Sample records for capabilities minor artifacts

  1. An Additive Manufacturing Test Artifact

    PubMed Central

    Moylan, Shawn; Slotwinski, John; Cooke, April; Jurrens, Kevin; Donmez, M Alkan

    2014-01-01

    A test artifact, intended for standardization, is proposed for the purpose of evaluating the performance of additive manufacturing (AM) systems. A thorough analysis of previously proposed AM test artifacts as well as experience with machining test artifacts have inspired the design of the proposed test artifact. This new artifact is designed to provide a characterization of the capabilities and limitations of an AM system, as well as to allow system improvement by linking specific errors measured in the test artifact to specific sources in the AM system. The proposed test artifact has been built in multiple materials using multiple AM technologies. The results of several of the builds are discussed, demonstrating how the measurement results can be used to characterize and improve a specific AM system. PMID:26601039

  2. 5-7 Year Old Children's Conceptions of Behaving Artifacts and the Influence of Constructing Their Behavior on the Development of Theory of Mind (ToM) and Theory of Artificial Mind (ToAM)

    ERIC Educational Resources Information Center

    Spektor-Precel, Karen; Mioduser, David

    2015-01-01

    Nowadays, we are surrounded by artifacts that are capable of adaptive behavior, such as electric pots, boiler timers, automatic doors, and robots. The literature concerning human beings' conceptions of "traditional" artifacts is vast, however, little is known about our conceptions of behaving artifacts, nor of the influence of the…

  3. Neutron measurements of stresses in a test artifact produced by laser-based additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gnäupel-Herold, Thomas; Slotwinski, John; Moylan, Shawn

    2014-02-18

    A stainless steel test artifact produced by Direct Metal Laser Sintering and similar to a proposed standardized test artifact was examined using neutron diffraction. The artifact contained a number of structures with different aspect ratios pertaining to wall thickness, height above base plate, and side length. Through spatial resolutions of the order of one millimeter the volumetric distribution of stresses in several was measured. It was found that the stresses peak in the tensile region around 500 MPa near the top surface, with balancing compressive stresses in the interior. The presence of a support structure (a one millimeter high, thinmore » walled, hence weaker, lattice structure deposited on the base plate, followed by a fully dense AM structure) has only minor effects on the stresses.« less

  4. Fast Simulations of Gas Sloshing and Cold Front Formation

    NASA Technical Reports Server (NTRS)

    Roediger, E.; ZuHone, J. A.

    2012-01-01

    We present a simplified and fast method for simulating minor mergers between galaxy clusters. Instead of following the evolution of the dark matter halos directly by the N-body method, we employ a rigid potential approximation for both clusters. The simulations are run in the rest frame of the more massive cluster and account for the resulting inertial accelerations in an optimised way. We test the reliability of this method for studies of minor merger induced gas sloshing by performing a one-to-one comparison between our simulations and hydro+N-body ones. We find that the rigid potential approximation reproduces the sloshing-related features well except for two artifacts: the temperature just outside the cold fronts is slightly over-predicted, and the outward motion of the cold fronts is delayed by typically 200 Myr. We discuss reasons for both artifacts.

  5. Utilization Possibilities of Area Definition in User Space for User-Centric Pervasive-Adaptive Systems

    NASA Astrophysics Data System (ADS)

    Krejcar, Ondrej

    The ability to let a mobile device determine its location in an indoor environment supports the creation of a new range of mobile information system applications. The goal of my project is to complement the data networking capabilities of RF wireless LANs with accurate user location and tracking capabilities for user needed data prebuffering. I created a location based system enhancement for locating and tracking users of indoor information system. User position is used for data prebuffering and pushing information from a server to his mobile client. All server data is saved as artifacts (together) with its indoor position information. The area definition for artifacts selecting is described for current and predicted user position along with valuating options for artifacts ranging. Future trends are also discussed.

  6. Economical Sponge Phantom for Teaching, Understanding, and Researching A- and B-Line Reverberation Artifacts in Lung Ultrasound.

    PubMed

    Blüthgen, Christian; Sanabria, Sergio; Frauenfelder, Thomas; Klingmüller, Volker; Rominger, Marga

    2017-10-01

    This project evaluated a low-cost sponge phantom setup for its capability to teach and study A- and B-line reverberation artifacts known from lung ultrasound and to numerically simulate sound wave interaction with the phantom using a finite-difference time-domain (FDTD) model. Both A- and B-line artifacts were reproducible on B-mode ultrasound imaging as well as in the FDTD-based simulation. The phantom was found to be an easy-to-set up and economical tool for understanding, teaching, and researching A- and B-line artifacts occurring in lung ultrasound. The FDTD method-based simulation was able to reproduce the artifacts and provides intuitive insight into the underlying physics. © 2017 by the American Institute of Ultrasound in Medicine.

  7. Optimization of view weighting in tilted-plane-based reconstruction algorithms to minimize helical artifacts in multi-slice helical CT

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang

    2003-05-01

    In multi-slice helical CT, the single-tilted-plane-based reconstruction algorithm has been proposed to combat helical and cone beam artifacts by tilting a reconstruction plane to fit a helical source trajectory optimally. Furthermore, to improve the noise characteristics or dose efficiency of the single-tilted-plane-based reconstruction algorithm, the multi-tilted-plane-based reconstruction algorithm has been proposed, in which the reconstruction plane deviates from the pose globally optimized due to an extra rotation along the 3rd axis. As a result, the capability of suppressing helical and cone beam artifacts in the multi-tilted-plane-based reconstruction algorithm is compromised. An optomized tilted-plane-based reconstruction algorithm is proposed in this paper, in which a matched view weighting strategy is proposed to optimize the capability of suppressing helical and cone beam artifacts and noise characteristics. A helical body phantom is employed to quantitatively evaluate the imaging performance of the matched view weighting approach by tabulating artifact index and noise characteristics, showing that the matched view weighting improves both the helical artifact suppression and noise characteristics or dose efficiency significantly in comparison to the case in which non-matched view weighting is applied. Finally, it is believed that the matched view weighting approach is of practical importance in the development of multi-slive helical CT, because it maintains the computational structure of fan beam filtered backprojection and demands no extra computational services.

  8. Image quality analysis to reduce dental artifacts in head and neck imaging with dual-source computed tomography.

    PubMed

    Ketelsen, D; Werner, M K; Thomas, C; Tsiflikas, I; Koitschev, A; Reimann, A; Claussen, C D; Heuschmid, M

    2009-01-01

    Important oropharyngeal structures can be superimposed by metallic artifacts due to dental implants. The aim of this study was to compare the image quality of multiplanar reconstructions and an angulated spiral in dual-source computed tomography (DSCT) of the neck. Sixty-two patients were included for neck imaging with DSCT. MPRs from an axial dataset and an additional short spiral parallel to the mouth floor were acquired. Leading anatomical structures were then evaluated with respect to the extent to which they were affected by dental artifacts using a visual scale, ranging from 1 (least artifacts) to 4 (most artifacts). In MPR, 87.1 % of anatomical structures had significant artifacts (3.12 +/- 0.86), while in angulated slices leading anatomical structures of the oropharynx showed negligible artifacts (1.28 +/- 0.46). The diagnostic growth due to primarily angulated slices concerning artifact severity was significant (p < 0.01). MPRs are not capable of reducing dental artifacts sufficiently. In patients with dental artifacts overlying the anatomical structures of the oropharynx, an additional short angulated spiral parallel to the floor of the mouth is recommended and should be applied for daily routine. As a result of the static gantry design of DSCT, the use of a flexible head holder is essential.

  9. Discriminative Ocular Artifact Correction for Feature Learning in EEG Analysis.

    PubMed

    Xinyang Li; Cuntai Guan; Haihong Zhang; Kai Keng Ang

    2017-08-01

    Electrooculogram (EOG) artifact contamination is a common critical issue in general electroencephalogram (EEG) studies as well as in brain-computer interface (BCI) research. It is especially challenging when dedicated EOG channels are unavailable or when there are very few EEG channels available for independent component analysis based ocular artifact removal. It is even more challenging to avoid loss of the signal of interest during the artifact correction process, where the signal of interest can be multiple magnitudes weaker than the artifact. To address these issues, we propose a novel discriminative ocular artifact correction approach for feature learning in EEG analysis. Without extra ocular movement measurements, the artifact is extracted from raw EEG data, which is totally automatic and requires no visual inspection of artifacts. Then, artifact correction is optimized jointly with feature extraction by maximizing oscillatory correlations between trials from the same class and minimizing them between trials from different classes. We evaluate this approach on a real-world EEG dataset comprising 68 subjects performing cognitive tasks. The results showed that the approach is capable of not only suppressing the artifact components but also improving the discriminative power of a classifier with statistical significance. We also demonstrate that the proposed method addresses the confounding issues induced by ocular movements in cognitive EEG study.

  10. Prior-based artifact correction (PBAC) in computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heußer, Thorsten, E-mail: thorsten.heusser@dkfz-heidelberg.de; Brehm, Marcus; Ritschl, Ludwig

    2014-02-15

    Purpose: Image quality in computed tomography (CT) often suffers from artifacts which may reduce the diagnostic value of the image. In many cases, these artifacts result from missing or corrupt regions in the projection data, e.g., in the case of metal, truncation, and limited angle artifacts. The authors propose a generalized correction method for different kinds of artifacts resulting from missing or corrupt data by making use of available prior knowledge to perform data completion. Methods: The proposed prior-based artifact correction (PBAC) method requires prior knowledge in form of a planning CT of the same patient or in form ofmore » a CT scan of a different patient showing the same body region. In both cases, the prior image is registered to the patient image using a deformable transformation. The registered prior is forward projected and data completion of the patient projections is performed using smooth sinogram inpainting. The obtained projection data are used to reconstruct the corrected image. Results: The authors investigate metal and truncation artifacts in patient data sets acquired with a clinical CT and limited angle artifacts in an anthropomorphic head phantom data set acquired with a gantry-based flat detector CT device. In all cases, the corrected images obtained by PBAC are nearly artifact-free. Compared to conventional correction methods, PBAC achieves better artifact suppression while preserving the patient-specific anatomy at the same time. Further, the authors show that prominent anatomical details in the prior image seem to have only minor impact on the correction result. Conclusions: The results show that PBAC has the potential to effectively correct for metal, truncation, and limited angle artifacts if adequate prior data are available. Since the proposed method makes use of a generalized algorithm, PBAC may also be applicable to other artifacts resulting from missing or corrupt data.« less

  11. Pulse transducer with artifact signal attenuator. [heart rate sensors

    NASA Technical Reports Server (NTRS)

    Cash, W. H., Jr.; Polhemus, J. T. (Inventor)

    1980-01-01

    An artifact signal attenuator for a pulse rate sensor is described. The circuit for attenuating background noise signals is connected with a pulse rate transducer which has a light source and a detector for light reflected from blood vessels of a living body. The heart signal provided consists of a modulated dc signal voltage indicative of pulse rate. The artifact signal resulting from light reflected from the skin of the body comprises both a constant dc signal voltage and a modulated dc signal voltage. The amplitude of the artifact signal is greater and the frequency less than that of the heart signal. The signal attenuator circuit includes an operational amplifier for canceling the artifact signal from the output signal of the transducer and has the capability of meeting packaging requirements for wrist-watch-size packages.

  12. SU-F-J-73: Simple Approach for Quantification of Metal Artifact Reduction Capabalities of Dual-Energy CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamichhane, N; Padgett, K; Li, X

    Purpose: To present a simple method for quantification of dual-energy CT metal artifact reduction capabilities Methods: A phantom was constructed from solid water and a steel cylinder. Solid water is commonly used for radiotherapy QA, while steel cylinders are readily available in hardware stores. The phantom was scanned on Siemens Somatom 64-slice dual-energy CT system. Three CTs were acquired at energies of 80kV (low), 120kV (nominal), and 140kV (high). The low and high energy acquisitions were used to generate dual-energy (DE) monoenergetic image sets, which also utilized metal artifact reduction algorithm (Maris). Several monoenergetic DE image sets, ranging from 70keVmore » to 190keV were generated. The size of the metal artifact was measured by two different approaches. The first approach measured the distance from the center of the steel cylinder to a location with nominal (undisturbed by metal) HU value for the 120kV, DE 70keV, and DE 190keV image sets. In the second approach, the distance from the center of the cylinder to the edge of the air pocket for the above mentioned three image sets was measured. Results: The DE 190keV synthetic image set demonstrated the largest reduction of the metal artifacts. The size of the artifact was more than three times the actual size of the milled hole in the solid water in the DE 190keV, as compared to more than 7.5 times larger as estimated from the 120kV uncorrected image Conclusion: A simple phantom for quantification of dual-energy CT metal artifact reduction capabilities was presented. This inexpensive phantom can be easily built from components available in every radiation oncology department. It allows quick assessment and quantification of the properties of different metal artifact reduction algorithms, available on modern dual-energy CT scanners.« less

  13. High-kVp Assisted Metal Artifact Reduction for X-ray Computed Tomography

    PubMed Central

    Xi, Yan; Jin, Yannan; De Man, Bruno; Wang, Ge

    2016-01-01

    In X-ray computed tomography (CT), the presence of metallic parts in patients causes serious artifacts and degrades image quality. Many algorithms were published for metal artifact reduction (MAR) over the past decades with various degrees of success but without a perfect solution. Some MAR algorithms are based on the assumption that metal artifacts are due only to strong beam hardening and may fail in the case of serious photon starvation. Iterative methods handle photon starvation by discarding or underweighting corrupted data, but the results are not always stable and they come with high computational cost. In this paper, we propose a high-kVp-assisted CT scan mode combining a standard CT scan with a few projection views at a high-kVp value to obtain critical projection information near the metal parts. This method only requires minor hardware modifications on a modern CT scanner. Two MAR algorithms are proposed: dual-energy normalized MAR (DNMAR) and high-energy embedded MAR (HEMAR), aiming at situations without and with photon starvation respectively. Simulation results obtained with the CT simulator CatSim demonstrate that the proposed DNMAR and HEMAR methods can eliminate metal artifacts effectively. PMID:27891293

  14. Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features.

    PubMed

    Radüntz, Thea; Scouten, Jon; Hochmuth, Olaf; Meffert, Beate

    2017-08-01

    Biological and non-biological artifacts cause severe problems when dealing with electroencephalogram (EEG) recordings. Independent component analysis (ICA) is a widely used method for eliminating various artifacts from recordings. However, evaluating and classifying the calculated independent components (IC) as artifact or EEG is not fully automated at present. In this study, we propose a new approach for automated artifact elimination, which applies machine learning algorithms to ICA-based features. We compared the performance of our classifiers with the visual classification results given by experts. The best result with an accuracy rate of 95% was achieved using features obtained by range filtering of the topoplots and IC power spectra combined with an artificial neural network. Compared with the existing automated solutions, our proposed method is not limited to specific types of artifacts, electrode configurations, or number of EEG channels. The main advantages of the proposed method is that it provides an automatic, reliable, real-time capable, and practical tool, which avoids the need for the time-consuming manual selection of ICs during artifact removal.

  15. Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features

    NASA Astrophysics Data System (ADS)

    Radüntz, Thea; Scouten, Jon; Hochmuth, Olaf; Meffert, Beate

    2017-08-01

    Objective. Biological and non-biological artifacts cause severe problems when dealing with electroencephalogram (EEG) recordings. Independent component analysis (ICA) is a widely used method for eliminating various artifacts from recordings. However, evaluating and classifying the calculated independent components (IC) as artifact or EEG is not fully automated at present. Approach. In this study, we propose a new approach for automated artifact elimination, which applies machine learning algorithms to ICA-based features. Main results. We compared the performance of our classifiers with the visual classification results given by experts. The best result with an accuracy rate of 95% was achieved using features obtained by range filtering of the topoplots and IC power spectra combined with an artificial neural network. Significance. Compared with the existing automated solutions, our proposed method is not limited to specific types of artifacts, electrode configurations, or number of EEG channels. The main advantages of the proposed method is that it provides an automatic, reliable, real-time capable, and practical tool, which avoids the need for the time-consuming manual selection of ICs during artifact removal.

  16. A Fast Smoothing Algorithm for Post-Processing of Surface Reflectance Spectra Retrieved from Airborne Imaging Spectrometer Data

    PubMed Central

    Gao, Bo-Cai; Liu, Ming

    2013-01-01

    Surface reflectance spectra retrieved from remotely sensed hyperspectral imaging data using radiative transfer models often contain residual atmospheric absorption and scattering effects. The reflectance spectra may also contain minor artifacts due to errors in radiometric and spectral calibrations. We have developed a fast smoothing technique for post-processing of retrieved surface reflectance spectra. In the present spectral smoothing technique, model-derived reflectance spectra are first fit using moving filters derived with a cubic spline smoothing algorithm. A common gain curve, which contains minor artifacts in the model-derived reflectance spectra, is then derived. This gain curve is finally applied to all of the reflectance spectra in a scene to obtain the spectrally smoothed surface reflectance spectra. Results from analysis of hyperspectral imaging data collected with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data are given. Comparisons between the smoothed spectra and those derived with the empirical line method are also presented. PMID:24129022

  17. Artifacts Generated During Azoalkane Peroxy Radical Oxidative Stress Testing of Pharmaceuticals Containing Primary and Secondary Amines.

    PubMed

    Nefliu, Marcela; Zelesky, Todd; Jansen, Patrick; Sluggett, Gregory W; Foti, Christopher; Baertschi, Steven W; Harmon, Paul A

    2015-12-01

    We report artifactual degradation of pharmaceutical compounds containing primary and secondary amines during peroxy radical-mediated oxidative stress carried out using azoalkane initiators. Two degradation products were detected when model drug compounds dissolved in methanol/water were heated to 40°C with radical initiators such as 2,2'-azobis(2-methylpropionitrile) (AIBN). The primary artifact was identified as an α-aminonitrile generated from the reaction of the amine group of the model drug with formaldehyde and hydrogen cyanide, generated as byproducts of the stress reaction. A minor artifact was generated from the reaction between the amine group and isocyanic acid, also a byproduct of the stress reaction. We report the effects of pH, initiator/drug molar ratio, and type of azoalkane initiator on the formation of these artifacts. Mass spectrometry and nuclear magnetic resonance were used for structure elucidation, whereas mechanistic studies, including stable isotope labeling experiments, cyanide analysis, and experiments exploring the effects of butylated hydroxyanisole addition, were employed to support the degradation pathways. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Exploring the effects of transducer models when training convolutional neural networks to eliminate reflection artifacts in experimental photoacoustic images

    NASA Astrophysics Data System (ADS)

    Allman, Derek; Reiter, Austin; Bell, Muyinatu

    2018-02-01

    We previously proposed a method of removing reflection artifacts in photoacoustic images that uses deep learning. Our approach generally relies on using simulated photoacoustic channel data to train a convolutional neural network (CNN) that is capable of distinguishing sources from artifacts based on unique differences in their spatial impulse responses (manifested as depth-based differences in wavefront shapes). In this paper, we directly compare a CNN trained with our previous continuous transducer model to a CNN trained with an updated discrete acoustic receiver model that more closely matches an experimental ultrasound transducer. These two CNNs were trained with simulated data and tested on experimental data. The CNN trained using the continuous receiver model correctly classified 100% of sources and 70.3% of artifacts in the experimental data. In contrast, the CNN trained using the discrete receiver model correctly classified 100% of sources and 89.7% of artifacts in the experimental images. The 19.4% increase in artifact classification accuracy indicates that an acoustic receiver model that closely mimics the experimental transducer plays an important role in improving the classification of artifacts in experimental photoacoustic data. Results are promising for developing a method to display CNN-based images that remove artifacts in addition to only displaying network-identified sources as previously proposed.

  19. Reduction of metal artifacts in x-ray CT images using a convolutional neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Yanbo; Chu, Ying; Yu, Hengyong

    2017-09-01

    Patients usually contain various metallic implants (e.g. dental fillings, prostheses), causing severe artifacts in the x-ray CT images. Although a large number of metal artifact reduction (MAR) methods have been proposed in the past four decades, MAR is still one of the major problems in clinical x-ray CT. In this work, we develop a convolutional neural network (CNN) based MAR framework, which combines the information from the original and corrected images to suppress artifacts. Before the MAR, we generate a group of data and train a CNN. First, we numerically simulate various metal artifacts cases and build a dataset, which includes metal-free images (used as references), metal-inserted images and various MAR methods corrected images. Then, ten thousands patches are extracted from the databased to train the metal artifact reduction CNN. In the MAR stage, the original image and two corrected images are stacked as a three-channel input image for CNN, and a CNN image is generated with less artifacts. The water equivalent regions in the CNN image are set to a uniform value to yield a CNN prior, whose forward projections are used to replace the metal affected projections, followed by the FBP reconstruction. Experimental results demonstrate the superior metal artifact reduction capability of the proposed method to its competitors.

  20. Independent component analysis for cochlear implant artifacts attenuation from electrically evoked auditory steady-state response measurements

    NASA Astrophysics Data System (ADS)

    Deprez, Hanne; Gransier, Robin; Hofmann, Michael; van Wieringen, Astrid; Wouters, Jan; Moonen, Marc

    2018-02-01

    Objective. Electrically evoked auditory steady-state responses (EASSRs) are potentially useful for objective cochlear implant (CI) fitting and follow-up of the auditory maturation in infants and children with a CI. EASSRs are recorded in the electro-encephalogram (EEG) in response to electrical stimulation with continuous pulse trains, and are distorted by significant CI artifacts related to this electrical stimulation. The aim of this study is to evaluate a CI artifacts attenuation method based on independent component analysis (ICA) for three EASSR datasets. Approach. ICA has often been used to remove CI artifacts from the EEG to record transient auditory responses, such as cortical evoked auditory potentials. Independent components (ICs) corresponding to CI artifacts are then often manually identified. In this study, an ICA based CI artifacts attenuation method was developed and evaluated for EASSR measurements with varying CI artifacts and EASSR characteristics. Artifactual ICs were automatically identified based on their spectrum. Main results. For 40 Hz amplitude modulation (AM) stimulation at comfort level, in high SNR recordings, ICA succeeded in removing CI artifacts from all recording channels, without distorting the EASSR. For lower SNR recordings, with 40 Hz AM stimulation at lower levels, or 90 Hz AM stimulation, ICA either distorted the EASSR or could not remove all CI artifacts in most subjects, except for two of the seven subjects tested with low level 40 Hz AM stimulation. Noise levels were reduced after ICA was applied, and up to 29 ICs were rejected, suggesting poor ICA separation quality. Significance. We hypothesize that ICA is capable of separating CI artifacts and EASSR in case the contralateral hemisphere is EASSR dominated. For small EASSRs or large CI artifact amplitudes, ICA separation quality is insufficient to ensure complete CI artifacts attenuation without EASSR distortion.

  1. A convolutional neural network to filter artifacts in spectroscopic MRI.

    PubMed

    Gurbani, Saumya S; Schreibmann, Eduard; Maudsley, Andrew A; Cordova, James Scott; Soher, Brian J; Poptani, Harish; Verma, Gaurav; Barker, Peter B; Shim, Hyunsuk; Cooper, Lee A D

    2018-03-09

    Proton MRSI is a noninvasive modality capable of generating volumetric maps of in vivo tissue metabolism without the need for ionizing radiation or injected contrast agent. Magnetic resonance spectroscopic imaging has been shown to be a viable imaging modality for studying several neuropathologies. However, a key hurdle in the routine clinical adoption of MRSI is the presence of spectral artifacts that can arise from a number of sources, possibly leading to false information. A deep learning model was developed that was capable of identifying and filtering out poor quality spectra. The core of the model used a tiled convolutional neural network that analyzed frequency-domain spectra to detect artifacts. When compared with a panel of MRS experts, our convolutional neural network achieved high sensitivity and specificity with an area under the curve of 0.95. A visualization scheme was implemented to better understand how the convolutional neural network made its judgement on single-voxel or multivoxel MRSI, and the convolutional neural network was embedded into a pipeline capable of producing whole-brain spectroscopic MRI volumes in real time. The fully automated method for assessment of spectral quality provides a valuable tool to support clinical MRSI or spectroscopic MRI studies for use in fields such as adaptive radiation therapy planning. © 2018 International Society for Magnetic Resonance in Medicine.

  2. TH-C-18A-11: Investigating the Minimum Scan Parameters Required to Generate Free-Breathing Fast-Helical CT Scans Without Motion-Artifacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D; Neylon, J; Dou, T

    Purpose: A recently proposed 4D-CT protocol uses deformable registration of free-breathing fast-helical CT scans to generate a breathing motion model. In order to allow accurate registration, free-breathing images are required to be free of doubling-artifacts, which arise when tissue motion is greater than scan speed. This work identifies the minimum scanner parameters required to successfully generate free-breathing fast-helical scans without doubling-artifacts. Methods: 10 patients were imaged under free breathing conditions 25 times in alternating directions with a 64-slice CT scanner using a low dose fast helical protocol. A high temporal resolution (0.1s) 4D-CT was generated using a patient specific motionmore » model and patient breathing waveforms, and used as the input for a scanner simulation. Forward projections were calculated using helical cone-beam geometry (800 projections per rotation) and a GPU accelerated reconstruction algorithm was implemented. Various CT scanner detector widths and rotation times were simulated, and verified using a motion phantom. Doubling-artifacts were quantified in patient images using structural similarity maps to determine the similarity between axial slices. Results: Increasing amounts of doubling-artifacts were observed with increasing rotation times > 0.2s for 16×1mm slice scan geometry. No significant increase in doubling artifacts was observed for 64×1mm slice scan geometry up to 1.0s rotation time although blurring artifacts were observed >0.6s. Using a 16×1mm slice scan geometry, a rotation time of less than 0.3s (53mm/s scan speed) would be required to produce images of similar quality to a 64×1mm slice scan geometry. Conclusion: The current generation of 16 slice CT scanners, which are present in most Radiation Oncology departments, are not capable of generating free-breathing sorting-artifact-free images in the majority of patients. The next generation of CT scanners should be capable of at least 53mm/s scan speed in order to use a fast-helical 4D-CT protocol to generate a motion-artifact free 4D-CT. NIH R01CA096679.« less

  3. Image-based metal artifact reduction in x-ray computed tomography utilizing local anatomical similarity

    NASA Astrophysics Data System (ADS)

    Dong, Xue; Yang, Xiaofeng; Rosenfield, Jonathan; Elder, Eric; Dhabaan, Anees

    2017-03-01

    X-ray computed tomography (CT) is widely used in radiation therapy treatment planning in recent years. However, metal implants such as dental fillings and hip prostheses can cause severe bright and dark streaking artifacts in reconstructed CT images. These artifacts decrease image contrast and degrade HU accuracy, leading to inaccuracies in target delineation and dose calculation. In this work, a metal artifact reduction method is proposed based on the intrinsic anatomical similarity between neighboring CT slices. Neighboring CT slices from the same patient exhibit similar anatomical features. Exploiting this anatomical similarity, a gamma map is calculated as a weighted summation of relative HU error and distance error for each pixel in an artifact-corrupted CT image relative to a neighboring, artifactfree image. The minimum value in the gamma map for each pixel is used to identify an appropriate pixel from the artifact-free CT slice to replace the corresponding artifact-corrupted pixel. With the proposed method, the mean CT HU error was reduced from 360 HU and 460 HU to 24 HU and 34 HU on head and pelvis CT images, respectively. Dose calculation accuracy also improved, as the dose difference was reduced from greater than 20% to less than 4%. Using 3%/3mm criteria, the gamma analysis failure rate was reduced from 23.25% to 0.02%. An image-based metal artifact reduction method is proposed that replaces corrupted image pixels with pixels from neighboring CT slices free of metal artifacts. This method is shown to be capable of suppressing streaking artifacts, thereby improving HU and dose calculation accuracy.

  4. EEG artifact elimination by extraction of ICA-component features using image processing algorithms.

    PubMed

    Radüntz, T; Scouten, J; Hochmuth, O; Meffert, B

    2015-03-30

    Artifact rejection is a central issue when dealing with electroencephalogram recordings. Although independent component analysis (ICA) separates data in linearly independent components (IC), the classification of these components as artifact or EEG signal still requires visual inspection by experts. In this paper, we achieve automated artifact elimination using linear discriminant analysis (LDA) for classification of feature vectors extracted from ICA components via image processing algorithms. We compare the performance of this automated classifier to visual classification by experts and identify range filtering as a feature extraction method with great potential for automated IC artifact recognition (accuracy rate 88%). We obtain almost the same level of recognition performance for geometric features and local binary pattern (LBP) features. Compared to the existing automated solutions the proposed method has two main advantages: First, it does not depend on direct recording of artifact signals, which then, e.g. have to be subtracted from the contaminated EEG. Second, it is not limited to a specific number or type of artifact. In summary, the present method is an automatic, reliable, real-time capable and practical tool that reduces the time intensive manual selection of ICs for artifact removal. The results are very promising despite the relatively small channel resolution of 25 electrodes. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Metal artifact reduction using a patch-based reconstruction for digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Borges, Lucas R.; Bakic, Predrag R.; Maidment, Andrew D. A.; Vieira, Marcelo A. C.

    2017-03-01

    Digital breast tomosynthesis (DBT) is rapidly emerging as the main clinical tool for breast cancer screening. Although several reconstruction methods for DBT are described by the literature, one common issue is the interplane artifacts caused by out-of-focus features. For breasts containing highly attenuating features, such as surgical clips and large calcifications, the artifacts are even more apparent and can limit the detection and characterization of lesions by the radiologist. In this work, we propose a novel method of combining backprojected data into tomographic slices using a patch-based approach, commonly used in denoising. Preliminary tests were performed on a geometry phantom and on an anthropomorphic phantom containing metal inserts. The reconstructed images were compared to a commercial reconstruction solution. Qualitative assessment of the reconstructed images provides evidence that the proposed method reduces artifacts while maintaining low noise levels. Objective assessment supports the visual findings. The artifact spread function shows that the proposed method is capable of suppressing artifacts generated by highly attenuating features. The signal difference to noise ratio shows that the noise levels of the proposed and commercial methods are comparable, even though the commercial method applies post-processing filtering steps, which were not implemented on the proposed method. Thus, the proposed method can produce tomosynthesis reconstructions with reduced artifacts and low noise levels.

  6. PROJECT CONCERN--A CASE STUDY IN URBAN-SUBURBAN COOPERATION. POSITION PAPER.

    ERIC Educational Resources Information Center

    MAHAN, THOMAS W.

    PROJECT CONCERN SEEKS TO DEMONSTRATE THAT THE LOWER ACHIEVEMENT OF DISADVANTAGED STUDENTS IS AN "ARTIFACT" OF A NEGATIVE INTERACTION BETWEEN THE SLUM NEIGHBORHOOD AND THE SLUM SCHOOL. TO COUNTERACT THIS EFFECT, THE PROJECT HAS BUSED OVER 250 INNER CITY MINORITY GROUP CHILDREN, FROM KINDERGARTEN THROUGH FIFTH GRADE, TO FIVE MIDDLE CLASS…

  7. Automated motion artifact removal for intravital microscopy, without a priori information.

    PubMed

    Lee, Sungon; Vinegoni, Claudio; Sebas, Matthew; Weissleder, Ralph

    2014-03-28

    Intravital fluorescence microscopy, through extended penetration depth and imaging resolution, provides the ability to image at cellular and subcellular resolution in live animals, presenting an opportunity for new insights into in vivo biology. Unfortunately, physiological induced motion components due to respiration and cardiac activity are major sources of image artifacts and impose severe limitations on the effective imaging resolution that can be ultimately achieved in vivo. Here we present a novel imaging methodology capable of automatically removing motion artifacts during intravital microscopy imaging of organs and orthotopic tumors. The method is universally applicable to different laser scanning modalities including confocal and multiphoton microscopy, and offers artifact free reconstructions independent of the physiological motion source and imaged organ. The methodology, which is based on raw data acquisition followed by image processing, is here demonstrated for both cardiac and respiratory motion compensation in mice heart, kidney, liver, pancreas and dorsal window chamber.

  8. Automated motion artifact removal for intravital microscopy, without a priori information

    PubMed Central

    Lee, Sungon; Vinegoni, Claudio; Sebas, Matthew; Weissleder, Ralph

    2014-01-01

    Intravital fluorescence microscopy, through extended penetration depth and imaging resolution, provides the ability to image at cellular and subcellular resolution in live animals, presenting an opportunity for new insights into in vivo biology. Unfortunately, physiological induced motion components due to respiration and cardiac activity are major sources of image artifacts and impose severe limitations on the effective imaging resolution that can be ultimately achieved in vivo. Here we present a novel imaging methodology capable of automatically removing motion artifacts during intravital microscopy imaging of organs and orthotopic tumors. The method is universally applicable to different laser scanning modalities including confocal and multiphoton microscopy, and offers artifact free reconstructions independent of the physiological motion source and imaged organ. The methodology, which is based on raw data acquisition followed by image processing, is here demonstrated for both cardiac and respiratory motion compensation in mice heart, kidney, liver, pancreas and dorsal window chamber. PMID:24676021

  9. Investigating Student Ideas about Cosmology III: Big Bang Theory, Expansion, Age, and History of the Universe

    ERIC Educational Resources Information Center

    Trouille, Laura E.; Coble, Kim; Cochran, Geraldine L.; Bailey, Janelle M.; Camarillo, Carmen T.; Nickerson, Melissa D.; Cominsky, Lynn R.

    2013-01-01

    We have undertaken a multi-semester study of student ideas in an undergraduate general education astronomy integrated lecture and lab course with a focus on active learning at an urban, minority serving institution. We collected individual interviews ("N" = 15) and course artifacts ("N" approximately 60), such as pre-course…

  10. Forming maps of targets having multiple reflectors with a biomimetic audible sonar.

    PubMed

    Kuc, Roman

    2018-05-01

    A biomimetic audible sonar mimics human echolocation by emitting clicks and sensing echoes binaurally to investigate the limitations in acoustic mapping of 2.5 dimensional targets. A monaural sonar that provides only echo time-of-flight values produces biased maps that lie outside the target surfaces. Reflector bearing estimates derived from the first echoes detected by a binaural sonar are employed to form unbiased maps. Multiple echoes from a target introduce phantom-reflector artifacts into its map because later echoes are produced by reflectors at bearings different from those determined from the first echoes. In addition, overlapping echoes interfere to produce bearing errors. Addressing the causes of these bearing errors motivates a processing approach that employs template matching to extract valid echoes. Interfering echoes can mimic a valid echo and also form PR artifacts. These artifacts are eliminated by recognizing the bearing fluctuations that characterize echo interference. Removing PR artifacts produces a map that resembles the physical target shape to within the resolution capabilities of the sonar. The remaining differences between the target shape and the final map are void artifacts caused by invalid or missing echoes.

  11. Online EEG artifact removal for BCI applications by adaptive spatial filtering.

    PubMed

    Guarnieri, Roberto; Marino, Marco; Barban, Federico; Ganzetti, Marco; Mantini, Dante

    2018-06-28

    The performance of brain computer interfaces (BCIs) based on electroencephalography (EEG) data strongly depends on the effective attenuation of artifacts that are mixed in the recordings. To address this problem, we have developed a novel online EEG artifact removal method for BCI applications, which combines blind source separation (BSS) and regression (REG) analysis. The BSS-REG method relies on the availability of a calibration dataset of limited duration for the initialization of a spatial filter using BSS. Online artifact removal is implemented by dynamically adjusting the spatial filter in the actual experiment, based on a linear regression technique. Our results showed that the BSS-REG method is capable of attenuating different kinds of artifacts, including ocular and muscular, while preserving true neural activity. Thanks to its low computational requirements, BSS-REG can be applied to low-density as well as high-density EEG data. We argue that BSS-REG may enable the development of novel BCI applications requiring high-density recordings, such as source-based neurofeedback and closed-loop neuromodulation. © 2018 IOP Publishing Ltd.

  12. Human-Robot Collaboration Dynamic Impact Testing and Calibration Instrument for Disposable Robot Safety Artifacts

    PubMed Central

    Dagalakis, Nicholas G.; Yoo, Jae Myung; Oeste, Thomas

    2017-01-01

    The Dynamic Impact Testing and Calibration Instrument (DITCI) is a simple instrument with a significant data collection and analysis capability that is used for the testing and calibration of biosimulant human tissue artifacts. These artifacts may be used to measure the severity of injuries caused in the case of a robot impact with a human. In this paper we describe the DITCI adjustable impact and flexible foundation mechanism, which allows the selection of a variety of impact force levels and foundation stiffness. The instrument can accommodate arrays of a variety of sensors and impact tools, simulating both real manufacturing tools and the testing requirements of standards setting organizations. A computer data acquisition system may collect a variety of impact motion, force, and torque data, which are used to develop a variety of mathematical model representations of the artifacts. Finally, we describe the fabrication and testing of human abdomen soft tissue artifacts, used to display the magnitude of impact tissue deformation. Impact tests were performed at various maximum impact force and average pressure levels. PMID:28579658

  13. Human-Robot Collaboration Dynamic Impact Testing and Calibration Instrument for Disposable Robot Safety Artifacts.

    PubMed

    Dagalakis, Nicholas G; Yoo, Jae Myung; Oeste, Thomas

    2016-01-01

    The Dynamic Impact Testing and Calibration Instrument (DITCI) is a simple instrument with a significant data collection and analysis capability that is used for the testing and calibration of biosimulant human tissue artifacts. These artifacts may be used to measure the severity of injuries caused in the case of a robot impact with a human. In this paper we describe the DITCI adjustable impact and flexible foundation mechanism, which allows the selection of a variety of impact force levels and foundation stiffness. The instrument can accommodate arrays of a variety of sensors and impact tools, simulating both real manufacturing tools and the testing requirements of standards setting organizations. A computer data acquisition system may collect a variety of impact motion, force, and torque data, which are used to develop a variety of mathematical model representations of the artifacts. Finally, we describe the fabrication and testing of human abdomen soft tissue artifacts, used to display the magnitude of impact tissue deformation. Impact tests were performed at various maximum impact force and average pressure levels.

  14. Use of Video Goggles to Distract Patients During PET/CT Studies of School-Aged Children.

    PubMed

    Gelfand, Michael J; Harris, Jennifer M; Rich, Amanda C; Kist, Chelsea S

    2016-12-01

    This study was designed to evaluate the effectiveness of video goggles in distracting children undergoing PET/CT and to determine whether the goggles create CT and PET artifacts. Video goggles with small amounts of internal radioopaque material were used. During whole-body PET/CT imaging, 30 nonsedated patients aged 4-13 y watched videos of their choice using the goggles. Fifteen of the PET/CT studies were performed on a scanner installed in 2006, and the other 15 were performed on a scanner installed in 2013. The fused scans were reviewed for evidence of head movement, and the individual PET and CT scans of the head were reviewed for the presence and severity of streak artifact. The CT exposure settings were recorded for each scan at the anatomic level at which the goggles were worn. Only one of the 30 scans had evidence of significant head motion. Two of the 30 had minor coregistration problems due to motion, and 27 of the 30 had very good to excellent coregistration. For the 2006 scanner, 2 of the 14 evaluable localization CT scans of the head demonstrated no streak artifact in brain tissue, 6 of the 14 had mild streak artifact in brain tissue, and 6 of the 14 had moderate streak artifact in brain tissue. Mild streak artifact in bone was noted in 2 of the 14 studies. For the 2013 scanner, 7 of 15 studies had mild streak artifact in brain tissue and 8 of 15 had no streak artifact in brain tissue, whereas none of the 15 had streak artifact in bone. There were no artifacts attributable to the goggles on the 18 F-FDG PET brain images of any of the 29 evaluable studies. The average CT exposure parameters at the level of the orbits were 36% lower on the 2013 scanner than on the 2006 scanner. Video goggles may be used successfully to distract children undergoing PET with localization CT. The goggles cause no significant degradation of the PET brain images or the CT skull images. The degree of artifact on brain tissue images varies from none to moderate and depends on the CT equipment used. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  15. A Model-Driven, Science Data Product Registration Service

    NASA Astrophysics Data System (ADS)

    Hardman, S.; Ramirez, P.; Hughes, J. S.; Joyner, R.; Cayanan, M.; Lee, H.; Crichton, D. J.

    2011-12-01

    The Planetary Data System (PDS) has undertaken an effort to overhaul the PDS data architecture (including the data model, data structures, data dictionary, etc.) and to deploy an upgraded software system (including data services, distributed data catalog, etc.) that fully embraces the PDS federation as an integrated system while taking advantage of modern innovations in information technology (including networking capabilities, processing speeds, and software breakthroughs). A core component of this new system is the Registry Service that will provide functionality for tracking, auditing, locating, and maintaining artifacts within the system. These artifacts can range from data files and label files, schemas, dictionary definitions for objects and elements, documents, services, etc. This service offers a single reference implementation of the registry capabilities detailed in the Consultative Committee for Space Data Systems (CCSDS) Registry Reference Model White Book. The CCSDS Reference Model in turn relies heavily on the Electronic Business using eXtensible Markup Language (ebXML) standards for registry services and the registry information model, managed by the OASIS consortium. Registries are pervasive components in most information systems. For example, data dictionaries, service registries, LDAP directory services, and even databases provide registry-like services. These all include an account of informational items that are used in large-scale information systems ranging from data values such as names and codes, to vocabularies, services and software components. The problem is that many of these registry-like services were designed with their own data models associated with the specific type of artifact they track. Additionally these services each have their own specific interface for interacting with the service. This Registry Service implements the data model specified in the ebXML Registry Information Model (RIM) specification that supports the various artifacts above as well as offering the flexibility to support customer-defined artifacts. Key features for the Registry Service include: - Model-based configuration specifying customer-defined artifact types, metadata attributes to capture for each artifact type, supported associations and classification schemes. - A REST-based external interface that is accessible via the Hypertext Transfer Protocol (HTTP). - Federation of Registry Service instances allowing associations between registered artifacts across registries as well as queries for artifacts across those same registries. A federation also enables features such as replication and synchronization if desired for a given deployment. In addition to its use as a core component of the PDS, the generic implementation of the Registry Service facilitates its applicability as a core component in any science data archive or science data system.

  16. Intermolecular artifacts in probe microscope images of C60 assemblies

    NASA Astrophysics Data System (ADS)

    Jarvis, Samuel Paul; Rashid, Mohammad Abdur; Sweetman, Adam; Leaf, Jeremy; Taylor, Simon; Moriarty, Philip; Dunn, Janette

    2015-12-01

    Claims that dynamic force microscopy has the capability to resolve intermolecular bonds in real space continue to be vigorously debated. To date, studies have been restricted to planar molecular assemblies with small separations between neighboring molecules. Here we report the observation of intermolecular artifacts over much larger distances in 2D assemblies of C60 molecules, with compelling evidence that in our case the tip apex is terminated by a C60 molecule (rather than the CO termination typically exploited in ultrahigh resolution force microscopy). The complete absence of directional interactions such as hydrogen or halogen bonding, the nonplanar structure of C60, and the fullerene termination of the tip apex in our case highlight that intermolecular artifacts are ubiquitous in dynamic force microscopy.

  17. SAR measurements of surface displacements at Augustine Volcano, Alaska from 1992 to 2005

    USGS Publications Warehouse

    Lee, C.-W.; Lu, Z.; Kwoun, Oh-Ig

    2007-01-01

    Augustine volcano is an active stratovolcano located at the southwest of Anchorage, Alaska. Augustine volcano had experienced seven significantly explosive eruptions in 1812, 1883, 1908, 1935, 1963, 1976, and 1986, and a minor eruption in January 2006. We measured the surface displacements of the volcano by radar interferometry and GPS before and after the eruption in 2006. ERS-1/2, RADARSAT-1 and ENVISAT SAR data were used for the study. Multiple interferograms were stacked to reduce artifacts caused by different atmospheric conditions. Least square (LS) method was used to reduce atmospheric artifacts. Singular value decomposition (SVD) method was applied for retrieval of time sequential deformations. Satellite radar interferometry helps to understand the surface displacements system of Augustine volcano. ?? 2007 IEEE.

  18. SAR measurements of surface displacements at Augustine Volcano, Alaska from 1992 to 2005

    USGS Publications Warehouse

    Lee, C.-W.; Lu, Z.; Kwoun, Oh-Ig

    2008-01-01

    Augustine volcano is an active stratovolcano located at the southwest of Anchorage, Alaska. Augustine volcano had experienced seven significantly explosive eruptions in 1812, 1883, 1908, 1935, 1963, 1976, and 1986, and a minor eruption in January 2006. We measured the surface displacements of the volcano by radar interferometry and GPS before and after the eruption in 2006. ERS-1/2, RADARSAT-1 and ENVISAT SAR data were used for the study. Multiple interferograms were stacked to reduce artifacts caused by different atmospheric conditions. Least square (LS) method was used to reduce atmospheric artifacts. Singular value decomposition (SVD) method was applied for retrieval of time sequential deformations. Satellite radar interferometry helps to understand the surface displacements system of Augustine volcano. ?? 2007 IEEE.

  19. SU-C-206-03: Metal Artifact Reduction in X-Ray Computed Tomography Based On Local Anatomical Similarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, X; Yang, X; Rosenfield, J

    Purpose: Metal implants such as orthopedic hardware and dental fillings cause severe bright and dark streaking in reconstructed CT images. These artifacts decrease image contrast and degrade HU accuracy, leading to inaccuracies in target delineation and dose calculation. Additionally, such artifacts negatively impact patient set-up in image guided radiation therapy (IGRT). In this work, we propose a novel method for metal artifact reduction which utilizes the anatomical similarity between neighboring CT slices. Methods: Neighboring CT slices show similar anatomy. Based on this anatomical similarity, the proposed method replaces corrupted CT pixels with pixels from adjacent, artifact-free slices. A gamma map,more » which is the weighted summation of relative HU error and distance error, is calculated for each pixel in the artifact-corrupted CT image. The minimum value in each pixel’s gamma map is used to identify a pixel from the adjacent CT slice to replace the corresponding artifact-corrupted pixel. This replacement only occurs if the minimum value in a particular pixel’s gamma map is larger than a threshold. The proposed method was evaluated with clinical images. Results: Highly attenuating dental fillings and hip implants cause severe streaking artifacts on CT images. The proposed method eliminates the dark and bright streaking and improves the implant delineation and visibility. In particular, the image non-uniformity in the central region of interest was reduced from 1.88 and 1.01 to 0.28 and 0.35, respectively. Further, the mean CT HU error was reduced from 328 HU and 460 HU to 60 HU and 36 HU, respectively. Conclusions: The proposed metal artifact reduction method replaces corrupted image pixels with pixels from neighboring slices that are free of metal artifacts. This method proved capable of suppressing streaking artifacts, improving HU accuracy and image detectability.« less

  20. Correction for Eddy Current-Induced Echo-Shifting Effect in Partial-Fourier Diffusion Tensor Imaging.

    PubMed

    Truong, Trong-Kha; Song, Allen W; Chen, Nan-Kuei

    2015-01-01

    In most diffusion tensor imaging (DTI) studies, images are acquired with either a partial-Fourier or a parallel partial-Fourier echo-planar imaging (EPI) sequence, in order to shorten the echo time and increase the signal-to-noise ratio (SNR). However, eddy currents induced by the diffusion-sensitizing gradients can often lead to a shift of the echo in k-space, resulting in three distinct types of artifacts in partial-Fourier DTI. Here, we present an improved DTI acquisition and reconstruction scheme, capable of generating high-quality and high-SNR DTI data without eddy current-induced artifacts. This new scheme consists of three components, respectively, addressing the three distinct types of artifacts. First, a k-space energy-anchored DTI sequence is designed to recover eddy current-induced signal loss (i.e., Type 1 artifact). Second, a multischeme partial-Fourier reconstruction is used to eliminate artificial signal elevation (i.e., Type 2 artifact) associated with the conventional partial-Fourier reconstruction. Third, a signal intensity correction is applied to remove artificial signal modulations due to eddy current-induced erroneous T2(∗) -weighting (i.e., Type 3 artifact). These systematic improvements will greatly increase the consistency and accuracy of DTI measurements, expanding the utility of DTI in translational applications where quantitative robustness is much needed.

  1. Correction for Eddy Current-Induced Echo-Shifting Effect in Partial-Fourier Diffusion Tensor Imaging

    PubMed Central

    Truong, Trong-Kha; Song, Allen W.; Chen, Nan-kuei

    2015-01-01

    In most diffusion tensor imaging (DTI) studies, images are acquired with either a partial-Fourier or a parallel partial-Fourier echo-planar imaging (EPI) sequence, in order to shorten the echo time and increase the signal-to-noise ratio (SNR). However, eddy currents induced by the diffusion-sensitizing gradients can often lead to a shift of the echo in k-space, resulting in three distinct types of artifacts in partial-Fourier DTI. Here, we present an improved DTI acquisition and reconstruction scheme, capable of generating high-quality and high-SNR DTI data without eddy current-induced artifacts. This new scheme consists of three components, respectively, addressing the three distinct types of artifacts. First, a k-space energy-anchored DTI sequence is designed to recover eddy current-induced signal loss (i.e., Type 1 artifact). Second, a multischeme partial-Fourier reconstruction is used to eliminate artificial signal elevation (i.e., Type 2 artifact) associated with the conventional partial-Fourier reconstruction. Third, a signal intensity correction is applied to remove artificial signal modulations due to eddy current-induced erroneous T 2 ∗-weighting (i.e., Type 3 artifact). These systematic improvements will greatly increase the consistency and accuracy of DTI measurements, expanding the utility of DTI in translational applications where quantitative robustness is much needed. PMID:26413505

  2. Test of Slope and Intercept Bias in College Admissions: A Response to Aguinis, Culpepper, and Pierce (2010)

    ERIC Educational Resources Information Center

    Mattern, Krista D.; Patterson, Brian F.

    2013-01-01

    Research on the predictive bias of cognitive tests has generally shown (a) no slope effects and (b) small intercept effects, typically favoring the minority group. Aguinis, Culpepper, and Pierce (2010) simulated data and demonstrated that statistical artifacts may have led to a lack of power to detect slope differences and an overestimate of the…

  3. Artifacts and noise removal in electrocardiograms using independent component analysis.

    PubMed

    Chawla, M P S; Verma, H K; Kumar, Vinod

    2008-09-26

    Independent component analysis (ICA) is a novel technique capable of separating independent components from electrocardiogram (ECG) complex signals. The purpose of this analysis is to evaluate the effectiveness of ICA in removing artifacts and noise from ECG recordings. ICA is applied to remove artifacts and noise in ECG segments of either an individual ECG CSE data base file or all files. The reconstructed ECGs are compared with the original ECG signal. For the four special cases discussed, the R-Peak magnitudes of the CSE data base ECG waveforms before and after applying ICA are also found. In the results, it is shown that in most of the cases, the percentage error in reconstruction is very small. The results show that there is a significant improvement in signal quality, i.e. SNR. All the ECG recording cases dealt showed an improved ECG appearance after the use of ICA. This establishes the efficacy of ICA in elimination of noise and artifacts in electrocardiograms.

  4. Growing Up of Autonomous Agents: an Emergent Phenomenon

    NASA Astrophysics Data System (ADS)

    Morgavi, Giovanna; Marconi, Lucia

    2008-10-01

    A fundamental research challenge is the design of robust artifacts that are capable of operating under changing environments and noisy input, and yet exhibit the desired behavior and response time. These systems should be able to adapt and learn how to react to unforeseen scenarios as well as to display properties comparable to biological entities. The turn to nature has brought us many unforeseen great concepts. Biological systems are able to handle many of these challenges with an elegance and efficiency still far beyond current human artifacts. A living artifact grows up when its capabilities, abilities/knowledge, shift to a further level of complexity, i.e. the complexity rank of its internal capabilities performs a step forward. In the attempt to define an architecture for autonomous growing up agents [1]. We conducted an experiment on the abstraction process in children as natural parts of a cognitive system. We found that linguistic growing up involve a number of different trial processes. We identified a fixed number of distinct paths that were crossed by children. Once a given interpretation paths was discovered useless, they tried to follow another path, until the new meaning was emerging. This study generates suggestion about the evolutionary conditions conducive to the emergence of growing up in robots and provides guidelines for designing artificial evolutionary systems displaying spontaneous adaptation abilities. The importance of multi-sensor perception, motivation and emotional drives are underlined and, above all, the growing up insights shows similarities to emergent self-organized behaviors.

  5. Cervical external immobilization devices: evaluation of magnetic resonance imaging issues at 3.0 Tesla.

    PubMed

    Diaz, Francis L; Tweardy, Lisa; Shellock, Frank G

    2010-02-15

    Laboratory investigation, ex vivo. Currently, no studies have addressed the magnetic resonance imaging (MRI) issues for cervical external immobilization devices at 3-Tesla. Under certain conditions significant heating may occur, resulting in patient burns. Furthermore, artifacts can be substantial and prevent the diagnostic use of MRI. Therefore, the objective of this investigation was to evaluate MRI issues for 4 different cervical external immobilization devices at 3-Tesla. Excessive heating and substantial artifacts are 2 potential complications associated with performing MRI at 3-Tesla in patients with cervical external immobilization devices. Using ex vivo testing techniques, MRI-related heating and artifacts were evaluated for 4 different cervical devices during MRI at 3-Tesla. Four cervical external immobilization devices (Generation 80, Resolve Ring and Superstructure, Resolve Ring and Jerome Vest/Jerome Superstructure, and the V1 Halo System; Ossur Americas, Aliso Viejo, CA) underwent MRI testing at 3-Tesla. All devices were made from nonmetallic or nonmagnetic materials. Heating was determined using a gelled-saline-filled skull phantom with fluoroptic thermometry probes attached to the skull pins. MRI was performed at 3-Tesla, using a high level of RF energy. Artifacts were assessed at 3-Tesla, using standard cervical imaging techniques. The Generation 80 and V1 Halo devices exhibited substantial temperature rises (11.6 degrees C and 8.5 degrees C, respectively), with "sparking" evident for the Generation 80 during the MRI procedure. Artifacts were problematic for these devices, as well. By comparison, the 2 Resolve Ring-based cervical external immobilization devices showed little or no heating (< or = 0.6 degrees C) and the artifacts were acceptable for diagnostic MRI examinations. The low degree of heating and minor artifacts associated with the Resolve-based cervical external immobilization devices indicated that these products are safe for patients undergoing MRI at 3-Tesla.

  6. TU-H-CAMPUS-JeP1-04: Deformable Image Registration Performances in Pelvis Patients: Impact of CBCT Image Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fusella, M; Loi, G; Fiandra, C

    Purpose: To investigate the accuracy and robustness, against image noise and artifacts (typical of CBCT images), of a commercial algorithm for deformable image registration (DIR), to propagate regions of interest (ROIs) in computational phantoms based on real prostate patient images. Methods: The Anaconda DIR algorithm, implemented in RayStation was tested. Two specific Deformation Vector Fields (DVFs) were applied to the reference data set (CTref) using the ImSimQA software, obtaining two deformed CTs. For each dataset twenty-four different level of noise and/or capping artifacts were applied to simulate CBCT images. DIR was performed between CTref and each deformed CTs and CBCTs.more » In order to investigate the relationship between image quality parameters and the DIR results (expressed by a logit transform of the Dice Index) a bilinear regression was defined. Results: More than 550 DIR-mapped ROIs were analyzed. The Statistical analysis states that deformation strenght and artifacts were significant prognostic factors of DIR performances, while noise appeared to have a minor role in DIR process as implemented in RayStation as expected by the image similarity metric built in the registration algorithm. Capping artifacts reveals a determinant role for the accuracy of DIR results. Two optimal values for capping artifacts were found to obtain acceptable DIR results (DICE> 075/ 0.85). Various clinical CBCT acquisition protocol were reported to evaluate the significance of the study. Conclusion: This work illustrates the impact of image quality on DIR performance. Clinical issues like Adaptive Radiation Therapy (ART) and Dose Accumulation need accurate and robust DIR software. The RayStation DIR algorithm resulted robust against noise, but sensitive to image artifacts. This result highlights the need of robustness quality assurance against image noise and artifacts in the commissioning of a DIR commercial system and underlines the importance to adopt optimized protocols for CBCT image acquisitions in ART clinical implementation.« less

  7. Segmentation-free empirical beam hardening correction for CT.

    PubMed

    Schüller, Sören; Sawall, Stefan; Stannigel, Kai; Hülsbusch, Markus; Ulrici, Johannes; Hell, Erich; Kachelrieß, Marc

    2015-02-01

    The polychromatic nature of the x-ray beams and their effects on the reconstructed image are often disregarded during standard image reconstruction. This leads to cupping and beam hardening artifacts inside the reconstructed volume. To correct for a general cupping, methods like water precorrection exist. They correct the hardening of the spectrum during the penetration of the measured object only for the major tissue class. In contrast, more complex artifacts like streaks between dense objects need other techniques of correction. If using only the information of one single energy scan, there are two types of corrections. The first one is a physical approach. Thereby, artifacts can be reproduced and corrected within the original reconstruction by using assumptions in a polychromatic forward projector. These assumptions could be the used spectrum, the detector response, the physical attenuation and scatter properties of the intersected materials. A second method is an empirical approach, which does not rely on much prior knowledge. This so-called empirical beam hardening correction (EBHC) and the previously mentioned physical-based technique are both relying on a segmentation of the present tissues inside the patient. The difficulty thereby is that beam hardening by itself, scatter, and other effects, which diminish the image quality also disturb the correct tissue classification and thereby reduce the accuracy of the two known classes of correction techniques. The herein proposed method works similar to the empirical beam hardening correction but does not require a tissue segmentation and therefore shows improvements on image data, which are highly degraded by noise and artifacts. Furthermore, the new algorithm is designed in a way that no additional calibration or parameter fitting is needed. To overcome the segmentation of tissues, the authors propose a histogram deformation of their primary reconstructed CT image. This step is essential for the proposed algorithm to be segmentation-free (sf). This deformation leads to a nonlinear accentuation of higher CT-values. The original volume and the gray value deformed volume are monochromatically forward projected. The two projection sets are then monomially combined and reconstructed to generate sets of basis volumes which are used for correction. This is done by maximization of the image flatness due to adding additionally a weighted sum of these basis images. sfEBHC is evaluated on polychromatic simulations, phantom measurements, and patient data. The raw data sets were acquired by a dual source spiral CT scanner, a digital volume tomograph, and a dual source micro CT. Different phantom and patient data were used to illustrate the performance and wide range of usability of sfEBHC across different scanning scenarios. The artifact correction capabilities are compared to EBHC. All investigated cases show equal or improved image quality compared to the standard EBHC approach. The artifact correction is capable of correcting beam hardening artifacts for different scan parameters and scan scenarios. sfEBHC generates beam hardening-reduced images and is furthermore capable of dealing with images which are affected by high noise and strong artifacts. The algorithm can be used to recover structures which are hardly visible inside the beam hardening-affected regions.

  8. Segmentation-free empirical beam hardening correction for CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schüller, Sören; Sawall, Stefan; Stannigel, Kai

    2015-02-15

    Purpose: The polychromatic nature of the x-ray beams and their effects on the reconstructed image are often disregarded during standard image reconstruction. This leads to cupping and beam hardening artifacts inside the reconstructed volume. To correct for a general cupping, methods like water precorrection exist. They correct the hardening of the spectrum during the penetration of the measured object only for the major tissue class. In contrast, more complex artifacts like streaks between dense objects need other techniques of correction. If using only the information of one single energy scan, there are two types of corrections. The first one ismore » a physical approach. Thereby, artifacts can be reproduced and corrected within the original reconstruction by using assumptions in a polychromatic forward projector. These assumptions could be the used spectrum, the detector response, the physical attenuation and scatter properties of the intersected materials. A second method is an empirical approach, which does not rely on much prior knowledge. This so-called empirical beam hardening correction (EBHC) and the previously mentioned physical-based technique are both relying on a segmentation of the present tissues inside the patient. The difficulty thereby is that beam hardening by itself, scatter, and other effects, which diminish the image quality also disturb the correct tissue classification and thereby reduce the accuracy of the two known classes of correction techniques. The herein proposed method works similar to the empirical beam hardening correction but does not require a tissue segmentation and therefore shows improvements on image data, which are highly degraded by noise and artifacts. Furthermore, the new algorithm is designed in a way that no additional calibration or parameter fitting is needed. Methods: To overcome the segmentation of tissues, the authors propose a histogram deformation of their primary reconstructed CT image. This step is essential for the proposed algorithm to be segmentation-free (sf). This deformation leads to a nonlinear accentuation of higher CT-values. The original volume and the gray value deformed volume are monochromatically forward projected. The two projection sets are then monomially combined and reconstructed to generate sets of basis volumes which are used for correction. This is done by maximization of the image flatness due to adding additionally a weighted sum of these basis images. sfEBHC is evaluated on polychromatic simulations, phantom measurements, and patient data. The raw data sets were acquired by a dual source spiral CT scanner, a digital volume tomograph, and a dual source micro CT. Different phantom and patient data were used to illustrate the performance and wide range of usability of sfEBHC across different scanning scenarios. The artifact correction capabilities are compared to EBHC. Results: All investigated cases show equal or improved image quality compared to the standard EBHC approach. The artifact correction is capable of correcting beam hardening artifacts for different scan parameters and scan scenarios. Conclusions: sfEBHC generates beam hardening-reduced images and is furthermore capable of dealing with images which are affected by high noise and strong artifacts. The algorithm can be used to recover structures which are hardly visible inside the beam hardening-affected regions.« less

  9. Determination of the origin and texture of marble artifacts using stable isotopes

    NASA Astrophysics Data System (ADS)

    Dotsika, E.; Poutoukis, D.; Zisi, N.; Psomiadis, D.

    2009-04-01

    For the characterization of marble and the identification of the origin of marble artifacts, samples from several ancient monuments of Greece were analyzed using several techniques: stable isotopes of carbonates (13C, 18O), XRD analysis and optical microscopy, from which information can be obtained on the origin and texture of the marble used for the production of the artifacts. The full range of grain sizes and isotopic signatures that occur in a lot of different quarries has been measured and presented. In a δ13C versus δ18O diagram, the fields corresponding to all known ancient quarries (from Penteli, Cyclades, especially Naxos (Mela, Apol, Apir, Senax), Keros, Paros (Parlak, Parlyc) and Asia Minor (Prokon)) are reported. The plots representing the analyzed samples are also shown on the same diagram. The final results of the study indicate the origin of the carbonate material of the artefacts from each of the ancient monument. In cases that the samples plot on overlapping areas, a further study is proposed, using the maximum grain size of the material.

  10. The benefit of using chemical analysis in understanding archaeological glass. Case-study: Roman black glass

    NASA Astrophysics Data System (ADS)

    Cosyns, P.; Cagno, S.; Janssens, K.; Nys, K.

    LA-ICP-MS is a well acquainted technique for the quantification of a wide range of minor and trace elements present in the glass matrix. The benefit to understand the changes in technological processes or the added value in assessing the provenance and chronology of the raw glass material is however rarely discussed. By selecting a set of 197 Roman black glass artifacts dating between the 1st and 5th century AD we aimed to contribute to this issue. The obtained data on the production of glass artifacts helps better understand the constantly evolving patterns in glass consumption throughout the Roman imperial period. The key trace elements linked with the sand generally show the use of Levantine and Egyptian raw glass to produce black glass artifacts and result in well defined clusters. These indications are evidence for the use of different raw glasses in the Roman Empire and therefore featuring the work of diverse workshops over time. Specific trace elements such as copper, cobalt and lead reflect the application of recycling glass in Roman times.

  11. Analysis of Thousands of Prehistoric Mediterranean Obsidian Artifacts Using a Nondestructive Portable X-Ray Fluorescence Spectrometer

    NASA Astrophysics Data System (ADS)

    Tykot, Robert

    A portable, hand-held X-ray fluorescence spectrometer has been used for a decade to elementally analyze prehistoric obsidian artifacts in the Mediterranean. Nearly 400 geological obsidian samples and 7500 obsidian artifacts have been analyzed. The pXRF can distinguish all individual sources, as well as assign artifacts specifically to most subsources. For the island sources of Lipari, Pantelleria, Sardinia, and Melos, it is important to address the usage of obsidian from specific subsources due to human selection based on physical properties of the raw material and their production practices, which may have changed over time from the Early Neolithic to the Bronze Age. The analysis of 50 or more artifacts from 60 different archaeological sites allows for statistical comparison between sites, and their contexts, geographic areas (e.g. coastal/inland, highland/lowland) and distance from geological sources. The frequency of transport between island sources and mainland sites is suggestive of maritime capabilities also for the transport of domesticated animals, ceramics, and other materials. This presentation will specifically address potential limitations of the portable XRF, including non-destructive surface analysis of potentially heterogeneous materials, and limited trace element detection compared to other analytical methods, versus its highly beneficial ``package'' of analyzing great numbers of artifacts non-destructively and rapidly without needing to export them from museums and facilities in many countries.

  12. Program Facilitates CMMI Appraisals

    NASA Technical Reports Server (NTRS)

    Sweetser, Wesley

    2005-01-01

    A computer program has been written to facilitate appraisals according to the methodology of Capability Maturity Model Integration (CMMI). [CMMI is a government/industry standard, maintained by the Software Engineering Institute at Carnegie Mellon University, for objectively assessing the engineering capability and maturity of an organization (especially, an organization that produces software)]. The program assists in preparation for a CMMI appraisal by providing drop-down lists suggesting required artifacts or evidence. It identifies process areas for which similar evidence is required and includes a copy feature that reduces or eliminates repetitive data entry. It generates reports to show the entire framework for reference, the appraisal artifacts to determine readiness for an appraisal, and lists of interviewees and questions to ask them during the appraisal. During an appraisal, the program provides screens for entering observations and ratings, and reviewing evidence provided thus far. Findings concerning strengths and weaknesses can be exported for use in a report or a graphical presentation. The program generates a chart showing capability level ratings of the organization. A context-sensitive Windows help system enables a novice to use the program and learn about the CMMI appraisal process.

  13. Development of a new biodegradable operative clip made of a magnesium alloy: Evaluation of its safety and tolerability for canine cholecystectomy.

    PubMed

    Yoshida, Toshihiko; Fukumoto, Takumi; Urade, Takeshi; Kido, Masahiro; Toyama, Hirochika; Asari, Sadaki; Ajiki, Tetsuo; Ikeo, Naoko; Mukai, Toshiji; Ku, Yonson

    2017-06-01

    Operative clips used to ligate vessels in abdominal operation usually are made of titanium. They remain in the body permanently and form metallic artifacts in computed tomography images, which impair accurate diagnosis. Although biodegradable magnesium instruments have been developed in other fields, the physical properties necessary for operative clips differ from those of other instruments. We developed a biodegradable magnesium-zinc-calcium alloy clip with good biologic compatibility and enough clamping capability as an operative clip. In this study, we verified the safety and tolerability of this clip for use in canine cholecystectomy. Nine female beagles were used. We performed cholecystectomy and ligated the cystic duct by magnesium alloy or titanium clips. The chronologic change of clips and artifact formation were compared at 1, 4, 12, 18, and 24 weeks postoperative by computed tomography. The animals were killed at the end of the observation period, and the clips were removed to evaluate their biodegradability. We also evaluated their effect on the living body by blood biochemistry data. The magnesium alloy clip formed much fewer artifacts than the titanium clip, and it was almost absorbed at 6 months postoperative. There were no postoperative complications and no elevation of constituent elements such as magnesium, calcium, and zinc during the observation period in both groups. The novel magnesium alloy clip demonstrated sufficient sealing capability for the cystic duct and proper biodegradability in canine models. The magnesium alloy clip revealed much fewer metallic artifacts in CT than the conventional titanium clip. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Evaluation of magnetic resonance imaging issues for a wirelessly powered lead used for epidural, spinal cord stimulation.

    PubMed

    Shellock, Frank G; Audet-Griffin, Annabelle J

    2014-06-01

    The objective of this investigation was to evaluate magnetic resonance imaging (MRI) issues (magnetic field interactions, MRI-related heating, and artifacts) for a wirelessly powered lead used for spinal cord stimulation (SCS). A newly developed, wirelessly powered lead (Freedom-4, Stimwave Technologies Inc., Scottsdale, AZ, USA) underwent evaluation for magnetic field interactions (translational attraction and torque) at 3 Tesla, MRI-related heating at 1.5 Tesla/64 MHz and 3 Tesla/128 MHz, and artifacts at 3 Tesla using standardized techniques. MRI-related heating tests were conducted by placing the lead in a gelled-saline-filled phantom and performing MRI procedures using relatively high levels of radiofrequency energy. Artifacts were characterized using T1-weighted, spin echo (SE), and gradient echo (GRE) pulse sequences. The lead exhibited minor magnetic field interactions (2 degree deflection angle and no torque). Heating was not substantial under 1.5 Tesla/64 MHz (highest temperature change, 2.3°C) and 3 Tesla/128 MHz (highest temperature change, 2.2°C) MRI conditions. Artifacts were moderate in size relative to the size and shape of the lead. These findings demonstrated that it is acceptable for a patient with this wirelessly powered lead used for SCS to undergo MRI under the conditions utilized in this investigation and according to other necessary guidelines. Artifacts seen on magnetic resonance images may pose possible problems if the area of interest is in the same area or close to this lead. © 2013 International Neuromodulation Society.

  15. Diagnostic Capability of Peripapillary Retinal Volume Measurements in Glaucoma.

    PubMed

    Simavli, Huseyin; Poon, Linda Yi-Chieh; Que, Christian J; Liu, Yingna; Akduman, Mustafa; Tsikata, Edem; de Boer, Johannes F; Chen, Teresa C

    2017-06-01

    To determine the diagnostic capability of spectral domain optical coherence tomography peripapillary retinal volume (RV) measurements. A total of 156 patients, 89 primary open-angle glaucoma and 67 normal subjects, were recruited. Spectral domain optical coherence tomography peripapillary RV was calculated for 4 quadrants using 3 annuli of varying scan circle diameters: outer circumpapillary annuli of circular grids 1, 2, and 3 (OCA1, OCA2, OCA3). Area under the receiver operating characteristic curves and pairwise comparisons of receiver operating characteristic (ROC) curves were performed to determine which quadrants were best for diagnosing primary open-angle glaucoma. The pairwise comparisons of the best ROC curves for RV and retinal nerve fiber layer (RNFL) were performed. The artifact rates were analyzed. Pairwise comparisons showed that the smaller annuli OCA1 and OCA2 had better diagnostic performance than the largest annulus OCA3 (P<0.05 for all quadrants). OCA1 and OCA2 had similar diagnostic performance, except for the inferior quadrant which was better for OCA1 (P=0.0033). The pairwise comparisons of the best ROC curves for RV and RNFL were not statistically significant. RV measurements had lower rates of artifacts at 7.4% while RNFL measurements had higher rates at 42.9%. Peripapillary RV measurements have excellent ability for diagnosing not only glaucoma patients but also a subset of early glaucoma patients. The inferior quadrant of peripapillary annulus OCA1 demonstrated the best diagnostic capability for both glaucoma and early glaucoma. The diagnostic ability of RV is comparable with that of RNFL parameters in glaucoma but with lower artifact rates.

  16. Diagnostic Capability of Peripapillary Retinal Volume Measurements in Glaucoma

    PubMed Central

    Simavli, Huseyin; Poon, Linda Yi-Chieh; Que, Christian John; Liu, Yingna; Akduman, Mustafa; Tsikata, Edem; de Boer, Johannes F.; Chen, Teresa C.

    2017-01-01

    Purpose To determine the diagnostic capability of spectral domain optical coherence tomography (SD-OCT) peripapillary retinal volume (RV) measurements. Materials and Methods A total of 156 patients, 89 primary open angle (POAG) and 67 normal subjects, were recruited. SD-OCT peripapillary RV was calculated for four quadrants using 3 annuli of varying scan circle diameters: outer circumpapillary annuli of circular grids 1, 2, and 3 (OCA1, OCA2, OCA3). Area under the receiver operating characteristic (AUROC) curves and pairwise comparisons of receiver operating characteristic (ROC) curves were performed to determine which quadrants were best for diagnosing POAG. The pairwise comparisons of the best ROC curves for RV and RNFL were performed. The artifact rates were analyzed. Results Pairwise comparisons showed that the smaller annuli OCA1 and OCA2 had better diagnostic performance than the largest annulus OCA3 (p<0.05 for all quadrants). OCA1 and OCA2 had similar diagnostic performance, except for the inferior quadrant which was better for OCA1 (p=0.0033).The pairwise comparisons of the best ROC curves for RV and RNFL were not statistically significant. Retinal volume measurements had lower rates of artifacts at 7.4% while RNFL measurements had higher rates at 42.9%. Conclusion Peripapillary RV measurements have excellent ability for diagnosing not only glaucoma patients but also a subset of early glaucoma patients. The inferior quadrant of peripapillary annulus OCA1 demonstrated the best diagnostic capability for both glaucoma and early glaucoma. The diagnostic ability of RV is comparable to that of RNFL parameters in glaucoma but with lower artifact rates. PMID:28079657

  17. Gap cycling for SWIFT.

    PubMed

    Corum, Curtis A; Idiyatullin, Djaudat; Snyder, Carl J; Garwood, Michael

    2015-02-01

    SWIFT (SWeep Imaging with Fourier Transformation) is a non-Cartesian MRI method with unique features and capabilities. In SWIFT, radiofrequency (RF) excitation and reception are performed nearly simultaneously, by rapidly switching between transmit and receive during a frequency-swept RF pulse. Because both the transmitted pulse and data acquisition are simultaneously amplitude-modulated in SWIFT (in contrast to continuous RF excitation and uninterrupted data acquisition in more familiar MRI sequences), crosstalk between different frequency bands occurs in the data. This crosstalk leads to a "bulls-eye" artifact in SWIFT images. We present a method to cancel this interband crosstalk by cycling the pulse and receive gap positions relative to the un-gapped pulse shape. We call this strategy "gap cycling." We carry out theoretical analysis, simulation and experiments to characterize the signal chain, resulting artifacts, and their elimination for SWIFT. Theoretical analysis reveals the mechanism for gap-cycling's effectiveness in canceling interband crosstalk in the received data. We show phantom and in vivo results demonstrating bulls-eye artifact free images. Gap cycling is an effective method to remove bulls-eye artifact resulting from interband crosstalk in SWIFT data. © 2014 Wiley Periodicals, Inc.

  18. GPU-Based Simulation of Ultrasound Imaging Artifacts for Cryosurgery Training.

    PubMed

    Keelan, Robert; Shimada, Kenji; Rabin, Yoed

    2017-02-01

    This study presents an efficient computational technique for the simulation of ultrasound imaging artifacts associated with cryosurgery based on nonlinear ray tracing. This study is part of an ongoing effort to develop computerized training tools for cryosurgery, with prostate cryosurgery as a development model. The capability of performing virtual cryosurgical procedures on a variety of test cases is essential for effective surgical training. Simulated ultrasound imaging artifacts include reverberation and reflection of the cryoprobes in the unfrozen tissue, reflections caused by the freezing front, shadowing caused by the frozen region, and tissue property changes in repeated freeze-thaw cycles procedures. The simulated artifacts appear to preserve the key features observed in a clinical setting. This study displays an example of how training may benefit from toggling between the undisturbed ultrasound image, the simulated temperature field, the simulated imaging artifacts, and an augmented hybrid presentation of the temperature field superimposed on the ultrasound image. The proposed method is demonstrated on a graphic processing unit at 100 frames per second, on a mid-range personal workstation, at two orders of magnitude faster than a typical cryoprocedure. This performance is based on computation with C++ accelerated massive parallelism and its interoperability with the DirectX-rendering application programming interface.

  19. GPU-Based Simulation of Ultrasound Imaging Artifacts for Cryosurgery Training

    PubMed Central

    Keelan, Robert; Shimada, Kenji

    2016-01-01

    This study presents an efficient computational technique for the simulation of ultrasound imaging artifacts associated with cryosurgery based on nonlinear ray tracing. This study is part of an ongoing effort to develop computerized training tools for cryosurgery, with prostate cryosurgery as a development model. The capability of performing virtual cryosurgical procedures on a variety of test cases is essential for effective surgical training. Simulated ultrasound imaging artifacts include reverberation and reflection of the cryoprobes in the unfrozen tissue, reflections caused by the freezing front, shadowing caused by the frozen region, and tissue property changes in repeated freeze–thaw cycles procedures. The simulated artifacts appear to preserve the key features observed in a clinical setting. This study displays an example of how training may benefit from toggling between the undisturbed ultrasound image, the simulated temperature field, the simulated imaging artifacts, and an augmented hybrid presentation of the temperature field superimposed on the ultrasound image. The proposed method is demonstrated on a graphic processing unit at 100 frames per second, on a mid-range personal workstation, at two orders of magnitude faster than a typical cryoprocedure. This performance is based on computation with C++ accelerated massive parallelism and its interoperability with the DirectX-rendering application programming interface. PMID:26818026

  20. Eddy current compensation for delta relaxation enhanced MR by dynamic reference phase modulation.

    PubMed

    Hoelscher, Uvo Christoph; Jakob, Peter M

    2013-04-01

    Eddy current compensation by dynamic reference phase modulation (eDREAM) is a compensation method for eddy current fields induced by B 0 field-cycling which occur in delta relaxation enhanced MR (dreMR) imaging. The presented method is based on a dynamic frequency adjustment and prevents eddy current related artifacts. It is easy to implement and can be completely realized in software for any imaging sequence. In this paper, the theory of eDREAM is derived and two applications are demonstrated. The theory describes how to model the behavior of the eddy currents and how to implement the compensation. Phantom and in vivo measurements are carried out and demonstrate the benefits of eDREAM. A comparison of images acquired with and without eDREAM shows a significant improvement in dreMR image quality. Images without eDREAM suffer from severe artifacts and do not allow proper interpretation while images with eDREAM are artifact free. In vivo experiments demonstrate that dreMR imaging without eDREAM is not feasible as artifacts completely change the image contrast. eDREAM is a flexible eddy current compensation for dreMR. It is capable of completely removing the influence of eddy currents such that the dreMR images do not suffer from artifacts.

  1. Archaeology, Artifacts, and Cosmochemistry

    NASA Astrophysics Data System (ADS)

    Martel, L. M. V.

