Sample records for capacitance deep level

  1. Analysis of Deep and Shallow Traps in Semi-Insulating CdZnTe

    DOE PAGES

    Kim, Kihyun; Yoon, Yongsu; James, Ralph B.

    2018-03-13

    Trap levels which are deep or shallow play an important role in the electrical and the optical properties of a semiconductor; thus, a trap level analysis is very important in most semiconductor devices. Deep-level defects in CdZnTe are essential in Fermi level pinning at the middle of the bandgap and are responsible for incomplete charge collection and polarization effects. However, a deep level analysis in semi-insulating CdZnTe (CZT) is very difficult. Theoretical capacitance calculation for a metal/insulator/CZT (MIS) device with deep-level defects exhibits inflection points when the donor/acceptor level crosses the Fermi level in the surface-charge layer (SCL). Three CZTmore » samples with different resistivities, 2 × 10 4 (n-type), 2 × 10 6 (p-type), and 2 × 10 10 (p-type) Ω·cm, were used in fabricating the MIS devices. These devices showed several peaks in their capacitance measurements due to upward/downward band bending that depend on the surface potential. In conclusion, theoretical and experimental capacitance measurements were in agreement, except in the fully compensated case.« less

  2. Analysis of Deep and Shallow Traps in Semi-Insulating CdZnTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kihyun; Yoon, Yongsu; James, Ralph B.

    Trap levels which are deep or shallow play an important role in the electrical and the optical properties of a semiconductor; thus, a trap level analysis is very important in most semiconductor devices. Deep-level defects in CdZnTe are essential in Fermi level pinning at the middle of the bandgap and are responsible for incomplete charge collection and polarization effects. However, a deep level analysis in semi-insulating CdZnTe (CZT) is very difficult. Theoretical capacitance calculation for a metal/insulator/CZT (MIS) device with deep-level defects exhibits inflection points when the donor/acceptor level crosses the Fermi level in the surface-charge layer (SCL). Three CZTmore » samples with different resistivities, 2 × 10 4 (n-type), 2 × 10 6 (p-type), and 2 × 10 10 (p-type) Ω·cm, were used in fabricating the MIS devices. These devices showed several peaks in their capacitance measurements due to upward/downward band bending that depend on the surface potential. In conclusion, theoretical and experimental capacitance measurements were in agreement, except in the fully compensated case.« less

  3. A transient simulation approach to obtaining capacitance-voltage characteristics of GaN MOS capacitors with deep-level traps

    NASA Astrophysics Data System (ADS)

    Fukuda, Koichi; Asai, Hidehiro; Hattori, Junichi; Shimizu, Mitsuaki; Hashizume, Tamotsu

    2018-04-01

    In this study, GaN MOS capacitance-voltage device simulations considering various interface and bulk traps are performed in the transient mode. The simulations explain various features of capacitance-voltage curves, such as plateau, hysteresis, and frequency dispersions, which are commonly observed in measurements of GaN MOS capacitors and arise from complicated combinations of interface and bulk deep-level traps. The objective of the present study is to provide a good theoretical tool to understand the physics of various nonideal measured curves.

  4. Optical and transient capacitance study of EL2 in the absence and presence of other midgap levels. [in gallium arsenide crystals

    NASA Technical Reports Server (NTRS)

    Skowronski, M.; Lagowski, J.; Gatos, H. C.

    1986-01-01

    A high-resolution optical study was carried out on GaAs crystals grown by horizontal Bridgman and liquid-encapsulated-Czochralski methods. An excellent correlation was found between the intensity of the 1.039-eV no-phonon line and the characteristic absorption of EL2, the major deep donor level in GaAs. A correlation was also found between the characteristic optical absorption of EL2 and its concentration as determined by junction capacitance measurements. The presence of EL0, another midgap level contained in heavily oxygen-doped crystals at concentration always less than those of EL2, had no effect on the optical spectra, but altered the capacitance measurements. Accordingly, an accurate calibration for the determination of EL2 by optical absorption was obtained from capacitance measurements on crystals containing only EL2; in this way the uncertainties introduced by other midgap levels were eliminated.

  5. Capacitance Techniques | Photovoltaic Research | NREL

    Science.gov Websites

    transient spectroscopy generated graph showing six defect levels; DLTS signal (Y-axis) versus Temperature (X -axis). DLTS characterizes defect levels to assist in identification of impurities and potential levels of interface states (or both) that often exist between the surfaces of dissimilar materials. Deep

  6. Influence of deposition conditions on electrical and mechanical properties of Sm2O3-doped CeO2 thin films prepared by EB-PVD (+IBAD) methods. Part 1: Effective relative permittivity

    NASA Astrophysics Data System (ADS)

    Hartmanová, Mária; Nádaždy, Vojtech; Kundracik, František; Mansilla, Catina

    2013-03-01

    Study is devoted to the effective relative permittivity ɛr of CeO2 + x. Sm2O3 thin films prepared by electron-beam physical vapour deposition and ionic beam-assisted deposition methods; ɛr was investigated by three independent ways from the bulk parallel capacitance Cp, impedance capacitance Cimp, and accumulation capacitance Cacc in dependence on the deposition conditions (deposition temperature, dopant amount x and Ar+ ion bombardment during the film deposition) used. Investigations were performed using impedance spectroscopy, capacitance-voltage and current-voltage characteristics as well as deep level transient spectroscopy. Results obtained are described and discussed.

  7. Capacitance spectroscopy on n-type GaNAs/GaAs embedded quantum structure solar cells

    NASA Astrophysics Data System (ADS)

    Venter, Danielle; Bollmann, Joachim; Elborg, Martin; Botha, J. R.; Venter, André

    2018-04-01

    In this study, both deep level transient spectroscopy (DLTS) and admittance spectroscopy (AS) have been used to study the properties of electrically active deep level centers present in GaNAs/GaAs quantum wells (QWs) embedded in p-i-n solar cells. The structures were grown by molecular beam epitaxy (MBE). In particular, the electrical properties of samples with Si (n-type) doping of the QWs were investigated. DLTS revealed four deep level centers in the material, whereas only three were detected by AS. NextNano++ simulation software was used to model the sample band-diagrams to provide reasoning for the origin of the signals produced by both techniques.

  8. Electronic properties of the Cu2ZnSn(Se,S)4 absorber layer in solar cells as revealed by admittance spectroscopy and related methods

    NASA Astrophysics Data System (ADS)

    Gunawan, Oki; Gokmen, Tayfun; Warren, Charles W.; Cohen, J. David; Todorov, Teodor K.; Barkhouse, D. Aaron R.; Bag, Santanu; Tang, Jiang; Shin, Byungha; Mitzi, David B.

    2012-06-01

    Admittance spectra and drive-level-capacitance profiles of several high performance Cu2ZnSn(Se,S)4 (CZTSSe) solar cells with bandgap ˜1.0-1.5 eV are reported. In contrast to the case for Cu(In,Ga)(S,Se)2, the CZTSSe capacitance spectra exhibit a dielectric freeze out to the geometric capacitance plateau at moderately low frequencies and intermediate temperatures (120-200 K). These spectra reveal important information regarding the bulk properties of the CZTSSe films, such as the dielectric constant and a dominant acceptor with energy level of 0.13-0.2 eV depending on the bandgap. This deep acceptor leads to a carrier freeze out effect that quenches the CZTSSe fill factor and efficiency at low temperatures.

  9. Electrical characterization and comparison of CIGS solar cells made with different structures and fabrication techniques

    DOE PAGES

    Garris, Rebekah L.; Johnston, Steven; Li, Jian V.; ...

    2017-08-31

    In a previous study, we reported on Cu(In,Ga)Se2-based (CIGS) solar cell samples collected from different research laboratories and industrial companies with the purpose of understanding the range of CIGS materials that can lead to high-quality and high-efficiency solar panels. Here, we report on electrical measurements of those same samples. Electron-beam induced current and time-resolved photoluminescence (TRPL) gave insights about the collection probability and the lifetime of carriers generated in each absorber. Capacitance and drive-level capacitance profiling revealed nonuniformity in carrier-density profiles. Admittance spectroscopy revealed small activation energies (= 0.03 eV) indicative of the inversion strength, larger activation energies (> 0.1more » eV) reflective of thermal activation of absorber conductivity and a deeper defect level. Deep-level transient spectroscopy (DLTS) probed deep hole-trapping defects and showed that all samples in this study had a majority-carrier defect with activation energy between 0.3 eV and 0.9 eV. Optical-DLTS revealed deep electron-trapping defects in several of the CIGS samples. This work focused on revealing similarities and differences between high-quality CIGS solar cells made with various structures and fabrication techniques.« less

  10. Electrical characterization and comparison of CIGS solar cells made with different structures and fabrication techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garris, Rebekah L.; Johnston, Steven; Li, Jian V.

    In a previous study, we reported on Cu(In,Ga)Se2-based (CIGS) solar cell samples collected from different research laboratories and industrial companies with the purpose of understanding the range of CIGS materials that can lead to high-quality and high-efficiency solar panels. Here, we report on electrical measurements of those same samples. Electron-beam induced current and time-resolved photoluminescence (TRPL) gave insights about the collection probability and the lifetime of carriers generated in each absorber. Capacitance and drive-level capacitance profiling revealed nonuniformity in carrier-density profiles. Admittance spectroscopy revealed small activation energies (= 0.03 eV) indicative of the inversion strength, larger activation energies (> 0.1more » eV) reflective of thermal activation of absorber conductivity and a deeper defect level. Deep-level transient spectroscopy (DLTS) probed deep hole-trapping defects and showed that all samples in this study had a majority-carrier defect with activation energy between 0.3 eV and 0.9 eV. Optical-DLTS revealed deep electron-trapping defects in several of the CIGS samples. This work focused on revealing similarities and differences between high-quality CIGS solar cells made with various structures and fabrication techniques.« less

  11. Impact of the silicon substrate resistivity and growth condition on the deep levels in Ni-Au/AlN/Si MIS Capacitors

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Simoen, Eddy; Zhao, Ming; Li, Wei

    2017-10-01

    Deep levels formed under different growth conditions of a 200 nm AlN buffer layer on B-doped Czochralski Si(111) substrates with different resistivity were investigated by deep-level transient spectroscopy (DLTS) on metal-insulator-semiconductor capacitors. Growth-temperature-dependent Al diffusion in the Si substrate was derived from the free carrier density obtained by capacitance-voltage measurement on samples grown on p- substrates. The DLTS spectra revealed a high concentration of point and extended defects in the p- and p+ silicon substrates, respectively. This indicated a difference in the electrically active defects in the silicon substrate close to the AlN/Si interface, depending on the B doping concentration.

  12. Identification of oxygen-related midgap level in GaAs

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Lin, D. G.; Gatos, H. C.; Aoyama, T.

    1984-01-01

    An oxygen-related deep level ELO was identified in GaAs employing Bridgman-grown crystals with controlled oxygen doping. The activation energy of ELO is almost the same as that of the dominant midgap level: EL2. This fact impedes the identification of ELO by standard deep level transient spectroscopy. However, it was found that the electron capture cross section of ELO is about four times greater than that of EL2. This characteristic served as the basis for the separation and quantitative investigation of ELO employing detailed capacitance transient measurements in conjunction with reference measurements on crystals grown without oxygen doping and containing only EL2.

  13. Capacitive pressure-sensitive composites using nickel-silicone rubber: experiments and modeling

    NASA Astrophysics Data System (ADS)

    Fan, Yuqin; Liao, Changrong; Liao, Ganliang; Tan, Renbing; Xie, Lei

    2017-07-01

    Capacitive pressure (i.e., piezo-capacitive) sensors have manifested their superiority as a potential electronic skin. The mechanism of the traditional piezo-capacitive sensors is mainly to change the relative permittivity of the flexible composites by compressing the specially fabricated microstructures in the polymer matrix under pressure. Instead, we study the piezo-capacitive effect for a newly reported isotropic flexible composite consisting of silicone rubber (SR) and uniformly dispersed micron-sized conductive nickel particles experimentally and theoretically. The Young’s modulus of the nickel-SR composites (NSRCs) is designed to meet that of human skin. Experimental results show that the NSRCs exhibit remarkable particle concentration dependent capacitance response under uniaxial pressure, and the NSRCs present a good repeatability. We propose a mathematical model at particle level to provide deep insights into the piezo-capacitive mechanism, by considering the adjacent particles in the axial direction as micro capacitors connected in series and in parallel on the horizontal plane. The piezo-capacitive effect is determined by the relative permittivity induced by the particles rearrangement, longitudinal interparticle gap, and deflection angle of micro particle capacitors under pressure. Specifically, the relative capacitance of NSRC capacitor is deduced to be product of two factors: the degree of particle rearrangement, and the relative capacitance of a micro capacitor with the average longitudinal gap. The proposed model well matches and interprets the experimental results.

  14. MIS capacitor studies on silicon carbide single crystals

    NASA Technical Reports Server (NTRS)

    Kopanski, J. J.

    1990-01-01

    Cubic SIC metal-insulator-semiconductor (MIS) capacitors with thermally grown or chemical-vapor-deposited (CVD) insulators were characterized by capacitance-voltage (C-V), conductance-voltage (G-V), and current-voltage (I-V) measurements. The purpose of these measurements was to determine the four charge densities commonly present in an MIS capacitor (oxide fixed charge, N(f); interface trap level density, D(it); oxide trapped charge, N(ot); and mobile ionic charge, N(m)) and to determine the stability of the device properties with electric-field stress and temperature. The section headings in the report include the following: Capacitance-voltage and conductance-voltage measurements; Current-voltage measurements; Deep-level transient spectroscopy; and Conclusions (Electrical characteristics of SiC MIS capacitors).

  15. Study of GaAs-oxide interface by transient capacitance spectroscopy - Discrete energy interface states

    NASA Technical Reports Server (NTRS)

    Kamieniecki, E.; Kazior, T. E.; Lagowski, J.; Gatos, H. C.

    1980-01-01

    Interface states and bulk GaAs energy levels were simultaneously investigated in GaAs MOS structures prepared by anodic oxidation. These two types of energy levels were successfully distinguished by carrying out a comparative analysis of deep level transient capacitance spectra of the MOS structures and MS structures prepared on the same samples of epitaxially grown GaAs. The identification and study of the interface states and bulk levels was also performed by investigating the transient capacitance spectra as a function of the filling pulse magnitude. It was found that in the GaAs-anodic oxide interface there are states present with a discrete energy rather than with a continuous energy distribution. The value of the capture cross section of the interface states was found to be 10 to the 14th to 10 to the 15th/sq cm, which is more accurate than the extremely large values of 10 to the -8th to 10 to the -9th/sq cm reported on the basis of conductance measurements.

  16. Investigation of defect properties in Cu(In,Ga)Se 2 solar cells by deep-level transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Kerr, L. L.; Li, Sheng S.; Johnston, S. W.; Anderson, T. J.; Crisalle, O. D.; Kim, W. K.; Abushama, J.; Noufi, R. N.

    2004-09-01

    The performance of the chalcopyrite material Cu(In,Ga)Se 2 (CIGS) used as an absorber layer in thin-film photovoltaic devices is significantly affected by the presence of native defects. The deep-level transient spectroscopy (DLTS) technique is used in this work to characterize the defect properties, yielding relevant information about the defect types, their capture cross-sections, and energy levels and densities in the CIGS cells. Three solar cells developed using different absorber growth technologies were analyzed using DLTS, capacitance-voltage ( C- V), and capacitance-temperature ( C- T) techniques. It was found that CIS cells grown at the University of Florida exhibits a middle-gap defect level that may relate to the cell's low fill factor and open-circuit voltage values observed. A high efficiency ( ηc>18%) CIGS cell produced by the National Renewable Energy Laboratory (NREL) was found to contain three minority-carrier (electron) traps and a 13% CIGS cell produced by the Energy Photovoltaics Inc. (EPV) exhibited one majority (hole) trap. The approach followed using the DLTS technique serves as a paradigm for revealing the presence of significant defect levels in absorber materials, and may be used to support the identification of remedial processing operations.

  17. Admittance spectroscopy or deep level transient spectroscopy: A contrasting juxtaposition

    NASA Astrophysics Data System (ADS)

    Bollmann, Joachim; Venter, Andre

    2018-04-01

    A comprehensive understanding of defects in semiconductors remains of primary importance. In this paper the effectiveness of two of the most commonly used semiconductor defect spectroscopy techniques, viz. deep level transient spectroscopy (DLTS) and admittance spectroscopy (AS) are reviewed. The analysis of defects present in commercially available SiC diodes shows that admittance spectroscopy allows the identification of deep traps with reduced measurement effort compared to deep Level Transient Spectroscopy (DLTS). Besides the N-donor, well-studied intrinsic defects were detected in these diodes. Determination of their activation energy and defect density, using the two techniques, confirm that the sensitivity of AS is comparable to that of DLTS while, due to its well defined peak shape, the spectroscopic resolution is superior. Additionally, admittance spectroscopy can analyze faster emission processes which make the study of shallow defects more practical and even that of shallow dopant levels, possible. A comparative summary for the relevant spectroscopic features of the two capacitance methods are presented.

  18. Investigation of deep-level defects in Cu(In,Ga)Se2 thin films by two-wavelength excitation photo-capacitance spectroscopy

    NASA Astrophysics Data System (ADS)

    Hu, Xiaobo; Gupta, Amit; Sakurai, Takeaki; Yamada, Akimasa; Ishizuka, Shogo; Niki, Shigeru; Akimoto, Katsuhiro

    2013-10-01

    The properties of the defect level located 0.8 eV above the valence band in Cu(In1-x,Gax)Se2 thin films were investigated by a photo-capacitance method using a monochromatic probe light with an energy of 0.7 to 1.8 eV. In addition to the probe light, laser light with a wavelength of 1.55 μm, corresponding to 0.8 eV, was also used to study the saturation effect of the defect level at 0.8 eV. A suppression of electron-hole recombination due to saturation of the defect level was observed at room temperature while no saturation effect was observed at 140 K. The results suggest that the defect level at 0.8 eV acts as a recombination center at least at room temperature.

  19. EL2 deep-level transient study in semi-insulating GaAs using positron-lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Shan, Y. Y.; Ling, C. C.; Deng, A. H.; Panda, B. K.; Beling, C. D.; Fung, S.

    1997-03-01

    Positron lifetime measurements performed on Au/GaAs samples at room temperature with an applied square-wave ac bias show a frequency dependent interface related lifetime intensity that peaks around 0.4 Hz. The observation is explained by the ionization of the deep-donor level EL2 to EL2+ in the GaAs region adjacent to the Au/GaAs interface, causing a transient electric field to be experienced by positrons drifting towards the interface. Without resorting to temperature scanning or any Arrhenius plot the EL2 donor level is found to be located 0.80+/-0.01+/-0.05 eV below the conduction-band minimum, where the first error estimate is statistical and the second systematic. The result suggests positron annihilation may, in some instances, act as an alternative to capacitance transient spectroscopies in characterizing deep levels in both semiconductors and semi-insulators.

  20. Electromagnetic receiver with capacitive electrodes and triaxial induction coil for tunnel exploration

    NASA Astrophysics Data System (ADS)

    Kai, Chen; Sheng, Jin; Wang, Shun

    2017-09-01

    A new type of electromagnetic (EM) receiver has been developed by integrating four capacitive electrodes and a triaxial induction coil with an advanced data logger for tunnel exploration. The new EM receiver can conduct EM observations in tunnels, which is one of the principal goals of surface-tunnel-borehole EM detection for deep ore deposit mapping. The use of capacitive electrodes enables us to record the electrical field (E-field) signals from hard rock surfaces, which are high-resistance terrains. A compact triaxial induction coil integrates three independent induction coils for narrow-tunnel exploration applications. A low-time-drift-error clock source is developed for tunnel applications where GPS signals are unavailable. The three main components of our tunnel EM receiver are: (1) four capacitive electrodes for measuring the E-field signal without digging in hard rock regions; (2) a triaxial induction coil sensor for audio-frequency magnetotelluric and controlled-source audio-frequency magnetotelluric signal measurements; and (3) a data logger that allows us to record five-component MT signals with low noise levels, low time-drift-error for the clock source, and high dynamic range. The proposed tunnel EM receiver was successfully deployed in a mine that exhibited with typical noise characteristics. [Figure not available: see fulltext. Caption: The new EM receiver can conduct EM observations in tunnels, which is one of the principal goals of the surface-tunnel-borehole EM (STBEM) detection for deep ore deposit mapping. The use of a capacitive electrode enables us to record the electrical field (E-field) signals from hard rock surfaces. A compact triaxial induction coil integrated three induction coils, for narrow-tunnel applications.

  1. Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous sample-rotated small angle x-ray scattering and electrochemical methods approach [Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous grazing transmission small angle x-ray scattering and electrochemical methods approach

    DOE PAGES

    Hammons, Joshua A.; Ilavsky, Jan

    2017-01-18

    Nanoparticle electrodeposition is a simple and scalable approach to synthesizing supported nanoparticles. Used with a deep eutectic solvent (DES), surface nanoparticles can be assembled and exhibit unique surface charge separation when the DES is adsorbed on the nanoparticle surface. Key to understanding and controlling the assembly and the capacitance is a thorough understanding of surface particle mobility and charge screening, which requires an in-situ approach. In this study, Pb particle formation, size, shape and capacitance are resolved in a 1:2 choline Cl –: urea deep eutectic solvent whilst sweeping the cell potential in the range: 0.2 V to –1.2 Vmore » (vs. Ag/AgCl). These system parameters were resolved using a complementary suite of sample-rotated small angle X-ray scattering (SR-SAXS) and electrochemical impedance spectroscopy (EIS), which are presented and discussed in detail. This approach is able to show that both particle and ion transport are impeded in the DES, as aggregation occurs over the course of 6 minutes, and dissolved Pb ions accumulate and remain near the surface after a nucleation pulse is applied. The DES-Pb interactions strongly depend on the cell potential as evidenced by the specific differential capacitance of the Pb deposit, which has a maximum value of 2.5 +/– 0.5 F g –1 at –1.0 V vs. Ag/AgCl. Together, the SR-SAXS-EIS approach is able to characterize the unique nanoparticle capacitance, mobility and ion mobility in a DES and can be used to study a wide range of nanoparticle deposition systems in-situ.« less

  2. Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous sample-rotated small angle x-ray scattering and electrochemical methods approach [Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous grazing transmission small angle x-ray scattering and electrochemical methods approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammons, Joshua A.; Ilavsky, Jan

    Nanoparticle electrodeposition is a simple and scalable approach to synthesizing supported nanoparticles. Used with a deep eutectic solvent (DES), surface nanoparticles can be assembled and exhibit unique surface charge separation when the DES is adsorbed on the nanoparticle surface. Key to understanding and controlling the assembly and the capacitance is a thorough understanding of surface particle mobility and charge screening, which requires an in-situ approach. In this study, Pb particle formation, size, shape and capacitance are resolved in a 1:2 choline Cl –: urea deep eutectic solvent whilst sweeping the cell potential in the range: 0.2 V to –1.2 Vmore » (vs. Ag/AgCl). These system parameters were resolved using a complementary suite of sample-rotated small angle X-ray scattering (SR-SAXS) and electrochemical impedance spectroscopy (EIS), which are presented and discussed in detail. This approach is able to show that both particle and ion transport are impeded in the DES, as aggregation occurs over the course of 6 minutes, and dissolved Pb ions accumulate and remain near the surface after a nucleation pulse is applied. The DES-Pb interactions strongly depend on the cell potential as evidenced by the specific differential capacitance of the Pb deposit, which has a maximum value of 2.5 +/– 0.5 F g –1 at –1.0 V vs. Ag/AgCl. Together, the SR-SAXS-EIS approach is able to characterize the unique nanoparticle capacitance, mobility and ion mobility in a DES and can be used to study a wide range of nanoparticle deposition systems in-situ.« less

  3. Profiling of barrier capacitance and spreading resistance using a transient linearly increasing voltage technique.

    PubMed

    Gaubas, E; Ceponis, T; Kusakovskij, J

    2011-08-01

    A technique for the combined measurement of barrier capacitance and spreading resistance profiles using a linearly increasing voltage pulse is presented. The technique is based on the measurement and analysis of current transients, due to the barrier and diffusion capacitance, and the spreading resistance, between a needle probe and sample. To control the impact of deep traps in the barrier capacitance, a steady state bias illumination with infrared light was employed. Measurements of the spreading resistance and barrier capacitance profiles using a stepwise positioned probe on cross sectioned silicon pin diodes and pnp structures are presented.

  4. Measurement of n-type Dry Thermally Oxidized 6H-SiC Metal-oxide Semiconductor Diodes by Quasistatic and High-Frequency Capacitance Versus Voltage and Capacitance Transient Techniques

    NASA Technical Reports Server (NTRS)

    Neudeck, P.; Kang, S.; Petit, J.; Tabib-Azar, M.

    1994-01-01

    Dry-oxidized n-type 6H-SiC metal-oxide-semiconductor capacitors are investigated using quasistatic capacitance versus voltage (C-V), high-frequency C-V, and pulsed high-frequency capacitance transient (C-t) analysis over the temperature range from 297 to 573 K. The quasistatic C - V characteristics presented are the first reported for 6H-SiC MOS capacitors, and exhibit startling nonidealities due to nonequilibrium conditions that arise from the fact that the recombination/generation process in 6H-SiC is extraordinarily slow even at the highest measurement temperature employed. The high-frequency dark C-V characteristics all showed deep depletion with no observable hysteresis. The recovery of the high-frequency capacitance from deep depletion to inversion was used to characterize the minority-carrier generation process as a function of temperature. Zerbst analysis conducted on the resulting C-t transients, which were longer than 1000 s at 573 K, showed a generation lifetime thermal activation energy of 0.49 eV.

  5. Detection of deep-level defects and reduced carrier concentration in Mg-ion-implanted GaN before high-temperature annealing

    NASA Astrophysics Data System (ADS)

    Akazawa, Masamichi; Yokota, Naoshige; Uetake, Kei

    2018-02-01

    We report experimental results for the detection of deep-level defects in GaN after Mg ion implantation before high-temperature annealing. The n-type GaN samples were grown on GaN free-standing substrates by metalorganic vapor phase epitaxy. Mg ions were implanted at 50 keV with a small dosage of 1.5×1011 cm-2, which did not change the conduction type of the n-GaN. By depositing Al2O3 and a Ni/Au electrode onto the implanted n-GaN, metal-oxide-semiconductor (MOS) diodes were fabricated and tested. The measured capacitance-voltage (C-V) characteristics showed a particular behavior with a plateau region and a region with an anomalously steep slope. Fitting to the experimental C-V curves by simulation showed the existence of deep-level defects and a reduction of the carrier concentration near the GaN surface. By annealing at 800oC, the density of the deep-level defects was reduced and the carrier concentration partially recovered.

  6. Investigation of low leakage current radiation detectors on n-type 4H-SiC epitaxial layers

    NASA Astrophysics Data System (ADS)

    Nguyen, Khai V.; Chaudhuri, Sandeep K.; Mandal, Krishna C.

    2014-09-01

    The surface leakage current of high-resolution 4H-SiC epitaxial layer Schottky barrier detectors has been improved significantly after surface passivations of 4H-SiC epitaxial layers. Thin (nanometer range) layers of silicon dioxide (SiO2) and silicon nitride (Si3N4) were deposited on 4H-SiC epitaxial layers using plasma enhanced chemical vapor deposition (PECVD) on 20 μm thick n-type 4H-SiC epitaxial layers followed by the fabrication of large area (~12 mm2) Schottky barrier radiation detectors. The fabricated detectors have been characterized through current-voltage (I-V), capacitance-voltage (C-V), and alpha pulse height spectroscopy measurements; the results were compared with that of detectors fabricated without surface passivations. Improved energy resolution of ~ 0.4% for 5486 keV alpha particles was observed after passivation, and it was found that the performance of these detectors were limited by the presence of macroscopic and microscopic crystal defects affecting the charge transport properties adversely. Capacitance mode deep level transient studies (DLTS) revealed the presence of a titanium impurity related shallow level defects (Ec-0.19 eV), and two deep level defects identified as Z1/2 and Ci1 located at Ec-0.62 and ~ Ec-1.40 eV respectively.

  7. Electronic properties of deep-level defects in proton irradiated AlGaAs-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.

    1981-01-01

    Deep level transient spectroscopy and capacitance voltage techniques as well as analysis of the forward current voltage (I-V) characteristics and SEM-EIC data were carried out for proton irradiated GaAs solar cells over a wide range of proton energies and proton fluences. Defect and recombination parameters such as defect energy levels and density, carrier capture cross sections and lifetimes as well as diffusion lengths in the undoped n-GaAs LPE layers were determined. Good correlation between these defect parameters and solar cell performance parameters was obtained for GaAs solar cells irradiated by 200 and 290 KeV protons. It was found that 200 to 290 KeV protons will produce the most defects and damages to the GaAs solar cell structure used. The influence of the low temperature (200 to 400 C) periodic thermal annealing on the deep level defects and the performance of the 200 KeV proton irradiated cells is discussed.

  8. Positron deep level transient spectroscopy — a new application of positron annihilation to semiconductor physics

    NASA Astrophysics Data System (ADS)

    Beling, C. D.; Fung, S.; Au, H. L.; Ling, C. C.; Reddy, C. V.; Deng, A. H.; Panda, B. K.

    1997-05-01

    Recent positron mobility and lifetime measurements made on ac-biased metal on semi-insulating GaAs junctions, which have identified the native EL2 defect through a determination of the characteristic ionization energy of the donor level, are reviewed. It is shown that these measurements point towards a new spectroscopy, tentatively named positron-DLTS (deep level transient spectroscopy), that is the direct complement to conventional DLTS in that it monitors transients in the electric field of the depletion region rather than the inversely related depletion width, as deep levels undergo ionization. In this new spectroscopy, which may be applied to doped material by use of a suitable positron beam, electric field transients are monitored through the Doppler shift of the annihilation radiation resulting from the drift velocity of the positron in the depletion region. Two useful extensions of the new spectroscopy beyond conventional capacitance-DLTS are suggested. The first is that in some instances information on the microstructure of the defect causing the deep level may be inferred from the sensitivity of the positron to vacancy defects of negative and neutral charge states. The second is that the positron annihilation technique is intrinsically much faster than conventional DLTS with the capability of observing transients some 10 6 times faster, thus allowing deep levels (and even shallow levels) to be investigated without problems associated with carrier freeze-out.

  9. Nonvolatile memories using deep traps formed in HfO2 by Nb ion implantation

    NASA Astrophysics Data System (ADS)

    Choul Kim, Min; Oh Kim, Chang; Taek Oh, Houng; Choi, Suk-Ho; Belay, K.; Elliman, R. G.; Russo, S. P.

    2011-03-01

    We report nonvolatile memories (NVMs) based on deep-energy trap levels formed in HfO2 by metal ion implantation. A comparison of Nb- and Ta-implanted samples shows that suitable charge-trapping centers are formed in Nb-implanted samples, but not in Ta-implanted samples. This is consistent with density-functional theory calculations which predict that only Nb will form deep-energy levels in the bandgap of HfO2. Photocurrent spectroscopy exhibits characteristics consistent with one of the trap levels predicted in these calculations. Nb-implanted samples showing memory windows in capacitance-voltage (V) curves always exhibit current (I) peaks in I-V curves, indicating that NVM effects result from deep traps in HfO2. In contrast, Ta-implanted samples show dielectric breakdowns during the I-V sweeps between 5 and 11 V, consistent with the fact that no trap levels are present. For a sample implanted with a fluence of 1013 Nb cm-2, the charge losses after 104 s are ˜9.8 and ˜25.5% at room temperature (RT) and 85°C, respectively, and the expected charge loss after 10 years is ˜34% at RT, very promising for commercial NVMs.

