An Evidence Based Approach to Designing Medical Support for Long Duration, Interplanetary Missions
NASA Technical Reports Server (NTRS)
Watkins, S. D.; McGrath, T. L.; Bauman, D. K.; Wu, J. H.; Barsten, K. N.; Barr, Y. R.; Kerstman, E. L.
2011-01-01
The Exploration Medical Capability (ExMC) element is one of six elements under NASA's Human Research Program (HRP). The goal of the ExMC element is to address the risk of the "inability to adequately recognize or treat an ill or injured crewmember." This poster highlights the evidence-based approach that the ExMC element has taken to address this goal, and the ExMC element's current areas of interest.
Exploration Medical Capability
NASA Technical Reports Server (NTRS)
Watkins, Sharmila; Baumann, David; Wu, Jimmy; Barsten, Kristina
2010-01-01
Exploration Medical Capability (ExMC) is an element of NASA's Human Research Program (HRP). ExMC's goal is to address the risk of the Inability to Adequately Recognize or Treat an Ill or Injured Crewmember. This poster highlights the approach ExMC has taken to address this goal and our current areas of interest. The Space Medicine Exploration Medical Condition List (SMEMCL) was created to identify medical conditions of concern during exploration missions. The list was derived from space flight medical incidents, the shuttle medical checklist, the International Space Station medical checklist, and expert opinion. The conditions on the list were prioritized according to mission type by a panel comprised of flight surgeons, physician astronauts, engineers, and scientists. From the prioritized list, the ExMC element determined the capabilities needed to address the medical conditions of concern. Where such capabilities were not currently available, a gap was identified. The element s research plan outlines these gaps and the tasks identified to achieve the desired capabilities for exploration missions. This poster is being presented to inform the audience of the gaps and tasks being investigated by ExMC and to encourage discussions of shared interests and possible future collaborations.
Advanced Technology Applications for Combat Casualty Care
NASA Technical Reports Server (NTRS)
Watkins, Sharmila; Baumann, David; Wu, Jimmy
2010-01-01
Exploration Medical Capability (ExMC) is an element of NASA s Human Research Program (HRP). ExMC s goal is to address the risk of the "Inability to Adequately Recognize or Treat an Ill or Injured Crewmember." This poster highlights the approach ExMC has taken to address this goal and our current areas of interest. The Space Medicine Exploration Medical Condition List (SMEMCL) was created to identify medical conditions of concern during exploration missions. The list was derived from space flight medical incidents, the shuttle medical checklist, the International Space Station medical checklist, and expert opinion. The conditions on the list were prioritized according to mission type by a panel comprised of flight surgeons, physician astronauts, engineers, and scientists. From the prioritized list, the ExMC element determined the capabilities needed to address the medical conditions of concern. Where such capabilities were not currently available, a gap was identified. The element s research plan outlines these gaps and the tasks identified to achieve the desired capabilities for exploration missions.
The NASA Human Research Wiki - An Online Collaboration Tool
NASA Technical Reports Server (NTRS)
Barr, Yael; Rasbury, Jack; Johnson, Jordan; Barstend, Kristina; Saile, Lynn; Watkins, Sharmi
2012-01-01
The Exploration Medical Capability (ExMC) element is one of six elements of the Human Research Program (HRP). ExMC is charged with decreasing the risk of: "Inability to adequately recognize or treat an ill or injured crew member" for exploration-class missions In preparation for exploration-class missions, ExMC has compiled a large evidence base, previously available only to persons within the NASA community. ExMC has developed the "NASA Human Research Wiki" in an effort to make the ExMC information available to the general public and increase collaboration within and outside of NASA. The ExMC evidence base is comprised of several types of data, including: (1)Information on more than 80 medical conditions which could occur during space flight (a)Derived from several sources (b)Including data on incidence and potential outcomes, as captured in the Integrated Medical Model s (IMM) Clinical Finding Forms (CliFFs). (2)Approximately 25 gap reports (a)Identify any "gaps" in knowledge and/or technology that would need to be addressed in order to provide adequate medical support for these novel missions.
The Space Medicine Exploration Medical Condition List
NASA Technical Reports Server (NTRS)
Watkins, Sharmi; Barr, Yael; Kerstman, Eric
2011-01-01
Exploration Medical Capability (ExMC) is an element of NASA s Human Research Program (HRP). ExMC's goal is to address the risk of the "Inability to Adequately Recognize or Treat an Ill or Injured Crewmember." This poster highlights the approach ExMC has taken to address this risk. The Space Medicine Exploration Medical Condition List (SMEMCL) was created to define the set of medical conditions that are most likely to occur during exploration space flight missions. The list was derived from the International Space Station Medical Checklist, the Shuttle Medical Checklist, in-flight occurrence data from the Lifetime Surveillance of Astronaut Health, and NASA subject matter experts. The list of conditions was further prioritized for eight specific design reference missions with the assistance of the ExMC Advisory Group. The purpose of the SMEMCL is to serve as an evidence-based foundation for the conditions that could affect a crewmember during flight. This information is used to ensure that the appropriate medical capabilities are available for exploration missions.
NASA Technical Reports Server (NTRS)
Krihak, M.; Watkins, S.; Fung, Paul P.
2013-01-01
The Technology Watch (Tech Watch) project is a NASA project that is operated under the Human Research Programs (HRP) Exploration Medical Capability (ExMC) element, and focuses on ExMC technology gaps. The project coordinates the efforts of several NASA centers, including the Johnson Space Center (JSC), Glenn Research Center (GRC), Ames Research Center (ARC), and the Langley Research Center (LaRC). The objective of Tech Watch is to identify emerging, high-impact technologies that augment current NASA HRP technology development efforts. Identifying such technologies accelerates the development of medical care and research capabilities for the mitigation of potential health issues encountered during human space exploration missions. The aim of this process is to leverage technologies developed by academia, industry and other government agencies and to identify the effective utilization of NASA resources to maximize the HRP return on investment. The establishment of collaborations with these entities is beneficial to technology development, assessment and/or insertion and further NASAs goal to provide a safe and healthy environment for human exploration. In 2012, the Tech Watch project expanded the scope of activities to cultivate student projects targeted at specific ExMC gaps, generate gap reports for a majority of the ExMC gaps and maturate a gap report review process to optimize the technical and managerial aspects of ExMC gap status. Through numerous site visits and discussions with academia faculty, several student projects were initiated and/or completed this past year. A key element to these student projects was the ability of the project to align with a specific ExMC technology or knowledge gap. These projects were mentored and reviewed by Tech Watch leads at the various NASA centers. Another result of the past years efforts was the population of the ExMC wiki website that now contains more the three quarters of the ExMC gap reports. The remaining gap reports will be completed in FY13. Finally, the gap report review process for all ExMC gaps was initiated. This review process was instrumental in ensuring that each gap report was thoroughly reviewed for accuracy and relevant content prior to its public release. In the upcoming year, the gap report review process will be refined such that in addition to the gap report update, programmatic information related to gap closure will also be emphasized.
Exploration Medical Capability System Engineering Overview
NASA Technical Reports Server (NTRS)
Mindock, J.; McGuire, K.
2018-01-01
Deep Space Gateway and Transport missions will change the way NASA currently practices medicine. The missions will require more autonomous capability compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The ExMC Systems Engineering team's mission is to "Define, develop, validate, and manage the technical system design needed to implement exploration medical capabilities for Mars and test the design in a progression of proving grounds." The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is using Model-Based System Engineering (MBSE) to accomplish its integrative goals. The MBSE approach to medical system design offers a paradigm shift toward greater integration between vehicle and the medical system, and directly supports the transition of Earth-reliant ISS operations to the Earth-independent operations envisioned for Mars. This talk will discuss how ExMC is using MBSE to define operational needs, decompose requirements and architecture, and identify medical capabilities needed to support human exploration. How MBSE is being used to integrate across disciplines and NASA Centers will also be described. The medical system being discussed in this talk is one system within larger habitat systems. Data generated within the medical system will be inputs to other systems and vice versa. This talk will also describe the next steps in model development that include: modeling the different systems that comprise the larger system and interact with the medical system, understanding how the various systems work together, and developing tools to support trade studies.
Exploration Medical Capability - Technology Watch
NASA Technical Reports Server (NTRS)
Krihak, Michael; Watkins, Sharmila; Barr, Yael; Barsten, Kristina; Fung, Paul; Baumann, David
2011-01-01
The objectives of the Technology Watch process are to identify emerging, high-impact technologies that augment current ExMC development efforts, and to work with academia, industry, and other government agencies to accelerate the development of medical care and research capabilities for the mitigation of potential health issues that could occur during space exploration missions. The establishment of collaborations with these entities is beneficial to technology development, assessment and/or insertion. Such collaborations also further NASA s goal to provide a safe and healthy environment for human exploration. The Tech Watch project addresses requirements and capabilities identified by knowledge and technology gaps that are derived from a discrete set of medical conditions that are most likely to occur on exploration missions. These gaps are addressed through technology readiness level assessments, market surveys, collaborations and distributed innovation opportunities. Ultimately, these gaps need to be closed with respect to exploration missions, and may be achieved through technology development projects. Information management is a key aspect to this process where Tech Watch related meetings, research articles, collaborations and partnerships are tracked by the HRP s Exploration Medical Capabilities (ExMC) Element. In 2011, ExMC will be introducing the Tech Watch external website and evidence wiki that will provide access to ExMC technology and knowledge gaps, technology needs and requirements documents.
Exploration Medical Cap Ability System Engineering Overview
NASA Technical Reports Server (NTRS)
McGuire, K.; Mindock, J.
2018-01-01
Deep Space Gateway and Transport missions will change the way NASA currently practices medicine. The missions will require more autonomous capability compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The ExMC Systems Engineering team's mission is to "Define, develop, validate, and manage the technical system design needed to implement exploration medical capabilities for Mars and test the design in a progression of proving grounds." The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is using Model-Based System Engineering (MBSE) to accomplish its integrative goals. The MBSE approach to medical system design offers a paradigm shift toward greater integration between vehicle and the medical system, and directly supports the transition of Earth-reliant ISS operations to the Earth-independent operations envisioned for Mars. This talk will discuss how ExMC is using MBSE to define operational needs, decompose requirements and architecture, and identify medical capabilities needed to support human exploration. How MBSE is being used to integrate across disciplines and NASA Centers will also be described. The medical system being discussed in this talk is one system within larger habitat systems. Data generated within the medical system will be inputs to other systems and vice versa. This talk will also describe the next steps in model development that include: modeling the different systems that comprise the larger system and interact with the medical system, understanding how the various systems work together, and developing tools to support trade studies.
Overview of an Integrated Medical System for Exploration Missions
NASA Technical Reports Server (NTRS)
Watkins, Sharmila; Rubin, David
2013-01-01
The Exploration Medical Capability (ExMC) element of the NASA Human Research Program (HRP) is charged with addressing the risk of unacceptable health and mission outcomes due to limitations of inflight medical capabilities. The Exploration Medical System Demonstration (EMSD) is a project within the ExMC element aimed at reducing this risk by improving the medical capabilities available for exploration missions. The EMSD project will demonstrate, on the ground and on ISS, the integration of several components felt to be essential to the delivery of medical care during long ]duration missions outside of low Earth orbit. The components of the EMSD include the electronic medical record, assisted medical procedure software, medical consumables tracking technology and RFID ] tagged consumables, video conferencing capability, ultrasound device and probes (ground demonstration only), peripheral biosensors, and the software to allow communication among the various components (middleware). This presentation seeks to inform our international partners of the goals and objectives of the EMSD and to foster collaboration opportunities related to this and future projects.
NASA Technical Reports Server (NTRS)
Krihak, M.; Watkins, S.; Shaw, T.
2014-01-01
The Technology Watch (Tech Watch) project is directed by the NASA Human Research Program's (HRP) Exploration Medical Capability (ExMC) element, and primarily focuses on ExMC technology gaps. The project coordinates the efforts of multiple NASA centers, including the Johnson Space Center (JSC), Glenn Research Center (GRC), Ames Research Center (ARC), and the Langley Research Center (LaRC). The objective of Tech Watch is to identify emerging, high-impact technologies that augment current NASA HRP technology development efforts. Identifying such technologies accelerates the development of medical care and research capabilities for the mitigation of potential health issues encountered during human space exploration missions. The aim of this process is to leverage technologies developed by academia, industry and other government agencies and to identify the effective utilization of NASA resources to maximize the HRP return on investment. The establishment of collaborations with these entities is beneficial to technology development, assessment and/or insertion, and advance NASA's goal to provide a safe and healthy environment for human exploration. In fiscal year 2013, the Tech Watch project maintained student project activity aimed at specific ExMC gaps, completed the gap report review cycle for all gaps through a maturated gap report review process, and revised the ExMC Tech Watch Sharepoint site for enhanced data content and organization. Through site visits, internships and promotions via aerospace journals, several student projects were initiated and completed this past year. Upon project completion, the students presented their results via telecom or WebEx to the ExMC Element as a whole. The upcoming year will continue to forge strategic alliances and student projects in the interest of technology and knowledge gap closure. Through the population of Sharepoint with technologies assessed by the gap owners, the database expansion will develop a more comprehensive technology set for each gap. By placing such data in Sharepoint, the gap report updates in fiscal year 2014 are anticipated to be streamlined since the evaluated technologies will be readily available to the gap owners in a sortable archive, and may be simply exported into the final gap report presentation
NASA Technical Reports Server (NTRS)
Krihak, M.; Watkins, S.; Shaw, T.
2014-01-01
The Technology Watch (Tech Watch) project is directed by the NASA Human Research Programs (HRP) Exploration Medical Capability (ExMC) element, and primarily focuses on ExMC technology gaps. The project coordinates the efforts of multiple NASA centers, including the Johnson Space Center (JSC), Glenn Research Center (GRC), Ames Research Center (ARC), and the Langley Research Center (LaRC). The objective of Tech Watch is to identify emerging, high-impact technologies that augment current NASA HRP technology development efforts. Identifying such technologies accelerates the development of medical care and research capabilities for the mitigation of potential health issues encountered during human space exploration missions. The aim of this process is to leverage technologies developed by academia, industry and other government agencies and to identify the effective utilization of NASA resources to maximize the HRP return on investment. The establishment of collaborations with these entities is beneficial to technology development, assessment and/or insertion, and advance NASAs goal to provide a safe and healthy environment for human exploration. In fiscal year 2013, the Tech Watch project maintained student project activity aimed at specific ExMC gaps, completed the gap report review cycle for all gaps through a maturated gap report review process, and revised the ExMC Tech Watch Sharepoint site for enhanced data content and organization. Through site visits, internships and promotions via aerospace journals, several student projects were initiated and completed this past year. Upon project completion, the students presented their results via telecom or WebEx to the ExMC Element as a whole. The upcoming year will continue to forge strategic alliances and student projects in the interest of technology and knowledge gap closure. Through the population of Sharepoint with technologies assessed by the gap owners, the database expansion will develop a more comprehensive technology set for each gap. By placing such data in Sharepoint, the gap report updates in fiscal year 2014 are anticipated to be streamlined since the evaluated technologies will be readily available to the gap owners in a sortable archive, and may be simply exported into the final gap report presentation.
Exploration Medical Capability System Engineering Introduction and Vision
NASA Technical Reports Server (NTRS)
Mindock, J.; Reilly, J.
2017-01-01
Human exploration missions to beyond low Earth orbit destinations such as Mars will require more autonomous capability compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its integrative goals. This talk will briefly introduce the discipline of systems engineering and key points in its application to exploration medical capability development. It will elucidate technical medical system needs to be met by the systems engineering work, and the structured and integrative science and engineering approach to satisfying those needs, including the development of shared mental and qualitative models within and external to the human health and performance community. These efforts are underway to ensure relevancy to exploration system maturation and to establish medical system development that is collaborative with vehicle and mission design and engineering efforts.
Medical Data Architecture Project Status
NASA Technical Reports Server (NTRS)
Krihak, M.; Middour, C.; Lindsey, A.; Marker, N.; Wolfe, S.; Winther, S.; Ronzano, K.; Bolles, D.; Toscano, W.; Shaw, T.
2017-01-01
The Medical Data Architecture (MDA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the ExMC MDA project addresses the technical limitations identified in ExMC Gap Med 07: We do not have the capability to comprehensively process medically-relevant information to support medical operations during exploration missions. This gap identifies that the current International Space Station (ISS) medical data management includes a combination of data collection and distribution methods that are minimally integrated with on-board medical devices and systems. Furthermore, there are variety of data sources and methods of data collection. For an exploration mission, the seamless management of such data will enable an increasingly autonomous crew than the current ISS paradigm. The MDA will develop capabilities that support automated data collection, and the necessary functionality and challenges in executing a self-contained medical system that approaches crew health care delivery without assistance from ground support. To attain this goal, the first year of the MDA project focused on reducing technical risk, developing documentation and instituting iterative development processes that established the basis for the first version of MDA software (or Test Bed 1). Test Bed 1 is based on a nominal operations scenario authored by the ExMC Element Scientist. This narrative was decomposed into a Concept of Operations that formed the basis for Test Bed 1 requirements. These requirements were successfully vetted through the MDA Test Bed 1 System Requirements Review, which permitted the MDA project to begin software code development and component integration. This paper highlights the MDA objectives, development processes, and accomplishments, and identifies the fiscal year 2017 milestones and deliverables in the upcoming year.
Exploration Laboratory Analysis FY13
NASA Technical Reports Server (NTRS)
Krihak, Michael; Perusek, Gail P.; Fung, Paul P.; Shaw, Tianna, L.
2013-01-01
The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk, which is stated as the Risk of Inability to Adequately Treat an Ill or Injured Crew Member, and ExMC Gap 4.05: Lack of minimally invasive in-flight laboratory capabilities with limited consumables required for diagnosing identified Exploration Medical Conditions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability in future exploration missions. Mission architecture poses constraints on equipment and procedures that will be available to treat evidence-based medical conditions according to the Space Medicine Exploration Medical Conditions List (SMEMCL), and to perform human research studies on the International Space Station (ISS) that are supported by the Human Health and Countermeasures (HHC) element. Since there are significant similarities in the research and medical operational requirements, ELA hardware development has emerged as a joint effort between ExMC and HHC. In 2012, four significant accomplishments were achieved towards the development of exploration laboratory analysis for medical diagnostics. These achievements included (i) the development of high priority analytes for research and medical operations, (ii) the development of Level 1 functional requirements and concept of operations documentation, (iii) the selection and head-to-head competition of in-flight laboratory analysis instrumentation, and (iv) the phase one completion of the Small Business Innovation Research (SBIR) projects under the topic Smart Phone Driven Blood-Based Diagnostics. To utilize resources efficiently, the associated documentation and advanced technologies were integrated into a single ELA plan that encompasses ExMC and HHC development efforts. The requirements and high priority analytes was used in the selection of the four in-flight laboratory analysis performers. Based upon the competition results, a down select process will be performed in the upcoming year. Looking ahead, this unified effort has positioned each element for an in-flight lab analysis demonstration of select diagnostics measurements in the 2015 timeframe.
ExMC Work Prioritization Process
NASA Technical Reports Server (NTRS)
Simon, Matthew
2015-01-01
Last year, NASA's Human Research Program (HRP) introduced the concept of a "Path to Risk Reduction" (PRR), which will provide a roadmap that shows how the work being done within each HRP element can be mapped to reducing or closing exploration risks. Efforts are currently underway within the Exploration Medical Capability (ExMC) Element to develop a structured, repeatable process for prioritizing work utilizing decision analysis techniques and risk estimation tools. The goal of this effort is to ensure that the work done within the element maximizes risk reduction for future exploration missions in a quantifiable way and better aligns with the intent and content of the Path to Risk Reduction. The Integrated Medical Model (IMM) will be used to identify those conditions that are major contributors of medical risk for a given design reference mission. For each of these conditions, potential prevention, screening, diagnosis, and treatment methods will be identified. ExMC will then aim to prioritize its potential investments in these mitigation methods based upon their potential for risk reduction and other factors such as vehicle performance impacts, near term schedule needs, duplication with external efforts, and cost. This presentation will describe the process developed to perform this prioritization and inform investment discussions in future element planning efforts. It will also provide an overview of the required input information, types of process participants, figures of merit, and the expected outputs of the process.
Exploration Medical System Technical Development
NASA Technical Reports Server (NTRS)
McGuire, K.; Middour, C.; Cerro, J.; Burba, T.; Hanson, A.; Reilly, J.; Mindock, J.
2017-01-01
The Exploration Medical Capability (ExMC) Element systems engineering goals include defining the technical system needed to implement exploration medical capabilities for Mars. This past year, scenarios captured in the medical system concept of operations laid the foundation for systems engineering technical development work. The systems engineering team analyzed scenario content to identify interactions between the medical system, crewmembers, the exploration vehicle, and the ground system. This enabled the definition of functions the medical system must provide and interfaces to crewmembers and other systems. These analyses additionally lead to the development of a conceptual medical system architecture. The work supports the ExMC community-wide understanding of the functional exploration needs to be met by the medical system, the subsequent development of medical system requirements, and the system verification and validation approach utilizing terrestrial analogs and precursor exploration missions.
NASA Technical Reports Server (NTRS)
Krihak, M.; Barr, Y.; Watkins, S.; Fung, P.; McGrath, T.; Baumann, D.
2012-01-01
The Technology Watch (Tech Watch) project is a NASA endeavor conducted under the Human Research Program's (HRP) Exploration Medical Capability (ExMC) element, and focusing on ExMC technology gaps. The project involves several NASA centers, including the Johnson Space Center (JSC), Glenn Research Center (GRC), Ames Research Center (ARC), and the Langley Research Center (LaRC). The objective of Tech Watch is to identify emerging, high-impact technologies that augment current NASA HRP technology development efforts. Identifying such technologies accelerates the development of medical care and research capabilities for the mitigation of potential health issues encountered during human space exploration missions. The aim of this process is to leverage technologies developed by academia, industry and other government agencies and to identify the effective utilization of NASA resources to maximize the HRP return on investment. The establishment of collaborations with these entities is beneficial to technology development, assessment and/or insertion and further NASA's goal to provide a safe and healthy environment for human exploration. In 2011, the major focus areas for Tech Watch included information dissemination, education outreach and public accessibility to technology gaps and gap reports. The dissemination of information was accomplished through site visits to research laboratories and/or companies, and participation at select conferences where Tech Watch objectives and technology gaps were presented. Presentation of such material provided researchers with insights on NASA ExMC needs for space exploration and an opportunity to discuss potential areas of common interest. The second focus area, education outreach, was accomplished via two mechanisms. First, several senior student projects, each related to an ExMC technology gap, were sponsored by the various NASA centers. These projects presented ExMC related technology problems firsthand to collegiate laboratories. Second, a RASC-AL (Revolutionary Aerospace Systems Concepts - Academic Linkage) topic for FY12 was developed for medical systems and astronaut health under the Human-Focused Mars Mission Systems and Technologies theme. Announcement of the competition was made to the public in August 2011. Finally, critical Tech Watch information was prepared for public release in the form of gap reports. Complementing the ExMC technology gaps in the public domain, gap reports were generated, reviewed and revised through a series of technical, medical and subject matter expert reviews before approval for public release. An important vehicle for the public release of such documents was development of the ExMC wiki website, which will continue to be populated with gap reports and relevant documents throughout the upcoming year.
NASA Technical Reports Server (NTRS)
Krihak, M.; Barr, Y.; Watkins, S.; Fung, P.; McGrath, T.; Baumann, D.
2012-01-01
The Technology Watch (Tech Watch) project is a NASA endeavor conducted under the Human Research Programs (HRP) Exploration Medical Capability (ExMC) element, and focusing on ExMC technology gaps. The project involves several NASA centers, including the Johnson Space Center (JSC), Glenn Research Center (GRC), Ames Research Center (ARC), and the Langley Research Center (LaRC). The objective of Tech Watch is to identify emerging, high-impact technologies that augment current NASA HRP technology development efforts. Identifying such technologies accelerates the development of medical care and research capabilities for the mitigation of potential health issues encountered during human space exploration missions. The aim of this process is to leverage technologies developed by academia, industry and other government agencies and to identify the effective utilization of NASA resources to maximize the HRP return on investment. The establishment of collaborations with these entities is beneficial to technology development, assessment and/or insertion and further NASAs goal to provide a safe and healthy environment for human exploration. In 2011, the major focus areas for Tech Watch included information dissemination, education outreach and public accessibility to technology gaps and gap reports. The dissemination of information was accomplished through site visits to research laboratories and/or companies, and participation at select conferences where Tech Watch objectives and technology gaps were presented. Presentation of such material provided researchers with insights on NASA ExMC needs for space exploration and an opportunity to discuss potential areas of common interest. The second focus area, education outreach, was accomplished via two mechanisms. First, several senior student projects, each related to an ExMC technology gap, were sponsored by the various NASA centers. These projects presented ExMC related technology problems firsthand to collegiate laboratories. Second, a RASC-AL (Revolutionary Aerospace Systems Concepts Academic Linkage) topic for FY12 was developed for medical systems and astronaut health under the Human-Focused Mars Mission Systems and Technologies theme. Announcement of the competition was made to the public in August 2011. Finally, critical Tech Watch information was prepared for public release in the form of gap reports. Complementing the ExMC technology gaps in the public domain, gap reports were generated, reviewed and revised through a series of technical, medical and subject matter expert reviews before approval for public release. An important vehicle for the public release of such documents was development of the ExMC wiki website, which will continue to be populated with gap reports and relevant documents throughout the upcoming year.
Exploration Medical Capability (ExMC) Program
NASA Technical Reports Server (NTRS)
Kalla, Elizabeth
2006-01-01
This document reviews NASA's Exploration Medical Capability (ExMC) program. The new space exploration program, outlined by the President will present new challenges to the crew's health. The project goals are to develop and validate requirements for reliable, efficient, and robust medical systems and treatments for space exploration to maximize crew performance for mission objectives.
Prioritizing Medical Resources for Exploration Missions
NASA Technical Reports Server (NTRS)
Shah, R. V.; Kerstman, E. L.
2015-01-01
Long duration missions beyond low Earth orbit introduce new constraints to the medical system. Factors such as the inability to evacuate to Earth in a timely manner, communication delay, limitations in available medical equipment, and the clinical background of the crew will all have an impact on the assessment and treatment of medical conditions. The Exploration Medical Capability (ExMC) Element of NASAs Human Research Program seeks to improve the way the element derives its mitigation strategies for the risk of "Unacceptable Health and Mission Outcomes Due to Limitation of In-flight Medical Capabilities."
Systems Engineering for Space Exploration Medical Capabilities
NASA Technical Reports Server (NTRS)
Mindock, Jennifer; Reilly, Jeffrey; Rubin, David; Urbina, Michelle; Hailey, Melinda; Hanson, Andrea; Burba, Tyler; McGuire, Kerry; Cerro, Jeffrey; Middour, Chris;
2017-01-01
Human exploration missions that reach destinations beyond low Earth orbit, such as Mars, will present significant new challenges to crew health management. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its goals. This paper discusses the structured and integrative approach that is guiding the medical system technical development. Assumptions for the required levels of care on exploration missions, medical system goals, and a Concept of Operations are early products that capture and clarify stakeholder expectations. Model-Based Systems Engineering techniques are then applied to define medical system behavior and architecture. Interfaces to other flight and ground systems, and within the medical system are identified and defined. Initial requirements and traceability are established, which sets the stage for identification of future technology development needs. An early approach for verification and validation, taking advantage of terrestrial and near-Earth exploration system analogs, is also defined to further guide system planning and development.
Exploration Medical System Technical Architecture Overview
NASA Technical Reports Server (NTRS)
Cerro, J.; Rubin, D.; Mindock, J.; Middour, C.; McGuire, K.; Hanson, A.; Reilly, J.; Burba, T.; Urbina, M.
2018-01-01
The Exploration Medical Capability (ExMC) Element Systems Engineering (SE) goals include defining the technical system needed to support medical capabilities for a Mars exploration mission. A draft medical system architecture was developed based on stakeholder needs, system goals, and system behaviors, as captured in an ExMC concept of operations document and a system model. This talk will discuss a high-level view of the medical system, as part of a larger crew health and performance system, both of which will support crew during Deep Space Transport missions. Other mission components, such as the flight system, ground system, caregiver, and patient, will be discussed as aspects of the context because the medical system will have important interactions with each. Additionally, important interactions with other aspects of the crew health and performance system are anticipated, such as health & wellness, mission task performance support, and environmental protection. This talk will highlight areas in which we are working with other disciplines to understand these interactions.
Risk of Adverse Health Outcomes and Decrements in Performance Due to In-flight Medical Conditions
NASA Technical Reports Server (NTRS)
Antonsen,Erik
2017-01-01
The drive to undertake long-duration space exploration missions at greater distances from Earth gives rise to many challenges concerning human performance under extreme conditions. At NASA, the Human Research Program (HRP) has been established to investigate the specific risks to astronaut health and performance presented by space exploration, in addition to developing necessary countermeasures and technology to reduce risk and facilitate safer, more productive missions in space (NASA Human Research Program 2009). The HRP is divided into five subsections, covering behavioral health, space radiation, habitability, and other areas of interest. Within this structure is the ExMC Element, whose research contributes to the overall development of new technologies to overcome the challenges of expanding human exploration and habitation of space. The risk statement provided by the HRP to the ExMC Element states: "Given that medical conditions/events will occur during human spaceflight missions, there is a possibility of adverse health outcomes and decrements in performance in mission and for long term health" (NASA Human Research Program 2016). Within this risk context, the Exploration Medical Capabilities (ExMC) Element is specifically concerned with establishing evidenced-based methods of monitoring and maintaining astronaut health. Essential to completing this task is the advancement in techniques that identify, prevent, and treat any health threats that may occur during space missions. The ultimate goal of the ExMC Element is to develop and demonstrate a pathway for medical system integration into vehicle and mission design to mitigate the risk of medical issues. Integral to this effort is inclusion of an evidence-based medical and data handling system appropriate for long-duration, exploration-class missions. This requires a clear Concept of Operations, quantitative risk metrics or other tools to address changing risk throughout a mission, and system scoping and system engineering. Because of the novel nature of the risks involved in exploration missions, new and complex ethical challenges are likely to be encountered. This document describes the relevant background and evidence that informs the development of an exploration medical system.
Systems Engineering for Space Exploration Medical Capabilities
NASA Technical Reports Server (NTRS)
Mindock, Jennifer; Reilly, Jeffrey; Urbina, Michelle; Hailey, Melinda; Rubin, David; Reyes, David; Hanson, Andrea; Burba, Tyler; McGuire, Kerry; Cerro, Jeffrey;
2017-01-01
Human exploration missions to beyond low Earth orbit destinations such as Mars will present significant new challenges to crew health management during a mission compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its integrative goals. This paper discusses the structured and integrative approach that is guiding the medical system technical development. Assumptions for the required levels of care on exploration missions, medical system guiding principles, and a Concept of Operations are early products that capture and clarify stakeholder expectations. Mobel-Based Systems Engineering techniques are then applied to define medical system behavior and architecture. Interfaces to other flight and ground systems, and within the medical system are identified and defined. Initial requirements and traceability are established, which sets the stage for identification of future technology development needs. An early approach for verification and validation, taking advantage of terrestrial and near-Earth exploration system analogs, is also defined to further guide system planning and development.
Conceptual Drivers for an Exploration Medical System
NASA Technical Reports Server (NTRS)
Antonsen, Erik; Hanson, Andrea; Shah, Ronak; Reed, Rebekah; Canga, Michael
2016-01-01
Interplanetary spaceflight, such as NASA's proposed three-year mission to Mars, provides unique and novel challenges when compared with human spaceflight to date. Extended distance and multi-year missions introduce new elements of operational complexity and additional risk. These elements include: inability to resupply medications and consumables, inability to evacuate injured or ill crew, uncharted psychosocial conditions, and communication delays that create a requirement for some level of autonomous medical capability. Because of these unique challenges, the approaches used in prior programs have limited application to a Mars mission. On a Mars mission, resource limitations will significantly constrain available medical capabilities, and require a paradigm shift in the approach to medical system design and risk mitigation for crew health. To respond to this need for a new paradigm, the Exploration Medical Capability (ExMC) Element is assessing each Mars mission phase-transit, surface stay, rendezvous, extravehicular activity, and return-to identify and prioritize medical needs for the journey beyond low Earth orbit (LEO). ExMC is addressing both planned medical operations, and unplanned contingency medical operations that meld clinical needs and research needs into a single system. This assessment is being used to derive a gap analysis and studies to support meaningful medical capabilities trades. These trades, in turn, allow the exploration medical system design to proceed from both a mission centric and ethics-based approach, and to manage the risks associated with the medical limitations inherent in an exploration class mission. This paper outlines the conceptual drivers used to derive medical system and vehicle needs from an integrated vision of how medical care will be provided within this paradigm. Keywords: (Max 6 keywords: exploration, medicine, spaceflight, Mars, research, NASA)
NASA Technical Reports Server (NTRS)
Daniels, V. R.; Bayuse, T. M.; Mulcahy, R. A.; McGuire, R. K. M.; Antonsen, E. L.
2018-01-01
Exploration spaceflight poses several challenges to the provision of a comprehensive medication formulary. This formulary must accommodate the size and space limitations of the spacecraft, while addressing individual medication needs and preferences of the crew, consequences of a degrading inventory over time, the inability to resupply used or expired medications, and the need to forecast the best possible medication candidates to treat conditions that may occur. The Exploration Medical Capability (ExMC) Element's Pharmacy Project Team has developed a research plan (RP) that is focused on evidence-based models and theories as well as new diagnostic tools, treatments, or preventive measures aimed to ensure an available, safe, and effective pharmacy sufficient to manage potential medical threats during exploration spaceflight. Here, we will discuss the ways in which the ExMC Pharmacy Project Team pursued expert evaluation and guidance, and incorporated acquired insight into an achievable research pathway, reflected in the revised RP.
Clinical Outcome Metrics for Optimization of Robust Training
NASA Technical Reports Server (NTRS)
Ebert, D.; Byrne, V. E.; McGuire, K. M.; Hurst, V. W., IV; Kerstman, E. L.; Cole, R. W.; Sargsyan, A. E.; Garcia, K. M,; Foy, M. H.; Dulchavsky, S. A.;
2015-01-01
The emphasis of this research is on the Human Research Program (HRP) Exploration Medical Capabilities (ExMC) "Risk of Unacceptable Health and Mission Outcomes Due to Limitations of In-flight Medical Capabilities". Specifically, this project aims to contribute to the closure of gap ExMC 2.02: We do not know how the inclusion of a physician crew medical officer quantitatively impacts clinical outcomes during exploration missions. The experiments are specifically designed to address clinical outcome differences between physician and non-physician cohorts in both near-term and longer-term (mission impacting) outcomes.
Medical Data Architecture (MDA) Project Status
NASA Technical Reports Server (NTRS)
Krihak, M.; Middour, C.; Gurram, M.; Wolfe, S.; Marker, N.; Winther, S.; Ronzano, K.; Bolles, D.; Toscano, W.; Shaw, T.
2018-01-01
The Medical Data Architecture (MDA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the ExMC MDA project addresses the technical limitations identified in ExMC Gap Med 07: We do not have the capability to comprehensively process medically-relevant information to support medical operations during exploration missions. This gap identifies that the current in-flight medical data management includes a combination of data collection and distribution methods that are minimally integrated with on-board medical devices and systems. Furthermore, there are a variety of data sources and methods of data collection. For an exploration mission, the seamless management of such data will enable a more medically autonomous crew than the current paradigm. The medical system requirements are being developed in parallel with the exploration mission architecture and vehicle design. ExMC has recognized that in order to make informed decisions about a medical data architecture framework, current methods for medical data management must not only be understood, but an architecture must also be identified that provides the crew with actionable insight to medical conditions. This medical data architecture will provide the necessary functionality to address the challenges of executing a self-contained medical system that approaches crew health care delivery without assistance from ground support. Hence, the products supported by current prototype development will directly inform exploration medical system requirements.
Medical Data Architecture Project Status
NASA Technical Reports Server (NTRS)
Krihak, M.; Middour, C.; Gurram, M.; Wolfe, S.; Marker, N.; Winther, S.; Ronzano, K.; Bolles, D.; Toscano, W.; Shaw, T.
2018-01-01
The Medical Data Architecture (MDA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the ExMC MDA project addresses the technical limitations identified in ExMC Gap Med 07: We do not have the capability to comprehensively process medically-relevant information to support medical operations during exploration missions. This gap identifies that the current in-flight medical data management includes a combination of data collection and distribution methods that are minimally integrated with on-board medical devices and systems. Furthermore, there are a variety of data sources and methods of data collection. For an exploration mission, the seamless management of such data will enable a more medically autonomous crew than the current paradigm. The medical system requirements are being developed in parallel with the exploration mission architecture and vehicle design. ExMC has recognized that in order to make informed decisions about a medical data architecture framework, current methods for medical data management must not only be understood, but an architecture must also be identified that provides the crew with actionable insight to medical conditions. This medical data architecture will provide the necessary functionality to address the challenges of executing a self-contained medical system that approaches crew health care delivery without assistance from ground support. Hence, the products supported by current prototype development will directly inform exploration medical system requirements.
Exploration Laboratory Analysis - ARC
NASA Technical Reports Server (NTRS)
Krihak, Michael K.; Fung, Paul P.
2012-01-01
The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk, Risk of Inability to Adequately Treat an Ill or Injured Crew Member, and ExMC Gap 4.05: Lack of minimally invasive in-flight laboratory capabilities with limited consumables required for diagnosing identified Exploration Medical Conditions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability in future exploration missions. Mission architecture poses constraints on equipment and procedures that will be available to treat evidence-based medical conditions according to the Space Medicine Exploration Medical Conditions List (SMEMCL). The SMEMCL provided diagnosis and treatment for the evidence-based medical conditions and hence, a basis for developing ELA functional requirements.
Using A Model-Based Systems Engineering Approach For Exploration Medical System Development
NASA Technical Reports Server (NTRS)
Hanson, A.; Mindock, J.; McGuire, K.; Reilly, J.; Cerro, J.; Othon, W.; Rubin, D.; Urbina, M.; Canga, M.
2017-01-01
NASA's Human Research Program's Exploration Medical Capabilities (ExMC) element is defining the medical system needs for exploration class missions. ExMC's Systems Engineering (SE) team will play a critical role in successful design and implementation of the medical system into exploration vehicles. The team's mission is to "Define, develop, validate, and manage the technical system design needed to implement exploration medical capabilities for Mars and test the design in a progression of proving grounds." Development of the medical system is being conducted in parallel with exploration mission architecture and vehicle design development. Successful implementation of the medical system in this environment will require a robust systems engineering approach to enable technical communication across communities to create a common mental model of the emergent engineering and medical systems. Model-Based Systems Engineering (MBSE) improves shared understanding of system needs and constraints between stakeholders and offers a common language for analysis. The ExMC SE team is using MBSE techniques to define operational needs, decompose requirements and architecture, and identify medical capabilities needed to support human exploration. Systems Modeling Language (SysML) is the specific language the SE team is utilizing, within an MBSE approach, to model the medical system functional needs, requirements, and architecture. Modeling methods are being developed through the practice of MBSE within the team, and tools are being selected to support meta-data exchange as integration points to other system models are identified. Use of MBSE is supporting the development of relationships across disciplines and NASA Centers to build trust and enable teamwork, enhance visibility of team goals, foster a culture of unbiased learning and serving, and be responsive to customer needs. The MBSE approach to medical system design offers a paradigm shift toward greater integration between vehicle and the medical system and directly supports the transition of Earth-reliant ISS operations to the Earth-independent operations envisioned for Mars. Here, we describe the methods and approach to building this integrated model.
Exploration Medical Capability (ExMC) Projects
NASA Technical Reports Server (NTRS)
Wu, Jimmy; Watkins, Sharmila; Baumann, David
2010-01-01
During missions to the Moon or Mars, the crew will need medical capabilities to diagnose and treat disease as well as for maintaining their health. The Exploration Medical Capability Element develops medical technologies, medical informatics, and clinical capabilities for different levels of care during space missions. The work done by team members in this Element is leading edge technology, procedure, and pharmacological development. They develop data systems that protect patient's private medical information, aid in the diagnosis of medical conditions, and act as a repository of relevant NASA life sciences experimental studies. To minimize the medical risks to crew health the physicians and scientists in this Element develop models to quantify the probability of medical events occurring during a mission. They define procedures to treat an ill or injured crew member who does not have access to an emergency room and who must be cared for in a microgravity environment where both liquids and solids behave differently than on Earth. To support the development of these medical capabilities, the Element manages the development of medical technologies that prevent, monitor, diagnose, and treat an ill or injured crewmember. The Exploration Medical Capability Element collaborates with the National Space Biomedical Research Institute (NSBRI), the Department of Defense, other Government-funded agencies, academic institutions, and industry.
NASA Human Research Wiki - An Online Collaboration Tool
NASA Technical Reports Server (NTRS)
Barr, Y. R.; Rasbury, J.; Johnson, J.; Barsten, K.; Saile, L.; Watkins, S. D.
2011-01-01
In preparation for exploration-class missions, the Exploration Medical Capability (ExMC) element of NASA's Human Research Program (HRP) has compiled a large evidence base, which previously was available only to persons within the NASA community. The evidence base is comprised of several types of data, for example: information on more than 80 medical conditions which could occur during space flight, derived from several sources (including data on incidence and potential outcomes of these medical conditions, as captured in the Integrated Medical Model's Clinical Finding Forms). In addition, approximately 35 gap reports are included in the evidence base, identifying current understanding of the medical challenges for exploration, as well as any gaps in knowledge and/or technology that would need to be addressed in order to provide adequate medical support for these novel missions. In an effort to make the ExMC information available to the general public and increase collaboration with subject matter experts within and outside of NASA, ExMC has developed an online collaboration tool, very similar to a wiki, titled the NASA Human Research Wiki. The platform chosen for this data sharing, and the potential collaboration it could generate, is a MediaWiki-based application that would house the evidence, allow "read only" access to all visitors to the website, and editorial access to credentialed subject matter experts who have been approved by the Wiki's editorial board. Although traditional wikis allow users to edit information in real time, the NASA Human Research Wiki includes a peer review process to ensure quality and validity of information. The wiki is also intended to be a pathfinder project for other HRP elements that may want to use this type of web-based tool. The wiki website will be released with a subset of the data described and will continue to be populated throughout the year.
Defining Medical Capabilities for Exploration Missions
NASA Technical Reports Server (NTRS)
Hailey, M.; Antonsen, E.; Blue, R.; Reyes, D.; Mulcahy, R.; Kerstman, E.; Bayuse, T.
2018-01-01
Exploration-class missions to the moon, Mars and beyond will require a significant change in medical capability from today's low earth orbit centric paradigm. Significant increases in autonomy will be required due to differences in duration, distance and orbital mechanics. Aerospace medicine and systems engineering teams are working together within ExMC to meet these challenges. Identifying exploration medical system needs requires accounting for planned and unplanned medical care as defined in the concept of operations. In 2017, the ExMC Clinicians group identified medical capabilities to feed into the Systems Engineering process, including: determining what and how to address planned and preventive medical care; defining an Accepted Medical Condition List (AMCL) of conditions that may occur and a subset of those that can be treated effectively within the exploration environment; and listing the medical capabilities needed to treat those conditions in the AMCL. This presentation will discuss the team's approach to addressing these issues, as well as how the outputs of the clinical process impact the systems engineering effort.
Radiation Impact on Pharmaceutical Stability: Retrospective Data Review
NASA Technical Reports Server (NTRS)
Daniels, V. R.; Bayuse, T. M.; McGuire, K. M.; Antonsen, E. L.; Putcha, L.
2017-01-01
Historical studies performed by the JSC Pharmacotherapeutics Discipline suggest that exposure to spaceflight conditions may compromise the safety and efficacy of some medications. Follow-on studies have revealed that affected medications demonstrate reductions in active pharmaceutical ingredient (API) concentrations and altered release characteristics. It was hypothesized that the changes in API potency and release were from the medication's exposure to the harsh environmental conditions of spaceflight. Subsequent review of the spaceflight environmental control records from the time of these studies indicated that temperature and humidity levels aboard all spacecraft remained within United States Pharmacopeia (USP) recommended ranges to maintain optimal pharmaceutical stability. Therefore, space radiation was presumed to be the source of observed drug degradation. The Pharmacotherapeutics Discipline conducted a ground analog radiation experiment in 2006 at the NASA Space Radiation Laboratory (NSRL) at Brookhaven to validate this theory and to characterize the effects of high-energy radioactive particles on pharmaceutical stability. These data were never published. Recently, the Exploration Medical Capability (ExMC) Element finalized a research plan (RP) aimed at providing a safe and effective medication formulary for exploration spaceflight. As ExMC begins to design new flight and ground analog radiation studies, further analysis of the 2006 NSRL study data is essential for the characterization of the impact of radiation on medication potency and efficacy in the exploration spaceflight environment.
The Near Earth Asteroid Medical Conditions List
NASA Technical Reports Server (NTRS)
Barr, Yael R.; Watkins, S. D.
2011-01-01
Purpose: The Exploration Medical Capability (ExMC) element is one of six elements within NASA s Human Research Program (HRP) and is responsible for addressing the risk of "the inability to adequately recognize or treat an ill or injured crewmember" for exploration-class missions. The Near Earth Asteroid (NEA) Medical Conditions List, constructed by ExMC, is the first step in addressing the above-mentioned risk for the 13-month long NEA mission. The NEA mission is being designed by NASA's Human Space Flight Architecture Team (HAT). The purpose of the conditions list is to serve as an evidence-based foundation for determining which medical conditions could affect a crewmember during the NEA mission, which of those conditions would be of concern and require treatment, and for which conditions a gap in knowledge or technology development exists. This information is used to focus research efforts and technology development to ensure that the appropriate medical capabilities are available for exploration-class missions. Scope and Approach: The NEA Medical Conditions List is part of a broader Space Medicine Exploration Medical Conditions List (SMEMCL), which incorporates various exploration-class design reference missions (DRMs). The conditions list contains 85 medical conditions which could occur during space flight and which are derived from several sources: Long-Term Surveillance of Astronaut Health (LSAH) in-flight occurrence data, The Space Shuttle (STS) Medical Checklist, The International Space Station (ISS) Medical Checklist, and subject matter expert opinion. Each medical condition listed has been assigned a clinical priority and a clinical priority rationale based on incidence, consequence, and mitigation capability. Implementation: The conditions list is a "living document" and as such, new conditions can be added to the list, and the priority of conditions on the list can be adjusted as the DRM changes, and as screening, diagnosis, or treatment capabilities change. The NEA medical conditions list was used recently as the basis for identifying gaps in in-flight medical evaluation (screening) capabilities. Learning Objectives: The audience will become familiar with the approach taken by NASA's Exploration Medical Capability element in addressing the risk of inability to recognize and treat medical conditions in the setting of a Near Earth Asteroid mission. Which one of the following statements is incorrect? a) The Near Earth Asteroid (NEA) medical conditions list includes 85 medical conditions which could occur during space flight. b) Each condition on the NEA medical conditions list has been assigned a clinical priority and a clinical priority rationale. c) The NEA medical conditions list targets a mission to Mars. d) The NEA medical conditions list should be viewed as a "living document" where new conditions can be added and clinical priorities adjusted to address changes in the design reference mission or medical capabilities. The incorrect answer is c). The NEA medical conditions list targets a mission to a Near Earth Asteroid.
Medical System Concept of Operations for Mars Exploration Missions
NASA Technical Reports Server (NTRS)
Urbina, Michelle; Rubin, D.; Hailey, M.; Reyes, D.; Antonsen, Eric
2017-01-01
Future exploration missions will be the first time humanity travels beyond Low Earth Orbit (LEO) since the Apollo program, taking us to cis-lunar space, interplanetary space, and Mars. These long-duration missions will cover vast distances, severely constraining opportunities for emergency evacuation to Earth and cargo resupply opportunities. Communication delays and blackouts between the crew and Mission Control will eliminate reliable, real-time telemedicine consultations. As a result, compared to current LEO operations onboard the International Space Station, exploration mission medical care requires an integrated medical system that provides additional in-situ capabilities and a significant increase in crew autonomy. The Medical System Concept of Operations for Mars Exploration Missions illustrates how a future NASA Mars program could ensure appropriate medical care for the crew of this highly autonomous mission. This Concept of Operations document, when complete, will document all mission phases through a series of mission use case scenarios that illustrate required medical capabilities, enabling the NASA Human Research Program (HRP) Exploration Medical Capability (ExMC) Element to plan, design, and prototype an integrated medical system to support human exploration to Mars.
Medical Simulations for Exploration Medicine
NASA Technical Reports Server (NTRS)
Reyes, David; Suresh, Rahul; Pavela, James; Urbina, Michelle; Mindock, Jennifer; Antonsen, Erik
2018-01-01
Medical simulation is a useful tool that can be used to train personnel, develop medical processes, and assist cross-disciplinary communication. Medical simulations have been used in the past at NASA for these purposes, however they are usually created ad hoc. A stepwise approach to scenario development has not previously been used. The NASA Exploration Medical Capability (ExMC) created a medical scenario development tool to test medical procedures, technologies, concepts of operation and for use in systems engineering (SE) processes.
Human Research Program Requirements Document (Revision C)
NASA Technical Reports Server (NTRS)
Vargas, Paul R.
2009-01-01
The purpose of this document is to define, document, and allocate the Human Research Program (HRP) requirements to the HRP Program Elements. It establishes the flow-down of requirements from Exploration Systems Mission Directorate (ESMD) and Office of the Chief Health and Medical Officer (OCHMO) to the various Program Elements of the HRP to ensure that human research and technology countermeasure investments are made to insure the delivery of countermeasures and technologies that satisfy ESMD's and OCHMO's exploration mission requirements. Requirements driving the HRP work and deliverables are derived from the exploration architecture, as well as Agency standards regarding the maintenance of human health and performance. Agency human health and performance standards will define acceptable risk for each type and duration of exploration mission. It is critical to have the best available scientific and clinical evidence in setting and validating these standards. In addition, it is imperative that the best available evidence on preventing and mitigating human health and performance risks is incorporated into exploration mission and vehicle designs. These elements form the basis of the HRP research and technology development requirements and highlight the importance of HRP investments in enabling NASA's exploration missions. This PRD defines the requirements of the HRP which is comprised of the following major Program Elements: Behavioral Health and Performance (BHP), Exploration Medical Capability (ExMC), Human Health Countermeasures (HHC), ISS Medical Project (ISSMP), Space Human Factors and Habitability (SHFH), and Space Radiation (SR).
Exploration Medical System Demonstration (EMSD) Project
NASA Technical Reports Server (NTRS)
Chin, Duane
2012-01-01
The Exploration Medical System Demonstration (EMSD) is a project under the Exploration Medical Capability (ExMC) element managed by the Human Research Program (HRP). The vision for the EMSD is to utilize ISS as a test bed to show that several medical technologies needed for an exploration mission and medical informatics tools for managing evidence and decision making can be integrated into a single system and used by the on-orbit crew in an efficient and meaningful manner. Objectives: a) Reduce and even possibly eliminate the time required for on-orbit crew and ground personnel (which include Surgeon, Biomedical Engineer (BME) Flight Controller, and Medical Operations Data Specialist) to access and move medical data from one application to another. b) Demonstrate that the on-orbit crew has the ability to access medical data/information using an intuitive and crew-friendly software solution to assist/aid in the treatment of a medical condition. c) Develop a common data management framework and architecture that can be ubiquitously used to automate repetitive data collection, management, and communications tasks for all crew health and life sciences activities.
NASA Technical Reports Server (NTRS)
Antonsen, Erik
2016-01-01
The Exploration Medical Capabilities (ExMC) Element of NASA's Human Research Program is charged with identifying medical capabilities that can address the challenges of prevention, diagnosis, and treatment of disease and injuries that could occur during exploration missions beyond Earth's orbit. Faced with the obstacle of access to in-flight medical care, and limitations of vehicle space, time, and communications; it is necessary to prioritize what medical consumables are manifested for the flight, and which medical conditions are addressed. Studies of astronaut health establish the incidence of common and high risk medical conditions that require medical intervention during long-duration exploration missions. In 2000, the Institute of Medicine (IOM) convened a committee of experts, Committee on Creating a Vision for Space Medicine during Travel beyond Earth Orbit, to examine the issues surrounding astronaut health and safety for long duration space missions. Two themes run throughout the committee's final report: (1) that not enough is known about the risks to human health during long-duration missions beyond Earth's orbit or about what can effectively mitigate those risks to enable humans to travel and work safely in the environment of deep space and (2) that everything reasonable should be done to gain the necessary information before humans are sent on missions of space exploration (IOM, 2001). Although several spaceflight focused pharmaceutical research studies have been conducted, few have provided sufficient data regarding medication usage or potency changes during spaceflight. The Du pharmaceutical stability study assessed medications flown on space shuttles to and from the International Space Station (ISS) from 2006 until 2008; of which some medications were still viable beyond their expiration dates (Du et al, 2011). However, as with many spaceflight studies, the small 'n' associated with this study limits the ability to draw strong conclusions from it. Dr. Wotring and others have recently published articles containing information regarding medication usage, indications, and efficacy gleaned from spaceflight records (Wotring et al, 2015, 2016; Barger et al, 2014; Basner and Dinges, 2014). Although some conclusions can be drawn from these studies, the inability to fully quantify medication usage, indications, side effects, and effectiveness, limits insight as to which medications should be prioritized for further research.
The Pathway to a Safe and Effective Medication Formulary for Exploration Spaceflight
NASA Technical Reports Server (NTRS)
Daniels, V. R.; Bayuse, T. M.; Mulcahy, R. A.; Mcguire, R. K. M.; Antonsen, E. L.
