals and/or dielectrics. Selective chemical etching, swelling or changes in Young's modulus of the surface were investigated by means of polymeric and inorganic coatings. Finally to address the effect of the environment in which the cantilever operates, the Knudsen number was determined to characterize the molecule-cantilever collisions. Also bimaterial cantilevers with high thermal sensitivity were used to discern the effect of temperature variations. When appropriate

  7. Comparison of Cone Beam Computed Tomography-Derived Alveolar Bone Density Between Subjects with and without Aggressive Periodontitis

    PubMed Central

    Al-Zahrani, Mohammad S.; Elfirt, Eman Y.; Al-Ahmari, Manea M.; Yamany, Ibrahim A.; Alabdulkarim, Maher A.

    2017-01-01

    Introduction Understanding the changes in bone density of patients affected by aggressive periodontitis could be useful in early disease detection and proper treatment planning. Aim The aim of this study was to compare alveolar bone density in patients affected with aggressive periodontitis and periodontally healthy individuals using Cone Beam Computed Tomography (CBCT). Materials and Methods This cross-sectional study was conducted on 20 patients with a confirmed diagnosis of aggressive periodontitis. Twenty periodontally healthy patients attending the dental clinics for implant placement or extraction of impacted third molars served as controls. Alveolar bone density was measured using CBCT scanning. Comparisons between aggressive periodontitis group and controls for age and alveolar bone density of the anterior and posterior regions were performed using an independent sample t-test. Multivariable linear regression models were also performed. Results The differences between groups in regard to age, anterior and posterior alveolar bone density was not statistically significant (p<0.05). In the posterior region, the multivariable regression model showed that bone density was not associated with age, gender or the study groups. Whereas, in the anterior region, patient’s age was found to be significantly associated with bone density, p=0.014. Conclusion Alveolar bone density as measured by CBCT in aggressive periodontitis patients was not different from periodontally healthy individuals. Further studies are needed to confirm these findings. PMID:28274060

  8. Probabilistic buckling analysis of the beam steel structures subjected to fire by the stochastic finite element method

    NASA Astrophysics Data System (ADS)

    Świta, P.; Kamiński, M.

    2016-05-01

    The main purpose is to present the stochastic perturbation-based Finite Element Method analysis of the stability in the issues related to the influence of high temperature resulting from a fire directly connected with the reliability analysis of such structures. The thin-walled beam structures with constant cross-sectional thickness are uploaded with typical constant loads, variable loads and, additionally, a temperature increase and we look for the first critical value equivalent to the global stability loss. Such an analysis is carried out in the probabilistic context to determine as precisely as possible the safety margins according to the civil engineering Eurocode statements. To achieve this goal we employ the additional design-oriented Finite Element Method program and computer algebra system to get the analytical polynomial functions relating the critical pressure (or force) and several random design parameters; all the models are state-dependent as we consider an additional reduction of the strength parameters due to the temperature increase. The first four probabilistic moments of the critical forces are computed assuming that the input random parameters have all Gaussian probability functions truncated to the positive values only. Finally, the reliability index is calculated according to the First Order Reliability Method (FORM) by an application of the limit function as a difference in-between critical pressure and maximum compression stress determined in the given structures to verify their durability according to the demands of EU engineering designing codes related to the fire situation.

  9. An elastography method based on the scanning contact resonance of a piezoelectric cantilever

    SciTech Connect

    Fu, Ji; Li, Faxin

    2013-12-15

    Purpose: Most tissues may become significantly stiffer than their normal states when there are lesions inside. The tissue's modulus can then act as an identification parameter for clinic diagnosis of tumors or fibrosis, which leads to elastography. This study introduces a novel elastography method that can be used for modulus imaging of superficial organs. Methods: This method is based on the scanning contact-resonance of a unimorph piezoelectric cantilever. The cantilever vibrates in its bending mode with the tip pressed tightly on the sample. The contact resonance frequency of the cantilever-sample system is tracked at each scanning point, from which the sample's modulus can be derived based on a beam dynamic model and a contact mechanics model. Scanning is performed by a three-dimensional motorized stage and the whole system is controlled by a homemade software program based on LabVIEW. Results: Testing onin vitro beef tissues indicates that the fat and the muscle can be easily distinguished using this system, and the accuracy of the modulus measurement can be comparable with that of nanoindentation. Imaging on homemade gelatin phantoms shows that the depth information of the abnormalities can be qualitatively obtained by varying the pressing force. The detection limit of this elastography method is specially examined both experimentally and numerically. Results show that it can detect the typical lesions in superficial organs with the depth of several centimeters. The lateral resolution of this elastography method/system is better than 0.5 mm, and could be further enhanced by using more scanning points. Conclusions: The proposed elastography system can be regarded as a sensitive palpation robot, which may be very promising in early diagnosis of tumors in superficial organs such as breast and thyroid.

  10. An elastography method based on the scanning contact resonance of a piezoelectric cantilever

    SciTech Connect

    Fu, Ji; Li, Faxin

    2013-12-15

    Purpose: Most tissues may become significantly stiffer than their normal states when there are lesions inside. The tissue's modulus can then act as an identification parameter for clinic diagnosis of tumors or fibrosis, which leads to elastography. This study introduces a novel elastography method that can be used for modulus imaging of superficial organs. Methods: This method is based on the scanning contact-resonance of a unimorph piezoelectric cantilever. The cantilever vibrates in its bending mode with the tip pressed tightly on the sample. The contact resonance frequency of the cantilever-sample system is tracked at each scanning point, from which the sample's modulus can be derived based on a beam dynamic model and a contact mechanics model. Scanning is performed by a three-dimensional motorized stage and the whole system is controlled by a homemade software program based on LabVIEW. Results: Testing onin vitro beef tissues indicates that the fat and the muscle can be easily distinguished using this system, and the accuracy of the modulus measurement can be comparable with that of nanoindentation. Imaging on homemade gelatin phantoms shows that the depth information of the abnormalities can be qualitatively obtained by varying the pressing force. The detection limit of this elastography method is specially examined both experimentally and numerically. Results show that it can detect the typical lesions in superficial organs with the depth of several centimeters. The lateral resolution of this elastography method/system is better than 0.5 mm, and could be further enhanced by using more scanning points. Conclusions: The proposed elastography system can be regarded as a sensitive palpation robot, which may be very promising in early diagnosis of tumors in superficial organs such as breast and thyroid.

  11. Non-Conservative Instability of Non-uniform Beams Resting on an Elastic Foundation

    NASA Astrophysics Data System (ADS)

    Lee, S. Y.; Yang, C. C.

    1994-01-01

    The influence of a Winkler elastic foundation and the slenderness ratio on the non-conservative instability of cantilever non-uniform beams of rectangular cross-section with constant height and linearly varied breadth (T1), constant breadth and linearly varied height (T2) and double taper (T3), subjected to an end concentrated follower force is investigated. It is found that without the elastic foundation the critical flutter load of the non-uniform beam decreases as the taper ratio of the beam is increased. However, when the elastic foundation modulus is greater than a critical value, the critical flutter load of the taper beams is always greater than that of uniform beams. Within the domain considered, when the taper ratio of the beam lies in a certain range, several critical turning points, including a jump phenomenon, may exist for the critical flutter load. The jump mechanism and the influence of the elastic foundation modulus and the slenderness ratio on the jump phenomenon of Timoshenko beams is explored.

  12. SiC-Based Miniature High-Temperature Cantilever Anemometer

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Fralick, Gustave; Saad, George J.

    2004-01-01

    The figure depicts a miniature cantilever-type anemometer that has been developed as a prototype of compact, relatively nonintrusive anemometers that can function at temperatures up to 600 C and that can be expected to be commercially mass-producible at low cost. The design of this anemometer, and especially the packaging aspect of the design, is intended to enable measurement of turbulence in the high-temperature, high-vibration environment of a turbine engine or in any similar environment. The main structural components of the anemometer include a single-crystal SiC cantilever and two polycrystalline SiC clamping plates, all made from chemical-vapor-deposited silicon carbide. Fabrication of these components from the same basic material eliminates thermal-expansion mismatch, which has introduced spurious thermomechanical stresses in cantilever-type anemometers of prior design. The clamping plates are heavily oxidized to improve electrical insulation at high temperature. A cavity that serves as a receptacle for the clamped end of the cantilever is etched into one end of one clamping plate. Trenches that collectively constitute a socket for a multipin electrical plug (for connection to external electronic circuitry) are etched into the opposite end of this clamping plate. Metal strips for electrical contact are deposited on one face of the other clamping plate. Piezoresistive single-crystal SiC thin-film strain gauges are etched in the n-type SiC epilayer in a Wheatstone-bridge configuration. Metal contact pads on the cantilever that extend into the clamping-receptacle area, are obtained by deposition and patterning using standard semiconductor photolithography and etching methods. The cantilever and the two clamping plates are assembled into a sandwich structure that is then clamped in a stainless-steel housing. The Wheatstone- bridge carrying SiC cantilever with the metal contact pads on the piezoresistors is slid into the receptacle in the bottom clamping plate

  13. High resolved velocity measurements using Laser Cantilever Anemometry

    NASA Astrophysics Data System (ADS)

    Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim

    2016-11-01

    We have developed a new anemometer, namely the 2d-LCA (2d-Laser-Cantilever-Anemometer), that is capable of performing high resolved velocity measurements in fluids. The anemometer uses a micostructured cantilever made of silicon as a sensing element. The specific shape and the small dimensions (about 150µm) of the cantilever allow for precise measurements of two velocity component at a temporal resolution of about 150kHz. The angular acceptance range is 180° in total. The 2d-LCA is a simple to use alternative to x-wires and can be used in many areas of operation including measurements in liquids or in particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high-speed flows. In the recent past new cantilever designs were implemented with the goal to further improve the angular resolution and increase the stability. In addition, we have designed more robust cantilevers for measurements in rough environments such as offshore areas. Successful comparative measurements with hot-wires have been carried out in order to assess the performance of the 2d-LCA.

  14. A miniaturized ferrule-top optical cantilever for vibration measurement

    NASA Astrophysics Data System (ADS)

    Li, J.; Xu, S. M.; Sun, J. N.; Tang, Y. Q.; Dong, F. Z.

    2017-04-01

    In this paper, we propose techniques to design and fabricate polymer micro-cantilevers for attachment onto the end of standard single mode fibers using laser machining. The polymer cantilever is fabricated by laser micro-machining a sheet of polymer into the required shape and then bonded onto the top of a ceramic ferrule by photo resist as a flat supporting and bonding layer. The dimension of resulting cantilever is 1.2 mm long, 300 μm wide, and 25 μm thick. In this work we describe the fabrication of single sensors, however the process could be scaled to offer a route towards mass production. Cantilever vibration caused by vibration signal are monitored by a DFB laser based phase interrogation system. Proof-of-concept experiments show that the sensor is capable of detecting vibration signal with a frequency range of 0-800Hz. By using thinner polymer sheet and machining longer cantilever, the frequency response range can be extended up to a few kHz.

  15. Defect reduction in gallium nitride using cantilever epitaxy.

    SciTech Connect

    Mitchell, Christine Charlotte

    2003-08-01

    Cantilever epitaxy (CE) has been developed to produce GaN on sapphire with low dislocation densities as needed for improved devices. The basic mechanism of seeding growth on sapphire mesas and lateral growth of cantilevers until they coalesce has been modified with an initial growth step at 950 C. This step produces a gable with (11{bar 2}2) facets over the mesas, which turns threading dislocations from vertical to horizontal in order to reduce the local density above mesas. This technique has produced material with densities as low as 2-3x10{sup 7}/cm{sup 2} averaged across extended areas of GaN on sapphire, as determined with AFM, TEM and cathodoluminescence (CL). This density is about two orders of magnitude below that of conventional planar growths; these improvements suggest that locating wide-area devices across both cantilever and mesa regions is possible. However, the first implementation of this technique also produced a new defect: cracks at cantilever coalescences with associated arrays of lateral dislocations. These defects have been labeled 'dark-block defects' because they are non-radiative and appear as dark rectangles in CL images. Material has been grown that does not have dark-block defects. Examination of the evolution of the cantilever films for many growths, both partial and complete, indicates that producing a film without these defects requires careful control of growth conditions and crystal morphology at multiple steps. Their elimination enhances optical emission and uniformity over large (mm) size areas.

  16. Bone and body composition measurements of small subjects: discrepancies from software for fan-beam dual energy X-ray absorptiometry.

