DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutland, Christopher J.
2009-04-26
The Terascale High-Fidelity Simulations of Turbulent Combustion (TSTC) project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of the approach is direct numerical simulation (DNS) featuring the highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. Under this component of the TSTC program the simulation code named S3D, developed and shared with coworkers at Sandia National Laboratories, has been enhanced with newmore » numerical algorithms and physical models to provide predictive capabilities for turbulent liquid fuel spray dynamics. Major accomplishments include improved fundamental understanding of mixing and auto-ignition in multi-phase turbulent reactant mixtures and turbulent fuel injection spray jets.« less
Terascale direct numerical simulations of turbulent combustion using S3D
NASA Astrophysics Data System (ADS)
Chen, J. H.; Choudhary, A.; de Supinski, B.; DeVries, M.; Hawkes, E. R.; Klasky, S.; Liao, W. K.; Ma, K. L.; Mellor-Crummey, J.; Podhorszki, N.; Sankaran, R.; Shende, S.; Yoo, C. S.
2009-01-01
Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air coflow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory intensive loops in the code. Through the careful application of loop transformations, data reuse in cache is exploited thereby reducing memory bandwidth needs, and hence, improving S3D's nodal performance. To enhance collective parallel I/O in S3D, an MPI-I/O caching design is used to construct a two-stage write-behind method for improving the performance of write-only operations. The simulations generate tens of terabytes of data requiring analysis. Interactive exploration of the simulation data is enabled by multivariate time-varying volume visualization. The visualization highlights spatial and temporal correlations between multiple reactive scalar fields using an intuitive user interface based on parallel coordinates and time histogram. Finally, an automated combustion workflow is designed using Kepler to manage large-scale data movement, data morphing, and archival and to provide a graphical display of run-time diagnostics.
The Development of the Non-hydrostatic Unified Model of the Atmosphere (NUMA)
2011-09-19
capabilities: 1. Highly scalable on current and future computer architectures ( exascale computing: this means CPUs and GPUs) 2. Flexibility to use a...From Terascale to Petascale/ Exascale Computing • 10 of Top 500 are already in the Petascale range • 3 of top 10 are GPU-based machines 2
DAKOTA Design Analysis Kit for Optimization and Terascale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Brian M.; Dalbey, Keith R.; Eldred, Michael S.
2010-02-24
The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes (computational models) and iterative analysis methods. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and analysis of computational models on high performance computers.A user provides a set of DAKOTA commands in an input file and launches DAKOTA. DAKOTA invokes instances of the computational models, collects their results, and performs systems analyses. DAKOTA contains algorithms for optimization with gradient and nongradient-basedmore » methods; uncertainty quantification with sampling, reliability, polynomial chaos, stochastic collocation, and epistemic methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as hybrid optimization, surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. Services for parallel computing, simulation interfacing, approximation modeling, fault tolerance, restart, and graphics are also included.« less
Terascale Cluster for Advanced Turbulent Combustion Simulations
2008-07-25
the system We have given the name CATS (for Combustion And Turbulence Simulator) to the terascale system that was obtained through this grant. CATS ...lnfiniBand interconnect. CATS includes an interactive login node and a file server, each holding in excess of 1 terabyte of file storage. The 35 active...compute nodes of CATS enable us to run up to 140-core parallel MPI batch jobs; one node is reserved to run the scheduler. CATS is operated and
Terascale spectral element algorithms and implementations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, P. F.; Tufo, H. M.
1999-08-17
We describe the development and implementation of an efficient spectral element code for multimillion gridpoint simulations of incompressible flows in general two- and three-dimensional domains. We review basic and recently developed algorithmic underpinnings that have resulted in good parallel and vector performance on a broad range of architectures, including the terascale computing systems now coming online at the DOE labs. Sustained performance of 219 GFLOPS has been recently achieved on 2048 nodes of the Intel ASCI-Red machine at Sandia.
Lessons Learned from Managing a Petabyte
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becla, J
2005-01-20
The amount of data collected and stored by the average business doubles each year. Many commercial databases are already approaching hundreds of terabytes, and at this rate, will soon be managing petabytes. More data enables new functionality and capability, but the larger scale reveals new problems and issues hidden in ''smaller'' terascale environments. This paper presents some of these new problems along with implemented solutions in the framework of a petabyte dataset for a large High Energy Physics experiment. Through experience with two persistence technologies, a commercial database and a file-based approach, we expose format-independent concepts and issues prevalent atmore » this new scale of computing.« less
Colliders as a simultaneous probe of supersymmetric dark matter and Terascale cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barenboim, Gabriela; /Valencia U.; Lykken, Joseph D.
2006-08-01
Terascale supersymmetry has the potential to provide a natural explanation of the dominant dark matter component of the standard {Lambda}CDM cosmology. However once we impose the constraints on minimal supersymmetry parameters from current particle physics data, a satisfactory dark matter abundance is no longer prima facie natural. This Neutralino Tuning Problem could be a hint of nonstandard cosmology during and/or after the Terascale era. To quantify this possibility, we introduce an alternative cosmological benchmark based upon a simple model of quintessential inflation. This benchmark has no free parameters, so for a given supersymmetry model it allows an unambiguous prediction ofmore » the dark matter relic density. As a example, we scan over the parameter space of the CMSSM, comparing the neutralino relic density predictions with the bounds from WMAP. We find that the WMAP-allowed regions of the CMSSM are an order of magnitude larger if we use the alternative cosmological benchmark, as opposed to {Lambda}CDM. Initial results from the CERN Large Hadron Collider will distinguish between the two allowed regions.« less
Colliders as a simultaneous probe of supersymmetric dark matter and Terascale cosmology
NASA Astrophysics Data System (ADS)
Barenboim, Gabriela; Lykken, Joseph D.
2006-12-01
Terascale supersymmetry has the potential to provide a natural explanation of the dominant dark matter component of the standard ΛCDM cosmology. However once we impose the constraints on minimal supersymmetry parameters from current particle physics data, a satisfactory dark matter abundance is no longer prima facie natural. This Neutralino Tuning Problem could be a hint of nonstandard cosmology during and/or after the Terascale era. To quantify this possibility, we introduce an alternative cosmological benchmark based upon a simple model of quintessential inflation. This benchmark has no free parameters, so for a given supersymmetry model it allows an unambiguous prediction of the dark matter relic density. As a example, we scan over the parameter space of the CMSSM, comparing the neutralino relic density predictions with the bounds from WMAP. We find that the WMAP allowed regions of the CMSSM are an order of magnitude larger if we use the alternative cosmological benchmark, as opposed to ΛCDM. Initial results from the CERN Large Hadron Collider will distinguish between the two allowed regions.
Limits on silicon nanoelectronics for terascale integration.
Meindl, J D; Chen, Q; Davis, J A
2001-09-14
Throughout the past four decades, silicon semiconductor technology has advanced at exponential rates in both performance and productivity. Concerns have been raised, however, that the limits of silicon technology may soon be reached. Analysis of fundamental, material, device, circuit, and system limits reveals that silicon technology has an enormous remaining potential to achieve terascale integration (TSI) of more than 1 trillion transistors per chip. Such massive-scale integration is feasible assuming the development and economical mass production of double-gate metal-oxide-semiconductor field effect transistors with gate oxide thickness of about 1 nanometer, silicon channel thickness of about 3 nanometers, and channel length of about 10 nanometers. The development of interconnecting wires for these transistors presents a major challenge to the achievement of nanoelectronics for TSI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S.
The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.« less
Study of Plasma Liner Driven Magnetized Target Fusion Via Advanced Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samulyak, Roman V.; Brookhaven National Lab.; Parks, Paul
The feasibility of the plasma liner driven Magnetized Target Fusion (MTF) via terascale numerical simulations will be assessed. In the MTF concept, a plasma liner, formed by merging of a number (60 or more) of radial, highly supersonic plasma jets, implodes on the target in the form of two compact plasma toroids, and compresses it to conditions of the fusion ignition. By avoiding major difficulties associated with both the traditional laser driven inertial confinement fusion and solid liner driven MTF, the plasma liner driven MTF potentially provides a low-cost and fast R&D path towards the demonstration of practical fusion energy.more » High fidelity numerical simulations of full nonlinear models associated with the plasma liner MTF using state-of-art numerical algorithms and terascale computing are necessary in order to resolve uncertainties and provide guidance for future experiments. At Stony Brook University, we have developed unique computational capabilities that ideally suite the MTF problem. The FronTier code, developed in collaboration with BNL and LANL under DOE funding including SciDAC for the simulation of 3D multi-material hydro and MHD flows, has beenbenchmarked and used for fundamental and engineering problems in energy science applications. We have performed 3D simulations of converging supersonic plasma jets, their merger and the formation of the plasma liner, and a study of the corresponding oblique shock problem. We have studied the implosion of the plasma liner on the magnetized plasma target by resolving Rayleigh-Taylor instabilities in 2D and 3D and other relevant physics and estimate thermodynamic conditions of the target at the moment of maximum compression and the hydrodynamic efficiency of the method.« less
DAKOTA JAGUAR 3.0 user's manual.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Brian M.; Bauman, Lara E; Chan, Ethan
2013-05-01
JAGUAR (JAva GUi for Applied Research) is a Java software tool providing an advanced text editor and graphical user interface (GUI) to manipulate DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) input specifications. This document focuses on the features necessary to use JAGUAR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Ethan
2011-06-01
JAGUAR (JAva GUi for Applied Research) is a Java software tool providing an advanced text editor and graphical user interface (GUI) to manipulate DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) input specifications. This document focuses on the technical background necessary for a developer to understand JAGUAR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barhen, Jacob; Imam, Neena
2007-01-01
Revolutionary computing technologies are defined in terms of technological breakthroughs, which leapfrog over near-term projected advances in conventional hardware and software to produce paradigm shifts in computational science. For underwater threat source localization using information provided by a dynamical sensor network, one of the most promising computational advances builds upon the emergence of digital optical-core devices. In this article, we present initial results of sensor network calculations that focus on the concept of signal wavefront time-difference-of-arrival (TDOA). The corresponding algorithms are implemented on the EnLight processing platform recently introduced by Lenslet Laboratories. This tera-scale digital optical core processor is optimizedmore » for array operations, which it performs in a fixed-point-arithmetic architecture. Our results (i) illustrate the ability to reach the required accuracy in the TDOA computation, and (ii) demonstrate that a considerable speed-up can be achieved when using the EnLight 64a prototype processor as compared to a dual Intel XeonTM processor.« less
Terascale Computing in Accelerator Science and Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ko, Kwok
2002-08-21
We have entered the age of ''terascale'' scientific computing. Processors and system architecture both continue to evolve; hundred-teraFLOP computers are expected in the next few years, and petaFLOP computers toward the end of this decade are conceivable. This ever-increasing power to solve previously intractable numerical problems benefits almost every field of science and engineering and is revolutionizing some of them, notably including accelerator physics and technology. At existing accelerators, it will help us optimize performance, expand operational parameter envelopes, and increase reliability. Design decisions for next-generation machines will be informed by unprecedented comprehensive and accurate modeling, as well as computer-aidedmore » engineering; all this will increase the likelihood that even their most advanced subsystems can be commissioned on time, within budget, and up to specifications. Advanced computing is also vital to developing new means of acceleration and exploring the behavior of beams under extreme conditions. With continued progress it will someday become reasonable to speak of a complete numerical model of all phenomena important to a particular accelerator.« less
Cooperative high-performance storage in the accelerated strategic computing initiative
NASA Technical Reports Server (NTRS)
Gary, Mark; Howard, Barry; Louis, Steve; Minuzzo, Kim; Seager, Mark
1996-01-01
The use and acceptance of new high-performance, parallel computing platforms will be impeded by the absence of an infrastructure capable of supporting orders-of-magnitude improvement in hierarchical storage and high-speed I/O (Input/Output). The distribution of these high-performance platforms and supporting infrastructures across a wide-area network further compounds this problem. We describe an architectural design and phased implementation plan for a distributed, Cooperative Storage Environment (CSE) to achieve the necessary performance, user transparency, site autonomy, communication, and security features needed to support the Accelerated Strategic Computing Initiative (ASCI). ASCI is a Department of Energy (DOE) program attempting to apply terascale platforms and Problem-Solving Environments (PSEs) toward real-world computational modeling and simulation problems. The ASCI mission must be carried out through a unified, multilaboratory effort, and will require highly secure, efficient access to vast amounts of data. The CSE provides a logically simple, geographically distributed, storage infrastructure of semi-autonomous cooperating sites to meet the strategic ASCI PSE goal of highperformance data storage and access at the user desktop.
From genome to drug lead: identification of a small-molecule inhibitor of the SARS virus.
Dooley, Andrea J; Shindo, Nice; Taggart, Barbara; Park, Jewn-Giew; Pang, Yuan-Ping
2006-02-15
Virtual screening, a fast, computational approach to identify drug leads [Perola, E.; Xu, K.; Kollmeyer, T. M.; Kaufmann, S. H.; Prendergast, F. G. J. Med. Chem.2000, 43, 401; Miller, M. A. Nat. Rev. Drug Disc.2002, 1 220], is limited by a known challenge in crystallographically determining flexible regions of proteins. This approach has not been able to identify active inhibitors of the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) using solely the crystal structures of a SARS-CoV cysteine proteinase with a flexible loop in the active site [Yang, H. T.; Yang, M. J.; Ding, Y.; Liu, Y. W.; Lou, Z. Y. Proc. Natl. Acad. Sci. U.S.A.2003, 100, 13190; Jenwitheesuk, E.; Samudrala, R. Bioorg. Med. Chem. Lett.2003, 13, 3989; Rajnarayanan, R. V.; Dakshanamurthy, S.; Pattabiraman, N. Biochem. Biophys. Res. Commun.2004, 321, 370; Du, Q.; Wang, S.; Wei, D.; Sirois, S.; Chou, K. Anal. Biochem.2005, 337, 262; Du, Q.; Wang, S.; Zhu, Y.; Wei, D.; Guo, H. Peptides2004, 25, 1857; Lee, V.; Wittayanarakul, K.; Remsungenen, T.; Parasuk, V.; Sompornpisut, P. Science (Asia)2003, 29, 181; Toney, J.; Navas-Martin, S.; Weiss, S.; Koeller, A. J. Med. Chem.2004, 47, 1079; Zhang, X. W.; Yap, Y. L. Bioorg. Med. Chem.2004, 12, 2517]. This article demonstrates a genome-to-drug-lead approach that uses terascale computing to model flexible regions of proteins, thus permitting the utilization of genetic information to identify drug leads expeditiously. A small-molecule inhibitor of SARS-CoV, exhibiting an effective concentration (EC50) of 23 microM in cell-based assays, was identified through virtual screening against a computer-predicted model of the cysteine proteinase. Screening against two crystal structures of the same proteinase failed to identify the 23-microM inhibitor. This study suggests that terascale computing can complement crystallography, broaden the scope of virtual screening, and accelerate the development of therapeutics to treat emerging infectious diseases such as SARS and Bird Flu.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S
The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a theoretical manual for selected algorithms implemented within the Dakota software. It is not intended as a comprehensive theoretical treatment, since a number of existing texts cover general optimization theory, statistical analysis, and other introductory topics. Rather, this manual is intended to summarize a set of Dakota-related research publications in the areas of surrogate-based optimization, uncertainty quanti cation, and optimization under uncertainty that provide the foundation for many of Dakota's iterative analysis capabilities.« less
Mining Tera-Scale Graphs: Theory, Engineering and Discoveries
2012-05-01
of them are domain selling or porn sites which are replicated from templates. slope of the size distribution do not change after year 2003. We...number ‘np1’ ‘cards’ ‘np2’ Concept 3: “Health System” health provider ‘np1’ ‘care’ ‘np2’ child providers ‘np’ ‘insurance’ ‘np2’ home system ‘np1
2017-01-01
are the shear relaxation moduli and relaxation times , which make up the classical Prony series . A Prony- series expansion is a relaxation function...approximation for modeling time -dependent damping. The scalar parameters 1 and 2 control the nonlinearity of the Prony series . Under the...Velodyne that best fit the experimental stress-strain data. To do so, the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA
Imam, Neena; Barhen, Jacob
2009-01-01
For real-time acoustic source localization applications, one of the primary challenges is the considerable growth in computational complexity associated with the emergence of ever larger, active or passive, distributed sensor networks. These sensors rely heavily on battery-operated system components to achieve highly functional automation in signal and information processing. In order to keep communication requirements minimal, it is desirable to perform as much processing on the receiver platforms as possible. However, the complexity of the calculations needed to achieve accurate source localization increases dramatically with the size of sensor arrays, resulting in substantial growth of computational requirements that cannot bemore » readily met with standard hardware. One option to meet this challenge builds upon the emergence of digital optical-core devices. The objective of this work was to explore the implementation of key building block algorithms used in underwater source localization on the optical-core digital processing platform recently introduced by Lenslet Inc. This demonstration of considerably faster signal processing capability should be of substantial significance to the design and innovation of future generations of distributed sensor networks.« less
A Scalable Cyberinfrastructure for Interactive Visualization of Terascale Microscopy Data
Venkat, A.; Christensen, C.; Gyulassy, A.; Summa, B.; Federer, F.; Angelucci, A.; Pascucci, V.
2017-01-01
The goal of the recently emerged field of connectomics is to generate a wiring diagram of the brain at different scales. To identify brain circuitry, neuroscientists use specialized microscopes to perform multichannel imaging of labeled neurons at a very high resolution. CLARITY tissue clearing allows imaging labeled circuits through entire tissue blocks, without the need for tissue sectioning and section-to-section alignment. Imaging the large and complex non-human primate brain with sufficient resolution to identify and disambiguate between axons, in particular, produces massive data, creating great computational challenges to the study of neural circuits. Researchers require novel software capabilities for compiling, stitching, and visualizing large imagery. In this work, we detail the image acquisition process and a hierarchical streaming platform, ViSUS, that enables interactive visualization of these massive multi-volume datasets using a standard desktop computer. The ViSUS visualization framework has previously been shown to be suitable for 3D combustion simulation, climate simulation and visualization of large scale panoramic images. The platform is organized around a hierarchical cache oblivious data layout, called the IDX file format, which enables interactive visualization and exploration in ViSUS, scaling to the largest 3D images. In this paper we showcase the VISUS framework used in an interactive setting with the microscopy data. PMID:28638896
A Scalable Cyberinfrastructure for Interactive Visualization of Terascale Microscopy Data.
Venkat, A; Christensen, C; Gyulassy, A; Summa, B; Federer, F; Angelucci, A; Pascucci, V
2016-08-01
The goal of the recently emerged field of connectomics is to generate a wiring diagram of the brain at different scales. To identify brain circuitry, neuroscientists use specialized microscopes to perform multichannel imaging of labeled neurons at a very high resolution. CLARITY tissue clearing allows imaging labeled circuits through entire tissue blocks, without the need for tissue sectioning and section-to-section alignment. Imaging the large and complex non-human primate brain with sufficient resolution to identify and disambiguate between axons, in particular, produces massive data, creating great computational challenges to the study of neural circuits. Researchers require novel software capabilities for compiling, stitching, and visualizing large imagery. In this work, we detail the image acquisition process and a hierarchical streaming platform, ViSUS, that enables interactive visualization of these massive multi-volume datasets using a standard desktop computer. The ViSUS visualization framework has previously been shown to be suitable for 3D combustion simulation, climate simulation and visualization of large scale panoramic images. The platform is organized around a hierarchical cache oblivious data layout, called the IDX file format, which enables interactive visualization and exploration in ViSUS, scaling to the largest 3D images. In this paper we showcase the VISUS framework used in an interactive setting with the microscopy data.
Separating Added Value from Hype: Some Experiences and Prognostications
NASA Astrophysics Data System (ADS)
Reed, Dan
2004-03-01
These are exciting times for the interplay of science and computing technology. As new data archives, instruments and computing facilities are connected nationally and internationally, a new model of distributed scientific collaboration is emerging. However, any new technology brings both opportunities and challenges -- Grids are no exception. In this talk, we will discuss some of the experiences deploying Grid software in production environments, illustrated with experiences from the NSF PACI Alliance, the NSF Extensible Terascale Facility (ETF) and other Grid projects. From these experiences, we derive some guidelines for deployment and some suggestions for community engagement, software development and infrastructure
HEC Applications on Columbia Project
NASA Technical Reports Server (NTRS)
Taft, Jim
2004-01-01
NASA's Columbia system consists of a cluster of twenty 512 processor SGI Altix systems. Each of these systems is 3 TFLOP/s in peak performance - approximately the same as the entire compute capability at NAS just one year ago. Each 512p system is a single system image machine with one Linunx O5, one high performance file system, and one globally shared memory. The NAS Terascale Applications Group (TAG) is chartered to assist in scaling NASA's mission critical codes to at least 512p in order to significantly improve emergency response during flight operations, as well as provide significant improvements in the codes. and rate of scientific discovery across the scientifc disciplines within NASA's Missions. Recent accomplishments are 4x improvements to codes in the ocean modeling community, 10x performance improvements in a number of computational fluid dynamics codes used in aero-vehicle design, and 5x improvements in a number of space science codes dealing in extreme physics. The TAG group will continue its scaling work to 2048p and beyond (10240 cpus) as the Columbia system becomes fully operational and the upgrades to the SGI NUMAlink memory fabric are in place. The NUMlink uprades dramatically improve system scalability for a single application. These upgrades will allow a number of codes to execute faster at higher fidelity than ever before on any other system, thus increasing the rate of scientific discovery even further
In-Situ Resource Utilization (ISRU) Capability Roadmap Progress Review
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.; Duke, Michael
2005-01-01
A progress review on In-Situ Resource Utilization (ISRU) capability is presented. The topics include: 1) In-Situ Resource Utilization (ISRU) Capability Roadmap: Level 1; 2) ISRU Emphasized Architecture Overview; 3) ISRU Capability Elements: Level 2 and below; and 4) ISRU Capability Roadmap Wrap-up.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, M Pauline
2007-06-30
The VisPort visualization portal is an experiment in providing Web-based access to visualization functionality from any place and at any time. VisPort adopts a service-oriented architecture to encapsulate visualization functionality and to support remote access. Users employ browser-based client applications to choose data and services, set parameters, and launch visualization jobs. Visualization products typically images or movies are viewed in the user's standard Web browser. VisPort emphasizes visualization solutions customized for specific application communities. Finally, VisPort relies heavily on XML, and introduces the notion of visualization informatics - the formalization and specialization of information related to the process and productsmore » of visualization.« less
NASA Astrophysics Data System (ADS)
Ambarwulan, W.; Widiatmaka; Nahib, I.
2018-05-01
Land utilization in Indonesia is regulated in an official spatial land use planning (OSLUP), stipulated by government regulations. However in fact, land utilizations are often develops inconsistent with regulations. OSLUP itself is also not usually compatible with sustainable land utilizations. This study aims to evaluate current land utilizations and OSLUP in Indramayu Regency, West Java. The methodology used is the integrated analysis using land use and land cover (LU/LC) data, land capability data and spatial pattern in OSLUP. Actual LU/LC are interpreted using SPOT-6 imagery of 2014. The spatial data of land capabilities are derived from land capability classification using field data and laboratory analysis. The confrontation between these spatial data is interpreted in terms of future direction for sustainable land use planning. The results shows that Indramayu regency consists of 8 types of LU/LC. Land capability in research area range from class II to VIII. Only a small portion of the land in Indramayu has been used in accordance with land capability, but most of the land is used exceeding its land capability.
Simplified Parallel Domain Traversal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson III, David J
2011-01-01
Many data-intensive scientific analysis techniques require global domain traversal, which over the years has been a bottleneck for efficient parallelization across distributed-memory architectures. Inspired by MapReduce and other simplified parallel programming approaches, we have designed DStep, a flexible system that greatly simplifies efficient parallelization of domain traversal techniques at scale. In order to deliver both simplicity to users as well as scalability on HPC platforms, we introduce a novel two-tiered communication architecture for managing and exploiting asynchronous communication loads. We also integrate our design with advanced parallel I/O techniques that operate directly on native simulation output. We demonstrate DStep bymore » performing teleconnection analysis across ensemble runs of terascale atmospheric CO{sub 2} and climate data, and we show scalability results on up to 65,536 IBM BlueGene/P cores.« less
Design Analysis Kit for Optimization and Terascale Applications 6.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-10-19
Sandia's Dakota software (available at http://dakota.sandia.gov) supports science and engineering transformation through advanced exploration of simulations. Specifically it manages and analyzes ensembles of simulations to provide broader and deeper perspective for analysts and decision makers. This enables them to: (1) enhance understanding of risk, (2) improve products, and (3) assess simulation credibility. In its simplest mode, Dakota can automate typical parameter variation studies through a generic interface to a computational model. However, Dakota also delivers advanced parametric analysis techniques enabling design exploration, optimization, model calibration, risk analysis, and quantification of margins and uncertainty with such models. It directly supports verificationmore » and validation activities. The algorithms implemented in Dakota aim to address challenges in performing these analyses with complex science and engineering models from desktop to high performance computers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eslinger, Paul W.; Aaberg, Rosanne L.; Lopresti, Charles A.
2004-09-14
This document contains detailed user instructions for a suite of utility codes developed for Rev. 1 of the Systems Assessment Capability. The suite of computer codes for Rev. 1 of Systems Assessment Capability performs many functions.
NASA In-Situ Resource Utilization Project-and Seals Challenges
NASA Technical Reports Server (NTRS)
Sacksteder, Kurt; Linne, Diane
2006-01-01
A viewgraph presentation on NASA's In-Situ Resource Utilization Project and Seals Challenges is shown. The topics include: 1) What Are Space Resources?; 2) Space Resource Utilization for Exploration; 3) ISRU Enables Affordable, Sustainable & Flexible Exploration; 4) Propellant from the Moon Could Revolutionize Space Transportation; 5) NASA ISRU Capability Roadmap Study, 2005; 6) Timeline for ISRU Capability Implementation; 7) Lunar ISRU Implementation Approach; 8) ISRU Technical-to-Mission Capability Roadmap; 9) ISRU Resources & Products of Interest; and 10) Challenging Seals Requirements for ISRU.
Computational challenges in atomic, molecular and optical physics.
Taylor, Kenneth T
2002-06-15
Six challenges are discussed. These are the laser-driven helium atom; the laser-driven hydrogen molecule and hydrogen molecular ion; electron scattering (with ionization) from one-electron atoms; the vibrational and rotational structure of molecules such as H(3)(+) and water at their dissociation limits; laser-heated clusters; and quantum degeneracy and Bose-Einstein condensation. The first four concern fundamental few-body systems where use of high-performance computing (HPC) is currently making possible accurate modelling from first principles. This leads to reliable predictions and support for laboratory experiment as well as true understanding of the dynamics. Important aspects of these challenges addressable only via a terascale facility are set out. Such a facility makes the last two challenges in the above list meaningfully accessible for the first time, and the scientific interest together with the prospective role for HPC in these is emphasized.
Interactive Terascale Particle Visualization
NASA Technical Reports Server (NTRS)
Ellsworth, David; Green, Bryan; Moran, Patrick
2004-01-01
This paper describes the methods used to produce an interactive visualization of a 2 TB computational fluid dynamics (CFD) data set using particle tracing (streaklines). We use the method introduced by Bruckschen et al. [2001] that pre-computes a large number of particles, stores them on disk using a space-filling curve ordering that minimizes seeks, and then retrieves and displays the particles according to the user's command. We describe how the particle computation can be performed using a PC cluster, how the algorithm can be adapted to work with a multi-block curvilinear mesh, and how the out-of-core visualization can be scaled to 296 billion particles while still achieving interactive performance on PG hardware. Compared to the earlier work, our data set size and total number of particles are an order of magnitude larger. We also describe a new compression technique that allows the lossless compression of the particles by 41% and speeds the particle retrieval by about 30%.
NASA Astrophysics Data System (ADS)
Schlegel, N.; Seroussi, H. L.; Boening, C.; Larour, E. Y.; Limonadi, D.; Schodlok, M.; Watkins, M. M.
2017-12-01
The Jet Propulsion Laboratory-University of California at Irvine Ice Sheet System Model (ISSM) is a thermo-mechanical 2D/3D parallelized finite element software used to physically model the continental-scale flow of ice at high resolutions. Embedded into ISSM are uncertainty quantification (UQ) tools, based on the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) software. ISSM-DAKOTA offers various UQ methods for the investigation of how errors in model input impact uncertainty in simulation results. We utilize these tools to regionally sample model input and key parameters, based on specified bounds of uncertainty, and run a suite of continental-scale 100-year ISSM forward simulations of the Antarctic Ice Sheet. Resulting diagnostics (e.g., spread in local mass flux and regional mass balance) inform our conclusion about which parameters and/or forcing has the greatest impact on century-scale model simulations of ice sheet evolution. The results allow us to prioritize the key datasets and measurements that are critical for the minimization of ice sheet model uncertainty. Overall, we find that Antartica's total sea level contribution is strongly affected by grounding line retreat, which is driven by the magnitude of ice shelf basal melt rates and by errors in bedrock topography. In addition, results suggest that after 100 years of simulation, Thwaites glacier is the most significant source of model uncertainty, and its drainage basin has the largest potential for future sea level contribution. This work is performed at and supported by the California Institute of Technology's Jet Propulsion Laboratory. Supercomputing time is also supported through a contract with the National Aeronautics and Space Administration's Cryosphere program.
Patient Care Utility Module for DEPMEDS Hospitals
1991-06-05
identified in the patient care utility capability in Deployable Medical S-:tems (DEPMEDS) hospitals, especially in the Intensive Care Unit (ICU). A...identified in the patient care utility capability in Deployable Medical Systems (DEPMEDS) hospitals, especially in the Intensive Care Unit (ICU). A...REQUEST FROM DEFENSE MEDICAL STANDARDIZATION BOARD TO STUDY SPACE AROUND PATIENT BEDSIDE IN DEPHEDS HOSPITALS 28 DEFENSE MEDICAL STANDARDIZATION BOARD FONT
Recombinant organisms capable of fermenting cellobiose
Ingram, Lonnie O.; Lai, Xiaokuang; Moniruzzaman, Mohammed; York, Sean W.
2000-01-01
This invention relates to a recombinant microorganism which expresses pyruvate decarboxylase, alcohol dehydrogenase, Klebsiella phospho-.beta.-glucosidase and Klebsiella (phosphoenolpyruvate-dependent phosphotransferase system) cellobiose-utilizing Enzyme II, wherein said phospho-.beta.-glucosidase and said (phosphoenolpyruvate-dependent phosphotransferase) cellobiose-utilizing Enzyme II are heterologous to said microorganism and wherein said microorganism is capable of utilizing both hemicellulose and cellulose, including cellobiose, in the production of ethanol.
Air Force Strategy Study 2020-2030
2011-01-01
shocks (also known as “black swans”), having 2 │ introduction the potential to radically alter the utility of the capability, as a way of highlighting... utilized by its expeditionary air units.”5 The Air Force must present strategic and operational options along with forces capable of operating and...Emer- gency Management Agency (FEMA) regional staffs, in part representing the service and USNORTHCOM. The imagery analysts’ utility is largely due
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-31
... Business Utilization AGENCY: Departmental Offices, Department of Treasury. ACTION: Notice and request for... Capability Statement will be used by firms that wish to do business with the Department of the Treasury. The... businesses to perform on Treasury contracts. Current Actions: The Electronic Capability Statement was...
Production of lactic acid from hemicellulose extracts by Bacillus coagulans MXL-9
USDA-ARS?s Scientific Manuscript database
Bacillus coagulans MXL-9 was found capable of growing on pre-pulping hemicellulose extracts, utilizing all of the principle monosugars found in woody biomass. This organism is a moderate thermophile isolated from compost for its pentose utilizing capabilities. It was found to have high tolerance f...
Appari, Ajit; Johnson, M Eric; Anthony, Denise L
2018-01-01
To determine whether the use of information technology (IT), measured by Meaningful Use capability, is associated with lower rates of inappropriate utilization of imaging services in hospital outpatient settings. A retrospective cross-sectional analysis of 3332 nonfederal U.S. hospitals using data from: Hospital Compare (2011 outpatient imaging efficiency measures), HIMSS Analytics (2009 health IT), and Health Indicator Warehouse (market characteristics). Hospitals were categorized for their health IT infrastructure including EHR Stage-1 capability, and three advanced imaging functionalities/systems including integrated picture archiving and communication system, Web-based image distribution, and clinical decision support (CDS) with physician pathways. Three imaging efficiency measures suggesting inappropriate utilization during 2011 included: percentage of "combined" (with and without contrast) computed tomography (CT) studies out of all CT studies for abdomen and chest respectively, and percentage of magnetic resonance imaging (MRI) studies of lumbar spine without antecedent conservative therapy within 60days. For each measure, three separate regression models (GLM with gamma-log link function, and denominator of imaging measure as exposure) were estimated adjusting for hospital characteristics, market characteristics, and state fixed effects. Additionally, Heckman's Inverse Mills Ratio and propensity for Stage-1 EHR capability were used to account for selection bias. We find support for association of each of the four health IT capabilities with inappropriate utilization rates of one or more imaging modality. Stage-1 EHR capability is associated with lower inappropriate utilization rates for chest CT (incidence rate ratio IRR=0.72, p-value <0.01) and lumbar MRI (IRR=0.87, p-value <0.05). Integrated PACS is associated with lower inappropriate utilization rate of abdomen CT (IRR=0.84, p-value <0.05). Imaging distribution over Web capability is associated with lower inappropriate utilization rates for chest CT (IRR=0.66, p-value <0.05) and lumbar MRI (IRR=0.86, p-value <0.05). CDS with physician pathways is associated with lower inappropriate utilization rates for abdomen CT (IRR=0.87, p-value <0.01) and lumbar MRI (IRR=0.90, p-value <0.05). All other cases showed no association. The study offers mixed results. Taken together, the results suggest that the use of Stage-1 Meaningful Use capable EHR systems along with advanced imaging related functionalities could have a beneficial impact on reducing some of the inappropriate utilization of outpatient imaging. Copyright © 2017 Elsevier B.V. All rights reserved.
A Cross-Platform Infrastructure for Scalable Runtime Application Performance Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jack Dongarra; Shirley Moore; Bart Miller, Jeffrey Hollingsworth
2005-03-15
The purpose of this project was to build an extensible cross-platform infrastructure to facilitate the development of accurate and portable performance analysis tools for current and future high performance computing (HPC) architectures. Major accomplishments include tools and techniques for multidimensional performance analysis, as well as improved support for dynamic performance monitoring of multithreaded and multiprocess applications. Previous performance tool development has been limited by the burden of having to re-write a platform-dependent low-level substrate for each architecture/operating system pair in order to obtain the necessary performance data from the system. Manual interpretation of performance data is not scalable for large-scalemore » long-running applications. The infrastructure developed by this project provides a foundation for building portable and scalable performance analysis tools, with the end goal being to provide application developers with the information they need to analyze, understand, and tune the performance of terascale applications on HPC architectures. The backend portion of the infrastructure provides runtime instrumentation capability and access to hardware performance counters, with thread-safety for shared memory environments and a communication substrate to support instrumentation of multiprocess and distributed programs. Front end interfaces provides tool developers with a well-defined, platform-independent set of calls for requesting performance data. End-user tools have been developed that demonstrate runtime data collection, on-line and off-line analysis of performance data, and multidimensional performance analysis. The infrastructure is based on two underlying performance instrumentation technologies. These technologies are the PAPI cross-platform library interface to hardware performance counters and the cross-platform Dyninst library interface for runtime modification of executable images. The Paradyn and KOJAK projects have made use of this infrastructure to build performance measurement and analysis tools that scale to long-running programs on large parallel and distributed systems and that automate much of the search for performance bottlenecks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khachatryan, Vardan; et al.,
The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7 inverse femtobarns of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To testmore » this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale.« less
The Impact of the Nuclear Equation of State in Core Collapse Supernovae
NASA Astrophysics Data System (ADS)
Baird, M. L.; Lentz, E. J.; Hix, W. R.; Mezzacappa, A.; Messer, O. E. B.; Liebendoerfer, M.; TeraScale Supernova Initiative Collaboration
2005-12-01
One of the key ingredients to the core collapse supernova mechanism is the physics of matter at or near nuclear density. Included in simulations as part of the Equation of State (EOS), nuclear repulsion experienced at high densities are responsible for the bounce shock, which initially causes the outer envelope of the supernova to expand, as well as determining the structure of the newly formed proto-neutron star. Recent years have seen renewed interest in this fundamental piece of supernova physics, resulting in several promising candidate EOS parameterizations. We will present the impact of these variations in the nuclear EOS using spherically symmetric, Newtonian and General Relativistic neutrino transport simulations of stellar core collapse and bounce. This work is supported in part by SciDAC grants to the TeraScale Supernovae Initiative from the DOE Office of Science High Energy, Nuclear, and Advanced Scientific Computing Research Programs. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for U.S. Department of Energy under contract DEAC05-00OR22725
NASA Astrophysics Data System (ADS)
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Roland, B.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Kalogeropoulos, A.; Keaveney, J.; Kim, T. J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Klein, B.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Liao, J.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; Dos Reis Martins, T.; Pol, M. E.; Aldá Júnior, W. L.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, D.; Liang, S.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.; Calpas, B.; Edelhoff, M.; Feld, L.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garay Garcia, J.; Geiser, A.; Gunnellini, P.; Hauk, J.; Hellwig, G.; Hempel, M.; Horton, D.; Jung, H.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Krücker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schröder, M.; Spannagel, S.; Vargas Trevino, A. D. R.; Walsh, R.; Wissing, C.; Aldaya Martin, M.; Blobel, V.; Centis Vignali, M.; Erfle, J.; Garutti, E.; Goebel, K.; Görner, M.; Gosselink, M.; Haller, J.; Höing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Lobelle Pardo, P.; Mozer, M. U.; Müller, Th.; Nürnberg, A.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Röcker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.; Gouskos, L.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kalsi, A. K.; Kaur, M.; Mittal, M.; Nishu, N.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Dall'Osso, M.; Dorigo, T.; Galanti, M.; Gasparini, F.; Giubilato, P.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Salvini, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, J. Y.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, I. C.; Park, S.; Ryu, G.; Ryu, M. S.; Choi, Y.; Choi, Y. K.; Goh, J.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.; Juodagalvis, A.; Komaragiri, J. R.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Dordevic, M.; Ekmedzic, M.; Milosevic, J.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Musella, P.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Treille, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wardle, N.; Wöhri, H. K.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Lustermann, W.; Mangano, B.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Meister, D.; Mohr, N.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Ronga, F. J.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Ivova Rikova, M.; Kilminster, B.; Millan Mejias, B.; Ngadiuba, J.; Robmann, P.; Snoek, H.; Taroni, S.; Verzetti, M.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Shi, X.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Karapinar, G.; Ocalan, K.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Bahtiyar, H.; Barlas, E.; Cankocak, K.; Vardarlı, F. I.; Yücel, M.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Marrouche, J.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Richardson, C.; Rohlf, J.; Sperka, D.; St. John, J.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Liu, H.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Shrinivas, A.; Sturdy, J.; Sumowidagdo, S.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chu, J.; Dittmer, S.; Eggert, N.; Hopkins, W.; Kreis, B.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.; Acosta, D.; Avery, P.; Bourilkov, D.; Carver, M.; Cheng, T.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.; Dahmes, B.; De Benedetti, A.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Gonzalez Suarez, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Pearson, T.; Planer, M.; Ruchti, R.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.; Berry, E.; Driga, O.; Elmer, P.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.; Brownson, E.; Mendez, H.; Ramirez Vargas, J. E.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Lopes Pegna, D.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Woods, N.; CMS Collaboration
2014-08-01
The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7 fb-1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale.
Utility fog: A universal physical substance
NASA Technical Reports Server (NTRS)
Hall, J. Storrs
1993-01-01
Active, polymorphic material ('Utility Fog') can be designed as a conglomeration of 100-micron robotic cells ('foglets'). Such robots could be built with the techniques of molecular nanotechnology. Controllers with processing capabilities of 1000 MIPS per cubic micron, and electric motors with power densities of one milliwatt per cubic micron are assumed. Utility Fog should be capable of simulating most everyday materials, dynamically changing its form and properties, and forms a substrate for an integrated virtual reality and telerobotics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
III, FredOppel; Rigdon, J. Brian
2014-09-08
A collection of general Umbra modules that are reused by other Umbra libraries. These capabilities include line segments, file utilities, color utilities, string utilities (for std::string), list utilities (for std ::vector ), bounding box intersections, range limiters, simple filters, cubic roots solvers and a few other utilities.
Ensuring US National Aeronautics Test Capabilities
NASA Technical Reports Server (NTRS)
Marshall, Timothy J.
2010-01-01
U.S. leadership in aeronautics depends on ready access to technologically advanced, efficient, and affordable aeronautics test capabilities. These systems include major wind tunnels and propulsion test facilities and flight test capabilities. The federal government owns the majority of the major aeronautics test capabilities in the United States, primarily through the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD). However, changes in the Aerospace landscape, primarily the decrease in demand for testing over the last 20 years required an overarching strategy for management of these national assets. Therefore, NASA established the Aeronautics Test Program (ATP) as a two-pronged strategic initiative to: (1) retain and invest in NASA aeronautics test capabilities considered strategically important to the agency and the nation, and (2) establish a strong, high level partnership with the DoD. Test facility utilization is a critical factor for ATP because it relies on user occupancy fees to recover a substantial part of the operations costs for its facilities. Decreasing utilization is an indicator of excess capacity and in some cases low-risk redundancy (i.e., several facilities with basically the same capability and overall low utilization). However, low utilization does not necessarily translate to lack of strategic importance. Some facilities with relatively low utilization are nonetheless vitally important because of the unique nature of the capability and the foreseeable aeronautics testing needs. Unfortunately, since its inception, the customer base for ATP has continued to shrink. Utilization of ATP wind tunnels has declined by more than 50% from the FY 2006 levels. This significant decrease in customer usage is attributable to several factors, including the overall decline in new programs and projects in the aerospace sector; the impact of computational fluid dynamics (CFD) on the design, development, and research process; and the reductions in wind tunnel testing requirements within the largest consumer of ATP wind tunnel test time, the Aeronautics Research Mission Directorate (ARMD). Retirement of the Space Shuttle Program and recent perturbations of NASA's Constellation Program will exacerbate this downward trend. Therefore it is crucial that ATP periodically revisit and determine which of its test capabilities are strategically important, which qualify as low-risk redundancies that could be put in an inactive status or closed, and address the challenges associated with both sustainment and improvements to the test capabilities that must remain active. This presentation will provide an overview of the ATP vision, mission, and goals as well as the challenges and opportunities the program is facing both today and in the future. We will discuss the strategy ATP is taking over the next five years to address the National aeronautics test capability challenges and what the program will do to capitalize on its opportunities to ensure a ready, robust and relevant portfolio of National aeronautics test capabilities.
NASA Technical Reports Server (NTRS)
Wilson, D. A.
1976-01-01
Specific requirements for a wash/rinse capability to support Spacelab biological experimentation and to identify various concepts for achieving this capability were determined. This included the examination of current state-of-the-art and emerging technology designs that would meet the wash/rinse requirements. Once several concepts were identified, including the disposable utensils, tools and gloves or other possible alternatives, a tradeoff analysis involving system cost, weight, volume utilization, functional performance, maintainability, reliability, power utilization, safety, complexity, etc., was performed so as to determine an optimum approach for achieving a wash/rinse capability to support future space flights. Missions of varying crew size and durations were considered.
The Space Systems Environmental Test Facility Database (SSETFD), Website Development Status
NASA Technical Reports Server (NTRS)
Snyder, James M.
2008-01-01
The Aerospace Corporation has been developing a database of U.S. environmental test laboratory capabilities utilized by the space systems hardware development community. To date, 19 sites have been visited by The Aerospace Corporation and verbal agreements reached to include their capability descriptions in the database. A website is being developed to make this database accessible by all interested government, civil, university and industry personnel. The website will be accessible by all interested in learning more about the extensive collective capability that the US based space industry has to offer. The Environments, Test & Assessment Department within The Aerospace Corporation will be responsible for overall coordination and maintenance of the database. Several US government agencies are interested in utilizing this database to assist in the source selection process for future spacecraft programs. This paper introduces the website by providing an overview of its development, location and search capabilities. It will show how the aerospace community can apply this new tool as a way to increase the utilization of existing lab facilities, and as a starting point for capital expenditure/upgrade trade studies. The long term result is expected to be increased utilization of existing laboratory capability and reduced overall development cost of space systems hardware. Finally, the paper will present the process for adding new participants, and how the database will be maintained.
Overview of ASC Capability Computing System Governance Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doebling, Scott W.
This document contains a description of the Advanced Simulation and Computing Program's Capability Computing System Governance Model. Objectives of the Governance Model are to ensure that the capability system resources are allocated on a priority-driven basis according to the Program requirements; and to utilize ASC Capability Systems for the large capability jobs for which they were designed and procured.
Utilization of artificial intelligence techniques for the Space Station power system
NASA Technical Reports Server (NTRS)
Evatt, Thomas C.; Gholdston, Edward W.
1988-01-01
Due to the complexity of the Space Station Electrical Power System (EPS) as currently envisioned, artificial intelligence/expert system techniques are being investigated to automate operations, maintenance, and diagnostic functions. A study was conducted to investigate this technology as it applies to failure detection, isolation, and reconfiguration (FDIR) and health monitoring of power system components and of the total system. Control system utilization of expert systems for load scheduling and shedding operations was also researched. A discussion of the utilization of artificial intelligence/expert systems for Initial Operating Capability (IOC) for the Space Station effort is presented along with future plans at Rocketdyne for the utilization of this technology for enhanced Space Station power capability.
Exploiting the Capabilities of NASA's Giovanni System for Oceanographic Education
NASA Technical Reports Server (NTRS)
Acker, James G.; Petrucio, Emil; Leptoukh, Gregory; Shen, Suhung
2007-01-01
The NASA Goddard Earth Science Data and Information Services Center (GES DISC) Giovanni system [GES DISC Interactive Online Visualization ANd aNalysis Infrastructure] has significant capabilities for oceanographic education and independent research utilizing ocean color radiometry data products. Giovanni allows Web-based data discovery and basic analyses, and can be used both for guided illustration of a variety of marine processes and phenomena, and for independent research investigations. Giovanni's capabilities are particularly suited for advanced secondary school science and undergraduate (college) education. This presentation will describe a variety of ways that Giovanni can be used for oceanographic education. Auxiliary information resources that can be utilized will also be described. Several testimonies of Giovanni usage for instruction will be provided, and a recent case history of Giovanni utilization for instruction and research at the undergraduate level is highlighted.
NASA science utilization plans for the Space Station.
Reeves, E M; Cressy, P J
1995-10-01
The Mir-1 and International Space Station Alpha capabilities present the science community with unique long duration platforms to conduct a wide range of scientific research in the microgravity and life sciences as well as in the observational sciences, NASA is developing plans to use the capabilities of Mir and Space Station as they emerge during the development of the orbital program. In both cases the planned science utilization programs take advantage of the volume, crew, power, microgravity and logistics resupply unique to each phase. The paper will present these utilization plans in the context of an evolving scientific program.
Analysis Report for Exascale Storage Requirements for Scientific Data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruwart, Thomas M.