  10. Thermally stimulated capacitance in gamma irradiated epitaxial 4H-SiC Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Vigneshwara Raja, P.; Narasimha Murty, N. V. L.

    2018-04-01

    Deep level defects in 4H-SiC Schottky barrier diodes (SBDs) fabricated on n-type epitaxial 4H-SiC have been identified by thermally stimulated capacitance (TSCAP) spectroscopy prior to and after 60Co-gamma irradiation. The TSCAP measurements on the non-irradiated SBDs reveal two electron traps at Ec-0.63 eV (˜250 K) and Ec-1.13 eV (˜525 K), whereas only one trap at Ec-0.63 eV is identified by conventional thermally stimulated current (TSC) measurements. Hence, TSCAP spectroscopy is more effective in identifying deep level defects in epitaxial 4 H-SiC SBDs as compared to the TSC spectroscopy. Upon exposure to 60Co-gamma rays up to a dose of 100 Mrad, significant changes in the concentration of the traps at Ec-0.63 eV, Ec-1.13 eV, and one new trap at Ec-0.89 eV (˜420 K) are observed. The electrical characteristics of the SBDs are considerably changed after gamma irradiation. The dominant mechanisms responsible for the irradiation induced changes in the SBD electrical characteristics are analyzed by incorporating the trap signatures in the commercial Silvaco® TCAD device simulator. The extracted trap parameters of the irradiated SBDs may be helpful in predicting the survival of 4H-SiC SBD detectors at higher irradiation levels.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, M. P.; Kaplar, R. J.; Dickerson, J. R.

    Electrical performance and characterization of deep levels in vertical GaN P-i-N diodes grown on low threading dislocation density (~10 4 –10 6 cm –2) bulk GaN substrates are investigated. The lightly doped n drift region of these devices is observed to be highly compensated by several prominent deep levels detected using deep level optical spectroscopy at E c-2.13, 2.92, and 3.2 eV. A combination of steady-state photocapacitance and lighted capacitance-voltage profiling indicates the concentrations of these deep levels to be N t = 3 × 10 12, 2 × 10 15, and 5 × 10 14 cm –3, respectively. Themore » E c-2.92 eV level is observed to be the primary compensating defect in as-grown n-type metal-organic chemical vapor deposition GaN, indicating this level acts as a limiting factor for achieving controllably low doping. The device blocking voltage should increase if compensating defects reduce the free carrier concentration of the n drift region. Understanding the incorporation of as-grown and native defects in thick n-GaN is essential for enabling large V BD in the next-generation wide-bandgap power semiconductor devices. Furthermore, controlling the as-grown defects induced by epitaxial growth conditions is critical to achieve blocking voltage capability above 5 kV.« less

  12. Reciprocal capacitance transients?

    NASA Astrophysics Data System (ADS)

    Gfroerer, Tim; Simov, Peter; Wanlass, Mark

    2007-03-01

    When the reverse bias across a semiconductor diode is changed, charge carriers move to accommodate the appropriate depletion thickness, producing a simultaneous change in the device capacitance. Transient capacitance measurements can reveal inhibited carrier motion due to trapping, where the depth of the trap can be evaluated using the temperature-dependent escape rate. However, when we employ this technique on a GaAs0.72P0.28 n+/p diode (which is a candidate for incorporation in multi-junction solar cells), we observe a highly non-exponential response under a broad range of experimental conditions. Double exponential functions give good fits, but lead to non-physical results. The deduced rates depend on the observation time window and fast and slow rates, which presumably correspond to deep and shallow levels, have identical activation energies. Meanwhile, we have discovered a universal linear relationship between the inverse of the capacitance and time. An Arrhenius plot of the slope of the reciprocal of the transient yields an activation energy of approximately 0.4 eV, independent of the observation window and other experimental conditions. The reciprocal behavior leads us to hypothesize that hopping, rather than escape into high-mobility bands, may govern the transport of trapped holes in this system.

  13. Metastable defect response in CZTSSe from admittance spectroscopy

    DOE PAGES

    Koeper, Mark J.; Hages, Charles J.; Li, Jian V.; ...

    2017-10-02

    Admittance spectroscopy is a useful tool used to study defects in semiconductor materials. However, metastable defect responses in non-ideal semiconductors can greatly impact the measurement and therefore the interpretation of results. Here, admittance spectroscopy was performed on Cu2ZnSn(S,Se) 4 where metastable defect response is illustrated due to the trapping of injected carriers into a deep defect state. To investigate the metastable response, admittance measurements were performed under electrically and optically relaxed conditions in comparison to a device following a low level carrier-injection pretreatment. The relaxed measurement demonstrates a single capacitance signature while two capacitance signatures are observed for the devicemore » measured following carrier-injection. The deeper level signature, typically reported for kesterites, is activated by charge trapping following carrier injection. Both signatures are attributed to bulk level defects. The significant metastable response observed on kesterites due to charge trapping obscures accurate interpretation of defect levels from admittance spectroscopy and indicates that great care must be taken when performing and interpreting this measurement on non-ideal devices.« less

  14. Identification of the primary compensating defect level responsible for determining blocking voltage of vertical GaN power diodes

    DOE PAGES

    King, M. P.; Kaplar, R. J.; Dickerson, J. R.; ...

    2016-10-31

    Electrical performance and characterization of deep levels in vertical GaN P-i-N diodes grown on low threading dislocation density (~10 4 –10 6 cm –2) bulk GaN substrates are investigated. The lightly doped n drift region of these devices is observed to be highly compensated by several prominent deep levels detected using deep level optical spectroscopy at E c-2.13, 2.92, and 3.2 eV. A combination of steady-state photocapacitance and lighted capacitance-voltage profiling indicates the concentrations of these deep levels to be N t = 3 × 10 12, 2 × 10 15, and 5 × 10 14 cm –3, respectively. Themore » E c-2.92 eV level is observed to be the primary compensating defect in as-grown n-type metal-organic chemical vapor deposition GaN, indicating this level acts as a limiting factor for achieving controllably low doping. The device blocking voltage should increase if compensating defects reduce the free carrier concentration of the n drift region. Understanding the incorporation of as-grown and native defects in thick n-GaN is essential for enabling large V BD in the next-generation wide-bandgap power semiconductor devices. Furthermore, controlling the as-grown defects induced by epitaxial growth conditions is critical to achieve blocking voltage capability above 5 kV.« less

  15. Progress in performance enhancement methods for capacitive silicon resonators

    NASA Astrophysics Data System (ADS)

    Van Toan, Nguyen; Ono, Takahito

    2017-11-01

    In this paper, we review the progress in recent studies on the performance enhancement methods for capacitive silicon resonators. We provide information on various fabrication technologies and design considerations that can be employed to improve the performance of capacitive silicon resonators, including low motional resistance, small insertion loss, and high quality factor (Q). This paper contains an overview of device structures and working principles, fabrication technologies consisting of hermetic packaging, deep reactive-ion etching and neutral beam etching, and design considerations including mechanically coupled, movable electrode structures and piezoresistive heat engines.

  16. Traps in AlGaN /GaN/SiC heterostructures studied by deep level transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Fang, Z.-Q.; Look, D. C.; Kim, D. H.; Adesida, I.

    2005-10-01

    AlGaN /GaN/SiC Schottky barrier diodes (SBDs), with and without Si3N4 passivation, have been characterized by temperature-dependent current-voltage and capacitance-voltage measurements, and deep level transient spectroscopy (DLTS). A dominant trap A1, with activation energy of 1.0 eV and apparent capture cross section of 2×10-12cm2, has been observed in both unpassivated and passivated SBDs. Based on the well-known logarithmic dependence of DLTS peak height with filling pulse width for a line-defect related trap, A1, which is commonly observed in thin GaN layers grown by various techniques, is believed to be associated with threading dislocations. At high temperatures, the DLTS signal sometimes becomes negative, likely due to an artificial surface-state effect.

  17. Determination of bulk and interface density of states in metal oxide semiconductor thin-film transistors by using capacitance-voltage characteristics

    NASA Astrophysics Data System (ADS)

    Wei, Xixiong; Deng, Wanling; Fang, Jielin; Ma, Xiaoyu; Huang, Junkai

    2017-10-01

    A physical-based straightforward extraction technique for interface and bulk density of states in metal oxide semiconductor thin film transistors (TFTs) is proposed by using the capacitance-voltage (C-V) characteristics. The interface trap density distribution with energy has been extracted from the analysis of capacitance-voltage characteristics. Using the obtained interface state distribution, the bulk trap density has been determined. With this method, for the interface trap density, it is found that deep state density nearing the mid-gap is approximately constant and tail states density increases exponentially with energy; for the bulk trap density, it is a superposition of exponential deep states and exponential tail states. The validity of the extraction is verified by comparisons with the measured current-voltage (I-V) characteristics and the simulation results by the technology computer-aided design (TCAD) model. This extraction method uses non-numerical iteration which is simple, fast and accurate. Therefore, it is very useful for TFT device characterization.

  18. Electrochemical capacitance voltage measurements in highly doped silicon and silicon-germanium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sermage, B.; Essa, Z.; Taleb, N.

    2016-04-21

    The electrochemical capacitance voltage technique has been used on highly boron doped SiGe and Si layers. Although the boron concentration is constant over the space charge depth, the 1/C{sup 2} versus voltage curves are not linear. They indeed present a negative curvature. This can be explained by the existence of deep acceptors which ionise under a high electric field (large inverse voltage) and not at a low inverse voltage. The measured doping concentration in the electrochemical capacitance voltage increases strongly as the inverse voltage increases. Thanks to a comparison with the boron concentration measured by secondary ions mass spectrometry, wemore » show that the relevant doping concentrations in device layers are obtained for small inverse voltage in agreement with the existence of deep acceptors. At the large inverse voltage, the measured doping can be more than twice larger than the boron concentration measured with a secondary ion mass spectroscopy.« less

  19. Comments on "J. Vera et. al., Soil water balance trial involving capacitance and neutron probe measurements"

    USDA-ARS?s Scientific Manuscript database

    Vera et al. (2009) compared estimates of soil profile water content (mm) to a depth of 0.8 m made with the neutron moisture meter (NMM) and a multi-depth capacitance probe (MDCP), using measurements replicated in four drainage lysimeters (5 m x 5 m x 1.5-m deep). The NMM estimates of water content w...

  20. Defect-Reduction Mechanism for Improving Radiative Efficiency in InGaN/GaN Light-Emitting Diodes using InGaN Underlayers

    DOE PAGES

    Armstrong, Andrew M.; Bryant, Benjamin N.; Crawford, Mary H.; ...

    2015-04-01

    The influence of a dilute In xGa 1-xN (x~0.03) underlayer (UL) grown below a single In 0.16Ga 0.84N quantum well (SQW), within a light-emitting diode(LED), on the radiative efficiency and deep level defect properties was studied using differential carrier lifetime (DCL) measurements and deep level optical spectroscopy (DLOS). DCL measurements found that inclusion of the UL significantly improved LED radiative efficiency. At low current densities, the non-radiative recombination rate of the LED with an UL was found to be 3.9 times lower than theLED without an UL, while the radiative recombination rates were nearly identical. This, then, suggests that themore » improved radiative efficiency resulted from reduced non-radiative defect concentration within the SQW. DLOS measurement found the same type of defects in the InGaN SQWs with and without ULs. However, lighted capacitance-voltage measurements of the LEDs revealed a 3.4 times reduction in a SQW-related near-mid-gap defect state for the LED with an UL. Furthermore, quantitative agreement in the reduction of both the non-radiative recombination rate (3.9×) and deep level density (3.4×) upon insertion of an UL corroborates deep level defect reduction as the mechanism for improved LED efficiency.« less

  1. 3D capacitive tactile sensor using DRIE micromachining

    NASA Astrophysics Data System (ADS)

    Chuang, Chiehtang; Chen, Rongshun

    2005-07-01

    This paper presents a three dimensional micro capacitive tactile sensor that can detect normal and shear forces which is fabricated using deep reactive ion etching (DRIE) bulk silicon micromachining. The tactile sensor consists of a force transmission plate, a symmetric suspension system, and comb electrodes. The sensing character is based on the changes of capacitance between coplanar sense electrodes. High sensitivity is achieved by using the high aspect ratio interdigital electrodes with narrow comb gaps and large overlap areas. The symmetric suspension mechanism of this sensor can easily solve the coupling problem of measurement and increase the stability of the structure. In this paper, the sensor structure is designed, the capacitance variation of the proposed device is theoretically analyzed, and the finite element analysis of mechanical behavior of the structures is performed.

  2. Defects and annealing studies in 1-Me electron irradiated (AlGa)As-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.; Wang, W. L.; Loo, R. Y.; Rahilly, W. P.

    1982-01-01

    The deep-level defects and recombination mechanisms in the one-MeV electron irradiated (AlGa)As-GaAs solar cells under various irradiation and annealing conditions are discussed. Deep-level transient spectroscopy (DLTS) and capacitance-voltage (CV) techniques were used to determine the defect and recombination parameters such as energy levels and defect density, carrier capture cross sections and lifetimes for both electron and hole traps as well as hole diffusion lengths in these electron irradiated GaAs solar cells. GaAs solar cells used in this study were prepared by the infinite solution melt liquid phase epitaxial (LPE) technique at Hughes Research Lab., with (Al0.9Ga0.1)-As window layer, Be-diffused p-GaAs layer on Sn-doped n-GaAs or undoped n-GaAs active layer grown on n(+)-GaAs substrate. Mesa structure with area of 5.86x1000 sq cm was fabricated. Three different irradiation and annealing experiments were performed on these solar cells.

  3. Tutorial: Junction spectroscopy techniques and deep-level defects in semiconductors

    NASA Astrophysics Data System (ADS)

    Peaker, A. R.; Markevich, V. P.; Coutinho, J.

    2018-04-01

    The term junction spectroscopy embraces a wide range of techniques used to explore the properties of semiconductor materials and semiconductor devices. In this tutorial review, we describe the most widely used junction spectroscopy approaches for characterizing deep-level defects in semiconductors and present some of the early work on which the principles of today's methodology are based. We outline ab-initio calculations of defect properties and give examples of how density functional theory in conjunction with formation energy and marker methods can be used to guide the interpretation of experimental results. We review recombination, generation, and trapping of charge carriers associated with defects. We consider thermally driven emission and capture and describe the techniques of Deep Level Transient Spectroscopy (DLTS), high resolution Laplace DLTS, admittance spectroscopy, and scanning DLTS. For the study of minority carrier related processes and wide gap materials, we consider Minority Carrier Transient Spectroscopy (MCTS), Optical DLTS, and deep level optical transient spectroscopy together with some of their many variants. Capacitance, current, and conductance measurements enable carrier exchange processes associated with the defects to be detected. We explain how these methods are used in order to understand the behaviour of point defects and the determination of charge states and negative-U (Hubbard correlation energy) behaviour. We provide, or reference, examples from a wide range of materials including Si, SiGe, GaAs, GaP, GaN, InGaN, InAlN, and ZnO.

  4. Control of strong light-matter coupling using the capacitance of metamaterial nanocavities

    DOE PAGES

    Benz, Alexander; Campione, Salvatore; Klem, John Frederick; ...

    2015-01-27

    Metallic nanocavities with deep subwavelength mode volumes can lead to dramatic changes in the behavior of emitters placed in their vicinity. The resulting collocation and interaction often leads to strong coupling. We present for the first time experimental evidence that the Rabi splitting is directly proportional to the electrostatic capacitance associated with the metallic nanocavity. As a result, the system analyzed consists of different metamaterial geometries with the same resonance wavelength coupled to intersubband transitions in quantum wells.

  5. Anomalous C-V response correlated to relaxation processes in TiO{sub 2} thin film based-metal-insulator-metal capacitor: Effect of titanium and oxygen defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahouli, A., E-mail: kahouli.kader@yahoo.fr; University Grenoble Alpes, G2Elab, F-38000 Grenoble; Marichy, C.

    2015-04-21

    Capacitance-voltage (C–V) and capacitance-frequency (C–f) measurements are performed on atomic layer deposited TiO{sub 2} thin films with top and bottom Au and Pt electrodes, respectively, over a large temperature and frequency range. A sharp capacitance peak/discontinuity (C–V anomalous) is observed in the C–V characteristics at various temperatures and voltages. It is demonstrated that this phenomenon is directly associated with oxygen vacancies. The C–V peak irreversibility and dissymmetry at the reversal dc voltage are attributed to difference between the Schottky contacts at the metal/TiO{sub 2} interfaces. Dielectric analyses reveal two relaxation processes with degeneration of the activation energy. The low trapmore » level of 0.60–0.65 eV is associated with the first ionized oxygen vacancy at low temperature, while the deep trap level of 1.05 eV is associated to the second ionized oxygen vacancy at high temperature. The DC conductivity of the films exhibits a transition temperature at 200 °C, suggesting a transition from a conduction regime governed by ionized oxygen vacancies to one governed by interstitial Ti{sup 3+} ions. Both the C–V anomalous and relaxation processes in TiO{sub 2} arise from oxygen vacancies, while the conduction mechanism at high temperature is governed by interstitial titanium ions.« less

  6. Surface acceptor states in MBE-grown CdTe layers

    NASA Astrophysics Data System (ADS)

    Wichrowska, Karolina; Wosinski, Tadeusz; Tkaczyk, Zbigniew; Kolkovsky, Valery; Karczewski, Grzegorz

    2018-04-01

    A deep-level hole trap associated with surface defect states has been revealed with deep-level transient spectroscopy investigations of metal-semiconductor junctions fabricated on nitrogen doped p-type CdTe layers grown by the molecular-beam epitaxy technique. The trap displayed the hole-emission activation energy of 0.33 eV and the logarithmic capture kinetics indicating its relation to extended defect states at the metal-semiconductor interface. Strong electric-field-induced enhancement of the thermal emission rate of holes from the trap has been attributed to the phonon-assisted tunneling effect from defect states involving very large lattice relaxation around the defect and metastability of its occupied state. Passivation with ammonium sulfide of the CdTe surface, prior to metallization, results in a significant decrease in the trap density. It also results in a distinct reduction in the width of the surface-acceptor-state-induced hysteresis loops in the capacitance vs. voltage characteristics of the metal-semiconductor junctions.

  7. A system for measuring thermal activation energy levels in silicon by thermally stimulated capacitance

    NASA Technical Reports Server (NTRS)

    Cockrum, R. H.

    1982-01-01

    One method being used to determine energy level(s) and electrical activity of impurities in silicon is described. The method is called capacitance transient spectroscopy (CTS). It can be classified into three basic categories: the thermally stimulated capacitance method, the voltage-stimulated capacitance method, and the light-stimulated capacitance method; the first two categories are discussed. From the total change in capacitance and the time constant of the capacitance response, emission rates, energy levels, and trap concentrations can be determined. A major advantage of using CTS is its ability to detect the presence of electrically active impurities that are invisible to other techniques, such as Zeeman effect atomic absorption, and the ability to detect more than one electrically active impurity in a sample. Examples of detection of majority and minority carrier traps from gold donor and acceptor centers in silicon using the capacitance transient spectrometer are given to illustrate the method and its sensitivity.

  8. Electrical and structural characterizations of crystallized Al{sub 2}O{sub 3}/GaN interfaces formed by in situ metalorganic chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X., E-mail: xliu@ece.ucsb.edu; Yeluri, R.; Kim, J.

    2016-01-07

    Al{sub 2}O{sub 3} films were grown in situ by metalorganic chemical vapor deposition at 900 °C on GaN of both Ga- and N-face polarities. High-resolution transmission electron microscopy revealed that the Al{sub 2}O{sub 3} films were crystalline and primarily γ-phase. The Al{sub 2}O{sub 3}/Ga-GaN and Al{sub 2}O{sub 3}/N-GaN interfaces were both atomically sharp, and the latter further exhibited a biatomic step feature. The corresponding current-voltage (J-V) characteristics were measured on a metal-Al{sub 2}O{sub 3}-semiconductor capacitor (MOSCAP) structure. The leakage current was very high when the Al{sub 2}O{sub 3} thickness was comparable with the size of the crystalline defects, but was suppressedmore » to the order of 1 × 10{sup −8} A/cm{sup 2} with larger Al{sub 2}O{sub 3} thicknesses. The interface states densities (D{sub it}) were measured on the same MOSCAPs by using combined ultraviolet (UV)-assisted capacitance-voltage (C-V), constant capacitance deep level transient spectroscopy (CC-DLTS), and constant capacitance deep level optical spectroscopy (CC-DLOS) techniques. The average D{sub it} measured by CC-DLTS and CC-DLOS were 6.6 × 10{sup 12} and 8.8 × 10{sup 12} cm{sup −2} eV{sup −1} for Al{sub 2}O{sub 3}/Ga-GaN and 8.6 × 10{sup 12} and 8.6 × 10{sup 12 }cm{sup −2} eV{sup −1} for Al{sub 2}O{sub 3}/N-GaN, respectively. The possible origins of the positive (negative) polarization compensation charges in Al{sub 2}O{sub 3}/Ga-GaN (Al{sub 2}O{sub 3}/N-GaN), including the filling of interface states and the existence of structure defects and impurities in the Al{sub 2}O{sub 3} layer, were discussed in accordance with the experimental results and relevant studies in the literature.« less

  9. A dominant electron trap in molecular beam epitaxial InAlN lattice-matched to GaN

    NASA Astrophysics Data System (ADS)

    Pandey, Ayush; Bhattacharya, Aniruddha; Cheng, Shaobo; Botton, Gianluigi A.; Mi, Zetian; Bhattacharya, Pallab

    2018-04-01

    Deep levels in lattice-matched undoped and Si-doped InAlN/GaN grown by plasma-assisted molecular beam epitaxy have been identified and characterized by capacitance and photocapacitance measurements. From x-ray diffraction, reflectance measurements, electron energy loss spectroscopy and high-resolution transmission electron microscopy it is evident that the material has two distinct phases with different compositions. These correspond to In compositions of 18.1% and 25.8%, with corresponding bandgaps of 4.6 eV and 4.1 eV, respectively. The lower bandgap material is present as columnar microstructures in the form of quantum wires. A dominant electron trap with an activation energy of 0.293  ±  0.01 eV, a small capture cross-section of (1.54  ±  0.25)  ×  10-18 cm2, and density increasing linearly with Si doping density is identified in all the samples. The characteristics of the electron trap and variation of diode capacitance are discussed in the context of carrier dynamics involving the dominant trap level and the quantum wires.

  10. Deep Tissue Photoacoustic Imaging Using a Miniaturized 2-D Capacitive Micromachined Ultrasonic Transducer Array

    PubMed Central

    Kothapalli, Sri-Rajasekhar; Ma, Te-Jen; Vaithilingam, Srikant; Oralkan, Ömer

    2014-01-01

    In this paper, we demonstrate 3-D photoacoustic imaging (PAI) of light absorbing objects embedded as deep as 5 cm inside strong optically scattering phantoms using a miniaturized (4 mm × 4 mm × 500 µm), 2-D capacitive micromachined ultrasonic transducer (CMUT) array of 16 × 16 elements with a center frequency of 5.5 MHz. Two-dimensional tomographic images and 3-D volumetric images of the objects placed at different depths are presented. In addition, we studied the sensitivity of CMUT-based PAI to the concentration of indocyanine green dye at 5 cm depth inside the phantom. Under optimized experimental conditions, the objects at 5 cm depth can be imaged with SNR of about 35 dB and a spatial resolution of approximately 500 µm. Results demonstrate that CMUTs with integrated front-end amplifier circuits are an attractive choice for achieving relatively high depth sensitivity for PAI. PMID:22249594

  11. Partially Ionized Beam Deposition of Silicon-Dioxide and Aluminum Thin Films - Defects Generation.

    NASA Astrophysics Data System (ADS)

    Wong, Justin Wai-Chow

    1987-09-01

    Detect formation in SiO_2 and Al thin films and interfaces were studied using a partially ionized beam (PIB) deposition technique. The evaporated species (the deposition material) were partially ionized to give an ion/atom ratio of <=q0.1% and the substrate was biased at 0-5kV during the deposition. The results suggest that due to the ion bombardment, stoichiometric SiO_2 films can be deposited at a low substrate temperature (~300 ^circC) and low oxygen pressure (<=q10^{-4} Torr). Such deposition cannot be achieved using conventional evaporation-deposition techniques. However, traps and mobile ions were observed in the oxide and local melt-down was observed when a sufficiently high electric field was applied to the film. For the PIB Al deposition on the Si substrate, stable Al/Si Schottky contact was formed when the substrate bias was <=q1kV. For a substrate bias of 2.5kV, the capacitance of the Al/Si interface increased dramatically. A model of self-ion implantation with a p-n junction created by the Al^+ ion implantation was proposed and tested to explain the increase of the interface capacitance. Several deep level states at the Al/Si interface were observed using Deep Level Transient Spectroscopy (DLTS) technique when the film was deposited at a bias of 3kV. The PIB Al films deposited on the Si substrate showed unusually strong electromigration resistance under high current density operation. This phenomenon was explained by the highly oriented microstructure of the Al films created by the self-ion bombardment during deposition. These findings show that PIB has potential applications in a number of areas, including low temperature thin film deposition, and epitaxial growth of thin films in the microelectronics thin film industry.

  12. Origin of dislocation luminescence centers and their reorganization in p-type silicon crystal subjected to plastic deformation and high temperature annealing.

    PubMed

    Pavlyk, Bohdan; Kushlyk, Markiyan; Slobodzyan, Dmytro

    2017-12-01

    Changes of the defect structure of silicon p-type crystal surface layer under the influence of plastic deformation and high temperature annealing in oxygen atmosphere were investigated by deep-level capacitance-modulation spectroscopy (DLCMS) and IR spectroscopy of molecules and atom vibrational levels. Special role of dislocations in the surface layer of silicon during the formation of its energy spectrum and rebuilding the defective structure was established. It is shown that the concentration of linear defects (N ≥ 10 4  cm -2 ) enriches surface layer with electrically active complexes (dislocation-oxygen, dislocation-vacancy, and dislocation-interstitial atoms of silicon) which are an effective radiative recombination centers.

  13. Micromachined low frequency rocking accelerometer with capacitive pickoff

    DOEpatents

    Lee, Abraham P.; Simon, Jonathon N.; McConaghy, Charles F.

    2001-01-01

    A micro electro mechanical sensor that uses capacitive readout electronics. The sensor involves a micromachined low frequency rocking accelerometer with capacitive pickoff fabricated by deep reactive ion etching. The accelerometer includes a central silicon proof mass, is suspended by a thin polysilicon tether, and has a moving electrode (capacitor plate or interdigitated fingers) located at each end the proof mass. During movement (acceleration), the tethered mass moves relative to the surrounding packaging, for example, and this defection is measured capacitively by a plate capacitor or interdigitated finger capacitor, having the cooperating fixed electrode (capacitor plate or interdigitated fingers) positioned on the packaging, for example. The micromachined rocking accelerometer has a low frequency (<500 Hz), high sensitivity (.mu.G), with minimal power usage. The capacitors are connected to a power supply (battery) and to sensor interface electronics, which may include an analog to digital (A/D) converter, logic, RF communication link, antenna, etc. The sensor (accelerometer) may be, for example, packaged along with the interface electronics and a communication system in a 2".times.2".times.2" cube. The proof mass may be asymmetric or symmetric. Additional actuating capacitive plates may be used for feedback control which gives a greater dynamic range.

  14. Characterization of irradiation induced deep and shallow impurities

    NASA Astrophysics Data System (ADS)

    Treberspurg, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Krammer, Manfred; Valentan, Manfred

    2013-12-01

    Silicon Detectors close to the interaction point of the High Luminosity Large Hardron Collider (HL-LHC) have to withstand a harsh irradiation environment. In order to evaluate the behaviour of shallow and deep defects, induced by neutron irradiation, spreading resistance resistivity measurements and capacitance voltage measurements have been performed. These measurements, deliver information about the profile of shallow impurities after irradiation as well as indications of deep defects in the Space Charge Region (SCR) and the Electrical Neutral Bulk (ENB). By considering the theoretical background of the measurement both kinds of defects can be investigated independently from each other.

  15. Dual Segment Glocal Model Based Capacitive Level Sensor (CLS) for Adhesive Material and Level Detection

    NASA Astrophysics Data System (ADS)

    Khan, F. A.; Yousaf, A.; Reindl, L. M.

    2018-04-01

    This paper presents a multi segment capacitive level monitoring sensor based on distributed E-fields approach Glocal. This approach has an advantage to analyze build-up problem by the local E-fields as well the fluid level monitoring by the global E-fields. The multi segment capacitive approach presented within this work addresses the main problem of unwanted parasitic capacitance generated from Copper (Cu) strips by applying active shielding concept. Polyvinyl chloride (PVC) is used for isolation and parafilm is used for creating artificial build-up on a CLS.

  16. Effects of antimony (Sb) on electron trapping near SiO{sub 2}/4H-SiC interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mooney, P. M.; Jiang, Zenan; Basile, A. F.

    To investigate the mechanism by which Sb at the SiO{sub 2}/SiC interface improves the channel mobility of 4H-SiC MOSFETs, 1 MHz capacitance measurements and constant capacitance deep level transient spectroscopy (CCDLTS) measurements were performed on Sb-implanted 4H-SiC MOS capacitors. The measurements reveal a significant concentration of Sb donors near the SiO{sub 2}/SiC interface. Two Sb donor related CCDLTS peaks corresponding to shallow energy levels in SiC were observed close to the SiO{sub 2}/SiC interface. Furthermore, CCDLTS measurements show that the same type of near-interface traps found in conventional dry oxide or NO-annealed capacitors are present in the Sb implanted samples. Thesemore » are O1 traps, suggested to be carbon dimers substituted for O dimers in SiO{sub 2}, and O2 traps, suggested to be interstitial Si in SiO{sub 2}. However, electron trapping is reduced by a factor of ∼2 in Sb-implanted samples compared with samples with no Sb, primarily at energy levels within 0.2 eV of the SiC conduction band edge. This trap passivation effect is relatively small compared with the Sb-induced counter-doping effect on the MOSFET channel surface, which results in improved channel transport.« less

  17. Gaseous slip flow analysis of a micromachined flow sensor for ultra small flow applications

    NASA Astrophysics Data System (ADS)

    Jang, Jaesung; Wereley, Steven T.

    2007-02-01

    The velocity slip of a fluid at a wall is one of the most typical phenomena in microscale gas flows. This paper presents a flow analysis considering the velocity slip in a capacitive micro gas flow sensor based on pressure difference measurements along a microchannel. The tangential momentum accommodation coefficient (TMAC) measurements of a particular channel wall in planar microchannels will be presented while the previous micro gas flow studies have been based on the same TMACs on both walls. The sensors consist of a pair of capacitive pressure sensors, inlet/outlet and a microchannel. The main microchannel is 128.0 µm wide, 4.64 µm deep and 5680 µm long, and operated under nearly atmospheric conditions where the outlet Knudsen number is 0.0137. The sensor was fabricated using silicon wet etching, ultrasonic drilling, deep reactive ion etching (DRIE) and anodic bonding. The capacitance change of the sensor and the mass flow rate of nitrogen were measured as the inlet-to-outlet pressure ratio was varied from 1.00 to 1.24. The measured maximum mass flow rate was 3.86 × 10-10 kg s-1 (0.019 sccm) at the highest pressure ratio tested. As the pressure difference increased, both the capacitance of the differential pressure sensor and the flow rate through the main microchannel increased. The laminar friction constant f sdot Re, an important consideration in sensor design, varied from the incompressible no-slip case and the mass sensitivity and resolution of this sensor were discussed. Using the current slip flow formulae, a microchannel with much smaller mass flow rates can be designed at the same pressure ratios.