    PubMed

    Koo, Winston W K; Hammami, Mouhanad; Shypailo, Roman J; Ellis, Kenneth J

    2004-12-01

    A piglet model was used to determine the variations in measurements from different software algorithms used in the same type of dual energy X ray absorptiometry (DXA) instruments from the same manufacturer. Forty-one piglets (6190 +/- 5856g, mean +/- SD) were scanned in duplicate with a fan-beam densitometer (Hologic QDR4500A, Hologic Inc, Bedford, MA) in the infant whole body scan mode. The same scans were analyzed with two software versions: vKH6 (validated with carcass chemical measurement) and v11.2 (commercial software from the same densitometer manufacturer). All analysis values were highly correlated (r = 0.90 to 1.00) and DXA values for total weights were almost identical. However, v11.2 results consistently overestimated bone mineral content (49.3 +/- 23.4%, mean +/- SD), bone area (21.1 +/- 8.2%), bone mineral density (24.1 +/- 22.2%), and fat mass (160.9 +/- 71.7%) but underestimated lean mass (-14.3 +/- 5.5%) when compared to the values from vKH6. Differences between software versions increased with heavier piglets. The commercial software for fan-beam DXA measurement of piglets, matched for the size of human infants and young children, has major inaccuracies for bone mineral and body composition that become further exaggerated with increasing weight of the subject.

  17. Efficiency improvement of a cantilever-type energy harvester using torsional vibration

    NASA Astrophysics Data System (ADS)

    Kim, In-Ho; Jang, Seon-Jun; Koo, Jeong-Hoi; Jung, Hyung-Jo

    2016-04-01

    In this paper, a piezoelectric vibrational energy harvester utilizing coupled bending and torsional vibrations is investigated. The proposed system consists of a cantilever-type substrate covered by the piezoelectric ceramic and a proof mass which is perpendicularly connected to the free end of the cantilever beam by a rigid bar. While the natural frequency and output voltage of the conventional system are affected by bending deformation of the piezoelectric plate, the proposed system makes use of its twisting deformation. The natural frequency of the device can be significantly decreased by manipulating the location of the proof mass on the rigid bar. In order to validate the performance of the proposed energy harvester, numerical simulations and vertical shaker tests are carried out. It is demonstrated that the proposed energy harvester can shift down its resonant frequency considerably and generate much higher output power than the conventional system. It is, therefore, concluded that the proposed energy harvester utilizing the coupled bending and torsional vibrations can be effectively applied to low-frequency vibration situations.

  18. Fiber faceplate modulation readout in Bi-material micro-cantilever mirror array imaging system

    NASA Astrophysics Data System (ADS)

    Hui, Mei; Xia, Zhengzheng; Liu, Ming; Dong, Liquan; Liu, Xiaohua; Zhao, Yuejin

    2016-05-01

    Fiber faceplate modulation was applied to read out the precise actuation of silicon-based, surface micro-fabricated cantilever mirrors array in optical imaging system. The faceplate was made by ordered bundles consisting of as many as ten thousands fibers. The transmission loss of an individual fiber in the bundles was 0.35dB/cm and the cross talk between neighboring fibers in the faceplate was about 15%. Micro-cantilever mirrors array (Focal-Plane Array (FPA)) which composed of two-level bi-material pixels, absorb incident infrared flux and result in a temperature increase. The temperature distribution of incident flux transformed to the deformation distribution in FPA which has a very big difference in coefficients of thermal expansion. FPA plays the roles of target sensing and has the characteristics of high detection sensitivity. Instead of general filter such as knife edge or pinhole, fiber faceplate modulate the beam reflected by the units of FPA. An optical readout signal brings a visible spectrum into pattern recognition system, yielding a visible image on monitor. Thermal images at room temperature have been obtained. The proposed method permits optical axis compact and image noise suppression.

  19. Mechanical properties of graphene cantilever from atomic force microscopy and density functional theory.

    PubMed

    Rasuli, R; Iraji Zad, A; Ahadian, M M

    2010-05-07

    We have studied the mechanical properties of a few-layer graphene cantilever (FLGC) using atomic force microscopy (AFM). The mechanical properties of the suspended FLGC over an open hole have been derived from the AFM data. Force displacement curves using the Derjaguin-Müller-Toporov (DMT) and the massless cantilever beam models yield a Young modulus of E(c) approximately 37, E(a) approximately 0.7 TPa and a Hamakar constant of approximately 3 x 10( - 18) J. The threshold force to shear the FLGC was determined from a breaking force and modeling. In addition, we studied a graphene nanoribbon (GNR), which is a system similar to the FLGC; using density functional theory (DFT). The in-plane Young's modulus for the GNRs were calculated from the DFT outcomes approximately 0.82 TPa and the results were compared with the experiment. We found that the Young's modulus and the threshold shearing force are dependent on the direction of applied force and the values are different for zigzag edge and armchair edge GNRs.

  20. Wide-dynamic-range cantilever magnetometry using a fiber-optic interferometer and its application to high-frequency electron spin resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Takahashi, Hideyuki; Okamoto, Tsubasa; Ohmichi, Eiji; Ohta, Hitoshi

    2016-12-01

    We present a method of broadening the dynamic range of optical interferometric detection of cantilever displacement. The key idea of this method is the use of a wavelength-tunable laser source. The wavelength is subject to proportional-integral control, which is used to keep the cavity detuning constant. Under this control, the change in wavelength is proportional to the cantilever displacement. Using this technique, we can measure large displacements (>1 µm) without degrading the sensitivity. We apply this technique to high-frequency electron spin resonance spectroscopy and succeed in removing an irregular background signal that arises from the constantly varying sensitivity of the interferometer.

  1. Energy harvesting from coherent resonance of horizontal vibration of beam excited by vertical base motion

    SciTech Connect

    Lan, C. B.; Qin, W. Y.

    2014-09-15

    This letter investigates the energy harvesting from the horizontal coherent resonance of a vertical cantilever beam subjected to the vertical base excitation. The potential energy of the system has two symmetric potential wells. So, under vertical excitation, the system can jump between two potential wells, which will lead to the large vibration in horizontal direction. Two piezoelectric patches are pasted to harvest the energy. From experiment, it is found that the vertical excitation can make the beam turn to be bistable. The system can transform vertical vibration into horizontal vibration of low frequency when excited by harmonic motion. The horizontal coherence resonance can be observed when excited by a vertical white noise. The corresponding output voltages of piezoelectric films reach high values.

  2. Vibration frequencies of a constrained cantilever wedge

    NASA Astrophysics Data System (ADS)

    Craver, W. Lionel, Jr.; Lu, Yangshan

    1989-05-01

    This paper presents the solution for the natural frequencies of a beam tapered in one direction, or a wedge, with both a rotational and a translational constraint at a position along the length of the beam. The eigenfrequencies were determined using an incremental search and bisection method, accurate to the fourth decimal place. The taper ratio was varied from 1.4 to 5.0 and the dimensionless spring constants were varied from 0 to 1000. Graphs are provided to illustrate some results.

  3. Global consequences of a local Casimir force: Adhered cantilever

    NASA Astrophysics Data System (ADS)

    Svetovoy, V. B.; Melenev, A. E.; Lokhanin, M. V.; Palasantzas, G.

    2017-07-01

    Although stiction is a cumbersome problem for microsystems, it stimulates investigations of surface adhesion. In fact, the shape of an adhered cantilever carries information of the adhesion energy that locks one end to the substrate. We demonstrate here that the system is also sensitive to the dispersion forces that are operative very close to the point of contact, but their contribution to the shape is maximum at about one third of the unadhered length. When the force exceeds a critical value, the cantilever does not lose stability but settles at a smaller unadhered length, whose relation to adhesion energy is only slightly affected by the force. Our calculations suggest the use of adhered cantilevers to measure the dispersion forces at short separations, where other methods suffer from jump-to-contact instability. Simultaneous measurement of the force and adhesion energy allows the separation of the dispersion contribution to the surface adhesion.

  4. Improved Noninterferometric Test of Collapse Models Using Ultracold Cantilevers

    NASA Astrophysics Data System (ADS)

    Vinante, A.; Mezzena, R.; Falferi, P.; Carlesso, M.; Bassi, A.

    2017-09-01

    Spontaneous collapse models predict that a weak force noise acts on any mechanical system, as a consequence of the collapse of the wave function. Significant upper limits on the collapse rate have been recently inferred from precision mechanical experiments, such as ultracold cantilevers and the space mission LISA Pathfinder. Here, we report new results from an experiment based on a high-Q cantilever cooled to millikelvin temperatures, which is potentially able to improve the current bounds on the continuous spontaneous localization (CSL) model by 1 order of magnitude. High accuracy measurements of the cantilever thermal fluctuations reveal a nonthermal force noise of unknown origin. This excess noise is compatible with the CSL heating predicted by Adler. Several physical mechanisms able to explain the observed noise have been ruled out.

  5. Improved Noninterferometric Test of Collapse Models Using Ultracold Cantilevers.

    PubMed

    Vinante, A; Mezzena, R; Falferi, P; Carlesso, M; Bassi, A

    2017-09-15

    Spontaneous collapse models predict that a weak force noise acts on any mechanical system, as a consequence of the collapse of the wave function. Significant upper limits on the collapse rate have been recently inferred from precision mechanical experiments, such as ultracold cantilevers and the space mission LISA Pathfinder. Here, we report new results from an experiment based on a high-Q cantilever cooled to millikelvin temperatures, which is potentially able to improve the current bounds on the continuous spontaneous localization (CSL) model by 1 order of magnitude. High accuracy measurements of the cantilever thermal fluctuations reveal a nonthermal force noise of unknown origin. This excess noise is compatible with the CSL heating predicted by Adler. Several physical mechanisms able to explain the observed noise have been ruled out.

  6. Structure–performance relationships for cantilever-type piezoelectric energy harvesters

    SciTech Connect

    Cho, Kyung-Hoon E-mail: spriya@vt.edu; Park, Hwi-Yeol; Heo, Jin S.; Priya, Shashank E-mail: spriya@vt.edu

    2014-05-28

    This study provides comprehensive analysis of the structure–performance relationships in cantilever-type piezoelectric energy harvesters. It provides full understanding of the effect of all the practical global control variables on the harvester performance. The control variables considered for the analysis were material parameters, areal and volumetric dimensions, and configuration of the inactive and active layers. Experimentally, the output power density of the harvester was maximum when the shape of the beam was close to a square for a constant bending stiffness and a fixed beam area. Through analytical modeling of the effective stiffness for the piezoelectric bimorph, the conditions for enhancing the bending stiffness within the same beam volume as that of a conventional bimorph were identified. The harvester configuration with beam aspect ratio of 0.86 utilizing distributed inactive layers exhibited an giant output power of 52.5 mW and power density of 28.5 mW cm{sup −3} at 30 Hz under 6.9 m s{sup −2} excitation. The analysis further indicates that the trend in the output power with varying damping ratio is dissimilar to that of the efficiency. In order to realize best performance, the harvester should be designed with respect to maximizing the magnitude of output power.

  7. Secondary capping beams for offshore drilling platforms

    SciTech Connect

    Albaugh, E. K.

    1985-08-13

    A pair of I-shaped elongated girders secured to, and extending outwardly from, the capping beams of a four pile platform, to form cantilever secondary capping beams which support modified self-contained drilling rigs of a size and weight normally installed on eight pile platforms. Rig modifications comprise separation of pump and engine packages, a pipe rack extension, and a novel skidding system.

  8. Magnetostriction-driven cantilevers for dynamic atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Penedo, M.; Fernández-Martínez, I.; Costa-Krämer, J. L.; Luna, M.; Briones, F.

    2009-10-01

    An actuation mode is presented to drive the mechanical oscillation of cantilevers for dynamic atomic force microscopy. The method is based on direct mechanical excitation of the cantilevers coated with amorphous Fe-B-N thin films, by means of the film magnetostriction, i.e., the dimensional change in the film when magnetized. These amorphous magnetostrictive Fe-B-N thin films exhibit soft magnetic properties, excellent corrosion resistance in liquid environments, nearly zero accumulated stress when properly deposited, and good chemical stability. We present low noise and high resolution topographic images acquired in liquid environment to demonstrate the method capability.

  9. A surface-acoustic-wave-based cantilever bio-sensor.

    PubMed

    De Simoni, Giorgio; Signore, Giovanni; Agostini, Matteo; Beltram, Fabio; Piazza, Vincenzo

    2015-06-15

    A scalable surface-acoustic-wave- (SAW-) based cantilevered device for portable bio-chemical sensing applications is presented. Even in the current, proof-of-principle implementation this architecture is shown to outperform commercial quartz-crystal microbalances in terms of sensitivity. Adhesion of analytes on a functionalized surface of the cantilever shifts the resonant frequency of a SAW-generating transducer due to the stress-induced variation of the speed of surface acoustic modes. We discuss the relevance of this approach for diagnostics applications based on miniaturized devices.