    2017-06-01

    PSRD covers research that ascertains the content, formation, and evolution of our Solar System and planetary systems in general. Our archives are full of sample-based studies of extraterrestrial materials that relate to the building of planets, moons, and minor bodies. Rarely do we cover the cosmochemistry of artifacts, but the importance of cosmochemistry is abundantly clear in this story of artisan iron beads of archaeological significance and the quest to find the source meteorite. Twenty-two meteoritic iron beads, recovered from mounds in Havana, Illinois of the Hopewell people and culture, have been identified as pieces of the Anoka iron meteorite, according to work by Timothy McCoy (National Museum of Natural History, Smithsonian Institution), Amy Marquardt (undergraduate intern at the NMNH/SI and now at the University of Colorado at Boulder), John Wasson (UCLA), Richard Ash (University of Maryland), and Edward Vicenzi (SI).

  2. What you can't feel won't hurt you: Evaluating haptic hardware using a haptic contrast sensitivity function.

    PubMed

    Salisbury, C M; Gillespie, R B; Tan, H Z; Barbagli, F; Salisbury, J K

    2011-01-01

    In this paper, we extend the concept of the contrast sensitivity function - used to evaluate video projectors - to the evaluation of haptic devices. We propose using human observers to determine if vibrations rendered using a given haptic device are accompanied by artifacts detectable to humans. This determination produces a performance measure that carries particular relevance to applications involving texture rendering. For cases in which a device produces detectable artifacts, we have developed a protocol that localizes deficiencies in device design and/or hardware implementation. In this paper, we present results from human vibration detection experiments carried out using three commercial haptic devices and one high performance voice coil motor. We found that all three commercial devices produced perceptible artifacts when rendering vibrations near human detection thresholds. Our protocol allowed us to pinpoint the deficiencies, however, and we were able to show that minor modifications to the haptic hardware were sufficient to make these devices well suited for rendering vibrations, and by extension, the vibratory components of textures. We generalize our findings to provide quantitative design guidelines that ensure the ability of haptic devices to proficiently render the vibratory components of textures.

  3. Implications of diamond-turned versus diamond-ground mold fabrication techniques on precision-molded optics

    NASA Astrophysics Data System (ADS)

    Mertus, Lou; Symmons, Alan

    2012-10-01

    In recent years, the trend within the molded optics community has been an overall advancement in the capability to diamond grind molds using a variety of grinding techniques. Improvements in grinding equipment, materials and tooling have enabled higher quality ceramic and carbide molds and thereby lenses. Diamond turned molds from ductile metals are still used prevalently throughout the molding industry. Each technology presents a unique set of advantages and disadvantages whether used for precision injection molding of plastic optics or precision glass molding. This paper reviews the manufacturing techniques for each approach and applicable molding process. The advantages and disadvantages of each are compared and analyzed. The subtle differences that exist in optics molded from each technique and the impact they have on the performance in various applications is reviewed. Differences stemming from tooling material properties, material-specific minor defects, as well as cutting and grinding process-induced artifacts are described in detail as well as their influence on the roughness, waviness, and form errors present on the molded surface. A comparison with results between similar surfaces for both diamond grinding and diamond turning is presented.

  4. Designing the Game: How a Project-Based Media Production Program Approaches STEAM Career Readiness for Underrepresented Young Adults

    NASA Astrophysics Data System (ADS)

    Bass, Kristin M.; Hu Dahl, Ingrid; Panahandeh, Shirin

    2016-12-01

    Numerous studies have indicated a need for a diverse workforce that is more highly educated in STEM and ICT fields, and one that is capable of responding creatively to demands for continual innovation. This paper, in response, chronicles the implementation of the Digital Pathways (DP) program, a two-time ITEST recipient and an ongoing initiative of the Bay Area Video Coalition. DP has provided low-income, underrepresented minority young people with 180 contact hours of activities in digital media production to prepare them to pursue higher education and technology careers. A design-based research approach synthesizes staff interviews with student observations, interviews and artifacts to identify a set of generalizable best practices or design principles for empowering young people to move from being consumers of digital media to producers. These principles are illustrated with a case study of the 3D Animation and Gaming track from the second ITEST grant. Researchers argue for the importance of attending to the noncognitive elements of learning and illustrate ways in which instructors encouraged creative expression, personal agency, and collaboration through long-term projects. They also identify strategies for sustaining young people's participation through the establishment of a supportive community environment.

  5. SU-E-I-51: Use of Blade Sequences in Cervical Spine MR Imaging for Eliminating Motion, Truncation and Flow Artifacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavroidis, P; Lavdas, E; Kostopoulos, S

    Purpose: To assess the efficacy of the BLADE technique to eliminate motion, truncation, flow and other artifacts in Cervical Spine MRI compared to the conventional technique. To study the ability of the examined sequences to reduce the indetention and wrap artifacts, which have been reported in BLADE sagittal sequences. Methods: Forty consecutive subjects, who had been routinely scanned for cervical spine examination using four different image acquisition techniques, were analyzed. More specifically, the following pairs of sequences were compared: a) T2 TSE SAG vs. T2 TSE SAG BLADE and b) T2 TIRM SAG vs. T2 TIRM SAG BLADE. A quantitativemore » analysis was performed using the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and relative contrast (ReCon) measures. A qualitative analysis was also performed by two radiologists, who graded seven image characteristics on a 5-point scale (0:non-visualization; 1:poor; 2:average; 3:good; 4:excellent). The observers also evaluated the presence of image artifacts (motion, truncation, flow, indentation). Results: Based on the findings of the quantitative analysis, the ReCON values of the CSF (cerebrospinal fluid)/SC (spinal cord) between TIRM SAG and TIRM SAG BLADE were found to present statistical significant differences (p<0.001). Regarding motion and truncation artifacts, the T2 TSE SAG BLADE was superior compared to the T2 TSE SAG and the T2 TIRM SAG BLADE was superior compared to the T2 TIRM SAG. Regarding flow artifacts, T2 TIRM SAG BLADE eliminated more artifacts compared to the T2 TIRM SAG. Conclusion: The use of BLADE sequences in cervical spine MR examinations appears to be capable of potentially eliminating motion, pulsatile flow and trancation artifacts. Furthermore, BLADE sequences are proposed to be used in the standard examination protocols based on the fact that a significantly improved image quality could be achieved.« less

  6. Detailing magnetic field strength dependence and segmental artifact distribution of myocardial effective transverse relaxation rate at 1.5, 3.0, and 7.0 T.

    PubMed

    Meloni, Antonella; Hezel, Fabian; Positano, Vincenzo; Keilberg, Petra; Pepe, Alessia; Lombardi, Massimo; Niendorf, Thoralf

    2014-06-01

    Realizing the challenges and opportunities of effective transverse relaxation rate (R2 *) mapping at high and ultrahigh fields, this work examines magnetic field strength (B0 ) dependence and segmental artifact distribution of myocardial R2 * at 1.5, 3.0, and 7.0 T. Healthy subjects were considered. Three short-axis views of the left ventricle were examined. R2 * was calculated for 16 standard myocardial segments. Global and mid-septum R2 * were determined. For each segment, an artifactual factor was estimated as the deviation of segmental from global R2 * value. The global artifactual factor was significantly enlarged at 7.0 T versus 1.5 T (P = 0.010) but not versus 3.0 T. At 7.0 T, the most severe susceptibility artifacts were detected in the inferior lateral wall. The mid-septum showed minor artifactual factors at 7.0 T, similar to those at 1.5 and 3.0 T. Mean R2 * increased linearly with the field strength, with larger changes for global heart R2 * values. At 7.0 T, segmental heart R2 * analysis is challenging due to macroscopic susceptibility artifacts induced by the heart-lung interface and the posterior vein. Myocardial R2 * depends linearly on the magnetic field strength. The increased R2 * sensitivity at 7.0 T might offer means for susceptibility-weighted and oxygenation level-dependent MR imaging of the myocardium. Copyright © 2013 Wiley Periodicals, Inc.

  7. Artifact mitigation of ptychography integrated with on-the-fly scanning probe microscopy

    DOE PAGES

    Huang, Xiaojing; Yan, Hanfei; Ge, Mingyuan; ...

    2017-07-11

    In this paper, we report our experiences with conducting ptychography simultaneously with the X-ray fluorescence measurement using the on-the-fly mode for efficient multi-modality imaging. We demonstrate that the periodic artifact inherent to the raster scan pattern can be mitigated using a sufficiently fine scan step size to provide an overlap ratio of >70%. This allows us to obtain transmitted phase contrast images with enhanced spatial resolution from ptychography while maintaining the fluorescence imaging with continuous-motion scans on pixelated grids. Lastly, this capability will greatly improve the competence and throughput of scanning probe X-ray microscopy.

  8. An Algorithm for Real-Time Pulse Waveform Segmentation and Artifact Detection in Photoplethysmograms.

    PubMed

    Fischer, Christoph; Domer, Benno; Wibmer, Thomas; Penzel, Thomas

    2017-03-01

    Photoplethysmography has been used in a wide range of medical devices for measuring oxygen saturation, cardiac output, assessing autonomic function, and detecting peripheral vascular disease. Artifacts can render the photoplethysmogram (PPG) useless. Thus, algorithms capable of identifying artifacts are critically important. However, the published PPG algorithms are limited in algorithm and study design. Therefore, the authors developed a novel embedded algorithm for real-time pulse waveform (PWF) segmentation and artifact detection based on a contour analysis in the time domain. This paper provides an overview about PWF and artifact classifications, presents the developed PWF analysis, and demonstrates the implementation on a 32-bit ARM core microcontroller. The PWF analysis was validated with data records from 63 subjects acquired in a sleep laboratory, ergometry laboratory, and intensive care unit in equal parts. The output of the algorithm was compared with harmonized experts' annotations of the PPG with a total duration of 31.5 h. The algorithm achieved a beat-to-beat comparison sensitivity of 99.6%, specificity of 90.5%, precision of 98.5%, and accuracy of 98.3%. The interrater agreement expressed as Cohen's kappa coefficient was 0.927 and as F-measure was 0.990. In conclusion, the PWF analysis seems to be a suitable method for PPG signal quality determination, real-time annotation, data compression, and calculation of additional pulse wave metrics such as amplitude, duration, and rise time.

  9. 23 CFR 230.113 - Implementation of supportive services.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... training opportunities for members of minority groups and women; (2) Services in connection with the... minority groups and women's groups; (3) Services designed to develop the capabilities of prospective... productive relationship with contractors, unions (if appropriate), minority and women groups, minority and...

  10. Exemplar-based inpainting as a solution to the missing wedge problem in electron tomography.

    PubMed

    Trampert, Patrick; Wang, Wu; Chen, Delei; Ravelli, Raimond B G; Dahmen, Tim; Peters, Peter J; Kübel, Christian; Slusallek, Philipp

    2018-04-21

    A new method for dealing with incomplete projection sets in electron tomography is proposed. The approach is inspired by exemplar-based inpainting techniques in image processing and heuristically generates data for missing projection directions. The method has been extended to work on three dimensional data. In general, electron tomography reconstructions suffer from elongation artifacts along the beam direction. These artifacts can be seen in the corresponding Fourier domain as a missing wedge. The new method synthetically generates projections for these missing directions with the help of a dictionary based approach that is able to convey both structure and texture at the same time. It constitutes a preprocessing step that can be combined with any tomographic reconstruction algorithm. The new algorithm was applied to phantom data, to a real electron tomography data set taken from a catalyst, as well as to a real dataset containing solely colloidal gold particles. Visually, the synthetic projections, reconstructions, and corresponding Fourier power spectra showed a decrease of the typical missing wedge artifacts. Quantitatively, the inpainting method is capable to reduce missing wedge artifacts and improves tomogram quality with respect to full width half maximum measurements. Copyright © 2018. Published by Elsevier B.V.

  11. A transportable system for the in situ recording of color Denisyuk holograms of Greek cultural heritage artifacts in silver halide panchromatic emulsions and an optimized illuminating device for the finished holograms

    NASA Astrophysics Data System (ADS)

    Sarakinos, A.; Lembessis, A.; Zervos, N.

    2013-02-01

    In this paper we will present the Z-Lab transportable color holography system, the HoLoFoS illuminator and results of actual in situ recording of color Denisyuk holograms of artifacts on panchromatic silver halide emulsions. Z-lab and HoLoFoS were developed to meet identified prerequisites of holographic recording of artifacts: a) in situ recording b) a high degree of detail and color reproduction c) a low degree of image distortions. The Z-Lab consists of the Z3RGB camera, its accessories and a mobile darkroom. HoLoFoS is an RGB LED-based lighting device for the display of color holograms. The device is capable of digitally controlled intensity mixing and provides a beam of uniform color cross section. The small footprint and emission characteristics of the device LEDs result in a narrow band, quasi point source at selected wavelengths. A case study in recording and displaying 'Optical Clones' of Greek cultural heritage artifacts with the aforementioned systems will also be presented.

  12. Dual energy CT: How well can pseudo-monochromatic imaging reduce metal artifacts?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuchenbecker, Stefan, E-mail: stefan.kuchenbecker@dkfz.de; Faby, Sebastian; Sawall, Stefan

    2015-02-15

    Purpose: Dual Energy CT (DECT) provides so-called monoenergetic images based on a linear combination of the original polychromatic images. At certain patient-specific energy levels, corresponding to certain patient- and slice-dependent linear combination weights, e.g., E = 160 keV corresponds to α = 1.57, a significant reduction of metal artifacts may be observed. The authors aimed at analyzing the method for its artifact reduction capabilities to identify its limitations. The results are compared with raw data-based processing. Methods: Clinical DECT uses a simplified version of monochromatic imaging by linearly combining the low and the high kV images and by assigning an energymore » to that linear combination. Those pseudo-monochromatic images can be used by radiologists to obtain images with reduced metal artifacts. The authors analyzed the underlying physics and carried out a series expansion of the polychromatic attenuation equations. The resulting nonlinear terms are responsible for the artifacts, but they are not linearly related between the low and the high kV scan: A linear combination of both images cannot eliminate the nonlinearities, it can only reduce their impact. Scattered radiation yields additional noncanceling nonlinearities. This method is compared to raw data-based artifact correction methods. To quantify the artifact reduction potential of pseudo-monochromatic images, they simulated the FORBILD abdomen phantom with metal implants, and they assessed patient data sets of a clinical dual source CT system (100, 140 kV Sn) containing artifacts induced by a highly concentrated contrast agent bolus and by metal. In each case, they manually selected an optimal α and compared it to a raw data-based material decomposition in case of simulation, to raw data-based material decomposition of inconsistent rays in case of the patient data set containing contrast agent, and to the frequency split normalized metal artifact reduction in case of the metal implant. For each case, the contrast-to-noise ratio (CNR) was assessed. Results: In the simulation, the pseudo-monochromatic images yielded acceptable artifact reduction results. However, the CNR in the artifact-reduced images was more than 60% lower than in the original polychromatic images. In contrast, the raw data-based material decomposition did not significantly reduce the CNR in the virtual monochromatic images. Regarding the patient data with beam hardening artifacts and with metal artifacts from small implants the pseudo-monochromatic method was able to reduce the artifacts, again with the downside of a significant CNR reduction. More intense metal artifacts, e.g., as those caused by an artificial hip joint, could not be suppressed. Conclusions: Pseudo-monochromatic imaging is able to reduce beam hardening, scatter, and metal artifacts in some cases but it cannot remove them. In all cases, the CNR is significantly reduced, thereby rendering the method questionable, unless special post processing algorithms are implemented to restore the high CNR from the original images (e.g., by using a frequency split technique). Raw data-based dual energy decomposition methods should be preferred, in particular, because the CNR penalty is almost negligible.« less

  13. a Voxel-Based Metadata Structure for Change Detection in Point Clouds of Large-Scale Urban Areas

    NASA Astrophysics Data System (ADS)

    Gehrung, J.; Hebel, M.; Arens, M.; Stilla, U.

    2018-05-01

    Mobile laser scanning has not only the potential to create detailed representations of urban environments, but also to determine changes up to a very detailed level. An environment representation for change detection in large scale urban environments based on point clouds has drawbacks in terms of memory scalability. Volumes, however, are a promising building block for memory efficient change detection methods. The challenge of working with 3D occupancy grids is that the usual raycasting-based methods applied for their generation lead to artifacts caused by the traversal of unfavorable discretized space. These artifacts have the potential to distort the state of voxels in close proximity to planar structures. In this work we propose a raycasting approach that utilizes knowledge about planar surfaces to completely prevent this kind of artifacts. To demonstrate the capabilities of our approach, a method for the iterative volumetric approximation of point clouds that allows to speed up the raycasting by 36 percent is proposed.

  14. A 160 μA biopotential acquisition IC with fully integrated IA and motion artifact suppression.

    PubMed

    Van Helleputte, Nick; Kim, Sunyoung; Kim, Hyejung; Kim, Jong Pal; Van Hoof, Chris; Yazicioglu, Refet Firat

    2012-12-01

    This paper proposes a 3-channel biopotential monitoring ASIC with simultaneous electrode-tissue impedance measurements which allows real-time estimation of motion artifacts on each channel using an an external μC. The ASIC features a high performance instrumentation amplifier with fully integrated sub-Hz HPF rejecting rail-to-rail electrode-offset voltages. Each readout channel further has a programmable gain amplifier and programmable 4th order low-pass filter. Time-multiplexed 12 b SAR-ADCs are used to convert all the analog data to digital. The ASIC achieves >; 115 dB of CMRR (at 50/60 Hz), a high input impedance of >; 1 GΩ and low noise (1.3 μVrms in 100 Hz). Unlike traditional methods, the ASIC is capable of actual motion artifact suppression in the analog domain before final amplification. The complete ASIC core operates from 1.2 V with 2 V digital IOs and consumes 200 μW when all 3 channels are active.

  15. New Imaging Strategies Using a Motion-Resistant Liver Sequence in Uncooperative Patients

    PubMed Central

    Kim, Bong Soo; Lee, Kyung Ryeol; Goh, Myeng Ju

    2014-01-01

    MR imaging has unique benefits for evaluating the liver because of its high-resolution capability and ability to permit detailed assessment of anatomic lesions. In uncooperative patients, motion artifacts can impair the image quality and lead to the loss of diagnostic information. In this setting, the recent advances in motion-resistant liver MR techniques, including faster imaging protocols (e.g., dual-echo magnetization-prepared rapid-acquisition gradient echo (MP-RAGE), view-sharing technique), the data under-sampling (e.g., gradient recalled echo (GRE) with controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA), single-shot echo-train spin-echo (SS-ETSE)), and motion-artifact minimization method (e.g., radial GRE with/without k-space-weighted image contrast (KWIC)), can provide consistent, artifact-free images with adequate image quality and can lead to promising diagnostic performance. Understanding of the different motion-resistant options allows radiologists to adopt the most appropriate technique for their clinical practice and thereby significantly improve patient care. PMID:25243115

  16. Elimination of motion, pulsatile flow and cross-talk artifacts using blade sequences in lumbar spine MR imaging.

    PubMed

    Lavdas, Eleftherios; Mavroidis, Panayiotis; Kostopoulos, Spiros; Glotsos, Dimitrios; Roka, Violeta; Koutsiaris, Aristotle G; Batsikas, Georgios; Sakkas, Georgios K; Tsagkalis, Antonios; Notaras, Ioannis; Stathakis, Sotirios; Papanikolaou, Nikos; Vassiou, Katerina

    2013-07-01

    The purpose of this study is to evaluate the ability of T2 turbo spin echo (TSE) axial and sagittal BLADE sequences in reducing or even eliminating motion, pulsatile flow and cross-talk artifacts in lumbar spine MRI examinations. Forty four patients, who had routinely undergone a lumbar spine examination, participated in the study. The following pairs of sequences with and without BLADE were compared: a) T2 TSE Sagittal (SAG) in thirty two cases, and b) T2 TSE Axial (AX) also in thirty two cases. Both quantitative and qualitative analyses were performed based on measurements in different normal anatomical structures and examination of seven characteristics, respectively. The qualitative analysis was performed by experienced radiologists. Also, the presence of image motion, pulsatile flow and cross-talk artifacts was evaluated. Based on the results of the qualitative analysis for the different sequences and anatomical structures, the BLADE sequences were found to be significantly superior to the conventional ones in all the cases. The BLADE sequences eliminated the motion artifacts in all the cases. In our results, it was found that in the examined sequences (sagittal and axial) the differences between the BLADE and conventional sequences regarding the elimination of motion, pulsatile flow and cross-talk artifacts were statistically significant. In all the comparisons, the T2 TSE BLADE sequences were significantly superior to the corresponding conventional sequences regarding the classification of their image quality. In conclusion, this technique appears to be capable of potentially eliminating motion, pulsatile flow and cross-talk artifacts in lumbar spine MR images and producing high quality images in collaborative and non-collaborative patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Intravascular optical coherence tomography light scattering artifacts: merry-go-rounding, blooming, and ghost struts

    PubMed Central

    Mancuso, J. Jacob; Halaney, David L.; Elahi, Sahar; Ho, Derek; Wang, Tianyi; Ouyang, Yongjian; Dijkstra, Jouke; Milner, Thomas E.; Feldman, Marc D.

    2014-01-01

    Abstract. We sought to elucidate the mechanisms underlying two common intravascular optical coherence tomography (IV-OCT) artifacts that occur when imaging metallic stents: “merry-go-rounding” (MGR), which is an increase in strut arc length (SAL), and “blooming,” which is an increase in the strut reflection thickness (blooming thickness). Due to uncontrollable variables that occur in vivo, we performed an in vitro assessment of MGR and blooming in stented vessel phantoms. Using Xience V and Driver stents, we examined the effects of catheter offset, intimal strut coverage, and residual blood on SAL and blooming thickness in IV-OCT images. Catheter offset and strut coverage both caused minor MGR, while the greatest MGR effect resulted from light scattering by residual blood in the vessel lumen, with 1% hematocrit (Hct) causing a more than fourfold increase in SAL compared with saline (p<0.001). Residual blood also resulted in blooming, with blooming thickness more than doubling when imaged in 0.5% Hct compared with saline (p<0.001). We demonstrate that a previously undescribed mechanism, light scattering by residual blood in the imaging field, is the predominant cause of MGR. Light scattering also results in blooming, and a newly described artifact, three-dimensional-MGR, which results in “ghost struts” in B-scans. PMID:25545341

  18. The remarkable metrological history of 14C dating: From ancient Egyptian artifacts to particles of soot and grains of pollen

    NASA Astrophysics Data System (ADS)

    Currie, L. A.

    2003-01-01

    Radiocarbon dating would not have been possible if 14C had not had the “wrong” half-life—a fact that delayed its discovery [1]. Following the discovery of this 5730 year radionuclide in laboratory experiments by Ruben and Kamen, it became clear to W. F. Libby that 14C should exist in nature, and that it could serve as a quantitative means for dating artifacts and events marking the history of civilization. The search for natural radiocarbon was a metrological challenge; the level in the living biosphere [ca. 230 Bq/kg] lay far beyond the then current state of the measurement art. This article traces the metrological history of radiocarbon, from the initial breakthrough devised by Libby, to minor (evolutionary) and major (revolutionary) advances that have brought 14C measurement from a crude, bulk [8 g carbon] dating tool, to a refined probe for dating tiny amounts of precious artifacts, and for “molecular dating” at the 10 μg to 100 μg level. The metrological advances led to opportunities and surprises, such as the non-monotonic dendrochronological calibration curve and the “bomb effect,” that spawned new multidisciplinary areas of application, ranging from cosmic ray physics to oceanography to the reconstruction of environmental history.

  19. Avoiding Stair-Step Artifacts in Image Registration for GOES-R Navigation and Registration Assessment

    NASA Technical Reports Server (NTRS)

    Grycewicz, Thomas J.; Tan, Bin; Isaacson, Peter J.; De Luccia, Frank J.; Dellomo, John

    2016-01-01

    In developing software for independent verification and validation (IVV) of the Image Navigation and Registration (INR) capability for the Geostationary Operational Environmental Satellite R Series (GOES-R) Advanced Baseline Imager (ABI), we have encountered an image registration artifact which limits the accuracy of image offset estimation at the subpixel scale using image correlation. Where the two images to be registered have the same pixel size, subpixel image registration preferentially selects registration values where the image pixel boundaries are close to lined up. Because of the shape of a curve plotting input displacement to estimated offset, we call this a stair-step artifact. When one image is at a higher resolution than the other, the stair-step artifact is minimized by correlating at the higher resolution. For validating ABI image navigation, GOES-R images are correlated with Landsat-based ground truth maps. To create the ground truth map, the Landsat image is first transformed to the perspective seen from the GOES-R satellite, and then is scaled to an appropriate pixel size. Minimizing processing time motivates choosing the map pixels to be the same size as the GOES-R pixels. At this pixel size image processing of the shift estimate is efficient, but the stair-step artifact is present. If the map pixel is very small, stair-step is not a problem, but image correlation is computation-intensive. This paper describes simulation-based selection of the scale for truth maps for registering GOES-R ABI images.

  20. Elimination of motion and pulsation artifacts using BLADE sequences in knee MR imaging.

    PubMed

    Lavdas, Eleftherios; Mavroidis, Panayiotis; Hatzigeorgiou, Vasiliki; Roka, Violeta; Arikidis, Nikos; Oikonomou, Georgia; Andrianopoulos, Konstantinos; Notaras, Ioannis

    2012-10-01

    The purpose of this study is to evaluate the ability of proton density (PD)-BLADE sequences in reducing or even eliminating motion and pulsatile flow artifacts in knee magnetic resonance imaging examinations. Eighty consecutive patients, who had been routinely scanned for knee examination, participated in the study. The following pairs of sequences with and without BLADE were compared: (a) PD turbo spin echo (TSE) sagittal (SAG) fat saturation (FS) in 35 patients, (b) PD TSE coronal (COR) FS in 19 patients, (c) T2 TSE axial in 13 patients and (d) PD TSE SAG in 13 patients. Both qualitative and quantitative analyses were performed based on the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and relative contrast (ReCon) measures of normal anatomic structures. The qualitative analysis was performed by experienced radiologists. Also, the presence of image motion and pulsation artifacts was evaluated. Based on the results of the SNR, CRN and ReCon for the different sequences and anatomical structures, the BLADE sequences were significantly superior in 19 cases, whereas the corresponding conventional sequences were significantly superior in only 6 cases. BLADE sequences eliminated motion artifacts in all the cases. However, motion artifacts were shown in (a) six PD TSE SAG FS, (b) three PD TSE COR FS, (c) three PD TSE SAG and (d) two T2 TSE axial conventional sequences. In our results, it was found that, in PD FS sequences (sagittal and coronal), the differences between the BLADE and conventional sequences regarding the elimination of motion and pulsatile flow artifacts were statistically significant. In all the comparisons, the PD FS BLADE sequences (coronal and sagittal) were significantly superior to the corresponding conventional sequences regarding the classification of their image quality. In conclusion, this technique appears to be capable to potentially eliminate motion and pulsatile flow artifacts in MR images. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. The VIIRS Ocean Data Simulator Enhancements and Results

    NASA Technical Reports Server (NTRS)

    Robinson, Wayne D.; Patt, Fredrick S.; Franz, Bryan A.; Turpie, Kevin R.; McClain, Charles R.

    2011-01-01

    The VIIRS Ocean Science Team (VOST) has been developing an Ocean Data Simulator to create realistic VIIRS SDR datasets based on MODIS water-leaving radiances. The simulator is helping to assess instrument performance and scientific processing algorithms. Several changes were made in the last two years to complete the simulator and broaden its usefulness. The simulator is now fully functional and includes all sensor characteristics measured during prelaunch testing, including electronic and optical crosstalk influences, polarization sensitivity, and relative spectral response. Also included is the simulation of cloud and land radiances to make more realistic data sets and to understand their important influence on nearby ocean color data. The atmospheric tables used in the processing, including aerosol and Rayleigh reflectance coefficients, have been modeled using VIIRS relative spectral responses. The capabilities of the simulator were expanded to work in an unaggregated sample mode and to produce scans with additional samples beyond the standard scan. These features improve the capability to realistically add artifacts which act upon individual instrument samples prior to aggregation and which may originate from beyond the actual scan boundaries. The simulator was expanded to simulate all 16 M-bands and the EDR processing was improved to use these bands to make an SST product. The simulator is being used to generate global VIIRS data from and in parallel with the MODIS Aqua data stream. Studies have been conducted using the simulator to investigate the impact of instrument artifacts. This paper discusses the simulator improvements and results from the artifact impact studies.

  2. The VIIRS ocean data simulator enhancements and results

    NASA Astrophysics Data System (ADS)

    Robinson, Wayne D.; Patt, Frederick S.; Franz, Bryan A.; Turpie, Kevin R.; McClain, Charles R.

    2011-10-01

    The VIIRS Ocean Science Team (VOST) has been developing an Ocean Data Simulator to create realistic VIIRS SDR datasets based on MODIS water-leaving radiances. The simulator is helping to assess instrument performance and scientific processing algorithms. Several changes were made in the last two years to complete the simulator and broaden its usefulness. The simulator is now fully functional and includes all sensor characteristics measured during prelaunch testing, including electronic and optical crosstalk influences, polarization sensitivity, and relative spectral response. Also included is the simulation of cloud and land radiances to make more realistic data sets and to understand their important influence on nearby ocean color data. The atmospheric tables used in the processing, including aerosol and Rayleigh reflectance coefficients, have been modeled using VIIRS relative spectral responses. The capabilities of the simulator were expanded to work in an unaggregated sample mode and to produce scans with additional samples beyond the standard scan. These features improve the capability to realistically add artifacts which act upon individual instrument samples prior to aggregation and which may originate from beyond the actual scan boundaries. The simulator was expanded to simulate all 16 M-bands and the EDR processing was improved to use these bands to make an SST product. The simulator is being used to generate global VIIRS data from and in parallel with the MODIS Aqua data stream. Studies have been conducted using the simulator to investigate the impact of instrument artifacts. This paper discusses the simulator improvements and results from the artifact impact studies.

  3. The Convergence of Information Technology, Data, and Management in a Library Imaging Program

    ERIC Educational Resources Information Center

    France, Fenella G.; Emery, Doug; Toth, Michael B.

    2010-01-01

    Integrating advanced imaging and processing capabilities in libraries, archives, and museums requires effective systems and information management to ensure that the large amounts of digital data about cultural artifacts can be readily acquired, stored, archived, accessed, processed, and linked to other data. The Library of Congress is developing…

  4. Maker Principles and Technologies in Teacher Education: A National Survey

    ERIC Educational Resources Information Center

    Cohen, Jonathan

    2017-01-01

    Broadly speaking, the maker movement is characterized by people who engage in the construction, deconstruction, and reconstruction of physical artifacts, and who share both the process of making and their physical products with the broader community of makers. There is growing sentiment that elements of the maker movement have the capability of…

  5. Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data

    PubMed Central

    Fair, Damien A.; Nigg, Joel T.; Iyer, Swathi; Bathula, Deepti; Mills, Kathryn L.; Dosenbach, Nico U. F.; Schlaggar, Bradley L.; Mennes, Maarten; Gutman, David; Bangaru, Saroja; Buitelaar, Jan K.; Dickstein, Daniel P.; Di Martino, Adriana; Kennedy, David N.; Kelly, Clare; Luna, Beatriz; Schweitzer, Julie B.; Velanova, Katerina; Wang, Yu-Feng; Mostofsky, Stewart; Castellanos, F. Xavier; Milham, Michael P.

    2012-01-01

    In recent years, there has been growing enthusiasm that functional magnetic resonance imaging (MRI) could achieve clinical utility for a broad range of neuropsychiatric disorders. However, several barriers remain. For example, the acquisition of large-scale datasets capable of clarifying the marked heterogeneity that exists in psychiatric illnesses will need to be realized. In addition, there continues to be a need for the development of image processing and analysis methods capable of separating signal from artifact. As a prototypical hyperkinetic disorder, and movement-related artifact being a significant confound in functional imaging studies, ADHD offers a unique challenge. As part of the ADHD-200 Global Competition and this special edition of Frontiers, the ADHD-200 Consortium demonstrates the utility of an aggregate dataset pooled across five institutions in addressing these challenges. The work aimed to (1) examine the impact of emerging techniques for controlling for “micro-movements,” and (2) provide novel insights into the neural correlates of ADHD subtypes. Using support vector machine (SVM)-based multivariate pattern analysis (MVPA) we show that functional connectivity patterns in individuals are capable of differentiating the two most prominent ADHD subtypes. The application of graph-theory revealed that the Combined (ADHD-C) and Inattentive (ADHD-I) subtypes demonstrated some overlapping (particularly sensorimotor systems), but unique patterns of atypical connectivity. For ADHD-C, atypical connectivity was prominent in midline default network components, as well as insular cortex; in contrast, the ADHD-I group exhibited atypical patterns within the dlPFC regions and cerebellum. Systematic motion-related artifact was noted, and highlighted the need for stringent motion correction. Findings reported were robust to the specific motion correction strategy employed. These data suggest that resting-state functional connectivity MRI (rs-fcMRI) data can be used to characterize individual patients with ADHD and to identify neural distinctions underlying the clinical heterogeneity of ADHD. PMID:23382713

  6. Some Restructuring Needed in District’s Contracting Program to Serve Minority Businesses.

    DTIC Science & Technology

    1981-06-24

    control as well as ownership. Originally, a minority firm must have had a local business license and/or be subject to D.C. business franchise taxes as...following. TABLE 2-1 Extent Minority Business Goals Being Achieved Increase in Increase in Increase in business minority franchise capability... Businesses The District’s program has placed too much stress on meeting minority contracting dollar goals and not enough on developing business

  7. In Vitro Magnetic Resonance Imaging Evaluation of Fragmented, Open-Coil, Percutaneous Peripheral Nerve Stimulation Leads.

    PubMed

    Shellock, Frank G; Zare, Armaan; Ilfeld, Brian M; Chae, John; Strother, Robert B

    2018-04-01

    Percutaneous peripheral nerve stimulation (PNS) is an FDA-cleared pain treatment. Occasionally, fragments of the lead (MicroLead, SPR Therapeutics, LLC, Cleveland, OH, USA) may be retained following lead removal. Since the lead is metallic, there are associated magnetic resonance imaging (MRI) risks. Therefore, the objective of this investigation was to evaluate MRI-related issues (i.e., magnetic field interactions, heating, and artifacts) for various lead fragments. Testing was conducted using standardized techniques on lead fragments of different lengths (i.e., 50, 75, and 100% of maximum possible fragment length of 12.7 cm) to determine MRI-related problems. Magnetic field interactions (i.e., translational attraction and torque) and artifacts were tested for the longest lead fragment at 3 Tesla. MRI-related heating was evaluated at 1.5 Tesla/64 MHz and 3 Tesla/128 MHz with each lead fragment placed in a gelled-saline filled phantom. Temperatures were recorded on the lead fragments while using relatively high RF power levels. Artifacts were evaluated using T1-weighted, spin echo, and gradient echo (GRE) pulse sequences. The longest lead fragment produced only minor magnetic field interactions. For the lead fragments evaluated, physiologically inconsequential MRI-related heating occurred at 1.5 Tesla/64 MHz while under certain 3 Tesla/128 MHz conditions, excessive temperature elevations may occur. Artifacts extended approximately 7 mm from the lead fragment on the GRE pulse sequence, suggesting that anatomy located at a position greater than this distance may be visualized on MRI. MRI may be performed safely in patients with retained lead fragments at 1.5 Tesla using the specific conditions of this study (i.e., MR Conditional). Due to possible excessive temperature rises at 3 Tesla, performing MRI at that field strength is currently inadvisable. © 2017 International Neuromodulation Society.

  8. Assessment of MRI issues at 3-Tesla for metallic surgical implants: findings applied to 61 additional skin closure staples and vessel ligation clips.

    PubMed

    Gill, Amreeta; Shellock, Frank G

    2012-01-09

    Metallic skin closure staples and vessel ligation clips should be tested at 3-Tesla to characterize MRI issues in order to ensure patient safety. Therefore, metallic surgical implants were assessed at 3-Tesla for magnetic field interactions, MRI-related heating, and artifacts. A skin closure staple (Visistat Skin Stapler, staple, Polytetrafluoroethylene, PTFE, coated 316L/316LVM stainless steel; Teleflex Medical, Durham, NC) and a vessel ligation clip (Hemoclip Traditional, stainless steel; Teleflex Medical, Durham, NC) that represented the largest metallic sizes made from materials with the highest magnetic susceptibilities (i.e., based on material information) among 61 other surgical implants (52 metallic implants, 9 nonmetallic implants) underwent evaluation for magnetic field interactions, MRI-related heating, and artifacts using standardized techniques. MRI-related heating was assessed by placing each implant in a gelled-saline-filled phantom with MRI performed using a transmit/receive RF body coil at an MR system reported, whole body averaged SAR of 2.9-W/kg for 15-min. Artifacts were characterized using T1-weighted, SE and GRE pulse sequences. Each surgical implant showed minor magnetic field interactions (20- and 27-degrees, which is acceptable from a safety consideration). Heating was not substantial (highest temperature change, ≤ 1.6°C). Artifacts may create issues if the area of interest is in the same area or close to the respective surgical implant. The results demonstrated that it would be acceptable for patients with these metallic surgical implants to undergo MRI at 3-Tesla or less. Because of the materials and dimensions of the surgical implants that underwent testing, these findings pertain to 61 additional similar implants.

  9. Assessment of MRI issues at 3-Tesla for metallic surgical implants: findings applied to 61 additional skin closure staples and vessel ligation clips

    PubMed Central

    2012-01-01

    Purpose Metallic skin closure staples and vessel ligation clips should be tested at 3-Tesla to characterize MRI issues in order to ensure patient safety. Therefore, metallic surgical implants were assessed at 3-Tesla for magnetic field interactions, MRI-related heating, and artifacts. Methods A skin closure staple (Visistat Skin Stapler, staple, Polytetrafluoroethylene, PTFE, coated 316L/316LVM stainless steel; Teleflex Medical, Durham, NC) and a vessel ligation clip (Hemoclip Traditional, stainless steel; Teleflex Medical, Durham, NC) that represented the largest metallic sizes made from materials with the highest magnetic susceptibilities (i.e., based on material information) among 61 other surgical implants (52 metallic implants, 9 nonmetallic implants) underwent evaluation for magnetic field interactions, MRI-related heating, and artifacts using standardized techniques. MRI-related heating was assessed by placing each implant in a gelled-saline-filled phantom with MRI performed using a transmit/receive RF body coil at an MR system reported, whole body averaged SAR of 2.9-W/kg for 15-min. Artifacts were characterized using T1-weighted, SE and GRE pulse sequences. Results Each surgical implant showed minor magnetic field interactions (20- and 27-degrees, which is acceptable from a safety consideration). Heating was not substantial (highest temperature change, ≤ 1.6°C). Artifacts may create issues if the area of interest is in the same area or close to the respective surgical implant. Conclusions The results demonstrated that it would be acceptable for patients with these metallic surgical implants to undergo MRI at 3-Tesla or less. Because of the materials and dimensions of the surgical implants that underwent testing, these findings pertain to 61 additional similar implants. PMID:22230200

  10. Automated discrete electron tomography - Towards routine high-fidelity reconstruction of nanomaterials.

    PubMed

    Zhuge, Xiaodong; Jinnai, Hiroshi; Dunin-Borkowski, Rafal E; Migunov, Vadim; Bals, Sara; Cool, Pegie; Bons, Anton-Jan; Batenburg, Kees Joost

    2017-04-01

    Electron tomography is an essential imaging technique for the investigation of morphology and 3D structure of nanomaterials. This method, however, suffers from well-known missing wedge artifacts due to a restricted tilt range, which limits the objectiveness, repeatability and efficiency of quantitative structural analysis. Discrete tomography represents one of the promising reconstruction techniques for materials science, potentially capable of delivering higher fidelity reconstructions by exploiting the prior knowledge of the limited number of material compositions in a specimen. However, the application of discrete tomography to practical datasets remains a difficult task due to the underlying challenging mathematical problem. In practice, it is often hard to obtain consistent reconstructions from experimental datasets. In addition, numerous parameters need to be tuned manually, which can lead to bias and non-repeatability. In this paper, we present the application of a new iterative reconstruction technique, named TVR-DART, for discrete electron tomography. The technique is capable of consistently delivering reconstructions with significantly reduced missing wedge artifacts for a variety of challenging data and imaging conditions, and can automatically estimate its key parameters. We describe the principles of the technique and apply it to datasets from three different types of samples acquired under diverse imaging modes. By further reducing the available tilt range and number of projections, we show that the proposed technique can still produce consistent reconstructions with minimized missing wedge artifacts. This new development promises to provide the electron microscopy community with an easy-to-use and robust tool for high-fidelity 3D characterization of nanomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Dynamics of the GB3 loop regions from MD simulation: how much of it is real?

    PubMed

    Li, Tong; Jing, Qingqing; Yao, Lishan

    2011-04-07

    A total of 1.1 μs of molecular dynamics (MD) simulations were performed to study the structure and dynamics of protein GB3. The simulation motional amplitude of the loop regions is generally overestimated in comparison with the experimental backbone N-H order parameters S(2). Two-state behavior is observed for several residues in these regions, with the minor state population in the range of 3-13%. Further inspection suggests that the (φ, ψ) dihedral angles of the minor states deviate from the GB3 experimental values, implying the existence of nonnative states. After fitting the MD trajectories of these residues to the NMR RDCs, the minor state populations are significantly reduced by at least 80%, suggesting that MD simulations are strongly biased toward the minor states, thus overestimating the dynamics of the loop regions. The optimized trajectories produce intra, sequential H(N)-H(α) RDCs and intra (3)J(HNHα) that are not included in the trajectories fitting for these residues that are closer to the experimental data. Unlike GB3, 0.55 μs MD simulations of protein ubiquitin do not show distinctive minor states, and the derived NMR order parameters are better converged. Our findings indicate that the artifacts of the simulations depend on the specific system studied and that one should be cautious interpreting the enhanced dihedral dynamics from long MD simulations.

  12. Inscribing Ethics and Values in Designs for Learning: A Problematic

    ERIC Educational Resources Information Center

    Gray, Colin M.; Boling, Elizabeth

    2016-01-01

    The exponential growth in technological capability has resulted in increased interest on the short- and long-term effects of designed artifacts, leading to a focus in many design fields on the ethics and values that are inscribed in the designs we create. While ethical awareness is a key concern in many engineering, technology, and design…

  13. Aesthetic Practice and Spirituality: Chi in Traditional East Asian Brushwork

    ERIC Educational Resources Information Center

    Chung, Sheng Kuan

    2006-01-01

    The importance of multicultural art education has been addressed by art educators over the past 15 years. Art educators maintain that art is capable of empowering mutual respect and appreciation for people, objects, and ideas among diverse groups. Although many educators/teachers use non-Western artworks or artifacts to enrich their art programs,…

  14. Exact solutions for network rewiring models

    NASA Astrophysics Data System (ADS)

    Evans, T. S.

    2007-03-01

    Evolving networks with a constant number of edges may be modelled using a rewiring process. These models are used to describe many real-world processes including the evolution of cultural artifacts such as family names, the evolution of gene variations, and the popularity of strategies in simple econophysics models such as the minority game. The model is closely related to Urn models used for glasses, quantum gravity and wealth distributions. The full mean field equation for the degree distribution is found and its exact solution and generating solution are given.

  15. SU-E-I-62: Reduction of Susceptibility Artifacts by Increasing the Bandwidth (BW) and Echo Train Length (ETL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavroidis, P; Boci, N; Kostopoulos, S

    2015-06-15

    Purpose: The aim of this present study is to increase bandwidth (BW) and echo train length (ETL) in Proton Density Turbo Spin Echo (PD TSE) sequences with and without fat saturation (FS) as well as in Turbo Inversion Recovery Magnitude sequences (TIRM) in order to assess whether these sequences are capable of reducing susceptibility artifacts. Methods: We compared 1) TIRM coronal (COR) with the same sequence with increased both BW and ETL 2) Conventional PD TSE sagittal (SAG) with FS with an increased BW 3) Conventional PD TSE SAG without FS with an increased BW 4) Conventional PD TSE SAGmore » without FS with increased both BW and ETL. A quantitative analysis was performed to measure the extent of the susceptibility artifacts. Furthermore, a qualitative analysis was performed by two radiologists in order to evaluate the susceptibility artifacts, image distortion and fat suppression. The depiction of cartilage, menisci, muscles, tendons and bone marrow were also qualitatively analyzed. Results: The quantitative analysis found that the modified TIRM sequence is significantly superior to the conventional one regarding the extent of the susceptibility artifacts. In the qualitative analysis, the modified TIRM sequence was superior to the corresponding conventional one in eight characteristics out of ten that were analyzed. The modified PD TSE with FS was superior to the corresponding conventional one regarding the susceptibility artifacts, image distortion and depiction of bone marrow and cartilage while achieving effective fat saturation. The modified PD TSE sequence without FS with a high (H) BW was found to be superior corresponding to the conventional one in the case of cartilage. Conclusion: Consequently, TIRM sequence with an increased BW and ETL is proposed for producing images of high quality and modified PD TSE with H BW for smaller metals, especially when FS is used.« less

  16. Influence of geometric and material properties on artifacts generated by interventional MRI devices: Relevance to PRF-shift thermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatebe, Ken, E-mail: Ken.Tatebe@gmail.com; Ramsay, Elizabeth; Kazem, Mohammad

    2016-01-15

    Purpose: Magnetic resonance imaging (MRI) is capable of providing valuable real-time feedback during medical procedures, partly due to the excellent soft-tissue contrast available. Several technical hurdles still exist to seamless integration of medical devices with MRI due to incompatibility of most conventional devices with this imaging modality. In this study, the effect of local perturbations in the magnetic field caused by the magnetization of medical devices was examined using finite element analysis modeling. As an example, the influence of the geometric and material characteristics of a transurethral high-intensity ultrasound applicator on temperature measurements using proton resonance frequency (PRF)-shift thermometry wasmore » investigated. Methods: The effect of local perturbations in the magnetic field, caused by the magnetization of medical device components, was examined using finite element analysis modeling. The thermometry artifact generated by a transurethral ultrasound applicator was simulated, and these results were validated against analytic models and scans of an applicator in a phantom. Several parameters were then varied to identify which most strongly impacted the level of simulated thermometry artifact, which varies as the applicator moves over the course of an ablative high-intensity ultrasound treatment. Results: Key design parameters identified as having a strong influence on the magnitude of thermometry artifact included the susceptibility of materials and their volume. The location of components was also important, particularly when positioned to maximize symmetry of the device. Finally, the location of component edges and the inclination of the device relative to the magnetic field were also found to be important factors. Conclusions: Previous design strategies to minimize thermometry artifact were validated, and novel design strategies were identified that substantially reduce PRF-shift thermometry artifacts for a variety of device orientations. These new strategies are being incorporated into the next generation of applicators. The general strategy described in this study can be applied to the design of other interventional devices intended for use with MRI.« less

  17. Length and Dimensional Measurements at NIST

    PubMed Central

    Swyt, Dennis A.

    2001-01-01

    This paper discusses the past, present, and future of length and dimensional measurements at NIST. It covers the evolution of the SI unit of length through its three definitions and the evolution of NBS-NIST dimensional measurement from early linescales and gage blocks to a future of atom-based dimensional standards. Current capabilities include dimensional measurements over a range of fourteen orders of magnitude. Uncertainties of measurements on different types of material artifacts range down to 7×10−8 m at 1 m and 8 picometers (pm) at 300 pm. Current work deals with a broad range of areas of dimensional metrology. These include: large-scale coordinate systems; complex form; microform; surface finish; two-dimensional grids; optical, scanning-electron, atomic-force, and scanning-tunneling microscopies; atomic-scale displacement; and atom-based artifacts. PMID:27500015

  18. Women and Minorities in High-Tech Careers. ERIC Digest No. 226.

    ERIC Educational Resources Information Center

    Brown, Bettina Lankard

    Women and minorities are underrepresented in technology-related careers for many reasons, including lack of access, level of math and science achievement, and emotional and social attitudes about computer capabilities. Schools and teachers can use the following strategies to attract women and minorities to high-tech careers and prepare them for…

  19. Elemental Scanning Devices Authenticate Works of Art

    NASA Technical Reports Server (NTRS)

    2013-01-01

    To better detect aluminum compounds, Marshall Space Flight Center partnered with KeyMaster Inc. (later acquired by Madison, Wisconsin-based Bruker AXS Inc.) to develop a vacuum pump system that could be attached to X-ray fluorescence (XRF) scanners. The resulting technology greatly expanded XRF scanner capabilities, and hundreds of museums now use them to authenticate artifacts and works of art.

  20. A configurable and low-power mixed signal SoC for portable ECG monitoring applications.

    PubMed

    Kim, Hyejung; Kim, Sunyoung; Van Helleputte, Nick; Artes, Antonio; Konijnenburg, Mario; Huisken, Jos; Van Hoof, Chris; Yazicioglu, Refet Firat

    2014-04-01

    This paper describes a mixed-signal ECG System-on-Chip (SoC) that is capable of implementing configurable functionality with low-power consumption for portable ECG monitoring applications. A low-voltage and high performance analog front-end extracts 3-channel ECG signals and single channel electrode-tissue-impedance (ETI) measurement with high signal quality. This can be used to evaluate the quality of the ECG measurement and to filter motion artifacts. A custom digital signal processor consisting of 4-way SIMD processor provides the configurability and advanced functionality like motion artifact removal and R peak detection. A built-in 12-bit analog-to-digital converter (ADC) is capable of adaptive sampling achieving a compression ratio of up to 7, and loop buffer integration reduces the power consumption for on-chip memory access. The SoC is implemented in 0.18 μm CMOS process and consumes 32 μ W from a 1.2 V while heart beat detection application is running, and integrated in a wireless ECG monitoring system with Bluetooth protocol. Thanks to the ECG SoC, the overall system power consumption can be reduced significantly.

  1. New techniques for motion-artifact-free in vivo cardiac microscopy

    PubMed Central

    Vinegoni, Claudio; Lee, Sungon; Aguirre, Aaron D.; Weissleder, Ralph

    2015-01-01

    Intravital imaging microscopy (i.e., imaging in live animals at microscopic resolution) has become an indispensable tool for studying the cellular micro-dynamics in cancer, immunology and neurobiology. High spatial and temporal resolution, combined with large penetration depth and multi-reporter visualization capability make fluorescence intravital microscopy compelling for heart imaging. However, tissue motion caused by cardiac contraction and respiration critically limits its use. As a result, in vitro cell preparations or non-contracting explanted heart models are more commonly employed. Unfortunately, these approaches fall short of understanding the more complex host physiology that may be dynamic and occur over longer periods of time. In this review, we report on novel technologies, which have been recently developed by our group and others, aimed at overcoming motion-induced artifacts and capable of providing in vivo subcellular resolution imaging in the beating mouse heart. The methods are based on mechanical stabilization, image processing algorithms, gated/triggered acquisition schemes or a combination of both. We expect that in the immediate future all these methodologies will have considerable applications in expanding our understanding of the cardiac biology, elucidating cardiomyocyte function and interactions within the organism in vivo, and ultimately improving the treatment of cardiac diseases. PMID:26029116

  2. Effect of high-pitch dual-source CT to compensate motion artifacts: a phantom study.

    PubMed

    Farshad-Amacker, Nadja A; Alkadhi, Hatem; Leschka, Sebastian; Frauenfelder, Thomas

    2013-10-01

    To evaluate the potential of high-pitch, dual-source computed tomography (DSCT) for compensation of motion artifacts. Motion artifacts were created using a moving chest/cardiac phantom with integrated stents at different velocities (from 0 to 4-6 cm/s) parallel (z direction), transverse (x direction), and diagonal (x and z direction combined) to the scanning direction using standard-pitch (SP) (pitch = 1) and high-pitch (HP) (pitch = 3.2) 128-detector DSCT (Siemens, Healthcare, Forchheim, Germany). The scanning parameters were (SP/HP): tube voltage, 120 kV/120 kV; effective tube current time product, 300 mAs/500 mAs; and a pitch of 1/3.2. Motion artifacts were analyzed in terms of subjective image quality and object distortion. Image quality was rated by two blinded, independent observers using a 4-point scoring system (1, excellent; 2, good with minor object distortion or blurring; 3, diagnostically partially not acceptable; and 4, diagnostically not acceptable image quality). Object distortion was assessed by the measured changes of the object's outer diameter (x) and length (z) and a corresponding calculated distortion vector (d) (d = √(x(2) + z(2))). The interobserver agreement was excellent (k = 0.91). Image quality using SP was diagnostically not acceptable with any motion in x direction (scores 3 and 4), in contrast to HP DSCT where it remained diagnostic up to 2 cm/s (scores 1 and 2). For motion in the z direction only, image quality remained diagnostic for SP and HP DSCT (scores 1 and 2). Changes of the object's diameter (x), length (z), and distortion vectors (d) were significantly greater with SP (overall: x = 1.9 cm ± 1.7 cm, z = 0.6 cm ± 0.8 cm, and d = 1.4 cm ± 1.5 cm) compared to HP DSCT (overall: x = 0.1 cm ± 0.1 cm, z = 0.0 cm ± 0.1 cm, and d = 0.1 cm ± 0.1 cm; each P < .05). High-pitch DSCT significantly decreases motion artifacts in various directions and improves image quality. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  3. Continuities in stone flaking technology at Liang Bua, Flores, Indonesia.

    PubMed

    Moore, M W; Sutikna, T; Jatmiko; Morwood, M J; Brumm, A

    2009-11-01

    This study examines trends in stone tool reduction technology at Liang Bua, Flores, Indonesia, where excavations have revealed a stratified artifact sequence spanning 95k.yr. The reduction sequence practiced throughout the Pleistocene was straightforward and unchanging. Large flakes were produced off-site and carried into the cave where they were reduced centripetally and bifacially by four techniques: freehand, burination, truncation, and bipolar. The locus of technological complexity at Liang Bua was not in knapping products, but in the way techniques were integrated. This reduction sequence persisted across the Pleistocene/Holocene boundary with a minor shift favoring unifacial flaking after 11ka. Other stone-related changes occurred at the same time, including the first appearance of edge-glossed flakes, a change in raw material selection, and more frequent fire-induced damage to stone artifacts. Later in the Holocene, technological complexity was generated by "adding-on" rectangular-sectioned stone adzes to the reduction sequence. The Pleistocene pattern is directly associated with Homo floresiensis skeletal remains and the Holocene changes correlate with the appearance of Homo sapiens. The one reduction sequence continues across this hominin replacement.

  4. Informatics in Radiology: Dual-Energy Electronic Cleansing for Fecal-Tagging CT Colonography

    PubMed Central

    Kim, Se Hyung; Lee, June-Goo; Yoshida, Hiroyuki

    2013-01-01

    Electronic cleansing (EC) is an emerging technique for the removal of tagged fecal materials at fecal-tagging computed tomographic (CT) colonography. However, existing EC methods may generate various types of artifacts that severely impair the quality of the cleansed CT colonographic images. Dual-energy fecal-tagging CT colonography is regarded as a next-generation imaging modality. EC that makes use of dual-energy fecal-tagging CT colonographic images promises to be effective in reducing cleansing artifacts by means of applying the material decomposition capability of dual-energy CT. The dual-energy index (DEI), which is calculated from the relative change in the attenuation values of a material at two different photon energies, is a reliable and effective indicator for differentiating tagged fecal materials from various types of tissues on fecal-tagging CT colonographic images. A DEI-based dual-energy EC scheme uses the DEI to help differentiate the colonic lumen—including the luminal air, tagged fecal materials, and air-tagging mixture—from the colonic soft-tissue structures, and then segments the entire colonic lumen for cleansing of the tagged fecal materials. As a result, dual-energy EC can help identify partial-volume effects in the air-tagging mixture and inhomogeneous tagging in residual fecal materials, the major causes of EC artifacts. This technique has the potential to significantly improve the quality of EC and promises to provide images of a cleansed colon that are free of the artifacts commonly observed with conventional single-energy EC methods. © RSNA, 2013 PMID:23479680

  5. Reduction of artifacts in computer simulation of breast Cooper's ligaments

    NASA Astrophysics Data System (ADS)

    Pokrajac, David D.; Kuperavage, Adam; Maidment, Andrew D. A.; Bakic, Predrag R.

    2016-03-01

    Anthropomorphic software breast phantoms have been introduced as a tool for quantitative validation of breast imaging systems. Efficacy of the validation results depends on the realism of phantom images. The recursive partitioning algorithm based upon the octree simulation has been demonstrated as versatile and capable of efficiently generating large number of phantoms to support virtual clinical trials of breast imaging. Previously, we have observed specific artifacts, (here labeled "dents") on the boundaries of simulated Cooper's ligaments. In this work, we have demonstrated that these "dents" result from the approximate determination of the closest simulated ligament to an examined subvolume (i.e., octree node) of the phantom. We propose a modification of the algorithm that determines the closest ligament by considering a pre-specified number of neighboring ligaments selected based upon the functions that govern the shape of ligaments simulated in the subvolume. We have qualitatively and quantitatively demonstrated that the modified algorithm can lead to elimination or reduction of dent artifacts in software phantoms. In a proof-of concept example, we simulated a 450 ml phantom with 333 compartments at 100 micrometer resolution. After the proposed modification, we corrected 148,105 dents, with an average size of 5.27 voxels (5.27nl). We have also qualitatively analyzed the corresponding improvement in the appearance of simulated mammographic images. The proposed algorithm leads to reduction of linear and star-like artifacts in simulated phantom projections, which can be attributed to dents. Analysis of a larger number of phantoms is ongoing.

  6. A Method for Whole Brain Ex Vivo Magnetic Resonance Imaging with Minimal Susceptibility Artifacts

    PubMed Central

    Shatil, Anwar S.; Matsuda, Kant M.; Figley, Chase R.

    2016-01-01

    Magnetic resonance imaging (MRI) is a non-destructive technique that is capable of localizing pathologies and assessing other anatomical features (e.g., tissue volume, microstructure, and white matter connectivity) in postmortem, ex vivo human brains. However, when brains are removed from the skull and cerebrospinal fluid (i.e., their normal in vivo magnetic environment), air bubbles and air–tissue interfaces typically cause magnetic susceptibility artifacts that severely degrade the quality of ex vivo MRI data. In this report, we describe a relatively simple and cost-effective experimental setup for acquiring artifact-free ex vivo brain images using a clinical MRI system with standard hardware. In particular, we outline the necessary steps, from collecting an ex vivo human brain to the MRI scanner setup, and have also described changing the formalin (as might be necessary in longitudinal postmortem studies). Finally, we share some representative ex vivo MRI images that have been acquired using the proposed setup in order to demonstrate the efficacy of this approach. We hope that this protocol will provide both clinicians and researchers with a straight-forward and cost-effective solution for acquiring ex vivo MRI data from whole postmortem human brains. PMID:27965620

  7. Experiences with Text Mining Large Collections of Unstructured Systems Development Artifacts at JPL

    NASA Technical Reports Server (NTRS)

    Port, Dan; Nikora, Allen; Hihn, Jairus; Huang, LiGuo

    2011-01-01

    Often repositories of systems engineering artifacts at NASA's Jet Propulsion Laboratory (JPL) are so large and poorly structured that they have outgrown our capability to effectively manually process their contents to extract useful information. Sophisticated text mining methods and tools seem a quick, low-effort approach to automating our limited manual efforts. Our experiences of exploring such methods mainly in three areas including historical risk analysis, defect identification based on requirements analysis, and over-time analysis of system anomalies at JPL, have shown that obtaining useful results requires substantial unanticipated efforts - from preprocessing the data to transforming the output for practical applications. We have not observed any quick 'wins' or realized benefit from short-term effort avoidance through automation in this area. Surprisingly we have realized a number of unexpected long-term benefits from the process of applying text mining to our repositories. This paper elaborates some of these benefits and our important lessons learned from the process of preparing and applying text mining to large unstructured system artifacts at JPL aiming to benefit future TM applications in similar problem domains and also in hope for being extended to broader areas of applications.

  8. In vitro magnetic resonance imaging evaluation of ossicular implants at 3 T.

    PubMed

    Shellock, Frank G; Meepos, Lauren N; Stapleton, Matthew R; Valencerina, Sam

    2012-07-01

    Ossicular implants made from metallic materials may be acceptable or pose hazards for patients referred for magnetic resonance imaging (MRI) examinations, depending on the outcome of proper MRI testing procedures. Using a 3-T MR system, 2 ossicular implants were tested for magnetic field interactions, heating, and artifacts. Two different ossicular implants (Stainless Steel/Fluoroplastic Sanna-Type Piston [6 mm in length] and the Offset ALTO Total Prosthesis [15 mm in length, titanium/silicone]; Grace Medical, Memphis, TN, USA) were selected for testing, which represented the largest metallic mass and materials with the highest magnetic susceptibilities, with the intent of applying the MRI findings to other ossicular implants. The implants were evaluated at 3-T for magnetic field interactions, heating, and artifacts using standard previously described techniques. Each ossicular implant showed relatively minor magnetic field interactions that will not be associated with movement in situ. Heating was not excessive (highest temperature change, ≤ 1.6°C; background temperature change, 1.5°C). Artifacts, although relatively small, may create issues for diagnostic imaging if the area of interest is in the same area or close to these ossicular implants. The results of this investigation demonstrated that it would be acceptable (i.e., "MR conditional" using current terminology) for patients with these ossicular implants to undergo MRI examinations at 3 T or less. In consideration of the materials and dimensions of the implants that underwent testing, these findings pertain to many other similar ossicular implants from the same manufacturer.

  9. The New Kilogram Definition and its Implications for High-Precision Mass Tolerance Classes.

    PubMed

    Abbott, Patrick J; Kubarych, Zeina J

    2013-01-01

    The SI unit of mass, the kilogram, is the only remaining artifact definition in the seven fundamental units of the SI system. It will be redefined in terms of the Planck constant as soon as certain experimental conditions, based on recommendations of the Consultative Committee for Mass and Related Quantities (CCM) are met. To better reflect reality, the redefinition will likely be accompanied by an increase in the uncertainties that National Metrology Institutes (NMIs) pass on to customers via artifact dissemination, which could have an impact on the reference standards that are used by secondary calibration laboratories if certain weight tolerances are adopted for use. This paper will compare the legal metrology requirements for precision mass calibration laboratories after the kilogram is redefined with the current capabilities based on the international prototype kilogram (IPK) realization of the kilogram.

  10. Is interstellar archeology possible?

    NASA Astrophysics Data System (ADS)

    Carrigan, Richard A.

    2012-09-01

    Searching for signatures of cosmic-scale archeological artifacts such as Dyson spheres is an interesting alternative to conventional radio SETI. Uncovering such an artifact does not require the intentional transmission of a signal on the part of the original civilization. This type of search is called interstellar archeology or sometimes cosmic archeology. A variety of interstellar archeology signatures is discussed including non-natural planetary atmospheric constituents, stellar doping, Dyson spheres, as well as signatures of stellar, and galactic-scale engineering. The concept of a Fermi bubble due to interstellar migration is reviewed in the discussion of galactic signatures. These potential interstellar archeological signatures are classified using the Kardashev scale. A modified Drake equation is introduced. With few exceptions interstellar archeological signatures are clouded and beyond current technological capabilities. However SETI for so-called cultural transmissions and planetary atmosphere signatures are within reach.

  11. Comparison of ring artifact removal methods using flat panel detector based CT images

    PubMed Central

    2011-01-01

    Background Ring artifacts are the concentric rings superimposed on the tomographic images often caused by the defective and insufficient calibrated detector elements as well as by the damaged scintillator crystals of the flat panel detector. It may be also generated by objects attenuating X-rays very differently in different projection direction. Ring artifact reduction techniques so far reported in the literature can be broadly classified into two groups. One category of the approaches is based on the sinogram processing also known as the pre-processing techniques and the other category of techniques perform processing on the 2-D reconstructed images, recognized as the post-processing techniques in the literature. The strength and weakness of these categories of approaches are yet to be explored from a common platform. Method In this paper, a comparative study of the two categories of ring artifact reduction techniques basically designed for the multi-slice CT instruments is presented from a common platform. For comparison, two representative algorithms from each of the two categories are selected from the published literature. A very recently reported state-of-the-art sinogram domain ring artifact correction method that classifies the ring artifacts according to their strength and then corrects the artifacts using class adaptive correction schemes is also included in this comparative study. The first sinogram domain correction method uses a wavelet based technique to detect the corrupted pixels and then using a simple linear interpolation technique estimates the responses of the bad pixels. The second sinogram based correction method performs all the filtering operations in the transform domain, i.e., in the wavelet and Fourier domain. On the other hand, the two post-processing based correction techniques actually operate on the polar transform domain of the reconstructed CT images. The first method extracts the ring artifact template vector using a homogeneity test and then corrects the CT images by subtracting the artifact template vector from the uncorrected images. The second post-processing based correction technique performs median and mean filtering on the reconstructed images to produce the corrected images. Results The performances of the comparing algorithms have been tested by using both quantitative and perceptual measures. For quantitative analysis, two different numerical performance indices are chosen. On the other hand, different types of artifact patterns, e.g., single/band ring, artifacts from defective and mis-calibrated detector elements, rings in highly structural object and also in hard object, rings from different flat-panel detectors are analyzed to perceptually investigate the strength and weakness of the five methods. An investigation has been also carried out to compare the efficacy of these algorithms in correcting the volume images from a cone beam CT with the parameters determined from one particular slice. Finally, the capability of each correction technique in retaining the image information (e.g., small object at the iso-center) accurately in the corrected CT image has been also tested. Conclusions The results show that the performances of the algorithms are limited and none is fully suitable for correcting different types of ring artifacts without introducing processing distortion to the image structure. To achieve the diagnostic quality of the corrected slices a combination of the two approaches (sinogram- and post-processing) can be used. Also the comparing methods are not suitable for correcting the volume images from a cone beam flat-panel detector based CT. PMID:21846411

  12. Robot Lies in Health Care: When Is Deception Morally Permissible?

    PubMed

    Matthias, Andreas

    2015-06-01

    Autonomous robots are increasingly interacting with users who have limited knowledge of robotics and are likely to have an erroneous mental model of the robot's workings, capabilities, and internal structure. The robot's real capabilities may diverge from this mental model to the extent that one might accuse the robot's manufacturer of deceiving the user, especially in cases where the user naturally tends to ascribe exaggerated capabilities to the machine (e.g. conversational systems in elder-care contexts, or toy robots in child care). This poses the question, whether misleading or even actively deceiving the user of an autonomous artifact about the capabilities of the machine is morally bad and why. By analyzing trust, autonomy, and the erosion of trust in communicative acts as consequences of deceptive robot behavior, we formulate four criteria that must be fulfilled in order for robot deception to be morally permissible, and in some cases even morally indicated.

  13. 23 CFR 230.113 - Implementation of supportive services.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 230.113 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CIVIL RIGHTS EXTERNAL... training opportunities for members of minority groups and women; (2) Services in connection with the... minority groups and women's groups; (3) Services designed to develop the capabilities of prospective...

  14. 23 CFR 230.113 - Implementation of supportive services.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 230.113 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CIVIL RIGHTS EXTERNAL... training opportunities for members of minority groups and women; (2) Services in connection with the... minority groups and women's groups; (3) Services designed to develop the capabilities of prospective...

  15. 23 CFR 230.113 - Implementation of supportive services.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 230.113 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CIVIL RIGHTS EXTERNAL... training opportunities for members of minority groups and women; (2) Services in connection with the... minority groups and women's groups; (3) Services designed to develop the capabilities of prospective...

  16. Capabilities and Contributions of Unwed Fathers

    ERIC Educational Resources Information Center

    Lerman, Robert I.

    2010-01-01

    Young, minority, and poorly educated fathers in fragile families have little capacity to support their children financially and are hard-pressed to maintain stability in raising those children. In this article, Robert Lerman examines the capabilities and contributions of unwed fathers, how their capabilities and contributions fall short of those…

  17. Photoplethysmograph signal reconstruction based on a novel hybrid motion artifact detection-reduction approach. Part I: Motion and noise artifact detection.

    PubMed

    Chong, Jo Woon; Dao, Duy K; Salehizadeh, S M A; McManus, David D; Darling, Chad E; Chon, Ki H; Mendelson, Yitzhak

    2014-11-01

    Motion and noise artifacts (MNA) are a serious obstacle in utilizing photoplethysmogram (PPG) signals for real-time monitoring of vital signs. We present a MNA detection method which can provide a clean vs. corrupted decision on each successive PPG segment. For motion artifact detection, we compute four time-domain parameters: (1) standard deviation of peak-to-peak intervals (2) standard deviation of peak-to-peak amplitudes (3) standard deviation of systolic and diastolic interval ratios, and (4) mean standard deviation of pulse shape. We have adopted a support vector machine (SVM) which takes these parameters from clean and corrupted PPG signals and builds a decision boundary to classify them. We apply several distinct features of the PPG data to enhance classification performance. The algorithm we developed was verified on PPG data segments recorded by simulation, laboratory-controlled and walking/stair-climbing experiments, respectively, and we compared several well-established MNA detection methods to our proposed algorithm. All compared detection algorithms were evaluated in terms of motion artifact detection accuracy, heart rate (HR) error, and oxygen saturation (SpO2) error. For laboratory controlled finger, forehead recorded PPG data and daily-activity movement data, our proposed algorithm gives 94.4, 93.4, and 93.7% accuracies, respectively. Significant reductions in HR and SpO2 errors (2.3 bpm and 2.7%) were noted when the artifacts that were identified by SVM-MNA were removed from the original signal than without (17.3 bpm and 5.4%). The accuracy and error values of our proposed method were significantly higher and lower, respectively, than all other detection methods. Another advantage of our method is its ability to provide highly accurate onset and offset detection times of MNAs. This capability is important for an automated approach to signal reconstruction of only those data points that need to be reconstructed, which is the subject of the companion paper to this article. Finally, our MNA detection algorithm is real-time realizable as the computational speed on the 7-s PPG data segment was found to be only 7 ms with a Matlab code.

  18. Spatiotemporal filtering of MR-temperature artifacts arising from bowel motion during transurethral MR-HIFU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, Alain, E-mail: aschmitt@sri.utoronto.ca; Mougenot, Charles; Chopra, Rajiv

    2014-11-01

    Purpose: Transurethral MR-HIFU is a minimally invasive image-guided treatment for localized prostate cancer that enables precise targeting of tissue within the gland. The treatment is performed within a clinical MRI to obtain real-time MR thermometry used as an active feedback to control the spatial heating pattern in the prostate and to monitor for potential damage to surrounding tissues. This requires that the MR thermometry measurements are an accurate representation of the true tissue temperature. The proton resonance frequency shift thermometry method used is sensitive to tissue motion and changes in the local magnetic susceptibility that can be caused by themore » motion of air bubbles in the rectum, which can impact the performance of transurethral MR-HIFU in these regions of the gland. Methods: A method is proposed for filtering of temperature artifacts based on the temporal variance of the temperature, using empirical and dynamic positional knowledge of the ultrasonic heating beam, and an estimation of the measurement noise. A two-step correction strategy is introduced which eliminates artifact-detected temperature variations while keeping the noise level low through spatial averaging. Results: The filter has been evaluated by postprocessing data from five human transurethral ultrasound treatments. The two-step correction process led to reduced final temperature standard deviation in the prostate and rectum areas where the artifact was located, without negatively affecting areas distal to the artifact. The performance of the filter was also found to be consistent across all six of the data sets evaluated. The evaluation of the detection criterion parameter M determined that a value of M = 3 achieves a conservative filter with minimal loss of spatial resolution during the process. Conclusions: The filter was able to remove most artifacts due to the presence of moving air bubbles in the rectum during transurethral MR-HIFU. A quantitative estimation of the filter capabilities shows a systematic improvement in the standard deviation of the corrected temperature maps in the rectum zone as well as in the entire acquired slice.« less

  19. SU-G-IeP2-03: Comparison of Dose Calculation On MAR (metal Artifact Reduction) and Non-MAR Datasets for Pelvic Patients with Hip Prosthesis and Head and Neck Patients with Dental Filling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, V; Kohli, K

    Purpose: Metal artifact reduction (MAR) software in computed tomography (CT) was previously evaluated with phantoms demonstrating the algorithm is capable of reducing metal artifacts without affecting the overall image quality. The goal of this study is to determine the dosimetric impact when calculating with CT datasets reconstructed with and without MAR software. Methods: Twelve head and neck cancer patients with dental fillings and four pelvic cancer patients with hip prosthesis were scanned with a GE Optima RT 580 CT scanner. Images were reconstructed with and without the MAR software. 6MV IMRT and VMAT plans were calculated with AAA on themore » MAR dataset until all constraints met our clinic’s guidelines. Contours from the MAR dataset were copied to the non-MAR dataset. Next, dose calculation on the non-MAR dataset was performed using the same field arrangements and fluence as the MAR plan. Conformality index, D99% and V100% to PTV were compared between MAR and non-MAR plans. Results: Differences between MAR and non-MAR plans were evaluated. For head and neck plans, the largest variations in conformality index, D99% and V100% were −3.8%, −0.9% and −2.1% respectively whereas for pelvic plans, the biggest discrepancies were −32.7%, −0.4% and -33.5% respectively. The dosimetric impact from hip prosthesis is greater because it produces more artifacts compared to dental fillings. Coverage to PTV can increase or decrease depending on the artifacts since dark streaks reduce the HU whereas bright streaks increase the HU. In the majority of the cases, PTV dose in the non-MAR plans is higher than MAR plans. Conclusion: With the presence of metals, MAR algorithm can allow more accurate delineation of targets and OARs. Dose difference between MAR and non-MAR plans depends on the proximity of the organ to the high density material, the streaking artifacts and the beam arrangements of the plan.« less

  20. Composition of diesel exhaust with particular reference to particle bound organics including formation of artifacts.

    PubMed

    Lies, K H; Hartung, A; Postulka, A; Gring, H; Schulze, J

    1986-01-01

    For particulate emissions, standards were established by the US EPA in February 1980. Regulations limiting particulates from new light duty diesel vehicles are valid by model year 1982. The corresponding standards on a pure mass basis do not take into account any chemical character of the diesel particulate matter. Our investigation of the material composition shows that diesel particulates consist mainly of soot (up to 80% by weight) and adsorptively bound organics including polycyclic aromatic hydrocarbons (PAH). The qualitative and quantitative nature of hydrocarbon compounds associated with the particulates is dependent not only on the combustion parameters of the engine but also to an important degree on the sampling conditions when the particulates are collected (dilution ratio, temperature, filter material, sampling time etc.). Various methods for the analyses of PAH and their oxy- and nitro-derivatives are described including sampling, extraction, fractionation and chemical analysis. Quantitative comparison of PAH, nitro-PAH and oxy-PAH from different engines are given. For assessing mutagenicity of particulate matter, short-term biological tests are widely used. These biological tests often need a great amount of particulate matter requiring prolonged filter sampling times. Since it is well known that facile PAH oxidation can take place under the conditions used for sampling and analysis, the question rises if these PAH-derivates found in particle extracts partly or totally are produced during sampling (artifacts). Various results concerning nitro- and oxy-PAH are presented characterizing artifact formation as a minor problem under the conditions of the Federal Test Procedure. But results show that under other sampling conditions, e.g. electrostatic precipitation, higher NO2-concentrations and longer sampling times, artifact formation can become a bigger problem. The more stringent particulate standard of 0.2 g/mi for model years 1986 and 1987 respectively requires particulate trap technology. Preliminary investigations of the efficiency of ceramic filters used reveal that the reduction of the adsorptively bound organics is lower than the decrease of the solid carbonaceous fractions.

  1. A project to improve the capabilities of minorities in energy fields and a cost benefit analysis of an ethyl alcohol plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sara, T.S.; Jones, M. Jr.

    1986-08-01

    The project being reported in this document had three components: (1) a research project to carry out cost-benefit analysis of an ethyl alcohol plant at Tuskegee University, (2) seminars to improve the high-technology capabilities of minority persons, and (3) a class in energy management. The report provides a background on the three components listed above. The results from the research on the ethyl alcohol plant, are discussed, along with the seminars, and details of the energy management class.

  2. Detection of Site-Specific Blood Flow Variation in Humans during Running by a Wearable Laser Doppler Flowmeter.

    PubMed

    Iwasaki, Wataru; Nogami, Hirofumi; Takeuchi, Satoshi; Furue, Masutaka; Higurashi, Eiji; Sawada, Renshi

    2015-10-05

    Wearable wireless physiological sensors are helpful for monitoring and maintaining human health. Blood flow contains abundant physiological information but it is hard to measure blood flow during exercise using conventional blood flowmeters because of their size, weight, and use of optic fibers. To resolve these disadvantages, we previously developed a micro integrated laser Doppler blood flowmeter using microelectromechanical systems technology. This micro blood flowmeter is wearable and capable of stable measurement signals even during movement. Therefore, we attempted to measure skin blood flow at the forehead, fingertip, and earlobe of seven young men while running as a pilot experiment to extend the utility of the micro blood flowmeter. We measured blood flow in each subject at velocities of 6, 8, and 10 km/h. We succeeded in obtaining stable measurements of blood flow, with few motion artifacts, using the micro blood flowmeter, and the pulse wave signal and motion artifacts were clearly separated by conducting frequency analysis. Furthermore, the results showed that the extent of the changes in blood flow depended on the intensity of exercise as well as previous work with an ergometer. Thus, we demonstrated the capability of this wearable blood flow sensor for measurement during exercise.

  3. Knowledge representation to support reasoning based on multiple models

    NASA Technical Reports Server (NTRS)

    Gillam, April; Seidel, Jorge P.; Parker, Alice C.

    1990-01-01

    Model Based Reasoning is a powerful tool used to design and analyze systems, which are often composed of numerous interactive, interrelated subsystems. Models of the subsystems are written independently and may be used together while they are still under development. Thus the models are not static. They evolve as information becomes obsolete, as improved artifact descriptions are developed, and as system capabilities change. Researchers are using three methods to support knowledge/data base growth, to track the model evolution, and to handle knowledge from diverse domains. First, the representation methodology is based on having pools, or types, of knowledge from which each model is constructed. In addition information is explicit. This includes the interactions between components, the description of the artifact structure, and the constraints and limitations of the models. The third principle we have followed is the separation of the data and knowledge from the inferencing and equation solving mechanisms. This methodology is used in two distinct knowledge-based systems: one for the design of space systems and another for the synthesis of VLSI circuits. It has facilitated the growth and evolution of our models, made accountability of results explicit, and provided credibility for the user community. These capabilities have been implemented and are being used in actual design projects.