Over the next 10 years, the Department of Energy will be transitioning from Petascale to Exascale Computing resulting in data storage, networking, and infrastructure requirements to increase by three orders of magnitude. The technologies and best practices used today are the result of a relatively slow evolution of ancestral technologies developed in the 1950s and 1960s. These include magnetic tape, magnetic disk, networking, databases, file systems, and operating systems. These technologies will continue to evolve over the next 10 to 15 years on a reasonably predictable path. Experience with the challenges involved in transitioning these fundamental technologies from Terascale tomore » Petascale computing systems has raised questions about how these will scale another 3 or 4 orders of magnitude to meet the requirements imposed by Exascale computing systems. This report is focused on the most concerning scaling issues with data storage systems as they relate to High Performance Computing- and presents options for a path forward. Given the ability to store exponentially increasing amounts of data, far more advanced concepts and use of metadata will be critical to managing data in Exascale computing systems.« less
Women in Physics in Germany, 2008
NASA Astrophysics Data System (ADS)
Kluge, Hanna
2009-04-01
The status of women in physics in Germany has not changed dramatically in the three years since the last IUPAP Women in Physics Conference was held in 2005. The salary of a woman remains approximately 25% lower than that of a man in a comparable professional position. The number of female professors is growing slowly. The number of young women beginning to study physics is around 20%. There is, however, a noticeable increase in organization and societal acceptance of female physicists, and an increasing amount of men taking part in this process. There is also increased acceptance and support of dual-career couples. The Helmholtz Alliance for "Physics at the Terascale" founded a dual-career option program. In 2008, the annual Conference of German Female Physicists (DPT) held in Muenster became an official conference of the DPG (German Physical Society). Various scientific groups working for equal opportunity have formed a "network of networks." At the DESY (German Electron Synchrotron), a group of women led by an equal opportunity officer is involved in the entire process of hiring new staff members in all positions, including directors.
Maritime Law Enforcement: A Critical Capability for the Navy?
2012-03-01
the need for robust maritime security utilizing law enforcement capabilities is in demand. 2. National Concern The significance of nontraditional... utilize their navies for maritime law enforcement.16 So, why does the U.S. Navy not perform law enforcement? The Navy defers on law enforcement...Summer, 2007), 30. 31 Geoffrey Mones and Andrew Webb, “The Coast Guard Needs Help from the . . . Navy and Marine Corps,” Vol. 130: Proceedings 130, no
NASA Astrophysics Data System (ADS)
Doerr, S. E.
1984-06-01
Modeling of aerodynamic interference effects of propulsive jet plumes, by using inert gases as substitute propellants, introduces design limits. To extend the range of modeling capabilities, nozzle wall curvature effects may be utilized. Numerical calculations, using the Method of Characteristics, were made and experimental data were taken to evaluate the merits of the theoretical predictions. A bibliography, listing articles that led to the present report, is included.
SIRU utilization. Volume 2: Software description and program documentation
NASA Technical Reports Server (NTRS)
Oehrle, J.; Whittredge, R.
1973-01-01
A complete description of the additional analysis, development and evaluation provided for the SIRU system as identified in the requirements for the SIRU utilization program is presented. The SIRU configuration is a modular inertial subsystem with hardware and software features that achieve fault tolerant operational capabilities. The SIRU redundant hardware design is formulated about a six gyro and six accelerometer instrument module package. The modules are mounted in this package so that their measurement input axes form a unique symmetrical pattern that corresponds to the array of perpendiculars to the faces of a regular dodecahedron. This six axes array provides redundant independent sensing and the symmetry enables the formulation of an optimal software redundant data processing structure with self-contained fault detection and isolation (FDI) capabilities. Documentation of the additional software and software modifications required to implement the utilization capabilities includes assembly listings and flow charts
Sheehy, Thomas J; Thygeson, N Marcus
2014-12-03
We studied the relationship between physician organization (PO) care management capabilities and inpatient utilization in order to identify PO characteristics or capabilities associated with low inpatient bed-days per thousand. We used fuzzy-set qualitative comparative analysis (fsQCA) to conduct an exploratory comparative case series study. Data about PO capabilities were collected using structured interviews with medical directors at fourteen California POs that are delegated to provide inpatient utilization management (UM) for HMO members of a California health plan. Health plan acute hospital claims from 2011 were extracted from a reporting data warehouse and used to calculate inpatient utilization statistics. Supplementary analyses were conducted using Fisher's Exact Test and Student's T-test. POs with low inpatient bed-days per thousand minimized length of stay and surgical admissions by actively engaging in concurrent review, discharge planning, and surgical prior authorization, and by contracting directly with hospitalists to provide UM-related services. Disease and case management were associated with lower medical admissions and readmissions, respectively, but not lower bed-days per thousand. Care management methods focused on managing length of stay and elective surgical admissions are associated with low bed-days per thousand in high-risk California POs delegated for inpatient UM. Reducing medical admissions alone is insufficient to achieve low bed-days per thousand. California POs with high bed-days per thousand are not applying care management best practices.
Communications, Navigation, and Surveillance Models in ACES: Design Implementation and Capabilities
NASA Technical Reports Server (NTRS)
Kubat, Greg; Vandrei, Don; Satapathy, Goutam; Kumar, Anil; Khanna, Manu
2006-01-01
Presentation objectives include: a) Overview of the ACES/CNS System Models Design and Integration; b) Configuration Capabilities available for Models and Simulations using ACES with CNS Modeling; c) Descriptions of recently added, Enhanced CNS Simulation Capabilities; and d) General Concepts Ideas that Utilize CNS Modeling to Enhance Concept Evaluations.
Social Justice Intents in Policy: An Analysis of Capability "for" and "through" Education
ERIC Educational Resources Information Center
Gale, Trevor; Molla, Tebeje
2015-01-01
Primarily developed as an alternative to narrow measures of well-being such as utility and resources, Amartya Sen's capability approach places strong emphasis on people's substantive opportunities. As a broad normative framework, the capability approach has become a valuable tool for understanding and evaluating social arrangements (e.g. education…
Design criteria for a PC-based common user interface to remote information systems
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Hall, Philip P.
1984-01-01
A set of design criteria are presented which will allow the implementation of an interface to multiple remote information systems on a microcomputer. The focus of the design description is on providing the user with the functionality required to retrieve, store and manipulate data residing in remote information systems through the utilization of a standardized interface system. The intent is to spare the user from learning the details of retrieval from specific systems while retaining the full capabilities of each system. The system design includes multi-level capabilities to enhance usability by a wide range of users and utilizes microcomputer graphics capabilities where applicable. A data collection subsystem for evaluation purposes is also described.
Development and Demonstration of Sustainable Surface Infrastructure for Moon/Mars Exploration
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.; Larson, William E.; Picard, Martin
2011-01-01
For long-term human exploration of the Moon and Mars to be practical, affordable, and sustainable, future missions must be able to identify and utilize resources at the site of exploration. The ability to characterize, extract, processes, and separate products from local material, known as In-Situ Resource Utilization (ISRU), can provide significant reductions in launch mass, logistics, and development costs while reducing risk through increased mission flexibility and protection as well as increased mission capabilities in the areas of power and transportation. Making mission critical consumables like propellants, fuel cell reagents and life support gases, as well as in-situ crew/hardware protection and energy storage capabilities can significantly enhance robotic and human science and exploration missions, however other mission systems need to be designed to interface with and utilize these in-situ developed products and services from the start or the benefits will be minimized or eliminated. This requires a level of surface and transportation system development coordination not typically utilized during early technology and system development activities. An approach being utilized by the US National Aeronautics and Space Administration and the Canadian Space Agency has been to utilize joint analogue field demonstrations to focus technology development activities to demonstrate and integrate new and potentially game changing. mission critical capabilities that would enable an affordable and sustainable surface infrastructure for lunar and Mars robotic and human exploration. Two analogue field tests performed in November 2008 and February 2010 demonstrated first generation capabilities for lunar resource prospecting, exploration site preparation, and oxygen extraction from regolith while initiating integration with mobility, science, fuel cell power, and propulsion disciplines. A third analogue field test currently planned for June 2012 will continue and expand the fidelity and integration of these surface exploration and infrastructure capabilities while adding Mars exploration technologies, improving remote operations and control of hardware, and promoting the use of common software, interfaces, & standards for control and operation for surface exploration and science. The next field test will also attempt to include greater involvement by industry, academia, and other countries/space agencies. This paper will provide an overview of the development and demonstration approach utilized to date, the results of the previous two ISRU-focused field analogue tests in Hawaii, and the current objectives and plans for the 3rd international Hawaii analogue field test.
NASA Astrophysics Data System (ADS)
Borne, K. D.; Fortson, L.; Gay, P.; Lintott, C.; Raddick, M. J.; Wallin, J.
2009-12-01
The remarkable success of Galaxy Zoo as a citizen science project for galaxy classification within a terascale astronomy data collection has led to the development of a broader collaboration, known as the Zooniverse. Activities will include astronomy, lunar science, solar science, and digital humanities. Some features of our program include development of a unified framework for citizen science projects, development of a common set of user-based research tools, engagement of the machine learning community to apply machine learning algorithms on the rich training data provided by citizen scientists, and extension across multiple research disciplines. The Zooniverse collaboration is just getting started, but already we are implementing a scientifically deep follow-on to Galaxy Zoo. This project, tentatively named Galaxy Merger Zoo, will engage users in running numerical simulations, whose input parameter space is voluminous and therefore demands a clever solution, such as allowing the citizen scientists to select their own sets of parameters, which then trigger new simulations of colliding galaxies. The user interface design has many of the engaging features that retain users, including rapid feedback, visually appealing graphics, and the sense of playing a competitive game for the benefit of science. We will discuss these topics. In addition, we will also describe applications of Citizen Science that are being considered for the petascale science project LSST (Large Synoptic Survey Telescope). LSST will produce a scientific data system that consists of a massive image archive (nearly 100 petabytes) and a similarly massive scientific parameter database (20-40 petabytes). Applications of Citizen Science for such an enormous data collection will enable greater scientific return in at least two ways. First, citizen scientists work with real data and perform authentic research tasks of value to the advancement of the science, providing "human computation" capabilities and resources to review, annotate, and explore aspects of the data that are too overwhelming for the science team. Second, citizen scientists' inputs (in the form of rich training data and class labels) can be used to improve the classifiers that the project team uses to classify and prioritize new events detected in the petascale data stream. This talk will review these topics and provide an update on the Zooniverse project.
GIS/RS-based Rapid Reassessment for Slope Land Capability Classification
NASA Astrophysics Data System (ADS)
Chang, T. Y.; Chompuchan, C.
2014-12-01
Farmland resources in Taiwan are limited because about 73% is mountainous and slope land. Moreover, the rapid urbanization and dense population resulted in the highly developed flat area. Therefore, the utilization of slope land for agriculture is more needed. In 1976, "Slope Land Conservation and Utilization Act" was promulgated to regulate the slope land utilization. Consequently, slope land capability was categorized into Class I-IV according to 4 criteria, i.e., average land slope, effective soil depth, degree of soil erosion, and parent rock. The slope land capability Class I-VI are suitable for cultivation and pasture. Whereas, Class V should be used for forestry purpose and Class VI should be the conservation land which requires intensive conservation practices. The field survey was conducted to categorize each land unit as the classification scheme. The landowners may not allow to overuse land capability limitation. In the last decade, typhoons and landslides frequently devastated in Taiwan. The rapid post-disaster reassessment of the slope land capability classification is necessary. However, the large-scale disaster on slope land is the constraint of field investigation. This study focused on using satellite remote sensing and GIS as the rapid re-evaluation method. Chenyulan watershed in Nantou County, Taiwan was selected to be a case study area. Grid-based slope derivation, topographic wetness index (TWI) and USLE soil loss calculation were used to classify slope land capability. The results showed that GIS-based classification give an overall accuracy of 68.32%. In addition, the post-disaster areas of Typhoon Morakot in 2009, which interpreted by SPOT satellite imageries, were suggested to classify as the conservation lands. These tools perform better in the large coverage post-disaster update for slope land capability classification and reduce time-consuming, manpower and material resources to the field investigation.
RXIO: Design and implementation of high performance RDMA-capable GridFTP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Yuan; Yu, Weikuan; Vetter, Jeffrey S.
2011-12-21
For its low-latency, high bandwidth, and low CPU utilization, Remote Direct Memory Access (RDMA) has established itself as an effective data movement technology in many networking environments. However, the transport protocols of grid run-time systems, such as GridFTP in Globus, are not yet capable of utilizing RDMA. In this study, we examine the architecture of GridFTP for the feasibility of enabling RDMA. An RDMA-capable XIO (RXIO) framework is designed and implemented to extend its XIO system and match the characteristics of RDMA. Our experimental results demonstrate that RDMA can significantly improve the performance of GridFTP, reducing the latency by 32%more » and increasing the bandwidth by more than three times. In achieving such performance improvements, RDMA dramatically cuts down CPU utilization of GridFTP clients and servers. In conclusion, these results demonstrate that RXIO can effectively exploit the benefits of RDMA for GridFTP. It offers a good prototype to further leverage GridFTP on wide-area RDMA networks.« less
Hibbard, Judith H; Greene, Jessica; Sacks, Rebecca; Overton, Valerie; Parrotta, Carmen D
2016-03-01
We explored whether supplementing a clinical risk score with a behavioral measure could improve targeting of the patients most in need of supports that reduce their risk of costly service utilization. Using data from a large health system that determines patient self-management capability using the Patient Activation Measure, we examined utilization of hospital and emergency department care by the 15 percent of patients with the highest clinical risk scores. After controlling for risk scores and placing patients within segments based on their level of activation in 2011, we found that the lower the activation level, the higher the utilization and cost of hospital services in each of the following three years. These findings demonstrate that adding a measure of patient self-management capability to a risk assessment can improve prediction of high care costs and inform actions to better meet patient needs. Project HOPE—The People-to-People Health Foundation, Inc.
DOT National Transportation Integrated Search
1996-04-01
In April 1994, NHTSA issued an Advanced Notice of Proposed Rule Making (ANPRM) requesting information regarding light truck fuel economy capabilities for model years 1998 through 2006. Subsequently, in the Department of Transportation Appropriations ...
Challenges of Communications and Tracking for Solar System Small Body Exploration
NASA Technical Reports Server (NTRS)
Rush, John J.; Lichten, Stephen M.; Srinivasan, Jeffrey M.
2011-01-01
This presentation will address: (1) Communications capabilities that will be needed for space missions for Small Planetary Body exploration (2) Utilization of large ground-based radar capabilities for Small Body remote sensing and mission planning
Results from the NASA Capability Roadmap Team for In-Situ Resource Utilization (ISRU)
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.; Romig, Kris A.; Larson, William E.; Johnson, Robert; Rapp, Don; Johnson, Ken R.; Sacksteder, Kurt; Linne, Diane; Curreri, Peter; Duke, Michael;
2005-01-01
On January 14, 2004, the President of the United States unveiled a new vision for robotic and human exploration of space entitled, "A Renewed Spirit of Discovery". As stated by the President in the Vision for Space Exploration (VSE), NASA must "... implement a sustained and affordable human and robotic program to explore the solar system and beyond " and ".. .develop new technologies and harness the moon's abundant resources to allow manned exploration of more challenging environments." A key to fulfilling the goal of sustained and affordable human and robotic exploration will be the ability to use resources that are available at the site of exploration to "live off the land" instead of bringing everything from Earth, known as In-Situ Resource Utilization (ISRU). ISRU can significantly reduce the mass, cost, and risk of exploration through capabilities such as: mission consumable production (propellants, fuel cell reagents, life support consumables, and feedstock for manufacturing & construction); surface construction (radiation shields, landing pads, walls, habitats, etc.); manufacturing and repair with in-situ resources (spare parts, wires, trusses, integrated systems etc.); and space utilities and power from space resources. On January 27th, 2004 the President's Commission on Implementation of U.S. Space Exploration Policy (Aldridge Committee) was created and its final report was released in June 2004. One of the report's recommendations was to establish special project teams to evaluate enabling technologies, of which "Planetary in situ resource utilization" was one of them. Based on the VSE and the commission's final report, NASA established fifteen Capability Roadmap teams, of which ISRU was one of the teams established. From Oct. 2004 to May 2005 the ISRU Capability Roadmap team examined the capabilities, benefits, architecture and mission implementation strategy, critical decisions, current state-of-the-art (SOA), challenges, technology gaps, and risks of ISRU for future human Moon and Mars exploration. This presentation will provide an overview of the ISRU capability, architecture, and implementation strategy examined by the ISRU Capability Roadmap team, along with a top-level review of ISRU benefits, resources and products of interest, and the current SOA in ISRU processes and systems. The presentation will also highlight the challenges of incorporating ISRU into future missions and the gaps in technologies and capabilities that need to be filled to enable ISRU.
Should the capability approach be applied in health economics?
Coast, Joanna; Smith, Richard; Lorgelly, Paula
2008-06-01
This editorial questions the implications of the capability approach for health economics. Two specific issues are considered: the evaluative space of capablities (as opposed to health or utility) and the decision-making principle of maximisation. The paper argues that the capability approach can provide a richer evaluative space enabling improved evaluation of many interventions. It also argues that more thought is needed about the decision-making principles both within the capability approach and within health economics more generally. Specifically, researchers should analyse equity-oriented principles such as equalisation and a 'decent minimum' of capability, rather than presuming that the goal must be the maximisation of capability.
A distributed data base management capability for the deep space network
NASA Technical Reports Server (NTRS)
Bryan, A. I.
1976-01-01
The Configuration Control and Audit Assembly (CCA) is reported that has been designed to provide a distributed data base management capability for the DSN. The CCA utilizes capabilities provided by the DSN standard minicomputer and the DSN standard nonreal time high level management oriented programming language, MBASIC. The characteristics of the CCA for the first phase of implementation are described.
Anlysis capabilities for plutonium-238 programs
NASA Astrophysics Data System (ADS)
Wong, A. S.; Rinehart, G. H.; Reimus, M. H.; Pansoy-Hjelvik, M. E.; Moniz, P. F.; Brock, J. C.; Ferrara, S. E.; Ramsey, S. S.
2000-07-01
In this presentation, an overview of analysis capabilities that support 238Pu programs will be discussed. These capabilities include neutron emission rate and calorimetric measurements, metallography/ceramography, ultrasonic examination, particle size determination, and chemical analyses. The data obtained from these measurements provide baseline parameters for fuel clad impact testing, fuel processing, product certifications, and waste disposal. Also several in-line analyses capabilities will be utilized for process control in the full-scale 238Pu Aqueous Scrap Recovery line in FY01.
Genetic construction of recombinant Pseudomonas chlororaphis for improved glycerol utilization
USDA-ARS?s Scientific Manuscript database
The objective of this study is to improve by genetic engineering the glycerol metabolic capability of Pseudomonas chlororaphis which is capable of producing commercially valuable biodegradable poly(hydroxyalkanoate) (PHA) and biosurfactant rhamnolipids (RLs). In the study, glycerol uptake facilitat...
CephFS: a new generation storage platform for Australian high energy physics
NASA Astrophysics Data System (ADS)
Borges, G.; Crosby, S.; Boland, L.
2017-10-01
This paper presents an implementation of a Ceph file system (CephFS) use case at the ARC Center of Excellence for Particle Physics at the Terascale (CoEPP). CoEPP’s CephFS provides a posix-like file system on top of a Ceph RADOS object store, deployed on commodity hardware and without single points of failure. By delivering a unique file system namespace at different CoEPP centres spread across Australia, local HEP researchers can store, process and share data independently of their geographical locations. CephFS is also used as the back-end file system for a WLCG ATLAS user area at the Australian Tier-2. Dedicated SRM and XROOTD services, deployed on top of CoEPP’s CephFS, integrates it in ATLAS data distributed operations. This setup, while allowing Australian HEP researchers to trigger data movement via ATLAS grid tools, also enables local posix-like read access providing greater control to scientists of their data flows. In this article we will present details on CoEPP’s Ceph/CephFS implementation and report performance I/O metrics collected during the testing/tuning phase of the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis C. Smolarski, S.J.
Project Abstract This project was a continuation of work begun under a subcontract issued off of TSI-DOE Grant 1528746, awarded to the University of Illinois Urbana-Champaign. Dr. Anthony Mezzacappa is the Principal Investigator on the Illinois award. A separate award was issued to Santa Clara University to continue the collaboration during the time period May 2003 ? 2004. Smolarski continued to work on preconditioner technology and its interface with various iterative methods. He worked primarily with F. Dough Swesty (SUNY-Stony Brook) in continuing software development started in the 2002-03 academic year. Special attention was paid to the development and testingmore » of difference sparse approximate inverse preconditioners and their use in the solution of linear systems arising from radiation transport equations. The target was a high performance platform on which efficient implementation is a critical component of the overall effort. Smolarski also focused on the integration of the adaptive iterative algorithm, Chebycode, developed by Tom Manteuffel and Steve Ashby and adapted by Ryan Szypowski for parallel platforms, into the radiation transport code being developed at SUNY-Stony Brook.« less
Absorption machine with desorber-resorber
Biermann, Wendell J.
1985-01-01
An absorption refrigeration system utilizing a low temperature desorber and intermediate temperature resorber. The system operates at three temperatures and three pressures to increase the efficiency of the system and is capable of utilizing a lower generator temperature than previously used.
Launch Vehicle Demonstrator Using Shuttle Assets
NASA Technical Reports Server (NTRS)
Creech, Dennis M.; Threet, Grady E., Jr.; Philips, Alan D.; Waters, Eric D.
2011-01-01
The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center undertook a study to define candidate early heavy lift demonstration launch vehicle concepts derived from existing space shuttle assets. The objective was to determine the performance capabilities of these vehicles and characterize potential early demonstration test flights. Given the anticipated budgetary constraints that may affect America's civil space program, and a lapse in U.S. heavy launch capability with the retirement of the space shuttle, an early heavy lift launch vehicle demonstration flight would not only demonstrate capabilities that could be utilized for future space exploration missions, but also serve as a building block for the development of our nation s next heavy lift launch system. An early heavy lift demonstration could be utilized as a test platform, demonstrating capabilities of future space exploration systems such as the Multi Purpose Crew Vehicle. By using existing shuttle assets, including the RS-25D engine inventory, the shuttle equipment manufacturing and tooling base, and the segmented solid rocket booster industry, a demonstrator concept could expedite the design-to-flight schedule while retaining critical human skills and capital. In this study two types of vehicle designs are examined. The first utilizes a high margin/safety factor battleship structural design in order to minimize development time as well as monetary investment. Structural design optimization is performed on the second, as if an operational vehicle. Results indicate low earth orbit payload capability is more than sufficient to support various vehicle and vehicle systems test programs including Multi-Purpose Crew Vehicle articles. Furthermore, a shuttle-derived, hydrogen core vehicle configuration offers performance benefits when trading evolutionary paths to maximum capability.
Space station operations management
NASA Technical Reports Server (NTRS)
Cannon, Kathleen V.
1989-01-01
Space Station Freedom operations management concepts must be responsive to the unique challenges presented by the permanently manned international laboratory. Space Station Freedom will be assembled over a three year period where the operational environment will change as significant capability plateaus are reached. First Element Launch, Man-Tended Capability, and Permanent Manned Capability, represent milestones in operational capability that is increasing toward mature operations capability. Operations management concepts are being developed to accomodate the varying operational capabilities during assembly, as well as the mature operational environment. This paper describes operations management concepts designed to accomodate the uniqueness of Space Station Freedoom, utilizing tools and processes that seek to control operations costs.
ERIC Educational Resources Information Center
Polzella, Donald J.; Hubbard, David C.
This document consists of an interim report and a final report which describe the second and third phases of a project designed to determine the utility and utilization of sophisticated hardware and software capabilities known as advanced instructional features (AIFs). Used with an aircrew training device (ATD), AIFs permit a simulator instructor…
NASA Astrophysics Data System (ADS)
Druken, K. A.; Trenham, C. E.; Steer, A.; Evans, B. J. K.; Richards, C. J.; Smillie, J.; Allen, C.; Pringle, S.; Wang, J.; Wyborn, L. A.
2016-12-01
The Australian National Computational Infrastructure (NCI) provides access to petascale data in climate, weather, Earth observations, and genomics, and terascale data in astronomy, geophysics, ecology and land use, as well as social sciences. The data is centralized in a closely integrated High Performance Computing (HPC), High Performance Data (HPD) and cloud facility. Despite this, there remain significant barriers for many users to find and access the data: simply hosting a large volume of data is not helpful if researchers are unable to find, access, and use the data for their particular need. Use cases demonstrate we need to support a diverse range of users who are increasingly crossing traditional research discipline boundaries. To support their varying experience, access needs and research workflows, NCI has implemented an integrated data platform providing a range of services that enable users to interact with our data holdings. These services include: - A GeoNetwork catalog built on standardized Data Management Plans to search collection metadata, and find relevant datasets; - Web data services to download or remotely access data via OPeNDAP, WMS, WCS and other protocols; - Virtual Desktop Infrastructure (VDI) built on a highly integrated on-site cloud with access to both the HPC peak machine and research data collections. The VDI is a fully featured environment allowing visualization, code development and analysis to take place in an interactive desktop environment; and - A Learning Management System (LMS) containing User Guides, Use Case examples and Jupyter Notebooks structured into courses, so that users can self-teach how to use these facilities with examples from our system across a range of disciplines. We will briefly present these components, and discuss how we engage with data custodians and consumers to develop standardized data structures and services that support the range of needs. We will also highlight some key developments that have improved user experience in utilizing the services, particularly enabling transdisciplinary science. This work combines with other developments at NCI to increase the confidence of scientists from any field to undertake research and analysis on these important data collections regardless of their preferred work environment or level of skill.
An application of artificial intelligence theory to reconfigurable flight control
NASA Technical Reports Server (NTRS)
Handelman, David A.
1987-01-01
Artificial intelligence techniques were used along with statistical hpyothesis testing and modern control theory, to help the pilot cope with the issues of information, knowledge, and capability in the event of a failure. An intelligent flight control system is being developed which utilizes knowledge of cause and effect relationships between all aircraft components. It will screen the information available to the pilots, supplement his knowledge, and most importantly, utilize the remaining flight capability of the aircraft following a failure. The list of failure types the control system will accommodate includes sensor failures, actuator failures, and structural failures.
Telecommunication Networks. Tech Use Guide: Using Computer Technology.
ERIC Educational Resources Information Center
Council for Exceptional Children, Reston, VA. Center for Special Education Technology.
One of nine brief guides for special educators on using computer technology, this guide focuses on utilizing the telecommunications capabilities of computers. Network capabilities including electronic mail, bulletin boards, and access to distant databases are briefly explained. Networks useful to the educator, general commercial systems, and local…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seal, Brian; Huque, Aminul; Rogers, Lindsey
In 2011, EPRI began a four-year effort under the Department of Energy (DOE) SunShot Initiative Solar Energy Grid Integration Systems - Advanced Concepts (SEGIS-AC) to demonstrate smart grid ready inverters with utility communication. The objective of the project was to successfully implement and demonstrate effective utilization of inverters with grid support functionality to capture the full value of distributed photovoltaic (PV). The project leveraged ongoing investments and expanded PV inverter capabilities, to enable grid operators to better utilize these grid assets. Developing and implementing key elements of PV inverter grid support capabilities will increase the distribution system’s capacity for highermore » penetration levels of PV, while reducing the cost. The project team included EPRI, Yaskawa-Solectria Solar, Spirae, BPL Global, DTE Energy, National Grid, Pepco, EDD, NPPT and NREL. The project was divided into three phases: development, deployment, and demonstration. Within each phase, the key areas included: head-end communications for Distributed Energy Resources (DER) at the utility operations center; methods for coordinating DER with existing distribution equipment; back-end PV plant master controller; and inverters with smart-grid functionality. Four demonstration sites were chosen in three regions of the United States with different types of utility operating systems and implementations of utility-scale PV inverters. This report summarizes the project and findings from field demonstration at three utility sites.« less
Field and laboratory comparison of PM10 instruments in high winds
USDA-ARS?s Scientific Manuscript database
Instruments capable of measuring PM10 (particulate matter less than or equal to 10µm in aerodynamic diameter) concentrations may vary in performance as a result of different technologies utilized in measuring PM10. Therefore, the performance of five instruments capable of measuring PM10 concentratio...
LABORATORY CAPACITY NEEDS ASSESSMENT OF DRINKING WATER UTILITIES: A GLOBAL PERSPECTIVE
Fully-functioning analytical laboratories capable of producing quality data are essential components of well-run drinking water utilities. In Europe and the US, drinking water laboratory performance is closely monitored and regulated; this is not always the case in the less indu...
DOT National Transportation Integrated Search
1979-07-01
This report describes a concept for providing enhanced terminal information services (ETIS) to aircraft utilizing the ground-air-ground data link capability of the Discrete Address Beacon System (DABS). ETIS is envisioned as an eventual replacement f...
The capability of physiologically based pharmacokinetic models to incorporate age-appropriate physiological and chemical-specific parameters was utilized to predict changes in internal dosimetry for six volatile organic compounds (VOCs) across different ages of rats.
Indoleacrylic Acid Produced by Commensal Peptostreptococcus Species Suppresses Inflammation.
Wlodarska, Marta; Luo, Chengwei; Kolde, Raivo; d'Hennezel, Eva; Annand, John W; Heim, Cortney E; Krastel, Philipp; Schmitt, Esther K; Omar, Abdifatah S; Creasey, Elizabeth A; Garner, Ashley L; Mohammadi, Sina; O'Connell, Daniel J; Abubucker, Sahar; Arthur, Timothy D; Franzosa, Eric A; Huttenhower, Curtis; Murphy, Leon O; Haiser, Henry J; Vlamakis, Hera; Porter, Jeffrey A; Xavier, Ramnik J
2017-07-12
Host factors in the intestine help select for bacteria that promote health. Certain commensals can utilize mucins as an energy source, thus promoting their colonization. However, health conditions such as inflammatory bowel disease (IBD) are associated with a reduced mucus layer, potentially leading to dysbiosis associated with this disease. We characterize the capability of commensal species to cleave and transport mucin-associated monosaccharides and identify several Clostridiales members that utilize intestinal mucins. One such mucin utilizer, Peptostreptococcus russellii, reduces susceptibility to epithelial injury in mice. Several Peptostreptococcus species contain a gene cluster enabling production of the tryptophan metabolite indoleacrylic acid (IA), which promotes intestinal epithelial barrier function and mitigates inflammatory responses. Furthermore, metagenomic analysis of human stool samples reveals that the genetic capability of microbes to utilize mucins and metabolize tryptophan is diminished in IBD patients. Our data suggest that stimulating IA production could promote anti-inflammatory responses and have therapeutic benefits. Copyright © 2017 Elsevier Inc. All rights reserved.
Opportunistic Computing with Lobster: Lessons Learned from Scaling up to 25k Non-Dedicated Cores
NASA Astrophysics Data System (ADS)
Wolf, Matthias; Woodard, Anna; Li, Wenzhao; Hurtado Anampa, Kenyi; Yannakopoulos, Anna; Tovar, Benjamin; Donnelly, Patrick; Brenner, Paul; Lannon, Kevin; Hildreth, Mike; Thain, Douglas
2017-10-01
We previously described Lobster, a workflow management tool for exploiting volatile opportunistic computing resources for computation in HEP. We will discuss the various challenges that have been encountered while scaling up the simultaneous CPU core utilization and the software improvements required to overcome these challenges. Categories: Workflows can now be divided into categories based on their required system resources. This allows the batch queueing system to optimize assignment of tasks to nodes with the appropriate capabilities. Within each category, limits can be specified for the number of running jobs to regulate the utilization of communication bandwidth. System resource specifications for a task category can now be modified while a project is running, avoiding the need to restart the project if resource requirements differ from the initial estimates. Lobster now implements time limits on each task category to voluntarily terminate tasks. This allows partially completed work to be recovered. Workflow dependency specification: One workflow often requires data from other workflows as input. Rather than waiting for earlier workflows to be completed before beginning later ones, Lobster now allows dependent tasks to begin as soon as sufficient input data has accumulated. Resource monitoring: Lobster utilizes a new capability in Work Queue to monitor the system resources each task requires in order to identify bottlenecks and optimally assign tasks. The capability of the Lobster opportunistic workflow management system for HEP computation has been significantly increased. We have demonstrated efficient utilization of 25 000 non-dedicated cores and achieved a data input rate of 30 Gb/s and an output rate of 500GB/h. This has required new capabilities in task categorization, workflow dependency specification, and resource monitoring.
Instructional television utilization in the United States
NASA Technical Reports Server (NTRS)
Dumolin, J. R.
1971-01-01
Various aspects of utilizing instructional television (ITV) are summarized and evaluated and basic guidelines for future utilization of television as an instructional medium in education are considered. The role of technology in education, capabilities and limitations of television as an instructional media system and the state of ITV research efforts are discussed. Examples of various ongoing ITV programs are given and summarized. The problems involved in the three stages of the ITV process (production, distribution, and classroom utilization) are presented. A summary analysis outlines probable trends in future utilization.
Electrical load management at the Goldstone DSN Complex
NASA Technical Reports Server (NTRS)
Rayburn, J. C.
1981-01-01
A Power Load Management Plan was deveoped which utilizes the unique power generating capabilities of the stations to reduce the stress on the local utility's reserve capacity and reduce the cost of electrical power at the stations. The plan has greatly reduced the cost of Goldstone electrical power by completely eliminating the use of commercial power during the local utility's high usage periods each day.
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.; Sibille, Laurent; Sacksteder, Kurt; Owens, Chuck
2005-01-01
The NASA Microgravity Science program has transitioned research required in support of NASA s Vision for Space Exploration. Research disciplines including the Materials Science, Fluid Physics and Combustion Science are now being applied toward projects with application in the planetary utilization and transformation of space resources. The scientific and engineering competencies and infrastructure in these traditional fields developed at multiple NASA Centers and by external research partners provide essential capabilities to support the agency s new exploration thrusts including In-Situ Resource Utilization (ISRU). Among the technologies essential to human space exploration, the production of life support consumables, especially oxygen and; radiation shielding; and the harvesting of potentially available water are realistically achieved for long-duration crewed missions only through the use of ISRU. Ongoing research in the physical sciences have produced a body of knowledge relevant to the extraction of oxygen from lunar and planetary regolith and associated reduction of metals and silicon for use meeting manufacturing and repair requirements. Activities being conducted and facilities used in support of various ISRU projects at the Glenn Research Center and Marshall Space Flight Center will be described. The presentation will inform the community of these new research capabilities, opportunities, and challenges to utilize their materials, fluids and combustion science expertise and capabilities to support the vision for space exploration.
NASA Technical Reports Server (NTRS)
Tamkin, Glenn S. (Inventor); Duffy, Daniel Q. (Inventor); Schnase, John L. (Inventor)
2016-01-01
A system, method and computer-readable storage devices for providing a climate data analytic services application programming interface distribution package. The example system can provide various components. The system provides a climate data analytic services application programming interface library that enables software applications running on a client device to invoke the capabilities of a climate data analytic service. The system provides a command-line interface that provides a means of interacting with a climate data analytic service by issuing commands directly to the system's server interface. The system provides sample programs that call on the capabilities of the application programming interface library and can be used as templates for the construction of new client applications. The system can also provide test utilities, build utilities, service integration utilities, and documentation.
The capability of physiologically-based pharmacokinetic (PBPK) models to incorporate ageappropriate physiological and chemical-specific parameters was utilized in this study to predict changes in internal dosimetry for six volatile organic compounds (VOCs) across different ages o...
NASA Technical Reports Server (NTRS)
Cissom, R. D.; Melton, T. L.; Schneider, M. P.; Lapenta, C. C.
1999-01-01
The objective of this paper is to provide the future ISS scientist and/or engineer a sense of what ISS payload operations are expected to be. This paper uses a real-time operations scenario to convey this message. The real-time operations scenario begins at the initiation of payload operations and runs through post run experiment analysis. In developing this scenario, it is assumed that the ISS payload operations flight and ground capabilities are fully available for use by the payload user community. Emphasis is placed on telescience operations whose main objective is to enable researchers to utilize experiment hardware onboard the International Space Station as if it were located in their terrestrial laboratory. An overview of the Payload Operations Integration Center (POIC) systems and user ground system options is included to provide an understanding of the systems and interfaces users will utilize to perform payload operations. Detailed information regarding POIC capabilities can be found in the POIC Capabilities Document, SSP 50304.
In-situ Resource Utilization (ISRU) and Lunar Surface Systems
NASA Technical Reports Server (NTRS)
Sanders, Jerry; Larson, Bill; Sacksteder, Kurt
2007-01-01
This viewgraph presentation reviews the benefits of In-Situ Resource Utilization (ISRU) on the surface of the moon. Included in this review is the commercialization of Lunar ISRU. ISRU will strongly influence architecture and critical technologies. ISRU is a critical capability and key implementation of the Vision for Space Exploration (VSE). ISRU will strongly effects lunar outpost logistics, design and crew safety. ISRU will strongly effect outpost critical technologies. ISRU mass investment is minimal compared to immediate and long-term architecture delivery mass and reuse capabilities provided. Therefore, investment in ISRU constitutes a commitment to the mid and long term future of human exploration.
Aspect-Oriented Subprogram Synthesizes UML Sequence Diagrams
NASA Technical Reports Server (NTRS)
Barry, Matthew R.; Osborne, Richard N.
2006-01-01
The Rational Sequence computer program described elsewhere includes a subprogram that utilizes the capability for aspect-oriented programming when that capability is present. This subprogram is denoted the Rational Sequence (AspectJ) component because it uses AspectJ, which is an extension of the Java programming language that introduces aspect-oriented programming techniques into the language
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Wang, Morgan
1992-01-01
The recognition of materials properties still presents a number of problems for nondestructive testing in aerospace systems. This project attempts to utilize current capabilities in eddy current instrumentation, artificial intelligence, and robotics in order to provide insight into defining geometrical aspects of flaws in composite materials which are capable of being evaluated using eddy current inspection techniques.
ERIC Educational Resources Information Center
Polzella, Donald J.; And Others
Modern aircrew training devices (ATDs) are equipped with sophisticated hardware and software capabilities, known as advanced instructional features (AIFs), that permit a simulator instructor to prepare briefings, manage training, vary task difficulty/fidelity, monitor performance, and provide feedback for flight simulation training missions. The…
Space Station Freedom Utilization Conference
NASA Technical Reports Server (NTRS)
1992-01-01
The topics addressed in Space Station Freedom Utilization Conference are: (1) space station freedom overview and research capabilities; (2) space station freedom research plans and opportunities; (3) life sciences research on space station freedom; (4) technology research on space station freedom; (5) microgravity research and biotechnology on space station freedom; and (6) closing plenary.
USDA-ARS?s Scientific Manuscript database
Thelytokous parasitoid strains are theoretically advantageous when utilized for biological control, as the absence of males should reduce production costs and potentially increase field efficacy. The maternally inherited intracellular bacterium, Wolbachia pipientis, is capable of inducing reproducti...
NASA Technical Reports Server (NTRS)
Jackson, Dan
2017-01-01
The ISS is an outstanding platform for developing, testing and refining laser communications systems for future exploration. A recent ISS project which improved ISS communications satellite acquisition performance proves the platform’s utility as a laser communications systems testbed.
Polar communications: Status and recommendations. Report of the Science Working Group
NASA Technical Reports Server (NTRS)
Rosenberg, T. J. (Editor); Jezek, K. C. (Editor)
1987-01-01
The capabilities of the existing communication links within the polar regions, as well as between the polar regions and the continental United States, are summarized. These capabilities are placed in the context of the principal scientific disciplines that are active in polar research, and in the context of how scientists both utilize and are limited by present technologies. Based on an assessment of the scientific objectives potentially achievable with improved communication capabilities, a list of requirements on and recommendations for communication capabilities necessary to support polar science over the next ten years is given.
Design Features and Capabilities of the First Materials Science Research Rack
NASA Technical Reports Server (NTRS)
Pettigrew, P. J.; Lehoczky, S. L.; Cobb, S. D.; Holloway, T.; Kitchens, L.
2003-01-01
The First Materials Science Research Rack (MSRR-1) aboard the International Space Station (ISS) will offer many unique capabilities and design features to facilitate a wide range of materials science investigations. The initial configuration of MSRR-1 will accommodate two independent Experiment Modules (EMS) and provide the capability for simultaneous on-orbit processing. The facility will provide the common subsystems and interfaces required for the operation of experiment hardware and accommodate telescience capabilities. MSRR1 will utilize an International Standard Payload Rack (ISPR) equipped with an Active Rack Isolation System (ARIS) for vibration isolation of the facility.
Enhancing data utilization through adoption of cloud-based data architectures (Invited Paper 211869)
NASA Astrophysics Data System (ADS)
Kearns, E. J.
2017-12-01
A traditional approach to data distribution and utilization of open government data involves continuously moving those data from a central government location to each potential user, who would then utilize them on their local computer systems. An alternate approach would be to bring those users to the open government data, where users would also have access to computing and analytics capabilities that would support data utilization. NOAA's Big Data Project is exploring such an alternate approach through an experimental collaboration with Amazon Web Services, Google Cloud Platform, IBM, Microsoft Azure, and the Open Commons Consortium. As part of this ongoing experiment, NOAA is providing open data of interest which are freely hosted by the Big Data Project Collaborators, who provide a variety of cloud-based services and capabilities to enable utilization by data users. By the terms of the agreement, the Collaborators may charge for those value-added services and processing capacities to recover their costs to freely host the data and to generate profits if so desired. Initial results have shown sustained increases in data utilization from 2 to over 100 times previously-observed access patterns from traditional approaches. Significantly increased utilization speed as compared to the traditional approach has also been observed by NOAA data users who have volunteered their experiences on these cloud-based systems. The potential for implementing and sustaining the alternate cloud-based approach as part of a change in operational data utilization strategies will be discussed.
Above the cloud computing: applying cloud computing principles to create an orbital services model
NASA Astrophysics Data System (ADS)
Straub, Jeremy; Mohammad, Atif; Berk, Josh; Nervold, Anders K.
2013-05-01
Large satellites and exquisite planetary missions are generally self-contained. They have, onboard, all of the computational, communications and other capabilities required to perform their designated functions. Because of this, the satellite or spacecraft carries hardware that may be utilized only a fraction of the time; however, the full cost of development and launch are still bone by the program. Small satellites do not have this luxury. Due to mass and volume constraints, they cannot afford to carry numerous pieces of barely utilized equipment or large antennas. This paper proposes a cloud-computing model for exposing satellite services in an orbital environment. Under this approach, each satellite with available capabilities broadcasts a service description for each service that it can provide (e.g., general computing capacity, DSP capabilities, specialized sensing capabilities, transmission capabilities, etc.) and its orbital elements. Consumer spacecraft retain a cache of service providers and select one utilizing decision making heuristics (e.g., suitability of performance, opportunity to transmit instructions and receive results - based on the orbits of the two craft). The two craft negotiate service provisioning (e.g., when the service can be available and for how long) based on the operating rules prioritizing use of (and allowing access to) the service on the service provider craft, based on the credentials of the consumer. Service description, negotiation and sample service performance protocols are presented. The required components of each consumer or provider spacecraft are reviewed. These include fully autonomous control capabilities (for provider craft), a lightweight orbit determination routine (to determine when consumer and provider craft can see each other and, possibly, pointing requirements for craft with directional antennas) and an authentication and resource utilization priority-based access decision making subsystem (for provider craft). Two prospective uses for the proposed system are presented: Earth-orbiting applications and planetary science applications. A mission scenario is presented for both uses to illustrate system functionality and operation. The performance of the proposed system is compared to traditional self-contained spacecraft performance, both in terms of task performance (e.g., how well / quickly / etc. was a given task performed) and task performance as a function of cost. The integration of the proposed service provider model is compared to other control architectures for satellites including traditional scripted control, top-down multi-tier autonomy and bottom-up multi-tier autonomy.
Ahluwalia, Sangeeta C; Harris, Benjamin J; Lewis, Valerie A; Colla, Carrie H
2018-06-01
To measure the extent to which accountable care organizations (ACOs) have adopted end-of-life (EOL) care planning processes and characterize those ACOs that have established processes related to EOL. This study uses data from three waves (2012-2015) of the National Survey of ACOs. Respondents were 397 ACOs participating in Medicare, Medicaid, and commercial ACO contracts. This is a cross-sectional survey study using multivariate ordered logit regression models. We measured the extent to which the ACO had adopted EOL care planning processes as well as organizational characteristics, including care management, utilization management, health informatics, and shared decision-making capabilities, palliative care, and patient-centered medical home experience. Twenty-one percent of ACOs had few or no EOL care planning processes, 60 percent had some processes, and 19.6 percent had advanced processes. ACOs with a hospital in their system (OR: 3.07; p = .01), and ACOs with advanced care management (OR: 1.43; p = .02), utilization management (OR: 1.58, p = .00), and shared decision-making capabilities (OR: 16.3, p = .000) were more likely to have EOL care planning processes than those with no hospital or few to no capabilities. There remains considerable room for today's ACOs to increase uptake of EOL care planning, possibly by leveraging existing care management, utilization management, and shared decision-making processes. © Health Research and Educational Trust.
Redman, Joseph S; Natarajan, Yamini; Hou, Jason K; Wang, Jingqi; Hanif, Muzammil; Feng, Hua; Kramer, Jennifer R; Desiderio, Roxanne; Xu, Hua; El-Serag, Hashem B; Kanwal, Fasiha
2017-10-01
Natural language processing is a powerful technique of machine learning capable of maximizing data extraction from complex electronic medical records. We utilized this technique to develop algorithms capable of "reading" full-text radiology reports to accurately identify the presence of fatty liver disease. Abdominal ultrasound, computerized tomography, and magnetic resonance imaging reports were retrieved from the Veterans Affairs Corporate Data Warehouse from a random national sample of 652 patients. Radiographic fatty liver disease was determined by manual review by two physicians and verified with an expert radiologist. A split validation method was utilized for algorithm development. For all three imaging modalities, the algorithms could identify fatty liver disease with >90% recall and precision, with F-measures >90%. These algorithms could be used to rapidly screen patient records to establish a large cohort to facilitate epidemiological and clinical studies and examine the clinic course and outcomes of patients with radiographic hepatic steatosis.
Advances in Robotic, Human, and Autonomous Systems for Missions of Space Exploration
NASA Technical Reports Server (NTRS)
Gross, Anthony R.; Briggs, Geoffrey A.; Glass, Brian J.; Pedersen, Liam; Kortenkamp, David M.; Wettergreen, David S.; Nourbakhsh, I.; Clancy, Daniel J.; Zornetzer, Steven (Technical Monitor)
2002-01-01
Space exploration missions are evolving toward more complex architectures involving more capable robotic systems, new levels of human and robotic interaction, and increasingly autonomous systems. How this evolving mix of advanced capabilities will be utilized in the design of new missions is a subject of much current interest. Cost and risk constraints also play a key role in the development of new missions, resulting in a complex interplay of a broad range of factors in the mission development and planning of new missions. This paper will discuss how human, robotic, and autonomous systems could be used in advanced space exploration missions. In particular, a recently completed survey of the state of the art and the potential future of robotic systems, as well as new experiments utilizing human and robotic approaches will be described. Finally, there will be a discussion of how best to utilize these various approaches for meeting space exploration goals.
Compact pulse generators with soft ferromagnetic cores driven by gunpowder and explosive.
Ben, Chi; He, Yong; Pan, Xuchao; Chen, Hong; He, Yuan
2015-12-01
Compact pulse generators which utilized soft ferromagnets as an initial energy carrier inside multi-turn coil and hard ferromagnets to provide the initial magnetic field outside the coil have been studied. Two methods of reducing the magnetic flux in the generators have been studied: (1) by igniting gunpowder to launch the core out of the generator, and (2) by detonating explosives that demagnetize the core. Several types of compact generators were explored to verify the feasibility. The generators with an 80-turn coil that utilize gunpowder were capable of producing pulses with amplitude 78.6 V and the full width at half maximum was 0.41 ms. The generators with a 37-turn coil that utilize explosive were capable of producing pulses with amplitude 1.41 kV and the full width at half maximum was 11.68 μs. These two methods were both successful, but produce voltage waveforms with significantly different characteristics.