  10. Comparison of observer reliability of three-dimensional cephalometric landmark identification on subject images from Galileos and i-CAT cone beam CT

    PubMed Central

    Katkar, R A; Kummet, C; Dawson, D; Moreno Uribe, L; Allareddy, V; Finkelstein, M; Ruprecht, A

    2013-01-01

    Objectives: Recently, there has been increasing interest in the use of cone beam CT (CBCT) for three-dimensional cephalometric analysis and craniofacial reconstruction in orthodontic and orthognathic surgical treatment planning. However, there is a need to redefine the cephalometric landmarks in three dimensional cephalometric analysis and to demonstrate the reproducibility of landmark identification on the type of CBCT machine being used. Methods: CBCT images of 20 subjects aged 15–25 years were selected, ten each from Galileos® (Sirona Dental Systems Inc., Bensheim, Germany) and Next Generation i-CAT® (Imaging Sciences International, Hatfield, PA). 2 observers located 18 landmarks on each subject twice using Dolphin-3D v. 11 software (Dolphin Imaging and Management Systems, Chatsworth, CA). Inter- and intraobserver reliability was assessed using Euclidean distances and linear mixed models. Results: Overall, the intra- and interobserver reliability was excellent for both machines. The landmarks Gonion, Nasion, Orbitale and Anterior Nasal Spine (ANS) showed the greatest median Euclidean distances for both intra- and interobserver measurements. There were significant observer effects in the unified models for Sella, Menton and all six dental landmarks. For Sella, the distances between the measures were significantly smaller (more closely spaced) on the i-CAT machine than on the Galileos in both intra- and interobserver measurements. Conclusions: The intra- and interobserver reliability was excellent for both machines. Some of the landmarks were not as reproducible as others. Which machine produced the highest reliability depended on the landmark considered. PMID:23833319

  11. Enlargement of Step-Free SiC Surfaces by Homoepitaxial Web-Growth of Thin SiC Cantilevers

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Powell, J. Anthony; Beheim, Glenn M.; Benavage, Emye L.; Abel, Phillip B.; Trunek, Andrew J.; Spry, David J.; Dudley, Michael; Vetter, William M.

    2002-01-01

    Lateral homoepitaxial growth of thin cantilevers emanating from mesa patterns that were reactive ion etched into on-axis commercial SiC substrates prior to growth is reported. The thin cantilevers form after pure stepflow growth removes almost all atomic steps from the top surface of a mesa, after which additional adatoms collected by the large step-free surface migrate to the mesa sidewall where they rapidly incorporate into the crystal near the top of the mesa sidewall. The lateral propagation of the step-free cantilevered surface is significantly affected by pregrowth mesa shape and orientation, with the highest lateral expansion rates observed at the inside concave comers of V-shaped pregrowth mesas with arms lengthwise oriented along the {1100} direction. Complete spanning of the interiors of V's and other mesa shapes with concave comers by webbed cantilevers was accomplished. Optical microscopy, synchrotron white beam x-ray topography and atomic force microscopy analysis of webbed regions formed over a micropipe and closed-core screw dislocations show that c-axis propagation of these defects is terminated by the webbing. Despite the nonoptimized process employed in this initial study, webbed surfaces as large as 1.4 x 10(exp -3) square centimeters, more than four times the pregrowth mesa area, were grown. However, the largest webbed surfaces were not completely free of bilayer steps, due to unintentional growth of 3C-SiC that occurred in the nonoptimized process. Further process optimization should enable larger step-free webs to be realized.

  12. Enlargement of Step-Free SiC Surfaces by Homoepitaxial Web-Growth of Thin SiC Cantilevers

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Powell, J. Anthony; Beheim, Glenn M.; Benavage, Emye L.; Abel, Phillip B.; Trunek, Andrew J.; Spry, David J.; Dudley, Michael; Vetter, William M.

    2002-01-01

    Lateral homoepitaxial growth of thin cantilevers emanating from mesa patterns that were reactive ion etched into on-axis commercial SiC substrates prior to growth is reported. The thin cantilevers form after pure stepflow growth removes almost all atomic steps from the top surface of a mesa, after which additional adatoms collected by the large step-free surface migrate to the mesa sidewall where they rapidly incorporate into the crystal near the top of the mesa sidewall. The lateral propagation of the step-free cantilevered surface is significantly affected by pregrowth mesa shape and orientation, with the highest lateral expansion rates observed at the inside concave comers of V-shaped pregrowth mesas with arms lengthwise oriented along the {1100} direction. Complete spanning of the interiors of V's and other mesa shapes with concave comers by webbed cantilevers was accomplished. Optical microscopy, synchrotron white beam x-ray topography and atomic force microscopy analysis of webbed regions formed over a micropipe and closed-core screw dislocations show that c-axis propagation of these defects is terminated by the webbing. Despite the nonoptimized process employed in this initial study, webbed surfaces as large as 1.4 x 10(exp -3) square centimeters, more than four times the pregrowth mesa area, were grown. However, the largest webbed surfaces were not completely free of bilayer steps, due to unintentional growth of 3C-SiC that occurred in the nonoptimized process. Further process optimization should enable larger step-free webs to be realized.

  13. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    NASA Astrophysics Data System (ADS)

    Labuda, Aleksander; Proksch, Roger

    2015-06-01

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  14. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    SciTech Connect

    Labuda, Aleksander; Proksch, Roger

    2015-06-22

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  15. Frequency-shift vibro-acoustic modulation driven by low-frequency broadband excitations in a bistable cantilever oscillator

    NASA Astrophysics Data System (ADS)

    He, Qingbo; Xu, Yanyan; Lu, Siliang; Shao, Yong

    2017-03-01

    This paper reports a frequency-shift vibro-acoustic modulation (VAM) effect in a bistable microcracked cantilever oscillator. Low-frequency broadband excitations induced a VAM effect with a shifted modulation frequency through involving a microcracked metal beam in a bistable oscillator model. We used nonlinear dynamics equations and principles to describe the mechanism of a bistable oscillator whose natural frequency varied as the oscillation amplitude increased. We demonstrated this frequency-shift VAM effect using a prototype bistable oscillator model designed to efficiently detect microcracks in solid materials via the VAM effect using ambient vibration excitations.

  16. Extension of Ko Straight-Beam Displacement Theory to Deformed Shape Predictions of Slender Curved Structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2011-01-01

    The Ko displacement theory originally developed for shape predictions of straight beams is extended to shape predictions of curved beams. The surface strains needed for shape predictions were analytically generated from finite-element nodal stress outputs. With the aid of finite-element displacement outputs, mathematical functional forms for curvature-effect correction terms are established and incorporated into straight-beam deflection equations for shape predictions of both cantilever and two-point supported curved beams. The newly established deflection equations for cantilever curved beams could provide quite accurate shape predictions for different cantilever curved beams, including the quarter-circle cantilever beam. Furthermore, the newly formulated deflection equations for two-point supported curved beams could provide accurate shape predictions for a range of two-point supported curved beams, including the full-circular ring. Accuracy of the newly developed curved-beam deflection equations is validated through shape prediction analysis of curved beams embedded in the windward shallow spherical shell of a generic crew exploration vehicle. A single-point collocation method for optimization of shape predictions is discussed in detail

  17. Principle design and actuation of a dual chamber electromagnetic micropump with coaxial cantilever valves.

    PubMed

    Zordan, Enrico; Amirouche, Farid; Zhou, Yu

    2010-02-01

    This paper deals with the design and characterization of an electromagnetic actuation micropump with superimposed dual chambers. An integral part of microfluidic system includes micropumps which have become a critical design focus and have the potential to alter treatment and drug delivery requirements to patients. In this paper, conceptual design of variable geometrical nozzle/diffuser elements, coaxial cantilever valve, is proposed. It takes advantages of cantilever fluctuating valves with preset geometry to optimize and control fluid flow. The integration of this conceptual valve into a dual chamber micropump has increased the flow rate when compared to a single chamber micropump. This technique also allows for the fluid flow to be actively controlled by adjusting the movement of the intermediate membrane and the cantilever valves due to their fast response and large deflection properties when subjected to an electromagnetic field. To ensure reliability and performance of both the membrane and electromagnets, finite element method was used to perform the stress-strain analysis and optimize the membrane structure and electromagnet configuration. The frequency-dependent flow rates and backpressure are investigated for different frequencies by varying the applied currents from 1A to 1.75A. The current micropump design exhibits a backpressure of 58 mmH(2)O and has a water flow rate that reaches maximum at 1.985 ml/s under a 1.75A current with a resonance frequency of 45 Hz. This proposed micropump while at its initial prototype stage can satisfy the requirements of wide flow rate drug delivery applications. Its controllability and process design are attractive for high volume fabrication and low cost.

  18. 3D Printing of Cantilever-Type Microstructures by Stereolithography of Ferromagnetic Photopolymers.

    PubMed

    Credi, Caterina; Fiorese, Alessandro; Tironi, Marco; Bernasconi, Roberto; Magagnin, Luca; Levi, Marinella; Turri, Stefano

    2016-10-05

    In the present work, prototypes of polymeric cantilever-based magnetic microstructures were fabricated by means of stereolithography (SL). To this end, a UV-curable system suitable for high-resolution SL-processing was formulated by blending a bifunctional acrylic monomer with photoinitiator and visible dye whose content was tuned to tailor resin SL sensitivity. Subsequently, to confer ferromagnetic properties to the photopolymer, two different strategies were implemented. A two-step approach involved selective deposition of a metal layer on photopolymer SL-cured surfaces through an electroless plating process. On the other hand, SL-processable ferromagnetically responsive nanocomposites (FRCs) were obtained by directly loading magnetite nanoparticles within the photopolymer matrix. In order to achieve high-printing resolution, resin SL sensitivities were studied as a function of the various additives contents. Photocalorimetric analyses were also performed to investigate the photopolymer conversion efficiency upon light exposure. High-performing formulations were characterized by reduced penetration depth (<50 μm) and small critical energies thus enabling for fast printing of micrometric structures. Finally, the self-standing characteristics of the resin combined with the layered-fashion deposition typical of the 3D printing technologies were exploited for the fabrication of cantilever (CL)-based beams presented as possible magnetic sensors. As a demonstration of the feasibility of the two approaches, the magnetic beams were successfully actuated and their sensing performances in terms of static deflection vs applied magnetic field applied were qualitatively studied. Being not restricted to CL-based geometries, the combination of SL-printing with the formulation of novel smart photopolymers open the way toward the fabrication of high-customized complex 3D models integrating functional microstructures.

  19. What is the frequency of anatomical variations and pathological findings in maxillary sinuses among patients subjected to maxillofacial cone beam computed tomography? A systematic review

    PubMed Central

    Diago-Vilalta, Jose-Vicente; Melo, María; Bagán, Leticia; Soldini, Maria-Costanza; Di-Nardo, Chiara; Ata-Ali, Fadi; Mañes-Ferrer, José-Félix

    2017-01-01

    Background When considering dental implant rehabilitation in atrophic posterior sectors, the maxillary sinuses must be evaluated in detail. Knowledge of the anatomical variations and of the potential lesions found in these structures conditions the outcome of sinus lift procedures and therefore of the dental implants. A systematic review is made to determine the frequency of anatomical variations and pathological findings in maxillary sinuses among patients subjected to cone beam computed tomography (CBCT). Material and Methods A PubMed (MEDLINE) literature search was made of articles published up until 20 December 2015. The systematic review was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA). The quality of the studies included in the review was assessed using the Methodological Index for Nonrandomized Studies (MINORS). Results The combinations of search terms resulted in a list of 3482 titles. Twenty-three studies finally met the inclusion criteria and were entered in the systematic review, comprising a total of 11,971 patients. The most common anatomical variations were pneumatization and sinus septa. The prevalence of maxillary sinus disease ranged from 7.5% to 66%. The most common pathological findings of the maxillary sinus were mucosal thickening, sinusitis and sinus opacification. Conclusions Although the main indication of CBCT of the maxillary sinus in dentistry is sinus floor elevation/treatment planning and evaluation prior to dental implant placement, this imaging modality is increasingly also used for endodontic and periodontal purposes. There is no consensus regarding the cutoff point beyond which mucosal thickening of the maxillary sinus should be regarded as pathological, and the definition of maxillary sinusitis moreover varies greatly in the scientific literature. In this regard, international consensus is required in relation to these concepts, with a clear distinction between healthy and

  20. Michelson interferometric fiber sensor for beam vibration control

    NASA Astrophysics Data System (ADS)

    Chou, Chan-Shin

    1994-05-01

    A fiber-optic Michelson interferometer is employed for sensing the vibration of a cantilevered beam. A small section of the sensing fiber arm is attached to the beam to sense the vibration of the beam. The active homodyne technique is used to obtain an electrical output which is proportional to the vibrational signal of the beam. A closed-loop control system comprises a pair of sensors and actuators, which are mounted nearly at the same point of the vibrating body, and an inverting power amplifier. The fiber sensor and a piezoelectric actuator are co- located on the root of the cantilevered beam. The fiber sensed signal is amplified and inverted, then fed into a piezoelectric actuator for exerting a dynamic control force on the body. Experimental results show that vibration of the beam is substantially reduced by applying a single control system with the fiber-optic Michelson interferometric vibration sensor.