  18. Time-multiplexed two-channel capacitive radiofrequency hyperthermia with nanoparticle mediation.

    PubMed

    Kim, Ki Soo; Hernandez, Daniel; Lee, Soo Yeol

    2015-10-24

    Capacitive radiofrequency (RF) hyperthermia suffers from excessive temperature rise near the electrodes and poorly localized heat transfer to the deep-seated tumor region even though it is known to have potential to cure ill-conditioned tumors. To better localize heat transfer to the deep-seated target region in which electrical conductivity is elevated by nanoparticle mediation, two-channel capacitive RF heating has been tried on a phantom. We made a tissue-mimicking phantom consisting of two compartments, a tumor-tissue-mimicking insert against uniform background agarose. The tumor-tissue-mimicking insert was made to have higher electrical conductivity than the normal-tissue-mimicking background by applying magnetic nanoparticle suspension to the insert. Two electrode pairs were attached on the phantom surface by equal-angle separation to apply RF electric field to the phantom. To better localize heat transfer to the tumor-tissue-mimicking insert, RF power with a frequency of 26 MHz was delivered to the two channels in a time-multiplexed way. To monitor the temperature rise inside the phantom, MR thermometry was performed at a 3T MRI intermittently during the RF heating. Finite-difference-time-domain (FDTD) electromagnetic and thermal simulations on the phantom model were also performed to verify the experimental results. As compared to the one-channel RF heating, the two-channel RF heating with time-multiplexed driving improved the spatial localization of heat transfer to the tumor-tissue-mimicking region in both the simulation and experiment. The two-channel RF heating also reduced the temperature rise near the electrodes significantly. Time-multiplexed two-channel capacitive RF heating has the capability to better localize heat transfer to the nanoparticle-mediated tumor region which has higher electrical conductivity than the background normal tissues.

  19. Design of capacitive sensor for water level measurement

    NASA Astrophysics Data System (ADS)

    Qurthobi, A.; Iskandar, R. F.; Krisnatal, A.; Weldzikarvina

    2016-11-01

    Capacitive sensor for water level detection has been fabricated. It has, typically, high-impedance sensor, particularly at low frequencies, as clear from the impedance (reactance) expression for a capacitor. Also, capacitive sensor is a noncontacting device in the common usage. In this research, water level sensor based on capacitive principal created using two copper plates with height (h), width (b), and distance (l) between two plates, respectively, 0.040 m, 0.015 m, and 0.010 m. 5 V pp 3 kHz AC signal is used as input signal for the system. Dielectric constant between two plates is proportional to water level. Hence, it can be used to determine water level from electrical characteristic as it inversely proportional to sensor impedance. Linearization, inverting amplifier, and rectifier circuits are used as signal conditioning for the system. Based on conducted experiment, the relationship between water level (x), capacitance (C), and output voltage (Vdc ) can be expressed as C(x) = 2.756x + 0.333 nF and Vdc (x) = 15.755 + 0.316 V.

  20. Hole traps associated with high-concentration residual carriers in p-type GaAsN grown by chemical beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elleuch, Omar, E-mail: mr.omar.elleuch@gmail.com; Wang, Li; Lee, Kan-Hua

    2015-01-28

    The hole traps associated with high background doping in p-type GaAsN grown by chemical beam epitaxy are studied based on the changes of carrier concentration, junction capacitance, and hole traps properties due to the annealing. The carrier concentration was increased dramatically with annealing time, based on capacitance–voltage (C–V) measurement. In addition, the temperature dependence of the junction capacitance (C–T) was increased rapidly two times. Such behavior is explained by the thermal ionization of two acceptor states. These acceptors are the main cause of high background doping in the film, since the estimated carrier concentration from C–T results explains the measuredmore » carrier concentration at room temperature using C–V method. The acceptor states became shallower after annealing, and hence their structures are thermally unstable. Deep level transient spectroscopy (DLTS) showed that the HC2 hole trap was composed of two signals, labeled HC21 and HC22. These defects correspond to the acceptor levels, as their energy levels obtained from DLTS are similar to those deduced from C–T. The capture cross sections of HC21 and HC22 are larger than those of single acceptors. In addition, their energy levels and capture cross sections change in the same way due to the annealing. This tendency suggests that HC21 and HC22 signals originate from the same defect which acts as a double acceptor.« less

  1. High Temperature Capacitive Pressure Sensor Employing a SiC Based Ring Oscillator

    NASA Technical Reports Server (NTRS)

    Meredith, Roger D.; Neudeck, Philip G.; Ponchak, George E.; Beheim, Glenn M.; Scardelletti, Maximilian; Jordan, Jennifer L.; Chen, Liang-Yu; Spry, David J.; Krawowski, Michael J.; Hunter, Gary W.

    2011-01-01

    In an effort to develop harsh environment electronic and sensor technologies for aircraft engine safety and monitoring, we have used capacitive-based pressure sensors to shift the frequency of a SiC-electronics-based oscillator to produce a pressure-indicating signal that can be readily transmitted, e.g. wirelessly, to a receiver located in a more benign environment. Our efforts target 500 C, a temperature well above normal operating conditions of commercial circuits but within areas of interest in aerospace engines, deep mining applications and for future missions to the Venus atmosphere. This paper reports for the first time a ring oscillator circuit integrated with a capacitive pressure sensor, both operating at 500 C. This demonstration represents a significant step towards a wireless pressure sensor that can operate at 500 C and confirms the viability of 500 C electronic sensor systems.

  2. Impacts of Carrier Transport and Deep Level Defects on Delayed Cathodoluminescence in Droop-Mitigating InGaN/GaN LEDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zhibo; Singh, Akshay; Chesin, Jordan

    Prevalent droop mitigation strategies in InGaN-based LEDs require structural and/or compositional changes in the active region but are accompanied by a detrimental reduction in external quantum efficiency (EQE) due to increased Shockley-Read-Hall recombination. Understanding the optoelectronic impacts of structural modifications in InGaN/GaN quantum wells (QW) remains critical for emerging high-power LEDs. In this work, we use a combination of electron microscopy tools along with standard electrical characterization to investigate a wide range of low-droop InGaN/GaN QW designs. We find that chip-scale EQE is uncorrelated with extended well-width fluctuations observed in scanning transmission electron microscopy. Further, we observe delayed cathodoluminescence (CL)more » response from designs in which calculated band profiles suggest facile carrier escape from individual QWs. Samples with the slowest CL responses also exhibit the lowest EQEs and highest QW defect densities in deep level optical spectroscopy. We propose a model in which the electron beam (i) passivates deep level defect states and (ii) drives charge carrier accumulation and subsequent reduction of the built-in field across the multi-QW active region, resulting in delayed radiative recombination. Finally, we correlate CL rise dynamics with capacitance-voltage measurements and show that certain early-time components of the CL dynamics reflect the open circuit carrier population within one or more QWs.« less

  3. The influence of thermal annealing on the characteristics of Au/Ni Schottky contacts on n-type 4 H-SiC

    NASA Astrophysics Data System (ADS)

    Omotoso, E.; Auret, F. D.; Igumbor, E.; Tunhuma, S. M.; Danga, H. T.; Ngoepe, P. N. M.; Taleatu, B. A.; Meyer, W. E.

    2018-05-01

    The effects of isochronal annealing on the electrical, morphological and structural characteristics of Au/Ni/4 H-SiC Schottky barrier diodes (SBDs) have been studied. Current-voltage ( I- V), capacitance-voltage ( C- V), deep-level transient spectroscopy, scanning electron microscope (SEM) and X-ray diffraction measurements were employed to study the thermal effect on the characteristics of the SBDs. Prior to thermal annealing of Schottky contacts, the I- V measurements results confirmed the good rectification behaviour with ideality factor of 1.06, Schottky barrier height of 1.20 eV and series resistance of 7 Ω. The rectification properties after annealing was maintained up to an annealing temperature of 500 °C, but deviated slightly above 500 °C. The uncompensated ionized donor concentration decreased with annealing temperature, which could be attributed to out-diffusion of the 4 H-SiC into the Au/Ni contacts and decrease in bonding due to formation of nickel silicides. We observed the presence of four deep-level defects with energies 0.09, 0.11, 0.16 and 0.65 eV below the conduction band before and after the isochronal annealing up to 600 °C. The conclusion drawn was that annealing did not affect the number of deep-level defects present in Au/Ni/4 H-SiC contacts. The variations in electrical properties of the devices were attributed to the phase transformations and interfacial reactions that occurred after isochronal annealing.

  4. Development of capacitive sensor for automatically measuring tumbler water level with FEA simulation.

    PubMed

    Wei, Qun; Kim, Mi-Jung; Lee, Jong-Ha

    2018-01-01

    Drinking water has several advantages that have already been established, such as improving blood circulation, reducing acid in the stomach, etc. However, due to people not noticing the amount of water they consume every time they drink, most people drink less water than the recommended daily allowance. In this paper, a capacitive sensor for developing an automatic tumbler to measure water level is proposed. Different than in previous studies, the proposed capacitive sensor was separated into two sets: the main sensor for measuring the water level in the tumbler, and the reference sensor for measuring the incremental level unit. In order to confirm the feasibility of the proposed idea, and to optimize the shape of the sensor, a 3D model of the capacitive sensor with the tumbler was designed and subjected to Finite Element Analysis (FEA) simulation. According to the simulation results, the electrodes were made of copper and assembled in a tumbler manufactured by a 3D printer. The tumbler was filled with water and was subjected to experiments in order to assess the sensor's performance. The comparison of experimental results to the simulation results shows that the measured capacitance value of the capacitive sensor changed linearly as the water level varied. This proves that the proposed sensor can accurately measure the water level in the tumbler. Additionally, by use of the curve fitting method, a compensation algorithm was found to match the actual level with the measured level. The experimental results proved that the proposed capacitive sensor is able to measure the actual water level in the tumbler accurately. A digital control part with micro-processor will be designed and fixed on the bottom of the tumbler for developing a smart tumbler.

  5. Compensation and persistent photocapacitance in homoepitaxial Sn-doped β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Polyakov, A. Y.; Smirnov, N. B.; Shchemerov, I. V.; Gogova, D.; Tarelkin, S. A.; Pearton, S. J.

    2018-03-01

    The electrical properties of epitaxial β-Ga2O3 doped with Sn (1016-9 × 1018 cm-3) and grown by metalorganic chemical vapor deposition on semi-insulating β-Ga2O3 substrates are reported. Shallow donors attributable to Sn were observed only in a narrow region near the film/substrate interface and with a much lower concentration than the total Sn density. For heavily Sn doped films (Sn concentration, 9 × 1018 cm-3), the electrical properties in the top portion of the layer were determined by deep centers with a level at Ec-0.21 eV not described previously. In more lightly doped layers, the Ec-0.21 eV centers and deeper traps at Ec-0.8 eV were present, with the latter pinning the Fermi level. Low temperature photocapacitance and capacitance voltage measurements of illuminated samples indicated the presence of high densities (1017-1018 cm-3) of deep acceptors with an optical ionization threshold of 2.3 eV. Optical deep level transient spectroscopy (ODLTS) and photoinduced current transient spectroscopy (PICTS) detected electron traps at Ec-0.8 eV and Ec-1.1 eV. For lightly doped layers, the compensation of film conductivity was mostly provided by the Ec-2.3 eV acceptors. For heavily Sn doped films, deep acceptor centers possibly related to Ga vacancies were significant. The photocapacitance and the photocurrent caused by illumination at low temperatures were persistent, with an optical threshold of 1.9 eV and vanished only at temperatures of ˜400 K. The capture barrier for electrons causing the persistent photocapacitance effect was estimated from ODLTS and PICTS to be 0.25-0.35 eV.

  6. Point defect induced degradation of electrical properties of Ga2O3 by 10 MeV proton damage

    NASA Astrophysics Data System (ADS)

    Polyakov, A. Y.; Smirnov, N. B.; Shchemerov, I. V.; Yakimov, E. B.; Yang, Jiancheng; Ren, F.; Yang, Gwangseok; Kim, Jihyun; Kuramata, A.; Pearton, S. J.

    2018-01-01

    Deep electron and hole traps in 10 MeV proton irradiated high-quality β-Ga2O3 films grown by Hydride Vapor Phase Epitaxy (HVPE) on bulk β-Ga2O3 substrates were measured by deep level transient spectroscopy with electrical and optical injection, capacitance-voltage profiling in the dark and under monochromatic irradiation, and also electron beam induced current. Proton irradiation caused the diffusion length of charge carriers to decrease from 350-380 μm in unirradiated samples to 190 μm for a fluence of 1014 cm-2, and this was correlated with an increase in density of hole traps with optical ionization threshold energy near 2.3 eV. These defects most likely determine the recombination lifetime in HVPE β-Ga2O3 epilayers. Electron traps at Ec-0.75 eV and Ec-1.2 eV present in as-grown samples increase in the concentration after irradiation and suggest that these centers involve native point defects.

  7. Negative quantum capacitance induced by midgap states in single-layer graphene.

    PubMed

    Wang, Lin; Wang, Yang; Chen, Xiaolong; Zhu, Wei; Zhu, Chao; Wu, Zefei; Han, Yu; Zhang, Mingwei; Li, Wei; He, Yuheng; Xiong, Wei; Law, Kam Tuen; Su, Dangsheng; Wang, Ning

    2013-01-01

    We demonstrate that single-layer graphene (SLG) decorated with a high density of Ag adatoms displays the unconventional phenomenon of negative quantum capacitance. The Ag adatoms act as resonant impurities and form nearly dispersionless resonant impurity bands near the charge neutrality point (CNP). Resonant impurities quench the kinetic energy and drive the electrons to the Coulomb energy dominated regime with negative compressibility. In the absence of a magnetic field, negative quantum capacitance is observed near the CNP. In the quantum Hall regime, negative quantum capacitance behavior at several Landau level positions is displayed, which is associated with the quenching of kinetic energy by the formation of Landau levels. The negative quantum capacitance effect near the CNP is further enhanced in the presence of Landau levels due to the magnetic-field-enhanced Coulomb interactions.

  8. Negative Quantum Capacitance Induced by Midgap States in Single-layer Graphene

    PubMed Central

    Wang, Lin; Wang, Yang; Chen, Xiaolong; Zhu, Wei; Zhu, Chao; Wu, Zefei; Han, Yu; Zhang, Mingwei; Li, Wei; He, Yuheng; Xiong, Wei; Law, Kam Tuen; Su, Dangsheng; Wang, Ning

    2013-01-01

    We demonstrate that single-layer graphene (SLG) decorated with a high density of Ag adatoms displays the unconventional phenomenon of negative quantum capacitance. The Ag adatoms act as resonant impurities and form nearly dispersionless resonant impurity bands near the charge neutrality point (CNP). Resonant impurities quench the kinetic energy and drive the electrons to the Coulomb energy dominated regime with negative compressibility. In the absence of a magnetic field, negative quantum capacitance is observed near the CNP. In the quantum Hall regime, negative quantum capacitance behavior at several Landau level positions is displayed, which is associated with the quenching of kinetic energy by the formation of Landau levels. The negative quantum capacitance effect near the CNP is further enhanced in the presence of Landau levels due to the magnetic-field-enhanced Coulomb interactions. PMID:23784258

  9. On the feasibility of borehole-to-surface electromagnetics for monitoring CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Wilson, G. A.; Zhdanov, M. S.; Hibbs, A. D.; Black, N.; Gribenko, A. V.; Cuma, M.; Agundes, A.; Eiskamp, G.

    2012-12-01

    Carbon capture and storage (CCS) projects rely on storing supercritical CO2 in deep saline reservoirs where buoyancy forces drive the injected CO2 upward into the aquifer until a seal is reached. The permanence of the sequestration depends entirely on the long-term geological integrity of the seal. Active geophysical monitoring of the sequestration is critical for informing CO2 monitoring, accounting and verification (MVA) decisions. During injection, there exists a correlation between the changes in CO2 and water saturations in a saline reservoir. Dissolved salts react with the CO2 to precipitate out as carbonates, thereby generally decreasing the electrical resistivity. As a result, there is a correlation between the change in fluid saturation and measured electromagnetic (EM) fields. The challenge is to design an EM survey appropriate for monitoring large, deep reservoirs. Borehole-to-surface electromagnetic (BSEM) surveys consist of borehole-deployed galvanic transmitters and a surface-based array of electric and magnetic field sensors. During a recent field trial, it was demonstrated that BSEM could successfully identify the oil-water contact in the water-injection zone of a carbonate reservoir. We review the BSEM methodology, and perform full-field BSEM modeling. The 3D resistivity models used in this study are based on dynamic reservoir simulations of CO2 injection into a saline reservoir. Although the electric field response at the earth's surface is low, we demonstrate that it can be accurately measured and processed with novel methods of noise cancellation and sufficient stacking over the period of monitoring to increase the signal-to-noise ratio for subsequent seismic- and well-constrained 3D inversion. For long-term or permanent monitoring, we discuss the deployment of novel electric field sensors with chemically inert electrodes that couple to earth in a capacitive manner. This capacitive coupling is a purely EM phenomenon, which, to first order, has no temperature, ionic concentration or corrosion effects and has unprecedented fidelity. This makes the capacitive E-field sensor ideal for CCS applications which require very stable operation over a wide range of ground temperature and moisture level variation, for extended periods of time.

  10. Symmetric redox supercapacitor based on micro-fabrication with three-dimensional polypyrrole electrodes

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Zheng, Ruilin; Chen, Xuyuan

    To achieve higher energy density and power density, we have designed and fabricated a symmetric redox supercapacitor based on microelectromechanical system (MEMS) technologies. The supercapacitor consists of a three-dimensional (3D) microstructure on silicon substrate micromachined by high-aspect-ratio deep reactive ion etching (DRIE) method, two sputtered Ti current collectors and two electrochemical polymerized polypyrrole (PPy) films as electrodes. Electrochemical tests, including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatical charge/discharge methods have been carried out on the single PPy electrodes and the symmetric supercapacitor in different electrolytes. The specific capacitance (capacitance per unit footprint area) and specific power (power per unit footprint area) of the PPy electrodes and symmetric supercapacitor can be calculated from the electrochemical test data. It is found that NaCl solution is a good electrolyte for the polymerized PPy electrodes. In NaCl electrolyte, single PPy electrodes exhibit 0.128 F cm -2 specific capacitance and 1.28 mW cm -2 specific power at 20 mV s -1 scan rate. The symmetric supercapacitor presents 0.056 F cm -2 specific capacitance and 0.56 mW cm -2 specific power at 20 mV s -1 scan rate.

  11. Charge Trapping Properties of Ge Nanocrystals Grown via Solid-State Dewetting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Steven; Jadli, I.; Aouassa, M.

    2018-05-04

    In the present work, we report on the charge trapping properties of Germanium Nanocrystals (Ge NCs) self assembled on SiO2 thin layer for promising applications in next-generation non volatile memory by the means of Deep Level Transient Spectroscopy (DLTS) and high frequency C-V method. The Ge NCs were grown via dewetting phenomenon at solid state by Ultra-High Vacuum (UHV) annealing and passivated with silicon before SiO2 capping. The role of the surface passivation is to reduce the electrical defect density at the Ge NCs-SiO2 interface. The presence of the Ge NCs in the oxide of the MOS capacitors strongly affectsmore » the C-V characteristics and increases the accumulation capacitance, causes a negative flat band voltage (VFB) shift. The DLTS has been used to study the individual Ge NCs as a single point deep level defect in the oxide. DLTS reveals two main features: the first electron traps around 255 K could correspond to dangling bonds at the Si/SiO2 interface and the second, at high-temperature (>300 K) response, could be originated from minority carrier generation in Ge NCs.« less

  12. A multi-channel capacitive probe for electrostatic fluctuation measurement in the Madison Symmetric Torus reversed field pinch.

    PubMed

    Tan, Mingsheng; Stone, Douglas R; Triana, Joseph C; Almagri, Abdulgader F; Fiksel, Gennady; Ding, Weixing; Sarff, John S; McCollam, Karsten J; Li, Hong; Liu, Wandong

    2017-02-01

    A 40-channel capacitive probe has been developed to measure the electrostatic fluctuations associated with the tearing modes deep into Madison Symmetric Torus (MST) reversed field pinch plasma. The capacitive probe measures the ac component of the plasma potential via the voltage induced on stainless steel electrodes capacitively coupled with the plasma through a thin annular layer of boron nitride (BN) dielectric (also serves as the particle shield). When bombarded by the plasma electrons, BN provides a sufficiently large secondary electron emission for the induced voltage to be very close to the plasma potential. The probe consists of four stalks each with ten cylindrical capacitors that are radially separated by 1.5 cm. The four stalks are arranged on a 1.3 cm square grid so that at each radial position, there are four electrodes forming a square grid. Every two adjacent radial sets of four electrodes form a cube. The fluctuating electric field can be calculated by the gradient of the plasma potential fluctuations at the eight corners of the cube. The probe can be inserted up to 15 cm (r/a = 0.7) into the plasma. The capacitive probe has a frequency bandwidth from 13 Hz to 100 kHz, amplifier-circuit limit, sufficient for studying the tearing modes (5-30 kHz) in the MST reversed-field pinch.

  13. Fabrication of n-ZnO/ p-Si (100) and n-ZnO:Al/ p-Si (100) Heterostructures and Study of Current-Voltage, Capacitance-Voltage and Room-Temperature Photoluminescence

    NASA Astrophysics Data System (ADS)

    Shah, M. A. H.; Khan, M. K. R.; Tanveer Karim, A. M. M.; Rahman, M. M.; Kamruzzaman, M.

    2018-01-01

    Heterojunction diodes of n-ZnO/ p-Si (100) and n-ZnO:Al/ p-Si (100) were fabricated by spray pyrolysis technique. X-ray diffraction (XRD), energy dispersive x-ray spectroscopy (EDX), and field emission scanning electron microscopy (FESEM) were used to characterize the as-prepared samples. The XRD pattern indicates the hexagonal wurzite structure of zinc oxide (ZnO) and Al-doped ZnO (AZO) thin films grown on Si (100) substrate. The compositional analysis by EDX indicates the presence of Al in the AZO structure. The FESEM image indicates the smooth and compact surface of the heterostructures. The current-voltage characteristics of the heterojunction confirm the rectifying diode behavior at different temperatures and illumination intensities. For low forward bias voltage, the ideality factors were determined to be 1.24 and 1.38 for un-doped and Al-doped heterostructures at room temperature (RT), respectively, which indicates the good diode characteristics. The capacitance-voltage response of the heterojunctions was studied for different oscillation frequencies. From the 1/ C 2- V plot, the junction built-in potentials were found 0.30 V and 0.40 V for un-doped and Al-doped junctions at RT, respectively. The differences in built-in potential for different heterojunctions indicate the different interface state densities of the junctions. From the RT photoluminescence (PL) spectrum of the n-ZnO/ p-Si (100) heterostructure, an intense main peak at near band edge (NBE) 378 nm (3.28 eV) and weak deep-level emissions (DLE) centered at 436 nm (2.84 eV) and 412 nm (3.00 eV) were observed. The NBE emission is attributed to the radiative recombination of the free and bound excitons and the DLE results from the radiative recombination through deep level defects.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Shaochun; Vongehr, Sascha; Wang Yang

    Highly uniform, porous {beta}-Co(OH){sub 2} nanostructures with an appearance reminding of certain spherical corals were synthesized via a facile, one-step hydrothermal route using ethanol-water mixtures as solvents. The rough surfaces of the nanostructures consist of numerous randomly distributed, interconnecting nanoflakes, resulting in a network-like structure with many cavities. The coral-like product has a high Brunauer-Emmet-Teller specific surface area of 163 m{sup 2}/g. The diameter of the coral-like {beta}-Co(OH){sub 2} nanostructures is adjustable from 800 nm to 2 {mu}m. The effects of the ethanol/water ratio, the Co{sup 2+} concentration, the hydrothermal temperature, and the reaction time on the formation of themore » coral-like structures were investigated. Cyclic voltammetry and galvanostatic charge-discharge tests show that the {beta}-Co(OH){sub 2} possesses excellent capacitive properties. This is mainly attributed to the high porosity, which allows a deep penetration by electrolytes. - Abstract: Coral-like {beta}-Co(OH){sub 2} nanostructures were synthesized via a facile ethanol-assisted hydrothermal route. Their high porosity facilitates a deep penetration by electrolytes and thus contributes to the excellent capacitive properties.« less

  15. Levels of semenogelin in human spermatozoa decrease during capacitation: involvement of reactive oxygen species and zinc.

    PubMed

    de Lamirande, E; Lamothe, G

    2010-07-01

    Semenogelin (Sg), the main protein of human semen coagulum, prevents sperm capacitation. The objective of this study was to examine the role of Sg and its mechanism of action. Sg blocked sperm capacitation triggered by various stimuli, via inhibition of superoxide anion (O(2)*-; luminescence assay) and nitric oxide (NO*; tested using diaminofluorescein) generation. Triton-soluble and -insoluble sperm fractions contained Sg and Sg peptides (immunoblotting), the level of which decreased with initiation of capacitation. This drop was prevented by superoxide dismutase and NO* synthase inhibitor and was reproduced by addition of O(2)*- and NO*. Zinc (Zn(2+)) blocked and a zinc chelator (TPEN) promoted the decline in Sg levels. There was a decreased labelling of Sg on the head in capacitating spermatozoa with the two fixation techniques tested (immunocytochemistry). Reactive oxygen species (ROS) (O(2)*- and NO*) caused, these changes, and zinc prevented them. Spermatozoa quickly internalized Sg upon incubation and Sg was then rapidly degraded in a zinc-inhibitable manner. Sg blocked capacitation mainly via inhibition of ROS generation. Spermatozoa appeared permeable to Sg and processed Sg in a zinc-inhibitable fashion. ROS themselves could promote sperm disposal of Sg which maybe one of the mechanisms that allows initiation of capacitation.

  16. Capacitive Feedthroughs for Medical Implants

    PubMed Central

    Grob, Sven; Tass, Peter A.; Hauptmann, Christian

    2016-01-01

    Important technological advances in the last decades paved the road to a great success story for electrically stimulating medical implants, including cochlear implants or implants for deep brain stimulation. However, there are still many challenges in reducing side effects and improving functionality and comfort for the patient. Two of the main challenges are the wish for smaller implants on one hand, and the demand for more stimulation channels on the other hand. But these two aims lead to a conflict of interests. This paper presents a novel design for an electrical feedthrough, the so called capacitive feedthrough, which allows both reducing the size, and increasing the number of included channels. Capacitive feedthroughs combine the functionality of a coupling capacitor and an electrical feedthrough within one and the same structure. The paper also discusses the progress and the challenges of the first produced demonstrators. The concept bears a high potential in improving current feedthrough technology, and could be applied on all kinds of electrical medical implants, even if its implementation might be challenging. PMID:27660602

  17. Electrostatically Levitated Ring-Shaped Rotational-Gyro/Accelerometer

    NASA Astrophysics Data System (ADS)

    Murakoshi, Takao; Endo, Yasuo; Fukatsu, Keisuke; Nakamura, Sigeru; Esashi, Masayoshi

    2003-04-01

    This paper reports an electrostatically levitated inertia measurement system which is based on the principle of a rotational gyro. The device has several advantages: the levitation of the rotor in a vacuum eliminates mechanical friction resulting in high sensitivity; the position control for the levitation allows accelerations to be sensed in the tri-axis; and the fabrication of the device by a micromachining technique has the cost advantages afforded by miniaturization. Latest measurements yield a noise floor of the gyro and that of the accelerometer as low as 0.15 deg/h1/2 and 30 μG/Hz1/2, respectively. This performance is achieved by a new sensor design. To further improve of the previous device, a ring-shaped structure is designed and fabricated by deep reactive ion etching using inductively coupled plasma. The rotor levitation is performed with capacitive detection and electrostatic actuation. Multiaxis closed-loop control is realized by differential capacitance sensing and frequency multiplying. The rotation of the micro gyro is based on the principle of a planar variable capacitance motor.

  18. Capacitive Feedthroughs for Medical Implants.

    PubMed

    Grob, Sven; Tass, Peter A; Hauptmann, Christian

    2016-01-01

    Important technological advances in the last decades paved the road to a great success story for electrically stimulating medical implants, including cochlear implants or implants for deep brain stimulation. However, there are still many challenges in reducing side effects and improving functionality and comfort for the patient. Two of the main challenges are the wish for smaller implants on one hand, and the demand for more stimulation channels on the other hand. But these two aims lead to a conflict of interests. This paper presents a novel design for an electrical feedthrough, the so called capacitive feedthrough, which allows both reducing the size, and increasing the number of included channels. Capacitive feedthroughs combine the functionality of a coupling capacitor and an electrical feedthrough within one and the same structure. The paper also discusses the progress and the challenges of the first produced demonstrators. The concept bears a high potential in improving current feedthrough technology, and could be applied on all kinds of electrical medical implants, even if its implementation might be challenging.

  19. Seawater capacitance – a promising proxy for mapping and characterizing drifting hydrocarbon plumes in the deep ocean

    USGS Publications Warehouse

    Wynn, Jeff; Fleming, John A.

    2012-01-01

    Hydrocarbons released into the deep ocean are an inevitable consequence of natural seep, seafloor drilling, and leaking wellhead-to-collection-point pipelines. The Macondo 252 (Deepwater Horizon) well blowout of 2010 was even larger than the Ixtoc event in the Gulf of Campeche in 1979. History suggests it will not be the last accidental release, as deepwater drilling expands to meet an ever-growing demand. For those who must respond to this kind of disaster, the first line of action should be to know what is going on. This includes knowing where an oil plume is at any given time, where and how fast it is moving, and how it is evolving or degrading. We have experimented in the laboratory with induced polarization as a method to track hydrocarbons in the seawater column and find that finely dispersed oil in seawater gives rise to a large distributed capacitance. From previous sea trials, we infer this could potentially be used to both map and characterize oil plumes, down to a ratio of less than 0.001 oil-to-seawater, drifting and evolving in the deep ocean. A side benefit demonstrated in some earlier sea trials is that this same approach in modified form can also map certain heavy placer minerals, as well as communication cables, pipelines, and wrecks buried beneath the seafloor.

  20. Quantum Effects on the Capacitance of Graphene-Based Electrodes

    DOE PAGES

    Zhan, Cheng; Neal, Justin; Wu, Jianzhong; ...

    2015-09-08

    We recently measured quantum capacitance for electric double layers (EDL) at electrolyte/graphene interfaces. However, the importance of quantum capacitance in realistic carbon electrodes is not clear. Toward understanding that from a theoretical perspective, here we studied the quantum capacitance and total capacitance of graphene electrodes as a function of the number of graphene layers. The quantum capacitance was obtained from electronic density functional theory based on fixed band approximation with an implicit solvation model, while the EDL capacitances were from classical density functional theory. We found that quantum capacitance plays a dominant role in total capacitance of the single-layer graphenemore » both in aqueous and ionic-liquid electrolytes but the contribution decreases as the number of graphene layers increases. Moreover, the total integral capacitance roughly levels off and is dominated by the EDL capacitance beyond about four graphene layers. Finally, because many porous carbons have nanopores with stacked graphene layers at the surface, this research provides a good estimate of the effect of quantum capacitance on their electrochemical performance.« less

  1. In vivo skin imaging for hydration and micro relief-measurement.

    PubMed

    Kardosova, Z; Hegyi, V

    2013-01-01

    We present the results of our work with device used for measurement of skin capacitance before and after application of moisturizing creams and results of experiment performed on cellulose filter papers soaked with different solvents. The measurements were performed by a device built on capacitance sensor, which provides an investigator with a capacitance image of the skin. The capacitance values are coded in a range of 256 gray levels then the skin hydration can be characterized using parameters derived from gray level histogram by specific software. The images obtained by device allow a highly precise observation of skin topography. Measuring of skin capacitance brings new, objective, reliable information about topographical, physical and chemical parameters of the skin. The study shows that there is a good correlation between the average grayscale values and skin hydration. In future works we need to complete more comparison studies, interpret the average grayscale values to skin hydration levels and use it for follow-up of dynamics of skin micro-relief and hydration changes (Fig. 6, Ref. 15).