Trends in telemedicine utilizing artificial intelligence
NASA Astrophysics Data System (ADS)
Pacis, Danica Mitch M.; Subido, Edwin D. C.; Bugtai, Nilo T.
2018-02-01
With the growth and popularity of the utilization of artificial intelligence (AI) in several fields and industries, studies in the field of medicine have begun to implement its capabilities in handling and analyzing data to telemedicine. With the challenges in the implementation of telemedicine, there has been a need to expand its capabilities and improve procedures to be specialized to solve specific problems. The versatility and flexibility of both AI and telemedicine gave the endless possibilities for development and these can be seen in the literature reviewed in this paper. The trends in the development of the utilization of this technology can be classified in to four: patient monitoring, healthcare information technology, intelligent assistance diagnosis, and information analysis collaboration. Each trend will be discussed and presented with examples of recent literature and the problems they aim to address. Related references will also be tabulated and categorized to see the future and potential of this current trend in telemedicine.
Demonstration of Four Operating Capabilities to Enable a Small Aircraft Transportation System
NASA Technical Reports Server (NTRS)
Viken, Sally A.; Brooks, Frederick M.
2005-01-01
The Small Aircraft Transportation System (SATS) project has been a five-year effort fostering research and development that could lead to the transformation of our country s air transportation system. It has become evident that our commercial air transportation system is reaching its peak in terms of capacity, with numerous delays in the system and the demand keeps steadily increasing. The SATS vision is to increase mobility in our nation s transportation system by expanding access to more than 3400 small community airports that are currently under-utilized. The SATS project has focused its efforts on four key operating capabilities that have addressed new emerging technologies and procedures to pave the way for a new way of air travel. The four key operating capabilities are: Higher Volume Operations at Non-Towered/Non-Radar Airports, En Route Procedures and Systems for Integrated Fleet Operations, Lower Landing Minimums at Minimally Equipped Landing Facilities, and Increased Single Pilot Performance. These four capabilities are key to enabling low-cost, on-demand, point-to-point transportation of goods and passengers utilizing small aircraft operating from small airports. The focus of this paper is to discuss the technical and operational feasibility of the four operating capabilities and demonstrate how they can enable a small aircraft transportation system.
SPAR improved structure/fluid dynamic analysis capability
NASA Technical Reports Server (NTRS)
Oden, J. T.; Pearson, M. L.
1983-01-01
The capability of analyzing a coupled dynamic system of flowing fluid and elastic structure was added to the SPAR computer code. A method, developed and adopted for use in SPAR utilizes the existing assumed stress hybrid plan element in SPAR. An operational mode was incorporated in SPAR which provides the capability for analyzing the flaw of a two dimensional, incompressible, viscous fluid within rigid boundaries. Equations were developed to provide for the eventual analysis of the interaction of such fluids with an elastic solid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haxton, Wick
2012-03-07
This project was focused on simulations of core-collapse supernovae on parallel platforms. The intent was to address a number of linked issues: the treatment of hydrodynamics and neutrino diffusion in two and three dimensions; the treatment of the underlying nuclear microphysics that governs neutrino transport and neutrino energy deposition; the understanding of the associated nucleosynthesis, including the r-process and neutrino process; the investigation of the consequences of new neutrino phenomena, such as oscillations; and the characterization of the neutrino signal that might be recorded in terrestrial detectors. This was a collaborative effort with Oak Ridge National Laboratory, State University ofmore » New York at Stony Brook, University of Illinois at Urbana-Champaign, University of California at San Diego, University of Tennessee at Knoxville, Florida Atlantic University, North Carolina State University, and Clemson. The collaborations tie together experts in hydrodynamics, nuclear physics, computer science, and neutrino physics. The University of Washington contributions to this effort include the further development of techniques to solve the Bloch-Horowitz equation for effective interactions and operators; collaborative efforts on developing a parallel Lanczos code; investigating the nuclear and neutrino physics governing the r-process and neutrino physics; and exploring the effects of new neutrino physics on the explosion mechanism, nucleosynthesis, and terrestrial supernova neutrino detection.« less
The MoEDAL Experiment at the LHC - a New Light on the Terascale Frontier
NASA Astrophysics Data System (ADS)
Pinfold, J. L.
2015-07-01
MoEDAL is a pioneering experiment designed to search for highly ionizing avatars of new physics such as magnetic monopoles or massive (pseudo-)stable charged particles. Its groundbreaking physics program defines a number of scenarios that yield potentially revolutionary insights into such foundational questions as: are there extra dimensions or new symmetries; what is the mechanism for the generation of mass; does magnetic charge exist; what is the nature of dark matter; and, how did the big-bang develop. MoEDAL's purpose is to meet such far-reaching challenges at the frontier of the field. The innovative MoEDAL detector employs unconventional methodologies tuned to the prospect of discovery physics. The largely passive MoEDAL detector, deployed at Point 8 on the LHC ring, has a dual nature. First, it acts like a giant camera, comprised of nuclear track detectors - analyzed offline by ultra fast scanning microscopes - sensitive only to new physics. Second, it is uniquely able to trap the particle messengers of physics beyond the Standard Model for further study. MoEDAL's radiation environment is monitored by a state-of-the-art real-time TimePix pixel detector array. A new MoEDAL sub-detector to extend MoEDAL's reach to millicharged, minimally ionizing, particles (MMIPs) is under study.
Developing Models for Predictive Climate Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drake, John B; Jones, Philip W
2007-01-01
The Community Climate System Model results from a multi-agency collaboration designed to construct cutting-edge climate science simulation models for a broad research community. Predictive climate simulations are currently being prepared for the petascale computers of the near future. Modeling capabilities are continuously being improved in order to provide better answers to critical questions about Earth's climate. Climate change and its implications are front page news in today's world. Could global warming be responsible for the July 2006 heat waves in Europe and the United States? Should more resources be devoted to preparing for an increase in the frequency of strongmore » tropical storms and hurricanes like Katrina? Will coastal cities be flooded due to a rise in sea level? The National Climatic Data Center (NCDC), which archives all weather data for the nation, reports that global surface temperatures have increased over the last century, and that the rate of increase is three times greater since 1976. Will temperatures continue to climb at this rate, will they decline again, or will the rate of increase become even steeper? To address such a flurry of questions, scientists must adopt a systematic approach and develop a predictive framework. With responsibility for advising on energy and technology strategies, the DOE is dedicated to advancing climate research in order to elucidate the causes of climate change, including the role of carbon loading from fossil fuel use. Thus, climate science--which by nature involves advanced computing technology and methods--has been the focus of a number of DOE's SciDAC research projects. Dr. John Drake (ORNL) and Dr. Philip Jones (LANL) served as principal investigators on the SciDAC project, 'Collaborative Design and Development of the Community Climate System Model for Terascale Computers.' The Community Climate System Model (CCSM) is a fully-coupled global system that provides state-of-the-art computer simulations of the Earth's past, present, and future climate states. The collaborative SciDAC team--including over a dozen researchers at institutions around the country--developed, validated, documented, and optimized the performance of CCSM using the latest software engineering approaches, computational technology, and scientific knowledge. Many of the factors that must be accounted for in a comprehensive model of the climate system are illustrated in figure 1.« less
ERIC Educational Resources Information Center
Hwang, Woosang
2011-01-01
In a constantly changing global business environment, firms have no other choice but to continually expand their capabilities and sharpen their competitive edge. Toward this goal, an increasing number of organizations are turning to Enterprise Resource Planning (ERP) systems. An ERP system utilizes various kinds of information processing…
The Relationship between Body Dysmorphic Disorder Behaviors and the Acquired Capability for Suicide
ERIC Educational Resources Information Center
Witte, Tracy K.; Didie, Elizabeth R.; Menard, William; Phillips, Katharine A.
2012-01-01
In a sample of 200 individuals diagnosed with body dysmorphic disorder (BDD), we utilized the interpersonal-psychological theory for suicide as a framework to examine BDD behaviors that might be associated with suicide risk, insofar as they might increase the acquired capability for suicide. We predicted that physically painful BDD behaviors…
A Dangerous Idea? Freedom, Children and the Capability Approach to Education
ERIC Educational Resources Information Center
Bessant, Judith
2014-01-01
This article begins by observing how education is currently appreciated primarily for its utility value, a view informed by utilitarianism and neoclassical economic theory. A critique of that framing is offered and an alternative way of valuing education informed by a Capabilities Approach is presented. In doing so, I also observe that while key…
Advanced Manufacturing Technologies
NASA Technical Reports Server (NTRS)
Fikes, John
2016-01-01
Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.
Advanced Grid-Friendly Controls Demonstration for Utility-Scale
PV power plant in CAISO's footprint. NREL, CAISO, and First Solar conducted demonstration tests that vendors, integrators, and utilities to develop and evaluate photovoltaic (PV) power plants with advanced grid-friendly capabilities. Graph of power over time that shows a PV plant varying output to follow an
ERIC Educational Resources Information Center
Romero, Fred E.
Chicano human resources have never been properly utilized in the labor markets of the Southwest. The slow rate of Chicano economic growth can be attributed to underdevelopment of their skills, knowledge and talent and underutilization of their energies and capabilities. This book, a factual presentation of that underdevelopment and…
Neural network fusion capabilities for efficient implementation of tracking algorithms
NASA Astrophysics Data System (ADS)
Sundareshan, Malur K.; Amoozegar, Farid
1997-03-01
The ability to efficiently fuse information of different forms to facilitate intelligent decision making is one of the major capabilities of trained multilayer neural networks that is now being recognized. While development of innovative adaptive control algorithms for nonlinear dynamical plants that attempt to exploit these capabilities seems to be more popular, a corresponding development of nonlinear estimation algorithms using these approaches, particularly for application in target surveillance and guidance operations, has not received similar attention. We describe the capabilities and functionality of neural network algorithms for data fusion and implementation of tracking filters. To discuss details and to serve as a vehicle for quantitative performance evaluations, the illustrative case of estimating the position and velocity of surveillance targets is considered. Efficient target- tracking algorithms that can utilize data from a host of sensing modalities and are capable of reliably tracking even uncooperative targets executing fast and complex maneuvers are of interest in a number of applications. The primary motivation for employing neural networks in these applications comes from the efficiency with which more features extracted from different sensor measurements can be utilized as inputs for estimating target maneuvers. A system architecture that efficiently integrates the fusion capabilities of a trained multilayer neural net with the tracking performance of a Kalman filter is described. The innovation lies in the way the fusion of multisensor data is accomplished to facilitate improved estimation without increasing the computational complexity of the dynamical state estimator itself.
NASA Astrophysics Data System (ADS)
Meacham, James R.; Jabbari, Faryar; Brouwer, Jacob; Mauzey, Josh L.; Samuelsen, G. Scott
Current high temperature fuel cell (HTFC) systems used for stationary power applications (in the 200-300 kW size range) have very limited dynamic load following capability or are simply base load devices. Considering the economics of existing electric utility rate structures, there is little incentive to increase HTFC ramping capability beyond 1 kWs -1 (0.4% s -1). However, in order to ease concerns about grid instabilities from utility companies and increase market adoption, HTFC systems will have to increase their ramping abilities, and will likely have to incorporate electrical energy storage (EES). Because batteries have low power densities and limited lifetimes in highly cyclic applications, ultra capacitors may be the EES medium of choice. The current analyses show that, because ultra capacitors have a very low energy storage density, their integration with HTFC systems may not be feasible unless the fuel cell has a ramp rate approaching 10 kWs -1 (4% s -1) when using a worst-case design analysis. This requirement for fast dynamic load response characteristics can be reduced to 1 kWs -1 by utilizing high resolution demand data to properly size ultra capacitor systems and through demand management techniques that reduce load volatility.
A research program in magnetogasdynamics utilizing hypervelocity coaxial plasma generators
NASA Technical Reports Server (NTRS)
Spight, C.
1976-01-01
A broadly-gauged research program in magnetogasdynamics utilizing hypervelocity coaxial plasma generators is presented. A complete hypervelocity coaxial plasma generator facility was assembled and tested. Significant progress was made in the direction of understanding the important processes in the interaction of hypervelocity MGD flow with transverse applied fields. It is now proposed to utilize the accumulated experimental capability and theoretical analysis in application to the analysis and design parameterization of pulsed magnetogasdynamic direct energy convertor configurations.
ERIC Educational Resources Information Center
Naemi, Bobby; Seybert, Jacob; Robbins, Steven; Kyllonen, Patrick
2014-01-01
This report introduces the "WorkFORCE"™ Assessment for Job Fit, a personality assessment utilizing the "FACETS"™ core capability, which is based on innovations in forced-choice assessment and computer adaptive testing. The instrument is derived from the fivefactor model (FFM) of personality and encompasses a broad spectrum of…
Monodisperse aerosol generator
Ortiz, Lawrence W.; Soderholm, Sidney C.
1990-01-01
An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.
In situ engineering of the electrode-electrolyte interface for stabilized overlithiated cathodes
Evans, Tyler; Piper, Daniela Molina; Sun, Huaxing; ...
2017-01-05
Here, the first-ever demonstration of stabilized Si/lithium-manganese-rich full cells, capable of retaining >90% energy over early cycling and >90% capacity over more than 750 cycles at the 1C rate (100% depth-of-discharge), is made through the utilization of a modified ionic liquid electrolyte capable of forming a favorable cathode-electrolyte interface.
Internet Protocol Over Telemetry Testing for Earth Science Capability Demo Summary
NASA Technical Reports Server (NTRS)
Franz, Russ; Pestana, Mark; Bessent, Shedrick; Hang, Richard; Ng, Howard
2006-01-01
The development and flight tests described here focused on utilizing existing pulse code modulation (PCM) telemetry equipment to enable on-vehicle networks of instruments and computers to be a simple extension of the ground station network. This capability is envisioned as a necessary component of a global range that supports test and development of manned and unmanned airborne vehicles.
SIGMA Release v1.2 - Capabilities, Enhancements and Fixes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahadevan, Vijay; Grindeanu, Iulian R.; Ray, Navamita
In this report, we present details on SIGMA toolkit along with its component structure, capabilities, and feature additions in FY15, release cycles, and continuous integration process. These software processes along with updated documentation are imperative to successfully integrate and utilize in several applications including the SHARP coupled analysis toolkit for reactor core systems funded under the NEAMS DOE-NE program.
Essential SpaceWire Hardware Capabilities for a Robust Network
NASA Technical Reports Server (NTRS)
Birmingham, Michael; Krimchansky, Alexander; Anderson, William; Lombardi, Matthew
2016-01-01
The Geostationary Operational Environmental Satellite R-Series Program (GOES-R) mission is a joint program between National Oceanic & Atmospheric Administration (NOAA) and National Aeronautics & Space Administration (NASA) Goddard Space Flight Center (GSFC). GOES-R project selected SpaceWire as the best solution to satisfy the desire for simple and flexible instrument to spacecraft command and telemetry communications. GOES-R development and integration is complete and the observatory is scheduled for launch October 2016. The spacecraft design was required to support redundant SpaceWire links for each instrument side, as well as to route the fewest number of connections through a Slip Ring Assembly necessary to support Solar pointing instruments. The final design utilized two different router designs. The SpaceWire standard alone does not ensure the most practical or reliable network. On GOES-R a few key hardware capabilities were identified that merit serious consideration for future designs. Primarily these capabilities address persistent port stalls and the prevention of receive buffer overflows. Workarounds were necessary to overcome shortcomings that could be avoided in future designs if they utilize the capabilities, discussed in this paper, above and beyond the requirements of the SpaceWire standard.
Are One Man's Rags Another Man's Riches? Identifying Adaptive Expectations Using Panel Data
ERIC Educational Resources Information Center
Burchardt, Tania
2005-01-01
One of the motivations frequently cited by Sen and Nussbaum for moving away from a utility metric towards a capabilities framework is a concern about adaptive preferences or conditioned expectations. If utility is related to the satisfaction of aspirations or expectations, and if these are affected by the individual's previous experience of…
Utility Assessment Report for SPIDERS Phase 2: Ft. Carson (Rev 1.0)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barr, Jonathan L.; Tuffner, Francis K.; Hadley, Mark D.
2014-01-01
This document contains the Utility Assessment Report (UAR) for the Phase 2 operational Demonstration (OD) of the Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) Joint Capability Technology Demonstration (JCTD). The UAR for Phase 2 shows that the SPIDERS system was able to meet the requirements of the Implementation Directive at Ft. Carson.
FY17 ASC CSSE L2 Milestone 6018: Power Usage Characteristics of Workloads Running on Trinity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedretti, Kevin
The overall goal of this work was to utilize the Advanced Power Management (APM) capabilities of the ATS-1 Trinity platform to understand the power usage behavior of ASC workloads running on Trinity and gain insight into the potential for utilizing power management techniques on future ASC platforms.
Shen, Nan; Yuan, Shi-Jie; Wu, Chao; Cheng, Yuan-Yuan; Song, Xiang-Ning; Li, Wen-Wei; Tong, Zhong-Hua; Yu, Han-Qing
2014-05-01
In this study, 27 strains of electrochemically active bacteria (EAB) were rapidly isolated and their capabilities of extracellular electron transfer were identified using a photometric method based on WO3 nanoclusters. These strains caused color change of WO3 from white to blue in a 24-well agar plate within 40 h. Most of the isolated EAB strains belonged to the genera of Aeromonas and Shewanella. One isolate, Pantoea agglomerans S5-44, was identified as an EAB that can utilize acetate as the carbon source to produce electricity and reduce azo dyes under anaerobic conditions. The results confirmed the capability of P. agglomerans S5-44 for extracellular electron transfer. The isolation of this acetate-utilizing, facultative EBA reveals the metabolic diversity of environmental bacteria. Such strains have great potential for environmental applications, especially at interfaces of aerobic and anaerobic environments, where acetate is the main available carbon source.
Dulk, Laura Den; Peper, Bram; Sadar, Nevenka Černigoj; Lewis, Suzan; Smithson, Janet; Van Doorne-Huiskes, Anneke
2011-01-01
Managers are key actors shaping employees’ capabilities to utilize work–life policies. However, most research on managers’ implementation of these policies has been conducted in liberal welfare states and ignores the impact of institutional context. In this study, we situate managers within specific workplace and national layers of context. We investigated how managers in financial organizations in the Netherlands, UK, and Slovenia talk about the utilization of work–life policies. Managers’ discourses stressed disruption and dependency considerations in these case studies, as in the US research. However, a further management discourse of the moral case or right thing to do also emerged. The lack of resources for replacing staff on leave creates disruption and reduces managers capability to support the use of work–life policies, even when they are statutory or if managers are inclined be supportive (dependency or moral argument). This is likely to impact on parents' capabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, Pieter J
Misforecasting the adoption of customer-owned distributed photovoltaics (DPV) can have operational and financial implications for utilities - forecasting capabilities can be improved, but generally at a cost. This paper informs this decision-space by quantifying the costs of misforecasting across a wide range of DPV growth rates and misforecast severities. Using a simplified probabilistic method presented within, an analyst can make a first-order estimate of the financial benefit of improving a utility's forecasting capabilities, and thus be better informed about whether to make such an investment. For example, we show that a utility with 10 TWh per year of retail electricmore » sales who initially estimates that the increase in DPV's contribution to total generation could range from 2 to 7.5 percent over the next 15 years could expect total present-value savings of approximately 4 million dollars if they could keep the severity of successive five-year misforecasts within plus or minus 25 percent. We also have more general discussions about how misforecasting DPV impacts the buildout and operation of the bulk power system - for example, we observed that misforecasting DPV most strongly influenced the amount of utility-scale PV that gets built, due to the similarity in the energy and capacity services offered by the two solar technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, Pieter J; Stoll, Brady; Mai, Trieu T
Misforecasting the adoption of customer-owned distributed photovoltaics (DPV) can have operational and financial implications for utilities - forecasting capabilities can be improved, but generally at a cost.This paper informs this decision-space by quantifying the costs of misforecasting across a wide range of DPV growth rates and misforecast severities. Using a simplified probabilistic method presented within, an analyst can make a first-order estimate of the financial benefit of improving a utility's forecasting capabilities, and thus be better informed about whether to make such an investment. For example, we show that a utility with 10 TWh per year of retail electric salesmore » who initially estimates that the increase in DPV's contribution to total generation could range from 2 percent to 7.5 percent over the next 15 years could expect total present-value savings of approximately $4 million if they could keep the severity of successive five-year misforecasts within +/- 25 percent. We also have more general discussions about how misforecasting DPV impacts the buildout and operation of the bulk power system - for example, we observed that misforecasting DPV most strongly influenced the amount of utility-scale PV that gets built, due to the similarity in the energy and capacity services offered by the two solar technologies.« less
NASA Technical Reports Server (NTRS)
Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimerly F.
2016-01-01
A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of propelling the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.
Accelerator system and method of accelerating particles
NASA Technical Reports Server (NTRS)
Wirz, Richard E. (Inventor)
2010-01-01
An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.
Sustainable dual-use labs: neurovascular interventional capabilities within the cath lab.
Lang, Stacey
2012-01-01
The inclusion of neurovascular interventional capabilities within the cath lab setting can be key to optimal utilization of resources, increased staff efficiency, and streamlined operations. When considering an expansion, look beyond the patient population traditionally associated with cardiac cath labs and consider the integration of programs outside cardiac alone--to create a true dual-use lab space. With proper planning, quality dual purpose equipment, appropriately trained staff, capable physicians, and strong leadership, an organization willing to embrace the challenge can build a truly extraordinary service.
New space sensor and mesoscale data analysis
NASA Technical Reports Server (NTRS)
Hickey, John S.
1987-01-01
The developed Earth Science and Application Division (ESAD) system/software provides the research scientist with the following capabilities: an extensive data base management capibility to convert various experiment data types into a standard format; and interactive analysis and display package (AVE80); an interactive imaging/color graphics capability utilizing the Apple III and IBM PC workstations integrated into the ESAD computer system; and local and remote smart-terminal capability which provides color video, graphics, and Laserjet output. Recommendations for updating and enhancing the performance of the ESAD computer system are listed.
Demonstration Advanced Avionics System (DAAS)
NASA Technical Reports Server (NTRS)
1982-01-01
The feasibility of developing an integrated avionics system suitable for general aviation was determined. A design of reliable integrated avionics which provides expanded functional capability that significantly enhances the utility and safety of general aviation at a cost commensurate with the general aviation market was developed. The use of a data bus, microprocessors, electronic displays and data entry devices, and improved function capabilities were emphasized. An avionics system capable of evaluating the most critical and promising elements of an integrated system was designed, built and flight tested in a twin engine general aviation aircraft.
2009-01-01
THE FOREGOING STATEMENT. QUOTATION FROM, ABSTRACTION FROM, OR REPRODUCTION OF ALL OR ANY PART OF THIS DOCVMENT IS PERMITTED PROVIDED PROPER...Capabilities and Limitations 7 AH-IW/Z Cobra’s Role in Support ofECO 8 CH-53E Super Stallion Capabilities and Limitations 9 CH-53E Super Stallion’s Role...of aircraft. Analysis of the roles and capabilities of the AH-IW Super Cobra, CH-53E Super Stallion , MV-22B Osprey, and the UH- IN Huey will identify
NASA Technical Reports Server (NTRS)
Hueter, Uwe
1991-01-01
The United States civil space effort when viewed from a launch vehicle perspective tends to categorize into pre-Shuttle and Shuttle eras. The pre-Shuttle era consisted of expendable launch vehicles where a broad set of capabilities were matured in a range of vehicles, followed by a clear reluctance to build on and utilize those systems. The Shuttle era marked the beginning of the U.S. venture into reusable space launch vehicles and the consolidation of launch systems used to this one vehicle. This led to a tremendous capability, but utilized men on a few missions where it was not essential and compromised launch capability resiliency in the long term. Launch vehicle failures, between the period of Aug. 1985 and May 1986, of the Titan 34D, Shuttle Challenger, and the Delta vehicles resulted in a reassessment of U.S. launch vehicle capability. The reassessment resulted in President Reagan issuing a new National Space Policy in 1988 calling for more coordination between Federal agencies, broadening the launch capabilities and preparing for manned flight beyond the Earth into the solar system. As a result, the Department of Defense (DoD) and NASA are jointly assessing the requirements and needs for this nations's future transportation system. Reliability/safety, balanced fleet, and resiliency are the cornerstone to the future. An insight is provided into the current thinking in establishing future unmanned earth-to-orbit (ETO) space transportation needs and capabilities. A background of previous launch capabilities, future needs, current and proposed near term systems, and system considerations to assure future mission need will be met, are presented. The focus is on propulsion options associated with unmanned cargo vehicles and liquid booster required to assure future mission needs will be met.
NASA'S Space Launch System Mission Capabilities for Exploration
NASA Technical Reports Server (NTRS)
Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimberly F.
2015-01-01
Designed to enable human space exploration missions, including eventual landings on Mars, NASA’s Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. Developed with the goals of safety, affordability and sustainability in mind, SLS is a foundational capability for NASA’s future plans for exploration, along with the Orion crew vehicle and upgraded ground systems at the agency’s Kennedy Space Center. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO), greater mass-to-orbit capability than any contemporary launch vehicle. The vehicle will then be evolved into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO, greater even than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle’s potential range of utilization. This presentation will discuss the potential opportunities this vehicle poses for the planetary sciences community, relating the vehicle’s evolution to practical implications for mission capture. As this paper will explain, SLS will be a global launch infrastructure asset, employing sustainable solutions and technological innovations to deliver capabilities for space exploration to power human and robotic systems beyond our Moon and in to deep space.
NASA's Space Launch System Mission Capabilities for Exploration
NASA Technical Reports Server (NTRS)
Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimberly F.
2015-01-01
Designed to enable human space exploration missions, including eventual landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. Developed with the goals of safety, affordability and sustainability in mind, SLS is a foundational capability for NASA's future plans for exploration, along with the Orion crew vehicle and upgraded ground systems at the agency's Kennedy Space Center. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO), greater mass-to-orbit capability than any contemporary launch vehicle. The vehicle will then be evolved into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO, greater even than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle's potential range of utilization. This presentation will discuss the potential opportunities this vehicle poses for the planetary sciences community, relating the vehicle's evolution to practical implications for mission capture. As this paper will explain, SLS will be a global launch infrastructure asset, employing sustainable solutions and technological innovations to deliver capabilities for space exploration to power human and robotic systems beyond our Moon and in to deep space.
NASA's Space Launch System: An Evolving Capability for Exploration
NASA Technical Reports Server (NTRS)
Creech, Stephen D.; Robinson, Kimberly F.
2016-01-01
A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS will propel the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.
The National Transonic Facility: A Research Retrospective
NASA Technical Reports Server (NTRS)
Wahls, R. A.
2001-01-01
An overview of the National Transonic Facility (NTF) from a research utilization perspective is provided. The facility was born in the 1970s from an internationally recognized need for a high Reynolds number test capability based on previous experiences with preflight predictions of aerodynamic characteristics and an anticipated need in support of research and development for future aerospace vehicle systems. Selection of the cryogenic concept to meet the need, unique capabilities of the facility, and the eventual research utilization of the facility are discussed. The primary purpose of the paper is to expose the range of investigations that have used the NTF since being declared operational in late 1984; limited research results are included, though many more can be found in the references.
Advances in rechargeable lithium molybdenum disulfide batteries
NASA Technical Reports Server (NTRS)
Brandt, K.; Stiles, J. A. R.
1985-01-01
The lithium molybdenum disulfide system as demonstrated in a C size cell, offers performance characteristics for applications where light weight and low volume are important. A gravimetric energy density of 90 watt hours per kilogram can be achieved in a C size cell package. The combination of charge retention capabilities, high energy density and a state of charge indicator in a rechargeable cell provides power package for a wide range of devices. The system overcomes the memory effect in Nicads where the full capacity of the battery cannot be utilized unless it was utilized on previous cycles. The development of cells with an advanced electrolyte formulation led to an improved rate capability especially at low temperatures and to a significantly improved life cycle.
CAPABILITY TO RECOVER PLUTONIUM-238 IN H-CANYON/HB-LINE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuller, Kenneth S. Jr.; Smith, Robert H. Jr.; Goergen, Charles R.
2013-01-09
Plutonium-238 is used in Radioisotope Thermoelectric Generators (RTGs) to generate electrical power and in Radioisotope Heater Units (RHUs) to produce heat for electronics and environmental control for deep space missions. The domestic supply of Pu-238 consists of scrap material from previous mission production or material purchased from Russia. Currently, the United States has no significant production scale operational capability to produce and separate new Pu-238 from irradiated neptunium-237 targets. The Department of Energy - Nuclear Energy is currently evaluating and developing plans to reconstitute the United States capability to produce Pu-238 from irradiated Np-237 targets. The Savannah River Site hadmore » previously produced and/or processed all the Pu-238 utilized in Radioisotope Thermoelectric Generators (RTGs) for deep space missions up to and including the majority of the plutonium for the Cassini Mission. The previous full production cycle capabilities included: Np-237 target fabrication, target irradiation, target dissolution and Np-237 and Pu-238 separation and purification, conversion of Np-237 and Pu-238 to oxide, scrap recovery, and Pu-238 encapsulation. The capability and equipment still exist and could be revitalized or put back into service to recover and purify Pu-238/Np-237 or broken General Purpose Heat Source (GPHS) pellets utilizing existing process equipment in HB-Line Scrap Recovery, and H-anyon Frame Waste Recovery processes. The conversion of Np-237 and Pu-238 to oxide can be performed in the existing HB-Line Phase-2 and Phase-3 Processes. Dissolution of irradiated Np-237 target material, and separation and purification of Np-237 and Pu-238 product streams would be possible at production rates of ~ 2 kg/month of Pu-238 if the existing H-Canyon Frames Process spare equipment were re-installed. Previously, the primary H-Canyon Frames equipment was removed to be replaced: however, the replacement project was stopped. The spare equipment is stored and still available for installation. Out of specification Pu-238 scrap material can be purified and recovered by utilizing the HB-Line Phase-1 Scrap Recovery Line and the Phase-3 Pu-238 Oxide Conversion Line along with H-Canyon Frame Waste Recovery process. In addition, it also covers and describes utilizing the Phase-2 Np-237 Oxide Conversion Line, in conjunction with the H-Canyon Frames Process to restore the H-Canyon capability to process and recover Np-237 and Pu-238 from irradiated Np-237 targets and address potential synergies with other programs like recovery of Pu-244 and heavy isotopes of curium from other target material.« less
Department of Defenses Enhanced Requirement for Offensive Cyber Warfare Operations
2010-04-01
The Department of Defense (DoD) needs to further develop its offensive cyber warfare capabilities at all levels. In an asymmetric environment...battlefields. If the DoD does not prosecute offensive cyber warfare tactics then the DoD has effectively allowed a significant advantage to be given...offensive cyber warfare operations, These states utilize their cyber warfare capabilities to support their national, operational and strategic
Research and Technology Capabilities Available for Partnership, 2007-2008
2010-01-01
simulated aircraft environment to measure acoustic and/ or IR radiation and signature. Instrumentation is capable of 96 pressure channels and 105...temperature channels. Mobile Aircraft Infrared Measurement System (AIMS) is field deployable and is used to take full-spectrum IR measurements at our CTF...three phase power. The facility is utilized for the development of visible, IR and RF spectrum sensors/seekers, signature measurement collection of
Method for producing monodisperse aerosols
Ortiz, Lawrence W.; Soderholm, Sidney C.
1990-01-01
An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.
New Capabilities in the Astrophysics Multispectral Archive Search Engine
NASA Astrophysics Data System (ADS)
Cheung, C. Y.; Kelley, S.; Roussopoulos, N.
The Astrophysics Multispectral Archive Search Engine (AMASE) uses object-oriented database techniques to provide a uniform multi-mission and multi-spectral interface to search for data in the distributed archives. We describe our experience of porting AMASE from Illustra object-relational DBMS to the Informix Universal Data Server. New capabilities and utilities have been developed, including a spatial datablade that supports Nearest Neighbor queries.
The Utility of Free Software for Gravity and Magnetic Advanced Data Processing
NASA Astrophysics Data System (ADS)
Grandis, Hendra; Dahrin, Darharta
2017-04-01
The lack of computational tools, i.e. software, often hinders the proper teaching and application of geophysical data processing in academic institutions in Indonesia. Although there are academic licensing options for commercial software, such options are still way beyond the financial capability of some academic institutions. Academic community members (both lecturers and students) are supposed to be creative and resourceful to overcome such situation. Therefore, capability for writing computer programs or codes is a necessity. However, there are also many computer programs and even software that are freely available on the internet. Generally, the utility of the freely distributed software is limited for demonstration only or for visualizing and exchanging data. The paper discusses the utility of Geosoft’s Oasis Montaj Viewer along with USGS GX programs that are available for free. Useful gravity and magnetic advanced data processing (i.e. gradient calculation, spectral analysis etc.) can be performed “correctly” without any approximation that sometimes leads to dubious results and interpretation.
Integrating intrinsic mobility into unmanned ground vehicle systems
NASA Astrophysics Data System (ADS)
Brosinsky, Chris A.; Penzes, Steven G.; Buehler, Martin G.; Steeves, Carl
2001-09-01
The ability of an Unmanned Ground Vehicle (UGV) to successfully move about in its environment is enabled by the synergistic combination of perception, control and platform (mobility and utility). Vast effort is being expended on the former technologies but little demonstrable evidence has been produced to indicate that the latter (mobility/utility) has been considered as an integral part of the UGV systems level capability; a concept commonly referred to as intrinsic mobility. While past work described the rationale for hybrid locomotion, this paper aims to demonstrate that integrating intrinsic mobility into a UGV systems mobility element or 'vehicle' will be a key contributor to the magnitude of autonomy that the system can achieve. This paper serves to provide compelling evidence that 1) intrinsic mobility improvements provided by hybrid locomotion configurations offer the best generic mobility, that 2) strict attention must be placed on the optimization of both utility (inherent vehicle capabilities) and mobility and that 3) the establishment of measures of performance for unmanned vehicle mobility is an unmet and latent need.
Chitin degradation and utilization by virulent Aeromonas hydrophila strain ML10-51K.
Zhang, Dunhua; Xu, De-Hai; Qiu, Junqiang; Rasmussen-Ivey, Cody R; Liles, Mark R; Beck, Benjamin H
2017-05-01
Virulent Aeromonas hydrophila (vAh) is one of the most important bacterial pathogens that causes persistent outbreaks of motile Aeromonas septicemia in warm-water fishes. The survivability of this pathogen in aquatic environments is of great concern. The aim of this study was to determine the capability of the vAh strain ML10-51K to degrade and utilize chitin. Genome-wide analysis revealed that ML10-51K encodes a suite of proteins for chitin metabolism. Assays in vitro showed that four chitinases, one chitobiase and one chitin-binding protein were secreted extracellularly and participated in chitin degradation. ML10-51K was shown to be able to use not only N-acetylglucosamine and colloidal chitin but also chitin flakes as sole carbon sources for growth. This study indicates that ML10-51K is a highly chitinolytic bacterium and suggests that the capability of effective chitin utilization could enable the bacterium to attain high densities when abundant chitin is available in aquatic niches.
Laboratory Testing of Demand-Response Enabled Household Appliances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparn, B.; Jin, X.; Earle, L.
2013-10-01
With the advent of the Advanced Metering Infrastructure (AMI) systems capable of two-way communications between the utility's grid and the building, there has been significant effort in the Automated Home Energy Management (AHEM) industry to develop capabilities that allow residential building systems to respond to utility demand events by temporarily reducing their electricity usage. Major appliance manufacturers are following suit by developing Home Area Network (HAN)-tied appliance suites that can take signals from the home's 'smart meter,' a.k.a. AMI meter, and adjust their run cycles accordingly. There are numerous strategies that can be employed by household appliances to respond tomore » demand-side management opportunities, and they could result in substantial reductions in electricity bills for the residents depending on the pricing structures used by the utilities to incent these types of responses.The first step to quantifying these end effects is to test these systems and their responses in simulated demand-response (DR) conditions while monitoring energy use and overall system performance.« less
Laboratory Testing of Demand-Response Enabled Household Appliances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparn, B.; Jin, X.; Earle, L.
2013-10-01
With the advent of the Advanced Metering Infrastructure (AMI) systems capable of two-way communications between the utility's grid and the building, there has been significant effort in the Automated Home Energy Management (AHEM) industry to develop capabilities that allow residential building systems to respond to utility demand events by temporarily reducing their electricity usage. Major appliance manufacturers are following suit by developing Home Area Network (HAN)-tied appliance suites that can take signals from the home's 'smart meter,' a.k.a. AMI meter, and adjust their run cycles accordingly. There are numerous strategies that can be employed by household appliances to respond tomore » demand-side management opportunities, and they could result in substantial reductions in electricity bills for the residents depending on the pricing structures used by the utilities to incent these types of responses. The first step to quantifying these end effects is to test these systems and their responses in simulated demand-response (DR) conditions while monitoring energy use and overall system performance.« less
McGovern, Mark P.; Lambert-Harris, Chantal; Gotham, Heather J.; Claus, Ronald E.; Xie, Haiyi
2012-01-01
Despite increased awareness of the benefits of integrated services for persons with co-occurring substance use and psychiatric disorders, estimates of the availability of integrated services vary widely. The present study utilized standardized measures of program capacity to address co-occurring disorders, the Dual Diagnosis Capability in Addiction Treatment (DDCAT) and Dual Diagnosis Capability in Mental Health Treatment (DDCMHT) indexes, and sampled 256 programs across the United States. Approximately 18% of addiction treatment and 9% of mental health programs met criteria for dual diagnosis capable services. This is the first report on public access to integrated services using objective measures. PMID:23183873
Neural network fusion capabilities for efficient implementation of tracking algorithms
NASA Astrophysics Data System (ADS)
Sundareshan, Malur K.; Amoozegar, Farid
1996-05-01
The ability to efficiently fuse information of different forms for facilitating intelligent decision-making is one of the major capabilities of trained multilayer neural networks that is being recognized int eh recent times. While development of innovative adaptive control algorithms for nonlinear dynamical plants which attempt to exploit these capabilities seems to be more popular, a corresponding development of nonlinear estimation algorithms using these approaches, particularly for application in target surveillance and guidance operations, has not received similar attention. In this paper we describe the capabilities and functionality of neural network algorithms for data fusion and implementation of nonlinear tracking filters. For a discussion of details and for serving as a vehicle for quantitative performance evaluations, the illustrative case of estimating the position and velocity of surveillance targets is considered. Efficient target tracking algorithms that can utilize data from a host of sensing modalities and are capable of reliably tracking even uncooperative targets executing fast and complex maneuvers are of interest in a number of applications. The primary motivation for employing neural networks in these applications comes form the efficiency with which more features extracted from different sensor measurements can be utilized as inputs for estimating target maneuvers. Such an approach results in an overall nonlinear tracking filter which has several advantages over the popular efforts at designing nonlinear estimation algorithms for tracking applications, the principle one being the reduction of mathematical and computational complexities. A system architecture that efficiently integrates the processing capabilities of a trained multilayer neural net with the tracking performance of a Kalman filter is described in this paper.
Case Analysis Of The Joint High Speed Vessel Program: Defense Acquisition
2016-09-01
reviews resulted in a series of Advanced Concept Technology Demonstrations (ACTD) designed to explore the military utility of converted commercial...requirements into a final and unique materiel solution for a system capability that is fielded. 14. SUBJECT TERMS Advanced Concept and Technology ...Advanced Concept Technology Demonstrations (ACTD) designed to explore the military utility of converted commercial, high-speed, shallow-draft
PS3-21: Extracting Utilization Data from Clarity into VDW Using Oracle and SAS
Chimmula, Srivardhan
2013-01-01
Background/Aims The purpose of the presentation is to demonstrate how we use SAS and Oracle to load VDW_Utilization, VDW_DX, and VDW_PX tables from Clarity at the Kaiser Permanente Northern California (KPNC) Division of Research (DOR) site. Methods DOR uses the best of Oracle PL/ SQL and SAS capabilities in building Extract Transform and Load (ETL) processes. These processes extract patient encounter, diagnosis, and procedure data from Teradata-based Clarity. The data is then transformed to fit HMORN’s VDW definitions of the table. This data is then loaded into the Oracle-based VDW table on DOR’s research database and then finally a copy of the table is also created as a SAS dataset. Results DOR builds robust and efficient ETL processes that refresh VDW Utilization table on a monthly basis processing millions of records/observations. The ETL processes have the capability to identify daily changes in Clarity and update the VDW tables on a daily basis. Conclusions KPNC DOR combines the best of both Oracle and SAS worlds to build ETL processes that load the data into VDW Utilization tables efficiently.
Development and deployment of the Collimated Directional Radiation Detection System
NASA Astrophysics Data System (ADS)
Guckes, Amber L.; Barzilov, Alexander
2017-09-01
The Collimated Directional Radiation Detection System (CDRDS) is capable of imaging radioactive sources in two dimensions (as a directional detector). The detection medium of the CDRDS is a single Cs2LiYCl6:Ce3+ scintillator cell enriched in 7Li (CLYC-7). The CLYC-7 is surrounded by a heterogeneous high-density polyethylene (HDPE) and lead (Pb) collimator. These materials make-up a coded aperture inlaid in the collimator. The collimator is rotated 360° by a stepper motor which enables time-encoded imaging of a radioactive source. The CDRDS is capable of spectroscopy and pulse shape discrimination (PSD) of photons and fast neutrons. The measurements of a radioactive source are carried out in discrete time steps that correlate to the angular rotation of the collimator. The measurement results are processed using a maximum likelihood expectation (MLEM) algorithm to create an image of the measured radiation. This collimator design allows for the directional detection of photons and fast neutrons simultaneously by utilizing only one CLYC-7 scintillator. Directional detection of thermal neutrons can also be performed by utilizing another suitable scintillator. Moreover, the CDRDS is portable, robust, and user friendly. This unit is capable of utilizing wireless data transfer for possible radiation mapping and network-centric applications. The CDRDS was tested by performing laboratory measurements with various gamma-ray and neutron sources.
Harnessing atomistic simulations to predict the rate at which dislocations overcome obstacles
NASA Astrophysics Data System (ADS)
Saroukhani, S.; Nguyen, L. D.; Leung, K. W. K.; Singh, C. V.; Warner, D. H.
2016-05-01
Predicting the rate at which dislocations overcome obstacles is key to understanding the microscopic features that govern the plastic flow of modern alloys. In this spirit, the current manuscript examines the rate at which an edge dislocation overcomes an obstacle in aluminum. Predictions were made using different popular variants of Harmonic Transition State Theory (HTST) and compared to those of direct Molecular Dynamics (MD) simulations. The HTST predictions were found to be grossly inaccurate due to the large entropy barrier associated with the dislocation-obstacle interaction. Considering the importance of finite temperature effects, the utility of the Finite Temperature String (FTS) method was then explored. While this approach was found capable of identifying a prominent reaction tube, it was not capable of computing the free energy profile along the tube. Lastly, the utility of the Transition Interface Sampling (TIS) approach was explored, which does not need a free energy profile and is known to be less reliant on the choice of reaction coordinate. The TIS approach was found capable of accurately predicting the rate, relative to direct MD simulations. This finding was utilized to examine the temperature and load dependence of the dislocation-obstacle interaction in a simple periodic cell configuration. An attractive rate prediction approach combining TST and simple continuum models is identified, and the strain rate sensitivity of individual dislocation obstacle interactions is predicted.
Evaluation of Long Duration Flight on Venus
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Colozza, Anthony J.
2006-01-01
An analysis was performed to evaluate the potential of utilizing either an airship or aircraft as a flight platform for long duration flight within the atmosphere of Venus. In order to achieve long-duration flight, the power system for the vehicle had to be capable of operating for extended periods of time. To accomplish these, two types of power systems were considered, a solar energy-based power system utilizing a photovoltaic array as the main power source and a radioisotope heat source power system utilizing a Stirling engine as the heat conversion device. Both types of vehicles and power systems were analyzed to determine their flight altitude range. This analysis was performed for a station-keeping mission where the vehicle had to maintain a flight over a location on the ground. This requires the vehicle to be capable of flying faster than the wind speed at a particular altitude. An analysis was also performed to evaluate the altitude range and maximum duration for a vehicle that was not required to maintain station over a specified location. The results of the analysis show that each type of flight vehicle and power system was capable of flight within certain portions of Venus s atmosphere. The aircraft, both solar and radioisotope power proved to be the most versatile and provided the greatest range of coverage both for station-keeping and non-station-keeping missions.
Fang, Xin; Monk, Jonathan M; Mih, Nathan; Du, Bin; Sastry, Anand V; Kavvas, Erol; Seif, Yara; Smarr, Larry; Palsson, Bernhard O
2018-06-11
Escherichia coli is considered a leading bacterial trigger of inflammatory bowel disease (IBD). E. coli isolates from IBD patients primarily belong to phylogroup B2. Previous studies have focused on broad comparative genomic analysis of E. coli B2 isolates, and identified virulence factors that allow B2 strains to reside within human intestinal mucosa. Metabolic capabilities of E. coli strains have been shown to be related to their colonization site, but remain unexplored in IBD-associated strains. In this study, we utilized pan-genome analysis and genome-scale models (GEMs) of metabolism to study metabolic capabilities of IBD-associated E. coli B2 strains. The study yielded three results: i) Pan-genome analysis of 110 E. coli strains (including 53 isolates from IBD studies) revealed discriminating metabolic genes between B2 strains and other strains; ii) Both comparative genomic analysis and GEMs suggested that B2 strains have an advantage in degrading and utilizing sugars derived from mucus glycan, and iii) GEMs revealed distinct metabolic features in B2 strains that potentially allow them to utilize energy more efficiently. For example, B2 strains lack the enzymes to degrade amadori products, but instead rely on neighboring bacteria to convert these substrates into a more readily usable and potentially less sought after product. Taken together, these results suggest that the metabolic capabilities of B2 strains vary significantly from those of other strains, enabling B2 strains to colonize intestinal mucosa.The results from this study motivate a broad experimental assessment of the nutritional effects on E. coli B2 pathophysiology in IBD patients.
2016-09-01
asymmetric threat’s attack? C. SURVEY OF RECENT STUDIES A survey of extensive studies on countering small boat attacks from different perspectives... studies capability factors that were important in enhancing coastal defense for the Campeche Sound and Israeli coast, respectively. On better...countering small boat swarm attacks utilizing ASCMs. Previous studies focus solely on force protection effectiveness. This thesis addresses this gap. D
The C-27J Spartan Procurement Program: A Case Study in USAF Sourcing Practices for National Security
2012-06-15
9 Figure 2: Mobility System Utilization by MCRS Case...into the viability of other missions. Mobility Capabilities and Requirements Study 2016 The Mobility Capabilities and Requirements Study 2016 ( MCRS -16...the second since 9-11, and it was released in February 2010 using the programmed force in the 2009 President’s Budget (PB09). The MCRS -16 Executive
Direction Finding in the Presence of Complex Electro-Magnetic Environment.
1995-06-29
compiling adversely affects the resolution capabilities of the MUSIC algorithm. A technique utilizing the terminal impedance matrix is devised to...performance of the MUSIC algorithm is also investigated.Interference power, as little as 15dB below the signal power from the near field scatterer greatly...reduces.the resolution capabilities of the MUSIC algorithm. A new away configuration is devised to suppress the interference. Modification of the MUSIC
The Strategic Utility of U.S. Navy SEALs
2009-06-01
USA Swimming, rugby organizations and wrestling organizations. In addition, while the demographics do not fully support it, the Navy and NSW put a...guerrilla 66 forces mainly against the Soviet Union (Waller, 1994). Recognizing the successes of the OSS and its ability to effectively work with...operations. This improved both forces capabilities and proved a very useful union . 78 SEALs are capable of this SFA mission, but it is a difficult
ERIC Educational Resources Information Center
Seeberg, Vilma
2011-01-01
Though girls' education is a well-established part of the anti-poverty canon, its importance in the lives of girls on the margins of China's globalization is more complex than a utility approach might suggest. This article uses a capabilities approach of empowerment to understand what educational opportunities a set of multiply marginalized girls…
Damage Detection and Verification System (DDVS) for In-Situ Health Monitoring
NASA Technical Reports Server (NTRS)
Williams, Martha K.; Lewis, Mark; Szafran, J.; Shelton, C.; Ludwig, L.; Gibson, T.; Lane, J.; Trautwein, T.