2017-01-01
PURPOSE: Exploration space missions pose several challenges to providing a comprehensive medication formulary designed to accommodate the size and space limitations of the spacecraft; while addressing the individual medications needs and preferences of the Crew; the negative outcome of a degrading inventory over time, the inability to resupply before expiration dates; and the need to properly forecast the best possible medication candidates to treat conditions that will occur in the future. METHODS: The Pharmacotherapeutics Discipline has partnered with the Exploration Medical Capabilities (ExMC) Element to develop and propose a research pathway that is comprehensively focused on evidence-based models and theories, as well as on new diagnostic tools and treatments or preventive measures aimed at closure of the Med02 “Pharmacy” Gap; defined in the Human Research Program’s (HRP) risk-based research strategy. The Med02 Gap promotes the challenge to identify a strategy to ensure that medications used to treat medical conditions during exploration space missions are available, safe, and effective. It is abundantly clear that pharmaceutical intervention is an essential component of risk management planning for astronaut healthcare during exploration space. However, the quandary still remains of how to assemble a formulary that is comprehensive enough to prevent or treat anticipated medical events; and is also chemically stable, safe, and robust enough to have sufficient potency to last for the duration of an exploration space mission. In cases where that is not possible, addressing this Gap requires exploration of novel drug development techniques, dosage forms, and dosage delivery platforms that enhance chemical stability as well as therapeutic effectiveness. RESULTS: The proposed research pathway outlines the steps, processes, procedures, and a research portfolio aimed at identifying a capability that will provide a safe and effective pharmacy for any specific exploration Design Reference Mission (DRM). The proposed approach to building this research portfolio is to seek research projects that concentrate on four major focus areas; (1) Formulary selection, (2) Formulary potency and shelf life, (3) Formulary safety and toxicity, and (4) Novel technology and innovation such as portable real-time chemical analysis innovative drug therapies and dosage and delivery platforms. CONCLUSION: The research pathway has been completed and presented to the HRP. In spring 2017, it is scheduled to be reviewed by a panel of pharmaceutical and clinical experts that will evaluate the scientific merit and operational feasibility of the research pathway, as well as make suggestions for any warranted additions or improvements. Once finalized, the ExMC Element will proceed with the execution of this research pathway with the goal of gathering as much data, and learning as much as possible, to provide a safe and effective pharmaceutical formulary for use during exploration missions.
The Research Plan: Closing the ExMC Med02 "Pharmacy" Gap
NASA Technical Reports Server (NTRS)
Daniels, Vernie; Bayuse, Tina; Mulcahy, Robert; Shah, Ronak; Antonsen, Erik
2017-01-01
HRP Human Research Roadmap: Risk and Gap Risk of Adverse Health Outcomes and Decrements in Performance due to Inflight Medical Conditions. Med02 "Pharmacy" Gap: We do not have the capability to provide a safe and effective medication formulary for exploration missions delivering a recommendation for a chemically stable, safe, and effective medication formulary that will support the operational needs of exploration space missions research strategy evidence-based formulary and models innovative analytical tools and methodologies novel treatments and preventive measures Planned review by a panel of experts from the pharmaceutical industry, regulatory, and academic scientific communities Formulary Selection Formulary Potency and Shelf life Formulary Safety and Toxicity Novel Technology Proof-of-Concept Portable real-time chemical analysis Innovative drug development / design
Exploration Laboratory Analysis
NASA Technical Reports Server (NTRS)
Krihak, M.; Ronzano, K.; Shaw, T.
2016-01-01
The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability for manned exploration missions. Since a single, compact space-ready laboratory analysis capability to perform all exploration clinical measurements is not commercially available, the ELA project objective is to demonstrate the feasibility of emerging operational and analytical capability as a biomedical diagnostics precursor to long duration manned exploration missions. The initial step towards ground and flight demonstrations in fiscal year (FY) 2015 was the down selection of platform technologies for demonstrations in the space environment. The technologies selected included two Small Business Innovation Research (SBIR) performers: DNA Medicine Institutes rHEALTH X and Intelligent Optical Systems later flow assays combined with Holomics smartphone analyzer. The selection of these technologies were based on their compact size, breadth of analytical capability and favorable ability to process fluids in a space environment, among several factors. These two technologies will be advanced to meet ground and flight demonstration success criteria and requirements that will be finalized in FY16. Also, the down selected performers will continue the technology development phase towards meeting prototype deliverables in either late 2016 or 2017.
Exploration Laboratory Analysis
NASA Technical Reports Server (NTRS)
Krihak, M.; Ronzano, K.; Shaw, T.
2016-01-01
The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability for manned exploration missions. Since a single, compact space-ready laboratory analysis capability to perform all exploration clinical measurements is not commercially available, the ELA project objective is to demonstrate the feasibility of emerging operational and analytical capability as a biomedical diagnostics precursor to long duration manned exploration missions. The initial step towards ground and flight demonstrations in fiscal year (FY) 2015 was the downselection of platform technologies for demonstrations in the space environment. The technologies selected included two Small Business Innovation Research (SBIR) performers: DNA Medicine Institute's rHEALTH X and Intelligent Optical System's lateral flow assays combined with Holomic's smartphone analyzer. The selection of these technologies were based on their compact size, breadth of analytical capability and favorable ability to process fluids in a space environment, among several factors. These two technologies will be advanced to meet ground and flight demonstration success criteria and requirements. The technology demonstrations and metrics for success will be finalized in FY16. Also, the downselected performers will continue the technology development phase towards meeting prototype deliverables in either late 2016 or 2017.
NASA Technical Reports Server (NTRS)
Barsten, Kristina; Hurst, Victor, IV; Scheuring, Richard; Baumann, David K.; Johnson-Throop, Kathy
2010-01-01
Introduction: Analogue environments assist the NASA Human Research Program (HRP) in developing capabilities to mitigate high risk issues to crew health and performance for space exploration. The Habitat Demonstration Unit (HDU) is an analogue habitat used to assess space-related products for planetary missions. The Exploration Medical Capability (ExMC) element at the NASA Johnson Space Center (JSC) was tasked with developing planetary-relevant medical scenarios to evaluate the concept of operations for mitigating medical issues in such an environment. Methods: Two medical scenarios were conducted within the simulated planetary habitat with the crew executing two space flight-relevant procedures: Eye Examination with a corneal injury and Skin Laceration. Remote guidance for the crew was provided by a flight surgeon (FS) stationed at a console outside of the habitat. Audio and video data were collected to capture the communication between the crew and the FS, as well as the movements of the crew executing the procedures. Questionnaire data regarding procedure content and remote guidance performance also were collected from the crew immediately after the sessions. Results: Preliminary review of the audio, video, and questionnaire data from the two scenarios conducted within the HDU indicate that remote guidance techniques from an FS on console can help crew members within a planetary habitat mitigate planetary-relevant medical issues. The content and format of the procedures were considered concise and intuitive, respectively. Discussion: Overall, the preliminary data from the evaluation suggest that use of remote guidance techniques by a FS can help HDU crew execute space exploration-relevant medical procedures within a habitat relevant to planetary missions, however further evaluations will be needed to implement this strategy into the complete concept of operations for conducting general space medicine within similar environments
Human Research Program (HRP) Exploration Medical Capability (ExMC) Standing Review Panel (SRP)
NASA Technical Reports Server (NTRS)
Cintron, Nitza; Dutson, Eric; Friedl, Karl; Hyman, William; Jemison, Mae; Klonoff, David
2009-01-01
The SRP believes strongly that regularly performed in-flight crew assessments are needed in order to identify a change in health status before a medical condition becomes clinically apparent. It is this early recognition in change that constitutes the foundation of the "occupational health model" expounded in the HRP Requirements Document as a key component of the HRP risk mitigation strategy that will enable its objective of "prevention and mitigation of human health and performance risks". A regular crew status examination of physiological and clinical performance is needed. This can be accomplished through instrumented monitoring of routine embedded tasks. The SRP recommends addition of a new gap to address this action under Category 3.0 Mitigate the Risk. This new gap is closely associated with Task 4.19 which addresses the lack of adequate biomedical monitoring capabilities for performing periodic clinical status evaluations and contingency medical monitoring. A corollary to these gaps is the critical emphasis on preventive medicine, not only during pre- and post-flight phases of a mission as is the current practice, but continued into the in-flight phases of exploration class missions.
Defining Medical Levels of Care for Exploration Missions
NASA Technical Reports Server (NTRS)
Hailey, M.; Reyes, D.; Urbina, M.; Rubin, D.; Antonsen, E.
2017-01-01
NASA medical care standards establish requirements for providing health and medical programs for crewmembers during all phases of a mission. These requirements are intended to prevent or mitigate negative health consequences of long-duration spaceflight, thereby optimizing crew health and performance over the course of the mission. Current standards are documented in the two volumes of the NASA-STD-3001 Space Flight Human-System Standard document, established by the Office of the Chief Health and Medical Officer. Its purpose is to provide uniform technical standards for the design, selection, and application of medical hardware, software, processes, procedures, practices, and methods for human-rated systems. NASA-STD-3001 Vol. 1 identifies five levels of care for human spaceflight. These levels of care are accompanied by several components that illustrate the type of medical care expected for each. The Exploration Medical Capability (ExMC) of the Human Research Program has expanded the context of these provided levels of care and components. This supplemental information includes definitions for each component of care and example actions that describe the type of capabilities that coincide with the definition. This interpretation is necessary in order to fully and systematically define the capabilities required for each level of care in order to define the medical requirements and plan for infrastructure needed for medical systems of future exploration missions, such as one to Mars.
Exploration Clinical Decision Support System: Medical Data Architecture
NASA Technical Reports Server (NTRS)
Lindsey, Tony; Shetye, Sandeep; Shaw, Tianna (Editor)
2016-01-01
The Exploration Clinical Decision Support (ECDS) System project is intended to enhance the Exploration Medical Capability (ExMC) Element for extended duration, deep-space mission planning in HRP. A major development guideline is the Risk of "Adverse Health Outcomes & Decrements in Performance due to Limitations of In-flight Medical Conditions". ECDS attempts to mitigate that Risk by providing crew-specific health information, actionable insight, crew guidance and advice based on computational algorithmic analysis. The availability of inflight health diagnostic computational methods has been identified as an essential capability for human exploration missions. Inflight electronic health data sources are often heterogeneous, and thus may be isolated or not examined as an aggregate whole. The ECDS System objective provides both a data architecture that collects and manages disparate health data, and an active knowledge system that analyzes health evidence to deliver case-specific advice. A single, cohesive space-ready decision support capability that considers all exploration clinical measurements is not commercially available at present. Hence, this Task is a newly coordinated development effort by which ECDS and its supporting data infrastructure will demonstrate the feasibility of intelligent data mining and predictive modeling as a biomedical diagnostic support mechanism on manned exploration missions. The initial step towards ground and flight demonstrations has been the research and development of both image and clinical text-based computer-aided patient diagnosis. Human anatomical images displaying abnormal/pathological features have been annotated using controlled terminology templates, marked-up, and then stored in compliance with the AIM standard. These images have been filtered and disease characterized based on machine learning of semantic and quantitative feature vectors. The next phase will evaluate disease treatment response via quantitative linear dimension biomarkers that enable image content-based retrieval and criteria assessment. In addition, a data mining engine (DME) is applied to cross-sectional adult surveys for predicting occurrence of renal calculi, ranked by statistical significance of demographics and specific food ingestion. In addition to this precursor space flight algorithm training, the DME will utilize a feature-engineering capability for unstructured clinical text classification health discovery. The ECDS backbone is a proposed multi-tier modular architecture providing data messaging protocols, storage, management and real-time patient data access. Technology demonstrations and success metrics will be finalized in FY16.
Clinical Outcome Metrics for Optimization of Robust Training
NASA Technical Reports Server (NTRS)
Ebert, D.; Byrne, V. E.; McGuire, K. M.; Hurst, V. W., IV; Kerstman, E. L.; Cole, R. W.; Sargsyan, A. E.; Garcia, K. M.; Reyes, D.; Young, M.
2016-01-01
Introduction: The emphasis of this research is on the Human Research Program (HRP) Exploration Medical Capability's (ExMC) "Risk of Unacceptable Health and Mission Outcomes Due to Limitations of In-Flight Medical Capabilities." Specifically, this project aims to contribute to the closure of gap ExMC 2.02: We do not know how the inclusion of a physician crew medical officer quantitatively impacts clinical outcomes during exploration missions. The experiments are specifically designed to address clinical outcome differences between physician and non-physician cohorts in both near-term and longer-term (mission impacting) outcomes. Methods: Medical simulations will systematically compare success of individual diagnostic and therapeutic procedure simulations performed by physician and non-physician crew medical officer (CMO) analogs using clearly defined short-term (individual procedure) outcome metrics. In the subsequent step of the project, the procedure simulation outcomes will be used as input to a modified version of the NASA Integrated Medical Model (IMM) to analyze the effect of the outcome (degree of success) of individual procedures (including successful, imperfectly performed, and failed procedures) on overall long-term clinical outcomes and the consequent mission impacts. The procedures to be simulated are endotracheal intubation, fundoscopic examination, kidney/urinary ultrasound, ultrasound-guided intravenous catheter insertion, and a differential diagnosis exercise. Multiple assessment techniques will be used, centered on medical procedure simulation studies occurring at 3, 6, and 12 months after initial training (as depicted in the following flow diagram of the experiment design). Discussion: Analysis of procedure outcomes in the physician and non-physician groups and their subsets (tested at different elapsed times post training) will allow the team to 1) define differences between physician and non-physician CMOs in terms of both procedure performance (pre-IMM analysis) and overall mitigation of the mission medical impact (IMM analysis); 2) refine the procedure outcome and clinical outcome metrics themselves; 3) refine or develop innovative medical training products and solutions to maximize CMO performance; and 4) validate the methods and products of this experiment for operational use in the planning, execution, and quality assurance of the CMO training process The team has finalized training protocols and developed a software training/testing tool in collaboration with Butler Graphics (Detroit, MI). In addition to the "hands on" medical procedure modules, the software includes a differential diagnosis exercise (limited clinical decision support tool) to evaluate the diagnostic skills of participants. Human subject testing will occur over the next year.
Exploration Medical System Trade Study Tools Overview
NASA Technical Reports Server (NTRS)
Mindock, J.; Myers, J.; Latorella, K.; Cerro, J.; Hanson, A.; Hailey, M.; Middour, C.
2018-01-01
ExMC is creating an ecosystem of tools to enable well-informed medical system trade studies. The suite of tools address important system implementation aspects of the space medical capabilities trade space and are being built using knowledge from the medical community regarding the unique aspects of space flight. Two integrating models, a systems engineering model and a medical risk analysis model, tie the tools together to produce an integrated assessment of the medical system and its ability to achieve medical system target requirements. This presentation will provide an overview of the various tools that are a part of the tool ecosystem. Initially, the presentation's focus will address the tools that supply the foundational information to the ecosystem. Specifically, the talk will describe how information that describes how medicine will be practiced is captured and categorized for efficient utilization in the tool suite. For example, the talk will include capturing what conditions will be planned for in-mission treatment, planned medical activities (e.g., periodic physical exam), required medical capabilities (e.g., provide imaging), and options to implement the capabilities (e.g., an ultrasound device). Database storage and configuration management will also be discussed. The presentation will include an overview of how these information tools will be tied to parameters in a Systems Modeling Language (SysML) model, allowing traceability to system behavioral, structural, and requirements content. The discussion will also describe an HRP-led enhanced risk assessment model developed to provide quantitative insight into each capability's contribution to mission success. Key outputs from these various tools, to be shared with the space medical and exploration mission development communities, will be assessments of medical system implementation option satisfaction of requirements and per-capability contributions toward achieving requirements.
Biosensors for EVA: Muscle Oxygen and pH During Walking, Running and Simulated Reduced Gravity
NASA Technical Reports Server (NTRS)
Lee, S. M. C.; Ellerby, G.; Scott, P.; Stroud, L.; Norcross, J.; Pesholov, B.; Zou, F.; Gernhardt, M.; Soller, B.
2009-01-01
During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO2 on the leg during cycling. Our NSBRI-funded project is looking to extend this methodology to examine activities which more appropriately represent EVA activities, such as walking and running and to better understand factors that determine the metabolic cost of exercise in both normal and lunar gravity. Our 4 year project specifically addresses risk: ExMC 4.18: Lack of adequate biomedical monitoring capability for Constellation EVA Suits and EPSP risk: Risk of compromised EVA performance and crew health due to inadequate EVA suit systems.
Development of a curved pipe capability for the NASTRAN finite element program
NASA Technical Reports Server (NTRS)
Jeter, J. W., Jr.
1977-01-01
A curved pipe element capability for the NASTRAN structural analysis program is developed using the NASTRAN dummy element feature. A description is given of the theory involved in the subroutines which describe stiffness, mass, thermal and enforced deformation loads, and force and stress recovery for the curved pipe element. Incorporation of these subroutines into NASTRAN is discussed. Test problems are proposed. Instructions on use of the new element capability are provided.
Benchmarking the QUAD4/TRIA3 element
NASA Technical Reports Server (NTRS)
Pitrof, Stephen M.; Venkayya, Vipperla B.
1993-01-01
The QUAD4 and TRIA3 elements are the primary plate/shell elements in NASTRAN. These elements enable the user to analyze thin plate/shell structures for membrane, bending and shear phenomena. They are also very new elements in the NASTRAN library. These elements are extremely versatile and constitute a substantially enhanced analysis capability in NASTRAN. However, with the versatility comes the burden of understanding a myriad of modeling implications and their effect on accuracy and analysis quality. The validity of many aspects of these elements were established through a series of benchmark problem results and comparison with those available in the literature and obtained from other programs like MSC/NASTRAN and CSAR/NASTRAN. Never-the-less such a comparison is never complete because of the new and creative use of these elements in complex modeling situations. One of the important features of QUAD4 and TRIA3 elements is the offset capability which allows the midsurface of the plate to be noncoincident with the surface of the grid points. None of the previous elements, with the exception of bar (beam), has this capability. The offset capability played a crucial role in the design of QUAD4 and TRIA3 elements. It allowed modeling layered composites, laminated plates and sandwich plates with the metal and composite face sheets. Even though the basic implementation of the offset capability is found to be sound in the previous applications, there is some uncertainty in relatively simple applications. The main purpose of this paper is to test the integrity of the offset capability and provide guidelines for its effective use. For the purpose of simplicity, references in this paper to the QUAD4 element will also include the TRIA3 element.
2016-06-01
7 Development of Cohesive Finite Element Method (CFEM) Capability ................................7 3D...Cohesive Finite Element Method (CFEM) framework A new scientific framework and technical capability is developed for the computational analyses of...this section should shift from reporting activities to reporting accomplishments. Development of Cohesive Finite Element Method (CFEM) Capability
I(CES)-cubes: a modular self-reconfigurable bipartite robotic system
NASA Astrophysics Data System (ADS)
Unsal, Cem; Kiliccote, Han; Khosla, Pradeep K.
1999-08-01
In this manuscript, we introduce I(CES)-Cubes, a class of 3D modular robotic system that is capable of reconfiguring itself in order to adapt to its environment. This is a bipartite system, i.e. a collection of (i) active elements capable of actuation, and (ii) passive elements acting as connectors between actuated elements. Active elements, called links, are 3-DOF manipulators that are capable of attaching/detaching themselves to/from the passive elements. The cubes can then be positioned and oriented using links, which are independent mechatronic elements. Self- reconfiguration property enables the system to performed locomotion tasks over difficult terrain. For example, the system would be capable of moving over obstacles and climbing stairs. These task are performed by positing and orienting cubes and links to form a 3D network with required shape and position. This paper describes the design of the passive and active elements, the attachment mechanics, and several reconfiguration scenarios. Specifics of the hardware implementation and result of experiments with current prototypes are also given.
Fracture Capabilities in Grizzly with the extended Finite Element Method (X-FEM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolbow, John; Zhang, Ziyu; Spencer, Benjamin
Efforts are underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). A capability was previously developed to calculate three-dimensional interaction- integrals to extract mixed-mode stress-intensity factors. This capability requires the use of a finite element mesh that conforms to the crack geometry. The eXtended Finite Element Method (X-FEM) provides a means to represent a crack geometry without explicitly fitting the finite element mesh to it. This is effected by enhancing the element kinematics to represent jump discontinuities at arbitrary locations inside ofmore » the element, as well as the incorporation of asymptotic near-tip fields to better capture crack singularities. In this work, use of only the discontinuous enrichment functions was examined to see how accurate stress intensity factors could still be calculated. This report documents the following work to enhance Grizzly’s engineering fracture capabilities by introducing arbitrary jump discontinuities for prescribed crack geometries; X-FEM Mesh Cutting in 3D: to enhance the kinematics of elements that are intersected by arbitrary crack geometries, a mesh cutting algorithm was implemented in Grizzly. The algorithm introduces new virtual nodes and creates partial elements, and then creates a new mesh connectivity; Interaction Integral Modifications: the existing code for evaluating the interaction integral in Grizzly was based on the assumption of a mesh that was fitted to the crack geometry. Modifications were made to allow for the possibility of a crack front that passes arbitrarily through the mesh; and Benchmarking for 3D Fracture: the new capabilities were benchmarked against mixed-mode three-dimensional fracture problems with known analytical solutions.« less
A COTS-Style Acquisition Strategy for Human Exploration Beyond LEO
NASA Technical Reports Server (NTRS)
Arney, Dale; Earle, Kevin; Klovstad, Jordan; Jones, Christopher
2016-01-01
The Evolvable Mars Campaign presents a long term strategy for NASA's Journey to Mars within a capability driven framework. By comparing each element to a set of criteria, this paper reviews the potential of acquiring those capabilities using a strategy similar to the Commercial Orbital Transportation Services program. The paper presents the criteria, assesses the elements against those criteria, and then discusses the suitability of each element to being developed using this acquisition strategy. Throughout the campaign, certain capabilities are well suited to being developed in this manner while others are not. This assessment is a snapshot in time, and should be revisited as the campaign and/or commercial capabilities change. This paper will explore each of these elements in the campaign and discuss how the COTS development andacquisition strategy could or could not be applied to those elements. This assessment will be based on theservices or functionality required in the campaign, and will use the best practices discussed above to create acase for or against a COTS-style acquisition strategy for each given element.
NASA Stennis Space Center Integrated System Health Management Test Bed and Development Capabilities
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Holland, Randy; Coote, David
2006-01-01
Integrated System Health Management (ISHM) is a capability that focuses on determining the condition (health) of every element in a complex System (detect anomalies, diagnose causes, prognosis of future anomalies), and provide data, information, and knowledge (DIaK)-not just data-to control systems for safe and effective operation. This capability is currently done by large teams of people, primarily from ground, but needs to be embedded on-board systems to a higher degree to enable NASA's new Exploration Mission (long term travel and stay in space), while increasing safety and decreasing life cycle costs of spacecraft (vehicles; platforms; bases or outposts; and ground test, launch, and processing operations). The topics related to this capability include: 1) ISHM Related News Articles; 2) ISHM Vision For Exploration; 3) Layers Representing How ISHM is Currently Performed; 4) ISHM Testbeds & Prototypes at NASA SSC; 5) ISHM Functional Capability Level (FCL); 6) ISHM Functional Capability Level (FCL) and Technology Readiness Level (TRL); 7) Core Elements: Capabilities Needed; 8) Core Elements; 9) Open Systems Architecture for Condition-Based Maintenance (OSA-CBM); 10) Core Elements: Architecture, taxonomy, and ontology (ATO) for DIaK management; 11) Core Elements: ATO for DIaK Management; 12) ISHM Architecture Physical Implementation; 13) Core Elements: Standards; 14) Systematic Implementation; 15) Sketch of Work Phasing; 16) Interrelationship Between Traditional Avionics Systems, Time Critical ISHM and Advanced ISHM; 17) Testbeds and On-Board ISHM; 18) Testbed Requirements: RETS AND ISS; 19) Sustainable Development and Validation Process; 20) Development of on-board ISHM; 21) Taxonomy/Ontology of Object Oriented Implementation; 22) ISHM Capability on the E1 Test Stand Hydraulic System; 23) Define Relationships to Embed Intelligence; 24) Intelligent Elements Physical and Virtual; 25) ISHM Testbeds and Prototypes at SSC Current Implementations; 26) Trailer-Mounted RETS; 27) Modeling and Simulation; 28) Summary ISHM Testbed Environments; 29) Data Mining - ARC; 30) Transitioning ISHM to Support NASA Missions; 31) Feature Detection Routines; 32) Sample Features Detected in SSC Test Stand Data; and 33) Health Assessment Database (DIaK Repository).
Joint Enabling Capabilities Command
Executive Director Chief of Staff Joint Planning Support Element Joint Communications Support Element mission Joint Enabling Capabilities Command provides decisive joint communications, planning and public and responsive support for joint communications, planning and public affairs. Priorities * Deliver
User's Guide for ENSAERO_FE Parallel Finite Element Solver
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.; Guruswamy, Guru P.
1999-01-01
A high fidelity parallel static structural analysis capability is created and interfaced to the multidisciplinary analysis package ENSAERO-MPI of Ames Research Center. This new module replaces ENSAERO's lower fidelity simple finite element and modal modules. Full aircraft structures may be more accurately modeled using the new finite element capability. Parallel computation is performed by breaking the full structure into multiple substructures. This approach is conceptually similar to ENSAERO's multizonal fluid analysis capability. The new substructure code is used to solve the structural finite element equations for each substructure in parallel. NASTRANKOSMIC is utilized as a front end for this code. Its full library of elements can be used to create an accurate and realistic aircraft model. It is used to create the stiffness matrices for each substructure. The new parallel code then uses an iterative preconditioned conjugate gradient method to solve the global structural equations for the substructure boundary nodes.
Methods and devices for fabricating and assembling printable semiconductor elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
Methods and devices for fabricating and assembling printable semiconductor elements
Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao
2014-03-04
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
Photovoltaic sheathing element with a flexible connector assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langmaid, Joseph A; Keenihan, James R; Mills, Michael E
2016-07-12
The present invention is premised upon an assembly including at least a photovoltaic sheathing element capable of being affixed on a building structure, the sheathing element including at least: a photovoltaic cell assembly, a body portion attached to one or more portions of the photovoltaic cell assembly; at least a first and a second connector assembly disposed on opposing sides of the sheathing element and capable of directly or indirectly electrically connecting the photovoltaic cell assembly to at least two adjoining devices that are affixed to the building structure and wherein at least one of the connector assemblies includes amore » flexible portion; one or more connector pockets disposed in the body portion the pockets capable of receiving at least a portion of the connector assembly.« less
SmaggIce 2.0: Additional Capabilities for Interactive Grid Generation of Iced Airfoils
NASA Technical Reports Server (NTRS)
Kreeger, Richard E.; Baez, Marivell; Braun, Donald C.; Schilling, Herbert W.; Vickerman, Mary B.
2008-01-01
The Surface Modeling and Grid Generation for Iced Airfoils (SmaggIce) software toolkit has been extended to allow interactive grid generation for multi-element iced airfoils. The essential phases of an icing effects study include geometry preparation, block creation and grid generation. SmaggIce Version 2.0 now includes these main capabilities for both single and multi-element airfoils, plus an improved flow solver interface and a variety of additional tools to enhance the efficiency and accuracy of icing effects studies. An overview of these features is given, especially the new multi-element blocking strategy using the multiple wakes method. Examples are given which illustrate the capabilities of SmaggIce for conducting an icing effects study for both single and multi-element airfoils.
AFRL’s ALREST Physics-Based Combustion Stability Program
2012-11-08
enduring challenge because of the inherent complexities in the physics of multiphase turbulent flames. The present paper provides the Air Force...Combustor F i d e l i t y URANS LES Steady RANS HLES Current SOA Capability with 2000 cores Capability at Program End in 2015 (2,000 cores+GPUs) Capability...Unlimited ALREST Validation Cases “Final Exam ” Hydrogen Stable Single Element (PSU) Stable Single Element Methane (Singla) Supercritical Non
Hot wire needle probe for thermal conductivity detection
Condie, Keith Glenn; Rempe, Joy Lynn; Knudson, Darrell lee; Daw, Joshua Earl; Wilkins, Steven Curtis; Fox, Brandon S.; Heng, Ban
2015-11-10
An apparatus comprising a needle probe comprising a sheath, a heating element, a temperature sensor, and electrical insulation that allows thermal conductivity to be measured in extreme environments, such as in high-temperature irradiation testing. The heating element is contained within the sheath and is electrically conductive. In an embodiment, the heating element is a wire capable of being joule heated when an electrical current is applied. The temperature sensor is contained within the sheath, electrically insulated from the heating element and the sheath. The electrical insulation electrically insulates the sheath, heating element and temperature sensor. The electrical insulation fills the sheath having electrical resistance capable of preventing electrical conduction between the sheath, heating element, and temperature sensor. The control system is connected to the heating element and the temperature sensor.
Development of high-speed rolling-element bearings. A historical and technical perspective
NASA Technical Reports Server (NTRS)
Zaretsky, E. V.
1982-01-01
Research on large-bore ball and roller bearings for aircraft engines is described. Tapered roller bearings and small-bore bearings are discussed. Temperature capabilities of rolling element bearings for aircraft engines have moved from 450 to 589 K (350 to 600 F) with increased reliability. High bearing speeds to 3 million DN can be achieved with a reliability exceeding that which was common in commercial aircraft. Capabilities of available bearing steels and lubricants were defined and established. Computer programs for the analysis and design of rolling element bearings were developed and experimentally verified. The reported work is a summary of NASA contributions to high performance engine and transmission bearing capabilities.
In-Situ Resource Utilization (ISRU) Capability Roadmap Progress Review
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.; Duke, Michael
2005-01-01
A progress review on In-Situ Resource Utilization (ISRU) capability is presented. The topics include: 1) In-Situ Resource Utilization (ISRU) Capability Roadmap: Level 1; 2) ISRU Emphasized Architecture Overview; 3) ISRU Capability Elements: Level 2 and below; and 4) ISRU Capability Roadmap Wrap-up.
Photovoltaic building sheathing element with anti-slide features
Keenihan, James R.; Langmaid, Joseph A.; Lopez, Leonardo C.
2015-09-08
The present invention is premised` upon an assembly that includes at least a photovoltaic building sheathing element capable of being affixed on a building structure, the photovoltaic building sheathing element. The element including a photovoltaic cell assembly, a body portion attached to one or more portions of the photovoltaic cell assembly; and at feast a first and a second connector assembly capable of directly or indirectly electrically connecting the photovoltaic cell assembly to one or more adjoining devices; wherein the body portion includes one or more geometric features adapted to engage a vertically adjoining device before installation.
Multidisciplinary Analysis and Optimal Design: As Easy as it Sounds?
NASA Technical Reports Server (NTRS)
Moore, Greg; Chainyk, Mike; Schiermeier, John
2004-01-01
The viewgraph presentation examines optimal design for precision, large aperture structures. Discussion focuses on aspects of design optimization, code architecture and current capabilities, and planned activities and collaborative area suggestions. The discussion of design optimization examines design sensitivity analysis; practical considerations; and new analytical environments including finite element-based capability for high-fidelity multidisciplinary analysis, design sensitivity, and optimization. The discussion of code architecture and current capabilities includes basic thermal and structural elements, nonlinear heat transfer solutions and process, and optical modes generation.
The Single Crew Module Concept for Exploration
NASA Technical Reports Server (NTRS)
Chambliss, Joe
2012-01-01
Many concepts have been proposed for exploring space. In early 2010 presidential direction called for reconsidering the approach to address changes in exploration destinations, use of new technologies and development of new capabilities to support exploration of space. Considering the proposed new technology and capabilities that NASA was directed to pursue, the single crew module (SCM) concept for a more streamlined approach to the infrastructure and conduct of exploration missions was developed. The SCM concept combines many of the new promising technologies with a central concept of mission architectures that uses a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper describes the SCM concept, provides a top level mass estimate for the elements needed and trades the concept against Many concepts have been proposed for exploring space. In early 2010 presidential direction called for reconsidering the approach to address changes in exploration destinations, use of new technologies and development of new capabilities to support exploration of space. Considering the proposed new technology and capabilities that NASA was directed to pursue, the single crew module (SCM) concept for a more streamlined approach to the infrastructure and conduct of exploration missions was developed. The SCM concept combines many of the new promising technologies with a central concept of mission architectures that uses a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper describes the SCM concept, provides a top level mass estimate for the elements needed and trades the concept against Constellation approaches for Lunar, Near Earth Asteroid and Mars Surface missions.
NASA Technical Reports Server (NTRS)
Schmalzel, John L.; Morris, Jon; Turowski, Mark; Figueroa, Fernando; Oostdyk, Rebecca
2008-01-01
There are a number of architecture models for implementing Integrated Systems Health Management (ISHM) capabilities. For example, approaches based on the OSA-CBM and OSA-EAI models, or specific architectures developed in response to local needs. NASA s John C. Stennis Space Center (SSC) has developed one such version of an extensible architecture in support of rocket engine testing that integrates a palette of functions in order to achieve an ISHM capability. Among the functional capabilities that are supported by the framework are: prognostic models, anomaly detection, a data base of supporting health information, root cause analysis, intelligent elements, and integrated awareness. This paper focuses on the role that intelligent elements can play in ISHM architectures. We define an intelligent element as a smart element with sufficient computing capacity to support anomaly detection or other algorithms in support of ISHM functions. A smart element has the capabilities of supporting networked implementations of IEEE 1451.x smart sensor and actuator protocols. The ISHM group at SSC has been actively developing intelligent elements in conjunction with several partners at other Centers, universities, and companies as part of our ISHM approach for better supporting rocket engine testing. We have developed several implementations. Among the key features for these intelligent sensors is support for IEEE 1451.1 and incorporation of a suite of algorithms for determination of sensor health. Regardless of the potential advantages that can be achieved using intelligent sensors, existing large-scale systems are still based on conventional sensors and data acquisition systems. In order to bring the benefits of intelligent sensors to these environments, we have also developed virtual implementations of intelligent sensors.
High temperature electrically conducting ceramic heating element and control system
NASA Technical Reports Server (NTRS)
Halbach, C. R.; Page, R. J.
1975-01-01
Improvements were made in both electrode technology and ceramic conductor quality to increase significantly the lifetime and thermal cycling capability of electrically conducting ceramic heater elements. These elements were operated in vacuum, inert and reducing environments as well as oxidizing atmospheres adding to the versatility of the conducting ceramic as an ohmic heater. Using stabilized zirconia conducting ceramic heater elements, a furnace was fabricated and demonstrated to have excellent thermal response and cycling capability. The furnace was used to melt platinum-20% rhodium alloy (melting point 1904 C) with an isothermal ceramic heating element having a nominal working cavity size of 2.5 cm diameter by 10.0 cm long. The furnace was operated to 1940 C with the isothermal ceramic heating element. The same furnace structure was fitted with a pair of main heater elements to provide axial gradient temperature control over a working cavity length of 17.8 cm.
Simulation and Flight Test Capability for Testing Prototype Sense and Avoid System Elements
NASA Technical Reports Server (NTRS)
Howell, Charles T.; Stock, Todd M.; Verstynen, Harry A.; Wehner, Paul J.
2012-01-01
NASA Langley Research Center (LaRC) and The MITRE Corporation (MITRE) have developed, and successfully demonstrated, an integrated simulation-to-flight capability for evaluating sense and avoid (SAA) system elements. This integrated capability consists of a MITRE developed fast-time computer simulation for evaluating SAA algorithms, and a NASA LaRC surrogate unmanned aircraft system (UAS) equipped to support hardware and software in-the-loop evaluation of SAA system elements (e.g., algorithms, sensors, architecture, communications, autonomous systems), concepts, and procedures. The fast-time computer simulation subjects algorithms to simulated flight encounters/ conditions and generates a fitness report that records strengths, weaknesses, and overall performance. Reviewed algorithms (and their fitness report) are then transferred to NASA LaRC where additional (joint) airworthiness evaluations are performed on the candidate SAA system-element configurations, concepts, and/or procedures of interest; software and hardware components are integrated into the Surrogate UAS research systems; and flight safety and mission planning activities are completed. Onboard the Surrogate UAS, candidate SAA system element configurations, concepts, and/or procedures are subjected to flight evaluations and in-flight performance is monitored. The Surrogate UAS, which can be controlled remotely via generic Ground Station uplink or automatically via onboard systems, operates with a NASA Safety Pilot/Pilot in Command onboard to permit safe operations in mixed airspace with manned aircraft. An end-to-end demonstration of a typical application of the capability was performed in non-exclusionary airspace in October 2011; additional research, development, flight testing, and evaluation efforts using this integrated capability are planned throughout fiscal year 2012 and 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
An Interactive Preprocessor Program with Graphics for a Three-Dimensional Finite Element Code.
ERIC Educational Resources Information Center
Hamilton, Claude Hayden, III
The development and capabilities of an interactive preprocessor program with graphics for an existing three-dimensional finite element code is presented. This preprocessor program, EDGAP3D, is designed to be used in conjunction with the Texas Three Dimensional Grain Analysis Program (TXCAP3D). The code presented in this research is capable of the…
The Advanced Modeling, Simulation and Analysis Capability Roadmap Vision for Engineering
NASA Technical Reports Server (NTRS)
Zang, Thomas; Lieber, Mike; Norton, Charles; Fucik, Karen
2006-01-01
This paper summarizes a subset of the Advanced Modeling Simulation and Analysis (AMSA) Capability Roadmap that was developed for NASA in 2005. The AMSA Capability Roadmap Team was chartered to "To identify what is needed to enhance NASA's capabilities to produce leading-edge exploration and science missions by improving engineering system development, operations, and science understanding through broad application of advanced modeling, simulation and analysis techniques." The AMSA roadmap stressed the need for integration, not just within the science, engineering and operations domains themselves, but also across these domains. Here we discuss the roadmap element pertaining to integration within the engineering domain, with a particular focus on implications for future observatory missions. The AMSA products supporting the system engineering function are mission information, bounds on information quality, and system validation guidance. The Engineering roadmap element contains 5 sub-elements: (1) Large-Scale Systems Models, (2) Anomalous Behavior Models, (3) advanced Uncertainty Models, (4) Virtual Testing Models, and (5) space-based Robotics Manufacture and Servicing Models.
Dielectric Metasurface Optics: A New Platform for Compact Optical Sensing
NASA Astrophysics Data System (ADS)
Colburn, Shane
Metasurfaces, the 2D analogue of bulk metamaterials, show incredible promise for achieving nanoscale optical components that could support the growing infrastructure for the Internet of Things (IoT) and future sensing technologies. Consisting of quasiperiodic arrays of subwavelength scattering elements, metasurfaces apply spatial transfer functions to incident wavefronts, abruptly altering properties of light over a wavelength-scale thickness. By appropriately patterning scatterers on the structure, arbitrary functions can be implemented up to the limitations on the scattering properties of the particular elements. This thesis details theoretical work and simulations on the design of scattering elements with advanced capabilities for dielectric metasurfaces, showing polarization-multiplexed operation in the visible regime, multiwavelength capability in the visible regime along with a general methodology for eliminating chromatic aberrations at discrete wavelengths, and compact and tunable elements for 1550 nm operation inspired by an asymmetric Fabry-Perot cavity. These advancements enhance the capabilities of metasurfaces in the visible regime and help move toward the goal of achieving reconfigurable metasurfaces for compact and efficient optical sensors.
NASA Technical Reports Server (NTRS)
Kennedy, Ronald; Padovan, Joe
1987-01-01
In a three-part series of papers, a generalized finite element solution strategy is developed to handle traveling load problems in rolling, moving and rotating structure. The main thrust of this section consists of the development of three-dimensional and shell type moving elements. In conjunction with this work, a compatible three-dimensional contact strategy is also developed. Based on these modeling capabilities, extensive analytical and experimental benchmarking is presented. Such testing includes traveling loads in rotating structure as well as low- and high-speed rolling contact involving standing wave-type response behavior. These point to the excellent modeling capabilities of moving element strategies.
MSC products for the simulation of tire behavior
NASA Technical Reports Server (NTRS)
Muskivitch, John C.
1995-01-01
The modeling of tires and the simulation of tire behavior are complex problems. The MacNeal-Schwendler Corporation (MSC) has a number of finite element analysis products that can be used to address the complexities of tire modeling and simulation. While there are many similarities between the products, each product has a number of capabilities that uniquely enable it to be used for a specific aspect of tire behavior. This paper discusses the following programs: (1) MSC/NASTRAN - general purpose finite element program for linear and nonlinear static and dynamic analysis; (2) MSC/ADAQUS - nonlinear statics and dynamics finite element program; (3) MSC/PATRAN AFEA (Advanced Finite Element Analysis) - general purpose finite element program with a subset of linear and nonlinear static and dynamic analysis capabilities with an integrated version of MSC/PATRAN for pre- and post-processing; and (4) MSC/DYTRAN - nonlinear explicit transient dynamics finite element program.
Modeling Progressive Failure of Bonded Joints Using a Single Joint Finite Element
NASA Technical Reports Server (NTRS)
Stapleton, Scott E.; Waas, Anthony M.; Bednarcyk, Brett A.
2010-01-01
Enhanced finite elements are elements with an embedded analytical solution which can capture detailed local fields, enabling more efficient, mesh-independent finite element analysis. In the present study, an enhanced finite element is applied to generate a general framework capable of modeling an array of joint types. The joint field equations are derived using the principle of minimum potential energy, and the resulting solutions for the displacement fields are used to generate shape functions and a stiffness matrix for a single joint finite element. This single finite element thus captures the detailed stress and strain fields within the bonded joint, but it can function within a broader structural finite element model. The costs associated with a fine mesh of the joint can thus be avoided while still obtaining a detailed solution for the joint. Additionally, the capability to model non-linear adhesive constitutive behavior has been included within the method, and progressive failure of the adhesive can be modeled by using a strain-based failure criteria and re-sizing the joint as the adhesive fails. Results of the model compare favorably with experimental and finite element results.
Slave finite elements for nonlinear analysis of engine structures, volume 1
NASA Technical Reports Server (NTRS)
Gellin, S.
1991-01-01
A 336 degrees of freedom slave finite element processing capability to analyze engine structures under severe thermomechanical loading is presented. Description of the theoretical development and demonstration of that element is presented in this volume.
Verification of a Finite Element Model for Pyrolyzing Ablative Materials
NASA Technical Reports Server (NTRS)
Risch, Timothy K.
2017-01-01
Ablating thermal protection system (TPS) materials have been used in many reentering spacecraft and in other applications such as rocket nozzle linings, fire protection materials, and as countermeasures for directed energy weapons. The introduction of the finite element model to the analysis of ablation has arguably resulted in improved computational capabilities due the flexibility and extended applicability of the method, especially to complex geometries. Commercial finite element codes often provide enhanced capability compared to custom, specially written programs based on versatility, usability, pre- and post-processing, grid generation, total life-cycle costs, and speed.
Photovoltaic sheathing element with one or more tabs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keenihan, James R; Langmaid, Joseph A; Lopez, Leonardo C.
2017-02-07
The present invention is premised upon an assembly that includes at least a photovoltaic sheathing element capable of being affixed on a building structure. The shingle including at least a photovoltaic cell assembly, a body portion attached to one or more portions of the photovoltaic cell assembly. Wherein the body portion includes one or more top peripheral tabs each capable of fitting under one or more vertically adjoining devices.
Integrated System Health Management: Foundational Concepts, Approach, and Implementation.
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Schmalzel, John; Walker, Mark; Venkatesh, Meera; Kapadia, Ravi; Morris, Jon; Turowski, Mark; Smith, Harvey
2009-01-01
Implementation of integrated system health management (ISHM) capability is fundamentally linked to the management of data, information, and knowledge (DIaK) with the purposeful objective of determining the health of a system. It is akin to having a team of experts who are all individually and collectively observing and analyzing a complex system, and communicating effectively with each other in order to arrive to an accurate and reliable assessment of its health. We present concepts, procedures, and a specific approach as a foundation for implementing a credible ISHM capability. The capability stresses integration of DIaK from all elements of a system. The intent is also to make possible implementation of on-board ISHM capability, in contrast to a remote capability. The information presented is the result of many years of research, development, and maturation of technologies, and of prototype implementations in operational systems (rocket engine test facilities). The paper will address the following topics: 1. ISHM Model of a system 2. Detection of anomaly indicators. 3. Determination and confirmation of anomalies. 4. Diagnostic of causes and determination of effects. 5. Consistency checking cycle. 6. Management of health information 7. User Interfaces 8. Example implementation ISHM has been defined from many perspectives. We define it as a capability that might be achieved by various approaches. We describe a specific approach that has been matured throughout many years of development, and pilot implementations. ISHM is a capability that is achieved by integrating data, information, and knowledge (DIaK) that might be distributed throughout the system elements (which inherently implies capability to manage DIaK associated with distributed sub-systems). DIaK must be available to any element of a system at the right time and in accordance with a meaningful context. ISHM Functional Capability Level (FCL) is measured by how well a system performs the following functions: (1) detect anomalies, (2) diagnose causes, (3) predict future anomalies/failures, and (4) provide the user with an integrated awareness about the condition of every element in the system and guide user decisions.
Observer's Interface for Solar System Target Specification
NASA Astrophysics Data System (ADS)
Roman, Anthony; Link, Miranda; Moriarty, Christopher; Stansberry, John A.
2016-10-01
When observing an asteroid or comet with HST, it has been necessary for the observer to manually enter the target's orbital elements into the Astronomer's Proposal Tool (APT). This allowed possible copy/paste transcription errors from the observer's source of orbital elements data. In order to address this issue, APT has now been improved with the capability to identify targets in and then download orbital elements from JPL Horizons. The observer will first use a target name resolver to choose the intended target from the Horizons database, and then download the orbital elements from Horizons directly into APT. A manual entry option is also still retained if the observer does not wish to use elements from Horizons. This new capability is available for HST observing, and it will also be supported for JWST observing. The poster shows examples of this new interface.
Observer's Interface for Solar System Target Specification
NASA Astrophysics Data System (ADS)
Roman, Anthony; Link, Miranda; Moriarty, Christopher; Stansberry, John A.
2016-01-01
When observing an asteroid or comet with HST, it has been necessary for the observer to manually enter the target's orbital elements into the Astronomer's Proposal Tool (APT). This allowed possible copy/paste transcription errors from the observer's source of orbital elements data. In order to address this issue, APT has now been improved with the capability to identify targets in and then download orbital elements from JPL Horizons. The observer will first use a target name resolver to choose the intended target from the Horizons database, and then download the orbital elements from Horizons directly into APT. A manual entry option is also still retained if the observer does not wish to use elements from Horizons. This new capability is available for HST observing, and it will also be supported for JWST observing. The poster shows examples of this new interface.
Nonlinear static and dynamic finite element analysis of an eccentrically loaded graphite-epoxy beam
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jackson, Karen E.; Jones, Lisa E.
1991-01-01
The Dynamic Crash Analysis of Structures (DYCAT) and NIKE3D nonlinear finite element codes were used to model the static and implulsive response of an eccentrically loaded graphite-epoxy beam. A 48-ply unidirectional composite beam was tested under an eccentric axial compressive load until failure. This loading configuration was chosen to highlight the capabilities of two finite element codes for modeling a highly nonlinear, large deflection structural problem which has an exact solution. These codes are currently used to perform dynamic analyses of aircraft structures under impact loads to study crashworthiness and energy absorbing capabilities. Both beam and plate element models were developed to compare with the experimental data using the DYCAST and NIKE3D codes.
JPRS Report, Science & Technology, China, High-Performance Computer Systems
1992-10-28
microprocessor array The microprocessor array in the AP85 system is com- posed of 16 completely identical array element micro - processors . Each array element...microprocessors and capable of host machine reading and writing. The memory capacity of the array element micro - processors as a whole can be expanded...transmission functions to carry out data transmission from array element micro - processor to array element microprocessor, from array element
Stress and deformation modeling of multiple rotary combustion engine trochoid housings
NASA Technical Reports Server (NTRS)
Lychuk, W. M.; Bradley, S. A.; Vilmann, C. R.; Passerello, C. E.; Lee, C.-M.
1986-01-01
This paper documents the development of the capability to produce finite element models of alternate trochoid housing configurations. The effort needed to produce these models is greatly reduced by the use of a newly developed specialized finite element preprocessor which is described. The results of static stress comparisons conducted on a Mazda trochoid housing are presented. Planned future development of this modeling capability to operational situations is also presented.
Counterforce Targeting Capabilities and Challenges
2004-08-01
COUNTERFORCE TARGETING CAPABILITIES AND CHALLENGES by Barry R. Schneider The Counterproliferation Papers Future Warfare Series No. 22 USAF...TITLE AND SUBTITLE Counterforce Targeting Capabilities and Challenges 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Rev. 8-98) Prescribed by ANSI Std Z39-18 Counterforce Targeting Capabilities and Challenges Barry R. Schneider August 2004 The Counterproliferation
Layerwise Finite Elements for Smart Piezoceramic Composite Plates in Thermal Environments
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.; Lee, Ho-Jun
1996-01-01
Analytical formulations are presented which account for the coupled mechanical, electrical, and thermal response of piezoelectric composite laminates and plate structures. A layerwise theory is formulated with the inherent capability to explicitly model the active and sensory response of piezoelectric composite plates having arbitrary laminate configurations in thermal environments. Finite element equations are derived and implemented for a bilinear 4-noded plate element. Application cases demonstrate the capability to manage thermally induced bending and twisting deformations in symmetric and antisymmetric composite plates with piezoelectric actuators, and show the corresponding electrical response of distributed piezoelectric sensors. Finally, the resultant stresses in the thermal piezoelectric composite laminates are investigated.
A DRDC Management Accountability Framework
2009-09-01
51 A.2 Cultural Theory: Risk, Blame and Good Governance ................................................. 53 A.3...the MAF. These elements guide good management, enclosing the elements required to make good decisions. 18 In essence, the elements focus on the...of these areas.20 As a guide to good management practices, the elements focus on organizational capacity and capability within a department 21
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seefeldt, Ben; Sondak, David; Hensinger, David M.
Drekar is an application code that solves partial differential equations for fluids that can be optionally coupled to electromagnetics. Drekar solves low-mach compressible and incompressible computational fluid dynamics (CFD), compressible and incompressible resistive magnetohydrodynamics (MHD), and multiple species plasmas interacting with electromagnetic fields. Drekar discretization technology includes continuous and discontinuous finite element formulations, stabilized finite element formulations, mixed integration finite element bases (nodal, edge, face, volume) and an initial arbitrary Lagrangian Eulerian (ALE) capability. Drekar contains the implementation of the discretized physics and leverages the open source Trilinos project for both parallel solver capabilities and general finite element discretization tools.more » The code will be released open source under a BSD license. The code is used for fundamental research for simulation of fluids and plasmas on high performance computing environments.« less
Solar electric propulsion thrust subsystem development
NASA Technical Reports Server (NTRS)
Masek, T. D.
1973-01-01
The Solar Electric Propulsion System developed under this program was designed to demonstrate all the thrust subsystem functions needed on an unmanned planetary vehicle. The demonstration included operation of the basic elements, power matching input and output voltage regulation, three-axis thrust vector control, subsystem automatic control including failure detection and correction capability (using a PDP-11 computer), operation of critical elements in thermal-vacuum-, zero-gravity-type propellant storage, and data outputs from all subsystem elements. The subsystem elements, functions, unique features, and test setup are described. General features and capabilities of the test-support data system are also presented. The test program culminated in a 1500-h computer-controlled, system-functional demonstration. This included simultaneous operation of two thruster/power conditioner sets. The results of this testing phase satisfied all the program goals.
Maturing Weapon Systems for Improved Availability at Lower Costs
1994-01-01
development of new measures of R&M performance and improved data collection and analysis capabilities . Innovations in automated data collection, including the...45 Capabilities Required to Implement Maturation Development ...... 45 Assess R&M Performance Accurately ....................... 46 Identify...Requirements Determination ...................................... 49 Capabilities of the Best Existing Databases ..................... 49 Data Elements Needed
NASA Technical Reports Server (NTRS)
Zakrasjek, June
2005-01-01
Modern operational concepts require significant bandwidths and multipoint communication capabilities. Provide voice, video and data communications among vehicles moving along the surface, vehicles in suborbital transport or reconnaissance, surface elements, and home planet facilities.
Evaluation of Solid Modeling Software for Finite Element Analysis of Woven Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Mital, Subodh; Lang, Jerry
2010-01-01
Three computer programs, used for the purpose of generating 3-D finite element models of the Repeating Unit Cell (RUC) of a textile, were examined for suitability to model woven Ceramic Matrix Composites (CMCs). The programs evaluated were the open-source available TexGen, the commercially available WiseTex, and the proprietary Composite Material Evaluator (COMATE). A five-harness-satin (5HS) weave for a melt-infiltrated (MI) silicon carbide matrix and silicon carbide fiber was selected as an example problem and the programs were tested for their ability to generate a finite element model of the RUC. The programs were also evaluated for ease-of-use and capability, particularly for the capability to introduce various defect types such as porosity, ply shifting, and nesting of a laminate. Overall, it was found that TexGen and WiseTex were useful for generating solid models of the tow geometry; however, there was a lack of consistency in generating well-conditioned finite element meshes of the tows and matrix. TexGen and WiseTex were both capable of allowing collective and individual shifting of tows within a ply and WiseTex also had a ply nesting capability. TexGen and WiseTex were sufficiently userfriendly and both included a Graphical User Interface (GUI). COMATE was satisfactory in generating a 5HS finite element mesh of an idealized weave geometry but COMATE lacked a GUI and was limited to only 5HS and 8HS weaves compared to the larger amount of weave selections available with TexGen and WiseTex.
Finite element analysis of a composite crash box subjected to low velocity impact
NASA Astrophysics Data System (ADS)
Shaik Dawood, M. S. I.; Ghazilan, A. L. Ahmad; Shah, Q. H.
2017-03-01
In this work, finite element analyses using LS-DYNA had been carried out to investigate the energy absorption capability of a composite crash box. The analysed design incorporates grooves to the cross sectional shape and E-Glass/Epoxy as design material. The effects of groove depth, ridge lines, plane width, material properties, wall thickness and fibre orientation had been quantitatively analysed and found to significantly enhance the energy absorption capability of the crash box.
Fallon, Nevada FORGE Distinct Element Reservoir Modeling
Blankenship, Doug; Pettitt, Will; Riahi, Azadeh; Hazzard, Jim; Blanksma, Derrick
2018-03-12
Archive containing input/output data for distinct element reservoir modeling for Fallon FORGE. Models created using 3DEC, InSite, and in-house Python algorithms (ITASCA). List of archived files follows; please see 'Modeling Metadata.pdf' (included as a resource below) for additional file descriptions. Data sources include regional geochemical model, well positions and geometry, principal stress field, capability for hydraulic fractures, capability for hydro-shearing, reservoir geomechanical model-stimulation into multiple zones, modeled thermal behavior during circulation, and microseismicity.