  4. Development of a High Angular Resolution Diffusion Imaging Human Brain Template

    PubMed Central

    Varentsova, Anna; Zhang, Shengwei; Arfanakis, Konstantinos

    2014-01-01

    Brain diffusion templates contain rich information about the microstructure of the brain, and are used as references in spatial normalization or in the development of brain atlases. The accuracy of diffusion templates constructed based on the diffusion tensor (DT) model is limited in regions with complex neuronal micro-architecture. High angular resolution diffusion imaging (HARDI) overcomes limitations of the DT model and is capable of resolving intravoxel heterogeneity. However, when HARDI is combined with multiple-shot sequences to minimize image artifacts, the scan time becomes inappropriate for human brain imaging. In this work, an artifact-free HARDI template of the human brain was developed from low angular resolution multiple-shot diffusion data. The resulting HARDI template was produced in ICBM-152 space based on Turboprop diffusion data, was shown to resolve complex neuronal micro-architecture in regions with intravoxel heterogeneity, and contained fiber orientation information consistent with known human brain anatomy. PMID:24440528

  5. Gaussian processes for personalized e-health monitoring with wearable sensors.

    PubMed

    Clifton, Lei; Clifton, David A; Pimentel, Marco A F; Watkinson, Peter J; Tarassenko, Lionel

    2013-01-01

    Advances in wearable sensing and communications infrastructure have allowed the widespread development of prototype medical devices for patient monitoring. However, such devices have not penetrated into clinical practice, primarily due to a lack of research into "intelligent" analysis methods that are sufficiently robust to support large-scale deployment. Existing systems are typically plagued by large false-alarm rates, and an inability to cope with sensor artifact in a principled manner. This paper has two aims: 1) proposal of a novel, patient-personalized system for analysis and inference in the presence of data uncertainty, typically caused by sensor artifact and data incompleteness; 2) demonstration of the method using a large-scale clinical study in which 200 patients have been monitored using the proposed system. This latter provides much-needed evidence that personalized e-health monitoring is feasible within an actual clinical environment, at scale, and that the method is capable of improving patient outcomes via personalized healthcare.

  6. TMSEEG: A MATLAB-Based Graphical User Interface for Processing Electrophysiological Signals during Transcranial Magnetic Stimulation.

    PubMed

    Atluri, Sravya; Frehlich, Matthew; Mei, Ye; Garcia Dominguez, Luis; Rogasch, Nigel C; Wong, Willy; Daskalakis, Zafiris J; Farzan, Faranak

    2016-01-01

    Concurrent recording of electroencephalography (EEG) during transcranial magnetic stimulation (TMS) is an emerging and powerful tool for studying brain health and function. Despite a growing interest in adaptation of TMS-EEG across neuroscience disciplines, its widespread utility is limited by signal processing challenges. These challenges arise due to the nature of TMS and the sensitivity of EEG to artifacts that often mask TMS-evoked potentials (TEP)s. With an increase in the complexity of data processing methods and a growing interest in multi-site data integration, analysis of TMS-EEG data requires the development of a standardized method to recover TEPs from various sources of artifacts. This article introduces TMSEEG, an open-source MATLAB application comprised of multiple algorithms organized to facilitate a step-by-step procedure for TMS-EEG signal processing. Using a modular design and interactive graphical user interface (GUI), this toolbox aims to streamline TMS-EEG signal processing for both novice and experienced users. Specifically, TMSEEG provides: (i) targeted removal of TMS-induced and general EEG artifacts; (ii) a step-by-step modular workflow with flexibility to modify existing algorithms and add customized algorithms; (iii) a comprehensive display and quantification of artifacts; (iv) quality control check points with visual feedback of TEPs throughout the data processing workflow; and (v) capability to label and store a database of artifacts. In addition to these features, the software architecture of TMSEEG ensures minimal user effort in initial setup and configuration of parameters for each processing step. This is partly accomplished through a close integration with EEGLAB, a widely used open-source toolbox for EEG signal processing. In this article, we introduce TMSEEG, validate its features and demonstrate its application in extracting TEPs across several single- and multi-pulse TMS protocols. As the first open-source GUI-based pipeline for TMS-EEG signal processing, this toolbox intends to promote the widespread utility and standardization of an emerging technology in brain research.

  7. TMSEEG: A MATLAB-Based Graphical User Interface for Processing Electrophysiological Signals during Transcranial Magnetic Stimulation

    PubMed Central

    Atluri, Sravya; Frehlich, Matthew; Mei, Ye; Garcia Dominguez, Luis; Rogasch, Nigel C.; Wong, Willy; Daskalakis, Zafiris J.; Farzan, Faranak

    2016-01-01

    Concurrent recording of electroencephalography (EEG) during transcranial magnetic stimulation (TMS) is an emerging and powerful tool for studying brain health and function. Despite a growing interest in adaptation of TMS-EEG across neuroscience disciplines, its widespread utility is limited by signal processing challenges. These challenges arise due to the nature of TMS and the sensitivity of EEG to artifacts that often mask TMS-evoked potentials (TEP)s. With an increase in the complexity of data processing methods and a growing interest in multi-site data integration, analysis of TMS-EEG data requires the development of a standardized method to recover TEPs from various sources of artifacts. This article introduces TMSEEG, an open-source MATLAB application comprised of multiple algorithms organized to facilitate a step-by-step procedure for TMS-EEG signal processing. Using a modular design and interactive graphical user interface (GUI), this toolbox aims to streamline TMS-EEG signal processing for both novice and experienced users. Specifically, TMSEEG provides: (i) targeted removal of TMS-induced and general EEG artifacts; (ii) a step-by-step modular workflow with flexibility to modify existing algorithms and add customized algorithms; (iii) a comprehensive display and quantification of artifacts; (iv) quality control check points with visual feedback of TEPs throughout the data processing workflow; and (v) capability to label and store a database of artifacts. In addition to these features, the software architecture of TMSEEG ensures minimal user effort in initial setup and configuration of parameters for each processing step. This is partly accomplished through a close integration with EEGLAB, a widely used open-source toolbox for EEG signal processing. In this article, we introduce TMSEEG, validate its features and demonstrate its application in extracting TEPs across several single- and multi-pulse TMS protocols. As the first open-source GUI-based pipeline for TMS-EEG signal processing, this toolbox intends to promote the widespread utility and standardization of an emerging technology in brain research. PMID:27774054

  8. A forward bias method for lag correction of an a-Si flat panel detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starman, Jared; Tognina, Carlo; Partain, Larry

    2012-01-15

    Purpose: Digital a-Si flat panel (FP) x-ray detectors can exhibit detector lag, or residual signal, of several percent that can cause ghosting in projection images or severe shading artifacts, known as the radar artifact, in cone-beam computed tomography (CBCT) reconstructions. A major contributor to detector lag is believed to be defect states, or traps, in the a-Si layer of the FP. Software methods to characterize and correct for the detector lag exist, but they may make assumptions such as system linearity and time invariance, which may not be true. The purpose of this work is to investigate a new hardwaremore » based method to reduce lag in an a-Si FP and to evaluate its effectiveness at removing shading artifacts in CBCT reconstructions. The feasibility of a novel, partially hardware based solution is also examined. Methods: The proposed hardware solution for lag reduction requires only a minor change to the FP. For pulsed irradiation, the proposed method inserts a new operation step between the readout and data collection stages. During this new stage the photodiode is operated in a forward bias mode, which fills the defect states with charge. A Varian 4030CB panel was modified to allow for operation in the forward bias mode. The contrast of residual lag ghosts was measured for lag frames 2 and 100 after irradiation ceased for standard and forward bias modes. Detector step response, lag, SNR, modulation transfer function (MTF), and detective quantum efficiency (DQE) measurements were made with standard and forward bias firmware. CBCT data of pelvic and head phantoms were also collected. Results: Overall, the 2nd and 100th detector lag frame residual signals were reduced 70%-88% using the new method. SNR, MTF, and DQE measurements show a small decrease in collected signal and a small increase in noise. The forward bias hardware successfully reduced the radar artifact in the CBCT reconstruction of the pelvic and head phantoms by 48%-81%. Conclusions: Overall, the forward bias method has been found to greatly reduce detector lag ghosts in projection data and the radar artifact in CBCT reconstructions. The method is limited to improvements of the a-Si photodiode response only. A future hybrid mode may overcome any limitations of this method.« less

  9. 3 CFR 8547 - Proclamation 8547 of August 20, 2010. Minority Enterprise Development Week, 2010

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... capabilities, cultural competencies, and international partnerships needed in a 21st century economy. Minority Enterprise Development Week is anchored by the American legacy of entrepreneurial ambition and innovation. As... also recognize the diversity, determination, insight, and innovation of American businesses, and the...

  10. Identification of Anisomerous Motor Imagery EEG Signals Based on Complex Algorithms

    PubMed Central

    Zhang, Zhiwen; Duan, Feng; Zhou, Xin; Meng, Zixuan

    2017-01-01

    Motor imagery (MI) electroencephalograph (EEG) signals are widely applied in brain-computer interface (BCI). However, classified MI states are limited, and their classification accuracy rates are low because of the characteristics of nonlinearity and nonstationarity. This study proposes a novel MI pattern recognition system that is based on complex algorithms for classifying MI EEG signals. In electrooculogram (EOG) artifact preprocessing, band-pass filtering is performed to obtain the frequency band of MI-related signals, and then, canonical correlation analysis (CCA) combined with wavelet threshold denoising (WTD) is used for EOG artifact preprocessing. We propose a regularized common spatial pattern (R-CSP) algorithm for EEG feature extraction by incorporating the principle of generic learning. A new classifier combining the K-nearest neighbor (KNN) and support vector machine (SVM) approaches is used to classify four anisomerous states, namely, imaginary movements with the left hand, right foot, and right shoulder and the resting state. The highest classification accuracy rate is 92.5%, and the average classification accuracy rate is 87%. The proposed complex algorithm identification method can significantly improve the identification rate of the minority samples and the overall classification performance. PMID:28874909

  11. The effect of using different 0.45 μm filter membranes on 'dissolved' element concentrations in natural waters

    USGS Publications Warehouse

    Hall, G.E.M.; Bonham-Carter, G. F.; Horowitz, A.J.; Lum, K.; Lemieux, C.; Quemerais, B.; Garbarino, J.R.

    1996-01-01

    The effect of 4 different 0.45 ??m pore size filter membrane systems on the 'dissolved' concentration of 28 elements in 5 natural water samples of varying matrix is reported. In 3 of the 5 waters, consistently higher concentrations of most elements (minor and trace) are obtained using Nucleopore 47 mm filter and the cellulose acetate/nitrate 47 mm filter than those measured using the 142 mm cellulose nitrate MFS filter or the Gelman capsule 47 mm filter. These distinct and coherent patterns in elemental behaviour disappear for the other 2 samples, an organic-rich peat water of high suspended load and a mineralised sample high in Si and Ca. Thus the nature and degree of filtration artifacts is matrix-dependent. These trends are evident in both data sets produced by 2 independent laboratories using different instrumentation, techniques and calibrating procedures. The average relative standard deviation in elemental concentration across the 4 filter types is in the range 9-21%. The presence of such filtration artifacts must be considered in projects where, for example, seasonal variability of water composition is under examination, data from various sources are being merged or hydrogeochemical surveys are being conducted.

  12. Submicron-Scale Heterogeneities in Nickel Sorption of Various Cell-Mineral Aggregates Formed by Fe(II)-Oxidizing Bacteria.

    PubMed

    Schmid, Gregor; Zeitvogel, Fabian; Hao, Likai; Ingino, Pablo; Adaktylou, Irini; Eickhoff, Merle; Obst, Martin

    2016-01-05

    Fe(II)-oxidizing bacteria form biogenic cell-mineral aggregates (CMAs) composed of microbial cells, extracellular organic compounds, and ferric iron minerals. CMAs are capable of immobilizing large quantities of heavy metals, such as nickel, via sorption processes. CMAs play an important role for the fate of heavy metals in the environment, particularly in systems characterized by elevated concentrations of dissolved metals, such as mine drainage or contaminated sediments. We applied scanning transmission (soft) X-ray microscopy (STXM) spectrotomography for detailed 3D chemical mapping of nickel sorbed to CMAs on the submicron scale. We analyzed different CMAs produced by phototrophic or nitrate-reducing microbial Fe(II) oxidation and, in addition, a twisted stalk structure obtained from an environmental biofilm. Nickel showed a heterogeneous distribution and was found to be preferentially sorbed to biogenically precipitated iron minerals such as Fe(III)-(oxyhydr)oxides and, to a minor extent, associated with organic compounds. Some distinct nickel accumulations were identified on the surfaces of CMAs. Additional information obtained from scatter plots and angular distance maps, showing variations in the nickel-iron and nickel-organic carbon ratios, also revealed a general correlation between nickel and iron. Although a high correlation between nickel and iron was observed in 2D maps, 3D maps revealed this to be partly due to projection artifacts. In summary, by combining different approaches for data analysis, we unambiguously showed the heterogeneous sorption behavior of nickel to CMAs.

  13. Minority On-Line Information Service (MOLIS): A minority research and education information service. Final report for Department of Energy Grant No. DE-FG02-90ER75602

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodman, John A.

    MOLIS is an online database of minority institutions, and is used by federal agencies to identify peer reviewers and by majority institutions to identify possible collaborations and sub-contracts. MOLIS includes in-depth information about the research and educational capabilities of Historically Black Colleges and Universities (HBCUs), Hispanic Serving Institutions (HSIs), and Tribal Colleges. Included with this report are several annual progress reports, a list of all minority institutions currently on MOLIS, a list of outreach activities, etc.

  14. Reduction of motion artifact in pulse oximetry by smoothed pseudo Wigner-Ville distribution

    PubMed Central

    Yan, Yong-sheng; Poon, Carmen CY; Zhang, Yuan-ting

    2005-01-01

    Background The pulse oximeter, a medical device capable of measuring blood oxygen saturation (SpO2), has been shown to be a valuable device for monitoring patients in critical conditions. In order to incorporate the technique into a wearable device which can be used in ambulatory settings, the influence of motion artifacts on the estimated SpO2 must be reduced. This study investigates the use of the smoothed psuedo Wigner-Ville distribution (SPWVD) for the reduction of motion artifacts affecting pulse oximetry. Methods The SPWVD approach is compared with two techniques currently used in this field, i.e. the weighted moving average (WMA) and the fast Fourier transform (FFT) approaches. SpO2 and pulse rate were estimated from a photoplethysmographic (PPG) signal recorded when subject is in a resting position as well as in the act of performing four types of motions: horizontal and vertical movements of the hand, and bending and pressing motions of the finger. For each condition, 24 sets of PPG signals collected from 6 subjects, each of 30 seconds, were studied with reference to the PPG signal recorded simultaneously from the subject's other hand, which was stationary at all times. Results and Discussion The SPWVD approach shows significant improvement (p < 0.05), as compared to traditional approaches, when subjects bend their finger or press their finger against the sensor. In addition, the SPWVD approach also reduces the mean absolute pulse rate error significantly (p < 0.05) from 16.4 bpm and 11.2 bpm for the WMA and FFT approaches, respectively, to 5.62 bpm. Conclusion The results suggested that the SPWVD approach could potentially be used to reduce motion artifact on wearable pulse oximeters. PMID:15737241

  15. Minority Parents Should Know More about School Culture and Its Impact on Their Children's Education

    ERIC Educational Resources Information Center

    Vang, Christopher T.

    2006-01-01

    Many immigrant children encounter many difficulties and challenges in the public school. As a result, countless bilingual and limited-English-proficient students are lagging behind their peers. Minority students are labeled and treated differently from their classmates. Although equally capable, they are receiving a second-class education. The…

  16. Utilization of Minor Actinides as a Fuel Component for Ultra-Long Life Bhr Configurations: Designs, Advantages and Limitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Pavel V. Tsvetkov

    2009-05-20

    This project assessed the advantages and limitations of using minor actinides as a fuel component to achieve ultra-long life Very High Temperature Reactor (VHTR) configurations. Researchers considered and compared the capabilities of pebble-bed and prismatic core designs with advanced actinide fuels to achieve ultra-long operation without refueling. Since both core designs permit flexibility in component configuration, fuel utilization, and fuel management, it is possible to improve fissile properties of minor actinides by neutron spectrum shifting through configuration adjustments. The project studied advanced actinide fuels, which could reduce the long-term radio-toxicity and heat load of high-level waste sent to a geologicmore » repository and enable recovery of the energy contained in spent fuel. The ultra-long core life autonomous approach may reduce the technical need for additional repositories and is capable to improve marketability of the Generation IV VHTR by allowing worldwide deployment, including remote regions and regions with limited industrial resources. Utilization of minor actinides in nuclear reactors facilitates developments of new fuel cycles towards sustainable nuclear energy scenarios.« less

  17. Simultaneous multi-slice combined with PROPELLER.

    PubMed

    Norbeck, Ola; Avventi, Enrico; Engström, Mathias; Rydén, Henric; Skare, Stefan

    2018-08-01

    Simultaneous multi-slice (SMS) imaging is an advantageous method for accelerating MRI scans, allowing reduced scan time, increased slice coverage, or high temporal resolution with limited image quality penalties. In this work we combine the advantages of SMS acceleration with the motion correction and artifact reduction capabilities of the PROPELLER technique. A PROPELLER sequence was developed with support for CAIPIRINHA and phase optimized multiband radio frequency pulses. To minimize the time spent on acquiring calibration data, both in-plane-generalized autocalibrating partial parallel acquisition (GRAPPA) and slice-GRAPPA weights for all PROPELLER blade angles were calibrated on a single fully sampled PROPELLER blade volume. Therefore, the proposed acquisition included a single fully sampled blade volume, with the remaining blades accelerated in both the phase and slice encoding directions without additional auto calibrating signal lines. Comparison to 3D RARE was performed as well as demonstration of 3D motion correction performance on the SMS PROPELLER data. We show that PROPELLER acquisitions can be efficiently accelerated with SMS using a short embedded calibration. The potential in combining these two techniques was demonstrated with a high quality 1.0 × 1.0 × 1.0 mm 3 resolution T 2 -weighted volume, free from banding artifacts, and capable of 3D retrospective motion correction, with higher effective resolution compared to 3D RARE. With the combination of SMS acceleration and PROPELLER imaging, thin-sliced reformattable T 2 -weighted image volumes with 3D retrospective motion correction capabilities can be rapidly acquired with low sensitivity to flow and head motion. Magn Reson Med 80:496-506, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  18. Implementation and assessment of an animal management system for small-animal micro-CT / micro-SPECT imaging

    NASA Astrophysics Data System (ADS)

    Holdsworth, David W.; Detombe, Sarah A.; Chiodo, Chris; Fricke, Stanley T.; Drangova, Maria

    2011-03-01

    Advances in laboratory imaging systems for CT, SPECT, MRI, and PET facilitate routine micro-imaging during pre-clinical investigations. Challenges still arise when dealing with immune-compromised animals, biohazardous agents, and multi-modality imaging. These challenges can be overcome with an appropriate animal management system (AMS), with the capability for supporting and monitoring a rat or mouse during micro-imaging. We report the implementation and assessment of a new AMS system for mice (PRA-3000 / AHS-2750, ASI Instruments, Warren MI), designed to be compatible with a commercial micro-CT / micro-SPECT imaging system (eXplore speCZT, GE Healthcare, London ON). The AMS was assessed under the following criteria: 1) compatibility with the imaging system (i.e. artifact generation, geometric dimensions); 2) compatibility with live animals (i.e. positioning, temperature regulation, anesthetic supply); 3) monitoring capabilities (i.e. rectal temperature, respiratory and cardiac monitoring); 4) stability of co-registration; and 5) containment. Micro-CT scans performed using a standardized live-animal protocol (90 kVp, 40 mA, 900 views, 16 ms per view) exhibited low noise (+/-19 HU) and acceptable artifact from high-density components within the AMS (e.g. ECG pad contacts). Live mice were imaged repeatedly (with removal and replacement of the AMS) and spatial registration was found to be stable to within +/-0.07 mm. All animals tolerated enclosure within the AMS for extended periods (i.e. > one hour) without distress, based on continuous recordings of rectal temperature, ECG waveform and respiratory rate. A sealed AMS system extends the capability of a conventional micro-imaging system to include immune-compromised and biosafety level 2 mouse-imaging protocols.

  19. Ventricular Assist Device implant (AB 5000) prototype cannula: In vitro assessment of MRI issues at 3-Tesla

    PubMed Central

    Shellock, Frank G; Valencerina, Samuel

    2008-01-01

    Purpose To evaluate MRI issues at 3-Tesla for a ventricular assist device (VAD). Methods The AB5000 Ventricle with a prototype Nitinol wire-reinforced In-Flow Cannula and Out-Flow Cannula attached (Abiomed, Inc., Danvers, MA) was evaluated for magnetic field interactions, heating, and artifacts at 3-Tesla. MRI-related heating was assessed with the device in a gelled-saline-filled, head/torso phantom using a transmit/received RF body coil while performing MRI at a whole body averaged SAR of 3-W/kg for 15-min. Artifacts were assessed for the main metallic component of this VAD (atrial cannula) using T1-weighted, spin echo and gradient echo pulse sequences. Results The AB5000 Ventricle with the prototype In-Flow Cannula and Out-Flow Cannula attached showed relatively minor magnetic field interactions that will not cause movement in situ. Heating was not excessive (highest temperature change, +0.8°C). Artifacts may create issues for diagnostic imaging if the area of interest is in the same area or close to the implanted metallic component of this VAD (i.e., the venous cannula). Conclusion The results of this investigation demonstrated that it would be acceptable for a patient with this VAD (AB5000 Ventricle with a prototype Nitinol wire-reinforced In-Flow Cannula and Out-Flow Cannula attached) to undergo MRI at 3-Tesla or less. Notably, it is likely that the operation console for this device requires positioning a suitable distance (beyond the 100 Gauss line or in the MR control room) from the 3-Tesla MR system to ensure proper function of the VAD. PMID:18495028

  20. Automatic Artifact Removal from Electroencephalogram Data Based on A Priori Artifact Information.

    PubMed

    Zhang, Chi; Tong, Li; Zeng, Ying; Jiang, Jingfang; Bu, Haibing; Yan, Bin; Li, Jianxin

    2015-01-01

    Electroencephalogram (EEG) is susceptible to various nonneural physiological artifacts. Automatic artifact removal from EEG data remains a key challenge for extracting relevant information from brain activities. To adapt to variable subjects and EEG acquisition environments, this paper presents an automatic online artifact removal method based on a priori artifact information. The combination of discrete wavelet transform and independent component analysis (ICA), wavelet-ICA, was utilized to separate artifact components. The artifact components were then automatically identified using a priori artifact information, which was acquired in advance. Subsequently, signal reconstruction without artifact components was performed to obtain artifact-free signals. The results showed that, using this automatic online artifact removal method, there were statistical significant improvements of the classification accuracies in both two experiments, namely, motor imagery and emotion recognition.

  1. Automatic Artifact Removal from Electroencephalogram Data Based on A Priori Artifact Information

    PubMed Central

    Zhang, Chi; Tong, Li; Zeng, Ying; Jiang, Jingfang; Bu, Haibing; Li, Jianxin

    2015-01-01

    Electroencephalogram (EEG) is susceptible to various nonneural physiological artifacts. Automatic artifact removal from EEG data remains a key challenge for extracting relevant information from brain activities. To adapt to variable subjects and EEG acquisition environments, this paper presents an automatic online artifact removal method based on a priori artifact information. The combination of discrete wavelet transform and independent component analysis (ICA), wavelet-ICA, was utilized to separate artifact components. The artifact components were then automatically identified using a priori artifact information, which was acquired in advance. Subsequently, signal reconstruction without artifact components was performed to obtain artifact-free signals. The results showed that, using this automatic online artifact removal method, there were statistical significant improvements of the classification accuracies in both two experiments, namely, motor imagery and emotion recognition. PMID:26380294

  2. Development of a high angular resolution diffusion imaging human brain template.

    PubMed

    Varentsova, Anna; Zhang, Shengwei; Arfanakis, Konstantinos

    2014-05-01

    Brain diffusion templates contain rich information about the microstructure of the brain, and are used as references in spatial normalization or in the development of brain atlases. The accuracy of diffusion templates constructed based on the diffusion tensor (DT) model is limited in regions with complex neuronal micro-architecture. High angular resolution diffusion imaging (HARDI) overcomes limitations of the DT model and is capable of resolving intravoxel heterogeneity. However, when HARDI is combined with multiple-shot sequences to minimize image artifacts, the scan time becomes inappropriate for human brain imaging. In this work, an artifact-free HARDI template of the human brain was developed from low angular resolution multiple-shot diffusion data. The resulting HARDI template was produced in ICBM-152 space based on Turboprop diffusion data, was shown to resolve complex neuronal micro-architecture in regions with intravoxel heterogeneity, and contained fiber orientation information consistent with known human brain anatomy. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Study of archaeological coins of different dynasties using libs coupled with multivariate analysis

    NASA Astrophysics Data System (ADS)

    Awasthi, Shikha; Kumar, Rohit; Rai, G. K.; Rai, A. K.

    2016-04-01

    Laser Induced Breakdown Spectroscopy (LIBS) is an atomic emission spectroscopic technique having unique capability of an in-situ monitoring tool for detection and quantification of elements present in different artifacts. Archaeological coins collected form G.R. Sharma Memorial Museum; University of Allahabad, India has been analyzed using LIBS technique. These coins were obtained from excavation of Kausambi, Uttar Pradesh, India. LIBS system assembled in the laboratory (laser Nd:YAG 532 nm, 4 ns pulse width FWHM with Ocean Optics LIBS 2000+ spectrometer) is employed for spectral acquisition. The spectral lines of Ag, Cu, Ca, Sn, Si, Fe and Mg are identified in the LIBS spectra of different coins. LIBS along with Multivariate Analysis play an effective role for classification and contribution of spectral lines in different coins. The discrimination between five coins with Archaeological interest has been carried out using Principal Component Analysis (PCA). The results show the potential relevancy of the methodology used in the elemental identification and classification of artifacts with high accuracy and robustness.

  4. CrossTalk. The Journal of Defense Software Engineering. Volume 14, Number 5, May 2001

    DTIC Science & Technology

    2001-05-01

    REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 . SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12... 10 HIGHLIGHTED IN AN APRIL 30 TUTORIAL AND ON MAY 1 - TRACK 8 STEVEN R. PERKINS IS A PLENARY SPEAKER ON MAY 2 PATRICK J. SCHROEDER WILL PRESENT ON MAY...Capability - the first released version. (The artifacts for each are provided by an electronic process guide [ 10 ] and are also used by the Rational Unified

  5. Uncovering Clinical Principles and Techniques to Address Minority Stress, Mental Health, and Related Health Risks Among Gay and Bisexual Men

    PubMed Central

    Pachankis, John E.

    2014-01-01

    Gay and bisexual men disproportionately experience depression, anxiety, and related health risks at least partially because of their exposure to sexual minority stress. This paper describes the adaptation of an evidence-based intervention capable of targeting the psychosocial pathways through which minority stress operates. Interviews with key stakeholders, including gay and bisexual men with depression and anxiety and expert providers, suggested intervention principles and techniques for improving minority stress coping. These principles and techniques are consistent with general cognitive behavioral therapy approaches, the empirical tenets of minority stress theory, and professional guidelines for LGB-affirmative mental health practice. If found to be efficacious, the psychosocial intervention described here would be one of the first to improve the mental health of gay and bisexual men by targeting minority stress. PMID:25554721

  6. Correction of Bowtie-Filter Normalization and Crescent Artifacts for a Clinical CBCT System.

    PubMed

    Zhang, Hong; Kong, Vic; Huang, Ke; Jin, Jian-Yue

    2017-02-01

    To present our experiences in understanding and minimizing bowtie-filter crescent artifacts and bowtie-filter normalization artifacts in a clinical cone beam computed tomography system. Bowtie-filter position and profile variations during gantry rotation were studied. Two previously proposed strategies (A and B) were applied to the clinical cone beam computed tomography system to correct bowtie-filter crescent artifacts. Physical calibration and analytical approaches were used to minimize the norm phantom misalignment and to correct for bowtie-filter normalization artifacts. A combined procedure to reduce bowtie-filter crescent artifacts and bowtie-filter normalization artifacts was proposed and tested on a norm phantom, CatPhan, and a patient and evaluated using standard deviation of Hounsfield unit along a sampling line. The bowtie-filter exhibited not only a translational shift but also an amplitude variation in its projection profile during gantry rotation. Strategy B was better than strategy A slightly in minimizing bowtie-filter crescent artifacts, possibly because it corrected the amplitude variation, suggesting that the amplitude variation plays a role in bowtie-filter crescent artifacts. The physical calibration largely reduced the misalignment-induced bowtie-filter normalization artifacts, and the analytical approach further reduced bowtie-filter normalization artifacts. The combined procedure minimized both bowtie-filter crescent artifacts and bowtie-filter normalization artifacts, with Hounsfield unit standard deviation being 63.2, 45.0, 35.0, and 18.8 Hounsfield unit for the best correction approaches of none, bowtie-filter crescent artifacts, bowtie-filter normalization artifacts, and bowtie-filter normalization artifacts + bowtie-filter crescent artifacts, respectively. The combined procedure also demonstrated reduction of bowtie-filter crescent artifacts and bowtie-filter normalization artifacts in a CatPhan and a patient. We have developed a step-by-step procedure that can be directly used in clinical cone beam computed tomography systems to minimize both bowtie-filter crescent artifacts and bowtie-filter normalization artifacts.

  7. Magnetic resonance imaging investigation of the bone conduction implant – a pilot study at 1.5 Tesla

    PubMed Central

    Jansson, Karl-Johan Fredén; Håkansson, Bo; Reinfeldt, Sabine; Rigato, Cristina; Eeg-Olofsson, Måns

    2015-01-01

    Purpose The objective of this pilot study was to investigate if an active bone conduction implant (BCI) used in an ongoing clinical study withstands magnetic resonance imaging (MRI) of 1.5 Tesla. In particular, the MRI effects on maximum power output (MPO), total harmonic distortion (THD), and demagnetization were investigated. Implant activation and image artifacts were also evaluated. Methods and materials One implant was placed on the head of a test person at the position corresponding to the normal position of an implanted BCI and applied with a static pressure using a bandage and scanned in a 1.5 Tesla MRI camera. Scanning was performed both with and without the implant, in three orthogonal planes, and for one spin-echo and one gradient-echo pulse sequence. Implant functionality was verified in-between the scans using an audio processor programmed to generate a sequence of tones when attached to the implant. Objective verification was also carried out by measuring MPO and THD on a skull simulator as well as retention force, before and after MRI. Results It was found that the exposure of 1.5 Tesla MRI only had a minor effect on the MPO, ie, it decreased over all frequencies with an average of 1.1±2.1 dB. The THD remained unchanged above 300 Hz and was increased only at lower frequencies. The retention magnet was demagnetized by 5%. The maximum image artifacts reached a distance of 9 and 10 cm from the implant in the coronal plane for the spin-echo and the gradient-echo sequence, respectively. The test person reported no MRI induced sound from the implant. Conclusion This pilot study indicates that the present BCI may withstand 1.5 Tesla MRI with only minor effects on its performance. No MRI induced sound was reported, but the head image was highly distorted near the implant. PMID:26604836

  8. Magnetic resonance imaging investigation of the bone conduction implant - a pilot study at 1.5 Tesla.

    PubMed

    Jansson, Karl-Johan Fredén; Håkansson, Bo; Reinfeldt, Sabine; Rigato, Cristina; Eeg-Olofsson, Måns

    2015-01-01

    The objective of this pilot study was to investigate if an active bone conduction implant (BCI) used in an ongoing clinical study withstands magnetic resonance imaging (MRI) of 1.5 Tesla. In particular, the MRI effects on maximum power output (MPO), total harmonic distortion (THD), and demagnetization were investigated. Implant activation and image artifacts were also evaluated. One implant was placed on the head of a test person at the position corresponding to the normal position of an implanted BCI and applied with a static pressure using a bandage and scanned in a 1.5 Tesla MRI camera. Scanning was performed both with and without the implant, in three orthogonal planes, and for one spin-echo and one gradient-echo pulse sequence. Implant functionality was verified in-between the scans using an audio processor programmed to generate a sequence of tones when attached to the implant. Objective verification was also carried out by measuring MPO and THD on a skull simulator as well as retention force, before and after MRI. It was found that the exposure of 1.5 Tesla MRI only had a minor effect on the MPO, ie, it decreased over all frequencies with an average of 1.1±2.1 dB. The THD remained unchanged above 300 Hz and was increased only at lower frequencies. The retention magnet was demagnetized by 5%. The maximum image artifacts reached a distance of 9 and 10 cm from the implant in the coronal plane for the spin-echo and the gradient-echo sequence, respectively. The test person reported no MRI induced sound from the implant. This pilot study indicates that the present BCI may withstand 1.5 Tesla MRI with only minor effects on its performance. No MRI induced sound was reported, but the head image was highly distorted near the implant.

  9. Tuning a High Transmission Ion Guide to Prevent Gas-Phase Proton Exchange During H/D Exchange MS Analysis.

    PubMed

    Guttman, Miklos; Wales, Thomas E; Whittington, Dale; Engen, John R; Brown, Jeffery M; Lee, Kelly K

    2016-04-01

    Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for protein structural analysis has been adopted for many purposes, including biopharmaceutical development. One of the benefits of examining amide proton exchange by mass spectrometry is that it can readily resolve different exchange regimes, as evidenced by either binomial or bimodal isotope patterns. By careful analysis of the isotope pattern during exchange, more insight can be obtained on protein behavior in solution. However, one must be sure that any observed bimodal isotope patterns are not artifacts of analysis and are reflective of the true behavior in solution. Sample carryover and certain stationary phases are known as potential sources of bimodal artifacts. Here, we describe an additional undocumented source of deuterium loss resulting in artificial bimodal patterns for certain highly charged peptides. We demonstrate that this phenomenon is predominantly due to gas-phase proton exchange between peptides and bulk solvent within the initial stages of high-transmission conjoined ion guides. Minor adjustments of the ion guide settings, as reported here, eliminate the phenomenon without sacrificing signal intensity. Such gas-phase deuterium loss should be appreciated for all HDX-MS studies using such ion optics, even for routine studies not focused on interpreting bimodal spectra. Graphical Abstract ᅟ.

  10. Prospective, Randomized, Pathologist-Blinded Study of Disposable Alligator-Jaw Biopsy Forceps for Gastric Mucosal Biopsy

    PubMed Central

    Abudayyeh, Suhaib; Hoffman, Jill; El-Zimaity, Hala T.; Graham, David Y.

    2010-01-01

    Background Endoscopic biopsy forceps differ in the size and shape of the biopsy cup and the presence or absence of a needle. Methods We compared 4 different “large cup” forceps (3 with needles designed for 2.8 mm biopsy channels. A gastric antral and corpus biopsy were obtained with each. Parameters examined included: weight (mg), length (mm), orientation (poor, good), intactness (1, 2, or 3 pieces), depth (superficial, above muscularis mucosae, included muscularis mucosae), crush artifact (yes, no), and overall adequacy (inadequate, suboptimal, adequate). Results 24 patients were enrolled (191 biopsies). The median length was approximately 5 mm (range 1.1 to 8.2 mm). Histologically inadequate specimens were present in 4% with the forceps without needle compared to 16% of those with needles (P = 0.061) and there were significantly fewer specimens in 3 or more pieces than did the forceps with needles 2.1% vs. 12..6% (P<0.05). Conclusions Current alligator style forceps provide a high proportion of acceptable specimens with only minor differences between brands. Forceps from one source were least preferred by endoscopy assistants and had the highest rates of inadequate biopsies and biopsies with crush artifact. Forceps without needles provide histologically acceptable samples slightly more frequently than those with needles. PMID:18799373

  11. Artifacts in Sonography - Part 3.

    PubMed

    Bönhof, Jörg A; McLaughlin, Glen

    2018-06-01

    As a continuation of parts 1 1 and 2 2, this article discusses artifacts as caused by insufficient temporal resolution, artifacts in color and spectral Doppler sonography, and information regarding artifacts in sonography with contrast agents. There are artifacts that occur in B-mode sonography as well as in Doppler imaging methods and sonography with contrast agents, such as slice thickness artifacts and bow artifacts, shadows, mirroring, and artifacts due to refraction that appear, for example, as double images, because they are based on the same formation mechanisms. In addition, there are artifacts specific to Doppler sonography, such as the twinkling artifact, and method-based motion artifacts, such as aliasing, the ureteric jet, and due to tissue vibration. The artifacts specific to contrast mode include echoes from usually highly reflective structures that are not contrast bubbles ("leakage"). Contrast agent can also change the transmitting signal so that even structures not containing contrast agent are echogenic ("pseudoenhancement"). While artifacts can cause problems regarding differential diagnosis, they can also be useful for determining the diagnosis. Therefore, effective use of sonography requires both profound knowledge and skilled interpretation of artifacts. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Wavelet approach to artifact noise removal from Capacitive coupled Electrocardiograph.

    PubMed

    Lee, Seung Min; Kim, Ko Keun; Park, Kwang Suk

    2008-01-01

    Capacitive coupled Electrocardiography (ECG) is introduced as non-invasive measurement technology for ubiquitous health care and appliance are spread out widely. Although it has many merits, however, capacitive coupled ECG is very weak for motion artifacts for its non-skin-contact property. There are many studies for artifact problems which treats all artifact signals below 0.8Hz. In our capacitive coupled ECG measurement system, artifacts exist not only below 0.8Hz but also over than 10Hz. Therefore, artifact noise removal algorithm using wavelet method is tested to reject artifact-wandered signal from measured signals. It is observed that using power calculation each decimation step, artifact-wandered signal is removed as low frequency artifacts as high frequency artifacts. Although some original ECG signal is removed with artifact signal, we could level the signal quality for long term measure which shows the best quality ECG signals as we can get.

  13. 78 FR 39157 - Establishing the President's Advisory Council on Financial Capability for Young Americans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... stage in schools, families, communities, and the workplace. By starting early, young people can begin to... to improve financial capability, which should be based on evidence of effectiveness, empower... women and minorities. Sec. 5. Administration of the Council. (a) To the extent permitted by law, the...

  14. [The horizon of medical attention in pediatrics: what to do in the case of children who are in abandonment, conflict, harm or danger situations in combination with a severe disease?

    PubMed

    Guadarrama-Orozco, Jessica H; Cantú-Quintanilla, Guillermo R; Ávila-Montiel, Diana; Altamirano-Bustamante, Myriam; Peláez-Ballestas, Ingris; Caballero-Velarde, Cristina; Juárez-Villegas, Luis E; Vega-Morell, Nahúm de la; Kelly-García, Javier; Hoyos-Bermea, Adalberto de; Dorantes-Acosta, Elisa; Gamboa-Marrufo, José D; Muñoz-Hernández, Onofre; Garduño-Espinosa, Juan

    2018-01-01

    Laws refer that minors do not have the capability to give informed consent for their own medical attention. However, there are special conditions in which they are allowed to decide about their health. The greater the judgement and experience limitations in minors, the less weight is given to the values and objectives they express. Also, the more adverse consequences might be, the higher the level of authority that is demanded to decide on behalf of the minor, thus granting the State the capability to guarantee the well-being of the minor. 12-year-old female patient with a diagnosis of acute lymphoblastic leukemia, with precarious social and family background; evolution of the disease obstructed by the disregard of the treatment due to her unsanitary and extreme poverty conditions. Both of her parents died soon after the start of the treatment and she was kept under the care of her half-sister of legal age. The work and the ethical dilemma of the pediatrician and the staff of Hospital Infantil de México Federico Gómez are exposed within the building of support -networks with the objective of prioritizing the minor's well-being, without allowing family break-up or disintegration, thus succeeding in her recovery. The case was submitted to the Hospital Bioethics Committee. Inter-institutional support networks were built in order to improve dynamics of the family, thus solving the needs of the minor. Despite the misfortune of the situation, the disease was successfully overcome. Copyright: © 2018 Permanyer.

  15. New Capabilities in the Analysis of Sub-micrometer Regions in Geological Materials with the Field Emission Electron Microprobe

    NASA Astrophysics Data System (ADS)

    Armstrong, J. T.; McSwiggen, P.; Nielsen, C.

    2013-12-01

    Quantitative electron microprobe analysis has revolutionized two-dimensional elemental analysis of Earth materials at the micrometer-scale. Newly available commercial field emission (FE-) source instruments represent significant technological advances in quantitative measurement with high spatial resolution at sub-micrometer scale - helping to bridge the gap between conventional microprobe and AEM analyses. Their performance specifications suggest the ability to extend routine quantitative analyses from ~3-5 micrometer diameter areas down to 1-2 micrometer diameter at beam energies of 15 keV; and, with care, down to 200-500 nm diameter at reduced beam energies. . In order to determine whether the level of performance suggested by the specifications is realistic, we spent a week doing analyses at the newly installed JEOL JXA-8530F field emission microprobe at Arizona State University, using a series of samples that are currently being studied in various projects at CIW. These samples included: 1) high-pressure experiment run product containing intergrowths of sub-micrometer grains of metal, sulfide, Fe-Mg-perovskite, and ferropericlase; 2) a thin section of the Ivankinsky basalt, part of the Siberian flood basalt sequence containing complex sub-micrometer intergrowths of magnetite, titanomagnetite, ilmenite, titanite and rutile; 3) a polished section of the Giroux pallasite, being studied for element partitioning, that we used as an analogue to test the capabilities for zonation and diffusion determination; and 4) a polished section of the Semarkona ordinary chondrite containing chondules comprised of highly zoned and rimmed olivines and pyroxenes in a complex mesostasis of sub-micrometer pyroxenes and glass. The results of these analyses that we will present confirmed our optimism regarding the new analytical capabilities of a field emission microprobe. We were able, at reduced voltages, to accurately analyze the major and minor element composition of intergrowth and rimming phases as small as 200 nm without artifact contribution from the surrounding phases. We were able to determine the compositional gradients at kamacite-taenite boundaries in the pallasite specimen with a resolution of ~180 nm, enabling much higher precision and accuracy determination of the meteorite's cooling rate than previously possible with microprobe measurements. We were able to determine the composition and zonation of phases in the experimental run product, none of which were large enough to be analyzable in a conventional electron microprobe.

  16. Contrast-enhanced MR imaging of the brain using T1-weighted FLAIR with BLADE compared with a conventional spin-echo sequence.

    PubMed

    Naganawa, Shinji; Satake, Hiroko; Iwano, Shingo; Kawai, Hisashi; Kubota, Seiji; Komada, Tomohiro; Kawamura, Minako; Sakurai, Yasuo; Fukatsu, Hiroshi

    2008-02-01

    The BLADE and PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) techniques have been proposed to reduce the effect of head motion. Preliminary results have shown that BLADE also reduces pulsation artifacts from venous sinuses. The purpose of this study was to compare T1-weighted FLAIR acquired with BLADE (T1W-FLAIR BLADE) and T1-weighted spin-echo (T1W-SE) for the detection of contrast enhancement in a phantom and in patients with suspected brain lesions and to compare the degree of flow-related artifacts in the patients. A phantom filled with diluted Gd-DTPA was scanned in addition to 27 patients. In the phantom study, the peak contrast-to-noise ratio of T1W-FLAIR BLADE was larger than that of T1W-SE, and the position of the peak was shifted to a lower concentration. In patients, the degree of flow-related artifacts was significantly higher in T1W-SE. Among the 27 patients, 9 had metastatic tumor, and 18 did not. On a patient-by-patient basis, the sensitivity and specificity for the detection of metastatic lesions on axial T1W-SE were 100% and 55.6% respectively, while on axial T1W-FLAIR BLADE they were 100% and 100%. T1W-FLAIR BLADE seems to be capable of replacing T1W-SE, at least for axial post-contrast imaging to detect brain metastases.

  17. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors

    NASA Astrophysics Data System (ADS)

    Allec, N.; Abbaszadeh, S.; Karim, K. S.

    2011-09-01

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml-1 in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  18. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors.

    PubMed

    Allec, N; Abbaszadeh, S; Karim, K S

    2011-09-21

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml(-1) in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  19. Retrospective comparison of three-dimensional imaging sequences in the visualization of posterior fossa cranial nerves.

    PubMed

    Ors, Suna; Inci, Ercan; Turkay, Rustu; Kokurcan, Atilla; Hocaoglu, Elif

    2017-12-01

    To compare efficancy of three-dimentional SPACE (sampling perfection with application-optimized contrasts using different flip-angle evolutions) and CISS (constructive interference in steady state) sequences in the imaging of the cisternal segments of cranial nerves V-XII. Temporal MRI scans from 50 patients (F:M ratio, 27:23; mean age, 44.5±15.9 years) admitted to our hospital with vertigo, tinnitus, and hearing loss were retrospectively analyzed. All patients had both CISS and SPACE sequences. Quantitative analysis of SPACE and CISS sequences was performed by measuring the ventricle-to-parenchyma contrast-to-noise ratio (CNR). Qualitative analysis of differences in visualization capability, image quality, and severity of artifacts was also conducted. A score ranging 'no artefact' to 'severe artefacts and unreadable' was used for the assessment of artifacts and from 'not visualized' to 'completely visualized' for the assesment of image quality, respectively. The distribution of variables was controlled by the Kolmogorov-Smirnov test. Samples t-test and McNemar's test were used to determine statistical significance. Rates of visualization of posterior fossa cranial nerves in cases of complete visualization were as follows: nerve V (100% for both sequences), nerve VI (94% in SPACE, 86% in CISS sequences), nerves VII-VIII (100% for both sequences), IX-XI nerve complex (96%, 88%); nerve XII (58%, 46%) (p<0.05). SPACE sequences showed fewer artifacts than CISS sequences (p<0.002). Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Automatic Identification of Artifact-Related Independent Components for Artifact Removal in EEG Recordings.

    PubMed

    Zou, Yuan; Nathan, Viswam; Jafari, Roozbeh

    2016-01-01

    Electroencephalography (EEG) is the recording of electrical activity produced by the firing of neurons within the brain. These activities can be decoded by signal processing techniques. However, EEG recordings are always contaminated with artifacts which hinder the decoding process. Therefore, identifying and removing artifacts is an important step. Researchers often clean EEG recordings with assistance from independent component analysis (ICA), since it can decompose EEG recordings into a number of artifact-related and event-related potential (ERP)-related independent components. However, existing ICA-based artifact identification strategies mostly restrict themselves to a subset of artifacts, e.g., identifying eye movement artifacts only, and have not been shown to reliably identify artifacts caused by nonbiological origins like high-impedance electrodes. In this paper, we propose an automatic algorithm for the identification of general artifacts. The proposed algorithm consists of two parts: 1) an event-related feature-based clustering algorithm used to identify artifacts which have physiological origins; and 2) the electrode-scalp impedance information employed for identifying nonbiological artifacts. The results on EEG data collected from ten subjects show that our algorithm can effectively detect, separate, and remove both physiological and nonbiological artifacts. Qualitative evaluation of the reconstructed EEG signals demonstrates that our proposed method can effectively enhance the signal quality, especially the quality of ERPs, even for those that barely display ERPs in the raw EEG. The performance results also show that our proposed method can effectively identify artifacts and subsequently enhance the classification accuracies compared to four commonly used automatic artifact removal methods.

  1. Automatic Identification of Artifact-related Independent Components for Artifact Removal in EEG Recordings

    PubMed Central

    Zou, Yuan; Nathan, Viswam; Jafari, Roozbeh

    2017-01-01

    Electroencephalography (EEG) is the recording of electrical activity produced by the firing of neurons within the brain. These activities can be decoded by signal processing techniques. However, EEG recordings are always contaminated with artifacts which hinder the decoding process. Therefore, identifying and removing artifacts is an important step. Researchers often clean EEG recordings with assistance from Independent Component Analysis (ICA), since it can decompose EEG recordings into a number of artifact-related and event related potential (ERP)-related independent components (ICs). However, existing ICA-based artifact identification strategies mostly restrict themselves to a subset of artifacts, e.g. identifying eye movement artifacts only, and have not been shown to reliably identify artifacts caused by non-biological origins like high-impedance electrodes. In this paper, we propose an automatic algorithm for the identification of general artifacts. The proposed algorithm consists of two parts: 1) an event-related feature based clustering algorithm used to identify artifacts which have physiological origins and 2) the electrode-scalp impedance information employed for identifying non-biological artifacts. The results on EEG data collected from 10 subjects show that our algorithm can effectively detect, separate, and remove both physiological and non-biological artifacts. Qualitative evaluation of the reconstructed EEG signals demonstrates that our proposed method can effectively enhance the signal quality, especially the quality of ERPs, even for those that barely display ERPs in the raw EEG. The performance results also show that our proposed method can effectively identify artifacts and subsequently enhance the classification accuracies compared to four commonly used automatic artifact removal methods. PMID:25415992

  2. Histologic processing artifacts and inter-pathologist variation in measurement of inked margins of canine mast cell tumors.

    PubMed

    Kiser, Patti K; Löhr, Christiane V; Meritet, Danielle; Spagnoli, Sean T; Milovancev, Milan; Russell, Duncan S

    2018-05-01

    Although quantitative assessment of margins is recommended for describing excision of cutaneous malignancies, there is poor understanding of limitations associated with this technique. We described and quantified histologic artifacts in inked margins and determined the association between artifacts and variance in histologic tumor-free margin (HTFM) measurements based on a novel grading scheme applied to 50 sections of normal canine skin and 56 radial margins taken from 15 different canine mast cell tumors (MCTs). Three broad categories of artifact were 1) tissue deformation at inked edges, 2) ink-associated artifacts, and 3) sectioning-associated artifacts. The most common artifacts in MCT margins were ink-associated artifacts, specifically ink absent from an edge (mean prevalence: 50%) and inappropriate ink coloring (mean: 45%). The prevalence of other artifacts in MCT skin was 4-50%. In MCT margins, frequency-adjusted kappa statistics found fair or better inter-rater reliability for 9 of 10 artifacts; intra-rater reliability was moderate or better in 9 of 10 artifacts. Digital HTFM measurements by 5 blinded pathologists had a median standard deviation (SD) of 1.9 mm (interquartile range: 0.8-3.6 mm; range: 0-6.2 mm). Intraclass correlation coefficients demonstrated good inter-pathologist reliability in HTFM measurement (κ = 0.81). Spearman rank correlation coefficients found negligible correlation between artifacts and HTFM SDs ( r ≤ 0.3). These data confirm that although histologic artifacts commonly occur in inked margin specimens, artifacts are not meaningfully associated with variation in HTFM measurements. Investigators can use the grading scheme presented herein to identify artifacts associated with tissue processing.

  3. Magnetoelectric force microscopy based on magnetic force microscopy with modulated electric field.

    PubMed

    Geng, Yanan; Wu, Weida

    2014-05-01

    We present the realization of a mesoscopic imaging technique, namely, the Magnetoelectric Force Microscopy (MeFM), for visualization of local magnetoelectric effect. The basic principle of MeFM is the lock-in detection of local magnetoelectric response, i.e., the electric field-induced magnetization, using magnetic force microscopy. We demonstrate MeFM capability by visualizing magnetoelectric domains on single crystals of multiferroic hexagonal manganites. Results of several control experiments exclude artifacts or extrinsic origins of the MeFM signal. The parameters are tuned to optimize the signal to noise ratio.

  4. SU-E-I-38: Improved Metal Artifact Correction Using Adaptive Dual Energy Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, X; Elder, E; Roper, J

    2015-06-15

    Purpose: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Methods: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Results: Highly attenuating copper rods cause severe streaking artifacts on standard CT images. EDEC improves the image quality, but cannot eliminate the streaking artifacts. Compared tomore » EDEC, the proposed ADEC method further reduces the streaking resulting from metallic inserts and beam-hardening effects and obtains material decomposition images with significantly improved accuracy. Conclusion: We propose an adaptive dual energy calibration method to correct for metal artifacts. ADEC is evaluated with the Shepp-Logan phantom, and shows superior metal artifact correction performance. In the future, we will further evaluate the performance of the proposed method with phantom and patient data.« less

  5. Pacemaker-induced Metallic Artifacts in Coronary Computed Tomography Angiography: Clinical Feasibility of Single Energy Metal Artifact Reduction Technique.

    PubMed

    Takayanagi, Tomoya; Arai, Takehiro; Amanuma, Makoto; Sano, Tomonari; Ichiba, Masato; Ishizaka, Kazumasa; Sekine, Takako; Matsutani, Hideyuki; Morita, Hitomi; Takase, Shinichi

    2017-01-01

    Coronary computed tomography angiography (CCTA) in patients with pacemaker suffers from metallic lead-induced artifacts, which often interfere with accurate assessment of coronary luminal stenosis. The purpose of this study was to assess a frequency of the lead-induced artifacts and artifact-suppression effect by the single energy metal artifact reduction (SEMAR) technique. Forty-one patients with a dual-chamber pacemaker were evaluated using a 320 multi-detector row CT (MDCT). Among them, 22 patients with motion-free full data reconstruction images were the final candidates. Images with and without the SMEAR technique were subjectively compared, and the degree of metallic artifacts was compared. On images without SEMAR, severe metallic artifacts were often observed in the right coronary artery (#1, #2, #3) and distal anterior descending branch (#8). These artifacts were effectively suppressed by SEMAR, and the luminal accessibility was significantly improved in #3 and #8. While pacemaker leads often cause metallic-induced artifacts, SEMAR technique reduced the artifacts and significantly improved the accessibility of coronary lumen in #3 and #8.

  6. Isolating gait-related movement artifacts in electroencephalography during human walking

    PubMed Central

    Kline, Julia E.; Huang, Helen J.; Snyder, Kristine L.; Ferris, Daniel P.

    2016-01-01

    Objective High-density electroencephelography (EEG) can provide insight into human brain function during real-world activities with walking. Some recent studies have used EEG to characterize brain activity during walking, but the relative contributions of movement artifact and electrocortical activity have been difficult to quantify. We aimed to characterize movement artifact recorded by EEG electrodes at a range of walking speeds and to test the efficacy of artifact removal methods. We also quantified the similarity between movement artifact recorded by EEG electrodes and a head-mounted accelerometer. Approach We used a novel experimental method to isolate and record movement artifact with EEG electrodes during walking. We blocked electrophysiological signals using a nonconductive layer (silicone swim cap) and simulated an electrically conductive scalp on top of the swim cap using a wig coated with conductive gel. We recorded motion artifact EEG data from nine young human subjects walking on a treadmill at speeds from 0.4–1.6 m/s. We then tested artifact removal methods including moving average and wavelet-based techniques. Main Results Movement artifact recorded with EEG electrodes varied considerably, across speed, subject, and electrode location. The movement artifact measured with EEG electrodes did not correlate well with head acceleration. All of the tested artifact removal methods attenuated low-frequency noise but did not completely remove movement artifact. The spectral power fluctuations in the movement artifact data resembled data from some previously published studies of EEG during walking. Significance Our results suggest that EEG data recorded during walking likely contains substantial movement artifact that: cannot be explained by head accelerations; varies across speed, subject, and channel; and cannot be removed using traditional signal processing methods. Future studies should focus on more sophisticated methods for removing of EEG movement artifact to advance the field. PMID:26083595

  7. Isolating gait-related movement artifacts in electroencephalography during human walking.

    PubMed

    Kline, Julia E; Huang, Helen J; Snyder, Kristine L; Ferris, Daniel P

    2015-08-01

    High-density electroencephelography (EEG) can provide an insight into human brain function during real-world activities with walking. Some recent studies have used EEG to characterize brain activity during walking, but the relative contributions of movement artifact and electrocortical activity have been difficult to quantify. We aimed to characterize movement artifact recorded by EEG electrodes at a range of walking speeds and to test the efficacy of artifact removal methods. We also quantified the similarity between movement artifact recorded by EEG electrodes and a head-mounted accelerometer. We used a novel experimental method to isolate and record movement artifact with EEG electrodes during walking. We blocked electrophysiological signals using a nonconductive layer (silicone swim cap) and simulated an electrically conductive scalp on top of the swim cap using a wig coated with conductive gel. We recorded motion artifact EEG data from nine young human subjects walking on a treadmill at speeds from 0.4 to 1.6 m s(-1). We then tested artifact removal methods including moving average and wavelet-based techniques. Movement artifact recorded with EEG electrodes varied considerably, across speed, subject, and electrode location. The movement artifact measured with EEG electrodes did not correlate well with head acceleration. All of the tested artifact removal methods attenuated low-frequency noise but did not completely remove movement artifact. The spectral power fluctuations in the movement artifact data resembled data from some previously published studies of EEG during walking. Our results suggest that EEG data recorded during walking likely contains substantial movement artifact that: cannot be explained by head accelerations; varies across speed, subject, and channel; and cannot be removed using traditional signal processing methods. Future studies should focus on more sophisticated methods for removal of EEG movement artifact to advance the field.

  8. Portable electrocardiograph through android application.

    PubMed

    De Oliveira, Igor H; Cene, V H; Balbinot, A

    2015-01-01

    An electrocardiograph was designed and implemented, being capable of obtaining electrical signals from the heart, and sending this data via Bluetooth to a tablet, in which the signals are graphically shown. The user interface is developed as an Android application. Because of the technological progress and the increasing use of full portable systems, such as tablets and cell phones, it is important to understand the functioning and development of an application, which provides a basis for conducting studies using this technology as an interface. The project development includes concepts of electronics and its application to achieve a portable and functional final project, besides using a specific programmable integrated circuit for electrocardiogram, electroencephalogram and electromyogram, the ADS1294. Using a simulator of cardiac signals, 36 different waveforms were recorded, including normal sinus rhythm, arrhythmias and artifacts. Simulations include variations of heart rate from 30 to 190 beats per minute (BPM), with variations in peak amplitude of 1 mV to 2 mV. Tests were performed with a subject at rest and in motion, observing the signals obtained and the damage to their interpretation due to the introduction of muscle movement artifacts in motion situations.

  9. Driving techniques for high frame rate CCD camera

    NASA Astrophysics Data System (ADS)

    Guo, Weiqiang; Jin, Longxu; Xiong, Jingwu

    2008-03-01

    This paper describes a high-frame rate CCD camera capable of operating at 100 frames/s. This camera utilizes Kodak KAI-0340, an interline transfer CCD with 640(vertical)×480(horizontal) pixels. Two output ports are used to read out CCD data and pixel rates approaching 30 MHz. Because of its reduced effective opacity of vertical charge transfer registers, interline transfer CCD can cause undesired image artifacts, such as random white spots and smear generated in the registers. To increase frame rate, a kind of speed-up structure has been incorporated inside KAI-0340, then it is vulnerable to a vertical stripe effect. The phenomena which mentioned above may severely impair the image quality. To solve these problems, some electronic methods of eliminating these artifacts are adopted. Special clocking mode can dump the unwanted charge quickly, then the fast readout of the images, cleared of smear, follows immediately. Amplifier is used to sense and correct delay mismatch between the dual phase vertical clock pulses, the transition edges become close to coincident, so vertical stripes disappear. Results obtained with the CCD camera are shown.

  10. 3D artifact for calibrating kinematic parameters of articulated arm coordinate measuring machines

    NASA Astrophysics Data System (ADS)

    Zhao, Huining; Yu, Liandong; Xia, Haojie; Li, Weishi; Jiang, Yizhou; Jia, Huakun

    2018-06-01

    In this paper, a 3D artifact is proposed to calibrate the kinematic parameters of articulated arm coordinate measuring machines (AACMMs). The artifact is composed of 14 reference points with three different heights, which provides 91 different reference lengths, and a method is proposed to calibrate the artifact with laser tracker multi-stations. Therefore, the kinematic parameters of an AACMM can be calibrated in one setup of the proposed artifact, instead of having to adjust the 1D or 2D artifacts to different positions and orientations in the existing methods. As a result, it saves time to calibrate the AACMM with the proposed artifact in comparison with the traditional 1D or 2D artifacts. The performance of the AACMM calibrated with the proposed artifact is verified with a 600.003 mm gauge block. The result shows that the measurement accuracy of the AACMM is improved effectively through calibration with the proposed artifact.

  11. An EEG Data Investigation Using Only Artifacts

    DTIC Science & Technology

    2017-02-22

    approach, called artifact separation, was developed to enable the consumer of the EEG data to decide how to handle artifacts. The current...mediation approach, called artifact separation, was developed to enable the consumer of the EEG data to decide how to handle artifacts. The current...contaminated. Having the spectral results flagged as containing an artifact, means that the consumer of the data has the freedom to decide how to

  12. Mesoscale hybrid calibration artifact

    DOEpatents

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  13. Ripple artifact reduction using slice overlap in slice encoding for metal artifact correction.

    PubMed

    den Harder, J Chiel; van Yperen, Gert H; Blume, Ulrike A; Bos, Clemens

    2015-01-01

    Multispectral imaging (MSI) significantly reduces metal artifacts. Yet, especially in techniques that use gradient selection, such as slice encoding for metal artifact correction (SEMAC), a residual ripple artifact may be prominent. Here, an analysis is presented of the ripple artifact and of slice overlap as an approach to reduce the artifact. The ripple artifact was analyzed theoretically to clarify its cause. Slice overlap, conceptually similar to spectral bin overlap in multi-acquisition with variable resonances image combination (MAVRIC), was achieved by reducing the selection gradient and, thus, increasing the slice profile width. Time domain simulations and phantom experiments were performed to validate the analyses and proposed solution. Discontinuities between slices are aggravated by signal displacement in the frequency encoding direction in areas with deviating B0. Specifically, it was demonstrated that ripple artifacts appear only where B0 varies both in-plane and through-plane. Simulations and phantom studies of metal implants confirmed the efficacy of slice overlap to reduce the artifact. The ripple artifact is an important limitation of gradient selection based MSI techniques, and can be understood using the presented simulations. At a scan-time penalty, slice overlap effectively addressed the artifact, thereby improving image quality near metal implants. © 2014 Wiley Periodicals, Inc.

  14. Configuring the Orion Guidance, Navigation, and Control Flight Software for Automated Sequencing

    NASA Technical Reports Server (NTRS)

    Odegard, Ryan G.; Siliwinski, Tomasz K.; King, Ellis T.; Hart, Jeremy J.

    2010-01-01

    The Orion Crew Exploration Vehicle is being designed with greater automation capabilities than any other crewed spacecraft in NASA s history. The Guidance, Navigation, and Control (GN&C) flight software architecture is designed to provide a flexible and evolvable framework that accommodates increasing levels of automation over time. Within the GN&C flight software, a data-driven approach is used to configure software. This approach allows data reconfiguration and updates to automated sequences without requiring recompilation of the software. Because of the great dependency of the automation and the flight software on the configuration data, the data management is a vital component of the processes for software certification, mission design, and flight operations. To enable the automated sequencing and data configuration of the GN&C subsystem on Orion, a desktop database configuration tool has been developed. The database tool allows the specification of the GN&C activity sequences, the automated transitions in the software, and the corresponding parameter reconfigurations. These aspects of the GN&C automation on Orion are all coordinated via data management, and the database tool provides the ability to test the automation capabilities during the development of the GN&C software. In addition to providing the infrastructure to manage the GN&C automation, the database tool has been designed with capabilities to import and export artifacts for simulation analysis and documentation purposes. Furthermore, the database configuration tool, currently used to manage simulation data, is envisioned to evolve into a mission planning tool for generating and testing GN&C software sequences and configurations. A key enabler of the GN&C automation design, the database tool allows both the creation and maintenance of the data artifacts, as well as serving the critical role of helping to manage, visualize, and understand the data-driven parameters both during software development and throughout the life of the Orion project.

  15. Classification and simulation of stereoscopic artifacts in mobile 3DTV content

    NASA Astrophysics Data System (ADS)

    Boev, Atanas; Hollosi, Danilo; Gotchev, Atanas; Egiazarian, Karen

    2009-02-01

    We identify, categorize and simulate artifacts which might occur during delivery stereoscopic video to mobile devices. We consider the stages of 3D video delivery dataflow: content creation, conversion to the desired format (multiview or source-plus-depth), coding/decoding, transmission, and visualization on 3D display. Human 3D vision works by assessing various depth cues - accommodation, binocular depth cues, pictorial cues and motion parallax. As a consequence any artifact which modifies these cues impairs the quality of a 3D scene. The perceptibility of each artifact can be estimated through subjective tests. The material for such tests needs to contain various artifacts with different amounts of impairment. We present a system for simulation of these artifacts. The artifacts are organized in groups with similar origins, and each group is simulated by a block in a simulation channel. The channel introduces the following groups of artifacts: sensor limitations, geometric distortions caused by camera optics, spatial and temporal misalignments between video channels, spatial and temporal artifacts caused by coding, transmission losses, and visualization artifacts. For the case of source-plus-depth representation, artifacts caused by format conversion are added as well.

  16. A generic EEG artifact removal algorithm based on the multi-channel Wiener filter

    NASA Astrophysics Data System (ADS)

    Somers, Ben; Francart, Tom; Bertrand, Alexander

    2018-06-01

    Objective. The electroencephalogram (EEG) is an essential neuro-monitoring tool for both clinical and research purposes, but is susceptible to a wide variety of undesired artifacts. Removal of these artifacts is often done using blind source separation techniques, relying on a purely data-driven transformation, which may sometimes fail to sufficiently isolate artifacts in only one or a few components. Furthermore, some algorithms perform well for specific artifacts, but not for others. In this paper, we aim to develop a generic EEG artifact removal algorithm, which allows the user to annotate a few artifact segments in the EEG recordings to inform the algorithm. Approach. We propose an algorithm based on the multi-channel Wiener filter (MWF), in which the artifact covariance matrix is replaced by a low-rank approximation based on the generalized eigenvalue decomposition. The algorithm is validated using both hybrid and real EEG data, and is compared to other algorithms frequently used for artifact removal. Main results. The MWF-based algorithm successfully removes a wide variety of artifacts with better performance than current state-of-the-art methods. Significance. Current EEG artifact removal techniques often have limited applicability due to their specificity to one kind of artifact, their complexity, or simply because they are too ‘blind’. This paper demonstrates a fast, robust and generic algorithm for removal of EEG artifacts of various types, i.e. those that were annotated as unwanted by the user.

  17. Quantitative assessment of biliary stent artifacts on MR images: Potential implications for target delineation in radiotherapy.

    PubMed

    Gurney-Champion, Oliver J; Bruins Slot, Thijs; Lens, Eelco; van der Horst, Astrid; Klaassen, Remy; van Laarhoven, Hanneke W M; van Tienhoven, Geertjan; van Hooft, Jeanin E; Nederveen, Aart J; Bel, Arjan

    2016-10-01

    Biliary stents may cause susceptibility artifacts, gradient-induced artifacts, and radio frequency (RF) induced artifacts on magnetic resonance images, which can hinder accurate target volume delineation in radiotherapy. In this study, the authors investigated and quantified the magnitude of these artifacts for stents of different materials. Eight biliary stents made of nitinol, platinum-cored nitinol, stainless steel, or polyethylene from seven vendors, with different lengths (57-98 mm) and diameters (3.0-11.7 mm), were placed in a phantom. To quantify the susceptibility artifacts sequence-independently, ΔB0-maps and T2 ∗ -maps were acquired at 1.5 and 3 T. To study the effect of the gradient-induced artifacts at 3 T, signal decay in images obtained with maximum readout gradient-induced artifacts was compared to signal decay in reference scans. To quantify the RF induced artifacts at 3 T, B1-maps were acquired. Finally, ΔB0-maps and T2 ∗ -maps were acquired at 3 T of two pancreatic cancer patients who had received platinum-cored nitinol biliary stents. Outside the stent, susceptibility artifacts dominated the other artifacts. The stainless steel stent produced the largest susceptibility artifacts. The other stents caused decreased T2 ∗ up to 5.1 mm (1.5 T) and 8.5 mm (3 T) from the edge of the stent. For sequences with a higher bandwidth per voxel (1.5 T: BW vox > 275 Hz/voxel; 3 T: BW vox > 500 Hz/voxel), the B0-related susceptibility artifacts were negligible (<0.2 voxels). The polyethylene stent showed no artifacts. In vivo, the changes in B0 and T2 ∗ induced by the stent were larger than typical variations in B0 and T2 ∗ induced by anatomy when the stent was at an angle of 30° with the main magnetic field. Susceptibility artifacts were dominating over the other artifacts. The magnitudes of the susceptibility artifacts were determined sequence-independently. This method allows to include additional safety margins that ensure target irradiation.

  18. Measuring radiation dose in computed tomography using elliptic phantom and free-in-air, and evaluating iterative metal artifact reduction algorithm

    NASA Astrophysics Data System (ADS)

    Morgan, Ashraf

    The need for an accurate and reliable way for measuring patient dose in multi-row detector computed tomography (MDCT) has increased significantly. This research was focusing on the possibility of measuring CT dose in air to estimate Computed Tomography Dose Index (CTDI) for routine quality control purposes. New elliptic CTDI phantom that better represent human geometry was manufactured for investigating the effect of the subject shape on measured CTDI. Monte Carlo simulation was utilized in order to determine the dose distribution in comparison to the traditional cylindrical CTDI phantom. This research also investigated the effect of Siemens health care newly developed iMAR (iterative metal artifact reduction) algorithm, arthroplasty phantom was designed and manufactured that purpose. The design of new phantoms was part of the research as they mimic the human geometry more than the existing CTDI phantom. The standard CTDI phantom is a right cylinder that does not adequately represent the geometry of the majority of the patient population. Any dose reduction algorithm that is used during patient scan will not be utilized when scanning the CTDI phantom, so a better-designed phantom will allow the use of dose reduction algorithms when measuring dose, which leads to better dose estimation and/or better understanding of dose delivery. Doses from a standard CTDI phantom and the newly-designed phantoms were compared to doses measured in air. Iterative reconstruction is a promising technique in MDCT dose reduction and artifacts correction. Iterative reconstruction algorithms have been developed to address specific imaging tasks as is the case with Iterative Metal Artifact Reduction or iMAR which was developed by Siemens and is to be in use with the companys future computed tomography platform. The goal of iMAR is to reduce metal artifact when imaging patients with metal implants and recover CT number of tissues adjacent to the implant. This research evaluated iMAR capability of recovering CT numbers and reducing noise. Also, the use of iMAR should allow using lower tube voltage instead of 140 KVp which is used frequently to image patients with shoulder implants. The evaluations of image quality and dose reduction were carried out using an arthroplasty phantom.

  19. Minority recruitment and retention in dietetics: issues and interventions.

    PubMed

    Greenwald, H P; Davis, R A

    2000-08-01

    To better understand the reasons why minorities and males are underrepresented among registered dietitians (RDs) and dietetic technicians, registered, (DTRs) and to develop focuses for intervention, the investigators performed a telephone survey of newly credentialed RDs and DTRs and directors of RD and DTR education programs. Using lists of students recruited by the American Dietetic Association for participation in the survey, the investigators interviewed 83 RDs and DTRs and 20 education program directors. RDs and DTRs attributed minority underrepresentation primarily to the field's lack of visibility and underrepresentation of men to the traditional association with women. Education program directors attributed minority underrepresentation to educational disadvantages, particularly in scientific subjects. Findings from this study support program-level interventions such as increasing program flexibility, initiating outreach to K-12 schools and lower-division college students, providing tutoring in a nondemeaning atmosphere, and visibly expressing commitment to minority representation. More fundamental changes in the profession itself appear necessary for large-scale increases in minority representation. These include increasing internship opportunities; raising the profession's level of remuneration, prestige, and independence; increasing scholarship support; and advertising nationally through channels capable of reaching minorities.

  20. Use of cognitive artifacts in chemistry learning

    NASA Astrophysics Data System (ADS)

    Yengin, Ilker

    In everyday life, we interact with cognitive artifacts to receive and/or manipulate information so as to alter our thinking processes. CHEM/TEAC 869Q is a distance course that includes extensive explicit instruction in the use of a cognitive artifact. This study investigates issues related to the design of that online artifact. In order to understand design implications and how cognitive artifacts contribute to students' thinking and learning, a qualitative research methodology was engaged that utilized think aloud sessions. Participants' described constrained and structured cognitive models while using the artifact. The study also was informed by interviews and researcher's field notes. A purposeful sampling method led to the selection of participants, four males and two females, who had no prior history of using a course from the 869 series but who had experienced the scientific content covered by the CHEM869Q course. Analysis of the results showed both that a cognitive artifact may lead users' minds in decision making, and that problem solving processes were affected by cognitive artifact's design. When there is no design flaw, users generally thought that the cognitive artifact was helpful by simplifying steps, overcoming other limitations, and reducing errors in a reliable, effective, and easy to use way. Moreover, results showed that successful implementation of cognitive artifacts into teaching --learning practices depended on user willingness to transfer a task to the artifact. While users may like the idea of benefiting from a cognitive artifact, nevertheless, they may tend to limit their usage. They sometimes think that delegating a task to a cognitive artifact makes them dependent, and that they may not learn how to perform the tasks by themselves. They appear more willing to use a cognitive artifact after they have done the task by themselves.

  1. Improved Image Quality in Head and Neck CT Using a 3D Iterative Approach to Reduce Metal Artifact.

    PubMed

    Wuest, W; May, M S; Brand, M; Bayerl, N; Krauss, A; Uder, M; Lell, M

    2015-10-01

    Metal artifacts from dental fillings and other devices degrade image quality and may compromise the detection and evaluation of lesions in the oral cavity and oropharynx by CT. The aim of this study was to evaluate the effect of iterative metal artifact reduction on CT of the oral cavity and oropharynx. Data from 50 consecutive patients with metal artifacts from dental hardware were reconstructed with standard filtered back-projection, linear interpolation metal artifact reduction (LIMAR), and iterative metal artifact reduction. The image quality of sections that contained metal was analyzed for the severity of artifacts and diagnostic value. A total of 455 sections (mean ± standard deviation, 9.1 ± 4.1 sections per patient) contained metal and were evaluated with each reconstruction method. Sections without metal were not affected by the algorithms and demonstrated image quality identical to each other. Of these sections, 38% were considered nondiagnostic with filtered back-projection, 31% with LIMAR, and only 7% with iterative metal artifact reduction. Thirty-three percent of the sections had poor image quality with filtered back-projection, 46% with LIMAR, and 10% with iterative metal artifact reduction. Thirteen percent of the sections with filtered back-projection, 17% with LIMAR, and 22% with iterative metal artifact reduction were of moderate image quality, 16% of the sections with filtered back-projection, 5% with LIMAR, and 30% with iterative metal artifact reduction were of good image quality, and 1% of the sections with LIMAR and 31% with iterative metal artifact reduction were of excellent image quality. Iterative metal artifact reduction yields the highest image quality in comparison with filtered back-projection and linear interpolation metal artifact reduction in patients with metal hardware in the head and neck area. © 2015 by American Journal of Neuroradiology.

  2. Iterative image-domain ring artifact removal in cone-beam CT

    NASA Astrophysics Data System (ADS)

    Liang, Xiaokun; Zhang, Zhicheng; Niu, Tianye; Yu, Shaode; Wu, Shibin; Li, Zhicheng; Zhang, Huailing; Xie, Yaoqin

    2017-07-01

    Ring artifacts in cone beam computed tomography (CBCT) images are caused by pixel gain variations using flat-panel detectors, and may lead to structured non-uniformities and deterioration of image quality. The purpose of this study is to propose a method of general ring artifact removal in CBCT images. This method is based on the polar coordinate system, where the ring artifacts manifest as stripe artifacts. Using relative total variation, the CBCT images are first smoothed to generate template images with fewer image details and ring artifacts. By subtracting the template images from the CBCT images, residual images with image details and ring artifacts are generated. As the ring artifact manifests as a stripe artifact in a polar coordinate system, the artifact image can be extracted by mean value from the residual image; the image details are generated by subtracting the artifact image from the residual image. Finally, the image details are compensated to the template image to generate the corrected images. The proposed framework is iterated until the differences in the extracted ring artifacts are minimized. We use a 3D Shepp-Logan phantom, Catphan©504 phantom, uniform acrylic cylinder, and images from a head patient to evaluate the proposed method. In the experiments using simulated data, the spatial uniformity is increased by 1.68 times and the structural similarity index is increased from 87.12% to 95.50% using the proposed method. In the experiment using clinical data, our method shows high efficiency in ring artifact removal while preserving the image structure and detail. The iterative approach we propose for ring artifact removal in cone-beam CT is practical and attractive for CBCT guided radiation therapy.

  3. Evaluation of a metal artifacts reduction algorithm applied to postinterventional flat panel detector CT imaging.

    PubMed

    Stidd, D A; Theessen, H; Deng, Y; Li, Y; Scholz, B; Rohkohl, C; Jhaveri, M D; Moftakhar, R; Chen, M; Lopes, D K

    2014-01-01

    Flat panel detector CT images are degraded by streak artifacts caused by radiodense implanted materials such as coils or clips. A new metal artifacts reduction prototype algorithm has been used to minimize these artifacts. The application of this new metal artifacts reduction algorithm was evaluated for flat panel detector CT imaging performed in a routine clinical setting. Flat panel detector CT images were obtained from 59 patients immediately following cerebral endovascular procedures or as surveillance imaging for cerebral endovascular or surgical procedures previously performed. The images were independently evaluated by 7 physicians for metal artifacts reduction on a 3-point scale at 2 locations: immediately adjacent to the metallic implant and 3 cm away from it. The number of visible vessels before and after metal artifacts reduction correction was also evaluated within a 3-cm radius around the metallic implant. The metal artifacts reduction algorithm was applied to the 59 flat panel detector CT datasets without complications. The metal artifacts in the reduction-corrected flat panel detector CT images were significantly reduced in the area immediately adjacent to the implanted metal object (P = .05) and in the area 3 cm away from the metal object (P = .03). The average number of visible vessel segments increased from 4.07 to 5.29 (P = .1235) after application of the metal artifacts reduction algorithm to the flat panel detector CT images. Metal artifacts reduction is an effective method to improve flat panel detector CT images degraded by metal artifacts. Metal artifacts are significantly decreased by the metal artifacts reduction algorithm, and there was a trend toward increased vessel-segment visualization. © 2014 by American Journal of Neuroradiology.