  1. Micromachining of a bimorph Pb(Zr,Ti)O3 (PZT) cantilever using a micro-electromechanical systems (MEMS) process for energy harvesting application.

    PubMed

    Kim, Moonkeun; Hwang, Beomseok; Jeong, Jaehwa; Min, Nam Ki; Kwon, Kwang-Ho

    2012-07-01

    We designed and fabricated a bimorph Pb(Zr,Ti)O3 (PZT) cantilever with an integrated Si proof mass to obtain a low resonant frequency for an energy harvesting application. The cantilevers were fabricated on the micro-electromechanical systems (MEMS) scale. A mode of piezoelectric conversions were d31 and d33 mode in cantilever vibration Therefore, we designed and fabricated a single cantilever with d31 unimorph, d31 bimorph, d33 unimorph, and d33 bimorph modes. Finally, we fabricated a device with beam dimensions of about 5,400 microm x 480 microm x 14 microm (< +/- 5%), and an integrated Si proof mass with dimensions of about 1,481 microm x 988 microm x 450 microm (< +/- 5%). In order to measure the d31 and d33 modes, we fabricated top and bottom electrodes. The distance between the top electrodes was 50 microm and the resonant frequency was 89.4 Hz. The average powers of the d31 unimorph, d31 bimorph, d33 unimorph, and d33 bimorph modes were 3.90, 9.60, 21.42, and 22.47 nW at 0.8 g (g = 9.8 m/s2) and optimal resistance, respectively.

  2. Cantilever's behavior in the AC mode of an AFM

    SciTech Connect

    Nunes, V.B.; Zanette, S.I.; Caride, A.O.; Prioli, R.; Rivas, A.M.F

    2003-03-15

    In this paper, a model with a small number of parameters is used to simulate the motion of a cantilever in the AC mode of an atomic force microscope (AFM). The results elucidate the transition dependence-from noncontact to tapping operating mode-on the height of the contamination layer and on the stiffness of the sample.

  3. Multiferroic cantilever for power generation using dual functionality

    NASA Astrophysics Data System (ADS)

    Gupta, Reema; Tomar, Monika; Rammohan, S.; Katiyar, R. S.; Gupta, Vinay

    2016-11-01

    Lead zirconate titanate (PZT)/Ni cantilevers have been developed using the pulsed laser deposition technique for harnessing magnetic as well as mechanical energy. High voltage (1.2 mV, 1.8 mV, and 8.5 mV) and power density (1100, 2400, and 3600 mW/m3) were generated across the PZT/Ni cantilevers (in 3-3 mode) having PZT thin films deposited at 100 mTorr, 200 mTorr, and 300 mTorr oxygen pressures, respectively, at their respective resonance frequencies with 0.5 g acceleration. Maximum power response (3600 mW/m3) was observed at a load resistance of 100 kΩ for the cantilever having PZT film deposited at 300 mTorr oxygen pressure, which is manifested to the efficient ferroelectric and ferromagnetic properties of PZT/Ni system. The power generated from the PZT/Ni cantilever was further enhanced to 18 700 mW/m3 by superimposing magnetic energy with mechanical vibrations. These results are extremely promising for the realization of an efficient energy harvester utilizing both magnetic and mechanical energy.

  4. Strategy Guideline: Quality Management in Existing Homes - Cantilever Floor Example

    SciTech Connect

    Taggart, J.; Sikora, J.; Wiehagen, J.; Wood, A.

    2011-12-01

    This guideline is designed to highlight the QA process that can be applied to any residential building retrofit activity. The cantilevered floor retrofit detailed in this guideline is included only to provide an actual retrofit example to better illustrate the QA activities being presented.

  5. Piezoresistive Cantilever Performance—Part I: Analytical Model for Sensitivity

    PubMed Central

    Park, Sung-Jin; Doll, Joseph C.; Pruitt, Beth L.

    2010-01-01

    An accurate analytical model for the change in resistance of a piezoresistor is necessary for the design of silicon piezoresistive transducers. Ion implantation requires a high-temperature oxidation or annealing process to activate the dopant atoms, and this treatment results in a distorted dopant profile due to diffusion. Existing analytical models do not account for the concentration dependence of piezoresistance and are not accurate for nonuniform dopant profiles. We extend previous analytical work by introducing two nondimensional factors, namely, the efficiency and geometry factors. A practical benefit of this efficiency factor is that it separates the process parameters from the design parameters; thus, designers may address requirements for cantilever geometry and fabrication process independently. To facilitate the design process, we provide a lookup table for the efficiency factor over an extensive range of process conditions. The model was validated by comparing simulation results with the experimentally determined sensitivities of piezoresistive cantilevers. We performed 9200 TSUPREM4 simulations and fabricated 50 devices from six unique process flows; we systematically explored the design space relating process parameters and cantilever sensitivity. Our treatment focuses on piezoresistive cantilevers, but the analytical sensitivity model is extensible to other piezoresistive transducers such as membrane pressure sensors. PMID:20336183

  6. Detail view inside cantilever truss over main channel, showing lower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view inside cantilever truss over main channel, showing lower chord and lateral bracing. Note webbing between diagonal eye-bars at right. Pennsylvania Turnpike Bridge in background. - Bessemer & Lake Erie Railroad, Allegheny River Bridge, Spanning Allegheny River, East of Pennsylvania Turnpike (I-76), Oakmont, Allegheny County, PA

  7. Cantilever deflection associated with hybridization of monomolecular DNA film

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Ganapathysubramanian, Baskar; Shrotriya, Pranav

    2012-04-01

    Recent experiments show that specific binding between a ligand and surface immobilized receptor, such as hybridization of single stranded DNA immobilized on a microcantilever surface, leads to cantilever deflection. The binding-induced deflection may be used as a method for detection of biomolecules, such as pathogens and biohazards. Mechanical deformation induced due to hybridization of surface-immobilized DNA strands is a commonly used system to demonstrate the efficacy of microcantilever sensors. To understand the mechanism underlying the cantilever deflections, a theoretical model that incorporates the influence of ligand/receptor complex surface distribution and empirical interchain potential is developed to predict the binding-induced deflections. The cantilever bending induced due to hybridization of DNA strands is predicted for different receptor immobilization densities, hybridization efficiencies, and spatial arrangements. Predicted deflections are compared with experimental reports to validate the modeling assumptions and identify the influence of various components on mechanical deformation. Comparison of numerical predictions and experimental results suggest that, at high immobilization densities, hybridization-induced mechanical deformation is determined, primarily by immobilization density and hybridization efficiency, whereas, at lower immobilization densities, spatial arrangement of hybridized chains need to be considered in determining the cantilever deflection.

  8. Deconvolution of calcium fluorescent indicator signal from AFM cantilever reflection.

    PubMed

    Lopez-Ayon, G Monserratt; Oliver, David J; Grutter, Peter H; Komarova, Svetlana V

    2012-08-01

    Atomic force microscopy (AFM) can be combined with fluorescence microscopy to measure the changes in intracellular calcium levels (indicated by fluorescence of Ca²⁺ sensitive dye fluo-4) in response to mechanical stimulation performed by AFM. Mechanical stimulation using AFM is associated with cantilever movement, which may interfere with the fluorescence signal. The motion of the AFM cantilever with respect to the sample resulted in changes of the reflection of light back to the sample and a subsequent variation in the fluorescence intensity, which was not related to changes in intracellular Ca²⁺ levels. When global Ca²⁺ responses to a single stimulation were assessed, the interference of reflected light with the fluorescent signal was minimal. However, in experiments where local repetitive stimulations were performed, reflection artifacts, correlated with cantilever motion, represented a significant component of the fluorescent signal. We developed a protocol to correct the fluorescence traces for reflection artifacts, as well as photobleaching. An added benefit of our method is that the cantilever reflection in the fluorescence recordings can be used for precise temporal correlation of the AFM and fluorescence measurements.

  9. DETAIL OF FRONT ENTRY AT UNIT B. SHOWING THE CANTILEVERED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF FRONT ENTRY AT UNIT B. SHOWING THE CANTILEVERED CONCRETE CANOPY WITH ROUNDED CORNERS, STEPPED DOORWAY SURROUND, AND BAY WINDOW. NOTE THE DECORATIVE GRILLE AT THE VENT OF THE SECOND FLOOR CLOSET. VIEW FACING NORTH. - Hickam Field, Officers' Housing Type N, 204B Second Street, Honolulu, Honolulu County, HI

  10. Sensitivity measurement of a cantilever-based surface stress sensor

    NASA Astrophysics Data System (ADS)

    Haag, Ann-Lauriene; Schumacher, Zeno; Grutter, Peter

    2016-10-01

    A detailed analysis of the temporal surface stress evolution for potential-driven adsorption of ions is discussed. A gold-coated cantilever is used to simultaneously measure the change in surface stress as well as the current response during an applied potential step. In this electrochemical configuration, the cantilever acts as the working electrode, a platinum wire as the counter electrode, and the Ag/AgCl (sat. KCl) electrode as the reference electrode. To study the time-dependent signal and the sensitivity of the cantilever response, the frequency of the potential step applied to the cantilever is varied from 1 s to 0.1 ms. First, a comparison between a strong adsorbing (chloride Cl-) and a weak adsorbing ion (perchlorate ClO 4- ) in a 1 mM solution is presented. Next, the linear relationship between surface stress and charge density is measured for these fast potential steps. The slope of this fit is defined as the sensitivity of the system and is shown to increase for shorter potential pulses. Finally, the behaviour of the surface stress and current for consecutive applied potential steps is studied.

  11. 13. DETAIL OF SOUTH PIER TOP (WEST SIDE) AND CANTILEVERED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL OF SOUTH PIER TOP (WEST SIDE) AND CANTILEVERED SIDEWALK. LOOKING NORTH. - Route 31 Bridge, New Jersey Route 31, crossing disused main line of Central Railroad of New Jersey (C.R.R.N.J.) (New Jersey Transit's Raritan Valley Line), Hampton, Hunterdon County, NJ

  12. 69. COMPLETED 'A' FRAME STRUCTURE LOOKING NORTHWEST SHOWING CANTILEVERED WALKWAYS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. COMPLETED 'A' FRAME STRUCTURE LOOKING NORTHWEST SHOWING CANTILEVERED WALKWAYS, 'CROWS NEST', CAMERA TOWER, COUNTERWEIGHT CAR AND ROADWAY ARCH, April 30, 1948. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  13. Simultaneous liquid viscosity and density determination with piezoelectric unimorph cantilevers

    NASA Astrophysics Data System (ADS)

    Shih, Wan Y.; Li, Xiaoping; Gu, Huiming; Shih, Wei-Heng; Aksay, Ilhan A.

    2001-01-01

    We have examined both experimentally and theoretically a piezoelectric unimorph cantilever as a liquid viscosity-and-density sensor. The fabricated piezoelectric unimorph consisted of a PbOṡZrO2ṡTiO2 (PZT) layer on a thin stainless-steel plate. In addition to a driving electrode, a sensing electrode was placed on top of the PZT layer, permitting the direct measurement of the resonance frequency. The cantilever was tested using water-glycerol solutions of different compositions. In all three of the tested modes, the resonance frequency decreased while the width of the resonance peak increased with increasing glycerol content. To account for the liquid effect, we consider the cantilever as a sphere of radius R oscillating in a liquid. By including the high and low frequency terms in the induced mass and the damping coefficient of the liquid, we show that for a given liquid density and viscosity the oscillating-sphere model predicts a resonance frequency and peak width that closely agree with experiment. Furthermore, the viscosity and the density of a liquid have been determined simultaneously using the experimentally measured resonance frequency and peak width as inputs to the oscillating-sphere model. The calculated liquid viscosity and density closely agreed with the known values, indicating that our cantilever-based sensor is effective in determining viscosity and density, simultaneously. We also show that scaling analysis predicts an increase in the width of the resonance peak with decreasing cantilever size, an observation in agreement with the large peak widths observed for microcantilevers.