2005-12-31
MANPADS missile is modeled using LSDYNA . It has 187600 nodes, 52802 shell elements with 13 shell materials, 112200 solid elements with 1804 solid...model capability that includes impact, detonation, penetration, and wing flutter response. This work extends an existing body on body missile model...the missile as well as the expansion of the surrounding fluids was modeled in the Eulerian domain. The Jones-Wilkins-Lee (JWL) equation of state was
NASA Technical Reports Server (NTRS)
Wilcox, Brian (Inventor)
2004-01-01
A gas pipe explorer formed of a plurality of connecting elements, and an articulation element between the connected elements. The connected elements include drive capabilities, and the articulation element allows the connected elements to traverse gas pipes of arbitrary shapes and sizes. A sensor may sends the characteristics of the gas pipe, and the communication element may send back those sends characteristics. The communication can be wired, over a tether connecting the device to a remote end. Alternatively, the connection can be wireless, driven by either a generator or a battery.
Analysis and Synthesis of Adaptive Neural Elements and Assembles
1990-12-12
that neuron-like elements and network architectures that reflect the cellular processes contributing to activity- dependent neuromodulation can simulate...conditioning. Therefore, we were interested in determining whether a small network containing elements with the activity-dependent neuromodulation learning...network that are capable of activity- dependent neuromodulation (i.e., associative enhancement of synaptic strength). The motor elements (MNA and MNB) were
STARS: A general-purpose finite element computer program for analysis of engineering structures
NASA Technical Reports Server (NTRS)
Gupta, K. K.
1984-01-01
STARS (Structural Analysis Routines) is primarily an interactive, graphics-oriented, finite-element computer program for analyzing the static, stability, free vibration, and dynamic responses of damped and undamped structures, including rotating systems. The element library consists of one-dimensional (1-D) line elements, two-dimensional (2-D) triangular and quadrilateral shell elements, and three-dimensional (3-D) tetrahedral and hexahedral solid elements. These elements enable the solution of structural problems that include truss, beam, space frame, plane, plate, shell, and solid structures, or any combination thereof. Zero, finite, and interdependent deflection boundary conditions can be implemented by the program. The associated dynamic response analysis capability provides for initial deformation and velocity inputs, whereas the transient excitation may be either forces or accelerations. An effective in-core or out-of-core solution strategy is automatically employed by the program, depending on the size of the problem. Data input may be at random within a data set, and the program offers certain automatic data-generation features. Input data are formatted as an optimal combination of free and fixed formats. Interactive graphics capabilities enable convenient display of nodal deformations, mode shapes, and element stresses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Junho; Hynynen, Kullervo; Medical Biophysics, University of Toronto, ON, M4N 3M5
2009-04-14
Noninvasive transcranial therapy using high intensity focused ultrasound transducers has attracted high interest as a promising new modality for the treatments of brain related diseases. We describe the development of a 1372 element large scale hemispherical ultrasound phased array transducer operating at a resonant frequency of 306 kHz. The hemispherical array has a diameter of 31 cm and a 15.5 cm radius of curvature. It is constructed with piezoelectric (PZT-4) tube elements of a 10 mm in diameter, 6 mm in length and 1.4 mm wall thickness. Each element is quasi-air backed by attaching a cork-rubber membrane on the backmore » of the element. The acoustic efficiency of the element is determined to be approximately 50%. The large number of the elements delivers high power ultrasound and offers better beam steering and focusing capability. Comparisons of sound pressure-squared field measurements with theoretical calculations in water show that the array provides good beam steering and tight focusing capability over an efficient volume of approximately 100x100x80 mm{sup 3} with nominal focal spot size of approximately 2.3 mm in diameter at -6 dB. We also present its beam steering and focusing capability through an ex vivo human skull by measuring pressure-squared amplitude after phase corrections. These measurements show the same efficient volume range and focal spot sizes at -6 dB as the ones in water without the skull present. These results indicate that the array is sufficient for use in noninvasive transcranial ultrasound therapy.« less
Target Detection Routine (TADER). User’s Guide.
1987-09-01
o System range capability subset (one record - omitted for standoff SLAR and penetrating system) o System inherent detection probability subset ( IELT ...records, i.e., one per element type) * System capability modifier subset/A=1, E=1 ( IELT records) o System capability modifier subset/A=1, E=2 ( IELT ...records) s System capability modifier subset/A=2, E=1 ( IELT records) o System capability modifier subset/A=2, E=2 ( IELT records) Unit Data Set (one set
ERIC Educational Resources Information Center
Terzi, Lorella
2005-01-01
This article presents elements of a capability perspective on impairment and disability and develops in connection with it a multidimensional and relational account of disability. It suggests how a capability perspective provides new and fundamental insights into the conceptualization of impairment and disability, and in doing this, resolves the…
2017-11-01
The Under-body Blast Methodology (UBM) for the Test and Evaluation (T&E) program was established to provide a capability for the US Army Test and... Evaluation Command to assess the vulnerability of vehicles to under-body blast. Finite element (FE) models are part of the current UBM for T&E methodology...Methodology (UBM) for the Test and Evaluation (T&E) program was established to provide a capability for the US Army Test and Evaluation Command
Coupled Thermo-Electro-Magneto-Elastic Response of Smart Stiffened Panels
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Yarrington, Phillip W.
2009-01-01
This report documents the procedures developed for incorporating smart laminate and panel analysis capabilities within the HyperSizer aerospace structural sizing software package. HyperSizer analyzes stiffened panels composed of arbitrary composite laminates through stiffener homogenization, or "smearing " techniques. The result is an effective constitutive equation for the stiffened panel that is suitable for use in a full vehicle-scale finite element analysis via MSC/NASTRAN. The existing thermo-elastic capabilities of HyperSizer have herein been extended to include coupled thermo-electro-magneto-elastic analysis capabilities. This represents a significant step toward realization of design tools capable of guiding the development of the next generation of smart aerospace structures. Verification results are presented that compare the developed smart HyperSizer capability with an ABAQUS piezoelectric finite element solution for a facesheet-flange combination. These results show good agreement between HyperSizer and ABAQUS, but highlight a limitation of the HyperSizer formulation in that constant electric field components are assumed.
Predictions of the electro-mechanical response of conductive CNT-polymer composites
NASA Astrophysics Data System (ADS)
Matos, Miguel A. S.; Tagarielli, Vito L.; Baiz-Villafranca, Pedro M.; Pinho, Silvestre T.
2018-05-01
We present finite element simulations to predict the conductivity, elastic response and strain-sensing capability of conductive composites comprising a polymeric matrix and carbon nanotubes. Realistic representative volume elements (RVE) of the microstructure are generated and both constituents are modelled as linear elastic solids, with resistivity independent of strain; the electrical contact between nanotubes is represented by a new element which accounts for quantum tunnelling effects and captures the sensitivity of conductivity to separation. Monte Carlo simulations are conducted and the sensitivity of the predictions to RVE size is explored. Predictions of modulus and conductivity are found in good agreement with published results. The strain-sensing capability of the material is explored for multiaxial strain states.
Programmable phase plate for tool modification in laser machining applications
Thompson Jr., Charles A.; Kartz, Michael W.; Brase, James M.; Pennington, Deanna; Perry, Michael D.
2004-04-06
A system for laser machining includes a laser source for propagating a laser beam toward a target location, and a spatial light modulator having individual controllable elements capable of modifying a phase profile of the laser beam to produce a corresponding irradiance pattern on the target location. The system also includes a controller operably connected to the spatial light modulator for controlling the individual controllable elements. By controlling the individual controllable elements, the phase profile of the laser beam may be modified into a desired phase profile so as to produce a corresponding desired irradiance pattern on the target location capable of performing a machining operation on the target location.
Wilkes, Donald F.; Purvis, James W.; Miller, A. Keith
1997-01-01
An infinitely variable transmission is capable of operating between a maximum speed in one direction and a minimum speed in an opposite direction, including a zero output angular velocity, while being supplied with energy at a constant angular velocity. Input energy is divided between a first power path carrying an orbital set of elements and a second path that includes a variable speed adjustment mechanism. The second power path also connects with the orbital set of elements in such a way as to vary the rate of angular rotation thereof. The combined effects of power from the first and second power paths are combined and delivered to an output element by the orbital element set. The transmission can be designed to operate over a preselected ratio of forward to reverse output speeds.
Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials
NASA Technical Reports Server (NTRS)
Camanho, Pedro P.; Davila, Carlos G.
2002-01-01
A new decohesion element with mixed-mode capability is proposed and demonstrated. The element is used at the interface between solid finite elements to model the initiation and non-self-similar growth of delaminations. A single relative displacement-based damage parameter is applied in a softening law to track the damage state of the interface and to prevent the restoration of the cohesive state during unloading. The softening law for mixed-mode delamination propagation can be applied to any mode interaction criterion such as the two-parameter power law or the three-parameter Benzeggagh-Kenane criterion. To demonstrate the accuracy of the predictions and the irreversibility capability of the constitutive law, steady-state delamination growth is simulated for quasistatic loading-unloading cycles of various single mode and mixed-mode delamination test specimens.
A Shear Deformable Shell Element for Laminated Composites
NASA Technical Reports Server (NTRS)
Chao, W. C.; Reddy, J. N.
1984-01-01
A three-dimensional element based on the total Lagrangian description of the motion of a layered anisotropic composite medium is developed, validated, and used to analyze layered composite shells. The element contains the following features: geometric nonlinearity, dynamic (transient) behavior, and arbitrary lamination scheme and lamina properties. Numerical results of nonlinear bending, natural vibration, and transient response are presented to illustrate the capabilities of the element.
Garbarino, John R.; Struzeski, Tedmund M.
1998-01-01
Inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) can be used to determine 26 elements in whole-water digests. Both methods have distinct advantages and disadvantages--ICP-OES is capable of analyzing samples with higher elemental concentrations without dilution, however, ICP-MS is more sensitive and capable of determining much lower elemental concentrations. Both techniques gave accurate results for spike recoveries, digested standard reference-water samples, and whole-water digests. Average spike recoveries in whole-water digests were 100 plus/minus 10 percent, although recoveries for digests with high dissolved-solid concentrations were lower for selected elements by ICP-MS. Results for standard reference-water samples were generally within 1 standard deviation of hte most probable values. Statistical analysis of the results from 43 whole-water digest indicated that there was no significant difference among ICP-OES, ICP-MS, and former official methods of analysis for 24 of the 26 elements evaluated.
NASA Astrophysics Data System (ADS)
Parrado, G.; Cañón, Y.; Peña, M.; Sierra, O.; Porras, A.; Alonso, D.; Herrera, D. C.; Orozco, J.
2016-07-01
The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes with medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.
Airborne Optical Systems Test Bed (AOSTB)
2016-07-01
resident laser radar platform with roll -on/ roll -off sensor capability. The new platform provides The Laboratory with an added capability of leveraging...29 Figure 11 – Finite Element Analysis of Loads on Isolators (9G Forward...This project created a resident sensor suite with roll -on/ roll -off capability, coupled to a resident platform (Twin Otter Aircraft). This facility
Finite element analysis of flexible, rotating blades
NASA Technical Reports Server (NTRS)
Mcgee, Oliver G.
1987-01-01
A reference guide that can be used when using the finite element method to approximate the static and dynamic behavior of flexible, rotating blades is given. Important parameters such as twist, sweep, camber, co-planar shell elements, centrifugal loads, and inertia properties are studied. Comparisons are made between NASTRAN elements through published benchmark tests. The main purpose is to summarize blade modeling strategies and to document capabilities and limitations (for flexible, rotating blades) of various NASTRAN elements.
On 3D inelastic analysis methods for hot section components
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Chen, P. C.; Dame, L. T.; Holt, R. V.; Huang, H.; Hartle, M.; Gellin, S.; Allen, D. H.; Haisler, W. E.
1986-01-01
Accomplishments are described for the 2-year program, to develop advanced 3-D inelastic structural stress analysis methods and solution strategies for more accurate and cost effective analysis of combustors, turbine blades and vanes. The approach was to develop a matrix of formulation elements and constitutive models. Three constitutive models were developed in conjunction with optimized iterating techniques, accelerators, and convergence criteria within a framework of dynamic time incrementing. Three formulations models were developed; an eight-noded mid-surface shell element, a nine-noded mid-surface shell element and a twenty-noded isoparametric solid element. A separate computer program was developed for each combination of constitutive model-formulation model. Each program provides a functional stand alone capability for performing cyclic nonlinear structural analysis. In addition, the analysis capabilities incorporated into each program can be abstracted in subroutine form for incorporation into other codes or to form new combinations.
The 3D inelastic analysis methods for hot section components
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Maffeo, R. J.; Tipton, M. T.; Weber, G.
1992-01-01
A two-year program to develop advanced 3D inelastic structural stress analysis methods and solution strategies for more accurate and cost effective analysis of combustors, turbine blades, and vanes is described. The approach was to develop a matrix of formulation elements and constitutive models. Three constitutive models were developed in conjunction with optimized iterating techniques, accelerators, and convergence criteria within a framework of dynamic time incrementing. Three formulation models were developed: an eight-noded midsurface shell element; a nine-noded midsurface shell element; and a twenty-noded isoparametric solid element. A separate computer program has been developed for each combination of constitutive model-formulation model. Each program provides a functional stand alone capability for performing cyclic nonlinear structural analysis. In addition, the analysis capabilities incorporated into each program can be abstracted in subroutine form for incorporation into other codes or to form new combinations.
NASA Technical Reports Server (NTRS)
Vazquez, Sixto L.; Tessler, Alexander; Quach, Cuong C.; Cooper, Eric G.; Parks, Jeffrey; Spangler, Jan L.
2005-01-01
In an effort to mitigate accidents due to system and component failure, NASA s Aviation Safety has partnered with industry, academia, and other governmental organizations to develop real-time, on-board monitoring capabilities and system performance models for early detection of airframe structure degradation. NASA Langley is investigating a structural health monitoring capability that uses a distributed fiber optic strain system and an inverse finite element method for measuring and modeling structural deformations. This report describes the constituent systems that enable this structural monitoring function and discusses results from laboratory tests using the fiber strain sensor system and the inverse finite element method to demonstrate structural deformation estimation on an instrumented test article
Iwancizko, Eugene; Jones, Kim M.; Crandall, Richard S.; Nelson, Brent P.; Mahan, Archie Harvin
2001-01-01
The invention provides a process for depositing an epitaxial layer on a crystalline substrate, comprising the steps of providing a chamber having an element capable of heating, introducing the substrate into the chamber, heating the element at a temperature sufficient to decompose a source gas, passing the source gas in contact with the element; and forming an epitaxial layer on the substrate.
2008-02-01
combined thermal g effect and initial current field. The model is implemented using Abaqus user element subroutine and verified against the experimental...Finite Element Formulation The proposed model is implemented with ABAQUS general purpose finite element program using thermal -displacement analysis...option. ABAQUS and other commercially available finite element codes do not have the capability to solve general electromigration problem directly. Thermal
Genetically engineered acidophilic heterotrophic bacteria by bacteriophage transduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, T.E.; Bruhn, D.F.; Bulmer, D.F.
1989-05-10
A bacteriophage capable of infecting acidophilic heterotrophic bacteria and processes for genetically engineering acidophilic bacteria for biomining or sulfur removal from coal are disclosed. The bacteriophage is capable of growth in cells existing at pH at or below 3.0. Lytic forms of the phage introduced into areas experiencing acid drainage kill the bacteria causing such drainage. Lysogenic forms of the phage having genes for selective removal of metallic or nonmetallic elements can be introduced into acidophilic bacteria to effect removal of the desired element from ore or coal. 1 fig., 1 tab.
Mars Sample Return Using Commercial Capabilities: Mission Architecture Overview
NASA Technical Reports Server (NTRS)
Gonzales, Andrew A.; Stoker, Carol R.; Lemke, Lawrence G.; Bowles, Jeffery V.; Huynh, Loc C.; Faber, Nicholas T.; Race, Margaret S.
2014-01-01
Mars Sample Return (MSR) is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. This presentation provides an overview of a feasibility study for a MSR mission in which emerging commercial capabilities are used alongside other sources of mission elements. Goal is to reduce the number of mission systems and launches required to return the samples, with the goal of reducing mission cost.. Major elements required for the MSR mission are described. We report the feasibility of a complete and closed MSR mission design
NASA Technical Reports Server (NTRS)
Vos, R. G.; Straayer, J. W.
1975-01-01
The BOPACE 3-D is a finite element computer program, which provides a general family of three-dimensional isoparametric solid elements, and includes a new algorithm for improving the efficiency of the elastic-plastic-creep solution procedure. Theoretical, user, and programmer oriented sections are presented to describe the program.
Plane stress analysis of wood members using isoparametric finite elements, a computer program
Gary D. Gerhardt
1983-01-01
A finite element program is presented which computes displacements, strains, and stresses in wood members of arbitrary shape which are subjected to plane strain/stressloading conditions. This report extends a program developed by R. L. Taylor in 1977, by adding both the cubic isoparametric finite element and the capability to analyze nonisotropic materials. The...
Software Assessment of the Global Force Management (GFM) Search Capability Study
2017-02-01
Study by Timothy Hanratty, Mark Mittrick, Alex Vertlieb, and Frederick Brundick Approved for public release; distribution...Army Research Laboratory Software Assessment of the Global Force Management (GFM) Search Capability Study by Timothy Hanratty, Mark Mittrick...Force Management (GFM) Search Capability Study 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Timothy
A generic interface element for COMET-AR
NASA Technical Reports Server (NTRS)
Mccleary, Susan L.; Aminpour, Mohammad A.
1995-01-01
The implementation of an interface element capability within the COMET-AR software system is described. The report is intended for use by both users of currently implemented interface elements and developers of new interface element formulations. Guidance on the use of COMET-AR is given. A glossary is provided as an Appendix to this report for readers unfamiliar with the jargon of COMET-AR. A summary of the currently implemented interface element formulation is presented in Section 7.3 of this report.
The Marine Engineers in Today’s MAGTF: Historical Perspective, Consequences and Alternatives
2013-04-15
Inhibited Flexibility for Resource Leveling ...........................................................................17 Mission and Capability...21 Inhibited Flexibility for Resource Leveling ...ground combat element ( GCE ); an engineer support battalion (ESB) supports the logistics combat element (LCE); and engineer operations divisions
Overview of Experimental Capabilities - Supersonics
NASA Technical Reports Server (NTRS)
Banks, Daniel W.
2007-01-01
This viewgraph presentation gives an overview of experimental capabilities applicable to the area of supersonic research. The contents include: 1) EC Objectives; 2) SUP.11: Elements; 3) NRA; 4) Advanced Flight Simulator Flexible Aircraft Simulation Studies; 5) Advanced Flight Simulator Flying Qualities Guideline Development for Flexible Supersonic Transport Aircraft; 6) Advanced Flight Simulator Rigid/Flex Flight Control; 7) Advanced Flight Simulator Rapid Sim Model Exchange; 8) Flight Test Capabilities Advanced In-Flight Infrared (IR) Thermography; 9) Flight Test Capabilities In-Flight Schlieren; 10) Flight Test Capabilities CLIP Flow Calibration; 11) Flight Test Capabilities PFTF Flowfield Survey; 12) Ground Test Capabilities Laser-Induced Thermal Acoustics (LITA); 13) Ground Test Capabilities Doppler Global Velocimetry (DGV); 14) Ground Test Capabilities Doppler Global Velocimetry (DGV); and 15) Ground Test Capabilities EDL Optical Measurement Capability (PIV) for Rigid/Flexible Decelerator Models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, C. David; Kotulski, Joseph Daniel; Pasik, Michael Francis
This report investigates the feasibility of applying Adaptive Mesh Refinement (AMR) techniques to a vector finite element formulation for the wave equation in three dimensions. Possible error estimators are considered first. Next, approaches for refining tetrahedral elements are reviewed. AMR capabilities within the Nevada framework are then evaluated. We summarize our conclusions on the feasibility of AMR for time-domain vector finite elements and identify a path forward.
Array-based Hierarchical Mesh Generation in Parallel
Ray, Navamita; Grindeanu, Iulian; Zhao, Xinglin; ...
2015-11-03
In this paper, we describe an array-based hierarchical mesh generation capability through uniform refinement of unstructured meshes for efficient solution of PDE's using finite element methods and multigrid solvers. A multi-degree, multi-dimensional and multi-level framework is designed to generate the nested hierarchies from an initial mesh that can be used for a number of purposes such as multi-level methods to generating large meshes. The capability is developed under the parallel mesh framework “Mesh Oriented dAtaBase” a.k.a MOAB. We describe the underlying data structures and algorithms to generate such hierarchies and present numerical results for computational efficiency and mesh quality. Inmore » conclusion, we also present results to demonstrate the applicability of the developed capability to a multigrid finite-element solver.« less
Integrated embedded frequency selective surface sensors for structural health monitoring.
DOT National Transportation Integrated Search
2014-08-01
The objective of this project is to design an embedded sensor element capable of characterizing mechanical properties including shear strain. This element will be designed using a Frequency Selective Surface (FSS) approach, and will be intended for i...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shattan, Michael; Stowe, Ashley; McIntosh, Kathryn
Explore feasibility of portable LIBS and micro-XRF systems as methods of field screening for real debris; Develop a LIBS Capability to rapidly screen beads for production quality control; Complete 3D elemental mapping of surrogate debris to determine uranium and other elemental migration patterns during debris formation
General Rotorcraft Aeromechanical Stability Program (GRASP): Theory manual
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Hopkins, A. Stewart; Kunz, Donald L.; Hinnant, Howard E.
1990-01-01
The general rotorcraft aeromechanical stability program (GRASP) was developed to calculate aeroelastic stability for rotorcraft in hovering flight, vertical flight, and ground contact conditions. GRASP is described in terms of its capabilities and its philosophy of modeling. The equations of motion that govern the physical system are described, as well as the analytical approximations used to derive them. The equations include the kinematical equation, the element equations, and the constraint equations. In addition, the solution procedures used by GRASP are described. GRASP is capable of treating the nonlinear static and linearized dynamic behavior of structures represented by arbitrary collections of rigid-body and beam elements. These elements may be connected in an arbitrary fashion, and are permitted to have large relative motions. The main limitation of this analysis is that periodic coefficient effects are not treated, restricting rotorcraft flight conditions to hover, axial flight, and ground contact. Instead of following the methods employed in other rotorcraft programs. GRASP is designed to be a hybrid of the finite-element method and the multibody methods used in spacecraft analysis. GRASP differs from traditional finite-element programs by allowing multiple levels of substructure in which the substructures can move and/or rotate relative to others with no small-angle approximations. This capability facilitates the modeling of rotorcraft structures, including the rotating/nonrotating interface and the details of the blade/root kinematics for various types. GRASP differs from traditional multibody programs by considering aeroelastic effects, including inflow dynamics (simple unsteady aerodynamics) and nonlinear aerodynamic coefficients.
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun
2001-01-01
Analytical formulations are developed to account for the coupled mechanical, electrical, and thermal response of piezoelectric composite materials. The coupled response is captured at the material level through the thermopiezoelectric constitutive equations and leads to the inherent capability to model both the sensory and active responses of piezoelectric materials. A layerwise laminate theory is incorporated to provide more accurate analysis of the displacements, strains, stresses, electric fields, and thermal fields through-the-thickness. Thermal effects which arise from coefficient of thermal expansion mismatch, pyroelectric effects, and temperature dependent material properties are explicitly accounted for in the formulation. Corresponding finite element formulations are developed for piezoelectric beam, plate, and shell elements to provide a more generalized capability for the analysis of arbitrary piezoelectric composite structures. The accuracy of the current formulation is verified with comparisons from published experimental data and other analytical models. Additional numerical studies are also conducted to demonstrate additional capabilities of the formulation to represent the sensory and active behaviors. A future plan of experimental studies is provided to characterize the high temperature dynamic response of piezoelectric composite materials.
Neural network for processing both spatial and temporal data with time based back-propagation
NASA Technical Reports Server (NTRS)
Villarreal, James A. (Inventor); Shelton, Robert O. (Inventor)
1993-01-01
Neural networks are computing systems modeled after the paradigm of the biological brain. For years, researchers using various forms of neural networks have attempted to model the brain's information processing and decision-making capabilities. Neural network algorithms have impressively demonstrated the capability of modeling spatial information. On the other hand, the application of parallel distributed models to the processing of temporal data has been severely restricted. The invention introduces a novel technique which adds the dimension of time to the well known back-propagation neural network algorithm. In the space-time neural network disclosed herein, the synaptic weights between two artificial neurons (processing elements) are replaced with an adaptable-adjustable filter. Instead of a single synaptic weight, the invention provides a plurality of weights representing not only association, but also temporal dependencies. In this case, the synaptic weights are the coefficients to the adaptable digital filters. Novelty is believed to lie in the disclosure of a processing element and a network of the processing elements which are capable of processing temporal as well as spacial data.
Representative Structural Element - A New Paradigm for Multi-Scale Structural Modeling
2016-07-05
developed by NASA Glenn Research Center based on Aboudi’s micromechanics theories [5] that provides a wide range of capabilities for modeling ...to use appropriate models for related problems based on the capability of corresponding approaches. Moreover, the analyses will give a general...interface of heterogeneous materials but also help engineers to use appropriate models for related problems based on the capability of corresponding
Failure detection in high-performance clusters and computers using chaotic map computations
Rao, Nageswara S.
2015-09-01
A programmable media includes a processing unit capable of independent operation in a machine that is capable of executing 10.sup.18 floating point operations per second. The processing unit is in communication with a memory element and an interconnect that couples computing nodes. The programmable media includes a logical unit configured to execute arithmetic functions, comparative functions, and/or logical functions. The processing unit is configured to detect computing component failures, memory element failures and/or interconnect failures by executing programming threads that generate one or more chaotic map trajectories. The central processing unit or graphical processing unit is configured to detect a computing component failure, memory element failure and/or an interconnect failure through an automated comparison of signal trajectories generated by the chaotic maps.
Assessment of the analytical capabilities of inductively coupled plasma-mass spectrometry
Taylor, Howard E.; Garbarino, John R.
1988-01-01
A thorough assessment of the analytical capabilities of inductively coupled plasma-mass spectrometry was conducted for selected analytes of importance in water quality applications and hydrologic research. A multielement calibration curve technique was designed to produce accurate and precise results in analysis times of approximately one minute. The suite of elements included Al, As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Li, Mn, Mo, Ni, Pb, Se, Sr, V, and Zn. The effects of sample matrix composition on the accuracy of the determinations showed that matrix elements (such as Na, Ca, Mg, and K) that may be present in natural water samples at concentration levels greater than 50 mg/L resulted in as much as a 10% suppression in ion current for analyte elements. Operational detection limits are presented.
Modular space station Phase B extension preliminary performance specification. Volume 2: Project
NASA Technical Reports Server (NTRS)
1971-01-01
The four systems of the modular space station project are described, and the interfaces between this project and the shuttle project, the tracking and data relay satellite project, and an arbitrarily defined experiment project are defined. The experiment project was synthesized from internal experiments, detached research and application modules, and attached research and application modules to derive a set of interface requirements which will support multiple combinations of these elements expected during the modular space station mission. The modular space station project element defines a 6-man orbital program capable of growth to a 12-man orbital program capability. The modular space station project element specification defines the modular space station system, the premission operations support system, the mission operations support system, and the cargo module system and their interfaces.
Probabilistic structural analysis methods for select space propulsion system components
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Cruse, T. A.
1989-01-01
The Probabilistic Structural Analysis Methods (PSAM) project developed at the Southwest Research Institute integrates state-of-the-art structural analysis techniques with probability theory for the design and analysis of complex large-scale engineering structures. An advanced efficient software system (NESSUS) capable of performing complex probabilistic analysis has been developed. NESSUS contains a number of software components to perform probabilistic analysis of structures. These components include: an expert system, a probabilistic finite element code, a probabilistic boundary element code and a fast probability integrator. The NESSUS software system is shown. An expert system is included to capture and utilize PSAM knowledge and experience. NESSUS/EXPERT is an interactive menu-driven expert system that provides information to assist in the use of the probabilistic finite element code NESSUS/FEM and the fast probability integrator (FPI). The expert system menu structure is summarized. The NESSUS system contains a state-of-the-art nonlinear probabilistic finite element code, NESSUS/FEM, to determine the structural response and sensitivities. A broad range of analysis capabilities and an extensive element library is present.
ERIC Educational Resources Information Center
Hooper, Kristina
1982-01-01
Provides the rationale for considering communication in a graphic domain and suggests a specific goal for designing work stations which provide graphic capabilities in educational settings. The central element of this recommendation is the "pictorial conversation", a highly interactive exchange that includes pictures as the central elements.…
Space station operations management
NASA Technical Reports Server (NTRS)
Cannon, Kathleen V.
1989-01-01
Space Station Freedom operations management concepts must be responsive to the unique challenges presented by the permanently manned international laboratory. Space Station Freedom will be assembled over a three year period where the operational environment will change as significant capability plateaus are reached. First Element Launch, Man-Tended Capability, and Permanent Manned Capability, represent milestones in operational capability that is increasing toward mature operations capability. Operations management concepts are being developed to accomodate the varying operational capabilities during assembly, as well as the mature operational environment. This paper describes operations management concepts designed to accomodate the uniqueness of Space Station Freedoom, utilizing tools and processes that seek to control operations costs.
Lysogenic bacteriophage isolated from acidophilium
Ward, Thomas W.; Bruhn, Debby F.; Bulmer, Deborah K.
1992-01-01
A bacteriophage identified as .phi.Ac1 capable of infecting acidophilic heterotropic bacteria (such as Acidiphilium sp.) and processes for genetically engineering acidophilic bacteria for biomining or sulfur removal from coal are disclosed. The bacteriophage is capable of growth in cells existing at pH at or below 3.0. Lytic forms of the phage introduced into areas experiencing acid drainage kill the bacteria causing such drainage. Lysogenic forms of the phase having genes for selective removal of metallic or nonmetallic elements can be introduced into acidophilic bacteria to effect removal of the desired element form ore or coal.
A Government/Industry Summary of the Design Analysis Methods for Vibrations (DAMVIBS) Program
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G. (Compiler)
1993-01-01
The NASA Langley Research Center in 1984 initiated a rotorcraft structural dynamics program, designated DAMVIBS (Design Analysis Methods for VIBrationS), with the objective of establishing the technology base needed by the rotorcraft industry for developing an advanced finite-element-based dynamics design analysis capability for vibrations. An assessment of the program showed that the DAMVIBS Program has resulted in notable technical achievements and major changes in industrial design practice, all of which have significantly advanced the industry's capability to use and rely on finite-element-based dynamics analyses during the design process.
The Prompt Gamma Neutron Activation Analysis Facility at ICN—Pitesti
NASA Astrophysics Data System (ADS)
Bǎrbos, D.; Pǎunoiu, C.; Mladin, M.; Cosma, C.
2008-08-01
PGNAA is a very widely applicable technique for determining the presence and amount of many elements simultaneously in samples ranging in size from micrograms to many grams. PGNAA is characterized by its capability for nondestructive multi-elemental analysis and its ability to analyse elements that cannot be determined by INAA. By means of this PGNAA method we are able to increase the performace of INAA method. A facility has been developed at Institute for Nuclear Research—Piteşti so that the unique features of prompt gamma-ray neutron activation analysis can be used to measure trace and major elements in samples. The facility is linked at the radial neutron beam tube at ACPR-TRIGA reactor. During the PGNAA—facility is in use the ACPR reactor will be operated in steady-state mode at 250 KW maximum power. The facility consists of a radial beam-port, external sample position with shielding, and induced prompt gamma-ray counting system. Thermal neutron flux with energy lower than cadmium cut-off at the sample position was measured using thin gold foil is: φscd = 1.106 n/cm2/s with a cadmium ratio of:80. The gamma-ray detection system consist of an HpGe detector of 16% efficiency (detector model GC1518) with 1.85 keV resolution capability. The HpGe is mounted with its axis at 90° with respect to the incident neutron beam at distance about 200mm from the sample position. To establish the performance capabilities of the facility, irradiation of pure element or sample compound standards were performed to identify the gama-ray energies from each element and their count rates.
A Mixed Multi-Field Finite Element Formulation for Thermopiezoelectric Composite Shells
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun; Saravanos, Dimitris A.
1999-01-01
Analytical formulations are presented which account for the coupled mechanical, electrical, and thermal response of piezoelectric composite shell structures. A new mixed multi-field laminate theory is developed which combines "single layer" assumptions for the displacements along with layerwise fields for the electric potential and temperature. This laminate theory is formulated using curvilinear coordinates and is based on the principles of linear thermopiezoelectricity. The mechanics have the inherent capability to explicitly model both the active and sensory responses of piezoelectric composite shells in thermal environment. Finite element equations are derived and implemented for an eight-noded shell element. Numerical studies are conducted to investigate both the sensory and active responses of piezoelectric composite shell structures subjected to thermal loads. Results for a cantilevered plate with an attached piezoelectric layer are com- pared with corresponding results from a commercial finite element code and a previously developed program. Additional studies are conducted on a cylindrical shell with an attached piezoelectric layer to demonstrate capabilities to achieve thermal shape control on curved piezoelectric structures.
Three-dimensional elastic-plastic finite-element analysis of fatigue crack propagation
NASA Technical Reports Server (NTRS)
Goglia, G. L.; Chermahini, R. G.
1985-01-01
Fatigue cracks are a major problem in designing structures subjected to cyclic loading. Cracks frequently occur in structures such as aircraft and spacecraft. The inspection intervals of many aircraft structures are based on crack-propagation lives. Therefore, improved prediction of propagation lives under flight-load conditions (variable-amplitude loading) are needed to provide more realistic design criteria for these structures. The main thrust was to develop a three-dimensional, nonlinear, elastic-plastic, finite element program capable of extending a crack and changing boundary conditions for the model under consideration. The finite-element model is composed of 8-noded (linear-strain) isoparametric elements. In the analysis, the material is assumed to be elastic-perfectly plastic. The cycle stress-strain curve for the material is shown Zienkiewicz's initial-stress method, von Mises's yield criterion, and Drucker's normality condition under small-strain assumptions are used to account for plasticity. The three-dimensional analysis is capable of extending the crack and changing boundary conditions under cyclic loading.
Examples of finite element mesh generation using SDRC IDEAS
NASA Technical Reports Server (NTRS)
Zapp, John; Volakis, John L.
1990-01-01
IDEAS (Integrated Design Engineering Analysis Software) offers a comprehensive package for mechanical design engineers. Due to its multifaceted capabilities, however, it can be manipulated to serve the needs of electrical engineers, also. IDEAS can be used to perform the following tasks: system modeling, system assembly, kinematics, finite element pre/post processing, finite element solution, system dynamics, drafting, test data analysis, and project relational database.
Impact resistant battery enclosure systems
Tsutsui, Waterloo; Feng, Yuezhong; Chen, Weinong Wayne; Siegmund, Thomas Heinrich
2017-10-31
Battery enclosure arrangements for a vehicular battery system. The arrangements, capable of impact resistance include plurality of battery cells and a plurality of kinetic energy absorbing elements. The arrangements further include a frame configured to encase the plurality of the kinetic energy absorbing elements and the battery cells. In some arrangements the frame and/or the kinetic energy absorbing elements can be made of topologically interlocked materials.
Integrated System Health Management: Pilot Operational Implementation in a Rocket Engine Test Stand
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Schmalzel, John L.; Morris, Jonathan A.; Turowski, Mark P.; Franzl, Richard
2010-01-01
This paper describes a credible implementation of integrated system health management (ISHM) capability, as a pilot operational system. Important core elements that make possible fielding and evolution of ISHM capability have been validated in a rocket engine test stand, encompassing all phases of operation: stand-by, pre-test, test, and post-test. The core elements include an architecture (hardware/software) for ISHM, gateways for streaming real-time data from the data acquisition system into the ISHM system, automated configuration management employing transducer electronic data sheets (TEDS?s) adhering to the IEEE 1451.4 Standard for Smart Sensors and Actuators, broadcasting and capture of sensor measurements and health information adhering to the IEEE 1451.1 Standard for Smart Sensors and Actuators, user interfaces for management of redlines/bluelines, and establishment of a health assessment database system (HADS) and browser for extensive post-test analysis. The ISHM system was installed in the Test Control Room, where test operators were exposed to the capability. All functionalities of the pilot implementation were validated during testing and in post-test data streaming through the ISHM system. The implementation enabled significant improvements in awareness about the status of the test stand, and events and their causes/consequences. The architecture and software elements embody a systems engineering, knowledge-based approach; in conjunction with object-oriented environments. These qualities are permitting systematic augmentation of the capability and scaling to encompass other subsystems.
Nonlinear Finite Element Analysis of Shells with Large Aspect Ratio
NASA Technical Reports Server (NTRS)
Chang, T. Y.; Sawamiphakdi, K.
1984-01-01
A higher order degenerated shell element with nine nodes was selected for large deformation and post-buckling analysis of thick or thin shells. Elastic-plastic material properties are also included. The post-buckling analysis algorithm is given. Using a square plate, it was demonstrated that the none-node element does not have shear locking effect even if its aspect ratio was increased to the order 10 to the 8th power. Two sample problems are given to illustrate the analysis capability of the shell element.
NASA Technical Reports Server (NTRS)
Gabel, R.; Lang, P. F.; Smith, L. A.; Reed, D. A.
1989-01-01
Boeing Helicopter, together with other United States helicopter manufacturers, participated in a finite element applications program to emplace in the United States a superior capability to utilize finite element analysis models in support of helicopter airframe design. The activities relating to planning and creating a finite element vibrations model of the Boeing Model 36-0 composite airframe are summarized, along with the subsequent analytical correlation with ground shake test data.
Anodes for rechargeable lithium batteries
Thackeray, Michael M.; Kepler, Keith D.; Vaughey, John T.
2003-01-01
A negative electrode (12) for a non-aqueous electrochemical cell (10) with an intermetallic host structure containing two or more elements selected from the metal elements and silicon, capable of accommodating lithium within its crystallographic host structure such that when the host structure is lithiated it transforms to a lithiated zinc-blende-type structure. Both active elements (alloying with lithium) and inactive elements (non-alloying with lithium) are disclosed. Electrochemical cells and batteries as well as methods of making the negative electrode are disclosed.
Probabilistic Structural Analysis Methods (PSAM) for select space propulsion system components
NASA Technical Reports Server (NTRS)
1991-01-01
The fourth year of technical developments on the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) system for Probabilistic Structural Analysis Methods is summarized. The effort focused on the continued expansion of the Probabilistic Finite Element Method (PFEM) code, the implementation of the Probabilistic Boundary Element Method (PBEM), and the implementation of the Probabilistic Approximate Methods (PAppM) code. The principal focus for the PFEM code is the addition of a multilevel structural dynamics capability. The strategy includes probabilistic loads, treatment of material, geometry uncertainty, and full probabilistic variables. Enhancements are included for the Fast Probability Integration (FPI) algorithms and the addition of Monte Carlo simulation as an alternate. Work on the expert system and boundary element developments continues. The enhanced capability in the computer codes is validated by applications to a turbine blade and to an oxidizer duct.
Improved high-resolution ultrasonic imaging of the eye.
Silverman, Ronald H; Ketterling, Jeffrey A; Mamou, Jonathan; Coleman, D Jackson
2008-01-01
Currently, virtually all clinical diagnostic ultrasound systems used in ophthalmology are based on fixed-focus, single-element transducers. High-frequency (> or = 20-MHz) transducers introduced to ophthalmology during the last decade have led to improved resolution and diagnostic capabilities for assessment of the anterior segment and the retina. However, single-element transducers are restricted to a small depth of field, limiting their capacity to image the eye as a whole. We fabricated a 20-MHz annular array probe prototype consisting of 5 concentric transducer elements and scanned an ex vivo human eye. Synthetically focused images of the bank eye showed improved depth of field and sensitivity, allowing simultaneous display of the anterior and posterior segments and the full lens contour. This capability may be useful in assessment of vitreoretinal pathologies and investigation of the accommodative mechanism.
Martínez, Francisco J; Márquez, Andrés; Gallego, Sergi; Ortuño, Manuel; Francés, Jorge; Pascual, Inmaculada; Beléndez, Augusto
2015-02-20
Parallel-aligned (PA) liquid-crystal on silicon (LCoS) microdisplays are especially appealing in a wide range of spatial light modulation applications since they enable phase-only operation. Recently we proposed a novel polarimetric method, based on Stokes polarimetry, enabling the characterization of their linear retardance and the magnitude of their associated phase fluctuations or flicker, exhibited by many LCoS devices. In this work we apply the calibrated values obtained with this technique to show their capability to predict the performance of spatially varying phase multilevel elements displayed onto the PA-LCoS device. Specifically we address a series of multilevel phase blazed gratings. We analyze both their average diffraction efficiency ("static" analysis) and its associated time fluctuation ("dynamic" analysis). Two different electrical configuration files with different degrees of flicker are applied in order to evaluate the actual influence of flicker on the expected performance of the diffractive optical elements addressed. We obtain a good agreement between simulation and experiment, thus demonstrating the predictive capability of the calibration provided by the average Stokes polarimetric technique. Additionally, it is obtained that for electrical configurations with less than 30° amplitude for the flicker retardance, they may not influence the performance of the blazed gratings. In general, we demonstrate that the influence of flicker greatly diminishes when the number of quantization levels in the optical element increases.
Space Construction Experiment Definition Study (SCEDS), part 2. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1982-01-01
A baseline Space Construction Experiment (SCE) concept is defined. Five characteristics were incorporated: (1) large space system (LSS) element test, (2) shuttle mission payload of opportunity, (3) attachment to Orbiter with jettison capability, (4) Orbiter flight control capabilities, and (5) LSS construction and assembly operations.
Intelligent Vehicle Mobility M&S Capability Development (FY13 innovation Project) (Briefing Charts)
2014-05-19
Intelligent Vehicle Mobility M&S Capability Development (FY13 Innovation Project) P. Jayakumar and J. Raymond, Analytics 19 May 2014...PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Paramsithy Jayakumar ; J Raymond 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING
Numerical simulation of the interaction of elements of active protection with metal barriers
NASA Astrophysics Data System (ADS)
Radchenko, P. A.; Batuev, S. P.; Radchenko, A. V.
2017-10-01
The present paper is aimed at working out the algorithm of multi-contact interaction of solid bodies; it studies the influence of the shape of projectile (damage agent) on its penetration capability. Steel projectiles of different shape have been considered as damage agents: sphere, regular tetrahedron, cube, cylinder and plate. The weight of projectiles has been kept the same. Antitank grenade has been used as a target. The study has been conducted by means of numerical simulation using finite element analysis. The simulation is three-dimensional. Behavior of materials has been described by elasto-plastic model taking into consideration the fracture and fragmentation of interacting bodies. The speed of interaction has been considered within the range of 800 to 2000 m/s. Research results demonstrated significant influence of the projectile shape on its penetration capability. Projectile in the shape of elongated cylinder has shown better penetration capability. Considering the weight of damage agents (except for sphere and plate) their maximum penetration capability has been reached at the speed of 1400 m/s. Increase of the speed of interaction has been followed by intensive fracture of damage agents and their penetration capability thus has worsened.
Interaction of the stream of the striking elements with barriers and cumulative ammunition
NASA Astrophysics Data System (ADS)
Radchenko, A. V.; Radchenko, P. A.; Batuev, S. P.
2018-01-01
This paper is aimed at working out the algorithm of multi-contact interaction of solid bodies; it studies the influence of the shape of projectile (damage agent) on its penetration capability. Steel projectiles of different shape have been considered as damage agents: sphere, regular tetrahedron, cube, cylinder and plate. The weight of projectiles has been kept the same. Antitank grenade has been used as a target. The study has been conducted by means of numerical simulation using finite element analysis. The simulation is three-dimensional. Behavior of materials has been described by elastic-plastic model taking into consideration the fracture and fragmentation of interacting bodies. The speed of interaction has been considered within the range of 800 to 2000 m/s. Research results demonstrated significant influence of the projectile shape on its penetration capability. Projectile in the shape of elongated cylinder has shown better penetration capability. Considering the weight of damage agents (except for sphere and plate) their maximum penetration capability has been reached at the speed of 1400 m/s. Increase of the speed of interaction has been followed by intensive fracture of damage agents and their penetration capability thus has worsened.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., or element of design which is physically capable of being adjusted (including those which are.... Amphibious vehicle means a vehicle with wheels or tracks that is designed primarily for operation on land and secondarily for operation in water. Auxiliary emission control device (AECD) means any element of design that...
Implementation of Integrated System Fault Management Capability
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Schmalzel, John; Morris, Jon; Smith, Harvey; Turowski, Mark
2008-01-01
Fault Management to support rocket engine test mission with highly reliable and accurate measurements; while improving availability and lifecycle costs. CORE ELEMENTS: Architecture, taxonomy, and ontology (ATO) for DIaK management. Intelligent Sensor Processes; Intelligent Element Processes; Intelligent Controllers; Intelligent Subsystem Processes; Intelligent System Processes; Intelligent Component Processes.
NASA Astrophysics Data System (ADS)
Thieme, J.; Hurowitz, J. A.; Schoonen, M. A.; Fogelqvist, E.; Gregerson, J.; Farley, K. A.; Sherman, S.; Hill, J.
2018-04-01
NSLS-II at BNL provides a unique and critical capability to perform assessments of the elemental composition and the chemical state of Mars returned samples using synchrotron radiation X-ray fluorescence imaging and X-ray absorption spectroscopy.
NASA Technical Reports Server (NTRS)
Turner, Travis L. (Inventor); Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); McKenney, Martin J. (Inventor); Atherley, Raymond D. (Inventor); Kidd, Reggie T. (Inventor)
2014-01-01
A multi-element airfoil system includes an airfoil element having a leading edge region and a skin element coupled to the airfoil element. A slat deployment system is coupled to the slat and the skin element, and is capable of deploying and retracting the slat and the skin element. The skin element substantially fills the lateral gap formed between the slat and the airfoil element when the slat is deployed. The system further includes an uncoupling device and a sensor to remove the skin element from the gap based on a critical angle-of-attack of the airfoil element. The system can alternatively comprise a trailing edge flap, where a skin element substantially fills the lateral gap between the flap and the trailing edge region of the airfoil element. In each case, the skin element fills a gap between the airfoil element and the deployed flap or slat to reduce airframe noise.
NASA Astrophysics Data System (ADS)
Khechai, Abdelhak; Tati, Abdelouahab; Belarbi, Mohamed Ouejdi; Guettala, Abdelhamid
2018-03-01
The design of high-performance composite structures frequently includes discontinuities to reduce the weight and fastener holes for joining. Understanding the behavior of perforated laminates is necessary for structural design. In the current work, stress concentrations taking place in laminated and isotropic plates subjected to tensile load are investigated. The stress concentrations are obtained using a recent quadrilateral finite element of four nodes with 32 DOFs. The present finite element (PE) is a combination of two finite elements. The first finite element is a linear isoparametric membrane element and the second is a high precision Hermitian element. One of the essential objectives of the current investigation is to confirm the capability and efficiency of the PE for stress determination in perforated laminates. Different geometric parameters, such as the cutout form, sizes and cutout orientations, which have a considerable effect on the stress values, are studied. Using the present finite element formulation, the obtained results are found to be in good agreement with the analytical findings, which validates the capability and the efficiency of the proposed formulation. Finally, to understand the material parameters effect such as the orientation of fibers and degree of orthotropy ratio on the stress values, many figures are presented using different ellipse major to minor axis ratio. The stress concentration values are considerably affected by increasing the orientation angle of the fibers and degree of orthotropy.
Wheelock, C.W.; Baumeister, E.B.
1961-09-01
A reactor fuel element utilizing fissionable fuel materials in plate form is described. This fuel element consists of bundles of fuel-bearing plates. The bundles are stacked inside of a tube which forms the shell of the fuel element. The plates each have longitudinal fins running parallel to the direction of coolant flow, and interspersed among and parallel to the fins are ribs which position the plates relative to each other and to the fuel element shell. The plate bundles are held together by thin bands or wires. The ex tended surface increases the heat transfer capabilities of a fuel element by a factor of 3 or more over those of a simple flat plate.
VAMP: A computer program for calculating volume, area, and mass properties of aerospace vehicles
NASA Technical Reports Server (NTRS)
Norton, P. J.; Glatt, C. R.
1974-01-01
A computerized procedure developed for analyzing aerospace vehicles evaluates the properties of elemental surface areas with specified thickness by accumulating and combining them with arbitrarily specified mass elements to form a complete evaluation. Picture-like images of the geometric description are capable of being generated.
DOT National Transportation Integrated Search
1976-07-01
Several new capabilities have been added to the DYNALIST II computer program. These include: (1) a component matrix generator that operates as a 3-D finite element modeling program where elements consist of rigid bodies, flexural bodies, wheelsets, s...
NASA Technical Reports Server (NTRS)
Ransom, Jonathan B.
2002-01-01
A multifunctional interface method with capabilities for variable-fidelity modeling and multiple method analysis is presented. The methodology provides an effective capability by which domains with diverse idealizations can be modeled independently to exploit the advantages of one approach over another. The multifunctional method is used to couple independently discretized subdomains, and it is used to couple the finite element and the finite difference methods. The method is based on a weighted residual variational method and is presented for two-dimensional scalar-field problems. A verification test problem and a benchmark application are presented, and the computational implications are discussed.
Investigation of the Finite Element Software Packages at KSC
NASA Technical Reports Server (NTRS)
Lu, Chu-Ho
1991-01-01
The useful and powerful features of NASTRAN and three real world problems for the testing of the capabilities of different NASTRAN versions are discussed. The test problems involve direct transient analysis, nonlinear analysis, and static analysis. The experiences in using graphics software packages are also discussed. It was found that MSC/XL can be more useful if it can be improved to generate picture files of the analysis results and to extend its capabilities to support finite element codes other than MSC/NASTRAN. It was found that the current version of SDRC/I-DEAS (version VI) may have bugs in the module 'Data Loader'.
Zhang, Jie; Lester, David; Zhao, Sibo; Zhou, Chengchao
2013-01-01
The present study explored the validity of Joiner's interpersonal theory of suicide in a sample of 439 Chinese university students 17 to 24 years of age. The results indicated that the three elements of the theory (thwarted belongingness, perceived burdensomeness, and acquired capability for self-harm) were associated with current suicidal ideation in the total sample of students. For men, only thwarted belongingness and perceived burdensomeness predicted suicidal ideation, whereas all three elements of the theory predicted suicidal ideation for women. Multiple regression analyses, controlling for other variables, supported the role of burdensomeness and acquired capability for suicide, but not thwarted belongingness.
Development of an integrated BEM approach for hot fluid structure interaction
NASA Technical Reports Server (NTRS)
Dargush, G. F.; Banerjee, P. K.; Shi, Y.
1991-01-01
The development of a comprehensive fluid-structure interaction capability within a boundary element computer code is described. This new capability is implemented in a completely general manner, so that quite arbitrary geometry, material properties and boundary conditions may be specified. Thus, a single analysis code can be used to run structures-only problems, fluids-only problems, or the combined fluid-structure problem. In all three cases, steady or transient conditions can be selected, with or without thermal effects. Nonlinear analyses can be solved via direct iteration or by employing a modified Newton-Raphson approach. A number of detailed numerical examples are included at the end of these two sections to validate the formulations and to emphasize both the accuracy and generality of the computer code. A brief review of the recent applicable boundary element literature is included for completeness. The fluid-structure interaction facility is discussed. Once again, several examples are provided to highlight this unique capability. A collection of potential boundary element applications that have been uncovered as a result of work related to the present grant is given. For most of those problems, satisfactory analysis techniques do not currently exist.
NASA's Space Launch System: Development and Progress
NASA Technical Reports Server (NTRS)
Honeycutt, John; Lyles, Garry
2016-01-01
NASA is embarked on a new era of space exploration that will lead to new capabilities, new destinations, and new discoveries by both human and robotic explorers. Today, the International Space Station (ISS), supported by NASA's commercial partners, and robotic probes, are yielding knowledge that will help make this exploration possible. NASA is developing both the Orion crew vehicle and the Space Launch System (SLS) that will carry out a series of increasingly challenging missions that will eventually lead to human exploration of Mars. This paper will discuss the development and progress on the SLS. The SLS architecture was designed to be safe, affordable, and sustainable. The current configuration is the result of literally thousands of trade studies involving cost, performance, mission requirements, and other metrics. The initial configuration of SLS, designated Block 1, will launch a minimum of 70 metric tons (t) into low Earth orbit - significantly greater capability than any current launch vehicle. It is designed to evolve to a capability of 130 t through the use of upgraded main engines, advanced boosters, and a new upper stage. With more payload mass and volume capability than any rocket in history, SLS offers mission planners larger payloads, faster trip times, simpler design, shorter design cycles, and greater opportunity for mission success. Since the program was officially created in fall 2011, it has made significant progress toward first launch readiness of the Block 1 vehicle in 2018. Every major element of SLS continued to make significant progress in 2015. The Boosters element fired Qualification Motor 1 (QM-1) in March 2015, to test the 5-segment motor, including new insulation, joint, and propellant grain designs. The Stages element marked the completion of more than 70 major components of test article and flight core stage tanks. The Liquid Engines element conducted seven test firings of an RS-25 engine under SLS conditions. The Spacecraft/Payload Integration and Evolution element marked completion of the upper stage test article. Major work continues in 2016 as the program continues both flight and development RS-25 engine testing, begins welding test article and flight core stage tanks, completes stage adapter manufacturing, and test fires the second booster qualification motor. This paper will discuss the program's key accomplishments to date and the challenging work ahead for what will be the world's most capable launch vehicle.
Transforming Mean and Osculating Elements Using Numerical Methods
NASA Technical Reports Server (NTRS)
Ely, Todd A.
2010-01-01
Mean element propagation of perturbed two body orbits has as its mathematical basis averaging theory of nonlinear dynamical systems. Averaged mean elements define the long-term evolution characteristics of an orbit. Using averaging theory, a near identity transformation can be found that transforms the mean elements back to the osculating elements that contain short period terms in addition to the secular and long period mean elements. The ability to perform the conversion is necessary so that orbit design conducted in mean elements can be converted back into osculating results. In the present work, this near identity transformation is found using the Fast Fourier Transform. An efficient method is found that is capable of recovering the osculating elements to first order
Faye, M
2013-01-01
This article looks to dispel the mysteries of the 'black art' of Medical Operational Planning whilst giving an overview of activity within the Medical Operational Capability area of Medical Division (Med Div) within Navy Command Headquarters (NCHQ) during a period when the Royal Naval Medical Services (RNMS) have been preparing and reconfiguring medical capability for the future contingent battle spaces. The rolling exercise program has been used to illustrate the ongoing preparations taken by the Medical Operational Capability (Med Op Cap) and the Medical Force Elements to deliver medical capability in the littoral and maritime environments.