  4. Gaussian diffusion sinogram inpainting for X-ray CT metal artifact reduction.

    PubMed

    Peng, Chengtao; Qiu, Bensheng; Li, Ming; Guan, Yihui; Zhang, Cheng; Wu, Zhongyi; Zheng, Jian

    2017-01-05

    Metal objects implanted in the bodies of patients usually generate severe streaking artifacts in reconstructed images of X-ray computed tomography, which degrade the image quality and affect the diagnosis of disease. Therefore, it is essential to reduce these artifacts to meet the clinical demands. In this work, we propose a Gaussian diffusion sinogram inpainting metal artifact reduction algorithm based on prior images to reduce these artifacts for fan-beam computed tomography reconstruction. In this algorithm, prior information that originated from a tissue-classified prior image is used for the inpainting of metal-corrupted projections, and it is incorporated into a Gaussian diffusion function. The prior knowledge is particularly designed to locate the diffusion position and improve the sparsity of the subtraction sinogram, which is obtained by subtracting the prior sinogram of the metal regions from the original sinogram. The sinogram inpainting algorithm is implemented through an approach of diffusing prior energy and is then solved by gradient descent. The performance of the proposed metal artifact reduction algorithm is compared with two conventional metal artifact reduction algorithms, namely the interpolation metal artifact reduction algorithm and normalized metal artifact reduction algorithm. The experimental datasets used included both simulated and clinical datasets. By evaluating the results subjectively, the proposed metal artifact reduction algorithm causes fewer secondary artifacts than the two conventional metal artifact reduction algorithms, which lead to severe secondary artifacts resulting from impertinent interpolation and normalization. Additionally, the objective evaluation shows the proposed approach has the smallest normalized mean absolute deviation and the highest signal-to-noise ratio, indicating that the proposed method has produced the image with the best quality. No matter for the simulated datasets or the clinical datasets, the proposed algorithm has reduced the metal artifacts apparently.

  5. Carbon nanotube mechanics in scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Strus, Mark Christopher

    Carbon nanotubes (CNTs) possess unique electrical, thermal, and mechanical properties which have led to the development of novel nanomechanical materials and devices. In this thesis, the mechanical properties of carbon nanotubes are studied with an Atomic Force Microscope (AFM) and, conversely, the use of CNTs to enhance conventional AFM probes is also investigated. First, the performance of AFM probes with multiwalled CNT tips are evaluated during attractive regime AFM imaging of high aspect ratio structures. The presented experimental results show two distinct imaging artifacts, the divot and large ringing artifacts, which are inherent to such CNT AFM probes. Through the adjustment of operating parameters, the connection of these artifacts to CNT bending, adhesion, and stiction is described qualitatively and explained. Next, the adhesion and peeling of CNTs on different substrates is quantitatively investigated with theoretical models and a new AFM mode for nanomechanical peeling. The theoretical model uncovers the rich physics of peeling of CNTs from surfaces, including sudden transitions between different geometric configurations of the nanotube with vastly different interfacial energies. The experimental peeling of CNTs is shown to be capable of resolving differences in CNT peeling energies at attoJoule levels on different materials. AFM peeling force spectroscopy is further studied on a variety of materials, including several polymers, to demonstrate the capability of direct measurement of interfacial energy between an individual nanotube or nanofiber and a given material surface. Theoretical investigations demonstrate that interfacial and flexural energies can be decoupled so that the work of the applied peeling force can be used to estimate the CNT-substrate interfacial fracture energy and nanotube's flexural stiffness. Hundreds of peeling force experiments on graphite, epoxy, and polyimide demonstrate that the peeling force spectroscopy offers a convenient experimental framework to quickly screen different combinations of polymers and functionalized nanotubes for optimal interfacial strength. Finally, multiple CNT AFM probe oscillation states in tapping mode AFM as the cantilever is brought closer to a sample are fully investigated, including two kinds of permanent contact and two types of intermittent contact. Large deformation continuum elastica models of MWCNTs with different end boundary conditions are used to identify whether the CNT remains anchored to the sample in line-contact or in point-contact in the permanent contact regime. Energy dissipation spectroscopy and phase contrast are demonstrated as a way to predict the state of CNT-substrate boundary condition in the intermittent tapping regime on different substrates and to highlight the implications of these different imaging regimes for critical dimension AFM, biological sensing, and nanolithography. Together, this work studies the effect of CNT mechanical interactions in AFM, including artifact-avoidance optimization of and new compositional mapping using CNT AFM probes as well as novel techniques that will potentially enhance the future development of CNT-based nanodevices and materials.

  6. 49 CFR 180.403 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... or serviceability of the cargo tank. The term does not include cosmetic or minor surface degradation... capability including changes to equipment certified as part of an emergency discharge control system required...

  7. 49 CFR 180.403 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... or serviceability of the cargo tank. The term does not include cosmetic or minor surface degradation... capability including changes to equipment certified as part of an emergency discharge control system required...

  8. 49 CFR 180.403 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... or serviceability of the cargo tank. The term does not include cosmetic or minor surface degradation... capability including changes to equipment certified as part of an emergency discharge control system required...

  9. 49 CFR 180.403 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... or serviceability of the cargo tank. The term does not include cosmetic or minor surface degradation... capability including changes to equipment certified as part of an emergency discharge control system required...

  10. A novel carbon tipped single micro-optrode for combined optogenetics and electrophysiology

    PubMed Central

    Vizvári, Attila D.; Bali, Zsolt K.; Márki, Balázs; Nagy, Lili V.; Kónya, Zoltán; Madarász, Dániel; Henn-Mike, Nóra; Varga, Csaba; Hernádi, István

    2018-01-01

    Optical microelectrodes (optrodes) are used in neuroscience to transmit light into the brain of a genetically modified animal to evoke and record electrical activity from light-sensitive neurons. Our novel micro-optrode solution integrates a light-transmitting 125 micrometer optical fiber and a 9 micrometer carbon monofilament to form an electrical lead element, which is contained in a borosilicate glass sheathing coaxial arrangement ending with a micrometer-sized carbon tip. This novel unit design is stiff and slender enough to be used for targeting deep brain areas, and may cause less tissue damage compared with previous models. The center-positioned carbon fiber is less prone to light-induced artifacts than side-lit metal microelectrodes previously presented. The carbon tip is capable of not only recording electrical signals of neuronal origin but can also provide valuable surface area for electron transfer, which is essential in electrochemical (voltammetry, amperometry) or microbiosensor applications. We present details of design and manufacture as well as operational examples of the newly developed single micro-optrode, which includes assessments of 1) carbon tip length–impedance relationship, 2) light transmission capabilities, 3) photoelectric artifacts in carbon fibers, 4) responses to dopamine using fast-scan cyclic voltammetry in vivo, and 5) optogenetic stimulation and spike or local field potential recording from the rat brain transfected with channelrhodopsin-2. With this work, we demonstrate that our novel carbon tipped single micro-optrode may open up new avenues for use in optogenetic stimulation when needing to be combined with extracellular recording, electrochemical, or microbiosensor measurements performed on a millisecond basis. PMID:29513711

  11. Clinical Assessment of Mirror Artifacts in Spectral-Domain Optical Coherence Tomography

    PubMed Central

    Ho, Joseph; Castro, Dinorah P. E.; Castro, Leonardo C.; Chen, Yueli; Liu, Jonathan; Mattox, Cynthia; Krishnan, Chandrasekharan; Fujimoto, James G.; Schuman, Joel S.

    2010-01-01

    Purpose. To investigate the characteristics of a spectral-domain optical coherence tomography (SD-OCT) image phenomenon known as the mirror artifact, calculate its prevalence, analyze potential risk factors, measure severity, and correlate it to spherical equivalent and central visual acuity (VA). Methods. OCT macular cube 512 × 128 scans taken between January 2008 and February 2009 at the New England Eye Center were analyzed for the presence of mirror artifacts. Artifact severity was determined by the degree of segmentation breakdown that it caused on the macular map. A retrospective review was conducted of the medical records of patients with artifacts and of a random control group without artifacts. Results. Of 1592 patients, 9.3% (148 patients, 200 eyes) had scans that contained mirror artifacts. A significantly more myopic spherical equivalent (P < 0.001), worse VA (P < 0.001), longer axial lengths (P = 0.004), and higher proportions of moderate to high myopia (P < 0.001) were found in patients with mirror artifacts than in patients without artifacts. Worse VA was associated with increased artifact severity (P = 0.04). Conclusions. In all scans analyzed, a high prevalence of mirror artifacts was found. This image artifact was often associated with patients with moderate to high myopia. Improvements in instrumentation may be necessary to resolve this problem in moderately and highly myopic eyes. Operators should be advised to properly position the retina when scanning eyes. In cases in which peripheral abnormalities in topographic measurements of retinal thickness are found, corresponding OCT scans should be examined for the presence of mirror artifacts. PMID:20181840

  12. Minors' rights in medical decision making.

    PubMed

    Hickey, Kathryn

    2007-01-01

    In the past, minors were not considered legally capable of making medical decisions and were viewed as incompetent because of their age. The authority to consent or refuse treatment for a minor remained with a parent or guardian. This parental authority was derived from the constitutional right to privacy regarding family matters, common law rule, and a general presumption that parents or guardians will act in the best interest of their incompetent child. However, over the years, the courts have gradually recognized that children younger than 18 years who show maturity and competence deserve a voice in determining their course of medical treatment. This article will explore the rights and interests of minors, parents, and the state in medical decision making and will address implications for nursing administrators and leaders.

  13. A study of the minority college programs at the NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Tryman, Mfanya Donald

    1987-01-01

    Research programs in science and engineering at predominantly black and white universities which assist in training and furthering the capabilities of minorities in the field, are examined. The Minority Graduate Researcher's Program and the Historically Black College and University Program were the focus of this research. The objectives included investigating the organizational structure and processes of the programs, how they are run, how they differ, defining particular administrative tasks for these programs, the collection of data related to these programs, and recommending ways in which these programs can be improved for greater efficiency and effectiveness through the Equal Opportunity Programs Office.

  14. Automatic removal of eye-movement and blink artifacts from EEG signals.

    PubMed

    Gao, Jun Feng; Yang, Yong; Lin, Pan; Wang, Pei; Zheng, Chong Xun

    2010-03-01

    Frequent occurrence of electrooculography (EOG) artifacts leads to serious problems in interpreting and analyzing the electroencephalogram (EEG). In this paper, a robust method is presented to automatically eliminate eye-movement and eye-blink artifacts from EEG signals. Independent Component Analysis (ICA) is used to decompose EEG signals into independent components. Moreover, the features of topographies and power spectral densities of those components are extracted to identify eye-movement artifact components, and a support vector machine (SVM) classifier is adopted because it has higher performance than several other classifiers. The classification results show that feature-extraction methods are unsuitable for identifying eye-blink artifact components, and then a novel peak detection algorithm of independent component (PDAIC) is proposed to identify eye-blink artifact components. Finally, the artifact removal method proposed here is evaluated by the comparisons of EEG data before and after artifact removal. The results indicate that the method proposed could remove EOG artifacts effectively from EEG signals with little distortion of the underlying brain signals.

  15. A platform-independent method to reduce CT truncation artifacts using discriminative dictionary representations.

    PubMed

    Chen, Yang; Budde, Adam; Li, Ke; Li, Yinsheng; Hsieh, Jiang; Chen, Guang-Hong

    2017-01-01

    When the scan field of view (SFOV) of a CT system is not large enough to enclose the entire cross-section of the patient, or the patient needs to be positioned partially outside the SFOV for certain clinical applications, truncation artifacts often appear in the reconstructed CT images. Many truncation artifact correction methods perform extrapolations of the truncated projection data based on certain a priori assumptions. The purpose of this work was to develop a novel CT truncation artifact reduction method that directly operates on DICOM images. The blooming of pixel values associated with truncation was modeled using exponential decay functions, and based on this model, a discriminative dictionary was constructed to represent truncation artifacts and nonartifact image information in a mutually exclusive way. The discriminative dictionary consists of a truncation artifact subdictionary and a nonartifact subdictionary. The truncation artifact subdictionary contains 1000 atoms with different decay parameters, while the nonartifact subdictionary contains 1000 independent realizations of Gaussian white noise that are exclusive with the artifact features. By sparsely representing an artifact-contaminated CT image with this discriminative dictionary, the image was separated into a truncation artifact-dominated image and a complementary image with reduced truncation artifacts. The artifact-dominated image was then subtracted from the original image with an appropriate weighting coefficient to generate the final image with reduced artifacts. This proposed method was validated via physical phantom studies and retrospective human subject studies. Quantitative image evaluation metrics including the relative root-mean-square error (rRMSE) and the universal image quality index (UQI) were used to quantify the performance of the algorithm. For both phantom and human subject studies, truncation artifacts at the peripheral region of the SFOV were effectively reduced, revealing soft tissue and bony structure once buried in the truncation artifacts. For the phantom study, the proposed method reduced the relative RMSE from 15% (original images) to 11%, and improved the UQI from 0.34 to 0.80. A discriminative dictionary representation method was developed to mitigate CT truncation artifacts directly in the DICOM image domain. Both phantom and human subject studies demonstrated that the proposed method can effectively reduce truncation artifacts without access to projection data. © 2016 American Association of Physicists in Medicine.

  16. Voting strategy for artifact reduction in digital breast tomosynthesis.

    PubMed

    Wu, Tao; Moore, Richard H; Kopans, Daniel B

    2006-07-01

    Artifacts are observed in digital breast tomosynthesis (DBT) reconstructions due to the small number of projections and the narrow angular range that are typically employed in tomosynthesis imaging. In this work, we investigate the reconstruction artifacts that are caused by high-attenuation features in breast and develop several artifact reduction methods based on a "voting strategy." The voting strategy identifies the projection(s) that would introduce artifacts to a voxel and rejects the projection(s) when reconstructing the voxel. Four approaches to the voting strategy were compared, including projection segmentation, maximum contribution deduction, one-step classification, and iterative classification. The projection segmentation method, based on segmentation of high-attenuation features from the projections, effectively reduces artifacts caused by metal and large calcifications that can be reliably detected and segmented from projections. The other three methods are based on the observation that contributions from artifact-inducing projections have higher value than those from normal projections. These methods attempt to identify the projection(s) that would cause artifacts by comparing contributions from different projections. Among the three methods, the iterative classification method provides the best artifact reduction; however, it can generate many false positive classifications that degrade the image quality. The maximum contribution deduction method and one-step classification method both reduce artifacts well from small calcifications, although the performance of artifact reduction is slightly better with the one-step classification. The combination of one-step classification and projection segmentation removes artifacts from both large and small calcifications.

  17. Measurement of gauge blocks by interferometry

    NASA Astrophysics Data System (ADS)

    Matus, M.; Haas, S.; Piree, H.; Gavalyugov, V.; Tamakyarska, D.; Thalmann, R.; Balling, P.; Garnaes, J.; Hald, J.; Farid, N.; Prieto, E.; Lassila, A.; Salgado, J. A.; Lewis, A.; Bandis, C.; Mudronja, V.; Banreti, E.; Balsamo, A.; Pedone, P.; Bergmans, R. H.; Karlsson, H.; Ramotowski, Z.; Eusebio, L.; Saraiva, F.; Duta, A.; Zelenika, S.; Bergstrand, S.; Fira, R.; Yandayan, T.; Sendogdu, D.; Ganioglu, O.; Asli Akgoz, S.; Franke, P.

    2016-01-01

    The key comparison EURAMET.L-K1.2011 on gauge blocks was carried out in the framework of a EURAMET project starting in 2012 and ending in 2015. It involved the participation of 24 National Metrology Institutes from Europe and Egypt, respectively. 38 gauge blocks of steel and ceramic with nominal central lengths between 0.5 mm and 500 mm were circulated. The comparison was conducted in two loops with two sets of artifacts. A statistical technique for linking the reference values was applied. As a consequence the reference value of one loop is influenced by the measurements of the other loop although they did not even see the artifacts of the others. This influence comes solely from three "linking laboratories" which measure both sets of artifacts. In total there were 44 results were not fully consistent with the reference values. This represents 10% of the full set of 420 results which is a considerable high number. At least 12 of them are clearly outliers where the participants have been informed by the pilot as soon as possible. The comparison results help to support the calibration and measurement capabilities (CMCs) of the laboratories involved in the CIPM MRA. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCL, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  18. Dynamic tracking of magnetic nanoparticles for mapping microvascular networks using a clinical 1.5 T magnetic resonance scanner

    NASA Astrophysics Data System (ADS)

    Olamaei, Nina; Cheriet, Farida; Deschênes, Sylvain; Martel, Sylvain

    2014-05-01

    Being able to visualize blood vessels with an inner diameter of less than 150 μm is the present limit of modern medical imaging modalities and it becomes an important issue to advance state-of-the-art medical imaging, diagnostics, surgery, and targeted interventions. In cancer therapy, such capability would provide the information required for new delivery methods such as magnetic resonance navigation to navigate therapeutic agents along a planned trajectory deeper in the vasculature and hence closer to the region to be treated for enhancing the therapeutic index. To demonstrate the possibility of gathering images of microvascular networks dynamically and beyond the limitation of medical imaging modalities, the susceptibility artifact was used as the contrast mechanism in magnetic resonance imaging (MRI) to detect magnetic micro-aggregations of iron-oxide nanoparticles (150 ± 20 μm in diameter) as they were injected in a 2D synthetic microvascular network. Magnetic entities cause susceptibility artifacts in the images by disrupting the MRI's homogeneous magnetic field in a much larger scale than their actual size. The position of the artifact reflects the position of the aggregations in the vascular system. The calculated positions of discrete-time scans were extracted and assembled to build up the distribution of the vascular network. The results suggest that this method could be used to gather images of blood vessels beyond the spatial resolution of clinical medical imaging modalities with a measured average error confirmed on a 2D reconstruction of the micro-vessels of approximately half of a pixel's size.

  19. Scatter correction for x-ray conebeam CT using one-dimensional primary modulation

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Gao, Hewei; Bennett, N. Robert; Xing, Lei; Fahrig, Rebecca

    2009-02-01

    Recently, we developed an efficient scatter correction method for x-ray imaging using primary modulation. A two-dimensional (2D) primary modulator with spatially variant attenuating materials is inserted between the x-ray source and the object to separate primary and scatter signals in the Fourier domain. Due to the high modulation frequency in both directions, the 2D primary modulator has a strong scatter correction capability for objects with arbitrary geometries. However, signal processing on the modulated projection data requires knowledge of the modulator position and attenuation. In practical systems, mainly due to system gantry vibration, beam hardening effects and the ramp-filtering in the reconstruction, the insertion of the 2D primary modulator results in artifacts such as rings in the CT images, if no post-processing is applied. In this work, we eliminate the source of artifacts in the primary modulation method by using a one-dimensional (1D) modulator. The modulator is aligned parallel to the ramp-filtering direction to avoid error magnification, while sufficient primary modulation is still achieved for scatter correction on a quasicylindrical object, such as a human body. The scatter correction algorithm is also greatly simplified for the convenience and stability in practical implementations. The method is evaluated on a clinical CBCT system using the Catphan© 600 phantom. The result shows effective scatter suppression without introducing additional artifacts. In the selected regions of interest, the reconstruction error is reduced from 187.2HU to 10.0HU if the proposed method is used.

  20. Electro-optic deflectors deliver advantages over acousto-optical deflectors in a high resolution, ultra-fast force-clamp optical trap.

    PubMed

    Woody, Michael S; Capitanio, Marco; Ostap, E Michael; Goldman, Yale E

    2018-04-30

    We characterized experimental artifacts arising from the non-linear response of acousto-optical deflectors (AODs) in an ultra-fast force-clamp optical trap and have shown that using electro-optical deflectors (EODs) instead eliminates these artifacts. We give an example of the effects of these artifacts in our ultra-fast force clamp studies of the interaction of myosin with actin filaments. The experimental setup, based on the concept of Capitanio et al. [Nat. Methods 9, 1013-1019 (2012)] utilizes a bead-actin-bead dumbbell held in two force-clamped optical traps which apply a load to the dumbbell to move it at a constant velocity. When myosin binds to actin, the filament motion stops quickly as the total force from the optical traps is transferred to the actomyosin attachment. We found that in our setup, AODs were unsuitable for beam steering due to non-linear variations in beam intensity and deflection angle as a function of driving frequency, likely caused by low-amplitude standing acoustic waves in the deflectors. These aberrations caused instability in the force feedback loops leading to artifactual jumps in the trap position. We demonstrate that beam steering with EODs improves the performance of our instrument. Combining the superior beam-steering capability of the EODs, force acquisition via back-focal-plane interferometry, and dual high-speed FPGA-based feedback loops, we apply precise and constant loads to study the dynamics of interactions between actin and myosin. The same concept applies to studies of other biomolecular interactions.

  1. Sparsity-based acoustic inversion in cross-sectional multiscale optoacoustic imaging.

    PubMed

    Han, Yiyong; Tzoumas, Stratis; Nunes, Antonio; Ntziachristos, Vasilis; Rosenthal, Amir

    2015-09-01

    With recent advancement in hardware of optoacoustic imaging systems, highly detailed cross-sectional images may be acquired at a single laser shot, thus eliminating motion artifacts. Nonetheless, other sources of artifacts remain due to signal distortion or out-of-plane signals. The purpose of image reconstruction algorithms is to obtain the most accurate images from noisy, distorted projection data. In this paper, the authors use the model-based approach for acoustic inversion, combined with a sparsity-based inversion procedure. Specifically, a cost function is used that includes the L1 norm of the image in sparse representation and a total variation (TV) term. The optimization problem is solved by a numerically efficient implementation of a nonlinear gradient descent algorithm. TV-L1 model-based inversion is tested in the cross section geometry for numerically generated data as well as for in vivo experimental data from an adult mouse. In all cases, model-based TV-L1 inversion showed a better performance over the conventional Tikhonov regularization, TV inversion, and L1 inversion. In the numerical examples, the images reconstructed with TV-L1 inversion were quantitatively more similar to the originating images. In the experimental examples, TV-L1 inversion yielded sharper images and weaker streak artifact. The results herein show that TV-L1 inversion is capable of improving the quality of highly detailed, multiscale optoacoustic images obtained in vivo using cross-sectional imaging systems. As a result of its high fidelity, model-based TV-L1 inversion may be considered as the new standard for image reconstruction in cross-sectional imaging.

  2. Motorized photoacoustic tomography probe for label-free improvement in image quality

    NASA Astrophysics Data System (ADS)

    Sangha, Gurneet S.; Hale, Nick H.; Goergen, Craig J.

    2018-02-01

    One of the challenges in high-resolution in vivo lipid-based photoacoustic tomography (PAT) is improving penetration depth and signal-to-noise ratio (SNR) past subcutaneous fat absorbers. A potential solution is to create optical manipulation techniques to maximize the photon density within a region of interest. Here, we present a motorized PAT probe that is capable of tuning the depth in which light is focused, as well as substantially reducing probe-skin artifacts that can obscure image interpretation. Our PAT system consists of a Nd:YAG laser (Surelite EX, Continuum) coupled with a 40 MHz central frequency ultrasound transducer (Vevo2100, FUJIFILM Visual Sonics). This system allows us to deliver 10 Hz, 5 ns light pulses with fluence of 40 mJ/cm2 to the tissue interest and reconstruct PAT and ultrasound images with axial resolutions of 125 µm and 40 µm, respectively. The motorized PAT holder was validated by imaging a polyethylene-50 tubing embedded polyvinyl alcohol phantom and periaortic fat on apolipoprotein-E deficient mice. We used 1210 nm light for this study, as this wavelength generates PAT signal for both lipids and polyethylene-50 tubes. Ex vivo results showed a 2 mm improvement in penetration depth and in vivo experiments showed an increase in lipid SNR of at least 62%. Our PAT probe also utilizes a 7 μm aluminum filter to prevent in vivo probe-skin reflection artifacts that have been previously resolved using image post-processing techniques. Using this optimized PAT probe, we can direct light to various depths within tissue to improve image quality and prevent reflection artifacts.

  3. Detection of artifacts from high energy bursts in neonatal EEG.

    PubMed

    Bhattacharyya, Sourya; Biswas, Arunava; Mukherjee, Jayanta; Majumdar, Arun Kumar; Majumdar, Bandana; Mukherjee, Suchandra; Singh, Arun Kumar

    2013-11-01

    Detection of non-cerebral activities or artifacts, intermixed within the background EEG, is essential to discard them from subsequent pattern analysis. The problem is much harder in neonatal EEG, where the background EEG contains spikes, waves, and rapid fluctuations in amplitude and frequency. Existing artifact detection methods are mostly limited to detect only a subset of artifacts such as ocular, muscle or power line artifacts. Few methods integrate different modules, each for detection of one specific category of artifact. Furthermore, most of the reference approaches are implemented and tested on adult EEG recordings. Direct application of those methods on neonatal EEG causes performance deterioration, due to greater pattern variation and inherent complexity. A method for detection of a wide range of artifact categories in neonatal EEG is thus required. At the same time, the method should be specific enough to preserve the background EEG information. The current study describes a feature based classification approach to detect both repetitive (generated from ECG, EMG, pulse, respiration, etc.) and transient (generated from eye blinking, eye movement, patient movement, etc.) artifacts. It focuses on artifact detection within high energy burst patterns, instead of detecting artifacts within the complete background EEG with wide pattern variation. The objective is to find true burst patterns, which can later be used to identify the Burst-Suppression (BS) pattern, which is commonly observed during newborn seizure. Such selective artifact detection is proven to be more sensitive to artifacts and specific to bursts, compared to the existing artifact detection approaches applied on the complete background EEG. Several time domain, frequency domain, statistical features, and features generated by wavelet decomposition are analyzed to model the proposed bi-classification between burst and artifact segments. A feature selection method is also applied to select the feature subset producing highest classification accuracy. The suggested feature based classification method is executed using our recorded neonatal EEG dataset, consisting of burst and artifact segments. We obtain 78% sensitivity and 72% specificity as the accuracy measures. The accuracy obtained using the proposed method is found to be about 20% higher than that of the reference approaches. Joint use of the proposed method with our previous work on burst detection outperforms reference methods on simultaneous burst and artifact detection. As the proposed method supports detection of a wide range of artifact patterns, it can be improved to incorporate the detection of artifacts within other seizure patterns and background EEG information as well. © 2013 Elsevier Ltd. All rights reserved.

  4. High-Resolution C-Arm CT and Metal Artifact Reduction Software: A Novel Imaging Modality for Analyzing Aneurysms Treated with Stent-Assisted Coil Embolization.

    PubMed

    Yuki, I; Kambayashi, Y; Ikemura, A; Abe, Y; Kan, I; Mohamed, A; Dahmani, C; Suzuki, T; Ishibashi, T; Takao, H; Urashima, M; Murayama, Y

    2016-02-01

    Combination of high-resolution C-arm CT and novel metal artifact reduction software may contribute to the assessment of aneurysms treated with stent-assisted coil embolization. This study aimed to evaluate the efficacy of a novel Metal Artifact Reduction prototype software combined with the currently available high spatial-resolution C-arm CT prototype implementation by using an experimental aneurysm model treated with stent-assisted coil embolization. Eight experimental aneurysms were created in 6 swine. Coil embolization of each aneurysm was performed by using a stent-assisted technique. High-resolution C-arm CT with intra-arterial contrast injection was performed immediately after the treatment. The obtained images were processed with Metal Artifact Reduction. Five neurointerventional specialists reviewed the image quality before and after Metal Artifact Reduction. Observational and quantitative analyses (via image analysis software) were performed. Every aneurysm was successfully created and treated with stent-assisted coil embolization. Before Metal Artifact Reduction, coil loops protruding through the stent lumen were not visualized due to the prominent metal artifacts produced by the coils. These became visible after Metal Artifact Reduction processing. Contrast filling in the residual aneurysm was also visualized after Metal Artifact Reduction in every aneurysm. Both the observational (P < .0001) and quantitative (P < .001) analyses showed significant reduction of the metal artifacts after application of the Metal Artifact Reduction prototype software. The combination of high-resolution C-arm CT and Metal Artifact Reduction enables differentiation of the coil mass, stent, and contrast material on the same image by significantly reducing the metal artifacts produced by the platinum coils. This novel image technique may improve the assessment of aneurysms treated with stent-assisted coil embolization. © 2016 by American Journal of Neuroradiology.

  5. Joint correction of Nyquist artifact and minuscule motion-induced aliasing artifact in interleaved diffusion weighted EPI data using a composite two-dimensional phase correction procedure

    PubMed Central

    Chang, Hing-Chiu; Chen, Nan-kuei

    2016-01-01

    Diffusion-weighted imaging (DWI) obtained with interleaved echo-planar imaging (EPI) pulse sequence has great potential of characterizing brain tissue properties at high spatial-resolution. However, interleaved EPI based DWI data may be corrupted by various types of aliasing artifacts. First, inconsistencies in k-space data obtained with opposite readout gradient polarities result in Nyquist artifact, which is usually reduced with 1D phase correction in post-processing. When there exist eddy current cross terms (e.g., in oblique-plane EPI), 2D phase correction is needed to effectively reduce Nyquist artifact. Second, minuscule motion induced phase inconsistencies in interleaved DWI scans result in image-domain aliasing artifact, which can be removed with reconstruction procedures that take shot-to-shot phase variations into consideration. In existing interleaved DWI reconstruction procedures, Nyquist artifact and minuscule motion-induced aliasing artifact are typically removed subsequently in two stages. Although the two-stage phase correction generally performs well for non-oblique plane EPI data obtained from well-calibrated system, the residual artifacts may still be pronounced in oblique-plane EPI data or when there exist eddy current cross terms. To address this challenge, here we report a new composite 2D phase correction procedure, which effective removes Nyquist artifact and minuscule motion induced aliasing artifact jointly in a single step. Our experimental results demonstrate that the new 2D phase correction method can much more effectively reduce artifacts in interleaved EPI based DWI data as compared with the existing two-stage artifact correction procedures. The new method robustly enables high-resolution DWI, and should prove highly valuable for clinical uses and research studies of DWI. PMID:27114342

  6. TH-C-BRD-06: A Novel MRI Based CT Artifact Correction Method for Improving Proton Range Calculation in the Presence of Severe CT Artifacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, P; Schreibmann, E; Fox, T

    2014-06-15

    Purpose: Severe CT artifacts can impair our ability to accurately calculate proton range thereby resulting in a clinically unacceptable treatment plan. In this work, we investigated a novel CT artifact correction method based on a coregistered MRI and investigated its ability to estimate CT HU and proton range in the presence of severe CT artifacts. Methods: The proposed method corrects corrupted CT data using a coregistered MRI to guide the mapping of CT values from a nearby artifact-free region. First patient MRI and CT images were registered using 3D deformable image registration software based on B-spline and mutual information. Themore » CT slice with severe artifacts was selected as well as a nearby slice free of artifacts (e.g. 1cm away from the artifact). The two sets of paired MRI and CT images at different slice locations were further registered by applying 2D deformable image registration. Based on the artifact free paired MRI and CT images, a comprehensive geospatial analysis was performed to predict the correct CT HU of the CT image with severe artifact. For a proof of concept, a known artifact was introduced that changed the ground truth CT HU value up to 30% and up to 5cm error in proton range. The ability of the proposed method to recover the ground truth was quantified using a selected head and neck case. Results: A significant improvement in image quality was observed visually. Our proof of concept study showed that 90% of area that had 30% errors in CT HU was corrected to 3% of its ground truth value. Furthermore, the maximum proton range error up to 5cm was reduced to 4mm error. Conclusion: MRI based CT artifact correction method can improve CT image quality and proton range calculation for patients with severe CT artifacts.« less

  7. Metal implants on CT: comparison of iterative reconstruction algorithms for reduction of metal artifacts with single energy and spectral CT scanning in a phantom model.

    PubMed

    Fang, Jieming; Zhang, Da; Wilcox, Carol; Heidinger, Benedikt; Raptopoulos, Vassilios; Brook, Alexander; Brook, Olga R

    2017-03-01

    To assess single energy metal artifact reduction (SEMAR) and spectral energy metal artifact reduction (MARS) algorithms in reducing artifacts generated by different metal implants. Phantom was scanned with and without SEMAR (Aquilion One, Toshiba) and MARS (Discovery CT750 HD, GE), with various metal implants. Images were evaluated objectively by measuring standard deviation in regions of interests and subjectively by two independent reviewers grading on a scale of 0 (no artifact) to 4 (severe artifact). Reviewers also graded new artifacts introduced by metal artifact reduction algorithms. SEMAR and MARS significantly decreased variability of the density measurement adjacent to the metal implant, with median SD (standard deviation of density measurement) of 52.1 HU without SEMAR, vs. 12.3 HU with SEMAR, p < 0.001. Median SD without MARS of 63.1 HU decreased to 25.9 HU with MARS, p < 0.001. Median SD with SEMAR is significantly lower than median SD with MARS (p = 0.0011). SEMAR improved subjective image quality with reduction in overall artifacts grading from 3.2 ± 0.7 to 1.4 ± 0.9, p < 0.001. Improvement of overall image quality by MARS has not reached statistical significance (3.2 ± 0.6 to 2.6 ± 0.8, p = 0.088). There was a significant introduction of artifacts introduced by metal artifact reduction algorithm for MARS with 2.4 ± 1.0, but minimal with SEMAR 0.4 ± 0.7, p < 0.001. CT iterative reconstruction algorithms with single and spectral energy are both effective in reduction of metal artifacts. Single energy-based algorithm provides better overall image quality than spectral CT-based algorithm. Spectral metal artifact reduction algorithm introduces mild to moderate artifacts in the far field.

  8. Reference-Free Removal of EEG-fMRI Ballistocardiogram Artifacts with Harmonic Regression

    PubMed Central

    Krishnaswamy, Pavitra; Bonmassar, Giorgio; Poulsen, Catherine; Pierce, Eric T; Purdon, Patrick L.; Brown, Emery N.

    2016-01-01

    Combining electroencephalogram (EEG) recording and functional magnetic resonance imaging (fMRI) offers the potential for imaging brain activity with high spatial and temporal resolution. This potential remains limited by the significant ballistocardiogram (BCG) artifacts induced in the EEG by cardiac pulsation-related head movement within the magnetic field. We model the BCG artifact using a harmonic basis, pose the artifact removal problem as a local harmonic regression analysis, and develop an efficient maximum likelihood algorithm to estimate and remove BCG artifacts. Our analysis paradigm accounts for time-frequency overlap between the BCG artifacts and neurophysiologic EEG signals, and tracks the spatiotemporal variations in both the artifact and the signal. We evaluate performance on: simulated oscillatory and evoked responses constructed with realistic artifacts; actual anesthesia-induced oscillatory recordings; and actual visual evoked potential recordings. In each case, the local harmonic regression analysis effectively removes the BCG artifacts, and recovers the neurophysiologic EEG signals. We further show that our algorithm outperforms commonly used reference-based and component analysis techniques, particularly in low SNR conditions, the presence of significant time-frequency overlap between the artifact and the signal, and/or large spatiotemporal variations in the BCG. Because our algorithm does not require reference signals and has low computational complexity, it offers a practical tool for removing BCG artifacts from EEG data recorded in combination with fMRI. PMID:26151100

  9. Evaluation of Denoising Strategies to Address Motion-Correlated Artifacts in Resting-State Functional Magnetic Resonance Imaging Data from the Human Connectome Project

    PubMed Central

    Kandala, Sridhar; Nolan, Dan; Laumann, Timothy O.; Power, Jonathan D.; Adeyemo, Babatunde; Harms, Michael P.; Petersen, Steven E.; Barch, Deanna M.

    2016-01-01

    Abstract Like all resting-state functional connectivity data, the data from the Human Connectome Project (HCP) are adversely affected by structured noise artifacts arising from head motion and physiological processes. Functional connectivity estimates (Pearson's correlation coefficients) were inflated for high-motion time points and for high-motion participants. This inflation occurred across the brain, suggesting the presence of globally distributed artifacts. The degree of inflation was further increased for connections between nearby regions compared with distant regions, suggesting the presence of distance-dependent spatially specific artifacts. We evaluated several denoising methods: censoring high-motion time points, motion regression, the FMRIB independent component analysis-based X-noiseifier (FIX), and mean grayordinate time series regression (MGTR; as a proxy for global signal regression). The results suggest that FIX denoising reduced both types of artifacts, but left substantial global artifacts behind. MGTR significantly reduced global artifacts, but left substantial spatially specific artifacts behind. Censoring high-motion time points resulted in a small reduction of distance-dependent and global artifacts, eliminating neither type. All denoising strategies left differences between high- and low-motion participants, but only MGTR substantially reduced those differences. Ultimately, functional connectivity estimates from HCP data showed spatially specific and globally distributed artifacts, and the most effective approach to address both types of motion-correlated artifacts was a combination of FIX and MGTR. PMID:27571276

  10. Reflection-artifact-free photoacoustic imaging using PAFUSion (photoacoustic-guided focused ultrasound)

    NASA Astrophysics Data System (ADS)

    Kuniyil Ajith Singh, Mithun; Jaeger, Michael; Frenz, Martin; Steenbergen, Wiendelt

    2016-03-01

    Reflection artifacts caused by acoustic inhomogeneities are a main challenge to deep-tissue photoacoustic imaging. Photoacoustic transients generated by the skin surface and superficial vasculature will propagate into the tissue and reflect back from echogenic structures to generate reflection artifacts. These artifacts can cause problems in image interpretation and limit imaging depth. In its basic version, PAFUSion mimics the inward travelling wave-field from blood vessel-like PA sources by applying focused ultrasound pulses, and thus provides a way to identify reflection artifacts. In this work, we demonstrate reflection artifact correction in addition to identification, towards obtaining an artifact-free photoacoustic image. In view of clinical applications, we implemented an improved version of PAFUSion in which photoacoustic data is backpropagated to imitate the inward travelling wave-field and thus the reflection artifacts of a more arbitrary distribution of PA sources that also includes the skin melanin layer. The backpropagation is performed in a synthetic way based on the pulse-echo acquisitions after transmission on each single element of the transducer array. We present a phantom experiment and initial in vivo measurements on human volunteers where we demonstrate significant reflection artifact reduction using our technique. The results provide a direct confirmation that reflection artifacts are prominent in clinical epi-photoacoustic imaging, and that PAFUSion can reduce these artifacts significantly to improve the deep-tissue photoacoustic imaging.

  11. DNA Replication Arrest and DNA Damage Responses Induced by Alkylating Minor Groove Binders

    DTIC Science & Technology

    2003-05-01

    Alkylating minor groove DNA binder adozelesin is capable of inhibiting DNA replication in treated cells through a trans-acting mechanism. The trans... replication in vitro. Using purified proteins in DNA replication initiation assays, we found that RPA purified from cells treated with adozelesin in not...adozelesin has the same single-stranded DNA binding activity and support nucleotide excision repair as normal RPA, but is not able to support SV40 DNA

  12. Removal of ring artifacts in microtomography by characterization of scintillator variations.

    PubMed

    Vågberg, William; Larsson, Jakob C; Hertz, Hans M

    2017-09-18

    Ring artifacts reduce image quality in tomography, and arise from faulty detector calibration. In microtomography, we have identified that ring artifacts can arise due to high-spatial frequency variations in the scintillator thickness. Such variations are normally removed by a flat-field correction. However, as the spectrum changes, e.g. due to beam hardening, the detector response varies non-uniformly introducing ring artifacts that persist after flat-field correction. In this paper, we present a method to correct for ring artifacts from variations in scintillator thickness by using a simple method to characterize the local scintillator response. The method addresses the actual physical cause of the ring artifacts, in contrary to many other ring artifact removal methods which rely only on image post-processing. By applying the technique to an experimental phantom tomography, we show that ring artifacts are strongly reduced compared to only making a flat-field correction.

  13. Metal Artifact Suppression in Dental Cone Beam Computed Tomography Images Using Image Processing Techniques.

    PubMed

    Johari, Masoumeh; Abdollahzadeh, Milad; Esmaeili, Farzad; Sakhamanesh, Vahideh

    2018-01-01

    Dental cone beam computed tomography (CBCT) images suffer from severe metal artifacts. These artifacts degrade the quality of acquired image and in some cases make it unsuitable to use. Streaking artifacts and cavities around teeth are the main reason of degradation. In this article, we have proposed a new artifact reduction algorithm which has three parallel components. The first component extracts teeth based on the modeling of image histogram with a Gaussian mixture model. Striking artifact reduction component reduces artifacts using converting image into the polar domain and applying morphological filtering. The third component fills cavities through a simple but effective morphological filtering operation. Finally, results of these three components are combined into a fusion step to create a visually good image which is more compatible to human visual system. Results show that the proposed algorithm reduces artifacts of dental CBCT images and produces clean images.

  14. Detection and classification of subject-generated artifacts in EEG signals using autoregressive models.

    PubMed

    Lawhern, Vernon; Hairston, W David; McDowell, Kaleb; Westerfield, Marissa; Robbins, Kay

    2012-07-15

    We examine the problem of accurate detection and classification of artifacts in continuous EEG recordings. Manual identification of artifacts, by means of an expert or panel of experts, can be tedious, time-consuming and infeasible for large datasets. We use autoregressive (AR) models for feature extraction and characterization of EEG signals containing several kinds of subject-generated artifacts. AR model parameters are scale-invariant features that can be used to develop models of artifacts across a population. We use a support vector machine (SVM) classifier to discriminate among artifact conditions using the AR model parameters as features. Results indicate reliable classification among several different artifact conditions across subjects (approximately 94%). These results suggest that AR modeling can be a useful tool for discriminating among artifact signals both within and across individuals. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Metal Artifact Suppression in Dental Cone Beam Computed Tomography Images Using Image Processing Techniques

    PubMed Central

    Johari, Masoumeh; Abdollahzadeh, Milad; Esmaeili, Farzad; Sakhamanesh, Vahideh

    2018-01-01

    Background: Dental cone beam computed tomography (CBCT) images suffer from severe metal artifacts. These artifacts degrade the quality of acquired image and in some cases make it unsuitable to use. Streaking artifacts and cavities around teeth are the main reason of degradation. Methods: In this article, we have proposed a new artifact reduction algorithm which has three parallel components. The first component extracts teeth based on the modeling of image histogram with a Gaussian mixture model. Striking artifact reduction component reduces artifacts using converting image into the polar domain and applying morphological filtering. The third component fills cavities through a simple but effective morphological filtering operation. Results: Finally, results of these three components are combined into a fusion step to create a visually good image which is more compatible to human visual system. Conclusions: Results show that the proposed algorithm reduces artifacts of dental CBCT images and produces clean images. PMID:29535920

  16. Effect of pressure and padding on motion artifact of textile electrodes.

    PubMed

    Cömert, Alper; Honkala, Markku; Hyttinen, Jari

    2013-04-08

    With the aging population and rising healthcare costs, wearable monitoring is gaining importance. The motion artifact affecting dry electrodes is one of the main challenges preventing the widespread use of wearable monitoring systems. In this paper we investigate the motion artifact and ways of making a textile electrode more resilient against motion artifact. Our aim is to study the effects of the pressure exerted onto the electrode, and the effects of inserting padding between the applied pressure and the electrode. We measure real time electrode-skin interface impedance, ECG from two channels, the motion artifact related surface potential, and exerted pressure during controlled motion by a measurement setup designed to estimate the relation of motion artifact to the signals. We use different foam padding materials with various mechanical properties and apply electrode pressures between 5 and 25 mmHg to understand their effect. A QRS and noise detection algorithm based on a modified Pan-Tompkins QRS detection algorithm estimates the electrode behaviour in respect to the motion artifact from two channels; one dominated by the motion artifact and one containing both the motion artifact and the ECG. This procedure enables us to quantify a given setup's susceptibility to the motion artifact. Pressure is found to strongly affect signal quality as is the use of padding. In general, the paddings reduce the motion artifact. However the shape and frequency components of the motion artifact vary for different paddings, and their material and physical properties. Electrode impedance at 100 kHz correlates in some cases with the motion artifact but it is not a good predictor of the motion artifact. From the results of this study, guidelines for improving electrode design regarding padding and pressure can be formulated as paddings are a necessary part of the system for reducing the motion artifact, and further, their effect maximises between 15 mmHg and 20 mmHg of exerted pressure. In addition, we present new methods for evaluating electrode sensitivity to motion, utilizing the detection of noise peaks that fall into the same frequency band as R-peaks.

  17. TU-F-CAMPUS-J-04: Evaluation of Metal Artifact Reduction Technique for the Radiation Therapy Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, K; Kuo, H; Ritter, J

    Purpose: To evaluate the feasibility of using a metal artifact reduction technique in depleting metal artifact and its application in improving dose calculation in External Radiation Therapy Planning. Methods: CIRS electron density phantom was scanned with and without steel drill bits placed in some plug holes. Meta artifact reduction software with Metal Deletion Technique (MDT) was used to remove metal artifacts for scanned image with metal. Hounsfield units of electron density plugs from artifact free reference image and MDT processed images were compared. To test the dose calculation improvement after the MDT processed images, clinically approved head and neck planmore » with manual dental artifact correction was tested. Patient images were exported and processed with MDT and plan was recalculated with new MDT image without manual correction. Dose profiles near the metal artifacts were compared. Results: The MDT used in this study effectively reduced the metal artifact caused by beam hardening and scatter. The windmill around the metal drill was greatly improved with smooth rounded view. Difference of the mean HU in each density plug between reference and MDT images were less than 10 HU in most of the plugs. Dose difference between original plan and MDT images were minimal. Conclusion: Most metal artifact reduction methods were developed for diagnostic improvement purpose. Hence Hounsfield unit accuracy was not rigorously tested before. In our test, MDT effectively eliminated metal artifacts with good HU reproduciblity. However, it can introduce new mild artifacts so the MDT images should be checked with original images.« less

  18. Psycho-physiological effects of visual artifacts by stereoscopic display systems

    NASA Astrophysics Data System (ADS)

    Kim, Sanghyun; Yoshitake, Junki; Morikawa, Hiroyuki; Kawai, Takashi; Yamada, Osamu; Iguchi, Akihiko

    2011-03-01

    The methods available for delivering stereoscopic (3D) display using glasses can be classified as time-multiplexing and spatial-multiplexing. With both methods, intrinsic visual artifacts result from the generation of the 3D image pair on a flat panel display device. In the case of the time-multiplexing method, an observer perceives three artifacts: flicker, the Mach-Dvorak effect, and a phantom array. These only occur under certain conditions, with flicker appearing in any conditions, the Mach-Dvorak effect during smooth pursuit eye movements (SPM), and a phantom array during saccadic eye movements (saccade). With spatial-multiplexing, the artifacts are temporal-parallax (due to the interlaced video signal), binocular rivalry, and reduced spatial resolution. These artifacts are considered one of the major impediments to the safety and comfort of 3D display users. In this study, the implications of the artifacts for the safety and comfort are evaluated by examining the psychological changes they cause through subjective symptoms of fatigue and the depth sensation. Physiological changes are also measured as objective responses based on analysis of heart and brain activation by visual artifacts. Further, to understand the characteristics of each artifact and the combined effects of the artifacts, four experimental conditions are developed and tested. The results show that perception of artifacts differs according to the visual environment and the display method. Furthermore visual fatigue and the depth sensation are influenced by the individual characteristics of each artifact. Similarly, heart rate variability and regional cerebral oxygenation changes by perception of artifacts in conditions.

  19. [Quantitative Evaluation of Metal Artifacts on CT Images on the Basis of Statistics of Extremes].

    PubMed

    Kitaguchi, Shigetoshi; Imai, Kuniharu; Ueda, Suguru; Hashimoto, Naomi; Hattori, Shouta; Saika, Takahiro; Ono, Yoshifumi

    2016-05-01

    It is well-known that metal artifacts have a harmful effect on the image quality of computed tomography (CT) images. However, the physical property remains still unknown. In this study, we investigated the relationship between metal artifacts and tube currents using statistics of extremes. A commercially available phantom for measuring CT dose index 160 mm in diameter was prepared and a brass rod 13 mm in diameter was placed at the centerline of the phantom. This phantom was used as a target object to evaluate metal artifacts and was scanned using an area detector CT scanner with various tube currents under a constant tube voltage of 120 kV. Sixty parallel line segments with a length of 100 pixels were placed to cross metal artifacts on CT images and the largest difference between two adjacent CT values in each of 60 CT value profiles of these line segments was employed as a feature variable for measuring metal artifacts; these feature variables were analyzed on the basis of extreme value theory. The CT value variation induced by metal artifacts was statistically characterized by Gumbel distribution, which was one of the extreme value distributions; namely, metal artifacts have the same statistical characteristic as streak artifacts. Therefore, Gumbel evaluation method makes it possible to analyze not only streak artifacts but also metal artifacts. Furthermore, the location parameter in Gumbel distribution was shown to be in inverse proportion to the square root of a tube current. This result suggested that metal artifacts have the same dose dependence as image noises.

  20. PlateRunner: A Search Engine to Identify EMR Boilerplates.

    PubMed

    Divita, Guy; Workman, T Elizabeth; Carter, Marjorie E; Redd, Andrew; Samore, Matthew H; Gundlapalli, Adi V

    2016-01-01

    Medical text contains boilerplated content, an artifact of pull-down forms from EMRs. Boilerplated content is the source of challenges for concept extraction on clinical text. This paper introduces PlateRunner, a search engine on boilerplates from the US Department of Veterans Affairs (VA) EMR. Boilerplates containing concepts should be identified and reviewed to recognize challenging formats, identify high yield document titles, and fine tune section zoning. This search engine has the capability to filter negated and asserted concepts, save and search query results. This tool can save queries, search results, and documents found for later analysis.

  1. Fan-beam scanning laser optical computed tomography for large volume dosimetry

    NASA Astrophysics Data System (ADS)

    Dekker, K. H.; Battista, J. J.; Jordan, K. J.

    2017-05-01

    A prototype scanning-laser fan beam optical CT scanner is reported which is capable of high resolution, large volume dosimetry with reasonable scan time. An acylindrical, asymmetric aquarium design is presented which serves to 1) generate parallel-beam scan geometry, 2) focus light towards a small acceptance angle detector, and 3) avoid interference fringe-related artifacts. Preliminary experiments with uniform solution phantoms (11 and 15 cm diameter) and finger phantoms (13.5 mm diameter FEP tubing) demonstrate that the design allows accurate optical CT imaging, with optical CT measurements agreeing within 3% of independent Beer-Lambert law calculations.

  2. An extension to artifact-free projection overlaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jianyu, E-mail: jianyulin@hotmail.com

    2015-05-15

    Purpose: In multipinhole single photon emission computed tomography, the overlapping of projections has been used to increase sensitivity. Avoiding artifacts in the reconstructed image associated with projection overlaps (multiplexing) is a critical issue. In our previous report, two types of artifact-free projection overlaps, i.e., projection overlaps that do not lead to artifacts in the reconstructed image, were formally defined and proved, and were validated via simulations. In this work, a new proposition is introduced to extend the previously defined type-II artifact-free projection overlaps so that a broader range of artifact-free overlaps is accommodated. One practical purpose of the new extensionmore » is to design a baffle window multipinhole system with artifact-free projection overlaps. Methods: First, the extended type-II artifact-free overlap was theoretically defined and proved. The new proposition accommodates the situation where the extended type-II artifact-free projection overlaps can be produced with incorrectly reconstructed portions in the reconstructed image. Next, to validate the theory, the extended-type-II artifact-free overlaps were employed in designing the multiplexing multipinhole spiral orbit imaging systems with a baffle window. Numerical validations were performed via simulations, where the corresponding 1-pinhole nonmultiplexing reconstruction results were used as the benchmark for artifact-free reconstructions. The mean square error (MSE) was the metric used for comparisons of noise-free reconstructed images. Noisy reconstructions were also performed as part of the validations. Results: Simulation results show that for noise-free reconstructions, the MSEs of the reconstructed images of the artifact-free multiplexing systems are very similar to those of the corresponding 1-pinhole systems. No artifacts were observed in the reconstructed images. Therefore, the testing results for artifact-free multiplexing systems designed using the extended type-II artifact-free overlaps numerically validated the developed theory. Conclusions: First, the extension itself is of theoretical importance because it broadens the selection range for optimizing multiplexing multipinhole designs. Second, the extension has an immediate application: using a baffle window to design a special spiral orbit multipinhole imaging system with projection overlaps in the orbit axial direction. Such an artifact-free baffle window design makes it possible for us to image any axial portion of interest of a long object with projection overlaps to increase sensitivity.« less

  3. Physiological processes non-linearly affect electrophysiological recordings during transcranial electric stimulation.

    PubMed

    Noury, Nima; Hipp, Joerg F; Siegel, Markus

    2016-10-15

    Transcranial electric stimulation (tES) is a promising tool to non-invasively manipulate neuronal activity in the human brain. Several studies have shown behavioral effects of tES, but stimulation artifacts complicate the simultaneous investigation of neural activity with EEG or MEG. Here, we first show for EEG and MEG, that contrary to previous assumptions, artifacts do not simply reflect stimulation currents, but that heartbeat and respiration non-linearly modulate stimulation artifacts. These modulations occur irrespective of the stimulation frequency, i.e. during both transcranial alternating and direct current stimulations (tACS and tDCS). Second, we show that, although at first sight previously employed artifact rejection methods may seem to remove artifacts, data are still contaminated by non-linear stimulation artifacts. Because of their complex nature and dependence on the subjects' physiological state, these artifacts are prone to be mistaken as neural entrainment. In sum, our results uncover non-linear tES artifacts, show that current techniques fail to fully remove them, and pave the way for new artifact rejection methods. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. WE-G-209-00: Identifying Image Artifacts, Their Causes, and How to Fix Them

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This coursemore » will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.« less

  5. Pictorial Review of Digital Radiography Artifacts.

    PubMed

    Walz-Flannigan, Alisa I; Brossoit, Kimberly J; Magnuson, Dayne J; Schueler, Beth A

    2018-01-01

    Visual familiarity with the variety of digital radiographic artifacts is needed to identify, resolve, or prevent image artifacts from creating issues with patient imaging. Because the mechanism for image creation is different between flat-panel detectors and computed radiography, the causes and appearances of some artifacts can be unique to these different modalities. Examples are provided of artifacts that were found on clinical images or during quality control testing with flat-panel detectors. The examples are meant to serve as learning tools for future identification and troubleshooting of artifacts and as a reminder for steps that can be taken for prevention. The examples of artifacts provided are classified according to their causal connection in the imaging chain, including an equipment defect as a result of an accident or mishandling, debris or gain calibration flaws, a problematic acquisition technique, signal transmission failures, and image processing issues. Specific artifacts include those that are due to flat-panel detector drops, backscatter, debris in the x-ray field during calibration, detector saturation or underexposure, or collimation detection errors, as well as a variety of artifacts that are processing induced. © RSNA, 2018.

  6. Reduction of metal artifacts from alloy hip prostheses in computer tomography.

    PubMed

    Wang, Fengdan; Xue, Huadan; Yang, Xianda; Han, Wei; Qi, Bing; Fan, Yu; Qian, Wenwei; Wu, Zhihong; Zhang, Yan; Jin, Zhengyu

    2014-01-01

    The objective of this study was to evaluate the feasibility of reducing artifacts from large metal implants with gemstone spectral imaging (GSI) and metal artifact reduction software (MARS). Twenty-three in-vivo cobalt-chromium-molybdenum alloy total hip prostheses were prospectively scanned by fast kV-switching GSI between 80 and 140 kVp. The computed tomography images were reconstructed with monochromatic energy and with/without MARS. Both subjective and objective measurements were performed to assess the severity of metal artifacts. Increasing photon energy was associated with reduced metal artifacts in GSI images (P < 0.001). Combination of GSI with MARS further diminished the metal artifacts (P < 0.001). Artifact reduction at 3 anatomical levels (femoral head, neck, and shaft) were evaluated, with data showing that GSI and MARS could reduce metal artifacts at all 3 levels (P = 0.011, P < 0.001, and P = 0.003, respectively). Nevertheless, in certain cases, GSI without MARS produced more realistic images for the clinical situation. Proper usage of GSI with/without MARS could reduce the computed tomography artifacts of large metal parts and improve the radiological evaluation of postarthroplasty patients.

  7. ATDM Rover Milestone Report STDA02-1 (FY2017 Q4)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Matt; Laney, Dan E.

    We have successfully completed the MS-4/Y1 Milestone STDA02-1 for the Rover Project. This document describes the milestone and provides an overview of the technical details and artifacts of the milestone. This milestone is focused on building a GPU accelerated ray tracing package capable of doing multi-group radiography, both back-lit and with self-emission as well as serving as a volume rendering plot in VisIt and other VTK-based visualization tools. The long term goal is a package with in-situ capability, but for this first version integration into VisIt is the primary goal. Milestone Execution Plan: Create API for GPU Raytracer that supportsmore » multi-group transport (up to hundreds of groups); Implement components into one or more of: VTK-m, VisIt, and a new library/package implementation to be hosted on LLNL Bitbucket (initially), before releasing to the wider community.« less

  8. POCS-based reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE): a general algorithm for reducing motion-related artifacts

    PubMed Central

    Chu, Mei-Lan; Chang, Hing-Chiu; Chung, Hsiao-Wen; Truong, Trong-Kha; Bashir, Mustafa R.; Chen, Nan-kuei

    2014-01-01

    Purpose A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion weighted imaging (DWI). Theory Images with reduced artifacts are reconstructed with an iterative POCS procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k-space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill-conditioned matrices. Methods The POCSMUSE technique was applied to abdominal fast spin-echo imaging data, and its effectiveness in respiratory-triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot-to-shot phase variations in interleaved DWI data corresponding to different k-space trajectories and matrix condition numbers. Results Experimental results show that the POCSMUSE technique can effectively reduce motion-related artifacts in data obtained with different pulse sequences, k-space trajectories and contrasts. Conclusion POCSMUSE is a general post-processing algorithm for reduction of motion-related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods. PMID:25394325

  9. Providing a parallel and distributed capability for JMASS using SPEEDES

    NASA Astrophysics Data System (ADS)

    Valinski, Maria; Driscoll, Jonathan; McGraw, Robert M.; Meyer, Bob

    2002-07-01

    The Joint Modeling And Simulation System (JMASS) is a Tri-Service simulation environment that supports engineering and engagement-level simulations. As JMASS is expanded to support other Tri-Service domains, the current set of modeling services must be expanded for High Performance Computing (HPC) applications by adding support for advanced time-management algorithms, parallel and distributed topologies, and high speed communications. By providing support for these services, JMASS can better address modeling domains requiring parallel computationally intense calculations such clutter, vulnerability and lethality calculations, and underwater-based scenarios. A risk reduction effort implementing some HPC services for JMASS using the SPEEDES (Synchronous Parallel Environment for Emulation and Discrete Event Simulation) Simulation Framework has recently concluded. As an artifact of the JMASS-SPEEDES integration, not only can HPC functionality be brought to the JMASS program through SPEEDES, but an additional HLA-based capability can be demonstrated that further addresses interoperability issues. The JMASS-SPEEDES integration provided a means of adding HLA capability to preexisting JMASS scenarios through an implementation of the standard JMASS port communication mechanism that allows players to communicate.

  10. Metallic artifact in MRI after removal of orthopedic implants.

    PubMed

    Bagheri, Mohammad Hadi; Hosseini, Mehrdad Mohammad; Emami, Mohammad Jafar; Foroughi, Amin Aiboulhassani

    2012-03-01

    The aim of the present study was to evaluate the metallic artifacts in MRI of the orthopedic patients after removal of metallic implants. From March to August 2009, 40 orthopedic patients operated for removal of orthopedic metallic implants were studied by post-operative MRI from the site of removal of implants. A grading scale of 0-3 was assigned for artifact in MR images whereby 0 was considered no artifact; and I-III were considered mild, moderate, and severe metallic artifacts, respectively. These grading records were correlated with other variables including the type, size, number, and composition of metallic devices; and the site and duration of orthopedic devices stay in the body. Metallic susceptibly artifacts were detected in MRI of 18 of 40 cases (45%). Screws and pins in removed hardware were the most important factors for causing artifacts in MRI. The artifacts were found more frequently in the patients who had more screws and pins in the removed implants. Gender, age, site of implantation of the device, length of the hardware, composition of the metallic implants (stainless steel versus titanium), and duration of implantation of the hardware exerted no effect in producing metallic artifacts after removal of implants. Short TE sequences of MRI (such as T1 weighted) showed fewer artifacts. Susceptibility of metallic artifacts is a frequent phenomenon in MRI of patients upon removal of metallic orthopedic implants. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Minors and informed consent: a comparative approach.

    PubMed

    Stultiëns, Loes; Goffin, Tom; Borry, Pascal; Dierickx, Kris; Nys, Herman

    2007-04-01

    The European Convention on Human Rights and Biomedicine of the Council of Europe provides in article 6 for special protection of persons who are not able to give free and informed consent to an intervention in the health field, e.g. minors. According to the second paragraph of this article it is up to domestic law to decide whether and under which conditions a minor is capable of taking autonomous decisions in the health field. In the present article an overview is given of the legal regulations in place regarding the position of minors in a health care setting in the EU Member States that have ratified the European Convention on Human Rights and Biomedicine namely Cyprus, Czech Republic, Denmark, Estonia, Greece, Hungary, Lithuania, Portugal, Slovakia, Slovenia and Spain. As the overview will show, the legal position of minor patients in a health care setting varies from country to country. This in view of the system they have opted for as well as the age and circumstances under which minors are allowed to take health care decisions autonomously.

  12. [Joint correction for motion artifacts and off-resonance artifacts in multi-shot diffusion magnetic resonance imaging].

    PubMed

    Wu, Wenchuan; Fang, Sheng; Guo, Hua

    2014-06-01

    Aiming at motion artifacts and off-resonance artifacts in multi-shot diffusion magnetic resonance imaging (MRI), we proposed a joint correction method in this paper to correct the two kinds of artifacts simultaneously without additional acquisition of navigation data and field map. We utilized the proposed method using multi-shot variable density spiral sequence to acquire MRI data and used auto-focusing technique for image deblurring. We also used direct method or iterative method to correct motion induced phase errors in the process of deblurring. In vivo MRI experiments demonstrated that the proposed method could effectively suppress motion artifacts and off-resonance artifacts and achieve images with fine structures. In addition, the scan time was not increased in applying the proposed method.

  13. Landsat TM memory effect characterization and correction

    USGS Publications Warehouse

    Helder, D.; Boncyk, W.; Morfitt, R.

    1997-01-01

    Before radiometric calibration of Landsat Thematic Mapper (TM) data can be done accurately, it is necessary to minimize the effects of artifacts present in the data that originate in the instrument's signal processing path. These artifacts have been observed in downlinked image data since shortly after launch of Landsat 4 and 5. However, no comprehensive work has been done to characterize all the artifacts and develop methods for their correction. In this paper, the most problematic artifact is discussed: memory effect (ME). Characterization of this artifact is presented, including the parameters necessary for its correction. In addition, a correction algorithm is described that removes the artifact from TM imagery. It will be shown that this artifact causes significant radiometry errors, but the effect can be removed in a straightforward manner.

  14. Reconstruction artifacts in VRX CT scanner images

    NASA Astrophysics Data System (ADS)

    Rendon, David A.; DiBianca, Frank A.; Keyes, Gary S.

    2008-03-01

    Variable Resolution X-ray (VRX) CT scanners allow imaging of different sized anatomy at the same level of detail using the same device. This is achieved by tilting the x-ray detectors so that the projected size of the detecting elements is varied to produce reconstructions of smaller fields of view with higher spatial resolution. As with regular CT scanners, the images obtained with VRX scanners are affected by different kinds of artifacts of various origins. This work studies some of these artifacts and the impact that the VRX effect has on them. For this, computational models of single-arm single-slice VRX scanners are used to produce images with artifacts commonly found in routine use. These images and artifacts are produced using our VRX CT scanner simulator, which allows us to isolate the system parameters that have a greater effect on the artifacts. A study of the behavior of the artifacts at varying VRX opening angles is presented for scanners implemented using two different detectors. The results show that, although varying the VRX angle will have an effect on the severity of each of the artifacts studied, for some of these artifacts the effect of other factors (such as the distribution of the detector cells and the position of the phantom in the reconstruction grid) is overwhelmingly more significant. This is shown to be the case for streak artifacts produced by thin metallic objects. For some artifacts related to beam hardening, their severity was found to decrease along with the VRX angle. These observations allow us to infer that in regular use the effect of the VRX angle artifacts similar to the ones studied here will not be noticeable as it will be overshadowed by parameters that cannot be easily controlled outside of a computational model.

  15. A Novel Method for Characterizing Beam Hardening Artifacts in Cone-beam Computed Tomographic Images.

    PubMed

    Fox, Aaron; Basrani, Bettina; Kishen, Anil; Lam, Ernest W N

    2018-05-01

    The beam hardening (BH) artifact produced by root filling materials in cone-beam computed tomographic (CBCT) images is influenced by their radiologic K absorption edge values. The purpose of this study was to describe a novel technique to characterize BH artifacts in CBCT images produced by 3 root canal filling materials and to evaluate the effects of a zirconium (Zr)-based root filling material with a lower K edge (17.99 keV) on the production of BH artifacts. The palatal root canals of 3 phantom model teeth were prepared and root filled with gutta-percha (GP), a Zr root filling material, and calcium hydroxide paste. Each phantom tooth was individually imaged using the CS 9000 CBCT unit (Carestream, Atlanta, GA). The "light" and "dark" components of the BH artifacts were quantified separately using ImageJ software (National Institutes of Health, Bethesda, MD) in 3 regions of the root. Mixed-design analysis of variance was used to evaluate differences in the artifact area for the light and dark elements of the BH artifacts. A statistically significant difference in the area of the dark portion of the BH artifact was found between all fill materials and in all regions of the phantom tooth root (P < .05). GP generated a significantly greater dark but not light artifact area compared with Zr (P < .05). Moreover, statistically significant differences between the areas of both the light and dark artifacts were observed within all regions of the tooth root, with the greatest artifact being generated in the coronal third of the root (P < .001). Root canal filling materials with lower K edge material properties reduce BH artifacts along the entire length of the root canal and reduce the contribution of the dark artifact. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Artifacts as Authoritative Actors in Educational Reform

    ERIC Educational Resources Information Center

    März, Virginie; Kelchtermans, Geert; Vermeir, Karen

    2017-01-01

    Educational reforms are often translated in and implemented through artifacts. Although research has frequently treated artifacts as merely functional, more recent work acknowledges the complex relationship between material artifacts and human/organizational behavior. This article aims at disentangling this relationship in order to deepen our…

  17. Radiographic artifacts.

    PubMed

    Kirberger, R M; Roos, C J

    1995-06-01

    Radiographic artifacts commonly occur, particularly with hand processing. The artifacts may originate between the X-ray tube and the cassette as extraneous material on the patient or contamination of positioning aids, or result from debris within the cassette, or damage to, or staining of the screens. These artifacts are white to grey, may have a constant or different position on follow-up radiographs, and their size and shape are reflective of the inciting cause. A number of artifacts may occur in the darkroom during handling, developing, fixing and drying of the film. White to shiny artifacts are caused by the contamination of films with fixer, inability of developer to reach parts of the film or loss of emulsion from the developed film. Black artifacts result from improper handling or storage of films, resulting in exposure to light, or from pressure marks or static electricity discharges. Dropped levels of hand-processing chemicals may result in a variety of tide-marks on films. Most radiographic artifacts can be prevented by proper storage and handling of films and by optimal darkroom technique.

  18. A Novel Stimulus Artifact Removal Technique for High-Rate Electrical Stimulation

    PubMed Central

    Heffer, Leon F; Fallon, James B

    2008-01-01

    Electrical stimulus artifact corrupting electrophysiological recordings often make the subsequent analysis of the underlying neural response difficult. This is particularly evident when investigating short-latency neural activity in response to high-rate electrical stimulation. We developed and evaluated an off-line technique for the removal of stimulus artifact from electrophysiological recordings. Pulsatile electrical stimulation was presented at rates of up to 5000 pulses/s during extracellular recordings of guinea pig auditory nerve fibers. Stimulus artifact was removed by replacing the sample points at each stimulus artifact event with values interpolated along a straight line, computed from neighbouring sample points. This technique required only that artifact events be identifiable and that the artifact duration remained less than both the inter-stimulus interval and the time course of the action potential. We have demonstrated that this computationally efficient sample-and-interpolate technique removes the stimulus artifact with minimal distortion of the action potential waveform. We suggest that this technique may have potential applications in a range of electrophysiological recording systems. PMID:18339428

  19. WE-G-209-03: PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemp, B.

    2016-06-15

    Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This coursemore » will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.« less

  20. WE-G-209-02: CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kofler, J.

    2016-06-15

    Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This coursemore » will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.« less

  1. WE-G-209-04: MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pooley, R.

    2016-06-15

    Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This coursemore » will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.« less

  2. Signal processing methods for reducing artifacts in microelectrode brain recordings caused by functional electrical stimulation

    NASA Astrophysics Data System (ADS)

    Young, D.; Willett, F.; Memberg, W. D.; Murphy, B.; Walter, B.; Sweet, J.; Miller, J.; Hochberg, L. R.; Kirsch, R. F.; Ajiboye, A. B.

    2018-04-01

    Objective. Functional electrical stimulation (FES) is a promising technology for restoring movement to paralyzed limbs. Intracortical brain-computer interfaces (iBCIs) have enabled intuitive control over virtual and robotic movements, and more recently over upper extremity FES neuroprostheses. However, electrical stimulation of muscles creates artifacts in intracortical microelectrode recordings that could degrade iBCI performance. Here, we investigate methods for reducing the cortically recorded artifacts that result from peripheral electrical stimulation. Approach. One participant in the BrainGate2 pilot clinical trial had two intracortical microelectrode arrays placed in the motor cortex, and thirty-six stimulating intramuscular electrodes placed in the muscles of the contralateral limb. We characterized intracortically recorded electrical artifacts during both intramuscular and surface stimulation. We compared the performance of three artifact reduction methods: blanking, common average reference (CAR) and linear regression reference (LRR), which creates channel-specific reference signals, composed of weighted sums of other channels. Main results. Electrical artifacts resulting from surface stimulation were 175  ×  larger than baseline neural recordings (which were 110 µV peak-to-peak), while intramuscular stimulation artifacts were only 4  ×  larger. The artifact waveforms were highly consistent across electrodes within each array. Application of LRR reduced artifact magnitudes to less than 10 µV and largely preserved the original neural feature values used for decoding. Unmitigated stimulation artifacts decreased iBCI decoding performance, but performance was almost completely recovered using LRR, which outperformed CAR and blanking and extracted useful neural information during stimulation artifact periods. Significance. The LRR method was effective at reducing electrical artifacts resulting from both intramuscular and surface FES, and almost completely restored iBCI decoding performance (>90% recovery for surface stimulation and full recovery for intramuscular stimulation). The results demonstrate that FES-induced artifacts can be easily mitigated in FES  +  iBCI systems by using LRR for artifact reduction, and suggest that the LRR method may also be useful in other noise reduction applications.

  3. Ultrasound artifacts: classification, applied physics with illustrations, and imaging appearances.

    PubMed

    Prabhu, Somnath J; Kanal, Kalpana; Bhargava, Puneet; Vaidya, Sandeep; Dighe, Manjiri K

    2014-06-01

    Ultrasound has become a widely used diagnostic imaging modality in medicine because of its safety and portability. Because of rapid advances in technology, in recent years, sonographic imaging quality has significantly increased. Despite these advances, the potential to encounter artifacts while imaging remains.This article classifies both common and uncommon gray-scale and Doppler ultrasound artifacts into those resulting from physiology and those caused by hardware. A brief applied-physics explanation for each artifact is listed along with an illustrated diagram. The imaging appearance of artifacts is presented in case examples, along with strategies to minimize the artifacts in real time or use them for clinical advantage where applicable.

  4. Reduction hybrid artifacts of EMG-EOG in electroencephalography evoked by prefrontal transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Bai, Yang; Wan, Xiaohong; Zeng, Ke; Ni, Yinmei; Qiu, Lirong; Li, Xiaoli

    2016-12-01

    Objective. When prefrontal-transcranial magnetic stimulation (p-TMS) performed, it may evoke hybrid artifact mixed with muscle activity and blink activity in EEG recordings. Reducing this kind of hybrid artifact challenges the traditional preprocessing methods. We aim to explore method for the p-TMS evoked hybrid artifact removal. Approach. We propose a novel method used as independent component analysis (ICA) post processing to reduce the p-TMS evoked hybrid artifact. Ensemble empirical mode decomposition (EEMD) was used to decompose signal into multi-components, then the components were separated with artifact reduced by blind source separation (BSS) method. Three standard BSS methods, ICA, independent vector analysis, and canonical correlation analysis (CCA) were tested. Main results. Synthetic results showed that EEMD-CCA outperformed others as ICA post processing step in hybrid artifacts reduction. Its superiority was clearer when signal to noise ratio (SNR) was lower. In application to real experiment, SNR can be significantly increased and the p-TMS evoked potential could be recovered from hybrid artifact contaminated signal. Our proposed method can effectively reduce the p-TMS evoked hybrid artifacts. Significance. Our proposed method may facilitate future prefrontal TMS-EEG researches.

  5. Image restoration techniques as applied to Landsat MSS and TM data

    USGS Publications Warehouse

    Meyer, David

    1987-01-01

    Two factors are primarily responsible for the loss of image sharpness in processing digital Landsat images. The first factor is inherent in the data because the sensor's optics and electronics, along with other sensor elements, blur and smear the data. Digital image restoration can be used to reduce this degradation. The second factor, which further degrades by blurring or aliasing, is the resampling performed during geometric correction. An image restoration procedure, when used in place of typical resampled techniques, reduces sensor degradation without introducing the artifacts associated with resampling. The EROS Data Center (EDC) has implemented the restoration proceed for Landsat multispectral scanner (MSS) and thematic mapper (TM) data. This capability, developed at the University of Arizona by Dr. Robert Schowengerdt and Lynette Wood, combines restoration and resampling in a single step to produce geometrically corrected MSS and TM imagery. As with resampling, restoration demands a tradeoff be made between aliasing, which occurs when attempting to extract maximum sharpness from an image, and blurring, which reduces the aliasing problem but sacrifices image sharpness. The restoration procedure used at EDC minimizes these artifacts by being adaptive, tailoring the tradeoff to be optimal for individual images.

  6. Visualization of micro-capillaries using optical coherence tomography angiography with and without adaptive optics.

    PubMed

    Salas, Matthias; Augustin, Marco; Ginner, Laurin; Kumar, Abhishek; Baumann, Bernhard; Leitgeb, Rainer; Drexler, Wolfgang; Prager, Sonja; Hafner, Julia; Schmidt-Erfurth, Ursula; Pircher, Michael

    2017-01-01

    The purpose of this work is to investigate the benefits of adaptive optics (AO) technology for optical coherence tomography angiography (OCTA). OCTA has shown great potential in non-invasively enhancing the contrast of vessels and small capillaries. Especially the capability of the technique to visualize capillaries with a lateral extension that is below the transverse resolution of the system opens unique opportunities in diagnosing retinal vascular diseases. However, there are some limitations of this technology such as shadowing and projection artifacts caused by overlying vasculature or the inability to determine the true extension of a vessel. Thus, the evaluation of the vascular structure and density based on OCTA alone can be misleading. In this paper we compare the performance of AO-OCT, AO-OCTA and OCTA for imaging retinal vasculature. The improved transverse resolution and the reduced depth of focus of AO-OCT and AO-OCTA greatly reduce shadowing artifacts allowing for a better differentiation and segmentation of different vasculature layers of the inner retina. The comparison is done on images recorded in healthy volunteers and in diabetic patients with distinct pathologies of the retinal microvasculature.

  7. Flight test of MMW radar for brown-out helicopter landing

    NASA Astrophysics Data System (ADS)

    Martin, Christopher A.; Kolinko, Vladimir; Otto, Gregory P.; Lovberg, John A.

    2012-06-01

    Trex Enterprises and US Army RDECOM CERDEC Night Vision Electronic Sensors Directorate developed and tested helicopter radar to aid in brown-out landing situations. A brown-out occurs when sand and dust kicked up by the helicopter rotors impair the pilot's vision. Millimeter-wave (MMW) radiation penetrates sand and dust with little loss or scattering, and radar at this frequency can provide a pilot with an image of the intended landing zone. The Brown-out Situational Awareness System (BSAS) is a frequency-modulated, continuous-wave radar that measures range to the ground across a conical field-of-view and uses that range information to create an image for the pilot. The BSAS collected imagery from a helicopter in a blowing sand environment with obstacles including ditches, hills, posts, poles, wires, buildings and vehicles. The BSAS proved the capability to form images of the ground through heavy blowing sand and resolve images of some obstacles. The BSAS also attempted to differentiate flat ground from bumpy ground with limited success at some viewing angles. The BSAS test imagery includes some artifacts formed by high radar cross-section targets in the field-of-view or sidelobes. The paper discusses future improvements that could limit these artifacts.

  8. Stone tool function at the paleolithic sites of Starosele and Buran Kaya III, Crimea: Behavioral implications

    PubMed Central

    Hardy, Bruce L.; Kay, Marvin; Marks, Anthony E.; Monigal, Katherine

    2001-01-01

    Stone tools are often the most abundant type of cultural remains at Paleolithic sites, yet their function is often poorly understood. Investigations of stone tool function, including microscopic use-wear and residue analyses, were performed on a sample of artifacts from the Paleolithic sites of Starosele (40,000–80,000 years BP) and Buran Kaya III (32,000–37,000 years BP). The Middle Paleolithic levels at Starosele exhibit a typical variant of the local Micoquian Industry. The artifacts from Buran Kaya III most closely resemble an Early Streletskayan Industry associated with the early Upper Paleolithic. The results of the functional analyses suggest that hominids at both sites were exploiting woody and starchy plant material as well as birds and mammals. Both sites show evidence of hafting of a wide variety of tools and the possible use of projectile or thrusting spears. These analyses were performed by using two different techniques conducted by independent researchers. Combined residue and use-wear analyses suggest that both the Upper Paleolithic and Middle Paleolithic hominids at these sites were broad-based foragers capable of exploiting a wide range of resources. PMID:11535837

  9. A finite difference analysis of the field present behind an acoustically impenetrable two-layer barrier.

    PubMed

    Hurrell, Andrew M

    2008-06-01

    The interaction of an incident sound wave with an acoustically impenetrable two-layer barrier is considered. Of particular interest is the presence of several acoustic wave components in the shadow region of this barrier. A finite difference model capable of simulating this geometry is validated by comparison to the analytical solution for an idealized, hard-soft barrier. A panel comprising a high air-content closed cell foam backed with an elastic (metal) back plate is then examined. The insertion loss of this panel was found to exceed the dynamic range of the measurement system and was thus acoustically impenetrable. Experimental results from such a panel are shown to contain artifacts not present in the diffraction solution, when acoustic waves are incident upon the soft surface. A finite difference analysis of this experimental configuration replicates the presence of the additional field components. Furthermore, the simulated results allow the additional components to be identified as arising from the S(0) and A(0) Lamb modes traveling in the elastic plate. These Lamb mode artifacts are not found to be present in the shadow region when the acoustic waves are incident upon the elastic surface.