  14. The structure and properties of filler metal-free laser beam welded joints in steel S700MC subjected to TMCP

    NASA Astrophysics Data System (ADS)

    Górka, Jacek; Stano, Sebastian

    2016-12-01

    The research-related tests aimed to determine the effect of filer-metal free laser beam welding on the structure and properties of 10 mm thick steel S700MC subjected to the Thermo-Mechanical Control Process (TMCP). The nondestructive tests revealed that the welded joints represented quality level B according to the requirements of standard 13919-1. The destructive tests revealed that the joints were characterised by tensile strength being by approximately 5% lower than that of the base material. The tests of thin foils performed using a high-resolution scanning transmission electron microscope revealed that filler metal-free welding led to the increased amount of alloying microagents (Ti and Nb) in the weld (particularly near fusion line) in comparison with welding performed using a filler metal. The significant content of hardening phases in the welds during cooling resulted in considerable precipitation hardening through finedispersive (Ti,Nb)(C,N) type precipitates (several nm in size) leading to the deterioration of plastic properties. The destructive tests revealed that the joints were characterised by tensile strength being by approximately 5% lower than that of the base material. The increase in the concentration of microagents responsible for steel hardening (Ti and Nb) also contributed to the decrease in weld toughness being below the allowed value of 25 J/cm2.

  15. Stability, Bifurcation and Chaos of a Traveling Viscoelastic Beam Tuned to 3:1 Internal Resonance and Subjected to Parametric Excitation

    NASA Astrophysics Data System (ADS)

    Sahoo, Bamadev; Panda, L. N.; Pohit, G.

    Analytical-numerical approach has been adopted to investigate the stability, bifurcation and dynamic behavior (including chaotic behavior) of axially moving viscoelastic beam subjected to parametric excitation resulting from speed variation in the presence of 3:1 internal resonance between the first two modes of vibration. The governing equation of transverse vibration is a nonlinear integro-partial-differential equation with time-dependent coefficients. The direct method of multiple scales is employed to analyze the joint influence of the combination of parametric resonance and internal resonance with the focus on steady state responses. Equilibrium solutions along with their stability and bifurcations are determined by continuation algorithm while direct time integration is used for dynamic behavior for various system parameters. The results are compared with the previous works depicting the principal parametric resonances of the first and second modes. Significant comparative analysis results are reported in the stability and bifurcation of frequency response analysis. The dynamic responses show a range of behavior viz. stable periodic, mixed mode, quasiperiodic and unstable chaotic motion of the system. Numerical results illustrate various typical and interesting nonlinear phenomena of the traveling system which are not found in the existent literature.

  16. Influence of different cantilever extensions and glass or polyaramide reinforcement fibers on fracture strength of implant-supported temporary.

    PubMed

    Colán Guzmán, Paola; Freitas, Fernando Furtado Antunes de; Ferreira, Paulo Martins; Freitas, César Antunes de; Reis, Kátia Rodrigues

    2008-01-01

    In long-term oral rehabilitation treatments, resistance of provisional crowns is a very important factor, especially in cases of an extensive edentulous distal space. The aim of this laboratorial study was to evaluate an acrylic resin cantilever-type prosthesis regarding the flexural strength of its in-balance portion as a function of its extension variation and reinforcement by two types of fibers (glass and polyaramid), considering that literature is not conclusive on this subject. Each specimen was composed by 3 total crowns at its mesial portion, each one attached to an implant component (abutment), while the distal portion (cantilever) had two crowns. Each specimen was constructed by injecting acrylic resin into a two-part silicone matrix placed on a metallic base. In each specimen, the crowns were fabricated with either acrylic resin (control group) or acrylic resin reinforced by glass (Fibrante, Angelus) or polyaramide (Kevlar 49, Du Pont) fibers. Compression load was applied on the cantilever, in a point located 7, 14 or 21 mm from the distal surface of the nearest crown with abutment, to simulate different extensions. The specimen was fixed on the metallic base and the force was applied until fracture in a universal test machine. Each one of the 9 sub-groups was composed by 10 specimens. Flexural strength means (in kgf) for the distances of 7, 14 and 21 mm were, respectively, 28.07, 8.27 and 6.39 for control group, 31.89, 9.18 and 5.16 for Kevlar 49 and 30.90, 9.31 and 6.86 for Fibrante. Data analysis ANOVA showed statistically significant difference (p<0.05) only regarding cantilever extension. Tukey's test detected significantly higher flexural strength for the 7 mm-distance, followed by 14 and 21 mm. Fracture was complete only on specimens of non-reinforced groups.

  17. Development of dual-probe atomic force microscopy system using optical beam deflection sensors with obliquely incident laser beams.

    PubMed

    Tsunemi, Eika; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi

    2011-03-01

    We developed a dual-probe (DP) atomic force microscopy (AFM) system that has two independently controlled probes. The deflection of each cantilever is measured by the optical beam deflection (OBD) method. In order to keep a large space over the two probes for an objective lens with a large numerical aperture, we employed the OBD sensors with obliquely incident laser beams. In this paper, we describe the details of our developed DP-AFM system, including analysis of the sensitivity of the OBD sensor for detection of the cantilever deflection. We also describe a method to eliminate the crosstalk caused by the vertical translation of the cantilever. In addition, we demonstrate simultaneous topographic imaging of a test sample by the two probes and surface potential measurement on an α-sexithiophene (α-6T) thin film by one probe while electrical charges were injected by the other probe.

  18. Development of dual-probe atomic force microscopy system using optical beam deflection sensors with obliquely incident laser beams

    NASA Astrophysics Data System (ADS)

    Tsunemi, Eika; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi

    2011-03-01

    We developed a dual-probe (DP) atomic force microscopy (AFM) system that has two independently controlled probes. The deflection of each cantilever is measured by the optical beam deflection (OBD) method. In order to keep a large space over the two probes for an objective lens with a large numerical aperture, we employed the OBD sensors with obliquely incident laser beams. In this paper, we describe the details of our developed DP-AFM system, including analysis of the sensitivity of the OBD sensor for detection of the cantilever deflection. We also describe a method to eliminate the crosstalk caused by the vertical translation of the cantilever. In addition, we demonstrate simultaneous topographic imaging of a test sample by the two probes and surface potential measurement on an α-sexithiophene (α-6T) thin film by one probe while electrical charges were injected by the other probe.

  19. Electrostatically frequency tunable micro-beam-based piezoelectric fluid flow energy harvester

    NASA Astrophysics Data System (ADS)

    Rezaee, Mousa; Sharafkhani, Naser

    2017-07-01

    This research investigates the dynamic behavior of a sandwich micro-beam based piezoelectric energy harvester with electrostatically adjustable resonance frequency. The system consists of a cantilever micro-beam immersed in a fluid domain and is subjected to the simultaneous action of cross fluid flow and nonlinear electrostatic force. Two parallel piezoelectric laminates are extended along the length of the micro-beam and connected to an external electric circuit which generates an output power as a result of the micro-beam oscillations. The fluid-coupled structure is modeled using Euler-Bernoulli beam theory and the equivalent force terms for the fluid flow. Fluid induced forces comprise the added inertia force which is evaluated using equivalent added mass and the drag and lift forces which are evaluated using relative velocity and Van der Pol equation. In addition to flow velocity and fluid density, the influence of several design parameters such as external electrical resistance, piezo layer position, and dc voltage on the generated power are investigated by using Galerkin and step by step linearization method. It is shown that for given flowing fluid parameters, i.e., density and velocity, one can adjust the applied dc voltage to tune resonance frequency so that the lock-in phenomenon with steady large amplitude oscillations happens, also by adjusting the harvester parameters including the mechanical and electrical ones, the maximal output power of the harvester becomes possible.

  20. Damage localization in beam-like structures using changes in modal strain energy

    NASA Astrophysics Data System (ADS)

    Ouali, M.; Mellel, N.; Dougdag, M.

    2017-02-01

    This paper investigates the application and reliability of using modal strain energy in damage localization estimation of beam-like structures. This is based on the fact that damage often cause a loss of stiffness that increase the modal displacement of two ends of beam element containing the damage, So the modal strain energy after damage will be increased and Modal Strain Energy Change Ratio (MSECR) in this element is larger than other elements and the location of damage is detected by finding the element with higher MSECR. To conduct this investigation, an experimental modal analysis program was carried out on a cantilever beam subjected to a controlled crack levels and the first seven mode shapes were extracted and used to calculate the modal strain energy change. The experimental MSECR was computed and the location of the damage was accurately identified especially for crack sizing as small as 10% of the beam height. Finally, finite elements models were built and validated, MSE change method was applied and the results demonstrate that the method is capable of localizing the damage for beam structure.

  1. Experimental investigation of CNT effect on curved beam strength and interlaminar fracture toughness of CFRP laminates

    NASA Astrophysics Data System (ADS)

    Arca, M. A.; Coker, D.

    2014-06-01

    High mechanical properties and light weight structures of composite materials and advances in manufacturing processes have increased the use of composite materials in the aerospace and wind energy industries as a primary load carrying structures in complex shapes. However, use of composite materials in complex geometries such as L-shaped laminates creates weakness at the radius which causes delamination. Carbon nanotubes (CNTs) is preferred as a toughening materials in composite matrices due to their high mechanical properties and aspect ratios. However, effect of CNTs on curved beam strength (CBS) is not investigated in literature comprehensively. The objective of this study is to investigate the effect of CNT on Mode I and Mode II fracture toughness and CBS. L-shaped beams are fabric carbon/epoxy composite laminates manufactured by hand layup technique. Curved beam composite laminates were subjected to four point bending loading according to ASTM D6415/D6415M-06a. Double cantilever beam (DCB) tests and end notch flexure (ENF) tests were conducted to determine mode-I and mode-II fracture toughness, respectively. Preliminary results show that 3% CNT addition to the resin increased the mode-I fracture toughness by %25 and mode-II fracture toughness by %10 compared to base laminates. In contrast, no effect on curved beam strength was found.

  2. Investigation of silion MEMS structures subjected to thermal loading by digital holography

    NASA Astrophysics Data System (ADS)

    Ferraro, Pietro; De Nicola, Sergio; Finizio, Andrea; Coppola, Giuseppe; Iodice, Mario; Grilli, Simonetta; Magro, Carlo; Pierattini, Giovanni

    2003-10-01

    In this paper we study silicon MEMS (Microelectromechanical systems) structures subjected to thermal loading. Digital holography has been investigated as inspection tool to evaluate the deformation induced by the thermal loading. Application of DH on structures with several different geometries and shapes, like cantilever beams, bridges and membranes is reported and result will be discussed. Dimensions of the inspected microstructures, varies in the range 1-50μm. The experimental results shown that a "bimorph-effect" induces a deformation in MEMS structures. The difficulties encountered in performing the deformation analysis by digital holography in real-time will be afforded and discussed. A method with automatic focus tracking in Digital Holography is proposed allowing inspection of MEMS, under thermal loading, in real-time.

  3. Study of the sensitivity and resonant frequency of the torsional modes of an AFM cantilever with a sidewall probe based on a nonlocal elasticity theory.

    PubMed

    Abbasi, Mohammad; Karami Mohammadi, Ardeshir

    2015-05-01

    A relationship based on a nonlocal elasticity theory is developed to investigate the torsional sensitivity and resonant frequency of an atomic force microscope (AFM) with assembled cantilever probe (ACP). This ACP comprises a horizontal cantilever and a vertical extension, and a tip located at the free end of the extension, which makes the AFM capable of topography at sidewalls of microstructures. First, the governing differential equations of motion and boundary conditions for dynamic analysis are obtained by a combination of the basic equations of nonlocal elasticity theory and Hamilton's principle. Afterward, a closed-form expression for the sensitivity of vibration modes has been obtained using the relationship between the resonant frequency and contact stiffness of cantilever and sample. These analysis accounts for a better representation of the torsional behavior of an AFM with sidewall probe where the small-scale effect are significant. The results of the proposed model are compared with those of classical beam theory. The results show that the sensitivities and resonant frequencies of ACP predicted by the nonlocal elasticity theory are smaller than those obtained by the classical beam theory.