Modulating signaling networks by CRISPR/Cas9-mediated transposable element insertion.
Vaschetto, Luis María
2018-04-01
In a recent past, transposable elements (TEs) were referred to as selfish genetic components only capable of copying themselves with the aim of increasing the odds of being inherited. Nonetheless, TEs have been initially proposed as positive control elements acting in synergy with the host. Nowadays, it is well known that TE movement into host genome comprises an important evolutionary mechanism capable of increasing the adaptive fitness. As insights into TE functioning are increasing day to day, the manipulation of transposition has raised an interesting possibility of setting the host functions, although the lack of appropriate genome engineering tools has unpaved it. Fortunately, the emergence of genome editing technologies based on programmable nucleases, and especially the arrival of a multipurpose RNA-guided Cas9 endonuclease system, has made it possible to reconsider this challenge. For such purpose, a particular type of transposons referred to as miniature inverted-repeat transposable elements (MITEs) has shown a series of interesting characteristics for designing functional drivers. Here, recent insights into MITE elements and versatile RNA-guided CRISPR/Cas9 genome engineering system are given to understand how to deploy the potential of TEs for control of the host transcriptional activity.
Translation and rotation positioning motor
Schmid, Andreas [Berkeley, CA; Schaff, Oliver [13355 Berlin, DE
2005-02-01
A positioning device provides the capability of moving an object in both a linear and a rotational direction. The positioning device includes a first piezo stack with plural piezo plates that are capable of movement in orthogonal directions with respect to each other. The positioning device further includes a second piezo stack with plural piezo plates that are capable of movement in orthogonal directions with respect to each other. The positioning device also includes a first bearing that is disposed against the first piezo stack. The positioning device further includes a second bearing that is disposed against the second piezo stack. The positioning device also includes a spring element and a fifth bearing that is disposed against the spring element. The first through fifth bearings are disposed around and against the object to be positioned, to provide for positioning of the object in at least one of a linear direction and a rotational direction.
Translation and rotation positioning motor
Schmid, Andreas [Berkeley, CA; Schaff, Oliver [Berlin, DE
2006-07-04
A positioning device provides the capability of moving an object in both a linear and a rotational direction. The positioning device includes a first piezo stack with plural piezo plates that are capable of movement in orthogonal directions with respect to each other. The positioning device further includes a second piezo stack with plural piezo plates that are capable of movement in orthogonal directions with respect to each other. The positioning device also includes a first bearing that is disposed against the first piezo stack. The positioning device further includes a second bearing that is disposed against the second piezo stack. The positioning device also includes a spring element and a fifth bearing that is disposed against the spring element. The first through fifth bearings are disposed around and against the object to be positioned, to provide for positioning of the object in at least one of a linear direction and a rotational direction.
NASA Astrophysics Data System (ADS)
Gleber, Sophie-Charlotte; Weinhausen, Britta; Köster, Sarah; Ward, Jesse; Vine, David; Finney, Lydia; Vogt, Stefan
2013-10-01
The distribution, binding and release of trace elements on soil colloids determine matter transport through the soil matrix, and necessitates an aqueous environment and short length and time scales for their study. However, not many microscopy techniques allow for that. We previously showed hard x-ray fluorescence microscopy capabilities to image aqueous colloidal soil samples [1]. As this technique provides attogram sensitivity for transition elements like Cu, Zn, and other geochemically relevant trace elements at sub micrometer spatial resolution (currently down to 150 nm at 2-ID-E [2]; below 50nm at Bionanoprobe, cf. G.Woloschak et al, this volume) combined with the capability to penetrate tens of micrometer of water, it is ideally suited for imaging the elemental content of soil colloids. To address the question of binding and release processes of trace elements on the surface of soil colloids, we developed a microfluidics based XRF flow cytometer, and expanded the applied methods of hard x-ray fluorescence microscopy towards three dimensional imaging. Here, we show (a) the 2-D imaged distributions of Si, K and Fe on soil colloids of Pseudogley samples; (b) how the trace element distribution is a dynamic, pH-dependent process; and (c) x-ray tomographic applications to render the trace elemental distributions in 3-D. We conclude that the approach presented here shows the remarkable potential to image and quantitate elemental distributions from samles within their natural aqueous microenvironment, particularly important in the environmental, medical, and biological sciences.
ERIC Educational Resources Information Center
Nee, John G.; Kare, Audhut P.
1987-01-01
Explores several concepts in computer assisted design/computer assisted manufacturing (CAD/CAM). Defines, evaluates, reviews and compares advanced computer-aided geometric modeling and analysis techniques. Presents the results of a survey to establish the capabilities of minicomputer based-systems with the CAD/CAM packages evaluated. (CW)
Crashdynamics with DYNA3D: Capabilities and research directions
NASA Technical Reports Server (NTRS)
Whirley, Robert G.; Engelmann, Bruce E.
1993-01-01
The application of the explicit nonlinear finite element analysis code DYNA3D to crashworthiness problems is discussed. Emphasized in the first part of this work are the most important capabilities of an explicit code for crashworthiness analyses. The areas with significant research promise for the computational simulation of crash events are then addressed.
ERIC Educational Resources Information Center
Jackson, Janese Marie
2011-01-01
Given the perils of today's dynamic and resource-constrained environment, intellectual capital has become a source of competitive advantage for public sector organizations. Composed of three elements--organizational knowledge, innovative capability, and organizational commitment--intellectual capital is an asset that cannot simply be bought or…
A Maturity Model for Assessing the Use of ICT in School Education
ERIC Educational Resources Information Center
Solar, Mauricio; Sabattin, Jorge; Parada, Victor
2013-01-01
This article describes an ICT-based and capability-driven model for assessing ICT in education capabilities and maturity of schools. The proposed model, called ICTE-MM (ICT in School Education Maturity Model), has three elements supporting educational processes: information criteria, ICT resources, and leverage domains. Changing the traditional…
The Single Habitat Module Concept a Streamlined Way to Explore
NASA Technical Reports Server (NTRS)
Chambliss, Joe
2012-01-01
Many concepts have been proposed for exploring space. In early 2010 presidential direction called for reconsidering the approach to address changes in exploration destinations, use of new technologies and development of new capabilities to support exploration of space. Considering the proposed new technologies and capabilities that NASA was directed to pursue, the Single Habitathabitat module (SHMSHM) concept for a more streamlined approach to the infrastructure and conduct of exploration missions was developed. The SHM concept combines many of the new promising technologies with a central concept of mission architectures that uses a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper describes the SHM concept, and the advantages it provides to accomplish exploration objectives.
The Single Crew Module Concept a Streamlined Way to Explore
NASA Technical Reports Server (NTRS)
Chambliss, Joe
2012-01-01
Many concepts have been proposed for exploring space. In early 2010 presidential direction called for reconsidering the approach to address changes in exploration destinations, use of new technologies and development of new capabilities to support exploration of space. Considering the proposed new technology and capabilities that NASA was directed to pursue, the single crew module (SCM) concept for a more streamlined approach to the infrastructure and conduct of exploration missions was developed. The SCM concept combines many of the new promising technologies with a central concept of mission architectures that uses a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper describes the SCM concept, and the advantages it provides to accomplish exploration objectives.
Method and program product for determining a radiance field in an optical environment
NASA Technical Reports Server (NTRS)
Reinersman, Phillip N. (Inventor); Carder, Kendall L. (Inventor)
2007-01-01
A hybrid method is presented by which Monte Carlo techniques are combined with iterative relaxation techniques to solve the Radiative Transfer Equation in arbitrary one-, two- or three-dimensional optical environments. The optical environments are first divided into contiguous regions, or elements, with Monte Carlo techniques then being employed to determine the optical response function of each type of element. The elements are combined, and the iterative relaxation techniques are used to determine simultaneously the radiance field on the boundary and throughout the interior of the modeled environment. This hybrid model is capable of providing estimates of the under-water light field needed to expedite inspection of ship hulls and port facilities. It is also capable of providing estimates of the subaerial light field for structured, absorbing or non-absorbing environments such as shadows of mountain ranges within and without absorption spectral bands such as water vapor or CO.sub.2 bands.
NASA Technical Reports Server (NTRS)
Gupta, Kajal K.
1991-01-01
The details of an integrated general-purpose finite element structural analysis computer program which is also capable of solving complex multidisciplinary problems is presented. Thus, the SOLIDS module of the program possesses an extensive finite element library suitable for modeling most practical problems and is capable of solving statics, vibration, buckling, and dynamic response problems of complex structures, including spinning ones. The aerodynamic module, AERO, enables computation of unsteady aerodynamic forces for both subsonic and supersonic flow for subsequent flutter and divergence analysis of the structure. The associated aeroservoelastic analysis module, ASE, effects aero-structural-control stability analysis yielding frequency responses as well as damping characteristics of the structure. The program is written in standard FORTRAN to run on a wide variety of computers. Extensive graphics, preprocessing, and postprocessing routines are also available pertaining to a number of terminals.
Finite element modelling of crash response of composite aerospace sub-floor structures
NASA Astrophysics Data System (ADS)
McCarthy, M. A.; Harte, C. G.; Wiggenraad, J. F. M.; Michielsen, A. L. P. J.; Kohlgrüber, D.; Kamoulakos, A.
Composite energy-absorbing structures for use in aircraft are being studied within a European Commission research programme (CRASURV - Design for Crash Survivability). One of the aims of the project is to evaluate the current capabilities of crashworthiness simulation codes for composites modelling. This paper focuses on the computational analysis using explicit finite element analysis, of a number of quasi-static and dynamic tests carried out within the programme. It describes the design of the structures, the analysis techniques used, and the results of the analyses in comparison to the experimental test results. It has been found that current multi-ply shell models are capable of modelling the main energy-absorbing processes at work in such structures. However some deficiencies exist, particularly in modelling fabric composites. Developments within the finite element code are taking place as a result of this work which will enable better representation of composite fabrics.
Pridans, Clare; Lillico, Simon; Whitelaw, Bruce; Hume, David A
2014-01-01
The development of macrophages requires signaling through the lineage-restricted receptor Csf1r. Macrophage-restricted expression of transgenic reporters based upon Csf1r requires the highly conserved Fms-intronic regulatory element (FIRE). We have created a lentiviral construct containing mouse FIRE and promoter. The lentivirus is capable of directing macrophage-restricted reporter gene expression in mouse, rat, human, pig, cow, sheep, and even chicken. Rat bone marrow cells transduced with the lentivirus were capable of differentiating into macrophages expressing the reporter gene in vitro. Macrophage-restricted expression may be desirable for immunization or immune response modulation, and for gene therapy for lysosomal storage diseases and some immunodeficiencies. The small size of the Csf1r transcription control elements will allow the insertion of large “cargo” for applications in gene therapy and vaccine delivery. PMID:26015955
A Mechanical Power Flow Capability for the Finite Element Code NASTRAN
1989-07-01
perimental methods. statistical energy analysis , the finite element method, and a finite element analog-,y using heat conduction equations. Experimental...weights and inertias of the transducers attached to an experimental structure may produce accuracy problems. Statistical energy analysis (SEA) is a...405-422 (1987). 8. Lyon, R.L., Statistical Energy Analysis of Dynamical Sistems, The M.I.T. Press, (1975). 9. Mickol, J.D., and R.J. Bernhard, "An
Piezoelectric particle accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kemp, Mark A.; Jongewaard, Erik N.; Haase, Andrew A.
2017-08-29
A particle accelerator is provided that includes a piezoelectric accelerator element, where the piezoelectric accelerator element includes a hollow cylindrical shape, and an input transducer, where the input transducer is disposed to provide an input signal to the piezoelectric accelerator element, where the input signal induces a mechanical excitation of the piezoelectric accelerator element, where the mechanical excitation is capable of generating a piezoelectric electric field proximal to an axis of the cylindrical shape, where the piezoelectric accelerator is configured to accelerate a charged particle longitudinally along the axis of the cylindrical shape according to the piezoelectric electric field.
2013-08-15
DR. BINAYAK PANDA LOADS A SAMPLE IN THE IMS-6F SECONDARY ION MASS SPECTROSCOPE’S ULTRA HIGH VACUUM CHAMBER. IT IS CAPABLE OF ANALYZING VERY LIGHT ELEMENTS SUCH AS HYDROGEN AND LITHIUM IN ALLOYS. IT CAN ALSO ANALYZE VERY SMALL QUANTITIES OF IMPURITIES IN MATERIALS AT PARTS PER MILLION LEVELS, AND DETERMINE ISOTOPE RATIOS OF ELEMENTS, ALL IN SOLID SAMPLES.
2003-09-01
application .................................................. 5-42 5.10 Different materials within crack-block...5-30 Figure 5-29 - Application of required user edge node sets... applications . Users have at their disposal all of the capabilities within these finite element programs and may, if desired, include any number of
Development and Verification of a Weld Simulation Capability for VAST
2012-06-01
midsurface -aligned and not contain any offsets (i.e., thickness is symmetric on either side of the midsurface ). Furthermore, for a given element...both above and below the midsurface – i.e., NT /2 elements representing half the thickness both above and below (Figure 35). This operation is easy for
Coupled BE/FE/BE approach for scattering from fluid-filled structures
NASA Technical Reports Server (NTRS)
Everstine, Gordon C.; Cheng, Raymond S.
1990-01-01
NASHUA is a coupled finite element/boundary element capability built around NASTRAN for calculating the low frequency far-field acoustic pressure field radiated or scattered by an arbitrary, submerged, three-dimensional, elastic structure subjected to either internal time-harmonic mechanical loads or external time-harmonic incident loadings. Described here are the formulation and use of NASHUA for solving such structural acoustics problems when the structure is fluid-filled. NASTRAN is used to generate the structural finite element model and to perform most of the required matrix operations. Both fluid domains are modeled using the boundary element capability in NASHUA, whose matrix formulation (and the associated NASTRAN DMAP) for evacuated structures can be used with suitable interpretation of the matrix definitions. After computing surface pressures and normal velocities, far-field pressures are evaluated using an asymptotic form of the Helmholtz exterior integral equation. The proposed numerical approach is validated by comparing the acoustic field scattered from a submerged fluid-filled spherical thin shell to that obtained with a series solution, which is also derived here.
Shape optimization of three-dimensional stamped and solid automotive components
NASA Technical Reports Server (NTRS)
Botkin, M. E.; Yang, R.-J.; Bennett, J. A.
1987-01-01
The shape optimization of realistic, 3-D automotive components is discussed. The integration of the major parts of the total process: modeling, mesh generation, finite element and sensitivity analysis, and optimization are stressed. Stamped components and solid components are treated separately. For stamped parts a highly automated capability was developed. The problem description is based upon a parameterized boundary design element concept for the definition of the geometry. Automatic triangulation and adaptive mesh refinement are used to provide an automated analysis capability which requires only boundary data and takes into account sensitivity of the solution accuracy to boundary shape. For solid components a general extension of the 2-D boundary design element concept has not been achieved. In this case, the parameterized surface shape is provided using a generic modeling concept based upon isoparametric mapping patches which also serves as the mesh generator. Emphasis is placed upon the coupling of optimization with a commercially available finite element program. To do this it is necessary to modularize the program architecture and obtain shape design sensitivities using the material derivative approach so that only boundary solution data is needed.
SAPNEW: Parallel finite element code for thin shell structures on the Alliant FX-80
NASA Astrophysics Data System (ADS)
Kamat, Manohar P.; Watson, Brian C.
1992-11-01
The finite element method has proven to be an invaluable tool for analysis and design of complex, high performance systems, such as bladed-disk assemblies in aircraft turbofan engines. However, as the problem size increase, the computation time required by conventional computers can be prohibitively high. Parallel processing computers provide the means to overcome these computation time limits. This report summarizes the results of a research activity aimed at providing a finite element capability for analyzing turbomachinery bladed-disk assemblies in a vector/parallel processing environment. A special purpose code, named with the acronym SAPNEW, has been developed to perform static and eigen analysis of multi-degree-of-freedom blade models built-up from flat thin shell elements. SAPNEW provides a stand alone capability for static and eigen analysis on the Alliant FX/80, a parallel processing computer. A preprocessor, named with the acronym NTOS, has been developed to accept NASTRAN input decks and convert them to the SAPNEW format to make SAPNEW more readily used by researchers at NASA Lewis Research Center.
Curved Thermopiezoelectric Shell Structures Modeled by Finite Element Analysis
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun
2000-01-01
"Smart" structures composed of piezoelectric materials may significantly improve the performance of aeropropulsion systems through a variety of vibration, noise, and shape-control applications. The development of analytical models for piezoelectric smart structures is an ongoing, in-house activity at the NASA Glenn Research Center at Lewis Field focused toward the experimental characterization of these materials. Research efforts have been directed toward developing analytical models that account for the coupled mechanical, electrical, and thermal response of piezoelectric composite materials. Current work revolves around implementing thermal effects into a curvilinear-shell finite element code. This enhances capabilities to analyze curved structures and to account for coupling effects arising from thermal effects and the curved geometry. The current analytical model implements a unique mixed multi-field laminate theory to improve computational efficiency without sacrificing accuracy. The mechanics can model both the sensory and active behavior of piezoelectric composite shell structures. Finite element equations are being implemented for an eight-node curvilinear shell element, and numerical studies are being conducted to demonstrate capabilities to model the response of curved piezoelectric composite structures (see the figure).
Magnetic positioner having a single moving part
Trumper, David L.; Kim, Won-Jong
1999-01-01
A magnetic positioner is provided which is capable of providing long travel in two dimension and short travel in the remaining four dimensions. The positioner has a movable stage and a stator oriented adjacent and substantially parallel to this stage. At least three sets of first magnetic elements, which for preferred embodiments are winding sets capable of generating forces in two directions, are on the portion of the stator adjacent to the stage at any given time, and at least two second magnetic elements, which are magnet arrays for the preferred embodiment, are on the stage adjacent to the stator. At least one of the second magnetic elements overlaps multiple first magnetic elements for all positions of the stage relative to the stator, with one magnet overlapping multiple windings for one preferred embodiment of the invention and two magnets on the stage overlapping multiple windings on the stator for a second embodiment. The windings form a linear motor providing forces in both a corresponding long travel dimension and in a dimension perpendicular to both long travel dimensions.
Large Angle Transient Dynamics (LATDYN) user's manual
NASA Technical Reports Server (NTRS)
Abrahamson, A. Louis; Chang, Che-Wei; Powell, Michael G.; Wu, Shih-Chin; Bingel, Bradford D.; Theophilos, Paula M.
1991-01-01
A computer code for modeling the large angle transient dynamics (LATDYN) of structures was developed to investigate techniques for analyzing flexible deformation and control/structure interaction problems associated with large angular motions of spacecraft. This type of analysis is beyond the routine capability of conventional analytical tools without simplifying assumptions. In some instances, the motion may be sufficiently slow and the spacecraft (or component) sufficiently rigid to simplify analyses of dynamics and controls by making pseudo-static and/or rigid body assumptions. The LATDYN introduces a new approach to the problem by combining finite element structural analysis, multi-body dynamics, and control system analysis in a single tool. It includes a type of finite element that can deform and rotate through large angles at the same time, and which can be connected to other finite elements either rigidly or through mechanical joints. The LATDYN also provides symbolic capabilities for modeling control systems which are interfaced directly with the finite element structural model. Thus, the nonlinear equations representing the structural model are integrated along with the equations representing sensors, processing, and controls as a coupled system.
Power flows and Mechanical Intensities in structural finite element analysis
NASA Technical Reports Server (NTRS)
Hambric, Stephen A.
1989-01-01
The identification of power flow paths in dynamically loaded structures is an important, but currently unavailable, capability for the finite element analyst. For this reason, methods for calculating power flows and mechanical intensities in finite element models are developed here. Formulations for calculating input and output powers, power flows, mechanical intensities, and power dissipations for beam, plate, and solid element types are derived. NASTRAN is used to calculate the required velocity, force, and stress results of an analysis, which a post-processor then uses to calculate power flow quantities. The SDRC I-deas Supertab module is used to view the final results. Test models include a simple truss and a beam-stiffened cantilever plate. Both test cases showed reasonable power flow fields over low to medium frequencies, with accurate power balances. Future work will include testing with more complex models, developing an interactive graphics program to view easily and efficiently the analysis results, applying shape optimization methods to the problem with power flow variables as design constraints, and adding the power flow capability to NASTRAN.
NiftySim: A GPU-based nonlinear finite element package for simulation of soft tissue biomechanics.
Johnsen, Stian F; Taylor, Zeike A; Clarkson, Matthew J; Hipwell, John; Modat, Marc; Eiben, Bjoern; Han, Lianghao; Hu, Yipeng; Mertzanidou, Thomy; Hawkes, David J; Ourselin, Sebastien
2015-07-01
NiftySim, an open-source finite element toolkit, has been designed to allow incorporation of high-performance soft tissue simulation capabilities into biomedical applications. The toolkit provides the option of execution on fast graphics processing unit (GPU) hardware, numerous constitutive models and solid-element options, membrane and shell elements, and contact modelling facilities, in a simple to use library. The toolkit is founded on the total Lagrangian explicit dynamics (TLEDs) algorithm, which has been shown to be efficient and accurate for simulation of soft tissues. The base code is written in C[Formula: see text], and GPU execution is achieved using the nVidia CUDA framework. In most cases, interaction with the underlying solvers can be achieved through a single Simulator class, which may be embedded directly in third-party applications such as, surgical guidance systems. Advanced capabilities such as contact modelling and nonlinear constitutive models are also provided, as are more experimental technologies like reduced order modelling. A consistent description of the underlying solution algorithm, its implementation with a focus on GPU execution, and examples of the toolkit's usage in biomedical applications are provided. Efficient mapping of the TLED algorithm to parallel hardware results in very high computational performance, far exceeding that available in commercial packages. The NiftySim toolkit provides high-performance soft tissue simulation capabilities using GPU technology for biomechanical simulation research applications in medical image computing, surgical simulation, and surgical guidance applications.
Generation of electrical power
Hursen, Thomas F.; Kolenik, Steven A.; Purdy, David L.
1976-01-01
A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element.
NASA Technical Reports Server (NTRS)
Nakazawa, Shohei
1989-01-01
The user options available for running the MHOST finite element analysis package is described. MHOST is a solid and structural analysis program based on the mixed finite element technology, and is specifically designed for 3-D inelastic analysis. A family of 2- and 3-D continuum elements along with beam and shell structural elements can be utilized, many options are available in the constitutive equation library, the solution algorithms and the analysis capabilities. The outline of solution algorithms is discussed along with the data input and output, analysis options including the user subroutines and the definition of the finite elements implemented in the program package.
A method of predicting the energy-absorption capability of composite subfloor beams
NASA Technical Reports Server (NTRS)
Farley, Gary L.
1987-01-01
A simple method of predicting the energy-absorption capability of composite subfloor beam structure was developed. The method is based upon the weighted sum of the energy-absorption capability of constituent elements of a subfloor beam. An empirical data base of energy absorption results from circular and square cross section tube specimens were used in the prediction capability. The procedure is applicable to a wide range of subfloor beam structure. The procedure was demonstrated on three subfloor beam concepts. Agreement between test and prediction was within seven percent for all three cases.
Ablative Thermal Response Analysis Using the Finite Element Method
NASA Technical Reports Server (NTRS)
Dec John A.; Braun, Robert D.
2009-01-01
A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.
2016-04-29
Simulation of Spacecraft Electric Propulsion Systems and Plasma Spacecraft Environment 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Assessment of Capabilities for First‐ Principles Simulation of Spacecraft Electric Propulsion Systems and Plasma Spacecraft Environment” Team leader(s
2009-10-09
Capability of the People’s Republic of China to Conduct Cyber Warfare and Computer Network Exploitation Prepared for The US-China Economic and...the People?s Republic of China to Conduct Cyber Warfare and Computer Network Exploitation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Capability of the People’s Republic of China to Conduct Cyber Warfare and Computer Network Exploitation 2 US-China Economic and Security Review
Integrated scatterometry for tight overlay and CD control to enable 20-nm node wafer manufacturing.
NASA Astrophysics Data System (ADS)
Benschop, Jos; Engelen, Andre; Cramer, Hugo; Kubis, Michael; Hinnen, Paul; van der Laan, Hans; Bhattacharyya, Kaustuve; Mulkens, Jan
2013-04-01
The overlay, CDU and focus requirements for the 20nm node can only be met using a holistic lithography approach whereby full use is made of high-order, field-by-field, scanner correction capabilities. An essential element in this approach is a fast, precise and accurate in-line metrology sensor, capable to measure on product. The capabilities of the metrology sensor as well as the impact on overlay, CD and focus will be shared in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, A. C.; Bailey, D. S.; Kaiser, T. B.
2015-02-01
Here, we present a novel method for the solution of the diffusion equation on a composite AMR mesh. This approach is suitable for including diffusion based physics modules to hydrocodes that support ALE and AMR capabilities. To illustrate, we proffer our implementations of diffusion based radiation transport and heat conduction in a hydrocode called ALE-AMR. Numerical experiments conducted with the diffusion solver and associated physics packages yield 2nd order convergence in the L 2 norm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, Richard P.
2017-07-01
Sandia National Laboratories has developed a broad set of capabilities in quantum information science (QIS), including elements of quantum computing, quantum communications, and quantum sensing. The Sandia QIS program is built atop unique DOE investments at the laboratories, including the MESA microelectronics fabrication facility, the Center for Integrated Nanotechnologies (CINT) facilities (joint with LANL), the Ion Beam Laboratory, and ASC High Performance Computing (HPC) facilities. Sandia has invested $75 M of LDRD funding over 12 years to develop unique, differentiating capabilities that leverage these DOE infrastructure investments.
SPAR improved structure/fluid dynamic analysis capability
NASA Technical Reports Server (NTRS)
Oden, J. T.; Pearson, M. L.
1983-01-01
The capability of analyzing a coupled dynamic system of flowing fluid and elastic structure was added to the SPAR computer code. A method, developed and adopted for use in SPAR utilizes the existing assumed stress hybrid plan element in SPAR. An operational mode was incorporated in SPAR which provides the capability for analyzing the flaw of a two dimensional, incompressible, viscous fluid within rigid boundaries. Equations were developed to provide for the eventual analysis of the interaction of such fluids with an elastic solid.
NASA Capabilities That Could Impact Terrestrial Smart Grids of the Future
NASA Technical Reports Server (NTRS)
Beach, Raymond F.
2015-01-01
Incremental steps to steadily build, test, refine, and qualify capabilities that lead to affordable flight elements and a deep space capability. Potential Deep Space Vehicle Power system characteristics: power 10 kilowatts average; two independent power channels with multi-level cross-strapping; solar array power 24 plus kilowatts; multi-junction arrays; lithium Ion battery storage 200 plus ampere-hours; sized for deep space or low lunar orbit operation; distribution120 volts secondary (SAE AS 5698); 2 kilowatt power transfer between vehicles.
Development of a Aerothermoelastic-Acoustics Simulation Capability of Flight Vehicles
NASA Technical Reports Server (NTRS)
Gupta, K. K.; Choi, S. B.; Ibrahim, A.
2010-01-01
A novel numerical, finite element based analysis methodology is presented in this paper suitable for accurate and efficient simulation of practical, complex flight vehicles. An associated computer code, developed in this connection, is also described in some detail. Thermal effects of high speed flow obtained from a heat conduction analysis are incorporated in the modal analysis which in turn affects the unsteady flow arising out of interaction of elastic structures with the air. Numerical examples pertaining to representative problems are given in much detail testifying to the efficacy of the advocated techniques. This is a unique implementation of temperature effects in a finite element CFD based multidisciplinary simulation analysis capability involving large scale computations.
Johnson, J M; Reale, D V; Krile, J T; Garcia, R S; Cravey, W H; Neuber, A A; Dickens, J C; Mankowski, J J
2016-05-01
In this paper, a solid-state four element array gyromagnetic nonlinear transmission line high power microwave system is presented as well as a detailed description of its subsystems and general output capabilities. This frequency agile S-band source is easily adjusted from 2-4 GHz by way of a DC driven biasing magnetic field and is capable of generating electric fields of 7.8 kV/m at 10 m correlating to 4.2 MW of RF power with pulse repetition frequencies up to 1 kHz. Beam steering of the array at angles of ±16.7° is also demonstrated, and the associated general radiation pattern is detailed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, J. M., E-mail: jared.johnson@ttu.edu; Reale, D. V.; Garcia, R. S.
2016-05-15
In this paper, a solid-state four element array gyromagnetic nonlinear transmission line high power microwave system is presented as well as a detailed description of its subsystems and general output capabilities. This frequency agile S-band source is easily adjusted from 2-4 GHz by way of a DC driven biasing magnetic field and is capable of generating electric fields of 7.8 kV/m at 10 m correlating to 4.2 MW of RF power with pulse repetition frequencies up to 1 kHz. Beam steering of the array at angles of ±16.7° is also demonstrated, and the associated general radiation pattern is detailed.
NASA Technical Reports Server (NTRS)
Perotti, Jose M. (Inventor); Mata, Carlos T. (Inventor); Santiago, Josephine B. (Inventor); Vokrot, Peter (Inventor); Zavala, Carlos E. (Inventor); Burns, Bradley M. (Inventor)
2010-01-01
Self-Validating Thermocouple (SVT) Systems capable of detecting sensor probe open circuits, short circuits, and unnoticeable faults such as a probe debonding and probe degradation are useful in the measurement of temperatures. SVT Systems provide such capabilities by incorporating a heating or excitation element into the measuring junction of the thermocouple. By heating the measuring junction and observing the decay time for the detected DC voltage signal, it is possible to indicate whether the thermocouple is bonded or debonded. A change in the thermal transfer function of the thermocouple system causes a change in the rise and decay times of the thermocouple output. Incorporation of the excitation element does not interfere with normal thermocouple operation, thus further allowing traditional validation procedures as well.
The Boeing plastic analysis capability for engines
NASA Technical Reports Server (NTRS)
Vos, R. G.
1976-01-01
The current BOPACE program is described as a nonlinear stress analysis program, which is based on a family of isoparametric finite elements. The theoretical, user, programmer, preprocessing aspects are discussed, and example problems are included. New features in the current program version include substructuring, an out-of-core Gauss wavefront equation solver, multipoint constraints, combined material and geometric nonlinearities, automatic calculation of inertia effects, provision for distributed as well as concentrated mechanical loads, follower forces, singular crack-tip elements, the SAIL automatic generation capability, and expanded user control over input quantity definition, output selection, and program execution. BOPACE is written in FORTRAN 4 and is currently available for both the IBM 360/370 and the UNIVAC 1108 machines.
NASA Technical Reports Server (NTRS)
Tanner, Alan B.; Wilson, William J.; Lambrigsten, Bjorn H.; Dinardo, Steven J.; Brown, Shannon T.; Kangaslahti, Pekka P.; Gaier, Todd C.; Ruf, C. S.; Gross, S. M.; Lim, B. H.;
2006-01-01
The design, error budget, and preliminary test results of a 50-56 GHz synthetic aperture radiometer demonstration system are presented. The instrument consists of a fixed 24-element array of correlation interferometers, and is capable of producing calibrated images with 0.8 degree spatial resolution within a 17 degree wide field of view. This system has been built to demonstrate performance and a design which can be scaled to a much larger geostationary earth imager. As a baseline, such a system would consist of about 300 elements, and would be capable of providing contiguous, full hemispheric images of the earth with 1 Kelvin of radiometric precision and 50 km spatial resolution.
Composite structural materials
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.
1981-01-01
The composite aircraft program component (CAPCOMP) is a graduate level project conducted in parallel with a composite structures program. The composite aircraft program glider (CAPGLIDE) is an undergraduate demonstration project which has as its objectives the design, fabrication, and testing of a foot launched ultralight glider using composite structures. The objective of the computer aided design (COMPAD) portion of the composites project is to provide computer tools for the analysis and design of composite structures. The major thrust of COMPAD is in the finite element area with effort directed at implementing finite element analysis capabilities and developing interactive graphics preprocessing and postprocessing capabilities. The criteria for selecting research projects to be conducted under the innovative and supporting research (INSURE) program are described.
An Interoperability Framework and Capability Profiling for Manufacturing Software
NASA Astrophysics Data System (ADS)
Matsuda, M.; Arai, E.; Nakano, N.; Wakai, H.; Takeda, H.; Takata, M.; Sasaki, H.
ISO/TC184/SC5/WG4 is working on ISO16100: Manufacturing software capability profiling for interoperability. This paper reports on a manufacturing software interoperability framework and a capability profiling methodology which were proposed and developed through this international standardization activity. Within the context of manufacturing application, a manufacturing software unit is considered to be capable of performing a specific set of function defined by a manufacturing software system architecture. A manufacturing software interoperability framework consists of a set of elements and rules for describing the capability of software units to support the requirements of a manufacturing application. The capability profiling methodology makes use of the domain-specific attributes and methods associated with each specific software unit to describe capability profiles in terms of unit name, manufacturing functions, and other needed class properties. In this methodology, manufacturing software requirements are expressed in terns of software unit capability profiles.
Phase-space finite elements in a least-squares solution of the transport equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drumm, C.; Fan, W.; Pautz, S.
2013-07-01
The linear Boltzmann transport equation is solved using a least-squares finite element approximation in the space, angular and energy phase-space variables. The method is applied to both neutral particle transport and also to charged particle transport in the presence of an electric field, where the angular and energy derivative terms are handled with the energy/angular finite elements approximation, in a manner analogous to the way the spatial streaming term is handled. For multi-dimensional problems, a novel approach is used for the angular finite elements: mapping the surface of a unit sphere to a two-dimensional planar region and using a meshingmore » tool to generate a mesh. In this manner, much of the spatial finite-elements machinery can be easily adapted to handle the angular variable. The energy variable and the angular variable for one-dimensional problems make use of edge/beam elements, also building upon the spatial finite elements capabilities. The methods described here can make use of either continuous or discontinuous finite elements in space, angle and/or energy, with the use of continuous finite elements resulting in a smaller problem size and the use of discontinuous finite elements resulting in more accurate solutions for certain types of problems. The work described in this paper makes use of continuous finite elements, so that the resulting linear system is symmetric positive definite and can be solved with a highly efficient parallel preconditioned conjugate gradients algorithm. The phase-space finite elements capability has been built into the Sceptre code and applied to several test problems, including a simple one-dimensional problem with an analytic solution available, a two-dimensional problem with an isolated source term, showing how the method essentially eliminates ray effects encountered with discrete ordinates, and a simple one-dimensional charged-particle transport problem in the presence of an electric field. (authors)« less
Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities
NASA Technical Reports Server (NTRS)
Emrich, William J., Jr.
2014-01-01
Over the past year the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) has been undergoing a significant upgrade beyond its initial configuration. The NTREES facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The first phase of the upgrade activities which was completed in 2012 in part consisted of an extensive modification to the hydrogen system to permit computer controlled operations outside the building through the use of pneumatically operated variable position valves. This setup also allows the hydrogen flow rate to be increased to over 200 g/sec and reduced the operation complexity of the system. The second stage of modifications to NTREES which has just been completed expands the capabilities of the facility significantly. In particular, the previous 50 kW induction power supply has been replaced with a 1.2 MW unit which should allow more prototypical fuel element temperatures to be reached. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during. This new setup required that the NTREES vessel be raised onto a platform along with most of its associated gas and vent lines. In this arrangement, the induction heater and water systems are now located underneath the platform. In this new configuration, the 1.2 MW NTREES induction heater will be capable of testing fuel elements and fuel materials in flowing hydrogen at pressures up to 1000 psi at temperatures up to and beyond 3000 K and at near-prototypic reactor channel power densities. NTREES is also capable of testing potential fuel elements with a variety of propellants, including hydrogen with additives to inhibit corrosion of certain potential NTR fuel forms. Additional diagnostic upgrades included in the present NTREES set up include the addition of a gamma ray spectrometer located near the vent filter to detect uranium fuel particles exiting the fuel element in the propellant exhaust stream to provide additional information any material loss occurring during testing. Other aspects of the upgrade included reworking NTREES to reduce the operational complexity of the system despite the increased complexity of the induction heating system. To this end, many of the controls were consolidated on fewer panels. As part of this upgrade activity, the Safety Assessment (SA) and the Standard Operating Procedures (SOPs) for NTREES were extensively rewritten. The new 1.2 MW induction heater consists of three physical units consisting of a transformer, rectifier, and inverter. This multiunit arrangement facilitated increasing the flexibility of the induction heater by more easily allowing variable frequency operation. Frequency ranges between 20 and 60 kHz can be accommodated in the new induction heater allowing more representative power distributions to be generated within the test elements.
Thermal Effects Modeling Developed for Smart Structures
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun
1998-01-01
Applying smart materials in aeropropulsion systems may improve the performance of aircraft engines through a variety of vibration, noise, and shape-control applications. To facilitate the experimental characterization of these smart structures, researchers have been focusing on developing analytical models to account for the coupled mechanical, electrical, and thermal response of these materials. One focus of current research efforts has been directed toward incorporating a comprehensive thermal analysis modeling capability. Typically, temperature affects the behavior of smart materials by three distinct mechanisms: Induction of thermal strains because of coefficient of thermal expansion mismatch 1. Pyroelectric effects on the piezoelectric elements; 2. Temperature-dependent changes in material properties; and 3. Previous analytical models only investigated the first two thermal effects mechanisms. However, since the material properties of piezoelectric materials generally vary greatly with temperature (see the graph), incorporating temperature-dependent material properties will significantly affect the structural deflections, sensory voltages, and stresses. Thus, the current analytical model captures thermal effects arising from all three mechanisms through thermopiezoelectric constitutive equations. These constitutive equations were incorporated into a layerwise laminate theory with the inherent capability to model both the active and sensory response of smart structures in thermal environments. Corresponding finite element equations were formulated and implemented for both the beam and plate elements to provide a comprehensive thermal effects modeling capability.
NASA Technical Reports Server (NTRS)
Cerracchio, Priscilla; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander
2013-01-01
The marked increase in the use of composite and sandwich material systems in aerospace, civil, and marine structures leads to the need for integrated Structural Health Management systems. A key capability to enable such systems is the real-time reconstruction of structural deformations, stresses, and failure criteria that are inferred from in-situ, discrete-location strain measurements. This technology is commonly referred to as shape- and stress-sensing. Presented herein is a computationally efficient shape- and stress-sensing methodology that is ideally suited for applications to laminated composite and sandwich structures. The new approach employs the inverse Finite Element Method (iFEM) as a general framework and the Refined Zigzag Theory (RZT) as the underlying plate theory. A three-node inverse plate finite element is formulated. The element formulation enables robust and efficient modeling of plate structures instrumented with strain sensors that have arbitrary positions. The methodology leads to a set of linear algebraic equations that are solved efficiently for the unknown nodal displacements. These displacements are then used at the finite element level to compute full-field strains, stresses, and failure criteria that are in turn used to assess structural integrity. Numerical results for multilayered, highly heterogeneous laminates demonstrate the unique capability of this new formulation for shape- and stress-sensing.
A hybrid symbolic/finite-element algorithm for solving nonlinear optimal control problems
NASA Technical Reports Server (NTRS)
Bless, Robert R.; Hodges, Dewey H.
1991-01-01
The general code described is capable of solving difficult nonlinear optimal control problems by using finite elements and a symbolic manipulator. Quick and accurate solutions are obtained with a minimum for user interaction. Since no user programming is required for most problems, there are tremendous savings to be gained in terms of time and money.
Wireless spread-spectrum telesensor chip with synchronous digital architecture
Smith, Stephen F.; Turner, Gary W.; Wintenberg, Alan L.; Emery, Michael Steven
2005-03-08
A fully integrated wireless spread-spectrum sensor incorporating all elements of an "intelligent" sensor on a single circuit chip is capable of telemetering data to a receiver. Synchronous control of all elements of the chip provides low-cost, low-noise, and highly robust data transmission, in turn enabling the use of low-cost monolithic receivers.
Organic memristive device as key element for neuromorphic networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erokhin, Victor
Organic memristive device has three important properties allowing to consider it as a key element of neuromorphic systems. First, its electrical properties are somehow similar to those of synapses. Second, it can be easily transferred into an oscillator. Third, organic nature of the devices allow to assemble them into stochastic 3D networks capable to learning and adaptations.
Elements of a modern turbomachinery design system
NASA Astrophysics Data System (ADS)
Jennions, Ian K.
1994-05-01
The aerodynamic design system at GE Aircraft Engines (GEAE) consists of many parts: throughflow, secondary flow, geometry generators, blade-to-blade and fully three-dimensional (3D) analysis. This paper describes each of these elements and discusses optimization and computer architecture issues. Emphasis is placed on those areas in which the company is thought to have special capability.
Transformation of Marine Corps Artillery in Support of the 2015 Expeditionary Force
2008-01-01
artillery electronics maintenance, and meterological sections in support ofsubordinate elements. On order, the Regiment assumes the primary civil...order capability), engineer, counterbattery radar, artillery electronics maintenance, and meterological sections in support ofsubordinate elements...www.tecom.usmc.mil. (accessed December 15,2007). Training and Education Command. MOS Roadmap: 0847 - Field Artillery Meterological Crew Member. Quantico
Lecture Capture with Real-Time Rearrangement of Visual Elements: Impact on Student Performance
ERIC Educational Resources Information Center
Yu, P.-T.; Wang, B.-Y.; Su, M.-H.
2015-01-01
The primary goal of this study is to create and test a lecture-capture system that can rearrange visual elements while recording is still taking place, in such a way that student performance can be positively influenced. The system we have devised is capable of integrating and rearranging multimedia sources, including learning content, the…
NASA Technical Reports Server (NTRS)
Shevaleyevskiy, I. D.; Chupakhin, M. S.
1974-01-01
Methodological and analytical capabilities associated with spark mass spectrometry and X-ray spectroscopy are presented for the determination of the elemental composition of samples of lunar regolith returned to the earth by Apollo 11 and Apollo 12. Using X-ray spectroscopy, the main constituents of samples of lunar surface material were determined, and using mass spectrometry -- the main admixtures. The principal difference of Apollo 11 samples from Apollo 12 samples was found for elements contained in microconcentrations. This is especially true of rare earth elements.
Application of shell elements in simulation of cans ironing
NASA Astrophysics Data System (ADS)
Andrianov, A. V.; Erisov, Y. A.; Aryshensky, E. V.; Aryshensky, V. Y.
2017-01-01
In the present study, the special shell finite elements are used to simulate the drawing with high ironing ratio of aluminum beverage cans. These elements are implemented in commercial software complex PAM-STAMP 2G by means of T.T.S. normal stress option, which is used for ironing to describe well normal stress. By comparison of simulation and experimental data, it is shown that shell elements with T.T.S. option are capable to provide accurate simulation of deep drawing and ironing. The error of can thickness and height computation agrees with the engineering computation accuracy.
NASA Technical Reports Server (NTRS)
Robinson, J. C.
1979-01-01
Two methods for determining stresses and internal forces in geometrically nonlinear structural analysis are presented. The simplified approach uses the mid-deformed structural position to evaluate strains when rigid body rotation is present. The important feature of this approach is that it can easily be used with a general-purpose finite-element computer program. The refined approach uses element intrinsic or corotational coordinates and a geometric transformation to determine element strains from joint displacements. Results are presented which demonstrate the capabilities of these potentially useful approaches for geometrically nonlinear structural analysis.
Finite Element Model Development For Aircraft Fuselage Structures
NASA Technical Reports Server (NTRS)
Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.
2000-01-01
The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results.
Morris, W.J.
1958-12-01
A plle-flattenlng control element and a fluid seal therefore to permit movement of the element into a liquld contnining region of a neutronlc reactor are described. The device consists of flattened, thin-walled aluminum tubing contalnlng a uniform mixture of thermal neutron absorbing material, and a number of soft rubber closures for the process tubes, having silts capable of passing the flattened elements therethrough, but effectively sealing the process tubes against fluld leaknge by compression of the rubber. The flattened tubing is sufficiently flexible to enable it to conform to the configuratlon of the annular spacing surrounding the fuel elements ln the process tubes.
MHOST version 4.2. Volume 1: Users' manual
NASA Technical Reports Server (NTRS)
Nakazawa, Shohei
1989-01-01
This manual describes the user options available for running the MHOST finite element analysis package. MHOST is a solid and structural analysis program based on mixed finite element technology, and is specifically designed for three-dimensional inelastic analysis. A family of two- and three-dimensional continuum elements along with beam and shell structural elements can be utilized. Many options are available in the constitutive equation library, the solution algorithms and the analysis capabilities. An overview of the algorithms, a general description of the input data formats, and a discussion of input data for selecting solution algorithms are given.
Switch Using Radio Frequency Identification
NASA Technical Reports Server (NTRS)
Fink, Patrick W. (Inventor); Kennedy, Timothy F. (Inventor); Lin, Gregory Y. (Inventor); Ngo, Phong H. (Inventor)
2015-01-01
Disclosed is an apparatus for use as a switch. In one embodiment, the switch comprises at least one RFID tag, each RFID tag comprising an antenna element and an RFID integrated circuit, at least one source element, and at least one lever arm. Each lever arm is connected to one of the RFID tags, and each lever arm is capable of two positions. One of the positions places the lever arm and the RFID tag connected thereto into alignment with the source element. Other embodiments are also described.
A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations
NASA Technical Reports Server (NTRS)
Hu, Changqing; Shu, Chi-Wang
1998-01-01
In this paper, we present a discontinuous Galerkin finite element method for solving the nonlinear Hamilton-Jacobi equations. This method is based on the Runge-Kutta discontinuous Galerkin finite element method for solving conservation laws. The method has the flexibility of treating complicated geometry by using arbitrary triangulation, can achieve high order accuracy with a local, compact stencil, and are suited for efficient parallel implementation. One and two dimensional numerical examples are given to illustrate the capability of the method.
The Opportunity in Commercial Approaches for Future NASA Deep Space Exploration Elements
NASA Technical Reports Server (NTRS)
Zapata, Edgar
2017-01-01
This work joins two events, showing the potential for commercial, public private partnerships, modeled on programs like COTS, to reduce the cost to NASA significantly for other required deep space exploration capabilities. These other capabilities include landers, stages and more. We mature the concept of costed baseball cards, adding cost estimates to NASAs space systems baseball cards.
Rawahi, Said Harith Al; Asimakopoulou, Koula; Newton, Jonathon Timothy
2018-01-01
To determine the barriers and enablers to behavioural change to reduce free sugar intake related to dental caries in a sample of UK adults who identify their ethnicity as White. Qualitative study comprising semi-structured interviews of 27 participants. Interviews were recorded, transcribed and analysed using thematic analysis methods. The Capability-Opportunity-Motivation-Behaviour model (COM-B) and the Theoretical Domains Framework (TDF) were used to guide the derivation of themes. Data saturation occurred at 27 interviews. The COM-B Model and TDF domains captured various factors that may influence the consumption of free sugar. TDF elements which are reflected in the study are: Knowledge; Psychological skills; Memory, attention, and decision processes; Behavioural regulation; Physical skills; Social influence; Environmental context and resources; Social and professional role and identity; Beliefs about capabilities; Beliefs about consequence; Intentions and goals reinforcement; and Emotions. COM-B Model elements which are reflected in the study are: psychological capabilities, physical capabilities, social opportunities, physical opportunities, reflective motivation, and automatic motivation. The COM-B model and TDF framework provided a comprehensive account of the barriers and facilitators of reducing sugar intake among white ethnic groups.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SMALL BUSINESS PROGRAMS Certificates of Competency and Determinations of Responsibility 19.602-1... certain elements of responsibility (including, but not limited to, capability, competency, capacity...
MICROBIALLY MEDIATED LEACHING OF RARE EARTH ELEMENTS FROM RECYCLABLE MATERIALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, D. W.; Fujita, Y.; Daubaras, D. L.
2016-09-01
Bioleaching offers a potential approach for recovery of rare earth elements (REE) from recyclable materials, such as fluorescent lamp phosphors or degraded industrial catalysts. Microorganisms were enriched from REE-containing ores and recyclable materials with the goal of identifying strains capable of extracting REE from solid materials. Over 100 heterotrophic microorganisms were isolated and screened for their ability to produce organic acids capable of leaching REE. The ten most promising isolates were most closely related to Pseudomonas, Acinetobacter and Talaromyces. Of the acids produced, gluconic acid appeared to be the most effective at leaching REE (yttrium, lanthanum, cerium, europium, and terbium)more » from retorted phosphor powders (RPP), fluidized cracking catalyst (FCC), and europium-doped yttrium oxide (YOEu). We found that an Acinetobacter isolates, BH1, was the most capable strain and able to leach 33% of the total REE content from the FCC material. These results support the continuing evaluation of gluconic acid-producing microbes for large-scale REE recovery from recyclable materials.« less
Big capabilities in small packages: hyperspectral imaging from a compact platform
NASA Astrophysics Data System (ADS)
Beasley, Matthew; Goldberg, Hannah; Voorhees, Christopher; Illsley, Peter
2016-09-01
We present the Compact Holographic Aberration-corrected Platform (CHAP) instrument, designed and developed at Planetary Resources Development Corporation. By combining a dispersive element with the secondary of a telescope, we are able to produce a relatively long focal length with moderate dispersion at the focal plane. This design enables us to build a capable hyperspectral imaging instrument within the size constraints of the Cubesat form-factor. The advantages of our design revolves around its simplicity: there are only two optical elements, producing both a white light and diffracted image. With the use of a replicated grating, we can produce a long focal length hyperspectral imager at a price point far below other spaceflight instruments. The design is scalable for larger platforms and since it has no transmitting optics and only two reflective surfaces could be designed to function at any desired wavelength. Our system will be capable of spectral imaging across the 400 to 900 nm spectral range for use in small body surveys.
An Enriched Shell Element for Delamination Simulation in Composite Laminates
NASA Technical Reports Server (NTRS)
McElroy, Mark
2015-01-01
A formulation is presented for an enriched shell finite element capable of delamination simulation in composite laminates. The element uses an adaptive splitting approach for damage characterization that allows for straightforward low-fidelity model creation and a numerically efficient solution. The Floating Node Method is used in conjunction with the Virtual Crack Closure Technique to predict delamination growth and represent it discretely at an arbitrary ply interface. The enriched element is verified for Mode I delamination simulation using numerical benchmark data. After determining important mesh configuration guidelines for the vicinity of the delamination front in the model, a good correlation was found between the enriched shell element model results and the benchmark data set.
High speed exhaust gas recirculation valve
Fensom, Rod; Kidder, David J.
2005-01-18
In order to minimize pollutants such as Nox, internal combustion engines typically include an exhaust gas recirculation (EGR) valve that can be used to redirect a portion of exhaust gases to an intake conduit, such as an intake manifold, so that the redirected exhaust gases will be recycled. It is desirable to have an EGR valve with fast-acting capabilities, and it is also desirable to have the EGR valve take up as little space as possible. An exhaust gas recirculation valve is provided that includes an exhaust passage tube, a valve element pivotally mounted within the exhaust passage tube, a linear actuator; and a gear train. The gear train includes a rack gear operatively connected to the linear actuator, and at least one rotatable gear meshing with the rack gear and operatively connected to the valve element to cause rotation of the valve element upon actuation of the linear actuator. The apparatus provides a highly compact package having a high-speed valve actuation capability.
An evaluation of some strategies for vibration control of flexible rotors
NASA Technical Reports Server (NTRS)
Burrows, C. R.
1992-01-01
There is evidence that the reliability of magnetic bearings has achieved an acceptable level in applications when high cost can be tolerated. This acceptability would be enhanced if the inherent capability of magnetic bearings as active control elements were fully used. The technological and commercial promise of magnetic bearings will be fulfilled only if attention is focussed on the control problems associated with their use. The open loop adaptive control algorithm provides an efficient method of controlling the vibration of rotors without the need of a prior knowledge of parameter values. It overcomes the disadvantages normally associated with open loop control while avoiding the problem of instability associated with closed loop control algorithms. The algorithm is conceptually satisfying because it uses the capability of magnetic bearings as fully active vibration control elements rather than limiting them to act as adjustable stiffness and damping elements, as is the case when they are used with local position and velocity feedback.
Doppler Imaging and Chemical Abundance Analysis of EK Dra: Capabilities of Small Telescopes
NASA Astrophysics Data System (ADS)
Kilicoglu, Tolgahan; Senavci, H. V.; Bahar, E.; Isik, E.; Montes, D.; Hussain, G. A. J.
2018-04-01
We investigate the chromospheric and spot activity behaviour of the young Solar-like star EK Dra via Doppler imaging and spectral synthesis methods, using mid-resolution time series spectra of the system. We also present the atmospheric parameters and detailed elemental photospheric abundances of the star. The chemical abundance pattern of EK Dra do not suggest any remarkable peculiarities except few elements. The Titanium Oxide (TiO) bandheads at 7000 - 7100 A region also give clues about the spot temperature that may be cooler than 4000 K. In addition, we also discuss the capabilities of small telescopes (40 cm in our case) and medium resolution spectrographs in terms of Doppler imaging and chemical abundance analysis.
NASA Astrophysics Data System (ADS)
Xia, D.; Xia, Z.
2017-12-01
The ability for the excitation system to adjust quickly plays a very important role in maintaining the normal operation of superconducting machines and power systems. However, the eddy currents in the electromagnetic shield of superconducting machines hinder the exciting magnetic field change and weaken the adjustment capability of the excitation system. To analyze this problem, a finite element calculation model for the transient electromagnetic field with moving parts is established. The effects of three different electromagnetic shields on the exciting magnetic field are analyzed using finite element method. The results show that the electromagnetic shield hinders the field changes significantly, the better its conductivity, the greater the effect on the superconducting machine excitation.
DYNA3D: A computer code for crashworthiness engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallquist, J.O.; Benson, D.J.
1986-09-01
A finite element program with crashworthiness applications has been developed at LLNL. DYNA3D, an explicit, fully vectorized, finite deformation structural dynamics program, has four capabilities that are critical for the efficient and realistic modeling crash phenomena: (1) fully optimized nonlinear solid, shell, and beam elements for representing a structure; (2) a broad range of constitutive models for simulating material behavior; (3) sophisticated contact algorithms for impact interactions; (4) a rigid body capability to represent the bodies away from the impact region at a greatly reduced cost without sacrificing accuracy in the momentum calculations. Basic methodologies of the program are brieflymore » presented along with several crashworthiness calculations. Efficiencies of the Hughes-Liu and Belytschko-Tsay shell formulations are considered.« less
Automation and robotics and related technology issues for Space Station customer servicing
NASA Technical Reports Server (NTRS)
Cline, Helmut P.