  10. Real-time Adaptive EEG Source Separation using Online Recursive Independent Component Analysis

    PubMed Central

    Hsu, Sheng-Hsiou; Mullen, Tim; Jung, Tzyy-Ping; Cauwenberghs, Gert

    2016-01-01

    Independent Component Analysis (ICA) has been widely applied to electroencephalographic (EEG) biosignal processing and brain-computer interfaces. The practical use of ICA, however, is limited by its computational complexity, data requirements for convergence, and assumption of data stationarity, especially for high-density data. Here we study and validate an optimized online recursive ICA algorithm (ORICA) with online recursive least squares (RLS) whitening for blind source separation of high-density EEG data, which offers instantaneous incremental convergence upon presentation of new data. Empirical results of this study demonstrate the algorithm's: (a) suitability for accurate and efficient source identification in high-density (64-channel) realistically-simulated EEG data; (b) capability to detect and adapt to non-stationarity in 64-ch simulated EEG data; and (c) utility for rapidly extracting principal brain and artifact sources in real 61-channel EEG data recorded by a dry and wearable EEG system in a cognitive experiment. ORICA was implemented as functions in BCILAB and EEGLAB and was integrated in an open-source Real-time EEG Source-mapping Toolbox (REST), supporting applications in ICA-based online artifact rejection, feature extraction for real-time biosignal monitoring in clinical environments, and adaptable classifications in brain-computer interfaces. PMID:26685257

  11. Starry messages: Searching for signatures of interstellar archaeology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrigan, Richard A., Jr.; /Fermilab

    2009-12-01

    Searching for signatures of cosmic-scale archaeological artifacts such as Dyson spheres or Kardashev civilizations is an interesting alternative to conventional SETI. Uncovering such an artifact does not require the intentional transmission of a signal on the part of the original civilization. This type of search is called interstellar archaeology or sometimes cosmic archaeology. The detection of intelligence elsewhere in the Universe with interstellar archaeology or SETI would have broad implications for science. For example, the constraints of the anthropic principle would have to be loosened if a different type of intelligence was discovered elsewhere. A variety of interstellar archaeology signaturesmore » are discussed including non-natural planetary atmospheric constituents, stellar doping with isotopes of nuclear wastes, Dyson spheres, as well as signatures of stellar and galactic-scale engineering. The concept of a Fermi bubble due to interstellar migration is introduced in the discussion of galactic signatures. These potential interstellar archaeological signatures are classified using the Kardashev scale. A modified Drake equation is used to evaluate the relative challenges of finding various sources. With few exceptions interstellar archaeological signatures are clouded and beyond current technological capabilities. However SETI for so-called cultural transmissions and planetary atmosphere signatures are within reach.« less

  12. Reducing Artifacts in TMS-Evoked EEG

    NASA Astrophysics Data System (ADS)

    Fuertes, Juan José; Travieso, Carlos M.; Álvarez, A.; Ferrer, M. A.; Alonso, J. B.

    Transcranial magnetic stimulation induces weak currents within the cranium to activate neuronal firing and its response is recorded using electroencephalography in order to study the brain directly. However, different artifacts contaminate the results. The goal of this study is to process these artifacts and reduce them digitally. Electromagnetic, blink and auditory artifacts are considered, and Signal-Space Projection, Independent Component Analysis and Wiener Filtering methods are used to reduce them. These last two produce a successful solution for electromagnetic artifacts. Regarding the other artifacts, processed with Signal-Space Projection, the method reduces the artifact but modifies the signal as well. Nonetheless, they are modified in an exactly known way and the vector used for the projection is conserved to be taken into account when analyzing the resulting signals. A system which combines the proposed methods would improve the quality of the information presented to physicians.

  13. Metal artifact reduction in MRI-based cervical cancer intracavitary brachytherapy

    NASA Astrophysics Data System (ADS)

    Rao, Yuan James; Zoberi, Jacqueline E.; Kadbi, Mo; Grigsby, Perry W.; Cammin, Jochen; Mackey, Stacie L.; Garcia-Ramirez, Jose; Goddu, S. Murty; Schwarz, Julie K.; Gach, H. Michael

    2017-04-01

    Magnetic resonance imaging (MRI) plays an increasingly important role in brachytherapy planning for cervical cancer. Yet, metal tandem, ovoid intracavitary applicators, and fiducial markers used in brachytherapy cause magnetic susceptibility artifacts in standard MRI. These artifacts may impact the accuracy of brachytherapy treatment and the evaluation of tumor response by misrepresenting the size and location of the metal implant, and distorting the surrounding anatomy and tissue. Metal artifact reduction sequences (MARS) with high bandwidth RF selective excitations and turbo spin-echo readouts were developed for MRI of orthopedic implants. In this study, metal artifact reduction was applied to brachytherapy of cervical cancer using the orthopedic metal artifact reduction (O-MAR) sequence. O-MAR combined MARS features with view angle tilting and slice encoding for metal artifact correction (SEMAC) to minimize in-plane and through-plane susceptibility artifacts. O-MAR improved visualization of the tandem tip on T2 and proton density weighted (PDW) imaging in phantoms and accurately represented the diameter of the tandem. In a pilot group of cervical cancer patients (N  =  7), O-MAR significantly minimized the blooming artifact at the tip of the tandem in PDW MRI. There was no significant difference observed in artifact reduction between the weak (5 kHz, 7 z-phase encodes) and medium (10 kHz, 13 z-phase encodes) SEMAC settings. However, the weak setting allowed a significantly shorter acquisition time than the medium setting. O-MAR also reduced susceptibility artifacts associated with metal fiducial markers so that they appeared on MRI at their true dimensions.

  14. Analysis of metal artifact reduction tools for dental hardware in CT scans of the oral cavity: kVp, iterative reconstruction, dual-energy CT, metal artifact reduction software: does it make a difference?

    PubMed

    De Crop, An; Casselman, Jan; Van Hoof, Tom; Dierens, Melissa; Vereecke, Elke; Bossu, Nicolas; Pamplona, Jaime; D'Herde, Katharina; Thierens, Hubert; Bacher, Klaus

    2015-08-01

    Metal artifacts may negatively affect radiologic assessment in the oral cavity. The aim of this study was to evaluate different metal artifact reduction techniques for metal artifacts induced by dental hardware in CT scans of the oral cavity. Clinical image quality was assessed using a Thiel-embalmed cadaver. A Catphan phantom and a polymethylmethacrylate (PMMA) phantom were used to evaluate physical-technical image quality parameters such as artifact area, artifact index (AI), and contrast detail (IQFinv). Metal cylinders were inserted in each phantom to create metal artifacts. CT images of both phantoms and the Thiel-embalmed cadaver were acquired on a multislice CT scanner using 80, 100, 120, and 140 kVp; model-based iterative reconstruction (Veo); and synthesized monochromatic keV images with and without metal artifact reduction software (MARs). Four radiologists assessed the clinical image quality, using an image criteria score (ICS). Significant influence of increasing kVp and the use of Veo was found on clinical image quality (p = 0.007 and p = 0.014, respectively). Application of MARs resulted in a smaller artifact area (p < 0.05). However, MARs reconstructed images resulted in lower ICS. Of all investigated techniques, Veo shows to be most promising, with a significant improvement of both the clinical and physical-technical image quality without adversely affecting contrast detail. MARs reconstruction in CT images of the oral cavity to reduce dental hardware metallic artifacts is not sufficient and may even adversely influence the image quality.

  15. Study of Image Qualities From 6D Robot-Based CBCT Imaging System of Small Animal Irradiator.

    PubMed

    Sharma, Sunil; Narayanasamy, Ganesh; Clarkson, Richard; Chao, Ming; Moros, Eduardo G; Zhang, Xin; Yan, Yulong; Boerma, Marjan; Paudel, Nava; Morrill, Steven; Corry, Peter; Griffin, Robert J

    2017-01-01

    To assess the quality of cone beam computed tomography images obtained by a robotic arm-based and image-guided small animal conformal radiation therapy device. The small animal conformal radiation therapy device is equipped with a 40 to 225 kV X-ray tube mounted on a custom made gantry, a 1024 × 1024 pixels flat panel detector (200 μm resolution), a programmable 6 degrees of freedom robot for cone beam computed tomography imaging and conformal delivery of radiation doses. A series of 2-dimensional radiographic projection images were recorded in cone beam mode by placing and rotating microcomputed tomography phantoms on the "palm' of the robotic arm. Reconstructed images were studied for image quality (spatial resolution, image uniformity, computed tomography number linearity, voxel noise, and artifacts). Geometric accuracy was measured to be 2% corresponding to 0.7 mm accuracy on a Shelley microcomputed tomography QA phantom. Qualitative resolution of reconstructed axial computed tomography slices using the resolution coils was within 200 μm. Quantitative spatial resolution was found to be 3.16 lp/mm. Uniformity of the system was measured within 34 Hounsfield unit on a QRM microcomputed tomography water phantom. Computed tomography numbers measured using the linearity plate were linear with material density ( R 2 > 0.995). Cone beam computed tomography images of the QRM multidisk phantom had minimal artifacts. Results showed that the small animal conformal radiation therapy device is capable of producing high-quality cone beam computed tomography images for precise and conformal small animal dose delivery. With its high-caliber imaging capabilities, the small animal conformal radiation therapy device is a powerful tool for small animal research.

  16. A novel image processing workflow for the in vivo quantification of skin microvasculature using dynamic optical coherence tomography.

    PubMed

    Zugaj, D; Chenet, A; Petit, L; Vaglio, J; Pascual, T; Piketty, C; Bourdes, V

    2018-02-04

    Currently, imaging technologies that can accurately assess or provide surrogate markers of the human cutaneous microvessel network are limited. Dynamic optical coherence tomography (D-OCT) allows the detection of blood flow in vivo and visualization of the skin microvasculature. However, image processing is necessary to correct images, filter artifacts, and exclude irrelevant signals. The objective of this study was to develop a novel image processing workflow to enhance the technical capabilities of D-OCT. Single-center, vehicle-controlled study including healthy volunteers aged 18-50 years. A capsaicin solution was applied topically on the subject's forearm to induce local inflammation. Measurements of capsaicin-induced increase in dermal blood flow, within the region of interest, were performed by laser Doppler imaging (LDI) (reference method) and D-OCT. Sixteen subjects were enrolled. A good correlation was shown between D-OCT and LDI, using the image processing workflow. Therefore, D-OCT offers an easy-to-use alternative to LDI, with good repeatability, new robust morphological features (dermal-epidermal junction localization), and quantification of the distribution of vessel size and changes in this distribution induced by capsaicin. The visualization of the vessel network was improved through bloc filtering and artifact removal. Moreover, the assessment of vessel size distribution allows a fine analysis of the vascular patterns. The newly developed image processing workflow enhances the technical capabilities of D-OCT for the accurate detection and characterization of microcirculation in the skin. A direct clinical application of this image processing workflow is the quantification of the effect of topical treatment on skin vascularization. © 2018 The Authors. Skin Research and Technology Published by John Wiley & Sons Ltd.

  17. Tube focal spot size and power capability impact image quality in the evaluation of intracoronary stents

    NASA Astrophysics Data System (ADS)

    Cesmeli, Erdogan; Berry, Joel L.; Carr, J. J.

    2005-04-01

    Proliferation of coronary stent deployment for treatment of coronary heart disease (CHD) creates a need for imaging-based follow-up examinations to assess patency. Technological improvements in multi-detector computer tomography (MDCT) make it a potential non-invasive alternative to coronary catheterization for evaluation of stent patency; however, image quality with MDCT varies based on the size and composition of the stent. We studied the role of tube focal spot size and power in the optimization of image quality in a stationary phantom. A standard uniform physical phantom with a tubular insert was used where coronary stents (4 mm in diameter) were deployed in a tube filled with contrast to simulate a typical imaging condition observed in clinical practice. We utilized different commercially available stents and scanned them with different tube voltage and current settings (LightSpeed Pro16, GE Healthcare Technologies, Waukesha, WI, USA). The scanner used different focal spot size depending on the power load and thus allowed us to assess the combined effect of the focal spot size and the power. A radiologist evaluated the resulting images in terms of image quality and artifacts. For all stents, we found that the small focal spot size yielded better image quality and reduced artifacts. In general, higher power capability for the given focal spot size improved the signal-to-noise ratio in the images allowing improved assessment. Our preliminary study in a non-moving phantom suggests that a CT scanner that can deliver the same power on a small focal spot size is better suited to have an optimized scan protocol for reliable stent assessment.

  18. Exploiting sparsity and low-rank structure for the recovery of multi-slice breast MRIs with reduced sampling error.

    PubMed

    Yin, X X; Ng, B W-H; Ramamohanarao, K; Baghai-Wadji, A; Abbott, D

    2012-09-01

    It has been shown that, magnetic resonance images (MRIs) with sparsity representation in a transformed domain, e.g. spatial finite-differences (FD), or discrete cosine transform (DCT), can be restored from undersampled k-space via applying current compressive sampling theory. The paper presents a model-based method for the restoration of MRIs. The reduced-order model, in which a full-system-response is projected onto a subspace of lower dimensionality, has been used to accelerate image reconstruction by reducing the size of the involved linear system. In this paper, the singular value threshold (SVT) technique is applied as a denoising scheme to reduce and select the model order of the inverse Fourier transform image, and to restore multi-slice breast MRIs that have been compressively sampled in k-space. The restored MRIs with SVT for denoising show reduced sampling errors compared to the direct MRI restoration methods via spatial FD, or DCT. Compressive sampling is a technique for finding sparse solutions to underdetermined linear systems. The sparsity that is implicit in MRIs is to explore the solution to MRI reconstruction after transformation from significantly undersampled k-space. The challenge, however, is that, since some incoherent artifacts result from the random undersampling, noise-like interference is added to the image with sparse representation. These recovery algorithms in the literature are not capable of fully removing the artifacts. It is necessary to introduce a denoising procedure to improve the quality of image recovery. This paper applies a singular value threshold algorithm to reduce the model order of image basis functions, which allows further improvement of the quality of image reconstruction with removal of noise artifacts. The principle of the denoising scheme is to reconstruct the sparse MRI matrices optimally with a lower rank via selecting smaller number of dominant singular values. The singular value threshold algorithm is performed by minimizing the nuclear norm of difference between the sampled image and the recovered image. It has been illustrated that this algorithm improves the ability of previous image reconstruction algorithms to remove noise artifacts while significantly improving the quality of MRI recovery.

  19. Lithic Scatters that Blow: Wind as an Agent of Secondary Deposition of Lithic Artifacts

    USDA-ARS?s Scientific Manuscript database

    Artifact presence or absence is frequently the only criteria used to define the horizontal extent of archaeological sites. Artifact transport by natural agents such as water and gravity is known to move artifacts from their primary context, though experimental simulated wind conditions demonstrate t...

  20. Accommodation of an N-(deoxyguanosin-8-yl)-2-acetylaminofluorene adduct in the active site of human DNA polymerase ι: Hoogsteen or Watson-Crick base pairing?†

    PubMed Central

    Donny-Clark, Kerry; Shapiro, Robert; Broyde, Suse

    2009-01-01

    Bypass across DNA lesions by specialized polymerases is essential for maintenance of genomic stability. Human DNA polymerase ι (polι) is a bypass polymerase of the Y family. Crystal structures of polι suggest that Hoogsteen base pairing is employed to bypass minor groove DNA lesions, placing them on the spacious major groove side of the enzyme. Primer extension studies have shown that polι is also capable of error-free nucleotide incorporation opposite the bulky major groove adduct N-(deoxyguanosin-8-yl)-2-acetyl-aminofluorene (dG-AAF). We present molecular dynamics simulations and free energy calculations suggesting that Watson-Crick base pairing could be employed in polι for bypass of dG-AAF. In polι with Hoogsteen paired dG-AAF the bulky AAF moiety would reside on the cramped minor groove side of the template. The Hoogsteen-capable conformation distorts the active site, disrupting interactions necessary for error-free incorporation of dC opposite the lesion. Watson-Crick pairing places the AAF rings on the spacious major groove side, similar to the position of minor groove adducts observed with Hoogsteen pairing. Watson-Crick paired structures show a well-ordered active site, with a near reaction-ready ternary complex. Thus our results suggest that polι would utilize the same spacious region for lesion bypass of both major and minor groove adducts. Therefore, purine adducts with bulk on the minor groove side would use Hoogsteen pairing, while adducts with the bulky lesion on the major groove side would utilize Watson-Crick base pairing as indicated by our MD simulations for dG-AAF. This suggests the possibility of an expanded role for polι in lesion bypass. PMID:19072536

  1. Accommodation of an N-(deoxyguanosin-8-yl)-2-acetylaminofluorene adduct in the active site of human DNA polymerase iota: Hoogsteen or Watson-Crick base pairing?

    PubMed

    Donny-Clark, Kerry; Shapiro, Robert; Broyde, Suse

    2009-01-13

    Bypass across DNA lesions by specialized polymerases is essential for maintenance of genomic stability. Human DNA polymerase iota (poliota) is a bypass polymerase of the Y family. Crystal structures of poliota suggest that Hoogsteen base pairing is employed to bypass minor groove DNA lesions, placing them on the spacious major groove side of the enzyme. Primer extension studies have shown that poliota is also capable of error-free nucleotide incorporation opposite the bulky major groove adduct N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF). We present molecular dynamics simulations and free energy calculations suggesting that Watson-Crick base pairing could be employed in poliota for bypass of dG-AAF. In poliota with Hoogsteen-paired dG-AAF the bulky AAF moiety would reside on the cramped minor groove side of the template. The Hoogsteen-capable conformation distorts the active site, disrupting interactions necessary for error-free incorporation of dC opposite the lesion. Watson-Crick pairing places the AAF rings on the spacious major groove side, similar to the position of minor groove adducts observed with Hoogsteen pairing. Watson-Crick-paired structures show a well-ordered active site, with a near reaction-ready ternary complex. Thus our results suggest that poliota would utilize the same spacious region for lesion bypass of both major and minor groove adducts. Therefore, purine adducts with bulk on the minor groove side would use Hoogsteen pairing, while adducts with the bulky lesion on the major groove side would utilize Watson-Crick base pairing as indicated by our MD simulations for dG-AAF. This suggests the possibility of an expanded role for poliota in lesion bypass.

  2. Automatic identification of artifacts in electrodermal activity data.

    PubMed

    Taylor, Sara; Jaques, Natasha; Chen, Weixuan; Fedor, Szymon; Sano, Akane; Picard, Rosalind

    2015-01-01

    Recently, wearable devices have allowed for long term, ambulatory measurement of electrodermal activity (EDA). Despite the fact that ambulatory recording can be noisy, and recording artifacts can easily be mistaken for a physiological response during analysis, to date there is no automatic method for detecting artifacts. This paper describes the development of a machine learning algorithm for automatically detecting EDA artifacts, and provides an empirical evaluation of classification performance. We have encoded our results into a freely available web-based tool for artifact and peak detection.

  3. Detection of bladder metabolic artifacts in (18)F-FDG PET imaging.

    PubMed

    Roman-Jimenez, Geoffrey; Crevoisier, Renaud De; Leseur, Julie; Devillers, Anne; Ospina, Juan David; Simon, Antoine; Terve, Pierre; Acosta, Oscar

    2016-04-01

    Positron emission tomography using (18)F-fluorodeoxyglucose ((18)F-FDG-PET) is a widely used imaging modality in oncology. It enables significant functional information to be included in analyses of anatomical data provided by other image modalities. Although PET offers high sensitivity in detecting suspected malignant metabolism, (18)F-FDG uptake is not tumor-specific and can also be fixed in surrounding healthy tissue, which may consequently be mistaken as cancerous. PET analyses may be particularly hampered in pelvic-located cancers by the bladder׳s physiological uptake potentially obliterating the tumor uptake. In this paper, we propose a novel method for detecting (18)F-FDG bladder artifacts based on a multi-feature double-step classification approach. Using two manually defined seeds (tumor and bladder), the method consists of a semi-automated double-step clustering strategy that simultaneously takes into consideration standard uptake values (SUV) on PET, Hounsfield values on computed tomography (CT), and the distance to the seeds. This method was performed on 52 PET/CT images from patients treated for locally advanced cervical cancer. Manual delineations of the bladder on CT images were used in order to evaluate bladder uptake detection capability. Tumor preservation was evaluated using a manual segmentation of the tumor, with a threshold of 42% of the maximal uptake within the tumor. Robustness was assessed by randomly selecting different initial seeds. The classification averages were 0.94±0.09 for sensitivity, 0.98±0.01 specificity, and 0.98±0.01 accuracy. These results suggest that this method is able to detect most (18)F-FDG bladder metabolism artifacts while preserving tumor uptake, and could thus be used as a pre-processing step for further non-parasitized PET analyses. Copyright © 2016. Published by Elsevier Ltd.

  4. Motion artifacts in kidney stone imaging using single-source and dual-source dual-energy CT scanners: a phantom study.

    PubMed

    Ibrahim, El-Sayed H; Cernigliaro, Joseph G; Pooley, Robert A; Williams, James C; Haley, William E

    2015-10-01

    Dual-energy computed tomography (DECT) has shown the capability of differentiating uric acid (UA) from non-UA stones with 90-100% accuracy. With the invention of dual-source (DS) scanners, both low- and high-energy images are acquired simultaneously. However, DECT can also be performed by sequential acquisition of both images on single-source (SS) scanners. The objective of this study is to investigate the effects of motion artifacts on stone classification using both SS-DECT and DS-DECT. 114 kidney stones of different types and sizes were imaged on both DS-DECT and SS-DECT scanners with tube voltages of 80 and 140 kVp with and without induced motion. Postprocessing was conducted to create material-specific images from corresponding low- and high-energy images. The dual-energy ratio (DER) and stone material were determined and compared among different scans. For the motionless scans, all stones were correctly classified with SS-DECT, while two cystine stones were misclassified with DS-DECT. When motion was induced, 94% of the stones were misclassified with SS-DECT versus 11% with DS-DECT (P < 0.0001). Stone size was not a factor in stone misclassification under motion. Stone type was not a factor in stone misclassification under motion with SS-DECT, although with DS-DECT, cystine showed higher number of stone misclassification. Motion artifacts could result in stone misclassification in DECT. This effect is more pronounced in SS-DECT versus DS-DECT, especially if stones of different types lie in close proximity to each other. Further, possible misinterpretation of the number of stones (i.e., missing one, or thinking that there are two) in DS-DECT could be a potentially significant problem.

  5. Protection of Metal Artifacts with the Formation of Metal–Oxalates Complexes by Beauveria bassiana

    PubMed Central

    Joseph, Edith; Cario, Sylvie; Simon, Anaële; Wörle, Marie; Mazzeo, Rocco; Junier, Pilar; Job, Daniel

    2012-01-01

    Several fungi present high tolerance to toxic metals and some are able to transform metals into metal–oxalate complexes. In this study, the ability of Beauveria bassiana to produce copper oxalates was evaluated. Growth performance was tested on various copper-containing media. B. bassiana proved highly resistant to copper, tolerating concentrations of up to 20 g L−1, and precipitating copper oxalates on all media tested. Chromatographic analyses showed that this species produced oxalic acid as sole metal chelator. The production of metal–oxalates can be used in the restoration and conservation of archeological and modern metal artifacts. The production of copper oxalates was confirmed directly using metallic pieces (both archeological and modern). The conversion of corrosion products into copper oxalates was demonstrated as well. In order to assess whether the capability of B. bassiana to produce metal–oxalates could be applied to other metals, iron and silver were tested as well. Iron appears to be directly sequestered in the wall of the fungal hyphae forming oxalates. However, the formation of a homogeneous layer on the object is not yet optimal. On silver, a co-precipitation of copper and silver oxalates occurred. As this greenish patina would not be acceptable on silver objects, silver reduction was explored as a tarnishing remediation. First experiments showed the transformation of silver nitrate into nanoparticles of elemental silver by an unknown extracellular mechanism. The production of copper oxalates is immediately applicable for the conservation of copper-based artifacts. For iron and silver this is not yet the case. However, the vast ability of B. bassiana to transform toxic metals using different immobilization mechanisms seems to offer considerable possibilities for industrial applications, such as the bioremediation of contaminated soils or the green synthesis of chemicals. PMID:22291684

  6. Sparsity-based acoustic inversion in cross-sectional multiscale optoacoustic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yiyong; Tzoumas, Stratis; Nunes, Antonio

    2015-09-15

    Purpose: With recent advancement in hardware of optoacoustic imaging systems, highly detailed cross-sectional images may be acquired at a single laser shot, thus eliminating motion artifacts. Nonetheless, other sources of artifacts remain due to signal distortion or out-of-plane signals. The purpose of image reconstruction algorithms is to obtain the most accurate images from noisy, distorted projection data. Methods: In this paper, the authors use the model-based approach for acoustic inversion, combined with a sparsity-based inversion procedure. Specifically, a cost function is used that includes the L1 norm of the image in sparse representation and a total variation (TV) term. Themore » optimization problem is solved by a numerically efficient implementation of a nonlinear gradient descent algorithm. TV–L1 model-based inversion is tested in the cross section geometry for numerically generated data as well as for in vivo experimental data from an adult mouse. Results: In all cases, model-based TV–L1 inversion showed a better performance over the conventional Tikhonov regularization, TV inversion, and L1 inversion. In the numerical examples, the images reconstructed with TV–L1 inversion were quantitatively more similar to the originating images. In the experimental examples, TV–L1 inversion yielded sharper images and weaker streak artifact. Conclusions: The results herein show that TV–L1 inversion is capable of improving the quality of highly detailed, multiscale optoacoustic images obtained in vivo using cross-sectional imaging systems. As a result of its high fidelity, model-based TV–L1 inversion may be considered as the new standard for image reconstruction in cross-sectional imaging.« less

  7. Effects of variation in background mixing ratios of N2, O2, and Ar on the measurement of δ18O-H2O and δ2H-H2O values by cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnson, Jennifer E.; Rella, Chris W.

    2017-08-01

    Cavity ring-down spectrometers have generally been designed to operate under conditions in which the background gas has a constant composition. However, there are a number of observational and experimental situations of interest in which the background gas has a variable composition. In this study, we examine the effect of background gas composition on a cavity ring-down spectrometer that measures δ18O-H2O and δ2H-H2O values based on the amplitude of water isotopologue absorption features around 7184 cm-1 (L2120-i, Picarro, Inc.). For background mixtures balanced with N2, the apparent δ18O values deviate from true values by -0.50 ± 0.001 ‰ O2 %-1 and -0.57 ± 0.001 ‰ Ar %-1, and apparent δ2H values deviate from true values by 0.26 ± 0.004 ‰ O2 %-1 and 0.42 ± 0.004 ‰ Ar %-1. The artifacts are the result of broadening, narrowing, and shifting of both the target absorption lines and strong neighboring lines. While the background-induced isotopic artifacts can largely be corrected with simple empirical or semi-mechanistic models, neither type of model is capable of completely correcting the isotopic artifacts to within the inherent instrument precision. The development of strategies for dynamically detecting and accommodating background variation in N2, O2, and/or Ar would facilitate the application of cavity ring-down spectrometers to a new class of observations and experiments.

  8. Using project life-cycles as guide for timing the archival of scientific data and supporting documentation

    NASA Astrophysics Data System (ADS)

    Martinez, E.; Glassy, J. M.; Fowler, D. K.; Khayat, M.; Olding, S. W.

    2014-12-01

    The NASA Earth Science Data Systems Working Groups (ESDSWG) focuses on improving technologies and processes related to science discovery and preservation. One particular group, the Data Preservation Practices, is defining a set of guidelines to aid data providers in planning both what to submit for archival, and when to submit artifacts, so that the archival process can begin early in the project's life cycle. This has the benefit of leveraging knowledge within the project before staff roll off to other work. In this poster we describe various project archival use cases and identify possible archival life cycles that map closely to the pace and flow of work. To understand "archival life cycles", i.e., distinct project phases that produce archival artifacts such as instrument capabilities, calibration reports, and science data products, the workig group initially mapped the archival requirements defined in the Preservation Content Specification to the typical NASA project life cycle. As described in the poster, this work resulted in a well-defined archival life cycle, but only for some types of projects; it did not fit well for condensed project life cycles experienced within airborne and balloon campaigns. To understand the archival process for projects with compressed cycles, the working group gathered use cases from various communities. This poster will describe selected uses cases that provided insight into the unique flow of these projects, as well as proposing archival life cycles that map artifacts to projects with compressed timelines. Finally, the poster will conclude with some early recommendations for data providers, which will be captured in a formal Guidelines document - to be published in 2015.

  9. Region-of-interest image reconstruction in circular cone-beam microCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Seungryong; Bian, Junguo; Pelizzari, Charles A.

    2007-12-15

    Cone-beam microcomputed tomography (microCT) is one of the most popular choices for small animal imaging which is becoming an important tool for studying animal models with transplanted diseases. Region-of-interest (ROI) imaging techniques in CT, which can reconstruct an ROI image from the projection data set of the ROI, can be used not only for reducing imaging-radiation exposure to the subject and scatters to the detector but also for potentially increasing spatial resolution of the reconstructed images. Increasing spatial resolution in microCT images can facilitate improved accuracy in many assessment tasks. A method proposed previously for increasing CT image spatial resolutionmore » entails the exploitation of the geometric magnification in cone-beam CT. Due to finite detector size, however, this method can lead to data truncation for a large geometric magnification. The Feldkamp-Davis-Kress (FDK) algorithm yields images with artifacts when truncated data are used, whereas the recently developed backprojection filtration (BPF) algorithm is capable of reconstructing ROI images without truncation artifacts from truncated cone-beam data. We apply the BPF algorithm to reconstructing ROI images from truncated data of three different objects acquired by our circular cone-beam microCT system. Reconstructed images by use of the FDK and BPF algorithms from both truncated and nontruncated cone-beam data are compared. The results of the experimental studies demonstrate that, from certain truncated data, the BPF algorithm can reconstruct ROI images with quality comparable to that reconstructed from nontruncated data. In contrast, the FDK algorithm yields ROI images with truncation artifacts. Therefore, an implication of the studies is that, when truncated data are acquired with a configuration of a large geometric magnification, the BPF algorithm can be used for effective enhancement of the spatial resolution of a ROI image.« less

  10. Involuntary eye motion correction in retinal optical coherence tomography: Hardware or software solution?

    PubMed

    Baghaie, Ahmadreza; Yu, Zeyun; D'Souza, Roshan M

    2017-04-01

    In this paper, we review state-of-the-art techniques to correct eye motion artifacts in Optical Coherence Tomography (OCT) imaging. The methods for eye motion artifact reduction can be categorized into two major classes: (1) hardware-based techniques and (2) software-based techniques. In the first class, additional hardware is mounted onto the OCT scanner to gather information about the eye motion patterns during OCT data acquisition. This information is later processed and applied to the OCT data for creating an anatomically correct representation of the retina, either in an offline or online manner. In software based techniques, the motion patterns are approximated either by comparing the acquired data to a reference image, or by considering some prior assumptions about the nature of the eye motion. Careful investigations done on the most common methods in the field provides invaluable insight regarding future directions of the research in this area. The challenge in hardware-based techniques lies in the implementation aspects of particular devices. However, the results of these techniques are superior to those obtained from software-based techniques because they are capable of capturing secondary data related to eye motion during OCT acquisition. Software-based techniques on the other hand, achieve moderate success and their performance is highly dependent on the quality of the OCT data in terms of the amount of motion artifacts contained in them. However, they are still relevant to the field since they are the sole class of techniques with the ability to be applied to legacy data acquired using systems that do not have extra hardware to track eye motion. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Hodgson v. Minnesota.

    PubMed

    1990-06-25

    Doctors, clinics, pregnant minors, and the mother of a pregnant minor filed suit in District Court to enjoin enforcement of Minnesota's abortion statute. The plaintiffs objected on due process and equal protection grounds to subdivisions of the statute mandating either that both parents of a minor be notified of her pending abortion, or, in lieu of two-parent notification, that a court authorize the abortion after determining that the minor is capable of giving informed consent. The District Court declared the entire statute unconstitutional. The Court of Appeals reversed, ruling that the provision for judicial bypass of the two-parent notification requirement was valid and saved the statute as a whole. In a 5-4 decision, the U.S. Supreme Court affirmed the Court of Appeals judgment. It concluded that while the two-parent notification requirement in itself violated the Constitution, the statute was rendered constitutional by the judicial bypass provision.

  12. ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features.

    PubMed

    Mognon, Andrea; Jovicich, Jorge; Bruzzone, Lorenzo; Buiatti, Marco

    2011-02-01

    A successful method for removing artifacts from electroencephalogram (EEG) recordings is Independent Component Analysis (ICA), but its implementation remains largely user-dependent. Here, we propose a completely automatic algorithm (ADJUST) that identifies artifacted independent components by combining stereotyped artifact-specific spatial and temporal features. Features were optimized to capture blinks, eye movements, and generic discontinuities on a feature selection dataset. Validation on a totally different EEG dataset shows that (1) ADJUST's classification of independent components largely matches a manual one by experts (agreement on 95.2% of the data variance), and (2) Removal of the artifacted components detected by ADJUST leads to neat reconstruction of visual and auditory event-related potentials from heavily artifacted data. These results demonstrate that ADJUST provides a fast, efficient, and automatic way to use ICA for artifact removal. Copyright © 2010 Society for Psychophysiological Research.

  13. The Integration of Minorities into Special Operations: How Cultural Diversity Enhances Operations

    DTIC Science & Technology

    2014-03-01

    served George Washington’s Continental Army beginning in 1775. Then, it was about capability and concerns over ethnic and gender equality , while... equal opportunity than capability. In 2009, a Diversity Commission established by the United States Government, argued that the ranks of the...such as Title VII of the Civil Rights Act of 1964 and the Equal Employment Opportunity Act of 1972, have aided the country in moving past

  14. Worst case analysis: Earth sensor assembly for the tropical rainfall measuring mission observatory

    NASA Technical Reports Server (NTRS)

    Conley, Michael P.

    1993-01-01

    This worst case analysis verifies that the TRMMESA electronic design is capable of maintaining performance requirements when subjected to worst case circuit conditions. The TRMMESA design is a proven heritage design and capable of withstanding the most worst case and adverse of circuit conditions. Changes made to the baseline DMSP design are relatively minor and do not adversely effect the worst case analysis of the TRMMESA electrical design.

  15. Nondestructive continuous physical property measurements of core samples recovered from hole B, Taiwan Chelungpu-Fault Drilling Project

    NASA Astrophysics Data System (ADS)

    Hirono, Tetsuro; Yeh, En-Chao; Lin, Weiren; Sone, Hiroki; Mishima, Toshiaki; Soh, Wonn; Hashimoto, Yoshitaka; Matsubayashi, Osamu; Aoike, Kan; Ito, Hisao; Kinoshita, Masataka; Murayama, Masafumi; Song, Sheng-Rong; Ma, Kuo-Fong; Hung, Jih-Hao; Wang, Chien-Ying; Tsai, Yi-Ben; Kondo, Tomomi; Nishimura, Masahiro; Moriya, Soichi; Tanaka, Tomoyuki; Fujiki, Toru; Maeda, Lena; Muraki, Hiroaki; Kuramoto, Toshikatsu; Sugiyama, Kazuhiro; Sugawara, Toshikatsu

    2007-07-01

    The Taiwan Chelungpu-Fault Drilling Project was undertaken in 2002 to investigate the faulting mechanism of the 1999 Mw 7.6 Taiwan Chi-Chi earthquake. Hole B penetrated the Chelungpu fault, and core samples were recovered from between 948.42- and 1352.60-m depth. Three major zones, designated FZB1136 (fault zone at 1136-m depth in hole B), FZB1194, and FZB1243, were recognized in the core samples as active fault zones within the Chelungpu fault. Nondestructive continuous physical property measurements, conducted on all core samples, revealed that the three major fault zones were characterized by low gamma ray attenuation (GRA) densities and high magnetic susceptibilities. Extensive fracturing and cracks within the fault zones and/or loss of atoms with high atomic number, but not a measurement artifact, might have caused the low GRA densities, whereas the high magnetic susceptibility values might have resulted from the formation of magnetic minerals from paramagnetic minerals by frictional heating. Minor fault zones were characterized by low GRA densities and no change in magnetic susceptibility, and the latter may indicate that these minor zones experienced relatively low frictional heating. Magnetic susceptibility in a fault zone may be key to the determination that frictional heating occurred during an earthquake on the fault.

  16. Teaching and Learning the Nature of Technical Artifacts

    ERIC Educational Resources Information Center

    Frederik, Ineke; Sonneveld, Wim; de Vries, Marc J.

    2011-01-01

    Artifacts are probably our most obvious everyday encounter with technology. Therefore, a good understanding of the nature of technical artifacts is a relevant part of technological literacy. In this article we draw from the philosophy of technology to develop a conceptualization of technical artifacts that can be used for educational purposes.…

  17. Empirical Corrections for MISR Calibration Temporal Trends, Point-Spread Function, Flat-Fielding, and Ghosting

    NASA Astrophysics Data System (ADS)

    Limbacher, J.; Kahn, R. A.

    2015-12-01

    MISR aerosol optical depth retrievals are fairly robust to small radiometric calibration artifacts, due to the multi-angle observations. However, even small errors in the MISR calibration, especially structured artifacts in the imagery, have a disproportionate effect on the retrieval of aerosol properties from these data. Using MODIS, POLDER-3, AERONET, MAN, and MISR lunar images, we diagnose and correct various calibration and radiometric artifacts found in the MISR radiance (Level 1) data, using empirical image analysis. The calibration artifacts include temporal trends in MISR top-of-atmosphere reflectance at relatively stable desert sites and flat-fielding artifacts detected by comparison to MODIS over bright, low-contrast scenes. The radiometric artifacts include ghosting (as compared to MODIS, POLDER-3, and forward model results) and point-spread function mischaracterization (using the MISR lunar data and MODIS). We minimize the artifacts to the extent possible by parametrically modeling the artifacts and then removing them from the radiance (reflectance) data. Validation is performed using non-training scenes (reflectance comparison), and also by using the MISR Research Aerosol retrieval algorithm results compared to MAN and AERONET.

  18. A level set method for cupping artifact correction in cone-beam CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Shipeng; Li, Haibo; Ge, Qi

    2015-08-15

    Purpose: To reduce cupping artifacts and improve the contrast-to-noise ratio in cone-beam computed tomography (CBCT). Methods: A level set method is proposed to reduce cupping artifacts in the reconstructed image of CBCT. The authors derive a local intensity clustering property of the CBCT image and define a local clustering criterion function of the image intensities in a neighborhood of each point. This criterion function defines an energy in terms of the level set functions, which represent a segmentation result and the cupping artifacts. The cupping artifacts are estimated as a result of minimizing this energy. Results: The cupping artifacts inmore » CBCT are reduced by an average of 90%. The results indicate that the level set-based algorithm is practical and effective for reducing the cupping artifacts and preserving the quality of the reconstructed image. Conclusions: The proposed method focuses on the reconstructed image without requiring any additional physical equipment, is easily implemented, and provides cupping correction through a single-scan acquisition. The experimental results demonstrate that the proposed method successfully reduces the cupping artifacts.« less

  19. WE-G-209-01: Digital Radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schueler, B.

    Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This coursemore » will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.« less

  20. Adjustable shunt valve-induced magnetic resonance imaging artifact: a comparative study.

    PubMed

    Toma, Ahmed K; Tarnaris, Andrew; Grieve, Joan P; Watkins, Laurence D; Kitchen, Neil D

    2010-07-01

    In this paper, the authors' goal was to compare the artifact induced by implanted (in vivo) adjustable shunt valves in spin echo, diffusion weighted (DW), and gradient echo MR imaging pulse sequences. The MR images obtained in 8 patients with proGAV and 6 patients with Strata II adjustable shunt valves were assessed for artifact areas in different planes as well as the total volume for different pulse sequences. Artifacts induced by the Strata II valve were significantly larger than those induced by proGAV valve in spin echo MR imaging pulse sequence (29,761 vs 2450 mm(3) on T2-weighted fast spin echo, p = 0.003) and DW images (100,138 vs 38,955 mm(3), p = 0.025). Artifacts were more marked on DW MR images than on spin echo pulse sequence for both valve types. Adjustable valve-induced artifacts can conceal brain pathology on MR images. This should influence the choice of valve implantation site and the type of valve used. The effect of artifacts on DW images should be highlighted pending the development of less MR imaging artifact-inducing adjustable shunt valves.

  1. Articulation Artifacts During Overt Language Production in Event-Related Brain Potentials: Description and Correction.

    PubMed

    Ouyang, Guang; Sommer, Werner; Zhou, Changsong; Aristei, Sabrina; Pinkpank, Thomas; Abdel Rahman, Rasha

    2016-11-01

    Overt articulation produces strong artifacts in the electroencephalogram and in event-related potentials (ERPs), posing a serious problem for investigating language production with these variables. Here we describe the properties of articulation-related artifacts and propose a novel correction procedure. Experiment 1 co-recorded ERPs and trajectories of the articulators with an electromagnetic articulograph from a single participant. The generalization of the findings from the single participant to standard picture naming was investigated in Experiment 2. Both experiments provided evidence that articulation-induced artifacts may start up to 300 ms or more prior to voice onset or voice key onset-depending on the specific measure; they are highly similar in topography across many different phoneme patterns and differ mainly in their time course and amplitude. ERPs were separated from articulation-related artifacts with residue iteration decomposition (RIDE). After obtaining the artifact-free ERPs, their correlations with the articulatory trajectories dropped near to zero. Artifact removal with independent component analysis was less successful; while correlations with the articulatory movements remained substantial, early components prior to voice onset were attenuated in reconstructed ERPs. These findings offer new insights into the nature of articulation artifacts; together with RIDE as method for artifact removal the present report offers a fresh perspective for ERP studies requiring overt articulation.

  2. Ring artifact reduction in synchrotron x-ray tomography through helical acquisition

    NASA Astrophysics Data System (ADS)

    Pelt, Daniël M.; Parkinson, Dilworth Y.

    2018-03-01

    In synchrotron x-ray tomography, systematic defects in certain detector elements can result in arc-shaped artifacts in the final reconstructed image of the scanned sample. These ring artifacts are commonly found in many applications of synchrotron tomography, and can make it difficult or impossible to use the reconstructed image in further analyses. The severity of ring artifacts is often reduced in practice by applying pre-processing on the acquired data, or post-processing on the reconstructed image. However, such additional processing steps can introduce additional artifacts as well, and rely on specific choices of hyperparameter values. In this paper, a different approach to reducing the severity of ring artifacts is introduced: a helical acquisition mode. By moving the sample parallel to the rotation axis during the experiment, the sample is detected at different detector positions in each projection, reducing the effect of systematic errors in detector elements. Alternatively, helical acquisition can be viewed as a way to transform ring artifacts to helix-like artifacts in the reconstructed volume, reducing their severity. We show that data acquired with the proposed mode can be transformed to data acquired with a virtual circular trajectory, enabling further processing of the data with existing software packages for circular data. Results for both simulated data and experimental data show that the proposed method is able to significantly reduce ring artifacts in practice, even compared with popular existing methods, without introducing additional artifacts.

  3. Automatic Removal of Physiological Artifacts in EEG: The Optimized Fingerprint Method for Sports Science Applications

    PubMed Central

    Stone, David B.; Tamburro, Gabriella; Fiedler, Patrique; Haueisen, Jens; Comani, Silvia

    2018-01-01

    Data contamination due to physiological artifacts such as those generated by eyeblinks, eye movements, and muscle activity continues to be a central concern in the acquisition and analysis of electroencephalographic (EEG) data. This issue is further compounded in EEG sports science applications where the presence of artifacts is notoriously difficult to control because behaviors that generate these interferences are often the behaviors under investigation. Therefore, there is a need to develop effective and efficient methods to identify physiological artifacts in EEG recordings during sports applications so that they can be isolated from cerebral activity related to the activities of interest. We have developed an EEG artifact detection model, the Fingerprint Method, which identifies different spatial, temporal, spectral, and statistical features indicative of physiological artifacts and uses these features to automatically classify artifactual independent components in EEG based on a machine leaning approach. Here, we optimized our method using artifact-rich training data and a procedure to determine which features were best suited to identify eyeblinks, eye movements, and muscle artifacts. We then applied our model to an experimental dataset collected during endurance cycling. Results reveal that unique sets of features are suitable for the detection of distinct types of artifacts and that the Optimized Fingerprint Method was able to correctly identify over 90% of the artifactual components with physiological origin present in the experimental data. These results represent a significant advancement in the search for effective means to address artifact contamination in EEG sports science applications. PMID:29618975

  4. Grid artifact reduction for direct digital radiography detectors based on rotated stationary grids with homomorphic filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dong Sik; Lee, Sanggyun

    2013-06-15

    Purpose: Grid artifacts are caused when using the antiscatter grid in obtaining digital x-ray images. In this paper, research on grid artifact reduction techniques is conducted especially for the direct detectors, which are based on amorphous selenium. Methods: In order to analyze and reduce the grid artifacts, the authors consider a multiplicative grid image model and propose a homomorphic filtering technique. For minimal damage due to filters, which are used to suppress the grid artifacts, rotated grids with respect to the sampling direction are employed, and min-max optimization problems for searching optimal grid frequencies and angles for given sampling frequenciesmore » are established. The authors then propose algorithms for the grid artifact reduction based on the band-stop filters as well as low-pass filters. Results: The proposed algorithms are experimentally tested for digital x-ray images, which are obtained from direct detectors with the rotated grids, and are compared with other algorithms. It is shown that the proposed algorithms can successfully reduce the grid artifacts for direct detectors. Conclusions: By employing the homomorphic filtering technique, the authors can considerably suppress the strong grid artifacts with relatively narrow-bandwidth filters compared to the normal filtering case. Using rotated grids also significantly reduces the ringing artifact. Furthermore, for specific grid frequencies and angles, the authors can use simple homomorphic low-pass filters in the spatial domain, and thus alleviate the grid artifacts with very low implementation complexity.« less

  5. Björk-Shiley convexoconcave valves: susceptibility artifacts at brain MR imaging and mechanical valve fractures.

    PubMed

    van Gorp, Maarten J; van der Graaf, Yolanda; de Mol, Bas A J M; Bakker, Chris J G; Witkamp, Theo D; Ramos, Lino M P; Mali, Willem P T M

    2004-03-01

    To assess the relationship between heart valve history and susceptibility artifacts at magnetic resonance (MR) imaging of the brain in patients with Björk-Shiley convexoconcave (BSCC) valves. MR images of the brain were obtained in 58 patients with prosthetic heart valves: 20 patients had BSCC valve replacements, and 38 had other types of heart valves. Two experienced neuroradiologists determined the presence or absence of susceptibility artifacts in a consensus reading. Artifacts were defined as characteristic black spots that were visible on T2*-weighted gradient-echo MR images. The statuses of the 20 explanted BSCC valves-specifically, whether they were intact or had an outlet strut fracture (OSF) or a single-leg fracture (SLF)-had been determined earlier. Number of artifacts seen at brain MR imaging was correlated with explanted valve status, and differences were analyzed with nonparametric statistical tests. Significantly more patients with BSCC valves (17 [85%] of 20 patients) than patients with other types of prosthetic valves (18 [47%] of 38 patients) had susceptibility artifacts at MR imaging (P =.005). BSCC valve OSFs were associated with a significantly higher number of artifacts than were intact BSCC valves (P =.01). No significant relationship between SLF and number of artifacts was observed. Susceptibility artifacts at brain MR imaging are not restricted to patients with BSCC valves. These artifacts can be seen on images obtained in patients with various other types of fractured and intact prosthetic heart valves. Copyright RSNA, 2004

  6. Automatic Removal of Physiological Artifacts in EEG: The Optimized Fingerprint Method for Sports Science Applications.

    PubMed

    Stone, David B; Tamburro, Gabriella; Fiedler, Patrique; Haueisen, Jens; Comani, Silvia

    2018-01-01

    Data contamination due to physiological artifacts such as those generated by eyeblinks, eye movements, and muscle activity continues to be a central concern in the acquisition and analysis of electroencephalographic (EEG) data. This issue is further compounded in EEG sports science applications where the presence of artifacts is notoriously difficult to control because behaviors that generate these interferences are often the behaviors under investigation. Therefore, there is a need to develop effective and efficient methods to identify physiological artifacts in EEG recordings during sports applications so that they can be isolated from cerebral activity related to the activities of interest. We have developed an EEG artifact detection model, the Fingerprint Method, which identifies different spatial, temporal, spectral, and statistical features indicative of physiological artifacts and uses these features to automatically classify artifactual independent components in EEG based on a machine leaning approach. Here, we optimized our method using artifact-rich training data and a procedure to determine which features were best suited to identify eyeblinks, eye movements, and muscle artifacts. We then applied our model to an experimental dataset collected during endurance cycling. Results reveal that unique sets of features are suitable for the detection of distinct types of artifacts and that the Optimized Fingerprint Method was able to correctly identify over 90% of the artifactual components with physiological origin present in the experimental data. These results represent a significant advancement in the search for effective means to address artifact contamination in EEG sports science applications.

  7. Body MR Imaging: Artifacts, k-Space, and Solutions

    PubMed Central

    Seethamraju, Ravi T.; Patel, Pritesh; Hahn, Peter F.; Kirsch, John E.; Guimaraes, Alexander R.

    2015-01-01

    Body magnetic resonance (MR) imaging is challenging because of the complex interaction of multiple factors, including motion arising from respiration and bowel peristalsis, susceptibility effects secondary to bowel gas, and the need to cover a large field of view. The combination of these factors makes body MR imaging more prone to artifacts, compared with imaging of other anatomic regions. Understanding the basic MR physics underlying artifacts is crucial to recognizing the trade-offs involved in mitigating artifacts and improving image quality. Artifacts can be classified into three main groups: (a) artifacts related to magnetic field imperfections, including the static magnetic field, the radiofrequency (RF) field, and gradient fields; (b) artifacts related to motion; and (c) artifacts arising from methods used to sample the MR signal. Static magnetic field homogeneity is essential for many MR techniques, such as fat saturation and balanced steady-state free precession. Susceptibility effects become more pronounced at higher field strengths and can be ameliorated by using spin-echo sequences when possible, increasing the receiver bandwidth, and aligning the phase-encoding gradient with the strongest susceptibility gradients, among other strategies. Nonuniformities in the RF transmit field, including dielectric effects, can be minimized by applying dielectric pads or imaging at lower field strength. Motion artifacts can be overcome through respiratory synchronization, alternative k-space sampling schemes, and parallel imaging. Aliasing and truncation artifacts derive from limitations in digital sampling of the MR signal and can be rectified by adjusting the sampling parameters. Understanding the causes of artifacts and their possible solutions will enable practitioners of body MR imaging to meet the challenges of novel pulse sequence design, parallel imaging, and increasing field strength. ©RSNA, 2015 PMID:26207581

  8. Using the dGEMRIC technique to evaluate cartilage health in the presence of surgical hardware at 3T: comparison of inversion recovery and saturation recovery approaches.

    PubMed

    d'Entremont, Agnes G; Kolind, Shannon H; Mädler, Burkhard; Wilson, David R; MacKay, Alexander L

    2014-03-01

    To evaluate the effect of metal artifact reduction techniques on dGEMRIC T(1) calculation with surgical hardware present. We examined the effect of stainless-steel and titanium hardware on dGEMRIC T(1) maps. We tested two strategies to reduce metal artifact in dGEMRIC: (1) saturation recovery (SR) instead of inversion recovery (IR) and (2) applying the metal artifact reduction sequence (MARS), in a gadolinium-doped agarose gel phantom and in vivo with titanium hardware. T(1) maps were obtained using custom curve-fitting software and phantom ROIs were defined to compare conditions (metal, MARS, IR, SR). A large area of artifact appeared in phantom IR images with metal when T(I) ≤ 700 ms. IR maps with metal had additional artifact both in vivo and in the phantom (shifted null points, increased mean T(1) (+151 % IR ROI(artifact)) and decreased mean inversion efficiency (f; 0.45 ROI(artifact), versus 2 for perfect inversion)) compared to the SR maps (ROI(artifact): +13 % T(1) SR, 0.95 versus 1 for perfect excitation), however, SR produced noisier T(1) maps than IR (phantom SNR: 118 SR, 212 IR). MARS subtly reduced the extent of artifact in the phantom (IR and SR). dGEMRIC measurement in the presence of surgical hardware at 3T is possible with appropriately applied strategies. Measurements may work best in the presence of titanium and are severely limited with stainless steel. For regions near hardware where IR produces large artifacts making dGEMRIC analysis impossible, SR-MARS may allow dGEMRIC measurements. The position and size of the IR artifact is variable, and must be assessed for each implant/imaging set-up.

  9. A Robust Post-Processing Workflow for Datasets with Motion Artifacts in Diffusion Kurtosis Imaging

    PubMed Central

    Li, Xianjun; Yang, Jian; Gao, Jie; Luo, Xue; Zhou, Zhenyu; Hu, Yajie; Wu, Ed X.; Wan, Mingxi

    2014-01-01

    Purpose The aim of this study was to develop a robust post-processing workflow for motion-corrupted datasets in diffusion kurtosis imaging (DKI). Materials and methods The proposed workflow consisted of brain extraction, rigid registration, distortion correction, artifacts rejection, spatial smoothing and tensor estimation. Rigid registration was utilized to correct misalignments. Motion artifacts were rejected by using local Pearson correlation coefficient (LPCC). The performance of LPCC in characterizing relative differences between artifacts and artifact-free images was compared with that of the conventional correlation coefficient in 10 randomly selected DKI datasets. The influence of rejected artifacts with information of gradient directions and b values for the parameter estimation was investigated by using mean square error (MSE). The variance of noise was used as the criterion for MSEs. The clinical practicality of the proposed workflow was evaluated by the image quality and measurements in regions of interest on 36 DKI datasets, including 18 artifact-free (18 pediatric subjects) and 18 motion-corrupted datasets (15 pediatric subjects and 3 essential tremor patients). Results The relative difference between artifacts and artifact-free images calculated by LPCC was larger than that of the conventional correlation coefficient (p<0.05). It indicated that LPCC was more sensitive in detecting motion artifacts. MSEs of all derived parameters from the reserved data after the artifacts rejection were smaller than the variance of the noise. It suggested that influence of rejected artifacts was less than influence of noise on the precision of derived parameters. The proposed workflow improved the image quality and reduced the measurement biases significantly on motion-corrupted datasets (p<0.05). Conclusion The proposed post-processing workflow was reliable to improve the image quality and the measurement precision of the derived parameters on motion-corrupted DKI datasets. The workflow provided an effective post-processing method for clinical applications of DKI in subjects with involuntary movements. PMID:24727862

  10. Thematic knowledge, artifact concepts, and the left posterior temporal lobe: Where action and object semantics converge

    PubMed Central

    Kalénine, Solène; Buxbaum, Laurel J.

    2016-01-01

    Converging evidence supports the existence of functionally and neuroanatomically distinct taxonomic (similarity-based; e.g., hammer-screwdriver) and thematic (event-based; e.g., hammer-nail) semantic systems. Processing of thematic relations between objects has been shown to selectively recruit the left posterior temporoparietal cortex. Similar posterior regions have been also been shown to be critical for knowledge of relationships between actions and manipulable human-made objects (artifacts). Based on the hypothesis that thematic relationships for artifacts are based, at least in part, on action relationships, we assessed the prediction that the same regions of the left posterior temporoparietal cortex would be critical for conceptual processing of artifact-related actions and thematic relations for artifacts. To test this hypothesis, we evaluated processing of taxonomic and thematic relations for artifact and natural objects as well as artifact action knowledge (gesture recognition) abilities in a large sample of 48 stroke patients with a range of lesion foci in the left hemisphere. Like control participants, patients identified thematic relations faster than taxonomic relations for artifacts, whereas they identified taxonomic relations faster than thematic relations for natural objects. Moreover, response times for identifying thematic relations for artifacts selectively predicted performance in gesture recognition. Whole brain Voxel Based Lesion-Symptom Mapping (VLSM) analyses and Region of Interest (ROI) regression analyses further demonstrated that lesions to the left posterior temporal cortex, overlapping with LTO and visual motion area hMT+, were associated both with relatively slower response times in identifying thematic relations for artifacts and poorer artifact action knowledge in patients. These findings provide novel insights into the functional role of left posterior temporal cortex in thematic knowledge, and suggest that the close association between thematic relations for artifacts and action representations may reflect their common dependence on visual motion and manipulation information. PMID:27389801

  11. A robust post-processing workflow for datasets with motion artifacts in diffusion kurtosis imaging.

    PubMed

    Li, Xianjun; Yang, Jian; Gao, Jie; Luo, Xue; Zhou, Zhenyu; Hu, Yajie; Wu, Ed X; Wan, Mingxi

    2014-01-01

    The aim of this study was to develop a robust post-processing workflow for motion-corrupted datasets in diffusion kurtosis imaging (DKI). The proposed workflow consisted of brain extraction, rigid registration, distortion correction, artifacts rejection, spatial smoothing and tensor estimation. Rigid registration was utilized to correct misalignments. Motion artifacts were rejected by using local Pearson correlation coefficient (LPCC). The performance of LPCC in characterizing relative differences between artifacts and artifact-free images was compared with that of the conventional correlation coefficient in 10 randomly selected DKI datasets. The influence of rejected artifacts with information of gradient directions and b values for the parameter estimation was investigated by using mean square error (MSE). The variance of noise was used as the criterion for MSEs. The clinical practicality of the proposed workflow was evaluated by the image quality and measurements in regions of interest on 36 DKI datasets, including 18 artifact-free (18 pediatric subjects) and 18 motion-corrupted datasets (15 pediatric subjects and 3 essential tremor patients). The relative difference between artifacts and artifact-free images calculated by LPCC was larger than that of the conventional correlation coefficient (p<0.05). It indicated that LPCC was more sensitive in detecting motion artifacts. MSEs of all derived parameters from the reserved data after the artifacts rejection were smaller than the variance of the noise. It suggested that influence of rejected artifacts was less than influence of noise on the precision of derived parameters. The proposed workflow improved the image quality and reduced the measurement biases significantly on motion-corrupted datasets (p<0.05). The proposed post-processing workflow was reliable to improve the image quality and the measurement precision of the derived parameters on motion-corrupted DKI datasets. The workflow provided an effective post-processing method for clinical applications of DKI in subjects with involuntary movements.

  12. Does the Health Maintenance Facility Provide Speciality Capabilities?

    NASA Technical Reports Server (NTRS)

    Boyce, Joey; Wurgler, James; Broadwell, Kim; Martin, William; Stiernberg, Charles M.; Bove, Alfred; Fromm, Rob; O'Neill, Daniel

    1991-01-01

    The Health Maintenance Facility (HMF) is capable of handling all minor illnesses, most moderate illnesses, and some major illnesses on board a space station. Its primary purpose should be to treat problems that are mission threatening, not life threatening. The HMF will have greater medical capabilities than those currently on Navy submarines. Much of the discussion in this document focuses on the possibilities of treating specific medical conditions on board a space station. The HMF will be limited to caring for critically ill patients for a few days, so a crew return vehicle will be important.

  13. [Comparison of susceptibility artifacts generated by microchips with different geometry at 1.5 Tesla magnet resonance imaging. A phantom pilot study referring to the ASTM standard test method F2119-07].

    PubMed

    Dengg, S; Kneissl, S

    2013-01-01

    Ferromagnetic material in microchips, used for animal identification, causes local signal increase, signal void or distortion (susceptibility artifact) on MR images. To measure the impact of microchip geometry on the artifact's size, an MRI phantom study was performed. Microchips of the labels Datamars®, Euro-I.D.® and Planet-ID® (n  =  15) were placed consecutively in a phantom and examined with respect to the ASTM Standard Test Method F2119-07 using spin echo (TR 500 ms, TE 20 ms), gradient echo (TR 300 ms, TE 15 ms, flip angel 30°) and otherwise constant imaging parameters (slice thickness 3 mm, field of view 250 x 250 mm, acquisition matrix 256 x 256 pixel, bandwidth 32 kHz) at 1.5 Tesla. Image acquisition was undertaken with a microchip positioned in the x- and z-direction and in each case with a phase-encoding direction in the y- and z-direction. The artifact size was determined with a) a measurement according to the test method F2119-07 using a homogeneous point operation, b) signal intensity measurement according to Matsuura et al. and c) pixel counts in the artifact according to Port and Pomper. There was a significant difference in artifact size between the three microchips tested (Wilcoxon p = 0.032). A two- to three-fold increase in microchip volume generated an up to 76% larger artifact, depending on the sequence type, phase-encoding direction and chip position to B0. The smaller the microchip geometry, the less is the susceptibility artifact. Spin echoes (SE) generated smaller artifacts than gradient echoes (GE). In relation to the spatial measurement of the artifact, the switch in phase-encoding direction had less influence on the artifact size in GE- than in SE-sequences. However, the artifact shape and direction of SE-sequences can be changed by altering the phase. The artifact size, caused by the microchip, plays a major clinical role in the evaluation of MRI from the head, shoulder and neck regions.

  14. Combining EEG and eye tracking: identification, characterization, and correction of eye movement artifacts in electroencephalographic data

    PubMed Central

    Plöchl, Michael; Ossandón, José P.; König, Peter

    2012-01-01

    Eye movements introduce large artifacts to electroencephalographic recordings (EEG) and thus render data analysis difficult or even impossible. Trials contaminated by eye movement and blink artifacts have to be discarded, hence in standard EEG-paradigms subjects are required to fixate on the screen. To overcome this restriction, several correction methods including regression and blind source separation have been proposed. Yet, there is no automated standard procedure established. By simultaneously recording eye movements and 64-channel-EEG during a guided eye movement paradigm, we investigate and review the properties of eye movement artifacts, including corneo-retinal dipole changes, saccadic spike potentials and eyelid artifacts, and study their interrelations during different types of eye- and eyelid movements. In concordance with earlier studies our results confirm that these artifacts arise from different independent sources and that depending on electrode site, gaze direction, and choice of reference these sources contribute differently to the measured signal. We assess the respective implications for artifact correction methods and therefore compare the performance of two prominent approaches, namely linear regression and independent component analysis (ICA). We show and discuss that due to the independence of eye artifact sources, regression-based correction methods inevitably over- or under-correct individual artifact components, while ICA is in principle suited to address such mixtures of different types of artifacts. Finally, we propose an algorithm, which uses eye tracker information to objectively identify eye-artifact related ICA-components (ICs) in an automated manner. In the data presented here, the algorithm performed very similar to human experts when those were given both, the topographies of the ICs and their respective activations in a large amount of trials. Moreover it performed more reliable and almost twice as effective than human experts when those had to base their decision on IC topographies only. Furthermore, a receiver operating characteristic (ROC) analysis demonstrated an optimal balance of false positive and false negative at an area under curve (AUC) of more than 0.99. Removing the automatically detected ICs from the data resulted in removal or substantial suppression of ocular artifacts including microsaccadic spike potentials, while the relevant neural signal remained unaffected. In conclusion the present work aims at a better understanding of individual eye movement artifacts, their interrelations and the respective implications for eye artifact correction. Additionally, the proposed ICA-procedure provides a tool for optimized detection and correction of eye movement-related artifact components. PMID:23087632

  15. Global optimization of minority game by intelligent agents

    NASA Astrophysics Data System (ADS)

    Xie, Yan-Bo; Wang, Bing-Hong; Hu, Chin-Kun; Zhou, Tao

    2005-10-01

    We propose a new model of minority game with intelligent agents who use trail and error method to make a choice such that the standard deviation σ2 and the total loss in this model reach the theoretical minimum values in the long time limit and the global optimization of the system is reached. This suggests that the economic systems can self-organize into a highly optimized state by agents who make decisions based on inductive thinking, limited knowledge, and capabilities. When other kinds of agents are also present, the simulation results and analytic calculations show that the intelligent agent can gain profits from producers and are much more competent than the noise traders and conventional agents in original minority games proposed by Challet and Zhang.

  16. Digital Library Archaeology: A Conceptual Framework for Understanding Library Use through Artifact-Based Evaluation

    ERIC Educational Resources Information Center

    Nicholson, Scott

    2005-01-01

    Archaeologists have used material artifacts found in a physical space to gain an understanding about the people who occupied that space. Likewise, as users wander through a digital library, they leave behind data-based artifacts of their activity in the virtual space. Digital library archaeologists can gather these artifacts and employ inductive…

  17. Figuring Out Function: Children's and Adults' Use of Ownership Information in Judgments of Artifact Function

    ERIC Educational Resources Information Center

    Banerjee, Konika; Kominsky, Jonathan F.; Fernando, Madhawee; Keil, Frank C.

    2015-01-01

    Across 3 experiments, we found evidence that information about who owns an artifact influenced 5- to 10-year-old children's and adults' judgments about that artifact's primary function. Children's and adults' use of ownership information was underpinned by their inference that owners are typically familiar with owned artifacts and are therefore…

  18. Correction Methods for Organic Carbon Artifacts when Using Quartz-Fiber Filters in Large Particulate Matter Monitoring Networks: The Regression Method and Other Options

    EPA Science Inventory

    Sampling and handling artifacts can bias filter-based measurements of particulate organic carbon (OC). Several measurement-based methods for OC artifact reduction and/or estimation are currently used in research-grade field studies. OC frequently is not artifact-corrected in larg...

  19. A Transdiagnostic Minority Stress Treatment Approach for Gay and Bisexual Men’s Syndemic Health Conditions

    PubMed Central

    Pachankis, John E.

    2015-01-01

    Developing and deploying separate treatments for separate conditions seems ill-suited to intervening upon the co-occurring, and possibly functionally similar, psychosocial conditions facing gay and bisexual men. This article argues for the need to create transdiagnostic interventions that reduce multiple syndemic conditions facing gay and bisexual men at the level of their shared source in minority stress pathways. This article first reviews psychosocial syndemic conditions affecting gay and bisexual men, then suggests pathways that might link minority stress to psychosocial syndemics based on recent advancements in emotion science, psychiatric nosology, and cognitive-affective neuroscience, and finally suggests cross-cutting psychosocial treatment principles to reduce minority stress–syndemic pathways among gay and bisexual men. Because minority stress serves as a common basis of all psychosocial syndemic conditions reviewed here, locating the pathways through which minority stress generates psychosocial syndemics and employing overarching treatment principles capable of simultaneously alleviating these pathways will ultimately create a transdiagnostic approach to improving gay and bisexual men’s health. Clinical research and training approaches are suggested to further validate the pathways suggested here, establish the efficacy of treatment approaches tied to those pathways, and generate effective methods for disseminating a transdiagnostic minority stress treatment approach for gay and bisexual men’s psychosocial syndemic health. PMID:26123065

  20. Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, Justin E.; Qiu, S. Roger; Stolz, Christopher J.

    2011-03-20

    Femtosecond laser machining is used to create mitigation pits to stabilize nanosecond laser-induced damage in multilayer dielectric mirror coatings on BK7 substrates. In this paper, we characterize features and the artifacts associated with mitigation pits and further investigate the impact of pulse energy and pulse duration on pit quality and damage resistance. Our results show that these mitigation features can double the fluence-handling capability of large-aperture optical multilayer mirror coatings and further demonstrate that femtosecond laser macromachining is a promising means for fabricating mitigation geometry in multilayer coatings to increase mirror performance under high-power laser irradiation.

  1. MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing.

    PubMed

    Lommen, Arjen

    2009-04-15

    Hyphenated full-scan MS technology creates large amounts of data. A versatile easy to handle automation tool aiding in the data analysis is very important in handling such a data stream. MetAlign softwareas described in this manuscripthandles a broad range of accurate mass and nominal mass GC/MS and LC/MS data. It is capable of automatic format conversions, accurate mass calculations, baseline corrections, peak-picking, saturation and mass-peak artifact filtering, as well as alignment of up to 1000 data sets. A 100 to 1000-fold data reduction is achieved. MetAlign software output is compatible with most multivariate statistics programs.

  2. Image coding of SAR imagery

    NASA Technical Reports Server (NTRS)

    Chang, C. Y.; Kwok, R.; Curlander, J. C.

    1987-01-01

    Five coding techniques in the spatial and transform domains have been evaluated for SAR image compression: linear three-point predictor (LTPP), block truncation coding (BTC), microadaptive picture sequencing (MAPS), adaptive discrete cosine transform (ADCT), and adaptive Hadamard transform (AHT). These techniques have been tested with Seasat data. Both LTPP and BTC spatial domain coding techniques provide very good performance at rates of 1-2 bits/pixel. The two transform techniques, ADCT and AHT, demonstrate the capability to compress the SAR imagery to less than 0.5 bits/pixel without visible artifacts. Tradeoffs such as the rate distortion performance, the computational complexity, the algorithm flexibility, and the controllability of compression ratios are also discussed.

  3. [Principles of PET].

    PubMed

    Beuthien-Baumann, B

    2018-05-01

    Positron emission tomography (PET) is a procedure in nuclear medicine, which is applied predominantly in oncological diagnostics. In the form of modern hybrid machines, such as PET computed tomography (PET/CT) and PET magnetic resonance imaging (PET/MRI) it has found wide acceptance and availability. The PET procedure is more than just another imaging technique, but a functional method with the capability for quantification in addition to the distribution pattern of the radiopharmaceutical, the results of which are used for therapeutic decisions. A profound knowledge of the principles of PET including the correct indications, patient preparation, and possible artifacts is mandatory for the correct interpretation of PET results.

  4. Mosaic of coded aperture arrays

    DOEpatents

    Fenimore, Edward E.; Cannon, Thomas M.

    1980-01-01

    The present invention pertains to a mosaic of coded aperture arrays which is capable of imaging off-axis sources with minimum detector size. Mosaics of the basic array pattern create a circular on periodic correlation of the object on a section of the picture plane. This section consists of elements of the central basic pattern as well as elements from neighboring patterns and is a cyclic version of the basic pattern. Since all object points contribute a complete cyclic version of the basic pattern, a section of the picture, which is the size of the basic aperture pattern, contains all the information necessary to image the object with no artifacts.

  5. A novel approach for quantification and analysis of the color Doppler twinkling artifact with application in noninvasive surface roughness characterization: an in vitro phantom study.

    PubMed

    Jamzad, Amoon; Setarehdan, Seyed Kamaledin

    2014-04-01

    The twinkling artifact is an undesired phenomenon within color Doppler sonograms that usually appears at the site of internal calcifications. Since the appearance of the twinkling artifact is correlated with the roughness of the calculi, noninvasive roughness estimation of the internal stones may be considered as a potential twinkling artifact application. This article proposes a novel quantitative approach for measurement and analysis of twinkling artifact data for roughness estimation. A phantom was developed with 7 quantified levels of roughness. The Doppler system was initially calibrated by the proposed procedure to facilitate the analysis. A total of 1050 twinkling artifact images were acquired from the phantom, and 32 novel numerical measures were introduced and computed for each image. The measures were then ranked on the basis of roughness quantification ability using different methods. The performance of the proposed twinkling artifact-based surface roughness quantification method was finally investigated for different combinations of features and classifiers. Eleven features were shown to be the most efficient numerical twinkling artifact measures in roughness characterization. The linear classifier outperformed other methods for twinkling artifact classification. The pixel count measures produced better results among the other categories. The sequential selection method showed higher accuracy than other individual rankings. The best roughness recognition average accuracy of 98.33% was obtained by the first 5 principle components and the linear classifier. The proposed twinkling artifact analysis method could recognize the phantom surface roughness with average accuracy of 98.33%. This method may also be applicable for noninvasive calculi characterization in treatment management.

  6. The effect of dental artifacts, contrast media, and experience on interobserver contouring variations in head and neck anatomy.

    PubMed

    O'Daniel, Jennifer C; Rosenthal, David I; Garden, Adam S; Barker, Jerry L; Ahamad, Anesa; Ang, K Kian; Asper, Joshua A; Blanco, Angel I; de Crevoisier, Renaud; Holsinger, F Christopher; Patel, Chirag B; Schwartz, David L; Wang, He; Dong, Lei

    2007-04-01

    To investigate interobserver variability in the delineation of head-and-neck (H&N) anatomic structures on CT images, including the effects of image artifacts and observer experience. Nine observers (7 radiation oncologists, 1 surgeon, and 1 physician assistant) with varying levels of H&N delineation experience independently contoured H&N gross tumor volumes and critical structures on radiation therapy treatment planning CT images alongside reference diagnostic CT images for 4 patients with oropharynx cancer. Image artifacts from dental fillings partially obstructed 3 images. Differences in the structure volumes, center-of-volume positions, and boundary positions (1 SD) were measured. In-house software created three-dimensional overlap distributions, including all observers. The effects of dental artifacts and observer experience on contouring precision were investigated, and the need for contrast media was assessed. In the absence of artifacts, all 9 participants achieved reasonable precision (1 SD < or =3 mm all boundaries). The structures obscured by dental image artifacts had larger variations when measured by the 3 metrics (1 SD = 8 mm cranial/caudal boundary). Experience improved the interobserver consistency of contouring for structures obscured by artifacts (1 SD = 2 mm cranial/caudal boundary). Interobserver contouring variability for anatomic H&N structures, specifically oropharyngeal gross tumor volumes and parotid glands, was acceptable in the absence of artifacts. Dental artifacts increased the contouring variability, but experienced participants achieved reasonable precision even with artifacts present. With a staging contrast CT image as a reference, delineation on a noncontrast treatment planning CT image can achieve acceptable precision.

  7. Spatial filters and automated spike detection based on brain topographies improve sensitivity of EEG-fMRI studies in focal epilepsy.

    PubMed

    Siniatchkin, Michael; Moeller, Friederike; Jacobs, Julia; Stephani, Ulrich; Boor, Rainer; Wolff, Stephan; Jansen, Olav; Siebner, Hartwig; Scherg, Michael

    2007-09-01

    The ballistocardiogram (BCG) represents one of the most prominent sources of artifacts that contaminate the electroencephalogram (EEG) during functional MRI. The BCG artifacts may affect the detection of interictal epileptiform discharges (IED) in patients with epilepsy, reducing the sensitivity of the combined EEG-fMRI method. In this study we improved the BCG artifact correction using a multiple source correction (MSC) approach. On the one hand, a source analysis of the IEDs was applied to the EEG data obtained outside the MRI scanner to prevent the distortion of EEG signals of interest during the correction of BCG artifacts. On the other hand, the topographies of the BCG artifacts were defined based on the EEG recorded inside the scanner. The topographies of the BCG artifacts were then added to the surrogate model of IED sources and a combined source model was applied to the data obtained inside the scanner. The artifact signal was then subtracted without considerable distortion of the IED topography. The MSC approach was compared with the traditional averaged artifact subtraction (AAS) method. Both methods reduced the spectral power of BCG-related harmonics and enabled better detection of IEDs. Compared with the conventional AAS method, the MSC approach increased the sensitivity of IED detection because the IED signal was less attenuated when subtracting the BCG artifacts. The proposed MSC method is particularly useful in situations in which the BCG artifact is spatially correlated and time-locked with the EEG signal produced by the focal brain activity of interest.

  8. Automated Classification and Removal of EEG Artifacts With SVM and Wavelet-ICA.

    PubMed

    Sai, Chong Yeh; Mokhtar, Norrima; Arof, Hamzah; Cumming, Paul; Iwahashi, Masahiro

    2018-05-01

    Brain electrical activity recordings by electroencephalography (EEG) are often contaminated with signal artifacts. Procedures for automated removal of EEG artifacts are frequently sought for clinical diagnostics and brain-computer interface applications. In recent years, a combination of independent component analysis (ICA) and discrete wavelet transform has been introduced as standard technique for EEG artifact removal. However, in performing the wavelet-ICA procedure, visual inspection or arbitrary thresholding may be required for identifying artifactual components in the EEG signal. We now propose a novel approach for identifying artifactual components separated by wavelet-ICA using a pretrained support vector machine (SVM). Our method presents a robust and extendable system that enables fully automated identification and removal of artifacts from EEG signals, without applying any arbitrary thresholding. Using test data contaminated by eye blink artifacts, we show that our method performed better in identifying artifactual components than did existing thresholding methods. Furthermore, wavelet-ICA in conjunction with SVM successfully removed target artifacts, while largely retaining the EEG source signals of interest. We propose a set of features including kurtosis, variance, Shannon's entropy, and range of amplitude as training and test data of SVM to identify eye blink artifacts in EEG signals. This combinatorial method is also extendable to accommodate multiple types of artifacts present in multichannel EEG. We envision future research to explore other descriptive features corresponding to other types of artifactual components.

  9. Efficacy and Clinical Utility of a High-Attenuation Object Artifact Reduction Algorithm in Flat-Detector Image Reconstruction Compared With Standard Image Reconstruction.

    PubMed

    Naehle, Claas P; Hechelhammer, Lukas; Richter, Heiko; Ryffel, Fabian; Wildermuth, Simon; Weber, Johannes

    To evaluate the effectiveness and clinical utility of a metal artifact reduction (MAR) image reconstruction algorithm for the reduction of high-attenuation object (HAO)-related image artifacts. Images were quantitatively evaluated for image noise (noiseSD and noiserange) and qualitatively for artifact severity, gray-white-matter delineation, and diagnostic confidence with conventional reconstruction and after applying a MAR algorithm. Metal artifact reduction reduces noiseSD and noiserange (median [interquartile range]) at the level of HAO in 1-cm distance compared with conventional reconstruction (noiseSD: 60.0 [71.4] vs 12.8 [16.1] and noiserange: 262.0 [236.8] vs 72.0 [28.3]; P < 0.0001). Artifact severity (reader 1 [mean ± SD]: 1.1 ± 0.6 vs 2.4 ± 0.5, reader 2: 0.8 ± 0.6 vs 2.0 ± 0.4) at level of HAO and diagnostic confidence (reader 1: 1.6 ± 0.7 vs 2.6 ± 0.5, reader 2: 1.0 ± 0.6 vs 2.3 ± 0.7) significantly improved with MAR (P < 0.0001). Metal artifact reduction did not affect gray-white-matter delineation. Metal artifact reduction effectively reduces image artifacts caused by HAO and significantly improves diagnostic confidence without worsening gray-white-matter delineation.