2015-01-01
Project presentation for Game Changing Program Smart Book Release. Detection and Verification System (DDVS) expands the Flat Surface Damage Detection System (FSDDS) sensory panels damage detection capabilities and includes an autonomous inspection capability utilizing cameras and dynamic computer vision algorithms to verify system health. Objectives of this formulation task are to establish the concept of operations, formulate the system requirements for a potential ISS flight experiment, and develop a preliminary design of an autonomous inspection capability system that will be demonstrated as a proof-of-concept ground based damage detection and inspection system.
Applications of LANCE Data at SPoRT
NASA Technical Reports Server (NTRS)
Molthan, Andrew
2014-01-01
Short term Prediction Research and Transition (SPoRT) Center: Mission: Apply NASA and NOAA measurement systems and unique Earth science research to improve the accuracy of short term weather prediction at the regional/local scale. Goals: Evaluate and assess the utility of NASA and NOAA Earth science data and products and unique research capabilities to address operational weather forecast problems; Provide an environment which enables the development and testing of new capabilities to improve short term weather forecasts on a regional scale; Help ensure successful transition of new capabilities to operational weather entities for the benefit of society
Benefits of advanced space suits for supporting routine extravehicular activity
NASA Technical Reports Server (NTRS)
Alton, L. R.; Bauer, E. H.; Patrick, J. W.
1975-01-01
Technology is available to produce space suits providing a quick-reaction, safe, much more mobile extravehicular activity (EVA) capability than before. Such a capability may be needed during the shuttle era because the great variety of missions and payloads complicates the development of totally automated methods of conducting operations and maintenance and resolving contingencies. Routine EVA now promises to become a cost-effective tool as less complex, serviceable, lower-cost payload designs utilizing this capability become feasible. Adoption of certain advanced space suit technologies is encouraged for reasons of economics as well as performance.
The NASA automation and robotics technology program
NASA Technical Reports Server (NTRS)
Holcomb, Lee B.; Montemerlo, Melvin D.
1986-01-01
The development and objectives of the NASA automation and robotics technology program are reviewed. The objectives of the program are to utilize AI and robotics to increase the probability of mission success; decrease the cost of ground control; and increase the capability and flexibility of space operations. There is a need for real-time computational capability; an effective man-machine interface; and techniques to validate automated systems. Current programs in the areas of sensing and perception, task planning and reasoning, control execution, operator interface, and system architecture and integration are described. Programs aimed at demonstrating the capabilities of telerobotics and system autonomy are discussed.
SPAR improved structural-fluid dynamic analysis capability
NASA Technical Reports Server (NTRS)
Pearson, M. L.
1985-01-01
The results of a study whose objective was to improve the operation of the SPAR computer code by improving efficiency, user features, and documentation is presented. Additional capability was added to the SPAR arithmetic utility system, including trigonometric functions, numerical integration, interpolation, and matrix combinations. Improvements were made in the EIG processor. A processor was created to compute and store principal stresses in table-format data sets. An additional capability was developed and incorporated into the plot processor which permits plotting directly from table-format data sets. Documentation of all these features is provided in the form of updates to the SPAR users manual.
Operation of a voltage source converter at increased utility voltage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaura, V.; Blasko, V.
1997-01-01
The operation of a voltage source converter (VSC) with regeneration capability, controllable power factor, and low distortion of utility currents is analyzed at increased utility voltage. Increase in the utility voltage causes a VSC to saturate and enter a nonlinear mode of operation. To operate under elevated utility, two steps are taken: (1) a pulse width modulation (PWM) algorithm is implemented which extends the linear region of operation by 15% and (2) a PWM saturation regulator is used to control the reactive current at higher utility voltages. The PWM algorithm reduces the switching losses by at least 33% and themore » effect of blanking time by one-third. All analytical results are experimentally verified on a 100 kW three-phase VSC.« less
Code of Federal Regulations, 2010 CFR
2010-10-01
... REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Other Socioeconomic Programs 970.2671-1 Policy. Department of Energy policy recognizes that full utilization of the talents and capabilities of a diverse work...
15 CFR 917.22 - National Projects funding.
Code of Federal Regulations, 2014 CFR
2014-01-01
...-effective manner; and (4) the utilization of existing capability and coordination with other relevant projects. Innovation and uniqueness will be significant factors in determining whether to fund a proposed...
15 CFR 917.22 - National Projects funding.
Code of Federal Regulations, 2010 CFR
2010-01-01
...-effective manner; and (4) the utilization of existing capability and coordination with other relevant projects. Innovation and uniqueness will be significant factors in determining whether to fund a proposed...
15 CFR 917.22 - National Projects funding.
Code of Federal Regulations, 2011 CFR
2011-01-01
...-effective manner; and (4) the utilization of existing capability and coordination with other relevant projects. Innovation and uniqueness will be significant factors in determining whether to fund a proposed...
15 CFR 917.22 - National Projects funding.
Code of Federal Regulations, 2012 CFR
2012-01-01
...-effective manner; and (4) the utilization of existing capability and coordination with other relevant projects. Innovation and uniqueness will be significant factors in determining whether to fund a proposed...
15 CFR 917.22 - National Projects funding.
Code of Federal Regulations, 2013 CFR
2013-01-01
...-effective manner; and (4) the utilization of existing capability and coordination with other relevant projects. Innovation and uniqueness will be significant factors in determining whether to fund a proposed...
Schulte, J G; Vicory, A H
2005-01-01
Source water quality is of major concern to all drinking water utilities. The accidental introduction of contaminants to their source water is a constant threat to utilities withdrawing water from navigable or industrialized rivers. The events of 11 September, 2001 in the United States have heightened concern for drinking water utility security as their source water and finished water may be targets for terrorist acts. Efforts are underway in several parts of the United States to strengthen early warning capabilities. This paper will focus on those efforts in the Ohio River Valley Basin.
NASA-NIAC 2001 Phase I Research Grant on Aneutronic Fusion Spacecraft Architecture
NASA Technical Reports Server (NTRS)
Tarditi, Alfonso G. (Principal Investigator); Scott, John H.; Miley, George H.
2012-01-01
This study was developed because the recognized need of defining of a new spacecraft architecture suitable for aneutronic fusion and featuring game-changing space travel capabilities. The core of this architecture is the definition of a new kind of fusion-based space propulsion system. This research is not about exploring a new fusion energy concept, it actually assumes the availability of an aneutronic fusion energy reactor. The focus is on providing the best (most efficient) utilization of fusion energy for propulsion purposes. The rationale is that without a proper architecture design even the utilization of a fusion reactor as a prime energy source for spacecraft propulsion is not going to provide the required performances for achieving a substantial change of current space travel capabilities.
Space Station Freedom Utilization Conference: Executive summary
NASA Technical Reports Server (NTRS)
1992-01-01
From August 3-6, 1992, Space Station Freedom Program (SSFP) representatives and prospective Space Station Freedom researchers gathered at the Von Braun Civic Center in Huntsville, Alabama, for NASA's first annual Space Station Freedom (SSF) Utilization Conference. The sessions presented are: (1) overview and research capabilities; (2) research plans and opportunities; (3) life sciences research; (4) technology research; (4) microgravity research and biotechnology; and (5) closing plenary.
Long-Term Counterinsurgency Strategy: Maximizing Special Operations and Airpower
2010-02-01
operations forces possess a repertoire of capabilities and attributes which impart them with unique strategic utility. “That utility reposes most...flashlight), LTMs are employed in a similar role to cue aircrews equipped with Night Vision Devices (NVDs). Concurrently, employment of small laptop...Special Operations Forces (PSS-SOF) and Precision Fires Image Generator (PFIG) have brought similar benefit to the employment of GPS/INS targeted weapons
ERIC Educational Resources Information Center
Liebert, Roland J.
A second-year study was made of the in-school utilization of "The Electric Company" television series. The findings reported here provide feedback to the series' users and producers. As in the first year study, the data up-date information on the technical capabilities of schools to use television, on applications of educational…
Maritime Geo-Fence Letter Report
2016-07-01
Identification System ( AIS ). For the Arctic Technology Evaluation 2015 (ATE-15), the RDC utilized the CG Cutter HEALY (polar ice breaker) to...conduct testing of various AIS Transmit features to determine their utility for improving CG marine safety and security capabilities in the Arctic. During...ATE-15 three different operations were tested using AIS Technology. 1) Shore-to-Ship. The MXAK network of shore transmitters (three of which covered
Toward a Mobile Agent Relay Network
2010-03-01
in the study of particle movement. In computer science, flocking movement has been adapted for use in the collective, cooperative movement of...MARN). For our approach, we utilize a mod- ified flocking behavior to generate cooperative movement that utilizes the agent’s re- lay capability. We...Summary Our testing focuses on measuring effective cooperative movement and robustness against malicious agents. The movement testing demonstrated that a
Secure Network-Centric Aviation Communication (SNAC)
NASA Technical Reports Server (NTRS)
Nelson, Paul H.; Muha, Mark A.; Sheehe, Charles J.
2017-01-01
The existing National Airspace System (NAS) communications capabilities are largely unsecured, are not designed for efficient use of spectrum and collectively are not capable of servicing the future needs of the NAS with the inclusion of new operators in Unmanned Aviation Systems (UAS) or On Demand Mobility (ODM). SNAC will provide a ubiquitous secure, network-based communications architecture that will provide new service capabilities and allow for the migration of current communications to SNAC over time. The necessary change in communication technologies to digital domains will allow for the adoption of security mechanisms, sharing of link technologies, large increase in spectrum utilization, new forms of resilience and redundancy and the possibly of spectrum reuse. SNAC consists of a long term open architectural approach with increasingly capable designs used to steer research and development and enable operating capabilities that run in parallel with current NAS systems.
Development of a Portfolio Management Approach with Case Study of the NASA Airspace Systems Program
NASA Technical Reports Server (NTRS)
Neitzke, Kurt W.; Hartman, Christopher L.
2012-01-01
A portfolio management approach was developed for the National Aeronautics and Space Administration s (NASA s) Airspace Systems Program (ASP). The purpose was to help inform ASP leadership regarding future investment decisions related to its existing portfolio of advanced technology concepts and capabilities (C/Cs) currently under development and to potentially identify new opportunities. The portfolio management approach is general in form and is extensible to other advanced technology development programs. It focuses on individual C/Cs and consists of three parts: 1) concept of operations (con-ops) development, 2) safety impact assessment, and 3) benefit-cost-risk (B-C-R) assessment. The first two parts are recommendations to ASP leaders and will be discussed only briefly, while the B-C-R part relates to the development of an assessment capability and will be discussed in greater detail. The B-C-R assessment capability enables estimation of the relative value of each C/C as compared with all other C/Cs in the ASP portfolio. Value is expressed in terms of a composite weighted utility function (WUF) rating, based on estimated benefits, costs, and risks. Benefit utility is estimated relative to achieving key NAS performance objectives, which are outlined in the ASP Strategic Plan.1 Risk utility focuses on C/C development and implementation risk, while cost utility focuses on the development and implementation portions of overall C/C life-cycle costs. Initial composite ratings of the ASP C/Cs were successfully generated; however, the limited availability of B-C-R information, which is used as inputs to the WUF model, reduced the meaningfulness of these initial investment ratings. Development of this approach, however, defined specific information-generation requirements for ASP C/C developers that will increase the meaningfulness of future B-C-R ratings.
Recent progress in utilization planning for Space Station Freedom
NASA Technical Reports Server (NTRS)
Bartoe, John-David F.; Thiringer, Peter S.
1991-01-01
The progress made in utilization planning for the redesigned Space Station Freedom (SSF) concept is described. Consideration is given to the SSF user capabilities, the strategic planning process, the strategic planning organizations, and the Consolidated Operations and Utilization Plan (COUP, which will be released in January 1993) as well as to the COUP development process and implementation. The process by which the COUP will be produced was exercised in the international Multilateral Strategic and Tactical Integration Process (MUSTIP) simulation. The paper describes the MUSTIP simulation and its activities along with MUSTIP findings and recommendations.
Growth of Prototheca isolates on n-hexadecane and mixed-hydrocarbon substrate.
Walker, J D; Pore, R S
1978-01-01
Prototheca zopfii, an achlorphyllous alga, was capable of using hydrocarbons as sole carbon and energy source. The ability of P. zopfii to use hydrocarbons did not correlate with source of isolation. Seventy-five percent of the P. zopfii cultures recovered from sewage, plants, or animals utilized hydrocarbons. Other Prototheca species and P. zopfii that did not utilize hydrocarbons were isolated simultaneously from several sources with isolates that did use hydrocarbons. Species type rather than source of isolation was the predominant factor that determined hydrocarbon utilization. PMID:565616
Computational Science and Innovation
NASA Astrophysics Data System (ADS)
Dean, D. J.
2011-09-01
Simulations - utilizing computers to solve complicated science and engineering problems - are a key ingredient of modern science. The U.S. Department of Energy (DOE) is a world leader in the development of high-performance computing (HPC), the development of applied math and algorithms that utilize the full potential of HPC platforms, and the application of computing to science and engineering problems. An interesting general question is whether the DOE can strategically utilize its capability in simulations to advance innovation more broadly. In this article, I will argue that this is certainly possible.
NASA Technical Reports Server (NTRS)
Linne, Diane L.; Sanders, Gerald B.; Taminger, Karen M.
2015-01-01
The capability for living off the land, commonly called in-situ resource utilization, is finally gaining traction in space exploration architectures. Production of oxygen from the Martian atmosphere is called an enabling technology for human return from Mars, and a flight demonstration to be flown on the Mars 2020 robotic lander is in development. However, many of the individual components still require technical improvements, and system-level trades will be required to identify the best combination of technology options. Based largely on work performed for two recent roadmap activities, this paper defines the capability and technology requirements that will need to be achieved before this game-changing capability can reach its full potential.
Development of an Actuator for Flow Control Utilizing Detonation
NASA Technical Reports Server (NTRS)
Lonneman, Patrick J.; Cutler, Andrew D.
2004-01-01
Active flow control devices including mass injection systems and zero-net-mass flux actuators (synthetic jets) have been employed to delay flow separation. These devices are capable of interacting with low-speed, subsonic flows, but situations exist where a stronger crossflow interaction is needed. Small actuators that utilize detonation of premixed fuel and oxidizer should be capable of producing supersonic exit jet velocities. An actuator producing exit velocities of this magnitude should provide a more significant interaction with transonic and supersonic crossflows. This concept would be applicable to airfoils on high-speed aircraft as well as inlet and diffuser flow control. The present work consists of the development of a detonation actuator capable of producing a detonation in a single shot (one cycle). Multiple actuator configurations, initial fill pressures, oxidizers, equivalence ratios, ignition energies, and the addition of a turbulence generating device were considered experimentally and computationally. It was found that increased initial fill pressures and the addition of a turbulence generator aided in the detonation process. The actuators successfully produced Chapman-Jouguet detonations and wave speeds on the order of 3000 m/s.
Recent advances in polarized 3 He based neutron spin filter development
NASA Astrophysics Data System (ADS)
Chen, Wangchun; Gentile, Thomas; Erwin, Ross; Watson, Shannon; Krycka, Kathryn; Ye, Qiang; NCNR NIST Team; University of Maryland Team
2015-04-01
Polarized 3 He neutron spin filters (NSFs) are based on the strong spin-dependence of the neutron absorption cross section by 3 He. NSFs can polarize large area, widely divergent, and broadband neutron beams effectively and allow for combining a neutron polarizer and a spin flipper into a single polarizing device. The last capability utilizes 3 He spin inversion based on the adiabatic fast passage (AFP) nuclear magnetic resonance technique. Polarized 3 He NSFs are significantly expanding the polarized neutron measurement capabilities at the NIST Center for Neutron Research (NCNR). Here we present an overview of 3 He NSF applications to small-angle neutron scattering, thermal triple axis spectrometry, and wide-angle polarization analysis. We discuss a recent upgrade of our spin-exchange optical pumping (SEOP) systems that utilize chirped volume holographic gratings for spectral narrowing. The new capability allows us to polarize rubidium/potassium hybrid SEOP cells over a liter in volume within a day, with 3 He polarizations up to 88%, Finally we discuss how we can achieve nearly lossless 3 He polarization inversion with AFP.
Stellar Gyroscope for Determining Attitude of a Spacecraft
NASA Technical Reports Server (NTRS)
Pain, Bedabrata; Hancock, Bruce; Liebe, Carl; Mellstrom, Jeffrey
2005-01-01
A paper introduces the concept of a stellar gyroscope, currently at an early stage of development, for determining the attitude or spin axis, and spin rate of a spacecraft. Like star trackers, which are commercially available, a stellar gyroscope would capture and process images of stars to determine the orientation of a spacecraft in celestial coordinates. Star trackers utilize chargecoupled devices as image detectors and are capable of tracking attitudes at spin rates of no more than a few degrees per second and update rates typically <5 Hz. In contrast, a stellar gyroscope would utilize an activepixel sensor as an image detector and would be capable of tracking attitude at a slew rate as high as 50 deg/s, with an update rate as high as 200 Hz. Moreover, a stellar gyroscope would be capable of measuring a slew rate up to 420 deg/s. Whereas a Sun sensor and a three-axis mechanical gyroscope are typically needed to complement a star tracker, a stellar gyroscope would function without them; consequently, the mass, power consumption, and mechanical complexity of an attitude-determination system could be reduced considerably.
Sustainable Human Presence on the Moon using In Situ Resources
NASA Technical Reports Server (NTRS)
McLemore, Carol A.; Fikes, John C.; McCarley, Kevin S.; Darby, Charles A.; Curreri, Peter A.; Kennedy, James P.; Good, James E.; Gilley, Scott D.
2008-01-01
New capabilities, technologies and infrastructure must be developed to enable a sustained human presence on the moon and beyond. The key to having this permanent presence is the utilization of in situ resources. To this end, NASA is investigating how in situ resources can be utilized to improve mission success by reducing up-mass, improving safety, reducing risk, and bringing down costs for the overall mission. To ensure that this capability is available when needed, technology development is required now. NASA/Marshall Space Flight Center (MSFC) is supporting this endeavor, along with other NASA centers, by exploring how lunar regolith can be mined for uses such as construction, life support, propulsion, power, and fabrication. Efforts at MSFC include development of lunar regolith simulant for hardware testing and development, extraction of oxygen and other materials from the lunar regolith, production of parts and tools on the moon from local materials or from provisioned feedstocks, and capabilities to show that produced parts are "ready for use". This paper discusses the lunar regolith, how the regolith is being replicated in the development of simulants and possible uses of the regolith.
Fungal Survival in a Chemosynthetic Ecosystem
NASA Astrophysics Data System (ADS)
Kiel Reese, B.; Sobol, M. S.; Hoshino, T.; Inagaki, F.; Eder, E.; Nicora, C. D.; Heyman, H. M.; Kyle, J. E.; Hoyt, D. W.; Tfaily, M. M.; Metz, T. O.
2018-05-01
Fungi possess metabolic pathways capable of utilizing previously considered non-bioavailable energy reserves. Metabolically active fungi occupy a unique niche within the subsurface, providing an organic carbon source for heterotrophic prokaryotes.
Exploring Propulsion System Requirements for More and All-Electric Helicopters
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
2015-01-01
Helicopters offer unique capabilities that are important for certain missions. More and all-electric propulsion systems for helicopters offer the potential for improved efficiency, reliability, vehicle and mission capabilities as well as reduced harmful emissions. To achieve these propulsion system-based benefits, the relevant requirements must be understood and developed for the various component, sub-component and ancillary systems of the overall propulsion system. Three representative helicopters were used to explore propulsion and overall vehicle and mission requirements. These vehicles varied from light utility (one to three occupants) to highly capable (three crew members plus ten passengers and cargo). Assuming 15 and 30 year technology availability, analytical models for electric system components were developed to understand component and ancillary requirements. Overall propulsion system characteristics were developed and used for vehicle sizing and mission analyses to understand the tradeoffs of component performance and weight, with increase in vehicle size and mission capability. Study results indicate that only the light utility vehicle retained significant payload for an arbitrary 100 nautical mile range assuming 15 year technology. Thirty year technology assumptions for battery energy storage are sufficient to enable some range and payload capabilities, but further improvements in energy density are required to maintain or exceed payload and range capabilities versus present systems. Hydrocarbon-fueled range extenders can be prudently used to recover range and payload deficiencies resulting from battery energy density limitations. Thermal loads for electric systems are low heat quality, but seem manageable. To realize the benefits from more and all-electric systems, technology goals must be achieved, as well as vehicles, missions and systems identified that are best suited to take advantage of their unique characteristics.
Exploring Propulsion System Requirements for More and All-Electric Helicopters
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
2015-01-01
Helicopters offer unique capabilities that are important for certain missions. More and all-electric propulsion systems for helicopters offer the potential for improved efficiency, reliability, vehicle and mission capabilities as well as reduced harmful emissions. To achieve these propulsion system-based benefits, the relevant requirements must be understood and developed for the various component, sub-component and ancillary systems of the overall propulsion system. Three representative helicopters were used to explore propulsion and overall vehicle and mission requirements. These vehicles varied from light utility (one to three occupants) to highly capable (three crew members plus ten passengers and cargo). Assuming 15 and 30 year technology availability, analytical models for electric system components were developed to understand component and ancillary requirements. Overall propulsion system characteristics were developed and used for vehicle sizing and mission analyses to understand the tradeoffs of component performance and weight, with increase in vehicle size and mission capability. Study results indicate that only the light utility vehicle retained significant payload for an arbitrary 100 nautical mile range assuming 15 year technology. Thirty year technology assumptions for battery energy storage are sufficient to enable some range and payload capabilities, but further improvements in energy density are required to maintain or exceed payload and range capabilities versus present systems. Hydrocarbon-fueled range extenders can be prudently used to recover range and payload deficiencies resulting from battery energy density limitations. Thermal loads for electric systems are low heat quality, but seem manageable. To realize the benefits from more and all-electric systems, technology goals must be achieved, as well as identify vehicles, missions and systems that are best suited to take advantage of their unique characteristics.
NASA's Space Launch System: Building a New Capability for Discovery
NASA Technical Reports Server (NTRS)
Creech, Stephen D.; Robinson, Kimberly F.
2015-01-01
Designed to enable human space exploration missions, including eventually landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO). The vehicle will then be evolved into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO. The initial configuration will be able to deliver greater mass to orbit than any contemporary launch vehicle, and the evolved configuration will have greater performance than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. The basic capabilities of SLS have been driven by studies on the requirements of human deep-space exploration missions, and continue to be validated by maturing analysis of Mars mission options. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle's potential range of utilization. As this paper will explain, SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by providing the robust space launch capability to deliver sustainable solutions for exploration.
Code of Federal Regulations, 2013 CFR
2013-10-01
... by a manufacturer whose principal place of business is in the United States. 4-wheel drive, general utility vehicle means a 4-wheel drive, general purpose automobile capable of off-highway operation that...
Engineering design and integration simulation utilization manual
NASA Technical Reports Server (NTRS)
Hirsch, G. N.
1976-01-01
A description of the Engineering Design Integration (EDIN) Simulation System as it exists at Johnson Space Center is provided. A discussion of the EDIN Simulation System capabilities and applications is presented.
Code of Federal Regulations, 2013 CFR
2013-01-01
... utilize and build upon the research, extension, and community service capability of public and private... title V shall be organized and conducted by one or more colleges or universities in each State to...
Utilizing an Intelligent Tutoring System in Tactical Action Officer Sandbox
2014-06-01
Office of Naval Research Future Naval Capabilities, the Defense Technology Area Plan from 2005 and the Department of Defense Science and Technology ...LEFT BLANK v ABSTRACT The Office of Naval Research Future Naval Capabilities, the Defense Technology Area Plan from 2005 and the Department...of Defense Science and Technology Priorities for FY13-17 all share a focus on systems to promote warfighter performance. The goal of these systems is
Army Networks: Opportunities Exist to Better Utilize Results from Network Integration Evaluations
2013-08-01
monitor operations; a touch screen-based mission command planning tool; and an antenna mast . The Army will field only one of these systems in capability...Office JTRS Joint Tactical Radio System NIE Network Integration Evaluation OSD Office of the Secretary of Defense SUE System under Evaluation...command systems . A robust transport layer capable of delivering voice, data, imagery, and video to the tactical edge (i.e., the forward battle lines
Cost Comparison of B-1B Non-Mission-Capable Drivers Using Finite Source Queueing with Spares
2012-09-06
COMPARISON OF B-1B NON-MISSION-CAPABLE DRIVERS USING FINITE SOURCE QUEUEING WITH SPARES GRADUATE RESEARCH PAPER Presented to the Faculty...step into the lineup making large-number approximations unusable. Instead, a finite source queueing model including spares is incorporated...were reported as flying time accrued since last occurrence. Service time was given in both start-stop format and MX man-hours utilized. Service time was
1982-01-27
Visible 3. 3 Ea r th Location, Colocation, and Normalization 4. IMAGE ANALYSIS 4. 1 Interactive Capabilities 4.2 Examples 5. AUTOMATED CLOUD...computer Interactive Data Access System (McIDAS) before image analysis and algorithm development were done. Earth-location is an automated procedure to...the factor l / s in (SSE) toward the gain settings given in Table 5. 4. IMAGE ANALYSIS 4.1 Interactive Capabilities The development of automated
2017-06-09
primary question. This thesis has used the case study research methodology with Capability-Based Assessment (CBA) approach. My engagement in this...protected by more restrictions in their home countries, in which case further publication or sale of copyrighted images is not permissible...effective coordinating mechanism. The research follows the case study method utilizing the Capability Based Analysis (CBA) approach to scrutinize the
Leveling the Playing Field: China’s Development of Advanced Energy Weapons
2012-05-02
02-05-2012 2. REPORT TYPE Master of Military Studies Research Paper 3. DATES COVERED (From - To) September 2011 - April 2012 5a. CONTRACT NUMBER...weapons in a surprise attack scenario to counter superior U.S. capabilities and technology. This paper will update and review current and developing...utilizing these weapons in a surprise attack scenario to counter superior U.S. capabilities and technology. This paper will update and review current
Capability to Recover Plutonium-238 in H-Canyon/HB-Line - 13248
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuller, Kenneth S. Jr.; Smith, Robert H. Jr.; Goergen, Charles R.
2013-07-01
Plutonium-238 is used in Radioisotope Thermoelectric Generators (RTGs) to generate electrical power and in Radioisotope Heater Units (RHUs) to produce heat for electronics and environmental control for deep space missions. The domestic supply of Pu-238 consists of scrap material from previous mission production or material purchased from Russia. Currently, the United States has no significant production scale operational capability to produce and separate new Pu-238 from irradiated neptunium-237 targets. The Department of Energy - Nuclear Energy is currently evaluating and developing plans to reconstitute the United States capability to produce Pu-238 from irradiated Np-237 targets. The Savannah River Site hadmore » previously produced and/or processed all the Pu-238 utilized in Radioisotope Thermoelectric Generators (RTGs) for deep space missions up to and including the majority of the plutonium for the Cassini Mission. The previous full production cycle capabilities included: Np- 237 target fabrication, target irradiation, target dissolution and Np-237 and Pu-238 separation and purification, conversion of Np-237 and Pu-238 to oxide, scrap recovery, and Pu-238 encapsulation. The capability and equipment still exist and could be revitalized or put back into service to recover and purify Pu-238/Np-237 or broken General Purpose Heat Source (GPHS) pellets utilizing existing process equipment in HB-Line Scrap Recovery, and H-Canyon Frame Waste Recovery processes. The conversion of Np-237 and Pu-238 to oxide can be performed in the existing HB-Line Phase-2 and Phase- 3 Processes. Dissolution of irradiated Np-237 target material, and separation and purification of Np-237 and Pu-238 product streams would be possible at production rates of ∼2 kg/month of Pu-238 if the existing H-Canyon Frames Process spare equipment were re-installed. Previously, the primary H-Canyon Frames equipment was removed to be replaced: however, the replacement project was stopped. The spare equipment is stored and still available for installation. Out of specification Pu-238 scrap material can be purified and recovered by utilizing the HB-Line Phase- 1 Scrap Recovery Line and the Phase-3 Pu-238 Oxide Conversion Line along with H-Canyon Frame Waste Recovery process. In addition, it also covers and describes utilizing the Phase-2 Np-237 Oxide Conversion Line, in conjunction with the H-Canyon Frames Process to restore the H-Canyon capability to process and recover Np-237 and Pu-238 from irradiated Np-237 targets and address potential synergies with other programs like recovery of Pu-244 and heavy isotopes of curium from other target material. (authors)« less
NASA Technical Reports Server (NTRS)
Slone, H. O.
1980-01-01
The experience, capabilities, and facilities being utilized at NASA Lewis in support of energy programs conducted by the Department of Energy and other agencies are discussed. Background information is given regarding NASA's involvement in solving energy problems.
7 CFR 4290.504 - Equipment and office requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
...-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE RURAL BUSINESS INVESTMENT COMPANY... software, and transmit such reports to the Secretary. In addition, you must have the capability to send and...
Interfaces between statistical analysis packages and the ESRI geographic information system
NASA Technical Reports Server (NTRS)
Masuoka, E.
1980-01-01
Interfaces between ESRI's geographic information system (GIS) data files and real valued data files written to facilitate statistical analysis and display of spatially referenced multivariable data are described. An example of data analysis which utilized the GIS and the statistical analysis system is presented to illustrate the utility of combining the analytic capability of a statistical package with the data management and display features of the GIS.
Technical Standards for Command and Control Information Systems (CCISs) and Information Technology
1994-02-01
formatting, transmitting, receiving, and processing imagery and imagery-related information. The N1TFS is in essence the suite of individual standards...also known as Limited Operational Capability-Europe) and the German Joint Analysis System Military Intelligence ( JASMIN ). Among the approaches being... essence , the other systems utilize a one-level address space where addressing consists of identifying the fire support unit. However, AFATDS utilizes a two
Programmable rate modem utilizing digital signal processing techniques
NASA Technical Reports Server (NTRS)
Naveh, Arad
1992-01-01
The need for a Programmable Rate Digital Satellite Modem capable of supporting both burst and continuous transmission modes with either Binary Phase Shift Keying (BPSK) or Quadrature Phase Shift Keying (QPSK) modulation is discussed. The preferred implementation technique is an all digital one which utilizes as much digital signal processing (DSP) as possible. The design trade-offs in each portion of the modulator and demodulator subsystem are outlined.
Recombinant Zymomonas mobilis with improved xylose utilization
Zhang, Min
2003-05-20
A strain derived from Zymomonas mobilis ATCC31821 or its derivative capable of producing ethanol upon fermentation of a carbohydrate medium containing xylose to provide enhanced xylose utilization and enhanced ethanol process yield, the strain or its derivative comprising exogenous genes encoding xylose isornerase, xylulokinase, transaldolase and transketolase, the genes are fused to at least one promotor recognized by Zymomonas which regulates the expression of at least one of the genes.
Top-level modeling of an als system utilizing object-oriented techniques
NASA Astrophysics Data System (ADS)
Rodriguez, L. F.; Kang, S.; Ting, K. C.
The possible configuration of an Advanced Life Support (ALS) System capable of supporting human life for long-term space missions continues to evolve as researchers investigate potential technologies and configurations. To facilitate the decision process the development of acceptable, flexible, and dynamic mathematical computer modeling tools capable of system level analysis is desirable. Object-oriented techniques have been adopted to develop a dynamic top-level model of an ALS system.This approach has several advantages; among these, object-oriented abstractions of systems are inherently modular in architecture. Thus, models can initially be somewhat simplistic, while allowing for adjustments and improvements. In addition, by coding the model in Java, the model can be implemented via the World Wide Web, greatly encouraging the utilization of the model. Systems analysis is further enabled with the utilization of a readily available backend database containing information supporting the model. The subsystem models of the ALS system model include Crew, Biomass Production, Waste Processing and Resource Recovery, Food Processing and Nutrition, and the Interconnecting Space. Each subsystem model and an overall model have been developed. Presented here is the procedure utilized to develop the modeling tool, the vision of the modeling tool, and the current focus for each of the subsystem models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakafuji, Dora; Gouveia, Lauren
This project supports development of the next generation, integrated energy management infrastructure (EMS) able to incorporate advance visualization of behind-the-meter distributed resource information and probabilistic renewable energy generation forecasts to inform real-time operational decisions. The project involves end-users and active feedback from an Utility Advisory Team (UAT) to help inform how information can be used to enhance operational functions (e.g. unit commitment, load forecasting, Automatic Generation Control (AGC) reserve monitoring, ramp alerts) within two major EMS platforms. Objectives include: Engaging utility operations personnel to develop user input on displays, set expectations, test and review; Developing ease of use and timelinessmore » metrics for measuring enhancements; Developing prototype integrated capabilities within two operational EMS environments; Demonstrating an integrated decision analysis platform with real-time wind and solar forecasting information and timely distributed resource information; Seamlessly integrating new 4-dimensional information into operations without increasing workload and complexities; Developing sufficient analytics to inform and confidently transform and adopt new operating practices and procedures; Disseminating project lessons learned through industry sponsored workshops and conferences;Building on collaborative utility-vendor partnership and industry capabilities« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Pavel V. Tsvetkov
2009-05-20
This project assessed the advantages and limitations of using minor actinides as a fuel component to achieve ultra-long life Very High Temperature Reactor (VHTR) configurations. Researchers considered and compared the capabilities of pebble-bed and prismatic core designs with advanced actinide fuels to achieve ultra-long operation without refueling. Since both core designs permit flexibility in component configuration, fuel utilization, and fuel management, it is possible to improve fissile properties of minor actinides by neutron spectrum shifting through configuration adjustments. The project studied advanced actinide fuels, which could reduce the long-term radio-toxicity and heat load of high-level waste sent to a geologicmore » repository and enable recovery of the energy contained in spent fuel. The ultra-long core life autonomous approach may reduce the technical need for additional repositories and is capable to improve marketability of the Generation IV VHTR by allowing worldwide deployment, including remote regions and regions with limited industrial resources. Utilization of minor actinides in nuclear reactors facilitates developments of new fuel cycles towards sustainable nuclear energy scenarios.« less
Rini Ann Jerin, A; Kaliannan, Palanisamy; Subramaniam, Umashankar
2017-09-01
Fault ride through (FRT) capability in wind turbines to maintain the grid stability during faults has become mandatory with the increasing grid penetration of wind energy. Doubly fed induction generator based wind turbine (DFIG-WT) is the most popularly utilized type of generator but highly susceptible to the voltage disturbances in grid. Dynamic voltage restorer (DVR) based external FRT capability improvement is considered. Since DVR is capable of providing fast voltage sag mitigation during faults and can maintain the nominal operating conditions for DFIG-WT. The effectiveness of the DVR using Synchronous reference frame (SRF) control is investigated for FRT capability in DFIG-WT during both balanced and unbalanced fault conditions. The operation of DVR is confirmed using time-domain simulation in MATLAB/Simulink using 1.5MW DFIG-WT. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
SmallSat Innovations for Planetary Science
NASA Astrophysics Data System (ADS)
Weinberg, Jonathan; Petroy, Shelley; Roark, Shane; Schindhelm, Eric
2017-10-01
As NASA continues to look for ways to fly smaller planetary missions such as SIMPLEX, MoO, and Venus Bridge, it is important that spacecraft and instrument capabilities keep pace to allow these missions to move forward. As spacecraft become smaller, it is necessary to balance size with capability, reliability and payload capacity. Ball Aerospace offers extensive SmallSat capabilities matured over the past decade, utilizing our broad experience developing mission architecture, assembling spacecraft and instruments, and testing advanced enabling technologies. Ball SmallSats inherit their software capabilities from the flight proven Ball Configurable Platform (BCP) line of spacecraft, and may be tailored to meet the unique requirements of Planetary Science missions. We present here recent efforts in pioneering both instrument miniaturization and SmallSat/sensorcraft development through mission design and implementation. Ball has flown several missions with small, but capable spacecraft. We also have demonstrated a variety of enhanced spacecraft/instrument capabilities in the laboratory and in flight to advance autonomy in spaceflight hardware that can enable some small planetary missions.
A neural network with modular hierarchical learning
NASA Technical Reports Server (NTRS)
Baldi, Pierre F. (Inventor); Toomarian, Nikzad (Inventor)
1994-01-01
This invention provides a new hierarchical approach for supervised neural learning of time dependent trajectories. The modular hierarchical methodology leads to architectures which are more structured than fully interconnected networks. The networks utilize a general feedforward flow of information and sparse recurrent connections to achieve dynamic effects. The advantages include the sparsity of units and connections, the modular organization. A further advantage is that the learning is much more circumscribed learning than in fully interconnected systems. The present invention is embodied by a neural network including a plurality of neural modules each having a pre-established performance capability wherein each neural module has an output outputting present results of the performance capability and an input for changing the present results of the performance capabilitiy. For pattern recognition applications, the performance capability may be an oscillation capability producing a repeating wave pattern as the present results. In the preferred embodiment, each of the plurality of neural modules includes a pre-established capability portion and a performance adjustment portion connected to control the pre-established capability portion.
Eddy current inspection of graphite fiber components
NASA Technical Reports Server (NTRS)
Workman, G. L.; Bryson, C. C.
1990-01-01
The recognition of defects in materials properties still presents a number of problems for nondestructive testing in aerospace systems. This project attempts to utilize current capabilities in eddy current instrumentation, artificial intelligence, and robotics in order to provide insight into defining geometrical aspects of flaws in composite materials which are capable of being evaluated using eddy current inspection techniques. The unique capabilities of E-probes and horseshoe probes for inspecting probes for inspecting graphite fiber materials were evaluated and appear to hold great promise once the technology development matures. The initial results are described of modeling eddy current interactions with certain flaws in graphite fiber samples.
Heavy Lift Launch Capability with a New Hydrocarbon Engine
NASA Technical Reports Server (NTRS)
Threet, Grady E., Jr.; Holt, James B.; Philips, Alan D.; Garcia, Jessica A.
2011-01-01
The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center was tasked to define the thrust requirement of a new liquid oxygen rich staged combustion cycle hydrocarbon engine that could be utilized in a launch vehicle to meet NASA s future heavy lift needs. Launch vehicle concepts were sized using this engine for different heavy lift payload classes. Engine out capabilities for one of the heavy lift configurations were also analyzed for increased reliability that may be desired for high value payloads or crewed missions. The applicability for this engine in vehicle concepts to meet military and commercial class payloads comparable to current ELV capability was also evaluated.
NASA Technical Reports Server (NTRS)
Micol, John R.
2001-01-01
Description, capabilities, initiatives, and utilization of the NASA Langley Research Center's Unitary Plan Wind Tunnel are presented. A brief overview of the facility's operational capabilities and testing techniques is provided. A recent Construction of Facilities (CoF) project to improve facility productivity and efficiency through facility automation has been completed and is discussed. Several new and maturing thrusts are underway that include systematic efforts to provide credible assessment for data quality, modifications to the new automation control system for increased compatibility with the Modern Design Of Experiments (MDOE) testing methodology, and process improvements for better test coordination, planning, and execution.
NASA Technical Reports Server (NTRS)
Micol, John R.
2001-01-01
Description, capabilities, initiatives, and utilization of the NASA Langley Research Center's Unitary Plan Wind Tunnel are presented. A brief overview of the facility's operational capabilities and testing techniques is provided. A recent Construction of Facilities (Car) project to improve facility productivity and efficiency through facility automation has been completed and is discussed. Several new and maturing thrusts are underway that include systematic efforts to provide credible assessment for data quality, modifications to the new automation control system for increased compatibility with the Modern Design of Experiments (MDOE) testing methodology, and process improvements for better test coordination, planning, and execution.
Spacecraft propulsion systems test capability at the NASA White Sands Test Facility
NASA Technical Reports Server (NTRS)
Baker, Pleddie; Gorham, Richard
1993-01-01
The NASA White Sands Facility (WSTF), a component insallation of the Johnson Space Center, is located on a 94-square-mile site in southwestern New Mexico. WSTF maintains many unique capabilities to support its mission to test and evaluate spacecraft materials, components, and propulsion systems to enable the safe human exploration and utilization of space. WSTF has tested over 340 rocket engines with more than 2.5 million firings to date. Included are propulsion system testing for Apollo, Shuttle, and now Space Station as well as unmanned spacecraft such as Viking, Pioneer, and Mars Observer. This paper describes the current WSTF propulsion test facilities and capabilities.
77 FR 25145 - Commerce Spectrum Management Advisory Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-27
... innovation as possible, and make wireless services available to all Americans. (See charter, at http://www... federal capabilities and maximizing commercial utilization. NTIA will post a detailed agenda on its Web...
Scintillator fiber optic long counter
McCollum, Tom; Spector, Garry B.
1994-01-01
A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected.
Lee, Yoon Kyeung; Jang, Kyung-In; Ma, Yinji; Koh, Ahyeon; Chen, Hang; Jung, Han Na; Kim, Yerim; Kwak, Jean Won; Wang, Liang; Xue, Yeguang; Yang, Yiyuan; Tian, Wenlong; Jiang, Yu; Zhang, Yihui; Feng, Xue; Huang, Yonggang
2017-01-01
A collection of materials and device architectures are introduced for thin, stretchable arrays of ion sensors that mount on open cellular substrates to facilitate solution exchange for use in biointegrated electronics. The results include integration strategies and studies of fundamental characteristics in chemical sensing and mechanical response. The latter involves experimental measurements and theoretical simulations that establish important considerations in the design of low modulus, stretchable properties in cellular substrates, and in the realization of advanced capabilities in spatiotemporal mapping of chemicals' gradients. As the chemical composition of extracellular fluids contains valuable information related to biological function, the concepts introduced here have potential utility across a range of skin- and internal-organ-integrated electronics where soft mechanics, fluidic permeability, and advanced chemical sensing capabilities are key requirements. PMID:28989338
Mission and space vehicle sizing data for a chemical propulsion/aerobraking option
NASA Technical Reports Server (NTRS)
Butler, John; Brothers, Bobby
1986-01-01
Sizing data is presented for various combinations of Mars missions and chemical-propulsion/aerobraking vehicles. Data is compared for vehicles utilizing opposition (2-year mission) and conjunction (3-year mission) trajectories for 1999 and 2001 opportunities, for various sizes of vehicles. Payload capabilities for manned and unmanned missions vehicles and for propulsive-braking and aerobraking cases are shown. The effect of scaling up a reference vehicle is compared to the case of utilizing two identical vehicles, for growth in payload capability. The rate of cumulative build up of weight on the surface of Mars is examined for various mission/vehicle combinations, and is compared to the landed-weight requirements for sortie missions, moving-base missions, and fixed-base missions. Also, the required buildup of weight in low Earth orbit (LEO) for various mission/vehicle combinations is presented and discussed.
Overview of the Microgravity Science Glovebox (MSG)
NASA Technical Reports Server (NTRS)
Wright, Mary Etta
1999-01-01
MSG is a third generation glovebox for Microgravity Science investigations: SpaceLab Glovebox (GBX); Middeck/MIR Gloveboxes (M/MGBX); and GBX and M/MGBX developed by Bradford Engineering (NL). Previous flights have demonstrated utility of glovebox facilities: Contained environment enables broader range of science experiments; Affords better control of video and photographic imaging (a prime data source); Provides better environmental control than cabin atmosphere; and Useful for contingency operations. MSG developed in response to demands for increased work volume, increased capabilities and additional resources. MSG is multi-user facility to support a wide range of small science and technology investigations: Fluid physics; Combustion science; Material science; Biotechnology (cell culturing and protein crystal growth); Space processing; Fundamental physics; and Technology demonstrations. Topics included in this viewgraph are: MSG capabilities; MSG hardware items; MSG, GSE, and OSE items; MSG development approach; and Science utilization.
A Unique Photon Bombardment System for Space Applications
NASA Technical Reports Server (NTRS)
Klein, E. J.
1993-01-01
The innovative Electromagnetic Radiation Collection and Concentration System (EMRCCS) described is the foundation for the development of a multiplicity of space and terrestrial system formats. The system capability allows its use in the visual, infrared, and ultraviolet ranges of the spectrum for EM collection, concentration, source/receptor tracking, and targeting. The nonimaging modular optical system uses a physically static position aperture for EM radiation collection. Folded optics provide the concentration of the radiation and source autotracking. The collected and concentrated electromagnetic radiation is utilized in many applications, e.g., solar spectrum in thermal and associative photon bombardment applications for hazardous waste management, water purification, metal hardening, hydrogen generation, photovoltaics, etc., in both space and terrestrial segment utilization. Additionally, at the high end of the concentration capability range, i.e., 60,000+, a solar-pulsed laser system is possible.
Pulsed high voltage electric discharge disinfection of microbially contaminated liquids.
Anpilov, A M; Barkhudarov, E M; Christofi, N; Kop'ev, V A; Kossyi, I A; Taktakishvili, M I; Zadiraka, Y
2002-01-01
To examine the use of a novel multielectrode slipping surface discharge (SSD) treatment system, capable of pulsed plasma discharge directly in water, in killing micro-organisms. Potable water containing Escherichia coli and somatic coliphages was treated with pulsed electric discharges generated by the SSD. The SSD system was highly efficient in the microbial disinfection of water with a low energy utilization (eta approximately 10-4 kW h l-1). The SSD treatment was effective in the destruction of E. coli and its coliphages through the generation of u.v. radiation, ozone and free radicals. The non-thermal treatment method can be used for the eradication of micro-organisms in a range of contaminated liquids, including milk, negating the use of pasteurization. The method utilizes multipoint electric discharges capable of treating large volumes of liquid under static and flowing regimes.
NASA Technical Reports Server (NTRS)
Rodriguez, Pedro I.
1986-01-01
A computer implementation to Prony's curve fitting by exponential functions is presented. The method, although more than one hundred years old, has not been utilized to its fullest capabilities due to the restriction that the time range must be given in equal increments in order to obtain the best curve fit for a given set of data. The procedure used in this paper utilizes the 3-dimensional capabilities of the Interactive Graphics Design System (I.G.D.S.) in order to obtain the equal time increments. The resultant information is then input into a computer program that solves directly for the exponential constants yielding the best curve fit. Once the exponential constants are known, a simple least squares solution can be applied to obtain the final form of the equation.
NASA Technical Reports Server (NTRS)
1976-01-01
This methodology calculates the electric energy busbar cost from a utility-owned solar electric system. This approach is applicable to both publicly- and privately-owned utilities. Busbar cost represents the minimum price per unit of energy consistent with producing system-resultant revenues equal to the sum of system-resultant costs. This equality is expressed in present value terms, where the discount rate used reflects the rate of return required on invested capital. Major input variables describe the output capabilities and capital cost of the energy system, the cash flows required for system operation amd maintenance, and the financial structure and tax environment of the utility.
Information architecture for a planetary 'exploration web'
NASA Technical Reports Server (NTRS)
Lamarra, N.; McVittie, T.
2002-01-01
'Web services' is a common way of deploying distributed applications whose software components and data sources may be in different locations, formats, languages, etc. Although such collaboration is not utilized significantly in planetary exploration, we believe there is significant benefit in developing an architecture in which missions could leverage each others capabilities. We believe that an incremental deployment of such an architecture could significantly contribute to the evolution of increasingly capable, efficient, and even autonomous remote exploration.