1987-01-01
Several flight servicing support elements are discussed within the context of the Space Station. Particular attention is given to the servicing facility, the mobile servicing center, and the flight telerobotic servicer (FTS). The role that automation and robotics can play in the design and operation of each of these elements is discussed. It is noted that the FTS, which is currently being developed by NASA, will evolve to increasing levels of autonomy to allow for the virtual elimination of routine EVA. Some of the features of the FTS will probably be: dual manipulator arms having reach and dexterity roughly equivalent to that of an EVA-suited astronaut, force reflection capability allowing efficient teleoperation, and capability of operating from a variety of support systems.
Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.; Heyliger, Paul R.; Hopkins, Dale A.
1996-01-01
Laminate and structural mechanics for the analysis of laminated composite plate structures with piezoelectric actuators and sensors are presented. The theories implement layerwise representations of displacements and electric potential, and can model both the global and local electromechanical response of smart composite laminates. Finite-element formulations are developed for the quasi-static and dynamic analysis of smart composite structures containing piezoelectric layers. Comparisons with an exact solution illustrate the accuracy, robustness and capability of the developed mechanics to capture the global and local response of thin and/or thick laminated piezoelectric plates. Additional correlations and numerical applications demonstrate the unique capabilities of the mechanics in analyzing the static and free-vibration response of composite plates with distributed piezoelectric actuators and sensors.
NASA Technical Reports Server (NTRS)
Beck, Louisa R.; Rodriquez, Mario H.; Dister, Sheri W.; Rodriquez, Americo D.; Rejmankova, Eliska; Ulloa, Armando; Meza, Rosa A.; Roberts, Donald R.; Paris, Jack F.; Spanner, Michael A.;
1994-01-01
A landscape approach using remote sensing and Geographic Information System (GIS) technologies was developed to discriminate between villages at high and low risk for malaria transmission, as defined by adult Anopheles albimanus abundance. Satellite data for an area in southern Chiapas, Mexico were digitally processed to generate a map of landscape elements. The GIS processes were used to determine the proportion of mapped landscape elements surrounding 40 villages where An. albimanus data had been collected. The relationships between vector abundance and landscape element proportions were investigated using stepwise discriminant analysis and stepwise linear regression. Both analyses indicated that the most important landscape elements in terms of explaining vector abundance were transitional swamp and unmanaged pasture. Discriminant functions generated for these two elements were able to correctly distinguish between villages with high ind low vector abundance, with an overall accuracy of 90%. Regression results found both transitional swamp and unmanaged pasture proportions to be predictive of vector abundance during the mid-to-late wet season. This approach, which integrates remotely sensed data and GIS capabilities to identify villages with high vector-human contact risk, provides a promising tool for malaria surveillance programs that depend on labor-intensive field techniques. This is particularly relevant in areas where the lack of accurate surveillance capabilities may result in no malaria control action when, in fact, directed action is necessary. In general, this landscape approach could be applied to other vector-borne diseases in areas where: 1. the landscape elements critical to vector survival are known and 2. these elements can be detected at remote sensing scales.
NASA Technical Reports Server (NTRS)
Evans, David B.
1993-01-01
This is the Space Station Freedom (SSF) Evolution Study 1993 Final Report, performed under NASA Contract NAS8-38783, Task Order 5.1. This task examined: (1) the feasibility of launching current National Space Transportation System (NSTS) compatible logistics elements on expendable launch vehicles (ELV's) and the associated modifications, and (2) new, non-NSTS logistics elements for launch on ELV's to augment current SSF logistics capability.
Interoperable Architecture for Command and Control
2014-06-01
defined objective. Elements can include other systems, people, processes, technology and other support elements (Adapted from [9]). Enterprise System...An enterprise is an intentionally created entity of human endeavour with a certain purpose. An enterprise could be considered a type of system [7]. In...this case the enterprise is a Defence Enterprise System required by government as a tool to maintain national sovereignty. Capability
Leadership Development: A Senior Leader Case Study
2014-10-01
LIFE model Element Investigative Question Strategy How does (development program) posture (or fail to posture ) leaders to meet organizational...Management How does (development program) adequately posture (or fail to posture ) officer talent capable of filling talent gaps within the...LIFE model in figure 1 stems from conceptualizing and integrat- ing elements of leadership development in the work of Stephen Co- hen , Lisa Gabel
Transformation of Marine Corps Artillery in Support of the 2015 Expeditionary Force
2008-04-30
artillery electronics maintenance, and meterological sections in support ofsubordinate elements. On order, the Regiment assumes the primary civil...3rd order capability), engineer, counterbattery radar, artillery electronics maintenance, and meterological sections in support ofsubordinate elements...www.tecom.usmc.mil. (accessed December 15,2007). Training and Education Command. MOS Roadmap: 0847 - Field Artillery Meterological Crew Member. Quantico
NASA Technical Reports Server (NTRS)
Figueroa, Jorge Fernando
2008-01-01
In February of 2008; NASA Stennis Space Center (SSC), NASA Kennedy Space Center (KSC), and The Applied Research Laboratory at Penn State University demonstrated a pilot implementation of an Integrated System Health Management (ISHM) capability at the Launch Complex 20 of KSC. The following significant accomplishments are associated with this development: (1) implementation of an architecture for ground operations ISHM, based on networked intelligent elements; (2) Use of standards for management of data, information, and knowledge (DIaK) leading to modular ISHM implementation with interoperable elements communicating according to standards (three standards were used: IEEE 1451 family of standards for smart sensors and actuators, Open Systems Architecture for Condition Based Maintenance (OSA-CBM) standard for communicating DIaK describing the condition of elements of a system, and the OPC standard for communicating data); (3) ISHM implementation using interoperable modules addressing health management of subsystems; and (4) use of a physical intelligent sensor node (smart network element or SNE capable of providing data and health) along with classic sensors originally installed in the facility. An operational demonstration included detection of anomalies (sensor failures, leaks, etc.), determination of causes and effects, communication among health nodes, and user interfaces.
Three tenets for secure cyber-physical system design and assessment
NASA Astrophysics Data System (ADS)
Hughes, Jeff; Cybenko, George
2014-06-01
This paper presents a threat-driven quantitative mathematical framework for secure cyber-physical system design and assessment. Called The Three Tenets, this originally empirical approach has been used by the US Air Force Research Laboratory (AFRL) for secure system research and development. The Tenets were first documented in 2005 as a teachable methodology. The Tenets are motivated by a system threat model that itself consists of three elements which must exist for successful attacks to occur: - system susceptibility; - threat accessibility and; - threat capability. The Three Tenets arise naturally by countering each threat element individually. Specifically, the tenets are: Tenet 1: Focus on What's Critical - systems should include only essential functions (to reduce susceptibility); Tenet 2: Move Key Assets Out-of-Band - make mission essential elements and security controls difficult for attackers to reach logically and physically (to reduce accessibility); Tenet 3: Detect, React, Adapt - confound the attacker by implementing sensing system elements with dynamic response technologies (to counteract the attackers' capabilities). As a design methodology, the Tenets mitigate reverse engineering and subsequent attacks on complex systems. Quantified by a Bayesian analysis and further justified by analytic properties of attack graph models, the Tenets suggest concrete cyber security metrics for system assessment.
NASA Astrophysics Data System (ADS)
Silva, A. L. M.; Figueroa, R.; Jaramillo, A.; Carvalho, M. L.; Veloso, J. F. C. A.
2013-08-01
Energy dispersive X-ray fluorescence (EDXRF) imaging systems are of great interest in many applications of different areas, once they allow us to get images of the spatial elemental distribution in the samples. The detector system used in this study is based on a micro patterned gas detector, named Micro-Hole and Strip Plate. The full field of view system, with an active area of 28 × 28 mm2 presents some important features for EDXRF imaging applications, such as a position resolution below 125 μm, an intrinsic energy resolution of about 14% full width at half maximum for 5.9 keV X-rays, and a counting rate capability of 0.5 MHz. In this work, analysis of human teeth treated by dental amalgam was performed by using the EDXRF imaging system mentioned above. The goal of the analysis is to evaluate the system capabilities in the biomedical field by measuring the drift of the major constituents of a dental amalgam, Zn and Hg, throughout the tooth structures. The elemental distribution pattern of these elements obtained during the analysis suggests diffusion of these elements from the amalgam to teeth tissues.
The GSFC NASTRAN thermal analyzer new capabilities
NASA Technical Reports Server (NTRS)
Lee, H. P.; Harder, R. L.
1976-01-01
An overview of four analysis capabilities, which developed and integrated into the NASTRAN Thermal Analyzer, is given. To broaden the scope of applications, these additions provide the NTA users with the following capabilities: (1) simulating a thermal louver as a means of the passive thermal control, (2) simulating a fluid loop for transporting energy as a means of the active thermal control, (3) condensing a large sized finite element model for an efficient transient thermal analysis, and (4) entering multiple boundary condition sets in a single submission for execution in steady state thermal analyses.
Demonstration Advanced Avionics System (DAAS)
NASA Technical Reports Server (NTRS)
1982-01-01
The feasibility of developing an integrated avionics system suitable for general aviation was determined. A design of reliable integrated avionics which provides expanded functional capability that significantly enhances the utility and safety of general aviation at a cost commensurate with the general aviation market was developed. The use of a data bus, microprocessors, electronic displays and data entry devices, and improved function capabilities were emphasized. An avionics system capable of evaluating the most critical and promising elements of an integrated system was designed, built and flight tested in a twin engine general aviation aircraft.
Verification of Advective Bar Elements Implemented in the Aria Thermal Response Code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Brantley
2016-01-01
A verification effort was undertaken to evaluate the implementation of the new advective bar capability in the Aria thermal response code. Several approaches to the verification process were taken : a mesh refinement study to demonstrate solution convergence in the fluid and the solid, visually examining the mapping of the advective bar element nodes to the surrounding surfaces, and a comparison of solutions produced using the advective bars for simple geometries with solutions from commercial CFD software . The mesh refinement study has shown solution convergence for simple pipe flow in both temperature and velocity . Guidelines were provided tomore » achieve appropriate meshes between the advective bar elements and the surrounding volume. Simulations of pipe flow using advective bars elements in Aria have been compared to simulations using the commercial CFD software ANSYS Fluent (r) and provided comparable solutions in temperature and velocity supporting proper implementation of the new capability. Verification of Advective Bar Elements iv Acknowledgements A special thanks goes to Dean Dobranich for his guidance and expertise through all stages of this effort . His advice and feedback was instrumental to its completion. Thanks also goes to Sam Subia and Tolu Okusanya for helping to plan many of the verification activities performed in this document. Thank you to Sam, Justin Lamb and Victor Brunini for their assistance in resolving issues encountered with running the advective bar element model. Finally, thanks goes to Dean, Sam, and Adam Hetzler for reviewing the document and providing very valuable comments.« less
Torak, L.J.
1993-01-01
A MODular, Finite-Element digital-computer program (MODFE) was developed to simulate steady or unsteady-state, two-dimensional or axisymmetric ground-water flow. Geometric- and hydrologic-aquifer characteristics in two spatial dimensions are represented by triangular finite elements and linear basis functions; one-dimensional finite elements and linear basis functions represent time. Finite-element matrix equations are solved by the direct symmetric-Doolittle method or the iterative modified, incomplete-Cholesky, conjugate-gradient method. Physical processes that can be represented by the model include (1) confined flow, unconfined flow (using the Dupuit approximation), or a combination of both; (2) leakage through either rigid or elastic confining beds; (3) specified recharge or discharge at points, along lines, and over areas; (4) flow across specified-flow, specified-head, or bead-dependent boundaries; (5) decrease of aquifer thickness to zero under extreme water-table decline and increase of aquifer thickness from zero as the water table rises; and (6) head-dependent fluxes from springs, drainage wells, leakage across riverbeds or confining beds combined with aquifer dewatering, and evapotranspiration. The report describes procedures for applying MODFE to ground-water-flow problems, simulation capabilities, and data preparation. Guidelines for designing the finite-element mesh and for node numbering and determining band widths are given. Tables are given that reference simulation capabilities to specific versions of MODFE. Examples of data input and model output for different versions of MODFE are provided.
Torak, Lynn J.
1992-01-01
A MODular, Finite-Element digital-computer program (MODFE) was developed to simulate steady or unsteady-state, two-dimensional or axisymmetric ground-water flow. Geometric- and hydrologic-aquifer characteristics in two spatial dimensions are represented by triangular finite elements and linear basis functions; one-dimensional finite elements and linear basis functions represent time. Finite-element matrix equations are solved by the direct symmetric-Doolittle method or the iterative modified, incomplete-Cholesky, conjugate-gradient method. Physical processes that can be represented by the model include (1) confined flow, unconfined flow (using the Dupuit approximation), or a combination of both; (2) leakage through either rigid or elastic confining beds; (3) specified recharge or discharge at points, along lines, and over areas; (4) flow across specified-flow, specified-head, or head-dependent boundaries; (5) decrease of aquifer thickness to zero under extreme water-table decline and increase of aquifer thickness from zero as the water table rises; and (6) head-dependent fluxes from springs, drainage wells, leakage across riverbeds or confining beds combined with aquifer dewatering, and evapotranspiration.The report describes procedures for applying MODFE to ground-water-flow problems, simulation capabilities, and data preparation. Guidelines for designing the finite-element mesh and for node numbering and determining band widths are given. Tables are given that reference simulation capabilities to specific versions of MODFE. Examples of data input and model output for different versions of MODFE are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunet, M.; Sabourin, F.
2005-08-05
This paper is concerned with the effectiveness of triangular 3-node shell element without rotational d.o.f. and the extension to a new 4-node quadrilateral shell element called S4 with only 3 translational degrees of freedom per node and one-point integration. The curvatures are computed resorting to the surrounding elements. Extension from rotation-free triangular element to a quadrilateral element requires internal curvatures in order to avoid singular bending stiffness. Two numerical examples with regular and irregular meshes are performed to show the convergence and accuracy. Deep-drawing of a box, spring-back analysis of a U-shape strip sheet and the crash simulation of amore » beam-box complete the demonstration of the bending capabilities of the proposed rotation-free triangular and quadrilateral elements.« less
Neutronic fuel element fabrication
Korton, George
2004-02-24
This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure by encompassing the sides of the fuel element between the header plates.
Self-reported Preparedness to Respond to Mass Fatality Incidents in 38 State Health Departments.
Merrill, Jacqueline; Zhi, Qi; Gershon, Robyn R
Public health departments play an important role in the preparation and response to mass fatality incidents (MFIs). To describe MFI response capabilities of US state health departments. The data are part of a multisector cross-sectional study aimed at 5 sectors that comprise the US mass fatality infrastructure. Data were collected over a 6-week period via a self-administered, anonymous Web-based survey. In 2014, a link to the survey was distributed via e-mail to health departments in 50 states and the District of Columbia. State health department representatives responsible for their state's MFI plans. Preparedness was assessed using 3 newly developed metrics: organizational capabilities (n = 19 items); operational capabilities (n = 19 items); and resource-sharing capabilities (n = 13 items). Response rate was 75% (n = 38). Among 38 responses, 37 rated their workplace moderately or well prepared; 45% reported MFI training, but only 30% reported training on MFI with hazardous contaminants; 58% estimated high levels of staff willingness to respond, but that dropped to 40% if MFIs involved hazardous contaminants; and 84% reported a need for more training. On average, 76% of operational capabilities were present. Resource sharing was most prevalent with state Office of Emergency Management but less evident with faith-based organizations and agencies within the medical examiner sector. Overall response capability was adequate, with gaps found in capabilities where public health shares responsibility with other sectors. Collaborative training with other sectors is critical to ensure optimal response to future MFIs, but recent funding cuts in public health preparedness may adversely impact this critical preparedness element. In order for the sector to effectively meet its public health MFI responsibilities as delineated in the National Response Framework, resources to support training and other elements of preparedness must be maintained.
NASA Astrophysics Data System (ADS)
Gorzynski, Mark; Derocher, Mike; Mitchell, April Slayden
Research underway at Hewlett-Packard on remote communication resulted in the identification of three important components typically missing in existing systems. These missing components are: group nonverbal communication capabilities, high-resolution interactive data capabilities, and global services. Here we discuss some of the design elements in these three areas as part of the Halo program at HP, a remote communication system shown to be effective to end-users.
Developing Soft Power Using Afloat Medical Capability
2009-03-02
the National Security Strategy. Depending on its program employment , it has the capability to effectively combine the other elements of national power...Strategy through the employment of combatant commanders’ Theater Security Cooperation (TSC) Program in their area of responsibility. The TSC program is...In the final phases of Pacific campaign during World War II, tactical doctrine for employment of Navy hospital vessels changed, allowing them to
Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Huang, H.; Hartle, M.
1992-01-01
Accomplishments are described for the fourth years effort of a 5-year program to develop a methodology for coupled structural/thermal/electromagnetic analysis/tailoring of graded component structures. These accomplishments include: (1) demonstration of coupled solution capability; (2) alternate CSTEM electromagnetic technology; (3) CSTEM acoustic capability; (4) CSTEM tailoring; (5) CSTEM composite micromechanics using ICAN; and (6) multiple layer elements in CSTEM.
Fallacies Leading to the Marginalization of Future CBRN Capabilities
2013-05-23
Leading to the Marginalization of Future CBRN Capabilities 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Tammy R...word monograph. At the time, this hurdle appeared daunting for this fearful soul . Through the support, guidance and faith of certain individuals the... Sampling and Identification of Biological, Chemical, and Radiological Agents SSE Sensitive Site Exploitation STANAG Standardization Agreement SUPCOM
Forced vibration analysis of rotating cyclic structures in NASTRAN
NASA Technical Reports Server (NTRS)
Elchuri, V.; Gallo, A. M.; Skalski, S. C.
1981-01-01
A new capability was added to the general purpose finite element program NASTRAN Level 17.7 to conduct forced vibration analysis of tuned cyclic structures rotating about their axis of symmetry. The effects of Coriolis and centripetal accelerations together with those due to linear acceleration of the axis of rotation were included. The theoretical, user's, programmer's and demonstration manuals for this new capability are presented.
TREE Simulation Facilities, Second Edition, Revision 2
1979-01-01
included radiation effects on propellants , ordnance, electronics and chemicals, vehicle shielding, neutron radiography , dosimetry, and health physics...Special Capabilities 2.11.10.1 Radiography Facility 2.11.10.2 Flexo-Rabbit System Support Capabilities 2.11.11.1 Staff 2.11.11.2 Electronics...5,400-MW pulsing operation (experimental dosimetry values for a typical core loading of 94 fuel elements). 2-156 2-46 ACPR radiography facility
Integrated System Health Management (ISHM) for Test Stand and J-2X Engine: Core Implementation
NASA Technical Reports Server (NTRS)
Figueroa, Jorge F.; Schmalzel, John L.; Aguilar, Robert; Shwabacher, Mark; Morris, Jon
2008-01-01
ISHM capability enables a system to detect anomalies, determine causes and effects, predict future anomalies, and provides an integrated awareness of the health of the system to users (operators, customers, management, etc.). NASA Stennis Space Center, NASA Ames Research Center, and Pratt & Whitney Rocketdyne have implemented a core ISHM capability that encompasses the A1 Test Stand and the J-2X Engine. The implementation incorporates all aspects of ISHM; from anomaly detection (e.g. leaks) to root-cause-analysis based on failure mode and effects analysis (FMEA), to a user interface for an integrated visualization of the health of the system (Test Stand and Engine). The implementation provides a low functional capability level (FCL) in that it is populated with few algorithms and approaches for anomaly detection, and root-cause trees from a limited FMEA effort. However, it is a demonstration of a credible ISHM capability, and it is inherently designed for continuous and systematic augmentation of the capability. The ISHM capability is grounded on an integrating software environment used to create an ISHM model of the system. The ISHM model follows an object-oriented approach: includes all elements of the system (from schematics) and provides for compartmentalized storage of information associated with each element. For instance, a sensor object contains a transducer electronic data sheet (TEDS) with information that might be used by algorithms and approaches for anomaly detection, diagnostics, etc. Similarly, a component, such as a tank, contains a Component Electronic Data Sheet (CEDS). Each element also includes a Health Electronic Data Sheet (HEDS) that contains health-related information such as anomalies and health state. Some practical aspects of the implementation include: (1) near real-time data flow from the test stand data acquisition system through the ISHM model, for near real-time detection of anomalies and diagnostics, (2) insertion of the J-2X predictive model providing predicted sensor values for comparison with measured values and use in anomaly detection and diagnostics, and (3) insertion of third-party anomaly detection algorithms into the integrated ISHM model.
Strategies for the return of science data from in situ vehicles at Titan
NASA Astrophysics Data System (ADS)
Spilker, T. R.; Reh, K. R.; Erd, C.; Elliott, J. O.; Mohr, D.; Strange, N. J.
2009-04-01
Collaborative studies of the Titan Saturn System Mission (TSSM) in 2008 by ESA and NASA have included examination of strategies for optimizing the science return from that mission concept's proposed in situ elements. The current baselined mission concept calls for an orbiter provided and launched by NASA that would deliver to Titan and support two ESA-provided in situ elements, a lake lander whose science mission duration would be about nine hours, and a montgolfière (hot-air balloon) that would operate at ~10 km altitude in Titan's lower atmosphere for 6-12 months. This architecture has much in common with the highly successful Cassini-Huygens mission. The short-lived lake lander in particular would have a mission profile very similar to that of the Huygens probe, with all science data communications occurring while the NASA orbiter is relatively near Titan. Practical mission profile options for the montgolfière include extended periods when the NASA orbiter is farther from Titan, reducing data rates. Over long periods of time the montgolfière cannot be considered fixed over one location on Titan's surface, and in fact is expected to circumnavigate Titan in less than six months. Thus the schedule of communications windows between the in situ elements and the orbiter cannot be precisely determined far in advance, varying as the balloon literally "rides the wind". Other issues played critical roles in evaluating the many options available early in the studies. Some options for the timing of delivery of the in situ elements yielded more mass capability available for those elements, but their reduced data return due to orbit geometry outweighs the added mass capability. Another delivery option, delivery from Titan orbit, yields reduced delivery mass capability but was thought (before studies) to offer better data relay capability. Studies revealed that this strategy actually decreases the return from the lake lander as compared to options delivering the in situ elements from hyperbolic flybys. This presentation will describe options examined in the TSSM communications strategy studies. Particular attention is given to that chosen for the baseline strategy, with potential returned data volumes that provide generous margins over anticipated data requirements. Many of the results are not unique to Titan alone, but are applicable to in situ missions at any satellite of a giant planet. These collaborative studies were funded by, and performed under the cognizance of, NASA and ESA.
Kronberg, James W.
1992-01-01
A sequential power-up circuit for starting several electrical load elements in series to avoid excessive current surge, comprising a voltage ramp generator and a set of voltage comparators, each comparator having a different reference voltage and interfacing with a switch that is capable of turning on one of the load elements. As the voltage rises, it passes the reference voltages one at a time and causes the switch corresponding to that voltage to turn on its load element. The ramp is turned on and off by a single switch or by a logic-level electrical signal. The ramp rate for turning on the load element is relatively slow and the rate for turning the elements off is relatively fast. Optionally, the duration of each interval of time between the turning on of the load elements is programmable.
An Enriched Shell Finite Element for Progressive Damage Simulation in Composite Laminates
NASA Technical Reports Server (NTRS)
McElroy, Mark W.
2016-01-01
A formulation is presented for an enriched shell nite element capable of progressive damage simulation in composite laminates. The element uses a discrete adaptive splitting approach for damage representation that allows for a straightforward model creation procedure based on an initially low delity mesh. The enriched element is veri ed for Mode I, Mode II, and mixed Mode I/II delamination simulation using numerical benchmark data. Experimental validation is performed using test data from a delamination-migration experiment. Good correlation was found between the enriched shell element model results and the numerical and experimental data sets. The work presented in this paper is meant to serve as a rst milestone in the enriched element's development with an ultimate goal of simulating three-dimensional progressive damage processes in multidirectional laminates.
Stacked white OLED having separate red, green and blue sub-elements
Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael
2014-07-01
The present invention relates to efficient organic light emitting devices (OLEDs). The devices employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. Thus, the devices may be white-emitting OLEDs, or WOLEDs. Each sub-element comprises at least one organic layer which is an emissive layer--i.e., the layer is capable of emitting light when a voltage is applied across the stacked device. The sub-elements are vertically stacked and are separated by charge generating layers. The charge-generating layers are layers that inject charge carriers into the adjacent layer(s) but do not have a direct external connection.
Trace element analysis of coal by neutron activation.
NASA Technical Reports Server (NTRS)
Sheibley, D. W.
1973-01-01
The irradiation, counting, and data reduction scheme is described for an analysis capability of 1000 samples per year. Up to 56 elements are reported on each sample. The precision and accuracy of the method are shown for 25 elements designated as hazardous by the Environmental Protection Agency (EPA). The interference corrections for selenium and ytterbium on mercury and ytterbium on selenium are described. The effect of bromine and antimony on the determination of arsenic is also mentioned. The use of factorial design techniques to evaluate interferences in the determination of mercury, selenium, and arsenic is shown. Some typical trace element results for coal, fly ash, and bottom ash are given.
Trace element analysis of coal by neutron activation
NASA Technical Reports Server (NTRS)
Sheibley, D. W.
1973-01-01
The irradiation, counting, and data reduction scheme is described for an analysis capability of 1000 samples per year. Up to 56 elements are reported on each sample. The precision and accuracy of the method are shown for 25 elements designated as hazardous by the Environmental Protection Agency (EPA). The interference corrections for selenium and ytterbium on mercury and ytterbium on selenium are described. The effect of bromine and antimony on the determination of arsenic is also mentioned. The use of factorial design techniques to evaluate interferences in the determination of mercury, selenium, and arsenic is shown. Some typical trace element results for coal, fly ash, and bottom ash are given.
Computer animation of modal and transient vibrations
NASA Technical Reports Server (NTRS)
Lipman, Robert R.
1987-01-01
An interactive computer graphics processor is described that is capable of generating input to animate modal and transient vibrations of finite element models on an interactive graphics system. The results from NASTRAN can be postprocessed such that a three dimensional wire-frame picture, in perspective, of the finite element mesh is drawn on the graphics display. Modal vibrations of any mode shape or transient motions over any range of steps can be animated. The finite element mesh can be color-coded by any component of displacement. Viewing parameters and the rate of vibration of the finite element model can be interactively updated while the structure is vibrating.
Flexible Framework for Capacitive Sensing
NASA Technical Reports Server (NTRS)
Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)
2006-01-01
A flexible framework supports electrically-conductive elements in a capacitive sensing arrangement. Identical frames are arranged end-to-end with adjacent frames being capable of rotational movement there between. Each frame has first and second passages extending therethrough and parallel to one another. Each of the first and second passages is adapted to receive an electrically-conductive element therethrough. Each frame further has a hollowed-out portion for the passage of a fluent material therethrough. The hollowed-out portion is sized and shaped to provide for capacitive sensing along a defined region between the electrically-conductive element in the first passage and the electrically-conductive element in the second passage.
Mixed-Mode Decohesion Elements for Analyses of Progressive Delamination
NASA Technical Reports Server (NTRS)
Davila, Carlos G.; Camanho, Pedro P.; deMoura, Marcelo F.
2001-01-01
A new 8-node decohesion element with mixed mode capability is proposed and demonstrated. The element is used at the interface between solid finite elements to model the initiation and propagation of delamination. A single displacement-based damage parameter is used in a strain softening law to track the damage state of the interface. The method can be used in conjunction with conventional material degradation procedures to account for inplane and intra-laminar damage modes. The accuracy of the predictions is evaluated in single mode delamination tests, in the mixed-mode bending test, and in a structural configuration consisting of the debonding of a stiffener flange from its skin.
Coupled NASTRAN/boundary element formulation for acoustic scattering
NASA Technical Reports Server (NTRS)
Everstine, Gordon C.; Henderson, Francis M.; Schuetz, Luise S.
1987-01-01
A coupled finite element/boundary element capability is described for calculating the sound pressure field scattered by an arbitrary submerged 3-D elastic structure. Structural and fluid impedances are calculated with no approximation other than discretization. The surface fluid pressures and normal velocities are first calculated by coupling a NASTRAN finite element model of the structure with a discretized form of the Helmholtz surface integral equation for the exterior field. Far field pressures are then evaluated from the surface solution using the Helmholtz exterior integral equation. The overall approach is illustrated and validated using a known analytic solution for scattering from submerged spherical shells.
Platzner, Thomas I.; Segal, Irina
2007-01-01
The unique capabilities of multiple collector inductively coupled mass spectrometry (MC-ICP-MS) for high precision isotope ratio measurements in light elements as Li, Mg, Ca, and Cu are reviewed in this paper. These elements have been intensively studied at the Geological Survey of Israel (GSI) and other laboratories over the past few years, and the methods used to obtain high precision isotope analyses are discussed in detail. The scientific study of isotopic fractionation of these elements is significant for achieving a better understanding of geochemical and biochemical processes in nature and the environment. PMID:17962922
Initial Investigation of Operational Concept Elements for NASA's NextGen-Airportal Project Research
NASA Technical Reports Server (NTRS)
Lohr, Gary; Lee, Jonathan; Poage, James L.; Tobias, Leonard
2009-01-01
The NextGen-Airportal Project is organized into three research focus areas: Safe and Efficient Surface Operations, Coordinated Arrival/Departure Operations Management, and Airportal Transition and Integration Management. The content in this document was derived from an examination of constraints and problems at airports for accommodating future increases in air traffic, and from an examination of capabilities envisioned for NextGen. The concepts are organized around categories of constraints and problems and therefore do not precisely match, but generally reflect, the research focus areas. The concepts provide a framework for defining and coordinating research activities that are, and will be, conducted by the NextGen-Airportal Project. The concepts will help the research activities function as an integrated set focused on future needs for airport operations and will aid aligning the research activities with NextGen key capabilities. The concepts are presented as concept elements with more detailed sub-elements under each concept element. For each concept element, the following topics are discussed: constraints and problems being addressed, benefit descriptions, required technology and infrastructure, and an initial list of potential research topics. Concept content will be updated and more detail added as the research progresses. The concepts are focused on enhancing airportal capacity and efficiency in a timeframe 20 to 25 years in the future, which is similar to NextGen's timeframe.
DESIGN AND EVALUATION OF INDIVIDUAL ELEMENTS OF THE INTERFACE FOR AN AGRICULTURAL MACHINE.
Rakhra, Aadesh K; Mann, Danny D
2018-01-29
If a user-centered approach is not used to design information displays, the quantity and quality of information presented to the user may not match the needs of the user, or it may exceed the capability of the human operator for processing and using that information. The result may be an excessive mental workload and reduced situation awareness of the operator, which can negatively affect the machine performance and operational outcomes. The increasing use of technology in agricultural machines may expose the human operator to excessive and undesirable information if the operator's information needs and information processing capabilities are ignored. In this study, a user-centered approach was used to design specific interface elements for an agricultural air seeder. Designs of the interface elements were evaluated in a laboratory environment by developing high-fidelity prototypes. Evaluations of the user interface elements yielded significant improvement in situation awareness (up to 11%; overall mean difference = 5.0 (4.8%), 95% CI (6.4728, 3.5939), p 0.0001). Mental workload was reduced by up to 19.7% (overall mean difference = -5.2 (-7.9%), n = 30, a = 0.05). Study participants rated the overall performance of the newly designed user-centered interface elements higher in comparison to the previous designs (overall mean difference = 27.3 (189.8%), 99% CI (35.150, 19.384), p 0.0001. Copyright© by the American Society of Agricultural Engineers.
Muñoz-Marín, María del Carmen; Luque, Ignacio; Zubkov, Mikhail V.; Hill, Polly G.; Diez, Jesús; García-Fernández, José Manuel
2013-01-01
Prochlorococcus is responsible for a significant part of CO2 fixation in the ocean. Although it was long considered an autotrophic cyanobacterium, the uptake of organic compounds has been reported, assuming they were sources of limited biogenic elements. We have shown in laboratory experiments that Prochlorococcus can take up glucose. However, the mechanisms of glucose uptake and its occurrence in the ocean have not been shown. Here, we report that the gene Pro1404 confers capability for glucose uptake in Prochlorococcus marinus SS120. We used a cyanobacterium unable to take up glucose to engineer strains that express the Pro1404 gene. These recombinant strains were capable of specific glucose uptake over a wide range of glucose concentrations, showing multiphasic transport kinetics. The Ks constant of the high affinity phase was in the nanomolar range, consistent with the average concentration of glucose in the ocean. Furthermore, we were able to observe glucose uptake by Prochlorococcus in the central Atlantic Ocean, where glucose concentrations were 0.5–2.7 nM. Our results suggest that Prochlorococcus are primary producers capable of tuning their metabolism to energetically benefit from environmental conditions, taking up not only organic compounds with key limiting elements in the ocean, but also molecules devoid of such elements, like glucose. PMID:23569224
NASA Technical Reports Server (NTRS)
Drake, Bret G.
2013-01-01
NASA uses a set of Design Reference Missions (DRMs) to help focus capability development activities across the agency The DRMs are intended to show capability needs and represent a set of various implementations The "mission class" context is used to establish temporal priorities and a LIMITED set of DRMs is used to capture driving mission capabilities The DRMs represent a snapshot in time of current thinking, and do not represent all potential future missions The DRMs are generic in nature, with stated assumptions for some supporting capabilities and elements - they do not represent firm requirements SLS/Orion DRMs are being developed and refined as part of the development program for SLS & Orion and are not included in this package.
NASA's Space Launch System: Systems Engineering Approach for Affordability and Mission Success
NASA Technical Reports Server (NTRS)
Hutt, John J.; Whitehead, Josh; Hanson, John
2017-01-01
NASA is working toward the first launch of the Space Launch System, a new, unmatched capability for deep space exploration with launch readiness planned for 2019. Since program start in 2011, SLS has passed several major formal design milestones, and every major element of the vehicle has produced test and flight hardware. The SLS approach to systems engineering has been key to the program's success. Key aspects of the SLS SE&I approach include: 1) minimizing the number of requirements, 2) elimination of explicit verification requirements, 3) use of certified models of subsystem capability in lieu of requirements when appropriate and 4) certification of capability beyond minimum required capability.
Grid sensitivity capability for large scale structures
NASA Technical Reports Server (NTRS)
Nagendra, Gopal K.; Wallerstein, David V.
1989-01-01
The considerations and the resultant approach used to implement design sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN) are presented. The design variables are grid perturbations with a rather general linking capability. Moreover, shape and sizing variables may be linked together. The design is general enough to facilitate geometric modeling techniques for generating design variable linking schemes in an easy and straightforward manner. Test cases have been run and validated by comparison with the overall finite difference method. The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer would give designers a powerful, automated tool to carry out practical optimization design of real life, complicated structures.
Data systems elements technology assessment and system specifications, issue no. 2. [nasa programs
NASA Technical Reports Server (NTRS)
1978-01-01
The ability to satisfy the objectives of future NASA Office of Applications programs is dependent on technology advances in a number of areas of data systems. The hardware and software technology of end-to-end systems (data processing elements through ground processing, dissemination, and presentation) are examined in terms of state of the art, trends, and projected developments in the 1980 to 1985 timeframe. Capability is considered in terms of elements that are either commercially available or that can be implemented from commercially available components with minimal development.
NASTRAN thermal analyzer: A general purpose finite element heat transfer computer program
NASA Technical Reports Server (NTRS)
Lee, H.; Mason, J. B.
1972-01-01
The program not only can render temperature distributions in solids subjected to various thermal boundary conditions, including effects of diffuse-gray thermal radiation, but is fully compatible in capacity and in the finite-element model representation with that of its structural counterpart in the NASTRAN system. The development history of the finite-element approach for determining temperatures is summarized. The scope of analysis capability, program structure, features, and limitations are given with the objective of providing NASTRAN users with an overall veiw of the NASTRAN thermal analyzer.
Conversion of the trace elements Zn, Cd, and Pb in the combustion of near-Moscow coals
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.V. Samuilov; L.N. Lebedeva; L.S. Pokrovskaya
A model for the conversion of trace elements in the combustion of near-Moscow coals based on a complex approach combining the capabilities of geochemistry, chemical thermodynamics, phase analysis, and chemical kinetics is proposed. The conversion of the trace elements Zn, Cd, and Pb as the constituents of near-Moscow coal in the flow of coal combustion products along the line of the P-59 boiler at the Ryazanskaya Thermal Power Plant was calculated. Experimental data were used in the development of the model and in calculations.
Scientific Merit Review of Directed Research Tasks Within the NASA Human Research Program
NASA Technical Reports Server (NTRS)
Charles, John B.
2010-01-01
The Human Research Program is instrumental in developing and delivering research findings, health countermeasures, and human systems technologies for spacecraft. :HRP is subdivided into 6 research entities, or Elements. Each Element is charged with providing the Program with knowledge and capabilities to conduct research to address the human health and performance risks as well as advance the readiness levels of technology and countermeasures. Project: An Element may be further subdivided into Projects, which are defined as an integrated set of tasks undertaken to deliver a product or set of products
OVERMODED HIGH-POWER RF MAGNETIC SWITCHES AND CIRCULATORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tantawi, Sami
2002-08-20
We present design methodology for active rf magnetic components which are suitable for pulse compression systems of future X-band linear colliders. These components comprise an array of active elements arranged together so that the total electromagnetic field is reduced and the power handling capabilities are increased. The active element of choice is a magnetic material (garnet), which can be switched by changing a biasing magnetic field. A novel design allows these components to operate in the low loss circular waveguide mode TE{sub 01}. We describe the design methodology, the switching elements and circuits.
Data systems elements technology assessment and system specifications, issue no. 1
NASA Technical Reports Server (NTRS)
1977-01-01
The ability to satisfy the objectives of future NASA Office of Applications Programs is dependent on technology advances in a number of areas of data systems. The technology of end-to-end data systems (space generator elements through ground processing, dissemination, and presentation, is examined in terms of state of the art, trends, and projected developments in the 1980 to 1985 timeframe. Capability is considered in terms of elements that are either commercially available or that can be implemented from commercially available components with minimal development.
Selfish genetic elements favor the evolution of a distinction between soma and germline.
Johnson, Louise J
2008-08-01
Many multicellular organisms have evolved a dedicated germline. This can benefit the whole organism, but its advantages to genetic parasites have not been explored. Here I model the evolutionary success of a selfish element, such as a transposable element or endosymbiont, which is capable of creating or strengthening a germline-soma distinction in a primitively multicellular host, and find that it will always benefit the element to do so. Genes causing germline sequestration can therefore spread in a population even if germline sequestration is maladaptive for the host organism. Costly selfish elements are expected to survive only in sexual populations, so sexual species may experience an additional push toward germline-soma distinction, and hence toward cell differentiation and multicellularity.
Scalable Implementation of Finite Elements by NASA _ Implicit (ScIFEi)
NASA Technical Reports Server (NTRS)
Warner, James E.; Bomarito, Geoffrey F.; Heber, Gerd; Hochhalter, Jacob D.
2016-01-01
Scalable Implementation of Finite Elements by NASA (ScIFEN) is a parallel finite element analysis code written in C++. ScIFEN is designed to provide scalable solutions to computational mechanics problems. It supports a variety of finite element types, nonlinear material models, and boundary conditions. This report provides an overview of ScIFEi (\\Sci-Fi"), the implicit solid mechanics driver within ScIFEN. A description of ScIFEi's capabilities is provided, including an overview of the tools and features that accompany the software as well as a description of the input and output le formats. Results from several problems are included, demonstrating the efficiency and scalability of ScIFEi by comparing to finite element analysis using a commercial code.
NASA Technical Reports Server (NTRS)
Kim, E.; Tedesco, M.; Reichle, R.; Choudhury, B.; Peters-Lidard C.; Foster, J.; Hall, D.; Riggs, G.
2006-01-01
Microwave-based retrievals of snow parameters from satellite observations have a long heritage and have so far been generated primarily by regression-based empirical "inversion" methods based on snapshots in time. Direct assimilation of microwave radiance into physical land surface models can be used to avoid errors associated with such retrieval/inversion methods, instead utilizing more straightforward forward models and temporal information. This approach has been used for years for atmospheric parameters by the operational weather forecasting community with great success. Recent developments in forward radiative transfer modeling, physical land surface modeling, and land data assimilation are converging to allow the assembly of an integrated framework for snow/cold lands modeling and radiance assimilation. The objective of the Goddard snow radiance assimilation project is to develop such a framework and explore its capabilities. The key elements of this framework include: a forward radiative transfer model (FRTM) for snow, a snowpack physical model, a land surface water/energy cycle model, and a data assimilation scheme. In fact, multiple models are available for each element enabling optimization to match the needs of a particular study. Together these form a modular and flexible framework for self-consistent, physically-based remote sensing and water/energy cycle studies. In this paper we will describe the elements and the integration plan. All modules will operate within the framework of the Land Information System (LIS), a land surface modeling framework with data assimilation capabilities running on a parallel-node computing cluster. Capabilities for assimilation of snow retrieval products are already under development for LIS. We will describe plans to add radiance-based assimilation capabilities. Plans for validation activities using field measurements will also be discussed.
Sheykhotayefeh, Mostafa; Safdari, Reza; Ghazisaeedi, Marjan; Khademi, Seyed Hossein; Seyed Farajolah, Seyedeh Sedigheh; Maserat, Elham; Jebraeily, Mohamad; Torabi, Vahid
2017-01-01
Background Caesarean section, also known as C-section, is a very common procedure in the world. Minimum data set (MDS) is defined as a set of data elements holding information regarding a series of target entities to provide a basis for planning, management, and performance evaluation. MDS has found a great use in health care information systems. Also, it can be considered as a basis for medical information management and has shown a great potential for contributing to the provision of high quality care and disease control measures. Objectives The principal aim of this research was to determine MDS and required capabilities for Anesthesia information management system (AIMS) in C-section in Iran. Methods Data items collected from several selected AIMS were studied to establish an initial set of data. The population of this study composed of 115 anesthesiologists was asked to review the proposed data elements and score them in order of importance by using a five-point Likert scale. The items scored as important or highly important by at least 75% of the experts were included in the final list of minimum data set. Results Overall 8 classes of data (consisted of 81 key data elements) were determined as final set. Also, the most important required capabilities were related to airway management and hypertension and hypotension management. Conclusions In the development of information system (IS) based on MDS and identification, because of the broad involvement of users, IS capabilities must focus on the users’ needs to form a successful system. Therefore, it is essential to assess MDS watchfully by considering the planned uses of data. Also, IS should have essential capabilities to meet the needs of its users. PMID:28824861
Sheykhotayefeh, Mostafa; Safdari, Reza; Ghazisaeedi, Marjan; Khademi, Seyed Hossein; Seyed Farajolah, Seyedeh Sedigheh; Maserat, Elham; Jebraeily, Mohamad; Torabi, Vahid
2017-04-01
Caesarean section, also known as C-section, is a very common procedure in the world. Minimum data set (MDS) is defined as a set of data elements holding information regarding a series of target entities to provide a basis for planning, management, and performance evaluation. MDS has found a great use in health care information systems. Also, it can be considered as a basis for medical information management and has shown a great potential for contributing to the provision of high quality care and disease control measures. The principal aim of this research was to determine MDS and required capabilities for Anesthesia information management system (AIMS) in C-section in Iran. Data items collected from several selected AIMS were studied to establish an initial set of data. The population of this study composed of 115 anesthesiologists was asked to review the proposed data elements and score them in order of importance by using a five-point Likert scale. The items scored as important or highly important by at least 75% of the experts were included in the final list of minimum data set. Overall 8 classes of data (consisted of 81 key data elements) were determined as final set. Also, the most important required capabilities were related to airway management and hypertension and hypotension management. In the development of information system (IS) based on MDS and identification, because of the broad involvement of users, IS capabilities must focus on the users' needs to form a successful system. Therefore, it is essential to assess MDS watchfully by considering the planned uses of data. Also, IS should have essential capabilities to meet the needs of its users.
Capturing the Energy Absorbing Mechanisms of Composite Structures under Crash Loading
NASA Astrophysics Data System (ADS)
Wade, Bonnie
As fiber reinforced composite material systems become increasingly utilized in primary aircraft and automotive structures, the need to understand their contribution to the crashworthiness of the structure is of great interest to meet safety certification requirements. The energy absorbing behavior of a composite structure, however, is not easily predicted due to the great complexity of the failure mechanisms that occur within the material. Challenges arise both in the experimental characterization and in the numerical modeling of the material/structure combination. At present, there is no standardized test method to characterize the energy absorbing capability of composite materials to aide crashworthy structural design. In addition, although many commercial finite element analysis codes exist and offer a means to simulate composite failure initiation and propagation, these models are still under development and refinement. As more metallic structures are replaced by composite structures, the need for both experimental guidelines to characterize the energy absorbing capability of a composite structure, as well as guidelines for using numerical tools to simulate composite materials in crash conditions has become a critical matter. This body of research addresses both the experimental characterization of the energy absorption mechanisms occurring in composite materials during crushing, as well as the numerical simulation of composite materials undergoing crushing. In the experimental investigation, the specific energy absorption (SEA) of a composite material system is measured using a variety of test element geometries, such as corrugated plates and tubes. Results from several crush experiments reveal that SEA is not a constant material property for laminated composites, and varies significantly with the geometry of the test specimen used. The variation of SEA measured for a single material system requires that crush test data must be generated for a range of different test geometries in order to define the range of its energy absorption capability. Further investigation from the crush tests has led to the development of a direct link between geometric features of the crush specimen and its resulting SEA. Through micrographic analysis, distinct failure modes are shown to be guided by the geometry of the specimen, and subsequently are shown to directly influence energy absorption. A new relationship between geometry, failure mode, and SEA has been developed. This relationship has allowed for the reduction of the element-level crush testing requirement to characterize the composite material energy absorption capability. In the numerical investigation, the LS-DYNA composite material model MAT54 is selected for its suitability to model composite materials beyond failure determination, as required by crush simulation, and its capability to remain within the scope of ultimately using this model for large-scale crash simulation. As a result of this research, this model has been thoroughly investigated in depth for its capacity to simulate composite materials in crush, and results from several simulations of the element-level crush experiments are presented. A modeling strategy has been developed to use MAT54 for crush simulation which involves using the experimental data collected from the coupon- and element-level crush tests to directly calibrate the crush damage parameter in MAT54 such that it may be used in higher-level simulations. In addition, the source code of the material model is modified to improve upon its capability. The modifications include improving the elastic definition such that the elastic response to multi-axial load cases can be accurately portrayed simultaneously in each element, which is a capability not present in other composite material models. Modifications made to the failure determination and post-failure model have newly emphasized the post-failure stress degradation scheme rather than the failure criterion which is traditionally considered the most important composite material model definition for crush simulation. The modification efforts have also validated the use of the MAT54 failure criterion and post-failure model for crash modeling when its capabilities and limitations are well understood, and for this reason guidelines for using MAT54 for composite crush simulation are presented. This research has effectively (a) developed and demonstrated a procedure that defines a set of experimental crush results that characterize the energy absorption capability of a composite material system, (b) used the experimental results in the development and refinement of a composite material model for crush simulation, (c) explored modifying the material model to improve its use in crush modeling, and (d) provided experimental and modeling guidelines for composite structures under crush at the element-level in the scope of the Building Block Approach.
Super Resolution Imaging of the Bottomside Ionosphere with the LWA
NASA Astrophysics Data System (ADS)
Obenberger, K.; Parris, R. T.; Taylor, G. B.; Dowell, J.; Malins, J. B.; Pedersen, T.
2017-12-01
Standard ionospheric sounding instruments typically only utilize a handful HF antennas to receive their transmitted signal, and therefore are limited in their ability to image reflections from the bottomside ionosphere. This limitation is primarily due to the low signal to noise ratio of only a few receiving elements. However, recent advancements in digital processing have ushered in a new era of many-element radio telescopes, capable of sub degree all-sky imaging in the HF band. The Long Wavelength Array station at Sevilleta National Wildlife Refuge, New Mexico (LWA-SV), which was specifically designed with improved HF performance for imaging bottomside propagation, began observations this year. I will discuss the new capabilities and imaging techniques of LWA-SV, and show some preliminary measurements of small scale ionospheric structure.
NASA Technical Reports Server (NTRS)
Ray, R. J.; Hicks, J. W.; Alexander, R. I.
1988-01-01
The X-29A advanced technology demonstrator has shown the practicality and advantages of the capability to compute and display, in real time, aeroperformance flight results. This capability includes the calculation of the in-flight measured drag polar, lift curve, and aircraft specific excess power. From these elements many other types of aeroperformance measurements can be computed and analyzed. The technique can be used to give an immediate postmaneuver assessment of data quality and maneuver technique, thus increasing the productivity of a flight program. A key element of this new method was the concurrent development of a real-time in-flight net thrust algorithm, based on the simplified gross thrust method. This net thrust algorithm allows for the direct calculation of total aircraft drag.
Space Shuttle Solid Rocket Booster Lightweight Recovery System
NASA Technical Reports Server (NTRS)
Wolf, Dean; Runkle, Roy E.
1995-01-01
The cancellation of the Advanced Solid Rocket Booster Project and the earth-to-orbit payload requirements for the Space Station dictated that the National Aeronautics and Space Administration (NASA) look at performance enhancements from all Space Transportation System (STS) elements (Orbiter Project, Space Shuttle Main Engine Project, External Tank Project, Solid Rocket Motor Project, & Solid Rocket Booster Project). The manifest for launching of Space Station components indicated that an additional 12-13000 pound lift capability was required on 10 missions and 15-20,000 pound additional lift capability is required on two missions. Trade studies conducted by all STS elements indicate that by deleting the parachute Recovery System (and associated hardware) from the Solid Rocket Boosters (SRBS) and going to a lightweight External Tank (ET) the 20,000 pound additional lift capability can be realized for the two missions. The deletion of the parachute Recovery System means the loss of four SRBs and this option is two expensive (loss of reusable hardware) to be used on the other 10 Space Station missions. Accordingly, each STS element looked at potential methods of weight savings, increased performance, etc. As the SRB and ET projects are non-propulsive (i.e. does not have launch thrust elements) their only contribution to overall payload enhancement can be achieved by the saving of weight while maintaining adequate safety factors and margins. The enhancement factor for the SRB project is 1:10. That is for each 10 pounds saved on the two SRBS; approximately 1 additional pound of payload in the orbiter bay can be placed into orbit. The SRB project decided early that the SRB recovery system was a prime candidate for weight reduction as it was designed in the early 1970s and weight optimization had never been a primary criteria.
Next generation laser-based standoff spectroscopy techniques for Mars exploration.
Gasda, Patrick J; Acosta-Maeda, Tayro E; Lucey, Paul G; Misra, Anupam K; Sharma, Shiv K; Taylor, G Jeffrey
2015-01-01
In the recent Mars 2020 Rover Science Definition Team Report, the National Aeronautics and Space Administration (NASA) has sought the capability to detect and identify elements, minerals, and most importantly, biosignatures, at fine scales for the preparation of a retrievable cache of samples. The current Mars rover, the Mars Science Laboratory Curiosity, has a remote laser-induced breakdown spectroscopy (LIBS) instrument, a type of quantitative elemental analysis, called the Chemistry Camera (ChemCam) that has shown that laser-induced spectroscopy instruments are not only feasible for space exploration, but are reliable and complementary to traditional elemental analysis instruments such as the Alpha Particle X-Ray Spectrometer. The superb track record of ChemCam has paved the way for other laser-induced spectroscopy instruments, such as Raman and fluorescence spectroscopy. We have developed a prototype remote LIBS-Raman-fluorescence instrument, Q-switched laser-induced time-resolved spectroscopy (QuaLITy), which is approximately 70 000 times more efficient at recording signals than a commercially available LIBS instrument. The increase in detection limits and sensitivity is due to our development of a directly coupled system, the use of an intensified charge-coupled device image detector, and a pulsed laser that allows for time-resolved measurements. We compare the LIBS capabilities of our system with an Ocean Optics spectrometer instrument at 7 m and 5 m distance. An increase in signal-to-noise ratio of at least an order of magnitude allows for greater quantitative analysis of the elements in a LIBS spectrum with 200-300 μm spatial resolution at 7 m, a Raman instrument capable of 1 mm spatial resolution at 3 m, and bioorganic fluorescence detection at longer distances. Thus, the new QuaLITy instrument fulfills all of the NASA expectations for proposed instruments.
The Shock and Vibration Digest, Volume 14, Number 4
1982-04-01
temperature, humidity, shock, and vibration -- can influence this capability; as a result an almost continuous program of research and development has...pro- ducing reliability tests. For some time there has been interest in the Army Test Methodology program for developing a vibration system capable...geology of the Livermore Valley is obtained. 82-768 Transient Stress Wave Propagation in HTGR Fuel Element Impacts I.T. Almajan and P.D. Smith
2009-09-01
Tele-maintenance Capability with Remote Serial Console Access and Proactive Monitoring of Medical Devices PRINCIPAL INVESTIGATOR...Remote Serial Console Access and Proactive Monitoring of Medical Devices 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...ORGANIZATION REPORT NUMBER Concepteers LLC 880 Bergen Avenue, Suite 403 Jersey City, NJ 07306 9. SPONSORING / MONITORING
ERIC Educational Resources Information Center
Cin, Firdevs Melis; Walker, Melanie
2013-01-01
The purpose of this paper is to understand historically and contextually the well-being and agency of selected female teachers in Turkey. The paper develops a justice model based on the capability approach to build on the relation between freedom and equality, and to take gender and cultural diversity as a key element. The research draws on…
Multi-Objective Optimization of System Capability Satisficing in Defense Acquisition
2012-01-01
of System Capability Satisficing in Defense Acquisition 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Stevens Institute of Technology,School of Systems...Report (SAR) 18. NUMBER OF PAGES 27 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT
Progress in Finite Element Modeling of the Lower Extremities
2015-06-01
bending and subsequent injury , e.g., the distal tibia motion results in bending of the tibia rather than the tibia rotating about the knee joint...layers, rich anisotropy, and wide variability. Developing a model for predictive injury capability, therefore, needs to be versatile and flexible to... injury capability presents many challenges, the first of which is identifying the types of conditions where injury prediction is needed. Our focus
Updating finite element dynamic models using an element-by-element sensitivity methodology
NASA Technical Reports Server (NTRS)
Farhat, Charbel; Hemez, Francois M.