  4. Topography imaging with a heated atomic force microscope cantilever in tapping mode.

    PubMed

    Park, Keunhan; Lee, Jungchul; Zhang, Zhuomin M; King, William P

    2007-04-01

    This article describes tapping mode atomic force microscopy (AFM) using a heated AFM cantilever. The electrical and thermal responses of the cantilever were investigated while the cantilever oscillated in free space or was in intermittent contact with a surface. The cantilever oscillates at its mechanical resonant frequency, 70.36 kHz, which is much faster than its thermal time constant of 300 micros, and so the cantilever operates in thermal steady state. The thermal impedance between the cantilever heater and the sample was measured through the cantilever temperature signal. Topographical imaging was performed on silicon calibration gratings of height 20 and 100 nm. The obtained topography sensitivity is as high as 200 microVnm and the resolution is as good as 0.5 nmHz(1/2), depending on the cantilever power. The cantilever heating power ranges 0-7 mW, which corresponds to a temperature range of 25-700 degrees C. The imaging was performed entirely using the cantilever thermal signal and no laser or other optics was required. As in conventional AFM, the tapping mode operation demonstrated here can suppress imaging artifacts and enable imaging of soft samples.

  5. Modular apparatus for electrostatic actuation of common atomic force microscope cantilevers.

    PubMed

    Long, Christian J; Cannara, Rachel J

    2015-07-01

    Piezoelectric actuation of atomic force microscope (AFM) cantilevers often suffers from spurious mechanical resonances in the loop between the signal driving the cantilever and the actual tip motion. These spurious resonances can reduce the accuracy of AFM measurements and in some cases completely obscure the cantilever response. To address these limitations, we developed a specialized AFM cantilever holder for electrostatic actuation of AFM cantilevers. The holder contains electrical contacts for the AFM cantilever chip, as well as an electrode (or electrodes) that may be precisely positioned with respect to the back of the cantilever. By controlling the voltages on the AFM cantilever and the actuation electrode(s), an electrostatic force is applied directly to the cantilever, providing a near-ideal transfer function from drive signal to tip motion. We demonstrate both static and dynamic actuations, achieved through the application of direct current and alternating current voltage schemes, respectively. As an example application, we explore contact resonance atomic force microscopy, which is a technique for measuring the mechanical properties of surfaces on the sub-micron length scale. Using multiple electrodes, we also show that the torsional resonances of the AFM cantilever may be excited electrostatically, opening the door for advanced dynamic lateral force measurements with improved accuracy and precision.

  6. Label-free detection of kanamycin using aptamer-based cantilever array sensor.

    PubMed

    Bai, Xiaojing; Hou, Hui; Zhang, Bailin; Tang, Jilin

    2014-06-15

    A label-free detection method of kanamycin using aptamer-based cantilever array sensor was developed. The cantilever array was composed of sensing cantilevers and reference cantilevers. This configuration allowed direct detection of individual cantilever deflections and subsequent determination of differential deflection of sensing/reference cantilever pair. The sensing cantilevers were functionalized with kanamycin aptamer, which was used as receptor molecules while the reference cantilevers were modified with 6-mercapto-1-hexanol (MCH) to eliminate the influence of environmental disturbances. The kanamycin-aptamer interaction induced a change in cantilever surface stress, which caused a differential deflection between the sensing and reference cantilever pair. The surface stress change was linear with kanamycin concentration over the range of 100 μM-10mM with a correlation coefficient of 0.995. A detection limit of 50 μM was obtained, at a signal-to-noise ratio of 3. The sensor also showed good selectivity against other antibiotics such as neomycin, ribostamycin and chloramphenicol. The facile method for kanamycin detection may have great potential for investigating more other molecules.

  7. Modular apparatus for electrostatic actuation of common atomic force microscope cantilevers

    SciTech Connect

    Long, Christian J.; Cannara, Rachel J.

    2015-07-15

    Piezoelectric actuation of atomic force microscope (AFM) cantilevers often suffers from spurious mechanical resonances in the loop between the signal driving the cantilever and the actual tip motion. These spurious resonances can reduce the accuracy of AFM measurements and in some cases completely obscure the cantilever response. To address these limitations, we developed a specialized AFM cantilever holder for electrostatic actuation of AFM cantilevers. The holder contains electrical contacts for the AFM cantilever chip, as well as an electrode (or electrodes) that may be precisely positioned with respect to the back of the cantilever. By controlling the voltages on the AFM cantilever and the actuation electrode(s), an electrostatic force is applied directly to the cantilever, providing a near-ideal transfer function from drive signal to tip motion. We demonstrate both static and dynamic actuations, achieved through the application of direct current and alternating current voltage schemes, respectively. As an example application, we explore contact resonance atomic force microscopy, which is a technique for measuring the mechanical properties of surfaces on the sub-micron length scale. Using multiple electrodes, we also show that the torsional resonances of the AFM cantilever may be excited electrostatically, opening the door for advanced dynamic lateral force measurements with improved accuracy and precision.

  8. A Model for the Hybridization Exothermic Effect in Label-Free Biodetections by a Nanomechanical Cantilever-DNA Chip

    NASA Astrophysics Data System (ADS)

    Zhang, Neng-Hui; Chen, Jian-Zhong; Wan, Shu-Xiao

    2009-04-01

    The influence of the hybridization exothermic effect on nanomechanical deflections of DNA chips in label-free biodetections is investigated. First, from the related experimental curves, the thermal variation of the biolayer during the linkage of DNA base pairs is estimated by Breslauer’s method and the Langmuir adsorption isotherm. Second, the temperature field of the chip is obtained by the lumped parameter model and the classical Fourier’s method. Third, the nanomechanical deflection of the chip is predicted by an alternative model for thermoelastic problems of laminated cantilever beams. The effect of a DNA base sequence on thermal deflection of chips is also investigated. In the case of adiabatic conditions, numerical results show that the theoretical predicted value of 1.5 nm to 2 nm deflection is within the scope of the optical-beam-deflection readout system’s accuracy.

  9. Selective enhancement of individual cantilever high resonance modes

    NASA Astrophysics Data System (ADS)

    Penedo, Marcos; Hormeño, Silvia; Prieto, Patricia; Alvaro, Raquel; Anguita, José; Briones, Fernando; Luna, Mónica

    2015-12-01

    Multifrequency atomic force microscopy (AFM) in liquid media where several eigenmodes or harmonics are simultaneously excited is improving the performance of the scanning probe techniques in biological studies. As a consequence, an important effort is being made to search for a reliable, efficient and strong cantilever high mode excitation method that operates in liquids. In this work we present (theoretical and experimentally) a technique for improving the efficiency of the most common excitation methods currently used in AFM operated in liquids: photothermal, torque (MAC Mode™) and magnetostriction. By etching specific areas of the cantilever coating, the oscillation amplitude (both flexural and torsional) of each specific eigenmode increases, leading to an improvement in signal to noise ratio of the multifrequency techniques. As an alternative, increment in high mode oscillation amplitude is also obtained by Ga+ ion implantation in the specific areas of the magnetic material.

  10. Limit cycle oscillation of a fluttering cantilever plate

    NASA Technical Reports Server (NTRS)

    Dowell, Earl; Ye, Weiliang

    1991-01-01

    A response of a cantilever plate in high supersonic flow to a disturbance is considered. The Rayleigh-Ritz method is used to solve the nonlinear oscillation of a fluttering plate. It is found that the length-to-width ratio for a cantilever plate has a great effect on flutter amplitude of the limit cycle. For small length-to-width ratio, the dominant chordwise modes are translation and rotation. It is suggested that higher bending modes must be included to obtain an accurate prediction of the flutter onset and limit cycle oscillation. For large length-to-width ratio, significant chordwise bending is apparent in the flutter motion, with the trailing edge area having the largest motion.

  11. Sacrificial layer for the fabrication of electroformed cantilevered LIGA microparts

    NASA Astrophysics Data System (ADS)

    Morales, Alfredo M.; Aigeldinger, Georg; Bankert, Michelle A.; Domeier, Linda A.; Hachman, John T.; Hauck, Cheryl; Keifer, Patrick N.; Krafcik, Karen L.; McLean, Dorrance E.; Yang, Peter C.

    2003-01-01

    The use of silver filled PMMA as a sacrificial layer for the fabrication of multilevel LIGA microparts is presented. In this technique, a bottom level of standard electroformed LIGA parts is first produced on a metallized substrate such as a silicon wafer. A methyl methacrylate formulation mixed with silver particles is then cast and polymerized around the bottom level of metal parts to produce a conducting sacrificial layer. A second level of PMMA x-ray resist is adhered to the bottom level of metal parts and conducting PMMA and patterned to form another level of electroformed features. This presentation will discuss some the requirements for the successful fabrication of multilevel, cantilevered LIGA microparts. It will be shown that by using a silver filled PMMA, a sacrificial layer can be quickly applied around LIGA components; cantilevered microparts can be electroformed; and the final parts can be quickly released by dissolving the sacrificial layer in acetone.

  12. Direct and quantitative broadband absorptance spectroscopy with multilayer cantilever probes

    DOEpatents

    Hsu, Wei-Chun; Tong, Jonathan Kien-Kwok; Liao, Bolin; Chen, Gang

    2015-04-21

    A system for measuring the absorption spectrum of a sample is provided that includes a broadband light source that produces broadband light defined within a range of an absorptance spectrum. An interferometer modulates the intensity of the broadband light source for a range of modulation frequencies. A bi-layer cantilever probe arm is thermally connected to a sample arm having at most two layers of materials. The broadband light modulated by the interferometer is directed towards the sample and absorbed by the sample and converted into heat, which causes a temperature rise and bending of the bi-layer cantilever probe arm. A detector mechanism measures and records the deflection of the probe arm so as to obtain the absorptance spectrum of the sample.

  13. Cantilever spring constant calibration using laser Doppler vibrometry

    SciTech Connect

    Ohler, Benjamin

    2007-06-15

    Uncertainty in cantilever spring constants is a critical issue in atomic force microscopy (AFM) force measurements. Though numerous methods exist for calibrating cantilever spring constants, the accuracy of these methods can be limited by both the physical models themselves as well as uncertainties in their experimental implementation. Here we report the results from two of the most common calibration methods, the thermal tune method and the Sader method. These were implemented on a standard AFM system as well as using laser Doppler vibrometry (LDV). Using LDV eliminates some uncertainties associated with optical lever detection on an AFM. It also offers considerably higher signal to noise deflection measurements. We find that AFM and LDV result in similar uncertainty in the calibrated spring constants, about 5%, using either the thermal tune or Sader methods provided that certain limitations of the methods and instrumentation are observed.

  14. Frequency Response of Nanoelectromechanical Cantilevers Operating in Fluid

    DTIC Science & Technology

    2008-08-01

    losses. These losses can be computed using the Navier - Stokes equations on the cantilever cross- section. [9]- [12] Navier - Stokes solvers have been...frequency ω: )sin()( tFtF o ω= . (8) The viscous drag force is computed by solving the time- dependent Navier - Stokes ...Solution of the velocity and pressure using a time- dependent Navier - Stokes algorithm. 2. Computation of the fluid force, spring force, and

  15. Carbon nanotube cantilevers on self-aligned copper silicide nanobeams

    NASA Astrophysics Data System (ADS)

    Parajuli, Omkar; Kumar, Nitin; Kipp, Dylan; Hahm, Jong-in

    2007-04-01

    In this letter, the authors describe both a growth method for self-aligning copper silicide (Cu3Si) nanobeams and their use as active catalysts for carbon nanotube (CNT) synthesis via chemical vapor deposition. In the unique geometry of these useful structures, CNT cantilevers are anchored firmly to the Cu3Si nanobeams. The resulting CNT-Cu3Si structures may improve accuracy and reliability of CNT applications in nanoelectromechanical systems.

  16. Direct Measurement of Lateral Force Using Dual Cantilevers

    PubMed Central

    Ishikawa, Makoto; Ichikawa, Masaya; Miura, Kouji

    2012-01-01

    We have constructed an experimental system to measure a piconewton lateral force using dual cantilevers which cross with each other. The resolution of the lateral force is estimated to be 3.3 p ± 0.2 pN, which is comparable to forces due to thermal fluctuation. This experimental apparatus works so easily that it will enable us to determine forces during nano-manipulation and nano-tribological measurements. PMID:22737001

  17. Apertureless cantilever-free pen arrays for scanning photochemical printing.

    PubMed

    Zhou, Yu; Xie, Zhuang; Brown, Keith A; Park, Daniel J; Zhou, Xiaozhu; Chen, Peng-Cheng; Hirtz, Michael; Lin, Qing-Yuan; Dravid, Vinayak P; Schatz, George C; Zheng, Zijian; Mirkin, Chad A

    2015-02-25

    A novel, apertureless, cantilever-free pen array can be used for dual scanning photochemical and molecular printing. Serial writing with light is enabled by combining self-focusing pyramidal pens with an opaque backing between pens. The elastomeric pens also afford force-tuned illumination and simultaneous delivery of materials and optical energy. These attributes make the technique a promising candidate for maskless high-resolution photopatterning and combinatorial chemistry.