  2. Density Functional Theory Calculations of the Quantum Capacitance of Graphene Oxide as a Supercapacitor Electrode.

    PubMed

    Song, Ce; Wang, Jinyan; Meng, Zhaoliang; Hu, Fangyuan; Jian, Xigao

    2018-03-31

    Graphene oxide has become an attractive electrode-material candidate for supercapacitors thanks to its higher specific capacitance compared to graphene. The quantum capacitance makes relative contributions to the specific capacitance, which is considered as the major limitation of graphene electrodes, while the quantum capacitance of graphene oxide is rarely concerned. This study explores the quantum capacitance of graphene oxide, which bears epoxy and hydroxyl groups on its basal plane, by employing density functional theory (DFT) calculations. The results demonstrate that the total density of states near the Fermi level is significantly enhanced by introducing oxygen-containing groups, which is beneficial for the improvement of the quantum capacitance. Moreover, the quantum capacitances of the graphene oxide with different concentrations of these two oxygen-containing groups are compared, revealing that more epoxy and hydroxyl groups result in a higher quantum capacitance. Notably, the hydroxyl concentration has a considerable effect on the capacitive behavior. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Capacitance-level/density monitor for fluidized-bed combustor

    DOEpatents

    Fasching, George E.; Utt, Carroll E.

    1982-01-01

    A multiple segment three-terminal type capacitance probe with segment selection, capacitance detection and compensation circuitry and read-out control for level/density measurements in a fluidized-bed vessel is provided. The probe is driven at a high excitation frequency of up to 50 kHz to sense quadrature (capacitive) current related to probe/vessel capacitance while being relatively insensitive to the resistance current component. Compensation circuitry is provided for generating a negative current of equal magnitude to cancel out only the resistive component current. Clock-operated control circuitry separately selects the probe segments in a predetermined order for detecting and storing this capacitance measurement. The selected segment acts as a guarded electrode and is connected to the read-out circuitry while all unselected segments are connected to the probe body, which together form the probe guard electrode. The selected probe segment capacitance component signal is directed to a corresponding segment channel sample and hold circuit dedicated to that segment to store the signal derived from that segment. This provides parallel outputs for display, computer input, etc., for the detected capacitance values. The rate of segment sampling may be varied to either monitor the dynamic density profile of the bed (high sampling rate) or monitor average bed characteristics (slower sampling rate).

  4. Bivariate quadratic method in quantifying the differential capacitance and energy capacity of supercapacitors under high current operation

    NASA Astrophysics Data System (ADS)

    Goh, Chin-Teng; Cruden, Andrew

    2014-11-01

    Capacitance and resistance are the fundamental electrical parameters used to evaluate the electrical characteristics of a supercapacitor, namely the dynamic voltage response, energy capacity, state of charge and health condition. In the British Standards EN62391 and EN62576, the constant capacitance method can be further improved with a differential capacitance that more accurately describes the dynamic voltage response of supercapacitors. This paper presents a novel bivariate quadratic based method to model the dynamic voltage response of supercapacitors under high current charge-discharge cycling, and to enable the derivation of the differential capacitance and energy capacity directly from terminal measurements, i.e. voltage and current, rather than from multiple pulsed-current or excitation signal tests across different bias levels. The estimation results the author achieves are in close agreement with experimental measurements, within a relative error of 0.2%, at various high current levels (25-200 A), more accurate than the constant capacitance method (4-7%). The archival value of this paper is the introduction of an improved quantification method for the electrical characteristics of supercapacitors, and the disclosure of the distinct properties of supercapacitors: the nonlinear capacitance-voltage characteristic, capacitance variation between charging and discharging, and distribution of energy capacity across the operating voltage window.

  5. Capacitance Based Moisture Sensing for Microgravity Plant Modules: Sensor Design and Considerations

    NASA Technical Reports Server (NTRS)

    Schaber, Chad L.; Nurge, Mark; Monje, Oscar

    2011-01-01

    Life support systems for growing plants in microgravity should strive for providing optimal growing conditions and increased automation. Accurately tracking soil moisture content can forward both of these aims, so an attempt was made to instrument a microgravity growth module currently in development, the VEGGIE rooting pillow, in order to monitor moisture levels. Two electrode systems for a capacitance-based moisture sensor were tested. Trials with both types of electrodes showed a linear correlation between observed capacitance and water content over certain ranges of moisture within the pillows. Overall, both types of the electrodes and the capacitance-based moisture sensor are promising candidates for tracking water levels for microgravity plant growth systems.

  6. Temperature and pressure effects on capacitance probe cryogenic liquid level measurement accuracy

    NASA Technical Reports Server (NTRS)

    Edwards, Lawrence G.; Haberbusch, Mark

    1993-01-01

    The inaccuracies of liquid nitrogen and liquid hydrogen level measurements by use of a coaxial capacitance probe were investigated as a function of fluid temperatures and pressures. Significant liquid level measurement errors were found to occur due to the changes in the fluids dielectric constants which develop over the operating temperature and pressure ranges of the cryogenic storage tanks. The level measurement inaccuracies can be reduced by using fluid dielectric correction factors based on measured fluid temperatures and pressures. The errors in the corrected liquid level measurements were estimated based on the reported calibration errors of the temperature and pressure measurement systems. Experimental liquid nitrogen (LN2) and liquid hydrogen (LH2) level measurements were obtained using the calibrated capacitance probe equations and also by the dielectric constant correction factor method. The liquid levels obtained by the capacitance probe for the two methods were compared with the liquid level estimated from the fluid temperature profiles. Results show that the dielectric constant corrected liquid levels agreed within 0.5 percent of the temperature profile estimated liquid level. The uncorrected dielectric constant capacitance liquid level measurements deviated from the temperature profile level by more than 5 percent. This paper identifies the magnitude of liquid level measurement error that can occur for LN2 and LH2 fluids due to temperature and pressure effects on the dielectric constants over the tank storage conditions from 5 to 40 psia. A method of reducing the level measurement errors by using dielectric constant correction factors based on fluid temperature and pressure measurements is derived. The improved accuracy by use of the correction factors is experimentally verified by comparing liquid levels derived from fluid temperature profiles.

  7. Tuning the polarization-induced free hole density in nanowires graded from GaN to AlN

    NASA Astrophysics Data System (ADS)

    Golam Sarwar, A. T. M.; Carnevale, Santino D.; Kent, Thomas F.; Yang, Fan; McComb, David W.; Myers, Roberto C.

    2015-01-01

    We report a systematic study of p-type polarization-induced doping in graded AlGaN nanowire light emitting diodes grown on silicon wafers by plasma-assisted molecular beam epitaxy. The composition gradient in the p-type base is varied in a set of samples from 0.7%Al/nm to 4.95%Al/nm corresponding to negative bound polarization charge densities of 2.2 × 1018 cm-3 to 1.6 × 1019 cm-3. Capacitance measurements and energy band modeling reveal that for gradients greater than or equal to 1.30%Al/nm, the deep donor concentration is negligible and free hole concentrations roughly equal to the bound polarization charge density are achieved up to 1.6 × 1019 cm-3 at a gradient of 4.95%Al/nm. Accurate grading lengths in the p- and n-side of the pn-junction are extracted from scanning transmission electron microscopy images and are used to support energy band calculation and capacitance modeling. These results demonstrate the robust nature of p-type polarization doping in nanowires and put an upper bound on the magnitude of deep donor compensation.

  8. The timing of cortical granule fusion, content dispersal, and endocytosis during fertilization of the hamster egg: an electrophysiological and histochemical study.

    PubMed

    Kline, D; Stewart-Savage, J

    1994-03-01

    To determine the temporal relationship between cortical granule exocytosis and the repetitive calcium transients, which are characteristic of mammalian fertilization, we monitored membrane addition from exocytosis during fertilization of hamster eggs. Continuous measurement of membrane capacitance by applying a 3.1-nA alternating current at 375 Hz showed addition of cortical granule membrane. Simultaneous measurement of membrane potential revealed each calcium transient by the appearance of transient hyperpolarizing responses due to calcium-activated potassium channels in the egg. The initial membrane capacitance of the eggs averaged 736 +/- 44 pF (mean +/- SD; n = 7) and an increase in capacitance of 61 +/- 19 pF occurred within 4 sec of the start of the first hyperpolarizing response (HR) after fertilization. Immediately after the first increase in capacitance there was a gradual decline in membrane capacitance in all eggs and in five/seven eggs the capacitance returned to the unfertilized level in 7.8 +/- 4.4 min. The gradual decline in capacitance after the first increase indicated endocytosis, which was confirmed by the internalization of fluorescently labeled dextran. Superimposed on the gradual decline in membrane capacitance were smaller increases in capacitance that occurred with the second and later HRs. The total increase in capacitance from the first three events averaged 72 +/- 19 pF, representing an average increase in capacitance of about 10% of the capacitance of the unfertilized egg. By labeling eggs before and after permeabilization with two different fluorochromes attached to Lens culinaris agglutinin, we demonstrate that the dispersal of the cortical granules contents does not occur immediately after exocytosis. Our results demonstrate that cortical granule exocytosis in hamster eggs is closely coupled to the periodic increases in calcium, that the contents of the cortical granules are slow to disperse, and that after exocytosis, the surface area of the egg returns to the unfertilized level because of a period of endocytosis.

  9. Cell-based capacitance sensor for analysis of EGFR expression on cell membrane

    NASA Astrophysics Data System (ADS)

    Shin, Dong-Myeong; Shin, Yong-Cheol; Ha, Ji Hye; Lee, Jong-Ho; Han, Dong-Wook; Kim, Jong-Man; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2013-02-01

    Cancer cells have many kinds of cancer biomarkers. Among them, the epidermal growth factor (EGF) receptors can show a possibility for a cancer marker because the over-expression of EGF receptor is related with fibrous, colorectal, cervical and gastric tumorigenesis. We fabricated the capacitance sensor with a gap area of 50 μm × 200 μm by using photolithography and lift-off method. Using the capacitance sensor, we investigated the time dependent capacitance changes of different kinds of fibrous cells, such as HT1080 fibrosarcoma, L-929 fibroblast cell line and nHDF dermal fibroblast primary cell. We found that when we put the EGF, the capacitance decreased due to the immobilization of EGF to EGF receptor on the cell membrane. The quantitative determination of EGF receptor level for various fibrous cells was carried out and the results showed good correlation with conventional method. Based on our results, we suggest that the capacitance sensor can measure the expression level of the EGF receptor on cell membrane and be a good candidate as a cancer diagnosis.

  10. Asymmetric disappearance and periodic asymmetric phenomena of rocking dynamics in micro dual-capacitive energy harvester

    NASA Astrophysics Data System (ADS)

    Zhu, Jianxiong; Guo, Xiaoyu; Huang, Run

    2018-06-01

    We study asymmetric disappearance and period asymmetric phenomena starting with a rocking dynamic in micro dual-capacitive energy harvester. The mathematical model includes nonlinear electrostatic forces from the variable dual capacitor, the numerical functioned forces provided by suspending springs, linear damping forces and an external vibration force. The suspending plate and its elastic supports were designed in a symmetric structure in the micro capacitor, however, the reported energy harvester was unavoidable starting with a asymmetric motion in the real vibration environment. We found that the designed dual energy capacitive harvester can harvest ˜6 µW with 10V input voltage, and under 0.8 time's resonant frequency vibration. We also discovered that the rocking dynamics of the suspended plate can be showed with an asymmetric disappearance or periodic asymmetric phenomena starting with an asymmetric motion. The study of these asymmetric disappearance and period asymmetric phenomena were not only important for the design of the stability of the micro capacitor for sensor or the energy harvesting, but also gave a deep understanding of the rocking nonlinear dynamics of the complex micro structures and beams.

  11. Capacitance probe for detection of anomalies in non-metallic plastic pipe

    DOEpatents

    Mathur, Mahendra P.; Spenik, James L.; Condon, Christopher M.; Anderson, Rodney; Driscoll, Daniel J.; Fincham, Jr., William L.; Monazam, Esmail R.

    2010-11-23

    The disclosure relates to analysis of materials using a capacitive sensor to detect anomalies through comparison of measured capacitances. The capacitive sensor is used in conjunction with a capacitance measurement device, a location device, and a processor in order to generate a capacitance versus location output which may be inspected for the detection and localization of anomalies within the material under test. The components may be carried as payload on an inspection vehicle which may traverse through a pipe interior, allowing evaluation of nonmetallic or plastic pipes when the piping exterior is not accessible. In an embodiment, supporting components are solid-state devices powered by a low voltage on-board power supply, providing for use in environments where voltage levels may be restricted.

  12. Quantitative phosphoproteomics analysis reveals a key role of insulin growth factor 1 receptor (IGF1R) tyrosine kinase in human sperm capacitation.

    PubMed

    Wang, Jing; Qi, Lin; Huang, Shaoping; Zhou, Tao; Guo, Yueshuai; Wang, Gaigai; Guo, Xuejiang; Zhou, Zuomin; Sha, Jiahao

    2015-04-01

    One of the most important changes during sperm capacitation is the enhancement of tyrosine phosphorylation. However, the mechanisms of protein tyrosine phosphorylation during sperm capacitation are not well studied. We used label-free quantitative phosphoproteomics to investigate the overall phosphorylation events during sperm capacitation in humans and identified 231 sites with increased phosphorylation levels. Motif analysis using the NetworKIN algorithm revealed that the activity of tyrosine phosphorylation kinases insulin growth factor 1 receptor (IGF1R)/insulin receptor is significantly enriched among the up-regulated phosphorylation substrates during capacitation. Western blotting further confirmed inhibition of IGF1R with inhibitors GSK1904529A and NVP-AEW541, which inhibited the increase in tyrosine phosphorylation levels during sperm capacitation. Additionally, sperm hyperactivated motility was also inhibited by GSK1904529A and NVP-AEW541 but could be up-regulated by insulin growth factor 1, the ligand of IGF1R. Thus, the IGF1R-mediated tyrosine phosphorylation pathway may play important roles in the regulation of sperm capacitation in humans and could be a target for improvement in sperm functions in infertile men. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Distribution of coronary arterial capacitance in a canine model.

    PubMed

    Lader, A S; Smith, R S; Phillips, G C; McNamee, J E; Abel, F L

    1998-03-01

    The capacitative properties of the major left coronary arteries, left main (LM), left anterior descending (LAD), and left circumflex (LCX), were studied in 19 open-chest isolated dog hearts. Capacitance was determined by using ramp perfusion and a left ventricular-to-coronary shunt diastolic decay method; both methods gave similar results, indicating a minimal systolic capacitative component. Increased pericardial pressure (PCP), 25 mmHg, was used to experimentally alter transmural wall pressure. The response to increased PCP was different in the LAD vs. LCX; increasing PCP decreased capacitance in the LCX but increased capacitance in the LAD. This may have been due to the different intramural vs. epicardial volume distribution of these vessels and a decrease in intramural tension during increased PCP. Increased PCP decreased LCX capacitance by approximately 13%, but no changes in conductance or zero flow pressure intercept occurred in any of the three vessels, i. e., evidence against the waterfall theory of vascular collapse at these levels of PCP. Coronary arterial capacitance was also linearly related to perfusion pressure.

  14. The usefulness of mobile insulator sheets for the optimisation of deep heating area for regional hyperthermia using a capacitively coupled heating method: phantom, simulation and clinical prospective studies.

    PubMed

    Tomura, Kyosuke; Ohguri, Takayuki; Mulder, Hendrik Thijmen; Murakami, Motohiro; Nakahara, Sota; Yahara, Katsuya; Korogi, Yukunori

    2017-11-20

    To evaluate the feasibility and efficacy of deep regional hyperthermia with the use of mobile insulator sheets in a capacitively coupled heating device. The heat was applied using an 8-MHz radiofrequency-capacitive device. The insulator sheet was inserted between the regular bolus and cooled overlay bolus in each of upper and lower side of the electrode. Several settings using the insulator sheets were investigated in an experimental study using an agar phantom to evaluate the temperature distributions. The specific absorption rate (SAR) distributions in several organs were also computed for the three-dimensional patient model. In a clinical prospective study, a total of five heating sessions were scheduled for the pelvic tumours, to assess the thermal parameters. The conventional setting was used during the first, third and fifth treatment sessions, and insulator sheets were used during the second and fourth treatment sessions. In the phantom study, the higher heating area improved towards the centre when the mobile insulator sheets were used. The subcutaneous fat/target ratios for the averaged SARs in the setting with the mobile insulator (median, 2.5) were significantly improved compared with those in the conventional setting (median, 3.4). In the clinical study, the thermal dose parameters of CEM43°CT90 in the sessions with the mobile insulator sheets (median, 1.9 min) were significantly better than those in the sessions using a conventional setting (median, 1.0 min). Our novel heating method using mobile insulator sheets was thus found to improve the thermal dose parameters. Further investigations are expected.

  15. In Situ High-Level Nitrogen Doping into Carbon Nanospheres and Boosting of Capacitive Charge Storage in Both Anode and Cathode for a High-Energy 4.5 V Full-Carbon Lithium-Ion Capacitor.

    PubMed

    Sun, Fei; Liu, Xiaoyan; Wu, Hao Bin; Wang, Lijie; Gao, Jihui; Li, Hexing; Lu, Yunfeng

    2018-05-02

    To circumvent the imbalances of electrochemical kinetics and capacity between Li + storage anodes and capacitive cathodes for lithium-ion capacitors (LICs), we herein demonstrate an efficient solution by boosting the capacitive charge-storage contributions of carbon electrodes to construct a high-performance LIC. Such a strategy is achieved by the in situ and high-level doping of nitrogen atoms into carbon nanospheres (ANCS), which increases the carbon defects and active sites, inducing more rapidly capacitive charge-storage contributions for both Li + storage anodes and PF 6 - storage cathodes. High-level nitrogen-doping-induced capacitive enhancement is successfully evidenced by the construction of a symmetric supercapacitor using commercial organic electrolytes. Coupling a pre-lithiated ANCS anode with a fresh ANCS cathode enables a full-carbon LIC with a high operating voltage of 4.5 V and high energy and power densities thereof. The assembled LIC device delivers high energy densities of 206.7 and 115.4 Wh kg -1 at power densities of 0.225 and 22.5 kW kg -1 , respectively, as well as an unprecedented high-power cycling stability with only 0.0013% capacitance decay per cycle within 10 000 cycles at a high power output of 9 kW kg -1 .

  16. Characterization of pixel sensor designed in 180 nm SOI CMOS technology

    NASA Astrophysics Data System (ADS)

    Benka, T.; Havranek, M.; Hejtmanek, M.; Jakovenko, J.; Janoska, Z.; Marcisovska, M.; Marcisovsky, M.; Neue, G.; Tomasek, L.; Vrba, V.

    2018-01-01

    A new type of X-ray imaging Monolithic Active Pixel Sensor (MAPS), X-CHIP-02, was developed using a 180 nm deep submicron Silicon On Insulator (SOI) CMOS commercial technology. Two pixel matrices were integrated into the prototype chip, which differ by the pixel pitch of 50 μm and 100 μm. The X-CHIP-02 contains several test structures, which are useful for characterization of individual blocks. The sensitive part of the pixel integrated in the handle wafer is one of the key structures designed for testing. The purpose of this structure is to determine the capacitance of the sensitive part (diode in the MAPS pixel). The measured capacitance is 2.9 fF for 50 μm pixel pitch and 4.8 fF for 100 μm pixel pitch at -100 V (default operational voltage). This structure was used to measure the IV characteristics of the sensitive diode. In this work, we report on a circuit designed for precise determination of sensor capacitance and IV characteristics of both pixel types with respect to X-ray irradiation. The motivation for measurement of the sensor capacitance was its importance for the design of front-end amplifier circuits. The design of pixel elements, as well as circuit simulation and laboratory measurement techniques are described. The experimental results are of great importance for further development of MAPS sensors in this technology.

  17. Tailoring graphene-based electrodes from semiconducting to metallic to increase the energy density in supercapacitors

    NASA Astrophysics Data System (ADS)

    Vatamanu, Jenel; Ni, Xiaojuan; Liu, Feng; Bedrov, Dmitry

    2015-11-01

    The semiconducting character of graphene and some carbon-based electrodes can lead to noticeably lower total capacitances and stored energy densities in electric double layer (EDL) capacitors. This paper discusses the chemical and electronic structure modifications that enhance the available energy bands, density of states and quantum capacitance of graphene substrates near the Fermi level, therefore restoring the conducting character of these materials. The doping of graphene with p or n dopants, such as boron and nitrogen atoms, or the introduction of vacancy defects that introduce zigzag edges, can significantly increase the quantum capacitance within the potential range of interest for the energy storage applications by either shifting the Dirac point away from the Fermi level or by eliminating the Dirac point. We show that a combination of doping and vacancies at realistic concentrations is sufficient to increase the capacitance of a graphene-based electrode to within 1 μF cm-2 from that of a metallic surface. Using a combination of ab initio calculations and classical molecular dynamics simulations we estimate how the changes in the quantum capacitance of these electrode materials affect the total capacitance stored by the open structure EDL capacitors containing room temperature ionic liquid electrolytes.

  18. The composite capacitive behaviors of the N and S dual doped ordered mesoporous carbon with ultrahigh doping level

    NASA Astrophysics Data System (ADS)

    Zhang, Deyi; Lei, Longyan; Shang, Yonghua; Wang, Kunjie; Wang, Yi

    2016-01-01

    Heteroatoms doping provides a promising strategy for improving the energy density of supercapacitors based on the carbon electrodes. In this paper, we present a N and S dual doped ordered mesoporous carbon with ultrahigh doping level using dimethylglyoxime as pristine precursor. The N doping content of the reported materials varies from 6.6 to 15.6 at.% dependent on the carbonization temperature, and the S doping content varies from 0.46 to 1.01 at.%. Due to the ultrahigh heteroatoms doping content, the reported materials exhibit pronounced pseudo-capacitance. Meanwhile, the reported materials exhibit high surface areas (640⿿869 m2 g⿿1), large pore volume (0.71⿿1.08 cm2 g⿿1) and ordered pore structure. The outstanding textual properties endow the reported materials excellent electrical double-layer capacitance (EDLC). By effectively combining the pseudo-capacitance with EDLC, the reported materials exhibit a surprising energy storage/relax capacity with the highest specific capacitance of 565 F g⿿1, which value is 3.3 times higher than that of pristine CMK-3, and can compete against some conventional pseudo-capacitance materials.

  19. Scanning capacitance microscopy of ErAs nanoparticles embedded in GaAs pn junctions

    NASA Astrophysics Data System (ADS)

    Park, K. W.; Nair, H. P.; Crook, A. M.; Bank, S. R.; Yu, E. T.

    2011-09-01

    Scanning capacitance microscopy is used to characterize the electronic properties of ErAs nanoparticles embedded in GaAs pn junctions grown by molecular beam epitaxy. Voltage-dependent capacitance images reveal localized variations in subsurface electronic structure near buried ErAs nanoparticles at lateral length scales of 20-30 nm. Numerical modeling indicates that these variations arise from inhomogeneities in charge modulation due to Fermi level pinning behavior associated with the embedded ErAs nanoparticles. Statistical analysis of image data yields an average particle radius of 6-8 nm—well below the direct resolution limit in scanning capacitance microscopy but discernible via analysis of patterns in nanoscale capacitance images.

  20. Implications of vegetation hydraulic capacitance as an indicator of water stress and drought recovery

    NASA Astrophysics Data System (ADS)

    Matheny, A. M.; Bohrer, G.

    2017-12-01

    Above-ground water storage in vegetation plays an integral role in the avoidance of hydraulic impairment to transpiration. New high temporal resolution measurements of dynamic changes in tree hydraulic capacitance are facilitating insights into vegetation water use strategies. Diurnal withdrawal from water storage in leaves, branches, stems, and roots significantly impacts sap flow, stomatal conductance, and transpiration. The ability to store and use water varies based on soil- and root-water availability, tree size, wood vessel anatomy and density, and stomatal response strategy (i.e. isohydricity). We present results from a three-year long study of stem capacitance dynamics in five species in a mixed deciduous forest in Michigan. The site receives 800mm of rainfall annually, but water potential in the well-drained sandy soil nears the permanent wilting point several times annually. We demonstrate radical differences in stored water use between drought tolerant and intolerant species. Red maple, a drought intolerant, isohydric species, showed a strong dependence on stem capacitance for transpiration during both wet and dry periods. Red oak, a more drought hearty, deep rooted, anisohydric species, was much less reliant on withdrawal from water storage during all conditions. During well-watered conditions, withdrawal from storage by red maple was 10 kg day-1, yet storage withdrawal from similarly sized red oaks was 1 kg day-1. Red oaks only drew strongly upon stored water during the driest extremes. Metrics of hydration status derived from capacitance provide a means to explore drought response and recovery. Declines in consecutive days' maximum capacitance indicate an inability to restore lost water and can be used to mark the onset of water stress. Drought recovery can be quantified as the time required for stem water content to return to pre-drought volumes. Capacitance withdrawal and depletion exhibit a clear threshold response to declining soil water availability. These new measurement technologies will also improve our understanding of trees' water status regulation in response to drying soil and drought, and could improve plant hydrodynamic modeling.

  1. Decrease in the cytosolic NADP+-dependent isocitrate dehydrogenase activity through porcine sperm capacitation.

    PubMed

    Katoh, Yuki; Tamba, Michiko; Matsuda, Manabu; Kikuchi, Kazuhiro; Okamura, Naomichi

    2018-02-26

    In order to understand the molecular mechanisms involved in the sperm capacitation, we have identified the proteins tyrosine-phosphorylated during the capacitation especially in conjunction with the regulation of the levels of reactive oxygen species (ROS) in sperm. In the present study, the effects of the tyrosine phosphorylation of cytosolic NADP + -dependent isocitrate dehydrogenase (IDPc) on its catalytic activity and on the levels of ROS in sperm have been studied. The tyrosine phosphorylated IDPc showed a significantly lowered enzymatic activity. The immunocytochemical analyses using the highly specific antisera against IDPc revealed that IDPc was mainly localized to the principal piece of the porcine sperm flagellum. As IDPc is one of the major NADPH regenerating enzymes in porcine sperm, it is strongly suggested that the decrease in IDPc activity is involved in the increased levels of ROS, which results in the induction of hyperactivated flagellar movement and capacitation. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. High-Capacitance Mechanism for Ti3C2Tx MXene by in Situ Electrochemical Raman Spectroscopy Investigation.

    PubMed

    Hu, Minmin; Li, Zhaojin; Hu, Tao; Zhu, Shihao; Zhang, Chao; Wang, Xiaohui

    2016-12-27

    MXenes represent an emerging family of conductive two-dimensional materials. Their representative, Ti 3 C 2 T x , has been recognized as an outstanding member in the field of electrochemical energy storage. However, an in-depth understanding of fundamental processes responsible for the superior capacitance of Ti 3 C 2 T x MXene in acidic electrolytes is lacking. Here, to understand the mechanism of capacitance in Ti 3 C 2 T x MXene, we studied electrochemically the charge/discharge processes of Ti 3 C 2 T x electrodes in sulfate ion-containing aqueous electrolytes with three different cations, coupled with in situ Raman spectroscopy. It is demonstrated that hydronium in the H 2 SO 4 electrolyte bonds with the terminal O in the negative electrode upon discharging while debonding occurs upon charging. Correspondingly, the reversible bonding/debonding changes the valence state of Ti element in the MXene, giving rise to the pseudocapacitance in the acidic electrolyte. In stark contrast, only electric double layer capacitance is recognized in the other electrolytes of (NH 4 ) 2 SO 4 or MgSO 4 . The charge storage ways also differ: ion exchange dominates in H 2 SO 4 , while counterion adsorption in the rest. Hydronium that is characterized by smaller hydration radius and less charge is the most mobile among the three cations, facilitating it more kinetically accommodated on the deep adsorption sites between the MXene layers. The two key factors, i.e., surface functional group-involved bonding/debonding-induced pseudocapacitance, and ion exchange-featured charge storage, simultaneously contribute to the superior capacitance of Ti 3 C 2 T x MXene in acidic electrolytes.

  3. Optoelectronically probing the density of nanowire surface trap states to the single state limit

    NASA Astrophysics Data System (ADS)

    Dan, Yaping

    2015-02-01

    Surface trap states play a dominant role in the optoelectronic properties of nanoscale devices. Understanding the surface trap states allows us to properly engineer the device surfaces for better performance. But characterization of surface trap states at nanoscale has been a formidable challenge using the traditional capacitive techniques. Here, we demonstrate a simple but powerful optoelectronic method to probe the density of nanowire surface trap states to the single state limit. In this method, we choose to tune the quasi-Fermi level across the bandgap of a silicon nanowire photoconductor, allowing for capture and emission of photogenerated charge carriers by surface trap states. The experimental data show that the energy density of nanowire surface trap states is in a range from 109 cm-2/eV at deep levels to 1012 cm-2/eV near the conduction band edge. This optoelectronic method allows us to conveniently probe trap states of ultra-scaled nano/quantum devices at extremely high precision.

  4. [Sequelae of unilateral deep venous thrombosis in plethysmography of the calf].

    PubMed

    Zicot, M; Depairon, M

    1982-01-01

    Twenty four patients suffering from unilateral venous disturbances revealed by Doppler and secondary to a deep venous thrombosis were examined. The calf venous haemodynamics was analyzed by use of a strain-jauge plethysmograph. We determined the increase in venous volume due to the inflation of a thigh pneumatic cuff (pressure at 20, 40 and 60 mm Hg; delta V20, delta V40, delta V60). The maximal venous output (Vout) was measured after a quick release of the 60 mm Hg pressure. The maximal venous drainage (VMM) was assessed during a rhythmic exercise (tiptoeing) while standing; delta V20, delta V40 and delta V60 were nearly constantly reduced on the abnormal side (t of Student respectively 3.49; 6.09 and 5.07). Vout dropped proportionaly to delta V60. Some abnormalities due to valvular insufficiency were frequently present in the beginning of the inflation curve at the level of the abnormal limbs. VMM was nearly always largely decreased on the affected side (t = 5.43). The unilateral flow disturbances displayed by the Doppler were regularly going with abnormalities of the capacitive system, well demonstrated by comparison with the non-affected limbs.

  5. Tailoring graphene-based electrodes from semiconducting to metallic to increase the energy density in supercapacitors.

    PubMed

    Vatamanu, Jenel; Ni, Xiaojuan; Liu, Feng; Bedrov, Dmitry

    2015-11-20

    The semiconducting character of graphene and some carbon-based electrodes can lead to noticeably lower total capacitances and stored energy densities in electric double layer (EDL)capacitors. This paper discusses the chemical and electronic structure modifications that enhance the available energy bands, density of states and quantum capacitance of graphene substrates near the Fermi level, therefore restoring the conducting character of these materials. The doping of graphene with p or n dopants, such as boron and nitrogen atoms, or the introduction of vacancy defects that introduce zigzag edges, can significantly increase the quantum capacitance within the potential range of interest for the energy storage applications by either shifting the Dirac point away from the Fermi level or by eliminating the Dirac point. We show that a combination of doping and vacancies at realistic concentrations is sufficient to increase the capacitance of a graphene-based electrode to within 1 μF cm(−2) from that of a metallic surface.Using a combination of ab initio calculations and classical molecular dynamics simulations we estimate how the changes in the quantum capacitance of these electrode materials affect the total capacitance stored by the open structure EDL capacitors containing room temperature ionic liquid electrolytes.