1993-01-01
A sensitivity-based methodology for improving the finite element model of a given structure using test modal data and a few sensors is presented. The proposed method searches for both the location and sources of the mass and stiffness errors and does not interfere with the theory behind the finite element model while correcting these errors. The updating algorithm is derived from the unconstrained minimization of the squared L sub 2 norms of the modal dynamic residuals via an iterative two-step staggered procedure. At each iteration, the measured mode shapes are first expanded assuming that the model is error free, then the model parameters are corrected assuming that the expanded mode shapes are exact. The numerical algorithm is implemented in an element-by-element fashion and is capable of 'zooming' on the detected error locations. Several simulation examples which demonstate the potential of the proposed methodology are discussed.
Method and apparatus for transmitting and receiving data to and from a downhole tool
Hall, David R.; Fox, Joe
2007-03-13
A transmission line network system for transmitting and/or receiving data from a downhole tool. The invention is achieved by providing one or more transceiving elements, preferably rings, at either end of a downhole tool. A conduit containing a coaxial cable capable of communicating an electrical signal is attached to the transceiving element and extends through a central bore of the downhole tool and through the central bore of any tool intermediate the first transceiving element and a second transceiving element. Upon receiving an electrical signal from the cable, the second transceiving element may convert such signal to a magnetic field. The magnetic field may be detected by a third transceiving element in close proximity to the second transceiving element. In this manner, many different tools may be included in a downhole transmission network without requiring substantial modification, if any, of any particular tool.
Efficient finite element simulation of slot spirals, slot radomes and microwave structures
NASA Technical Reports Server (NTRS)
Gong, J.; Volakis, J. L.
1995-01-01
This progress report contains the following two documents: (1) 'Efficient Finite Element Simulation of Slot Antennas using Prismatic Elements' - A hybrid finite element-boundary integral (FE-BI) simulation technique is discussed to treat narrow slot antennas etched on a planar platform. Specifically, the prismatic elements are used to reduce the redundant sampling rates and ease the mesh generation process. Numerical results for an antenna slot and frequency selective surfaces are presented to demonstrate the validity and capability of the technique; and (2) 'Application and Design Guidelines of the PML Absorber for Finite Element Simulations of Microwave Packages' - The recently introduced perfectly matched layer (PML) uniaxial absorber for frequency domain finite element simulations has several advantages. In this paper we present the application of PML for microwave circuit simulations along with design guidelines to obtain a desired level of absorption. Different feeding techniques are also investigated for improved accuracy.
NASA Technical Reports Server (NTRS)
Millwater, Harry; Riha, David
1996-01-01
The NESSUS probabilistic analysis computer program has been developed with a built-in finite element analysis program NESSUS/FEM. However, the NESSUS/FEM program is specialized for engine structures and may not contain sufficient features for other applications. In addition, users often become well acquainted with a particular finite element code and want to use that code for probabilistic structural analysis. For these reasons, this work was undertaken to develop an interface between NESSUS and NASTRAN such that NASTRAN can be used for the finite element analysis and NESSUS can be used for the probabilistic analysis. In addition, NESSUS was restructured such that other finite element codes could be more easily coupled with NESSUS. NESSUS has been enhanced such that NESSUS will modify the NASTRAN input deck for a given set of random variables, run NASTRAN and read the NASTRAN result. The coordination between the two codes is handled automatically. The work described here was implemented within NESSUS 6.2 which was delivered to NASA in September 1995. The code runs on Unix machines: Cray, HP, Sun, SGI and IBM. The new capabilities have been implemented such that a user familiar with NESSUS using NESSUS/FEM and NASTRAN can immediately use NESSUS with NASTRAN. In other words, the interface with NASTRAN has been implemented in an analogous manner to the interface with NESSUS/FEM. Only finite element specific input has been changed. This manual is written as an addendum to the existing NESSUS 6.2 manuals. We assume users have access to NESSUS manuals and are familiar with the operation of NESSUS including probabilistic finite element analysis. Update pages to the NESSUS PFEM manual are contained in Appendix E. The finite element features of the code and the probalistic analysis capabilities are summarized.
Application of the Spectral Element Method to Acoustic Radiation
NASA Technical Reports Server (NTRS)
Doyle, James F.; Rizzi, Stephen A. (Technical Monitor)
2000-01-01
This report summarizes research to develop a capability for analysis of interior noise in enclosed structures when acoustically excited by an external random source. Of particular interest was the application to the study of noise and vibration transmission in thin-walled structures as typified by aircraft fuselages. Three related topics are focused upon. The first concerns the development of a curved frame spectral element, the second shows how the spectral element method for wave propagation in folded plate structures is extended to problems involving curved segmented plates. These are of significance because by combining these curved spectral elements with previously presented flat spectral elements, the dynamic response of geometrically complex structures can be determined. The third topic shows how spectral elements, which incorporate the effect of fluid loading on the structure, are developed for analyzing acoustic radiation from dynamically loaded extended plates.
Kronberg, J.W.
1992-06-02
A sequential power-up circuit for starting several electrical load elements in series to avoid excessive current surge, comprising a voltage ramp generator and a set of voltage comparators, each comparator having a different reference voltage and interfacing with a switch that is capable of turning on one of the load elements. As the voltage rises, it passes the reference voltages one at a time and causes the switch corresponding to that voltage to turn on its load element. The ramp is turned on and off by a single switch or by a logic-level electrical signal. The ramp rate for turning on the load element is relatively slow and the rate for turning the elements off is relatively fast. Optionally, the duration of each interval of time between the turning on of the load elements is programmable. 2 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bull, Diana L.; Costello, Ronan; Babarit, Aurelien
Capabilities and functions are hierarchical structures (i.e. taxonomies) that are used in a systems engineering framework to identify complimentary requirements for the system: what the system must do to achieve what it must be. In the case of capabilities, the taxonomy embodies the list of characteristics that are desired, from the perspective of the stakeholders, for the system to be successful. In terms of the functions, the hierarchy represents the solution agnostic (i.e. independent of specific design embodiments) elements that are needed to meet the stakeholder requirements. This paper will focus on the development of the functions. The functions definemore » the fundamental elements of the solution that must be provided in order to achieve the mission and deliver the capabilities. They identify the behaviors the farm must possess, i.e. the farm must be able to generate and deliver electricity from wave power. High-level functions are independent of the technology or design used to implement the function. However, detailed functions may begin to border on specific design choices. Hence a strong effort has been made to maintain functions that are design agnostic.« less
Generic element processor (application to nonlinear analysis)
NASA Technical Reports Server (NTRS)
Stanley, Gary
1989-01-01
The focus here is on one aspect of the Computational Structural Mechanics (CSM) Testbed: finite element technology. The approach involves a Generic Element Processor: a command-driven, database-oriented software shell that facilitates introduction of new elements into the testbed. This shell features an element-independent corotational capability that upgrades linear elements to geometrically nonlinear analysis, and corrects the rigid-body errors that plague many contemporary plate and shell elements. Specific elements that have been implemented in the Testbed via this mechanism include the Assumed Natural-Coordinate Strain (ANS) shell elements, developed with Professor K. C. Park (University of Colorado, Boulder), a new class of curved hybrid shell elements, developed by Dr. David Kang of LPARL (formerly a student of Professor T. Pian), other shell and solid hybrid elements developed by NASA personnel, and recently a repackaged version of the workhorse shell element used in the traditional STAGS nonlinear shell analysis code. The presentation covers: (1) user and developer interfaces to the generic element processor, (2) an explanation of the built-in corotational option, (3) a description of some of the shell-elements currently implemented, and (4) application to sample nonlinear shell postbuckling problems.
Six-Message Electromechanical Display System
NASA Technical Reports Server (NTRS)
Howard, Richard T.
2007-01-01
A proposed electromechanical display system would be capable of presenting as many as six distinct messages. In the proposed system, each display element would include a cylinder having a regular hexagonal cross section.
Vackerberg, Nicoline; Levander, Märta Sund; Thor, Johan
2016-01-01
While coaching and customer involvement can enhance the improvement of health and social care, many organizations struggle to develop their improvement capability; it is unclear how best to accomplish this. We examined one attempt at training improvement coaches. The program, set in the Esther Network for integrated care in rural Jönköping County, Sweden, included eight 1-day sessions spanning 7 months in 2011. A senior citizen joined the faculty in all training sessions. Aiming to discern which elements in the program were essential for assuming the role of improvement coach, we used a case-study design with a qualitative approach. Our focus group interviews included 17 informants: 11 coaches, 3 faculty members, and 3 senior citizens. We performed manifest content analysis of the interview data. Creating will, ideas, execution, and sustainability emerged as crucial elements. These elements were promoted by customer focus--embodied by the senior citizen trainer--shared values and a solution-focused approach, by the supportive coach network and by participants' expanded systems understanding. These elements emerged as more important than specific improvement tools and are worth considering also elsewhere when seeking to develop improvement capability in health and social care organizations.
A review of some problems in global-local stress analysis
NASA Technical Reports Server (NTRS)
Nelson, Richard B.
1989-01-01
The various types of local-global finite-element problems point out the need to develop a new generation of software. First, this new software needs to have a complete analysis capability, encompassing linear and nonlinear analysis of 1-, 2-, and 3-dimensional finite-element models, as well as mixed dimensional models. The software must be capable of treating static and dynamic (vibration and transient response) problems, including the stability effects of initial stress, and the software should be able to treat both elastic and elasto-plastic materials. The software should carry a set of optional diagnostics to assist the program user during model generation in order to help avoid obvious structural modeling errors. In addition, the program software should be well documented so the user has a complete technical reference for each type of element contained in the program library, including information on such topics as the type of numerical integration, use of underintegration, and inclusion of incompatible modes, etc. Some packaged information should also be available to assist the user in building mixed-dimensional models. An important advancement in finite-element software should be in the development of program modularity, so that the user can select from a menu various basic operations in matrix structural analysis.
Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Surma, Jeffrey E.
1997-01-01
Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, high temperature capability refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. The invention may be incorporated into a high temperature process device and implemented in situ for example, such as with a DC graphite electrode plasma arc furnace. The invention further provides a system for the elemental analysis of process streams by removing particulate and/or droplet samples therefrom and entraining such samples in the gas flow which passes through the plasma flame. Introduction of and entraining samples in the gas flow may be facilitated by a suction pump, regulating gas flow, gravity or combinations thereof.
Levander, Märta Sund; Thor, Johan
2016-01-01
While coaching and customer involvement can enhance the improvement of health and social care, many organizations struggle to develop their improvement capability; it is unclear how best to accomplish this. We examined one attempt at training improvement coaches. The program, set in the Esther Network for integrated care in rural Jönköping County, Sweden, included eight 1-day sessions spanning 7 months in 2011. A senior citizen joined the faculty in all training sessions. Aiming to discern which elements in the program were essential for assuming the role of improvement coach, we used a case-study design with a qualitative approach. Our focus group interviews included 17 informants: 11 coaches, 3 faculty members, and 3 senior citizens. We performed manifest content analysis of the interview data. Creating will, ideas, execution, and sustainability emerged as crucial elements. These elements were promoted by customer focus—embodied by the senior citizen trainer—shared values and a solution-focused approach, by the supportive coach network and by participants' expanded systems understanding. These elements emerged as more important than specific improvement tools and are worth considering also elsewhere when seeking to develop improvement capability in health and social care organizations. PMID:26783868
3D elemental sensitive imaging using transmission X-ray microscopy.
Liu, Yijin; Meirer, Florian; Wang, Junyue; Requena, Guillermo; Williams, Phillip; Nelson, Johanna; Mehta, Apurva; Andrews, Joy C; Pianetta, Piero
2012-09-01
Determination of the heterogeneous distribution of metals in alloy/battery/catalyst and biological materials is critical to fully characterize and/or evaluate the functionality of the materials. Using synchrotron-based transmission x-ray microscopy (TXM), it is now feasible to perform nanoscale-resolution imaging over a wide X-ray energy range covering the absorption edges of many elements; combining elemental sensitive imaging with determination of sample morphology. We present an efficient and reliable methodology to perform 3D elemental sensitive imaging with excellent sample penetration (tens of microns) using hard X-ray TXM. A sample of an Al-Si piston alloy is used to demonstrate the capability of the proposed method.
Cure-in-place process for seals
Hirasuna, Alan R.
1981-01-01
A cure-in-place process which allows a rubber seal element to be deformed to its service configuration before it is cross-linked and, hence, is a plastic and does not build up internal stress as a result of the deformation. This provides maximum residual strength to resist the differential pressure. Furthermore, the process allows use of high modulus formulations of the rubber seal element which would otherwise crack if cured and then deformed to its service configuration, resulting in a seal which has better gap bridging capability. Basically, the process involves positioning an uncured seal element in place, deforming it to its service configuration, heating the seal element, curing it in place, and then fully seating the seal.
Methods for identification and verification using vacuum XRF system
NASA Technical Reports Server (NTRS)
Kaiser, Bruce (Inventor); Schramm, Fred (Inventor)
2005-01-01
Apparatus and methods in which one or more elemental taggants that are intrinsically located in an object are detected by x-ray fluorescence analysis under vacuum conditions to identify or verify the object's elemental content for elements with lower atomic numbers. By using x-ray fluorescence analysis, the apparatus and methods of the invention are simple and easy to use, as well as provide detection by a non line-of-sight method to establish the origin of objects, as well as their point of manufacture, authenticity, verification, security, and the presence of impurities. The invention is extremely advantageous because it provides the capability to measure lower atomic number elements in the field with a portable instrument.
Statistical simplex approach to primary and secondary color correction in thick lens assemblies
NASA Astrophysics Data System (ADS)
Ament, Shelby D. V.; Pfisterer, Richard
2017-11-01
A glass selection optimization algorithm is developed for primary and secondary color correction in thick lens systems. The approach is based on the downhill simplex method, and requires manipulation of the surface color equations to obtain a single glass-dependent parameter for each lens element. Linear correlation is used to relate this parameter to all other glass-dependent variables. The algorithm provides a statistical distribution of Abbe numbers for each element in the system. Examples of several lenses, from 2-element to 6-element systems, are performed to verify this approach. The optimization algorithm proposed is capable of finding glass solutions with high color correction without requiring an exhaustive search of the glass catalog.
Low bandgap mid-infrared thermophotovoltaic arrays based on InAs
NASA Astrophysics Data System (ADS)
Krier, A.; Yin, M.; Marshall, A. R. J.; Kesaria, M.; Krier, S. E.; McDougall, S.; Meredith, W.; Johnson, A. D.; Inskip, J.; Scholes, A.
2015-11-01
We demonstrate the first low bandgap thermophotovoltaic (TPV) arrays capable of operating with heat sources at temperatures as low as 345 °C, which is the lowest ever reported. The individual array elements are based on narrow band gap InAs/InAs0.61Sb0.13P0.26 photodiode structures. External power conversion efficiency was measured to be ∼3% from a single element at room temperature, using a black body at 950 °C. Both 25-element and 65-element arrays were fabricated and exhibited a TPV response at different source temperatures in the range 345-950 °C suitable for electricity generation from waste heat and other applications.
Tolić, Nikola; Liu, Yina; Liyu, Andrey; Shen, Yufeng; Tfaily, Malak M; Kujawinski, Elizabeth B; Longnecker, Krista; Kuo, Li-Jung; Robinson, Errol W; Paša-Tolić, Ljiljana; Hess, Nancy J
2017-12-05
Ultrahigh resolution mass spectrometry, such as Fourier transform ion cyclotron resonance mass spectrometry (FT ICR MS), can resolve thousands of molecular ions in complex organic matrices. A Compound Identification Algorithm (CIA) was previously developed for automated elemental formula assignment for natural organic matter (NOM). In this work, we describe software Formularity with a user-friendly interface for CIA function and newly developed search function Isotopic Pattern Algorithm (IPA). While CIA assigns elemental formulas for compounds containing C, H, O, N, S, and P, IPA is capable of assigning formulas for compounds containing other elements. We used halogenated organic compounds (HOC), a chemical class that is ubiquitous in nature as well as anthropogenic systems, as an example to demonstrate the capability of Formularity with IPA. A HOC standard mix was used to evaluate the identification confidence of IPA. Tap water and HOC spike in Suwannee River NOM were used to assess HOC identification in complex environmental samples. Strategies for reconciliation of CIA and IPA assignments were discussed. Software and sample databases with documentation are freely available.
ParaView visualization of Abaqus output on the mechanical deformation of complex microstructures
NASA Astrophysics Data System (ADS)
Liu, Qingbin; Li, Jiang; Liu, Jie
2017-02-01
Abaqus® is a popular software suite for finite element analysis. It delivers linear and nonlinear analyses of mechanical and fluid dynamics, includes multi-body system and multi-physics coupling. However, the visualization capability of Abaqus using its CAE module is limited. Models from microtomography have extremely complicated structures, and datasets of Abaqus output are huge, requiring a visualization tool more powerful than Abaqus/CAE. We convert Abaqus output into the XML-based VTK format by developing a Python script and then using ParaView to visualize the results. Such capabilities as volume rendering, tensor glyphs, superior animation and other filters allow ParaView to offer excellent visualizing manifestations. ParaView's parallel visualization makes it possible to visualize very big data. To support full parallel visualization, the Python script achieves data partitioning by reorganizing all nodes, elements and the corresponding results on those nodes and elements. The data partition scheme minimizes data redundancy and works efficiently. Given its good readability and extendibility, the script can be extended to the processing of more different problems in Abaqus. We share the script with Abaqus users on GitHub.
NASA Technical Reports Server (NTRS)
Pineda, Evan J.; Waas, Anthony M.; Berdnarcyk, Brett A.; Arnold, Steven M.; Collier, Craig S.
2009-01-01
This preliminary report demonstrates the capabilities of the recently developed software implementation that links the Generalized Method of Cells to explicit finite element analysis by extending a previous development which tied the generalized method of cells to implicit finite elements. The multiscale framework, which uses explicit finite elements at the global-scale and the generalized method of cells at the microscale is detailed. This implementation is suitable for both dynamic mechanics problems and static problems exhibiting drastic and sudden changes in material properties, which often encounter convergence issues with commercial implicit solvers. Progressive failure analysis of stiffened and un-stiffened fiber-reinforced laminates subjected to normal blast pressure loads was performed and is used to demonstrate the capabilities of this framework. The focus of this report is to document the development of the software implementation; thus, no comparison between the results of the models and experimental data is drawn. However, the validity of the results are assessed qualitatively through the observation of failure paths, stress contours, and the distribution of system energies.
An Approach for Assessing Delamination Propagation Capabilities in Commercial Finite Element Codes
NASA Technical Reports Server (NTRS)
Krueger, Ronald
2007-01-01
An approach for assessing the delamination propagation capabilities in commercial finite element codes is presented and demonstrated for one code. For this investigation, the Double Cantilever Beam (DCB) specimen and the Single Leg Bending (SLB) specimen were chosen for full three-dimensional finite element simulations. First, benchmark results were created for both specimens. Second, starting from an initially straight front, the delamination was allowed to propagate. Good agreement between the load-displacement relationship obtained from the propagation analysis results and the benchmark results could be achieved by selecting the appropriate input parameters. Selecting the appropriate input parameters, however, was not straightforward and often required an iterative procedure. Qualitatively, the delamination front computed for the DCB specimen did not take the shape of a curved front as expected. However, the analysis of the SLB specimen yielded a curved front as may be expected from the distribution of the energy release rate and the failure index across the width of the specimen. Overall, the results are encouraging but further assessment on a structural level is required.
NASA Technical Reports Server (NTRS)
Krueger, Ronald
2008-01-01
An approach for assessing the delamination propagation simulation capabilities in commercial finite element codes is presented and demonstrated. For this investigation, the Double Cantilever Beam (DCB) specimen and the Single Leg Bending (SLB) specimen were chosen for full three-dimensional finite element simulations. First, benchmark results were created for both specimens. Second, starting from an initially straight front, the delamination was allowed to propagate. The load-displacement relationship and the total strain energy obtained from the propagation analysis results and the benchmark results were compared and good agreements could be achieved by selecting the appropriate input parameters. Selecting the appropriate input parameters, however, was not straightforward and often required an iterative procedure. Qualitatively, the delamination front computed for the DCB specimen did not take the shape of a curved front as expected. However, the analysis of the SLB specimen yielded a curved front as was expected from the distribution of the energy release rate and the failure index across the width of the specimen. Overall, the results are encouraging but further assessment on a structural level is required.
Integrated command, control, communications and computation system functional architecture
NASA Technical Reports Server (NTRS)
Cooley, C. G.; Gilbert, L. E.
1981-01-01
The functional architecture for an integrated command, control, communications, and computation system applicable to the command and control portion of the NASA End-to-End Data. System is described including the downlink data processing and analysis functions required to support the uplink processes. The functional architecture is composed of four elements: (1) the functional hierarchy which provides the decomposition and allocation of the command and control functions to the system elements; (2) the key system features which summarize the major system capabilities; (3) the operational activity threads which illustrate the interrelationahip between the system elements; and (4) the interfaces which illustrate those elements that originate or generate data and those elements that use the data. The interfaces also provide a description of the data and the data utilization and access techniques.
Initial Operation of the Nuclear Thermal Rocket Element Environmental Simulator
NASA Technical Reports Server (NTRS)
Emrich, William J., Jr.; Pearson, J. Boise; Schoenfeld, Michael P.
2015-01-01
The Nuclear Thermal Rocket Element Environmental Simulator (NTREES) facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The NTREES facility has recently been upgraded such that the power capabilities of the facility have been increased significantly. At its present 1.2 MW power level, more prototypical fuel element temperatures nay now be reached. The new 1.2 MW induction heater consists of three physical units consisting of a transformer, rectifier, and inverter. This multiunit arrangement facilitated increasing the flexibility of the induction heater by more easily allowing variable frequency operation. Frequency ranges between 20 and 60 kHz can accommodated in the new induction heater allowing more representative power distributions to be generated within the test elements. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during testing In this new higher power configuration, NTREES will be capable of testing fuel elements and fuel materials at near-prototypic power densities. As checkout testing progressed and as higher power levels were achieved, several design deficiencies were discovered and fixed. Most of these design deficiencies were related to stray RF energy causing various components to encounter unexpected heating. Copper shielding around these components largely eliminated these problems. Other problems encountered involved unexpected movement in the coil due to electromagnetic forces and electrical arcing between the coil and a dummy test article. The coil movement and arcing which were encountered during the checkout testing effectively destroyed the induction coil in use at the time and resulted in NTREES being out of commission for a couple of months while a new stronger coil was procured. The new coil includes several additional pieces of support structure to prevent coil movement in the future. In addition, new insulating test article support components have been fabricated to prevent unexpected arcing to the test articles. Additional activities are also now underway to address ways in which the radial temperature profiles across test articles may be controlled such that they are more prototypical of what they would encounter in an operating nuclear engine. The causes of the temperature distribution problem are twofold. First, the fuel element test article is isolated in NTREES as opposed to being in the midst of many other mostly identical fuel elements in a nuclear engine. As a result, the fuel element heat flux boundary conditions in NTREES are far from adiabatic as would normally be the case in a reactor. Second, induction heating skews the power distribution such that power is preferentially deposited near the outside of the fuel element. Nuclear heating, conversely, deposits its power much more uniformly throughout the fuel element. Current studies are now looking at various schemes to adjust the amount of thermal radiation emitted from the fuel element surface so as to essentially vary the thermal boundary conditions on the test article. It is hoped that by properly adjusting the thermal boundary conditions on the fuel element test article, it may be possible to substantially correct for the inappropriate radial power distributions resulting from the induction heating so as to yield a more nearly correct temperature distribution throughout the fuel element.
Missile Defense: Ballistic Missile Defense System Testing Delays Affect Delivery of Capabilities
2016-04-28
Page 1 GAO- 16 -339R Ballistic Missile Defense 441 G St. N.W. Washington, DC 20548 April 28, 2016 Congressional Committees Missile Defense...Ballistic Missile Defense System Testing Delays Affect Delivery of Capabilities For over half a century , the Department of Defense (DOD) has been...81, § 232 (a) (2011). 2 GAO- 16 -339R Ballistic Missile Defense baselines, we analyzed the testing goals for selected elements, which are
Cognitive Depth and Hybrid Warfare: Exploring the Nature of Unique Time, Space, and Logic Frames
2017-05-25
ELEMENT NUMBER 6. AUTHOR(S) MAJ Jerrid Allen 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND...their irregular organization , conventional capabilities, and perceived efficacy against the Israeli Defense Forces. This is an incomplete interpretation...and it misses how Hezbollah’s organization and capabilities were functions of an operational system informed by a unique and contextual hybrid
Business Models for Cost Sharing & Capability Sustainment
2012-08-18
digital technology into existing mechanical products and their supporting processes can only work correctly if the firm carrying it out changes its entire...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed...Capability Sustainment 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK
Improving Command and Control in the Mexican Army and Air Force to Support Land Operations
2017-06-09
of operations is supported by a robust structure of personnel and equipment ready to deploy anywhere in the world. Marine elements are properly...would grow based on the achieved results and availability of economic resources. The organizational solution described the possible organization of...current capabilities based on the available options in the U.S Doctrine. The analysis process of the study is guided by the Capability Based
Development of a low-cost biogas filtration system to achieve higher-power efficient AC generator
NASA Astrophysics Data System (ADS)
Mojica, Edison E.; Ardaniel, Ar-Ar S.; Leguid, Jeanlou G.; Loyola, Andrea T.
2018-02-01
The paper focuses on the development of a low-cost biogas filtration system for alternating current generator to achieve higher efficiency in terms of power production. A raw biogas energy comprises of 57% combustible element and 43% non-combustible elements containing carbon dioxide (36%), water vapor (5%), hydrogen sulfide (0.5%), nitrogen (1%), oxygen (0 - 2%), and ammonia (0 - 1%). The filtration system composes of six stages: stage 1 is the water scrubber filter intended to remove the carbon dioxide and traces of hydrogen sulfide; stage 2 is the silica gel filter intended to reduce the water vapor; stage 3 is the iron sponge filter intended to remove the remaining hydrogen sulfide; stage 4 is the sodium hydroxide solution filter intended to remove the elemental sulfur formed during the interaction of the hydrogen sulfide and the iron sponge and for further removal of carbon dioxide; stage 5 is the silica gel filter intended to further eliminate the water vapor gained in stage 4; and, stage 6 is the activated carbon filter intended to remove the carbon dioxide. The filtration system was able to lower the non-combustible elements by 72% and thus, increasing the combustible element by 54.38%. The unfiltered biogas is capable of generating 16.3 kW while the filtered biogas is capable of generating 18.6 kW. The increased in methane concentration resulted to 14.11% increase in the power output. The outcome resulted to better engine performance in the generation of electricity.
The GAAIN Entity Mapper: An Active-Learning System for Medical Data Mapping.
Ashish, Naveen; Dewan, Peehoo; Toga, Arthur W
2015-01-01
This work is focused on mapping biomedical datasets to a common representation, as an integral part of data harmonization for integrated biomedical data access and sharing. We present GEM, an intelligent software assistant for automated data mapping across different datasets or from a dataset to a common data model. The GEM system automates data mapping by providing precise suggestions for data element mappings. It leverages the detailed metadata about elements in associated dataset documentation such as data dictionaries that are typically available with biomedical datasets. It employs unsupervised text mining techniques to determine similarity between data elements and also employs machine-learning classifiers to identify element matches. It further provides an active-learning capability where the process of training the GEM system is optimized. Our experimental evaluations show that the GEM system provides highly accurate data mappings (over 90% accuracy) for real datasets of thousands of data elements each, in the Alzheimer's disease research domain. Further, the effort in training the system for new datasets is also optimized. We are currently employing the GEM system to map Alzheimer's disease datasets from around the globe into a common representation, as part of a global Alzheimer's disease integrated data sharing and analysis network called GAAIN. GEM achieves significantly higher data mapping accuracy for biomedical datasets compared to other state-of-the-art tools for database schema matching that have similar functionality. With the use of active-learning capabilities, the user effort in training the system is minimal.
The GAAIN Entity Mapper: An Active-Learning System for Medical Data Mapping
Ashish, Naveen; Dewan, Peehoo; Toga, Arthur W.
2016-01-01
This work is focused on mapping biomedical datasets to a common representation, as an integral part of data harmonization for integrated biomedical data access and sharing. We present GEM, an intelligent software assistant for automated data mapping across different datasets or from a dataset to a common data model. The GEM system automates data mapping by providing precise suggestions for data element mappings. It leverages the detailed metadata about elements in associated dataset documentation such as data dictionaries that are typically available with biomedical datasets. It employs unsupervised text mining techniques to determine similarity between data elements and also employs machine-learning classifiers to identify element matches. It further provides an active-learning capability where the process of training the GEM system is optimized. Our experimental evaluations show that the GEM system provides highly accurate data mappings (over 90% accuracy) for real datasets of thousands of data elements each, in the Alzheimer's disease research domain. Further, the effort in training the system for new datasets is also optimized. We are currently employing the GEM system to map Alzheimer's disease datasets from around the globe into a common representation, as part of a global Alzheimer's disease integrated data sharing and analysis network called GAAIN1. GEM achieves significantly higher data mapping accuracy for biomedical datasets compared to other state-of-the-art tools for database schema matching that have similar functionality. With the use of active-learning capabilities, the user effort in training the system is minimal. PMID:26793094
Search for elemental and mineral biomarkers using inelastic neutron scattering spectroscopy (INSS)
NASA Astrophysics Data System (ADS)
Wielopolski, Lucian; Hoover, Richard B.; Mitra, Sudeep
2004-02-01
Life on Earth is characterized by a select group of low Z elements: C, H, N, O, P, K, S, Na, Cl. The presence of these elements and their ratios can provide indications of possible biogenicity and thus they may constitute valuable biomarkers that may help determine the best locations to seek more definitive evidence of life. We discuss the possible applications and significance of the inelastic neutron scattering induced gamma spectroscopy (INSGS) for future Astrobiology Missions to Mars or other solar System bodies. The general requirements and capabilities of the proposed approach are presented.
Application of numerical methods to heat transfer and thermal stress analysis of aerospace vehicles
NASA Technical Reports Server (NTRS)
Wieting, A. R.
1979-01-01
The paper describes a thermal-structural design analysis study of a fuel-injection strut for a hydrogen-cooled scramjet engine for a supersonic transport, utilizing finite-element methodology. Applications of finite-element and finite-difference codes to the thermal-structural design-analysis of space transports and structures are discussed. The interaction between the thermal and structural analyses has led to development of finite-element thermal methodology to improve the integration between these two disciplines. The integrated thermal-structural analysis capability developed within the framework of a computer code is outlined.
School Finance Reform: Decoding the Simulation Maze
ERIC Educational Resources Information Center
Jargowsky, Peter; And Others
1977-01-01
Demonstrates the mathematical equivalence of various school finance equalization formulas, describes the elements that complicate the preparation of a generalized simulation capability, and briefly presents a conceptualization of a generalized simulation model. (JG)
Rocket Testing and Integrated System Health Management
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Schmalzel, John
2005-01-01
Integrated System Health Management (ISHM) describes a set of system capabilities that in aggregate perform: determination of condition for each system element, detection of anomalies, diagnosis of causes for anomalies, and prognostics for future anomalies and system behavior. The ISHM should also provide operators with situational awareness of the system by integrating contextual and timely data, information, and knowledge (DIaK) as needed. ISHM capabilities can be implemented using a variety of technologies and tools. This chapter provides an overview of ISHM contributing technologies and describes in further detail a novel implementation architecture along with associated taxonomy, ontology, and standards. The operational ISHM testbed is based on a subsystem of a rocket engine test stand. Such test stands contain many elements that are common to manufacturing systems, and thereby serve to illustrate the potential benefits and methodologies of the ISHM approach for intelligent manufacturing.
Aeras: A next generation global atmosphere model
Spotz, William F.; Smith, Thomas M.; Demeshko, Irina P.; ...
2015-06-01
Sandia National Laboratories is developing a new global atmosphere model named Aeras that is performance portable and supports the quantification of uncertainties. These next-generation capabilities are enabled by building Aeras on top of Albany, a code base that supports the rapid development of scientific application codes while leveraging Sandia's foundational mathematics and computer science packages in Trilinos and Dakota. Embedded uncertainty quantification (UQ) is an original design capability of Albany, and performance portability is a recent upgrade. Other required features, such as shell-type elements, spectral elements, efficient explicit and semi-implicit time-stepping, transient sensitivity analysis, and concurrent ensembles, were not componentsmore » of Albany as the project began, and have been (or are being) added by the Aeras team. We present early UQ and performance portability results for the shallow water equations.« less
Approximation concepts for efficient structural synthesis
NASA Technical Reports Server (NTRS)
Schmit, L. A., Jr.; Miura, H.
1976-01-01
It is shown that efficient structural synthesis capabilities can be created by using approximation concepts to mesh finite element structural analysis methods with nonlinear mathematical programming techniques. The history of the application of mathematical programming techniques to structural design optimization problems is reviewed. Several rather general approximation concepts are described along with the technical foundations of the ACCESS 1 computer program, which implements several approximation concepts. A substantial collection of structural design problems involving truss and idealized wing structures is presented. It is concluded that since the basic ideas employed in creating the ACCESS 1 program are rather general, its successful development supports the contention that the introduction of approximation concepts will lead to the emergence of a new generation of practical and efficient, large scale, structural synthesis capabilities in which finite element analysis methods and mathematical programming algorithms will play a central role.
A data management system for engineering and scientific computing
NASA Technical Reports Server (NTRS)
Elliot, L.; Kunii, H. S.; Browne, J. C.
1978-01-01
Data elements and relationship definition capabilities for this data management system are explicitly tailored to the needs of engineering and scientific computing. System design was based upon studies of data management problems currently being handled through explicit programming. The system-defined data element types include real scalar numbers, vectors, arrays and special classes of arrays such as sparse arrays and triangular arrays. The data model is hierarchical (tree structured). Multiple views of data are provided at two levels. Subschemas provide multiple structural views of the total data base and multiple mappings for individual record types are supported through the use of a REDEFINES capability. The data definition language and the data manipulation language are designed as extensions to FORTRAN. Examples of the coding of real problems taken from existing practice in the data definition language and the data manipulation language are given.
DNS of Flow in a Low-Pressure Turbine Cascade Using a Discontinuous-Galerkin Spectral-Element Method
NASA Technical Reports Server (NTRS)
Garai, Anirban; Diosady, Laslo Tibor; Murman, Scott; Madavan, Nateri
2015-01-01
A new computational capability under development for accurate and efficient high-fidelity direct numerical simulation (DNS) and large eddy simulation (LES) of turbomachinery is described. This capability is based on an entropy-stable Discontinuous-Galerkin spectral-element approach that extends to arbitrarily high orders of spatial and temporal accuracy and is implemented in a computationally efficient manner on a modern high performance computer architecture. A validation study using this method to perform DNS of flow in a low-pressure turbine airfoil cascade are presented. Preliminary results indicate that the method captures the main features of the flow. Discrepancies between the predicted results and the experiments are likely due to the effects of freestream turbulence not being included in the simulation and will be addressed in the final paper.
Lee, Jaehoon; Hulse, Nathan C; Wood, Grant M; Oniki, Thomas A; Huff, Stanley M
2016-01-01
In this study we developed a Fast Healthcare Interoperability Resources (FHIR) profile to support exchanging a full pedigree based family health history (FHH) information across multiple systems and applications used by clinicians, patients, and researchers. We used previously developed clinical element models (CEMs) that are capable of representing the FHH information, and derived essential data elements including attributes, constraints, and value sets. We analyzed gaps between the FHH CEM elements and existing FHIR resources. Based on the analysis, we developed a profile that consists of 1) FHIR resources for essential FHH data elements, 2) extensions for additional elements that were not covered by the resources, and 3) a structured definition to integrate patient and family member information in a FHIR message. We implemented the profile using an open-source based FHIR framework and validated it using patient-entered FHH data that was captured through a locally developed FHH tool.
NASA Astrophysics Data System (ADS)
Kalinkina, M. E.; Kozlov, A. S.; Labkovskaia, R. I.; Pirozhnikova, O. I.; Tkalich, V. L.; Shmakov, N. A.
2018-05-01
The object of research is the element base of devices of control and automation systems, including in its composition annular elastic sensitive elements, methods of their modeling, calculation algorithms and software complexes for automation of their design processes. The article is devoted to the development of the computer-aided design system of elastic sensitive elements used in weight- and force-measuring automation devices. Based on the mathematical modeling of deformation processes in a solid, as well as the results of static and dynamic analysis, the calculation of elastic elements is given using the capabilities of modern software systems based on numerical simulation. In the course of the simulation, the model was a divided hexagonal grid of finite elements with a maximum size not exceeding 2.5 mm. The results of modal and dynamic analysis are presented in this article.
Anicić, M; Tasić, M; Frontasyeva, M V; Tomasević, M; Rajsić, S; Mijić, Z; Popović, A
2009-02-01
Active biomonitoring with wet and dry moss bags was used to examine trace element atmospheric deposition in the urban area of Belgrade. The element accumulation capability of Sphagnum girgensohnii Russow was tested in relation to atmospheric bulk deposition. Moss bags were mounted for five 3-month periods (July 2005-October 2006) at three representative urban sites. For the same period monthly bulk atmospheric deposition samples were collected. The concentrations of Al, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, and Pb were determined by instrumental neutron activation analyses and atomic absorption spectrometry. Significant accumulation of most elements occurred in the exposed moss bags compared with the initial moss content. High correlations between the elements in moss and bulk deposits were found for V, Cu, As, and Ni. The enrichment factors of the elements for both types of monitor followed the same pattern at the corresponding sites.
Automated rendezvous and capture development infrastructure
NASA Technical Reports Server (NTRS)
Bryan, Thomas C.; Roe, Fred; Coker, Cynthia
1992-01-01
The facilities at Marshall Space Flight Center and JSC to be utilized to develop and test an autonomous rendezvous and capture (ARC) system are described. This includes equipment and personnel facility capabilities to devise, develop, qualify, and integrate ARC elements and subsystems into flight programs. Attention is given to the use of a LEO test facility, the current concept and unique system elements of the ARC, and the options available to develop ARC technology.
Design considerations for MST radar antennas
NASA Technical Reports Server (NTRS)
Bowhill, S. A.
1983-01-01
The design of antenna systems for radar capable of probing the mesosphere are discussed. The spatial wavelength dependency of turbulent advected ionization are cut off rapidly below wavelengths of about 3 m, imply frequencies of 100 MHz and below. The frequency and aperture requirements point to an array antenna of some kind as the most economical solution. Such an array could consist of dipoles or more directive elements; these elements can be either active or passive.
A breakthrough for experiencing and understanding simulated physics
NASA Technical Reports Server (NTRS)
Watson, Val
1988-01-01
The use of computer simulation in physics research is discussed, focusing on improvements to graphic workstations. Simulation capabilities and applications of enhanced visualization tools are outlined. The elements of an ideal computer simulation are presented and the potential for improving various simulation elements is examined. The interface between the human and the computer and simulation models are considered. Recommendations are made for changes in computer simulation practices and applications of simulation technology in education.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connolly, Michael James; Bean, Thomas E.; Brower, Jeffrey O.
The Advanced Test Reactor (ATR) is a materials and fuels test nuclear reactor that performs irradiation services for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Naval Reactors, the National Nuclear Security Administration (NNSA), and other research programs. ATR achieved initial criticality in 1967 and is expected to operate in support of needed missions until the year 2050 or beyond. It is anticipated that ATR will generate approximately 105 spent nuclear fuel (SNF) elements per year through the year 2050. Idaho National Laboratory (INL) currently stores 2,008 ATR SNF elements in dry storage, 976 in wet storage,more » and expects to have 1,000 elements in wet storage before January 2017. A capability gap exists at INL for long-term (greater than the year 2050) management, in compliance with the Idaho Settlement Agreement (ISA), of ATR SNF until a monitored retrievable geological repository is open. INL has significant wet and dry storage capabilities that are owned by the DOE Office of Environmental Management (EM) and operated and managed by Fluor Idaho, which include the Idaho Nuclear Technology and Engineering Center’s (INTEC’s) CPP-666, CPP-749, and CPP-603. In addition, INL has other capabilities owned by DOE-NE and operated and managed by Battelle Energy Alliance, LLC (BEA), which are located at the Materials and Fuel Complex (MFC). Additional storage capabilities are located on the INL Site at the Naval Reactors Facility (NRF). Current INL SNF management planning, as defined in the Fluor Idaho contract, shows INTEC dry fuel storage, which is currently used for ATR SNF, will be nearly full after transfer of an additional 1,000 ATR SNF from wet storage. DOE-NE tasked BEA with identifying and analyzing options that have the potential to fulfill this capability gap. BEA assembled a team comprised of SNF management experts from Fluor Idaho, Savannah River Site (SRS), INL/BEA, and the MITRE Corp with an objective of developing and analyzing options for fulfilling the capability gap. This management options analysis is not an alternatives analysis as defined by DOE Order 413.3B; rather, it is an evaluation of near-term, mid term and long-term actions needed to fulfill the capability gap. The actions are described in sufficient detail to inform stakeholders and DOE decision makers regarding a potential path forward. The recommended path forward will inform Fiscal Year 2019 budget formulation, support potential National Environmental Policy Act (NEPA) analyses, and may or may not include capital asset projects.« less
Crew Exploration Vehicle Service Module Ascent Abort Coverage
NASA Technical Reports Server (NTRS)
Tedesco, Mark B.; Evans, Bryan M.; Merritt, Deborah S.; Falck, Robert D.
2007-01-01
The Crew Exploration Vehicle (CEV) is required to maintain continuous abort capability from lift off through destination arrival. This requirement is driven by the desire to provide the capability to safely return the crew to Earth after failure scenarios during the various phases of the mission. This paper addresses abort trajectory design considerations, concept of operations and guidance algorithm prototypes for the portion of the ascent trajectory following nominal jettison of the Launch Abort System (LAS) until safe orbit insertion. Factors such as abort system performance, crew load limits, natural environments, crew recovery, and vehicle element disposal were investigated to determine how to achieve continuous vehicle abort capability.
Integrated Systems Health Management for Intelligent Systems
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Melcher, Kevin
2011-01-01
The implementation of an integrated system health management (ISHM) capability is fundamentally linked to the management of data, information, and knowledge (DIaK) with the purposeful objective of determining the health of a system. Management implies storage, distribution, sharing, maintenance, processing, reasoning, and presentation. ISHM is akin to having a team of experts who are all individually and collectively observing and analyzing a complex system, and communicating effectively with each other in order to arrive at an accurate and reliable assessment of its health. In this chapter, concepts, procedures, and approaches are presented as a foundation for implementing an ISHM capability relevant to intelligent systems. The capability stresses integration of DIaK from all elements of a system, emphasizing an advance toward an on-board, autonomous capability. Both ground-based and on-board ISHM capabilities are addressed. The information presented is the result of many years of research, development, and maturation of technologies, and of prototype implementations in operational systems.
The Superheavy Elements and Anti-Gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anastasovski, Petar K.
2004-02-04
The essence of any propulsion concept is to overcome gravity. Anti-gravity is a natural means to achieve this. Thus, the technology to pursue anti-gravity, by using superheavy elements, may provide a new propulsion paradigm. The theory of superluminal relativity provides a hypothesis for existence of elements with atomic number up to Z = 145, some of which may possess anti-gravity properties. Analysis results show that curved space-time exists demonstrating both gravitic and anti-gravitic properties not only around nuclei but inside the nuclei as well. Two groups of elements (Z < 64 and 63 < Z <145) exist that demonstrate thesemore » capabilities. The nuclei of the first group of elements have the masses with only the property of gravity. The nuclei of the elements of the second group have the masses with both properties: gravity and anti-gravity in two different ranges of curved space-time around the nuclei.. The hypothetical element with Z = 145 is the unique among all elements whose nucleus has only anti-gravity property. It is proposed that this element be named Hawking, in honour of Stephen W. Hawking.« less
The Superheavy Elements and Anti-Gravity
NASA Astrophysics Data System (ADS)
Anastasovski, Petar K.
2004-02-01
The essence of any propulsion concept is to overcome gravity. Anti-gravity is a natural means to achieve this. Thus, the technology to pursue anti-gravity, by using superheavy elements, may provide a new propulsion paradigm. The theory of superluminal relativity provides a hypothesis for existence of elements with atomic number up to Z = 145, some of which may possess anti-gravity properties. Analysis results show that curved space-time exists demonstrating both gravitic and anti-gravitic properties not only around nuclei but inside the nuclei as well. Two groups of elements (Z < 64 and 63 < Z <145) exist that demonstrate these capabilities. The nuclei of the first group of elements have the masses with only the property of gravity. The nuclei of the elements of the second group have the masses with both properties: gravity and anti-gravity in two different ranges of curved space-time around the nuclei.. The hypothetical element with Z = 145 is the unique among all elements whose nucleus has only anti-gravity property. It is proposed that this element be named Hawking, in honour of Stephen W. Hawking.
2009-09-01
Group V element to make them n or p material. Another common group of semiconductors are called III–V compounds , such as gallium arsenide (GaAs), or...these compounds used for photovoltaics are Cadmium Telluride (CdTe), and Copper Indium Gallium DiSelenide, commonly referred to as CIGS [49]. Figure...INDIUM GALLIUM DISELENIDE PHOTOVOLTAIC CELLS TO EXTEND THE ENDURANCE AND CAPABILITIES OF UNMANNED AERIAL VEHICLES by William R. Hurd
Array-based, parallel hierarchical mesh refinement algorithms for unstructured meshes
Ray, Navamita; Grindeanu, Iulian; Zhao, Xinglin; ...
2016-08-18
In this paper, we describe an array-based hierarchical mesh refinement capability through uniform refinement of unstructured meshes for efficient solution of PDE's using finite element methods and multigrid solvers. A multi-degree, multi-dimensional and multi-level framework is designed to generate the nested hierarchies from an initial coarse mesh that can be used for a variety of purposes such as in multigrid solvers/preconditioners, to do solution convergence and verification studies and to improve overall parallel efficiency by decreasing I/O bandwidth requirements (by loading smaller meshes and in memory refinement). We also describe a high-order boundary reconstruction capability that can be used tomore » project the new points after refinement using high-order approximations instead of linear projection in order to minimize and provide more control on geometrical errors introduced by curved boundaries.The capability is developed under the parallel unstructured mesh framework "Mesh Oriented dAtaBase" (MOAB Tautges et al. (2004)). We describe the underlying data structures and algorithms to generate such hierarchies in parallel and present numerical results for computational efficiency and effect on mesh quality. Furthermore, we also present results to demonstrate the applicability of the developed capability to study convergence properties of different point projection schemes for various mesh hierarchies and to a multigrid finite-element solver for elliptic problems.« less
Safe traffic : Vision Zero on the move
DOT National Transportation Integrated Search
2006-03-01
Vision Zero is composed of several basic : elements, each of which affects safety in : road traffic. These concerns ethics, human : capability and tolerance, responsibility, : scientific facts and a realisation that the : different components in the ...
Kleinbach, Christian; Martynenko, Oleksandr; Promies, Janik; Haeufle, Daniel F B; Fehr, Jörg; Schmitt, Syn
2017-09-02
In the state of the art finite element AHBMs for car crash analysis in the LS-DYNA software material named *MAT_MUSCLE (*MAT_156) is used for active muscles modeling. It has three elements in parallel configuration, which has several major drawbacks: restraint approximation of the physical reality, complicated parameterization and absence of the integrated activation dynamics. This study presents implementation of the extended four element Hill-type muscle model with serial damping and eccentric force-velocity relation including [Formula: see text] dependent activation dynamics and internal method for physiological muscle routing. Proposed model was implemented into the general-purpose finite element (FE) simulation software LSDYNA as a user material for truss elements. This material model is verified and validated with three different sets of mammalian experimental data, taken from the literature. It is compared to the *MAT_MUSCLE (*MAT_156) Hill-type muscle model already existing in LS-DYNA, which is currently used in finite element human body models (HBMs). An application example with an arm model extracted from the FE ViVA OpenHBM is given, taking into account physiological muscle paths. The simulation results show better material model accuracy, calculation robustness and improved muscle routing capability compared to *MAT_156. The FORTRAN source code for the user material subroutine dyn21.f and the muscle parameters for all simulations, conducted in the study, are given at https://zenodo.org/record/826209 under an open source license. This enables a quick application of the proposed material model in LS-DYNA, especially in active human body models (AHBMs) for applications in automotive safety.
Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.; Phillips, Brandon S.
2015-01-01
CubeSats, Communication Satellites, and Outer Planet Science Satellites all share one thing in common: Mission success depends on maintaining power in the harsh space environment. For a vast majority of satellites, spacecraft power is sourced by a photovoltaic (PV) array system. Built around PV cells, the array systems also include wiring, substrates, connectors, and protection diodes. Each of these components must function properly throughout the mission in order for power production to remain at nominal levels. Failure of even one component can lead to a crippling loss of power. To help ensure PV array systems do not suffer failures on-orbit due to the space environment, NASA's Marshall Space Flight Center (MSFC) has developed a wide ranging test and evaluation capability. Key elements of this capability include: Testing: a. Ultraviolet (UV) Exposure b. Charged Particle Radiation (Electron and Proton) c. Thermal Cycling d. Plasma and Beam Environments Evaluation: a. Electrostatic Discharge (ESD) Screening b. Optical Inspection and easurement c. PV Power Output including Large Area Pulsed Solar Simulator (LAPSS) measurements This paper will describe the elements of the space environment which particularly impact PV array systems. MSFC test capabilities will be described to show how the relevant space environments can be applied to PV array systems in the laboratory. A discussion of MSFC evaluation capabilities will also be provided. The sample evaluation capabilities offer test engineers a means to quantify the effects of the space environment on their PV array system or component. Finally, examples will be shown of the effects of the space environment on actual PV array materials tested at MSFC.
Frequency response function (FRF) based updating of a laser spot welded structure
NASA Astrophysics Data System (ADS)
Zin, M. S. Mohd; Rani, M. N. Abdul; Yunus, M. A.; Sani, M. S. M.; Wan Iskandar Mirza, W. I. I.; Mat Isa, A. A.
2018-04-01
The objective of this paper is to present frequency response function (FRF) based updating as a method for matching the finite element (FE) model of a laser spot welded structure with a physical test structure. The FE model of the welded structure was developed using CQUAD4 and CWELD element connectors, and NASTRAN was used to calculate the natural frequencies, mode shapes and FRF. Minimization of the discrepancies between the finite element and experimental FRFs was carried out using the exceptional numerical capability of NASTRAN Sol 200. The experimental work was performed under free-free boundary conditions using LMS SCADAS. Avast improvement in the finite element FRF was achieved using the frequency response function (FRF) based updating with two different objective functions proposed.
Finite element dynamic analysis on CDC STAR-100 computer
NASA Technical Reports Server (NTRS)
Noor, A. K.; Lambiotte, J. J., Jr.
1978-01-01
Computational algorithms are presented for the finite element dynamic analysis of structures on the CDC STAR-100 computer. The spatial behavior is described using higher-order finite elements. The temporal behavior is approximated by using either the central difference explicit scheme or Newmark's implicit scheme. In each case the analysis is broken up into a number of basic macro-operations. Discussion is focused on the organization of the computation and the mode of storage of different arrays to take advantage of the STAR pipeline capability. The potential of the proposed algorithms is discussed and CPU times are given for performing the different macro-operations for a shell modeled by higher order composite shallow shell elements having 80 degrees of freedom.
The GPRIME approach to finite element modeling
NASA Technical Reports Server (NTRS)
Wallace, D. R.; Mckee, J. H.; Hurwitz, M. M.
1983-01-01
GPRIME, an interactive modeling system, runs on the CDC 6000 computers and the DEC VAX 11/780 minicomputer. This system includes three components: (1) GPRIME, a user friendly geometric language and a processor to translate that language into geometric entities, (2) GGEN, an interactive data generator for 2-D models; and (3) SOLIDGEN, a 3-D solid modeling program. Each component has a computer user interface of an extensive command set. All of these programs make use of a comprehensive B-spline mathematics subroutine library, which can be used for a wide variety of interpolation problems and other geometric calculations. Many other user aids, such as automatic saving of the geometric and finite element data bases and hidden line removal, are available. This interactive finite element modeling capability can produce a complete finite element model, producing an output file of grid and element data.
Signal connection for a downhole tool string
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Bradford, Kline; Fox, Joe; Briscoe, Michael
2006-08-29
A signal transmission connection for a tool string used in exploration and production of natural resources, namely: oil, gas, and geothermal energy resources. The connection comprises first and second annular elements deployed in cooperative association with each other. The respective elements comprise inductive transducers that are capable of two-way signal transmission between each other, with downhole components of the tool string, and with ground-level equipment. The respective inductive transducers comprise one or more conductive loops housed within ferrite troughs, or within ferrite trough segments. When energized, the conductive loops produce a magnetic field suitable for transmitting the signal. The second element may be rotational in drilling applications. The respective elements may be fitted with electronic equipment to aid and manipulate the transmission of the signal. The first element may also be in communication with the World Wide Web.
Modelling of thick composites using a layerwise laminate theory
NASA Technical Reports Server (NTRS)
Robbins, D. H., Jr.; Reddy, J. N.
1993-01-01
The layerwise laminate theory of Reddy (1987) is used to develop a layerwise, two-dimensional, displacement-based, finite element model of laminated composite plates that assumes a piecewise continuous distribution of the tranverse strains through the laminate thickness. The resulting layerwise finite element model is capable of computing interlaminar stresses and other localized effects with the same level of accuracy as a conventional 3D finite element model. Although the total number of degrees of freedom are comparable in both models, the layerwise model maintains a 2D-type data structure that provides several advantages over a conventional 3D finite element model, e.g. simplified input data, ease of mesh alteration, and faster element stiffness matrix formulation. Two sample problems are provided to illustrate the accuracy of the present model in computing interlaminar stresses for laminates in bending and extension.