  10. Preschoolers Favor the Creator's Label when Reasoning about an Artifact's Function

    ERIC Educational Resources Information Center

    Jaswal, Vikram K.

    2006-01-01

    The creator of an artifact, by virtue of having made the object, has privileged knowledge about its intended function. Do children recognize that the label an artifact's creator uses can convey this privileged information? 3- and 4-year-olds were presented with an object that looked like a member of one familiar artifact category, but which the…

  11. Generic Language Use Reveals Domain Differences in Young Children's Expectations about Animal and Artifact Categories

    ERIC Educational Resources Information Center

    Brandone, Amanda C.; Gelman, Susan A.

    2013-01-01

    The goal of the present study was to explore domain differences in young children's expectations about the structure of animal and artifact categories. We examined 5-year-olds' and adults' use of category-referring generic noun phrases (e.g., "Birds fly") about novel animals and artifacts. The same stimuli served as both animals and artifacts;…

  12. A model for filtered backprojection reconstruction artifacts due to time-varying attenuation values in perfusion C-arm CT.

    PubMed

    Fieselmann, Andreas; Dennerlein, Frank; Deuerling-Zheng, Yu; Boese, Jan; Fahrig, Rebecca; Hornegger, Joachim

    2011-06-21

    Filtered backprojection is the basis for many CT reconstruction tasks. It assumes constant attenuation values of the object during the acquisition of the projection data. Reconstruction artifacts can arise if this assumption is violated. For example, contrast flow in perfusion imaging with C-arm CT systems, which have acquisition times of several seconds per C-arm rotation, can cause this violation. In this paper, we derived and validated a novel spatio-temporal model to describe these kinds of artifacts. The model separates the temporal dynamics due to contrast flow from the scan and reconstruction parameters. We introduced derivative-weighted point spread functions to describe the spatial spread of the artifacts. The model allows prediction of reconstruction artifacts for given temporal dynamics of the attenuation values. Furthermore, it can be used to systematically investigate the influence of different reconstruction parameters on the artifacts. We have shown that with optimized redundancy weighting function parameters the spatial spread of the artifacts around a typical arterial vessel can be reduced by about 70%. Finally, an inversion of our model could be used as the basis for novel dynamic reconstruction algorithms that further minimize these artifacts.

  13. [Comparison of magnetic resonance imaging artifacts of five common dental materials].

    PubMed

    Xu, Yisheng; Yu, Risheng

    2015-06-01

    To compare five materials commonly used in dentistry, including three types of metals and two types of ceramics, by using different sequences of three magnetic resonance imaging (MRI) field strengths (0.35, 1.5, and 3.0 T). Three types of metals and two types of ceramics that were fabricated into the same size and thickness as an incisor crown were placed in a plastic tank filled with saline. The crowns were scanned using an magnetic resonance (MR) machine at 0.35, 1.5, and 3.0 T field strengths. The TlWI and T2WI images were obtained. The differences of various materials in different artifacts of field MR scans were determined. The zirconia crown presented no significant artifacts when scanned under the three types of MRI field strengths. The artifacts of casting ceramic were minimal. All dental precious metal alloys, nickel-chromium alloy dental porcelain, and cobalt-chromium ceramic alloy showed varying degrees of artifacts under the three MRI field strengths. Zirconia and casting ceramics present almost no or faint artifacts. By contrast, precious metal alloys, nickel-chromium alloy dental porcelain and cobalt-chromium ceramic alloy display MRI artifacts. The artifact area increase with increasing magnetic field.

  14. Simultaneous ocular and muscle artifact removal from EEG data by exploiting diverse statistics.

    PubMed

    Chen, Xun; Liu, Aiping; Chen, Qiang; Liu, Yu; Zou, Liang; McKeown, Martin J

    2017-09-01

    Electroencephalography (EEG) recordings are frequently contaminated by both ocular and muscle artifacts. These are normally dealt with separately, by employing blind source separation (BSS) techniques relying on either second-order or higher-order statistics (SOS & HOS respectively). When HOS-based methods are used, it is usually in the setting of assuming artifacts are statistically independent to the EEG. When SOS-based methods are used, it is assumed that artifacts have autocorrelation characteristics distinct from the EEG. In reality, ocular and muscle artifacts do not completely follow the assumptions of strict temporal independence to the EEG nor completely unique autocorrelation characteristics, suggesting that exploiting HOS or SOS alone may be insufficient to remove these artifacts. Here we employ a novel BSS technique, independent vector analysis (IVA), to jointly employ HOS and SOS simultaneously to remove ocular and muscle artifacts. Numerical simulations and application to real EEG recordings were used to explore the utility of the IVA approach. IVA was superior in isolating both ocular and muscle artifacts, especially for raw EEG data with low signal-to-noise ratio, and also integrated usually separate SOS and HOS steps into a single unified step. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Magnetic resonance imaging evaluation of intervertebral test spacers: an experimental comparison of magnesium versus titanium and carbon fiber reinforced polymers as biomaterials.

    PubMed

    Ernstberger, T; Buchhorn, G; Heidrich, G

    2010-03-01

    Intervertebral spacers are made of different materials, which can affect the postfusion magnetic resonance imaging (MRI) scans. Susceptibility artifacts, especially for metallic implants, can decrease the image quality. This study aimed to determine whether magnesium as a lightweight and biocompatible metal is suitable as a biomaterial for spinal implants based on its MRI artifacting behavior. To compare artifacting behaviors, we implanted into one porcine cadaveric spine different test spacers made of magnesium, titanium, and CFRP. All test spacers were scanned using two T1-TSE MRI sequences. The artifact dimensions were traced on all scans and statistically analyzed. The total artifact volume and median artifact area of the titanium spacers were statistically significantly larger than magnesium spacers (P < 0.001), while magnesium and CFRP spacers produced almost identical artifacting behaviors (P > 0.05). Our results suggest that spinal implants made with magnesium alloys will behave more like CFRP devices in MRI scans.

  16. Artifact removal from EEG signals using adaptive filters in cascade

    NASA Astrophysics Data System (ADS)

    Garcés Correa, A.; Laciar, E.; Patiño, H. D.; Valentinuzzi, M. E.

    2007-11-01

    Artifacts in EEG (electroencephalogram) records are caused by various factors, like line interference, EOG (electro-oculogram) and ECG (electrocardiogram). These noise sources increase the difficulty in analyzing the EEG and to obtaining clinical information. For this reason, it is necessary to design specific filters to decrease such artifacts in EEG records. In this paper, a cascade of three adaptive filters based on a least mean squares (LMS) algorithm is proposed. The first one eliminates line interference, the second adaptive filter removes the ECG artifacts and the last one cancels EOG spikes. Each stage uses a finite impulse response (FIR) filter, which adjusts its coefficients to produce an output similar to the artifacts present in the EEG. The proposed cascade adaptive filter was tested in five real EEG records acquired in polysomnographic studies. In all cases, line-frequency, ECG and EOG artifacts were attenuated. It is concluded that the proposed filter reduces the common artifacts present in EEG signals without removing significant information embedded in these records.

  17. AY97 Compendium Army after Next Project

    DTIC Science & Technology

    1998-04-06

    targets. With a 2000+ meter range and a soft launch capability for firing from enclosures, Javelin represents a powerful new antitank capability for the...squad has no basis in warfighting theory. When the Army decided to adopt the Army of Excellence and create new light divisions, it came up short in...to limit the damage. The network of nerves can also be self - healing when minor damage occurs. This nervous system analogy is so accurate that some

  18. Automatic Identification Technology (AIT): The Development of Functional Capability and Card Application Matrices

    DTIC Science & Technology

    1994-09-01

    650 B.C. in Asia Minor, coins were developed and used in acquiring goods and services. In France, during the eighteenth century, paper money made its... counterfeited . [INFO94, p. 23] Other weaknesses of bar code technology include limited data storage capability based on the bar code symbology used when...extremely accurate, with calculated error rates as low as 1 in 100 trillion, and are difficult to counterfeit . Strong magnetic fields cannot erase RF

  19. Ex Vivo Artifacts and Histopathologic Pitfalls in the Lung.

    PubMed

    Thunnissen, Erik; Blaauwgeers, Hans J L G; de Cuba, Erienne M V; Yick, Ching Yong; Flieder, Douglas B

    2016-03-01

    Surgical and pathologic handling of lung physically affects lung tissue. This leads to artifacts that alter the morphologic appearance of pulmonary parenchyma. To describe and illustrate mechanisms of ex vivo artifacts that may lead to diagnostic pitfalls. In this study 4 mechanisms of ex vivo artifacts and corresponding diagnostic pitfalls are described and illustrated. The 4 patterns of artifacts are: (1) surgical collapse, due to the removal of air and blood from pulmonary resections; (2) ex vivo contraction of bronchial and bronchiolar smooth muscle; (3) clamping edema of open lung biopsies; and (4) spreading of tissue fragments and individual cells through a knife surface. Morphologic pitfalls include diagnostic patterns of adenocarcinoma, asthma, constrictive bronchiolitis, and lymphedema. Four patterns of pulmonary ex vivo artifacts are important to recognize in order to avoid morphologic misinterpretations.

  20. Artifacts, intentions, and contraceptives: the problem with having a plan B for plan B.

    PubMed

    Reed, Philip A

    2013-12-01

    It is commonly proposed that artifacts cannot be understood without reference to human intentions. This fact, I contend, has relevance to the use of artifacts in intentional action. I argue that because artifacts have intentions embedded into them antecedently, when we use artifacts we are sometimes compelled to intend descriptions of our actions that we might, for various reasons, be inclined to believe that we do not intend. I focus this argument to a specific set of artifacts, namely, medical devices, before considering an extended application to emergency contraceptive devices. Although there is some debate about whether emergency contraception has an abortifacient effect, I argue that if there is an abortifacient effect, then the effect cannot normally be a side effect of one's action.

  1. Filtration of human EEG recordings from physiological artifacts with empirical mode method

    NASA Astrophysics Data System (ADS)

    Grubov, Vadim V.; Runnova, Anastasiya E.; Khramova, Marina V.

    2017-03-01

    In the paper we propose the new method for dealing with noise and physiological artifacts in experimental human EEG recordings. The method is based on analysis of EEG signals with empirical mode decomposition (Hilbert-Huang transform). We consider noises and physiological artifacts on EEG as specific oscillatory patterns that cause problems during EEG analysis and can be detected with additional signals recorded simultaneously with EEG (ECG, EMG, EOG, etc.) We introduce the algorithm of the method with following steps: empirical mode decomposition of EEG signal, choosing of empirical modes with artifacts, removing empirical modes with artifacts, reconstruction of the initial EEG signal. We test the method on filtration of experimental human EEG signals from eye-moving artifacts and show high efficiency of the method.

  2. Artifact removal from EEG data with empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Grubov, Vadim V.; Runnova, Anastasiya E.; Efremova, Tatyana Yu.; Hramov, Alexander E.

    2017-03-01

    In the paper we propose the novel method for dealing with the physiological artifacts caused by intensive activity of facial and neck muscles and other movements in experimental human EEG recordings. The method is based on analysis of EEG signals with empirical mode decomposition (Hilbert-Huang transform). We introduce the mathematical algorithm of the method with following steps: empirical mode decomposition of EEG signal, choosing of empirical modes with artifacts, removing empirical modes with artifacts, reconstruction of the initial EEG signal. We test the method on filtration of experimental human EEG signals from movement artifacts and show high efficiency of the method.

  3. Evaluation of motion artifact metrics for coronary CT angiography.

    PubMed

    Ma, Hongfeng; Gros, Eric; Szabo, Aniko; Baginski, Scott G; Laste, Zachary R; Kulkarni, Naveen M; Okerlund, Darin; Schmidt, Taly G

    2018-02-01

    This study quantified the performance of coronary artery motion artifact metrics relative to human observer ratings. Motion artifact metrics have been used as part of motion correction and best-phase selection algorithms for Coronary Computed Tomography Angiography (CCTA). However, the lack of ground truth makes it difficult to validate how well the metrics quantify the level of motion artifact. This study investigated five motion artifact metrics, including two novel metrics, using a dynamic phantom, clinical CCTA images, and an observer study that provided ground-truth motion artifact scores from a series of pairwise comparisons. Five motion artifact metrics were calculated for the coronary artery regions on both phantom and clinical CCTA images: positivity, entropy, normalized circularity, Fold Overlap Ratio (FOR), and Low-Intensity Region Score (LIRS). CT images were acquired of a dynamic cardiac phantom that simulated cardiac motion and contained six iodine-filled vessels of varying diameter and with regions of soft plaque and calcifications. Scans were repeated with different gantry start angles. Images were reconstructed at five phases of the motion cycle. Clinical images were acquired from 14 CCTA exams with patient heart rates ranging from 52 to 82 bpm. The vessel and shading artifacts were manually segmented by three readers and combined to create ground-truth artifact regions. Motion artifact levels were also assessed by readers using a pairwise comparison method to establish a ground-truth reader score. The Kendall's Tau coefficients were calculated to evaluate the statistical agreement in ranking between the motion artifacts metrics and reader scores. Linear regression between the reader scores and the metrics was also performed. On phantom images, the Kendall's Tau coefficients of the five motion artifact metrics were 0.50 (normalized circularity), 0.35 (entropy), 0.82 (positivity), 0.77 (FOR), 0.77(LIRS), where higher Kendall's Tau signifies higher agreement. The FOR, LIRS, and transformed positivity (the fourth root of the positivity) were further evaluated in the study of clinical images. The Kendall's Tau coefficients of the selected metrics were 0.59 (FOR), 0.53 (LIRS), and 0.21 (Transformed positivity). In the study of clinical data, a Motion Artifact Score, defined as the product of FOR and LIRS metrics, further improved agreement with reader scores, with a Kendall's Tau coefficient of 0.65. The metrics of FOR, LIRS, and the product of the two metrics provided the highest agreement in motion artifact ranking when compared to the readers, and the highest linear correlation to the reader scores. The validated motion artifact metrics may be useful for developing and evaluating methods to reduce motion in Coronary Computed Tomography Angiography (CCTA) images. © 2017 American Association of Physicists in Medicine.

  4. Research methodology of the artifact effect in the blood to the result of cell classification

    NASA Astrophysics Data System (ADS)

    Polyakov, E. V.; Nikitaev, V. G.; Seldyukov, S. O.

    2017-01-01

    A study of the influence of artifacts on the result of the division of blasts and lymphocytes in the problem of diagnosing the types of acute leukemia was conducted. A group of artifacts was formed to conduct the study. Preliminary studies allowed to estimate the degree of influence of artifacts on the results of the classification of red blood cells.

  5. Keep Your Eye on the Ball: Investigating Artifacts-in-Use in Physical Education

    ERIC Educational Resources Information Center

    Quennerstedt, Mikael; Almqvist, Jonas; Ohman, Marie

    2011-01-01

    The purpose of this article is to develop a method of approach that can be used to explore the meaning and use of artifacts in education by applying a socio-cultural perspective to learning and artifacts. An empirical material of video recorded physical education lessons in Sweden is used to illustrate the approach in terms of how artifacts in…

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altunbas, Cem, E-mail: caltunbas@gmail.com; Lai, Chao-Jen; Zhong, Yuncheng

    Purpose: In using flat panel detectors (FPD) for cone beam computed tomography (CBCT), pixel gain variations may lead to structured nonuniformities in projections and ring artifacts in CBCT images. Such gain variations can be caused by change in detector entrance exposure levels or beam hardening, and they are not accounted by conventional flat field correction methods. In this work, the authors presented a method to identify isolated pixel clusters that exhibit gain variations and proposed a pixel gain correction (PGC) method to suppress both beam hardening and exposure level dependent gain variations. Methods: To modulate both beam spectrum and entrancemore » exposure, flood field FPD projections were acquired using beam filters with varying thicknesses. “Ideal” pixel values were estimated by performing polynomial fits in both raw and flat field corrected projections. Residuals were calculated by taking the difference between measured and ideal pixel values to identify clustered image and FPD artifacts in flat field corrected and raw images, respectively. To correct clustered image artifacts, the ratio of ideal to measured pixel values in filtered images were utilized as pixel-specific gain correction factors, referred as PGC method, and they were tabulated as a function of pixel value in a look-up table. Results: 0.035% of detector pixels lead to clustered image artifacts in flat field corrected projections, where 80% of these pixels were traced back and linked to artifacts in the FPD. The performance of PGC method was tested in variety of imaging conditions and phantoms. The PGC method reduced clustered image artifacts and fixed pattern noise in projections, and ring artifacts in CBCT images. Conclusions: Clustered projection image artifacts that lead to ring artifacts in CBCT can be better identified with our artifact detection approach. When compared to the conventional flat field correction method, the proposed PGC method enables characterization of nonlinear pixel gain variations as a function of change in x-ray spectrum and intensity. Hence, it can better suppress image artifacts due to beam hardening as well as artifacts that arise from detector entrance exposure variation.« less

  7. SU-F-E-02: A Feasibility Study for Application of Metal Artifact Reduction Techniques in MR-Guided Brachytherapy Gynecological Cancer with Titanium Applicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadbi, M

    Purpose: Utilization of Titanium Tandem and Ring (T&R) applicators in MR-guided brachytherapy has become widespread for gynecological cancer treatment. However, Titanium causes magnetic field disturbance and susceptibility artifact, which complicate image interpretation. In this study, metal artifact reduction techniques were employed to improve the image quality and reduce the metal related artifacts. Methods: Several techniques were employed to reduce the metal artifact caused by titanium T&R applicator. These techniques include Metal Artifact Reduction Sequence (MARS), View Angle Tilting (VAT) to correct in-plane distortion, and Slice Encoding for Metal Artifact Correction (SEMAC) for through-plane artifact correction. Moreover, MARS can be combinedmore » with VAT to further reduce the in-plane artifact by reapplying the selection gradients during the readout (MARS+VAT). SEMAC uses a slice selective excitation but acquires additional z-encodings in order to resolve off-resonant signal and to reduce through-plane distortions. Results: Comparison between the clinical sequences revealed that increasing the bandwidth reduces the error in measured diameter of T&R. However, the error is larger than 4mm for the best case with highest bandwidth and spatial resolution. MARS+VAT with isotropic resolution of 1mm reduced the error to 1.9mm which is the least among the examined 2D sequences. The measured diameter of tandem from SEMAC+VAT has the closest value to the actual diameter of tandem (3.2mm) and the error was reduced to less than 1mm. In addition, SEMAC+VAT significantly reduces the blooming artifact in the ring compared to clinical sequences. Conclusion: A higher bandwidth and spatial resolution sequence reduces the artifact and diameter of applicator with a slight compromise in SNR. Metal artifact reduction sequences decrease the distortion associated with titanium applicator. SEMAC+VAT sequence in combination with VAT revealed promising results for titanium imaging and can be utilized for MR-guided brachytherapy in gynecological cancer. The author is employee with Philips Healthcare.« less

  8. WE-AB-207A-12: HLCC Based Quantitative Evaluation Method of Image Artifact in Dental CBCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y; Wu, S; Qi, H

    Purpose: Image artifacts are usually evaluated qualitatively via visual observation of the reconstructed images, which is susceptible to subjective factors due to the lack of an objective evaluation criterion. In this work, we propose a Helgason-Ludwig consistency condition (HLCC) based evaluation method to quantify the severity level of different image artifacts in dental CBCT. Methods: Our evaluation method consists of four step: 1) Acquire Cone beam CT(CBCT) projection; 2) Convert 3D CBCT projection to fan-beam projection by extracting its central plane projection; 3) Convert fan-beam projection to parallel-beam projection utilizing sinogram-based rebinning algorithm or detail-based rebinning algorithm; 4) Obtain HLCCmore » profile by integrating parallel-beam projection per view and calculate wave percentage and variance of the HLCC profile, which can be used to describe the severity level of image artifacts. Results: Several sets of dental CBCT projections containing only one type of artifact (i.e. geometry, scatter, beam hardening, lag and noise artifact), were simulated using gDRR, a GPU tool developed for efficient, accurate, and realistic simulation of CBCT Projections. These simulated CBCT projections were used to test our proposed method. HLCC profile wave percentage and variance induced by geometry distortion are about 3∼21 times and 16∼393 times as large as that of the artifact-free projection, respectively. The increase factor of wave percentage and variance are 6 and133 times for beam hardening, 19 and 1184 times for scatter, and 4 and16 times for lag artifacts, respectively. In contrast, for noisy projection the wave percentage, variance and inconsistency level are almost the same with those of the noise-free one. Conclusion: We have proposed a quantitative evaluation method of image artifact based on HLCC theory. According to our simulation results, the severity of different artifact types is found to be in a following order: Scatter>Geometry>Beam hardening>Lag>Noise>Artifact-free in dental CBCT.« less

  9. Observer Evaluation of a Metal Artifact Reduction Algorithm Applied to Head and Neck Cone Beam Computed Tomographic Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korpics, Mark; Surucu, Murat; Mescioglu, Ibrahim

    Purpose and Objectives: To quantify, through an observer study, the reduction in metal artifacts on cone beam computed tomographic (CBCT) images using a projection-interpolation algorithm, on images containing metal artifacts from dental fillings and implants in patients treated for head and neck (H&N) cancer. Methods and Materials: An interpolation-substitution algorithm was applied to H&N CBCT images containing metal artifacts from dental fillings and implants. Image quality with respect to metal artifacts was evaluated subjectively and objectively. First, 6 independent radiation oncologists were asked to rank randomly sorted blinded images (before and after metal artifact reduction) using a 5-point rating scalemore » (1 = severe artifacts; 5 = no artifacts). Second, the standard deviation of different regions of interest (ROI) within each image was calculated and compared with the mean rating scores. Results: The interpolation-substitution technique successfully reduced metal artifacts in 70% of the cases. From a total of 60 images from 15 H&N cancer patients undergoing image guided radiation therapy, the mean rating score on the uncorrected images was 2.3 ± 1.1, versus 3.3 ± 1.0 for the corrected images. The mean difference in ranking score between uncorrected and corrected images was 1.0 (95% confidence interval: 0.9-1.2, P<.05). The standard deviation of each ROI significantly decreased after artifact reduction (P<.01). Moreover, a negative correlation between the mean rating score for each image and the standard deviation of the oral cavity and bilateral cheeks was observed. Conclusion: The interpolation-substitution algorithm is efficient and effective for reducing metal artifacts caused by dental fillings and implants on CBCT images, as demonstrated by the statistically significant increase in observer image quality ranking and by the decrease in ROI standard deviation between uncorrected and corrected images.« less

  10. MSVAT-SPACE-STIR and SEMAC-STIR for Reduction of Metallic Artifacts in 3T Head and Neck MRI.

    PubMed

    Hilgenfeld, T; Prager, M; Schwindling, F S; Nittka, M; Rammelsberg, P; Bendszus, M; Heiland, S; Juerchott, A

    2018-05-24

    The incidence of metallic dental restorations and implants is increasing, and head and neck MR imaging is becoming challenging regarding artifacts. Our aim was to evaluate whether multiple-slab acquisition with view angle tilting gradient based on a sampling perfection with application-optimized contrasts by using different flip angle evolution (MSVAT-SPACE)-STIR and slice-encoding for metal artifact correction (SEMAC)-STIR are beneficial regarding artifact suppression compared with the SPACE-STIR and TSE-STIR in vitro and in vivo. At 3T, 3D artifacts of 2 dental implants, supporting different single crowns, were evaluated. Image quality was evaluated quantitatively (normalized signal-to-noise ratio) and qualitatively (2 reads by 2 blinded radiologists). Feasibility was tested in vivo in 5 volunteers and 5 patients, respectively. Maximum achievable resolution and the normalized signal-to-noise ratio of MSVAT-SPACE-STIR were higher compared with SEMAC-STIR. Performance in terms of artifact correction was dependent on the material composition. For highly paramagnetic materials, SEMAC-STIR was superior to MSVAT-SPACE-STIR (27.8% smaller artifact volume) and TSE-STIR (93.2% less slice distortion). However, MSVAT-SPACE-STIR reduced the artifact size compared with SPACE-STIR by 71.5%. For low-paramagnetic materials, MSVAT-SPACE-STIR performed as well as SEMAC-STIR. Furthermore, MSVAT-SPACE-STIR decreased artifact volume by 69.5% compared with SPACE-STIR. The image quality of all sequences did not differ systematically. In vivo results were comparable with in vitro results. Regarding susceptibility artifacts and acquisition time, MSVAT-SPACE-STIR might be advantageous over SPACE-STIR for high-resolution and isotropic head and neck imaging. Only for materials with high-susceptibility differences to soft tissue, the use of SEMAC-STIR might be beneficial. Within limited acquisition times, SEMAC-STIR cannot exploit its full advantage over TSE-STIR regarding artifact suppression. © 2018 by American Journal of Neuroradiology.

  11. Incidence of Artifacts and Deviating Values in Research Data Obtained from an Anesthesia Information Management System in Children.

    PubMed

    Hoorweg, Anne-Lee J; Pasma, Wietze; van Wolfswinkel, Leo; de Graaff, Jurgen C

    2018-02-01

    Vital parameter data collected in anesthesia information management systems are often used for clinical research. The validity of this type of research is dependent on the number of artifacts. In this prospective observational cohort study, the incidence of artifacts in anesthesia information management system data was investigated in children undergoing anesthesia for noncardiac procedures. Secondary outcomes included the incidence of artifacts among deviating and nondeviating values, among the anesthesia phases, and among different anesthetic techniques. We included 136 anesthetics representing 10,236 min of anesthesia time. The incidence of artifacts was 0.5% for heart rate (95% CI: 0.4 to 0.7%), 1.3% for oxygen saturation (1.1 to 1.5%), 7.5% for end-tidal carbon dioxide (6.9 to 8.0%), 5.0% for noninvasive blood pressure (4.0 to 6.0%), and 7.3% for invasive blood pressure (5.9 to 8.8%). The incidence of artifacts among deviating values was 3.1% for heart rate (2.1 to 4.4%), 10.8% for oxygen saturation (7.6 to 14.8%), 14.1% for end-tidal carbon dioxide (13.0 to 15.2%), 14.4% for noninvasive blood pressure (10.3 to 19.4%), and 38.4% for invasive blood pressure (30.3 to 47.1%). Not all values in anesthesia information management systems are valid. The incidence of artifacts stored in the present pediatric anesthesia practice was low for heart rate and oxygen saturation, whereas noninvasive and invasive blood pressure and end-tidal carbon dioxide had higher artifact incidences. Deviating values are more often artifacts than values in a normal range, and artifacts are associated with the phase of anesthesia and anesthetic technique. Development of (automatic) data validation systems or solutions to deal with artifacts in data is warranted.

  12. Reaching out to Hispanic Serving and Historically Black Institutions in Houston: Why are these institutions important to NASA's space science program?

    NASA Astrophysics Data System (ADS)

    Morris, P. A.; Obot, V.

    2005-12-01

    Research institutions welcome the idea of recruiting and retaining minority students for their graduate programs. If they are offered the opportunity to select a minority student from a "recognized majority" or from a minority institution, the preference will be to select the student from the "recognized majority" institution. There are many reasons, including their perception that the minority institutions are disconnected from mainstream science programs and that their students lack research experience. Other reasons are that minority institutions are not interested in promoting research, especially space science (Sakimoto et al. 2005), and their faculties are not capable of participating in NASA missions. Why should majority institutions work with students and faculty from minority institutions? First of all, there are a number of faculty members at minority universities who received their Ph.D. from tier one research institutions and have excellent backgrounds, but lack research facilities. Treating these individuals with courtesy, respect, and allowing them to participate as equal partners and supporting their scientific endeavors will positively impact the minority community. The research skills of the minority faculty will be updated and this will ultimately result in improving the training and scientific background of their students. The population in the United States is changing as our newest immigrants are predominantly from Latin American countries, Africa and Asia. Many representatives of these populations, will be attending minority institutions, especially if they are the first generation of their family endeavoring to become college students. The potential collaboration of between majority and minority institutions will be important in training these populations to be successful members of society and participate in future space science programs. Sakimoto, P. J., J. D. Rosendhal. 2005. Physics Today, Vol 58.

  13. [Quantitative assessment on artifacts of dental restorative materials in cone beam computed tomography].

    PubMed

    Yuan, Fu-song; Sun, Yu-chun; Xie, Xiao-yan; Wang, Yong; Lv, Pei-jun

    2013-12-18

    To quantitatively evaluate the artifacts appearance of eight kinds of common dental restorative materials, such as zirconia. For the full-crown tooth preparation of mandibular first molar, eight kinds of full-crowns, such as zirconia all-ceramic crown, glass ceramic crown, ceramage crown, Au-Pt based porcelain-fused-metal (PFM) crown, Pure Titanium PFM crown, Co-Cr PFM crown, Ni-Cr PFM crown, and Au-Pd metal crown were fabricated. And natural teeth in vitro were used as controls. These full-crown and natural teeth in vitro were mounted an ultraviolet-curable resin fixed plate. High resolution cone beam computed tomography (CBCT) was used to scan all of the crowns and natural teeth in vitro, and their DICOM data were imported into software MIMICS 10.0. Then, the number of stripes and the maximum diameters of artifacts around the full-crowns were evaluated quantitatively in two-dimensional tomography images. In the two-dimensional tomography images,the artifacts did not appear around the natural teeth in vitro, glass ceramic crown, and ceramage crown. But thr artifacts appeared around the zirconia all-ceramic and metal crown. The number of stripes of artifacts was five to nine per one crown. The maximum diameters of the artifacts were 2.4 to 2.6 cm and 2.2 to 2.7 cm. In the two-dimensional tomography images of CBCT, stripe-like and radical artifacts were caused around the zirconia all-ceramic crown and metal based porcelain-fused-metal crowns. These artifacts could lower the imaging quality of the full crown shape greatly. The artifact was not caused around the natural teeth in vitro, glass ceramic crown, and ceramage crown.

  14. TARGETED PRINCIPLE COMPONENT ANALYSIS: A NEW MOTION ARTIFACT CORRECTION APPROACH FOR NEAR-INFRARED SPECTROSCOPY

    PubMed Central

    YÜCEL, MERYEM A.; SELB, JULIETTE; COOPER, ROBERT J.; BOAS, DAVID A.

    2014-01-01

    As near-infrared spectroscopy (NIRS) broadens its application area to different age and disease groups, motion artifacts in the NIRS signal due to subject movement is becoming an important challenge. Motion artifacts generally produce signal fluctuations that are larger than physiological NIRS signals, thus it is crucial to correct for them before obtaining an estimate of stimulus evoked hemodynamic responses. There are various methods for correction such as principle component analysis (PCA), wavelet-based filtering and spline interpolation. Here, we introduce a new approach to motion artifact correction, targeted principle component analysis (tPCA), which incorporates a PCA filter only on the segments of data identified as motion artifacts. It is expected that this will overcome the issues of filtering desired signals that plagues standard PCA filtering of entire data sets. We compared the new approach with the most effective motion artifact correction algorithms on a set of data acquired simultaneously with a collodion-fixed probe (low motion artifact content) and a standard Velcro probe (high motion artifact content). Our results show that tPCA gives statistically better results in recovering hemodynamic response function (HRF) as compared to wavelet-based filtering and spline interpolation for the Velcro probe. It results in a significant reduction in mean-squared error (MSE) and significant enhancement in Pearson’s correlation coefficient to the true HRF. The collodion-fixed fiber probe with no motion correction performed better than the Velcro probe corrected for motion artifacts in terms of MSE and Pearson’s correlation coefficient. Thus, if the experimental study permits, the use of a collodion-fixed fiber probe may be desirable. If the use of a collodion-fixed probe is not feasible, then we suggest the use of tPCA in the processing of motion artifact contaminated data. PMID:25360181

  15. Artifact removal in the context of group ICA: a comparison of single-subject and group approaches

    PubMed Central

    Du, Yuhui; Allen, Elena A.; He, Hao; Sui, Jing; Wu, Lei; Calhoun, Vince D.

    2018-01-01

    Independent component analysis (ICA) has been widely applied to identify intrinsic brain networks from fMRI data. Group ICA computes group-level components from all data and subsequently estimates individual-level components to recapture inter-subject variability. However, the best approach to handle artifacts, which may vary widely among subjects, is not yet clear. In this work, we study and compare two ICA approaches for artifacts removal. One approach, recommended in recent work by the Human Connectome Project, first performs ICA on individual subject data to remove artifacts, and then applies a group ICA on the cleaned data from all subjects. We refer to this approach as Individual ICA based artifacts Removal Plus Group ICA (IRPG). A second proposed approach, called Group Information Guided ICA (GIG-ICA), performs ICA on group data, then removes the group-level artifact components, and finally performs subject-specific ICAs using the group-level non-artifact components as spatial references. We used simulations to evaluate the two approaches with respect to the effects of data quality, data quantity, variable number of sources among subjects, and spatially unique artifacts. Resting-state test-retest datasets were also employed to investigate the reliability of functional networks. Results from simulations demonstrate GIG-ICA has greater performance compared to IRPG, even in the case when single-subject artifacts removal is perfect and when individual subjects have spatially unique artifacts. Experiments using test-retest data suggest that GIG-ICA provides more reliable functional networks. Based on high estimation accuracy, ease of implementation, and high reliability of functional networks, we find GIG-ICA to be a promising approach. PMID:26859308

  16. Comparison of the artifacts caused by metallic implants in breast MRI using dual-echo dixon versus conventional fat-suppression techniques.

    PubMed

    Le, Yuan; Kipfer, Hal D; Majidi, Shadie S; Holz, Stephanie; Lin, Chen

    2014-09-01

    The purpose of this article is to evaluate and compare the artifacts caused by metal implants in breast MR images acquired with dual-echo Dixon and two conventional fat-suppression techniques. Two types of biopsy markers were embedded into a uniform fat-water emulsion. T1-weighted gradient-echo images were acquired on a clinical 3-T MRI scanner with three different fat-suppression techniques-conventional or quick fat saturation, spectrally selective adiabatic inversion recovery (SPAIR), and dual-echo Dixon-and the 3D volumes of artifacts were measured. Among the subjects of a clinical breast MRI study using the same scanner, five patients were found to have one or more metal implants. The artifacts in Dixon and SPAIR fat-suppressed images were evaluated by three radiologists, and the results were compared with those of the phantom study. In the phantom study, the artifacts appeared as interleaved bright and dark rings on SPAIR and quick-fat-saturation images, whereas they appeared as dark regions with a thin bright rim on Dixon images. The artifacts imaged with the Dixon technique had the smallest total volume. However, the reviewers found larger artifact diameters on patient images using the Dixon sequence because only the central region was recognized as an artifact on the SPAIR images. Metal implants introduce artifacts of different types and sizes, according to the different fat-suppression techniques used. The dual-echo Dixon technique produces a larger central void, allowing the implant to be easily identified, but presents a smaller overall artifact volume by obscuring less area in the image, according to a quantitative phantom study.

  17. Physiological artifacts in scalp EEG and ear-EEG.

    PubMed

    Kappel, Simon L; Looney, David; Mandic, Danilo P; Kidmose, Preben

    2017-08-11

    A problem inherent to recording EEG is the interference arising from noise and artifacts. While in a laboratory environment, artifacts and interference can, to a large extent, be avoided or controlled, in real-life scenarios this is a challenge. Ear-EEG is a concept where EEG is acquired from electrodes in the ear. We present a characterization of physiological artifacts generated in a controlled environment for nine subjects. The influence of the artifacts was quantified in terms of the signal-to-noise ratio (SNR) deterioration of the auditory steady-state response. Alpha band modulation was also studied in an open/closed eyes paradigm. Artifacts related to jaw muscle contractions were present all over the scalp and in the ear, with the highest SNR deteriorations in the gamma band. The SNR deterioration for jaw artifacts were in general higher in the ear compared to the scalp. Whereas eye-blinking did not influence the SNR in the ear, it was significant for all groups of scalps electrodes in the delta and theta bands. Eye movements resulted in statistical significant SNR deterioration in both frontal, temporal and ear electrodes. Recordings of alpha band modulation showed increased power and coherence of the EEG for ear and scalp electrodes in the closed-eyes periods. Ear-EEG is a method developed for unobtrusive and discreet recording over long periods of time and in real-life environments. This study investigated the influence of the most important types of physiological artifacts, and demonstrated that spontaneous activity, in terms of alpha band oscillations, could be recorded from the ear-EEG platform. In its present form ear-EEG was more prone to jaw related artifacts and less prone to eye-blinking artifacts compared to state-of-the-art scalp based systems.

  18. Dual-energy CT with virtual monochromatic images and metal artifact reduction software for reducing metallic dental artifacts.

    PubMed

    Cha, Jihoon; Kim, Hyung-Jin; Kim, Sung Tae; Kim, Yi Kyung; Kim, Ha Youn; Park, Gyeong Min

    2017-11-01

    Background Metallic dental prostheses may degrade image quality on head and neck computed tomography (CT). However, there is little information available on the use of dual-energy CT (DECT) and metal artifact reduction software (MARS) in the head and neck regions to reduce metallic dental artifacts. Purpose To assess the usefulness of DECT with virtual monochromatic imaging and MARS to reduce metallic dental artifacts. Material and Methods DECT was performed using fast kilovoltage (kV)-switching between 80-kV and 140-kV in 20 patients with metallic dental prostheses. CT data were reconstructed with and without MARS, and with synthesized monochromatic energy in the range of 40-140-kiloelectron volt (keV). For quantitative analysis, the artifact index of the tongue, buccal, and parotid areas was calculated for each scan. For qualitative analysis, two radiologists evaluated 70-keV and 100-keV images with and without MARS for tongue, buccal, parotid areas, and metallic denture. The locations and characteristics of the MARS-related artifacts, if any, were also recorded. Results DECT with MARS markedly reduced metallic dental artifacts and improved image quality in the buccal area ( P < 0.001) and the tongue ( P < 0.001), but not in the parotid area. The margin and internal architecture of the metallic dentures were more clearly delineated with MARS ( P < 0.001) and in the higher-energy images than in the lower-energy images ( P = 0.042). MARS-related artifacts most commonly occurred in the deep center of the neck. Conclusion DECT with MARS can reduce metallic dental artifacts and improve delineation of the metallic prosthesis and periprosthetic region.

  19. Non-linear transfer characteristics of stimulation and recording hardware account for spurious low-frequency artifacts during amplitude modulated transcranial alternating current stimulation (AM-tACS).

    PubMed

    Kasten, Florian H; Negahbani, Ehsan; Fröhlich, Flavio; Herrmann, Christoph S

    2018-05-31

    Amplitude modulated transcranial alternating current stimulation (AM-tACS) has been recently proposed as a possible solution to overcome the pronounced stimulation artifact encountered when recording brain activity during tACS. In theory, AM-tACS does not entail power at its modulating frequency, thus avoiding the problem of spectral overlap between brain signal of interest and stimulation artifact. However, the current study demonstrates how weak non-linear transfer characteristics inherent to stimulation and recording hardware can reintroduce spurious artifacts at the modulation frequency. The input-output transfer functions (TFs) of different stimulation setups were measured. Setups included recordings of signal-generator and stimulator outputs and M/EEG phantom measurements. 6 th -degree polynomial regression models were fitted to model the input-output TFs of each setup. The resulting TF models were applied to digitally generated AM-tACS signals to predict the frequency of spurious artifacts in the spectrum. All four setups measured for the study exhibited low-frequency artifacts at the modulation frequency and its harmonics when recording AM-tACS. Fitted TF models showed non-linear contributions significantly different from zero (all p < .05) and successfully predicted the frequency of artifacts observed in AM-signal recordings. Results suggest that even weak non-linearities of stimulation and recording hardware can lead to spurious artifacts at the modulation frequency and its harmonics. These artifacts were substantially larger than alpha-oscillations of a human subject in the MEG. Findings emphasize the need for more linear stimulation devices for AM-tACS and careful analysis procedures, taking into account low-frequency artifacts to avoid confusion with effects of AM-tACS on the brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Scattered image artifacts from cone beam computed tomography and its clinical potential in bone mineral density estimation.

    PubMed

    Ko, Hoon; Jeong, Kwanmoon; Lee, Chang-Hoon; Jun, Hong Young; Jeong, Changwon; Lee, Myeung Su; Nam, Yunyoung; Yoon, Kwon-Ha; Lee, Jinseok

    2016-01-01

    Image artifacts affect the quality of medical images and may obscure anatomic structure and pathology. Numerous methods for suppression and correction of scattered image artifacts have been suggested in the past three decades. In this paper, we assessed the feasibility of use of information on scattered artifacts for estimation of bone mineral density (BMD) without dual-energy X-ray absorptiometry (DXA) or quantitative computed tomographic imaging (QCT). To investigate the relationship between scattered image artifacts and BMD, we first used a forearm phantom and cone-beam computed tomography. In the phantom, we considered two regions of interest-bone-equivalent solid material containing 50 mg HA per cm(-3) and water-to represent low- and high-density trabecular bone, respectively. We compared the scattered image artifacts in the high-density material with those in the low-density material. The technique was then applied to osteoporosis patients and healthy subjects to assess its feasibility for BMD estimation. The high-density material produced a greater number of scattered image artifacts than the low-density material. Moreover, the radius and ulna of healthy subjects produced a greater number of scattered image artifacts than those from osteoporosis patients. Although other parameters, such as bone thickness and X-ray incidence, should be considered, our technique facilitated BMD estimation directly without DXA or QCT. We believe that BMD estimation based on assessment of scattered image artifacts may benefit the prevention, early treatment and management of osteoporosis.

  1. Spectral CT metal artifact reduction with an optimization-based reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Gilat Schmidt, Taly; Barber, Rina F.; Sidky, Emil Y.

    2017-03-01

    Metal objects cause artifacts in computed tomography (CT) images. This work investigated the feasibility of a spectral CT method to reduce metal artifacts. Spectral CT acquisition combined with optimization-based reconstruction is proposed to reduce artifacts by modeling the physical effects that cause metal artifacts and by providing the flexibility to selectively remove corrupted spectral measurements in the spectral-sinogram space. The proposed Constrained `One-Step' Spectral CT Image Reconstruction (cOSSCIR) algorithm directly estimates the basis material maps while enforcing convex constraints. The incorporation of constraints on the reconstructed basis material maps is expected to mitigate undersampling effects that occur when corrupted data is excluded from reconstruction. The feasibility of the cOSSCIR algorithm to reduce metal artifacts was investigated through simulations of a pelvis phantom. The cOSSCIR algorithm was investigated with and without the use of a third basis material representing metal. The effects of excluding data corrupted by metal were also investigated. The results demonstrated that the proposed cOSSCIR algorithm reduced metal artifacts and improved CT number accuracy. For example, CT number error in a bright shading artifact region was reduced from 403 HU in the reference filtered backprojection reconstruction to 33 HU using the proposed algorithm in simulation. In the dark shading regions, the error was reduced from 1141 HU to 25 HU. Of the investigated approaches, decomposing the data into three basis material maps and excluding the corrupted data demonstrated the greatest reduction in metal artifacts.

  2. Metal artifact reduction in tomosynthesis imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoxia; Yan, Ming; Tao, Kun; Xuan, Xiao; Sabol, John M.; Lai, Hao

    2015-03-01

    The utility of digital tomosynthesis has been shown for many clinical scenarios including post orthopedic surgery applications. However, two kinds of metal artifacts can influence diagnosis: undershooting and ripple. In this paper, we describe a novel metal artifact reduction (MAR) algorithm to reduce both of these artifacts within the filtered backprojection framework. First, metal areas that are prone to cause artifacts are identified in the raw projection images. These areas are filled with values similar to those in the local neighborhood. During the filtering step, the filled projection is free of undershooting due to the resulting smooth transition near the metal edge. Finally, the filled area is fused with the filtered raw projection data to recover the metal. Since the metal areas are recognized during the back projection step, anatomy and metal can be distinguished - reducing ripple artifacts. Phantom and clinical experiments were designed to quantitatively and qualitatively evaluate the algorithms. Based on phantom images with and without metal implants, the Artifact Spread Function (ASF) was used to quantify image quality in the ripple artifact area. The tail of the ASF with MAR decreases from in-plane to out-of-plane, implying a good artifact reduction, while the ASF without MAR remains high over a wider range. An intensity plot was utilized to analyze the edge of undershooting areas. The results illustrate that MAR reduces undershooting while preserving the edge and size of the metal. Clinical images evaluated by physicists and technologists agree with these quantitative results to further demonstrate the algorithm's effectiveness.

  3. Closed-Loop Control of Myoelectric Prostheses With Electrotactile Feedback: Influence of Stimulation Artifact and Blanking.

    PubMed

    Hartmann, Cornelia; Dosen, Strahinja; Amsuess, Sebastian; Farina, Dario

    2015-09-01

    Electrocutaneous stimulation is a promising approach to provide sensory feedback to amputees, and thus close the loop in upper limb prosthetic systems. However, the stimulation introduces artifacts in the recorded electromyographic (EMG) signals, which may be detrimental for the control of myoelectric prostheses. In this study, artifact blanking with three data segmentation approaches was investigated as a simple method to restore the performance of pattern recognition in prosthesis control (eight motions) when EMG signals are corrupted by stimulation artifacts. The methods were tested over a range of stimulation conditions and using four feature sets, comprising both time and frequency domain features. The results demonstrated that when stimulation artifacts were present, the classification performance improved with blanking in all tested conditions. In some cases, the classification performance with blanking was at the level of the benchmark (artifact-free data). The greatest pulse duration and frequency that allowed a full performance recovery were 400 μs and 150 Hz, respectively. These results show that artifact blanking can be used as a practical solution to eliminate the negative influence of the stimulation artifact on EMG pattern classification in a broad range of conditions, thus allowing to close the loop in myoelectric prostheses using electrotactile feedback.

  4. Physical activity classification using time-frequency signatures of motion artifacts in multi-channel electrical impedance plethysmographs.

    PubMed

    Khan, Hassan Aqeel; Gore, Amit; Ashe, Jeff; Chakrabartty, Shantanu

    2017-07-01

    Physical activities are known to introduce motion artifacts in electrical impedance plethysmographic (EIP) sensors. Existing literature considers motion artifacts as a nuisance and generally discards the artifact containing portion of the sensor output. This paper examines the notion of exploiting motion artifacts for detecting the underlying physical activities which give rise to the artifacts in question. In particular, we investigate whether the artifact pattern associated with a physical activity is unique; and does it vary from one human-subject to another? Data was recorded from 19 adult human-subjects while conducting 5 distinct, artifact inducing, activities. A set of novel features based on the time-frequency signatures of the sensor outputs are then constructed. Our analysis demonstrates that these features enable high accuracy detection of the underlying physical activity. Using an SVM classifier we are able to differentiate between 5 distinct physical activities (coughing, reaching, walking, eating and rolling-on-bed) with an average accuracy of 85.46%. Classification is performed solely using features designed specifically to capture the time-frequency signatures of different physical activities. This enables us to measure both respiratory and motion information using only one type of sensor. This is in contrast to conventional approaches to physical activity monitoring; which rely on additional hardware such as accelerometers to capture activity information.

  5. Robust artifactual independent component classification for BCI practitioners.

    PubMed

    Winkler, Irene; Brandl, Stephanie; Horn, Franziska; Waldburger, Eric; Allefeld, Carsten; Tangermann, Michael

    2014-06-01

    EEG artifacts of non-neural origin can be separated from neural signals by independent component analysis (ICA). It is unclear (1) how robustly recently proposed artifact classifiers transfer to novel users, novel paradigms or changed electrode setups, and (2) how artifact cleaning by a machine learning classifier impacts the performance of brain-computer interfaces (BCIs). Addressing (1), the robustness of different strategies with respect to the transfer between paradigms and electrode setups of a recently proposed classifier is investigated on offline data from 35 users and 3 EEG paradigms, which contain 6303 expert-labeled components from two ICA and preprocessing variants. Addressing (2), the effect of artifact removal on single-trial BCI classification is estimated on BCI trials from 101 users and 3 paradigms. We show that (1) the proposed artifact classifier generalizes to completely different EEG paradigms. To obtain similar results under massively reduced electrode setups, a proposed novel strategy improves artifact classification. Addressing (2), ICA artifact cleaning has little influence on average BCI performance when analyzed by state-of-the-art BCI methods. When slow motor-related features are exploited, performance varies strongly between individuals, as artifacts may obstruct relevant neural activity or are inadvertently used for BCI control. Robustness of the proposed strategies can be reproduced by EEG practitioners as the method is made available as an EEGLAB plug-in.

  6. Quantitative analysis of titanium-induced artifacts and correlated factors during micro-CT scanning.

    PubMed

    Li, Jun Yuan; Pow, Edmond Ho Nang; Zheng, Li Wu; Ma, Li; Kwong, Dora Lai Wan; Cheung, Lim Kwong

    2014-04-01

    To investigate the impact of cover screw, resin embedment, and implant angulation on artifact of microcomputed tomography (micro-CT) scanning for implant. A total of twelve implants were randomly divided into 4 groups: (i) implant only; (ii) implant with cover screw; (iii) implant with resin embedment; and (iv) implants with cover screw and resin embedment. Implants angulation at 0°, 45°, and 90° were scanned by micro-CT. Images were assessed, and the ratio of artifact volume to total volume (AV/TV) was calculated. A multiple regression analysis in stepwise model was used to determine the significance of different factors. One-way ANOVA was performed to identify which combination of factors could minimize the artifact. In the regression analysis, implant angulation was identified as the best predictor for artifact among the factors (P < 0.001). Resin embedment also had significant effect on artifact volume (P = 0.028), while cover screw had not (P > 0.05). Non-embedded implants with the axis parallel to X-ray source of micro-CT produced minimal artifact. Implant angulation and resin embedment affected the artifact volume of micro-CT scanning for implant, while cover screw did not. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Artifacts and essentialism

    PubMed Central

    Gelman, Susan A.

    2013-01-01

    Psychological essentialism is an intuitive folk belief positing that certain categories have a non-obvious inner “essence” that gives rise to observable features. Although this belief most commonly characterizes natural kind categories, I argue that psychological essentialism can also be extended in important ways to artifact concepts. Specifically, concepts of individual artifacts include the non-obvious feature of object history, which is evident when making judgments regarding authenticity and ownership. Classic examples include famous works of art (e.g., the Mona Lisa is authentic because of its provenance), but ordinary artifacts likewise receive value from their history (e.g., a worn and tattered blanket may have special value if it was one's childhood possession). Moreover, in some cases, object history may be thought to have causal effects on individual artifacts, much as an animal essence has causal effects. I review empirical support for these claims and consider the implications for both artifact concepts and essentialism. This perspective suggests that artifact concepts cannot be contained in a theoretical framework that focuses exclusively on similarity or even function. Furthermore, although there are significant differences between essentialism of natural kinds and essentialism of artifact individuals, the commonalities suggest that psychological essentialism may not derive from folk biology but instead may reflect more domain-general perspectives on the world. PMID:23976903

  8. Motion artifact detection in four-dimensional computed tomography images

    NASA Astrophysics Data System (ADS)

    Bouilhol, G.; Ayadi, M.; Pinho, R.; Rit, S.; Sarrut, D.

    2014-03-01

    Motion artifacts appear in four-dimensional computed tomography (4DCT) images because of suboptimal acquisition parameters or patient breathing irregularities. Frequency of motion artifacts is high and they may introduce errors in radiation therapy treatment planning. Motion artifact detection can be useful for image quality assessment and 4D reconstruction improvement but manual detection in many images is a tedious process. We propose a novel method to evaluate the quality of 4DCT images by automatic detection of motion artifacts. The method was used to evaluate the impact of the optimization of acquisition parameters on image quality at our institute. 4DCT images of 114 lung cancer patients were analyzed. Acquisitions were performed with a rotation period of 0.5 seconds and a pitch of 0.1 (74 patients) or 0.081 (40 patients). A sensitivity of 0.70 and a specificity of 0.97 were observed. End-exhale phases were less prone to motion artifacts. In phases where motion speed is high, the number of detected artifacts was systematically reduced with a pitch of 0.081 instead of 0.1 and the mean reduction was 0.79. The increase of the number of patients with no artifact detected was statistically significant for the 10%, 70% and 80% respiratory phases, indicating a substantial image quality improvement.

  9. Artifacts on electroencephalograms may influence the amplitude-integrated EEG classification: a qualitative analysis in neonatal encephalopathy.

    PubMed

    Hagmann, Cornelia Franziska; Robertson, Nicola Jayne; Azzopardi, Denis

    2006-12-01

    This is a case report and a descriptive study demonstrating that artifacts are common during long-term recording of amplitude-integrated electroencephalograms and may lead to erroneous classification of the amplitude-integrated electroencephalogram trace. Artifacts occurred in 12% of 200 hours of recording time sampled from a representative sample of 20 infants with neonatal encephalopathy. Artifacts derived from electrical or movement interference occurred with similar frequency; both types of artifacts influenced the voltage and width of the amplitude-integrated electroencephalogram band. This is important knowledge especially if amplitude-integrated electroencephalogram is used as a selection tool for neuroprotection intervention studies.

  10. Detecting stripe artifacts in ultrasound images.

    PubMed

    Maciak, Adam; Kier, Christian; Seidel, Günter; Meyer-Wiethe, Karsten; Hofmann, Ulrich G

    2009-10-01

    Brain perfusion diseases such as acute ischemic stroke are detectable through computed tomography (CT)-/magnetic resonance imaging (MRI)-based methods. An alternative approach makes use of ultrasound imaging. In this low-cost bedside method, noise and artifacts degrade the imaging process. Especially stripe artifacts show a similar signal behavior compared to acute stroke or brain perfusion diseases. This document describes how stripe artifacts can be detected and eliminated in ultrasound images obtained through harmonic imaging (HI). On the basis of this new method, both proper identification of areas with critically reduced brain tissue perfusion and classification between brain perfusion defects and ultrasound stripe artifacts are made possible.

  11. A simple system for detection of EEG artifacts in polysomnographic recordings.

    PubMed

    Durka, P J; Klekowicz, H; Blinowska, K J; Szelenberger, W; Niemcewicz, Sz

    2003-04-01

    We present an efficient parametric system for automatic detection of electroencephalogram (EEG) artifacts in polysomnographic recordings. For each of the selected types of artifacts, a relevant parameter was calculated for a given epoch. If any of these parameters exceeded a threshold, the epoch was marked as an artifact. Performance of the system, evaluated on 18 overnight polysomnographic recordings, revealed concordance with decisions of human experts close to the interexpert agreement and the repeatability of expert's decisions, assessed via a double-blind test. Complete software (Matlab source code) for the presented system is freely available from the Internet at http://brain.fuw.edu.pl/artifacts.

  12. The Trouble with MEAM2: Implications of Pseudogenes on Species Delimitation in the Globally Invasive Bemisia tabaci (Hemiptera: Aleyrodidae) Cryptic Species Complex.

    PubMed

    Tay, Wee Tek; Elfekih, Samia; Court, Leon N; Gordon, Karl H J; Delatte, Hélène; De Barro, Paul J

    2017-10-01

    Molecular species identification using suboptimal PCR primers can over-estimate species diversity due to coamplification of nuclear mitochondrial (NUMT) DNA/pseudogenes. For the agriculturally important whitefly Bemisia tabaci cryptic pest species complex, species identification depends primarily on characterization of the mitochondrial DNA cytochrome oxidase I (mtDNA COI) gene. The lack of robust PCR primers for the mtDNA COI gene can undermine correct species identification which in turn compromises management strategies. This problem is identified in the B. tabaci Africa/Middle East/Asia Minor clade which comprises the globally invasive Mediterranean (MED) and Middle East Asia Minor I (MEAM1) species, Middle East Asia Minor 2 (MEAM2), and the Indian Ocean (IO) species. Initially identified from the Indian Ocean island of Réunion, MEAM2 has since been reported from Japan, Peru, Turkey and Iraq. We identified MEAM2 individuals from a Peruvian population via Sanger sequencing of the mtDNA COI gene. In attempting to characterize the MEAM2 mitogenome, we instead characterized mitogenomes of MEAM1. We also report on the mitogenomes of MED, AUS, and IO thereby increasing genomic resources for members of this complex. Gene synteny (i.e., same gene composition and orientation) was observed with published B. tabaci cryptic species mitogenomes. Pseudogene fragments matching MEAM2 partial mtDNA COI gene exhibited low frequency single nucleotide polymorphisms that matched low copy number DNA fragments (<3%) of MEAM1 genomes, whereas presence of internal stop codons, loss of expected stop codons and poor primer annealing sites, all suggested MEAM2 as a pseudogene artifact and so not a real species. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Color holography for museums: bringing the artifacts back to the people

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.; Osanlou, Ardie

    2011-02-01

    Color display holography, which is the most accurate imaging technology known to science, has been used to produce holographic images for display of artifacts in museums. This article presents the 'Bringing the Artifacts back to the people' project. Holograms of twelve different artifacts were recorded using the single-beam Denisyuk color reflection hologram technique. 'White' laser light was produced from three combined cw RGB lasers: a red krypton-ion laser, a green frequency-doubled Nd-YAG laser, and an argon-ion laser. Panchromatic ultra-fine-grain silver halide materials were used for the recording of the holograms. During 2009 the artifacts were brought to St Asaph in Wales at the Centre for Modern Optics, to undergo holographic recording. One of the recorded artifacts included a 14,000-year-old decorated horse jaw bone from the ice age, which is kept at British Museum in London. The recorded color holograms of this object and others have been arranged in a touring exhibition, the 'Virtual Artifacts Exhibition.' During 2010- 2011, this will be installed in a number of local museums in North Wales and surrounding areas.

  14. Hybrid EEG--Eye Tracker: Automatic Identification and Removal of Eye Movement and Blink Artifacts from Electroencephalographic Signal.

    PubMed

    Mannan, Malik M Naeem; Kim, Shinjung; Jeong, Myung Yung; Kamran, M Ahmad

    2016-02-19

    Contamination of eye movement and blink artifacts in Electroencephalogram (EEG) recording makes the analysis of EEG data more difficult and could result in mislead findings. Efficient removal of these artifacts from EEG data is an essential step in improving classification accuracy to develop the brain-computer interface (BCI). In this paper, we proposed an automatic framework based on independent component analysis (ICA) and system identification to identify and remove ocular artifacts from EEG data by using hybrid EEG and eye tracker system. The performance of the proposed algorithm is illustrated using experimental and standard EEG datasets. The proposed algorithm not only removes the ocular artifacts from artifactual zone but also preserves the neuronal activity related EEG signals in non-artifactual zone. The comparison with the two state-of-the-art techniques namely ADJUST based ICA and REGICA reveals the significant improved performance of the proposed algorithm for removing eye movement and blink artifacts from EEG data. Additionally, results demonstrate that the proposed algorithm can achieve lower relative error and higher mutual information values between corrected EEG and artifact-free EEG data.

  15. Label-free photoacoustic nanoscopy

    PubMed Central

    Danielli, Amos; Maslov, Konstantin; Garcia-Uribe, Alejandro; Winkler, Amy M.; Li, Chiye; Wang, Lidai; Chen, Yun; Dorn, Gerald W.; Wang, Lihong V.

    2014-01-01

    Abstract. Super-resolution microscopy techniques—capable of overcoming the diffraction limit of light—have opened new opportunities to explore subcellular structures and dynamics not resolvable in conventional far-field microscopy. However, relying on staining with exogenous fluorescent markers, these techniques can sometimes introduce undesired artifacts to the image, mainly due to large tagging agent sizes and insufficient or variable labeling densities. By contrast, the use of endogenous pigments allows imaging of the intrinsic structures of biological samples with unaltered molecular constituents. Here, we report label-free photoacoustic (PA) nanoscopy, which is exquisitely sensitive to optical absorption, with an 88 nm resolution. At each scanning position, multiple PA signals are successively excited with increasing laser pulse energy. Because of optical saturation or nonlinear thermal expansion, the PA amplitude depends on the nonlinear incident optical fluence. The high-order dependence, quantified by polynomial fitting, provides super-resolution imaging with optical sectioning. PA nanoscopy is capable of super-resolution imaging of either fluorescent or nonfluorescent molecules. PMID:25104412

  16. Development of in-situ high-voltage and high-temperature stressing capability on atomic force microscopy platform

    DOE PAGES

    Xiao, Chuanxiao; Jiang, Chun-Sheng; Johnston, Steve; ...

    2017-10-18

    Reliability has become an increasingly important issue as photovoltaic technologies mature. However, researching reliability at the nanometer scale is in its infancy; in particular, in-situ studies have not been reported to date. Here, to investigate potential-induced degradation (PID) of solar cell modules, we have developed an in-situ stressing capability with applied high voltage (HV) and high temperature (HT) on an atomic force microscopy (AFM) platform. We designed a sample holder to simultaneously accommodate 1000-V HV and 200 degrees C HT stressing. Three technical challenges have been overcome along with the development: thermal drift at HT, HV interference with measurement, andmore » arc discharge caused by HV. We demonstrated no observable measurement artifact under the stress conditions. Based on our in-situ stressing AFM, Kelvin probe force microscopy potential imaging revealed the evolution of electrical potential across the junction along with the PID stressing time, which provides vital information to further study the PID mechanism.« less

  17. Leveraging multi-channel x-ray detector technology to improve quality metrics for industrial and security applications

    NASA Astrophysics Data System (ADS)

    Jimenez, Edward S.; Thompson, Kyle R.; Stohn, Adriana; Goodner, Ryan N.

    2017-09-01

    Sandia National Laboratories has recently developed the capability to acquire multi-channel radio- graphs for multiple research and development applications in industry and security. This capability allows for the acquisition of x-ray radiographs or sinogram data to be acquired at up to 300 keV with up to 128 channels per pixel. This work will investigate whether multiple quality metrics for computed tomography can actually benefit from binned projection data compared to traditionally acquired grayscale sinogram data. Features and metrics to be evaluated include the ability to dis- tinguish between two different materials with similar absorption properties, artifact reduction, and signal-to-noise for both raw data and reconstructed volumetric data. The impact of this technology to non-destructive evaluation, national security, and industry is wide-ranging and has to potential to improve upon many inspection methods such as dual-energy methods, material identification, object segmentation, and computer vision on radiographs.

  18. Development of in-situ high-voltage and high-temperature stressing capability on atomic force microscopy platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Chuanxiao; Jiang, Chun-Sheng; Johnston, Steve

    Reliability has become an increasingly important issue as photovoltaic technologies mature. However, researching reliability at the nanometer scale is in its infancy; in particular, in-situ studies have not been reported to date. Here, to investigate potential-induced degradation (PID) of solar cell modules, we have developed an in-situ stressing capability with applied high voltage (HV) and high temperature (HT) on an atomic force microscopy (AFM) platform. We designed a sample holder to simultaneously accommodate 1000-V HV and 200 degrees C HT stressing. Three technical challenges have been overcome along with the development: thermal drift at HT, HV interference with measurement, andmore » arc discharge caused by HV. We demonstrated no observable measurement artifact under the stress conditions. Based on our in-situ stressing AFM, Kelvin probe force microscopy potential imaging revealed the evolution of electrical potential across the junction along with the PID stressing time, which provides vital information to further study the PID mechanism.« less

  19. Automated segmentation and isolation of touching cell nuclei in cytopathology smear images of pleural effusion using distance transform watershed method

    NASA Astrophysics Data System (ADS)

    Win, Khin Yadanar; Choomchuay, Somsak; Hamamoto, Kazuhiko

    2017-06-01

    The automated segmentation of cell nuclei is an essential stage in the quantitative image analysis of cell nuclei extracted from smear cytology images of pleural fluid. Cell nuclei can indicate cancer as the characteristics of cell nuclei are associated with cells proliferation and malignancy in term of size, shape and the stained color. Nevertheless, automatic nuclei segmentation has remained challenging due to the artifacts caused by slide preparation, nuclei heterogeneity such as the poor contrast, inconsistent stained color, the cells variation, and cells overlapping. In this paper, we proposed a watershed-based method that is capable to segment the nuclei of the variety of cells from cytology pleural fluid smear images. Firstly, the original image is preprocessed by converting into the grayscale image and enhancing by adjusting and equalizing the intensity using histogram equalization. Next, the cell nuclei are segmented using OTSU thresholding as the binary image. The undesirable artifacts are eliminated using morphological operations. Finally, the distance transform based watershed method is applied to isolate the touching and overlapping cell nuclei. The proposed method is tested with 25 Papanicolaou (Pap) stained pleural fluid images. The accuracy of our proposed method is 92%. The method is relatively simple, and the results are very promising.

  20. Instrumentation to Record Evoked Potentials for Closed-Loop Control of Deep Brain Stimulation

    PubMed Central

    Kent, Alexander R.; Grill, Warren M.

    2012-01-01

    Closed-loop deep brain stimulation (DBS) systems offer promise in relieving the clinical burden of stimulus parameter selection and improving treatment outcomes. In such a system, a feedback signal is used to adjust automatically stimulation parameters and optimize the efficacy of stimulation. We explored the feasibility of recording electrically evoked compound action potentials (ECAPs) during DBS for use as a feedback control signal. A novel instrumentation system was developed to suppress the stimulus artifact and amplify the small magnitude, short latency ECAP response during DBS with clinically relevant parameters. In vitro testing demonstrated the capabilities to increase the gain by a factor of 1,000x over a conventional amplifier without saturation, reduce distortion of mock ECAP signals, and make high fidelity recordings of mock ECAPs at latencies of only 0.5 ms following DBS pulses of 50 to 100 μs duration. Subsequently, the instrumentation was used to make in vivo recordings of ECAPs during thalamic DBS in cats, without contamination by the stimulus artifact. The signal characteristics were similar across three experiments, suggesting common neural activation patterns. The ECAP recordings enabled with this novel instrumentation may provide insight into the type and spatial extent of neural elements activated during DBS, and could serve as feedback control signals for closed-loop systems. PMID:22255894

  1. An Over 90 dB Intra-Scene Single-Exposure Dynamic Range CMOS Image Sensor Using a 3.0 μm Triple-Gain Pixel Fabricated in a Standard BSI Process.

    PubMed

    Takayanagi, Isao; Yoshimura, Norio; Mori, Kazuya; Matsuo, Shinichiro; Tanaka, Shunsuke; Abe, Hirofumi; Yasuda, Naoto; Ishikawa, Kenichiro; Okura, Shunsuke; Ohsawa, Shinji; Otaka, Toshinori

    2018-01-12

    To respond to the high demand for high dynamic range imaging suitable for moving objects with few artifacts, we have developed a single-exposure dynamic range image sensor by introducing a triple-gain pixel and a low noise dual-gain readout circuit. The developed 3 μm pixel is capable of having three conversion gains. Introducing a new split-pinned photodiode structure, linear full well reaches 40 ke - . Readout noise under the highest pixel gain condition is 1 e - with a low noise readout circuit. Merging two signals, one with high pixel gain and high analog gain, and the other with low pixel gain and low analog gain, a single exposure dynamic rage (SEHDR) signal is obtained. Using this technology, a 1/2.7", 2M-pixel CMOS image sensor has been developed and characterized. The image sensor also employs an on-chip linearization function, yielding a 16-bit linear signal at 60 fps, and an intra-scene dynamic range of higher than 90 dB was successfully demonstrated. This SEHDR approach inherently mitigates the artifacts from moving objects or time-varying light sources that can appear in the multiple exposure high dynamic range (MEHDR) approach.

  2. A comparison of independent component analysis algorithms and measures to discriminate between EEG and artifact components.

    PubMed

    Dharmaprani, Dhani; Nguyen, Hoang K; Lewis, Trent W; DeLosAngeles, Dylan; Willoughby, John O; Pope, Kenneth J

    2016-08-01

    Independent Component Analysis (ICA) is a powerful statistical tool capable of separating multivariate scalp electrical signals into their additive independent or source components, specifically EEG or electroencephalogram and artifacts. Although ICA is a widely accepted EEG signal processing technique, classification of the recovered independent components (ICs) is still flawed, as current practice still requires subjective human decisions. Here we build on the results from Fitzgibbon et al. [1] to compare three measures and three ICA algorithms. Using EEG data acquired during neuromuscular paralysis, we tested the ability of the measures (spectral slope, peripherality and spatial smoothness) and algorithms (FastICA, Infomax and JADE) to identify components containing EMG. Spatial smoothness showed differentiation between paralysis and pre-paralysis ICs comparable to spectral slope, whereas peripherality showed less differentiation. A combination of the measures showed better differentiation than any measure alone. Furthermore, FastICA provided the best discrimination between muscle-free and muscle-contaminated recordings in the shortest time, suggesting it may be the most suited to EEG applications of the considered algorithms. Spatial smoothness results suggest that a significant number of ICs are mixed, i.e. contain signals from more than one biological source, and so the development of an ICA algorithm that is optimised to produce ICs that are easily classifiable is warranted.

  3. An Over 90 dB Intra-Scene Single-Exposure Dynamic Range CMOS Image Sensor Using a 3.0 μm Triple-Gain Pixel Fabricated in a Standard BSI Process †

    PubMed Central

    Takayanagi, Isao; Yoshimura, Norio; Mori, Kazuya; Matsuo, Shinichiro; Tanaka, Shunsuke; Abe, Hirofumi; Yasuda, Naoto; Ishikawa, Kenichiro; Okura, Shunsuke; Ohsawa, Shinji; Otaka, Toshinori

    2018-01-01

    To respond to the high demand for high dynamic range imaging suitable for moving objects with few artifacts, we have developed a single-exposure dynamic range image sensor by introducing a triple-gain pixel and a low noise dual-gain readout circuit. The developed 3 μm pixel is capable of having three conversion gains. Introducing a new split-pinned photodiode structure, linear full well reaches 40 ke−. Readout noise under the highest pixel gain condition is 1 e− with a low noise readout circuit. Merging two signals, one with high pixel gain and high analog gain, and the other with low pixel gain and low analog gain, a single exposure dynamic rage (SEHDR) signal is obtained. Using this technology, a 1/2.7”, 2M-pixel CMOS image sensor has been developed and characterized. The image sensor also employs an on-chip linearization function, yielding a 16-bit linear signal at 60 fps, and an intra-scene dynamic range of higher than 90 dB was successfully demonstrated. This SEHDR approach inherently mitigates the artifacts from moving objects or time-varying light sources that can appear in the multiple exposure high dynamic range (MEHDR) approach. PMID:29329210

  4. Measuring protein dynamics in live cells: protocols and practical considerations for fluorescence fluctuation microscopy

    PubMed Central

    Youker, Robert T.; Teng, Haibing

    2014-01-01

    Abstract. Quantitative analysis of protein complex stoichiometries and mobilities are critical for elucidating the mechanisms that regulate cellular pathways. Fluorescence fluctuation spectroscopy (FFS) techniques can measure protein dynamics, such as diffusion coefficients and formation of complexes, with extraordinary precision and sensitivity. Complete calibration and characterization of the microscope instrument is necessary in order to avoid artifacts during data acquisition and to capitalize on the full capabilities of FFS techniques. We provide an overview of the theory behind FFS techniques, discuss calibration procedures, provide protocols, and give practical considerations for performing FFS experiments. One important parameter recovered from FFS measurements is the relative molecular brightness that can correlate with oligomerization. Three methods for measuring molecular brightness (fluorescence correlation spectroscopy, photon-counting histogram, and number and brightness analysis) recover similar values when measuring samples under ideal conditions in vitro. However, examples are given illustrating that these different methods used for calculating molecular brightness of fluorescent molecules in cells are not always equivalent. Methods relying on spot measurements are more prone to bleaching and movement artifacts that can lead to underestimation of brightness values. We advocate for the use of multiple FFS techniques to study molecular brightnesses to overcome and compliment limitations of individual techniques. PMID:25260867

  5. Landsat-7 Enhanced Thematic Mapper plus radiometric calibration

    USGS Publications Warehouse

    Markham, B.L.; Boncyk, Wayne C.; Helder, D.L.; Barker, J.L.

    1997-01-01

    Landsat-7 is currently being built and tested for launch in 1998. The Enhanced Thematic Mapper Plus (ETM+) sensor for Landsat-7, a derivative of the highly successful Thematic Mapper (TM) sensors on Landsats 4 and 5, and the Landsat-7 ground system are being built to provide enhanced radiometric calibration performance. In addition, regular vicarious calibration campaigns are being planned to provide additional information for calibration of the ETM+ instrument. The primary upgrades to the instrument include the addition of two solar calibrators: the full aperture solar calibrator, a deployable diffuser, and the partial aperture solar calibrator, a passive device that allows the ETM+ to image the sun. The ground processing incorporates for the first time an off-line facility, the Image Assessment System (IAS), to perform calibration, evaluation and analysis. Within the IAS, processing capabilities include radiometric artifact characterization and correction, radiometric calibration from the multiple calibrator sources, inclusion of results from vicarious calibration and statistical trending of calibration data to improve calibration estimation. The Landsat Product Generation System, the portion of the ground system responsible for producing calibrated products, will incorporate the radiometric artifact correction algorithms and will use the calibration information generated by the IAS. This calibration information will also be supplied to ground processing systems throughout the world.

  6. Sources and implications of whole-brain fMRI signals in humans

    PubMed Central

    Power, Jonathan D; Plitt, Mark; Laumann, Timothy O; Martin, Alex

    2016-01-01

    Whole-brain fMRI signals are a subject of intense interest: variance in the global fMRI signal (the spatial mean of all signals in the brain) indexes subject arousal, and psychiatric conditions such as schizophrenia and autism have been characterized by differences in the global fMRI signal. Further, vigorous debates exist on whether global signals ought to be removed from fMRI data. However, surprisingly little research has focused on the empirical properties of whole-brain fMRI signals. Here we map the spatial and temporal properties of the global signal, individually, in 1000+ fMRI scans. Variance in the global fMRI signal is strongly linked to head motion, to hardware artifacts, and to respiratory patterns and their attendant physiologic changes. Many techniques used to prepare fMRI data for analysis fail to remove these uninteresting kinds of global signal fluctuations. Thus, many studies include, at the time of analysis, prominent global effects of yawns, breathing changes, and head motion, among other signals. Such artifacts will mimic dynamic neural activity and will spuriously alter signal covariance throughout the brain. Methods capable of isolating and removing global artifactual variance while preserving putative “neural” variance are needed; this paper adopts no position on the topic of global signal regression. PMID:27751941

  7. Learning in Home Care: A Digital Artifact as a Designated Boundary Object-in-Use

    ERIC Educational Resources Information Center

    Islind, Anna Sigridur; Lundh Snis, Ulrika

    2017-01-01

    Purpose: The aim of this paper is to understand how the role of an mHealth artifact plays out in home care settings. An mHealth artifact, in terms of a mobile app, was tested to see how the quality of home care work practice was enhanced and changed. The research question is: In what ways does an mHealth artifact re-shape a home care practice and…

  8. Utility of CT-compatible EEG electrodes in critically ill children.

    PubMed

    Abend, Nicholas S; Dlugos, Dennis J; Zhu, Xiaowei; Schwartz, Erin S

    2015-04-01

    Electroencephalographic monitoring is being used with increasing frequency in critically ill children who may require frequent and sometimes urgent brain CT scans. Standard metallic disk EEG electrodes commonly produce substantial imaging artifact, and they must be removed and later reapplied when CT scans are indicated. To determine whether conductive plastic electrodes caused artifact that limited CT interpretation. We describe a retrospective cohort of 13 consecutive critically ill children who underwent 17 CT scans with conductive plastic electrodes during 1 year. CT images were evaluated by a pediatric neuroradiologist for artifact presence, type and severity. All CT scans had excellent quality images without artifact that impaired CT interpretation except for one scan in which improper wire placement resulted in artifact. Conductive plastic electrodes do not cause artifact limiting CT scan interpretation and may be used in critically ill children to permit concurrent electroencephalographic monitoring and CT imaging.

  9. Automatic correction of dental artifacts in PET/MRI

    PubMed Central

    Ladefoged, Claes N.; Andersen, Flemming L.; Keller, Sune. H.; Beyer, Thomas; Law, Ian; Højgaard, Liselotte; Darkner, Sune; Lauze, Francois

    2015-01-01

    Abstract. A challenge when using current magnetic resonance (MR)-based attenuation correction in positron emission tomography/MR imaging (PET/MRI) is that the MRIs can have a signal void around the dental fillings that is segmented as artificial air-regions in the attenuation map. For artifacts connected to the background, we propose an extension to an existing active contour algorithm to delineate the outer contour using the nonattenuation corrected PET image and the original attenuation map. We propose a combination of two different methods for differentiating the artifacts within the body from the anatomical air-regions by first using a template of artifact regions, and second, representing the artifact regions with a combination of active shape models and k-nearest-neighbors. The accuracy of the combined method has been evaluated using 25 F18-fluorodeoxyglucose PET/MR patients. Results showed that the approach was able to correct an average of 97±3% of the artifact areas. PMID:26158104

  10. MR Image Based Approach for Metal Artifact Reduction in X-Ray CT

    PubMed Central

    2013-01-01

    For decades, computed tomography (CT) images have been widely used to discover valuable anatomical information. Metallic implants such as dental fillings cause severe streaking artifacts which significantly degrade the quality of CT images. In this paper, we propose a new method for metal-artifact reduction using complementary magnetic resonance (MR) images. The method exploits the possibilities which arise from the use of emergent trimodality systems. The proposed algorithm corrects reconstructed CT images. The projected data which is affected by dental fillings is detected and the missing projections are replaced with data obtained from a corresponding MR image. A simulation study was conducted in order to compare the reconstructed images with images reconstructed through linear interpolation, which is a common metal-artifact reduction technique. The results show that the proposed method is successful in reducing severe metal artifacts without introducing significant amount of secondary artifacts. PMID:24302860

  11. On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP.

    PubMed

    Winkler, Irene; Debener, Stefan; Müller, Klaus-Robert; Tangermann, Michael

    2015-01-01

    Standard artifact removal methods for electroencephalographic (EEG) signals are either based on Independent Component Analysis (ICA) or they regress out ocular activity measured at electrooculogram (EOG) channels. Successful ICA-based artifact reduction relies on suitable pre-processing. Here we systematically evaluate the effects of high-pass filtering at different frequencies. Offline analyses were based on event-related potential data from 21 participants performing a standard auditory oddball task and an automatic artifactual component classifier method (MARA). As a pre-processing step for ICA, high-pass filtering between 1-2 Hz consistently produced good results in terms of signal-to-noise ratio (SNR), single-trial classification accuracy and the percentage of `near-dipolar' ICA components. Relative to no artifact reduction, ICA-based artifact removal significantly improved SNR and classification accuracy. This was not the case for a regression-based approach to remove EOG artifacts.