  6. Modeling the effect of 1 MeV electron irradiation on the performance of n+-p-p+ silicon space solar cells

    NASA Astrophysics Data System (ADS)

    Hamache, Abdelghani; Sengouga, Nouredine; Meftah, Afak; Henini, Mohamed

    2016-06-01

    Energetic particles such as electrons and protons induce severe degradation on the performance of solar cells used to power satellites and space vehicles. This degradation is usually attributed to lattice damage in the active region of the solar cell. One of the phenomena observed in silicon solar cells exposed to 1 MeV electron irradiation is the anomalous degradation of the short circuit current. It initially decreases followed by a recovery before falling again with increasing electron fluence. This behavior is usually attributed to type conversion of the solar cell active region. The other figures of merit, on the other hand, decrease monotonically. In this work numerical simulator SCAPS (Solar Cell Capacitance Simulator) is used to elucidate this phenomenon. The current-voltage characteristics of a Si n+-p-p+ structure are calculated under air mass zero spectrum with the fluence of 1 MeV electrons as a variable parameter. The effect of irradiation on the solar cell is simulated by a set of defects of which the energy levels lie deep in energy gap of silicon (much larger than the characteristic thermal energy kT far from either the conduction or valence band). Although several types of deep levels are induced by irradiation including deep donors (exchange electrons mainly with the conduction band), deep acceptors (exchange electrons mainly with the valence band) and/or generation-recombination centers (exchange electrons with both the conduction and valence bands), it was found that, only one of them (the shallowest donor) is responsible for the anomalous degradation of the short circuit current. It will be also shown, by calculating the free charge carrier profile in the active region, that this behavior is not related to type conversion but to a lateral widening of the space charge region.

  7. Peroxiredoxins prevent oxidative stress during human sperm capacitation

    PubMed Central

    Lee, Donghyun; Moawad, Adel R.; Morielli, Tania; Fernandez, Maria C.

    2017-01-01

    Abstract STUDY QUESTION Do peroxiredoxins (PRDXs) control reactive oxygen species (ROS) levels during human sperm capacitation? SUMMARY ANSWER PRDXs are necessary to control the levels of ROS generated during capacitation allowing spermatozoa to achieve fertilizing ability. WHAT IS KNOWN ALREADY Sperm capacitation is an oxidative event that requires low and controlled amounts of ROS to trigger phosphorylation events. PRDXs are antioxidant enzymes that not only act as scavengers but also control ROS action in somatic cells. Spermatozoa from infertile men have lower levels of PRDXs (particularly of PRDX6), which are thiol-oxidized and therefore inactive. STUDY DESIGN, SIZE, DURATION Semen samples were obtained from a cohort of 20 healthy nonsmoker volunteers aged 22–30 years old over a period of 1 year. PARTICIPANTS/MATERIALS, SETTINGS, METHODS Sperm from healthy donors was capacitated with fetal cord serum ultrafiltrate (FCSu) in the absence or presence of thiostrepton (TSP), inhibitor of 2-Cys PRDXs or 1-Hexadecyl-3-(trifluoroethyl)-sn-glycero-2-phosphomethanol lithium (MJ33), inhibitor of calcium independent-phospholipase A2 (Ca2+-iPLA2) activity of PRDX6, added at different times of incubation. Capacitation was also induced by the dibutyryl cAMP+3-isobuty1-1-methylxanthine system. Sperm viability and motility were determined by the hypo-osmotic swelling test and computer-assisted semen analysis system, respectively. Capacitation was determined by the ability of spermatozoa to undergo the acrosome reaction triggered by lysophosphatidylcholine. Percentages of acrosome reaction were obtained using the FITC-conjugated Pisum sativum agglutinin assay. Phosphorylation of tyrosine residues and of protein kinase A (PKA) substrates were determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis immunoblotting with specific antibodies. Actin polymerization was determined by phalloidin labeling. MAIN RESULTS AND THE ROLE OF CHANCE TSP and MJ33 prevented sperm capacitation and its associated actin polymerization in spermatozoa incubated with 10% FCSu (capacitation inducer) compared to non-capacitated controls (P < 0.05) without altering sperm viability. PKA substrates and tyrosine phosphorylations were prevented in FCSu-treated spermatozoa in a differential fashion depending on the type and the time of addition of the inhibitor used compared to non-capacitated controls (P < 0.05). TSP and MJ33 promoted an increase of lipid peroxidation in spermatozoa (P < 0.01) and these levels were higher in those spermatozoa incubated with the inhibitors and FCSu compared to those capacitated spermatozoa incubated without the inhibitors (P < 0.0001). Inhibition of 2-Cys PRDXs by TSP generated an oxidative stress in spermatozoa, affecting their viability compared to controls (P < 0.05). This oxidative stress was prevented by nuclephile D-penicillamine (PEN). MJ33 also promoted an increase of lipid peroxidation and impaired sperm viability compared to non-treated controls (P < 0.05) but its effect was not circumvented by PEN, suggesting that not only peroxidase but also Ca2+-iPLA2 activity of PRDX6 are necessary to guarantee viability in human spermatozoa. LARGE SCALE DATA Not applicable. LIMITATIONS REASONS FOR CAUTION We focused on the global effect of PRDXs inhibitors on human sperm capacitation and in two of its associated phosphorylation events. Thus, other phosphorylation events and mechanisms necessary for capacitation may also be affected. WIDER IMPLICATIONS OF THE FINDINGS PRDXs are the major antioxidant system in ejaculated spermatozoa and are necessary to allow spermatozoon to achieve fertilizing ability (capacitation and acrosome reaction). STUDY FUNDING/COMPETING INTEREST(S) This research was supported by Canadian Institutes of Health Research (MOP 133661) and the Fonds de Recherché en Santé Quebec (FRSQS #22151) to C.O. The authors have nothing to disclose. PMID:28025393

  8. A cost for high levels of sperm competition in rodents: increased sperm DNA fragmentation

    PubMed Central

    Roldan, Eduardo R. S.

    2016-01-01

    Sperm competition, a prevalent evolutionary process in which the spermatozoa of two or more males compete for the fertilization of the same ovum, leads to morphological and physiological adaptations, including increases in energetic metabolism that may serve to propel sperm faster but that may have negative effects on DNA integrity. Sperm DNA damage is associated with reduced rates of fertilization, embryo and fetal loss, offspring mortality, and mutations leading to genetic disease. We tested whether high levels of sperm competition affect sperm DNA integrity. We evaluated sperm DNA integrity in 18 species of rodents that differ in their levels of sperm competition using the sperm chromatin structure assay. DNA integrity was assessed upon sperm collection, in response to incubation under capacitating or non-capacitating conditions, and after exposure to physical and chemical stressors. Sperm DNA was very resistant to physical and chemical stressors, whereas incubation in non-capacitating and capacitating conditions resulted in only a small increase in sperm DNA damage. Importantly, levels of sperm competition were positively associated with sperm DNA fragmentation across rodent species. This is the first evidence showing that high levels of sperm competition lead to an important cost in the form of increased sperm DNA damage. PMID:26936246

  9. Capacitive Sensors for Measuring Masses of Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Nurge, Mark; Youngquist, Robert

    2003-01-01

    An effort is under way to develop capacitive sensors for measuring the masses of cryogenic fluids in tanks. These sensors are intended to function in both microgravitational and normal gravitational settings, and should not be confused with level sensors, including capacitive ones. A sensor of this type is conceptually simple in the sense that (1) it includes only one capacitor and (2) if properly designed, its single capacitance reading should be readily convertible to a close approximation of the mass of the cryogenic fluid in the tank. Consider a pair of electrically insulated electrodes used as a simple capacitive sensor. In general, the capacitance is proportional to the permittivity of the dielectric medium (in this case, a cryogenic fluid) between the electrodes. The success of design and operation of a sensor of the present type depends on the accuracy of the assumption that to a close approximation, the permittivity of the cryogenic fluid varies linearly with the density of the fluid. Data on liquid nitrogen, liquid oxygen, and liquid hydrogen, reported by the National Institute of Standards and Technology, indicate that the permittivities and densities of these fluids are, indeed, linearly related to within a few tenths of a percent over the pressure and temperature regions of interest. Hence, ignoring geometric effects for the moment, the capacitance between two electrodes immersed in the fluid should vary linearly with the density, and, hence, with the mass of the fluid. Of course, it is necessary to take account of the tank geometry. Because most cryogenic tanks do not have uniform cross sections, the readings of level sensors, including capacitive ones, are not linearly correlated with the masses of fluids in the tanks. In a sensor of the present type, the capacitor electrodes are shaped so that at a given height, the capacitance per unit height is approximately proportional to the cross-sectional area of the tank in the horizontal plane at that height (see figure).

  10. Percoll gradient-centrifuged capacitated mouse sperm have increased fertilizing ability and higher contents of sulfogalactosylglycerolipid and docosahexaenoic acid-containing phosphatidylcholine compared to washed capacitated mouse sperm.

    PubMed

    Furimsky, Anna; Vuong, Ngoc; Xu, Hongbin; Kumarathasan, Premkumari; Xu, Min; Weerachatyanukul, Wattana; Bou Khalil, Maroun; Kates, Morris; Tanphaichitr, Nongnuj

    2005-03-01

    Although Percoll gradient centrifugation has been used routinely to prepare motile human sperm, its use in preparing motile mouse sperm has been limited. Here, we showed that Percoll gradient-centrifuged (PGC) capacitated mouse sperm had markedly higher fertilizing ability (sperm-zona pellucida [ZP] binding and in vitro fertilization) than washed capacitated mouse sperm. We also showed that the lipid profiles of PGC capacitated sperm and washed capacitated sperm differed significantly. The PGC sperm had much lower contents of cholesterol and phospholipids. This resulted in relative enrichment of male germ cell-specific sulfogalactosylglycerolipid (SGG), a ZP-binding ligand, in PGC capacitated sperm, and this would explain, in part, their increased ZP-binding ability compared with that of washed capacitated sperm. Analyses of phospholipid fatty acyl chains revealed that PGC capacitated sperm were enriched in phosphatidylcholine (PC) molecular species containing highly unsaturated fatty acids (HUFAs), with docosahexaenoic acid (DHA; C22: 6n-3) being the predominant HUFA (42% of total hydrocarbon chains of PC). In contrast, the level of PC-HUFAs comprising arachidonic acid (20:4n-6), docosapentaenoic acid (C22:5n-6), and DHA in washed capacitated sperm was only 27%. Having the highest unsaturation degree among all HUFAs in PC, DHA would enhance membrane fluidity to the uppermost. Therefore, membranes of PGC capacitated sperm would undergo fertilization-related fusion events at higher rates than washed capacitated sperm. These results suggested that PGC mouse sperm should be used in fertilization experiments and that SGG and DHA should be considered to be important biomarkers for sperm fertilizing ability.

  11. Electrical behaviour of fully solution processed HfO2 (MOS) in presence of different light illumination

    NASA Astrophysics Data System (ADS)

    Mondal, Sandip

    2018-04-01

    This experiment demonstrates the electrical behaviors of fully solution processed HfO2(MOS) in presence of different optical illumination. The capacitance voltage measurement was performed at frequency of 100 kHz with a DC gate sweep voltage of ±5V (with additional AC voltage of 100mV) in presence of deep UV (wavelength of 365nm with power of 25W) as well as white light (20W). It is found that there is a large shift in flatband voltage of 120mV due presence of white light during the CV measurement. However there is negligible change in flatband voltage (30mV) has been observed due to illumination of deep UV light.

  12. 3-D capacitance density imaging system

    DOEpatents

    Fasching, G.E.

    1988-03-18

    A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved. 7 figs.

  13. 3-D capacitance density imaging of fluidized bed

    DOEpatents

    Fasching, George E.

    1990-01-01

    A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved.

  14. Electric double-layer capacitance between an ionic liquid and few-layer graphene.

    PubMed

    Uesugi, Eri; Goto, Hidenori; Eguchi, Ritsuko; Fujiwara, Akihiko; Kubozono, Yoshihiro

    2013-01-01

    Ionic-liquid gates have a high carrier density due to their atomically thin electric double layer (EDL) and extremely large geometrical capacitance Cg. However, a high carrier density in graphene has not been achieved even with ionic-liquid gates because the EDL capacitance CEDL between the ionic liquid and graphene involves the series connection of Cg and the quantum capacitance Cq, which is proportional to the density of states. We investigated the variables that determine CEDL at the molecular level by varying the number of graphene layers n and thereby optimising Cq. The CEDL value is governed by Cq at n < 4, and by Cg at n > 4. This transition with n indicates a composite nature for CEDL. Our finding clarifies a universal principle that determines capacitance on a microscopic scale, and provides nanotechnological perspectives on charge accumulation and energy storage using an ultimately thin capacitor.

  15. Electric double-layer capacitance between an ionic liquid and few-layer graphene

    PubMed Central

    Uesugi, Eri; Goto, Hidenori; Eguchi, Ritsuko; Fujiwara, Akihiko; Kubozono, Yoshihiro

    2013-01-01

    Ionic-liquid gates have a high carrier density due to their atomically thin electric double layer (EDL) and extremely large geometrical capacitance Cg. However, a high carrier density in graphene has not been achieved even with ionic-liquid gates because the EDL capacitance CEDL between the ionic liquid and graphene involves the series connection of Cg and the quantum capacitance Cq, which is proportional to the density of states. We investigated the variables that determine CEDL at the molecular level by varying the number of graphene layers n and thereby optimising Cq. The CEDL value is governed by Cq at n < 4, and by Cg at n > 4. This transition with n indicates a composite nature for CEDL. Our finding clarifies a universal principle that determines capacitance on a microscopic scale, and provides nanotechnological perspectives on charge accumulation and energy storage using an ultimately thin capacitor. PMID:23549208

  16. Capacitive Sensing of Glucose in Electrolytes Using Graphene Quantum Capacitance Varactors.

    PubMed

    Zhang, Yao; Ma, Rui; Zhen, Xue V; Kudva, Yogish C; Bühlmann, Philippe; Koester, Steven J

    2017-11-08

    A novel graphene-based variable capacitor (varactor) that senses glucose based on the quantum capacitance effect was successfully developed. The sensor utilizes a metal-oxide-graphene varactor device structure that is inherently compatible with passive wireless sensing, a key advantage for in vivo glucose sensing. The graphene varactors were functionalized with pyrene-1-boronic acid (PBA) by self-assembly driven by π-π interactions. Successful surface functionalization was confirmed by both Raman spectroscopy and capacitance-voltage characterization of the devices. Through glucose binding to the PBA, the glucose concentration in the buffer solutions modulates the level of electrostatic doping of the graphene surface to different degrees, which leads to capacitance changes and Dirac voltage shifts. These responses to the glucose concentration were shown to be reproducible and reversible over multiple measurement cycles, suggesting promise for eventual use in wireless glucose monitoring.

  17. A highly sensitive and specific capacitive aptasensor for rapid and label-free trace analysis of Bisphenol A (BPA) in canned foods.

    PubMed

    Mirzajani, Hadi; Cheng, Cheng; Wu, Jayne; Chen, Jiangang; Eda, Shigotoshi; Najafi Aghdam, Esmaeil; Badri Ghavifekr, Habib

    2017-03-15

    A rapid, highly sensitive, specific and low-cost capacitive affinity biosensor is presented here for label-free and single step detection of Bisphenol A (BPA). The sensor design allows rapid prototyping at low-cost using printed circuit board material by benchtop equipment. High sensitivity detection is achieved through the use of a BPA-specific aptamer as probe molecule and large electrodes to enhance AC-electroelectrothermal effect for long-range transport of BPA molecules toward electrode surface. Capacitive sensing technique is used to determine the bounded BPA level by measuring the sample/electrode interfacial capacitance of the sensor. The developed biosensor can detect BPA level in 20s and exhibits a large linear range from 1 fM to 10 pM, with a limit of detection (LOD) of 152.93 aM. This biosensor was applied to test BPA in canned food samples and could successfully recover the levels of spiked BPA. This sensor technology is demonstrated to be highly promising and reliable for rapid, sensitive and on-site monitoring of BPA in food samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Electrochemical capacitance modulation in an interacting mesoscopic capacitor induced by internal charge transfer

    NASA Astrophysics Data System (ADS)

    Liu, Wei; He, Jianhong; Guo, Huazhong; Gao, Jie

    2018-04-01

    We report experiments on the dynamic response of an interacting mesoscopic capacitor consisting of a quantum dot with two confined spin-split levels of the lowest Landau level. In high magnetic fields, states inside the dot are regulated by a mixture of Coulomb interaction and Landau-level quantization, and electrons distribute on two spatially separated regions. Quantum point contact voltage and magnetic field are employed to manipulate the number and distribution of electrons inside the quantum dot. We find that the periodicity of the electrochemical capacitance oscillations is dominated by the charging energy, and their amplitudes, due to internal charge transfer and strong internal capacitive coupling, show rich variations of modulations. Magnetocapacitance displays a sawtoothlike manner and may differ in tooth directions for different voltages, which, we demonstrate, result from a sawtoothlike electrochemical potential change induced by internal charge transfer and field-sensitive electrostatic potential. We further build a charge stability diagram, which, together with all other capacitance properties, is consistently interpreted in terms of a double-dot model. The demonstrated technique is of interest as a tool for fast and sensitive charge state readout of a double-quantum-dot qubit in the gigahertz frequency quantum electronics.

  19. Attofarad resolution capacitance-voltage measurement of nanometer scale field effect transistors utilizing ambient noise.

    PubMed

    Gokirmak, Ali; Inaltekin, Hazer; Tiwari, Sandip

    2009-08-19

    A high resolution capacitance-voltage (C-V) characterization technique, enabling direct measurement of electronic properties at the nanoscale in devices such as nanowire field effect transistors (FETs) through the use of random fluctuations, is described. The minimum noise level required for achieving sub-aF (10(-18) F) resolution, the leveraging of stochastic resonance, and the effect of higher levels of noise are illustrated through simulations. The non-linear DeltaC(gate-source/drain)-V(gate) response of FETs is utilized to determine the inversion layer capacitance (C(inv)) and carrier mobility. The technique is demonstrated by extracting the carrier concentration and effective electron mobility in a nanoscale Si FET with C(inv) = 60 aF.

  20. The compressibility and the capacitance coefficient of helium-oxygen atmospheres.

    PubMed

    Imbert, G; Dejours, P; Hildwein, G

    1982-12-01

    The capacitance coefficient beta of an ideal gas mixture depends only on its temperature T, and its value is derived from the ideal gas law (i.e., beta = 1/RT, R being the ideal gas constant). But real gases behave as ideal gases only at low pressures, and this would not be the case in deep diving. High pressures of helium-oxygen are used in human and animal experimental dives (up to 7 or 12 MPa or more, respectively). At such pressures deviations from the ideal gas law cannot be neglected in hyperbaric atmospheres with respect to current accuracy of measuring instruments. As shown both theoretically and experimentally by this study, the non-ideal nature of helium-oxygen has a significant effect on the capacitance coefficient of hyperbaric atmospheres. The theoretical study is based on interaction energy in either homogeneous (He-He and O2-O2) or heterogeneous (He-O2) molecular pairs, and on the virial equation of state for gas mixtures. The experimental study is based on weight determination of samples of known volume of binary helium-oxygen mixtures, which are prepared in well-controlled pressure and temperature conditions. Our experimental results are in good agreement with theoretical predictions. 1) The helium compressibility factor ZHe increases linearly with pressure [ZHe = 1 + 0.0045 P (in MPa) at 30 degrees C]; and 2) in same temperature and pressure conditions (T = 303 K and P = 0.1 to 15 MPa), the same value for Z is valid for a helium-oxygen binary mixture and for pure helium. As derived from the equation of state of real gases, the capacitance coefficient is inversely related to Z (beta = 1/ZRT); therefore, for helium-oxygen mixtures, this coefficient would decrease with increasing pressure. A table is given for theoretical values of helium-oxygen capacitance coefficient, at pressures ranging from 0.1 to 15.0 MPa and at temperatures ranging from 25 degrees C to 37 degrees C.

  1. Laboratory evaluation of dual-frequency multisensor capacitance probes to monitor soil water and salinity

    USDA-ARS?s Scientific Manuscript database

    Real-time information on salinity levels and transport of fertilizers are generally missing from soil profile knowledge bases. A dual-frequency multisensor capacitance probe (MCP) is now commercially available for sandy soils that simultaneously monitor volumetric soil water content (VWC, ') and sa...

  2. Low-Temperature Scanning Capacitance Probe for Imaging Electron Motion

    NASA Astrophysics Data System (ADS)

    Bhandari, S.; Westervelt, R. M.

    2014-12-01

    Novel techniques to probe electronic properties at the nanoscale can shed light on the physics of nanoscale devices. In particular, studying the scattering of electrons from edges and apertures at the nanoscale and imaging the electron profile in a quantum dot, have been of interest [1]. In this paper, we present the design and implementation of a cooled scanning capacitance probe that operates at liquid He temperatures to image electron waves in nanodevices. The conducting tip of a scanned probe microscope is held above the nanoscale structure, and an applied sample-to-tip voltage creates an image charge that is measured by a cooled charge amplifier [2] adjacent to the tip. The circuit is based on a low-capacitance, high- electron-mobility transistor (Fujitsu FHX35X). The input is a capacitance bridge formed by a low capacitance pinched-off HEMT transistor and tip-sample capacitance. We have achieved low noise level (0.13 e/VHz) and high spatial resolution (100 nm) for this technique, which promises to be a useful tool to study electronic behavior in nanoscale devices.

  3. Assessment of azadirachtin-A, a neem tetranortritarpinoid, on rat spermatozoa during in vitro capacitation.

    PubMed

    Katte, Teesta V; Rajyalakshmi, Malempati; Aladakatti, Ravindranath H

    2018-05-05

    The exploration of the biological assessment of technical azadirachtin, a tetranortritarpinoid from the neem seed kernel, was reviewed. The present study was, therefore, designed to evaluate the dose-dependent in vitro effects of azadirachtin-A, particularly on the functional studies and determination of molecular events, which are critical in the process of sperm capacitation. To assess the effects of the azadirachtin-A on the functional studies, sperm capacitation, the total sperm adenosine triphosphate levels, acrosome reaction (AR), the sperm-egg interaction and the determination of molecular events like cyclic adenosine-3',5'-monophosphate and calcium levels, the appropriate volumes of the sperm suspension were added to the medium to a final concentration of 1×106 sperm/mL and incubated in a humidified atmosphere of 5% CO2 in air at 37°C. The increasing quantities 0.5-2.0 mM/mL and the equivalent volumes of 50% dimethyl sulfoxide were added to the control dishes prior to the addition of spermatozoa and then observed at various time-points for motility and other analyses. Results revealed the dose- and time-dependent decrease in the functional consequence of capacitation, i.e. the percentage of motile spermatozoa, motility score and sperm motility index, levels of molecular events in spermatozoa, followed by declined spontaneous AR leading to lesser binding of the cauda epididymal sperm to the Zona pellucida. The findings confirm the inhibition of rat sperm motility by blocking some biochemical pathways like energy utilization. They also demonstrate that sperm capacitation is associated with the decrease in AR and that the levels of molecular events in spermatozoa can guide us towards the development of a new male contraceptive constituent.

  4. DLTS and in situ C-V analysis of trap parameters in swift 50 MeV Li3+ ion-irradiated Ni/SiO2/Si MOS capacitors

    NASA Astrophysics Data System (ADS)

    Shashank, N.; Singh, Vikram; Gupta, Sanjeev K.; Madhu, K. V.; Akhtar, J.; Damle, R.

    2011-04-01

    Ni/SiO2/Si MOS structures were fabricated on n-type Si wafers and were irradiated with 50 MeV Li3+ ions with fluences ranging from 1×1010 to 1×1012 ions/cm2. High frequency C-V characteristics are studied in situ to estimate the build-up of fixed and oxide charges. The nature of the charge build-up with ion fluence is analyzed. Defect levels in bulk Si and its properties such as activation energy, capture cross-section, trap concentration and carrier lifetimes are studied using deep-level transient spectroscopy. Electron traps with energies ranging from 0.069 to 0.523 eV are observed in Li ion-irradiated devices. The dependence of series resistance, substrate doping and accumulation capacitance on Li ion fluence are clearly explained. The study of dielectric properties (tan δ and quality factor) confirms the degradation of the oxide layer to a greater extent due to ion irradiation.

  5. High-Sensitivity Encoder-Like Micro Area-Changed Capacitive Transducer for a Nano-g Micro Accelerometer

    PubMed Central

    Zheng, Panpan; Liu, Jinquan; Li, Zhu; Liu, Huafeng

    2017-01-01

    Encoder-like micro area-changed capacitive transducers are advantageous in terms of their better linearity and larger dynamic range compared to gap-changed capacitive transducers. Such transducers have been widely applied in rectilinear and rotational position sensors, lab-on-a-chip applications and bio-sensors. However, a complete model accounting for both the parasitic capacitance and fringe effect in area-changed capacitive transducers has not yet been developed. This paper presents a complete model for this type of transducer applied to a high-resolution micro accelerometer that was verified by both simulations and experiments. A novel optimization method involving the insertion of photosensitive polyimide was used to reduce the parasitic capacitance, and the capacitor spacing was decreased to overcome the fringe effect. The sensitivity of the optimized transducer was approximately 46 pF/mm, which was nearly 40 times higher than that of our previous transducer. The displacement detection resolution was measured as 50 pm/√Hz at 0.1 Hz using a precise capacitance detection circuit. Then, the transducer was applied to a sandwich in-plane micro accelerometer, and the measured level of the accelerometer was approximately 30 ng/√Hz at 1Hz. The earthquake that occurred in Taiwan was also detected during a continuous gravity measurement. PMID:28930176

  6. Differential Depletion Capacitance Approximation Analysis Under DC Voltage for Air-Exposed Cu/n-Si Schottky Diodes

    NASA Astrophysics Data System (ADS)

    Korkut, A.

    It is well known that the semiconductor surface is easily oxidized by air-media in time. This work studieds the characterization of Schottky diodes and changes in depletion capacitance, which is caused by air exposure of a group of Cu/n-Si/Al Schottky diodes. First, data for current-voltage and capacitance-voltage were a Ren, and then ideality factor, barrier height, built-in potential (Vbi), donor concentration and Fermi level, interfacial oxide thickness, interface state density were calculated. It is seen that depletion capacitance was calculate; whereafter built-in potential played an important role in Schottky diodes characteristic. Built-in potential directly affects the characteristic of Schottky diodes and a turning point occurs. In case of forward and reverse bias, depletion capacitance versus voltage graphics are matched, but in an opposite direction. In case of forward bias, differential depletion capacitance begins from minus values, it is raised to first Vbi, then reduced to second Vbi under the minus condition. And it sharply gones up to positive apex, then sharply falls down to near zero, but it takes positive values depending on DC voltage. In case of reverse bias, differential depletion capacitance takes to small positive values. In other respects, we see that depletion characteristics change considerably under DC voltage.

  7. Light/negative bias stress instabilities in indium gallium zinc oxide thin film transistors explained by creation of a double donor

    NASA Astrophysics Data System (ADS)

    Migliorato, Piero; Delwar Hossain Chowdhury, Md; Gwang Um, Jae; Seok, Manju; Jang, Jin

    2012-09-01

    The analysis of current-voltage (I-V) and capacitance-voltage (C-V) characteristics for amorphous indium gallium zinc oxide Thin film transistors as a function of active layer thickness shows that negative bias under illumination stress (NBIS) is quantitatively explained by creation of a bulk double donor, with a shallow singly ionized state ɛ(0/+) > EC-0.073 eV and a deep doubly ionized state ɛ(++/+) < EC-0.3 eV. The gap density of states, extracted from the capacitance-voltage curves, shows a broad peak between EC-E = 0.3 eV and 1.0 eV, which increases in height with NBIS stress time and corresponds to the broadened transition energy between singly and doubly ionized states. We propose that the center responsible is an oxygen vacancy and that the presence of a stable singly ionized state, necessary to explain our experimental results, could be due to the defect environment provided by the amorphous network.

  8. Inhibiting Sperm Pyruvate Dehydrogenase Complex and Its E3 Subunit, Dihydrolipoamide Dehydrogenase Affects Fertilization in Syrian Hamsters

    PubMed Central

    Sailasree, Purnima; Singh, Durgesh K.; Kameshwari, Duvurri B.; Shivaji, Sisinthy

    2014-01-01

    Background/Aims The importance of sperm capacitation for mammalian fertilization has been confirmed in the present study via sperm metabolism. Involvement of the metabolic enzymes pyruvate dehydrogenase complex (PDHc) and its E3 subunit, dihydrolipoamide dehydrogenase (DLD) in hamster in vitro fertilization (IVF) via in vitro sperm capacitation is being proposed through regulation of sperm intracellular lactate, pH and calcium. Methodology and Principal Findings Capacitated hamster spermatozoa were allowed to fertilize hamster oocytes in vitro which were then assessed for fertilization, microscopically. PDHc/DLD was inhibited by the use of the specific DLD-inhibitor, MICA (5-methoxyindole-2-carboxylic acid). Oocytes fertilized with MICA-treated (MT) [and thus PDHc/DLD-inhibited] spermatozoa showed defective fertilization where 2nd polar body release and pronuclei formation were not observed. Defective fertilization was attributable to capacitation failure owing to high lactate and low intracellular pH and calcium in MT-spermatozoa during capacitation. Moreover, this defect could be overcome by alkalinizing spermatozoa, before fertilization. Increasing intracellular calcium in spermatozoa pre-IVF and in defectively-fertilized oocytes, post-fertilization rescued the arrest seen, suggesting the role of intracellular calcium from either of the gametes in fertilization. Parallel experiments carried out with control spermatozoa capacitated in medium with low extracellular pH or high lactate substantiated the necessity of optimal sperm intracellular lactate levels, intracellular pH and calcium during sperm capacitation, for proper fertilization. Conclusions This study confirms the importance of pyruvate/lactate metabolism in capacitating spermatozoa for successful fertilization, besides revealing for the first time the importance of sperm PDHc/ DLD in fertilization, via the modulation of sperm intracellular lactate, pH and calcium during capacitation. In addition, the observations made in the IVF studies in hamsters suggest that capacitation failures could be a plausible cause of unsuccessful fertilization encountered during human assisted reproductive technologies, like IVF and ICSI. Our studies indicate a role of sperm capacitation in the post-penetration events during fertilization. PMID:24852961

  9. Nanostructured mesophase electrode materials: modulating charge-storage behavior by thermal treatment.

    PubMed

    Kong, Hye Jeong; Kim, Saerona; Le, Thanh-Hai; Kim, Yukyung; Park, Geunsu; Park, Chul Soon; Kwon, Oh Seok; Yoon, Hyeonseok

    2017-11-16

    3D nanostructured carbonaceous electrode materials with tunable capacitive phases were successfully developed using graphene/particulate polypyrrole (PPy) nanohybrid (GPNH) precursors without a separate process for incorporating heterogeneous species. The electrode material, namely carbonized GPNHs (CGPNHs) featured a mesophase capacitance consisting of both electric double-layer (EDL) capacitive and pseudocapacitive elements at the molecular level. The ratio of EDL capacitive element to pseudocapacitive element (E-to-P) in the mesophase electrode materials was controlled by varying the PPy-to-graphite weight (P w /G w ) ratio and by heat treatment (T H ), which was demonstrated by characterizing the CGPNHs with elemental analysis, cyclic voltammetry, and a charge/discharge test. The concept of the E-to-P ratio (EPR) index was first proposed to easily identify the capacitive characteristics of the mesophase electrode using a numerical algorithm, which was reasonably consistent with the experimental findings. Finally, the CGPNHs were integrated into symmetric two-electrode capacitor cells, which rendered excellent energy and power densities in both aqueous and ionic liquid electrolytes. It is anticipated that our approach could be widely extended to fabricating versatile hybrid electrode materials with estimation of their capacitive characteristics.