A novel FPGA-programmable switch matrix interconnection element in quantum-dot cellular automata
NASA Astrophysics Data System (ADS)
Hashemi, Sara; Rahimi Azghadi, Mostafa; Zakerolhosseini, Ali; Navi, Keivan
2015-04-01
The Quantum-dot cellular automata (QCA) is a novel nanotechnology, promising extra low-power, extremely dense and very high-speed structure for the construction of logical circuits at a nanoscale. In this paper, initially previous works on QCA-based FPGA's routing elements are investigated, and then an efficient, symmetric and reliable QCA programmable switch matrix (PSM) interconnection element is introduced. This element has a simple structure and offers a complete routing capability. It is implemented using a bottom-up design approach that starts from a dense and high-speed 2:1 multiplexer and utilise it to build the target PSM interconnection element. In this study, simulations of the proposed circuits are carried out using QCAdesigner, a layout and simulation tool for QCA circuits. The results demonstrate high efficiency of the proposed designs in QCA-based FPGA routing.
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
1992-01-01
An overview is presented of government contributions to the program called Design Analysis Methods for Vibrations (DAMV) which attempted to develop finite-element-based analyses of rotorcraft vibrations. NASA initiated the program with a finite-element modeling program for the CH-47D tandem-rotor helicopter. The DAMV program emphasized four areas including: airframe finite-element modeling, difficult components studies, coupled rotor-airframe vibrations, and airframe structural optimization. Key accomplishments of the program include industrywide standards for modeling metal and composite airframes, improved industrial designs for vibrations, and the identification of critical structural contributors to airframe vibratory responses. The program also demonstrated the value of incorporating secondary modeling details to improving correlation, and the findings provide the basis for an improved finite-element-based dynamics design-analysis capability.
Contaminant and other elements in soil (CCQM-K127)
NASA Astrophysics Data System (ADS)
Rocio Arvizu Torres, M.; Manzano, J. Velina Lara; Valle Moya, Edith; Horvat, Milena; Jaćimović, Radojko; Zuliani, Tea; Vreča, Polona; Acosta, Osvaldo; Bennet, John; Snell, James; Almeida, Marcelo D.; de Sena, Rodrigo C.; Dutra, Emily S.; Yang, Lu; Li, Haifeng
2017-01-01
Non-contaminated soils contain trace and major elements at levels representing geochemical background of the region. The main sources of elements as contaminants/pollutants in soils are mining and smelting activities, fossil fuel combustion, agricultural practices, industrial activities and waste disposal. Contaminated/polluted sites are of great concern and represent serious environmental, health and economic problems. Characterization and identification of contaminated land is the first step in risk assessment and remediation activities. It is well known that soil is a complex matrix with huge variation locally and worldwide. According to the IAWG's five year plan, it is recommended to have a key comparison under the measurement service category of soils and sediments for the year 2015. Currently 13 NMI has claimed calibration and measurement capabilities (CMCs) in category 13 (sediments, soils, ores, and particulates): 29 CMCs in soil and 96 CMCs in sediments. In this regard this is a follow-up comparison in the category 13; wherein three key comparisons have been carried out during the years 2000 (CCQM-K13), 2003 (CCQM-K28) and 2004 (CCQM-K44). Since it is important to update the capabilities of NMIs in this category. CENAM and JSI proposed a key comparison in this category and a pilot study in parallel. The proposed study was agreed by IAWG members, where two soils samples were used in both CCQM-K127 representing a non-contaminated soil with low contents of elements (arsenic, cadmium, iron, lead and manganese), and a contaminated soil with much higher content of selected elements (arsenic, cadmium, iron and lead). This broadens the scope and a degree of complexity of earlier measurements in this field. National metrology institutes (NMIs)/designate institutes (DIs) should, therefore, demonstrate their measurement capabilities of trace and major elements in a wide concentration ranges, representing background/reference sites as well as highly contaminated soils by their available analytical methods. This facilitated the investigation into the core capabilities of participants to measure the mass fraction of tested elements in soil and therefore to claim their CMCs as listed in appendix C of the key comparison database (KCDB) under the mutual recognition arrangement of the International Committee for Weights and Measures (CIPM MRA). In total 19 institutes (NMIs/Dis) participated in the key comparison and the reported results of the key comparison were from 18 institutes (NMIs/DIs); 151 measurements were reported for CCQM-K127. The analytical techniques selected by the participant institutes were ICP-MS, ICP-OES, FAAS, ET-AAS and INAA (k0-method of INAA); the sample preparation methods used were based on microwave assisted digestion, except when it was used INAA. After discussions it agreed to use the median as KCRV and the MMADe as u(xKCRV). Generally most of the results of the participants were found to be consistent for all measurements according to their equivalence statements, with the exception of some extreme values, which were identified with a value of di/U(di) higher than 1. This key comparison is a means of providing evidence for practical demonstration of a CCQM comparison calibration and measurement capabilities (CMCs) claims for contaminant and others elements, in low and medium content levels in non-contaminated and contaminated matrices described in category 13. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
1995-09-01
Wright-Patterson Air Force_Ejase, Ohio "DISTRIBUTION STATMENT A Appr°ved for P0^ relea80; Distribution unlimited Accesion For AFTT/GLM/LAL/95S-2...Two-Level Maintenance is one element in the LL architecture . Other elements that address the need for the reliable, high velocity transportation of...of these studies has changed to reflect the [Defense] Department’s increasing concern with readiness and sustainability . Their recommendations
CELFE/NASTRAN Code for the Analysis of Structures Subjected to High Velocity Impact
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1978-01-01
CELFE (Coupled Eulerian Lagrangian Finite Element)/NASTRAN Code three-dimensional finite element code has the capability for analyzing of structures subjected to high velocity impact. The local response is predicted by CELFE and, for large problems, the far-field impact response is predicted by NASTRAN. The coupling of the CELFE code with NASTRAN (CELFE/NASTRAN code) and the application of the code to selected three-dimensional high velocity impact problems are described.
Method for detection of antibodies for metallic elements
Barrick, C.W.; Clarke, S.M.; Nordin, C.W.
1993-11-30
An apparatus and method for detecting antibodies specific to non-protein antigens. The apparatus is an immunological plate containing a plurality of plastic projections coated with a non-protein material. Assays utilizing the plate are capable of stabilizing the non-protein antigens with detection levels for antibodies specific to the antigens on a nanogram level. A screening assay with the apparatus allows for early detection of exposure to non-protein materials. Specifically metallic elements are detected. 10 figures.
A multi-parameter optical fiber sensor with interrogation and discrimination capabilities
NASA Astrophysics Data System (ADS)
Zhan, Yage; Wu, Hua; Yang, Qinyu; Pei, Jincheng; Yang, Xichun
2009-11-01
A multi-parameter and multi-function, but low-cost, optical fiber grating sensor with self-interrogation and self-discrimination capabilities is presented theoretically and experimentally. The sensor bases on three fiber Bragg gratings (FBG) and one fiber long period grating (LPG). Strain, vibration, pressure, ordinary temperature (-10 to 100 °C) and high temperature (100-800 °C) can be measured by the sensor. When high temperature (100-800 °C) is measured, the LPG is used as a high temperture sensor head and FBG 1 is used as an interrogation element. Alternatively, when one of the other four measurands is measured, FBG 1 (or FBG 2) is used as a sensor head and LPG is used as an interrogation element. When two of the other four measurands are measured simultaneously, FBG 1 and FBG 2 are used as sensor heads and LPG is used as a shared interrogation element. FBG 3 is used as a reference element to eliminate the errors resulted from light source fluctuation and the cross-sensitivity between measurand and environmental temperature. The measurands can be interrogated according to the signals of the photodiodes (PDs), which are related to the relative wavelength shift of the LPG and the FBGs. Experimental results agree well with theoretical analyses. The interrogation scheme is immune to light source fluctuation and the cross-sensitivity between measurands and enviromental temperature, and also the dynamic range is large.
NASA Technical Reports Server (NTRS)
Collins, J. D.; Volakis, John L.
1992-01-01
A method that combines the finite element and boundary integral techniques for the numerical solution of electromagnetic scattering problems is presented. The finite element method is well known for requiring a low order storage and for its capability to model inhomogeneous structures. Of particular emphasis in this work is the reduction of the storage requirement by terminating the finite element mesh on a boundary in a fashion which renders the boundary integrals in convolutional form. The fast Fourier transform is then used to evaluate these integrals in a conjugate gradient solver, without a need to generate the actual matrix. This method has a marked advantage over traditional integral equation approaches with respect to the storage requirement of highly inhomogeneous structures. Rectangular, circular, and ogival mesh termination boundaries are examined for two-dimensional scattering. In the case of axially symmetric structures, the boundary integral matrix storage is reduced by exploiting matrix symmetries and solving the resulting system via the conjugate gradient method. In each case several results are presented for various scatterers aimed at validating the method and providing an assessment of its capabilities. Important in methods incorporating boundary integral equations is the issue of internal resonance. A method is implemented for their removal, and is shown to be effective in the two-dimensional and three-dimensional applications.
Microstrip Antenna for Remote Sensing of Soil Moisture and Sea Surface Salinity
NASA Technical Reports Server (NTRS)
Ramhat-Samii, Yahya; Kona, Keerti; Manteghi, Majid; Dinardo, Steven; Hunter, Don; Njoku, Eni; Wilson, Wiliam; Yueh, Simon
2009-01-01
This compact, lightweight, dual-frequency antenna feed developed for future soil moisture and sea surface salinity (SSS) missions can benefit future soil and ocean studies by lowering mass, volume, and cost of the antenna system. It also allows for airborne soil moisture and salinity remote sensors operating on small aircraft. While microstrip antenna technology has been developed for radio communications, it has yet to be applied to combined radar and radiometer for Earth remote sensing. The antenna feed provides a key instrument element enabling high-resolution radiometric observations with large, deployable antennas. The design is based on the microstrip stacked-patch array (MSPA) used to feed a large, lightweight, deployable, rotating mesh antenna for spaceborne L-band (approximately equal to 1 GHz) passive and active sensing systems. The array consists of stacked patches to provide dual-frequency capability and suitable radiation patterns. The stacked-patch microstrip element was designed to cover the required L-band center frequencies at 1.26 GHz (lower patch) and 1.413 GHz (upper patch), with dual-linear polarization capabilities. The dimension of patches produces the required frequencies. To achieve excellent polarization isolation and control of antenna sidelobes for the MSPA, the orientation of each stacked-patch element within the array is optimized to reduce the cross-polarization. A specialized feed-distribution network was designed to achieve the required excitation amplitude and phase for each stacked-patch element.
High power transcranial beam steering for ultrasonic brain therapy
Pernot, Mathieu; Aubry, Jean-François; Tanter, Mickaël; Thomas, Jean-Louis; Fink, Mathias
2003-01-01
A sparse phased array is specially designed for non-invasive ultrasound transskull brain therapy. The array is made of 200 single-elements corresponding to a new generation of high power transducers developed in collaboration with Imasonic (Besançon, France). Each element has a surface of 0.5cm2 and works at 0.9 MHz central frequency with a maximum 20W.cm−2 intensity on the transducer surface. In order to optimize the steering capabilities of the array, several transducers distributions on a spherical surface are simulated: hexagonal, annular, and quasi-random distributions. Using a quasi-random distribution significantly reduces the grating lobes. Furthermore, the simulations show the capability of the quasi-random array to electronically move the focal spot in the vicinity of the geometrical focus (up to +/− 15 mm). Based on the simulation study, the array is constructed and tested. The skull aberrations are corrected by using a time reversal mirror with amplitude correction achieved thanks to an implantable hydrophone, and a sharp focus is obtained through a human skull. Several lesions are induced in fresh liver and brain samples through human skulls, demonstrating the accuracy and the steering capabilities of the system. PMID:12974575
Pre- and post-processing for Cosmic/NASTRAN on personal computers and mainframes
NASA Technical Reports Server (NTRS)
Kamel, H. A.; Mobley, A. V.; Nagaraj, B.; Watkins, K. W.
1986-01-01
An interface between Cosmic/NASTRAN and GIFTS has recently been released, combining the powerful pre- and post-processing capabilities of GIFTS with Cosmic/NASTRAN's analysis capabilities. The interface operates on a wide range of computers, even linking Cosmic/NASTRAN and GIFTS when the two are on different computers. GIFTS offers a wide range of elements for use in model construction, each translated by the interface into the nearest Cosmic/NASTRAN equivalent; and the options of automatic or interactive modelling and loading in GIFTS make pre-processing easy and effective. The interface itself includes the programs GFTCOS, which creates the Cosmic/NASTRAN input deck (and, if desired, control deck) from the GIFTS Unified Data Base, COSGFT, which translates the displacements from the Cosmic/NASTRAN analysis back into GIFTS; and HOSTR, which handles stress computations for a few higher-order elements available in the interface, but not supported by the GIFTS processor STRESS. Finally, the versatile display options in GIFTS post-processing allow the user to examine the analysis results through an especially wide range of capabilities, including such possibilities as creating composite loading cases, plotting in color and animating the analysis.
NASA Astrophysics Data System (ADS)
Toll, D.; Friedl, L.; Entin, J.; Engman, E.
2006-12-01
The NASA Water Management Program addresses concerns and decision making related to water availability, water forecast and water quality. The goal of the Water Management Program Element is to encourage water management organizations to use NASA Earth science data, models products, technology and other capabilities in their decision support tools (DSTs) for problem solving. The goal of the NASA Rapid Prototyping Capability (RPC) is to speed the evaluation of these NASA products and technologies to improve current and future DSTs by reducing the time to access, configure, and assess the effectiveness of NASA products and technologies. The NASA Water Management Program Element partners with Federal agencies, academia, private firms, and may include international organizations. Currently, the NASA Water Management Program oversees eight application projects. However, water management is a very broad descriptor of a much larger number of activities that are carried out to insure safe and plentiful water supply for humans, industry and agriculture, promote environmental stewardship, and mitigate disaster such as floods and droughts. The goal of this presentation is to summarize how the RPC may further enhance the effectiveness of using NASA products for water management applications.
Lunar base - A stepping stone to Mars
NASA Technical Reports Server (NTRS)
Duke, M. B.; Mendell, W. W.; Roberts, B. B.
1985-01-01
Basic elements of technology and programmatic development are identified that appear relevant to the Case for Mars, starting from a base on the moon. The moon is a logical stepping stone toward human exploration of Mars because a lunar base can provide the first test of human ability to use the resources of another planetary body to provide basic materials for life support. A lunar base can provide the first long-term test of human capability to work and live in a reduced (but not zero) gravity field. A lunar base requires creation of the elements of a space transportation system that will be necessary to deliver large payloads to Mars and the space operations capability and experience necessary to carry out a Mars habitation program efficiently and with high reliability. A lunar base is feasible for the first decade of the 21st Century. Scenarios have been studied that provide advanced capability by 2015 within budget levels that are less than historical U.S. space expenditures (Apollo). Early return on the investment in terms of knowledge, practical experience and lunar products are important in gaining momentum for an expanded human exploration of the solar system and the eventual colonization of Mars.
Development of Torsional and Linear Piezoelectrically Driven Motors
NASA Technical Reports Server (NTRS)
Duong, Khanh; Newton, David; Garcia, Ephrahim
1996-01-01
The development of rotary and linear inchworm-motors using piezoelectric actuators is presented. The motors' design has the advantage of a macro and micro stepper motor with high load and speed. The torsional design is capable of fast angular positioning with micro level accuracy. Additionally, the rotary motor, as designed, can be used as a clutch/brake mechanism. Constructed prototype motors of both types along with their characteristics are presented. The torsional motor consists of a torsional section that provides angular displacement and torque, and two alternating clamping sections which provide the holding force. The motor relies on the principal piezoelectric coupling coefficient (d33) with no torsional elements, increasing its torque capability. The linear motor consists of a longitudinal vibrator that provides displacement and load, and two alternating clamping sections which provide the holding force. This design eliminates bending moment, tension and shear applied to the actuator elements, increase its load capability and life. Innovative flexure designs have been introduced for both motor types. Critical issues that affect the design and performance of the motors are explored and discussed. Experiments are performed demonstrating the motor prototypes based on the aforementioned design considerations.
High power transcranial beam steering for ultrasonic brain therapy
NASA Astrophysics Data System (ADS)
Pernot, M.; Aubry, J.-F.; Tanter, M.; Thomas, J.-L.; Fink, M.
2003-08-01
A sparse phased array is specially designed for non-invasive ultrasound transskull brain therapy. The array is made of 200 single elements corresponding to a new generation of high power transducers developed in collaboration with Imasonic (Besançon, France). Each element has a surface of 0.5 cm2 and works at 0.9 MHz central frequency with a maximum 20 W cm-2 intensity on the transducer surface. In order to optimize the steering capabilities of the array, several transducer distributions on a spherical surface are simulated: hexagonal, annular and quasi-random distributions. Using a quasi-random distribution significantly reduces the grating lobes. Furthermore, the simulations show the capability of the quasi-random array to electronically move the focal spot in the vicinity of the geometrical focus (up to +/-15 mm). Based on the simulation study, the array is constructed and tested. The skull aberrations are corrected by using a time reversal mirror with amplitude correction achieved thanks to an implantable hydrophone, and a sharp focus is obtained through a human skull. Several lesions are induced in fresh liver and brain samples through human skulls, demonstrating the accuracy and the steering capabilities of the system.
Engineering Sciences Strategic Leadership Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, Heidi A.
The purpose of this report is to promote the three key elements of engineering capabilities, staff and engagement in coordination with an R&D investment cycle; and establish an Engineering Steering Council to own and guide this leadership plan.
Prospecting for Diverse Igneous Rock Types on Mars: PIXL on "Black Beauty" NWA 7533
NASA Technical Reports Server (NTRS)
Liu, Yang; Flannery, David T.; Allwood, Abigail; Thompson, David R.; Hodyss, Robert; Clark, Benton C.; Elam, W. Timothy; Hurowitz, Joel A.
2015-01-01
Measurements of elemental chemistry are fundamental for exploring geology Almost every mars surface mission has had this capability But previous instruments have not been able to accurately correlate chemistry with texture.
ZIP3D: An elastic and elastic-plastic finite-element analysis program for cracked bodies
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Newman, J. C., Jr.
1990-01-01
ZIP3D is an elastic and an elastic-plastic finite element program to analyze cracks in three dimensional solids. The program may also be used to analyze uncracked bodies or multi-body problems involving contacting surfaces. For crack problems, the program has several unique features including the calculation of mixed-mode strain energy release rates using the three dimensional virtual crack closure technique, the calculation of the J integral using the equivalent domain integral method, the capability to extend the crack front under monotonic or cyclic loading, and the capability to close or open the crack surfaces during cyclic loading. The theories behind the various aspects of the program are explained briefly. Line-by-line data preparation is presented. Input data and results for an elastic analysis of a surface crack in a plate and for an elastic-plastic analysis of a single-edge-crack-tension specimen are also presented.
The Automated Logistics Element Planning System (ALEPS)
NASA Technical Reports Server (NTRS)
Schwaab, Douglas G.
1992-01-01
ALEPS, which is being developed to provide the SSF program with a computer system to automate logistics resupply/return cargo load planning and verification, is presented. ALEPS will make it possible to simultaneously optimize both the resupply flight load plan and the return flight reload plan for any of the logistics carriers. In the verification mode ALEPS will support the carrier's flight readiness reviews and control proper execution of the approved plans. It will also support the SSF inventory management system by providing electronic block updates to the inventory database on the cargo arriving at or departing the station aboard a logistics carrier. A prototype drawer packing algorithm is described which is capable of generating solutions for 3D packing of cargo items into a logistics carrier storage accommodation. It is concluded that ALEPS will provide the capability to generate and modify optimized loading plans for the logistics elements fleet.
Thermal Analysis of Small Re-Entry Probe
NASA Technical Reports Server (NTRS)
Agrawal, Parul; Prabhu, Dinesh K.; Chen, Y. K.
2012-01-01
The Small Probe Reentry Investigation for TPS Engineering (SPRITE) concept was developed at NASA Ames Research Center to facilitate arc-jet testing of a fully instrumented prototype probe at flight scale. Besides demonstrating the feasibility of testing a flight-scale model and the capability of an on-board data acquisition system, another objective for this project was to investigate the capability of simulation tools to predict thermal environments of the probe/test article and its interior. This paper focuses on finite-element thermal analyses of the SPRITE probe during the arcjet tests. Several iterations were performed during the early design phase to provide critical design parameters and guidelines for testing. The thermal effects of ablation and pyrolysis were incorporated into the final higher-fidelity modeling approach by coupling the finite-element analyses with a two-dimensional thermal protection materials response code. Model predictions show good agreement with thermocouple data obtained during the arcjet test.
The Single Habitat Module Concept for Exploration - Mission Planning and Mass Estimates
NASA Technical Reports Server (NTRS)
Chambliss, Joe
2013-01-01
The Single Habitat Module (SHM) concept approach to the infrastructure and conduct of exploration missions combines many of the new promising technologies with a central concept of mission architectures that use a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper provides a review of the SHM concept, the advantages it provides, trajectory assessments related to use of a high specific impulse space based propulsion system, advances in mission planning and new mass estimates.
Sierra/Solid Mechanics 4.48 User's Guide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merewether, Mark Thomas; Crane, Nathan K; de Frias, Gabriel Jose
Sierra/SolidMechanics (Sierra/SM) is a Lagrangian, three-dimensional code for finite element analysis of solids and structures. It provides capabilities for explicit dynamic, implicit quasistatic and dynamic analyses. The explicit dynamics capabilities allow for the efficient and robust solution of models with extensive contact subjected to large, suddenly applied loads. For implicit problems, Sierra/SM uses a multi-level iterative solver, which enables it to effectively solve problems with large deformations, nonlinear material behavior, and contact. Sierra/SM has a versatile library of continuum and structural elements, and a large library of material models. The code is written for parallel computing environments enabling scalable solutionsmore » of extremely large problems for both implicit and explicit analyses. It is built on the SIERRA Framework, which facilitates coupling with other SIERRA mechanics codes. This document describes the functionality and input syntax for Sierra/SM.« less
NASA Technical Reports Server (NTRS)
Skillen, Michael D.; Crossley, William A.
2008-01-01
This report documents a series of investigations to develop an approach for structural sizing of various morphing wing concepts. For the purposes of this report, a morphing wing is one whose planform can make significant shape changes in flight - increasing wing area by 50% or more from the lowest possible area, changing sweep 30 or more, and / or increasing aspect ratio by as much as 200% from the lowest possible value. These significant changes in geometry mean that the underlying load-bearing structure changes geometry. While most finite element analysis packages provide some sort of structural optimization capability, these codes are not amenable to making significant changes in the stiffness matrix to reflect the large morphing wing planform changes. The investigations presented here use a finite element code capable of aeroelastic analysis in three different optimization approaches -a "simultaneous analysis" approach, a "sequential" approach, and an "aggregate" approach.
Space station related investigations in Europe
NASA Astrophysics Data System (ADS)
Wienss, W.; Vallerain, E.
1984-10-01
Studies pertaining to the definition of Europe's role in the Space Station program are described, with consideration given to such elements as pressurized modules as laboratories for materials processing and life sciences, unpressurized elements, and service vehicles for on-orbit maintenance and repair activities. Candidate elements were selected against such criteria as clean interfaces, the satisfaction of European user needs, new technology items, and European financial capabilities; and their technical and programmatic implications were examined. Different scenarios were considered, ranging from a fully Space-Station-dependent case to a completely autonomous, free-flying man-tendable configuration. Recommendations on a collaboration between Europe and the United States are presented.
Parallel processors and nonlinear structural dynamics algorithms and software
NASA Technical Reports Server (NTRS)
Belytschko, Ted; Gilbertsen, Noreen D.; Neal, Mark O.; Plaskacz, Edward J.
1989-01-01
The adaptation of a finite element program with explicit time integration to a massively parallel SIMD (single instruction multiple data) computer, the CONNECTION Machine is described. The adaptation required the development of a new algorithm, called the exchange algorithm, in which all nodal variables are allocated to the element with an exchange of nodal forces at each time step. The architectural and C* programming language features of the CONNECTION Machine are also summarized. Various alternate data structures and associated algorithms for nonlinear finite element analysis are discussed and compared. Results are presented which demonstrate that the CONNECTION Machine is capable of outperforming the CRAY XMP/14.
A boundary element method for steady incompressible thermoviscous flow
NASA Technical Reports Server (NTRS)
Dargush, G. F.; Banerjee, P. K.
1991-01-01
A boundary element formulation is presented for moderate Reynolds number, steady, incompressible, thermoviscous flows. The governing integral equations are written exclusively in terms of velocities and temperatures, thus eliminating the need for the computation of any gradients. Furthermore, with the introduction of reference velocities and temperatures, volume modeling can often be confined to only a small portion of the problem domain, typically near obstacles or walls. The numerical implementation includes higher order elements, adaptive integration and multiregion capability. Both the integral formulation and implementation are discussed in detail. Several examples illustrate the high level of accuracy that is obtainable with the current method.
Neal, R.B.
1957-12-17
An improved triggered spark gap switch is described, capable of precisely controllable firing time while switching very large amounts of power. The invention in general comprises three electrodes adjustably spaced and adapted to have a large potential impressed between the outer electrodes. The central electrode includes two separate elements electrically connected togetaer and spaced apart to define a pair of spark gaps between the end electrodes. Means are provided to cause the gas flow in the switch to pass towards the central electrode, through a passage in each separate element, and out an exit disposed between the two separate central electrode elements in order to withdraw ions from the spark gap.
Modeling of Triangular Lattice Space Structures with Curved Battens
NASA Technical Reports Server (NTRS)
Chen, Tzikang; Wang, John T.
2005-01-01
Techniques for simulating an assembly process of lattice structures with curved battens were developed. The shape of the curved battens, the tension in the diagonals, and the compression in the battens were predicted for the assembled model. To be able to perform the assembly simulation, a cable-pulley element was implemented, and geometrically nonlinear finite element analyses were performed. Three types of finite element models were created from assembled lattice structures for studying the effects of design and modeling variations on the load carrying capability. Discrepancies in the predictions from these models were discussed. The effects of diagonal constraint failure were also studied.
High-Performance, Radiation-Hardened Electronics for Space and Lunar Environments
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Adams, James H.; Cressler, John D.; Darty, Ronald C.; Johnson, Michael A.; Patrick, Marshall C.
2008-01-01
The Radiation Hardened Electronics for Space Environments (RHESE) project develops advanced technologies needed for high performance electronic devices that will be capable of operating within the demanding radiation and thermal extremes of the space, lunar, and Martian environment. The technologies developed under this project enhance and enable avionics within multiple mission elements of NASA's Vision for Space Exploration. including the Constellation program's Orion Crew Exploration Vehicle. the Lunar Lander project, Lunar Outpost elements, and Extra Vehicular Activity (EVA) elements. This paper provides an overview of the RHESE project and its multiple task tasks, their technical approaches, and their targeted benefits as applied to NASA missions.
Mingus Discontinuous Multiphysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pat Notz, Dan Turner
Mingus provides hybrid coupled local/non-local mechanics analysis capabilities that extend several traditional methods to applications with inherent discontinuities. Its primary features include adaptations of solid mechanics, fluid dynamics and digital image correlation that naturally accommodate dijointed data or irregular solution fields by assimilating a variety of discretizations (such as control volume finite elements, peridynamics and meshless control point clouds). The goal of this software is to provide an analysis framework form multiphysics engineering problems with an integrated image correlation capability that can be used for experimental validation and model
Determining your organization's 'risk capability'.
Hannah, Bill; Hancock, Melinda
2014-05-01
An assessment of a provider's level of risk capability should focus on three key elements: Business intelligence, including sophisticated analytical models that can offer insight into the expected cost and quality of care for a given population. Clinical enterprise maturity, marked by the ability to improve health outcomes and to manage utilization and costs to drive change. Revenue transformation, emphasizing the need for a revenue cycle platform that allows for risk acceptance and management and that provides incentives for performance against defined objectives.
GRIZZLY/FAVOR Interface Project Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickson, Terry L; Williams, Paul T; Yin, Shengjun
As part of the Light Water Reactor Sustainability (LWRS) Program, the objective of the GRIZZLY/FAVOR Interface project is to create the capability to apply GRIZZLY 3-D finite element (thermal and stress) analysis results as input to FAVOR probabilistic fracture mechanics (PFM) analyses. The one benefit of FAVOR to Grizzly is the PROBABILISTIC capability. This document describes the implementation of the GRIZZLY/FAVOR Interface, the preliminary verification and tests results and a user guide that provides detailed step-by-step instructions to run the program.
NASA Astrophysics Data System (ADS)
Dahing, Lahasen@Normanshah; Yahya, Redzuan; Yahya, Roslan; Hassan, Hearie
2014-09-01
In this study, principle of prompt gamma neutron activation analysis has been used as a technique to determine the elements in the sample. The system consists of collimated isotopic neutron source, Cf-252 with HPGe detector and Multichannel Analysis (MCA). Concrete with size of 10×10×10 cm3 and 15×15×15 cm3 were analysed as sample. When neutrons enter and interact with elements in the concrete, the neutron capture reaction will occur and produce characteristic prompt gamma ray of the elements. The preliminary result of this study demonstrate the major element in the concrete was determined such as Si, Mg, Ca, Al, Fe and H as well as others element, such as Cl by analysis the gamma ray lines respectively. The results obtained were compared with NAA and XRF techniques as a part of reference and validation. The potential and the capability of neutron induced prompt gamma as tool for multi elemental analysis qualitatively to identify the elements present in the concrete sample discussed.
An Automated Method for Landmark Identification and Finite-Element Modeling of the Lumbar Spine.
Campbell, Julius Quinn; Petrella, Anthony J
2015-11-01
The purpose of this study was to develop a method for the automated creation of finite-element models of the lumbar spine. Custom scripts were written to extract bone landmarks of lumbar vertebrae and assemble L1-L5 finite-element models. End-plate borders, ligament attachment points, and facet surfaces were identified. Landmarks were identified to maintain mesh correspondence between meshes for later use in statistical shape modeling. 90 lumbar vertebrae were processed creating 18 subject-specific finite-element models. Finite-element model surfaces and ligament attachment points were reproduced within 1e-5 mm of the bone surface, including the critical contact surfaces of the facets. Element quality exceeded specifications in 97% of elements for the 18 models created. The current method is capable of producing subject-specific finite-element models of the lumbar spine with good accuracy, quality, and robustness. The automated methods developed represent advancement in the state of the art of subject-specific lumbar spine modeling to a scale not possible with prior manual and semiautomated methods.
Fléchard, Maud; Gilot, Philippe
2014-07-01
We have referenced and described Streptococcus agalactiae transposable elements encoding DDE transposases. These elements belonged to nine families of insertion sequences (ISs) and to a family of conjugative transposons (TnGBSs). An overview of the physiological impact of the insertion of all these elements is provided. DDE-transposable elements affect S. agalactiae in a number of aspects of its capability to adapt to various environments and modulate the expression of several virulence genes, the scpB-lmB genomic region and the genes involved in capsule expression and haemolysin transport being the targets of several different mobile elements. The referenced mobile elements modify S. agalactiae behaviour by transferring new gene(s) to its genome, by modifying the expression of neighbouring genes at the integration site or by promoting genomic rearrangements. Transposition of some of these elements occurs in vivo, suggesting that by dynamically regulating some adaptation and/or virulence genes, they improve the ability of S. agalactiae to reach different niches within its host and ensure the 'success' of the infectious process. © 2014 The Authors.
Huang, Kaisong; Song, Yajing; Zhang, Qiang; Zhang, Anding; Jin, Meilin
2016-12-01
This study identified a novel integrative and conjugative element (ICESsD9) carrying erm(B) and tet(O) resistance determinants in Streptococcus suis D9 and determined its prevalence in clinical isolates. Comparative genome analysis was performed using Mauve and Artemis Comparison Tool visualisation programs. Inverse PCR was utilised to detect its circular intermediate. The transfer capacity of ICESsD9 was evaluated by mating assays using S. suis A7 and Enterococcus faecalis JH2-2 as recipients. A genome walking approach was employed to analyse the characteristics of integration sites in transconjugants. A total of 118 clinical S. suis isolates were tested by PCR mapping assays to detect ICESsD9-like elements. MLST was performed on isolates containing ICESsD9 variants to determine their clonal relatedness. This 55 683-bp element can actively excise from the chromosome. Additionally, it was capable of transferring both into S. suis and E. faecalis with frequencies of 1.2×10 -4 and 5.8×10 -6 per donor, respectively. When investigating integration site features, it was found that ICESsD9 can enter S. suis and E. faecalis chromosomes by different sites, generating 15-bp and 3-bp direct repeat sequences, respectively. Twelve isolates mainly belonging to sequence types ST1, ST7 and ST28 were confirmed to harbour ICESsD9-like elements. In conclusion, this study provides the first description of an ICE in S. suis that is capable of transferring both into S. suis and E. faecalis. The presence of different ICESsD9 variants in clinical isolates suggests already wide dissemination of this family element in S. suis in China. Copyright © 2016 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.
Some thoughts on problems associated with various sampling media used for environmental monitoring
Horowitz, A.J.
1997-01-01
Modern analytical instrumentation is capable of measuring a variety of trace elements at concentrations down into the single or double digit parts-per-trillion (ng l-1) range. This holds for the three most common sample media currently used in environmental monitoring programs: filtered water, whole-water and separated suspended sediment. Unfortunately, current analytical capabilities have exceeded the current capacity to collect both uncontaminated and representative environmental samples. The success of any trace element monitoring program requires that this issue be both understood and addressed. The environmental monitoring of trace elements requires the collection of calendar- and event-based dissolved and suspended sediment samples. There are unique problems associated with the collection and chemical analyses of both types of sample media. Over the past 10 years, reported ambient dissolved trace element concentrations have declined. Generally, these decreases do not reflect better water quality, but rather improvements in the procedures used to collect, process, preserve and analyze these samples without contaminating them during these steps. Further, recent studies have shown that the currently accepted operational definition of dissolved constituents (material passing a 0.45 ??m membrane filter) is inadequat owing to sampling and processing artifacts. The existence of these artifacts raises questions about the generation of accurate, precise and comparable 'dissolved' trace element data. Suspended sediment and associated trace elements can display marked short- and long-term spatial and temporal variability. This implies that spatially representative samples only can be obtained by generating composites using depth- and width-integrated sampling techniques. Additionally, temporal variations have led to the view that the determination of annual trace element fluxes may require nearly constant (e.g., high-frequency) sampling and subsequent chemical analyses. Ultimately, sampling frequency for flux estimates becomes dependent on the time period of concern (daily, weekly, monthly, yearly) and the amount of acceptable error associated with these estimates.
NASA Astrophysics Data System (ADS)
Ming, A. B.; Qin, Z. Y.; Zhang, W.; Chu, F. L.
2013-12-01
Bearing failure is one of the most common reasons of machine breakdowns and accidents. Therefore, the fault diagnosis of rolling element bearings is of great significance to the safe and efficient operation of machines owing to its fault indication and accident prevention capability in engineering applications. Based on the orthogonal projection theory, a novel method is proposed to extract the fault characteristic frequency for the incipient fault diagnosis of rolling element bearings in this paper. With the capability of exposing the oscillation frequency of the signal energy, the proposed method is a generalized form of the squared envelope analysis and named as spectral auto-correlation analysis (SACA). Meanwhile, the SACA is a simplified form of the cyclostationary analysis as well and can be iteratively carried out in applications. Simulations and experiments are used to evaluate the efficiency of the proposed method. Comparing the results of SACA, the traditional envelope analysis and the squared envelope analysis, it is found that the result of SACA is more legible due to the more prominent harmonic amplitudes of the fault characteristic frequency and that the SACA with the proper iteration will further enhance the fault features.
Prediction of strain values in reinforcements and concrete of a RC frame using neural networks
NASA Astrophysics Data System (ADS)
Vafaei, Mohammadreza; Alih, Sophia C.; Shad, Hossein; Falah, Ali; Halim, Nur Hajarul Falahi Abdul
2018-03-01
The level of strain in structural elements is an important indicator for the presence of damage and its intensity. Considering this fact, often structural health monitoring systems employ strain gauges to measure strains in critical elements. However, because of their sensitivity to the magnetic fields, inadequate long-term durability especially in harsh environments, difficulties in installation on existing structures, and maintenance cost, installation of strain gauges is not always possible for all structural components. Therefore, a reliable method that can accurately estimate strain values in critical structural elements is necessary for damage identification. In this study, a full-scale test was conducted on a planar RC frame to investigate the capability of neural networks for predicting the strain values. Two neural networks each of which having a single hidden layer was trained to relate the measured rotations and vertical displacements of the frame to the strain values measured at different locations of the frame. Results of trained neural networks indicated that they accurately estimated the strain values both in reinforcements and concrete. In addition, the trained neural networks were capable of predicting strains for the unseen input data set.
NASA Technical Reports Server (NTRS)
Krueger, Ronald
2012-01-01
The application of benchmark examples for the assessment of quasi-static delamination propagation capabilities is demonstrated for ANSYS. The examples are independent of the analysis software used and allow the assessment of the automated delamination propagation in commercial finite element codes based on the virtual crack closure technique (VCCT). The examples selected are based on two-dimensional finite element models of Double Cantilever Beam (DCB), End-Notched Flexure (ENF), Mixed-Mode Bending (MMB) and Single Leg Bending (SLB) specimens. First, the quasi-static benchmark examples were recreated for each specimen using the current implementation of VCCT in ANSYS . Second, the delamination was allowed to propagate under quasi-static loading from its initial location using the automated procedure implemented in the finite element software. Third, the load-displacement relationship from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Overall the results are encouraging, but further assessment for three-dimensional solid models is required.
Advanced Spacecraft Designs in Support of Human Missions to Earth's Neighborhood
NASA Technical Reports Server (NTRS)
Fletcher, David
2002-01-01
NASA's strategic planning for technology investment draws on engineering studies of potential future missions. A number of hypothetical mission architectures have been studied. A recent study completed by The NASA/JSC Advanced Design Team addresses one such possible architecture strategy for missions to the moon. This conceptual study presents an overview of each of the spacecraft elements that would enable such missions. These elements include an orbiting lunar outpost at lunar L1 called the Gateway, a lunar transfer vehicle (LTV) which ferries a crew of four from the ISS to the Gateway, a lunar lander which ferries the crew from the Gateway to the lunar surface, and a one-way lunar habitat lander capable of supporting the crew for 30 days. Other supporting elements of this architecture discussed below include the LTV kickstage, a solar-electric propulsion (SEP) stage, and a logistics lander capable of re-supplying the 30-day habitat lander and bringing other payloads totaling 10.3 mt in support of surface mission activities. Launch vehicle infrastructure to low-earth orbit includes the Space Shuttle, which brings up the LTV and crew, and the Delta-IV Heavy expendable launch vehicle which launches the landers, kickstage, and SEP.
Magnetic quench antenna for MQXF quadrupoles
Marchevsky, Maxim; Sabbi, GianLuca; Prestemon, Soren; ...
2016-12-21
High-field MQXF-series quadrupoles are presently under development by LARP and CERN for the upcoming LHC luminosity upgrade. Quench training and protection studies on MQXF prototypes require a capability to accurately localize quenches and measure their propagation velocity in the magnet coils. The voltage tap technique commonly used for such purposes is not a convenient option for the 4.2-m-long MQXF-A prototype, nor can it be implemented in the production model. We have developed and tested a modular inductive magnetic antenna for quench localization. The base element of our quench antenna is a round-shaped printed circuit board containing two orthogonal pairs ofmore » flat coils integrated with low-noise preamplifiers. The elements are aligned axially and spaced equidistantly in 8-element sections using a supporting rod structure. The sections are installed in the warm bore of the magnet, and can be stacked together to adapt for the magnet length. We discuss the design, operational characteristics and preliminary qualification of the antenna. Lastly, axial quench localization capability with an accuracy of better than 2 cm has been validated during training test campaign of the MQXF-S1 quadrupole.« less
Magnetic quench antenna for MQXF quadrupoles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchevsky, Maxim; Sabbi, GianLuca; Prestemon, Soren
High-field MQXF-series quadrupoles are presently under development by LARP and CERN for the upcoming LHC luminosity upgrade. Quench training and protection studies on MQXF prototypes require a capability to accurately localize quenches and measure their propagation velocity in the magnet coils. The voltage tap technique commonly used for such purposes is not a convenient option for the 4.2-m-long MQXF-A prototype, nor can it be implemented in the production model. We have developed and tested a modular inductive magnetic antenna for quench localization. The base element of our quench antenna is a round-shaped printed circuit board containing two orthogonal pairs ofmore » flat coils integrated with low-noise preamplifiers. The elements are aligned axially and spaced equidistantly in 8-element sections using a supporting rod structure. The sections are installed in the warm bore of the magnet, and can be stacked together to adapt for the magnet length. We discuss the design, operational characteristics and preliminary qualification of the antenna. Lastly, axial quench localization capability with an accuracy of better than 2 cm has been validated during training test campaign of the MQXF-S1 quadrupole.« less
NASA Astrophysics Data System (ADS)
de Lera Acedo, E.; Razavi-Ghods, N.; Troop, N.; Drought, N.; Faulkner, A. J.
2015-10-01
The very demanding requirements of the SKA-low instrument call for a challenging antenna design capable of delivering excellent performance in radiation patterns, impedance matching, polarization purity, cost, longevity, etc. This paper is devoted to the development (design and test of the first prototypes) of an active ultra-wideband antenna element for the low-frequency instrument of the SKA radio telescope. The antenna element and differential low noise amplifier described here were originally designed to cover the former SKA-low band (70-450 MHz) but it is now aimed to cover the re-defined SKA-low band (50-350 MHz) and furthermore the antenna is capable of performing up to 650 MHz with the current design. The design is focused on maximum sensitivity in a wide field of view (+/- 45° from zenith) and low cross-polarization ratios. Furthermore, the size and cost of the element has to be kept to a minimum as millions of these antennas will need to be deployed for the full SKA in very compact configurations. The primary focus of this paper is therefore to discuss various design implications for the SKA-low telescope.
NASA Technical Reports Server (NTRS)
Panda, Binayak
2009-01-01
Modern analytical tools can yield invaluable results during materials characterization and failure analysis. Scanning electron microscopes (SEMs) provide significant analytical capabilities, including angstrom-level resolution. These systems can be equipped with a silicon drift detector (SDD) for very fast yet precise analytical mapping of phases, as well as electron back-scattered diffraction (EBSD) units to map grain orientations, chambers that admit large samples, variable pressure for wet samples, and quantitative analysis software to examine phases. Advanced solid-state electronics have also improved surface and bulk analysis instruments: Secondary ion mass spectroscopy (SIMS) can quantitatively determine and map light elements such as hydrogen, lithium, and boron - with their isotopes. Its high sensitivity detects impurities at parts per billion (ppb) levels. X-ray photo-electron spectroscopy (XPS) can determine oxidation states of elements, as well as identifying polymers and measuring film thicknesses on coated composites. This technique is also known as electron spectroscopy for chemical analysis (ESCA). Scanning Auger electron spectroscopy (SAM) combines surface sensitivity, spatial lateral resolution (10 nm), and depth profiling capabilities to describe elemental compositions of near and below surface regions down to the chemical state of an atom.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolić, Nikola; Liu, Yina; Liyu, Andrey
Ultrahigh-resolution mass spectrometry, such as Fourier transform ion-cyclotron resonance mass spectrometry (FT-ICR MS), can resolve thousands of molecular ions in complex organic matrices. A Compound Identification Algorithm (CIA) was previously developed for automated elemental formula assignment for natural organic matter (NOM). In this work we describe a user friendly interface for CIA, titled Formularity, which includes an additional functionality to perform search of formulas based on an Isotopic Pattern Algorithm (IPA). While CIA assigns elemental formulas for compounds containing C, H, O, N, S, and P, IPA is capable of assigning formulas for compounds containing other elements. We used halogenatedmore » organic compounds (HOC), a chemical class that is ubiquitous in nature as well as anthropogenic systems, as an example to demonstrate the capability of Formularity with IPA. A HOC standard mix was used to evaluate the identification confidence of IPA. The HOC spike in NOM and tap water were used to assess HOC identification in natural and anthropogenic matrices. Strategies for reconciliation of CIA and IPA assignments are discussed. Software and sample databases with documentation are freely available from the PNNL OMICS software repository https://omics.pnl.gov/software/formularity.« less
Expertise facilitates the transfer of anticipation skill across domains.
Rosalie, Simon M; Müller, Sean
2014-02-01
It is unclear whether perceptual-motor skill transfer is based upon similarity between the learning and transfer domains per identical elements theory, or facilitated by an understanding of underlying principles in accordance with general principle theory. Here, the predictions of identical elements theory, general principle theory, and aspects of a recently proposed model for the transfer of perceptual-motor skill with respect to expertise in the learning and transfer domains are examined. The capabilities of expert karate athletes, near-expert karate athletes, and novices to anticipate and respond to stimulus skills derived from taekwondo and Australian football were investigated in ecologically valid contexts using an in situ temporal occlusion paradigm and complex whole-body perceptual-motor skills. Results indicated that the karate experts and near-experts are as capable of using visual information to anticipate and guide motor skill responses as domain experts and near-experts in the taekwondo transfer domain, but only karate experts could perform like domain experts in the Australian football transfer domain. Findings suggest that transfer of anticipation skill is based upon expertise and an understanding of principles but may be supplemented by similarities that exist between the stimulus and response elements of the learning and transfer domains.
Linscheid, Michael W
2018-03-30
To understand biological processes, not only reliable identification, but quantification of constituents in biological processes play a pivotal role. This is especially true for the proteome: protein quantification must follow protein identification, since sometimes minute changes in abundance tell the real tale. To obtain quantitative data, many sophisticated strategies using electrospray and MALDI mass spectrometry (MS) have been developed in recent years. All of them have advantages and limitations. Several years ago, we started to work on strategies, which are principally capable to overcome some of these limits. The fundamental idea is to use elemental signals as a measure for quantities. We began by replacing the radioactive 32 P with the "cold" natural 31 P to quantify modified nucleotides and phosphorylated peptides and proteins and later used tagging strategies for quantification of proteins more generally. To do this, we introduced Inductively Coupled Plasma Mass Spectrometry (ICP-MS) into the bioanalytical workflows, allowing not only reliable and sensitive detection but also quantification based on isotope dilution absolute measurements using poly-isotopic elements. The detection capability of ICP-MS becomes particularly attractive with heavy metals. The covalently bound proteins tags developed in our group are based on the well-known DOTA chelate complex (1,4,7,10-tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid) carrying ions of lanthanoides as metal core. In this review, I will outline the development of this mutual assistance between molecular and elemental mass spectrometry and discuss the scope and limitations particularly of peptide and protein quantification. The lanthanoide tags provide low detection limits, but offer multiplexing capabilities due to the number of very similar lanthanoides and their isotopes. With isotope dilution comes previously unknown accuracy. Separation techniques such as electrophoresis and HPLC were used and just slightly adapted workflows, already in use for quantification in bioanalysis. Imaging mass spectrometry (MSI) with MALDI and laser ablation ICP-MS complemented the range of application in recent years. © 2018 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Hooper, Steven J.
1989-01-01
Delamination is a common failure mode of laminated composite materials. This type of failure frequently occurs at the free edges of laminates where singular interlaminar stresses are developed due to the difference in Poisson's ratios between adjacent plies. Typically the delaminations develop between 90 degree plies and adjacent angle plies. Edge delamination has been studied by several investigators using a variety of techniques. Recently, Chan and Ochoa applied the quasi-three-dimensional finite element model to the analysis of a laminate subject to bending, extension, and torsion. This problem is of particular significance relative to the structural integrity of composite helicopter rotors. The task undertaken was to incorporate Chan and Ochoa's formulation into a Raju Q3DG program. The resulting program is capable of modeling extension, bending, and torsional mechanical loadings as well as thermal and hygroscopic loadings. The addition of the torsional and bending loading capability will provide the capability to perform a delamination analysis of a general unsymmetric laminate containing four cracks, each of a different length. The solutions obtained using this program are evaluated by comparing them with solutions from a full three-dimensional finite element solution. This comparison facilitates the assessment of three dimensional affects such as the warping constraint imposed by the load frame grips. It wlso facilitates the evaluation of the external load representation employed in the Q3D formulation. Finally, strain energy release rates computed from the three-dimensional results are compared with those predicted using the quasi-three-dimensional formulation.
Design, realization and structural testing of a compliant adaptable wing
NASA Astrophysics Data System (ADS)
Molinari, G.; Quack, M.; Arrieta, A. F.; Morari, M.; Ermanni, P.
2015-10-01
This paper presents the design, optimization, realization and testing of a novel wing morphing concept, based on distributed compliance structures, and actuated by piezoelectric elements. The adaptive wing features ribs with a selectively compliant inner structure, numerically optimized to achieve aerodynamically efficient shape changes while simultaneously withstanding aeroelastic loads. The static and dynamic aeroelastic behavior of the wing, and the effect of activating the actuators, is assessed by means of coupled 3D aerodynamic and structural simulations. To demonstrate the capabilities of the proposed morphing concept and optimization procedure, the wings of a model airplane are designed and manufactured according to the presented approach. The goal is to replace conventional ailerons, thus to achieve controllability in roll purely by morphing. The mechanical properties of the manufactured components are characterized experimentally, and used to create a refined and correlated finite element model. The overall stiffness, strength, and actuation capabilities are experimentally tested and successfully compared with the numerical prediction. To counteract the nonlinear hysteretic behavior of the piezoelectric actuators, a closed-loop controller is implemented, and its capability of accurately achieving the desired shape adaptation is evaluated experimentally. Using the correlated finite element model, the aeroelastic behavior of the manufactured wing is simulated, showing that the morphing concept can provide sufficient roll authority to allow controllability of the flight. The additional degrees of freedom offered by morphing can be also used to vary the plane lift coefficient, similarly to conventional flaps. The efficiency improvements offered by this technique are evaluated numerically, and compared to the performance of a rigid wing.
Seal Joint Analysis and Design for the Ares-I Upper Stage LOX Tank
NASA Technical Reports Server (NTRS)
Phillips, Dawn R.; Wingate, Robert J.
2011-01-01
The sealing capability of the Ares-I Upper Stage liquid oxygen tank-to-sump joint is assessed by analyzing the deflections of the joint components. Analyses are performed using three-dimensional symmetric wedge finite element models and the ABAQUS commercial finite element software. For the pressure loads and feedline interface loads, the analyses employ a mixed factor of safety approach to comply with the Constellation Program factor of safety requirements. Naflex pressure-assisted seals are considered first because they have been used successfully in similar seal joints in the Space Shuttle External Tank. For the baseline sump seal joint configuration with a Naflex seal, the predicted joint opening greatly exceeds the seal design specification. Three redesign options of the joint that maintain the use of a Naflex seal are studied. The joint openings for the redesigned seal joints show improvement over the baseline configuration; however, these joint openings still exceed the seal design specification. RACO pressure-assisted seals are considered next because they are known to also be used on the Space Shuttle External Tank, and the joint opening allowable is much larger than the specification for the Naflex seals. The finite element models for the RACO seal analyses are created by modifying the models that were used for the Naflex seal analyses. The analyses show that the RACO seal may provide sufficient sealing capability for the sump seal joint. The results provide reasonable data to recommend the design change and plan a testing program to determine the capability of RACO seals in the Ares-I Upper Stage liquid oxygen tank sump seal joint.
Systems Modeling to Implement Integrated System Health Management Capability
NASA Technical Reports Server (NTRS)
Figueroa, Jorge F.; Walker, Mark; Morris, Jonathan; Smith, Harvey; Schmalzel, John
2007-01-01
ISHM capability includes: detection of anomalies, diagnosis of causes of anomalies, prediction of future anomalies, and user interfaces that enable integrated awareness (past, present, and future) by users. This is achieved by focused management of data, information and knowledge (DIaK) that will likely be distributed across networks. Management of DIaK implies storage, sharing (timely availability), maintaining, evolving, and processing. Processing of DIaK encapsulates strategies, methodologies, algorithms, etc. focused on achieving high ISHM Functional Capability Level (FCL). High FCL means a high degree of success in detecting anomalies, diagnosing causes, predicting future anomalies, and enabling health integrated awareness by the user. A model that enables ISHM capability, and hence, DIaK management, is denominated the ISHM Model of the System (IMS). We describe aspects of the IMS that focus on processing of DIaK. Strategies, methodologies, and algorithms require proper context. We describe an approach to define and use contexts, implementation in an object-oriented software environment (G2), and validation using actual test data from a methane thruster test program at NASA SSC. Context is linked to existence of relationships among elements of a system. For example, the context to use a strategy to detect leak is to identify closed subsystems (e.g. bounded by closed valves and by tanks) that include pressure sensors, and check if the pressure is changing. We call these subsystems Pressurizable Subsystems. If pressure changes are detected, then all members of the closed subsystem become suspect of leakage. In this case, the context is defined by identifying a subsystem that is suitable for applying a strategy. Contexts are defined in many ways. Often, a context is defined by relationships of function (e.g. liquid flow, maintaining pressure, etc.), form (e.g. part of the same component, connected to other components, etc.), or space (e.g. physically close, touching the same common element, etc.). The context might be defined dynamically (if conditions for the context appear and disappear dynamically) or statically. Although this approach is akin to case-based reasoning, we are implementing it using a software environment that embodies tools to define and manage relationships (of any nature) among objects in a very intuitive manner. Context for higher level inferences (that use detected anomalies or events), primarily for diagnosis and prognosis, are related to causal relationships. This is useful to develop root-cause analysis trees showing an event linked to its possible causes and effects. The innovation pertaining to RCA trees encompasses use of previously defined subsystems as well as individual elements in the tree. This approach allows more powerful implementations of RCA capability in object-oriented environments. For example, if a pressurizable subsystem is leaking, its root-cause representation within an RCA tree will show that the cause is that all elements of that subsystem are suspect of leak. Such a tree would apply to all instances of leak-events detected and all elements in all pressurizable subsystems in the system. Example subsystems in our environment to build IMS include: Pressurizable Subsystem, Fluid-Fill Subsystem, Flow-Thru-Valve Subsystem, and Fluid Supply Subsystem. The software environment for IMS is designed to potentially allow definition of any relationship suitable to create a context to achieve ISHM capability.
Chemical vapor deposition fluid flow simulation modelling tool
NASA Technical Reports Server (NTRS)
Bullister, Edward T.