ERIC Educational Resources Information Center
Gropper, George L.
2016-01-01
In instruction there is always something that needs to be displayed. Little wonder that in some form or other media utilization is a given. But questions arise. "Is development meant to fit within media capabilities?" "Or are media to be selected because of their capabilities to meet development needs?" When in the…
INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorensek, M.; Hamm, L.; Garcia, H.
2011-07-18
Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come frommore » many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.« less
NASA Astrophysics Data System (ADS)
Giffin, Paxton K.; Parsons, Michael S.; Unz, Ronald J.; Waggoner, Charles A.
2012-05-01
The Institute for Clean Energy Technology (ICET) at Mississippi State University has developed a test stand capable of lifecycle testing of high efficiency particulate air filters and other filters specified in American Society of Mechanical Engineers Code on Nuclear Air and Gas Treatment (AG-1) filters. The test stand is currently equipped to test AG-1 Section FK radial flow filters, and expansion is currently underway to increase testing capabilities for other types of AG-1 filters. The test stand is capable of producing differential pressures of 12.45 kPa (50 in. w.c.) at volumetric air flow rates up to 113.3 m3/min (4000 CFM). Testing is performed at elevated and ambient conditions for temperature and relative humidity. Current testing utilizes three challenge aerosols: carbon black, alumina, and Arizona road dust (A1-Ultrafine). Each aerosol has a different mass median diameter to test loading over a wide range of particles sizes. The test stand is designed to monitor and maintain relative humidity and temperature to required specifications. Instrumentation is implemented on the upstream and downstream sections of the test stand as well as on the filter housing itself. Representative data are presented herein illustrating the test stand's capabilities. Digital images of the filter pack collected during and after testing is displayed after the representative data are discussed. In conclusion, the ICET test stand with AG-1 filter testing capabilities has been developed and hurdles such as test parameter stability and design flexibility overcome.
Tunable electro-optic filter stack
Fontecchio, Adam K.; Shriyan, Sameet K.; Bellingham, Alyssa
2017-09-05
A holographic polymer dispersed liquid crystal (HPDLC) tunable filter exhibits switching times of no more than 20 microseconds. The HPDLC tunable filter can be utilized in a variety of applications. An HPDLC tunable filter stack can be utilized in a hyperspectral imaging system capable of spectrally multiplexing hyperspectral imaging data acquired while the hyperspectral imaging system is airborne. HPDLC tunable filter stacks can be utilized in high speed switchable optical shielding systems, for example as a coating for a visor or an aircraft canopy. These HPDLC tunable filter stacks can be fabricated using a spin coating apparatus and associated fabrication methods.
Uses of communication satellites in water utility operations
NASA Astrophysics Data System (ADS)
Tighe, W. S.
This paper proposes a system to serve the communications needs of the operating side of a water utility and estimates the requirements and capabilities of the equipment needed. The system requires the shared use of a satellite transponder with 100% backup. Messages consist of data packets containing data and control information, plus voice transmission. Satellite communication may have a price advantage in some instances over wire line or VHF radio and have greater survivability in case of a natural disaster. Water and other utilities represent a significant market for low cost mass produced satellite earth terminals.
A 2.5-2.7 THz Room Temperature Electronic Source
NASA Technical Reports Server (NTRS)
Maestrini, Alain; Mehdi, Imran; Lin, Robert; Siles, Jose Vicente; Lee, Choonsup; Gill, John; Chattopadhyay, Goutam; Schlecht, Erich; Bertrand, Thomas; Ward, John
2011-01-01
We report on a room temperature 2.5 to 2.7 THz electronic source based on frequency multipliers. The source utilizes a cascade of three frequency multipliers with W-band power amplifiers driving the first stage multiplier. Multiple-chip multipliers are utilized for the two initial stages to improve the power handling capability and a sub-micron anode is utilized for the final stage tripler. Room temperature measurements indicate that the source can put out a peak power of about 14 microwatts with more than 4 microwatts in the 2.5 to 2.7 THz range.
NASA Astrophysics Data System (ADS)
Fu, Enjin
Demand for more bandwidth is rapidly increasing, which is driven by data intensive applications such as high-definition (HD) video streaming, cloud storage, and terascale computing applications. Next-generation high-performance computing systems require power efficient chip-to-chip and intra-chip interconnect yielding densities on the order of 1Tbps/cm2. The performance requirements of such system are the driving force behind the development of silicon integrated optical interconnect, providing a cost-effective solution for fully integrated optical interconnect systems on a single substrate. Compared to conventional electrical interconnect, optical interconnects have several advantages, including frequency independent insertion loss resulting in ultra wide bandwidth and link latency reduction. For high-speed optical transmitter modules, the optical modulator is a key component of the optical I/O channel. This thesis presents a silicon integrated optical transmitter module design based on a novel silicon HBT-based carrier injection electroabsorption modulator (EAM), which has the merits of wide optical bandwidth, high speed, low power, low drive voltage, small footprint, and high modulation efficiency. The structure, mechanism, and fabrication of the modulator structure will be discussed which is followed by the electrical modeling of the post-processed modulator device. The design and realization of a 10Gbps monolithic optical transmitter module integrating the driver circuit architecture and the HBT-based EAM device in a 130nm BiCMOS process is discussed. For high power efficiency, a 6Gbps ultra-low power driver IC implemented in a 130nm BiCMOS process is presented. The driver IC incorporates an integrated 27-1 pseudo-random bit sequence (PRBS) generator for reliable high-speed testing, and a driver circuit featuring digitally-tuned pre-emphasis signal strength. With outstanding drive capability, the driver module can be applied to a wide range of carrier injection modulators and light-emitting diodes (LED) with drive voltage requirements below 1.5V. Measurement results show an optical link based on a 70MHz red LED work well at 300Mbps by using the pre-emphasis driver module. A traveling wave electrode (TWE) modulator structure is presented, including a novel design methodology to address process limitations imposed by a commercial silicon fabrication technology. Results from 3D full wave EM simulation demonstrate the application of the design methodology to achieve specifications, including phase velocity matching, insertion loss, and impedance matching. Results show the HBT-based TWE-EAM system has the bandwidth higher than 60GHz.
Manufacturing the Horns of Dilemma: A Theory of Operational Initiative
2015-05-21
Army began to understand CCF tactics by December, 1950. The Chinese preferred to infiltrate their infantry during darkness , utilized terrain to mask...most concerned with retaining its freedom of action against the CCF. The Third Chinese Counteroffensive began just after dark on December 31, 1950 and...IDF entered a process of soul -searching and reflection that questioned deeply held assumptions about the capabilities and utility of the IDF in the
Utilization of xylose for growth by the eukaryotic alga, Chlorella.
Hawkins, R L
1999-06-01
A green alga, Chlorella, was found to be capable of utilizing xylose or other pentose sugars (xylitol, arabinose) for enhanced growth rates when grown in the light, but not when grown heterotrophically in the dark. With selection for growth in xylose-containing medium, it was possible to improve dramatically the ability of selected Chlorella strains to grow on xylose mixotrophically. Growth on arabinose or xylitol was not changed in the xylose-selected strains.
Space Station Freedom Utilization Conference. Executive summary
NASA Technical Reports Server (NTRS)
1993-01-01
The Space Station Freedom Utilization Conference was held on 3-6 Aug. 1992 in Huntsville, Alabama. The purpose of the conference was to bring together prospective space station researchers and the people in NASA and industry with whom they would be working to exchange information and discuss plans and opportunities for space station research. Topics covered include: research capabilities; research plans and opportunities; life sciences research; technology research; and microgravity research and biotechnology.
NON-STANDARD FIXED WING AVIATION: THE RECIPE FOR ADDRESSING SPECIALIZED MOBILITY SHORTFALLS
2015-10-01
capabilities and logistics and evaluates the utilization of available non-standard aviation aircraft for Special Operations and compares the effectiveness and...ways to improve the efficiency and effectiveness of the balance between contract aviation assets and organic military assets being utilized to help...commander to effectively command and control (C2), all pose problems to the warfighter. It has been proven that “Ad-hoc attachment of air assets and
2003-08-28
Zielinski , EDAW, Inc., concerning utilities supply and demand for Vandenberg Air Force Base, 1 August. Rush, P., 2002. Personal communication between...Pernell W. Rush, Technical Sergeant, Water Utilities/Water Treatment NCO, USAF 30th CES/CEOIU, Vandenberg Air Force Base, and James E. Zielinski ... Dave Savinsky, Environmental Consultant, 30 CES/CEVC, Vandenberg Air Force Base, on the Preliminary Draft Ground-Based Midcourse Defense (GMD
40 CFR 21.10 - Utilization of the statement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... a statement is issued under § 21.5 is substantively changed in scope, concept, design, or capability... financial assistance: Provided, That there is or will be no substantive change in the scope, concept, design...
NASA Technical Reports Server (NTRS)
Herrera, J. I.; Reddoch, T. W.; Lawler, J. S.
1985-01-01
As efforts are accelerated to improve the overall capability and performance of wind electric systems, increased attention to variable speed configurations has developed. A number of potentially viable configurations have emerged. Various attributes of variable speed systems need to be carefully tested to evaluate their performance from the utility points of view. With this purpose, the NASA experimental variable speed constant frequency (VSCF) system has been tested. In order to determine the usefulness of these systems in utility applications, tests are required to resolve issues fundamental to electric utility systems. Legitimate questions exist regarding how variable speed generators will influence the performance of electric utility systems; therefore, tests from a utility perspective, have been performed on the VSCF system and an induction generator at an operating power level of 30 kW on a system rated at 200 kVA and 0.8 power factor.
Pilot climate data system: A state-of-the-art capability in scientific data management
NASA Technical Reports Server (NTRS)
Smith, P. H.; Treinish, L. A.; Novak, L. V.
1983-01-01
The Pilot Climate Data System (PCDS) was developed by the Information Management Branch of NASA's Goddard Space Flight Center to manage a large collection of climate-related data of interest to the research community. The PCDS now provides uniform data catalogs, inventories, access methods, graphical displays and statistical calculations for selected NASA and non-NASA data sets. Data manipulation capabilities were developed to permit researchers to easily combine or compare data. The current capabilities of the PCDS include many tools for the statistical survey of climate data. A climate researcher can examine any data set of interest via flexible utilities to create a variety of two- and three-dimensional displays, including vector plots, scatter diagrams, histograms, contour plots, surface diagrams and pseudo-color images. The graphics and statistics subsystems employ an intermediate data storage format which is data-set independent. Outside of the graphics system there exist other utilities to select, filter, list, compress, and calculate time-averages and variances for any data of interest. The PCDS now fully supports approximately twenty different data sets and is being used on a trial basis by several different in-house research grounds.
A PDA study management tool (SMT) utilizing wireless broadband and full DICOM viewing capability
NASA Astrophysics Data System (ADS)
Documet, Jorge; Liu, Brent; Zhou, Zheng; Huang, H. K.; Documet, Luis
2007-03-01
During the last 4 years IPI (Image Processing and Informatics) Laboratory has been developing a web-based Study Management Tool (SMT) application that allows Radiologists, Film librarians and PACS-related (Picture Archiving and Communication System) users to dynamically and remotely perform Query/Retrieve operations in a PACS network. The users utilizing a regular PDA (Personal Digital Assistant) can remotely query a PACS archive to distribute any study to an existing DICOM (Digital Imaging and Communications in Medicine) node. This application which has proven to be convenient to manage the Study Workflow [1, 2] has been extended to include a DICOM viewing capability in the PDA. With this new feature, users can take a quick view of DICOM images providing them mobility and convenience at the same time. In addition, we are extending this application to Metropolitan-Area Wireless Broadband Networks. This feature requires Smart Phones that are capable of working as a PDA and have access to Broadband Wireless Services. With the extended application to wireless broadband technology and the preview of DICOM images, the Study Management Tool becomes an even more powerful tool for clinical workflow management.
Space platform expendables resupply concept definition study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1984-01-01
NASA has recognized that the capability for remote resupply of space platform expendable fluids will help transition space utilization into a new era of operational efficiency and cost/effectiveness. The emerging Orbital Maneuvering System (OMV) in conjunction with an expendables resupply module will introduce the capability for fluid resupply enabling satellite lifetime extension at locations beyond the range of the Orbiter. This report summarizes a Phase A study of a remote resupply module for the OMV. Volume 1 is the executive summary.
1981-12-01
with statistical data on the -est questions themselves and allows upgrading of the test ques-ion bank or changes in the method of presentation. (5...accessed to meet on-line inquires from users at the OMA, INA, and SSC levels, utilizing a number of different to access similar data. A query capability...technical directive and configured item capability * nonthly Maintanance Plan *Individual material Readiness List (I21RL) SPIE calibration Expand JCN4 Tracki
The role of EVA on Space Shuttle. [experimental support and maintenance activities
NASA Technical Reports Server (NTRS)
Carson, M. A.
1974-01-01
The purpose of this paper is to present the history of Extravehicular Activity (EVA) through the Skylab Program and to outline the expected tasks and equipment capabilities projected for the Space Shuttle Program. Advantages offered by EVA as a tool to extend payload capabilities and effectiveness and economic advantages of using EVA will be explored. The presentation will conclude with some guidelines and recommendations for consideration by payload investigators in establishing concepts and designs utilizing EVA support.
Data Requirements for Oceanic Processes in the Open Ocean, Coastal Zone, and Cryosphere
NASA Technical Reports Server (NTRS)
Nagler, R. G.; Mccandless, S. W., Jr.
1978-01-01
The type of information system that is needed to meet the requirements of ocean, coastal, and polar region users was examined. The requisite qualities of the system are: (1) availability, (2) accessibility, (3) responsiveness, (4) utility, (5) continuity, and (6) NASA participation. The system would not displace existing capabilities, but would have to integrate and expand the capabilities of existing systems and resolve the deficiencies that currently exist in producer-to-user information delivery options.
U.S. Army Ranger Force Utilization a Continuing Inability to Correlate Missions with Capabilities
1988-12-05
requirements. Over the past fifteen years , since the activation of modern Ranger units, official doctrine has disagreed over the training and employ- ment of...13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT ( Year ,Month,Day) 15. PAGE COUNT Monograph FROM TO 88/12/5 66 16. SUPPLEMENTARY NOTATION...Ranger unit capabilities with mission require- ments. The failure to properly correlate these two factors lies at the heart of past incidents of
Development of Li-S Battery With Improved Sulphur Utilization and Cyclic Stability
2017-12-04
blade technique and dried overnight at 80 °C in vacuum oven. The dried sample was cut into 12 mm electrode disks. The 2032 coin assembly has been done...capability up to 2C as shown in Fig. 8(c), after running cell at high current and going back to lower 0.1C the cell shows the specific...shows a high rate capability up to 2C. And after running cell at high current and reverse back to lower 0.1
2005-09-01
employed. This particular balloon design uses a flap, known as a kite , which functions as a sail to increase lift capability and improve airborne...stability. The kite increases the balloon’s lift capability to 800 pounds in 90- knot winds and enables the balloon position to be relatively...Thai airfield at Wing 2. This vehicle may also serve as a runner vehicle for the MCP node of the COASTS demonstration. A PRC-117 will be available
Development of Lightweight CubeSat with Multi-Functional Structural Battery Systems
NASA Technical Reports Server (NTRS)
Karkkainen, Ryan L.; Hunter, Roger C.; Baker, Christopher
2017-01-01
This collaborative multi-disciplinary effort aims to develop a lightweight, 1-unit (1U) CubeSat (10x10x10 cm) which utilizes improved and fully integrated structural battery materials for mission life extension, larger payload capability, and significantly reduced mass.The electrolytic carbon fiber material serves the multifunctional capacitive energy system as both a lightweight, load bearing structure and an electrochemical battery system. This implementation will improve traditional multifunctional energy storage concepts with a highly effective energy storage capability.
Determining your organization's 'risk capability'.
Hannah, Bill; Hancock, Melinda
2014-05-01
An assessment of a provider's level of risk capability should focus on three key elements: Business intelligence, including sophisticated analytical models that can offer insight into the expected cost and quality of care for a given population. Clinical enterprise maturity, marked by the ability to improve health outcomes and to manage utilization and costs to drive change. Revenue transformation, emphasizing the need for a revenue cycle platform that allows for risk acceptance and management and that provides incentives for performance against defined objectives.
Space platform expendables resupply concept definition study
NASA Technical Reports Server (NTRS)
1985-01-01
NASA has recognized that the capability for remote resupply of space platform expendable fluids will help transition space utilization into a new era of operational efficiency and cost/effectiveness. The emerging Orbital Maneuvering System (OMV) in conjunction with an expendables resupply module will introduce the capability for fluid resupply enabling satellite lifetime extension at locations beyond the range of the Orbiter. This report summarizes a supplemental study to the original Phase A study and is presented as addenda to that study.
Space platform expendables resupply concept definition study, volume 2
NASA Technical Reports Server (NTRS)
1984-01-01
NASA has recognized that the capability for remote resupply of space platform expendable fluids will help transition space utilization into a new era of operational efficiency and cost/effectiveness. The emerging Orbital Maneuvering System (OMV) in conjunction with an expendables resupply module will introduce the capability for fluid resupply enabling satellite lifetime extension at locations beyond the range of the Orbiter. This report summarizes a Phase A study of a remote resupply module for the OMV. Volume 2 represents study results.
Genomic Reconstruction of Carbohydrate Utilization Capacities in Microbial-Mat Derived Consortia
Leyn, Semen A.; Maezato, Yukari; Romine, Margaret F.; Rodionov, Dmitry A.
2017-01-01
Two nearly identical unicyanobacterial consortia (UCC) were previously isolated from benthic microbial mats that occur in a heliothermal saline lake in northern Washington State. Carbohydrates are a primary source of carbon and energy for most heterotrophic bacteria. Since CO2 is the only carbon source provided, the cyanobacterium must provide a source of carbon to the heterotrophs. Available genomic sequences for all members of the UCC provide opportunity to investigate the metabolic routes of carbon transfer between autotroph and heterotrophs. Here, we applied a subsystem-based comparative genomics approach to reconstruct carbohydrate utilization pathways and identify glycohydrolytic enzymes, carbohydrate transporters and pathway-specific transcriptional regulators in 17 heterotrophic members of the UCC. The reconstructed metabolic pathways include 800 genes, near a one-fourth of which encode enzymes, transporters and regulators with newly assigned metabolic functions resulting in discovery of novel functional variants of carbohydrate utilization pathways. The in silico analysis revealed the utilization capabilities for 40 carbohydrates and their derivatives. Two Halomonas species demonstrated the largest number of sugar catabolic pathways. Trehalose, sucrose, maltose, glucose, and beta-glucosides are the most commonly utilized saccharides in this community. Reconstructed regulons for global regulators HexR and CceR include central carbohydrate metabolism genes in the members of Gammaproteobacteria and Alphaproteobacteria, respectively. Genomics analyses were supplemented by experimental characterization of metabolic phenotypes in four isolates derived from the consortia. Measurements of isolate growth on the defined medium supplied with individual carbohydrates confirmed most of the predicted catabolic phenotypes. Not all consortia members use carbohydrates and only a few use complex polysaccharides suggesting a hierarchical carbon flow from cyanobacteria to each heterotroph. In summary, the genomics-based identification of carbohydrate utilization capabilities provides a basis for future experimental studies of carbon flow in UCC. PMID:28751880
NASA Technical Reports Server (NTRS)
Dittman, R. A.; Marks, V.
1983-01-01
Management Information System, MIS, provides Life Sciences Projects Division at Johnson Space Center with automated system for project managment. MIS utilizes Tektronix 4027 color graphics display terminal and form-fillout capability. User interface with MIS data base is through series of forms.
BIODEGRADATION OF SIMPLE CHEMICAL MIXTURES IN SOILS
Exogenous cultures of microorganisms are often utilized to enhance bioremediation. The purpose of this study was to compare the capabilities of two exogenous microbial cultures, Pseudomonas aeruginosa and Phanerochaete sordida, and an indigenous population to detoxify soil amende...
Scintillator fiber optic long counter
McCollum, T.; Spector, G.B.
1994-03-29
A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected is described. 11 figures.
29 CFR 1919.76 - Safe working load reduction.
Code of Federal Regulations, 2010 CFR
2010-07-01
... load reduction. (a) If the operation in which equipment is engaged never utilizes more than a fraction... physically capable of operation at the original load rating and the load reduction is not for the purpose of...
A dynamically reconfigurable multi-functional PLL for SRAM-based FPGA in 65nm CMOS technology
NASA Astrophysics Data System (ADS)
Yang, Mingqian; Chen, Lei; Li, Xuewu; Zhang, Yanlong
2018-04-01
Phase-locked loops (PLL) have been widely utilized in FPGA as an important module for clock management. PLL with dynamic reconfiguration capability is always welcomed in FPGA design as it is able to decrease power consumption and simultaneously improve flexibility. In this paper, a multi-functional PLL with dynamic reconfiguration capability for 65nm SRAM-based FPGA is proposed. Firstly, configurable charge pump and loop filter are utilized to optimize the loop bandwidth. Secondly, the PLL incorporates a VCO with dual control voltages to accelerate the adjustment of oscillation frequency. Thirdly, three configurable dividers are presented for flexible frequency synthesis. Lastly, a configuration block with dynamic reconfiguration function is proposed. Simulation results demonstrate that the proposed multi-functional PLL can output clocks with configurable division ratio, phase shift and duty cycle. The PLL can also be dynamically reconfigured without affecting other parts' running or halting the FPGA device.
Extremum Seeking Control of Smart Inverters for VAR Compensation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, Daniel; Negrete-Pincetic, Matias; Stewart, Emma
2015-09-04
Reactive power compensation is used by utilities to ensure customer voltages are within pre-defined tolerances and reduce system resistive losses. While much attention has been paid to model-based control algorithms for reactive power support and Volt Var Optimization (VVO), these strategies typically require relatively large communications capabilities and accurate models. In this work, a non-model-based control strategy for smart inverters is considered for VAR compensation. An Extremum Seeking control algorithm is applied to modulate the reactive power output of inverters based on real power information from the feeder substation, without an explicit feeder model. Simulation results using utility demand informationmore » confirm the ability of the control algorithm to inject VARs to minimize feeder head real power consumption. In addition, we show that the algorithm is capable of improving feeder voltage profiles and reducing reactive power supplied by the distribution substation.« less
Environmental auditing: Capabilities and management utility of recreation impact monitoring programs
Marion, J.L.
1995-01-01
A recreation impact monitoring system was developed and applied in 1984?1986 and in 1991 to all backcountry river-accessed campsites within Delaware Water Gap National Recreation Area, Pennsylvania and New Jersey. Results suggest that actions implemented by park managers in response to problems identified by the initial survey were highly effective in reducing resource degradation caused by camping. In particular, the elimination of some designated campsites and installation of anchored firegrates reduced the total area of disturbance by 50%. Firegrate installation provided a focal point that increased the concentration of camping activities, allowing peripheral areas to recover. As suggested by predictive models, additional resource degradation caused by increased camping intensities is more than offset by improvements in the condition of areas where use is eliminated. The capabilities and management utility of recreation impact monitoring programs, illustrated by the Delaware Water Gap monitoring program, are also presented and discussed.
Technology Assessment for Large Vertical-Lift Transport Tiltrotors
NASA Technical Reports Server (NTRS)
Germanowski, Peter J.; Stille, Brandon L.; Strauss, Michael P.
2010-01-01
The technical community has identified rotor efficiency as a critical enabling technology for large vertical-lift transport (LVLT) rotorcraft. The size and performance of LVLT aircraft will be far beyond current aircraft capabilities, enabling a transformational change in cargo transport effectiveness. Two candidate approaches for achieving high efficiency were considered for LVLT applications: a variable-diameter tiltrotor (VDTR) and a variable-speed tiltrotor (VSTR); the former utilizes variable-rotor geometry and the latter utilizes variable-rotor speed. Conceptual aircraft designs were synthesized for the VDTR and VSTR and compared to a conventional tiltrotor (CTR). The aircraft were optimized to a common objective function and bounded by a set of physical- and requirements-driven constraints. The resulting aircraft were compared for weight, size, performance, handling qualities, and other attributes. These comparisons established a measure of the relative merits of the variable-diameter and -speed rotor systems as enabling technologies for LVLT capability.
Secure relay selection based on learning with negative externality in wireless networks
NASA Astrophysics Data System (ADS)
Zhao, Caidan; Xiao, Liang; Kang, Shan; Chen, Guiquan; Li, Yunzhou; Huang, Lianfen
2013-12-01
In this paper, we formulate relay selection into a Chinese restaurant game. A secure relay selection strategy is proposed for a wireless network, where multiple source nodes send messages to their destination nodes via several relay nodes, which have different processing and transmission capabilities as well as security properties. The relay selection utilizes a learning-based algorithm for the source nodes to reach their best responses in the Chinese restaurant game. In particular, the relay selection takes into account the negative externality of relay sharing among the source nodes, which learn the capabilities and security properties of relay nodes according to the current signals and the signal history. Simulation results show that this strategy improves the user utility and the overall security performance in wireless networks. In addition, the relay strategy is robust against the signal errors and deviations of some user from the desired actions.
Harrop, Tiffany M; Preston, Olivia C; Khazem, Lauren R; Anestis, Michael D; Junearick, Regis; Green, Bradley A; Anestis, Joye C
2017-10-01
Studies have identified independent relationships between psychopathy, narcissism, and suicidality. The current study expands upon the extant literature by exploring psychopathic and narcissistic personality traits and components of the interpersonal-psychological theory of suicide, utilizing a 3-factor model of psychopathy and 2-factor model of pathological narcissism in community, undergraduate, and military individuals. We hypothesized that the impulsive-antisocial facets of psychopathy would be related to suicidal desire, whereas all facets of psychopathy would relate to the capability for suicide. We anticipated an association between pathological narcissism, thwarted belongingness, and capability for suicide, but not perceived burdensomeness. We further hypothesized a relationship between physical pain tolerance and persistence and the affective (i.e., callousness) facet of psychopathy. Results partially supported these hypotheses and underscore the need for further examination of these associations utilizing contemporary models of psychopathy and narcissism. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Screening of Small Molecule Interactor Library by Using In-Cell NMR Spectroscopy (SMILI-NMR)
Xie, Jingjing; Thapa, Rajiv; Reverdatto, Sergey; Burz, David S.; Shekhtman, Alexander
2011-01-01
We developed an in-cell NMR assay for screening small molecule interactor libraries (SMILI-NMR) for compounds capable of disrupting or enhancing specific interactions between two or more components of a biomolecular complex. The method relies on the formation of a well-defined biocomplex and utilizes in-cell NMR spectroscopy to identify the molecular surfaces involved in the interaction at atomic scale resolution. Changes in the interaction surface caused by a small molecule interfering with complex formation are used as a read-out of the assay. The in-cell nature of the experimental protocol insures that the small molecule is capable of penetrating the cell membrane and specifically engaging the target molecule(s). Utility of the method was demonstrated by screening a small dipeptide library against the FKBP–FRB protein complex involved in cell cycle arrest. The dipeptide identified by SMILI-NMR showed biological activity in a functional assay in yeast. PMID:19422228
Method and apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption
Wegeng, Robert S.; Rassat, Scot D.; TeGrotenhuis, Ward E.; Drost, Kevin; Vishwanathan, Vilayanur V.
2004-06-08
The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. In another aspect, the apparatus or methods utilize heat exchange channels of varying lengths that have volumes controlled to provide equal heat fluxes. Methods of fuel cell startup are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.
Simulation model of stratified thermal energy storage tank using finite difference method
NASA Astrophysics Data System (ADS)
Waluyo, Joko
2016-06-01
Stratified TES tank is normally used in the cogeneration plant. The stratified TES tanks are simple, low cost, and equal or superior in thermal performance. The advantage of TES tank is that it enables shifting of energy usage from off-peak demand for on-peak demand requirement. To increase energy utilization in a stratified TES tank, it is required to build a simulation model which capable to simulate the charging phenomenon in the stratified TES tank precisely. This paper is aimed to develop a novel model in addressing the aforementioned problem. The model incorporated chiller into the charging of stratified TES tank system in a closed system. The model was developed in one-dimensional type involve with heat transfer aspect. The model covers the main factors affect to degradation of temperature distribution namely conduction through the tank wall, conduction between cool and warm water, mixing effect on the initial flow of the charging as well as heat loss to surrounding. The simulation model is developed based on finite difference method utilizing buffer concept theory and solved in explicit method. Validation of the simulation model is carried out using observed data obtained from operating stratified TES tank in cogeneration plant. The temperature distribution of the model capable of representing S-curve pattern as well as simulating decreased charging temperature after reaching full condition. The coefficient of determination values between the observed data and model obtained higher than 0.88. Meaning that the model has capability in simulating the charging phenomenon in the stratified TES tank. The model is not only capable of generating temperature distribution but also can be enhanced for representing transient condition during the charging of stratified TES tank. This successful model can be addressed for solving the limitation temperature occurs in charging of the stratified TES tank with the absorption chiller. Further, the stratified TES tank can be charged with the cooling energy of absorption chiller that utilizes from waste heat from gas turbine of the cogeneration plant.
WENESSA, Wide Eye-Narrow Eye Space Simulation fo Situational Awareness
NASA Astrophysics Data System (ADS)
Albarait, O.; Payne, D. M.; LeVan, P. D.; Luu, K. K.; Spillar, E.; Freiwald, W.; Hamada, K.; Houchard, J.
In an effort to achieve timelier indications of anomalous object behaviors in geosynchronous earth orbit, a Planning Capability Concept (PCC) for a “Wide Eye-Narrow Eye” (WE-NE) telescope network has been established. The PCC addresses the problem of providing continuous and operationally robust, layered and cost-effective, Space Situational Awareness (SSA) that is focused on monitoring deep space for anomalous behaviors. It does this by first detecting the anomalies with wide field of regard systems, and then providing reliable handovers for detailed observational follow-up by another optical asset. WENESSA will explore the added value of such a system to the existing Space Surveillance Network (SSN). The study will assess and quantify the degree to which the PCC completely fulfills, or improves or augments, these deep space knowledge deficiencies relative to current operational systems. In order to improve organic simulation capabilities, we will explore options for the federation of diverse community simulation approaches, while evaluating the efficiencies offered by a network of small and larger aperture, ground-based telescopes. Existing Space Modeling and Simulation (M&S) tools designed for evaluating WENESSA-like problems will be taken into consideration as we proceed in defining and developing the tools needed to perform this study, leading to the creation of a unified Space M&S environment for the rapid assessment of new capabilities. The primary goal of this effort is to perform a utility assessment of the WE-NE concept. The assessment will explore the mission utility of various WE-NE concepts in discovering deep space anomalies in concert with the SSN. The secondary goal is to generate an enduring modeling and simulation environment to explore the utility of future proposed concepts and supporting technologies. Ultimately, our validated simulation framework would support the inclusion of other ground- and space-based SSA assets through integrated analysis. Options will be explored using at least two competing simulation capabilities, but emphasis will be placed on reasoned analyses as supported by the simulations.
NASA Technical Reports Server (NTRS)
1983-01-01
Meeting the identified needs of Earth science requires approaching EOS as an information system and not simply as one or more satellites with instruments. Six elements of strategy are outlined as follows: implementation of the individual discipline missions as currently planned; use of sustained observational capabilities offered by operational satellites without waiting for the launch of new mission; put first priority on the data system; deploy an Advanced Data Collection and Location System; put a substantial new observing capability in a low Earth orbit in such a way as to provide for sustained measurements; and group instruments to exploit their capabilities for synergism; maximize the scientific utility of the mission; and minimize the costs of implementation where possible.
NASA Astrophysics Data System (ADS)
Christiansen, Rasmus E.; Sigmund, Ole
2016-09-01
This Letter reports on the experimental validation of a two-dimensional acoustic hyperbolic metamaterial slab optimized to exhibit negative refractive behavior. The slab was designed using a topology optimization based systematic design method allowing for tailoring the refractive behavior. The experimental results confirm the predicted refractive capability as well as the predicted transmission at an interface. The study simultaneously provides an estimate of the attenuation inside the slab stemming from the boundary layer effects—insight which can be utilized in the further design of the metamaterial slabs. The capability of tailoring the refractive behavior opens possibilities for different applications. For instance, a slab exhibiting zero refraction across a wide angular range is capable of funneling acoustic energy through it, while a material exhibiting the negative refractive behavior across a wide angular range provides lensing and collimating capabilities.
Method for Producing Launch/Landing Pads and Structures Project
NASA Technical Reports Server (NTRS)
Mueller, Robert P. (Compiler)
2015-01-01
Current plans for deep space exploration include building landing-launch pads capable of withstanding the rocket blast of much larger spacecraft that that of the Apollo days. The proposed concept will develop lightweight launch and landing pad materials from in-situ materials, utilizing regolith to produce controllable porous cast metallic foam brickstiles shapes. These shapes can be utilized to lay a landing launch platform, as a construction material or as more complex parts of mechanical assemblies.
ISS Utilization Potential for 2011-2020 and Beyond
NASA Astrophysics Data System (ADS)
Askew, R.; Chabrow, J.; Nakagawa, R.
The US concept for a permanent human presence in space as directed by President Ronald Reagan in 1984 was called Space Station Freedom. This was the precursor to the International Space Station (ISS) that now orbits the earth. The first element of the ISS, Zarya, was launched November 20, 1998. The launch of STS-133 provides the final component of the assembly, the Multi-Purpose Logistics Module (MPLM). During the assembly the ISS was utilized to the extent possible for the conduct of scientific research and technology development, and for the development of enhancements to the ISS capabilities. These activities have resulted in a significant database of lessons learned regarding operations, both of the ISS platform as well as in the conduct of research. For the coming decade utilization of the ISS will be impacted by how these lessons learned are used to improve operations. Access to the ISS and to its capabilities will determine the types of projects that can use the ISS. Perhaps the most critical limitation is the funds that must be invested by potential users of the ISS. This paper examines the elements that have been identified as impediments to utilization of the ISS by both basic researchers and by the private sector over the past decade and provides an assessment of which of these are likely to be satisfactorily altered and on what time scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, Pieter; Barbose, Galen L.; Stoll, Brady
Misforecasting the adoption of customer-owned distributed photovoltaics (DPV) can have operational and financial implications for utilities; forecasting capabilities can be improved, but generally at a cost. This paper informs this decision-space by using a suite of models to explore the capacity expansion and operation of the Western Interconnection over a 15-year period across a wide range of DPV growth rates and misforecast severities. The system costs under a misforecast are compared against the costs under a perfect forecast, to quantify the costs of misforecasting. Using a simplified probabilistic method applied to these modeling results, an analyst can make a first-ordermore » estimate of the financial benefit of improving a utility’s forecasting capabilities, and thus be better informed about whether to make such an investment. For example, under our base assumptions, a utility with 10 TWh per year of retail electric sales who initially estimates that DPV growth could range from 2% to 7.5% of total generation over the next 15 years could expect total present-value savings of approximately $4 million if they could reduce the severity of misforecasting to within ±25%. Utility resource planners can compare those savings against the costs needed to achieve that level of precision, to guide their decision on whether to make an investment in tools or resources.« less
NASA Technical Reports Server (NTRS)
Clinton, R. G., Jr.; Szofran, Frank; Bassler, Julie A.; Schlagheck, Ronald A.; Cook, Mary Beth
2005-01-01
The Microgravity Materials Science Program established a strong research capability through partnerships between NASA and the scientific research community. With the announcement of the vision for space exploration, additional emphasis in strategic materials science areas was necessary. The President's Commission recognized that achieving its exploration objectives would require significant technical innovation, research, and development in focal areas defined as "enabling technologies." Among the 17 enabling technologies identified for initial focus were: advanced structures, advanced power and propulsion; closed-loop life support and habitability; extravehicular activity systems; autonomous systems and robotics; scientific data collection and analysis, biomedical risk mitigation; and planetary in situ resource utilization. Mission success may depend upon use of local resources to fabricate a replacement part to repair a critical system. Future propulsion systems will require materials with a wide range of mechanical, thermophysical, and thermochemical properties, many of them well beyond capabilities of today's materials systems. Materials challenges have also been identified by experts working to develop advanced life support systems. In responding to the vision for space exploration, the Microgravity Materials Science Program aggressively transformed its research portfolio and focused materials science areas of emphasis to include space radiation shielding; in situ fabrication and repair for life support systems; in situ resource utilization for life support consumables; and advanced materials for exploration, including materials science for space propulsion systems and for life support systems. The purpose of this paper is to inform the scientific community of these new research directions and opportunities to utilize their materials science expertise and capabilities to support the vision for space exploration.
LACIE - An application of meteorology for United States and foreign wheat assessment
NASA Technical Reports Server (NTRS)
Hill, J. D.; Strommen, N. D.; Sakamoto, C. M.; Leduc, S. K.
1980-01-01
This paper describes the overall Large Area Crop Inventory Experiment technical approach utilizing the global weather-reporting network and the Landsat satellite to make a quasi-operational application of existing research results, and the accomplishments of this cooperative experiment in utilizing the weather information. Global weather data were utilized in preparing timely yield estimates for selected areas of the U.S. Great Plains, the U.S.S.R. and Canada. Additionally, wheat yield models were developed and pilot tested for Brazil, Australia, India and Argentina. The results of the work show that heading dates for wheat in North America can be predicted with an average absolute error of about 5 days for winter wheat and 4 days for spring wheat. Independent tests of wheat yield models over a 10-year period for the U.S. Great Plains produced a root-mean-square error of 1.12 quintals per hectare (q/ha) while similar tests in the U.S.S.R. produced an error of 1.31 q/ha. Research designed to improve the initial capability is described as is the rationale for further evolution of a capability to monitor global climate and assess its impact on world food supplies.
Commercial opportunities utilizing the International Space Station
NASA Astrophysics Data System (ADS)
Kearney, Michael E.; Mongan, Phil; Overmyer, Carolyn M.; Jackson, Kenneth
1998-01-01
The International Space Station (ISS) has the unique capability of providing a low-g environment for both short- and long-duration experimentation. This environment can provide a unique and competitive research capability to industry; but until recently, utilization of this environment by the private sector has been limited if not totally unavailable. NASA has recently expressed an interest in the commercial development of space and this is now an integral part of the Agency's enabling legislation through the Space Act. NASA's objective is to foster the use of the space environment for the development of commercial products and processes. Through alliances and agreements with several commercial companies and universities, SPACEHAB, Inc., has built a comprehensive package of services designed to provide low-cost reliable access to space for experimenters. These services provide opportunities to support engineering test beds for materials exposure analysis, to mitigate structural failures as observed on the Hubble Space Telescope; materials processing, remote sensing; space environment definition; and electronic experiments. The intent of this paper is to identify commercial opportunities for utilizing the International Space Station and provide examples of several facilities currently being designed and manufactured by commercial companies with the purpose of providing access to the space environment for commercial users.
NASA Astrophysics Data System (ADS)
Robertson, M. O.; Stevens, Donald M.; Schlader, Daniel M.; Tilley, Richard M.
1998-03-01
The ultrasonic testing (UT) method continues to broaden in its effectiveness and capabilities for nondestructive evaluation (NDE). Much of this expansion can be attributed to advancements in specific techniques of the method. The utilization of electromagnetic acoustic transducers (EMATs) in dedicated ultrasonic systems has provided McDermott Technology, Inc. (MTI), formerly Babcock & Wilcox, with significant advantages over conventional ultrasonics. In recent years, through significant R&D, MTI has been instrumental in bringing about considerable advancements in the maturing EMAT technology. Progress in electronic design, magnet configurations, and sensor concepts has greatly improved system capabilities while reducing cost and equipment size. These improvements, coupled with the inherent advantages of utilizing the non-contact EMAT technique, have combined to make this technology a viable option for many commercial system inspection applications. MTI has recently completed the development and commercialization of an EMAT-based UT scanner for boiler tube thickness measurements. MTI is currently developing an automated EMAT scanner, based on phased array technology, for complete volumetric inspection of circumferential girth welds associated with pipelines (intended primarily for offshore applications). Additional benefits of phased array technology for providing materials characterization are currently being researched.
Concept and design philosophy of a person-accompanying robot
NASA Astrophysics Data System (ADS)
Mizoguchi, Hiroshi; Shigehara, Takaomi; Goto, Yoshiyasu; Hidai, Ken-ichi; Mishima, Taketoshi
1999-01-01
This paper proposes a person accompanying robot as a novel human collaborative robot. The person accompanying robot is such legged mobile robot that is possible to follow the person utilizing its vision. towards future aging society, human collaboration and human support are required as novel applications of robots. Such human collaborative robots share the same space with humans. But conventional robots are isolated from humans and lack the capability to observe humans. Study on human observing function of robot is crucial to realize novel robot such as service and pet robot. To collaborate and support humans properly human collaborative robot must have capability to observe and recognize humans. Study on human observing function of robot is crucial to realize novel robot such as service and pet robot. The authors are currently implementing a prototype of the proposed accompanying robot.As a base for the human observing function of the prototype robot, we have realized face tracking utilizing skin color extraction and correlation based tracking. We also develop a method for the robot to pick up human voice clearly and remotely by utilizing microphone arrays. Results of these preliminary study suggest feasibility of the proposed robot.
Modeling and design of light powered biomimicry micropump utilizing transporter proteins
NASA Astrophysics Data System (ADS)
Liu, Jin; Sze, Tsun-Kay Jackie; Dutta, Prashanta
2014-11-01
The creation of compact micropumps to provide steady flow has been an on-going challenge in the field of microfluidics. We present a mathematical model for a micropump utilizing Bacteriorhodopsin and sugar transporter proteins. This micropump utilizes transporter proteins as method to drive fluid flow by converting light energy into chemical potential. The fluid flow through a microchannel is simulated using the Nernst-Planck, Navier-Stokes, and continuity equations. Numerical results show that the micropump is capable of generating usable pressure. Designing parameters influencing the performance of the micropump are investigated including membrane fraction, lipid proton permeability, illumination, and channel height. The results show that there is a substantial membrane fraction region at which fluid flow is maximized. The use of lipids with low membrane proton permeability allows illumination to be used as a method to turn the pump on and off. This capability allows the micropump to be activated and shut off remotely without bulky support equipment. This modeling work provides new insights on mechanisms potentially useful for fluidic pumping in self-sustained bio-mimic microfluidic pumps. This work is supported in part by the National Science Fundation Grant CBET-1250107.
Satellite-based Tropical Cyclone Monitoring Capabilities
NASA Astrophysics Data System (ADS)
Hawkins, J.; Richardson, K.; Surratt, M.; Yang, S.; Lee, T. F.; Sampson, C. R.; Solbrig, J.; Kuciauskas, A. P.; Miller, S. D.; Kent, J.
2012-12-01
Satellite remote sensing capabilities to monitor tropical cyclone (TC) location, structure, and intensity have evolved by utilizing a combination of operational and research and development (R&D) sensors. The microwave imagers from the operational Defense Meteorological Satellite Program [Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS)] form the "base" for structure observations due to their ability to view through upper-level clouds, modest size swaths and ability to capture most storm structure features. The NASA TRMM microwave imager and precipitation radar continue their 15+ yearlong missions in serving the TC warning and research communities. The cessation of NASA's QuikSCAT satellite after more than a decade of service is sorely missed, but India's OceanSat-2 scatterometer is now providing crucial ocean surface wind vectors in addition to the Navy's WindSat ocean surface wind vector retrievals. Another Advanced Scatterometer (ASCAT) onboard EUMETSAT's MetOp-2 satellite is slated for launch soon. Passive microwave imagery has received a much needed boost with the launch of the French/Indian Megha Tropiques imager in September 2011, basically greatly supplementing the very successful NASA TRMM pathfinder with a larger swath and more frequent temporal sampling. While initial data issues have delayed data utilization, current news indicates this data will be available in 2013. Future NASA Global Precipitation Mission (GPM) sensors starting in 2014 will provide enhanced capabilities. Also, the inclusion of the new microwave sounder data from the NPP ATMS (Oct 2011) will assist in mapping TC convective structures. The National Polar orbiting Partnership (NPP) program's VIIRS sensor includes a day night band (DNB) with the capability to view TC cloud structure at night when sufficient lunar illumination exits. Examples highlighting this new capability will be discussed in concert with additional data fusion efforts.
NASA Technical Reports Server (NTRS)
Holbrook, Mark; Pitts, Robert Lee; Gifford, Kevin K.; Jenkins, Andrew; Kuzminsky, Sebastian
2010-01-01
The International Space Station (ISS) is in an operational configuration and nearing final assembly. With its maturity and diverse payloads onboard, the opportunity exists to extend the orbital lab into a facility to exercise and demonstrate Delay/Disruption Tolerant Networking (DTN). DTN is an end-to-end network service providing communications through environments characterized by intermittent connectivity, variable delays, high bit error rates, asymmetric links and simplex links. The DTN protocols, also known as bundle protocols, provide a store-and-forward capability to accommodate end-to-end network services. Key capabilities of the bundling protocols include: the Ability to cope with intermittent connectivity, the Ability to take advantage of scheduled and opportunistic connectivity (in addition to always up connectivity), Custody Transfer, and end-to-end security. Colorado University at Boulder and the Huntsville Operational Support Center (HOSC) have been developing a DTN capability utilizing the Commercial Generic Bioprocessing Apparatus (CGBA) payload resources onboard the ISS, at the Boulder Payload Operations Center (POC) and at the HOSC. The DTN capability is in parallel with and is designed to augment current capabilities. The architecture consists of DTN endpoint nodes on the ISS and at the Boulder POC, and a DTN node at the HOSC. The DTN network is composed of two implementations; the Interplanetary Overlay Network (ION) and the open source DTN2 implementation. This paper presents the architecture, implementation, and lessons learned. By being able to handle the types of environments described above, the DTN technology will be instrumental in extending networks into deep space to support future missions to other planets and other solar system points of interest. Thus, this paper also discusses how this technology will be applicable to these types of deep space exploration missions.
Resource-Based Capability on Development Knowledge Management Capabilities of Coastal Community
NASA Astrophysics Data System (ADS)
Teniwut, Roberto M. K.; Hasyim, Cawalinya L.; Teniwut, Wellem A.
2017-10-01
Building sustainable knowledge management capabilities in the coastal area might face a whole new challenge since there are many intangible factors involved from openness on new knowledge, access and ability to use the latest technology to the various local wisdom that still in place. The aimed of this study was to identify and analyze the resource-based condition of coastal community in this area to have an empirical condition of tangible and intangible infrastructure on developing knowledge management capability coastal community in Southeast Maluku, Indonesia. We used qualitative and quantitative analysis by depth interview and questionnaire for collecting the data with multiple linear regression as our analysis method. The result provided the information on current state of resource-based capability of a coastal community in this Southeast Maluku to build a sustainability model of knowledge management capabilities especially on utilization marine and fisheries resources. The implication of this study can provide an empirical information for government, NGO and research institution to dictate on how they conducted their policy and program on developing coastal community region.
Manually operated elastomer heat pump
NASA Technical Reports Server (NTRS)
Hutchinson, W. D.
1970-01-01
Device consisting of a rotating mechanism, a frame with multiple wide bands of rubber, and a fluid bath, demonstrates the feasibility of a human operated device capable of cooling or producing heat. This invention utilizes the basic thermodynamic properties of natural rubber.
Small hydraulic turbine drives
NASA Technical Reports Server (NTRS)
Rostafinski, W. A.
1970-01-01
Turbine, driven by the fluid being pumped, requires no external controls, is completely integrated into the flow system, and has bearings which utilize the main fluid for lubrication and cooling. Torque capabilities compare favorably with those developed by positive displacement hydraulic motors.