  10. Note: Wide band amplifier for quartz tuning fork sensors with digitally controlled stray capacitance compensation.

    PubMed

    Peng, Ping; Hao, Lifeng; Ding, Ning; Jiao, Weicheng; Wang, Qi; Zhang, Jian; Wang, Rongguo

    2015-11-01

    We presented a preamplifier design for quartz tuning fork (QTF) sensors in which the stray capacitance is digitally compensated. In this design, the manually controlled variable capacitor is replaced by a pair of varicap diodes, whose capacitance could be accurately tuned by a bias voltage. A tuning circuit including a single side low power operational amplifier, a digital-to-analog converter, and a microprocessor is also described, and the tuning process can be conveniently carried out on a personal computer. For the design, the noise level was investigated experimentally.

  11. Defect states and their energetic position and distribution in organic molecular semiconductors

    NASA Astrophysics Data System (ADS)

    Sharma, Akanksha; Yadav, Sarita; Kumar, Pramod; Ray Chaudhuri, Sumita; Ghosh, Subhasis

    2013-04-01

    Energetic position and distribution of defect states due to structural disorder in pentacene and copper phthalocyanine have been obtained by capacitance based spectroscopic techniques. It has been shown that capacitance-frequency and capacitance-voltage characteristics exhibit Gaussian distribution of traps with an energetic position at around 0.5 eV above the highest occupied molecular orbital level of the pentacene and CuPc. These traps have been created by varying growth conditions and almost identical trap parameters in pentacene and copper phthalocyanine indicate that similar structural disorder is responsible for these traps.

  12. Carbon nanotube yarns for deep brain stimulation electrode.

    PubMed

    Jiang, Changqing; Li, Luming; Hao, Hongwei

    2011-12-01

    A new form of deep brain stimulation (DBS) electrode was proposed that was made of carbon nanotube yarns (CNTYs). Electrode interface properties were examined using cyclic voltammetry (CV) and electrochemical impedance spectrum (EIS). The CNTY electrode interface exhibited large charge storage capacity (CSC) of 12.3 mC/cm(2) which increased to 98.6 mC/cm(2) after acid treatment, compared with 5.0 mC/cm(2) of Pt-Ir. Impedance spectrum of both untreated and treated CNTY electrodes showed that finite diffusion process occurred at the interface due to their porous structure and charge was delivered through capacitive mechanism. To evaluate stability electrical stimulus was exerted for up to 72 h and CV and EIS results of CNTY electrodes revealed little alteration. Therefore CNTY could make a good electrode material for DBS.

  13. Electrical characterization of plasma-grown oxides on gallium arsenide

    NASA Technical Reports Server (NTRS)

    Hshieh, F. I.; Bhat, K. N.; Ghandhi, S. K.; Borrego, J. M.

    1985-01-01

    Plasma-grown GaAs oxides and their interfaces have been characterized by measuring the electrical properties of metal-oxide-semiconductor capacitors and of Schottky junctions. The current transport mechanism in the oxide at high electrical field was found to be Frankel-Poole emission, with an electron trap center at 0.47 eV below the conduction band of the oxide. The interface-state density, evaluated from capacitance and conductance measurements, exhibits a U-shaped interface-state continuum extending over the entire band gap. Two discrete deep states with high concentration are superimposed on this continuum at 0.40 and 0.70 eV below the conduction band. The results obtained from measurements on Schottky junctions have excluded the possibility that these two deep states originate from plasma damage. Possible origins of these states are discussed in this paper.

  14. A physical model for the reverse leakage current in (In,Ga)N/GaN light-emitting diodes based on nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musolino, M.; Treeck, D. van, E-mail: treeck@pdi-berlin.de; Tahraoui, A.

    2016-01-28

    We investigated the origin of the high reverse leakage current in light emitting diodes (LEDs) based on (In,Ga)N/GaN nanowire (NW) ensembles grown by molecular beam epitaxy on Si substrates. To this end, capacitance deep level transient spectroscopy (DLTS) and temperature-dependent current-voltage (I-V) measurements were performed on a fully processed NW-LED. The DLTS measurements reveal the presence of two distinct electron traps with high concentrations in the depletion region of the p-i-n junction. These band gap states are located at energies of 570 ± 20 and 840 ± 30 meV below the conduction band minimum. The physical origin of these deep level states is discussed. Themore » temperature-dependent I-V characteristics, acquired between 83 and 403 K, show that different conduction mechanisms cause the observed leakage current. On the basis of all these results, we developed a quantitative physical model for charge transport in the reverse bias regime. By taking into account the mutual interaction of variable range hopping and electron emission from Coulombic trap states, with the latter being described by phonon-assisted tunnelling and the Poole-Frenkel effect, we can model the experimental I-V curves in the entire range of temperatures with a consistent set of parameters. Our model should be applicable to planar GaN-based LEDs as well. Furthermore, possible approaches to decrease the leakage current in NW-LEDs are proposed.« less

  15. Switched integration amplifier-based photocurrent meter for accurate spectral responsivity measurement of photometers.

    PubMed

    Park, Seongchong; Hong, Kee-Suk; Kim, Wan-Seop

    2016-03-20

    This work introduces a switched integration amplifier (SIA)-based photocurrent meter for femtoampere (fA)-level current measurement, which enables us to measure a 107 dynamic range of spectral responsivity of photometers even with a common lamp-based monochromatic light source. We described design considerations and practices about operational amplifiers (op-amps), switches, readout methods, etc., to compose a stable SIA of low offset current in terms of leakage current and gain peaking in detail. According to the design, we made six SIAs of different integration capacitance and different op-amps and evaluated their offset currents. They showed an offset current of (1.5-85) fA with a slow variation of (0.5-10) fA for an hour under opened input. Applying a detector to the SIA input, the offset current and its variation were increased and the SIA readout became noisier due to finite shunt resistance and nonzero shunt capacitance of the detector. One of the SIAs with 10 pF nominal capacitance was calibrated using a calibrated current source at the current level of 10 nA to 1 fA and at the integration time of 2 to 65,536 ms. As a result, we obtained a calibration formula for integration capacitance as a function of integration time rather than a single capacitance value because the SIA readout showed a distinct dependence on integration time at a given current level. Finally, we applied it to spectral responsivity measurement of a photometer. It is demonstrated that the home-made SIA of 10 pF was capable of measuring a 107 dynamic range of spectral responsivity of a photometer.

  16. Analysis of Subthreshold Current Reset Noise in Image Sensors.

    PubMed

    Teranishi, Nobukazu

    2016-05-10

    To discuss the reset noise generated by slow subthreshold currents in image sensors, intuitive and simple analytical forms are derived, in spite of the subthreshold current nonlinearity. These solutions characterize the time evolution of the reset noise during the reset operation. With soft reset, the reset noise tends to m k T / 2 C P D when t → ∞ , in full agreement with previously published results. In this equation, C P D is the photodiode (PD) capacitance and m is a constant. The noise has an asymptotic time dependence of t - 1 , even though the asymptotic time dependence of the average (deterministic) PD voltage is as slow as log t . The flush reset method is effective because the hard reset part eliminates image lag, and the soft reset part reduces the noise to soft reset level. The feedback reset with reverse taper control method shows both a fast convergence and a good reset noise reduction. When the feedback amplifier gain, A, is larger, even small value of capacitance, C P , between the input and output of the feedback amplifier will drastically decrease the reset noise. If the feedback is sufficiently fast, the reset noise limit when t → ∞ , becomes m k T ( C P D + C P 1 ) 2 2 q 2 A ( C P D + ( 1 + A ) C P ) in terms of the number of electron in the PD. According to this simple model, if CPD = 10 fF, CP/CPD = 0.01, and A = 2700 are assumed, deep sub-electron rms reset noise is possible.

  17. Pentacene Schottky diodes studied by impedance spectroscopy: Doping properties and trap response

    NASA Astrophysics Data System (ADS)

    Pahner, Paul; Kleemann, Hans; Burtone, Lorenzo; Tietze, Max L.; Fischer, Janine; Leo, Karl; Lüssem, Björn

    2013-11-01

    We study doping properties and charge carrier trap distributions in pentacene Schottky diodes doped by the fluorinated fullerene derivate C60F36 and 2,2'-(perdiylidene)dimalononitrile (F6-TCNNQ) upon small signal excitation. We show that the charge carrier depletion zones present in these Schottky diodes are tunable by the applied bias and temperature. Mott-Schottky evaluations yield reduced doping efficiencies and dopant activation energies between 19 and 54 meV. In the low-frequency regime, we resolve additional capacitive contributions from inherent charge carrier traps. A Gaussian distributed trap center 0.6 eV above the hole transport level with a density in the range of 1016 cm-3 depending on the material purity is found to be an intrinsic feature of the pentacene matrix. Upon doping, the deep Gaussian trap center saturates in density and broad exponentially tailing trap distributions arise. Subsequent ultraviolet photoelectron spectroscopy measurements are conducted to inspect for energetic broadening due to doping.

  18. Electrical properties of metal/Al2O3/In0.53Ga0.47As capacitors grown on InP

    NASA Astrophysics Data System (ADS)

    Ferrandis, Philippe; Billaud, Mathilde; Duvernay, Julien; Martin, Mickael; Arnoult, Alexandre; Grampeix, Helen; Cassé, Mikael; Boutry, Hervé; Baron, Thierry; Vinet, Maud; Reimbold, Gilles

    2018-04-01

    To overcome the Fermi-level pinning in III-V metal-oxide-semiconductor capacitors, attention is usually focused on the choice of dielectric and surface chemical treatments prior to oxide deposition. In this work, we examined the influence of the III-V material surface cleaning and the semiconductor growth technique on the electrical properties of metal/Al2O3/In0.53Ga0.47As capacitors grown on InP(100) substrates. By means of the capacitance-voltage measurements, we demonstrated that samples do not have the same total oxide charge density depending on the cleaning solution used [(NH4)2S or NH4OH] prior to oxide deposition. The determination of the interface trap density revealed that a Fermi-level pinning occurs for samples grown by metalorganic chemical vapor deposition but not for similar samples grown by molecular beam epitaxy. Deep level transient spectroscopy analysis explained the Fermi-level pinning by an additional signal for samples grown by metalorganic chemical vapor deposition, attributed to the tunneling effect of carriers trapped in oxide toward interface states. This work emphasizes that the choice of appropriate oxide and cleaning treatment is not enough to prevent a Fermi-level pinning in III-V metal-oxide-semiconductor capacitors. The semiconductor growth technique needs to be taken into account because it impacts the trapping properties of the oxide.

  19. A precision analogue integrator system for heavy current measurement in MFDC resistance spot welding

    NASA Astrophysics Data System (ADS)

    Xia, Yu-Jun; Zhang, Zhong-Dian; Xia, Zhen-Xin; Zhu, Shi-Liang; Zhang, Rui

    2016-02-01

    In order to control and monitor the quality of middle frequency direct current (MFDC) resistance spot welding (RSW), precision measurement of the welding current up to 100 kA is required, for which Rogowski coils are the only viable current transducers at present. Thus, a highly accurate analogue integrator is the key to restoring the converted signals collected from the Rogowski coils. Previous studies emphasised that the integration drift is a major factor that influences the performance of analogue integrators, but capacitive leakage error also has a significant impact on the result, especially in long-time pulse integration. In this article, new methods of measuring and compensating capacitive leakage error are proposed to fabricate a precision analogue integrator system for MFDC RSW. A voltage holding test is carried out to measure the integration error caused by capacitive leakage, and an original integrator with a feedback adder is designed to compensate capacitive leakage error in real time. The experimental results and statistical analysis show that the new analogue integrator system could constrain both drift and capacitive leakage error, of which the effect is robust to different voltage levels of output signals. The total integration error is limited within  ±0.09 mV s-1 0.005% s-1 or full scale at a 95% confidence level, which makes it possible to achieve the precision measurement of the welding current of MFDC RSW with Rogowski coils of 0.1% accuracy class.

  20. Modulation of intracellular Ca(2+) via alpha(1B)-adrenoreceptor signaling molecules, G alpha(h) (transglutaminase II) and phospholipase C-delta 1.

    PubMed

    Kang, Sung Koo; Kim, Dae Kyong; Damron, Derek S; Baek, Kwang Jin; Im, Mie-Jae

    2002-04-26

    We characterized the alpha(1B)-adrenoreceptor (alpha(1B)-AR)-mediated intracellular Ca(2+) signaling involving G alpha(h) (transglutaminase II, TGII) and phospholipase C (PLC)-delta 1 using DDT1-MF2 cell. Expression of wild-type TGII and a TGII mutant lacking transglutaminase activity resulted in significant increases in a rapid peak and a sustained level of intracellular Ca(2+) concentration ([Ca(2+)](i)) in response to activation of the alpha(1B)-AR. Expression of a TGII mutant lacking the interaction with the receptor or PLC-delta 1 substantially reduced both the peak and sustained levels of [Ca(2+)](i). Expression of TGII mutants lacking the interaction with PLC-delta 1 resulted in a reduced capacitative Ca(2+) entry. Reduced expression of PLC-delta 1 displayed a transient elevation of [Ca(2+)](i) and a reduction in capacitative Ca(2+) entry. Expression of the C2-domain of PLC-delta 1, which contains the TGII interaction site, resulted in reduction of the alpha(1B)-AR-evoked peak increase in [Ca(2+)](i), while the sustained elevation in [Ca(2+)](i) and capacitative Ca(2+) entry remained unchanged. These findings demonstrate that stimulation of PLC-delta 1 via coupling of the alpha(1B)-AR with TGII evokes both Ca(2+) release and capacitative Ca(2+) entry and that capacitative Ca(2+) entry is mediated by the interaction of TGII with PLC-delta 1.

  1. Wavelet approach to artifact noise removal from Capacitive coupled Electrocardiograph.

    PubMed

    Lee, Seung Min; Kim, Ko Keun; Park, Kwang Suk

    2008-01-01

    Capacitive coupled Electrocardiography (ECG) is introduced as non-invasive measurement technology for ubiquitous health care and appliance are spread out widely. Although it has many merits, however, capacitive coupled ECG is very weak for motion artifacts for its non-skin-contact property. There are many studies for artifact problems which treats all artifact signals below 0.8Hz. In our capacitive coupled ECG measurement system, artifacts exist not only below 0.8Hz but also over than 10Hz. Therefore, artifact noise removal algorithm using wavelet method is tested to reject artifact-wandered signal from measured signals. It is observed that using power calculation each decimation step, artifact-wandered signal is removed as low frequency artifacts as high frequency artifacts. Although some original ECG signal is removed with artifact signal, we could level the signal quality for long term measure which shows the best quality ECG signals as we can get.

  2. A 5 meter range non-planar CMUT array for Automotive Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Hernandez Aguirre, Jonathan

    A discretized hyperbolic paraboloid geometry capacitive micromachined ultrasonic transducer (CMUT) array has been designed and fabricated for automotive collision avoidance. The array is designed to operate at 40 kHz, beamwidth of 40° with a maximum sidelobe intensity of -10dB. An SOI based fabrication technology has been used for the 5x5 array with 5 sensing surfaces along each x and y axis and 7 elevation levels. An assembly and packaging technique has been developed to realize the non-planar geometry in a PGA-68 package. A highly accurate mathematical method has been presented for analytical characterization of capacitive micromachined ultrasonic transducers (CMUTs) built with square diaphragms. The method uses a new two-dimensional polynomial function to more accurately predict the deflection curve of a multilayer square diaphragm subject to both mechanical and electrostatic pressure and a new capacitance model that takes into account the contribution of the fringing field capacitances.

  3. Double layer effects on metal nucleation in deep eutectic solvents.

    PubMed

    Abbott, Andrew P; Barron, John C; Frisch, Gero; Gurman, Stephen; Ryder, Karl S; Fernando Silva, A

    2011-06-07

    The electrodeposition of zinc has been studied in two deep eutectic solvents. Unlike the metals studied to date in these liquids, zinc electrodeposition is not mass transport limited and the morphology of the deposit differs in the two liquids. This study shows that changing the concentration of solute affects the physical properties of the liquid to different extents although this is found to not effect the morphology of the metal deposited. EXAFS was used to show that the speciation of zinc was the same in both liquids. Double layer capacitance studies showed differences between the two liquids and these are proposed to be due to the adsorption of a species on the electrode which is thought to be chloride. The differences in zinc morphology is attributed to blocking of certain crystal faces leading to deposition of small platelet shaped crystals in the glycol based liquid.

  4. Chloride Is Essential for Capacitation and for the Capacitation-associated Increase in Tyrosine Phosphorylation*

    PubMed Central

    Wertheimer, Eva V.; Salicioni, Ana M.; Liu, Weimin; Trevino, Claudia L.; Chavez, Julio; Hernández-González, Enrique O.; Darszon, Alberto; Visconti, Pablo E.

    2008-01-01

    After epididymal maturation, sperm capacitation, which encompasses a complex series of molecular events, endows the sperm with the ability to fertilize an egg. This process can be mimicked in vitro in defined media, the composition of which is based on the electrolyte concentration of the oviductal fluid. It is well established that capacitation requires Na+, \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{HCO}}_{3}^{-}\\end{equation*}\\end{document}, Ca2+, and a cholesterol acceptor; however, little is known about the function of Cl– during this important process. To determine whether Cl–, in addition to maintaining osmolarity, actively participates in signaling pathways that regulate capacitation, Cl– was replaced by either methanesulfonate or gluconate two nonpermeable anions. The absence of Cl– did not affect sperm viability, but capacitation-associated processes such as the increase in tyrosine phosphorylation, the increase in cAMP levels, hyperactivation, the zona pellucidae-induced acrosome reaction, and most importantly, fertilization were abolished or significantly reduced. Interestingly, the addition of cyclic AMP agonists to sperm incubated in Cl–-free medium rescued the increase in tyrosine phosphorylation and hyperactivation suggesting that Cl– acts upstream of the cAMP/protein kinase A signaling pathway. To investigate Cl– transport, sperm incubated in complete capacitation medium were exposed to a battery of anion transport inhibitors. Among them, bumetanide and furosemide, two blockers of Na+/K+/Cl– cotransporters (NKCC), inhibited all capacitation-associated events, suggesting that these transporters may mediate Cl– movements in sperm. Consistent with these results, Western blots using anti-NKCC1 antibodies showed the presence of this cotransporter in mature sperm. PMID:18957426

  5. Functional human sperm capacitation requires both bicarbonate-dependent PKA activation and down-regulation of Ser/Thr phosphatases by Src family kinases.

    PubMed

    Battistone, M A; Da Ros, V G; Salicioni, A M; Navarrete, F A; Krapf, D; Visconti, P E; Cuasnicú, P S

    2013-09-01

    In all mammalian species studied so far, sperm capacitation correlates with an increase in protein tyrosine (Tyr) phosphorylation mediated by a bicarbonate-dependent cAMP/protein kinase A (PKA) pathway. Recent studies in mice revealed, however, that a Src family kinase (SFK)-induced inactivation of serine/threonine (Ser/Thr) phosphatases is also involved in the signaling pathways leading to Tyr phosphorylation. In view of these observations and with the aim of getting a better understanding of the signaling pathways involved in human sperm capacitation, in the present work we investigated the involvement of both the cAMP/PKA and SFK/phosphatase pathways in relation to the capacitation state of the cells. For this purpose, different signaling events and sperm functional parameters were analyzed as a function of capacitation time. Results revealed a very early bicarbonate-dependent activation of PKA indicated by the rapid (1 min) increase in both phospho-PKA substrates and cAMP levels (P < 0.05). However, a complete pattern of Tyr phosphorylation was detected only after 6-h incubation at which time sperm exhibited the ability to undergo the acrosome reaction (AR) and to penetrate zona-free hamster oocytes. Sperm capacitated in the presence of the SFK inhibitor SKI606 showed a decrease in both PKA substrate and Tyr phosphorylation levels, which was overcome by exposure of sperm to the Ser/Thr phosphatase inhibitor okadaic acid (OA). However, OA was unable to induce phosphorylation when sperm were incubated under PKA-inhibitory conditions (i.e. in the absence of bicarbonate or in the presence of PKA inhibitor). Moreover, the increase in PKA activity by exposure to a cAMP analog and a phosphodiesterase inhibitor did not overcome the inhibition produced by SKI606. Whereas the presence of SKI606 during capacitation produced a negative effect (P < 0.05) on sperm motility, progesterone-induced AR and fertilizing ability, none of these inhibitions were observed when sperm were exposed to SKI606 and OA. Interestingly, different concentrations of inhibitors were required to modulate human and mouse capacitation revealing the species specificity of the molecular mechanisms underlying this process. In conclusion, our results describe for the first time the involvement of both PKA activation and Ser/Thr phosphatase down-regulation in functional human sperm capacitation and provide convincing evidence that early PKA-dependent phosphorylation is the convergent regulatory point between these two signaling pathways.

  6. Linear dynamic range enhancement in a CMOS imager

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor)

    2008-01-01

    A CMOS imager with increased linear dynamic range but without degradation in noise, responsivity, linearity, fixed-pattern noise, or photometric calibration comprises a linear calibrated dual gain pixel in which the gain is reduced after a pre-defined threshold level by switching in an additional capacitance. The pixel may include a novel on-pixel latch circuit that is used to switch in the additional capacitance.

  7. Adding Resistances and Capacitances in Introductory Electricity

    NASA Astrophysics Data System (ADS)

    Efthimiou, C. J.; Llewellyn, R. A.

    2005-09-01

    All introductory physics textbooks, with or without calculus, cover the addition of both resistances and capacitances in series and in parallel as discrete summations. However, none includes problems that involve continuous versions of resistors in parallel or capacitors in series. This paper introduces a method for solving the continuous problems that is logical, straightforward, and within the mathematical preparation of students at the introductory level.

  8. Defect properties of InGaAsN layers grown as sub-monolayer digital alloys by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Baranov, Artem I.; Gudovskikh, Alexander S.; Kudryashov, Dmitry A.; Lazarenko, Alexandra A.; Morozov, Ivan A.; Mozharov, Alexey M.; Nikitina, Ekaterina V.; Pirogov, Evgeny V.; Sobolev, Maxim S.; Zelentsov, Kirill S.; Egorov, Anton Yu.; Darga, Arouna; Le Gall, Sylvain; Kleider, Jean-Paul

    2018-04-01

    The defect properties of InGaAsN dilute nitrides grown as sub-monolayer digital alloys (SDAs) by molecular beam epitaxy for photovoltaic application were studied by space charge capacitance spectroscopy. Alloys of i-InGaAsN (Eg = 1.03 eV) were lattice-matched grown on GaAs wafers as a superlattice of InAs/GaAsN with one monolayer of InAs (<0.5 nm) between wide GaAsN (7-12 nm) layers as active layers in single-junction solar cells. Low p-type background doping was demonstrated at room temperature in samples with InGaAsN layers 900 nm and 1200 nm thick (less 1 × 1015 cm-3). According to admittance spectroscopy and deep-level transient spectroscopy measurements, the SDA approach leads to defect-free growth up to a thickness of 900 nm. An increase in thickness to 1200 nm leads to the formation of non-radiative recombination centers with an activation energy of 0.5 eV (NT = 8.4 × 1014 cm-3) and a shallow defect level at 0.20 eV. The last one leads to the appearance of additional doping, but its concentration is low (NT = 5 × 1014 cm-3) so it does not affect the photoelectric properties. However, further increase in thickness to 1600 nm, leads to significant growth of its concentration to (3-5) × 1015 cm-3, while the concentration of deep levels becomes 1.3 × 1015 cm-3. Therefore, additional free charge carriers appearing due to ionization of the shallow level change the band diagram from p-i-n to p-n junction at room temperature. It leads to a drop of the external quantum efficiency due to the effect of pulling electric field decrease in the p-n junction and an increased number of non-radiative recombination centers that negatively impact lifetimes in InGaAsN.

  9. Development of a high-yield via-last through silicon via process using notchless silicon etching and wet cleaning of the first metal layer

    NASA Astrophysics Data System (ADS)

    Watanabe, Naoya; Kikuchi, Hidekazu; Yanagisawa, Azusa; Shimamoto, Haruo; Kikuchi, Katsuya; Aoyagi, Masahiro; Nakamura, Akio

    2017-07-01

    A high-yield via-last through silicon via (TSV) process has been developed using notchless Si etching and wet cleaning of the first metal layer. In this process, the notching was suppressed by optimizing the deep Si etching conditions and wet cleaning was performed using an organic alkaline solution to remove reaction products generated by the etchback step on the first metal layer. By this process, a number of small TSVs (TSV diameter: 6 µm TSV depth: 22 µm number of TSVs: 20,000/chip) could be formed uniformly on an 8-in. wafer. The electrical characteristics of small TSVs formed by this via-last TSV process were investigated. The TSV resistance determined by four-terminal measurements was approximately 24 mΩ. The leakage current between the TSV and the Si substrate was 2.5 pA at 5 V. The TSV capacitance determined using an inductance-capacitance-resistance (LCR) meter was 54 fF, while the TSV yield determined from TSV chain measurements was high (83%) over an 8-in. wafer.

  10. Detection of cooling-induced membrane changes in the response of boar sperm to capacitating conditions.

    PubMed

    Petrunkina, Anna M; Volker, Gabriele; Weitze, Karl-Fritz; Beyerbach, Martin; Töpfer-Petersen, Edda; Waberski, Dagmar

    2005-05-01

    There is a need for methods of rapid and sensitive sperm function assessment. As spermatozoa are not able to fertilize an oocyte before having undergone a series of complex physiological changes collectively called capacitation, it is logical to assess sperm function under fertilizing conditions in vitro. In this study, the responsiveness of sperm to capacitating conditions in vitro was monitored by changes in sperm response to ionophore and by changes in the amount of intracellular calcium ions in stored boar semen. Boar semen was diluted at 32 and 20 degrees C and stored for 24 and 72 h at 16 and 10 degrees C. Ionophore-induced changes and increased intracellular calcium ion content in boar spermatozoa were recorded by flow cytometry and found to progress as a function of time during incubation under capacitating conditions. All responsiveness parameters (increases in proportions of membrane-defective spermatozoa, acrosome-reacted spermatozoa, and cells with high intracellular calcium levels) were shown to be sensitive to subtle physiological changes occurring at low storage temperatures. The initial levels of sperm with a high calcium content were higher in semen stored at 10 degrees C, but the accumulation of internal calcium was lower than in semen stored at 16 degrees C. The loss of membrane integrity and increase in the proportion of acrosome-reacted cells were higher in semen stored at 10 degrees C. Dilution at 20 degrees C had no negative effect on membrane integrity or responsiveness to capacitating conditions. There was no significant difference between semen stored for 24 and 72 h in terms of membrane integrity, acrosome reaction, and intracellular calcium after capacitation treatment. However, dynamics of cell death and acrosome reaction in response to capacitating conditions were somewhat accelerated after 72 h storage, especially in semen stored at 10 degrees C. It can be concluded that the simultaneous use of the sperm membrane responsiveness and kinetic parameters is a sensitive tool for the detection of storage-related membrane changes in boar semen.

  11. A microfabricated fringing field capacitive pH sensor with an integrated readout circuit

    NASA Astrophysics Data System (ADS)

    Arefin, Md Shamsul; Bulut Coskun, M.; Alan, Tuncay; Redoute, Jean-Michel; Neild, Adrian; Rasit Yuce, Mehmet

    2014-06-01

    This work presents a microfabricated fringe-field capacitive pH sensor using interdigitated electrodes and an integrated modulation-based readout circuit. The changes in capacitance of the sensor result from the permittivity changes due to pH variations and are converted to frequency shifts using a crossed-coupled voltage controlled oscillator readout circuit. The shift in resonant frequency of the readout circuit is 30.96 MHz for a change in pH of 1.0-5.0. The sensor can be used for the measurement of low pH levels, such as gastric acid, and can be integrated with electronic pills. The measurement results show high repeatability, low noise, and a stable output.

  12. Featuring of transient tunneling current by voltage pulse and application to an electrochemical biosensor

    NASA Astrophysics Data System (ADS)

    Yun, Jun Yeon; Lee, Won Cheol; Choi, Seong Wook; Park, Young June

    2018-03-01

    We suggest a voltage pulse method for detecting the transient tunneling current component (faradaic current component) in a metal/redox-active monolayer/electrolyte system. After applying the pulse to the metal electrode, the capacitive current prevails; therefore, it is difficult to extract the tunneling current, which carries information on the biochemical reactions occurring between the biomarkers in the electrolyte and the self-assembled monolayer (SAM) as the probe peptide system. Instead of waiting until the capacitive current diminishes, and thereby, the tunneling current also decreases, we try to extract the tunneling current in an early stage of the pulse. The method is based on the observation that the capacitive current becomes symmetrized in the positive and negative pulses after introducing the SAM on the metal electrode. When the energy level of the redox molecule is higher than the Fermi level of the metal under zero-bias condition, the tunneling current in the negative pulse can be extracted by subtracting the capacitive current obtained from the positive pulse, where the tunneling current is neglected. The experiment conducted for detecting trypsin as a biomarker shows that the method enhances the sensitivity and the specific-to-nonspecific ratio of the sensor device in the case of the nonspecific protein-abundant electrolyte solution, as evinced by cyclic voltammetry measurements in comparison.

  13. A Lorentz force actuated magnetic field sensor with capacitive read-out

    NASA Astrophysics Data System (ADS)

    Stifter, M.; Steiner, H.; Kainz, A.; Keplinger, F.; Hortschitz, W.; Sauter, T.

    2013-05-01

    We present a novel design of a resonant magnetic field sensor with capacitive read-out permitting wafer level production. The device consists of a single-crystal silicon cantilever manufactured from the device layer of an SOI wafer. Cantilevers represent a very simple structure with respect to manufacturing and function. On the top of the structure, a gold lead carries AC currents that generate alternating Lorentz forces in an external magnetic field. The free end oscillation of the actuated cantilever depends on the eigenfrequencies of the structure. Particularly, the specific design of a U-shaped structure provides a larger force-to-stiffness-ratio than standard cantilevers. The electrodes for detecting cantilever deflections are separately fabricated on a Pyrex glass-wafer. They form the counterpart to the lead on the freely vibrating planar structure. Both wafers are mounted on top of each other. A custom SU-8 bonding process on wafer level creates a gap which defines the equilibrium distance between sensing electrodes and the vibrating structure. Additionally to the capacitive read-out, the cantilever oscillation was simultaneously measured with laser Doppler vibrometry through proper windows in the SOI handle wafer. Advantages and disadvantages of the asynchronous capacitive measurement configuration are discussed quantitatively and presented by a comprehensive experimental characterization of the device under test.

  14. Effect of calcium, bicarbonate, and albumin on capacitation-related events in equine sperm.

    PubMed

    Macías-García, B; González-Fernández, L; Loux, S C; Rocha, A M; Guimarães, T; Peña, F J; Varner, D D; Hinrichs, K

    2015-01-01

    Repeatable methods for IVF have not been established in the horse, reflecting the failure of standard capacitating media to induce changes required for fertilization capacity in equine sperm. One important step in capacitation is membrane cholesterol efflux, which in other species is triggered by cholesterol oxidation and is typically enhanced using albumin as a sterol acceptor. We incubated equine sperm in the presence of calcium, BSA, and bicarbonate, alone or in combination. Bicarbonate induced an increase in reactive oxygen species (ROS) that was abolished by the addition of calcium or BSA. Bicarbonate induced protein tyrosine phosphorylation (PY), even in the presence of calcium or BSA. Incubation at high pH enhanced PY but did not increase ROS production. Notably, no combination of these factors was associated with significant cholesterol efflux, as assessed by fluorescent quantitative cholesterol assay and confirmed by filipin staining. By contrast, sperm treated with methyl-β-cyclodextrin showed a significant reduction in cholesterol levels, but no significant increase in PY or ROS. Presence of BSA increased sperm binding to bovine zonae pellucidae in all three stallions. These results show that presence of serum albumin is not associated with a reduction in membrane cholesterol levels in equine sperm, highlighting the failure of equine sperm to exhibit core capacitation-related changes in a standard capacitating medium. These data indicate an atypical relationship among cholesterol efflux, ROS production, and PY in equine sperm. Our findings may help to elucidate factors affecting failure of equine IVF under standard conditions. © 2015 Society for Reproduction and Fertility.