  12. Child euthanasia: should we just not talk about it?

    PubMed

    Bovens, Luc

    2015-08-01

    Belgium has recently extended its euthanasia legislation to minors, making it the first legislation in the world that does not specify any age limit. I consider two strands in the opposition to this legislation. First, I identify five arguments in the public debate to the effect that euthanasia for minors is somehow worse than euthanasia for adults--viz, arguments from weightiness, capability of discernment, pressure, sensitivity and sufficient palliative care--and show that these arguments are wanting. Second, there is another position in the public debate that wishes to keep the current age restriction on the books and have ethics boards exercise discretion in euthanasia decisions for minors. I interpret this position on the background of Velleman's 'Against the Right to Die' and show that, although costs remain substantial, it actually can provide some qualified support against extending euthanasia legislation to minors. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. Evaluation of an annular denuder system for carbonaceous aerosol sampling of diesel engine emissions.

    PubMed

    Zhang, Jie; Fan, Xinghua; Graham, Lisa; Chan, Tak W; Brook, Jeffrey R

    2013-01-01

    Sampling of particle-phase organic carbon (OC) from diesel engines is complicated by adsorption and evaporation of semivolatile organic carbon (SVOC), defined as positive and negative artifacts, respectively. In order to explore these artifacts, an integrated organic gas and particle sampler (IOGAPS) was applied, in which an XAD-coated multichannel annular denuder was placed upstream to remove the gas-phase SVOC and two downstream sorbent-impregnated filters (SIFs) were employed to capture the evaporated SVOC. Positive artifacts can be reduced by using a denuder but particle loss also occurs. This paper investigates the IOGAPS with respect to particle loss, denuder efficiency, and particle-phase OC artifacts by comparing OC, elemental carbon (EC), SVOC, and selected organic species, as well as particle size distributions. Compared to the filterpack methods typically used, the IOGAPS approach results in estimation of both positive and negative artifacts, especially the negative artifact. The positive and negative artifacts were 190 microg/m3 and 67 microg/m3, representing 122% and 43% of the total particle OC measured by the IOGAPS, respectively. However particle loss and denuder break-through were also found to exist. Monitoring particle mass loss by particle number or EC concentration yielded similar results ranging from 10% to 24% depending upon flow rate. Using the measurements of selected particle-phase organic species to infer particle loss resulted in larger estimates, on the order of 32%. The denuder collection efficiencyfor SVOCs at 74 L/min was found to be less than 100%, with an average of 84%. In addition to these uncertainties the IOGAPS method requires a considerable amount of extra effort to apply. These disadvantages must be weighed against the benefits of being able to estimate positive artifacts and correct, with some uncertainty, for the negative artifacts when selecting a method for sampling diesel emissions. Measurements of diesel emissions are necessary to understand their adverse impacts. Much of the emissions is organic carbon covering a range ofvolatilities, complicating determination of the particle fraction because of sampling artifacts. In this paper an approach to quantify artifacts is evaluated for a diesel engine. This showed that 63% of the particle organic carbon typically measured could be the positive artifact while the negative artifact is about one-third of this value. However, this approach adds time and expense and leads to other uncertainties, implying that effort is needed to develop methods to accurately measure diesel emissions.

  14. Reduction of metal artifacts: beam hardening and photon starvation effects

    NASA Astrophysics Data System (ADS)

    Yadava, Girijesh K.; Pal, Debashish; Hsieh, Jiang

    2014-03-01

    The presence of metal-artifacts in CT imaging can obscure relevant anatomy and interfere with disease diagnosis. The cause and occurrence of metal-artifacts are primarily due to beam hardening, scatter, partial volume and photon starvation; however, the contribution to the artifacts from each of them depends on the type of hardware. A comparison of CT images obtained with different metallic hardware in various applications, along with acquisition and reconstruction parameters, helps understand methods for reducing or overcoming such artifacts. In this work, a metal beam hardening correction (BHC) and a projection-completion based metal artifact reduction (MAR) algorithms were developed, and applied on phantom and clinical CT scans with various metallic implants. Stainless-steel and Titanium were used to model and correct for metal beam hardening effect. In the MAR algorithm, the corrupted projection samples are replaced by the combination of original projections and in-painted data obtained by forward projecting a prior image. The data included spine fixation screws, hip-implants, dental-filling, and body extremity fixations, covering range of clinically used metal implants. Comparison of BHC and MAR on different metallic implants was used to characterize dominant source of the artifacts, and conceivable methods to overcome those. Results of the study indicate that beam hardening could be a dominant source of artifact in many spine and extremity fixations, whereas dental and hip implants could be dominant source of photon starvation. The BHC algorithm could significantly improve image quality in CT scans with metallic screws, whereas MAR algorithm could alleviate artifacts in hip-implants and dentalfillings.

  15. Iterative Covariance-based Removal of Time-Synchronous Artifacts: Application to Gastrointestinal Electrical Recordings

    PubMed Central

    Putney, Joy; Hilbert, Douglas; Paskaranandavadivel, Niranchan; Cheng, Leo K.; O'Grady, Greg; Angeli, Timothy R.

    2016-01-01

    Objective The aim of this study was to develop, validate, and apply a fully automated method for reducing large temporally synchronous artifacts present in electrical recordings made from the gastrointestinal (GI) serosa, which are problematic for properly assessing slow wave dynamics. Such artifacts routinely arise in experimental and clinical settings from motion, switching behavior of medical instruments, or electrode array manipulation. Methods A novel iterative COvaraiance-Based Reduction of Artifacts (COBRA) algorithm sequentially reduced artifact waveforms using an updating across-channel median as a noise template, scaled and subtracted from each channel based on their covariance. Results Application of COBRA substantially increased the signal-to-artifact ratio (12.8±2.5 dB), while minimally attenuating the energy of the underlying source signal by 7.9% on average (-11.1±3.9 dB). Conclusion COBRA was shown to be highly effective for aiding recovery and accurate marking of slow wave events (sensitivity = 0.90±0.04; positive-predictive value = 0.74±0.08) from large segments of in vivo porcine GI electrical mapping data that would otherwise be lost due to a broad range of contaminating artifact waveforms. Significance Strongly reducing artifacts with COBRA ultimately allowed for rapid production of accurate isochronal activation maps detailing the dynamics of slow wave propagation in the porcine intestine. Such mapping studies can help characterize differences between normal and dysrhythmic events, which have been associated with GI abnormalities, such as intestinal ischemia and gastroparesis. The COBRA method may be generally applicable for removing temporally synchronous artifacts in other biosignal processing domains. PMID:26829772

  16. A novel method for device-related electroencephalography artifact suppression to explore cochlear implant-related cortical changes in single-sided deafness.

    PubMed

    Kim, Kyungsoo; Punte, Andrea Kleine; Mertens, Griet; Van de Heyning, Paul; Park, Kyung-Joon; Choi, Hongsoo; Choi, Ji-Woong; Song, Jae-Jin

    2015-11-30

    Quantitative electroencephalography (qEEG) is effective when used to analyze ongoing cortical oscillations in cochlear implant (CI) users. However, localization of cortical activity in such users via qEEG is confounded by the presence of artifacts produced by the device itself. Typically, independent component analysis (ICA) is used to remove CI artifacts in auditory evoked EEG signals collected upon brief stimulation and it is effective for auditory evoked potentials (AEPs). However, AEPs do not reflect the daily environments of patients, and thus, continuous EEG data that are closer to such environments are desirable. In this case, device-related artifacts in EEG data are difficult to remove selectively via ICA due to over-completion of EEG data removal in the absence of preprocessing. EEGs were recorded for a long time under conditions of continuous auditory stimulation. To obviate the over-completion problem, we limited the frequency of CI artifacts to a significant characteristic peak and apply ICA artifact removal. Topographic brain mapping results analyzed via band-limited (BL)-ICA exhibited a better energy distribution, matched to the CI location, than data obtained using conventional ICA. Also, source localization data verified that BL-ICA effectively removed CI artifacts. The proposed method selectively removes CI artifacts from continuous EEG recordings, while ICA removal method shows residual peak and removes important brain activity signals. CI artifacts in EEG data obtained during continuous passive listening can be effectively removed with the aid of BL-ICA, opening up new EEG research possibilities in subjects with CIs. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Reduced aliasing artifacts using shaking projection k-space sampling trajectory

    NASA Astrophysics Data System (ADS)

    Zhu, Yan-Chun; Du, Jiang; Yang, Wen-Chao; Duan, Chai-Jie; Wang, Hao-Yu; Gao, Song; Bao, Shang-Lian

    2014-03-01

    Radial imaging techniques, such as projection-reconstruction (PR), are used in magnetic resonance imaging (MRI) for dynamic imaging, angiography, and short-T2 imaging. They are less sensitive to flow and motion artifacts, and support fast imaging with short echo times. However, aliasing and streaking artifacts are two main sources which degrade radial imaging quality. For a given fixed number of k-space projections, data distributions along radial and angular directions will influence the level of aliasing and streaking artifacts. Conventional radial k-space sampling trajectory introduces an aliasing artifact at the first principal ring of point spread function (PSF). In this paper, a shaking projection (SP) k-space sampling trajectory was proposed to reduce aliasing artifacts in MR images. SP sampling trajectory shifts the projection alternately along the k-space center, which separates k-space data in the azimuthal direction. Simulations based on conventional and SP sampling trajectories were compared with the same number projections. A significant reduction of aliasing artifacts was observed using the SP sampling trajectory. These two trajectories were also compared with different sampling frequencies. A SP trajectory has the same aliasing character when using half sampling frequency (or half data) for reconstruction. SNR comparisons with different white noise levels show that these two trajectories have the same SNR character. In conclusion, the SP trajectory can reduce the aliasing artifact without decreasing SNR and also provide a way for undersampling reconstruction. Furthermore, this method can be applied to three-dimensional (3D) hybrid or spherical radial k-space sampling for a more efficient reduction of aliasing artifacts.

  18. Neutron activation analysis traces copper artifacts to geographical point of origin

    NASA Technical Reports Server (NTRS)

    Conway, M.; Fields, P.; Friedman, A.; Kastner, M.; Metta, D.; Milsted, J.; Olsen, E.

    1967-01-01

    Impurities remaining in the metallic copper are identified and quantified by spectrographic and neutron activation analysis. Determination of the type of ore used for the copper artifact places the geographic point of origin of the artifact.

  19. A robust adaptive denoising framework for real-time artifact removal in scalp EEG measurements

    NASA Astrophysics Data System (ADS)

    Kilicarslan, Atilla; Grossman, Robert G.; Contreras-Vidal, Jose Luis

    2016-04-01

    Objective. Non-invasive measurement of human neural activity based on the scalp electroencephalogram (EEG) allows for the development of biomedical devices that interface with the nervous system for scientific, diagnostic, therapeutic, or restorative purposes. However, EEG recordings are often considered as prone to physiological and non-physiological artifacts of different types and frequency characteristics. Among them, ocular artifacts and signal drifts represent major sources of EEG contamination, particularly in real-time closed-loop brain-machine interface (BMI) applications, which require effective handling of these artifacts across sessions and in natural settings. Approach. We extend the usage of a robust adaptive noise cancelling (ANC) scheme ({H}∞ filtering) for removal of eye blinks, eye motions, amplitude drifts and recording biases simultaneously. We also characterize the volume conduction, by estimating the signal propagation levels across all EEG scalp recording areas due to ocular artifact generators. We find that the amplitude and spatial distribution of ocular artifacts vary greatly depending on the electrode location. Therefore, fixed filtering parameters for all recording areas would naturally hinder the true overall performance of an ANC scheme for artifact removal. We treat each electrode as a separate sub-system to be filtered, and without the loss of generality, they are assumed to be uncorrelated and uncoupled. Main results. Our results show over 95-99.9% correlation between the raw and processed signals at non-ocular artifact regions, and depending on the contamination profile, 40-70% correlation when ocular artifacts are dominant. We also compare our results with the offline independent component analysis and artifact subspace reconstruction methods, and show that some local quantities are handled better by our sample-adaptive real-time framework. Decoding performance is also compared with multi-day experimental data from 2 subjects, totaling 19 sessions, with and without {H}∞ filtering of the raw data. Significance. The proposed method allows real-time adaptive artifact removal for EEG-based closed-loop BMI applications and mobile EEG studies in general, thereby increasing the range of tasks that can be studied in action and context while reducing the need for discarding data due to artifacts. Significant increase in decoding performances also justify the effectiveness of the method to be used in real-time closed-loop BMI applications.

  20. Investigating the possible effect of electrode support structure on motion artifact in wearable bioelectric signal monitoring.

    PubMed

    Cömert, Alper; Hyttinen, Jari

    2015-05-15

    With advances in technology and increasing demand, wearable biosignal monitoring is developing and new applications are emerging. One of the main challenges facing the widespread use of wearable monitoring systems is the motion artifact. The sources of the motion artifact lie in the skin-electrode interface. Reducing the motion and deformation at this interface should have positive effects on signal quality. In this study, we aim to investigate whether the structure supporting the electrode can be designed to reduce the motion artifact with the hypothesis that this can be achieved by stabilizing the skin deformations around the electrode. We compare four textile electrodes with different support structure designs: a soft padding larger than the electrode area, a soft padding larger than the electrode area with a novel skin deformation restricting design, a soft padding the same size as the electrode area, and a rigid support the same size as the electrode. With five subjects and two electrode locations placed over different kinds of tissue at various mounting forces, we simultaneously measured the motion artifact, a motion affected ECG, and the real-time skin-electrode impedance during the application of controlled motion to the electrodes. The design of the electrode support structure has an effect on the generated motion artifact; good design with a skin stabilizing structure makes the electrodes physically more motion artifact resilient, directly affecting signal quality. Increasing the applied mounting force shows a positive effect up to 1,000 gr applied force. The properties of tissue under the electrode are an important factor in the generation of the motion artifact and the functioning of the electrodes. The relationship of motion artifact amplitude to the electrode movement magnitude is seen to be linear for smaller movements. For larger movements, the increase of motion generated a disproportionally larger artifact. The motion artifact and the induced impedance change were caused by the electrode motion and contained the same frequency components as the applied electrode motion pattern. We found that stabilizing the skin around the electrode using an electrode structure that manages to successfully distribute the force and movement to an area beyond the borders of the electrical contact area reduces the motion artifact when compared to structures that are the same size as the electrode area.

  1. Picking Up Artifacts: Storyboarding as a Gateway to Reuse

    NASA Astrophysics Data System (ADS)

    Wahid, Shahtab; Branham, Stacy M.; Cairco, Lauren; McCrickard, D. Scott; Harrison, Steve

    Storyboarding offers designers the opportunity to illustrate a visual narrative of use. Because designers often refer to past ideas, we argue storyboards can be constructed by reusing shared artifacts. We present a study in which we explore how designers reuse artifacts consisting of images and rationale during storyboard construction. We find images can aid in accessing rationale and that connections among features aid in deciding what to reuse, creating new artifacts, and constructing. Based on requirements derived from our findings, we present a storyboarding tool, PIC-UP, to facilitate artifact sharing and reuse and evaluate its use in an exploratory study. We conclude with remarks on facilitating reuse and future work.

  2. μ-tempered metadynamics: Artifact independent convergence times for wide hills

    NASA Astrophysics Data System (ADS)

    Dickson, Bradley M.

    2015-12-01

    Recent analysis of well-tempered metadynamics (WTmetaD) showed that it converges without mollification artifacts in the bias potential. Here, we explore how metadynamics heals mollification artifacts, how healing impacts convergence time, and whether alternative temperings may be used to improve efficiency. We introduce "μ-tempered" metadynamics as a simple tempering scheme, inspired by a related mollified adaptive biasing potential, that results in artifact independent convergence of the free energy estimate. We use a toy model to examine the role of artifacts in WTmetaD and solvated alanine dipeptide to compare the well-tempered and μ-tempered frameworks demonstrating fast convergence for hill widths as large as 60∘ for μTmetaD.

  3. μ-tempered metadynamics: Artifact independent convergence times for wide hills.

    PubMed

    Dickson, Bradley M

    2015-12-21

    Recent analysis of well-tempered metadynamics (WTmetaD) showed that it converges without mollification artifacts in the bias potential. Here, we explore how metadynamics heals mollification artifacts, how healing impacts convergence time, and whether alternative temperings may be used to improve efficiency. We introduce "μ-tempered" metadynamics as a simple tempering scheme, inspired by a related mollified adaptive biasing potential, that results in artifact independent convergence of the free energy estimate. We use a toy model to examine the role of artifacts in WTmetaD and solvated alanine dipeptide to compare the well-tempered and μ-tempered frameworks demonstrating fast convergence for hill widths as large as 60(∘) for μTmetaD.

  4. Wavelet-Based Motion Artifact Removal for Electrodermal Activity

    PubMed Central

    Chen, Weixuan; Jaques, Natasha; Taylor, Sara; Sano, Akane; Fedor, Szymon; Picard, Rosalind W.

    2017-01-01

    Electrodermal activity (EDA) recording is a powerful, widely used tool for monitoring psychological or physiological arousal. However, analysis of EDA is hampered by its sensitivity to motion artifacts. We propose a method for removing motion artifacts from EDA, measured as skin conductance (SC), using a stationary wavelet transform (SWT). We modeled the wavelet coefficients as a Gaussian mixture distribution corresponding to the underlying skin conductance level (SCL) and skin conductance responses (SCRs). The goodness-of-fit of the model was validated on ambulatory SC data. We evaluated the proposed method in comparison with three previous approaches. Our method achieved a greater reduction of artifacts while retaining motion-artifact-free data. PMID:26737714

  5. Dealing with noise and physiological artifacts in human EEG recordings: empirical mode methods

    NASA Astrophysics Data System (ADS)

    Runnova, Anastasiya E.; Grubov, Vadim V.; Khramova, Marina V.; Hramov, Alexander E.

    2017-04-01

    In the paper we propose the new method for removing noise and physiological artifacts in human EEG recordings based on empirical mode decomposition (Hilbert-Huang transform). As physiological artifacts we consider specific oscillatory patterns that cause problems during EEG analysis and can be detected with additional signals recorded simultaneously with EEG (ECG, EMG, EOG, etc.) We introduce the algorithm of the proposed method with steps including empirical mode decomposition of EEG signal, choosing of empirical modes with artifacts, removing these empirical modes and reconstructing of initial EEG signal. We show the efficiency of the method on the example of filtration of human EEG signal from eye-moving artifacts.

  6. Methods to improve traffic flow and noise exposure estimation on minor roads.

    PubMed

    Morley, David W; Gulliver, John

    2016-09-01

    Address-level estimates of exposure to road traffic noise for epidemiological studies are dependent on obtaining data on annual average daily traffic (AADT) flows that is both accurate and with good geographical coverage. National agencies often have reliable traffic count data for major roads, but for residential areas served by minor roads, especially at national scale, such information is often not available or incomplete. Here we present a method to predict AADT at the national scale for minor roads, using a routing algorithm within a geographical information system (GIS) to rank roads by importance based on simulated journeys through the road network. From a training set of known minor road AADT, routing importance is used to predict AADT on all UK minor roads in a regression model along with the road class, urban or rural location and AADT on the nearest major road. Validation with both independent traffic counts and noise measurements show that this method gives a considerable improvement in noise prediction capability when compared to models that do not give adequate consideration to minor road variability (Spearman's rho. increases from 0.46 to 0.72). This has significance for epidemiological cohort studies attempting to link noise exposure to adverse health outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Cadmium removal by Lemna minor and Spirodela polyrhiza.

    PubMed

    Chaudhuri, Devaleena; Majumder, Arunabha; Misra, Amal K; Bandyopadhyay, Kaushik

    2014-01-01

    The present study investigates the ability of two genus of duckweed (Lemna minor and Spirodela polyrhiza) to phytoremediate cadmium from aqueous solution. Duckweed was exposed to six different cadmium concentrations, such as, 0.5,1.0,1.5, 2.0, 2.5, and 3.0 mg/L and the experiment was continued for 22 days. Water samples were collected periodically for estimation of residual cadmium content in aqueous solution. At the end of treatment period plant samples were collected and accumulated cadmium content was measured. Cadmium toxicity was observed through relative growth factor and changes in chlorophyll content Experimental results showed that Lemna minor and Spirodela polyrhiza were capable of removing 42-78% and 52-75% cadmium from media depending upon initial cadmium concentrations. Cadmium was removed following pseudo second order kinetic model Maximum cadmium accumulation in Lemna minor was 4734.56 mg/kg at 2 mg/L initial cadmium concentration and 7711.00 mg/kg in Spirodela polyrhiza at 3 mg/L initial cadmium concentration at the end of treatment period. Conversely in both cases maximum bioconcentration factor obtained at lowest initial cadmium concentrations, i.e., 0.5 mg/L, were 3295.61 and 4752.00 for Lemna minor and Spirodela polyrhiza respectively. The present study revealed that both Lemna minor and Spirodela polyrhiza was potential cadmium accumulator.

  8. Mathematical approach to recover EEG brain signals with artifacts by means of Gram-Schmidt transform

    NASA Astrophysics Data System (ADS)

    Runnova, A. E.; Zhuravlev, M. O.; Koronovskiy, A. A.; Hramov, A. E.

    2017-04-01

    A novel method for removing oculomotor artifacts on electroencephalographical signals is proposed and based on the orthogonal Gram-Schmidt transform using electrooculography data. The method has shown high efficiency removal of artifacts caused by spontaneous movements of the eyeballs (about 95-97% correct remote oculomotor artifacts). This method may be recommended for multi-channel electroencephalography data processing in an automatic on-line in a variety of psycho-physiological experiments.

  9. Dedicated phantom to study susceptibility artifacts caused by depth electrode in magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Garcia, J.; Hidalgo, S. S.; Solis, S. E.; Vazquez, D.; Nuñez, J.; Rodriguez, A. O.

    2012-10-01

    The susceptibility artifacts can degrade of magnetic resonance image quality. Electrodes are an important source of artifacts when performing brain imaging. A dedicated phantom was built using a depth electrode to study the susceptibility effects under different pulse sequences. T2-weighted images were acquired with both gradient-and spin-echo sequences. The spin-echo sequences can significantly attenuate the susceptibility artifacts allowing a straightforward visualization of the regions surrounding the electrode.

  10. Morphologic analysis of artifacts in human fetal eyes confounding histopathologic investigations.

    PubMed

    Herwig, Martina C; Müller, Annette M; Holz, Frank G; Loeffler, Karin U

    2011-04-25

    Human fetal eyes are an excellent source for studies of the normal ocular development and for examining early ocular changes associated with various syndromes in the context of a pediatric pathologic or prenatal sonographic diagnosis. However, artifacts caused by different factors often render an exact interpretation difficult. In this study, the frequency and extent of artifacts in human fetal eyes were investigated with the aim of distinguishing more precisely these artifacts from real findings, allowing also for a more diligent forensic interpretation. The cohort included 341 fetal eyes, ranging in age from 8 to 38 weeks of gestation, that were investigated macroscopically and by light microscopy. In most specimens, artifacts such as pigment spillage and autolytic changes of the retina were noted. Nearly all specimens showed changes of the lens with remarkable similarities to cataractous lenses in adult eyes. Structural ocular changes associated with systemic syndromes were also observed and in most instances could be distinguished from artifacts. Morphologic changes in fetal eyes should be classified in artifacts caused by way of abortion, mechanical effects from the removal of the eyes, delayed fixation with autolysis, and the fixative itself and should be distinguished from genuine structural abnormalities associated with ocular or systemic disease. This classification can be fairly difficult and requires experience. In addition, lens artifacts are often misleading, and the diagnosis of a fetal cataract should not be made based on histopathologic examination alone.

  11. 10 CFR 800.300 - Loan servicing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... consideration to the experience of the agent in providing financial services to minority business enterprises..., broker, or other financial institution or entity) having the capability, and legally qualified, to service the loan consistently with the requirements of this regulation, which contracts with DOE to act as...

  12. Forward modeling to investigate inversion artifacts resulting from time-lapse electrical resistivity tomography during rainfall simulations

    NASA Astrophysics Data System (ADS)

    Carey, Austin M.; Paige, Ginger B.; Carr, Bradley J.; Dogan, Mine

    2017-10-01

    Time-lapse electrical resistivity tomography (ERT) is commonly used as a minimally invasive tool to study infiltration processes. In 2014, we conducted field studies coupling variable intensity rainfall simulation with high-resolution ERT to study the real-time partitioning of rainfall into surface and subsurface response. The significant contrast in resistivity in the subsurface from large changes in subsurface moisture resulted in artifacts during the inversion process of the time-lapse ERT data collected using a dipole-dipole electrode array. These artifacts, which are not representative of real subsurface moisture dynamics, have been shown to arise during time-lapse inversion of ERT data and may be subject to misinterpretation. Forward modeling of the infiltration process post field experiments using a two-layer system (saprolite overlain by a soil layer) was used to generate synthetic datasets. The synthetic data were used to investigate the influence of both changes in volumetric moisture content and electrode configuration on the development of the artifacts identified in the field datasets. For the dipole-dipole array, we found that a decrease in the resistivity of the bottom layer by 67% resulted in a 50% reduction in artifact development. Artifacts for the seven additional array configurations tested, ranged from a 19% increase in artifact development (using an extended dipole-dipole array) to as much as a 96% decrease in artifact development (using a wenner-alpha array), compared to that of the dipole-dipole array. Moreover, these arrays varied in their ability to accurately delineate the infiltration front. Model results showed that the modified pole-dipole array was able to accurately image the infiltration zone and presented fewer artifacts for our experiments. In this study, we identify an optimal array type for imaging rainfall-infiltration dynamics that reduces artifacts. The influence of moisture contrast between the infiltrating water and the bulk subsurface material was characterized and shown to be a major factor in contributing to artifact development. Through forward modeling, this study highlights the importance of considering array type and subsurface moisture conditions when using time-lapse resistivity to obtain reliable estimates of vadose zone flow processes during rainfall-infiltration events.

  13. SU-E-J-38: Improved DRR Image Quality Using Polyetheretherketone (PEEK) Fiducial in Image Guided Radiotherapy (IGRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, S; Jacob, R; Popple, R

    Purpose Fiducial-based imaging is often used in IGRT. Traditional gold fiducial marker often has substantial reconstruction artifacts. These artifacts Result in poor image quality of DRR for online kV-to-DRR matching. This study evaluated the image quality of PEEK in DRR in static and moving phantom. Methods CT scan of the Gold and PEEK fiducial (both 1×3 mm) was acquired in a 22 cm cylindrical phantom filled with water. Image artifacts was evaluated with maximum CT value deviated from water due to artifacts; volume of artifacts in 10×10 cm in the center slice; maximum length of streak artifacts from the fiducial.more » DRR resolution were measured using FWHM and FWTM. 4DCT of PEEK fiducial was acquired with the phantom moving sinusoidally in superior-inferior direction. Motion artifacts were assessed for various 4D phase angles. Results The maximum CT value deviation was −174 for Gold and −24 for PEEK. The volume of artifacts in a 10x10 cm 3 mm slice was 0.369 for Gold and 0.074 cm3 for PEEK. The maximum length of streak artifact was 80mm for Gold and 7 mm for PEEK. PEEK in DRR, FWHM was close to actual (1.0 mm for Gold and 1.1 mm for PEEK). FWTM was 1.8 mm for Gold and 1.3 mm for PEEK in DRR. Barrel motion artifact of PEEK fiducial was noticeable for free-breathing scan. The apparent PEEK length due to residual motion was in close agreement with the calculated length (13 mm for 30–70 phase, 10 mm in 40–60 phase). Conclusion Streak artifacts on planning CT associated with use of gold fiducial can be significantly reduced by PEEK fiducial, while having adequate kV image contrast. DRR image resolution at FWTM was improved from 1.8 mm to 1.3 mm. Because of this improvement, we have been routinely use PEEK for liver IGRT.« less

  14. Adaptive marginal median filter for colour images.

    PubMed

    Morillas, Samuel; Gregori, Valentín; Sapena, Almanzor

    2011-01-01

    This paper describes a new filter for impulse noise reduction in colour images which is aimed at improving the noise reduction capability of the classical vector median filter. The filter is inspired by the application of a vector marginal median filtering process over a selected group of pixels in each filtering window. This selection, which is based on the vector median, along with the application of the marginal median operation constitutes an adaptive process that leads to a more robust filter design. Also, the proposed method is able to process colour images without introducing colour artifacts. Experimental results show that the images filtered with the proposed method contain less noisy pixels than those obtained through the vector median filter.

  15. Volumetric soft tissue brain imaging on xCAT, a mobile flat-panel x-ray CT system

    NASA Astrophysics Data System (ADS)

    Zbijewski, Wojciech; Stayman, J. Webster

    2009-02-01

    We discuss the ongoing development of soft-tissue imaging capabilities on xCAT, a highly portable, flat-panel based cone-beam X-ray CT platform. By providing the ability to rapidly detect intra-cranial bleeds and other symptoms of stroke directly at the patient's bedside, our new system can potentially significantly improve the management of neurological emergency and intensive care patients. The paper reports on the design of our system, as well as on the methods used to combat artifacts due to scatter, non-linear detector response and scintillator glare. Images of cadaveric head samples are also presented and compared with conventional CT scans.

  16. Three-dimensional segmentation of luminal and adventitial borders in serial intravascular ultrasound images

    NASA Technical Reports Server (NTRS)

    Shekhar, R.; Cothren, R. M.; Vince, D. G.; Chandra, S.; Thomas, J. D.; Cornhill, J. F.

    1999-01-01

    Intravascular ultrasound (IVUS) provides exact anatomy of arteries, allowing accurate quantitative analysis. Automated segmentation of IVUS images is a prerequisite for routine quantitative analyses. We present a new three-dimensional (3D) segmentation technique, called active surface segmentation, which detects luminal and adventitial borders in IVUS pullback examinations of coronary arteries. The technique was validated against expert tracings by computing correlation coefficients (range 0.83-0.97) and William's index values (range 0.37-0.66). The technique was statistically accurate, robust to image artifacts, and capable of segmenting a large number of images rapidly. Active surface segmentation enabled geometrically accurate 3D reconstruction and visualization of coronary arteries and volumetric measurements.

  17. Postoperative ultrasonography of the musculoskeletal system.

    PubMed

    Chun, Kyung Ah; Cho, Kil-Ho

    2015-07-01

    Ultrasonography of the postoperative musculoskeletal system plays an important role in the accurate diagnosis of abnormal lesions in the bone and soft tissues. Ultrasonography is a fast and reliable method with no harmful irradiation for the evaluation of postoperative musculoskeletal complications. In particular, it is not affected by the excessive metal artifacts that appear on computed tomography or magnetic resonance imaging. Another benefit of ultrasonography is its capability to dynamically assess the pathologic movement in joints, muscles, or tendons. This article discusses the frequent applications of musculoskeletal ultrasonography in various postoperative situations including those involving the soft tissues around the metal hardware, arthroplasty, postoperative tendons, recurrent soft tissue tumors, bone unions, and amputation surgery.

  18. A model-based scatter artifacts correction for cone beam CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Wei; Zhu, Jun; Wang, Luyao

    2016-04-15

    Purpose: Due to the increased axial coverage of multislice computed tomography (CT) and the introduction of flat detectors, the size of x-ray illumination fields has grown dramatically, causing an increase in scatter radiation. For CT imaging, scatter is a significant issue that introduces shading artifact, streaks, as well as reduced contrast and Hounsfield Units (HU) accuracy. The purpose of this work is to provide a fast and accurate scatter artifacts correction algorithm for cone beam CT (CBCT) imaging. Methods: The method starts with an estimation of coarse scatter profiles for a set of CBCT data in either image domain ormore » projection domain. A denoising algorithm designed specifically for Poisson signals is then applied to derive the final scatter distribution. Qualitative and quantitative evaluations using thorax and abdomen phantoms with Monte Carlo (MC) simulations, experimental Catphan phantom data, and in vivo human data acquired for a clinical image guided radiation therapy were performed. Scatter correction in both projection domain and image domain was conducted and the influences of segmentation method, mismatched attenuation coefficients, and spectrum model as well as parameter selection were also investigated. Results: Results show that the proposed algorithm can significantly reduce scatter artifacts and recover the correct HU in either projection domain or image domain. For the MC thorax phantom study, four-components segmentation yields the best results, while the results of three-components segmentation are still acceptable. The parameters (iteration number K and weight β) affect the accuracy of the scatter correction and the results get improved as K and β increase. It was found that variations in attenuation coefficient accuracies only slightly impact the performance of the proposed processing. For the Catphan phantom data, the mean value over all pixels in the residual image is reduced from −21.8 to −0.2 HU and 0.7 HU for projection domain and image domain, respectively. The contrast of the in vivo human images is greatly improved after correction. Conclusions: The software-based technique has a number of advantages, such as high computational efficiency and accuracy, and the capability of performing scatter correction without modifying the clinical workflow (i.e., no extra scan/measurement data are needed) or modifying the imaging hardware. When implemented practically, this should improve the accuracy of CBCT image quantitation and significantly impact CBCT-based interventional procedures and adaptive radiation therapy.« less

  19. Impact of time-of-flight PET on quantification errors in MR imaging-based attenuation correction.

    PubMed

    Mehranian, Abolfazl; Zaidi, Habib

    2015-04-01

    Time-of-flight (TOF) PET/MR imaging is an emerging imaging technology with great capabilities offered by TOF to improve image quality and lesion detectability. We assessed, for the first time, the impact of TOF image reconstruction on PET quantification errors induced by MR imaging-based attenuation correction (MRAC) using simulation and clinical PET/CT studies. Standard 4-class attenuation maps were derived by segmentation of CT images of 27 patients undergoing PET/CT examinations into background air, lung, soft-tissue, and fat tissue classes, followed by the assignment of predefined attenuation coefficients to each class. For each patient, 4 PET images were reconstructed: non-TOF and TOF both corrected for attenuation using reference CT-based attenuation correction and the resulting 4-class MRAC maps. The relative errors between non-TOF and TOF MRAC reconstructions were compared with their reference CT-based attenuation correction reconstructions. The bias was locally and globally evaluated using volumes of interest (VOIs) defined on lesions and normal tissues and CT-derived tissue classes containing all voxels in a given tissue, respectively. The impact of TOF on reducing the errors induced by metal-susceptibility and respiratory-phase mismatch artifacts was also evaluated using clinical and simulation studies. Our results show that TOF PET can remarkably reduce attenuation correction artifacts and quantification errors in the lungs and bone tissues. Using classwise analysis, it was found that the non-TOF MRAC method results in an error of -3.4% ± 11.5% in the lungs and -21.8% ± 2.9% in bones, whereas its TOF counterpart reduced the errors to -2.9% ± 7.1% and -15.3% ± 2.3%, respectively. The VOI-based analysis revealed that the non-TOF and TOF methods resulted in an average overestimation of 7.5% and 3.9% in or near lung lesions (n = 23) and underestimation of less than 5% for soft tissue and in or near bone lesions (n = 91). Simulation results showed that as TOF resolution improves, artifacts and quantification errors are substantially reduced. TOF PET substantially reduces artifacts and improves significantly the quantitative accuracy of standard MRAC methods. Therefore, MRAC should be less of a concern on future TOF PET/MR scanners with improved timing resolution. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  20. An automatic algorithm for blink-artifact suppression based on iterative template matching: application to single channel recording of cortical auditory evoked potentials

    NASA Astrophysics Data System (ADS)

    Valderrama, Joaquin T.; de la Torre, Angel; Van Dun, Bram

    2018-02-01

    Objective. Artifact reduction in electroencephalogram (EEG) signals is usually necessary to carry out data analysis appropriately. Despite the large amount of denoising techniques available with a multichannel setup, there is a lack of efficient algorithms that remove (not only detect) blink-artifacts from a single channel EEG, which is of interest in many clinical and research applications. This paper describes and evaluates the iterative template matching and suppression (ITMS), a new method proposed for detecting and suppressing the artifact associated with the blink activity from a single channel EEG. Approach. The approach of ITMS consists of (a) an iterative process in which blink-events are detected and the blink-artifact waveform of the analyzed subject is estimated, (b) generation of a signal modeling the blink-artifact, and (c) suppression of this signal from the raw EEG. The performance of ITMS is compared with the multi-window summation of derivatives within a window (MSDW) technique using both synthesized and real EEG data. Main results. Results suggest that ITMS presents an adequate performance in detecting and suppressing blink-artifacts from a single channel EEG. When applied to the analysis of cortical auditory evoked potentials (CAEPs), ITMS provides a significant quality improvement in the resulting responses, i.e. in a cohort of 30 adults, the mean correlation coefficient improved from 0.37 to 0.65 when the blink-artifacts were detected and suppressed by ITMS. Significance. ITMS is an efficient solution to the problem of denoising blink-artifacts in single-channel EEG applications, both in clinical and research fields. The proposed ITMS algorithm is stable; automatic, since it does not require human intervention; low-invasive, because the EEG segments not contaminated by blink-artifacts remain unaltered; and easy to implement, as can be observed in the Matlab script implemeting the algorithm provided as supporting material.

  1. Improvement of dose calculation in radiation therapy due to metal artifact correction using the augmented likelihood image reconstruction.

    PubMed

    Ziemann, Christian; Stille, Maik; Cremers, Florian; Buzug, Thorsten M; Rades, Dirk

    2018-04-17

    Metal artifacts caused by high-density implants lead to incorrectly reconstructed Hounsfield units in computed tomography images. This can result in a loss of accuracy in dose calculation in radiation therapy. This study investigates the potential of the metal artifact reduction algorithms, Augmented Likelihood Image Reconstruction and linear interpolation, in improving dose calculation in the presence of metal artifacts. In order to simulate a pelvis with a double-sided total endoprosthesis, a polymethylmethacrylate phantom was equipped with two steel bars. Artifacts were reduced by applying the Augmented Likelihood Image Reconstruction, a linear interpolation, and a manual correction approach. Using the treatment planning system Eclipse™, identical planning target volumes for an idealized prostate as well as structures for bladder and rectum were defined in corrected and noncorrected images. Volumetric modulated arc therapy plans have been created with double arc rotations with and without avoidance sectors that mask out the prosthesis. The irradiation plans were analyzed for variations in the dose distribution and their homogeneity. Dosimetric measurements were performed using isocentric positioned ionization chambers. Irradiation plans based on images containing artifacts lead to a dose error in the isocenter of up to 8.4%. Corrections with the Augmented Likelihood Image Reconstruction reduce this dose error to 2.7%, corrections with linear interpolation to 3.2%, and manual artifact correction to 4.1%. When applying artifact correction, the dose homogeneity was slightly improved for all investigated methods. Furthermore, the calculated mean doses are higher for rectum and bladder if avoidance sectors are applied. Streaking artifacts cause an imprecise dose calculation within irradiation plans. Using a metal artifact correction algorithm, the planning accuracy can be significantly improved. Best results were accomplished using the Augmented Likelihood Image Reconstruction algorithm. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  2. SU-E-I-63: Quantitative Evaluation of the Effects of Orthopedic Metal Artifact Reduction (OMAR) Software On CT Images for Radiotherapy Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jani, S

    Purpose: CT simulation for patients with metal implants can often be challenging due to artifacts that obscure tumor/target delineation and normal organ definition. Our objective was to evaluate the effectiveness of Orthopedic Metal Artifact Reduction (OMAR), a commercially available software, in reducing metal-induced artifacts and its effect on computed dose during treatment planning. Methods: CT images of water surrounding metallic cylindrical rods made of aluminum, copper and iron were studied in terms of Hounsfield Units (HU) spread. Metal-induced artifacts were characterized in terms of HU/Volume Histogram (HVH) using the Pinnacle treatment planning system. Effects of OMAR on enhancing our abilitymore » to delineate organs on CT and subsequent dose computation were examined in nine (9) patients with hip implants and two (2) patients with breast tissue expanders. Results: Our study characterized water at 1000 HU with a standard deviation (SD) of about 20 HU. The HVHs allowed us to evaluate how the presence of metal changed the HU spread. For example, introducing a 2.54 cm diameter copper rod in water increased the SD in HU of the surrounding water from 20 to 209, representing an increase in artifacts. Subsequent use of OMAR brought the SD down to 78. Aluminum produced least artifacts whereas Iron showed largest amount of artifacts. In general, an increase in kVp and mA during CT scanning showed better effectiveness of OMAR in reducing artifacts. Our dose analysis showed that some isodose contours shifted by several mm with OMAR but infrequently and were nonsignificant in planning process. Computed volumes of various dose levels showed <2% change. Conclusions: In our experience, OMAR software greatly reduced the metal-induced CT artifacts for the majority of patients with implants, thereby improving our ability to delineate tumor and surrounding organs. OMAR had a clinically negligible effect on computed dose within tissues. Partially funded by unrestricted educational grant from Philips.« less

  3. TU-H-206-01: An Automated Approach for Identifying Geometric Distortions in Gamma Cameras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, S; Nelson, J; Samei, E

    2016-06-15

    Purpose: To develop a clinically-deployable, automated process for detecting artifacts in routine nuclear medicine (NM) quality assurance (QA) bar phantom images. Methods: An artifact detection algorithm was created to analyze bar phantom images as part of an ongoing QA program. A low noise, high resolution reference image was acquired from an x-ray of the bar phantom with a Philips Digital Diagnost system utilizing image stitching. NM bar images, acquired for 5 million counts over a 512×512 matrix, were registered to the template image by maximizing mutual information (MI). The MI index was used as an initial test for artifacts; lowmore » values indicate an overall presence of distortions regardless of their spatial location. Images with low MI scores were further analyzed for bar linearity, periodicity, alignment, and compression to locate differences with respect to the template. Findings from each test were spatially correlated and locations failing multiple tests were flagged as potential artifacts requiring additional visual analysis. The algorithm was initially deployed for GE Discovery 670 and Infinia Hawkeye gamma cameras. Results: The algorithm successfully identified clinically relevant artifacts from both systems previously unnoticed by technologists performing the QA. Average MI indices for artifact-free images are 0.55. Images with MI indices < 0.50 have shown 100% sensitivity and specificity for artifact detection when compared with a thorough visual analysis. Correlation of geometric tests confirms the ability to spatially locate the most likely image regions containing an artifact regardless of initial phantom orientation. Conclusion: The algorithm shows the potential to detect gamma camera artifacts that may be missed by routine technologist inspections. Detection and subsequent correction of artifacts ensures maximum image quality and may help to identify failing hardware before it impacts clinical workflow. Going forward, the algorithm is being deployed to monitor data from all gamma cameras within our health system.« less

  4. SU-F-I-08: CT Image Ring Artifact Reduction Based On Prior Image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, C; Qi, H; Chen, Z

    Purpose: In computed tomography (CT) system, CT images with ring artifacts will be reconstructed when some adjacent bins of detector don’t work. The ring artifacts severely degrade CT image quality. We present a useful CT ring artifacts reduction based on projection data correction, aiming at estimating the missing data of projection data accurately, thus removing the ring artifacts of CT images. Methods: The method consists of ten steps: 1) Identification of abnormal pixel line in projection sinogram; 2) Linear interpolation within the pixel line of projection sinogram; 3) FBP reconstruction using interpolated projection data; 4) Filtering FBP image using meanmore » filter; 5) Forwarding projection of filtered FBP image; 6) Subtraction forwarded projection from original projection; 7) Linear interpolation of abnormal pixel line area in the subtraction projection; 8) Adding the interpolated subtraction projection on the forwarded projection; 9) FBP reconstruction using corrected projection data; 10) Return to step 4 until the pre-set iteration number is reached. The method is validated on simulated and real data to restore missing projection data and reconstruct ring artifact-free CT images. Results: We have studied impact of amount of dead bins of CT detector on the accuracy of missing data estimation in projection sinogram. For the simulated case with a resolution of 256 by 256 Shepp-Logan phantom, three iterations are sufficient to restore projection data and reconstruct ring artifact-free images when the dead bins rating is under 30%. The dead-bin-induced artifacts are substantially reduced. More iteration number is needed to reconstruct satisfactory images while the rating of dead bins increases. Similar results were found for a real head phantom case. Conclusion: A practical CT image ring artifact correction scheme based on projection data is developed. This method can produce ring artifact-free CT images feasibly and effectively.« less

  5. [Contrastive analysis of artifacts produced by metal dental crowns in 3.0 T magnetic resonance imaging with six sequences].

    PubMed

    Lan, Gao; Yunmin, Lian; Pu, Wang; Haili, Huai

    2016-06-01

    This study aimed to observe and evaluate six 3.0 T sequences of metallic artifacts produced by metal dental crowns. Dental crowns fabricated with four different materials (Co-Gr, Ni-Gr, Ti alloy and pure Ti) were evaluated. A mature crossbreed dog was used as the experimental animal, and crowns were fabricated for its upper right second premolar. Each crown was examined through head MRI (3.0 T) with six sequences, namely, T₁ weighted-imaging of spin echo (T₁W/SE), T₂ weighted-imaging of inversion recovery (T₂W/IR), T₂ star gradient echo (T₂*/GRE), T2 weighted-imaging of fast spin echo (T₂W/FSE), T₁ weighted-imaging of fluid attenuate inversion recovery (T₂W/FLAIR), and T₂ weighted-imaging of propeller (T₂W/PROP). The largest area and layers of artifacts were assessed and compared. The artifact in the T₂*/GRE sequence was significantly wider than those in the other sequences (P < 0.01), whose artifact extent was not significantly different (P > 0.05). T₂*/GRE exhibit the strongest influence on the artifact, whereas the five other sequences contribute equally to artifact generation.

  6. Analyzing EEG and MEG signals recorded during tES, a reply.

    PubMed

    Noury, Nima; Siegel, Markus

    2018-02-15

    Transcranial Electric Stimulation (tES) is a widely used non-invasive brain stimulation technique. However, strong stimulation artifacts complicate the investigation of neural activity with EEG or MEG during tES. Thus, studying brain signals during tES requires detailed knowledge about the properties of these artifacts. Recently, we characterized the phase- and amplitude-relationship between tES stimulation currents and tES artifacts in EEG and MEG and provided a mathematical model of these artifacts (Noury and Siegel, 2017, and Noury et al., 2016, respectively). Among several other features, we showed that, independent of the stimulation current, the amplitude of tES artifacts is modulated time locked to heartbeat and respiration. In response to our work, a recent paper (Neuling et al., 2017) raised several points concerning the employed stimulation device and methodology. Here, we discuss these points, explain potential misunderstandings, and show that none of the raised concerns are applicable to our results. Furthermore, we explain in detail the physics underlying tES artifacts, and discuss several approaches how to study brain function during tES in the presence of residual artifacts. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Real-Time EEG Signal Enhancement Using Canonical Correlation Analysis and Gaussian Mixture Clustering

    PubMed Central

    Huang, Chih-Sheng; Yang, Wen-Yu; Chuang, Chun-Hsiang; Wang, Yu-Kai

    2018-01-01

    Electroencephalogram (EEG) signals are usually contaminated with various artifacts, such as signal associated with muscle activity, eye movement, and body motion, which have a noncerebral origin. The amplitude of such artifacts is larger than that of the electrical activity of the brain, so they mask the cortical signals of interest, resulting in biased analysis and interpretation. Several blind source separation methods have been developed to remove artifacts from the EEG recordings. However, the iterative process for measuring separation within multichannel recordings is computationally intractable. Moreover, manually excluding the artifact components requires a time-consuming offline process. This work proposes a real-time artifact removal algorithm that is based on canonical correlation analysis (CCA), feature extraction, and the Gaussian mixture model (GMM) to improve the quality of EEG signals. The CCA was used to decompose EEG signals into components followed by feature extraction to extract representative features and GMM to cluster these features into groups to recognize and remove artifacts. The feasibility of the proposed algorithm was demonstrated by effectively removing artifacts caused by blinks, head/body movement, and chewing from EEG recordings while preserving the temporal and spectral characteristics of the signals that are important to cognitive research. PMID:29599950

  8. Hybrid EEG—Eye Tracker: Automatic Identification and Removal of Eye Movement and Blink Artifacts from Electroencephalographic Signal

    PubMed Central

    Mannan, Malik M. Naeem; Kim, Shinjung; Jeong, Myung Yung; Kamran, M. Ahmad

    2016-01-01

    Contamination of eye movement and blink artifacts in Electroencephalogram (EEG) recording makes the analysis of EEG data more difficult and could result in mislead findings. Efficient removal of these artifacts from EEG data is an essential step in improving classification accuracy to develop the brain-computer interface (BCI). In this paper, we proposed an automatic framework based on independent component analysis (ICA) and system identification to identify and remove ocular artifacts from EEG data by using hybrid EEG and eye tracker system. The performance of the proposed algorithm is illustrated using experimental and standard EEG datasets. The proposed algorithm not only removes the ocular artifacts from artifactual zone but also preserves the neuronal activity related EEG signals in non-artifactual zone. The comparison with the two state-of-the-art techniques namely ADJUST based ICA and REGICA reveals the significant improved performance of the proposed algorithm for removing eye movement and blink artifacts from EEG data. Additionally, results demonstrate that the proposed algorithm can achieve lower relative error and higher mutual information values between corrected EEG and artifact-free EEG data. PMID:26907276

  9. Magnetic resonance imaging metallic artifact of commonly encountered surgical implants and foreign material.

    PubMed

    Sutherland-Smith, James; Tilley, Brenda

    2012-01-01

    Magnetic resonance imaging (MRI) artifacts secondary to metallic implants and foreign bodies are well described. Herein, we provide quantitative data from veterinary implants including total hip arthroplasty implants, cranial cruciate repair implants, surgical screws, a skin staple, ligation clips, an identification microchip, ameroid constrictor, and potential foreign bodies including air gun and BB projectiles and a sewing needle. The objects were scanned in a gelatin phantom with plastic grid using standardized T2-weighted turbo-spin echo (TSE), T1-weighted spin echo, and T2*-weighted gradient recalled echo (GRE) image acquisitions at 1.5 T. Maximum linear dimensions and areas of signal voiding and grid distortion were calculated using a DICOM workstation for each sequence and object. Artifact severity was similar between the T2-weighted TSE and T1-weighted images, while the T2*-weighted images were most susceptible to artifact. Metal type influenced artifact size with the largest artifacts arising from steel objects followed by surgical stainless steel, titanium, and lead. For animals with metallic surgical implants or foreign bodies, the quantification of the artifact size will help guide clinicians on the viability of MRI. © 2012 Veterinary Radiology & Ultrasound.

  10. The effects of motion artifact on mechanomyography: A comparative study of microphones and accelerometers.

    PubMed

    Posatskiy, A O; Chau, T

    2012-04-01

    Mechanomyography (MMG) is an important kinesiological tool and potential communication pathway for individuals with disabilities. However, MMG is highly susceptible to contamination by motion artifact due to limb movement. A better understanding of the nature of this contamination and its effects on different sensing methods is required to inform robust MMG sensor design. Therefore, in this study, we recorded MMG from the extensor carpi ulnaris of six able-bodied participants using three different co-located condenser microphone and accelerometer pairings. Contractions at 30% MVC were recorded with and without a shaker-induced single-frequency forearm motion artifact delivered via a custom test rig. Using a signal-to-signal-plus-noise-ratio and the adaptive Neyman curve-based statistic, we found that microphone-derived MMG spectra were significantly less influenced by motion artifact than corresponding accelerometer-derived spectra (p⩽0.05). However, non-vanishing motion artifact harmonics were present in both spectra, suggesting that simple bandpass filtering may not remove artifact influences permeating into typical MMG bands of interest. Our results suggest that condenser microphones are preferred for MMG recordings when the mitigation of motion artifact effects is important. Copyright © 2011. Published by Elsevier Ltd.

  11. Compton scattering artifacts in electron excited X-ray spectra measured with a silicon drift detector.

    PubMed

    Ritchie, Nicholas W M; Newbury, Dale E; Lindstrom, Abigail P

    2011-12-01

    Artifacts are the nemesis of trace element analysis in electron-excited energy dispersive X-ray spectrometry. Peaks that result from nonideal behavior in the detector or sample can fool even an experienced microanalyst into believing that they have trace amounts of an element that is not present. Many artifacts, such as the Si escape peak, absorption edges, and coincidence peaks, can be traced to the detector. Others, such as secondary fluorescence peaks and scatter peaks, can be traced to the sample. We have identified a new sample-dependent artifact that we attribute to Compton scattering of energetic X-rays generated in a small feature and subsequently scattered from a low atomic number matrix. It seems likely that this artifact has not previously been reported because it only occurs under specific conditions and represents a relatively small signal. However, with the advent of silicon drift detectors and their utility for trace element analysis, we anticipate that more people will observe it and possibly misidentify it. Though small, the artifact is not inconsequential. Under some conditions, it is possible to mistakenly identify the Compton scatter artifact as approximately 1% of an element that is not present.

  12. Gaussian Elimination-Based Novel Canonical Correlation Analysis Method for EEG Motion Artifact Removal.

    PubMed

    Roy, Vandana; Shukla, Shailja; Shukla, Piyush Kumar; Rawat, Paresh

    2017-01-01

    The motion generated at the capturing time of electro-encephalography (EEG) signal leads to the artifacts, which may reduce the quality of obtained information. Existing artifact removal methods use canonical correlation analysis (CCA) for removing artifacts along with ensemble empirical mode decomposition (EEMD) and wavelet transform (WT). A new approach is proposed to further analyse and improve the filtering performance and reduce the filter computation time under highly noisy environment. This new approach of CCA is based on Gaussian elimination method which is used for calculating the correlation coefficients using backslash operation and is designed for EEG signal motion artifact removal. Gaussian elimination is used for solving linear equation to calculate Eigen values which reduces the computation cost of the CCA method. This novel proposed method is tested against currently available artifact removal techniques using EEMD-CCA and wavelet transform. The performance is tested on synthetic and real EEG signal data. The proposed artifact removal technique is evaluated using efficiency matrices such as del signal to noise ratio (DSNR), lambda ( λ ), root mean square error (RMSE), elapsed time, and ROC parameters. The results indicate suitablity of the proposed algorithm for use as a supplement to algorithms currently in use.

  13. Artifact-Based Transformation of IBM Global Financing

    NASA Astrophysics Data System (ADS)

    Chao, Tian; Cohn, David; Flatgard, Adrian; Hahn, Sandy; Linehan, Mark; Nandi, Prabir; Nigam, Anil; Pinel, Florian; Vergo, John; Wu, Frederick Y.

    IBM Global Financing (IGF) is transforming its business using the Business Artifact Method, an innovative business process modeling technique that identifies key business artifacts and traces their life cycles as they are processed by the business. IGF is a complex, global business operation with many business design challenges. The Business Artifact Method is a fundamental shift in how to conceptualize, design and implement business operations. The Business Artifact Method was extended to solve the problem of designing a global standard for a complex, end-to-end process while supporting local geographic variations. Prior to employing the Business Artifact method, process decomposition, Lean and Six Sigma methods were each employed on different parts of the financing operation. Although they provided critical input to the final operational model, they proved insufficient for designing a complete, integrated, standard operation. The artifact method resulted in a business operations model that was at the right level of granularity for the problem at hand. A fully functional rapid prototype was created early in the engagement, which facilitated an improved understanding of the redesigned operations model. The resulting business operations model is being used as the basis for all aspects of business transformation in IBM Global Financing.

  14. Artifacts Affecting Musculoskeletal Magnetic Resonance Imaging: Their Origins and Solutions.

    PubMed

    Roth, Eira; Hoff, Michael; Richardson, Michael L; Ha, Alice S; Porrino, Jack

    2016-01-01

    Among articles within the radiology literature, few present the manifestations of magnetic resonance imaging artifacts in a clinically oriented manner. Recognizing such artifacts is imperative given the increasing clinical use of magnetic resonance imaging and the emphasis by the American Board of Radiology on practical physics applications. The purpose of this article is to present magnetic resonance physics principles visually and conceptually in the context of common musculoskeletal radiology artifacts and their solutions, described using nonmathematical explanations. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. MRI-Based Computed Tomography Metal Artifact Correction Method for Improving Proton Range Calculation Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Peter C.; Schreibmann, Eduard; Roper, Justin

    2015-03-15

    Purpose: Computed tomography (CT) artifacts can severely degrade dose calculation accuracy in proton therapy. Prompted by the recently increased popularity of magnetic resonance imaging (MRI) in the radiation therapy clinic, we developed an MRI-based CT artifact correction method for improving the accuracy of proton range calculations. Methods and Materials: The proposed method replaces corrupted CT data by mapping CT Hounsfield units (HU number) from a nearby artifact-free slice, using a coregistered MRI. MRI and CT volumetric images were registered with use of 3-dimensional (3D) deformable image registration (DIR). The registration was fine-tuned on a slice-by-slice basis by using 2D DIR.more » Based on the intensity of paired MRI pixel values and HU from an artifact-free slice, we performed a comprehensive analysis to predict the correct HU for the corrupted region. For a proof-of-concept validation, metal artifacts were simulated on a reference data set. Proton range was calculated using reference, artifactual, and corrected images to quantify the reduction in proton range error. The correction method was applied to 4 unique clinical cases. Results: The correction method resulted in substantial artifact reduction, both quantitatively and qualitatively. On respective simulated brain and head and neck CT images, the mean error was reduced from 495 and 370 HU to 108 and 92 HU after correction. Correspondingly, the absolute mean proton range errors of 2.4 cm and 1.7 cm were reduced to less than 2 mm in both cases. Conclusions: Our MRI-based CT artifact correction method can improve CT image quality and proton range calculation accuracy for patients with severe CT artifacts.« less

  16. Sensor fusion using a hybrid median filter for artifact removal in intraoperative heart rate monitoring.

    PubMed

    Yang, Ping; Dumont, Guy A; Ansermino, J Mark

    2009-04-01

    Intraoperative heart rate is routinely measured independently from the ECG monitor, pulse oximeter, and the invasive blood pressure monitor if available. The presence of artifacts, in one or more of theses signals, especially sustained artifacts, represents a critical challenge for physiological monitoring. When temporal filters are used to suppress sustained artifacts, unwanted delays or signal distortion are often introduced. The aim of this study was to remove artifacts and derive accurate estimates for the heart rate signal by using measurement redundancy. Heart rate measurements from multiple sensors and previous estimates that fall in a short moving window were treated as samples of the same heart rate. A hybrid median filter was used to align these samples into one ordinal series and to select the median as the fused estimate. This method can successfully remove artifacts that are sustained for shorter than half the length of the filter window, or artifacts that are sustained for a longer duration but presented in no more than half of the sensors. The method was tested on both simulated and clinical cases. The performance of the hybrid median filter in the simulated study was compared with that of a two-step estimation process, comprising a threshold-controlled artifact-removal module and a Kalman filter. The estimation accuracy of the hybrid median filter is better than that of the Kalman filter in the presence of artifacts. The hybrid median filter combines the structural and temporal information from two or more sensors and generates a robust estimate of heart rate without requiring strict assumptions about the signal's characteristics. This method is intuitive, computationally simple, and the performance can be easily adjusted. These considerable benefits make this method highly suitable for clinical use.

  17. Magnetic resonance imaging evaluation after implantation of a titanium cervical disc prosthesis: a comparison of 1.5 and 3 Tesla magnet strength.

    PubMed

    Sundseth, Jarle; Jacobsen, Eva A; Kolstad, Frode; Nygaard, Oystein P; Zwart, John A; Hol, Per K

    2013-10-01

    Cervical disc prostheses induce significant amount of artifact in magnetic resonance imaging which may complicate radiologic follow-up after surgery. The purpose of this study was to investigate as to what extent the artifact, induced by the frequently used Discover(®) cervical disc prosthesis, impedes interpretation of the MR images at operated and adjacent levels in 1.5 and 3 Tesla MR. Ten subsequent patients were investigated in both 1.5 and 3 Tesla MR with standard image sequences one year following anterior cervical discectomy with arthroplasty. Two neuroradiologists evaluated the images by consensus. Emphasis was made on signal changes in medulla at all levels and visualization of root canals at operated and adjacent levels. A "blur artifact ratio" was calculated and defined as the height of the artifact on T1 sagittal images related to the operated level. The artifacts induced in 1.5 and 3 Tesla MR were of entirely different character and evaluation of the spinal cord at operated level was impossible in both magnets. Artifacts also made the root canals difficult to assess at operated level and more pronounced in the 3 Tesla MR. At the adjacent levels however, the spinal cord and root canals were completely visualized in all patients. The "blur artifact" induced at operated level was also more pronounced in the 3 Tesla MR. The artifact induced by the Discover(®) titanium disc prosthesis in both 1.5 and 3 Tesla MR, makes interpretation of the spinal cord impossible and visualization of the root canals difficult at operated level. Adjusting the MR sequences to produce the least amount of artifact is important.

  18. Artifact reduction of different metallic implants in flat detector C-arm CT.

    PubMed

    Hung, S-C; Wu, C-C; Lin, C-J; Guo, W-Y; Luo, C-B; Chang, F-C; Chang, C-Y

    2014-07-01

    Flat detector CT has been increasingly used as a follow-up examination after endovascular intervention. Metal artifact reduction has been successfully demonstrated in coil mass cases, but only in a small series. We attempted to objectively and subjectively evaluate the feasibility of metal artifact reduction with various metallic objects and coil lengths. We retrospectively reprocessed the flat detector CT data of 28 patients (15 men, 13 women; mean age, 55.6 years) after they underwent endovascular treatment (20 coiling ± stent placement, 6 liquid embolizers) or shunt drainage (n = 2) between January 2009 and November 2011 by using a metal artifact reduction correction algorithm. We measured CT value ranges and noise by using region-of-interest methods, and 2 experienced neuroradiologists rated the degrees of improved imaging quality and artifact reduction by comparing uncorrected and corrected images. After we applied the metal artifact reduction algorithm, the CT value ranges and the noise were substantially reduced (1815.3 ± 793.7 versus 231.7 ± 95.9 and 319.9 ± 136.6 versus 45.9 ± 14.0; both P < .001) regardless of the types of metallic objects and various sizes of coil masses. The rater study achieved an overall improvement of imaging quality and artifact reduction (85.7% and 78.6% of cases by 2 raters, respectively), with the greatest improvement in the coiling group, moderate improvement in the liquid embolizers, and the smallest improvement in ventricular shunting (overall agreement, 0.857). The metal artifact reduction algorithm substantially reduced artifacts and improved the objective image quality in every studied case. It also allowed improved diagnostic confidence in most cases. © 2014 by American Journal of Neuroradiology.

  19. Reduction of variable-truncation artifacts from beam occlusion during in situ x-ray tomography

    NASA Astrophysics Data System (ADS)

    Borg, Leise; Jørgensen, Jakob S.; Frikel, Jürgen; Sporring, Jon

    2017-12-01

    Many in situ x-ray tomography studies require experimental rigs which may partially occlude the beam and cause parts of the projection data to be missing. In a study of fluid flow in porous chalk using a percolation cell with four metal bars drastic streak artifacts arise in the filtered backprojection (FBP) reconstruction at certain orientations. Projections with non-trivial variable truncation caused by the metal bars are the source of these variable-truncation artifacts. To understand the artifacts a mathematical model of variable-truncation data as a function of metal bar radius and distance to sample is derived and verified numerically and with experimental data. The model accurately describes the arising variable-truncation artifacts across simulated variations of the experimental setup. Three variable-truncation artifact-reduction methods are proposed, all aimed at addressing sinogram discontinuities that are shown to be the source of the streaks. The ‘reduction to limited angle’ (RLA) method simply keeps only non-truncated projections; the ‘detector-directed smoothing’ (DDS) method smooths the discontinuities; while the ‘reflexive boundary condition’ (RBC) method enforces a zero derivative at the discontinuities. Experimental results using both simulated and real data show that the proposed methods effectively reduce variable-truncation artifacts. The RBC method is found to provide the best artifact reduction and preservation of image features using both visual and quantitative assessment. The analysis and artifact-reduction methods are designed in context of FBP reconstruction motivated by computational efficiency practical for large, real synchrotron data. While a specific variable-truncation case is considered, the proposed methods can be applied to general data cut-offs arising in different in situ x-ray tomography experiments.

  20. Preparation of monotectic alloys having a controlled microstructure by directional solidification under dopant-induced interface breakdown

    NASA Technical Reports Server (NTRS)

    Parr, R. A.; Johnston, M. H.; Mcclure, J. C.

    1980-01-01

    Monotectic alloys having aligned spherical particles of rods of the minor component dispersed in a matrix of the major component are prepared by forming a melt containing predetermined amounts of the major and minor components of a chosen monotectic system, providing in the melt a dopant capable of breaking down the liquid solid interface for the chosen alloy, and directionally solidfying the melt at a selected temperature gradient and a selected rate of movement of the liquid-solid interface (growth rate). Shaping of the minor component into spheres or rods and the spacing between them are controlled by the amount of dopant and the temperature gradient and growth rate values. Specific alloy systems include Al Bi, Al Pb and Zn Bi, using a transition element such as iron.

  1. Automatic EEG artifact removal: a weighted support vector machine approach with error correction.

    PubMed

    Shao, Shi-Yun; Shen, Kai-Quan; Ong, Chong Jin; Wilder-Smith, Einar P V; Li, Xiao-Ping

    2009-02-01

    An automatic electroencephalogram (EEG) artifact removal method is presented in this paper. Compared to past methods, it has two unique features: 1) a weighted version of support vector machine formulation that handles the inherent unbalanced nature of component classification and 2) the ability to accommodate structural information typically found in component classification. The advantages of the proposed method are demonstrated on real-life EEG recordings with comparisons made to several benchmark methods. Results show that the proposed method is preferable to the other methods in the context of artifact removal by achieving a better tradeoff between removing artifacts and preserving inherent brain activities. Qualitative evaluation of the reconstructed EEG epochs also demonstrates that after artifact removal inherent brain activities are largely preserved.

  2. Cultural Artifact Detection in Long Wave Infrared Imagery.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Dylan Zachary; Craven, Julia M.; Ramon, Eric

    2017-01-01

    Detection of cultural artifacts from airborne remotely sensed data is an important task in the context of on-site inspections. Airborne artifact detection can reduce the size of the search area the ground based inspection team must visit, thereby improving the efficiency of the inspection process. This report details two algorithms for detection of cultural artifacts in aerial long wave infrared imagery. The first algorithm creates an explicit model for cultural artifacts, and finds data that fits the model. The second algorithm creates a model of the background and finds data that does not fit the model. Both algorithms are appliedmore » to orthomosaic imagery generated as part of the MSFE13 data collection campaign under the spectral technology evaluation project.« less

  3. Biochemical and standard toxic effects of acetaminophen on the macrophyte species Lemna minor and Lemna gibba.

    PubMed

    Nunes, Bruno; Pinto, Glória; Martins, Liliana; Gonçalves, Fernando; Antunes, Sara C

    2014-09-01

    Acetaminophen is globally one of the most prescribed drugs due to its antipyretic and analgesic properties. However, it is highly toxic when the dosage surpasses the detoxification capability of an exposed organism, with involvement of an already described oxidative stress pathway. To address the issue of the ecotoxicity of acetaminophen, we performed acute exposures of two aquatic plant species, Lemna gibba and Lemna minor, to this compound. The selected biomarkers were number of fronds, biomass, chlorophyll content, lipid peroxidation (TBARS assay), and proline content. Our results showed marked differences between the two species. Acetaminophen caused a significant decrease in the number of fronds (EC50 = 446.6 mg/L), and the establishment of a dose-dependent peroxidative damage in L. minor, but not in L. gibba. No effects were reported in both species for the indicative parameters chlorophyll content and total biomass. However, the proline content in L. gibba was substantially reduced. The overall conclusions point to the occurrence of an oxidative stress scenario more prominent for L. minor. However, the mechanisms that allowed L. gibba to cope with acetaminophen exposure were distinct from those reported for L. minor, with the likely involvement of proline as antioxidant.

  4. 32 CFR 636.2 - Program objectives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... provisions of AR 190-22 and AR 210-10. This part is not applicable to vehicle safety inspections and spot... is defined as any mobile object capable of transporting objects or people (e.g., automobile, truck... member's installation driving privilege for cause (e.g., continued minor driving infractions, numerous...

  5. 32 CFR 636.2 - Program objectives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... provisions of AR 190-22 and AR 210-10. This part is not applicable to vehicle safety inspections and spot... is defined as any mobile object capable of transporting objects or people (e.g., automobile, truck... member's installation driving privilege for cause (e.g., continued minor driving infractions, numerous...

  6. 32 CFR 636.2 - Program objectives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... provisions of AR 190-22 and AR 210-10. This part is not applicable to vehicle safety inspections and spot... is defined as any mobile object capable of transporting objects or people (e.g., automobile, truck... member's installation driving privilege for cause (e.g., continued minor driving infractions, numerous...

  7. 32 CFR 636.2 - Program objectives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... provisions of AR 190-22 and AR 210-10. This part is not applicable to vehicle safety inspections and spot... is defined as any mobile object capable of transporting objects or people (e.g., automobile, truck... member's installation driving privilege for cause (e.g., continued minor driving infractions, numerous...

  8. 32 CFR 636.2 - Program objectives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... provisions of AR 190-22 and AR 210-10. This part is not applicable to vehicle safety inspections and spot... is defined as any mobile object capable of transporting objects or people (e.g., automobile, truck... member's installation driving privilege for cause (e.g., continued minor driving infractions, numerous...

  9. Correction of Non-Linear Propagation Artifact in Contrast-Enhanced Ultrasound Imaging of Carotid Arteries: Methods and in Vitro Evaluation.

    PubMed

    Yildiz, Yesna O; Eckersley, Robert J; Senior, Roxy; Lim, Adrian K P; Cosgrove, David; Tang, Meng-Xing

    2015-07-01

    Non-linear propagation of ultrasound creates artifacts in contrast-enhanced ultrasound images that significantly affect both qualitative and quantitative assessments of tissue perfusion. This article describes the development and evaluation of a new algorithm to correct for this artifact. The correction is a post-processing method that estimates and removes non-linear artifact in the contrast-specific image using the simultaneously acquired B-mode image data. The method is evaluated on carotid artery flow phantoms with large and small vessels containing microbubbles of various concentrations at different acoustic pressures. The algorithm significantly reduces non-linear artifacts while maintaining the contrast signal from bubbles to increase the contrast-to-tissue ratio by up to 11 dB. Contrast signal from a small vessel 600 μm in diameter buried in tissue artifacts before correction was recovered after the correction. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Artifact correction in diffusion MRI of non-human primate brains on a clinical 3T scanner.

    PubMed

    Zhang, Xiaodong; Kirsch, John E; Zhong, Xiaodong

    2016-02-01

    Smearing artifacts were observed and investigated in diffusion tensor imaging (DTI) studies of macaque monkeys on a clinical whole-body 3T scanner. Four adult macaques were utilized to evaluate DTI artifacts. DTI images were acquired with a single-shot echo-planar imaging (EPI) sequence using a parallel imaging technique. The smearing artifacts observed on the diffusion-weighted images and fractional anisotropy maps were caused by the incomplete fat suppression due to the irregular macaque frontal skull geometry and anatomy. The artifact can be reduced substantially using a novel three-dimensional (3D) shimming procedure. The smearing artifacts observed on diffusion weighted images and fractional anisotropy (FA) maps of macaque brains can be reduced substantially using a robust 3D shimming approach. The DTI protocol combined with the shimming procedure could be a robust approach to examine brain connectivity and white matter integrity of non-human primates using a conventional clinical setting. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Ultrafast Ultrasound Imaging Using Combined Transmissions With Cross-Coherence-Based Reconstruction.

    PubMed

    Zhang, Yang; Guo, Yuexin; Lee, Wei-Ning

    2018-02-01

    Plane-wave-based ultrafast imaging has become the prevalent technique for non-conventional ultrasound imaging. The image quality, especially in terms of the suppression of artifacts, is generally compromised by reducing the number of transmissions for a higher frame rate. We hereby propose a new ultrafast imaging framework that reduces not only the side lobe artifacts but also the axial lobe artifacts using combined transmissions with a new coherence-based factor. The results from simulations, in vitro wire phantoms, the ex vivo porcine artery, and the in vivo porcine heart show that our proposed methodology greatly reduced the axial lobe artifact by 25±5 dB compared with coherent plane-wave compounding (CPWC), which was considered as the ultrafast imaging standard, and suppressed side lobe artifacts by 15 ± 5 dB compared with CPWC and coherent spherical-wave compounding. The reduction of artifacts in our proposed ultrafast imaging framework led to a better boundary delineation of soft tissues than CPWC.

  12. Artifacts Quantification of Metal Implants in MRI

    NASA Astrophysics Data System (ADS)

    Vrachnis, I. N.; Vlachopoulos, G. F.; Maris, T. G.; Costaridou, L. I.

    2017-11-01

    The presence of materials with different magnetic properties, such as metal implants, causes distortion of the magnetic field locally, resulting in signal voids and pile ups, i.e. susceptibility artifacts in MRI. Quantitative and unbiased measurement of the artifact is prerequisite for optimization of acquisition parameters. In this study an image gradient based segmentation method is proposed for susceptibility artifact quantification. The method captures abrupt signal alterations by calculation of the image gradient. Then the artifact is quantified in terms of its extent by an automated cross entropy thresholding method as image area percentage. The proposed method for artifact quantification was tested in phantoms containing two orthopedic implants with significantly different magnetic permeabilities. The method was compared against a method proposed in the literature, considered as a reference, demonstrating moderate to good correlation (Spearman’s rho = 0.62 and 0.802 in case of titanium and stainless steel implants). The automated character of the proposed quantification method seems promising towards MRI acquisition parameter optimization.

  13. Efficiency test of filtering methods for the removal of transcranial magnetic stimulation artifacts on human electroencephalography with artificially transcranial magnetic stimulation-corrupted signals

    NASA Astrophysics Data System (ADS)

    Zilber, Nicolas A.; Katayama, Yoshinori; Iramina, Keiji; Erich, Wintermantel

    2010-05-01

    A new approach is proposed to test the efficiency of methods, such as the Kalman filter and the independent component analysis (ICA), when applied to remove the artifacts induced by transcranial magnetic stimulation (TMS) from electroencephalography (EEG). By using EEG recordings corrupted by TMS induction, the shape of the artifacts is approximately described with a model based on an equivalent circuit simulation. These modeled artifacts are subsequently added to other EEG signals—this time not influenced by TMS. The resulting signals prove of interest since we also know their form without the pseudo-TMS artifacts. Therefore, they enable us to use a fit test to compare the signals we obtain after removing the artifacts with the original signals. This efficiency test turned out very useful in comparing the methods between them, as well as in determining the parameters of the filtering that give satisfactory results with the automatic ICA.

  14. Reduction of respiratory ghosting motion artifacts in conventional two-dimensional multi-slice Cartesian turbo spin-echo: which k-space filling order is the best?

    PubMed

    Inoue, Yuuji; Yoneyama, Masami; Nakamura, Masanobu; Takemura, Atsushi

    2018-06-01

    The two-dimensional Cartesian turbo spin-echo (TSE) sequence is widely used in routine clinical studies, but it is sensitive to respiratory motion. We investigated the k-space orders in Cartesian TSE that can effectively reduce motion artifacts. The purpose of this study was to demonstrate the relationship between k-space order and degree of motion artifacts using a moving phantom. We compared the degree of motion artifacts between linear and asymmetric k-space orders. The actual spacing of ghost artifacts in the asymmetric order was doubled compared with that in the linear order in the free-breathing situation. The asymmetric order clearly showed less sensitivity to incomplete breath-hold at the latter half of the imaging period. Because of the actual number of partitions of the k-space and the temporal filling order, the asymmetric k-space order of Cartesian TSE was superior to the linear k-space order for reduction of ghosting motion artifacts.

  15. A Practical Framework for Cartographic Design

    NASA Astrophysics Data System (ADS)

    Denil, Mark

    2018-05-01

    Creation of a map artifact that can be recognized, accepted, read, and absorbed is the cartographer's chief responsibility. This involves bringing coherence and order out of chaos and randomness through the construction of map artifacts that mediate processes of social communication. Maps are artifacts, first and foremost: they are artifacts with particular formal attributes. It is the formal aspects of the map artifact that allows it to invoke and sustain a reading as a map. This paper examines Cartographic Design as the sole means at the cartographer's disposal for constructing the meaning bearing artifacts we know as maps, by placing it in a center of a practical analytic framework. The framework draws together the Theoretic and Craft aspects of map making, and examines how Style and Taste operate through the rubric of a schema of Mapicity to produce high quality maps. The role of the Cartographic Canon, and the role of Critique, are also explored, and a few design resources are identified.

  16. Distributed Cognition and Distributed Morality: Agency, Artifacts and Systems.

    PubMed

    Heersmink, Richard

    2017-04-01

    There are various philosophical approaches and theories describing the intimate relation people have to artifacts. In this paper, I explore the relation between two such theories, namely distributed cognition and distributed morality theory. I point out a number of similarities and differences in these views regarding the ontological status they attribute to artifacts and the larger systems they are part of. Having evaluated and compared these views, I continue by focussing on the way cognitive artifacts are used in moral practice. I specifically conceptualise how such artifacts (a) scaffold and extend moral reasoning and decision-making processes, (b) have a certain moral status which is contingent on their cognitive status, and (c) whether responsibility can be attributed to distributed systems. This paper is primarily written for those interested in the intersection of cognitive and moral theory as it relates to artifacts, but also for those independently interested in philosophical debates in extended and distributed cognition and ethics of (cognitive) technology.

  17. Analysis on fuel breeding capability of FBR core region based on minor actinide recycling doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Permana, Sidik; Novitrian,; Waris, Abdul

    Nuclear fuel breeding based on the capability of fuel conversion capability can be achieved by conversion ratio of some fertile materials into fissile materials during nuclear reaction processes such as main fissile materials of U-233, U-235, Pu-239 and Pu-241 and for fertile materials of Th-232, U-238, and Pu-240 as well as Pu-238. Minor actinide (MA) loading option which consists of neptunium, americium and curium will gives some additional contribution from converted MA into plutonium such as conversion Np-237 into Pu-238 and it's produced Pu-238 converts to Pu-239 via neutron capture. Increasing composition of Pu-238 can be used to produce fissilemore » material of Pu-239 as additional contribution. Trans-uranium (TRU) fuel (Mixed fuel loading of MOX (U-Pu) and MA composition) and mixed oxide (MOX) fuel compositions are analyzed for comparative analysis in order to show the effect of MA to the plutonium productions in core in term of reactor criticality condition and fuel breeding capability. In the present study, neptunium (Np) nuclide is used as a representative of MAin trans-uranium (TRU) fuel composition as Np-MOX fuel type. It was loaded into the core region gives significant contribution to reduce the excess reactivity in comparing to mixed oxide (MOX) fuel and in the same time it contributes to increase nuclear fuel breeding capability of the reactor. Neptunium fuel loading scheme in FBR core region gives significant production of Pu-238 as fertile material to absorp neutrons for reducing excess reactivity and additional contribution for fuel breeding.« less

  18. Correction of motion artifacts in OCT-AFI data collected in airways (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Abouei, Elham; Lane, Pierre M.; Pahlevaninezhad, Hamid; Lee, Anthony; Lam, Stephen; MacAulay, Calum E.