Code of Federal Regulations, 2011 CFR
2011-10-01
... AND CERTIFICATION STANDARDS FOR THE ELECTRONIC HEALTH RECORD TECHNOLOGY INCENTIVE PROGRAM Requirements... thereof by the State agency. Acquisition means to acquire health information technology (HIT) equipment or... technology; (2) Install or commence utilization of certified EHR technology capable of meeting meaningful use...
Nationwide differential global positioning system (NDGPS) : capabilities and potential.
DOT National Transportation Integrated Search
2009-06-01
NDGPS is a National PNT Utility: : -Operated/managed by Coast Guard as a Combined NDGPS (Maritime + DOT + ACOE sites) : -System Specifications : --Corrections broadcast at 285 and 325 kHz using Minimum shift Keying (MSK) modulation : --Real-time diff...
NASA Technical Reports Server (NTRS)
Cohn, D. M.; Kayser, J. H.; Senko, G. M.; Glenn, D. R.
1974-01-01
Avionics systems are identified which promise to reduce economic constraints and provide significant improvements in performance, operational capability and utility for general aviation aircraft in the 1980's.
DOT National Transportation Integrated Search
2008-01-01
Modern traffic signal control systems provide emergency vehicle preemption (EVP) capabilities by utilizing advanced sensors and communication technologies. EVP strategies are widely implemented by urban transportation management agencies. One of the ...
Rapidly Deployed Modular Telemetry System
NASA Technical Reports Server (NTRS)
Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)
2013-01-01
The present invention is a telemetry system, and more specifically is a rapidly deployed modular telemetry apparatus which utilizes of SDR technology and the FPGA programming capability to reduce the number of hardware components and programming required to deploy a telemetry system.
Assessment of acquired capability for suicide in clinical practice.
Rimkeviciene, Jurgita; Hawgood, Jacinta; O'Gorman, John; De Leo, Diego
2016-12-01
The Interpersonal Psychological Theory of suicide proposes that the interaction between Thwarted Belongingness, Perceived Burdensomeness, and Acquired Capability for Suicide (ACS) predicts proximal risk of death by suicide. Instruments to assess all three constructs are available. However, research on the validity of one of them, the acquired capability for suicide scale (ACSS), has been limited, especially in terms of its clinical relevance. This study aimed to explore the utility of the different versions of the ACSS in clinical assessment. Three versions of the scale were investigated, the full 20-item version, a 7-item version and a single item version representing self-perceived capability for suicide. In a sample of patients recruited from a clinic specialising in the treatment of suicidality and in a community sample, all versions of the ACSS were found to show reasonable levels of reliability and to correlate as expected with reports of suicidal ideation, self-harm, and attempted suicide. The item assessing self-perceived acquired capacity for suicide showed highest correlations with all levels of suicidal behaviour. However, no version of the ACSS on its own showed a capacity to indicate suicide attempts in the combined sample. It is concluded that the versions of the scale have construct validity, but their clinical utility is limited. An assessment using a single item on self-perceived ACS outperforms the full and shortened versions of ACSS in clinical settings and can be recommended with caution for clinicians interested in assessing this characteristic.
Chiu, Chia-Nan; Chen, Huei-Huang
2016-01-01
Many studies on the significance of knowledge management (KM) in the business world have been performed in recent years. Public sector KM is a research area of growing importance. Findings show that few authors specialize in the field and there are several obstacles to developing a cohesive body of literature. In order to examine their effect of the knowledge management capability [which consists of knowledge infrastructure capability (KIC) and knowledge process capability (KPC)] and organizational effectiveness (OE), this study conducted structural equation modeling to test the hypotheses with 302 questionnaires of Taipei Water Department staffs in Taiwan. In exploring the model developed in this study, the findings show that there exists a significant relationship between KPC and OE, while KIC and OE are insignificant. These results are different from earlier findings in the literature. Furthermore, this research proposed organizational commitment (OC) as the mediator role. The findings suggest that only OC has significant mediating effects between KPC and OE, whereas this is not the case for KIC and OE. It is noteworthy that the above findings inspired managers, in addition to construct the knowledge infrastructure more than focus on social media tools on the Internet, which engage knowledge workers in "peer-to-peer" knowledge sharing across organizational and company boundaries. The results are likely to help organizations (particularly public utilities) sharpen their knowledge management strategies. Academic and practical implications were drawn based on the findings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giuliani, Sarah E; Frank, Ashley M; Corgliano, Danielle M
Abstract Background: Transporter proteins are one of an organism s primary interfaces with the environment. The expressed set of transporters mediates cellular metabolic capabilities and influences signal transduction pathways and regulatory networks. The functional annotation of most transporters is currently limited to general classification into families. The development of capabilities to map ligands with specific transporters would improve our knowledge of the function of these proteins, improve the annotation of related genomes, and facilitate predictions for their role in cellular responses to environmental changes. Results: To improve the utility of the functional annotation for ABC transporters, we expressed and purifiedmore » the set of solute binding proteins from Rhodopseudomonas palustris and characterized their ligand-binding specificity. Our approach utilized ligand libraries consisting of environmental and cellular metabolic compounds, and fluorescence thermal shift based high throughput ligand binding screens. This process resulted in the identification of specific binding ligands for approximately 64% of the purified and screened proteins. The collection of binding ligands is representative of common functionalities associated with many bacterial organisms as well as specific capabilities linked to the ecological niche occupied by R. palustris. Conclusion: The functional screen identified specific ligands that bound to ABC transporter periplasmic binding subunits from R. palustris. These assignments provide unique insight for the metabolic capabilities of this organism and are consistent with the ecological niche of strain isolation. This functional insight can be used to improve the annotation of related organisms and provides a route to evaluate the evolution of this important and diverse group of transporter proteins.« less
NASA's Space Launch System: An Evolving Capability for Exploration
NASA Technical Reports Server (NTRS)
Robinson, Kimberly F.; Hefner, Keith; Hitt, David
2015-01-01
Designed to enable human space exploration missions, including eventually landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the "proving ground" of lunar-vicinity space to enabling high-energy transits through the outer solar system. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO). Preparations are also underway to evolve the vehicle into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO. Even the initial configuration of SLS will be able to deliver greater mass to orbit than any contemporary launch vehicle, and the evolved configuration will have greater performance than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. The basic capabilities of SLS have been driven by studies on the requirements of human deep-space exploration missions, and continue to be validated by maturing analysis of Mars mission options, including the Global Exploration Roadmap. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle's potential range of utilization. As SLS draws closer to its first launch, the Program is maturing concepts for future capability upgrades, which could begin being available within a decade. These upgrades, from multiple unique payload accommodations to an upper stage providing more power for inspace propulsion, have ramifications for a variety of missions, from human exploration to robotic science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engel, H.E.; Hall, J.R. II; Schrock, C.B.
1995-12-31
With the disintegration of the Soviet Union and the opening of the Iron Curtain, a downsizing of the Defense Establishment in the West is occurring, causing industry to look for opportunities where technology used for military applications can be applied to meet former East Block countries. Among these requirements has been the urgent desire of the people in former East Block countries for access to Western media which had been denied them, and has led to numerous opportunities for the implementation of Cable Television (CATV) systems. In addition, there are also requirements for utility metering for electricity, gas, water, heat,more » etc. which had previously been provided to the population by the Government at little or no cost. EWT of Augsburg, Germany, previously a subcontractor to ASEC on military security system projects, who has a subsidiary, TSS, which is a prominent CATV systems house, requested ASEC to provide a system which can provide utility meter reading and other control and monitoring services utilizing CATV. Working with CableBus Systems Corporation, a CATV data communications supplier and various utility meter manufacturers, ASEC, as the System Integrator, has developed a utilities monitoring system. This system. in cooperation with EWT, is being marketed and sold in Europe as EURO DATA BUS. This paper describes EURO DATA BUS and its applications, as well as the actual system designs for two pilot applications. One system is oriented at Utility Meter Reading and Demand side Management primarily, but will also be used to demonstrate other system capabilities such as security and fire alarm monitoring, etc. The design is therefore quite straightforward and {open_quotes}standard{close_quotes}. The second system has more of an industrial orientation and involves the monitoring and load control for a Municipal Electric Utility. While well within the capabilities of the system to accomplish, a more customized design was required to meet these requirements.« less
NASA Astrophysics Data System (ADS)
Okumura, K.
2013-12-01
Rocks of the Japanese islands are mostly faulted since the Mesozoic Era. The opening of the Sea of Japan in Middle Miocene stretched most of the Japanese crust together with rifting systems. Modern compressional tectonic regime started in Pliocene and accelerated during Quaternary. The ubiquitous bedrock fault prior to the Quaternary had long been regarded as incapable for the future rupturing. This view on the bedrock fault, however, is in question after the March 11, 2011 Tohoku earthquake and tsunamis. There is no scientific reason for the Tohoku earthquake to let the geologists and seismologists worry about the capability of the long-deceased fault. Neither the unexpected April 11, 2011 extensional faulting event on shore in southern Fukushima prefecture has any scientific reason as well. There was no change and no new stress field, but the psychological situation of the scientists and the public welcomed the wrong belief in unexpected stress changes all over Japan, in the same manner that the March 11 M 9 was not expected. Finally, the capabilities of the bedrock faults, fractures, and joints came up to concern about seismic safety of nuclear facilities. After the incidents, the nuclear regulation authority of Japan began reevaluation of the seismic safety of all facilities in Japan. The primary issues of the reevaluation were conjunctive multi-fault mega-earthquakes and the capabilities of the bedrock faults, precisely reflecting the Tohoku events. The former does not require immediate abandonment of a facility. However, the latter now denies any chance of continued operation. It is because of the new (July 2013) safety guide gave top priority to the capability of the displacement under a facility for the evaluation on safe operation. The guide also requires utmost deterministic manner in very conservative ways. The regulators ordered the utility companies to thoroughly examine the capability for several sites, and started review of the studies in late 2012. Many of the Japanese critical nuclear facilities are built on bedrocks with faults, fractures, and joints. They were not regarded as capable when the facilities were built in 1970's to 1990's. In many cases it was not possible to know about Late Pleistocene movement owing to the lack of young sediments on bedrocks. In a few cases, geologist studied past movement and found nothing. Some very cautious researchers on nuclear safety overturned previous evaluation easily. The capability studies by the utility companies then became very serious. The young sediments that may indicate the timing of faulting were completely removed during construction. Within bedrock, it is almost impossible to demonstrate that there was no recent displacement. The regulators are very rigid and relentless to require perfect evidence of incapability. Now several utility companies are opening huge trenches, digging beside a reactor, or drilling many cores from bedrock in the site spending billions of Yen. The results of extremely intensive studies brought a lot of information on the geologic structures and their capabilities. This paper will summarize the scientific finding and their meaning on the seismic safety of critical nuclear facilities.
Combination neutron-gamma ray detector
Stuart, Travis P.; Tipton, Wilbur J.
1976-10-26
A radiation detection system capable of detecting neutron and gamma events and distinguishing therebetween. The system includes a detector for a photomultiplier which utilizes a combination of two phosphor materials, the first of which is in the form of small glass beads which scintillate primarily in response to neutrons and the second of which is a plastic matrix which scintillates in response to gammas. A combination of pulse shape and pulse height discrimination techniques is utilized to provide an essentially complete separation of the neutron and gamma events.
NASA Technical Reports Server (NTRS)
Schroeder, W. W.
1977-01-01
The paper reports on the scientific results obtained during a feasibility study that evaluated the potential of using ERTS data collection platforms (DCPs) in the coastal environment of Mobile Bay, Alabama. The utility of instrumented buoys operated in a coastal marine environment as ERTS DCPs is demonstrated. It is shown that these platforms are capable of providing both sea-truth data for ERTS imagery studies and time-series data for event monitoring and/or environmental characterization studies.
High sensitivity leak detection method and apparatus
Myneni, Ganapatic R.
1994-01-01
An improved leak detection method is provided that utilizes the cyclic adsorption and desorption of accumulated helium on a non-porous metallic surface. The method provides reliable leak detection at superfluid helium temperatures. The zero drift that is associated with residual gas analyzers in common leak detectors is virtually eliminated by utilizing a time integration technique. The sensitivity of the apparatus of this disclosure is capable of detecting leaks as small as 1.times.10.sup.-18 atm cc sec.sup.-1.
High sensitivity leak detection method and apparatus
Myneni, G.R.
1994-09-06
An improved leak detection method is provided that utilizes the cyclic adsorption and desorption of accumulated helium on a non-porous metallic surface. The method provides reliable leak detection at superfluid helium temperatures. The zero drift that is associated with residual gas analyzers in common leak detectors is virtually eliminated by utilizing a time integration technique. The sensitivity of the apparatus of this disclosure is capable of detecting leaks as small as 1 [times] 10[sup [minus]18] atm cc sec[sup [minus]1]. 2 figs.
2016-02-01
not reflect the official policy or position of the US government, the Department of Defense , or Air University. In accordance with Air Force...capability in the AE environment. Utilizing current civilian and Department of Defense (DoD) vICU research, an analysis of the principles demonstrates...deliver integrated medical care. This paper provides a historical narrative of telemedicine and vICU principles and highlights the utility of this
A Novel 24 Ghz One-Shot Rapid and Portable Microwave Imaging System (Camera)
NASA Technical Reports Server (NTRS)
Ghasr, M.T.; Abou-Khousa, M.A.; Kharkovsky, S.; Zoughi, R.; Pommerenke, D.
2008-01-01
A novel 2D microwave imaging system at 24 GHz based on MST techniques. Enhanced sensitivity and SNR by utilizing PIN diode-loaded resonant slots. Specific slot and array design to increase transmission and reduce cross -coupling. Real-time imaging at a rate in excess of 30 images per second. Reflection as well transmission mode capabilities. Utility and application for electric field distribution mapping related to: Nondestructive Testing (NDT), imaging applications (SAR, Holography), and antenna pattern measurements.
NASA's Nuclear Thermal Propulsion Project
NASA Technical Reports Server (NTRS)
Houts, Mike; Mitchell, Sonny; Kim, Tony; Borowski, Stan; Power, Kevin; Scott, John; Belvin, Anthony; Clement, Steve
2015-01-01
HEOMD's (Human Exploration and Operations Mission Directorate) AES (Advanced Exploration Systems) Nuclear Thermal Propulsion (NTP) project is making significant progress. First of four FY 2015 milestones achieved this month. Safety is the highest priority for NTP (as with other space systems). After safety comes affordability. No centralized capability for developing, qualifying, and utilizing an NTP system. Will require a strong, closely integrated team. Tremendous potential benefits from NTP and other space fission systems. No fundamental reason these systems cannot be developed and utilized in a safe, affordable fashion.
Skip to Content Skip to Search Skip to Utility Navigation Skip to Top Navigation Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Alamos National Innovation Research Capabilities Deploying Innovation Technology Opportunities Innovation in New Mexico Los
Skip to Content Skip to Search Skip to Utility Navigation Skip to Top Navigation Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Alamos National Innovation Research Capabilities Deploying Innovation Technology Opportunities Innovation in New Mexico Los
ERIC Educational Resources Information Center
McGarritty, Ian
1985-01-01
Discusses the Australian Broadcasting Corporation's (ABC) utilization of the AUSSAT telecommunications satellite to extend its television and radio transmission range to reach remote Australian audiences; the satellite's program gathering and interchange capabilities; and ABC's generation of other benefits to offset cost of satellite services.…
Technology Assessment for Powertrain Components Final Report CRADA No. TC-1124-95
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokarz, F.; Gough, C.
LLNL utilized its defense technology assessment methodologies in combination with its capabilities in the energy; manufacturing, and transportation technologies to demonstrate a methodology that synthesized available but incomplete information on advanced automotive technologies into a comprehensive framework.
Helping Veterans with Disabilities Transition to Employment
ERIC Educational Resources Information Center
Ruh, Debra; Spicer, Paul; Vaughan, Kathleen
2009-01-01
Veterans with disabilities constitute a vast, capable, deserving, and under-utilized workforce, and many successful hiring campaigns have targeted the employment of veterans. Colleges offering comprehensive, individualized transitional services have proven successful in supporting veterans with disabilities reentering the civilian workforce. With…
A critical evaluation of bridge scour for Michigan specific conditions
DOT National Transportation Integrated Search
2011-02-01
The overall goal of this research was to improve MDOTs bridge scour prediction capability. In : an effort to achieve this goal, the research team evaluated scour prediction methods utilized by : state DOTs, conducted a field data collection project, ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... utilize and build upon the research, extension, and community service capability of public and private institutions of higher education in each State to expand scientific inquiry and education backup for rural... manner, scientific information, technical assistance, and feasibility studies required to improve the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... utilize and build upon the research, extension, and community service capability of public and private institutions of higher education in each State to expand scientific inquiry and education backup for rural... manner, scientific information, technical assistance, and feasibility studies required to improve the...
Advanced Energy Validated Photovoltaic Inverter Technology at NREL | Energy
power hardware-in-the-loop system and megawatt-scale grid simulators. Photo of two men pointing at a The ESIF's utility-scale power hardware-in-the-loop capability allowed Advanced Energy to loop its
Code of Federal Regulations, 2011 CFR
2011-10-01
... of Energy policy recognizes that full utilization of the talents and capabilities of a diverse work... and enhance partnerships with small, small disadvantaged, women-owned small businesses, and... disadvantaged, women-owned small business, and educational activity; and to develop innovative strategies to...
Underwater cargo vessel utilizing variable buoyancy system for gliding propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Z.K.; Seireg, A.
1982-09-01
This study deals with investigating the feasibility of an underwater glider capable of carrying cargo for long distances by alternately employing gravity and buoyancy forces for forward propulsion. The parameters controlling the vessel design, stability and control are investigated.
The Importance of Training for Environmental Management.
ERIC Educational Resources Information Center
Furtado, Jose I.
1984-01-01
Discusses an appropriate framework for sustainable development in the Third World that concurrently addresses the efficient utilization and management of natural resources. Areas considered include: human dimension; sustainable development; complexity of inputs; kinds of training; indigenous scientific capability; transnational issues;…
Implementation of the Land, Atmosphere Near Real-Time Capability for EOS (LANCE)
NASA Technical Reports Server (NTRS)
Michael, Karen; Murphy, Kevin; Lowe, Dawn; Masuoka, Edward; Vollmer, Bruce; Tilmes, Curt; Teague, Michael; Ye, Gang; Maiden, Martha; Goodman, H. Michael;
2010-01-01
The past decade has seen a rapid increase in availability and usage of near real-time data from satellite sensors. Applications have demonstrated the utility of timely data in a number of areas ranging from numerical weather prediction and forecasting, to monitoring of natural hazards, disaster relief, agriculture and homeland security. As applications mature, the need to transition from prototypes to operational capabilities presents an opportunity to improve current near real-time systems and inform future capabilities. This paper presents NASA s effort to implement a near real-time capability for land and atmosphere data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), Atmospheric Infrared Sounder (AIRS), Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E), Microwave Limb Sounder (MLS) and Ozone Monitoring Instrument (OMI) instruments on the Terra, Aqua, and Aura satellites. Index Terms- Real time systems, Satellite applications
NASA's Space Launch System (SLS) Program: Mars Program Utilization
NASA Technical Reports Server (NTRS)
May, Todd A.; Creech, Stephen D.
2012-01-01
NASA's Space Launch System is being designed for safe, affordable, and sustainable human and scientific exploration missions beyond Earth's orbit (BEO), as directed by the NASA Authorization Act of 2010 and NASA's 2011 Strategic Plan. This paper describes how the SLS can dramatically change the Mars program's science and human exploration capabilities and objectives. Specifically, through its high-velocity change (delta V) and payload capabilities, SLS enables Mars science missions of unprecedented size and scope. By providing direct trajectories to Mars, SLS eliminates the need for complicated gravity-assist missions around other bodies in the solar system, reducing mission time, complexity, and cost. SLS's large payload capacity also allows for larger, more capable spacecraft or landers with more instruments, which can eliminate the need for complex packaging or "folding" mechanisms. By offering this capability, SLS can enable more science to be done more quickly than would be possible through other delivery mechanisms using longer mission times.
The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities
NASA Technical Reports Server (NTRS)
Bauer, Jeff
2007-01-01
Over 60 years of Unmanned Aircraft System (UAS) expertise at the NASA Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.
Human-machine interface hardware: The next decade
NASA Technical Reports Server (NTRS)
Marcus, Elizabeth A.
1991-01-01
In order to understand where human-machine interface hardware is headed, it is important to understand where we are today, how we got there, and what our goals for the future are. As computers become more capable, faster, and programs become more sophisticated, it becomes apparent that the interface hardware is the key to an exciting future in computing. How can a user interact and control a seemingly limitless array of parameters effectively? Today, the answer is most often a limitless array of controls. The link between these controls and human sensory motor capabilities does not utilize existing human capabilities to their full extent. Interface hardware for teleoperation and virtual environments is now facing a crossroad in design. Therefore, we as developers need to explore how the combination of interface hardware, human capabilities, and user experience can be blended to get the best performance today and in the future.
Thermal Properties Measurement Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmack, Jon; Braase, Lori; Papesch, Cynthia
2015-08-01
The Thermal Properties Measurement Report summarizes the research, development, installation, and initial use of significant experimental thermal property characterization capabilities at the INL in FY 2015. These new capabilities were used to characterize a U 3Si 2 (candidate Accident Tolerant) fuel sample fabricated at the INL. The ability to perform measurements at various length scales is important and provides additional data that is not currently in the literature. However, the real value of the data will be in accomplishing a phenomenological understanding of the thermal conductivity in fuels and the ties to predictive modeling. Thus, the MARMOT advanced modeling andmore » simulation capability was utilized to illustrate how the microstructural data can be modeled and compared with bulk characterization data. A scientific method was established for thermal property measurement capability on irradiated nuclear fuel samples, which will be installed in the Irradiated Material Characterization Laboratory (IMCL).« less
NASA's Applied Sciences: Natural Disasters Program
NASA Technical Reports Server (NTRS)
Kessler, Jason L.
2010-01-01
Fully utilize current and near-term airborne and spaceborne assets and capabilities. NASA spaceborne instruments are for research but can be applied to natural disaster response as appropriate. NASA airborne instruments can be targeted specifically for disaster response. Could impact research programs. Better flow of information improves disaster response. Catalog capability, product, applicable disaster, points of contact. Ownership needs to come from the highest level of NASA - unpredictable and irregular nature of disasters requires contingency funding for disaster response. Build-in transfer of applicable natural disaster research capabilities to operational functionality at other agencies (e.g., USFS, NOAA, FEMA...) at the outset, whenever possible. For the Decadal Survey Missions, opportunities exist to identify needs and requirements early in the mission design process. Need to understand additional needs and commitments for meeting the needs of the disaster community. Opportunity to maximize disaster response and mitigation from the Decadal Survey Missions. Additional needs or capabilities may require agency contributions.
NASA Technical Reports Server (NTRS)
Oman, B. H.
1977-01-01
The NASA Langley Research Center vehicle design evaluation program (VDEP-2) was expanded by (1) incorporating into the program a capability to conduct preliminary design studies on subsonic commercial transport type aircraft using both JP and such alternate fuels as hydrogen and methane;(2) incorporating an aircraft detailed mission and performance analysis capability; and (3) developing and incorporating an external loads analysis capability. The resulting computer program (VDEP-3) provides a preliminary design tool that enables the user to perform integrated sizing, structural analysis, and cost studies on subsonic commercial transport aircraft. Both versions of the VDEP-3 Program which are designated preliminary Analysis VDEP-3 and detailed Analysis VDEP utilize the same vehicle sizing subprogram which includes a detailed mission analysis capability, as well as a geometry and weight analysis for multibodied configurations.
Multifunctional hydrogel nano-probes for atomic force microscopy
Lee, Jae Seol; Song, Jungki; Kim, Seong Oh; Kim, Seokbeom; Lee, Wooju; Jackman, Joshua A.; Kim, Dongchoul; Cho, Nam-Joon; Lee, Jungchul
2016-01-01
Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe—the key actuating element—has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices. PMID:27199165
Three-dimensional landing zone joint capability technology demonstration
NASA Astrophysics Data System (ADS)
Savage, James; Goodrich, Shawn; Ott, Carl; Szoboszlay, Zoltan; Perez, Alfonso; Soukup, Joel; Burns, H. N.
2014-06-01
The Three-Dimensional Landing Zone (3D-LZ) Joint Capability Technology Demonstration (JCTD) is a 27-month program to develop an integrated LADAR and FLIR capability upgrade for USAF Combat Search and Rescue HH-60G Pave Hawk helicopters through a retrofit of current Raytheon AN/AAQ-29 turret systems. The 3D-LZ JCTD builds upon a history of technology programs using high-resolution, imaging LADAR to address rotorcraft cruise, approach to landing, landing, and take-off in degraded visual environments with emphasis on brownout, cable warning and obstacle avoidance, and avoidance of controlled flight into terrain. This paper summarizes ladar development, flight test milestones, and plans for a final flight test demonstration and Military Utility Assessment in 2014.
Shuttle performance enhancements using an OMS payload bay kit
NASA Technical Reports Server (NTRS)
Templin, Kevin C.; Mallini, Charles J.
1991-01-01
The study focuses on the use of an orbital maneuvering system (OMS) payload bay kit (PBK) designed to utilize OMS tanks identical to those currently employed in the Orbiter OMS pods. Emphasis is placed on payload deployment capability and payload servicing/reboost capability augmentation from the point of view of payload mass, maximum deployment altitudes, and initial retrieval and final deployment altitudes. The deployment, servicing, and reboost requirements of the Hubble Space Telescope and Advanced X-ray and Astrophysics Facility are analyzed in order to show the benefits an OMS PBK can provide for these missions. It is shown that OMS PBKs can provide the required capability enhancement necessary to support deployment, reboost, and servicing of payloads requiring altitudes greater than 325 nautical miles.
A perspective of synthetic aperture radar for remote sensing
NASA Technical Reports Server (NTRS)
Skolnik, M. I.
1978-01-01
The characteristics and capabilities of synthetic aperture radar are discussed so as to identify those features particularly unique to SAR. The SAR and Optical images were compared. The SAR is an example of radar that provides more information about a target than simply its location. It is the spatial resolution and imaging capability of SAR that has made its application of interest, especially from spaceborne platforms. However, for maximum utility to remote sensing, it was proposed that other information be extracted from SAR data, such as the cross section with frequency and polarization.
Study and development of techniques for automatic control of remote manipulators
NASA Technical Reports Server (NTRS)
Shaket, E.; Leal, A.
1976-01-01
An overall conceptual design for an autonomous control system of remote manipulators which utilizes feedback was constructed. The system consists of a description of the high-level capabilities of a model from which design algorithms are constructed. The autonomous capability is achieved through automatic planning and locally controlled execution of the plans. The operator gives his commands in high level task-oriented terms. The system transforms these commands into a plan. It uses built-in procedural knowledge of the problem domain and an internal model of the current state of the world.
NASA's Space Launch System: An Evolving Capability for Exploration
NASA Technical Reports Server (NTRS)
Robinson, Kimberly F.; Hefner, Keith; Hitt, David
2015-01-01
Designed to enable human space exploration missions, including eventually landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. The vehicle will be able to deliver greater mass to orbit than any contemporary launch vehicle. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads.
Computing NLTE Opacities -- Node Level Parallel Calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holladay, Daniel
Presentation. The goal: to produce a robust library capable of computing reasonably accurate opacities inline with the assumption of LTE relaxed (non-LTE). Near term: demonstrate acceleration of non-LTE opacity computation. Far term (if funded): connect to application codes with in-line capability and compute opacities. Study science problems. Use efficient algorithms that expose many levels of parallelism and utilize good memory access patterns for use on advanced architectures. Portability to multiple types of hardware including multicore processors, manycore processors such as KNL, GPUs, etc. Easily coupled to radiation hydrodynamics and thermal radiative transfer codes.
Doppler imaging using spectrally-encoded endoscopy
Yelin, Dvir; Bouma, B. E.; Rosowsky, J. J.; Tearney, G. J.
2009-01-01
The capability to image tissue motion such as blood flow through an endoscope could have many applications in medicine. Spectrally encoded endoscopy (SEE) is a recently introduced technique that utilizes a single optical fiber and miniature diffractive optics to obtain endoscopic images through small diameter probes. Using spectral-domain interferometry, SEE is furthermore capable of three-dimensional volume imaging at video rates. Here we show that by measuring relative spectral phases, this technology can additionally measure Doppler shifts. Doppler SEE is demonstrated in flowing Intralipid phantoms and vibrating middle ear ossicles. PMID:18795020
NASA Astrophysics Data System (ADS)
Hon, Nick K.; Tsia, Kevin K.; Solli, Daniel R.; Jalali, Bahram
2009-03-01
We propose a new class of photonic devices based on periodic stress fields in silicon that enable second-order nonlinearity as well as quasi-phase matching. Periodically poled silicon (PePSi) adds the periodic poling capability to silicon photonics and allows the excellent crystal quality and advanced manufacturing capabilities of silicon to be harnessed for devices based on second-order nonlinear effects. As an example of the utility of the PePSi technology, we present simulations showing that midwave infrared radiation can be efficiently generated through difference frequency generation from near-infrared with a conversion efficiency of 50%.
Advanced power systems for EOS
NASA Technical Reports Server (NTRS)
Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.
1991-01-01
The Earth Observing System, which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program. Five large platforms are to be launched into polar orbit: two by NASA, two by the European Space Agency, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing 5 micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the Advanced Photovoltaic Solar Array, the total additional payload capability approaches 12 percent.
Conceptual design of a two stage to orbit spacecraft
NASA Technical Reports Server (NTRS)
Armiger, Scott C.; Kwarta, Jennifer S.; Horsley, Kevin B.; Snow, Glenn A.; Koe, Eric C.; Single, Thomas G.
1993-01-01
This project, undertaken through the Advanced Space Design Program, developed a 'Conceptual Design of a Two Stage To Orbit Spacecraft (TSTO).' The design developed utilizes a combination of air breathing and rocket propulsion systems and is fully reusable, with horizontal takeoff and landing capability. The orbiter is carried in an aerodynamically designed bay in the aft section of the booster vehicle to the staging altitude. This TSTO Spacecraft design meets the requirements of replacing the aging Space Shuttle system with a more easily maintained vehicle with more flexible mission capability.
Applications of mutant yeast strains with low glycogen storage capability
NASA Technical Reports Server (NTRS)
Petersen, G. R.; Schubert, W. W.; Stokes, B. O.
1981-01-01
Several strains of Hansenula polymorpha were selected for possible low glycogen storage characteristics based on a selective I2 staining procedure. The levels of storage carbohydrates in the mutant strains were found to be 44-70% of the levels in the parent strain for cultures harvested in stationary phase. Similar differences generally were not found for cells harvested in exponential phase. Yeast strains deficient in glycogen storage capability are valuable in increasing the relative protein value of microbial biomass and also may provide significant cost savings in substrate utilization in fermentative processes.
Center for Extended Magnetohydrodynamic Modeling Cooperative Agreement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carl R. Sovinec
The Center for Extended Magnetohydrodynamic Modeling (CEMM) is developing computer simulation models for predicting the behavior of magnetically confined plasmas. Over the first phase of support from the Department of Energy’s Scientific Discovery through Advanced Computing (SciDAC) initiative, the focus has been on macroscopic dynamics that alter the confinement properties of magnetic field configurations. The ultimate objective is to provide computational capabilities to predict plasma behavior—not unlike computational weather prediction—to optimize performance and to increase the reliability of magnetic confinement for fusion energy. Numerical modeling aids theoretical research by solving complicated mathematical models of plasma behavior including strong nonlinear effectsmore » and the influences of geometrical shaping of actual experiments. The numerical modeling itself remains an area of active research, due to challenges associated with simulating multiple temporal and spatial scales. The research summarized in this report spans computational and physical topics associated with state of the art simulation of magnetized plasmas. The tasks performed for this grant are categorized according to whether they are primarily computational, algorithmic, or application-oriented in nature. All involve the development and use of the Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion (NIMROD) code, which is described at http://nimrodteam.org. With respect to computation, we have tested and refined methods for solving the large algebraic systems of equations that result from our numerical approximations of the physical model. Collaboration with the Terascale Optimal PDE Solvers (TOPS) SciDAC center led us to the SuperLU_DIST software library [http://crd.lbl.gov/~xiaoye/SuperLU/] for solving large sparse matrices using direct methods on parallel computers. Switching to this solver library boosted NIMROD’s performance by a factor of five in typical large nonlinear simulations, which has been publicized as a success story of SciDAC-fostered collaboration. Furthermore, the SuperLU software does not assume any mathematical symmetry, and its generality provides an important capability for extending the physical model beyond magnetohydrodynamics (MHD). With respect to algorithmic and model development, our most significant accomplishment is the development of a new method for solving plasma models that treat electrons as an independent plasma component. These ‘two-fluid’ models encompass MHD and add temporal and spatial scales that are beyond the response of the ion species. Implementation and testing of a previously published algorithm did not prove successful for NIMROD, and the new algorithm has since been devised, analyzed, and implemented. Two-fluid modeling, an important objective of the original NIMROD project, is now routine in 2D applications. Algorithmic components for 3D modeling are in place and tested; though, further computational work is still needed for efficiency. Other algorithmic work extends the ion-fluid stress tensor to include models for parallel and gyroviscous stresses. In addition, our hot-particle simulation capability received important refinements that permitted completion of a benchmark with the M3D code. A highlight of our applications work is the edge-localized mode (ELM) modeling, which was part of the first-ever computational Performance Target for the DOE Office of Fusion Energy Science, see http://www.science.doe.gov/ofes/performancetargets.shtml. Our efforts allowed MHD simulations to progress late into the nonlinear stage, where energy is conducted to the wall location. They also produced a two-fluid ELM simulation starting from experimental information and demonstrating critical drift effects that are characteristic of two-fluid physics. Another important application is the internal kink mode in a tokamak. Here, the primary purpose of the study has been to benchmark the two main code development lines of CEMM, NIMROD and M3D, on a relevant nonlinear problem. Results from the two codes show repeating nonlinear relaxation events driven by the kink mode over quantitatively comparable timescales. The work has launched a more comprehensive nonlinear benchmarking exercise, where realistic transport effects have an important role.« less
Titmarsh, Drew M.; Chen, Huaying; Glass, Nick R.; Cooper-White, Justin J.
2014-01-01
Stem cells are a powerful resource for producing a variety of cell types with utility in clinically associated applications, including preclinical drug screening and development, disease and developmental modeling, and regenerative medicine. Regardless of the type of stem cell, substantial barriers to clinical translation still exist and must be overcome to realize full clinical potential. These barriers span processes including cell isolation, expansion, and differentiation; purification, quality control, and therapeutic efficacy and safety; and the economic viability of bioprocesses for production of functional cell products. Microfluidic systems have been developed for a myriad of biological applications and have the intrinsic capability of controlling and interrogating the cellular microenvironment with unrivalled precision; therefore, they have particular relevance to overcoming such barriers to translation. Development of microfluidic technologies increasingly utilizes stem cells, addresses stem cell-relevant biological phenomena, and aligns capabilities with translational challenges and goals. In this concise review, we describe how microfluidic technologies can contribute to the translation of stem cell research outcomes, and we provide an update on innovative research efforts in this area. This timely convergence of stem cell translational challenges and microfluidic capabilities means that there is now an opportunity for both disciplines to benefit from increased interaction. PMID:24311699
SSA Building Blocks - Transforming Your Data and Applications into Operational Capability
NASA Astrophysics Data System (ADS)
Buell, D.; Hawthorne, Shayn, L.; Higgins, J.
The Electronic System Center's 850 Electronic Systems Group (ELSG) is currently using a Service Oriented Architecture (SOA) to rapidly create net-centric experimental prototypes. This SOA has been utilized effectively across diverse mission areas, such as global air operations and rapid sensor tasking for improved space event management. The 850 ELSG has deployed a working, accredited, SOA on the SIPRNET and provided real-time space information to five separate distributed operations centers. The 850 ELSG has learned first-hand the power of SOAs for integrating DoD and non-DoD SSA data in a rapid and agile manner, allowing capabilities to be fielded and sensors to be integrated in weeks instead of months. This opens a world of opportunity to integrate University data and experimental or proof-of-concept data with sensitive sensors and sources to support developing an array of SSA products for approved users in and outside of the space community. This paper will identify how new capabilities can be proactively developed to rapidly answer critical needs when SOA methodologies are employed and identifies the operational utility and the far-reaching benefits realized by implementing a service-oriented architecture. We offer a new paradigm for how data and application producer's contributions are presented for the rest of the community to leverage.
Knaus, W. A.; Draper, E. A.; Wagner, D. P.
1991-01-01
The APACHE III data base reflects the disease, physiologic status, and outcome data from 17,400 ICU patients at 40 hospitals, 26 of which were randomly selected from representative geographic regions, bed size, and teaching status. This provides a nationally representative standard for measuring several important aspects of ICU performance. Results from the study have now been used to develop an automated information system to provide real time information about expected ICU patient outcome, length of stay, production cost, and ICU performance. The information system provides several new capabilities to ICU clinicians, clinic, and hospital administrators. Among the system's capabilities are: the ability to compare local ICU performance against predetermined criteria; the ability to forecast nursing requirements; and, the ability to make both individual and group patient outcome predictions. The system also provides improved administrative support by tracking ICU charges at the point of origin and reduces staff workload eliminating the requirement for several manually maintained logs and patient lists. APACHE III has the capability to electronically interface with and utilize data already captured in existing hospital information systems, automated laboratory information systems, and patient monitoring systems. APACHE III will also be completely integrated with several CIS vendors' products. PMID:1807779
Advanced radiometric and interferometric milimeter-wave scene simulations
NASA Technical Reports Server (NTRS)
Hauss, B. I.; Moffa, P. J.; Steele, W. G.; Agravante, H.; Davidheiser, R.; Samec, T.; Young, S. K.
1993-01-01
Smart munitions and weapons utilize various imaging sensors (including passive IR, active and passive millimeter-wave, and visible wavebands) to detect/identify targets at short standoff ranges and in varied terrain backgrounds. In order to design and evaluate these sensors under a variety of conditions, a high-fidelity scene simulation capability is necessary. Such a capability for passive millimeter-wave scene simulation exists at TRW. TRW's Advanced Radiometric Millimeter-Wave Scene Simulation (ARMSS) code is a rigorous, benchmarked, end-to-end passive millimeter-wave scene simulation code for interpreting millimeter-wave data, establishing scene signatures and evaluating sensor performance. In passive millimeter-wave imaging, resolution is limited due to wavelength and aperture size. Where high resolution is required, the utility of passive millimeter-wave imaging is confined to short ranges. Recent developments in interferometry have made possible high resolution applications on military platforms. Interferometry or synthetic aperture radiometry allows the creation of a high resolution image with a sparsely filled aperture. Borrowing from research work in radio astronomy, we have developed and tested at TRW scene reconstruction algorithms that allow the recovery of the scene from a relatively small number of spatial frequency components. In this paper, the TRW modeling capability is described and numerical results are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Aaron M.; DeVore, Matthew S.; Stich, Dominik G.
Single-molecule fluorescence resonance energy transfer (smFRET) remains a widely utilized and powerful tool for quantifying heterogeneous interactions and conformational dynamics of biomolecules. However, traditional smFRET experiments either are limited to short observation times (typically less than 1 ms) in the case of “burst” confocal measurements or require surface immobilization which usually has a temporal resolution limited by the camera framing rate. We developed a smFRET 3D tracking microscope that is capable of observing single particles for extended periods of time with high temporal resolution. The confocal tracking microscope utilizes closed-loop feedback to follow the particle in solution by recentering itmore » within two overlapping tetrahedral detection elements, corresponding to donor and acceptor channels. We demonstrated the microscope’s multicolor tracking capability via random walk simulations and experimental tracking of 200 nm fluorescent beads in water with a range of apparent smFRET efficiency values, 0.45-0.69. We also demonstrated the microscope’s capability to track and quantify double-stranded DNA undergoing intramolecular smFRET in a viscous glycerol solution. In future experiments, the smFRET 3D tracking system will be used to study protein conformational dynamics while diffusing in solution and native biological environments with high temporal resolution.« less
Keller, Aaron M.; DeVore, Matthew S.; Stich, Dominik G.; ...
2018-04-19
Single-molecule fluorescence resonance energy transfer (smFRET) remains a widely utilized and powerful tool for quantifying heterogeneous interactions and conformational dynamics of biomolecules. However, traditional smFRET experiments either are limited to short observation times (typically less than 1 ms) in the case of “burst” confocal measurements or require surface immobilization which usually has a temporal resolution limited by the camera framing rate. We developed a smFRET 3D tracking microscope that is capable of observing single particles for extended periods of time with high temporal resolution. The confocal tracking microscope utilizes closed-loop feedback to follow the particle in solution by recentering itmore » within two overlapping tetrahedral detection elements, corresponding to donor and acceptor channels. We demonstrated the microscope’s multicolor tracking capability via random walk simulations and experimental tracking of 200 nm fluorescent beads in water with a range of apparent smFRET efficiency values, 0.45-0.69. We also demonstrated the microscope’s capability to track and quantify double-stranded DNA undergoing intramolecular smFRET in a viscous glycerol solution. In future experiments, the smFRET 3D tracking system will be used to study protein conformational dynamics while diffusing in solution and native biological environments with high temporal resolution.« less
Study of Fluid Experiment System (FES)/CAST/Holographic Ground System (HGS)
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Cummings, Rick; Jones, Brian
1992-01-01
The use of holographic and schlieren optical techniques for studying the concentration gradients in solidification processes has been used by several investigators over the years. The HGS facility at MSFC has been primary resource in researching this capability. Consequently, scientific personnel have been able to utilize these techniques in both ground based research and in space experiments. An important event in the scientific utilization of the HGS facilities was the TGS Crystal Growth and the casting and solidification technology (CAST) experiments that were flown on the International Microgravity Laboratory (IML) mission in March of this year. The preparation and processing of these space observations are the primary experiments reported in this work. This project provides some ground-based studies to optimize on the holographic techniques used to acquire information about the crystal growth processes flown on IML. Since the ground-based studies will be compared with the space-based experimental results, it is necessary to conduct sufficient ground based studies to best determine how the experiment worked in space. The current capabilities in computer based systems for image processing and numerical computation have certainly assisted in those efforts. As anticipated, this study has certainly shown that these advanced computing capabilities are helpful in the data analysis of such experiments.
The ISS Fluids and Combustion Facility: Experiment Accommodations Summary
NASA Technical Reports Server (NTRS)
Corban, Robert R.; Simons, Stephen N. (Technical Monitor)
2001-01-01
The International Space Station's (ISS's) Fluids and Combustion Facility (FCF) is in the process of final design and development activities to accommodate a wide range of experiments in the fields of combustion science and fluid physics. The FCF is being designed to provide potential experiments with well defined interfaces that can meet the experimenters requirements, provide the flexibility for on-orbit reconfiguration, and provide the maximum capability within the ISS resources and constraints. As a multi-disciplined facility, the FCF supports various experiments and scientific objectives, which will be developed in the future and are not completely defined at this time. Since developing experiments to be performed within FCF is a continuous process throughout the FCF's operational lifetime, each individual experiment must determine the best configuration of utilizing facility capabilities and resources with augmentation of specific experiment hardware. Configurations of potential experiments in the FCF has been on-going to better define the FCF interfaces and provide assurances that the FCF design will meet its design requirements. This paper provides a summary of ISS resources and FCF capabilities, which are available for potential ISS FCF users. Also, to better understand the utilization of the FCF a description of a various experiment layouts and associated operations in the FCF are provided.
USDA-ARS?s Scientific Manuscript database
Thelytokous parasitoid strains are theoretically advantageous when utilized for biological control, as the absence of males should reduce production costs and potentially increase field efficacy. The maternally inherited intracellular bacterium, Wolbachia pipientis, is capable of inducing thelytokou...
Superdetonation devices and methods for making and using the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGrane, Shawn D.
Disclosed herein are embodiments of devices comprising energetic materials capable of superdetonation and methods of making and using such devices. The devices disclosed herein comprise components, dimensions, and configurations optimized to utilize superdetonation velocities produced by the energetic materials disclosed herein.
Method and Apparatus for Computed Imaging Backscatter Radiography
NASA Technical Reports Server (NTRS)
Shedlock, Daniel (Inventor); Sabri, Nissia (Inventor); Dugan, Edward T. (Inventor); Jacobs, Alan M. (Inventor); Meng, Christopher (Inventor)
2013-01-01
Systems and methods of x-ray backscatter radiography are provided. A single-sided, non-destructive imaging technique utilizing x-ray radiation to image subsurface features is disclosed, capable of scanning a region using a fan beam aperture and gathering data using rotational motion.
Utilizing New Audiovisual Resources
ERIC Educational Resources Information Center
Miller, Glen
1975-01-01
The University of Arizona's Agriculture Department has found that video cassette systems and 8 mm films are excellent audiovisual aids to classroom instruction at the high school level in small gasoline engines. Each system is capable of improving the instructional process for motor skill development. (MW)
STORMWATER HYDROLOGICAL CHARACTERISTICS OF POROUS AND CONVENTIONAL PAVING SYSTEMS
The utilization of porous pavement in parking lots and other applications where stormwater detention is required provides a control strategy capable of mitigating the detrimental aspects of urban runoff. A study of porous and conventional pavement systems in Austin, Texas was und...
Microcomputer design and analysis of the cable catenary large space antenna system
NASA Technical Reports Server (NTRS)
Akle, W.
1984-01-01
The use of microcomputers in the design of a cable catenary large space antenna system is discussed. The development of a system design capability, data base utilization, systems integration, program structure and logic, and integrated graphics output are discussed.
DOT National Transportation Integrated Search
2014-01-01
A comprehensive field detection method is proposed that is aimed at developing advanced capability for : reliable monitoring, inspection and life estimation of bridge infrastructure. The goal is to utilize Motion-Sensing Radio Transponders (RFIDS) on...
The Changing Environment of Personal Information Systems.
ERIC Educational Resources Information Center
Burton, Hilary D.
1985-01-01
Discusses technological developments causing changes in personal information systems: increase in commercial support services; proliferation of microcomputers; capability to download from secondary services into private files; and developing desire to utilize functions such as electronic mail and automated office functions. Appendices list 21…
Nucleic acids, compositions and uses thereof
Preston, III, James F.; Chow, Virginia [Gainesville, FL; Nong, Guang [Gainesville, FL; Rice, John D [Gainesville, FL; John, Franz J [Baltimore, MD
2012-02-21
The subject invention provides at least one nucleic acid sequence encoding an aldouronate-utilization regulon isolated from Paenibacillus sp. strain JDR-2, a bacterium which efficiently utilizes xylan and metabolizes aldouronates (methylglucuronoxylosaccharides). The subject invention also provides a means for providing a coordinately regulated process in which xylan depolymerization and product assimilation are coupled in Paenibacillus sp. strain JDR-2 to provide a favorable system for the conversion of lignocellulosic biomass to biobased products. Additionally, the nucleic acid sequences encoding the aldouronate-utilization regulon can be used to transform other bacteria to form organisms capable of producing a desired product (e.g., ethanol, 1-butanol, acetoin, 2,3-butanediol, 1,3-propanediol, succinate, lactate, acetate, malate or alanine) from lignocellulosic biomass.
Vincent, S F; Bell, P J; Bissinger, P; Nevalainen, K M
1999-02-01
Yeast strains currently used in the baking industry cannot fully utilize the trisaccharide raffinose found in beet molasses due to the absence of melibiase (alpha-galactosidase) activity. To overcome this deficiency, the MEL1 gene encoding melibiase enzyme was introduced into baker's yeast by both classical breeding and recombinant DNA technology. Both types of yeast strains were capable of vigorous fermentation in the presence of high levels of sucrose, making them suitable for the rapidly developing Asian markets where high levels of sugar are used in bread manufacture. Melibiase expression appeared to be dosage-dependent, with relatively low expression sufficient for complete melibiose utilization in a model fermentation system.