  15. Electrospun mulberry-like hierarchical carbon fiber web for high-performance supercapacitors.

    PubMed

    Liu, Chao; Liu, Jizi; Wang, Jing; Li, Jiansheng; Luo, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing; Wang, Lianjun

    2018-02-15

    In this work, we have fabricated a kind of N-doped hierarchal carbon fiber web by electrospinning hollow mesoporous carbon spheres (HMCSs) into fibrous structure. The as-synthesized carbon fiber web with novel mulberry-like morphology, thus denoted as MC-FW, possesses micro/meso/macroporous porosity, large surface area, high conductivity and multi-level structure, which are highly desired for supercapacitor electrode materials. The electrochemical measurements demonstrate that the designed MC-FW shows high capacitance (298.6 F g -1 ), favorable capacitance retention (71.0%) and long cycle life (97.3% capacitance retention after 5000 cycles). Notably, the capacitance of 298.6 F g -1 for MC-FW is higher than the capacitance reported so far for many hollow carbon spheres and carbon fibers, which may contribute to the synergistic effect between the merits of HMCSs (e.g. micro/meso/macroporous hierarchal structure, large surface area, high pore volume) and advantages of 1D carbon fiber (e.g. large aspect ratio and high conductivity). It is believed that this distinctive carbon fiber web may show promising prospects as advanced energy storage materials and catalyst. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Polyimide-Based Capacitive Humidity Sensor

    PubMed Central

    Steinmaßl, Matthias; Endres, Hanns-Erik; Drost, Andreas; Eisele, Ignaz; Kutter, Christoph; Müller-Buschbaum, Peter

    2018-01-01

    The development of humidity sensors with simple transduction principles attracts considerable interest by both scientific researchers and industrial companies. Capacitive humidity sensors, based on polyimide sensing material with different thickness and surface morphologies, are prepared. The surface morphology of the sensing layer is varied from flat to rough and then to nanostructure called nanograss by using an oxygen plasma etch process. The relative humidity (RH) sensor selectively responds to the presence of water vapor by a capacitance change. The interaction between polyimide and water molecules is studied by FTIR spectroscopy. The complete characterization of the prepared capacitive humidity sensor performance is realized using a gas mixing setup and an evaluation kit. A linear correlation is found between the measured capacitance and the RH level in the range of 5 to 85%. The morphology of the humidity sensing layer is revealed as an important parameter influencing the sensor performance. It is proved that a nanograss-like structure is the most effective for detecting RH, due to its rapid response and recovery times, which are comparable to or even better than the ones of commercial polymer-based sensors. This work demonstrates the readiness of the developed RH sensor technology for industrialization. PMID:29751632

  17. Noise characteristics analysis of short wave infrared InGaAs focal plane arrays

    NASA Astrophysics Data System (ADS)

    Yu, Chunlei; Li, Xue; Yang, Bo; Huang, Songlei; Shao, Xiumei; Zhang, Yaguang; Gong, Haimei

    2017-09-01

    The increasing application of InGaAs short wave infrared (SWIR) focal plane arrays (FPAs) in low light level imaging requires ultra-low noise FPAs. This paper presents the theoretical analysis of FPA noise, and point out that both dark current and detector capacitance strongly affect the FPA noise. The impact of dark current and detector capacitance on FPA noise is compared in different situations. In order to obtain low noise performance FPAs, the demand for reducing detector capacitance is higher especially when pixel pitch is smaller, integration time is shorter, and integration capacitance is larger. Several InGaAs FPAs were measured and analyzed, the experiments' results could be well fitted to the calculated results. The study found that the major contributor of FPA noise is coupled noise with shorter integration time. The influence of detector capacitance on FPA noise is more significant than that of dark current. To investigate the effect of detector performance on FPA noise, two kinds of photodiodes with different concentration of the absorption layer were fabricated. The detectors' performance and noise characteristics were measured and analyzed, the results are consistent with that of theoretical analysis.

  18. Measurements of the populations of metastable and resonance levels in the plasma of an RF capacitive discharge in argon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasilieva, A. N.; Voloshin, D. G.; Kovalev, A. S., E-mail: kovalev@dnph.phys.msu.su

    2015-05-15

    The behavior of the populations of two metastable and two lower resonance levels of argon atoms in the plasma of an RF capacitive discharge was studied. The populations were measured by two methods: the method of emission self-absorption and the method based on measurements of the intensity ratios of spectral lines. It is shown that the populations of resonance levels increase with increasing power deposited in the discharge, whereas the populations of metastable levels is independent of the RF power. The distribution of the populations over energy levels is not equilibrium under these conditions. The population kinetics of argon atomicmore » levels in the discharge plasma is simulated numerically. The distribution function of plasma electrons recovered from the measured populations of atomic levels and numerical simulations is found to be non-Maxwellian.« less

  19. Stomatal control and leaf thermal and hydraulic capacitances under rapid environmental fluctuations.

    PubMed

    Schymanski, Stanislaus J; Or, Dani; Zwieniecki, Maciej

    2013-01-01

    Leaves within a canopy may experience rapid and extreme fluctuations in ambient conditions. A shaded leaf, for example, may become exposed to an order of magnitude increase in solar radiation within a few seconds, due to sunflecks or canopy motions. Considering typical time scales for stomatal adjustments, (2 to 60 minutes), the gap between these two time scales raised the question whether leaves rely on their hydraulic and thermal capacitances for passive protection from hydraulic failure or over-heating until stomata have adjusted. We employed a physically based model to systematically study effects of short-term fluctuations in irradiance on leaf temperatures and transpiration rates. Considering typical amplitudes and time scales of such fluctuations, the importance of leaf heat and water capacities for avoiding damaging leaf temperatures and hydraulic failure were investigated. The results suggest that common leaf heat capacities are not sufficient to protect a non-transpiring leaf from over-heating during sunflecks of several minutes duration whereas transpirative cooling provides effective protection. A comparison of the simulated time scales for heat damage in the absence of evaporative cooling with observed stomatal response times suggested that stomata must be already open before arrival of a sunfleck to avoid over-heating to critical leaf temperatures. This is consistent with measured stomatal conductances in shaded leaves and has implications for water use efficiency of deep canopy leaves and vulnerability to heat damage during drought. Our results also suggest that typical leaf water contents could sustain several minutes of evaporative cooling during a sunfleck without increasing the xylem water supply and thus risking embolism. We thus submit that shaded leaves rely on hydraulic capacitance and evaporative cooling to avoid over-heating and hydraulic failure during exposure to typical sunflecks, whereas thermal capacitance provides limited protection for very short sunflecks (tens of seconds).

  20. Simulation of void formation in interconnect lines

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, Alireza; Heitzinger, Clemens; Puchner, Helmut; Badrieh, Fuad; Selberherr, Siegfried

    2003-04-01

    The predictive simulation of the formation of voids in interconnect lines is important for improving capacitance and timing in current memory cells. The cells considered are used in wireless applications such as cell phones, pagers, radios, handheld games, and GPS systems. In backend processes for memory cells, ILD (interlayer dielectric) materials and processes result in void formation during gap fill. This approach lowers the overall k-value of a given metal layer and is economically advantageous. The effect of the voids on the overall capacitive load is tremendous. In order to simulate the shape and positions of the voids and thus the overall capacitance, the topography simulator ELSA (Enhanced Level Set Applications) has been developed which consists of three modules, a level set module, a radiosity module, and a surface reaction module. The deposition process considered is deposition of silicon nitride. Test structures of interconnect lines of memory cells were fabricated and several SEM images thereof were used to validate the corresponding simulations.

  1. Anti-bacterial factors secreted from cumulus cells of ovulated COCs enhance sperm capacitation during in vitro fertilization.

    PubMed

    Shimada, Masayuki; Mihara, Toshihiro; Kawashima, Ikko; Okazaki, Tetsuji

    2013-02-01

    The aim of this study was to find immune-related genes expressed in cumulus cells of ovulated cumulus oocyte complexes (COCs) and to clear the functional roles during fertilization process. Ovulated COCs were collected from oviduct 16 hr after the hCG injections followed by eCG priming. The cumulus cells were used for RT-PCR or western blotting study. COCs were also used for in vitro fertilization study. Cramp, Trf, Lyz2, S100a8, and S100a9 were expressed in cumulus cells during ovulation process. The protein levels of CRAMP or transferrin were detected in ovulated COCs and then secreted into hyaluronan-rich matrix. The high dose of these factors reduced the proliferative activity of E. coli; however, the lower levels of them significantly increased the rate of fertilization in in vitro via the induction of sperm capacitation. Cumulus-secreted anti-bacterial factors act on sperm to induce sperm capacitation. © 2012 John Wiley & Sons A/S.

  2. Image reconstruction algorithms for electrical capacitance tomography based on ROF model using new numerical techniques

    NASA Astrophysics Data System (ADS)

    Chen, Jiaoxuan; Zhang, Maomao; Liu, Yinyan; Chen, Jiaoliao; Li, Yi

    2017-03-01

    Electrical capacitance tomography (ECT) is a promising technique applied in many fields. However, the solutions for ECT are not unique and highly sensitive to the measurement noise. To remain a good shape of reconstructed object and endure a noisy data, a Rudin-Osher-Fatemi (ROF) model with total variation regularization is applied to image reconstruction in ECT. Two numerical methods, which are simplified augmented Lagrangian (SAL) and accelerated alternating direction method of multipliers (AADMM), are innovatively introduced to try to solve the above mentioned problems in ECT. The effect of the parameters and the number of iterations for different algorithms, and the noise level in capacitance data are discussed. Both simulation and experimental tests were carried out to validate the feasibility of the proposed algorithms, compared to the Landweber iteration (LI) algorithm. The results show that the SAL and AADMM algorithms can handle a high level of noise and the AADMM algorithm outperforms other algorithms in identifying the object from its background.

  3. A Micro-Resonant Gas Sensor with Nanometer Clearance between the Pole Plates

    PubMed Central

    Xu, Lizhong

    2018-01-01

    In micro-resonant gas sensors, the capacitive detection is widely used because of its simple structure. However, its shortcoming is a weak signal output caused by a small capacitance change. Here, we reduced the initial clearance between the pole plates to the nanometer level, and increased the capacitance between the pole plates and its change during resonator vibration. We propose a fabricating process of the micro-resonant gas sensor by which the initial clearance between the pole plates is reduced to the nanometer level and a micro-resonant gas sensor with 200 nm initial clearance is fabricated. With this sensor, the resonant frequency shifts were measured when they were exposed to several different vapors, and high detection accuracies were obtained. The detection accuracy with respect to ethanol vapor was 0.4 ppm per Hz shift, and the detection accuracy with respect to hydrogen and ammonias vapors was 3 ppm and 0.5 ppm per Hz shift, respectively. PMID:29373546

  4. A Micro-Resonant Gas Sensor with Nanometer Clearance between the Pole Plates.

    PubMed

    Fu, Xiaorui; Xu, Lizhong

    2018-01-26

    In micro-resonant gas sensors, the capacitive detection is widely used because of its simple structure. However, its shortcoming is a weak signal output caused by a small capacitance change. Here, we reduced the initial clearance between the pole plates to the nanometer level, and increased the capacitance between the pole plates and its change during resonator vibration. We propose a fabricating process of the micro-resonant gas sensor by which the initial clearance between the pole plates is reduced to the nanometer level and a micro-resonant gas sensor with 200 nm initial clearance is fabricated. With this sensor, the resonant frequency shifts were measured when they were exposed to several different vapors, and high detection accuracies were obtained. The detection accuracy with respect to ethanol vapor was 0.4 ppm per Hz shift, and the detection accuracy with respect to hydrogen and ammonias vapors was 3 ppm and 0.5 ppm per Hz shift, respectively.

  5. Leakage current and capacitance characteristics of Si/SiO2/Si single-barrier varactor

    NASA Astrophysics Data System (ADS)

    Mamor, M.; Fu, Y.; Nur, O.; Willander, M.; Bengtsson, S.

    We investigate, both experimentally and theoretically, current and capacitance (I-V/C-V) characteristics and the device performance of Si/SiO2/Si single-barrier varactor diodes (SBVs). Two diodes were fabricated with different SiO2 layer thicknesses using the state-of-the-art wafer bonding technique. The devices have very low leakage currents (about 5×10-2 and 1.8×10-2 mA/mm2) and intrinsic capacitance levels of typically 1.5 and 50 nF/mm2 for diodes with 5-nm and 20-nm oxide layers, respectively. With the present device physical parameters (25-mm2 device area, 760-μm modulation layer thickness and 1015-cm-3 doping level), the estimated cut-off frequency is about 5×107 Hz. With the physical parameters of the present existing III-V triplers, the cut-off frequency of our Si-based SBV can be as high as 0.5 THz.

  6. A Hydraulic Nexus between Geographically Isolated Wetlands and Downstream Water Bodies

    NASA Astrophysics Data System (ADS)

    Mclaughlin, D. L.; Kaplan, D. A.; Cohen, M. J.

    2014-12-01

    Geographic isolation does not imply hydrological isolation; indeed, local groundwater exchange between geographically isolated wetlands (GIWs) and surrounding uplands may yield important controls on regional hydrology. Differences in specific yield (Sy) between aquifers and inundated GIWs drive differences in water level responses to atmospheric fluxes, leading to frequent reversals in hydraulic gradients that cause GIWs to act as both groundwater sinks and sources. When distributed across the landscape, these reversals in local groundwater fluxes are predicted to collectively buffer the surficial aquifer and its regulation of baseflow delivery, a process we refer to as landscape hydrologic capacitance. To test this hypothesis, we integrated models of daily soil moisture, upland water table, and wetland stage dynamics to simulate hydrology of a low-relief landscape with GIWs. Simulations explored the influences of cumulative wetland area, individual wetland size, climate, and soil texture on water table and baseflow variation. Increasing cumulative wetland area and decreasing individual wetland size reduced water table variation and the frequency of extremely shallow and deep water tables. This buffering effect extended to baseflow deliveries, decreasing the standard deviation of daily baseflow by as much as 50%. For the same total wetland area, landscapes with fewer (i.e., larger) wetlands exhibited markedly lower hydrologic capacitance than those with more (i.e., smaller) wetlands, highlighting the important role of small GIWs in regulating regional hydrology. Recent U.S. Supreme Court rulings have limited federal protections for GIWs except where a "significant nexus" to a navigable water body is demonstrated. Our results suggest that GIWs regulate downstream baseflow, even where water in GIWs may never physically reach downstream systems, providing a significant "hydraulic" nexus to distant water bodies.

  7. Radionuclide plethysmography and Tc-99m red blood cell venography in venous thrombosis: comparison with contrast venography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, I.; Royal, H.D.; Uren, R.F.

    1984-01-01

    Radionuclide plethysmography (RPG) is a new technique that uses Tc-99m labelled red blood cells to ascertain changes in venous volumes by detecting the change in counts in response to the inflation and deflation of proximal thigh cuffs. Diagnosis of ileofemoral venous occlusion is possible using this technique, which also provides kinetic data of venous outflow. A range of normal values was defined in 19 subjects for per cent change in venous capacitance and venous outflow. Twenty-one patients with suspected deep venous thrombosis were studied prospectively using RPG, radionuclide venography (RV), and contrast venography (CV) to establish the usefulness of RPGmore » alone and in combination with RV in the diagnosis of deep venous thrombosis. RPG proved to be a reliable technique for the diagnosis of ileofemoral venous thrombosis (sensitivity, 91%; specificity, 100%). RV was less sensitive (73%) and less specific (93%) in diagnosing that condition. When RPG is used as the criterion for the detection of ileofemoral vein thrombosis and RV is used as the criterion for the detection of calf vein thrombosis, the combined techniques show improved sensitivity (92%) and specificity (93%) for the detection of all deep venous thromboses.« less

  8. Persistent photocurrent and deep level traps in PLD-grown In-Ga-Zn-O thin films studied by thermally stimulated current spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Buguo; Anders, Jason; Leedy, Kevin; Schuette, Michael; Look, David

    2018-02-01

    InGaZnO (IGZO) is a promising semiconductor material for thin-film transistors (TFTs) used in DC and RF switching applications, especially since it can be grown at low temperatures on a wide variety of substrates. Enhancement-mode TFTs based on IGZO thin films grown by pulsed laser deposition (PLD) have been recently fabricated and these transistors show excellent performance; however, compositional variations and defects can adversely affect film quality, especially in regard to electrical properties. In this study, we use thermally stimulated current (TSC) spectroscopy to characterize the electrical properties and the deep traps in PLD-grown IGZO thin films. It was found that the as-grown sample has a DC activation energy of 0.62 eV, and two major traps with activation energies at 0.16-0.26 eV and at 0.90 eV. However, a strong persistent photocurrent (PPC) sometimes exists in the as-grown sample, so we carry out post-growth annealing in an attempt to mitigate the effect. It was found that annealing in argon increases the conduction, produces more PPC and also makes more traps observable. Annealing in air makes the film more resistive, and removes PPC and all traps but one. This work demonstrates that current-based trap emission, such as that associated with the TSC, can effectively reveal electronic defects in highlyresistive semiconductor materials, especially those are not amenable to capacitance-based techniques, such as deeplevel transient spectroscopy (DLTS).

  9. Developing a polymeric sensor to monitor intracellular conditions

    NASA Astrophysics Data System (ADS)

    Mudarri, Timothy C.; Leo, Donald J.; Wood, Brett C.; Shires, Peter K.

    2004-07-01

    Ionic electroactive polymers have been developed as mechanical sensors or actuators, taking advantage of the electromechanical coupling of the materials. This research attempts to take advantage of the chemomechanical and chemoelectrical coupling by characterizing the transient response as the polymer undergoes an ion exchange, thus using the polymer for ionic sensing. Nafion is a biocompatible material, and an implantable polymeric ion sensor which has applications in the biomedical field for bone healing research. An ion sensor and a strain gauge could determine the effects of motion allowed at the fracture site, thus improving rehabilitation procedures for bone fractures. The charge sensitivity of the material and the capacitance of the material were analyzed to determine the transient response. Both measures indicate a change when immersed in ionic salt solutions. It is demonstrated that measuring the capacitance is the best indicator of an ion exchange. Relative to a flat response in deionized water (+/-2%), the capacitance of the polymer exhibits an exponential decay of ~25% of its peak when placed in a salt solution. A linear correlation between the time constant of the decay and the ionic size of the exchanging ion was developed that could reasonably predict a diffusing ion. Tests using an energy dispersive spectrometer (EDS) indicate that 90% of the exchange occurs in the first 20 minutes, shown by both capacitance decay and an atomic level scan. The diffusion rate time constant was found to within 0.3% of the capacitance time constant, confirming the ability of capacitance to measure ion exchange.

  10. Non-Ideal Properties of Gallium Nitride Based Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Shan, Qifeng

    The spectacular development of gallium nitride (GaN) based light-emitting diodes (LEDs) in recent years foreshadows a new era for lighting. There are still several non-ideal properties of GaN based LEDs that hinder their widespread applications. This dissertation studies these non-ideal properties including the large reverse leakage current, large subthreshold forward leakage current, an undesired parasitic cyan luminescence and high-concentration deep levels in GaInN blue LEDs. This dissertation also studies the thermal properties of GaInN LEDs. Chapter 1 gives a brief introduction of non-ideal properties of GaN based LEDs. The leakage current of GaN based LEDs, defects in epitaxially grown GaN devices, and doping problems of p-type GaN materials are discussed. The transient junction temperature measurement technique for GaN based LEDs is introduced. The leakage current of an LED includes the subthreshold forward leakage current and the reverse leakage current. The leakage current of GaN based LEDs affects the reliability, electrostatic discharge resilience, and sub-threshold power consumption. In Chapter 2, the reverse leakage current of a GaInN LED is analyzed by temperaturedependent current-voltage measurements. At low temperature, the reverse leakage current is attributed to the variable-range-hopping conduction. At high temperature, the reverse leakage current is attributed to a thermally-assisted multi-step tunneling. The thermal activation energies (95 meV ~ 162 meV), extracted from the Arrhenius plot for the reverse current in the high-temperature range, indicate a thermally activated tunneling process. Additional room-temperature capacitance-voltage (C-V) measurements are performed to obtain information on the depletion width and doping concentration of the LED. The average internal electric field is estimated by the C-V measurements. The strong internal electric field enhances the thermal emission of electrons in the thermally-assisted multi-step tunneling process. Another problem of GaInN blue LEDs is the undesired parasitic cyan emission band. The undesired parasitic emission band strongly influence the electrical and optical properties of GaInN blue LEDs including the subthreshold forward leakage current and the color purity of the emission. In Chapter 3 , GaInN blue LEDs emitting at 445 nm with a parasitic cyan (blue-green) emission band (480 nm), which dominates the emission spectrum at low injection current, are analyzed. Photoluminescence using resonant optical excitation shows that the cyan emission originates from the active region of the LED. The current- and excitation-density-dependent blue-to-cyan intensity ratio reveals that the cyan emission is due to a transition from the conduction band to a Mg acceptor having diffused into the last-grown quantum well of the active region. The Mg in the active region provides an additional carrier-transport path, and therefore can explain the high subthreshold forward leakage current that is measured in these LEDs. Deep levels in GaN-based materials strongly affect the electrical and optical properties of GaN-based LEDs. Chapter 4 describes the basic principle and the setup of a deep-level transient spectroscopy (DLTS) measurement system. This DLTS system is used to determine the concentration and thermal activation energy of deep levels in the depletion region of the GaInN LED. Two types of hole traps in the n-type side of the depletion region are observed in the DLTS measurement. The thermal activation energies of these two types of hole traps are compared with the results reported in literature. The hole trap associated with the major DLTS peak with a thermal activation energy of 0.80 eV is presumably related to the “yellow luminescence band”. Self-heating of LEDs is an important issue that affects the efficiency and reliability. In Chapter 5, the thermal properties, including thermal time constants, of GaN LEDs are analyzed. The transient-junction-temperature behavior of unpackaged LED chips is described by a single time constant, which is the product of a thermal resistance Rth and a thermal capacitance Cth. Furthermore, a multistage RthCth thermal model for packaged LEDs is developed. The transient response of the junction temperature of LEDs after the power is switched on or switched off can be described by a multi-exponential function. Each time constant of this function is approximately the product of a thermal resistance, Rth, and a thermal capacitance, Cth. The transient junction temperature after the power is switched off is measured for a high-power flip-chip LED by the forward-voltage method. A two-stage RthCth model is used to analyze the thermal properties of the packaged LED. Two time constants, 2.72 ms and 18.7 ms are extracted from the junction temperature decay measurement and attributed to the thermal time constant of the LED GaN / sapphire chip and LED Si submount, respectively.

  11. A novel interdigitated capacitor based biosensor for detection of cardiovascular risk marker.

    PubMed

    Quershi, Anjum; Gurbuz, Yasar; Kang, Weng P; Davidson, Jimmy L

    2009-12-15

    C-reactive protein (CRP) is a potential biomarker whose elevated levels in humans determine cardiovascular disease risk and inflammation. In this study, we have developed a novel capacitive biosensor for detection of CRP-antigen using capacitor with interdigitated gold (GID) electrodes on nanocrystalline diamond (NCD) surface. The NCD surface served as a dielectric layer between the gold electrodes. GID-surface was functionalized by antibodies and the immobilization was confirmed by Fourier transform spectroscopy (FT-IR) and contact angle measurements. The CRP-antigen detection was performed by capacitive/dielectric-constant measurements. The relaxation time and polarizability constants were estimated using Cole-Cole model. Our results showed that the relaxation time constant (tau) of only CRP-antibody was within 10(-16)-10(-13)s, which was increased to 10(-11)s after the incubation with CRP-antigen, suggesting that the CRP-antigen was captured by the antibodies on GID-surface. In addition, polarizability constant (m) of CRP was also increased upon incubation with increasing concentration of CRP-antigen. Our results showed that the response of GID-NCD-based capacitive biosensor for CRP-antigen was dependent on both concentration (25-800ng/ml) as well as frequency (50-350MHz). Furthermore, using optimized conditions, the GID-NCD based capacitive biosensor developed in this study can potentially be used for detection of elevated levels of protein risk markers in suspected subjects for early diagnosis of disease.

  12. Sedimentation properties in density gradients correspond with levels of sperm DNA fragmentation, chromatin compaction and binding affinity to hyaluronic acid.

    PubMed

    Torabi, Forough; Binduraihem, Adel; Miller, David

    2017-03-01

    Mature spermatozoa bind hyaluronic acid in the extracellular matrix via hyaladherins. Immature spermatozoa may be unable to interact because they do not express the appropriate hyaladherins on their surface. Fresh human semen samples were fractionated using differential density gradient centrifugation (DDGC) and the ability of these fractions to bind hyaluronic acid was evaluated. The presence of sperm hyaladherins was also assessed. CD44 was located mainly on the acrosome and equatorial segment and became more restricted to the equatorial segment in capacitated spermatozoa. Hyaluronic acid-TRITC (hyaluronic acid conjugated with tetramethylrhodamine isothiocyanante), a generic hyaluronic-acid-binding reagent, labelled the membrane and the neck region, particularly after capacitation. Sperm populations obtained after DDGC or after interaction with hyaluronic acid were assessed for DNA fragmentation and chromatin maturity. Strong relationships between both measures and sperm sedimentation and hyaluronic-acid-binding profiles were revealed. Capacitation enhanced hyaluronic acid binding of both DDGC-pelleted sperm and sperm washed free of seminal fluid. In conclusion, hyaladherins were detected on human sperm and a higher capacity for sperm hyaluronic-acid-binding was shown to correspond with their DDGC sedimentation profiles and with lower levels of DNA fragmentation and better chromatin maturity. Capacitation induced changes in the distribution and presence of hyaladherins may enhance hyaluronic-acid-binding. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  13. Nitrogen-doped two-dimensional porous carbon sheets derived from clover biomass for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Cunjing; Wu, Dapeng; Wang, Hongju; Gao, Zhiyong; Xu, Fang; Jiang, Kai

    2017-09-01

    Highly porous carbon sheets were prepared from fresh clover stems under air atmosphere via a facile potassium chloride salt-sealing technique, which not only avoids using the high cost inert gas protection but also spontaneously introduce multi-level porosity into the carbon structure taking advantage of the trace of oxygen in the molten salt system. The as-obtained porous carbon sheets possess high specific surface area of 2244 m2 g-1 and interconnected hierarchical pore structures from micro-to macro-scale, which provide abundant storage active sites and fast ion diffusion channels. In addition, the spontaneously formed N (2.55 at%) and O (6.94 at%) doping sites not only improve the electron conductivity of the electrode but also enhance the specific capacitance by introducing pseudocapacitance. When employed as supercapacitor electrodes, a high specific capacitance of 436 F g-1 at 1 A g-1 and an excellent rate capacity with capacitance remaining 290 F g-1 at 50 A g-1 are demonstrated. Furthermore, the assembled symmetric supercapacitor delivers a high specific capacitance of 420 F g-1 at 0.5 A g-1, excellent energy density of 58.4 Wh kg-1 and good cycling stability which retains 99.4% of the initial capacitance at 5 A g-1 after 30,000 cycles.

  14. Holey nickel-cobalt layered double hydroxide thin sheets with ultrahigh areal capacitance

    NASA Astrophysics Data System (ADS)

    Zhi, Lei; Zhang, Wenliang; Dang, Liqin; Sun, Jie; Shi, Feng; Xu, Hua; Liu, Zonghuai; Lei, Zhibin

    2018-05-01

    Strong coupling of electroactive components on conductive carbonaceous matrix to fabricate flexible hybrid electrodes represents a promising approach towards high performance supercapacitors. This work reports the fabrication of holey nickel cobalt layered double hydroxide (NiCo-LDH) nanosheets that are vertically grown on the cotton cloth-derived activated textile carbon (aTC). The abundant nanoholes on the thin-sheet NiCo-LDH not only enhance the electrode efficiency for efficient Faradaic redox reactions but also facilitate access of electrolyte to the electrode surface, thus giving rise to 70% capacitance arising from their outer surface. As a result, the aTC-NiCo hybrid electrode is capable of simultaneously achieving extremely high areal capacitance (6.37 F cm-2), mass capacitance (525 F g-1) and volumetric capacitance (249 F cm-3) at a practical level of mass loading (6.72 mg cm-2). Moreover, a solid-state asymmetric capacitor built with aTC-NiCo as positive electrode and active carbon-coated on aTC as negative electrode can deliver a volumetric energy density of 7.4 mWh cm-3 at a power density of 103 mW cm-3, while preserving a superior power performance, satisfying cycling stability and good mechanical flexibility.

  15. Optical control of capacitance in a metal-insulator-semiconductor diode with embedded metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Mikhelashvili, V.; Ankonina, G.; Kauffmann, Y.; Atiya, G.; Kaplan, W. D.; Padmanabhan, R.; Eisenstein, G.

    2017-06-01

    This paper describes a metal-insulator-semiconductor (MIS) capacitor with flat capacitance voltage characteristics and a small quadratic voltage capacitance coefficient. The device characteristics resemble a metal-insulator-metal diode except that here the capacitance depends on illumination and exhibits a strong frequency dispersion. The device incorporates Fe nanoparticles (NPs), mixed with SrF2, which are embedded in an insulator stack of SiO2 and HfO2. Positively charged Fe ions induce dipole type traps with an electronic polarization that is enhanced by photogenerated carriers injected from the substrate and/or by inter nanoparticle exchange of carriers. The obtained characteristics are compared with those of five other MIS structures: two based on Fe NPs, one with and the other without SrF2 sublayers. Additionally, devices contain Co NPs embedded in SrF2 sublayers, and finally, two structures have no NPs, with one based on a stack of SiO2 and HfO2 and the other which also includes SrF2. Only structures containing Fe NPs, which are incorporated into SrF2, yield a voltage independent capacitance, the level of which can be changed by illumination. These properties are essential in radio frequency/analog mixed signal applications.

  16. Investigation of Defects Origin in p-Type Si for Solar Applications

    NASA Astrophysics Data System (ADS)

    Gwóźdź, Katarzyna; Placzek-Popko, Ewa; Mikosza, Maciej; Zielony, Eunika; Pietruszka, Rafal; Kopalko, Krzysztof; Godlewski, Marek

    2017-07-01

    In order to improve the efficiency of a solar cell based on silicon, one must find a compromise between its price and crystalline quality. That is precisely why the knowledge of defects present in the material is of primary importance. This paper studies the defects in commercially available cheap Schottky titanium/gold silicon wafers. The electrical properties of the diodes were defined by using current-voltage and capacitance-voltage measurements. Low series resistance and ideality factor are proofs of the good quality of the sample. The concentration of the acceptors is in accordance with the manufacturer's specifications. Deep level transient spectroscopy measurements were used to identify the defects. Three hole traps were found with activation energies equal to 0.093 eV, 0.379 eV, and 0.535 eV. Comparing the values with the available literature, the defects were determined as connected to the presence of iron interstitials in the silicon. The quality of the silicon wafer seems good enough to use it as a substrate for the solar cell heterojunctions.

  17. Capacitance variation measurement method with a continuously variable measuring range for a micro-capacitance sensor

    NASA Astrophysics Data System (ADS)

    Lü, Xiaozhou; Xie, Kai; Xue, Dongfeng; Zhang, Feng; Qi, Liang; Tao, Yebo; Li, Teng; Bao, Weimin; Wang, Songlin; Li, Xiaoping; Chen, Renjie

    2017-10-01

    Micro-capacitance sensors are widely applied in industrial applications for the measurement of mechanical variations. The measurement accuracy of micro-capacitance sensors is highly dependent on the capacitance measurement circuit. To overcome the inability of commonly used methods to directly measure capacitance variation and deal with the conflict between the measurement range and accuracy, this paper presents a capacitance variation measurement method which is able to measure the output capacitance variation (relative value) of the micro-capacitance sensor with a continuously variable measuring range. We present the principles and analyze the non-ideal factors affecting this method. To implement the method, we developed a capacitance variation measurement circuit and carried out experiments to test the circuit. The result shows that the circuit is able to measure a capacitance variation range of 0-700 pF linearly with a maximum relative accuracy of 0.05% and a capacitance range of 0-2 nF (with a baseline capacitance of 1 nF) with a constant resolution of 0.03%. The circuit is proposed as a new method to measure capacitance and is expected to have applications in micro-capacitance sensors for measuring capacitance variation with a continuously variable measuring range.