  18. Polymeric cantilever integrated with PDMS/graphene composite strain sensor

    NASA Astrophysics Data System (ADS)

    Choi, Young-Soo; Gwak, Min-Joo; Lee, Dong-Weon

    2016-10-01

    This paper describes the mechanical and electrical characteristics of a polydimethylsiloxane (PDMS) cantilever integrated with a high-sensitivity strain sensor. The strain sensor is fabricated using PDMS and graphene flakes that are uniformly distributed in the PDMS. In order to prepare PDMS/graphene composite with uniform resistance, a tetrahydrofuran solution is used to decrease the viscosity of a PDMS base polymer solution. A horn-type sonicator is then used to mix the base polymer with graphene flakes. Low viscosity of the base polymer solution improves the reliability and reproducibility of the PDMS/graphene composite for strain sensor applications. After dicing the composite into the desired sensor shape, a tensile test is performed. The experimental results show that the composite with a concentration of 30 wt.% exhibits a linear response up to a strain rate of 9%. The graphene concentration of the prepared materials affects the gauge factor, which at 20% graphene concentration reaches about 50, and with increasing graphene concentration to 30% decreases to 9. Furthermore, photolithography, PDMS casting, and a stencil process are used to fabricate a PDMS cantilever with an integrated strain sensor. The change in resistance of the integrated PDMS/graphene sensor is characterized with respect to the displacement of the cantilever of within 500 μm. The experimental results confirmed that the prepared PDMS/graphene based sensor has the potential for high-sensitive biosensor applications.

  19. Polymeric cantilever integrated with PDMS/graphene composite strain sensor.

    PubMed

    Choi, Young-Soo; Gwak, Min-Joo; Lee, Dong-Weon

    2016-10-01

    This paper describes the mechanical and electrical characteristics of a polydimethylsiloxane (PDMS) cantilever integrated with a high-sensitivity strain sensor. The strain sensor is fabricated using PDMS and graphene flakes that are uniformly distributed in the PDMS. In order to prepare PDMS/graphene composite with uniform resistance, a tetrahydrofuran solution is used to decrease the viscosity of a PDMS base polymer solution. A horn-type sonicator is then used to mix the base polymer with graphene flakes. Low viscosity of the base polymer solution improves the reliability and reproducibility of the PDMS/graphene composite for strain sensor applications. After dicing the composite into the desired sensor shape, a tensile test is performed. The experimental results show that the composite with a concentration of 30 wt.% exhibits a linear response up to a strain rate of 9%. The graphene concentration of the prepared materials affects the gauge factor, which at 20% graphene concentration reaches about 50, and with increasing graphene concentration to 30% decreases to 9. Furthermore, photolithography, PDMS casting, and a stencil process are used to fabricate a PDMS cantilever with an integrated strain sensor. The change in resistance of the integrated PDMS/graphene sensor is characterized with respect to the displacement of the cantilever of within 500 μm. The experimental results confirmed that the prepared PDMS/graphene based sensor has the potential for high-sensitive biosensor applications.

  20. A cantilever-free approach to dot-matrix nanoprinting

    PubMed Central

    Brown, Keith A.; Eichelsdoerfer, Daniel J.; Shim, Wooyoung; Rasin, Boris; Radha, Boya; Liao, Xing; Schmucker, Abrin L.; Liu, Guoliang; Mirkin, Chad A.

    2013-01-01

    Scanning probe lithography (SPL) is a promising candidate approach for desktop nanofabrication, but trade-offs in throughput, cost, and resolution have limited its application. The recent development of cantilever-free scanning probe arrays has allowed researchers to define nanoscale patterns in a low-cost and high-resolution format, but with the limitation that these are duplication tools where each probe in the array creates a copy of a single pattern. Here, we report a cantilever-free SPL architecture that can generate 100 nanometer-scale molecular features using a 2D array of independently actuated probes. To physically actuate a probe, local heating is used to thermally expand the elastomeric film beneath a single probe, bringing it into contact with the patterning surface. Not only is this architecture simple and scalable, but it addresses fundamental limitations of 2D SPL by allowing one to compensate for unavoidable imperfections in the system. This cantilever-free dot-matrix nanoprinting will enable the construction of surfaces with chemical functionality that is tuned across the nano- and macroscales. PMID:23861495

  1. SU8 diaphragm micropump with monolithically integrated cantilever check valves.

    PubMed

    Ezkerra, Aitor; Fernández, Luis José; Mayora, Kepa; Ruano-López, Jesús Miguel

    2011-10-07

    This paper presents a SU8 unidirectional diaphragm micropump with embedded out-of-plane cantilever check valves. The device represents a reliable and low-cost solution for integration of microfluidic control in lab-on-a-chip devices. Its planar architecture allows monolithic definition of its components in a single step and potential integration with previously reported PCR, electrophoresis and flow-sensing SU8 microdevices. Pneumatic actuation is applied on a PDMS diaphragm, which is bonded to the SU8 body at wafer level, further enhancing its integration and mass production capabilities. The cantilever check valves move synchronously with the diaphragm, feature fast response (10ms), low dead volume (86nl) and a 94% flow blockage up to 300kPa. The micropump achieves a maximum flow rate of 177 μl min(-1) at 6 Hz and 200 kPa with an effective area of 10 mm(2). The device is reliable, self-priming and tolerant to particles and big bubbles. To the knowledge of the authors, this is the first micropump in SU8 with monolithically integrated cantilever check valves.

  2. Distributed parameter estimation for NASA Mini-Mast truss using Timoshenko beam model

    NASA Technical Reports Server (NTRS)

    Shen, Ji-Yao; Huang, Jen-Kuang; Taylor, Lawrence W., Jr.

    1991-01-01

    A more accurate Timoshenko beam model is used to characterize the bending behavior of the truss. A maximum likelihood estimator for the Timoshenko beam model has been formulated. A closed-form solution of the Timoshenko beam equation, for a uniform cantilevered beam with two concentrated masses, is derived so that the procedure for the estimation of modal characteristics is much improved. The updated model to the NASA Mini-Mast test data is demonstrated.

  3. Optimum Design of Cantilevered Microprobes for Inspecting Lcd Panels and Measurement of Contacting Forces

    NASA Astrophysics Data System (ADS)

    Kim, Cheol; Kim, Kwang-Joong

    Fine pitch microprobe arrays are microneedle-like probes for inspecting the pixels of LCD panels or IC. They are usually made of multi-layers of metallic, nonmetallic, or combination of the two. The design requirement for a contacting force is less than 2 gf and a deflection should be less than 100 µm. Many microprobe shapes satisfying the design requirements are possible. A cantilever-type microprobe having many needles was chosen and optimized in this study. Several candidate shapes were chosen using topology and shape optimization technique subjected to design requirements. Then, the microprobe arrays were fabricated using the process applied for MEMS fabrication and they were made of BeNi, BeCu, or Si. The contact probing forces and deflections were measured for checking the results from optimum design by newly developed measuring equipment in our laboratory. Numerical and experimental results were compared and both showed a good correlation.

  4. Experimental validation of a distributed parameter piezoelectric bimorph cantilever energy harvester

    NASA Astrophysics Data System (ADS)

    Rafique, S.; Bonello, P.

    2010-09-01

    Recent rapid advances in low-power portable electronic applications have motivated researchers and industry to explore schemes to embed an endless power supply mechanism within these systems. These self-charging embedded power supply systems convert ambient energy (vibration, solar, wind, etc) into electrical energy and subsequently provide power to these portable applications. Ambient vibration is one of the most promising sources of energy as it is abundantly present in indoor/outdoor systems. This paper discusses briefly the mathematical model of a bimorph piezoelectric cantilever beam with distributed inertia, and its experimental validation. Research on such a component typically included a tip mass, which reduced the influence of the distributed inertia of the beam and restricted effective operation to low frequencies. The present work excludes the tip mass and only the distributed mass of the harvester is considered. Due to the coupled electromechanical nature of piezoelectric materials, the effects of electrical coupling on the mechanical properties of the harvester are investigated, particularly the dependence of the induced additional stiffness and damping on the electrical load. Both the model and the experimental results show that the resonance frequency and the response amplitude of the harvester exhibit considerable shifts due to the electrical coupling. The experimental work uses both magnitude and Nyquist plots of the electromechanical frequency response functions to thoroughly validate the accuracy and applicability of the distributed parameter model at higher frequencies than previously considered.

  5. Parameter uncertainties in the design and optimization of cantilever piezoelectric energy harvesters

    NASA Astrophysics Data System (ADS)

    Franco, V. R.; Varoto, P. S.

    2017-09-01

    A crucial issue in piezoelectric energy harvesting is the efficiency of the mechanical to electrical conversion process. Several techniques have been investigated in order to obtain a set of optimum design parameters that will lead to the best performance of the harvester in terms of electrical power generation. Once an optimum design is reached it is also important to consider uncertainties in the selected parameters that in turn can lead to loss of performance in the energy conversion process. The main goal of this paper is to perform a comprehensive discussion of the effects of multi-parameter aleatory uncertainties on the performance and design optimization of a given energy harvesting system. For that, a typical energy harvester consisting of a cantilever beam carrying a tip mass and partially covered by piezoelectric layers on top and bottom surfaces is considered. A distributed parameter electromechanical modal of the harvesting system is formulated and validated through experimental tests. First, the SQP (Sequential Quadratic Planning) optimization is employed to obtain an optimum set of parameters that will lead to best performance of the harvester. Second, once the optimum harvester configuration is found random perturbations are introduced in the key parameters and Monte Carlo simulations are performed to investigate how these uncertainties propagate and affect the performance of the device studied. Numerically simulated results indicate that small variations in some design parameters can cause a significant variation in the output electrical power, what strongly suggests that uncertainties must be accounted for in the design of beam energy harvesting systems.

  6. An antibody-sensitized microfabricated cantilever for the growth detection of Aspergillus niger spores.

    PubMed

    Nugaeva, Natalia; Gfeller, Karin Y; Backmann, Natalia; Düggelin, Marcel; Lang, Hans Peter; Güntherodt, Hans-Joachim; Hegner, Martin

    2007-02-01

    We demonstrate a new sensitive biosensor for detection of vital fungal spores of Aspergillus niger. The biosensor is based on silicon microfabricated cantilever arrays operated in dynamic mode. The change in resonance frequency of the sensor is a function of mass binding to the cantilever surface. For specific A. niger spore immobilization on the cantilever, each cantilever was individually coated with anti-Aspergillus niger polyclonal antibodies. We demonstrate the detection of single A. niger spores and their subsequent growth on the functionalized cantilever surface by online measurements of resonance frequency shifts. The new biosensor operating in humid air allows quantitative and qualitative detection of A. niger spores as well as detection of vital, functional spores in situ within approximately 4 h. The detection limit of the sensor is 103 CFU mL-1. Mass sensitivity of the cantilever sensor is approximately 53 pg Hz-1.

  7. Investigations on antibody binding to a micro-cantilever coated with a BAM pesticide residue

    NASA Astrophysics Data System (ADS)

    Bache, Michael; Taboryski, Rafael; Schmid, Silvan; Aamand, Jens; Jakobsen, Mogens Havsteen

    2011-05-01

    The attachment of an antibody to an antigen-coated cantilever has been investigated by repeated experiments, using a cantilever-based detection system by Cantion A/S. The stress induced by the binding of a pesticide residue BAM (2,6 dichlorobenzamide) immobilized on a cantilever surface to anti-BAM antibody is measured using the CantiLab4© system from Cantion A/S with four gold-coated cantilevers and piezo resistive readout. The detection mechanism is in principle label-free, but fluorescent-marked antibodies have been used to subsequently verify the binding on the cantilever surface. The bending and increase in mass of each cantilever has also been investigated using a light interferometer and a Doppler Vibrometer. The system has been analyzed during repeated measurements to investigate whether the CantiLab4© system is a suited platform for a pesticide assay system.