Building Foundations for Nuclear Security Enterprise Analysis Utilizing Nuclear Weapon Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josserand, Terry Michael; Young, Leone; Chamberlin, Edwin Phillip
The Nuclear Security Enterprise, managed by the National Nuclear Security Administration - a semiautonomous agency within the Department of Energy - has been associated with numerous assessments with respect to the estimating, management capabilities, and practices pertaining to nuclear weapon modernization efforts. This report identifies challenges in estimating and analyzing the Nuclear Security Enterprise through an analysis of analogous timeframe conditions utilizing two types of nuclear weapon data - (1) a measure of effort and (2) a function of time. The analysis of analogous timeframe conditions that utilizes only two types of nuclear weapon data yields four summary observations thatmore » estimators and analysts of the Nuclear Security Enterprise will find useful.« less
NASA Technical Reports Server (NTRS)
1982-01-01
Evaluating of the combined utility of narrowband and multispectral imaging in both the infrared and visible for the lithologic identification of geologic materials, and of the combined utility of multispectral imaging in the visible and infrared for lithologic mapping on a global bases are near term recommendations for future imaging capabilities. Long term recommendations include laboratory research into methods of field sampling and theoretical models of microscale mixing. The utility of improved spatial and spectral resolutions and radiometric sensitivity is also suggested for the long term. Geobotanical remote sensing research should be conducted to (1) separate geological and botanical spectral signatures in individual picture elements; (2) study geobotanical correlations that more fully simulate natural conditions; and use test sites designed to test specific geobotanical hypotheses.
Upper stages utilizing electric propulsion
NASA Technical Reports Server (NTRS)
Byers, D. C.
1980-01-01
The payload characteristics of geocentric missions which utilize electron bombardment ion thruster systems are discussed. A baseline LEO to GEO orbit transfer mission was selected to describe the payload capabilities. The impacts on payloads of both mission parameters and electric propulsion technology options were evaluated. The characteristics of the electric propulsion thrust system and the power requirements were specified in order to predict payload mass. This was completed by utilizing a previously developed methodology which provides a detailed thrust system description after the final mass on orbit, the thrusting time, and the specific impulse are specified. The impact on payloads of total mass in LEO, thrusting time, propellant type, specific impulse, and power source characteristics was evaluated.
Shen, Jiantong; Li, Youping; Clarke, Mike; Du, Liang; Wang, Li; Zhong, Dake
2013-02-01
To evaluate the production and utilization of Cochrane systematic reviews (CSRs) and to analyze its influential factors, so as to improve the capacity of translating CSRs into practice. All CSRs and protocols were retrieved from the Cochrane Library (Issue 2, 2011) and citation data were retrieved from SCI database. Citation analysis was used to analyze the situation of CSRs production and utilization. CSR publication had grown from an annual average of 32 to 718 documents. Only one developing country was among the ten countries with the largest amount of publications. High-income countries accounted for 83% of CSR publications and 90.8% of cited counts. A total 34.7% of CSRs had a cited count of 0, whereas only 0.9% had been cited more than 50 times. Highly cited CSRs were published in England, Australia, Canada, USA and other high-income countries. The countries with a Cochrane center or a Cochrane methodology group had a greater capability of CSRs production and citing than others. The CSRs addressing the topics of diseases were more than those targeted at public health issues. There was a big gap in citations of different interventions even on the same topic. The capability of CSR production and utilization grew rapidly, but varied among countries and institutions, which was affected by several factors such as the capability of research, resources and the applicability of evidence. It is important to improve evidence translation through educating, training and prioritizing the problems based on real demands of end users. © 2013 Wiley Publishing Asia Pty Ltd and Chinese Cochrane Center, West China Hospital of Sichuan University.
Enhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiae.
Kwak, Suryang; Kim, Soo Rin; Xu, Haiqing; Zhang, Guo-Chang; Lane, Stephan; Kim, Heejin; Jin, Yong-Su
2017-11-01
Saccharomyces cerevisiae has limited capabilities for producing fuels and chemicals derived from acetyl-CoA, such as isoprenoids, due to a rigid flux partition toward ethanol during glucose metabolism. Despite numerous efforts, xylose fermentation by engineered yeast harboring heterologous xylose metabolic pathways was not as efficient as glucose fermentation for producing ethanol. Therefore, we hypothesized that xylose metabolism by engineered yeast might be a better fit for producing non-ethanol metabolites. We indeed found that engineered S. cerevisiae on xylose showed higher expression levels of the enzymes involved in ethanol assimilation and cytosolic acetyl-CoA synthesis than on glucose. When genetic perturbations necessary for overproducing squalene and amorphadiene were introduced into engineered S. cerevisiae capable of fermenting xylose, we observed higher titers and yields of isoprenoids under xylose than glucose conditions. Specifically, co-overexpression of a truncated HMG1 (tHMG1) and ERG10 led to substantially higher squalene accumulation under xylose than glucose conditions. In contrast to glucose utilization producing massive amounts of ethanol regardless of aeration, xylose utilization allowed much less amounts of ethanol accumulation, indicating ethanol is simultaneously re-assimilated with xylose consumption and utilized for the biosynthesis of cytosolic acetyl-CoA. In addition, xylose utilization by engineered yeast with overexpression of tHMG1, ERG10, and ADS coding for amorphadiene synthase, and the down-regulation of ERG9 resulted in enhanced amorphadiene production as compared to glucose utilization. These results suggest that the problem of the rigid flux partition toward ethanol production in yeast during the production of isoprenoids and other acetyl-CoA derived chemicals can be bypassed by using xylose instead of glucose as a carbon source. Biotechnol. Bioeng. 2017;114: 2581-2591. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
GrDHP: a general utility function representation for dual heuristic dynamic programming.
Ni, Zhen; He, Haibo; Zhao, Dongbin; Xu, Xin; Prokhorov, Danil V
2015-03-01
A general utility function representation is proposed to provide the required derivable and adjustable utility function for the dual heuristic dynamic programming (DHP) design. Goal representation DHP (GrDHP) is presented with a goal network being on top of the traditional DHP design. This goal network provides a general mapping between the system states and the derivatives of the utility function. With this proposed architecture, we can obtain the required derivatives of the utility function directly from the goal network. In addition, instead of a fixed predefined utility function in literature, we conduct an online learning process for the goal network so that the derivatives of the utility function can be adaptively tuned over time. We provide the control performance of both the proposed GrDHP and the traditional DHP approaches under the same environment and parameter settings. The statistical simulation results and the snapshot of the system variables are presented to demonstrate the improved learning and controlling performance. We also apply both approaches to a power system example to further demonstrate the control capabilities of the GrDHP approach.
Equilibrium cycle pin by pin transport depletion calculations with DeCART
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochunas, B.; Downar, T.; Taiwo, T.
As the Advanced Fuel Cycle Initiative (AFCI) program has matured it has become more important to utilize more advanced simulation methods. The work reported here was performed as part of the AFCI fellowship program to develop and demonstrate the capability of performing high fidelity equilibrium cycle calculations. As part of the work here, a new multi-cycle analysis capability was implemented in the DeCART code which included modifying the depletion modules to perform nuclide decay calculations, implementing an assembly shuffling pattern description, and modifying iteration schemes. During the work, stability issues were uncovered with respect to converging simultaneously the neutron flux,more » isotopics, and fluid density and temperature distributions in 3-D. Relaxation factors were implemented which considerably improved the stability of the convergence. To demonstrate the capability two core designs were utilized, a reference UOX core and a CORAIL core. Full core equilibrium cycle calculations were performed on both cores and the discharge isotopics were compared. From this comparison it was noted that the improved modeling capability was not drastically different in its prediction of the discharge isotopics when compared to 2-D single assembly or 2-D core models. For fissile isotopes such as U-235, Pu-239, and Pu-241 the relative differences were 1.91%, 1.88%, and 0.59%), respectively. While this difference may not seem large it translates to mass differences on the order of tens of grams per assembly, which may be significant for the purposes of accounting of special nuclear material. (authors)« less
The Capabilities of Space Stations
NASA Technical Reports Server (NTRS)
1995-01-01
Over the past two years the U.S. space station program has evolved to a three-phased international program, with the first phase consisting of the use of the U.S. Space Shuttle and the upgrading and use of the Russian Mir Space Station, and the second and third phases consisting of the assembly and use of the new International Space Station. Projected capabilities for research, and plans for utilization, have also evolved and it has been difficult for those not directly involved in the design and engineering of these space stations to learn and understand their technical details. The Committee on the Space Station of the National Research Council, with the concurrence of NASA, undertook to write this short report in order to provide concise and objective information on space stations and platforms -- with emphasis on the Mir Space Station and International Space Station -- and to supply a summary of the capabilities of previous, existing, and planned space stations. In keeping with the committee charter and with the task statement for this report, the committee has summarized the research capabilities of five major space platforms: the International Space Station, the Mir Space Station, the Space Shuttle (with a Spacelab or Spacehab module in its cargo bay), the Space Station Freedom (which was redesigned to become the International Space Station in 1993 and 1994), and Skylab. By providing the summary, together with brief descriptions of the platforms, the committee hopes to assist interested readers, including scientists and engineers, government officials, and the general public, in evaluating the utility of each system to meet perceived user needs.
MCST Research Operations | NREL
Readiness. Laboratory Utilization. Custom Research Equipment Design-Build Capabilities. Add short description Concept and Design Design Requirements Assessment Controls and Automation Design-Build Services International (SEMI) S2 standard assessment Computer-Aided Design (CAD)/Piping and Instrumentation Diagram (P
Mars Exploration Rover: surface operations
NASA Technical Reports Server (NTRS)
Erickson, J. K.; Adler, M.; Crisp, J.; Mishkin, A.; Welch, R.
2002-01-01
This paper will provide an overview of the planned mission, and also focus on the different operations challenges inherent in operating these two very off road vehicles, and the solutions adopted to enable the best utilization of their capabilities for high science return and responsiveness to scientific discovery.
NASA Astrophysics Data System (ADS)
Jejelowo, O. A.; Tariq, M. A.
2018-02-01
We will utilize multi-omics to identify robust biomarkers and to understand radiation effects and develop countermeasures. Information obtained will enhance development of capabilities to monitor health in real time and for mitigation of risks.
FINCAP Analysis: A Method for Financial Capability Analysis of Air Force Contractors
1979-03-01
obtained directly from the companies or through the SEC Pu’lications contractor (in hard copy or microfiche): Disclosure, Inc., 4827 Rugby Avenue...contracts- labor union wage agreements - material prices - escalation clauses in contracts - contractor accounting methods - level of capacity utilization
Many utilities are seeking innovative rehabilitation technologies to extend the life and fix larger portions of their water distribution systems with current funding levels. The information on the capabilities and applicability of new technologies is not always readily available...
A Common Foundation of Information and Analytical Capability for AFSPC Decision Making
2005-06-23
System Strategic Master Plan MAPs/MSP CRRAAF TASK FORCE CONOPS MUA Task Weights Engagement Analysis ASIIS Optimization ACEIT COST Analysis...Engangement Architecture Analysis Architecture MUA AFSPC POM S&T Planning Military Utility Analysis ACEIT COST Analysis Joint Capab Integ Develop System
An Analysis of Business Intelligence Maturity, Enterprise Size, and Environmental Factors
ERIC Educational Resources Information Center
Walker, Karen M.
2017-01-01
Business intelligence (BI) maturity for small and medium-sized enterprises (SMEs) is significantly behind larger companies that utilize BI solutions. Successful data oriented business environments require knowledge and insight to understand organizational capabilities. This quantitative correlational study assessed the relationship between…
SSME testing technology at the John C. Stennis Space Center
NASA Technical Reports Server (NTRS)
Kynard, Mike; Dill, Glenn
1991-01-01
An effective capability for testing the Space Shuttle Main Engine is described. The test complex utilizes a number of sophisticated test stands, test support facilities, and control centers to conduct development testing and flight acceptance testing at both nominal and off-nominal conditions.
Sensor-based architecture for medical imaging workflow analysis.
Silva, Luís A Bastião; Campos, Samuel; Costa, Carlos; Oliveira, José Luis
2014-08-01
The growing use of computer systems in medical institutions has been generating a tremendous quantity of data. While these data have a critical role in assisting physicians in the clinical practice, the information that can be extracted goes far beyond this utilization. This article proposes a platform capable of assembling multiple data sources within a medical imaging laboratory, through a network of intelligent sensors. The proposed integration framework follows a SOA hybrid architecture based on an information sensor network, capable of collecting information from several sources in medical imaging laboratories. Currently, the system supports three types of sensors: DICOM repository meta-data, network workflows and examination reports. Each sensor is responsible for converting unstructured information from data sources into a common format that will then be semantically indexed in the framework engine. The platform was deployed in the Cardiology department of a central hospital, allowing identification of processes' characteristics and users' behaviours that were unknown before the utilization of this solution.
Simulation and animation of sensor-driven robots.
Chen, C; Trivedi, M M; Bidlack, C R
1994-10-01
Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aid the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the users visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.
High precision Hugoniot measurements on statically pre-compressed fluid helium
NASA Astrophysics Data System (ADS)
Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.; Hickman, Randy J.; Thornhill, Tom F.
2016-09-01
The capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modest (0.27-0.38 GPa) initial pressures. The dynamic response of pre-compressed helium in the initial density range of 0.21-0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (up) relationship: us = C0 + sup, with C0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.
NASA Technical Reports Server (NTRS)
Dunn, Mark H.; Farassat, F.
1990-01-01
The results of NASA's Propeller Test Assessment program involving extensive flight tests of a large-scale advanced propeller are presented. This has provided the opportunity to evaluate the current capability of advanced propeller noise prediction utilizing principally the exterior acoustic measurements for the prediction of exterior noise. The principal object of this study was to evaluate the state-of-the-art of noise prediction for advanced propellers utilizing the best available codes of the disciplines involved. The effects of blade deformation on the aerodynamics and noise of advanced propellers were also studied. It is concluded that blade deformation can appreciably influence propeller noise and aerodynamics, and that, in general, centrifugal and blade forces must both be included in the calculation of blade forces. It is noted that the present capability for free-field noise prediction of the first three harmonics for advanced propellers is fairly good. Detailed data and diagrams of the test results are presented.
NASA Astrophysics Data System (ADS)
Stoeckel, Gerhard P.; Doyle, Keith B.
2017-08-01
The Transiting Exoplanet Survey Satellite (TESS) is an instrument consisting of four, wide fieldof- view CCD cameras dedicated to the discovery of exoplanets around the brightest stars, and understanding the diversity of planets and planetary systems in our galaxy. Each camera utilizes a seven-element lens assembly with low-power and low-noise CCD electronics. Advanced multivariable optimization and numerical simulation capabilities accommodating arbitrarily complex objective functions have been added to the internally developed Lincoln Laboratory Integrated Modeling and Analysis Software (LLIMAS) and used to assess system performance. Various optical phenomena are accounted for in these analyses including full dn/dT spatial distributions in lenses and charge diffusion in the CCD electronics. These capabilities are utilized to design CCD shims for thermal vacuum chamber testing and flight, and verify comparable performance in both environments across a range of wavelengths, field points and temperature distributions. Additionally, optimizations and simulations are used for model correlation and robustness optimizations.
Hybrid Dispersion Laser Scanner
Goda, K.; Mahjoubfar, A.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.
2012-01-01
Laser scanning technology is one of the most integral parts of today's scientific research, manufacturing, defense, and biomedicine. In many applications, high-speed scanning capability is essential for scanning a large area in a short time and multi-dimensional sensing of moving objects and dynamical processes with fine temporal resolution. Unfortunately, conventional laser scanners are often too slow, resulting in limited precision and utility. Here we present a new type of laser scanner that offers ∼1,000 times higher scan rates than conventional state-of-the-art scanners. This method employs spatial dispersion of temporally stretched broadband optical pulses onto the target, enabling inertia-free laser scans at unprecedented scan rates of nearly 100 MHz at 800 nm. To show our scanner's broad utility, we use it to demonstrate unique and previously difficult-to-achieve capabilities in imaging, surface vibrometry, and flow cytometry at a record 2D raster scan rate of more than 100 kHz with 27,000 resolvable points. PMID:22685627
NASA Astrophysics Data System (ADS)
Pamulaparthy, Balakrishna; KS, Swarup; Kommu, Rajagopal
2014-12-01
Distribution automation (DA) applications are limited to feeder level today and have zero visibility outside of the substation feeder and reaching down to the low-voltage distribution network level. This has become a major obstacle in realizing many automated functions and enhancing existing DA capabilities. Advanced metering infrastructure (AMI) systems are being widely deployed by utilities across the world creating system-wide communications access to every monitoring and service point, which collects data from smart meters and sensors in short time intervals, in response to utility needs. DA and AMI systems convergence provides unique opportunities and capabilities for distribution grid modernization with the DA system acting as a controller and AMI system acting as feedback to DA system, for which DA applications have to understand and use the AMI data selectively and effectively. In this paper, we propose a load segmentation method that helps the DA system to accurately understand and use the AMI data for various automation applications with a suitable case study on power restoration.
Raising the IQ in full-text searching via intelligent querying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kero, R.; Russell, L.; Swietlik, C.
1994-11-01
Current Information Retrieval (IR) technologies allow for efficient access to relevant information, provided that user selected query terms coincide with the specific linguistical choices made by the authors whose works constitute the text-base. Therefore, the challenge is to enhance the limited searching capability of state-of-the-practice IR. This can be done either with augmented clients that overcome current server searching deficiencies, or with added capabilities that can augment searching algorithms on the servers. The technology being investigated is that of deductive databases, with a set of new techniques called cooperative answering. This technology utilizes semantic networks to allow for navigation betweenmore » possible query search term alternatives. The augmented search terms are passed to an IR engine and the results can be compared. The project utilizes the OSTI Environment, Safety and Health Thesaurus to populate the domain specific semantic network and the text base of ES&H related documents from the Facility Profile Information Management System as the domain specific search space.« less
In utero fuel homeostasis: Lessons for a clinician.
Rao, P N Suman; Shashidhar, A; Ashok, C
2013-01-01
Fetus exists in a complex, dynamic, and yet intriguing symbiosis with its mother as far as fuel metabolism is concerned. Though the dependence on maternal fuel is nearly complete to cater for its high requirement, the fetus is capable of some metabolism of its own. The first half of gestation is a period of maternal anabolism and storage whereas the second half results in exponential fetal growth where maternal stores are mobilized. Glucose is the primary substrate for energy production in the fetus though capable of utilizing alternate sources like lactate, ketoacids, amino acids, fatty acids, and glycogen as fuel under special circumstances. Key transporters like glucose transporters (GLUT) are responsible for preferential transfers, which are in turn regulated by complex interaction of maternal and fetal hormones. Amino acids are preferentially utilized for growth and essential fatty acids for development of brain and retina. Insulin, insulin like growth factors, glucagon, catecholamines, and letpin are the hormones implicated in this fascinating process. Hormonal regulation of metabolic substrate utilization and anabolism in the fetus is secondary to the supply of nutrient substrates. The knowledge of fuel homeostasis is crucial for a clinician caring for pregnant women and neonates to manage disorders of metabolism (diabetes), growth (intrauterine growth restriction), and transitional adaptation (hypoglycemia).
Brookhaven National Laboratory technology transfer report, fiscal year 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-01-01
The Brookhaven Office of Research and Technology Applications (ORTA) inaugurated two major initiatives. The effort by our ORTA in collaboration with the National Synchrotron Light Source (NSLS) has succeeded in alerting American industry to the potential of using a synchrotron x-ray source for high resolution lithography. We are undertaking a preconstruction study for the construction of a prototype commercial synchrotron and development of an advanced commercial cryogenic synchrotron (XLS). ORTA sponsored a technology transfer workshop where industry expressed its views on how to transfer accelerator technology during the construction of the prototype commercial machine. The Northeast Regional utility Initiative broughtmore » 14 utilities to a workshop at the Laboratory in November. One recommendation of this workshop was to create a Center at the Laboratory for research support on issues of interest to utilities in the region where BNL has unique capability. The ORTA has initiated discussions with the New York State Science and Technology Commission, Cornell University's world renowned Nannofabrication Center and the computer aided design capabilities at SUNY at Stony Brook to create, centered around the NSLS and the XLS, the leading edge semiconductor process technology development center when the XLS becomes operational in two and a half years. 1 fig.« less
The Future of New Discoveries on the International Space Station
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald; Trach, Brian
2000-01-01
The Materials Science program is one of the five Microgravity research disciplines in NASA's Human Exploration and Development of Space (HEDS). This research uses the low gravity environment to obtain the fundamental understanding of various phenomena effects and it's relationship to structure, processing, and properties of materials. The International Space Station (ISS) will complete the first major assembly phase within the next year thus providing the opportunity for on-orbit research and scientific utilization in early 2001. Research will become routine as the final Space Station configuration is completed. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules. This paper addresses the current scope of the flight investigator program that will utilize the various capabilities on ISS. The type of research and classification of materials that are addressed using multiple types of flight apparatus will be explained. The various flight and ground facilities that are used to support the NASA program are described. The early utilization schedule for the materials science payloads with associated hardware will be covered. The Materials Science Research Facility and related international experiment modules serves as the foundation for this capability. The potential applications and technologies obtained from the Materials Science program are described.
NASA Astrophysics Data System (ADS)
Komatsu, Y.; Brus, G.; Kimijima, S.; Szmyd, J. S.
2012-11-01
The present paper reports the experimental study on the dynamic behavior of a solid oxide fuel cell (SOFC). The cell stack consists of planar type cells with standard power output 300W. A Major subject of the present study is characterization of the transient response to the electric current change, assuming load-following operation. The present studies particularly focus on fuel provision control to the load change. Optimized fuel provision improves power generation efficiency. However, the capability of SOFC must be restricted by a few operative parameters. Fuel utilization factor, which is defined as the ratio of the consumed fuel to the supplied fuel is adopted for a reference in the control scheme. The fuel flow rate was regulated to keep the fuel utilization at 50%, 60% and 70% during the current ramping. Lower voltage was observed with the higher fuel utilization, but achieved efficiency was higher. The appropriate mass flow control is required not to violate the voltage transient behavior. Appropriate fuel flow manipulation can contribute to moderate the overshoot on the voltage that may appear to the current change. The overshoot on the voltage response resulted from the gradual temperature behavior in the SOFC stack module.
NASA Astrophysics Data System (ADS)
Bao, Yanli; Hua, Hefeng
2017-03-01
Network capability is the enterprise's capability to set up, manage, maintain and use a variety of relations between enterprises, and to obtain resources for improving competitiveness. Tourism in China is in a transformation period from sightseeing to leisure and vacation. Scenic spots as well as tourist enterprises can learn from some other enterprises in the process of resource development, and build up its own network relations in order to get resources for their survival and development. Through the effective management of network relations, the performance of resource development will be improved. By analyzing literature on network capability and the case analysis of Wuxi Huishan Ancient Town, the role of network capacity in the tourism resource development is explored and resource development path is built from the perspective of network capability. Finally, the tourism resource development process model based on network capacity is proposed. This model mainly includes setting up network vision, resource identification, resource acquisition, resource utilization and tourism project development. In these steps, network construction, network management and improving network center status are key points.
Characterization of novel preclinical dose distributions for micro irradiator
NASA Astrophysics Data System (ADS)
Kodra, J.; Miles, D.; Yoon, S. W.; Kirsch, D. G.; Oldham, M.
2017-05-01
This work explores and demonstrates the feasibility of utilizing new 3D printing techniques to implement advanced micro radiation therapy for pre-clinical small animal studies. 3D printed blocks and compensators were designed and printed from a strong x-ray attenuating material at sub-millimeter resolution. These techniques enable a powerful range of new preclinical treatment capabilities including grid therapy, lattice therapy, and IMRT treatment. At small scales, verification of these treatments is exceptionally challenging, and high resolution 3D dosimetry (0.5mm3) is an essential capability to characterize and verify these capabilities, Here, investigate the 2D and 3D dosimetry of several novel pre-clinical treatments using a combination of EBT film and Presage/optical-CT 3D dosimetry in rodent-morphic dosimeters.
VISSR Atmospheric Sounder (VAS) Research Review
NASA Technical Reports Server (NTRS)
Greaves, J. R. (Editor)
1983-01-01
The VAS, an experimental instrument flown onboard Geostationary Operational Environmental Satellite (GOES), is capable of achieving mutlispectral imagery of atmospheric temperature, water vapor, and cloudiness patterns over short time intervals. In addition, this instrument provides an atmospheric sounding capability from geosynchronous orbit. The VAS demonstration is an effort for evaluating the VAS instrument's performance, and for demonstrating the capabilities of a VAS prototype system to provide useful geosynchronous satellite data for supporting weather forecasts and atmospheric research. The demonstration evaluates the performance of the VAS Instruments on GOES-4-5, and -6, develops research oriented and prototype/operational VAS data processing systems, determines the accuracy of certain basic and derived meteorological parameters that can be obtained from the VAS instrument, and assesses the utility of VAS derived information in analyzing severe weather situations.
Visualizing and Validating Metadata Traceability within the CDISC Standards.
Hume, Sam; Sarnikar, Surendra; Becnel, Lauren; Bennett, Dorine
2017-01-01
The Food & Drug Administration has begun requiring that electronic submissions of regulated clinical studies utilize the Clinical Data Information Standards Consortium data standards. Within regulated clinical research, traceability is a requirement and indicates that the analysis results can be traced back to the original source data. Current solutions for clinical research data traceability are limited in terms of querying, validation and visualization capabilities. This paper describes (1) the development of metadata models to support computable traceability and traceability visualizations that are compatible with industry data standards for the regulated clinical research domain, (2) adaptation of graph traversal algorithms to make them capable of identifying traceability gaps and validating traceability across the clinical research data lifecycle, and (3) development of a traceability query capability for retrieval and visualization of traceability information.
Equivalent source modeling of the main field using MAGSAT data
NASA Technical Reports Server (NTRS)
1980-01-01
The software was considerably enhanced to accommodate a more comprehensive examination of data available for field modeling using the equivalent sources method by (1) implementing a dynamic core allocation capability into the software system for the automatic dimensioning of the normal matrix; (2) implementing a time dependent model for the dipoles; (3) incorporating the capability to input specialized data formats in a fashion similar to models in spherical harmonics; and (4) implementing the optional ability to simultaneously estimate observatory anomaly biases where annual means data is utilized. The time dependence capability was demonstrated by estimating a component model of 21 deg resolution using the 14 day MAGSAT data set of Goddard's MGST (12/80). The equivalent source model reproduced both the constant and the secular variation found in MGST (12/80).
Visualizing and Validating Metadata Traceability within the CDISC Standards
Hume, Sam; Sarnikar, Surendra; Becnel, Lauren; Bennett, Dorine
2017-01-01
The Food & Drug Administration has begun requiring that electronic submissions of regulated clinical studies utilize the Clinical Data Information Standards Consortium data standards. Within regulated clinical research, traceability is a requirement and indicates that the analysis results can be traced back to the original source data. Current solutions for clinical research data traceability are limited in terms of querying, validation and visualization capabilities. This paper describes (1) the development of metadata models to support computable traceability and traceability visualizations that are compatible with industry data standards for the regulated clinical research domain, (2) adaptation of graph traversal algorithms to make them capable of identifying traceability gaps and validating traceability across the clinical research data lifecycle, and (3) development of a traceability query capability for retrieval and visualization of traceability information. PMID:28815125
Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space
NASA Astrophysics Data System (ADS)
Spann, James; Niles, Paul B.; Eppler, Dean B.; Kennedy, Kriss J.; Lewis, Ruthan.; Sullivan, Thomas A.
2016-04-01
Introduction: This talk will introduce the preliminary findings in support of NASA's Future Capabilities Team. In support of the ongoing studies conducted by NASA's Future Capabilities Team, we are tasked with collecting research objectives for the Proving Ground activities. The objectives could include but are certainly not limited to: demonstrating crew well being and performance over long duration missions, characterizing lunar volatiles, Earth monitoring, near Earth object search and identification, support of a far-side radio telescope, and measuring impact of deep space environment on biological systems. Beginning in as early as 2023, crewed missions beyond low Earth orbit will begin enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long duration spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fundamental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground. Possible Architectures: Activities and objectives will be accomplished during the Proving Ground phase using a deep space habitat. This habitat will potentially be accompanied by a power/propulsion bus capable of moving the habitat to accomplish different objectives within cis-lunar space. This architecture can also potentially support staging of robotic and tele-robotic assets as well as sample-return. As mission durations increase from 20 days to 300 days, increasingly ambitious objectives may be undertaken including rendezvous with an asteroid or other near-Earth object. Research activities can occur inside the habitat, outside the habitat, via externally mounted instruments, or using free flying satellites/landers. Research Objectives: Primary mission objectives are listed below. In order to help define details of the mission architecture, including the means by which the architecture can be supported, more specific research objectives are needed. Title/Objective Crew Transportation/Provide ability to transport at least four crew to cislunar space Heavy Launch Capability/Provide beyond LEO launch capabilities to include crew, co-manisfested payloads, and large cargo In-Space Propulsion/Provide in-sapce propulsion capabilities to send crew and cargo on Mars-class mission durations and distances Deep Space Navigation and Communication/Provide and validate cislunar and Mars system navigation and communication Science/Enable science community objectives Deep Space Operations/Provide deep-space operation capabilities: EVA, Staging, Logistics, Human-robotic integration, Autonomous operations In-Situ Resource Utilization/Understand the nature and distribution of volatiles and extraction techniques, and decide on their potential use in the human exploration architecture Deep Space Habitation/Provide beyond LEO habitation systems sufficient to support at least four crew on Mars-class mission durations and dormancy Crew Health/Validate crew health, performance, and mitigation protocols for Mars-class missions Reference: .NASA, NASA's Journey to Mars: Pioneering Next Steps in Space Exploration. 34 ( October 8, 2015).
Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space
NASA Astrophysics Data System (ADS)
Spann, James; Niles, Paul; Eppler, Dean; Kennedy, Kriss; Lewis, Ruthan; Sullivan, Thomas
2016-07-01
Introduction: This talk will introduce the preliminary findings in support of NASA's Future Capabilities Team. In support of the ongoing studies conducted by NASA's Future Capabilities Team, we are tasked with collecting re-search objectives for the Proving Ground activities. The objectives could include but are certainly not limited to: demonstrating crew well being and performance over long duration missions, characterizing lunar volatiles, Earth monitoring, near Earth object search and identification, support of a far-side radio telescope, and measuring impact of deep space environment on biological systems. Beginning in as early as 2023, crewed missions beyond low Earth orbit will be enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long dura-tion spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fun-damental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground. Possible Architectures: Activities and objectives will be accomplished during the Proving Ground phase using a deep space habitat. This habitat will potentially be accompanied by a power/propulsion bus capable of moving the habitat to accomplish different objectives within cis-lunar space. This architecture can also potentially support stag-ing of robotic and tele-robotic assets as well as sample-return. As mission durations increase from 20 days to 300 days, increasingly ambitious objectives may be undertaken in-cluding rendezvous with an asteroid or other near-Earth object. Research activities can occur inside the habitat, outside the habitat, via externally mounted instruments, or using free flying satellites/landers. Research Objectives: Primary mission objectives are listed below. In order to help define details of the mission architecture, including the means by which the architecture can be supported, more specific research objectives are needed. Title/Objective • Crew Transportation/Provide ability to transport at least four crew to cislunar space • Heavy Launch Capability/Provide beyond-LEO launch capabilities to include crew, co-manisfested pay-loads, and large cargo • In-Space Propulsion/Provide in-space propulsion capabilities to send crew and cargo on Mars-class mission durations and distances • Deep Space Navigation and Communication/Provide and validate cislunar and Mars system navigation and communication • Science/Enable science community objectives • Deep Space Operations/Provide deep-space operation capabilities: EVA, Staging, Logistics, Human-robotic integration, Autonomous operations • In-Situ Resource Utilization/Understand the nature and distribution of volatiles and extraction techniques, and decide on their potential use in the human exploration architecture • Deep Space Habitation/Provide beyond-LEO habitation systems sufficient to support at least four crew on Mars-class mission durations and dormancy • Crew Health/Validate crew health, performance, and mitigation protocols for Mars-class missions Reference: NASA, NASA's Journey to Mars: Pioneering Next Steps in Space Exploration. 34 ( October 8, 2015).
Richardson, Jeff; Iezzi, Angelo; Khan, Munir A
2015-08-01
Health state utilities measured by the major multi-attribute utility instruments differ. Understanding the reasons for this is important for the choice of instrument and for research designed to reconcile these differences. This paper investigates these reasons by explaining pairwise differences between utilities derived from six multi-attribute utility instruments in terms of (1) their implicit measurement scales; (2) the structure of their descriptive systems; and (3) 'micro-utility effects', scale-adjusted differences attributable to their utility formula. The EQ-5D-5L, SF-6D, HUI 3, 15D and AQoL-8D were administered to 8,019 individuals. Utilities and unweighted values were calculated using each instrument. Scale effects were determined by the linear relationship between utilities, the effect of the descriptive system by comparison of scale-adjusted values and 'micro-utility effects' by the unexplained difference between utilities and values. Overall, 66 % of the differences between utilities was attributable to the descriptive systems, 30.3 % to scale effects and 3.7 % to micro-utility effects. Results imply that the revision of utility algorithms will not reconcile differences between instruments. The dominating importance of the descriptive system highlights the need for researchers to select the instrument most capable of describing the health states relevant for a study. Reconciliation of inconsistent utilities produced by different instruments must focus primarily upon the content of the descriptive system. Utility weights primarily determine the measurement scale. Other differences, attributable to utility formula, are comparatively unimportant.
2013-01-01
Background There has been a great deal of interest in fuel productions from lignocellulosic biomass to minimize the conflict between food and fuel use. The bioconversion of xylose, which is the second most abundant sugar present after glucose in lignocellulosic biomass, is important for the development of cost effective bioprocesses to fuels. Rhodococcus opacus PD630, an oleaginous bacterium, accumulates large amounts of triacylglycerols (TAGs), which can be processed into advanced liquid fuels. However, R. opacus PD630 does not metabolize xylose. Results We generated DNA libraries from a Streptomyces bacterium capable of utilizing xylose and introduced them into R. opacus PD630. Xsp8, one of the engineered strains, was capable of growing on up to 180 g L-1 of xylose. Xsp8 grown in batch-cultures derived from unbleached kraft hardwood pulp hydrolysate containing 70 g L-1 total sugars was able to completely and simultaneously utilize xylose and glucose present in the lignocellulosic feedstock, and yielded 11.0 g L-1 of TAGs as fatty acids, corresponding to 45.8% of the cell dry weight. The yield of total fatty acids per gram of sugars consumed was 0.178 g, which consisted primarily of palmitic acid and oleic acid. The engineered strain Xsp8 was introduced with two heterologous genes from Streptomyces: xylA, encoding xylose isomerase, and xylB, encoding xylulokinase. We further demonstrated that in addition to the introduction and the concomitant expression of heterologous xylA and xylB genes, there is another molecular target in the R. opacus genome which fully enables the functionality of xylA and xylB genes to generate the robust xylose-fermenting strain capable of efficiently producing TAGs at high xylose concentrations. Conclusion We successfully engineered a R. opacus strain that is capable of completely utilizing high concentrations of xylose or mixed xylose/glucose simultaneously, and substantiated its suitability for TAG production. This study demonstrates that the engineered strain possesses a key trait of converters for lipid-based fuels production from lignocellulosic biomass. PMID:24041310
1980-07-01
span, ft (m) CD Drag coefficient, D/qS I CD Drag coefficient at zero lift CL Lift coefficient, L/qS CL Lift curve elope, aCL/aa I CL Maximum lift...recording on magnetic tape utilizing a Beckman 210 high-speed acquistion system. The wing-fuselage model was mounted in the test section such that...6, 7, and 8 show the tip sails have little impact on the zero or low-lift drag, but these j sails definitely influence the induced drag that is deve
Liquid carbon dioxide absorbents, methods of using the same, and related system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, Robert James; Soloveichik, Grigorii Lev; Rubinsztajn, Malgorzata Iwona
A carbon dioxide absorbent composition is described, including (i) a liquid, nonaqueous silicon-based material, functionalized with one or more groups that either reversibly react with CO 2 or have a high-affinity for CO 2, and (ii) a hydroxy-containing solvent that is capable of dissolving both the silicon-based material and a reaction product of the silicon-based material and CO 2. The absorbent may be utilized in methods to reduce carbon dioxide in an exhaust gas, and finds particular utility in power plants.
MIUS integration and subsystems test program
NASA Technical Reports Server (NTRS)
Beckham, W. S., Jr.; Shows, G. C.; Redding, T. E.; Wadle, R. C.; Keough, M. B.; Poradek, J. C.
1976-01-01
The MIUS Integration and Subsystems Test (MIST) facility at the Lyndon B. Johnson Space Center was completed and ready in May 1974 for conducting specific tests in direct support of the Modular Integrated Utility System (MIUS). A series of subsystems and integrated tests was conducted since that time, culminating in a series of 24-hour dynamic tests to further demonstrate the capabilities of the MIUS Program concepts to meet typical utility load profiles for a residential area. Results of the MIST Program are presented which achieved demonstrated plant thermal efficiencies ranging from 57 to 65 percent.
Hardware Based Technology Assessment in Support of Near-Term Space Fission Missions
NASA Technical Reports Server (NTRS)
Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Martin, James; BraggSitton, Shannon; Carter, Robert; Dickens, Ricky; Salvail, Pat; Williams, Eric; Harper, Roger
2003-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and utilized. Successful utilization will most likely occur if frequent, significant hardware-based milestones can be achieved throughout the program. Achieving these milestones will depend on the capability to perform highly realistic non-nuclear testing of nuclear systems. This paper discusses ongoing and potential research that could help achieve these milestones.
Anastasaki, Athina; Nikolaou, Vasiliki; Brandford-Adams, Francesca; Nurumbetov, Gabit; Zhang, Qiang; Clarkson, Guy J; Fox, David J; Wilson, Paul; Kempe, Kristian; Haddleton, David M
2015-04-04
A photo-polymerization protocol, utilizing a pre-formed and well-characterized Cu(II) formate complex, [Cu(Me6-Tren)(O2CH)](ClO4), mediated by UV light is described. In the absence of additional reducing agents and/or photosensitizers, ppm concentrations of the oxidatively stable [Cu(Me6-Tren)(O2CH)](ClO4), furnish near-quantitative conversions within 2 h, yielding poly(acrylates) with low dispersities (∼1.10) and exceptional end-group fidelity, capable of undergoing in situ chain extension and block copolymerization.
Method for the purification of noble gases, nitrogen and hydrogen
Baker, J.D.; Meikrantz, D.H.; Tuggle, D.G.
1997-09-23
A method and apparatus are disclosed for the purification and collection of hydrogen isotopes in a flowing inert gaseous mixture containing impurities, wherein metal alloy getters having the capability of sorbing non-hydrogen impurities such as oxygen, carbon dioxide, carbon monoxide, methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more efficiently collected. A plurality of parallel process lines utilizing metal getter alloys can be used to provide for the continuous purification and collection of the hydrogen isotopes. 15 figs.
Medical diagnostics with mobile devices: Comparison of intrinsic and extrinsic sensing.
Kwon, L; Long, K D; Wan, Y; Yu, H; Cunningham, B T
2016-01-01
We review the recent development of mobile detection instruments used for medical diagnostics, and consider the relative advantages of approaches that utilize the internal sensing capabilities of commercially available mobile communication devices (such as smartphones and tablet computers) compared to those that utilize a custom external sensor module. In this review, we focus specifically upon mobile medical diagnostic platforms that are being developed to serve the need in global health, personalized medicine, and point-of-care diagnostics. Copyright © 2016 Elsevier Inc. All rights reserved.
Method for the purification of noble gases, nitrogen and hydrogen
Baker, John D.; Meikrantz, David H.; Tuggle, Dale G.
1997-01-01
A method and apparatus for the purification and collection of hydrogen isotopes in a flowing inert gaseous mixture containing impurities, wherein metal alloy getters having the capability of sorbing non-hydrogen impurities such as oxygen, carbon dioxide, carbon monoxide, methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more efficiently collected. A plurality of parallel process lines utilizing metal getter alloys can be used to provide for the continuous purification and collection of the hydrogen isotopes.
Exploring Flow Procedures for Diazonium Formation.
Hu, Te; Baxendale, Ian R; Baumann, Marcus
2016-07-14
The synthesis of diazonium salts is historically an important transformation extensively utilized in dye manufacture. However the highly reactive nature of the diazonium functionality has additionally led to the development of many new reactions including several carbon-carbon bond forming processes. It is therefore highly desirable to determine optimum conditions for the formation of diazonium compounds utilizing the latest processing tools such as flow chemistry to take advantage of the increased safety and continuous manufacturing capabilities. Herein we report a series of flow-based procedures to prepare diazonium salts for subsequent in-situ consumption.
Liquid carbon dioxide absorbents, methods of using the same, and related systems
O'Brien, Michael Joseph; Perry, Robert James; Lam, Tunchiao Hubert; Soloveichik, Grigorii Lev; Kniajanski, Sergei; Lewis, Larry Neil; Rubinsztajn, Malgorzata Iwona; Hancu, Dan
2016-09-13
A carbon dioxide absorbent composition is described, including (i) a liquid, nonaqueous silicon-based material, functionalized with one or more groups that either reversibly react with CO.sub.2 or have a high-affinity for CO.sub.2; and (ii) a hydroxy-containing solvent that is capable of dissolving both the silicon-based material and a reaction product of the silicon-based material and CO.sub.2. The absorbent may be utilized in methods to reduce carbon dioxide in an exhaust gas, and finds particular utility in power plants.
Electrostatically actuatable light modulating device
Koehler, Dale R.
1991-01-01
The electrostatically actuatable light modulator utilizes an opaque substrate plate patterned with an array of aperture cells, the cells comprised of physically positionable dielectric shutters and electrostatic actuators. With incorporation of a light source and a viewing screen, a projection display system is effected. Inclusion of a color filter array aligned with the aperture cells accomplishes a color display. The system is realized in terms of a silicon based manufacturing technology allowing fabrication of a high resolution capability in a physically small device which with the utilization of included magnification optics allows both large and small projection displays.
NASA Technical Reports Server (NTRS)
Sofie, Stephen W.; Cable, Thomas L.; Salamone, Sam M.
2005-01-01
Solid oxide fuel cells (SOFCs) have tremendous commercial potential because of their high efficiency, high energy density, and flexible fuel capability (ability to use fossil fuels). The drive for high-power-utilizing, ultrathin electrolytes (less than 10 microns), has placed an increased demand on the anode to provide structural support, yet allow sufficient fuel entry for sustained power generation. Concentration polarization, a condition where the fuel demand exceeds the supply, is evident in all commercial-based anode-supported cells, and it presents a significant roadblock to SOFC commercialization.
Design Principles for a Comprehensive Library System.
ERIC Educational Resources Information Center
Uluakar, Tamer; And Others
1981-01-01
Describes an online design featuring circulation control, catalog access, and serial holdings that uses an incremental approach to system development. Utilizing a dedicated computer, this second of three releases pays particular attention to present and predicted computing capabilities as well as trends in library automation. (Author/RAA)
A device and method for rapid indirect measurement of human systolic and diastolic blood pressures.
DOT National Transportation Integrated Search
1970-12-01
An indirect blood pressure measuring device and method were evolved for human use. This system is capable of providing 30 measurements each of systolic and diastolic pressures per minute. The system utilizes two brachial blood pressure cuffs (one on ...
24 CFR 583.300 - General operation.
Code of Federal Regulations, 2010 CFR
2010-04-01
... residents from the elements. (2) Access. The housing must be accessible and capable of being utilized... recipient must provide a formal process that recognizes the rights of individuals receiving assistance to due process of law. This process, at a minimum, must consist of: (1) Written notice to the participant...
Ruminal tryptophan-utilizing bacteria degrade ergovaline from tall fescue seed extract
USDA-ARS?s Scientific Manuscript database
The objectives of this study were to evaluate degradation of ergovaline in a tall fescue [Lolium arundinaceum (Schreb.) Darbysh.] seed extract by rumen microflora ex vivo and to identify specific bacteria capable of ergovaline degradation in vitro. Rumen cell suspensions were prepared by harvesting ...
Potential capabilities of lunar laser ranging for geodesy and relativity
NASA Technical Reports Server (NTRS)
Muller, Jurgen; Williams, James G.; Turshev, Slava G.; Shelus, Peter J.
2005-01-01
Here, we review the LLR technique focusing on its impact on Geodesy and Relativity. We discuss the modem observational accuracy and the level of existing LLR modeling. We present the near-term objectives and emphasize improvements needed to fully utilize the scientific potential of LLR.
Computer Applications in the Design Process.
ERIC Educational Resources Information Center
Winchip, Susan
Computer Assisted Design (CAD) and Computer Assisted Manufacturing (CAM) are emerging technologies now being used in home economics and interior design applications. A microcomputer in a computer network system is capable of executing computer graphic functions such as three-dimensional modeling, as well as utilizing office automation packages to…
Systems and Techniques for Identifying and Avoiding Ice
NASA Technical Reports Server (NTRS)
Hansman, R. John
1995-01-01
In-flight icing is one of the most difficult aviation weather hazards facing general aviation. Because most aircraft in the general aviation category are not certified for flight into known icing conditions, techniques for identifying and avoiding in-flight ice are important to maintain safety while increasing the utility and dispatch capability which is part of the AGATE vision. This report summarizes a brief study effort which: (1) Reviewed current ice identification, forecasting, and avoidance techniques; (2) Assessed feasibility of improved forecasting and ice avoidance procedures; and (3) Identified key issues for the development of improved capability with regard to in-flight icing.
Unique system of FE/PD for magneto-optical recording and magnetic switching devices
Liu, Chian Q.; Bader, Samuel D.
1992-01-01
A high density magneto-optical information storage medium utilizing the properties of an ultrathin iron film on a palladium substrate. The present invention comprises a magneto-optical medium capable of thermal and magnetic stability and capable of possessing a vertical orientation of the magnetization vector for the magnetic material. Data storage relies on the temperature dependence of the coercivity of the ultrathin film. Data retrieval derives from the Kerr effect which describes the direction of rotation of a plane of polarized light traversing the ultrathin magnetic material as a function of the orientation of the magnetization vector.
Method and apparatus for testing microfilaments
Schleitweiler, Patrick M.; Merten, Jr., Charles W.
1995-08-01
A method and apparatus are disclosed for testing tensile strength of microfilaments. Fibers as small as 0.001 inch in diameter and 0.04 inches in length have been tested, although the method and apparatus of the invention are capable of testing fibers of smaller diameter and length. The invention utilizes a method wherein one or both ends of a microfilament is gripped using resin which is softened sufficiently to accept an end of the microfilament and then allowed to harden. The invention also employs the use of a translation stage capable of controlled three-dimensional movement suited to facilitating gripping of the microfilament.
Development of a Fiber Laser Welding Capability for the W76, MC4702 Firing Set
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samayoa, Jose
2010-05-12
Development work to implement a new welding system for a Firing Set is presented. The new system is significant because it represents the first use of fiber laser welding technology at the KCP. The work used Six-Sigma tools for weld characterization and to define process performance. Determinations of workable weld parameters and comparison to existing equipment were completed. Replication of existing waveforms was done utilizing an Arbitrary Pulse Generator (APG), which was used to modulate the fiber laser’s exclusive continuous wave (CW) output. Fiber laser weld process capability for a Firing Set is demonstrated.