1992-01-01
Accurate numerical simulation of chemical vapor deposition (CVD) processes requires a general purpose computational fluid dynamics package combined with specialized capabilities for high temperature chemistry. In this report, we describe the implementation of these specialized capabilities in the spectral element code NEKTON. The thermal expansion of the gases involved is shown to be accurately approximated by the low Mach number perturbation expansion of the incompressible Navier-Stokes equations. The radiative heat transfer between multiple interacting radiating surfaces is shown to be tractable using the method of Gebhart. The disparate rates of reaction and diffusion in CVD processes are calculated via a point-implicit time integration scheme. We demonstrate the use above capabilities on prototypical CVD applications.
NASA Technical Reports Server (NTRS)
1983-01-01
Meeting the identified needs of Earth science requires approaching EOS as an information system and not simply as one or more satellites with instruments. Six elements of strategy are outlined as follows: implementation of the individual discipline missions as currently planned; use of sustained observational capabilities offered by operational satellites without waiting for the launch of new mission; put first priority on the data system; deploy an Advanced Data Collection and Location System; put a substantial new observing capability in a low Earth orbit in such a way as to provide for sustained measurements; and group instruments to exploit their capabilities for synergism; maximize the scientific utility of the mission; and minimize the costs of implementation where possible.
UltraSensitive Mycotoxin Detection by STING Sensors
Actis, Paolo; Jejelowo, Olufisayo; Pourmand, Nader
2010-01-01
Signal Transduction by Ion Nano Gating (STING) technology is a label-free biosensor capable of identifying DNA and proteins. Based on a functionalized quartz nanopipette, the STING sensor includes specific recognition elements for analyte discrimination based on size, shape and charge density. A key feature of this technology is that it doesn't require any nanofabrication facility; each nanopipette can be easily, reproducibly, and inexpensively fabricated and tailored at the bench, thus reducing the cost and the turnaround time. Here, we show that STING sensors are capable of the ultrasensitive detection of HT-2 toxin with a detection limit of 100 fg/ml and compare the STING capabilities with respect to conventional sandwich assay techniques. PMID:20829024
Cyber Power in the 21st Century
2008-12-01
Cyber Warfare .................................................................86 V. Conclusions and Recommendations...40 2 – Asymmetric Effects of Cyber Warfare ........................................................................41 1 CYBER POWER... cyber warfare capabilities with other elements of national power, as evidenced by the concept of “informationization” (xinxihua) put forward in
Road weather management performance measures : 2012 update.
DOT National Transportation Integrated Search
1997-01-01
The goal of the cost analysis of the ITS National Architecture program is twofold. First, the evaluation is to produce a high-level estimate of the expenditures associated with implementing the physical elements and the functional capabilities of ITS...
Radiometric temperature reference
NASA Technical Reports Server (NTRS)
Monford, L. G., Jr.
1969-01-01
Radiometric Temperature Reference uses a thermistor as both a heating and sensing element to maintain its resistance at a preselected level to continuously control the power supplying it. The fixed infrared radiation level must be simple, rugged, and capable of high temperature operation.
Operating CFDP in the Interplanetary Internet
NASA Technical Reports Server (NTRS)
Burleigh, S.
2002-01-01
This paper examines the design elements of CCSDS File Delivery Protocol and Interplanetary Internet technologies that will simplify their integration and discusses the resulting new capabilities, such as efficient transmission of large files via multiple relay satellites operating in parallel.
NASA Technical Reports Server (NTRS)
Vos, R. G.; Straayer, J. W.
1975-01-01
Modifications and additions incorporated into the BOPACE 3-D program are described. Updates to the program input data formats, error messages, file usage, size limitations, and overlay schematic are included.
NASA Technical Reports Server (NTRS)
Raju, I. S.
1992-01-01
A computer program that generates three-dimensional (3D) finite element models for cracked 3D solids was written. This computer program, gensurf, uses minimal input data to generate 3D finite element models for isotropic solids with elliptic or part-elliptic cracks. These models can be used with a 3D finite element program called surf3d. This report documents this mesh generator. In this manual the capabilities, limitations, and organization of gensurf are described. The procedures used to develop 3D finite element models and the input for and the output of gensurf are explained. Several examples are included to illustrate the use of this program. Several input data files are included with this manual so that the users can edit these files to conform to their crack configuration and use them with gensurf.
Evaluation of the finite element fuel rod analysis code (FRANCO)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, K.; Feltus, M.A.
1994-12-31
Knowledge of temperature distribution in a nuclear fuel rod is required to predict the behavior of fuel elements during operating conditions. The thermal and mechanical properties and performance characteristics are strongly dependent on the temperature, which can vary greatly inside the fuel rod. A detailed model of fuel rod behavior can be described by various numerical methods, including the finite element approach. The finite element method has been successfully used in many engineering applications, including nuclear piping and reactor component analysis. However, fuel pin analysis has traditionally been carried out with finite difference codes, with the exception of Electric Powermore » Research Institute`s FREY code, which was developed for mainframe execution. This report describes FRANCO, a finite element fuel rod analysis code capable of computing temperature disrtibution and mechanical deformation of a single light water reactor fuel rod.« less
PLANS; a finite element program for nonlinear analysis of structures. Volume 2: User's manual
NASA Technical Reports Server (NTRS)
Pifko, A.; Armen, H., Jr.; Levy, A.; Levine, H.
1977-01-01
The PLANS system, rather than being one comprehensive computer program, is a collection of finite element programs used for the nonlinear analysis of structures. This collection of programs evolved and is based on the organizational philosophy in which classes of analyses are treated individually based on the physical problem class to be analyzed. Each of the independent finite element computer programs of PLANS, with an associated element library, can be individually loaded and used to solve the problem class of interest. A number of programs have been developed for material nonlinear behavior alone and for combined geometric and material nonlinear behavior. The usage, capabilities, and element libraries of the current programs include: (1) plastic analysis of built-up structures where bending and membrane effects are significant, (2) three dimensional elastic-plastic analysis, (3) plastic analysis of bodies of revolution, and (4) material and geometric nonlinear analysis of built-up structures.
Ceramic Plutonium Target Development for the MASHA Separator for the Synthesis of Element 114
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaughnessy, D A; Wilk, P A; Moody, K J
2005-06-29
We are currently developing a Pu ceramic target for the MASHA mass separator. MASHA will use a Pu ceramic target capable of tolerating temperatures up to 2000 C. Reaction products will diffuse out of the target into an ion source, and transported through the separator to a position-sensitive focal-plane detector array for mass identification. Experiments on MASHA will allow us to make measurements that will cement our identification of element 114 and provide data for future experiments on chemical properties of the heaviest elements. In this study (Sm,Zr)O{sub 2-x} ceramics are produced and evaluated for studies on the production ofmore » Pb (homolog of element 114) by the reaction of Ca on Sm. This work will provide an initial analysis on the feasibility of using a ZrO{sub 2}-PuO{sub 2} as a target for the production of element 114.« less
Space Launch System Spacecraft and Payload Elements: Making Progress Toward First Launch
NASA Technical Reports Server (NTRS)
Schorr, Andrew A.; Creech, Stephen D.
2016-01-01
Significant and substantial progress continues to be accomplished in the design, development, and testing of the Space Launch System (SLS), the most powerful human-rated launch vehicle the United States has ever undertaken. Designed to support human missions into deep space, SLS is one of three programs being managed by the National Aeronautics and Space Administration's (NASA's) Exploration Systems Development directorate. The Orion spacecraft program is developing a new crew vehicle that will support human missions beyond low Earth orbit, and the Ground Systems Development and Operations program is transforming Kennedy Space Center into next-generation spaceport capable of supporting not only SLS but also multiple commercial users. Together, these systems will support human exploration missions into the proving ground of cislunar space and ultimately to Mars. SLS will deliver a near-term heavy-lift capability for the nation with its 70 metric ton (t) Block 1 configuration, and will then evolve to an ultimate capability of 130 t. The SLS program marked a major milestone with the successful completion of the Critical Design Review in which detailed designs were reviewed and subsequently approved for proceeding with full-scale production. This marks the first time an exploration class vehicle has passed that major milestone since the Saturn V vehicle launched astronauts in the 1960s during the Apollo program. Each element of the vehicle now has flight hardware in production in support of the initial flight of the SLS -- Exploration Mission-1 (EM-1), an un-crewed mission to orbit the moon and return. Encompassing hardware qualification, structural testing to validate hardware compliance and analytical modeling, progress in on track to meet the initial targeted launch date in 2018. In Utah and Mississippi, booster and engine testing are verifying upgrades made to proven shuttle hardware. At Michoud Assembly Facility in Louisiana, the world's largest spacecraft welding tool is producing tanks for the SLS core stage. This paper will particularly focus on work taking place at Marshall Space Flight Center (MSFC) and United Launch Alliance in Alabama, where upper stage and adapter elements of the vehicle are being constructed and tested. Providing the Orion crew capsule/launch vehicle interface and in-space propulsion via a cryogenic upper stage, the Spacecraft/Payload Integration and Evolution (SPIE) Element serves a key role in achieving SLS goals and objectives. The SPIE element marked a major milestone in 2014 with the first flight of original SLS hardware, the Orion Stage Adapter (OSA) which was used on Exploration Flight Test-1 with a design that will be used again on EM-1. Construction is already underway on the EM-1 Interim Cryogenic Propulsion Stage (ICPS), an in-space stage derived from the Delta Cryogenic Second Stage. Manufacture of the Orion Stage Adapter and the Launch Vehicle Stage Adapter is set to begin at the Friction Stir Facility located at MSFC while structural test articles are either completed (OSA) or nearing completion (Launch Vehicle Stage Adapter). An overview is provided of the launch vehicle capabilities, with a specific focus on SPIE Element qualification/testing progress, as well as efforts to provide access to deep space regions currently not available to the science community through a secondary payload capability utilizing CubeSat-class satellites.
Space Launch System Spacecraft and Payload Elements: Making Progress Toward First Launch
NASA Technical Reports Server (NTRS)
Schorr, Andrew A.; Creech, Stephen D.; Ogles, Michael; Hitt, David
2016-01-01
Significant and substantial progress continues to be accomplished in the design, development, and testing of the Space Launch System (SLS), the most powerful human-rated launch vehicle the United States has ever undertaken. Designed to support human missions into deep space, SLS is one of three programs being managed by the National Aeronautics and Space Administration's (NASA's) Exploration Systems Development directorate. The Orion spacecraft program is developing a new crew vehicle that will support human missions beyond low Earth orbit, and the Ground Systems Development and Operations (GSDO) program is transforming Kennedy Space Center (KSC) into next-generation spaceport capable of supporting not only SLS but also multiple commercial users. Together, these systems will support human exploration missions into the proving ground of cislunar space and ultimately to Mars. SLS will deliver a near-term heavy-lift capability for the nation with its 70 metric ton Block 1 configuration, and will then evolve to an ultimate capability of 130 metric tons. The SLS program marked a major milestone with the successful completion of the Critical Design Review in which detailed designs were reviewed and subsequently approved for proceeding with full-scale production. This marks the first time an exploration class vehicle has passed that major milestone since the Saturn V vehicle launched astronauts in the 1960s during the Apollo program. Each element of the vehicle now has flight hardware in production in support of the initial flight of the SLS - Exploration Mission-1 (EM-1), an uncrewed mission to orbit the moon and return, and progress in on track to meet the initial targeted launch date in 2018. In Utah and Mississippi, booster and engine testing are verifying upgrades made to proven shuttle hardware. At Michoud Assembly Facility (MAF) in Louisiana, the world's largest spacecraft welding tool is producing tanks for the SLS core stage. This paper will particularly focus on work taking place at Marshall Space Flight Center (MSFC) and United Launch Alliance (ULA) in Alabama, where upper stage and adapter elements of the vehicle are being constructed and tested. Providing the Orion crew capsule/launch vehicle interface and in-space propulsion via a cryogenic upper stage, the Spacecraft/Payload Integration and Evolution (SPIE) Element serves a key role in achieving SLS goals and objectives. The SPIE element marked a major milestone in 2014 with the first flight of original SLS hardware, the Orion Stage Adapter (OSA) which was used on Exploration Flight Test-1 with a design that will be used again on EM-1. Construction is already underway on the EM-1 Interim Cryogenic Propulsion Stage (ICPS), an in-space stage derived from the Delta Cryogenic Second Stage. Manufacture of the Orion Stage Adapter and the Launch Vehicle Stage Adapter is set to begin at the Friction Stir Facility located at MSFC while structural test articles are either completed (OSA) or nearing completion (Launch Vehicle Stage Adapter). An overview is provided of the launch vehicle capabilities, with a specific focus on SPIE Element qualification/testing progress, as well as efforts to provide access to deep space regions currently not available to the science community through a secondary payload capability utilizing CubeSat-class satellites.
NASA Technical Reports Server (NTRS)
Leisawitz, David
2003-01-01
To understand the cosmic history of element synthesis it will be important to obtain extinction-free measures of the heavy element contents of high-redshift objects and to chart two monumental events: the collapse of the first metal-free clouds to form stars, and the initial seeding of the universe with dust. The information needed to achieve these objectives is uniquely available in the far-infrared/submillimeter (FIR/SMM) spectral region. Following the Decadal Report and anticipating the development of the Single Aperature Far-IR (SAFIR) telescope capabilities of a large-aperature, background-limited FIR/SMM observatory and an interferometer on a boom, and discuss how such instruments could be used to measure the element synthesis history of the universe.
Quetzal: a transposon of the Tc1 family in the mosquito Anopheles albimanus.
Ke, Z; Grossman, G L; Cornel, A J; Collins, F H
1996-10-01
A member of the Tc1 family of transposable elements has been identified in the Central and South American mosquito Anopheles albimanus. The full-length Quetzal element is 1680 base pairs (bp) in length, possesses 236 bp inverted terminal repeats (ITRs), and has a single open reading frame (ORF) with the potential of encoding a 341-amino-acid (aa) protein that is similar to the transposases of other members of the Tc1 family, particularly elements described from three different Drosophila species. The approximately 10-12 copies per genome of Quetzal are found in the euchromatin of all three chromosomes of A. albimanus. One full-length clone, Que27, appears capable of encoding a complete transposase and may represent a functional copy of this element.
Optimal mapping of irregular finite element domains to parallel processors
NASA Technical Reports Server (NTRS)
Flower, J.; Otto, S.; Salama, M.
1987-01-01
Mapping the solution domain of n-finite elements into N-subdomains that may be processed in parallel by N-processors is an optimal one if the subdomain decomposition results in a well-balanced workload distribution among the processors. The problem is discussed in the context of irregular finite element domains as an important aspect of the efficient utilization of the capabilities of emerging multiprocessor computers. Finding the optimal mapping is an intractable combinatorial optimization problem, for which a satisfactory approximate solution is obtained here by analogy to a method used in statistical mechanics for simulating the annealing process in solids. The simulated annealing analogy and algorithm are described, and numerical results are given for mapping an irregular two-dimensional finite element domain containing a singularity onto the Hypercube computer.
Simulation of Hypervelocity Impact on Aluminum-Nextel-Kevlar Orbital Debris Shields
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.
2000-01-01
An improved hybrid particle-finite element method has been developed for hypervelocity impact simulation. The method combines the general contact-impact capabilities of particle codes with the true Lagrangian kinematics of large strain finite element formulations. Unlike some alternative schemes which couple Lagrangian finite element models with smooth particle hydrodynamics, the present formulation makes no use of slidelines or penalty forces. The method has been implemented in a parallel, three dimensional computer code. Simulations of three dimensional orbital debris impact problems using this parallel hybrid particle-finite element code, show good agreement with experiment and good speedup in parallel computation. The simulations included single and multi-plate shields as well as aluminum and composite shielding materials. at an impact velocity of eleven kilometers per second.
Integrated Systems Health Management for Intelligent Systems
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Melcher, Kevin
2011-01-01
The implementation of an integrated system health management (ISHM) capability is fundamentally linked to the management of data, information, and knowledge (DIaK) with the purposeful objective of determining the health of a system. It is akin to having a team of experts who are all individually and collectively observing and analyzing a complex system, and communicating effectively with each other in order to arrive at an accurate and reliable assessment of its health. In this paper, concepts, procedures, and approaches are presented as a foundation for implementing an intelligent systems ]relevant ISHM capability. The capability stresses integration of DIaK from all elements of a system. Both ground-based (remote) and on-board ISHM capabilities are compared and contrasted. The information presented is the result of many years of research, development, and maturation of technologies, and of prototype implementations in operational systems.
Apparatus having reduced mechanical forces for supporting high magnetic fields
Prueitt, Melvin L.; Mueller, Fred M.; Smith, James L.
1991-01-01
The present invention identifies several configurations of conducting elements capable of supporting extremely high magnetic fields suitable for plasma confinement, wherein forces experienced by the conducting elements are significantly reduced over those which are present as a result of the generation of such high fields by conventional techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency.
Zhang, Yunlong; Li, Ruoming; Shi, Yuechun; Zhang, Jintao; Chen, Xiangfei; Liu, Shengchun
2015-06-01
A novel fiber Bragg grating aided fiber loop ringdown (FLRD) sensor array and the wavelength-time multiplexing based interrogation technique for the FLRD sensors array are proposed. The interrogation frequency of the system is formulated and the interrelationships among the parameters of the system are analyzed. To validate the performance of the proposed system, a five elements array is experimentally demonstrated, and the system shows the capability of real time monitoring every FLRD element with interrogation frequency of 125.5 Hz.
Reduction of Mercury to the Elemental State by a Yeast
Brunker, Richard L.; Bott, Thomas L.
1974-01-01
A yeast of the genus Cryptococcus has been isolated from a stream and was shown to be capable of reducing mercury to the elemental state. The organism grows in Wickerham broth supplemented with high concentrations of mercury (II) chloride (180 mg of mercury per liter) and will metabolize [14C]glucose in this medium as do cells in the absence of mercury. Mercury was associated with the cell wall and membrane, and in vacuoles within the cytoplasm. Images PMID:4364461
Low TCR nanocomposite strain gages
NASA Technical Reports Server (NTRS)
Gregory, Otto J. (Inventor); Chen, Ximing (Inventor)
2012-01-01
A high temperature thin film strain gage sensor capable of functioning at temperatures above 1400.degree. C. The sensor contains a substrate, a nanocomposite film comprised of an indium tin oxide alloy, zinc oxide doped with alumina or other oxide semiconductor and a refractory metal selected from the group consisting of Pt, Pd, Rh, Ni, W, Ir, NiCrAlY and NiCoCrAlY deposited onto the substrate to form an active strain element. The strain element being responsive to an applied force.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yurkin, A A
2016-03-31
We report the results of experimental studies of a copper vapour laser with a semiconductor pump generator capable of forming virtually optimal pump pulses with a current rise steepness of about 40 A ns{sup -1} in a KULON LT-1.5CU active element. To maintain the operating temperature of the active element's channel, an additional heating pulsed oscillator is used. High efficiency of the pump generator is demonstrated. (lasers)
PerSEUS: Ultra-Low-Power High Performance Computing for Plasma Simulations
NASA Astrophysics Data System (ADS)
Doxas, I.; Andreou, A.; Lyon, J.; Angelopoulos, V.; Lu, S.; Pritchett, P. L.
2017-12-01
Peta-op SupErcomputing Unconventional System (PerSEUS) aims to explore the use for High Performance Scientific Computing (HPC) of ultra-low-power mixed signal unconventional computational elements developed by Johns Hopkins University (JHU), and demonstrate that capability on both fluid and particle Plasma codes. We will describe the JHU Mixed-signal Unconventional Supercomputing Elements (MUSE), and report initial results for the Lyon-Fedder-Mobarry (LFM) global magnetospheric MHD code, and a UCLA general purpose relativistic Particle-In-Cell (PIC) code.
Approaches to the automatic generation and control of finite element meshes
NASA Technical Reports Server (NTRS)
Shephard, Mark S.
1987-01-01
The algorithmic approaches being taken to the development of finite element mesh generators capable of automatically discretizing general domains without the need for user intervention are discussed. It is demonstrated that because of the modeling demands placed on a automatic mesh generator, all the approaches taken to date produce unstructured meshes. Consideration is also given to both a priori and a posteriori mesh control devices for automatic mesh generators as well as their integration with geometric modeling and adaptive analysis procedures.
1981-04-01
LIFE CYCLE COST (LCC) LCC SENSITIVITY ANALYSIS LCC MODE , REPAIR LEVEL ANALYSIS (RLA) 20 ABSTRACT (Cnn tlnue on reverse side It necessary and Identify... level analysis capability. Next it provides values for Air Force input parameters and instructions for contractor inputs, general operating...Maintenance Manhour Requirements 39 5.1.4 Calculation of Repair Level Fractions 43 5.2 Cost Element Equations 47 5.2.1 Production Cost Element 47
On the Exploitation of Sensitivity Derivatives for Improving Sampling Methods
NASA Technical Reports Server (NTRS)
Cao, Yanzhao; Hussaini, M. Yousuff; Zang, Thomas A.
2003-01-01
Many application codes, such as finite-element structural analyses and computational fluid dynamics codes, are capable of producing many sensitivity derivatives at a small fraction of the cost of the underlying analysis. This paper describes a simple variance reduction method that exploits such inexpensive sensitivity derivatives to increase the accuracy of sampling methods. Three examples, including a finite-element structural analysis of an aircraft wing, are provided that illustrate an order of magnitude improvement in accuracy for both Monte Carlo and stratified sampling schemes.
NASA Technical Reports Server (NTRS)
Gayda, J.; Srolovitz, D. J.
1989-01-01
This paper presents a specialized microstructural lattice model, MCFET (Monte Carlo finite element technique), which simulates microstructural evolution in materials in which strain energy has an important role in determining morphology. The model is capable of accounting for externally applied stress, surface tension, misfit, elastic inhomogeneity, elastic anisotropy, and arbitrary temperatures. The MCFET analysis was found to compare well with the results of analytical calculations of the equilibrium morphologies of isolated particles in an infinite matrix.
Pseudo Bipolar Nickel-Cadmium Batteries Used as Filter Elements to Pulsed Current Loads
1984-11-01
authors’ Thesis sub- I.it-ted in partiil fulfillment of the requirements for the M1aster of Science Degree at the Air Force In~stitute of Technology...capable of out- performing capacitors as power supply filters. Purpose This thesis investigated the use of nickel-cadmium batteries as filter elements...require extensive testing and diagnosis of many cells, far beyond the scope of this thesis . Further, Paul Bauer [13] asserts that accelerated testing is
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Baaklini, George Y.; Zagidulin, Dmitri; Rauser, Richard W.
2000-01-01
Capabilities and expertise related to the development of links between nondestructive evaluation (NDE) and finite element analysis (FEA) at Glenn Research Center (GRC) are demonstrated. Current tools to analyze data produced by computed tomography (CT) scans are exercised to help assess the damage state in high temperature structural composite materials. A utility translator was written to convert velocity (an image processing software) STL data file to a suitable CAD-FEA type file. Finite element analyses are carried out with MARC, a commercial nonlinear finite element code, and the analytical results are discussed. Modeling was established by building MSC/Patran (a pre and post processing finite element package) generated model and comparing it to a model generated by Velocity in conjunction with MSC/Patran Graphics. Modeling issues and results are discussed in this paper. The entire process that outlines the tie between the data extracted via NDE and the finite element modeling and analysis is fully described.
Newmark local time stepping on high-performance computing architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rietmann, Max, E-mail: max.rietmann@erdw.ethz.ch; Institute of Geophysics, ETH Zurich; Grote, Marcus, E-mail: marcus.grote@unibas.ch
In multi-scale complex media, finite element meshes often require areas of local refinement, creating small elements that can dramatically reduce the global time-step for wave-propagation problems due to the CFL condition. Local time stepping (LTS) algorithms allow an explicit time-stepping scheme to adapt the time-step to the element size, allowing near-optimal time-steps everywhere in the mesh. We develop an efficient multilevel LTS-Newmark scheme and implement it in a widely used continuous finite element seismic wave-propagation package. In particular, we extend the standard LTS formulation with adaptations to continuous finite element methods that can be implemented very efficiently with very strongmore » element-size contrasts (more than 100x). Capable of running on large CPU and GPU clusters, we present both synthetic validation examples and large scale, realistic application examples to demonstrate the performance and applicability of the method and implementation on thousands of CPU cores and hundreds of GPUs.« less
RiskSOAP: Introducing and applying a methodology of risk self-awareness in road tunnel safety.
Chatzimichailidou, Maria Mikela; Dokas, Ioannis M
2016-05-01
Complex socio-technical systems, such as road tunnels, can be designed and developed with more or less elements that can either positively or negatively affect the capability of their agents to recognise imminent threats or vulnerabilities that possibly lead to accidents. This capability is called risk Situation Awareness (SA) provision. Having as a motive the introduction of better tools for designing and developing systems that are self-aware of their vulnerabilities and react to prevent accidents and losses, this paper introduces the Risk Situation Awareness Provision (RiskSOAP) methodology to the field of road tunnel safety, as a means to measure this capability in this kind of systems. The main objective is to test the soundness and the applicability of RiskSOAP to infrastructure, which is advanced in terms of technology, human integration, and minimum number of safety requirements imposed by international bodies. RiskSOAP is applied to a specific road tunnel in Greece and the accompanying indicator is calculated twice, once for the tunnel design as defined by updated European safety standards and once for the 'as-is' tunnel composition, which complies with the necessary safety requirements, but calls for enhancing safety according to what EU and PIARC further suggest. The derived values indicate the extent to which each tunnel version is capable of comprehending its threats and vulnerabilities based on its elements. The former tunnel version seems to be more enhanced both in terms of it risk awareness capability and safety as well. Another interesting finding is that despite the advanced tunnel safety specifications, there is still room for enriching the safe design and maintenance of the road tunnel. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evolution of International Space Station GN&C System Across ISS Assembly Stages
NASA Technical Reports Server (NTRS)
Lee, Roscoe; Frank, K. D. (Technical Monitor)
1999-01-01
The Guidance Navigation and Control (GN&C) system for the International Space Station is initially implemented by the Functional Cargo Block (FGB) which was built by the Khrunichev Space Center under direct contract to Boeing. This element (Stage 1A/R) was launched on 20 November 1998 and is currently operating on-orbit. The components and capabilities of the FGB Motion Control System (MCS) are described. The next ISS element, which has GN&C functionality will be the Service Module (SM) built by Rocket Space Corporation-Energia. This module is scheduled for launch (Stage 1R) in early 2000. Following activation of the SM GN&C system, the FGB MCS is deactivated and no longer used. The components and capabilities of the SM GN&C system are described. When a Progress vehicle is attached to the ISS it can be used for reboost operations, based on commands provided by the Mission Control Center-Moscow. When a data connection is implemented between the SM and the Progress, the SM can command the Progress thrusters for attitude control and reboosts. On Stage 5A, the U.S. GN&C system will become activated when the U.S. Laboratory is de loyed and installed (launch schedule is currently TBD). The U.S. GN&C system provides non-propulsive control capabilities to support micro-gravity operations and minimize the use of propellant for attitude control, and an independent capability for determining the ISS state vector, attitude, attitude rate. and time.. The components and capabilities of the U.S. GN&C system are described and the interactions between the U.S. and Russian Segment GN&C systems are also described.
Stoney, David A; Stoney, Paul L
2015-08-01
An effective trace evidence capability is defined as one that exploits all useful particle types, chooses appropriate technologies to do so, and directly integrates the findings with case-specific problems. Limitations of current approaches inhibit the attainment of an effective capability and it has been strongly argued that a new approach to trace evidence analysis is essential. A hypothetical case example is presented to illustrate and analyze how forensic particle analysis can be used as a powerful practical tool in forensic investigations. The specifics in this example, including the casework investigation, laboratory analyses, and close professional interactions, provide focal points for subsequent analysis of how this outcome can be achieved. This leads to the specification of five key elements that are deemed necessary and sufficient for effective forensic particle analysis: (1) a dynamic forensic analytical approach, (2) concise and efficient protocols addressing particle combinations, (3) multidisciplinary capabilities of analysis and interpretation, (4) readily accessible external specialist resources, and (5) information integration and communication. A coordinating role, absent in current approaches to trace evidence analysis, is essential to achieving these elements. However, the level of expertise required for the coordinating role is readily attainable. Some additional laboratory protocols are also essential. However, none of these has greater staffing requirements than those routinely met by existing forensic trace evidence practitioners. The major challenges that remain are organizational acceptance, planning and implementation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Transportation-Driven Mars Surface Operations Supporting an Evolvable Mars Campaign
NASA Technical Reports Server (NTRS)
Toups, Larry; Brown, Kendall; Hoffman, Stephen J.
2015-01-01
This paper describes the results of a study evaluating options for supporting a series of human missions to a single Mars surface destination. In this scenario the infrastructure emplaced during previous visits to this site is leveraged in following missions. The goal of this single site approach to Mars surface infrastructure is to enable "Steady State" operations by at least 4 crew for up to 500 sols at this site. These characteristics, along with the transportation system used to deliver crew and equipment to and from Mars, are collectively known as the Evolvable Mars Campaign (EMC). Information in this paper is presented in the sequence in which it was accomplished. First, a logical buildup sequence of surface infrastructure was developed to achieve the desired "Steady State" operations on the Mars surface. This was based on a concept of operations that met objectives of the EMC. Second, infrastructure capabilities were identified to carry out this concept of operations. Third, systems (in the form of conceptual elements) were identified to provide these capabilities. This included top-level mass, power and volume estimates for these elements. Fourth, the results were then used in analyses to evaluate three options (18t, 27t, and 40t landed mass) of Mars Lander delivery capability to the surface. Finally, Mars arrival mass estimates were generated based upon the entry, descent, and landing requirements for inclusion in separate assessments of in-space transportation capabilities for the EMC.
Predictive Capability Maturity Model for computational modeling and simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oberkampf, William Louis; Trucano, Timothy Guy; Pilch, Martin M.
2007-10-01
The Predictive Capability Maturity Model (PCMM) is a new model that can be used to assess the level of maturity of computational modeling and simulation (M&S) efforts. The development of the model is based on both the authors experience and their analysis of similar investigations in the past. The perspective taken in this report is one of judging the usefulness of a predictive capability that relies on the numerical solution to partial differential equations to better inform and improve decision making. The review of past investigations, such as the Software Engineering Institute's Capability Maturity Model Integration and the National Aeronauticsmore » and Space Administration and Department of Defense Technology Readiness Levels, indicates that a more restricted, more interpretable method is needed to assess the maturity of an M&S effort. The PCMM addresses six contributing elements to M&S: (1) representation and geometric fidelity, (2) physics and material model fidelity, (3) code verification, (4) solution verification, (5) model validation, and (6) uncertainty quantification and sensitivity analysis. For each of these elements, attributes are identified that characterize four increasing levels of maturity. Importantly, the PCMM is a structured method for assessing the maturity of an M&S effort that is directed toward an engineering application of interest. The PCMM does not assess whether the M&S effort, the accuracy of the predictions, or the performance of the engineering system satisfies or does not satisfy specified application requirements.« less
Intelligent structural health monitoring and damage detection for light-rail bridges
DOT National Transportation Integrated Search
1998-05-01
A global damage detection algorithm for bridge-like Structures is proposed. This method provides the capability of determining the reduction in both stiffness and damping parameters of the structural elements. It is assumed the mass of the structural...
Miniature stress transducer has directional capability
NASA Technical Reports Server (NTRS)
San Miguel, A.; Silver, R. H.
1965-01-01
Miniature stress transducer uses a semiconductive piezoresistive element to detect stress only on specific axes. Measurement of internal mass stress is based on the compressive deformation of the transducer. The device is applicable to constant stress monitoring in building and dam structural parts.
Forming Mandrels for X-Ray Mirror Substrates
NASA Technical Reports Server (NTRS)
Blake, Peter N.; Saha. To,p; Zhang, Will; O'Dell, Stephen; Kester, Thomas; Jones, William
2011-01-01
Precision forming mandrels are one element in X-ray mirror development at NASA. Current mandrel fabrication process is capable of meeting the allocated precision requirements for a 5 arcsec telescope. A manufacturing plan is outlined for a large IXO-scale program.
Pyrotechnic device provides one-shot heat source
NASA Technical Reports Server (NTRS)
Haller, H. C.; Lalli, V. R.
1968-01-01
Pyrotechnic heater provides a one-shot heat source capable of creating a predetermined temperature around sealed packages. It is composed of a blend of an active chemical element and another compound which reacts exothermically when ignited and produces fixed quantities of heat.
Ground Operations Autonomous Control and Integrated Health Management
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Walker, Mark; Wilkins, Kim; Johnson, Robert; Sass, Jared; Youney, Justin
2014-01-01
An intelligent autonomous control capability has been developed and is currently being validated in ground cryogenic fluid management operations. The capability embodies a physical architecture consistent with typical launch infrastructure and control systems, augmented by a higher level autonomous control (AC) system enabled to make knowledge-based decisions. The AC system is supported by an integrated system health management (ISHM) capability that detects anomalies, diagnoses causes, determines effects, and could predict future anomalies. AC is implemented using the concept of programmed sequences that could be considered to be building blocks of more generic mission plans. A sequence is a series of steps, and each executes actions once conditions for the step are met (e.g. desired temperatures or fluid state are achieved). For autonomous capability, conditions must consider also health management outcomes, as they will determine whether or not an action is executed, or how an action may be executed, or if an alternative action is executed instead. Aside from health, higher level objectives can also drive how a mission is carried out. The capability was developed using the G2 software environment (www.gensym.com) augmented by a NASA Toolkit that significantly shortens time to deployment. G2 is a commercial product to develop intelligent applications. It is fully object oriented. The core of the capability is a Domain Model of the system where all elements of the system are represented as objects (sensors, instruments, components, pipes, etc.). Reasoning and decision making can be done with all elements in the domain model. The toolkit also enables implementation of failure modes and effects analysis (FMEA), which are represented as root cause trees. FMEA's are programmed graphically, they are reusable, as they address generic FMEA referring to classes of subsystems or objects and their functional relationships. User interfaces for integrated awareness by operators have been created.
NASA Technical Reports Server (NTRS)
2005-01-01
The Baseline Report captures range and spaceport capabilities at five sites: KSC, CCAFS, VAFB, Wallops, and Kodiak. The Baseline depicts a future state that relies on existing technology, planned upgrades, and straight-line recapitalization at these sites projected through 2030. The report presents an inventory of current spaceport and range capabilities at these five sites. The baseline is the first part of analyzing a business case for a set of capabilities designed to transform U.S. ground and space launch operations toward a single, integrated national "system" of space transportation systems. The second part of the business case compares current capabilities with technologies needed to support the integrated national "system". The final part, a return on investment analysis, identifies the technologies that best lead to the integrated national system and reduce recurring costs..Numerous data sources were used to define and describe the baseline spaceport and range by identifying major systems and elements and describing capabilities, limitations, and capabilities
Energy-absorption capability of composite tubes and beams. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Farley, Gary L.; Jones, Robert M.
1989-01-01
In this study the objective was to develop a method of predicting the energy-absorption capability of composite subfloor beam structures. Before it is possible to develop such an analysis capability, an in-depth understanding of the crushing process of composite materials must be achieved. Many variables affect the crushing process of composite structures, such as the constituent materials' mechanical properties, specimen geometry, and crushing speed. A comprehensive experimental evaluation of tube specimens was conducted to develop insight into how composite structural elements crush and what are the controlling mechanisms. In this study the four characteristic crushing modes, transverse shearing, brittle fracturing, lamina bending, and local buckling were identified and the mechanisms that control the crushing process defined. An in-depth understanding was developed of how material properties affect energy-absorption capability. For example, an increase in fiber and matrix stiffness and failure strain can, depending upon the configuration of the tube, increase energy-absorption capability. An analysis to predict the energy-absorption capability of composite tube specimens was developed and verified. Good agreement between experiment and prediction was obtained.
NASA Technical Reports Server (NTRS)
Orifici, Adrian C.; Krueger, Ronald
2010-01-01
With capabilities for simulating delamination growth in composite materials becoming available, the need for benchmarking and assessing these capabilities is critical. In this study, benchmark analyses were performed to assess the delamination propagation simulation capabilities of the VCCT implementations in Marc TM and MD NastranTM. Benchmark delamination growth results for Double Cantilever Beam, Single Leg Bending and End Notched Flexure specimens were generated using a numerical approach. This numerical approach was developed previously, and involves comparing results from a series of analyses at different delamination lengths to a single analysis with automatic crack propagation. Specimens were analyzed with three-dimensional and two-dimensional models, and compared with previous analyses using Abaqus . The results demonstrated that the VCCT implementation in Marc TM and MD Nastran(TradeMark) was capable of accurately replicating the benchmark delamination growth results and that the use of the numerical benchmarks offers advantages over benchmarking using experimental and analytical results.
UAS-Systems Integration, Validation, and Diagnostics Simulation Capability
NASA Technical Reports Server (NTRS)
Buttrill, Catherine W.; Verstynen, Harry A.
2014-01-01
As part of the Phase 1 efforts of NASA's UAS-in-the-NAS Project a task was initiated to explore the merits of developing a system simulation capability for UAS to address airworthiness certification requirements. The core of the capability would be a software representation of an unmanned vehicle, including all of the relevant avionics and flight control system components. The specific system elements could be replaced with hardware representations to provide Hardware-in-the-Loop (HWITL) test and evaluation capability. The UAS Systems Integration and Validation Laboratory (UAS-SIVL) was created to provide a UAS-systems integration, validation, and diagnostics hardware-in-the-loop simulation capability. This paper discusses how SIVL provides a robust and flexible simulation framework that permits the study of failure modes, effects, propagation paths, criticality, and mitigation strategies to help develop safety, reliability, and design data that can assist with the development of certification standards, means of compliance, and design best practices for civil UAS.
Exploring the limits of EDS microanalysis: rare earth element analyses
NASA Astrophysics Data System (ADS)
Ritchie, N. W. M.; Newbury, D. E.; Lowers, H.; Mengason, M.
2018-01-01
It is a great time to be a microanalyst. After a few decades of incremental progress in energy-dispersive X-ray spectrometry (EDS), the last decade has seen the accuracy and precision surge forward. Today, the question is not whether EDS is generally useful but to identify the types of problems for which wavelength-dispersive X-ray spectrometry remains the better choice. The full extent of EDS’s capabilities has surprised many. Low Z, low energy, and trace element detection have been demonstrated even in the presence of extreme peak interferences. In this paper, we will summarise the state-of-the-art and investigate a challenging problem domain, the analysis of minerals bearing multiple rare-earth elements.
A Study of Fan Stage/Casing Interaction Models
NASA Technical Reports Server (NTRS)
Lawrence, Charles; Carney, Kelly; Gallardo, Vicente
2003-01-01
The purpose of the present study is to investigate the performance of several existing and new, blade-case interactions modeling capabilities that are compatible with the large system simulations used to capture structural response during blade-out events. Three contact models are examined for simulating the interactions between a rotor bladed disk and a case: a radial and linear gap element and a new element based on a hydrodynamic formulation. The first two models are currently available in commercial finite element codes such as NASTRAN and have been showed to perform adequately for simulating rotor-case interactions. The hydrodynamic model, although not readily available in commercial codes, may prove to be better able to characterize rotor-case interactions.
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Muravyov, Alexander A.
2002-01-01
Two new equivalent linearization implementations for geometrically nonlinear random vibrations are presented. Both implementations are based upon a novel approach for evaluating the nonlinear stiffness within commercial finite element codes and are suitable for use with any finite element code having geometrically nonlinear static analysis capabilities. The formulation includes a traditional force-error minimization approach and a relatively new version of a potential energy-error minimization approach, which has been generalized for multiple degree-of-freedom systems. Results for a simply supported plate under random acoustic excitation are presented and comparisons of the displacement root-mean-square values and power spectral densities are made with results from a nonlinear time domain numerical simulation.
Prediction of sound fields in acoustical cavities using the boundary element method. M.S. Thesis
NASA Technical Reports Server (NTRS)
Kipp, C. R.; Bernhard, R. J.
1985-01-01
A method was developed to predict sound fields in acoustical cavities. The method is based on the indirect boundary element method. An isoparametric quadratic boundary element is incorporated. Pressure, velocity and/or impedance boundary conditions may be applied to a cavity by using this method. The capability to include acoustic point sources within the cavity is implemented. The method is applied to the prediction of sound fields in spherical and rectangular cavities. All three boundary condition types are verified. Cases with a point source within the cavity domain are also studied. Numerically determined cavity pressure distributions and responses are presented. The numerical results correlate well with available analytical results.
Blade loss transient dynamics analysis, volume 1. Task 2: TETRA 2 theoretical development
NASA Technical Reports Server (NTRS)
Gallardo, Vincente C.; Black, Gerald
1986-01-01
The theoretical development of the forced steady state analysis of the structural dynamic response of a turbine engine having nonlinear connecting elements is discussed. Based on modal synthesis, and the principle of harmonic balance, the governing relations are the compatibility of displacements at the nonlinear connecting elements. There are four displacement compatibility equations at each nonlinear connection, which are solved by iteration for the principle harmonic of the excitation frequency. The resulting computer program, TETRA 2, combines the original TETRA transient analysis (with flexible bladed disk) with the steady state capability. A more versatile nonlinear rub or bearing element which contains a hardening (or softening) spring, with or without deadband, is also incorporated.
Intelligent Elements for the ISHM Testbed and Prototypes (ITP) Project
NASA Technical Reports Server (NTRS)
Maul, William A.; Park, Han; Schwabacher, Mark; Watson, Michael; Mackey, Ryan; Fijany, Amir; Trevino, Luis; Weir, John
2005-01-01
Deep-space manned missions will require advanced automated health assessment capabilities. Requirements such as in-space assembly, long dormant periods and limited accessibility during flight, present significant challenges that should be addressed through Integrated System Health Management (ISHM). The ISHM approach will provide safety and reliability coverage for a complete system over its entire life cycle by determining and integrating health status and performance information from the subsystem and component levels. This paper will focus on the potential advanced diagnostic elements that will provide intelligent assessment of the subsystem health and the planned implementation of these elements in the ISHM Testbed and Prototypes (ITP) Project under the NASA Exploration Systems Research and Technology program.
Structural weights analysis of advanced aerospace vehicles using finite element analysis
NASA Technical Reports Server (NTRS)
Bush, Lance B.; Lentz, Christopher A.; Rehder, John J.; Naftel, J. Chris; Cerro, Jeffrey A.
1989-01-01
A conceptual/preliminary level structural design system has been developed for structural integrity analysis and weight estimation of advanced space transportation vehicles. The system includes a three-dimensional interactive geometry modeler, a finite element pre- and post-processor, a finite element analyzer, and a structural sizing program. Inputs to the system include the geometry, surface temperature, material constants, construction methods, and aerodynamic and inertial loads. The results are a sized vehicle structure capable of withstanding the static loads incurred during assembly, transportation, operations, and missions, and a corresponding structural weight. An analysis of the Space Shuttle external tank is included in this paper as a validation and benchmark case of the system.
NASA Technical Reports Server (NTRS)
1983-01-01
All information directly associated with problem solving using the NASTRAN program is presented. This structural analysis program uses the finite element approach to structural modeling wherein the distributed finite properties of a structure are represented by a finite element of structural elements which are interconnected at a finite number of grid points, to which loads are applied and for which displacements are calculated. Procedures are described for defining and loading a structural model. Functional references for every card used for structural modeling, the NASTRAN data deck and control cards, problem solution sequences (rigid formats), using the plotting capability, writing a direct matrix abstraction program, and diagnostic messages are explained. A dictionary of mnemonics, acronyms, phrases, and other commonly used NASTRAN terms is included.
Development and implementation of an 84-channel matrix gradient coil.
Littin, Sebastian; Jia, Feng; Layton, Kelvin J; Kroboth, Stefan; Yu, Huijun; Hennig, Jürgen; Zaitsev, Maxim
2018-02-01
Design, implement, integrate, and characterize a customized coil system that allows for generating spatial encoding magnetic fields (SEMs) in a highly-flexible fashion. A gradient coil with a high number of individual elements was designed. Dimensions of the coil were chosen to mimic a whole-body gradient system, scaled down to a head insert. Mechanical shape and wire layout of each element were optimized to increase the local gradient strength while minimizing eddy current effects and simultaneously considering manufacturing constraints. Resulting wire layout and mechanical design is presented. A prototype matrix gradient coil with 12 × 7 = 84 elements consisting of two element types was realized and characterized. Measured eddy currents are <1% of the original field. The coil is shown to be capable of creating nonlinear, and linear SEMs. In a DSV of 0.22 m gradient strengths between 24 mT∕m and 78 mT∕m could be realized locally with maximum currents of 150 A. Initial proof-of-concept imaging experiments using linear and nonlinear encoding fields are demonstrated. A shielded matrix gradient coil setup capable of generating encoding fields in a highly-flexible manner was designed and implemented. The presented setup is expected to serve as a basis for validating novel imaging techniques that rely on nonlinear spatial encoding fields. Magn Reson Med 79:1181-1191, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Andersson, P.; Valldor-Blücher, J.; Andersson Sundén, E.; Sjöstrand, H.; Jacobsson-Svärd, S.
2014-08-01
The FANTOM system is a tabletop sized fast-neutron radiography and tomography system newly developed at the Applied Nuclear Physics Division of Uppsala University. The main purpose of the system is to provide time-averaged steam-and-water distribution measurement capability inside the metallic structures of two-phase test loops for light water reactor thermal-hydraulic studies using a portable fusion neutron generator. The FANTOM system provides a set of 1D neutron transmission data, which may be inserted into tomographic reconstruction algorithms to achieve a 2D mapping of the steam-and-water distribution. In this paper, the selected design of FANTOM is described and motivated. The detector concept is based on plastic scintillator elements, separated for spatial resolution. Analysis of pulse heights on an event-to-event basis is used for energy discrimination. Although the concept allows for close stacking of a large number of detector elements, this demonstrator is equipped with only three elements in the detector and one additional element for monitoring the yield from the neutron generator. The first measured projections on test objects of known configurations are presented. These were collected using a Sodern Genie 16 neutron generator with an isotropic yield of about 1E8 neutrons per second, and allowed for characterization of the instrument's capabilities. At an energy threshold of 10 MeV, the detector offered a count rate of about 500 cps per detector element. The performance in terms of spatial resolution was validated by fitting a Gaussian Line Spread Function to the experimental data, a procedure that revealed a spatial unsharpness in good agreement with the predicted FWHM of 0.5 mm.
Naghibi Beidokhti, Hamid; Janssen, Dennis; van de Groes, Sebastiaan; Hazrati, Javad; Van den Boogaard, Ton; Verdonschot, Nico
2017-12-08
In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on segmentations. Continuum models closer approximate the anatomy, and facilitate ligament wrapping, while spring models are computationally less expensive. The mechanical properties of ligaments can be based on literature, or adjusted specifically for the subject. In the current study we investigated the effect of ligament modelling strategy on the predictive capability of FE models of the human knee joint. The effect of literature-based versus specimen-specific optimized material parameters was evaluated. Experiments were performed on three human cadaver knees, which were modelled in FE models with ligaments represented either using springs, or using continuum representations. In spring representation collateral ligaments were each modelled with three and cruciate ligaments with two single-element bundles. Stiffness parameters and pre-strains were optimized based on laxity tests for both approaches. Validation experiments were conducted to evaluate the outcomes of the FE models. Models (both spring and continuum) with subject-specific properties improved the predicted kinematics and contact outcome parameters. Models incorporating literature-based parameters, and particularly the spring models (with the representations implemented in this study), led to relatively high errors in kinematics and contact pressures. Using a continuum modelling approach resulted in more accurate contact outcome variables than the spring representation with two (cruciate ligaments) and three (collateral ligaments) single-element-bundle representations. However, when the prediction of joint kinematics is of main interest, spring ligament models provide a faster option with acceptable outcome. Copyright © 2017 Elsevier Ltd. All rights reserved.
An Introduction to Educational Holography.
ERIC Educational Resources Information Center
Lloyd, R. Scott
Holograms are capable of taking the two-dimensional ways of envisioning information to another dimension of presentation, representation, and conceptualization. Educational holography is joining display holography, holographic testing of materials, and holographic optical elements as a fourth major field in holography. Holograms are explored as…
Soviet Military Intentions in the German Democratic Republic
1977-06-01
Designated Elements of East European Armed Forces Groups of Soviet Forces in the GDR, Poland... Comparativ ~ Data on Soviet and East European Military Capabilities, 19~:-19 lnt·t>rnal :’liumber Total Security Tota l of Sov iet Regular Combat
ICAM Robotics Application Guide (RAG)
1980-04-01
used for new purposes. Refers to the reprogrammability or multi-task capability of robots. HIERARCHY - A relationship of elements in a structure...Tech., 1977), 33 pp. Attitude of Unions towards Robotization I I Weekley, T. L., "A View of the United Automobile , Aerospace and Agricultural
Seventh NASTRAN User's Colloquium
NASA Technical Reports Server (NTRS)
1978-01-01
The general application of finite element methodology and the specific application of NASTRAN to a wide variety of static and dynamic structural problems are described. Topics include: fluids and thermal applications, NASTRAN programming, substructuring methods, unique new applications, general auxiliary programs, specific applications, and new capabilities.
Text Processing and Formatting: Composure, Composition and Eros.
ERIC Educational Resources Information Center
Blair, John C., Jr.
1984-01-01
Review of computer software offering text editing/processing capabilities highlights work habits, elements of computer style and composition, buffers, the CRT, line- and screen-oriented text editors, video attributes, "swapping,""cache" memory, "disk emulators," text editing versus text processing, and UNIX operating…
Universal computer control system (UCCS) for space telerobots
NASA Technical Reports Server (NTRS)
Bejczy, Antal K.; Szakaly, Zoltan
1987-01-01
A universal computer control system (UCCS) is under development for all motor elements of a space telerobot. The basic hardware architecture and software design of UCCS are described, together with the rich motor sensing, control, and self-test capabilities of this all-computerized motor control system. UCCS is integrated into a multibus computer environment with direct interface to higher level control processors, uses pulsewidth multiplier power amplifiers, and one unit can control up to sixteen different motors simultaneously at a high I/O rate. UCCS performance capabilities are illustrated by a few data.
Thermal structure analyses for CSM testbed (COMET)
NASA Technical Reports Server (NTRS)
Xue, David Y.; Mei, Chuh
1994-01-01
This document is the final report for the project entitled 'Thermal Structure Analyses for CSM Testbed (COMET),' for the period of May 16, 1992 - August 15, 1994. The project was focused on the investigation and development of finite element analysis capability of the computational structural mechanics (CSM) testbed (COMET) software system in the field of thermal structural responses. The stages of this project consisted of investigating present capabilities, developing new functions, analysis demonstrations, and research topics. The appendices of this report list the detailed documents of major accomplishments and demonstration runstreams for future references.
A Coupled Layerwise Analysis of the Thermopiezoelectric Response of Smart Composite Beams Beams
NASA Technical Reports Server (NTRS)
Lee, H.-J.; Saravanos, D. A.
1995-01-01
Thermal effects are incorporated into previously developed discrete layer mechanics for piezoelectric composite beam structures. The updated mechanics explicitly account for the complete coupled thermoelectromechanical response of smart composite beams. This unified representation leads to an inherent capability to model both the sensory and actuator responses of piezoelectric composite beams in a thermal environment. Finite element equations are developed and numerical results are presented to demonstrate the capability of the current formulation to represent the behavior of both sensory and active smart structures under thermal loadings.
Multi-Element Integrated Project Planning at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Mullon, Robert
2008-01-01
This presentation demonstrates how the ASRC Scheduling team developed working practices to support multiple NASA and ASRC Project Managers using the enterprise capabilities of Primavera P6 and P6 Web Access. This work has proceeded as part of Kennedy Ground Systems' preparation for its transition from the Shuttle Program to the Constellation Program. The presenters will cover Primavera's enterprise-class capabilities for schedule development, integrated critical path analysis, and reporting, as well as advanced Primavera P6 Web Access tools and techniques for communicating project status.
X-ray position detector and implementation in a mirror pointing servo system
Rabedeau, Thomas A.; Van Campen, Douglas G.; Stefan, Peter M.
2016-04-05
An X-ray beam position and stability detector is provided having a first metal blade collinear with a second metal blade, where an edge of the first metal blade is opposite an edge of the second metal blade, where the first metal blade edge and the second metal blade edge are disposed along a centerline with respect to each other, where the metal blades are capable of photoelectron emission when exposed to an x-ray beam, a metal coating on the metal blades that is capable of enhancing the photoelectron emission, or suppressing energy-resonant contaminants, or enhancing the photoelectron emission and suppressing energy-resonant contaminants, a background shielding element having an electrode capable of suppressing photoelectron emission from spurious x-rays not contained in an x-ray beam of interest, and a photoelectron emission detector having an amplifier capable of detecting the photoelectron emission as a current signal.
Modeling of rolling element bearing mechanics. Theoretical manual
NASA Technical Reports Server (NTRS)
Merchant, David H.; Greenhill, Lyn M.
1994-01-01
This report documents the theoretical basis for the Rolling Element Bearing Analysis System (REBANS) analysis code which determines the quasistatic response to external loads or displacement of three types of high-speed rolling element bearings: angular contact ball bearings; duplex angular contact ball bearings; and cylindrical roller bearings. The model includes the effects of bearing ring and support structure flexibility. It is comprised of two main programs: the Preprocessor for Bearing Analysis (PREBAN) which creates the input files for the main analysis program; and Flexibility Enhanced Rolling Element Bearing Analysis (FEREBA), the main analysis program. A companion report addresses the input instructions for and features of the computer codes. REBANS extends the capabilities of the SHABERTH (Shaft and Bearing Thermal Analysis) code to include race and housing flexibility, including such effects as dead band and preload springs.
MCNP-model for the OAEP Thai Research Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallmeier, F.X.; Tang, J.S.; Primm, R.T. III
An MCNP input was prepared for the Thai Research Reactor, making extensive use of the MCNP geometry`s lattice feature that allows a flexible and easy rearrangement of the core components and the adjustment of the control elements. The geometry was checked for overdefined or undefined zones by two-dimensional plots of cuts through the core configuration with the MCNP geometry plotting capabilities, and by a three-dimensional view of the core configuration with the SABRINA code. Cross sections were defined for a hypothetical core of 67 standard fuel elements and 38 low-enriched uranium fuel elements--all filled with fresh fuel. Three test calculationsmore » were performed with the MCNP4B-code to obtain the multiplication factor for the cases with control elements fully inserted, fully withdrawn, and at a working position.« less