  8. Cantilever Wings for Modern Aircraft: Some Aspects of Cantilever Wing Construction with Special Reference to Weight and Torsional Stiffness

    NASA Technical Reports Server (NTRS)

    Stieger, H J

    1929-01-01

    In the foregoing remarks I have made an attempt to touch on some of the structural problems met with in cantilever wings, and dealt rather fully with a certain type of single-spar construction. The experimental test wing was a first attempt to demonstrate the principles of this departure from orthodox methods. The result was a wing both torsionally stiff and of light weight - lighter than a corresponding biplane construction.

  9. Performance of pre-deformed flexible piezoelectric cantilever in energy harvesting

    NASA Astrophysics Data System (ADS)

    Wang, Pengyingkai; Sui, Li; Shi, Gengchen; Liu, Guohua

    2016-05-01

    This paper proposes a novel structure for pre-rolled flexible piezoelectric cantilevers that use wind energy to power a submunition electrical device. Owing to the particular installation position and working environment, the submunition piezoelectric cantilever should be rolled when not working, but this pre-rolled state can alter the energy harvesting performance. Herein, a working principle and installation method for piezoelectric cantilevers used in submunitions are introduced. To study the influence of the pre-rolled state, pre-rolled piezoelectric cantilevers of different sizes were fabricated and their performances were studied using finite element analysis simulations and experiments. The simulation results show that the resonance frequency and stiffness of the pre-rolled structure is higher than that of a flat structure. Results show that, (1) for both the pre-rolled and flat cantilever, the peak voltage will increase with the wind speed. (2) The pre-rolled cantilever has a higher critical wind speed than the flat cantilever. (3) For identical wind speeds and cantilever sizes, the peak voltage of the flat cantilever (45 V) is less than that of the pre-rolled cantilever (56 V). (4) Using a full-bridge rectifier, the output of the pre-rolled cantilever can sufficiently supply a 10 μF capacitor, whose output voltage may be up to 23 V after 10 s. These results demonstrate that the pre-rolled piezoelectric cantilever and its installation position used in this work are more suitable for submunition, and its output sufficiently meets submunition requirements.

  10. Alternative Analytical Method Used in Plotting the Shear Force and Bending Moment Diagrams, Displacements and Rotations Distributions for Beams Subjected to Bending

    NASA Astrophysics Data System (ADS)

    Marin, Cornel; Filip, Vivian; Marin, Alexandru

    2009-01-01

    The actual graphical methods used by engineers when plotting the stress distributions are based on integrating the differential equations of stresses for each beam segment. The resulting integration constants are obtained by imposing boundary conditions for each beam segment. Using MathCAD, this alternative proposed analytical method uses the step function Φ(x-a) which introduces a compact form of the stresses, strain and displacements expressions. The constructive optimization is thus easier to be performed.

  11. Integrated cantilever fabrication and system development for ultrasonic and acoustic scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Olson, Stephen; Sankaran, Balasubramanian; Altemus, Bruce; Xu, Bai; Geer, Robert

    2005-05-01

    Although the conventional optical lever technology typically used for scanning probe microscope applications has proven highly sensitive, accurate, and cost effective for most applications involving micromachined cantilever deflection measurements, frequency limitations and space needs limit its applicability to emerging ultrasonic-based SPM applications. Recently, the fabrication of cantilevers integrated with actuation and sensing components has opened avenues for feedback-based driving of micromachined cantilevers at higher-order resonance frequencies while sensing average deflection without the need for an optical deflection pathway for average deflection sensing. The work presented here will review recent efforts by our group in fabricating micromachined cantilevers with integrated piezoresistive deflection-sensing components combined with integrated ZnO actuation layers to induce cantilever deflection. These cantilevers are being fabricated for use in a heterodyne force microscopy system (HFM) to enable SPM imaging contrast based on viscoelastic response of a surface in contact with a micromachined tip wherein active-feedback technology is being applied to maintain ultrasonic tip excitation at higher order cantilever resonances. The first and second-pass fabrication results will be presented and reviewed regarding cantilever release and ZnO actuator (and electrode) fabrication. Dynamic response data from these structures, measured via laser Doppler vibrometery reveal the expected resonance structure for a cantilever of these dimensions.

  12. Improved transfer process for fabrication of cantilever with precise air-gap formation

    NASA Astrophysics Data System (ADS)

    Kanazawa, Shusuke; Kusaka, Yasuyuki; Yamamoto, Noritaka; Ushijima, Hirobumi

    2017-05-01

    In this paper, an improved transfer process to fabricate a cantilever structure with a precise air gap is reported. For this fabrication, a planar imprinting method was used and the drying conditions of the cantilever precursor ink were controlled. The air gap between the cantilevered top and bottom electrodes was formed with an estimated error of less than 3%. An operational force gauge with a changeable capacitance was obtained by applying a force to the cantilevered top electrode. This process can facilitate the eco-friendly fabrication of micro-devices with three-dimensional structures.

  13. Note: Lateral force microscope calibration using multiple location pivot loading of rectangular cantilevers

    SciTech Connect

    Chung, Koo-Hyun; Reitsma, Mark G.

    2010-02-15

    This note outlines a calibration method for atomic force microscope friction measurement that uses the ''pivot'' method of [Bogdanovic et al., Colloids Surf. B 19, 397 (2000)] to generate optical lever sensitivities for known torque applied to rectangular cantilevers. We demonstrate the key calibration parameter to be a linear function of the position at which it is determined along the length of the cantilevers. In this way the optical lever system can be calibrated for cantilever torque by applying loads at locations along the length of a cantilever, away from the integrated tip, so that issues such as tip damage or interference can be avoided.

  14. Active control of flexural vibrations in beams

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Rocha, Rodney

    1989-01-01

    An analytical model of the feedback control system which estimates the voltage generated by the piezoelectric sensor as a function of the dynamic stress at the sensor location and the force exerted by the driver piezoelectric as a function of signal gain is developed. The analytical results are compared to measured results for a cantilever beam excited to vibrate in its first natural mode. The estimated increase in the first mode damping factor is in good agreement with the measured results.

  15. Hydrodynamic coupling of two sharp-edged beams vibrating in a viscous fluid

    PubMed Central

    Intartaglia, Carmela; Soria, Leonardo; Porfiri, Maurizio

    2014-01-01

    In this paper, we study flexural vibrations of two thin beams that are coupled through an otherwise quiescent viscous fluid. While most of the research has focused on isolated beams immersed in placid fluids, inertial and viscous hydrodynamic coupling is ubiquitous across a multitude of engineering and natural systems comprising arrays of flexible structures. In these cases, the distributed hydrodynamic loading experienced by each oscillating structure is not only related to its absolute motion but is also influenced by its relative motion with respect to the neighbouring structures. Here, we focus on linear vibrations of two identical beams for low Knudsen, Keulegan–Carpenter and squeeze numbers. Thus, we describe the fluid flow using unsteady Stokes hydrodynamics and we propose a boundary integral formulation to compute pertinent hydrodynamic functions to study the fluid effect. We validate the proposed theoretical approach through experiments on centimetre-size compliant cantilevers that are subjected to underwater base-excitation. We consider different geometric arrangements, beam interdistances and excitation frequencies to ascertain the model accuracy in terms of the relevant non-dimensional parameters. PMID:24511249

  16. An inverse finite element method for beam shape sensing: theoretical framework and experimental validation

    NASA Astrophysics Data System (ADS)

    Gherlone, Marco; Cerracchio, Priscilla; Mattone, Massimiliano; Di Sciuva, Marco; Tessler, Alexander

    2014-04-01

    Shape sensing, i.e., reconstruction of the displacement field of a structure from surface-measured strains, has relevant implications for the monitoring, control and actuation of smart structures. The inverse finite element method (iFEM) is a shape-sensing methodology shown to be fast, accurate and robust. This paper aims to demonstrate that the recently presented iFEM for beam and frame structures is reliable when experimentally measured strains are used as input data. The theoretical framework of the methodology is first reviewed. Timoshenko beam theory is adopted, including stretching, bending, transverse shear and torsion deformation modes. The variational statement and its discretization with C0-continuous inverse elements are briefly recalled. The three-dimensional displacement field of the beam structure is reconstructed under the condition that least-squares compatibility is guaranteed between the measured strains and those interpolated within the inverse elements. The experimental setup is then described. A thin-walled cantilevered beam is subjected to different static and dynamic loads. Measured surface strains are used as input data for shape sensing at first with a single inverse element. For the same test cases, convergence is also investigated using an increasing number of inverse elements. The iFEM-recovered deflections and twist rotations are then compared with those measured experimentally. The accuracy, convergence and robustness of the iFEM with respect to unavoidable measurement errors, due to strain sensor locations, measurement systems and geometry imperfections, are demonstrated for both static and dynamic loadings.

  17. Probing model tumor interfacial properties using piezoelectric cantilevers

    NASA Astrophysics Data System (ADS)

    Yegingil, Hakki; Shih, Wan Y.; Shih, Wei-Heng

    2010-09-01

    Invasive malignant breast cancers are typically branchy and benign breast tumors are typically smooth. It is of interest to characterize tumor branchiness (roughness) to differentiate invasive malignant breast cancer from noninvasive ones. In this study, we examined the shear modulus (G) to elastic modulus (E) ratio, G /E, as a quantity to describe model tumor interfacial roughness using a piezoelectric cantilever capable of measuring both tissue elastic modulus and tissue shear modulus. The piezoelectric cantilever used had two lead zirconate titanate layers to facilitate all-electrical elastic (shear) modulus measurements using one single device. We constructed model tissues with tumors by embedding one-dimensional (1D) corrugated inclusions and three-dimensional (3D) spiky-ball inclusions made of modeling clay in gelatin. We showed that for smooth inclusions, G /E was 0.3 regardless of the shear direction. In contrast, for a 1D corrugated rough inclusion G /E was 0.3 only when the shear was parallel to corrugation and G /E increased with an increasing angle between the shear direction and the corrugation. When the shear was perpendicular to corrugation, G /E became >0.7. For 3D isotropic spiky-ball inclusions we showed that the G /E depended on the degree of the roughness. Using the ratio s /r of the spike length (s) to the overall inclusion radius (r) as a roughness parameter, we showed that for inclusions with s /r larger than or equal to 0.28, the G /E ratio over the inclusions was larger than 0.7 whereas for inclusions with s /r less than 0.28, the G /E decreased with decreasing s /r to around 0.3 at s /r=0. In addition, we showed that the depth limit of the G /E measurement is twice the width of the probe area of the piezoelectric cantilever.

  18. On numerical nonlinear analysis of highly flexible spinning cantilevers

    NASA Technical Reports Server (NTRS)

    Utku, S.; El-Essawi, M.; Salama, M.

    1981-01-01

    The general nonlinear discretized equations of motion of spinning elastic solids and structures are derived as a set of nonlinear ordinary differential equations for the case when the strain-displacement and velocity-displacement relations are nonlinear up to the second order. It is shown that the cost of generation of such equations is proportional to the fourth power of the number of degrees of freedom. A computer program is written to automatically generate the equations for the case of spinning cantilevers with initial imperfections. The types and the number of the coordinate functions used in the trial solution are parameters of the program.

  19. APPARATUS FOR NON-DESTRUCTIVE INSPECTION OF CANTILEVERED MEMBERS

    DOEpatents

    Taylor, E.R.; Mahoney, C.H.; Lay, C.R.

    1961-10-24

    An apparatus for non-destructive inspection of cantilevered members, such as compressor blades, is described. The member under inspection is vibrated with a regulated source of air under pressure. The amplitude of vibration of the member is maintained at its natural frequency. The frequency of vibration of the member is measured. An indication of an excessive decay or erratic shifting in the measured frequency above an allowable hysteretic decay is provided as an indication of a fault in the member. The member is vibrated for a selected test period. (AEC)

  20. Piezoelectric Bimorph Cantilever for Vibration-Producing-Hydrogen

    PubMed Central

    Zhang, Jun; Wu, Zheng; Jia, Yanmin; Kan, Junwu; Cheng, Guangming

    2013-01-01

    A device composed of a piezoelectric bimorph cantilever and a water electrolysis device was fabricated to realize piezoelectrochemical hydrogen production. The obvious output of the hydrogen and oxygen through application of a mechanical vibration of ∼0.07 N and ∼46.2 Hz was observed. This method provides a cost-effective, recyclable, environment-friendly and simple way to directly split water for hydrogen fuels by scavenging mechanical waste energy forms such as noise or traffic vibration in the environment. PMID:23271601