Isolation and characterization of marine bacteria capable of utilizing phthalate.
Iwaki, Hiroaki; Nishimura, Ayaka; Hasegawa, Yoshie
2012-03-01
Eleven phthalate-degrading bacterial strains were isolated from seawater collected off the coast of Japan. The isolates were found to be most closely related to the marine bacterial genera Alteromonas, Citreicella, Marinomonas, Marinovum, Pelagibaca, Rhodovulum, Sulfitobacter, Thalassobius, Thalassococcus, Thalassospira, and Tropicibacter. For the first time, members of these genera were shown to be capable of growth on phthalate. The plate assay for visual detection of phthalate dioxygenase activity and PCR detection of a possible gene encoding 4,5-dihydroxyphthalate decarboxylase indicated that phthalate is degraded via 4,5-dihydroxyphthalate to protocatechuate in all the isolates.
Opportunities for leveraging OS virtualization in high-end supercomputing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridges, Patrick G.; Pedretti, Kevin Thomas Tauke
2010-11-01
This paper examines potential motivations for incorporating virtualization support in the system software stacks of high-end capability supercomputers. We advocate that this will increase the flexibility of these platforms significantly and enable new capabilities that are not possible with current fixed software stacks. Our results indicate that compute, virtual memory, and I/O virtualization overheads are low and can be further mitigated by utilizing well-known techniques such as large paging and VMM bypass. Furthermore, since the addition of virtualization support does not affect the performance of applications using the traditional native environment, there is essentially no disadvantage to its addition.
Near-infrared face recognition utilizing open CV software
NASA Astrophysics Data System (ADS)
Sellami, Louiza; Ngo, Hau; Fowler, Chris J.; Kearney, Liam M.
2014-06-01
Commercially available hardware, freely available algorithms, and authors' developed software are synergized successfully to detect and recognize subjects in an environment without visible light. This project integrates three major components: an illumination device operating in near infrared (NIR) spectrum, a NIR capable camera and a software algorithm capable of performing image manipulation, facial detection and recognition. Focusing our efforts in the near infrared spectrum allows the low budget system to operate covertly while still allowing for accurate face recognition. In doing so a valuable function has been developed which presents potential benefits in future civilian and military security and surveillance operations.
Optimal cooperative time-fixed impulsive rendezvous
NASA Technical Reports Server (NTRS)
Mirfakhraie, Koorosh; Conway, Bruce A.
1990-01-01
New capabilities have been added to a method that had been developed for determining optimal, i.e., minimum fuel, trajectories for the fixed-time cooperative rendezvous of two spacecraft. The method utilizes the primer vector theory. The new capabilities enable the method to accomodate cases in which there are fuel constraints on the spacecraft and/or enable the addition of a mid-course impulse to one of the vehicle's trajectories. Results are presented for a large number of cases, and the effect of varying parameters, such as vehicle fuel constraints, vehicle initial masses, and time allowed for the rendezvous, is demonstrated.
Incident Energy Focused Design and Validation for the Floating Potential Probe
NASA Technical Reports Server (NTRS)
Fincannon, James
2002-01-01
Utilizing the spacecraft shadowing and incident energy analysis capabilities of the NASA Glenn Research Center Power and Propulsion Office's SPACE System Power Analysis for Capability Evaluation) computer code, this paper documents the analyses for various International Space Station (ISS) Floating Potential Probe (EPP) preliminary design options. These options include various solar panel orientations and configurations as well as deployment locations on the ISS. The incident energy for the final selected option is characterized. A good correlation between the predicted data and on-orbit operational telemetry is demonstrated. Minor deviations are postulated to be induced by degradation or sensor drift.
Solar system exploration - Some thoughts on techniques and technologies
NASA Technical Reports Server (NTRS)
Bekey, Ivan
1990-01-01
Some techniques and technologies for proposed interplanetary missions are described. Methods for reducing the effect of zero gravity on humans during missions to Mars and the moon, and the need for launch vehicles with increased lift capability are discussed. The use of nuclear power, liquid oxygen from the moon, and helium 3 as propellants for spacecraft is examined. The development and capabilities of the Shuttle Z vehicle are considered. Attention is given to the Space Station Freedom and Energia. A launch vehicle concept which utilizes the Shuttle Z for a mission to Mars is presented.
1967-08-02
Developed by the Marshall Space Flight Center (MSFC) as an interim vehicle in MSFC’s “building block” approach to the Saturn rocket development, the Saturn IB utilized Saturn I technology to further develop and refine the larger boosters and the Apollo spacecraft capabilities required for the manned lunar missions. The Saturn IB vehicle was a two-stage rocket and had a payload capability about 50 percent greater than the Saturn I vehicle. The first stage, S-IB stage, was a redesigned first stage of the Saturn I. This photograph is of the S-IB nose cone #3 during assembly in building 4752.
A unique facility for V/STOL aircraft hover testing
NASA Technical Reports Server (NTRS)
Culpepper, R. G.; Murphy, R. D.
1979-01-01
The paper discusses the Navy's XFV-12A tethered hover testing capabilities utilizing NASA's Impact Dynamic Research Facility (IDRF) at Langley. The facility allows for both static and dynamic tethered hover test operations to be undertaken with safety. The installation which consists of the 'Z' system (tether), restraint system, static tiedowns and the control room and console, is presented in detail. Among the capabilities demonstrated were the ability to recover the aircraft anytime during a test, to rapidly and safely define control limits, and to provide a realistic environment for pilot training and proficiency in VTOL flight.
From Lunar Regolith to Fabricated Parts: Technology Developments and the Utilization of Moon Dirt
NASA Technical Reports Server (NTRS)
McLemore, C. A.; Fikes, J. C.; McCarley, K. S.; Good, J. E.; Gilley, S. D.; Kennedy, J. P.
2008-01-01
The U.S. Space Exploration Policy has as a cornerstone the establishment of an outpost on the moon. This lunar outpost wil1 eventually provide the necessary planning, technology development, testbed, and training for manned missions in the future beyond the Moon. As part of the overall activity, the National Aeronautics and Space Administration (NASA) is investigating how the in situ resources can be utilized to improve mission success by reducing up-mass, improving safety, reducing risk, and bringing down costs for the overall mission. Marshall Space Flight Center (MSFC), along with other NASA centers, is supporting this endeavor by exploring how lunar regolith can be mined for uses such as construction, life support, propulsion, power, and fabrication. An infrastructure capable of fabrication and nondestructive evaluation will be needed to support habitat structure development and maintenance, tools and mechanical parts fabrication, as well as repair and replacement of space-mission hardware such as life-support items, vehicle components, and crew systems, This infrastructure will utilize the technologies being developed under the In Situ Fabrication and Repair (ISFR) element, which is working in conjunction with the technologies being developed under the In Situ Resources Utilization (ISRU) element, to live off the land. The ISFR Element supports the Space Exploration Initiative by reducing downtime due to failed components; decreasing risk to crew by recovering quickly from degraded operation of equipment; improving system functionality with advanced geometry capabilities; and enhancing mission safety by reducing assembly part counts of original designs where possible. This paper addresses the need and plan for understanding the properties of the lunar regolith to determine the applicability of using this material in a fabrication process. This effort includes the development of high fidelity simulants that will be used in fabrication processes on the ground to drive down risk and increase the Technology Readiness Level (TRL) prior to implementing this capability on the moon. Also discussed in this paper is the on-going research using Electron Beam Melting (EBM) technology as a possible solution to manufacturing parts and spares on the Moon's surface.
Algorithms exploiting ultrasonic sensors for subject classification
NASA Astrophysics Data System (ADS)
Desai, Sachi; Quoraishee, Shafik
2009-09-01
Proposed here is a series of techniques exploiting micro-Doppler ultrasonic sensors capable of characterizing various detected mammalian targets based on their physiological movements captured a series of robust features. Employed is a combination of unique and conventional digital signal processing techniques arranged in such a manner they become capable of classifying a series of walkers. These processes for feature extraction develops a robust feature space capable of providing discrimination of various movements generated from bipeds and quadrupeds and further subdivided into large or small. These movements can be exploited to provide specific information of a given signature dividing it in a series of subset signatures exploiting wavelets to generate start/stop times. After viewing a series spectrograms of the signature we are able to see distinct differences and utilizing kurtosis, we generate an envelope detector capable of isolating each of the corresponding step cycles generated during a walk. The walk cycle is defined as one complete sequence of walking/running from the foot pushing off the ground and concluding when returning to the ground. This time information segments the events that are readily seen in the spectrogram but obstructed in the temporal domain into individual walk sequences. This walking sequence is then subsequently translated into a three dimensional waterfall plot defining the expected energy value associated with the motion at particular instance of time and frequency. The value is capable of being repeatable for each particular class and employable to discriminate the events. Highly reliable classification is realized exploiting a classifier trained on a candidate sample space derived from the associated gyrations created by motion from actors of interest. The classifier developed herein provides a capability to classify events as an adult humans, children humans, horses, and dogs at potentially high rates based on the tested sample space. The algorithm developed and described will provide utility to an underused sensor modality for human intrusion detection because of the current high-rate of generated false alarms. The active ultrasonic sensor coupled in a multi-modal sensor suite with binary, less descriptive sensors like seismic devices realizing a greater accuracy rate for detection of persons of interest for homeland purposes.
Nucleic acid compositions and the encoding proteins
Preston, III, James F.; Chow, Virginia; Nong, Guang; Rice, John D.; St. John, Franz J.
2014-09-02
The subject invention provides at least one nucleic acid sequence encoding an aldouronate-utilization regulon isolated from Paenibacillus sp. strain JDR-2, a bacterium which efficiently utilizes xylan and metabolizes aldouronates (methylglucuronoxylosaccharides). The subject invention also provides a means for providing a coordinately regulated process in which xylan depolymerization and product assimilation are coupled in Paenibacillus sp. strain JDR-2 to provide a favorable system for the conversion of lignocellulosic biomass to biobased products. Additionally, the nucleic acid sequences encoding the aldouronate-utilization regulon can be used to transform other bacteria to form organisms capable of producing a desired product (e.g., ethanol, 1-butanol, acetoin, 2,3-butanediol, 1,3-propanediol, succinate, lactate, acetate, malate or alanine) from lignocellulosic biomass.
A robust functional-data-analysis method for data recovery in multichannel sensor systems.
Sun, Jian; Liao, Haitao; Upadhyaya, Belle R
2014-08-01
Multichannel sensor systems are widely used in condition monitoring for effective failure prevention of critical equipment or processes. However, loss of sensor readings due to malfunctions of sensors and/or communication has long been a hurdle to reliable operations of such integrated systems. Moreover, asynchronous data sampling and/or limited data transmission are usually seen in multiple sensor channels. To reliably perform fault diagnosis and prognosis in such operating environments, a data recovery method based on functional principal component analysis (FPCA) can be utilized. However, traditional FPCA methods are not robust to outliers and their capabilities are limited in recovering signals with strongly skewed distributions (i.e., lack of symmetry). This paper provides a robust data-recovery method based on functional data analysis to enhance the reliability of multichannel sensor systems. The method not only considers the possibly skewed distribution of each channel of signal trajectories, but is also capable of recovering missing data for both individual and correlated sensor channels with asynchronous data that may be sparse as well. In particular, grand median functions, rather than classical grand mean functions, are utilized for robust smoothing of sensor signals. Furthermore, the relationship between the functional scores of two correlated signals is modeled using multivariate functional regression to enhance the overall data-recovery capability. An experimental flow-control loop that mimics the operation of coolant-flow loop in a multimodular integral pressurized water reactor is used to demonstrate the effectiveness and adaptability of the proposed data-recovery method. The computational results illustrate that the proposed method is robust to outliers and more capable than the existing FPCA-based method in terms of the accuracy in recovering strongly skewed signals. In addition, turbofan engine data are also analyzed to verify the capability of the proposed method in recovering non-skewed signals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels—eliminating the need for large transformers. Transformers “step up” the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually “stepped down” to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcon’smore » new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcon’s modular devices are designed to ensure reliability—if one device fails it can be bypassed and the system can continue to run.« less
Temperature dependence of the multistability of lactose utilization network of Escherichia coli
NASA Astrophysics Data System (ADS)
Nepal, Sudip; Kumar, Pradeep
Biological systems are capable of producing multiple states out of a single set of inputs. Multistability acts like a biological switch that allows organisms to respond differently to different environmental conditions and hence plays an important role in adaptation to changing environment. One of the widely studied gene regulatory networks underlying the metabolism of bacteria is the lactose utilization network, which exhibits a multistable behavior as a function of lactose concentration. We have studied the effect of temperature on multistability of the lactose utilization network at various concentrations of thio-methylgalactoside (TMG), a synthetic lactose. We find that while the lactose utilization network exhibits a bistable behavior for temperature T >20° C , a graded response arises for temperature T <=20° C. Furthermore, we construct a phase diagram of the graded and bistable response of lactose utilization network as a function of temperature and TMG concentration. Our results suggest that environmental conditions, in this case temperature, can alter the nature of cellular regulation of metabolism.
The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities
NASA Technical Reports Server (NTRS)
Bauer, Jeff
2007-01-01
Over 60 years of Unmanned Aircraft System (UAS) expertise at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.
A global range military transport: The ostrich
NASA Technical Reports Server (NTRS)
Aguiar, John; Booker, Cecilia; Hoffman, Eric; Kramar, James; Manahan, Orlando; Serranzana, Ray; Taylor, Mike
1993-01-01
Studies have shown that there is an increasing need for a global range transport capable of carrying large numbers of troops and equipment to potential trouble spots throughout the world. The Ostrich is a solution to this problem. The Ostrich is capable of carrying 800,000 pounds 6,500 n.m. and returning with 15 percent payload, without refueling. With a technology availability date in 2010 and an initial operating capability of 2015, the aircraft incorporates many advanced technologies including laminar flow control, composite primary structures, and a unique multibody design. By utilizing current technology, such as using McDonnell Douglas C-17 fuselage for the outer fuselages on the Ostrich, the cost for the aircraft was reduced. The cost of the Ostrich per aircraft is $1.2 billion with a direct operating cost of $56,000 per flight hour. The Ostrich will provide a valuable service as a logistical transport capable of rapidly projecting a significant military force or humanitarian aid anywhere in the world.
Unmanned and Unattended Response Capability for Homeland Defense
DOE Office of Scientific and Technical Information (OSTI.GOV)
BENNETT, PHIL C.
2002-11-01
An analysis was conducted of the potential for unmanned and unattended robotic technologies for forward-based, immediate response capabilities that enables access and controlled task performance. The authors analyze high-impact response scenarios in conjunction with homeland security organizations, such as the NNSA Office of Emergency Response, the FBI, the National Guard, and the Army Technical Escort Unit, to cover a range of radiological, chemical and biological threats. They conducted an analysis of the potential of forward-based, unmanned and unattended robotic technologies to accelerate and enhance emergency and crisis response by Homeland Defense organizations. Response systems concepts were developed utilizing new technologiesmore » supported by existing emerging threats base technologies to meet the defined response scenarios. These systems will pre-position robotic and remote sensing capabilities stationed close to multiple sites for immediate action. Analysis of assembled systems included experimental activities to determine potential efficacy in the response scenarios, and iteration on systems concepts and remote sensing and robotic technologies, creating new immediate response capabilities for Homeland Defense.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, Timothy P.; Martz, Roger L.; Kiedrowski, Brian C.
New unstructured mesh capabilities in MCNP6 (developmental version during summer 2012) show potential for conducting multi-physics analyses by coupling MCNP to a finite element solver such as Abaqus/CAE[2]. Before these new capabilities can be utilized, the ability of MCNP to accurately estimate eigenvalues and pin powers using an unstructured mesh must first be verified. Previous work to verify the unstructured mesh capabilities in MCNP was accomplished using the Godiva sphere [1], and this work attempts to build on that. To accomplish this, a criticality benchmark and a fuel assembly benchmark were used for calculations in MCNP using both the Constructivemore » Solid Geometry (CSG) native to MCNP and the unstructured mesh geometry generated using Abaqus/CAE. The Big Ten criticality benchmark [3] was modeled due to its geometry being similar to that of a reactor fuel pin. The C5G7 3-D Mixed Oxide (MOX) Fuel Assembly Benchmark [4] was modeled to test the unstructured mesh capabilities on a reactor-type problem.« less
Photoelectrochemical molecular comb
Thundat, Thomas G [Knoxville, TN; Ferrell, Thomas L [Knoxville, TN; Brown,; Gilbert, M [Knoxville, TN
2007-05-01
A method, system, and apparatus are provided for separating molecules, such as biomolecules. The method, system, and apparatus utilize an electrochemical cell having at least to electrodes, one electrode comprising a photo-sensitive material capable of generating a photopotential. Molecules are moved through an electrolyte medium between the at least two electrodes based upon localized photopotentials.
Photoelectrochemical molecular comb
Thundat, Thomas G [Knoxville, TN; Ferrell, Thomas L [Knoxville, TN; Brown, Gilbert M [Knoxville, TN
2012-02-07
A method, system, and apparatus are provided for separating molecules, such as biomolecules. The method, system, and apparatus utilize an electrochemical cell having at least two electrodes, one electrode comprising a photo-sensitive material capable of generating a photopotential. Molecules are moved through an electrolyte medium between the at least two electrodes based upon localized photopotentials.
Mixture Rasch Models with Joint Maximum Likelihood Estimation
ERIC Educational Resources Information Center
Willse, John T.
2011-01-01
This research provides a demonstration of the utility of mixture Rasch models. Specifically, a model capable of estimating a mixture partial credit model using joint maximum likelihood is presented. Like the partial credit model, the mixture partial credit model has the beneficial feature of being appropriate for analysis of assessment data…
Training Analysis of P-3 Replacement Pilot Training.
ERIC Educational Resources Information Center
Browning, Robert F.; And Others
The report covers an evaluation of current P-3 pilot training programs at the replacement squadron level. It contains detailed discussions concerning training hardware and software that have been supplied. A detailed examination is made of the curriculum and the simulation capabilities and utilization of P-3 operational flight trainers. Concurrent…
Fusing corn nitrogen recommendation tools for an improved canopy reflectance sensor performance
USDA-ARS?s Scientific Manuscript database
Nitrogen (N) rate recommendation tools are utilized to help producers maximize corn grain yield production. Many of these tools provide recommendations at field scales but often fail when corn N requirements are variable across the field. Canopy reflectance sensors are capable of capturing within-fi...
Developing Leaders through Mentoring: A Brief Literature Review
ERIC Educational Resources Information Center
Leavitt, Carol C.
2011-01-01
Our rapidly-changing, ambiguous, global business arena demands a unique and evolving set of insights and capabilities by which leaders may effectively navigate this new terrain. Mentoring can accomplish exactly that, as its processes orient, train, and advance the skills, knowledge, and experiences of aspiring leaders. Best utilized, mentoring is…
48 CFR 1352.213-70 - Evaluation utilizing simplified acquisition procedures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... perform their proposed duties. (2) Technical Approach and Capability. The offeror's approach to performing...) The Government will issue an order resulting from this request for quotation to the responsible offeror whose quotation results in the best value to the Government, considering both price and non-price...
42 CFR 51c.305 - Grant evaluation and award.
Code of Federal Regulations, 2010 CFR
2010-10-01
... potential of the center for the development of new and effective methods for health services delivery and management; (d) The soundness of the fiscal plan for assuring effective utilization of grant funds and maximizing non-grant revenue; (e) The administrative and management capability of the applicant; (f) The...
ENHANCEMENT OF REACTIVITY IN SURFACTANT-MODIFIED SORBENTS FOR SULFUR DIOXIDE CONTROL
Injection of calcium-based sorbents into the postflame zone of utility boilers is capable of achieving sulfur dioxide (SO2) captures of 50-60% at a stoichiometry of 2. Calcium hydroxide [Ca(OH)2] appears to be the most effective commercially available sorbent. Recent attempts to ...
Significance of Life Skills Education
ERIC Educational Resources Information Center
Prajapati, Ravindra K.; Sharma, Bosky; Sharma, Dharmendra
2017-01-01
Adolescence is a period when the intellectual, physical, social, emotional and all the capabilities are very high, but, unfortunately, most of the adolescents are unable to utilize their potential to maximum due to various reasons. They face many emerging issues such as global warming, famines, poverty, suicide, population explosion as well as…
Nonterrestrial utilization of materials: Automated space manufacturing facility
NASA Technical Reports Server (NTRS)
1982-01-01
Four areas related to the nonterrestrial use of materials are included: (1) material resources needed for feedstock in an orbital manufacturing facility, (2) required initial components of a nonterrestrial manufacturing facility, (3) growth and productive capability of such a facility, and (4) automation and robotics requirements of the facility.
Development of Distinctive Feature Theory.
ERIC Educational Resources Information Center
Meyer, Peggy L.
Since the beginning of man's awareness of his language capabilities and language structure, he has assumed that speech is composed of discrete entities. The linguist attempts to establish a model of the workings of these distinctive sounds in a language. Utilizing an historical basis for discussion, this general survey of the distinctive feature…
Computerized Adaptive Testing: Some Issues in Development.
ERIC Educational Resources Information Center
Orcutt, Venetia L.
The emergence of enhanced capabilities in computer technology coupled with the growing body of knowledge regarding item response theory has resulted in the expansion of computerized adaptive test (CAT) utilization in a variety of venues. Newcomers to the field need a more thorough understanding of item response theory (IRT) principles, their…
A dual function medium (Cr-ZSM-5), capable of physisorbing trichloroethylene (TCE) at ambient temperature and catalytically oxidizing it at elevated temperature (-350 degrees C) was utilized in a novel continuous falling furnace reactor system to store and periodically destroy t...
Utilizing Multi-Modal Literacies in Middle Grades Science
ERIC Educational Resources Information Center
Saurino, Dan; Ogletree, Tamra; Saurino, Penelope
2010-01-01
The nature of literacy is changing. Increased student use of computer-mediated, digital, and visual communication spans our understanding of adolescent multi-modal capabilities that reach beyond the traditional conventions of linear speech and written text in the science curriculum. Advancing technology opens doors to learning that involve…
Code of Federal Regulations, 2012 CFR
2012-01-01
... training and employment services, health care services, educational opportunities, energy utilization and... local government management capabilities, institutions, and programs related to rural development and... resources of rural areas. (e) As used in paragraph (d) of this section, the term rural development...
Code of Federal Regulations, 2011 CFR
2011-01-01
... training and employment services, health care services, educational opportunities, energy utilization and... local government management capabilities, institutions, and programs related to rural development and... resources of rural areas. (e) As used in paragraph (d) of this section, the term rural development...
Code of Federal Regulations, 2010 CFR
2010-01-01
... training and employment services, health care services, educational opportunities, energy utilization and... local government management capabilities, institutions, and programs related to rural development and... resources of rural areas. (e) As used in paragraph (d) of this section, the term rural development...
Code of Federal Regulations, 2013 CFR
2013-01-01
... training and employment services, health care services, educational opportunities, energy utilization and... local government management capabilities, institutions, and programs related to rural development and... resources of rural areas. (e) As used in paragraph (d) of this section, the term rural development...
Code of Federal Regulations, 2014 CFR
2014-01-01
... training and employment services, health care services, educational opportunities, energy utilization and... local government management capabilities, institutions, and programs related to rural development and... resources of rural areas. (e) As used in paragraph (d) of this section, the term rural development...
Geographic Information System (GIS) Applications at a Multi-Site Community College.
ERIC Educational Resources Information Center
Pottle, Laura
This report presents the Front Range Community College (FRCC) (Colorado) Office of Institutional Research's recent expansion of its data analysis and reporting capabilities to include a geographic information system (GIS). Utilizing ArcView GIS software, the college is better able to visualize institutional and environmental data. They have…
Just a Good Story? Shaping Organizational Learning through Storytelling
ERIC Educational Resources Information Center
Whitener, J. Kori
2007-01-01
Organizational learning is a complex phenomenon, the collective nature of which makes it difficult to study and examine. Organizational stories are cultural forms that facilitate the sensemaking processes and capabilities of the individuals and teams that form the collective organization. This paper utilizes literature to suggest possible impacts…
Open-mouthed hybrid microcapsules with elevated enzyme loading and enhanced catalytic activity.
Shi, Jiafu; Zhang, Shaohua; Wang, Xiaoli; Jiang, Zhongyi
2014-10-25
Open-mouthed hybrid microcapsules (HMCs) are synthesized through a hard-templating method. When utilized for enzyme immobilization and enzymatic catalysis, the open-mouthed HMCs show high enzyme loading capability, enhanced catalytic activity and desirable recycling stability, due to their fully exposed outer and inner surfaces.
Bacterial strains capable of using either phenanthrene, fluoranthene, or pyrene as sole carbon and energy sources were isolated from 16 different soil samples collected from the United States, Germany, and Norway. Thirty one strains were isolated on fluoranthene and the other twe...
Doctrine Development Process in the Kenya Army: Bridging the Gap
2014-06-13
concepts, and principles . It must broadly follow three doctrine development phases: the collection/information gathering phase; the formulation and...a capable lead organization. The organization must eliminate terminological and utility confusion among doctrine, concepts, and principles . It must...15 The relationship Between Military Doctrine, Concept and Principle
As many water utilities are seeking new and innovative rehabilitation technologies to extend the life of their water distribution systems, information on the capabilities and applicability of new technologies is not always readily available from an independent source. The U.S. E...
Overview and prospects of selenium phytoremediation approaches
USDA-ARS?s Scientific Manuscript database
Evidence is lacking on whether selenium (Se) is essential for vegetation growth, but plants can absorb, assimilate, and accumulate Se in leaves and roots. The capability of plants to take up substantial amount of Se is now being utilized to remove excess Se from contaminated soils. This process has ...
30 CFR 250.1613 - Diverter systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) downstream of the spool outlet flange, and the radius of curvature of turns shall be as large as practicable... following shall apply: (1) If the diverter system utilizes only one spool outlet, branch lines shall be installed to provide downwind diversion capability, and (2) No spool outlet or diverter line internal...
30 CFR 250.1613 - Diverter systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... number of turns in the vent line(s) downstream of the spool outlet flange, and the radius of curvature of... utilizes only one spool outlet, branch lines shall be installed to provide downwind diversion capability, and (2) No spool outlet or diverter line internal diameter shall be less than 10 inches, except that...
30 CFR 250.1613 - Diverter systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... a minimum number of turns in the vent line(s) downstream of the spool outlet flange, and the radius... system utilizes only one spool outlet, branch lines shall be installed to provide downwind diversion capability, and (2) No spool outlet or diverter line internal diameter shall be less than 10 inches, except...
30 CFR 250.1613 - Diverter systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... number of turns in the vent line(s) downstream of the spool outlet flange, and the radius of curvature of... utilizes only one spool outlet, branch lines shall be installed to provide downwind diversion capability, and (2) No spool outlet or diverter line internal diameter shall be less than 10 inches, except that...
30 CFR 250.1613 - Diverter systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... number of turns in the vent line(s) downstream of the spool outlet flange, and the radius of curvature of... utilizes only one spool outlet, branch lines shall be installed to provide downwind diversion capability, and (2) No spool outlet or diverter line internal diameter shall be less than 10 inches, except that...
Research in remote sensing of agriculture, earth resources, and man's environment
NASA Technical Reports Server (NTRS)
Landgrebe, D. A.
1975-01-01
Progress is reported for several projects involving the utilization of LANDSAT remote sensing capabilities. Areas under study include crop inventory, crop identification, crop yield prediction, forest resources evaluation, land resources evaluation and soil classification. Numerical methods for image processing are discussed, particularly those for image enhancement and analysis.
NASA Astrophysics Data System (ADS)
Ikeno, Rimon; Mita, Yoshio; Asada, Kunihiro
2017-04-01
High-throughput electron-beam lithography (EBL) by character projection (CP) and variable-shaped beam (VSB) methods is a promising technique for low-to-medium volume device fabrication with regularly arranged layouts, such as standard-cell logics and memory arrays. However, non-VLSI applications like MEMS and MOEMS may not fully utilize the benefits of CP method due to their wide variety of layout figures including curved and oblique edges. In addition, the stepwise shapes that appear on such irregular edges by VSB exposure often result in intolerable edge roughness, which may degrade performances of the fabricated devices. In our former study, we proposed a general EBL methodology for such applications utilizing a combination of CP and VSB methods, and demonstrated its capabilities in electron beam (EB) shot reduction and edge-quality improvement by using a leading-edge EB exposure tool, ADVANTEST F7000S-VD02, and high-resolution Hydrogen Silsesquioxane resist. Both scanning electron microscope and atomic force microscope observations were used to analyze quality of the resist edge profiles to determine the influence of the control parameters used in the exposure-data preparation process. In this study, we carried out detailed analysis of the captured edge profiles utilizing Fourier analysis, and successfully distinguish the systematic undulation by the exposed CP character profiles from random roughness components. Such capability of precise edge-roughness analysis is useful to our EBL methodology to maintain both the line-edge quality and the exposure throughput by optimizing the control parameters in the layout data conversion.
Airborne lidar wind detection at 2 μm
NASA Astrophysics Data System (ADS)
Targ, Russell; Hawley, James G.; Steakley, Bruce C.; Ames, Lawrence L.; Robinson, Paul A.
1995-06-01
NASA and the FAA have expressed interest in laser radar's capabilities to detect wind profiles at altitude. A number of programs have been addressing the technical feasibility and utility of laser radar atmospheric backscatter data to determine wind profiles and wind hazards for aircraft guidance and navigation. In addition, the U.S. Air Force is investigating the use of airborne lidar to achieve precision air drop capability, and to increase the accuracy of the AC- 130 gunship and the B-52 bomber by measuring the wind field from the aircraft to the ground. There are emerging capabilities of airborne laser radar to measure wind velocities and detect turbulence and other atmospheric disturbances out in front of an aircraft in real time. The measurement of these parameters can significantly increase fuel efficiency, flight safety, airframe lifetime, and terminal area capacity for new and existing aircraft. This is achieved through wind velocity detection, turbulence avoidance, active control utilization to alleviate gust loading, and detection of wingtip wake vortices produced by landing aircraft. This paper presents the first flight test results of an all solid-state 2-micrometers laser radar system measuring the wind field profile 1 to 2 km in front of an aircraft in real time. We find 0.7-m/s wind measurement accuracy for the system which is configured in a rugged, light weight, high- performance ARINC package.
Seasonal-Scale Optimization of Conventional Hydropower Operations in the Upper Colorado System
NASA Astrophysics Data System (ADS)
Bier, A.; Villa, D.; Sun, A.; Lowry, T. S.; Barco, J.
2011-12-01
Sandia National Laboratories is developing the Hydropower Seasonal Concurrent Optimization for Power and the Environment (Hydro-SCOPE) tool to examine basin-wide conventional hydropower operations at seasonal time scales. This tool is part of an integrated, multi-laboratory project designed to explore different aspects of optimizing conventional hydropower operations. The Hydro-SCOPE tool couples a one-dimensional reservoir model with a river routing model to simulate hydrology and water quality. An optimization engine wraps around this model framework to solve for long-term operational strategies that best meet the specific objectives of the hydrologic system while honoring operational and environmental constraints. The optimization routines are provided by Sandia's open source DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) software. Hydro-SCOPE allows for multi-objective optimization, which can be used to gain insight into the trade-offs that must be made between objectives. The Hydro-SCOPE tool is being applied to the Upper Colorado Basin hydrologic system. This system contains six reservoirs, each with its own set of objectives (such as maximizing revenue, optimizing environmental indicators, meeting water use needs, or other objectives) and constraints. This leads to a large optimization problem with strong connectedness between objectives. The systems-level approach used by the Hydro-SCOPE tool allows simultaneous analysis of these objectives, as well as understanding of potential trade-offs related to different objectives and operating strategies. The seasonal-scale tool will be tightly integrated with the other components of this project, which examine day-ahead and real-time planning, environmental performance, hydrologic forecasting, and plant efficiency.
Affinity purification of bacterial outer membrane vesicles (OMVs) utilizing a His-tag mutant.
Alves, Nathan J; Turner, Kendrick B; DiVito, Kyle A; Daniele, Michael A; Walper, Scott A
To facilitate the rapid purification of bacterial outer membrane vesicles (OMVs), we developed two plasmid constructs that utilize a truncated, transmembrane protein to present an exterior histidine repeat sequence. We chose OmpA, a highly abundant porin protein, as the protein scaffold and utilized the lac promoter to allow for inducible control of the epitope-presenting construct. OMVs containing mutant OmpA-His6 were purified directly from Escherichia coli culture media on an immobilized metal affinity chromatography (IMAC) Ni-NTA resin. This enabling technology can be combined with other molecular tools directed at OMV packaging to facilitate the separation of modified/cargo-loaded OMV from their wt counterparts. In addition to numerous applications in the pharmaceutical and environmental remediation industries, this technology can be utilized to enhance basic research capabilities in the area of elucidating endogenous OMV function. Published by Elsevier Masson SAS.
LLNL Scientists Use NERSC to Advance Global Aerosol Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergmann, D J; Chuang, C; Rotman, D
2004-10-13
While ''greenhouse gases'' have been the focus of climate change research for a number of years, DOE's ''Aerosol Initiative'' is now examining how aerosols (small particles of approximately micron size) affect the climate on both a global and regional scale. Scientists in the Atmospheric Science Division at Lawrence Livermore National Laboratory (LLNL) are using NERSC's IBM supercomputer and LLNL's IMPACT (atmospheric chemistry) model to perform simulations showing the historic effects of sulfur aerosols at a finer spatial resolution than ever done before. Simulations were carried out for five decades, from the 1950s through the 1990s. The results clearly show themore » effects of the changing global pattern of sulfur emissions. Whereas in 1950 the United States emitted 41 percent of the world's sulfur aerosols, this figure had dropped to 15 percent by 1990, due to conservation and anti-pollution policies. By contrast, the fraction of total sulfur emissions of European origin has only dropped by a factor of 2 and the Asian emission fraction jumped six fold during the same time, from 7 percent in 1950 to 44 percent in 1990. Under a special allocation of computing time provided by the Office of Science INCITE (Innovative and Novel Computational Impact on Theory and Experiment) program, Dan Bergmann, working with a team of LLNL scientists including Cathy Chuang, Philip Cameron-Smith, and Bala Govindasamy, was able to carry out a large number of calculations during the past month, making the aerosol project one of the largest users of NERSC resources. The applications ran on 128 and 256 processors. The objective was to assess the effects of anthropogenic (man-made) sulfate aerosols. The IMPACT model calculates the rate at which SO{sub 2} (a gas emitted by industrial activity) is oxidized and forms particles known as sulfate aerosols. These particles have a short lifespan in the atmosphere, often washing out in about a week. This means that their effects on climate tend to be more regional, occurring near the area where the SO{sub 2} is emitted. To accurately study these regional effects, Bergmann needed to run the simulations at a finer horizontal resolution, as the coarser resolution (typically 300km by 300km) of other climate models are insufficient for studying changes on a regional scale. Livermore's use of CAM3, the Community Atmospheric Model which is a high-resolution climate model developed at NCAR (with collaboration from DOE), allows a 100km by 100km grid to be applied. NERSC's terascale computing capability provided the needed computational horsepower to run the application at the finer level.« less
NASA Technical Reports Server (NTRS)
Haste, Deepak; Azam, Mohammad; Ghoshal, Sudipto; Monte, James
2012-01-01
Health management (HM) in any engineering systems requires adequate understanding about the system s functioning; a sufficient amount of monitored data; the capability to extract, analyze, and collate information; and the capability to combine understanding and information for HM-related estimation and decision-making. Rotorcraft systems are, in general, highly complex. Obtaining adequate understanding about functioning of such systems is quite difficult, because of the proprietary (restricted access) nature of their designs and dynamic models. Development of an EIM (exact inverse map) solution for rotorcraft requires a process that can overcome the abovementioned difficulties and maximally utilize monitored information for HM facilitation via employing advanced analytic techniques. The goal was to develop a versatile HM solution for rotorcraft for facilitation of the Condition Based Maintenance Plus (CBM+) capabilities. The effort was geared towards developing analytic and reasoning techniques, and proving the ability to embed the required capabilities on a rotorcraft platform, paving the way for implementing the solution on an aircraft-level system for consolidation and reporting. The solution for rotorcraft can he used offboard or embedded directly onto a rotorcraft system. The envisioned solution utilizes available monitored and archived data for real-time fault detection and identification, failure precursor identification, and offline fault detection and diagnostics, health condition forecasting, optimal guided troubleshooting, and maintenance decision support. A variant of the onboard version is a self-contained hardware and software (HW+SW) package that can be embedded on rotorcraft systems. The HM solution comprises components that gather/ingest data and information, perform information/feature extraction, analyze information in conjunction with the dependency/diagnostic model of the target system, facilitate optimal guided troubleshooting, and offer decision support for optimal maintenance.
NASA Technical Reports Server (NTRS)
Contreras, Michael T.; Trease, Brian P.; Bojanowski, Cezary; Kulakx, Ronald F.
2013-01-01
A wheel experiencing sinkage and slippage events poses a high risk to planetary rover missions as evidenced by the mobility challenges endured by the Mars Exploration Rover (MER) project. Current wheel design practice utilizes loads derived from a series of events in the life cycle of the rover which do not include (1) failure metrics related to wheel sinkage and slippage and (2) performance trade-offs based on grouser placement/orientation. Wheel designs are rigorously tested experimentally through a variety of drive scenarios and simulated soil environments; however, a robust simulation capability is still in development due to myriad of complex interaction phenomena that contribute to wheel sinkage and slippage conditions such as soil composition, large deformation soil behavior, wheel geometry, nonlinear contact forces, terrain irregularity, etc. For the purposes of modeling wheel sinkage and slippage at an engineering scale, meshfree nite element approaches enable simulations that capture su cient detail of wheel-soil interaction while remaining computationally feasible. This study implements the JPL wheel-soil benchmark problem in the commercial code environment utilizing the large deformation modeling capability of Smooth Particle Hydrodynamics (SPH) meshfree methods. The nominal, benchmark wheel-soil interaction model that produces numerically stable and physically realistic results is presented and simulations are shown for both wheel traverse and wheel sinkage cases. A sensitivity analysis developing the capability and framework for future ight applications is conducted to illustrate the importance of perturbations to critical material properties and parameters. Implementation of the proposed soil-wheel interaction simulation capability and associated sensitivity framework has the potential to reduce experimentation cost and improve the early stage wheel design proce
NASA Astrophysics Data System (ADS)
Hakim, Lukmanul; Kubokawa, Junji; Yorino, Naoto; Zoka, Yoshifumi; Sasaki, Yutaka
Advancements have been made towards inclusion of both static and dynamic security into transfer capability calculation. However, to the authors' knowledge, work on considering corrective controls into the calculation has not been reported yet. Therefore, we propose a Total Transfer Capability (TTC) assessment considering transient stability corrective controls. The method is based on the Newton interior point method for nonlinear programming and transfer capability is approached as a maximization of power transfer with both static and transient stability constraints are incorporated into our Transient Stability Constrained Optimal Power Flow (TSCOPF) formulation. An interconnected power system is simulated to be subjected to a severe unbalanced 3-phase 4-line to ground fault and following the fault, generator and load are shed in a pre-defined sequence to mimic actual corrective controls. In a deregulated electricity market, both generator companies and large load customers are encouraged to actively participate in maintaining power system stability as corrective controls upon agreement of compensation for being shed following a disturbance. Implementation of this proposal on the actual power system operation should be carried out through combining it with the existing transient stabilization controller system. Utilization of these corrective controls results in increasing TTC as suggested in our numerical simulation. As Lagrange multipliers can also describe sensitivity of both inequality and equality constraints to the objective function, then selection of which generator or load to be shed can be carried out on the basis of values of Lagrange multipliers of its respective generator's rotor angle stability and active power balance equation. Hence, the proposal in this paper can be utilized by system operator to assess the maximum TTC for specific loads and network conditions.
NASA Technical Reports Server (NTRS)
Rakoczy, John; Heater, Daniel; Lee, Ashley
2013-01-01
Marshall Space Flight Center's (MSFC) Small Projects Rapid Integration and Test Environment (SPRITE) is a Hardware-In-The-Loop (HWIL) facility that provides rapid development, integration, and testing capabilities for small projects (CubeSats, payloads, spacecraft, and launch vehicles). This facility environment focuses on efficient processes and modular design to support rapid prototyping, integration, testing and verification of small projects at an affordable cost, especially compared to larger type HWIL facilities. SPRITE (Figure 1) consists of a "core" capability or "plant" simulation platform utilizing a graphical programming environment capable of being rapidly re-configured for any potential test article's space environments, as well as a standard set of interfaces (i.e. Mil-Std 1553, Serial, Analog, Digital, etc.). SPRITE also allows this level of interface testing of components and subsystems very early in a program, thereby reducing program risk.
HiRel - Reliability/availability integrated workstation tool
NASA Technical Reports Server (NTRS)
Bavuso, Salvatore J.; Dugan, Joanne B.
1992-01-01
The HiRel software tool is described and demonstrated by application to the mission avionics subsystem of the Advanced System Integration Demonstrations (ASID) system that utilizes the PAVE PILLAR approach. HiRel marks another accomplishment toward the goal of producing a totally integrated computer-aided design (CAD) workstation design capability. Since a reliability engineer generally represents a reliability model graphically before it can be solved, the use of a graphical input description language increases productivity and decreases the incidence of error. The graphical postprocessor module HARPO makes it possible for reliability engineers to quickly analyze huge amounts of reliability/availability data to observe trends due to exploratory design changes. The addition of several powerful HARP modeling engines provides the user with a reliability/availability modeling capability for a wide range of system applications all integrated under a common interactive graphical input-output capability.
Gene therapy and tissue engineering based on muscle-derived stem cells.
Deasy, Bridget M; Huard, Johnny
2002-08-01
Skeletal muscle represents a convenient source of stem cells for cell-based tissue and genetic engineering. Muscle-derived stem cells (MDSCs) exhibit both multipotentiality and self-renewal capabilities, and are considered to be distinct from the well-studied satellite cell, another type of muscle stem cell that is capable of self-renewal and myogenic lineage differentiation. The MDSC appears to have less restricted differentiation capabilities as compared with the satellite cell, and may be a precursor of the satellite cell. This review considers the evidence for the existence of MDSCs as well as their origin. We will discuss recent investigations highlighting the potential of stem cell transplantation for the treatment of skeletal, cardiac and smooth muscle injuries and disease. We will highlight challenges in bridging the gap between understanding basic stem cell biology and clinical utilization for cell therapy.
A user's guide for DTIZE an interactive digitizing and graphical editing computer program
NASA Technical Reports Server (NTRS)
Thomas, C. C.
1981-01-01
A guide for DTIZE, a two dimensional digitizing program with graphical editing capability, is presented. DTIZE provides the capability to simultaneously create and display a picture on the display screen. Data descriptions may be permanently saved in three different formats. DTIZE creates the picture graphics in the locator mode, thus inputting one coordinate each time the terminator button is pushed. Graphic input devices (GIN) are also used to select function command menu. These menu commands and the program's interactive prompting sequences provide a complete capability for creating, editing, and permanently recording a graphical picture file. DTIZE is written in FORTRAN IV language for the Tektronix 4081 graphic system utilizing the Plot 80 Distributed Graphics Library (DGL) subroutines. The Tektronix 4953/3954 Graphic Tablet with mouse, pen, or joystick are used as graphics input devices to create picture graphics.
Enhancing AFLOW Visualization using Jmol
NASA Astrophysics Data System (ADS)
Lanasa, Jacob; New, Elizabeth; Stefek, Patrik; Honaker, Brigette; Hanson, Robert; Aflow Collaboration
The AFLOW library is a database of theoretical solid-state structures and calculated properties created using high-throughput ab initio calculations. Jmol is a Java-based program capable of visualizing and analyzing complex molecular structures and energy landscapes. In collaboration with the AFLOW consortium, our goal is the enhancement of the AFLOWLIB database through the extension of Jmol's capabilities in the area of materials science. Modifications made to Jmol include the ability to read and visualize AFLOW binary alloy data files, the ability to extract from these files information using Jmol scripting macros that can be utilized in the creation of interactive web-based convex hull graphs, the capability to identify and classify local atomic environments by symmetry, and the ability to search one or more related crystal structures for atomic environments using a novel extension of inorganic polyhedron-based SMILES strings
Life sciences experiments in the first Spacelab mission
NASA Technical Reports Server (NTRS)
Huffstetler, W. J.; Rummel, J. A.
1978-01-01
The development of the Shuttle Transportation System (STS) by the United States and the Spacelab pressurized modules and pallets by the European Space Agency (ESA) presents a unique multi-mission space experimentation capability to scientists and researchers of all disciplines. This capability is especially pertinent to life scientists involved in all areas of biological and behavioral research. This paper explains the solicitation, evaluation, and selection process involved in establishing life sciences experiment payloads. Explanations relative to experiment hardware development, experiment support hardware (CORE) concepts, hardware integration and test, and concepts of direct Principal Investigator involvement in the missions are presented as they are being accomplished for the first Spacelab mission. Additionally, discussions of future plans for life sciences dedicated Spacelab missions are included in an attempt to define projected capabilities for space research in the 1980s utilizing the STS.
Spacecraft automatic umbilical system
NASA Technical Reports Server (NTRS)
Goldin, R. W.; Jacquemin, G. G.; Johnson, W. H.
1981-01-01
An umbilical system design is described that incorporates all the features specified for a power system to payload interconnect capability. A proof-of-concept prototype of the umbilical system was built to determine experimentally the suitability of the threading characteristics of the ram mechanism and to verify freedom from cross threading. It is concluded that Berthing systems that utilize remote manipulator systems (RMS) can be simplified by using RMS targets, closed circuit TV cameras, tie into the RMS control system, and grapple-fixture and end-effector-like capture and secure mechanisms. To effect a remotely controlled umbilical interconnect in proximity with a manned spacecraft and to provide for extravehicular activity backup and maintenance capabilities, 18 different mechanisms are found to be necessary. The weight impact of proving for maintenance capability in a large multiple connector umbilical system was found to be in the order of +60 percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, W.R.; Giovengo, J.F.
1987-10-01
Light Water Breeder Reactor (LWBR) fuel rods were designed to provide a reliable fuel system utilizing thorium/uranium-233 mixed-oxide fuel while simultaneously minimizing structural material to enhance fuel breeding. The fuel system was designed to be capable of operating successfully under both load follow and base load conditions. The breeding objective required thin-walled, low hafnium content Zircaloy cladding, tightly spaced fuel rods with a minimum number of support grid levels, and movable fuel rod bundles to supplant control rods. Specific fuel rod design considerations and their effects on performance capability are described. Successful completion of power operations to over 160 percentmore » of design lifetime including over 200 daily load follow cycles has proven the performance capability of the fuel system. 68 refs., 19 figs., 44 tabs.« less
Autonomous and Autonomic Swarms
NASA Technical Reports Server (NTRS)
Hinchey, Michael G.; Rash, James L.; Truszkowski, Walter F.; Rouff, Christopher A.; Sterritt, Roy
2005-01-01
A watershed in systems engineering is represented by the advent of swarm-based systems that accomplish missions through cooperative action by a (large) group of autonomous individuals each having simple capabilities and no global knowledge of the group s objective. Such systems, with individuals capable of surviving in hostile environments, pose unprecedented challenges to system developers. Design and testing and verification at much higher levels will be required, together with the corresponding tools, to bring such systems to fruition. Concepts for possible future NASA space exploration missions include autonomous, autonomic swarms. Engineering swarm-based missions begins with understanding autonomy and autonomicity and how to design, test, and verify systems that have those properties and, simultaneously, the capability to accomplish prescribed mission goals. Formal methods-based technologies, both projected and in development, are described in terms of their potential utility to swarm-based system developers.