    2016-03-01

    Abstract: Optical coherence tomography (OCT) provides in vivo imaging with near-histologic resolution of tissue morphology. OCT has been successfully employed in clinical practice in non-pulmonary fields of medicine such as ophthalmology and cardiology. Studies suggest that OCT has the potential to be a powerful tool for the detection and localization of malignant and non-malignant pulmonary diseases. The combination of OCT with autofluorescence imaging (AFI) provides valuable information about the structural and metabolic state of tissues. Successful application of OCT or OCT-AFI to the field of pulmonary medicine requires overcoming several challenges. This work address those associated with motion: cardiac cycle, breathing and non-uniform rotation distortion (NURD) artifacts. Mechanically rotated endoscopic probes often suffer from image degradation due to NURD. In addition cardiac and breathing motion artifacts may be present in-vivo that are not seen ex-vivo. These motion artifacts can be problematic in OCT-AFI systems with slower acquisition rates and have been observed to generate identifiable prominent artifacts which make confident interpretation of observed structures (blood vessels, etc) difficult. Understanding and correcting motion artifact could improve the image quality and interpretation. In this work, the motion artifacts in pulmonary OCT-AFI data sets are estimated in both AFI and OCT images using a locally adaptive registration algorithm that can be used to correct/reduce such artifacts. Performance of the algorithm is evaluated on images of a NURD phantom and on in-vivo OCT-AFI datasets of peripheral lung airways.

  19. [Impact of point spread function correction in standardized uptake value quantitation for positron emission tomography images: a study based on phantom experiments and clinical images].

    PubMed

    Nakamura, Akihiro; Tanizaki, Yasuo; Takeuchi, Miho; Ito, Shigeru; Sano, Yoshitaka; Sato, Mayumi; Kanno, Toshihiko; Okada, Hiroyuki; Torizuka, Tatsuo; Nishizawa, Sadahiko

    2014-06-01

    While point spread function (PSF)-based positron emission tomography (PET) reconstruction effectively improves the spatial resolution and image quality of PET, it may damage its quantitative properties by producing edge artifacts, or Gibbs artifacts, which appear to cause overestimation of regional radioactivity concentration. In this report, we investigated how edge artifacts produce negative effects on the quantitative properties of PET. Experiments with a National Electrical Manufacturers Association (NEMA) phantom, containing radioactive spheres of a variety of sizes and background filled with cold air or water, or radioactive solutions, showed that profiles modified by edge artifacts were reproducible regardless of background μ values, and the effects of edge artifacts increased with increasing sphere-to-background radioactivity concentration ratio (S/B ratio). Profiles were also affected by edge artifacts in complex fashion in response to variable combinations of sphere sizes and S/B ratios; and central single-peak overestimation up to 50% was occasionally noted in relatively small spheres with high S/B ratios. Effects of edge artifacts were obscured in spheres with low S/B ratios. In patient images with a variety of focal lesions, areas of higher radioactivity accumulation were generally more enhanced by edge artifacts, but the effects were variable depending on the size of and accumulation in the lesion. PET images generated using PSF-based reconstruction are therefore not appropriate for the evaluation of SUV.

  20. Suppression of stimulus artifact contaminating electrically evoked electromyography.

    PubMed

    Liu, Jie; Li, Sheng; Li, Xiaoyan; Klein, Cliff; Rymer, William Z; Zhou, Ping

    2014-01-01

    Electrical stimulation of muscle or nerve is a very useful technique for understanding of muscle activity and its pathological changes for both diagnostic and therapeutic purposes. During electrical stimulation of a muscle, the recorded M wave is often contaminated by a stimulus artifact. The stimulus artifact must be removed for appropriate analysis and interpretation of M waves. The objective of this study was to develop a novel software based method to remove stimulus artifacts contaminating or superimposing with electrically evoked surface electromyography (EMG) or M wave signals. The multiple stage method uses a series of signal processing techniques, including highlighting and detection of stimulus artifacts using Savitzky-Golay filtering, estimation of the artifact contaminated region with Otsu thresholding, and reconstruction of such region using signal interpolation and smoothing. The developed method was tested using M wave signals recorded from biceps brachii muscles by a linear surface electrode array. To evaluate the performance, a series of semi-synthetic signals were constructed from clean M wave and stimulus artifact recordings with different degrees of overlap between them. The effectiveness of the developed method was quantified by a significant increase in correlation coefficient and a significant decrease in root mean square error between the clean M wave and the reconstructed M wave, compared with those between the clean M wave and the originally contaminated signal. The validity of the developed method was also demonstrated when tested on each channel's M wave recording using a linear electrode array. The developed method can suppress stimulus artifacts contaminating M wave recordings.

  1. Methods for artifact detection and removal from scalp EEG: A review.

    PubMed

    Islam, Md Kafiul; Rastegarnia, Amir; Yang, Zhi

    2016-11-01

    Electroencephalography (EEG) is the most popular brain activity recording technique used in wide range of applications. One of the commonly faced problems in EEG recordings is the presence of artifacts that come from sources other than brain and contaminate the acquired signals significantly. Therefore, much research over the past 15 years has focused on identifying ways for handling such artifacts in the preprocessing stage. However, this is still an active area of research as no single existing artifact detection/removal method is complete or universal. This article presents an extensive review of the existing state-of-the-art artifact detection and removal methods from scalp EEG for all potential EEG-based applications and analyses the pros and cons of each method. First, a general overview of the different artifact types that are found in scalp EEG and their effect on particular applications are presented. In addition, the methods are compared based on their ability to remove certain types of artifacts and their suitability in relevant applications (only functional comparison is provided not performance evaluation of methods). Finally, the future direction and expected challenges of current research is discussed. Therefore, this review is expected to be helpful for interested researchers who will develop and/or apply artifact handling algorithm/technique in future for their applications as well as for those willing to improve the existing algorithms or propose a new solution in this particular area of research. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Including the effect of motion artifacts in noise and performance analysis of dual-energy contrast-enhanced mammography

    NASA Astrophysics Data System (ADS)

    Allec, N.; Abbaszadeh, S.; Scott, C. C.; Lewin, J. M.; Karim, K. S.

    2012-12-01

    In contrast-enhanced mammography (CEM), the dual-energy dual-exposure technique, which can leverage existing conventional mammography infrastructure, relies on acquiring the low- and high-energy images using two separate exposures. The finite time between image acquisition leads to motion artifacts in the combined image. Motion artifacts can lead to greater anatomical noise in the combined image due to increased mismatch of the background tissue in the images to be combined, however the impact has not yet been quantified. In this study we investigate a method to include motion artifacts in the dual-energy noise and performance analysis. The motion artifacts are included via an extended cascaded systems model. To validate the model, noise power spectra of a previous dual-energy clinical study are compared to that of the model. The ideal observer detectability is used to quantify the effect of motion artifacts on tumor detectability. It was found that the detectability can be significantly degraded when motion is present (e.g., detectability of 2.5 mm radius tumor decreased by approximately a factor of 2 for translation motion on the order of 1000 μm). The method presented may be used for a more comprehensive theoretical noise and performance analysis and fairer theoretical performance comparison between dual-exposure techniques, where motion artifacts are present, and single-exposure techniques, where low- and high-energy images are acquired simultaneously and motion artifacts are absent.

  3. High-throughput ocular artifact reduction in multichannel electroencephalography (EEG) using component subspace projection.

    PubMed

    Ma, Junshui; Bayram, Sevinç; Tao, Peining; Svetnik, Vladimir

    2011-03-15

    After a review of the ocular artifact reduction literature, a high-throughput method designed to reduce the ocular artifacts in multichannel continuous EEG recordings acquired at clinical EEG laboratories worldwide is proposed. The proposed method belongs to the category of component-based methods, and does not rely on any electrooculography (EOG) signals. Based on a concept that all ocular artifact components exist in a signal component subspace, the method can uniformly handle all types of ocular artifacts, including eye-blinks, saccades, and other eye movements, by automatically identifying ocular components from decomposed signal components. This study also proposes an improved strategy to objectively and quantitatively evaluate artifact reduction methods. The evaluation strategy uses real EEG signals to synthesize realistic simulated datasets with different amounts of ocular artifacts. The simulated datasets enable us to objectively demonstrate that the proposed method outperforms some existing methods when no high-quality EOG signals are available. Moreover, the results of the simulated datasets improve our understanding of the involved signal decomposition algorithms, and provide us with insights into the inconsistency regarding the performance of different methods in the literature. The proposed method was also applied to two independent clinical EEG datasets involving 28 volunteers and over 1000 EEG recordings. This effort further confirms that the proposed method can effectively reduce ocular artifacts in large clinical EEG datasets in a high-throughput fashion. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Including the effect of motion artifacts in noise and performance analysis of dual-energy contrast-enhanced mammography.

    PubMed

    Allec, N; Abbaszadeh, S; Scott, C C; Lewin, J M; Karim, K S

    2012-12-21

    In contrast-enhanced mammography (CEM), the dual-energy dual-exposure technique, which can leverage existing conventional mammography infrastructure, relies on acquiring the low- and high-energy images using two separate exposures. The finite time between image acquisition leads to motion artifacts in the combined image. Motion artifacts can lead to greater anatomical noise in the combined image due to increased mismatch of the background tissue in the images to be combined, however the impact has not yet been quantified. In this study we investigate a method to include motion artifacts in the dual-energy noise and performance analysis. The motion artifacts are included via an extended cascaded systems model. To validate the model, noise power spectra of a previous dual-energy clinical study are compared to that of the model. The ideal observer detectability is used to quantify the effect of motion artifacts on tumor detectability. It was found that the detectability can be significantly degraded when motion is present (e.g., detectability of 2.5 mm radius tumor decreased by approximately a factor of 2 for translation motion on the order of 1000 μm). The method presented may be used for a more comprehensive theoretical noise and performance analysis and fairer theoretical performance comparison between dual-exposure techniques, where motion artifacts are present, and single-exposure techniques, where low- and high-energy images are acquired simultaneously and motion artifacts are absent.

  5. Microbial Detoxification of Deoxynivalenol (DON), Assessed via a Lemna minor L. Bioassay, through Biotransformation to 3-epi-DON and 3-epi-DOM-1

    PubMed Central

    Vanhoutte, Ilse; De Mets, Laura; De Boevre, Marthe; Uka, Valdet; Di Mavungu, José Diana; De Saeger, Sarah; De Gelder, Leen; Audenaert, Kris

    2017-01-01

    Mycotoxins are toxic metabolites produced by fungi. To mitigate mycotoxins in food or feed, biotransformation is an emerging technology in which microorganisms degrade toxins into non-toxic metabolites. To monitor deoxynivalenol (DON) biotransformation, analytical tools such as ELISA and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) are typically used. However, these techniques do not give a decisive answer about the remaining toxicity of possible biotransformation products. Hence, a bioassay using Lemna minor L. was developed. A dose–response analysis revealed significant inhibition in the growth of L. minor exposed to DON concentrations of 0.25 mg/L and higher. Concentrations above 1 mg/L were lethal for the plant. This bioassay is far more sensitive than previously described systems. The bioassay was implemented to screen microbial enrichment cultures, originating from rumen fluid, soil, digestate and activated sludge, on their biotransformation and detoxification capability of DON. The enrichment cultures originating from soil and activated sludge were capable of detoxifying and degrading 5 and 50 mg/L DON. In addition, the metabolites 3-epi-DON and the epimer of de-epoxy-DON (3-epi-DOM-1) were found as biotransformation products of both consortia. Our work provides a new valuable tool to screen microbial cultures for their detoxification capacity. PMID:28208799

  6. Microbial Detoxification of Deoxynivalenol (DON), Assessed via a Lemna minor L. Bioassay, through Biotransformation to 3-epi-DON and 3-epi-DOM-1.

    PubMed

    Vanhoutte, Ilse; De Mets, Laura; De Boevre, Marthe; Uka, Valdet; Di Mavungu, José Diana; De Saeger, Sarah; De Gelder, Leen; Audenaert, Kris

    2017-02-13

    Mycotoxins are toxic metabolites produced by fungi. To mitigate mycotoxins in food or feed, biotransformation is an emerging technology in which microorganisms degrade toxins into non-toxic metabolites. To monitor deoxynivalenol (DON) biotransformation, analytical tools such as ELISA and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) are typically used. However, these techniques do not give a decisive answer about the remaining toxicity of possible biotransformation products. Hence, a bioassay using Lemna minor L. was developed. A dose-response analysis revealed significant inhibition in the growth of L. minor exposed to DON concentrations of 0.25 mg/L and higher. Concentrations above 1 mg/L were lethal for the plant. This bioassay is far more sensitive than previously described systems. The bioassay was implemented to screen microbial enrichment cultures, originating from rumen fluid, soil, digestate and activated sludge, on their biotransformation and detoxification capability of DON. The enrichment cultures originating from soil and activated sludge were capable of detoxifying and degrading 5 and 50 mg/L DON. In addition, the metabolites 3-epi-DON and the epimer of de-epoxy-DON (3-epi-DOM-1) were found as biotransformation products of both consortia. Our work provides a new valuable tool to screen microbial cultures for their detoxification capacity.

  7. A search for minor bodies in the Jovian tenuous ring system

    NASA Astrophysics Data System (ADS)

    Malinnikova Bang, A.; Joergensen, J. L.; Connerney, J. E.; Benn, M.; Denver, T.; Oliversen, R. J.; Lawton, P.

    2013-12-01

    The magnetometer experiment on the Juno spacecraft, is equipped with four fully autonomous star trackers, which apart from delivering highly accurate attitude information for the magnetometer sensors, and the inherent imaging capabilities of a low light camera system, also can detect and track luminous objects that exhibit an apparent motion rate relative to the background. The Juno magnetometer star trackers are pointed 13deg of the spacecraft anti-spin vector, each having a field of view of 13 by 18 degrees and operated at 4Hz. As the spacecraft spin, each camera will cover an annulus shaped disk with an inner radius of 7.5 degrees, and an outer radius of 20.5deg. When in science orbit, the Juno trajectory near peri-jove, will result in the anti-spin vector scanning across the tenuous rings. The combination of this scanning motion with the rotation of the camera field of view results in a near perfect opportunity to detect and track minor bodies in the inner part of the rings. The operations of this mode, is first tested in flight during the Juno Earth Flyby 9th October 2013, where the Moon is used as a known target. We present a few results of this test, and based on scale laws we will discuss the systems capability of detecting minor bodies in the Jovian ring system in terms of distance, velocity, albedo and range. Also, because the magnetometer star trackers are offset from the spin axis, the distance to a detected object can be derived by simple triangulation of the apparent direction as observed before, under and after passage under the rings. We discuss how this technique may be used to determine the orbit, size and albedo, of minor bodies thus detected and tracked.

  8. Coming of age in an ant colony: cephalic muscle maturation accompanies behavioral development in Pheidole dentata

    NASA Astrophysics Data System (ADS)

    Muscedere, Mario L.; Traniello, James F. A.; Gronenberg, Wulfila

    2011-09-01

    Although several neurobiological and genetic correlates of aging and behavioral development have been identified in social insect workers, little is known about how other age-related physiological processes, such as muscle maturation, contribute to task performance. We examined post-eclosion growth of three major muscles of the head capsule in major and minor workers of the ant Pheidole dentata using workers of different ages with distinct task repertoires. Mandible closer muscle fibers, which provide bite force and are thus critical for the use of the mandibles for biting and load carrying, fill the posterio-lateral portions of the head capsule in mature, older workers of both subcastes. Mandible closer fibers of newly eclosed workers, in contrast, are significantly thinner in both subcastes and grow during at least the next 6 days in minor workers, suggesting this muscle has reduced functionality for a substantial period of adult life and thus constrains task performance capability. Fibers of the antennal muscles and the pharynx dilator, which control antennal movements and food intake, respectively, also increase significantly in thickness with age. However, these fibers are only slightly thinner in newly eclosed workers and attain their maximum thickness over a shorter time span in minors. The different growth rates of these functionally distinct muscles likely have consequences for how adult P. dentata workers, particularly minors, develop their full and diverse task repertoire as they age. Workers may be capable of feeding and interacting socially soon after eclosion, but require a longer period of development to effectively use their mandibles, which enable the efficient performance of tasks ranging from nursing to foraging and defense.

  9. Artificial arterial blood pressure artifact models and an evaluation of a robust blood pressure and heart rate estimator

    PubMed Central

    Li, Qiao; Mark, Roger G; Clifford, Gari D

    2009-01-01

    Background Within the intensive care unit (ICU), arterial blood pressure (ABP) is typically recorded at different (and sometimes uneven) sampling frequencies, and from different sensors, and is often corrupted by different artifacts and noise which are often non-Gaussian, nonlinear and nonstationary. Extracting robust parameters from such signals, and providing confidences in the estimates is therefore difficult and requires an adaptive filtering approach which accounts for artifact types. Methods Using a large ICU database, and over 6000 hours of simultaneously acquired electrocardiogram (ECG) and ABP waveforms sampled at 125 Hz from a 437 patient subset, we documented six general types of ABP artifact. We describe a new ABP signal quality index (SQI), based upon the combination of two previously reported signal quality measures weighted together. One index measures morphological normality, and the other degradation due to noise. After extracting a 6084-hour subset of clean data using our SQI, we evaluated a new robust tracking algorithm for estimating blood pressure and heart rate (HR) based upon a Kalman Filter (KF) with an update sequence modified by the KF innovation sequence and the value of the SQI. In order to do this, we have created six novel models of different categories of artifacts that we have identified in our ABP waveform data. These artifact models were then injected into clean ABP waveforms in a controlled manner. Clinical blood pressure (systolic, mean and diastolic) estimates were then made from the ABP waveforms for both clean and corrupted data. The mean absolute error for systolic, mean and diastolic blood pressure was then calculated for different levels of artifact pollution to provide estimates of expected errors given a single value of the SQI. Results Our artifact models demonstrate that artifact types have differing effects on systolic, diastolic and mean ABP estimates. We show that, for most artifact types, diastolic ABP estimates are less noise-sensitive than mean ABP estimates, which in turn are more robust than systolic ABP estimates. We also show that our SQI can provide error bounds for both HR and ABP estimates. Conclusion The KF/SQI-fusion method described in this article was shown to provide an accurate estimate of blood pressure and HR derived from the ABP waveform even in the presence of high levels of persistent noise and artifact, and during extreme bradycardia and tachycardia. Differences in error between artifact types, measurement sensors and the quality of the source signal can be factored into physiological estimation using an unbiased adaptive filter, signal innovation and signal quality measures. PMID:19586547

  10. Metallic artifact mitigation and organ-constrained tissue assignment for Monte Carlo calculations of permanent implant lung brachytherapy.

    PubMed

    Sutherland, J G H; Miksys, N; Furutani, K M; Thomson, R M

    2014-01-01

    To investigate methods of generating accurate patient-specific computational phantoms for the Monte Carlo calculation of lung brachytherapy patient dose distributions. Four metallic artifact mitigation methods are applied to six lung brachytherapy patient computed tomography (CT) images: simple threshold replacement (STR) identifies high CT values in the vicinity of the seeds and replaces them with estimated true values; fan beam virtual sinogram replaces artifact-affected values in a virtual sinogram and performs a filtered back-projection to generate a corrected image; 3D median filter replaces voxel values that differ from the median value in a region of interest surrounding the voxel and then applies a second filter to reduce noise; and a combination of fan beam virtual sinogram and STR. Computational phantoms are generated from artifact-corrected and uncorrected images using several tissue assignment schemes: both lung-contour constrained and unconstrained global schemes are considered. Voxel mass densities are assigned based on voxel CT number or using the nominal tissue mass densities. Dose distributions are calculated using the EGSnrc user-code BrachyDose for (125)I, (103)Pd, and (131)Cs seeds and are compared directly as well as through dose volume histograms and dose metrics for target volumes surrounding surgical sutures. Metallic artifact mitigation techniques vary in ability to reduce artifacts while preserving tissue detail. Notably, images corrected with the fan beam virtual sinogram have reduced artifacts but residual artifacts near sources remain requiring additional use of STR; the 3D median filter removes artifacts but simultaneously removes detail in lung and bone. Doses vary considerably between computational phantoms with the largest differences arising from artifact-affected voxels assigned to bone in the vicinity of the seeds. Consequently, when metallic artifact reduction and constrained tissue assignment within lung contours are employed in generated phantoms, this erroneous assignment is reduced, generally resulting in higher doses. Lung-constrained tissue assignment also results in increased doses in regions of interest due to a reduction in the erroneous assignment of adipose to voxels within lung contours. Differences in dose metrics calculated for different computational phantoms are sensitive to radionuclide photon spectra with the largest differences for (103)Pd seeds and smallest but still considerable differences for (131)Cs seeds. Despite producing differences in CT images, dose metrics calculated using the STR, fan beam + STR, and 3D median filter techniques produce similar dose metrics. Results suggest that the accuracy of dose distributions for permanent implant lung brachytherapy is improved by applying lung-constrained tissue assignment schemes to metallic artifact corrected images.

  11. Naturalistic Experience and the Early Use of Symbolic Artifacts

    ERIC Educational Resources Information Center

    Troseth, Georgene L.; Casey, Amy M.; Lawver, Kelly A.; Walker, Joan M. T.; Cole, David A.

    2007-01-01

    Experience with a variety of symbolic artifacts has been proposed as a mechanism underlying symbolic development. In this study, the parents of 120 2-year-old children who participated in symbolic object retrieval tasks completed a questionnaire regarding their children's naturalistic experience with symbolic artifacts and activities. In separate…

  12. Camera artifacts in IUE spectra

    NASA Technical Reports Server (NTRS)

    Bruegman, O. W.; Crenshaw, D. M.

    1994-01-01

    This study of emission line mimicking features in the IUE cameras has produced an atlas of artifiacts in high-dispersion images with an accompanying table of prominent artifacts and a table of prominent artifacts in the raw images along with a medium image of the sky background for each IUE camera.

  13. Young Children's Rapid Learning about Artifacts

    ERIC Educational Resources Information Center

    Casler, Krista; Kelemen, Deborah

    2005-01-01

    Tool use is central to interdisciplinary debates about the evolution and distinctiveness of human intelligence, yet little is actually known about how human conceptions of artifacts develop. Results across these two studies show that even 2-year-olds approach artifacts in ways distinct from captive tool-using monkeys. Contrary to adult intuition,…

  14. SAMPLING ARTIFACTS IN MEASUREMENT OF ELEMENTAL AND ORGANIC CARBON: LOW VOLUME SAMPLING IN INDOOR AND OUTDOOR ENVIRONMENTS

    EPA Science Inventory

    Experiments were completed to determine the extent of artifacts from sampling elemental carbon (EC) and organic carbon (OC) under sample conditions consistent with personal sampling. Two different types of experiments were completed; the first examined possible artifacts from oil...

  15. Art[middle dot]I/f/act[middle dot]ology: Curricular Artifacts in Autoethnographic Research

    ERIC Educational Resources Information Center

    Brogden, Lace Marie

    2008-01-01

    Contemporary curriculum theorists conceptualize curriculum, schooling, and the teacher as sites of discursive production and as dwelling places for theory. Drawing on memory work around childhood report cards, this article uses commonplace artifacts to reassemble autoethnographic memory. In sifting through memories and artifacts, the author…

  16. THE POTENTIAL INFLUENCES OF FACE VELOCITY ON PM ARTIFACT LOSSES FOR EXPOSURE SAMPLERS USING TEFLON FILTER COLLECTION SUBSTRATES

    EPA Science Inventory

    The influences of artifact formations and losses on Particulate Matter (PM) sampler collection surfaces are well documented, especially for nitrates (Hering and Cass, 1999), and SVOC's (McDow, 1999), and more recently for speciated carbon (Turpin and Lim, 2001). These artifact...

  17. Historians/Artifacts/Learners: Working Papers.

    ERIC Educational Resources Information Center

    Nichols, Susan K., Ed.

    This publication, an outcome of a 2-day colloquium in 1981, contains information about using artifacts (material culture evidence) as a primary source for teaching history at the graduate or advanced student seminar level. A purpose of the colloquium was to gather and disseminate this information for the Historians/Artifacts/Learners (HAL)…

  18. Examining Student Digital Artifacts during a Year-Long Technology Integration Initiative

    ERIC Educational Resources Information Center

    Rodriguez, Prisca M.; Frey, Chris; Dawson, Kara; Liu, Feng; Ritzhaupt, Albert D.

    2012-01-01

    This study was situated within a year-long, statewide technology integration initiative designed to support technology integration within science, technology, engineering, and math classrooms. It examined the elements used in student artifacts in an attempt to investigate trends in digital artifact creation. Among several conclusions, this…

  19. Presenting Cultural Artifacts in the Art Museum: A University-Museum Collaboration

    ERIC Educational Resources Information Center

    Chung, Sheng Kuan

    2009-01-01

    With increasing emphasis on multicultural art education and integrative pedagogy, educators have incorporated community resources, such as cultural artifacts exhibited in art museums, to enrich their programs. Cultural artifacts are human-made objects which generally reveal historic information about cultural values, beliefs, and traditions.…

  20. Application of basic physics principles to clinical neuroradiology: differentiating artifacts from true pathology on MRI.

    PubMed

    Hakky, Michael; Pandey, Shilpa; Kwak, Ellie; Jara, Hernan; Erbay, Sami H

    2013-08-01

    This article outlines artifactual findings commonly encountered in neuroradiologic MRI studies and offers clues to differentiate them from true pathology on the basis of their physical properties. Basic MR physics concepts are used to shed light on the causes of these artifacts. MRI is one of the most commonly used techniques in neuroradiology. Unfortunately, MRI is prone to image distortion and artifacts that can be difficult to identify. Using the provided case illustrations, practical clues, and relevant physical applications, radiologists may devise algorithms to troubleshoot these artifacts.

  1. Adaptive Filtration of Physiological Artifacts in EEG Signals in Humans Using Empirical Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Grubov, V. V.; Runnova, A. E.; Hramov, A. E.

    2018-05-01

    A new method for adaptive filtration of experimental EEG signals in humans and for removal of different physiological artifacts has been proposed. The algorithm of the method includes empirical mode decomposition of EEG, determination of the number of empirical modes that are considered, analysis of the empirical modes and search for modes that contains artifacts, removal of these modes, and reconstruction of the EEG signal. The method was tested on experimental human EEG signals and demonstrated high efficiency in the removal of different types of physiological EEG artifacts.

  2. ARTiiFACT: a tool for heart rate artifact processing and heart rate variability analysis.

    PubMed

    Kaufmann, Tobias; Sütterlin, Stefan; Schulz, Stefan M; Vögele, Claus

    2011-12-01

    The importance of appropriate handling of artifacts in interbeat interval (IBI) data must not be underestimated. Even a single artifact may cause unreliable heart rate variability (HRV) results. Thus, a robust artifact detection algorithm and the option for manual intervention by the researcher form key components for confident HRV analysis. Here, we present ARTiiFACT, a software tool for processing electrocardiogram and IBI data. Both automated and manual artifact detection and correction are available in a graphical user interface. In addition, ARTiiFACT includes time- and frequency-based HRV analyses and descriptive statistics, thus offering the basic tools for HRV analysis. Notably, all program steps can be executed separately and allow for data export, thus offering high flexibility and interoperability with a whole range of applications.

  3. Artifact Suppression in Imaging of Myocardial Infarction Using B1-Weighted Phased-Array Combined Phase-Sensitive Inversion Recovery

    PubMed Central

    Kellman, Peter; Dyke, Christopher K.; Aletras, Anthony H.; McVeigh, Elliot R.; Arai, Andrew E.

    2007-01-01

    Regions of the body with long T1, such as cerebrospinal fluid (CSF), may create ghost artifacts on gadolinium-hyperenhanced images of myocardial infarction when inversion recovery (IR) sequences are used with a segmented acquisition. Oscillations in the transient approach to steady state for regions with long T1 may cause ghosts, with the number of ghosts being equal to the number of segments. B1-weighted phased-array combining provides an inherent degree of ghost artifact suppression because the ghost artifact is weighted less than the desired signal intensity by the coil sensitivity profiles. Example images are shown that illustrate the suppression of CSF ghost artifacts by the use of B1-weighted phased-array combining of multiple receiver coils. PMID:14755669

  4. Striping artifact reduction in lunar orbiter mosaic images

    USGS Publications Warehouse

    Mlsna, P.A.; Becker, T.

    2006-01-01

    Photographic images of the moon from the 1960s Lunar Orbiter missions are being processed into maps for visual use. The analog nature of the images has produced numerous artifacts, the chief of which causes a vertical striping pattern in mosaic images formed from a series of filmstrips. Previous methods of stripe removal tended to introduce ringing and aliasing problems in the image data. This paper describes a recently developed alternative approach that succeeds at greatly reducing the striping artifacts while avoiding the creation of ringing and aliasing artifacts. The algorithm uses a one dimensional frequency domain step to deal with the periodic component of the striping artifact and a spatial domain step to handle the aperiodic residue. Several variations of the algorithm have been explored. Results, strengths, and remaining challenges are presented. ?? 2006 IEEE.

  5. Adaptive noise canceling of electrocardiogram artifacts in single channel electroencephalogram.

    PubMed

    Cho, Sung Pil; Song, Mi Hye; Park, Young Cheol; Choi, Ho Seon; Lee, Kyoung Joung

    2007-01-01

    A new method for estimating and eliminating electrocardiogram (ECG) artifacts from single channel scalp electroencephalogram (EEG) is proposed. The proposed method consists of emphasis of QRS complex from EEG using least squares acceleration (LSA) filter, generation of synchronized pulse with R-peak and ECG artifacts estimation and elimination using adaptive filter. The performance of the proposed method was evaluated using simulated and real EEG recordings, we found that the ECG artifacts were successfully estimated and eliminated in comparison with the conventional multi-channel techniques, which are independent component analysis (ICA) and ensemble average (EA) method. From this we can conclude that the proposed method is useful for the detecting and eliminating the ECG artifacts from single channel EEG and simple to use for ambulatory/portable EEG monitoring system.

  6. Pulmonary MRA: Differentiation of pulmonary embolism from truncation artifact

    PubMed Central

    Bannas, Peter; Schiebler, Mark L; Motosugi, Utaroh; François, Christopher J; Reeder, Scott B; Nagle, Scott K

    2015-01-01

    Purpose Truncation artifact (Gibbs ringing) causes central signal drop within vessels in pulmonary MRA that can be mistaken for emboli, reducing the diagnostic accuracy for pulmonary embolism (PE). We propose a quantitative approach to differentiate truncation artifact from PE. Methods Twenty-eight patients who underwent pulmonary CTA for suspected PE were recruited for pulmonary MRA. Signal intensity drops within pulmonary arteries that persisted on both arterial-phase and delayed-phase MRA were identified. The percent signal loss between the vessel lumen and central drop was measured. CTA served as the reference standard for presence of pulmonary emboli. Results A total of 65 signal intensity drops were identified on MRA. 48 (74%) of these were artifact and 17 (26%) were PE, as confirmed by CTA. Truncation artifacts had a significantly lower median signal drop than PE at both arterial-phase (26% [range 12–58%] vs. 85% [range 53–91%]) and at delayed-phase MRA (26% [range 11–55%] vs. 77% [range 47–89%]), p<0.0001 for both. ROC analyses revealed a threshold value of 51% (arterial-phase) and 47%-signal drop (delayed-phase) to differentiate between truncation artifact and PE with 100% sensitivity and >90% specificity. Conclusion Quantitative signal drop is an objective tool to help differentiate truncation artifact and pulmonary embolism in pulmonary MRA. PMID:24863886

  7. Quality assurance in mammography: artifact analysis.

    PubMed

    Hogge, J P; Palmer, C H; Muller, C C; Little, S T; Smith, D C; Fatouros, P P; de Paredes, E S

    1999-01-01

    Evaluation of mammograms for artifacts is essential for mammographic quality assurance. A variety of mammographic artifacts (i.e., variations in mammographic density not caused by true attenuation differences) can occur and can create pseudolesions or mask true abnormalities. Many artifacts are readily identified, whereas others present a true diagnostic challenge. Factors that create artifacts may be related to the processor (eg, static, dirt or excessive developer buildup on the rollers, excessive roller pressure, damp film, scrapes and scratches, incomplete fixing, power failure, contaminated developer), the technologist (eg, improper film handling and loading, improper use of the mammography unit and related equipment, positioning and darkroom errors), the mammography unit (eg, failure of the collimation mirror to rotate, grid inhomogeneity, failure of the reciprocating grid to move, material in the tube housing, compression failure, improper alignment of the compression paddle with the Bucky tray, defective compression paddle), or the patient (e.g., motion, superimposed objects or substances [jewelry, body parts, clothing, hair, implanted medical devices, foreign bodies, substances on the skin]). Familiarity with the broad range of artifacts and the measures required to eliminate them is vital. Careful attention to darkroom cleanliness, care in film handling, regularly scheduled processor maintenance and chemical replenishment, daily quality assurance activities, and careful attention to detail during patient positioning and mammography can reduce or eliminate most mammographic artifacts.

  8. MARSAME Radiological Release Report for Archaeological Artifacts Excavated from Area L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruedig, Elizabeth; Whicker, Jeffrey Jay; Gillis, Jessica Mcdonnel

    In 1991 Los Alamos National Laboratory’s (LANL’s) cultural resources team excavated archaeological site LA 4618 located at Technical Area 54, within Material Disposal Area L (MDA L). MDA L received non-radioactive chemical waste from the early 1960s until 1985. Further development of the MDA required excavation of several cultural sites under National Historic Preservation Act requirements; artifacts from these sites have been subsequently stored at LANL. The LANL cultural resources group would now like to release these artifacts to the Museum of Indian Arts and Culture in Santa Fe for curation. The history of disposal at Area L suggests thatmore » the artifact pool is unlikely to be chemically contaminated and LANL staff washed each artifact at least once following excavation. Thus, it is unlikely that the artifacts present a chemical hazard. LANL’s Environmental Stewardship group (EPC-ES) has evaluated the radiological survey results for the Area L artifact pool and found that the items described in this report meet the criteria for unrestricted radiological release under Department of Energy (DOE) Order 458.1 Radiation Protection of the Public and the Environment and are candidates for release without restriction from LANL control. This conclusion is based on the known history of MDA L and on radiation survey data.« less

  9. A hybrid intelligence approach to artifact recognition in digital publishing

    NASA Astrophysics Data System (ADS)

    Vega-Riveros, J. Fernando; Santos Villalobos, Hector J.

    2006-02-01

    The system presented integrates rule-based and case-based reasoning for artifact recognition in Digital Publishing. In Variable Data Printing (VDP) human proofing could result prohibitive since a job could contain millions of different instances that may contain two types of artifacts: 1) evident defects, like a text overflow or overlapping 2) style-dependent artifacts, subtle defects that show as inconsistencies with regard to the original job design. We designed a Knowledge-Based Artifact Recognition tool for document segmentation, layout understanding, artifact detection, and document design quality assessment. Document evaluation is constrained by reference to one instance of the VDP job proofed by a human expert against the remaining instances. Fundamental rules of document design are used in the rule-based component for document segmentation and layout understanding. Ambiguities in the design principles not covered by the rule-based system are analyzed by case-based reasoning, using the Nearest Neighbor Algorithm, where features from previous jobs are used to detect artifacts and inconsistencies within the document layout. We used a subset of XSL-FO and assembled a set of 44 document samples. The system detected all the job layout changes, while obtaining an overall average accuracy of 84.56%, with the highest accuracy of 92.82%, for overlapping and the lowest, 66.7%, for the lack-of-white-space.

  10. Accelerated Slice Encoding for Metal Artifact Correction

    PubMed Central

    Hargreaves, Brian A.; Chen, Weitian; Lu, Wenmiao; Alley, Marcus T.; Gold, Garry E.; Brau, Anja C. S.; Pauly, John M.; Pauly, Kim Butts

    2010-01-01

    Purpose To demonstrate accelerated imaging with artifact reduction near metallic implants and different contrast mechanisms. Materials and Methods Slice-encoding for metal artifact correction (SEMAC) is a modified spin echo sequence that uses view-angle tilting and slice-direction phase encoding to correct both in-plane and through-plane artifacts. Standard spin echo trains and short-TI inversion recovery (STIR) allow efficient PD-weighted imaging with optional fat suppression. A completely linear reconstruction allows incorporation of parallel imaging and partial Fourier imaging. The SNR effects of all reconstructions were quantified in one subject. 10 subjects with different metallic implants were scanned using SEMAC protocols, all with scan times below 11 minutes, as well as with standard spin echo methods. Results The SNR using standard acceleration techniques is unaffected by the linear SEMAC reconstruction. In all cases with implants, accelerated SEMAC significantly reduced artifacts compared with standard imaging techniques, with no additional artifacts from acceleration techniques. The use of different contrast mechanisms allowed differentiation of fluid from other structures in several subjects. Conclusion SEMAC imaging can be combined with standard echo-train imaging, parallel imaging, partial-Fourier imaging and inversion recovery techniques to offer flexible image contrast with a dramatic reduction of metal-induced artifacts in scan times under 11 minutes. PMID:20373445

  11. Accelerated slice encoding for metal artifact correction.

    PubMed

    Hargreaves, Brian A; Chen, Weitian; Lu, Wenmiao; Alley, Marcus T; Gold, Garry E; Brau, Anja C S; Pauly, John M; Pauly, Kim Butts

    2010-04-01

    To demonstrate accelerated imaging with both artifact reduction and different contrast mechanisms near metallic implants. Slice-encoding for metal artifact correction (SEMAC) is a modified spin echo sequence that uses view-angle tilting and slice-direction phase encoding to correct both in-plane and through-plane artifacts. Standard spin echo trains and short-TI inversion recovery (STIR) allow efficient PD-weighted imaging with optional fat suppression. A completely linear reconstruction allows incorporation of parallel imaging and partial Fourier imaging. The signal-to-noise ratio (SNR) effects of all reconstructions were quantified in one subject. Ten subjects with different metallic implants were scanned using SEMAC protocols, all with scan times below 11 minutes, as well as with standard spin echo methods. The SNR using standard acceleration techniques is unaffected by the linear SEMAC reconstruction. In all cases with implants, accelerated SEMAC significantly reduced artifacts compared with standard imaging techniques, with no additional artifacts from acceleration techniques. The use of different contrast mechanisms allowed differentiation of fluid from other structures in several subjects. SEMAC imaging can be combined with standard echo-train imaging, parallel imaging, partial-Fourier imaging, and inversion recovery techniques to offer flexible image contrast with a dramatic reduction of metal-induced artifacts in scan times under 11 minutes. (c) 2010 Wiley-Liss, Inc.

  12. Wavelet-Based Artifact Identification and Separation Technique for EEG Signals during Galvanic Vestibular Stimulation

    PubMed Central

    Adib, Mani; Cretu, Edmond

    2013-01-01

    We present a new method for removing artifacts in electroencephalography (EEG) records during Galvanic Vestibular Stimulation (GVS). The main challenge in exploiting GVS is to understand how the stimulus acts as an input to brain. We used EEG to monitor the brain and elicit the GVS reflexes. However, GVS current distribution throughout the scalp generates an artifact on EEG signals. We need to eliminate this artifact to be able to analyze the EEG signals during GVS. We propose a novel method to estimate the contribution of the GVS current in the EEG signals at each electrode by combining time-series regression methods with wavelet decomposition methods. We use wavelet transform to project the recorded EEG signal into various frequency bands and then estimate the GVS current distribution in each frequency band. The proposed method was optimized using simulated signals, and its performance was compared to well-accepted artifact removal methods such as ICA-based methods and adaptive filters. The results show that the proposed method has better performance in removing GVS artifacts, compared to the others. Using the proposed method, a higher signal to artifact ratio of −1.625 dB was achieved, which outperformed other methods such as ICA-based methods, regression methods, and adaptive filters. PMID:23956786

  13. Physical Requirements of the Workplace: Research Considerations for Personnel Selection.

    ERIC Educational Resources Information Center

    Hogan, Joyce C.

    Personnel selection processes for physically demanding jobs often discriminate against women, minorities, and handicapped individuals. Developing and validating job-related performance tests requires the assessment of the physical demands of a job and of the same physical capabilities in individuals. Job analysis is a systematic assessment…

  14. Language Education for Romani Children: Human Rights and Capabilities Approaches

    ERIC Educational Resources Information Center

    New, William; Kyuchukov, Hristo

    2018-01-01

    The language of school is very often an obstacle to the successful education of indigenous, migrant, and minority children. One such group in Europe, the Romani, constitutes an ideal case of educational injustice meeting linguistic difference, racism, social marginalization, and poverty. Notwithstanding its virtues, rights-based advocacy for…

  15. Understanding Vygotsky for the Classroom: Is It Too Late?

    ERIC Educational Resources Information Center

    Gredler, Margaret E.

    2012-01-01

    Determining the capability of Vygotsky's cultural-historical theory to fulfill key functions of educational theory (such as revealing the complexity of apparently simple events) has been hindered primarily by the following factors: (a) inaccurate information about a minor discussion, the zone of proximal development (ZPD), attracted attention…

  16. Selling to NASA

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The prospective NASA contractor is provided with information that describes the agency and its procurement practices. Products include ideas, manufacturing capabilities, fabricated components, construction, basic materials, and specialized services. NASA assistance in marketing these and other products is emphasized. Small and minority business enterprises are discussed. The agency's scientific and technical information activities are also discussed.

  17. Treatment Strategies for Hispanic Developmentally Disabled Clients.

    ERIC Educational Resources Information Center

    Omdahl, Doris

    Professionals who work with developmentally disabled Hispanic clients must enhance their own ability to work with ethnic minorities and become thoroughly familiar with the culture of the people they serve. To encourage disabled Hispanic individuals to apply for services, agencies can employ strategies such as bilingual capability, use of…

  18. Some thoughts on problems associated with various sampling media used for environmental monitoring

    USGS Publications Warehouse

    Horowitz, A.J.

    1997-01-01

    Modern analytical instrumentation is capable of measuring a variety of trace elements at concentrations down into the single or double digit parts-per-trillion (ng l-1) range. This holds for the three most common sample media currently used in environmental monitoring programs: filtered water, whole-water and separated suspended sediment. Unfortunately, current analytical capabilities have exceeded the current capacity to collect both uncontaminated and representative environmental samples. The success of any trace element monitoring program requires that this issue be both understood and addressed. The environmental monitoring of trace elements requires the collection of calendar- and event-based dissolved and suspended sediment samples. There are unique problems associated with the collection and chemical analyses of both types of sample media. Over the past 10 years, reported ambient dissolved trace element concentrations have declined. Generally, these decreases do not reflect better water quality, but rather improvements in the procedures used to collect, process, preserve and analyze these samples without contaminating them during these steps. Further, recent studies have shown that the currently accepted operational definition of dissolved constituents (material passing a 0.45 ??m membrane filter) is inadequat owing to sampling and processing artifacts. The existence of these artifacts raises questions about the generation of accurate, precise and comparable 'dissolved' trace element data. Suspended sediment and associated trace elements can display marked short- and long-term spatial and temporal variability. This implies that spatially representative samples only can be obtained by generating composites using depth- and width-integrated sampling techniques. Additionally, temporal variations have led to the view that the determination of annual trace element fluxes may require nearly constant (e.g., high-frequency) sampling and subsequent chemical analyses. Ultimately, sampling frequency for flux estimates becomes dependent on the time period of concern (daily, weekly, monthly, yearly) and the amount of acceptable error associated with these estimates.

  19. Optimized Negative Staining: a High-throughput Protocol for Examining Small and Asymmetric Protein Structure by Electron Microscopy

    DOE PAGES

    Rames, Matthew; Yu, Yadong; Ren, Gang

    2014-08-15

    Structural determination of proteins is rather challenging for proteins with molecular masses between 40 - 200 kDa. Considering that more than half of natural proteins have a molecular mass between 40 - 200 kDa, a robust and high-throughput method with a nanometer resolution capability is needed. Negative staining (NS) electron microscopy (EM) is an easy, rapid, and qualitative approach which has frequently been used in research laboratories to examine protein structure and protein-protein interactions. Unfortunately, conventional NS protocols often generate structural artifacts on proteins, especially with lipoproteins that usually form presenting rouleaux artifacts. By using images of lipoproteins from cryo-electronmore » microscopy (cryo-EM) as a standard, the key parameters in NS specimen preparation conditions were recently screened and reported as the optimized NS protocol (OpNS), a modified conventional NS protocol. Artifacts like rouleaux can be greatly limited by OpNS, additionally providing high contrast along with reasonably high-resolution (near 1 nm) images of small and asymmetric proteins. These high-resolution and high contrast images are even favorable for an individual protein (a single object, no average) 3D reconstruction, such as a 160 kDa antibody, through the method of electron tomography. Moreover, OpNS can be a high-throughput tool to examine hundreds of samples of small proteins. For example, the previously published mechanism of 53 kDa cholesteryl ester transfer protein (CETP) involved the screening and imaging of hundreds of samples. Considering cryo-EM rarely successfully images proteins less than 200 kDa has yet to publish any study involving screening over one hundred sample conditions, it is fair to call OpNS a high-throughput method for studying small proteins. Hopefully the OpNS protocol presented here can be a useful tool to push the boundaries of EM and accelerate EM studies into small protein structure, dynamics and mechanisms.« less

  20. CT cardiac imaging: evolution from 2D to 3D backprojection

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Pan, Tinsu; Sasaki, Kosuke

    2004-04-01

    The state-of-the-art multiple detector-row CT, which usually employs fan beam reconstruction algorithms by approximating a cone beam geometry into a fan beam geometry, has been well recognized as an important modality for cardiac imaging. At present, the multiple detector-row CT is evolving into volumetric CT, in which cone beam reconstruction algorithms are needed to combat cone beam artifacts caused by large cone angle. An ECG-gated cardiac cone beam reconstruction algorithm based upon the so-called semi-CB geometry is implemented in this study. To get the highest temporal resolution, only the projection data corresponding to 180° plus the cone angle are row-wise rebinned into the semi-CB geometry for three-dimensional reconstruction. Data extrapolation is utilized to extend the z-coverage of the ECG-gated cardiac cone beam reconstruction algorithm approaching the edge of a CT detector. A helical body phantom is used to evaluate the ECG-gated cone beam reconstruction algorithm"s z-coverage and capability of suppressing cone beam artifacts. Furthermore, two sets of cardiac data scanned by a multiple detector-row CT scanner at 16 x 1.25 (mm) and normalized pitch 0.275 and 0.3 respectively are used to evaluate the ECG-gated CB reconstruction algorithm"s imaging performance. As a reference, the images reconstructed by a fan beam reconstruction algorithm for multiple detector-row CT are also presented. The qualitative evaluation shows that, the ECG-gated cone beam reconstruction algorithm outperforms its fan beam counterpart from the perspective of cone beam artifact suppression and z-coverage while the temporal resolution is well maintained. Consequently, the scan speed can be increased to reduce the contrast agent amount and injection time, improve the patient comfort and x-ray dose efficiency. Based up on the comparison, it is believed that, with the transition of multiple detector-row CT into volumetric CT, ECG-gated cone beam reconstruction algorithms will provide better image quality for CT cardiac applications.

  1. Signal processing in urodynamics: towards high definition urethral pressure profilometry.

    PubMed

    Klünder, Mario; Sawodny, Oliver; Amend, Bastian; Ederer, Michael; Kelp, Alexandra; Sievert, Karl-Dietrich; Stenzl, Arnulf; Feuer, Ronny

    2016-03-22

    Urethral pressure profilometry (UPP) is used in the diagnosis of stress urinary incontinence (SUI) which is a significant medical, social, and economic problem. Low spatial pressure resolution, common occurrence of artifacts, and uncertainties in data location limit the diagnostic value of UPP. To overcome these limitations, high definition urethral pressure profilometry (HD-UPP) combining enhanced UPP hardware and signal processing algorithms has been developed. In this work, we present the different signal processing steps in HD-UPP and show experimental results from female minipigs. We use a special microtip catheter with high angular pressure resolution and an integrated inclination sensor. Signals from the catheter are filtered and time-correlated artifacts removed. A signal reconstruction algorithm processes pressure data into a detailed pressure image on the urethra's inside. Finally, the pressure distribution on the urethra's outside is calculated through deconvolution. A mathematical model of the urethra is contained in a point-spread-function (PSF) which is identified depending on geometric and material properties of the urethra. We additionally investigate the PSF's frequency response to determine the relevant frequency band for pressure information on the urinary sphincter. Experimental pressure data are spatially located and processed into high resolution pressure images. Artifacts are successfully removed from data without blurring other details. The pressure distribution on the urethra's outside is reconstructed and compared to the one on the inside. Finally, the pressure images are mapped onto the urethral geometry calculated from inclination and position data to provide an integrated image of pressure distribution, anatomical shape, and location. With its advanced sensing capabilities, the novel microtip catheter collects an unprecedented amount of urethral pressure data. Through sequential signal processing steps, physicians are provided with detailed information on the pressure distribution in and around the urethra. Therefore, HD-UPP overcomes many current limitations of conventional UPP and offers the opportunity to evaluate urethral structures, especially the sphincter, in context of the correct anatomical location. This could enable the development of focal therapy approaches in the treatment of SUI.

  2. Use of High Resolution 3D Diffusion Tensor Imaging to Study Brain White Matter Development in Live Neonatal Rats

    PubMed Central

    Cai, Yu; McMurray, Matthew S.; Oguz, Ipek; Yuan, Hong; Styner, Martin A.; Lin, Weili; Johns, Josephine M.; An, Hongyu

    2011-01-01

    High resolution diffusion tensor imaging (DTI) can provide important information on brain development, yet it is challenging in live neonatal rats due to the small size of neonatal brain and motion-sensitive nature of DTI. Imaging in live neonatal rats has clear advantages over fixed brain scans, as longitudinal and functional studies would be feasible to understand neuro-developmental abnormalities. In this study, we developed imaging strategies that can be used to obtain high resolution 3D DTI images in live neonatal rats at postnatal day 5 (PND5) and PND14, using only 3 h of imaging acquisition time. An optimized 3D DTI pulse sequence and appropriate animal setup to minimize physiological motion artifacts are the keys to successful high resolution 3D DTI imaging. Thus, a 3D rapid acquisition relaxation enhancement DTI sequence with twin navigator echoes was implemented to accelerate imaging acquisition time and minimize motion artifacts. It has been suggested that neonatal mammals possess a unique ability to tolerate mild-to-moderate hypothermia and hypoxia without long term impact. Thus, we additionally utilized this ability to minimize motion artifacts in magnetic resonance images by carefully suppressing the respiratory rate to around 15/min for PND5 and 30/min for PND14 using mild-to-moderate hypothermia. These imaging strategies have been successfully implemented to study how the effect of cocaine exposure in dams might affect brain development in their rat pups. Image quality resulting from this in vivo DTI study was comparable to ex vivo scans. fractional anisotropy values were also similar between the live and fixed brain scans. The capability of acquiring high quality in vivo DTI imaging offers a valuable opportunity to study many neurological disorders in brain development in an authentic living environment. PMID:22013426

  3. Diffusion imaging quality control via entropy of principal direction distribution.

    PubMed

    Farzinfar, Mahshid; Oguz, Ipek; Smith, Rachel G; Verde, Audrey R; Dietrich, Cheryl; Gupta, Aditya; Escolar, Maria L; Piven, Joseph; Pujol, Sonia; Vachet, Clement; Gouttard, Sylvain; Gerig, Guido; Dager, Stephen; McKinstry, Robert C; Paterson, Sarah; Evans, Alan C; Styner, Martin A

    2013-11-15

    Diffusion MR imaging has received increasing attention in the neuroimaging community, as it yields new insights into the microstructural organization of white matter that are not available with conventional MRI techniques. While the technology has enormous potential, diffusion MRI suffers from a unique and complex set of image quality problems, limiting the sensitivity of studies and reducing the accuracy of findings. Furthermore, the acquisition time for diffusion MRI is longer than conventional MRI due to the need for multiple acquisitions to obtain directionally encoded Diffusion Weighted Images (DWI). This leads to increased motion artifacts, reduced signal-to-noise ratio (SNR), and increased proneness to a wide variety of artifacts, including eddy-current and motion artifacts, "venetian blind" artifacts, as well as slice-wise and gradient-wise inconsistencies. Such artifacts mandate stringent Quality Control (QC) schemes in the processing of diffusion MRI data. Most existing QC procedures are conducted in the DWI domain and/or on a voxel level, but our own experiments show that these methods often do not fully detect and eliminate certain types of artifacts, often only visible when investigating groups of DWI's or a derived diffusion model, such as the most-employed diffusion tensor imaging (DTI). Here, we propose a novel regional QC measure in the DTI domain that employs the entropy of the regional distribution of the principal directions (PD). The PD entropy quantifies the scattering and spread of the principal diffusion directions and is invariant to the patient's position in the scanner. High entropy value indicates that the PDs are distributed relatively uniformly, while low entropy value indicates the presence of clusters in the PD distribution. The novel QC measure is intended to complement the existing set of QC procedures by detecting and correcting residual artifacts. Such residual artifacts cause directional bias in the measured PD and here called dominant direction artifacts. Experiments show that our automatic method can reliably detect and potentially correct such artifacts, especially the ones caused by the vibrations of the scanner table during the scan. The results further indicate the usefulness of this method for general quality assessment in DTI studies. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Diffusion imaging quality control via entropy of principal direction distribution

    PubMed Central

    Oguz, Ipek; Smith, Rachel G.; Verde, Audrey R.; Dietrich, Cheryl; Gupta, Aditya; Escolar, Maria L.; Piven, Joseph; Pujol, Sonia; Vachet, Clement; Gouttard, Sylvain; Gerig, Guido; Dager, Stephen; McKinstry, Robert C.; Paterson, Sarah; Evans, Alan C.; Styner, Martin A.

    2013-01-01

    Diffusion MR imaging has received increasing attention in the neuroimaging community, as it yields new insights into the microstructural organization of white matter that are not available with conventional MRI techniques. While the technology has enormous potential, diffusion MRI suffers from a unique and complex set of image quality problems, limiting the sensitivity of studies and reducing the accuracy of findings. Furthermore, the acquisition time for diffusion MRI is longer than conventional MRI due to the need for multiple acquisitions to obtain directionally encoded Diffusion Weighted Images (DWI). This leads to increased motion artifacts, reduced signal-to-noise ratio (SNR), and increased proneness to a wide variety of artifacts, including eddy-current and motion artifacts, “venetian blind” artifacts, as well as slice-wise and gradient-wise inconsistencies. Such artifacts mandate stringent Quality Control (QC) schemes in the processing of diffusion MRI data. Most existing QC procedures are conducted in the DWI domain and/or on a voxel level, but our own experiments show that these methods often do not fully detect and eliminate certain types of artifacts, often only visible when investigating groups of DWI's or a derived diffusion model, such as the most-employed diffusion tensor imaging (DTI). Here, we propose a novel regional QC measure in the DTI domain that employs the entropy of the regional distribution of the principal directions (PD). The PD entropy quantifies the scattering and spread of the principal diffusion directions and is invariant to the patient's position in the scanner. High entropy value indicates that the PDs are distributed relatively uniformly, while low entropy value indicates the presence of clusters in the PD distribution. The novel QC measure is intended to complement the existing set of QC procedures by detecting and correcting residual artifacts. Such residual artifacts cause directional bias in the measured PD and here called dominant direction artifacts. Experiments show that our automatic method can reliably detect and potentially correct such artifacts, especially the ones caused by the vibrations of the scanner table during the scan. The results further indicate the usefulness of this method for general quality assessment in DTI studies. PMID:23684874

  5. Acquiring an understanding of design: evidence from children's insight problem solving.

    PubMed

    Defeyter, Margaret Anne; German, Tim P

    2003-09-01

    The human ability to make tools and use them to solve problems may not be zoologically unique, but it is certainly extraordinary. Yet little is known about the conceptual machinery that makes humans so competent at making and using tools. Do adults and children have concepts specialized for understanding human-made artifacts? If so, are these concepts deployed in attempts to solve novel problems? Here we present new data, derived from problem-solving experiments, which support the following. (i) The structure of the child's concept of artifact function changes profoundly between ages 5 and 7. At age 5, the child's conceptual machinery defines the function of an artifact as any goal a user might have; by age 7, its function is defined by the artifact's typical or intended use. (ii) This conceptual shift has a striking effect on problem-solving performance, i.e. the child's concept of artifact function appears to be deployed in problem solving. (iii) This effect on problem solving is not caused by differences in the amount of knowledge that children have about the typical use of a particular tool; it is mediated by the structure of the child's artifact concept (which organizes and deploys the child's knowledge). In two studies, children between 5 and 7 years of age were matched for their knowledge of what a particular artifact "is for", and then given a problem that can only be solved if that tool is used for an atypical purpose. All children performed well in a baseline condition. But when they were primed by a demonstration of the artifact's typical function, 5-year-old children solved the problem much faster than 6-7-year-old children. Because all children knew what the tools were for, differences in knowledge alone cannot explain the results. We argue that the older children were slower to solve the problem when the typical function was primed because (i) their artifact concept plays a role in problem solving, and (ii) intended purpose is central to their concept of artifact function, but not to that of the younger children.

  6. Clustering-Constrained ICA for Ballistocardiogram Artifacts Removal in Simultaneous EEG-fMRI

    PubMed Central

    Wang, Kai; Li, Wenjie; Dong, Li; Zou, Ling; Wang, Changming

    2018-01-01

    Combination of electroencephalogram (EEG) recording and functional magnetic resonance imaging (fMRI) plays a potential role in neuroimaging due to its high spatial and temporal resolution. However, EEG is easily influenced by ballistocardiogram (BCG) artifacts and may cause false identification of the related EEG features, such as epileptic spikes. There are many related methods to remove them, however, they do not consider the time-varying features of BCG artifacts. In this paper, a novel method using clustering algorithm to catch the BCG artifacts' features and together with the constrained ICA (ccICA) is proposed to remove the BCG artifacts. We first applied this method to the simulated data, which was constructed by adding the BCG artifacts to the EEG signal obtained from the conventional environment. Then, our method was tested to demonstrate the effectiveness during EEG and fMRI experiments on 10 healthy subjects. In simulated data analysis, the value of error in signal amplitude (Er) computed by ccICA method was lower than those from other methods including AAS, OBS, and cICA (p < 0.005). In vivo data analysis, the Improvement of Normalized Power Spectrum (INPS) calculated by ccICA method in all electrodes was much higher than AAS, OBS, and cICA methods (p < 0.005). We also used other evaluation index (e.g., power analysis) to compare our method with other traditional methods. In conclusion, our novel method successfully and effectively removed BCG artifacts in both simulated and vivo EEG data tests, showing the potentials of removing artifacts in EEG-fMRI applications. PMID:29487499

  7. ARTIST: A fully automated artifact rejection algorithm for single-pulse TMS-EEG data.

    PubMed

    Wu, Wei; Keller, Corey J; Rogasch, Nigel C; Longwell, Parker; Shpigel, Emmanuel; Rolle, Camarin E; Etkin, Amit

    2018-04-01

    Concurrent single-pulse TMS-EEG (spTMS-EEG) is an emerging noninvasive tool for probing causal brain dynamics in humans. However, in addition to the common artifacts in standard EEG data, spTMS-EEG data suffer from enormous stimulation-induced artifacts, posing significant challenges to the extraction of neural information. Typically, neural signals are analyzed after a manual time-intensive and often subjective process of artifact rejection. Here we describe a fully automated algorithm for spTMS-EEG artifact rejection. A key step of this algorithm is to decompose the spTMS-EEG data into statistically independent components (ICs), and then train a pattern classifier to automatically identify artifact components based on knowledge of the spatio-temporal profile of both neural and artefactual activities. The autocleaned and hand-cleaned data yield qualitatively similar group evoked potential waveforms. The algorithm achieves a 95% IC classification accuracy referenced to expert artifact rejection performance, and does so across a large number of spTMS-EEG data sets (n = 90 stimulation sites), retains high accuracy across stimulation sites/subjects/populations/montages, and outperforms current automated algorithms. Moreover, the algorithm was superior to the artifact rejection performance of relatively novice individuals, who would be the likely users of spTMS-EEG as the technique becomes more broadly disseminated. In summary, our algorithm provides an automated, fast, objective, and accurate method for cleaning spTMS-EEG data, which can increase the utility of TMS-EEG in both clinical and basic neuroscience settings. © 2018 Wiley Periodicals, Inc.

  8. The interobserver-validated relevance of intervertebral spacer materials in MRI artifacting

    PubMed Central

    Heidrich, G.; Bruening, T.; Krefft, S.; Buchhorn, G.; Klinger, H.M.

    2006-01-01

    Intervertebral spacers for anterior spine fusion are made of different materials, such as titanium, carbon or cobalt-chrome, which can affect the post-fusion MRI scans. Implant-related susceptibility artifacts can decrease the quality of MRI scans, thwarting proper evaluation. This cadaver study aimed to demonstrate the extent that implant-related MRI artifacting affects the post-fusion evaluation of intervertebral spacers. In a cadaveric porcine spine, we evaluated the post-implantation MRI scans of three intervertebral spacers that differed in shape, material, surface qualities and implantation technique. A spacer made of human cortical bone was used as a control. The median sagittal MRI slice was divided into 12 regions of interest (ROI). No significant differences were found on 15 different MRI sequences read independently by an interobserver-validated team of specialists (P>0.05). Artifact-affected image quality was rated on a score of 0-1-2. A maximum score of 24 points (100%) was possible. Turbo spin echo sequences produced the best scores for all spacers and the control. Only the control achieved a score of 100%. The carbon, titanium and cobalt-chrome spacers scored 83.3, 62.5 and 50%, respectively. Our scoring system allowed us to create an implant-related ranking of MRI scan quality in reference to the control that was independent of artifact dimensions. The carbon spacer had the lowest percentage of susceptibility artifacts. Even with turbo spin echo sequences, the susceptibility artifacts produced by the metallic spacers showed a high degree of variability. Despite optimum sequencing, implant design and material are relevant factors in MRI artifacting. PMID:16463200

  9. Nuclear artifacts in gastric endoscopic submucosal dissection specimens: A clinicopathological study

    PubMed Central

    MATSUKUMA, SUSUMU; TAKEO, HIROAKI; SATO, KIMIYA

    2014-01-01

    To delineate the characteristics of nuclear artifacts associated with endoscopic submucosal dissection (ESD), we examined 97 gastric ESD specimens from 79 patients. In 69 of the specimens (71%), multinucleated figures and/or atypical mitotic-like figures, including tripolar-like and bizarre spindles, were found in the peripheral portions close to the marking areas. These nuclear figures were mostly recognizable as artifacts, but were infrequently (13 specimens) accompanied by other nuclear alterations and/or architectural abnormalities, mimicking dysplasia. However, in the deep cut sections, the dysplastic characteristics tended to disappear and coagulative or degenerative findings became more prominent. These nuclear artifacts were not found in 69 age- and gender-matched control gastrectomy specimens without ESD. Multinucleated artifacts were associated with the size of the ESD specimens (P=0.003), frequency of marking (P<0.001) and a history of ‘previous’ marking 1–6 days prior to ESD (P<0.001); however, they were not associated with age, ESD procedure time, or ‘fresh’ marking on the day of the ESD. Atypical mitosis-like characteristics were associated with a history of ‘fresh’ (P=0.007) as well as ‘previous’ (P=0.002) marking, but not with other variables. Dysplasia-like artifacts were associated with older age only (P=0.031). Follow-up data of all the patients with nuclear artifacts showed no aggressive behavior. Therefore, we concluded that these nuclear changes were ESD-related artifacts. Particularly in older patients, these changes may simulate dysplasia and must be distinguished from true dysplasia or neoplasia. PMID:25054062

  10. Evaluation of a signal intensity mask in the interpretation of functional MR imaging activation maps.

    PubMed

    Strigel, Roberta M; Moritz, Chad H; Haughton, Victor M; Badie, Behnam; Field, Aaron; Wood, David; Hartman, Michael; Rowley, Howard A

    2005-03-01

    The purpose of this study was to determine the incidence of susceptibility artifacts on functional MR imaging (fMRI) studies and their effect on fMRI readings. We hypothesized that the availability of the signal intensity maps (SIMs) changes the interpretation of fMRI studies in which susceptibility artifacts affected eloquent brain regions. We reviewed 152 consecutive clinical fMRI studies performed with a SIM. The SIM consisted of the initial echo-planar images (EPI) in each section thresholded to eliminate signal intensity from outside the brain and then overlaid on anatomic images. The cause of the artifact was then determined by examining the images. Cases with a susceptibility artifact in eloquent brain were included in a blinded study read by four readers, first without and then with the SIM. For each reader, the number of times the interpretation changed on viewing the SIM was counted. Of 152 patients, 44% had signal intensity loss involving cerebral cortex and 18% involving an eloquent brain region. Causes of the artifacts were: surgical site artifact, blood products, dental devices, calcium, basal ganglia calcifications, ICP monitors, embolization materials, and air. When provided with the SIM, readers changed interpretations in 8-38% of patient cases, depending on reader experience and size and location of susceptibility artifact. Patients referred for clinical fMRI have a high incidence of susceptibility artifacts, whose presence and size can be determined by inspection of the SIM but not anatomic images. The availability of the SIM may affect interpretation of the fMRI.

  11. Stimulation artifact correction method for estimation of early cortico-cortical evoked potentials.

    PubMed

    Trebaul, Lena; Rudrauf, David; Job, Anne-Sophie; Mălîia, Mihai Dragos; Popa, Irina; Barborica, Andrei; Minotti, Lorella; Mîndruţă, Ioana; Kahane, Philippe; David, Olivier

    2016-05-01

    Effective connectivity can be explored using direct electrical stimulations in patients suffering from drug-resistant focal epilepsies and investigated with intracranial electrodes. Responses to brief electrical pulses mimic the physiological propagation of signals and manifest as cortico-cortical evoked potentials (CCEP). The first CCEP component is believed to reflect direct connectivity with the stimulated region but the stimulation artifact, a sharp deflection occurring during a few milliseconds, frequently contaminates it. In order to recover the characteristics of early CCEP responses, we developed an artifact correction method based on electrical modeling of the electrode-tissue interface. The biophysically motivated artifact templates are then regressed out of the recorded data as in any classical template-matching removal artifact methods. Our approach is able to make the distinction between the physiological responses time-locked to the stimulation pulses and the non-physiological component. We tested the correction on simulated CCEP data in order to quantify its efficiency for different stimulation and recording parameters. We demonstrated the efficiency of the new correction method on simulations of single trial recordings for early responses contaminated with the stimulation artifact. The results highlight the importance of sampling frequency for an accurate analysis of CCEP. We then applied the approach to experimental data. The model-based template removal was compared to a correction based on the subtraction of the averaged artifact. This new correction method of stimulation artifact will enable investigators to better analyze early CCEP components and infer direct effective connectivity in future CCEP studies. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Suppression of Stimulus Artifact Contaminating Electrically Evoked Electromyography

    PubMed Central

    Liu, Jie; Li, Sheng; Li, Xiaoyan; Klein, Cliff; Rymer, William Z.; Zhou, Ping

    2013-01-01

    Background Electrical stimulation of muscle or nerve is a very useful technique for understanding of muscle activity and its pathological changes for both diagnostic and therapeutic purposes. During electrical stimulation of a muscle, the recorded M wave is often contaminated by a stimulus artifact. The stimulus artifact must be removed for appropriate analysis and interpretation of M waves. Objectives The objective of this study was to develop a novel software based method to remove stimulus artifacts contaminating or superimposing with electrically evoked surface electromyography (EMG) or M wave signals. Methods The multiple stage method uses a series of signal processing techniques, including highlighting and detection of stimulus artifacts using the Savitzky-Golay filtering, estimation of the artifact contaminated region with the Otsu thresholding, and reconstruction of such region using signal interpolation and smoothing. The developed method was tested using M wave signals recorded from biceps brachii muscles by a linear surface electrode array. To evaluate the performance, a series of semi-synthetic signals were constructed from clean M wave and stimulus artifact recordings with different degrees of overlap between them. Results The effectiveness of the developed method was quantified by a significant increase in correlation coefficient and a significant decrease in root mean square error between the clean M wave and the reconstructed M wave, compared with those between the clean M wave and the originally contaminated signal. The validity of the developed method was also demonstrated when tested on each channel’s M wave recording using the linear electrode array. Conclusions The developed method can suppress stimulus artifacts contaminating M wave recordings. PMID:24419021

  13. FACET - a "Flexible Artifact Correction and Evaluation Toolbox" for concurrently recorded EEG/fMRI data.

    PubMed

    Glaser, Johann; Beisteiner, Roland; Bauer, Herbert; Fischmeister, Florian Ph S

    2013-11-09

    In concurrent EEG/fMRI recordings, EEG data are impaired by the fMRI gradient artifacts which exceed the EEG signal by several orders of magnitude. While several algorithms exist to correct the EEG data, these algorithms lack the flexibility to either leave out or add new steps. The here presented open-source MATLAB toolbox FACET is a modular toolbox for the fast and flexible correction and evaluation of imaging artifacts from concurrently recorded EEG datasets. It consists of an Analysis, a Correction and an Evaluation framework allowing the user to choose from different artifact correction methods with various pre- and post-processing steps to form flexible combinations. The quality of the chosen correction approach can then be evaluated and compared to different settings. FACET was evaluated on a dataset provided with the FMRIB plugin for EEGLAB using two different correction approaches: Averaged Artifact Subtraction (AAS, Allen et al., NeuroImage 12(2):230-239, 2000) and the FMRI Artifact Slice Template Removal (FASTR, Niazy et al., NeuroImage 28(3):720-737, 2005). Evaluation of the obtained results were compared to the FASTR algorithm implemented in the EEGLAB plugin FMRIB. No differences were found between the FACET implementation of FASTR and the original algorithm across all gradient artifact relevant performance indices. The FACET toolbox not only provides facilities for all three modalities: data analysis, artifact correction as well as evaluation and documentation of the results but it also offers an easily extendable framework for development and evaluation of new approaches.

  14. FACET – a “Flexible Artifact Correction and Evaluation Toolbox” for concurrently recorded EEG/fMRI data

    PubMed Central

    2013-01-01

    Background In concurrent EEG/fMRI recordings, EEG data are impaired by the fMRI gradient artifacts which exceed the EEG signal by several orders of magnitude. While several algorithms exist to correct the EEG data, these algorithms lack the flexibility to either leave out or add new steps. The here presented open-source MATLAB toolbox FACET is a modular toolbox for the fast and flexible correction and evaluation of imaging artifacts from concurrently recorded EEG datasets. It consists of an Analysis, a Correction and an Evaluation framework allowing the user to choose from different artifact correction methods with various pre- and post-processing steps to form flexible combinations. The quality of the chosen correction approach can then be evaluated and compared to different settings. Results FACET was evaluated on a dataset provided with the FMRIB plugin for EEGLAB using two different correction approaches: Averaged Artifact Subtraction (AAS, Allen et al., NeuroImage 12(2):230–239, 2000) and the FMRI Artifact Slice Template Removal (FASTR, Niazy et al., NeuroImage 28(3):720–737, 2005). Evaluation of the obtained results were compared to the FASTR algorithm implemented in the EEGLAB plugin FMRIB. No differences were found between the FACET implementation of FASTR and the original algorithm across all gradient artifact relevant performance indices. Conclusion The FACET toolbox not only provides facilities for all three modalities: data analysis, artifact correction as well as evaluation and documentation of the results but it also offers an easily extendable framework for development and evaluation of new approaches. PMID:24206927

  15. Number of fragments, margin status and thermal artifacts of conized specimens from LLETZ surgery to treat cervical intraepithelial neoplasia.

    PubMed

    Bittencourt, Dulcimary Dias; Zanine, Rita Maira; Sebastião, Ana Martins; Taha, Nabiha Saadi; Speck, Neila Góis; Ribalta, Julisa Chamorro Lascasas

    2012-01-01

    Large loop excision of the transformation zone (LLETZ) is a nontraumatic cut and coagulation method with several advantages, but it induces thermal artifacts in the cut region. The aim here was to assess the correlations of age, number of fragments, lesion grade and degree of thermal artifacts with margin quality in conized specimens from LLETZ for cervical intraepithelial neoplasia (CIN). Cross-sectional study at Universidade Federal de São Paulo (Unifesp). The records and histopathology findings of 118 women who underwent LLETZ between 1999 and 2007 were reviewed. Age, number of fragments, lesion grade, degree of thermal artifacts and margin quality were assessed. The patients' mean age was 27.14 years; 63.6% had been diagnosed with CIN II and 36.4% with CIN III. The lesion was removed as a single fragment in 79.6% of the cases. The margins were free from intraepithelial neoplasia in 85.6% and compromised in the endocervical margin in 6.8%. Fragment damage due to artifacts occurred in 2.5%. Severe artifacts occurred in 22.8%. Women aged 30 years or over presented more cases of CIN III (P < 0.0004). Neoplastic compromising of surgical margins and severe artifacts occurred more often in cases in which two or more fragments were removed, and in patients aged 30 years or over. CIN III in women aged 30 or over, when removed in two or more fragments during LLETZ, presented a greater number of compromised margins and greater severity of thermal artifacts.

  16. MR Imaging with Metal-suppression Sequences for Evaluation of Total Joint Arthroplasty.

    PubMed

    Talbot, Brett S; Weinberg, Eric P

    2016-01-01

    Metallic artifact at orthopedic magnetic resonance (MR) imaging continues to be an important problem, particularly in the realm of total joint arthroplasty. Complications often follow total joint arthroplasty and can be expected for a small percentage of all implanted devices. Postoperative complications involve not only osseous structures but also adjacent soft tissues-a highly problematic area at MR imaging because of artifacts from metallic prostheses. Without special considerations, susceptibility artifacts from ferromagnetic implants can unacceptably degrade image quality. Common artifacts include in-plane distortions (signal loss and signal pileup), poor or absent fat suppression, geometric distortion, and through-section distortion. Basic methods to reduce metallic artifacts include use of spin-echo or fast spin-echo sequences with long echo train lengths, short inversion time inversion-recovery (STIR) sequences for fat suppression, a high bandwidth, thin section selection, and an increased matrix. With care and attention to the alloy type (eg, titanium, cobalt-chromium, stainless steel), orientation of the implant, and magnetic field strength, as well as use of proprietary and nonproprietary metal-suppression techniques, previously nondiagnostic studies can yield key diagnostic information. Specifically, sequences such as the metal artifact reduction sequence (MARS), WARP (Siemens Healthcare, Munich, Germany), slice encoding for metal artifact correction (SEMAC), and multiacquisition with variable-resonance image combination (MAVRIC) can be optimized to reveal pathologic conditions previously hidden by periprosthetic artifacts. Complications of total joint arthroplasty that can be evaluated by using MR imaging with metal-suppression sequences include pseudotumoral conditions such as metallosis and particle disease, infection, aseptic prosthesis loosening, tendon injury, and muscle injury. ©RSNA, 2015.

  17. Metal artifact reduction in CT, a phantom study: subjective and objective evaluation of four commercial metal artifact reduction algorithms when used on three different orthopedic metal implants.

    PubMed

    Bolstad, Kirsten; Flatabø, Silje; Aadnevik, Daniel; Dalehaug, Ingvild; Vetti, Nils

    2018-01-01

    Background Metal implants may introduce severe artifacts in computed tomography (CT) images. Over the last few years dedicated algorithms have been developed in order to reduce metal artifacts in CT images. Purpose To investigate and compare metal artifact reduction algorithms (MARs) from four different CT vendors when imaging three different orthopedic metal implants. Material and Methods Three clinical metal implants were attached to the leg of an anthropomorphic phantom: cobalt-chrome; stainless steel; and titanium. Four commercial MARs were investigated: SmartMAR (GE); O-MAR (Philips); iMAR (Siemens); and SEMAR (Toshiba). The images were evaluated subjectively by three observers and analyzed objectively by calculating the fraction of pixels with CT number above 500 HU in a region of interest around the metal. The average CT number and image noise were also measured. Results Both subjective evaluation and objective analysis showed that MARs reduced metal artifacts and improved the image quality for CT images containing metal implants of steel and cobalt-chrome. When using MARs on titanium, all MARs introduced new visible artifacts. Conclusion The effect of MARs varied between CT vendors and different metal implants used in orthopedic surgery. Both in subjective evaluation and objective analysis the effect of applying MARs was most obvious on steel and cobalt-chrome implants when using SEMAR from Toshiba followed by SmartMAR from GE. However, MARs may also introduce new image artifacts especially when used on titanium implants. Therefore, it is important to reconstruct all CT images containing metal with and without MARs.

  18. Archaeology through Computational Linguistics: Inscription Statistics Predict Excavation Sites of Indus Valley Artifacts

    ERIC Educational Resources Information Center

    Recchia, Gabriel L.; Louwerse, Max M.

    2016-01-01

    Computational techniques comparing co-occurrences of city names in texts allow the relative longitudes and latitudes of cities to be estimated algorithmically. However, these techniques have not been applied to estimate the provenance of artifacts with unknown origins. Here, we estimate the geographic origin of artifacts from the Indus Valley…

  19. Communicative Function Demonstration Induces Kind-Based Artifact Representation in Preverbal Infants

    ERIC Educational Resources Information Center

    Futo, Judit; Teglas, Erno; Csibra, Gergely; Gergely, Gyorgy

    2010-01-01

    Human infants grow up in environments populated by artifacts. In order to acquire knowledge about different kinds of human-made objects, children have to be able to focus on the information that is most relevant for sorting artifacts into categories. Traditional theories emphasize the role of superficial, perceptual features in object…

  20. Developmental Changes within the Core of Artifact Concepts.

    ERIC Educational Resources Information Center

    Matan, Adee; Carey, Susan

    2001-01-01

    Three experiments examined the relative importance of original function and current function in artifact categorization for young children and adults. It was concluded that 6-year-olds have begun to organize their understanding of artifacts around the notion of original function, whereas 4-year-olds have not. Data were examined in terms of how…

Top