  18. Sensitivity enhancement of OD- and OD-CNT-based humidity sensors by high gravity thin film deposition technique

    NASA Astrophysics Data System (ADS)

    Karimov, Kh. S.; Fatima, Noshin; Sulaiman, Khaulah; Mahroof Tahir, M.; Ahmad, Zubair; Mateen, A.

    2015-03-01

    The humidity sensing properties of the thin films of an organic semiconductor material orange dye (OD) and its composite with CNTs deposited at high gravity conditions have been reported. Impedance, phase angle, capacitance and dissipation of the samples were measured at 1 kHz and room temperature conditions. The impedance decreases and capacitance increases with an increase in the humidity level. It was found that the sensitivity of the OD-based thin film samples deposited at high gravity condition is higher than the samples deposited at low gravity condition. The impedances and capacitance sensitivities of the of the samples deposited under high gravity condition are 6.1 times and 1.6 times higher than the films deposited under low gravity condition.

  19. Novel x-ray silicon detector for 2D imaging and high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Castoldi, Andrea; Gatti, Emilio; Guazzoni, Chiara; Longoni, Antonio; Rehak, Pavel; Strueder, Lothar

    1999-10-01

    A novel x-ray silicon detector for 2D imaging has been recently proposed. The detector, called Controlled-Drift Detector, is operated in integrate-readout mode. Its basic feature is the fast transport of the integrated charge to the output electrode by means of a uniform drift field. The drift time of the charge packet identifies the pixel of incidence. A new architecture to implement the Controlled- Drift Detector concept will be presented. The potential wells for the integration of the signal charge are obtained by means of a suitable pattern of deep n-implants and deep p-implants. During the readout mode the signal electrons are transferred in the drift channel that flanks each column of potential wells where they drift towards the collecting electrode at constant velocity. The first experimental measurements demonstrate the successful integration, transfer and drift of the signal electrons. The low output capacitance of the readout electrode together with the on- chip front-end electronics allows high resolution spectroscopy of the detected photons.

  20. Role of Copper in the Performance of CdS/CdTe Solar Cells (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demtsu, S.; Albin, D.; Sites, J.

    2006-05-01

    The performance of CdS/CdTe solar cells made with evaporated Cu as a primary back contact was studied through current-voltage (JV) at different intensities, quantum efficiency (QE) under light and voltage bias, capacitance-voltage (CV), and drive-level capacitance profiling (DLCP) measurements. The results show that while modest amounts of Cu enhance cell performance, excessive amounts degrade device quality and reduce performance. The analysis is supported with numerical simulations to reproduce and explain some of the experimental results.

  1. Highly concentrated, stable nitrogen-doped graphene for supercapacitors: Simultaneous doping and reduction

    NASA Astrophysics Data System (ADS)

    Jiang, Baojiang; Tian, Chungui; Wang, Lei; Sun, Li; Chen, Chen; Nong, Xiaozhen; Qiao, Yingjie; Fu, Honggang

    2012-02-01

    In this work, we developed a concentrated ammonia-assisted hydrothermal method to obtain N-doped graphene sheets by simultaneous N-doping and reduction of graphene oxide (GO) sheets. The effects of hydrothermal temperature on the surface chemistry and the structure of N-doped graphene sheets were also investigated. X-ray photoelectron spectroscopy (XPS) study of N-doped graphene reveals that the highest doping level of 7.2% N is achieved at 180 °C for 12 h. N binding configurations of sample consist of pyridine N, quaternary N, and pyridine-N oxides. N doping is accompanied by the reduction of GO with decreases in oxygen levels from 34.8% in GO down to 8.5% in that of N-doped graphene. Meanwhile, the sample exhibits excellent N-doped thermal stability. Electrical measurements demonstrate that products have higher capacitive performance than that of pure graphene, the maximum specific capacitance of 144.6 F/g can be obtained which ascribe the pseudocapacitive effect from the N-doping. The samples also show excellent long-term cycle stability of capacitive performance.

  2. Hysteresis free negative total gate capacitance in junctionless transistors

    NASA Astrophysics Data System (ADS)

    Gupta, Manish; Kranti, Abhinav

    2017-09-01

    In this work, we report on the hysteresis free impact ionization induced off-to-on transition while preserving sub-60 mV/decade Subthreshold swing (S-swing) using asymmetric mode operation in double gate silicon (Si) and germanium (Ge) junctionless (JL) transistor. It is shown that sub-60 mV/decade steep switching due to impact ionization implies a negative value of the total gate capacitance. The performance of asymmetric gate JL transistor is compared with symmetric gate operation of JL device, and the condition for hysteresis free current transition with a sub-60 mV/decade switching is analyzed through the product of current density (J) and electric field (E). It is shown that asymmetric gate operation limits the degree of impact ionization inherent in the semiconductor film to levels sufficient for negative total gate capacitance but lower than that required for the occurrence of hysteresis. The work highlights new viewpoints related to the suppression of hysteresis associated with steep switching JL transistors while maintaining S-swing within the range 6-15 mV/decade leading to the negative value of total gate capacitance.

  3. Effect of temperature on compact layer of Pt electrode in PEMFCs by first-principles molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    He, Yang; Chen, Changfeng; Yu, Haobo; Lu, Guiwu

    2017-01-01

    Formation of the double-layer electric field and capacitance of the water-metal interface is of significant interest in physicochemical processes. In this study, we perform first- principles molecular dynamics simulations on the water/Pt(111) interface to investigate the temperature dependence of the compact layer electric field and capacitance based on the calculated charge densities. On the Pt (111) surface, water molecules form ice-like structures that exhibit more disorder along the height direction with increasing temperature. The Osbnd H bonds of more water molecules point toward the Pt surface to form Ptsbnd H covalent bonds with increasing temperature, which weaken the corresponding Osbnd H bonds. In addition, our calculated capacitance at 300 K is 15.2 mF/cm2, which is in good agreement with the experimental results. As the temperature increases from 10 to 450 K, the field strength and capacitance of the compact layer on Pt (111) first increase and then decrease slightly, which is significant for understanding the water/Pt interface from atomic level.

  4. Enhancing Graphene Capacitance by Nitrogen: Effects of Doping Configuration and Concentration

    DOE PAGES

    Zhan, Cheng; Cummings, Peter; Jiang, De-en

    2016-01-08

    Recent experiments have shown that nitrogen doping enhances capacitance in carbon electrode supercapacitors. However, a detailed study of the effect of N-doping on capacitance is still lacking. In this paper, we study the doping concentration and the configuration effect on the electric double-layer (EDL) capacitance, quantum capacitance, and total capacitance. It is found that pyridinic and graphitic nitrogens can increase the total capacitance by increasing quantum capacitance, but pyrrolic configuration limits the total capacitance due to its much lower quantum capacitance than the other two configurations. We also find that, unlike the graphitic and pyridinic nitrogens, the pyrrolic configuration's quantummore » capacitance does not depend on the nitrogen concentration, which may explain why some capacitance versus voltage measurements of N-doped graphene exhibit a V-shaped curve similar to that of undoped graphene. Our investigation provides a deeper understanding of the capacitance enhancement of the N-doping effect in carbon electrodes and suggests a potentially effective way to optimize the capacitance by controlling the type of N-doping.« less

  5. Epididymal protein CRISP1 plays different roles during the fertilization process.

    PubMed

    Cohen, Débora J; Maldera, Julieta A; Vasen, Gustavo; Ernesto, Juan I; Muñoz, Mariana Weigel; Battistone, María A; Cuasnicú, Patricia S

    2011-01-01

    Rat epididymal CRISP1, the first described member of the evolutionarily conserved Cysteine-RIch Secretory Protein (CRISP) family, is expressed in the proximal regions of the epididymis and associates with the sperm during epididymal transit. Evidence indicates the existence of 2 populations of CRISP1 in spermatozoa: a major one, loosely bound, which is released during capacitation and, therefore, proposed as a decapacitating factor; and a minor one, strongly associated with spermatozoa that remains on the cells after capacitation and is proposed to participate in gamete interaction. Originally localized to the dorsal region of capacitated sperm, CRISP1 migrates to the equatorial segment with capacitation and acrosome reaction. Consistent with these localizations, in vitro fertilization experiments support the involvement of CRISP1 in the first step of sperm-zona pellucida (ZP) interaction and subsequent gamete fusion through its interaction with egg-complementary sites. The potential roles of CRISP1 in capacitation and fertilization have been further supported by the finding that capacitated spermatozoa from CRISP1 "knockout" animals exhibit low levels of protein tyrosine phosphorylation and have an impaired ability to fertilize zona-intact and zona-free eggs in vitro. Moreover, recent evidence from mutant spermatozoa reveals that CRISP1 mediates the stage of sperm binding to the ZP. Altogether, these observations support the view that CRISP1 is a multifunctional protein playing different roles during fertilization through its different associations with and localizations on spermatozoa. We believe these results contribute to a better understanding of the molecular mechanisms involved in both the fertilization process and the acquisition of sperm-fertilizing ability that occurs during epididymal maturation.

  6. Acrosome reaction inducers impose alterations in repulsive strain and hydration barrier in human sperm membranes.

    PubMed

    Purohit, S B; Laloraya, M; Kumar, G P

    1998-06-01

    Spin labeling studies of the lipophilic domains of human spermatozoa during capacitation and during acrosome reaction (AR) under the influence of selected AR-inducers were performed. Significantly enhanced rotational function of molecules was obvious during capacitation, with no significant changes in membrane packaging or the lateral diffusion of molecules. The AR inducers appeared to restrict the rotational freedom of molecules, dramatically enhancing the lateral diffusion and ordering coefficients. A significant decrease in superoxide anion generation was observed in the acrosome reacted groups when compared to the non-acrosome reacted groups. A high level of superoxide anion radical (O2.-) level maintained in capacitated spermatozoa would add to the Van der Waal's repulsive forces at the polar head of phospholipids, holding the membrane in strain where the molecular enjoy little freedom for lateral motion. A sudden drop in the levels of O2.- in spermatozoa upon addition of AR inducers could abruptly release the local hydrophobic repulsive strain within the membrane. This loss of hydration barrier explains the observed enhancement in lateral diffusion profiles of lipids and the packaging of molecules. It is reasonable to assume that these phenomena could be amplified further by interplay of Ca2+ by modifying the local charge aggregation. Thus, we would conclude that AR inducers release the oxyradical load in capacitated spermatozoa, which would modify the repulsive strain and hydration barrier forces in the lipophilic domains permitting vesiculation of the membranes. It appears that various acrosome reaction inducers act as effectors of grossly similar physical alterations in sperm membranes and that the resulting signal cascades proceed through intercalating biochemical sequences.

  7. Electron series resonance in a magnetized 13.56 MHz symmetric capacitive coupled discharge

    NASA Astrophysics Data System (ADS)

    Joshi, J. K.; Binwal, S.; Karkari, S. K.; Kumar, Sunil

    2018-03-01

    A 13.56 MHz capacitive coupled radio-frequency (RF) argon discharge under transverse magnetic field has been investigated. The discharge is operated in a push-pull mode using a 1:1 isolation transformer with its centre tap grounded to a RF generator. The power delivered to the plasma has been calculated from phase-calibrated RF current/voltage waveforms measured on the secondary side of the isolation transformer. An equivalent electrical circuit of the discharge has been described to determine the net plasma impedance. It is found that in the presence of magnetic field, the discharge impedance exhibits a series resonance as the RF power level is increased gradually. However, in the un-magnetized case, the discharge remains entirely capacitive. A qualitative discussion has been given to explain the role of external magnetic field in achieving the series resonance.

  8. Channel Modeling of Miniaturized Battery-Powered Capacitive Human Body Communication Systems.

    PubMed

    Park, Jiwoong; Garudadri, Harinath; Mercier, Patrick P

    2017-02-01

    The purpose of this contribution is to estimate the path loss of capacitive human body communication (HBC) systems under practical conditions. Most prior work utilizes large grounded instruments to perform path loss measurements, resulting in overly optimistic path loss estimates for wearable HBC devices. In this paper, small battery-powered transmitter and receiver devices are implemented to measure path loss under realistic assumptions. A hybrid electrostatic finite element method simulation model is presented that validates measurements and enables rapid and accurate characterization of future capacitive HBC systems. Measurements from form-factor-accurate prototypes reveal path loss results between 31.7 and 42.2 dB from 20 to 150 MHz. Simulation results matched measurements within 2.5 dB. Comeasurements using large grounded benchtop vector network analyzer (VNA) and large battery-powered spectrum analyzer (SA) underestimate path loss by up to 33.6 and 8.2 dB, respectively. Measurements utilizing a VNA with baluns, or large battery-powered SAs with baluns still underestimate path loss by up to 24.3 and 6.7 dB, respectively. Measurements of path loss in capacitive HBC systems strongly depend on instrumentation configurations. It is thus imperative to simulate or measure path loss in capacitive HBC systems utilizing realistic geometries and grounding configurations. HBC has a great potential for many emerging wearable devices and applications; accurate path loss estimation will improve system-level design leading to viable products.

  9. Response to capacitating stimuli indicates extender-related differences in boar sperm function.

    PubMed

    Schmid, S; Henning, H; Petrunkina, A M; Weitze, K F; Waberski, D

    2013-10-01

    Spermatozoa, especially those of the porcine species, are highly susceptible to in vitro chilling and ageing. Extenders are continuously developed to protect boar spermatozoa from chilling injury. New semen extenders and other modified preservation strategies require sensitive testing for essential sperm functions. The key process on the pathway of fertilization is capacitation. The aim of the present study was to examine whether the specific response to capacitating stimuli is sensitive enough to indicate different preservation capacities of extenders during hypothermic storage of boar spermatozoa. Semen was diluted in Beltsville Thawing Solution (BTS) and Androstar Plus and kept for 3 h at 22°C or stored at 17°C, 10°C, and 5°C. Semen was analyzed at 24 and 96 h of storage. Motility and membrane integrity remained at high levels, except for lower values when stored in BTS at 5°C. Washed subsamples were incubated in capacitating medium (Tyrode) and control medium and were assessed for intracellular calcium concentration and integrity of plasma membranes using a flow cytometer. On the basis of the loss of low-calcium live cells in a kinetic approach, the specific response to capacitation stimuli was determined. There was a higher loss of response in semen stored hypothermically in the standard extender BTS compared to Androstar Plus. Assessment of the extent of phospholipid disorder under capacitating and control conditions by use of merocyanine staining did not reveal any significant extender-related differences. A field insemination trial with 778 sows was performed to relate in vitro results to fertility. Fertility parameters did not differ in semen stored up to 48 h at 10°C in Androstar Plus compared to controls stored at 17°C in BTS. In conclusion, assessment of specific reactivity to capacitating stimuli appears to be a sensitive tool for detection of extender-dependent alterations in functionality of chilled boar spermatozoa.

  10. Vertically aligned ZnO nanorod core-polypyrrole conducting polymer sheath and nanotube arrays for electrochemical supercapacitor energy storage

    PubMed Central

    2014-01-01

    Nanocomposite electrodes having three-dimensional (3-D) nanoscale architecture comprising of vertically aligned ZnO nanorod array core-polypyrrole (PPy) conducting polymer sheath and the vertical PPy nanotube arrays have been investigated for supercapacitor energy storage. The electrodes in the ZnO nanorod core-PPy sheath structure are formed by preferential nucleation and deposition of PPy layer over hydrothermally synthesized vertical ZnO nanorod array by controlled pulsed current electropolymerization of pyrrole monomer under surfactant action. The vertical PPy nanotube arrays of different tube diameter are created by selective etching of the ZnO nanorod core in ammonia solution for different periods. Cyclic voltammetry studies show high areal-specific capacitance approximately 240 mF.cm-2 for open pore and approximately 180 mF.cm-2 for narrow 30-to-36-nm diameter PPy nanotube arrays attributed to intensive faradic processes arising from enhanced access of electrolyte ions through nanotube interior and exterior. Impedance spectroscopy studies show that capacitive response extends over larger frequency domain in electrodes with PPy nanotube structure. Simulation of Nyquist plots by electrical equivalent circuit modeling establishes that 3-D nanostructure is better represented by constant phase element which accounts for the inhomogeneous electrochemical redox processes. Charge-discharge studies at different current densities establish that kinetics of the redox process in PPy nanotube electrode is due to the limitation on electron transport rather than the diffusive process of electrolyte ions. The PPy nanotube electrodes show deep discharge capability with high coulomb efficiency and long-term charge-discharge cyclic studies show nondegrading performance of the specific areal capacitance tested for 5,000 cycles. PMID:25246867

  11. Module Eleven: Capacitance; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    In this module the student will learn about another circuit quantity, capacitance, and discover the effects of this component on circuit current, voltage, and power. The module is divided into seven lessons: the capacitor, theory of capacitance, total capacitance, RC (resistive-capacitive circuit) time constant, capacitive reactance, phase and…

  12. Trielectrode capacitive pressure transducer

    NASA Technical Reports Server (NTRS)

    Coon, G. W. (Inventor)

    1976-01-01

    A capacitive transducer and circuit especially suited for making measurements in a high-temperature environment are described. The transducer includes two capacitive electrodes and a shield electrode. As the temperature of the transducer rises, the resistance of the insulation between the capacitive electrode decreases and a resistive current attempts to interfere with the capacitive current between the capacitive electrodes. The shield electrode and the circuit coupled there reduce the resistive current in the transducer. A bridge-type circuit coupled to the transducer ignores the resistive current and measures only the capacitive current flowing between the capacitive electrodes.

  13. Akt1/PKB upregulation leads to vascular smooth muscle cell hypertrophy and polyploidization

    PubMed Central

    Hixon, Mary L.; Muro-Cacho, Carlos; Wagner, Mark W.; Obejero-Paz, Carlos; Millie, Elise; Fujio, Yasushi; Kureishi, Yasuko; Hassold, Terry; Walsh, Kenneth; Gualberto, Antonio

    2000-01-01

    Vascular smooth muscle cells (VSMCs) at capacitance arteries of hypertensive individuals and animals undergo marked age- and blood pressure–dependent polyploidization and hypertrophy. We show here that VSMCs at capacitance arteries of rat models of hypertension display high levels of Akt1/PKB protein and activity. Gene transfer of Akt1 to VSMCs isolated from a normotensive rat strain was sufficient to abrogate the activity of the mitotic spindle cell–cycle checkpoint, promoting polyploidization and hypertrophy. Furthermore, the hypertrophic agent angiotensin II induced VSMC polyploidization in an Akt1-dependent manner. These results demonstrate that Akt1 regulates ploidy levels in VSMCs and contributes to vascular smooth muscle polyploidization and hypertrophy during hypertension. PMID:11032861

  14. Linear phase compressive filter

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line.

  15. Ultralow-noise readout circuit with an avalanche photodiode: toward a photon-number-resolving detector.

    PubMed

    Tsujino, Kenji; Akiba, Makoto; Sasaki, Masahide

    2007-03-01

    The charge-integration readout circuit was fabricated to achieve an ultralow-noise preamplifier for photoelectrons generated in an avalanche photodiode with linear mode operation at 77 K. To reduce the various kinds of noise, the capacitive transimpedance amplifier was used and consisted of low-capacitance circuit elements that were cooled with liquid nitrogen. As a result, the readout noise is equal to 3.0 electrons averaged for a period of 40 ms. We discuss the requirements for avalanche photodiodes to achieve photon-number-resolving detectors below this noise level.

  16. Exact CNOT gates with a single nonlocal rotation for quantum-dot qubits

    NASA Astrophysics Data System (ADS)

    Pal, Arijeet; Rashba, Emmanuel I.; Halperin, Bertrand I.

    2015-09-01

    We investigate capacitively-coupled exchange-only two-qubit quantum gates based on quantum dots. For exchange-only coded qubits electron spin S and its projection Sz are exact quantum numbers. Capacitive coupling between qubits, as distinct from interqubit exchange, preserves these quantum numbers. We prove, both analytically and numerically, that conservation of the spins of individual qubits has a dramatic effect on the performance of two-qubit gates. By varying the level splittings of individual qubits, Ja and Jb, and the interqubit coupling time, t , we can find an infinite number of triples (Ja,Jb,t ) for which the two-qubit entanglement, in combination with appropriate single-qubit rotations, can produce an exact cnot gate. This statement is true for practically arbitrary magnitude and form of capacitive interqubit coupling. Our findings promise a large decrease in the number of nonlocal (two-qubit) operations in quantum circuits.

  17. Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors

    NASA Astrophysics Data System (ADS)

    Tao, Ying; Xie, Xiaoying; Lv, Wei; Tang, Dai-Ming; Kong, Debin; Huang, Zhenghong; Nishihara, Hirotomo; Ishii, Takafumi; Li, Baohua; Golberg, Dmitri; Kang, Feiyu; Kyotani, Takashi; Yang, Quan-Hong

    2013-10-01

    A small volumetric capacitance resulting from a low packing density is one of the major limitations for novel nanocarbons finding real applications in commercial electrochemical energy storage devices. Here we report a carbon with a density of 1.58 g cm-3, 70% of the density of graphite, constructed of compactly interlinked graphene nanosheets, which is produced by an evaporation-induced drying of a graphene hydrogel. Such a carbon balances two seemingly incompatible characteristics: a porous microstructure and a high density, and therefore has a volumetric capacitance for electrochemical capacitors (ECs) up to 376 F cm-3, which is the highest value so far reported for carbon materials in an aqueous electrolyte. More promising, the carbon is conductive and moldable, and thus could be used directly as a well-shaped electrode sheet for the assembly of a supercapacitor device free of any additives, resulting in device-level high energy density ECs.

  18. Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors.

    PubMed

    Tao, Ying; Xie, Xiaoying; Lv, Wei; Tang, Dai-Ming; Kong, Debin; Huang, Zhenghong; Nishihara, Hirotomo; Ishii, Takafumi; Li, Baohua; Golberg, Dmitri; Kang, Feiyu; Kyotani, Takashi; Yang, Quan-Hong

    2013-10-17

    A small volumetric capacitance resulting from a low packing density is one of the major limitations for novel nanocarbons finding real applications in commercial electrochemical energy storage devices. Here we report a carbon with a density of 1.58 g cm(-3), 70% of the density of graphite, constructed of compactly interlinked graphene nanosheets, which is produced by an evaporation-induced drying of a graphene hydrogel. Such a carbon balances two seemingly incompatible characteristics: a porous microstructure and a high density, and therefore has a volumetric capacitance for electrochemical capacitors (ECs) up to 376 F cm(-3), which is the highest value so far reported for carbon materials in an aqueous electrolyte. More promising, the carbon is conductive and moldable, and thus could be used directly as a well-shaped electrode sheet for the assembly of a supercapacitor device free of any additives, resulting in device-level high energy density ECs.

  19. Common source cascode amplifiers for integrating IR-FPA applications

    NASA Technical Reports Server (NTRS)

    Woolaway, James T.; Young, Erick T.

    1989-01-01

    Space based astronomical infrared measurements present stringent performance requirements on the infrared detector arrays and their associated readout circuitry. To evaluate the usefulness of commercial CMOS technology for astronomical readout applications a theoretical and experimental evaluation was performed on source follower and common-source cascode integrating amplifiers. Theoretical analysis indicates that for conditions where the input amplifier integration capacitance is limited by the detectors capacitance the input referred rms noise electrons of each amplifier should be equivalent. For conditions of input gate limited capacitance the source follower should provide lower noise. Measurements of test circuits containing both source follower and common source cascode circuits showed substantially lower input referred noise for the common-source cascode input circuits. Noise measurements yielded 4.8 input referred rms noise electrons for an 8.5 minute integration. The signal and noise gain of the common-source cascode amplifier appears to offer substantial advantages in acheiving predicted noise levels.

  20. Capacitively Coupled Arrays of Multiplexed Flexible Silicon Transistors for Long-Term Cardiac Electrophysiology

    PubMed Central

    Fang, Hui; Yu, Ki Jun; Gloschat, Christopher; Yang, Zijian; Chiang, Chia-Han; Zhao, Jianing; Won, Sang Min; Xu, Siyi; Trumpis, Michael; Zhong, Yiding; Song, Enming; Han, Seung Won; Xue, Yeguang; Xu, Dong; Cauwenberghs, Gert; Kay, Matthew; Huang, Yonggang; Viventi, Jonathan; Efimov, Igor R.; Rogers, John A.

    2017-01-01

    Advanced capabilities in electrical recording are essential for the treatment of heart-rhythm diseases. The most advanced technologies use flexible integrated electronics; however, the penetration of biological fluids into the underlying electronics and any ensuing electrochemical reactions pose significant safety risks. Here, we show that an ultrathin, leakage-free, biocompatible dielectric layer can completely seal an underlying layer of flexible electronics while allowing for electrophysiological measurements through capacitive coupling between tissue and the electronics, and thus without the need for direct metal contact. The resulting current-leakage levels and operational lifetimes are, respectively, four orders of magnitude smaller and between two and three orders of magnitude longer than those of any other flexible-electronics technology. Systematic electrophysiological studies with normal, paced and arrhythmic conditions in Langendorff hearts highlight the capabilities of the capacitive-coupling approach. Our technology provides a realistic pathway towards the broad applicability of biocompatible, flexible electronic implants. PMID:28804678

  1. Comprehensive electrical analysis of metal/Al2O3/O-terminated diamond capacitance

    NASA Astrophysics Data System (ADS)

    Pham, T. T.; Maréchal, A.; Muret, P.; Eon, D.; Gheeraert, E.; Rouger, N.; Pernot, J.

    2018-04-01

    Metal oxide semiconductor capacitors were fabricated using p - type oxygen-terminated (001) diamond and Al2O3 deposited by atomic layer deposition at two different temperatures 250 °C and 380 °C. Current voltage I(V), capacitance voltage C(V), and capacitance frequency C(f) measurements were performed and analyzed for frequencies ranging from 1 Hz to 1 MHz and temperatures from 160 K to 360 K. A complete model for the Metal-Oxide-Semiconductor Capacitors electrostatics, leakage current mechanisms through the oxide into the semiconductor and small a.c. signal equivalent circuit of the device is proposed and discussed. Interface states densities are then evaluated in the range of 1012eV-1cm-2 . The strong Fermi level pinning is demonstrated to be induced by the combined effects of the leakage current through the oxide and the presence of diamond/oxide interface states.

  2. Influence of quantizing magnetic field and Rashba effect on indium arsenide metal-oxide-semiconductor structure accumulation capacitance

    NASA Astrophysics Data System (ADS)

    Kovchavtsev, A. P.; Aksenov, M. S.; Tsarenko, A. V.; Nastovjak, A. E.; Pogosov, A. G.; Pokhabov, D. A.; Tereshchenko, O. E.; Valisheva, N. A.

    2018-05-01

    The accumulation capacitance oscillations behavior in the n-InAs metal-oxide-semiconductor structures with different densities of the built-in charge (Dbc) and the interface traps (Dit) at temperature 4.2 K in the magnetic field (B) 2-10 T, directed perpendicular to the semiconductor-dielectric interface, is studied. A decrease in the oscillation frequency and an increase in the capacitance oscillation amplitude are observed with the increase in B. At the same time, for a certain surface accumulation band bending, the influence of the Rashba effect, which is expressed in the oscillations decay and breakdown, is traced. The experimental capacitance-voltage curves are in a good agreement with the numeric simulation results of the self-consistent solution of Schrödinger and Poisson equations in the magnetic field, taking into account the quantization, nonparabolicity of dispersion law, and Fermi-Dirac electron statistics, with the allowance for the Rashba effect. The Landau quantum level broadening in a two-dimensional electron gas (Lorentzian-shaped density of states), due to the electron scattering mechanism, linearly depends on the magnetic field. The correlation between the interface electronic properties and the characteristic scattering times was established.

  3. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Lang, Xingyou; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei

    2011-04-01

    Electrochemical supercapacitors can deliver high levels of electrical power and offer long operating lifetimes, but their energy storage density is too low for many important applications. Pseudocapacitive transition-metal oxides such as MnO2 could be used to make electrodes in such supercapacitors, because they are predicted to have a high capacitance for storing electrical charge while also being inexpensive and not harmful to the environment. However, the poor conductivity of MnO2 (10-5-10-6 S cm-1) limits the charge/discharge rate for high-power applications. Here, we show that hybrid structures made of nanoporous gold and nanocrystalline MnO2 have enhanced conductivity, resulting in a specific capacitance of the constituent MnO2 (~1,145 F g-1) that is close to the theoretical value. The nanoporous gold allows electron transport through the MnO2, and facilitates fast ion diffusion between the MnO2 and the electrolytes while also acting as a double-layer capacitor. The high specific capacitances and charge/discharge rates offered by such hybrid structures make them promising candidates as electrodes in supercapacitors, combining high-energy storage densities with high levels of power delivery.

  4. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors.

    PubMed

    Lang, Xingyou; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei

    2011-04-01

    Electrochemical supercapacitors can deliver high levels of electrical power and offer long operating lifetimes, but their energy storage density is too low for many important applications. Pseudocapacitive transition-metal oxides such as MnO(2) could be used to make electrodes in such supercapacitors, because they are predicted to have a high capacitance for storing electrical charge while also being inexpensive and not harmful to the environment. However, the poor conductivity of MnO(2) (10(-5)-10(-6) S cm(-1)) limits the charge/discharge rate for high-power applications. Here, we show that hybrid structures made of nanoporous gold and nanocrystalline MnO(2) have enhanced conductivity, resulting in a specific capacitance of the constituent MnO(2) (~1,145 F g(-1)) that is close to the theoretical value. The nanoporous gold allows electron transport through the MnO(2), and facilitates fast ion diffusion between the MnO(2) and the electrolytes while also acting as a double-layer capacitor. The high specific capacitances and charge/discharge rates offered by such hybrid structures make them promising candidates as electrodes in supercapacitors, combining high-energy storage densities with high levels of power delivery.

  5. Wireless Fluid Level Measuring System

    NASA Technical Reports Server (NTRS)

    Taylor, Bryant D. (Inventor); Woodard, Stanley E. (Inventor)

    2007-01-01

    A level-sensing probe positioned in a tank is divided into sections with each section including (i) a fluid-level capacitive sensor disposed along the length thereof, (ii) an inductor electrically coupled to the capacitive sensor, (iii) a sensor antenna positioned for inductive coupling to the inductor, and (iv) an electrical conductor coupled to the sensor antenna. An electrically non-conductive housing accessible from a position outside of the tank houses antennas arrayed in a pattern. Each antenna is electrically coupled to the electrical conductor from a corresponding one of the sections. A magnetic field response recorder has a measurement head with transceiving antennas arrayed therein to correspond to the pattern of the housing's antennas. When a measurement is to be taken, the measurement head is mechanically coupled to the housing so that each housing antenna is substantially aligned with a specific one of the transceiving antennas.

  6. Capacitation in the presence of methyl-β-cyclodextrin results in enhanced zona pellucida-binding ability of stallion spermatozoa.

    PubMed

    Bromfield, Elizabeth G; Aitken, R John; Gibb, Zamira; Lambourne, Sarah R; Nixon, Brett

    2014-02-01

    While IVF has been widely successful in many domesticated species, the development of a robust IVF system for the horse remains an elusive and highly valued goal. A major impediment to the development of equine IVF is the fact that optimised conditions for the capacitation of equine spermatozoa are yet to be developed. Conversely, it is known that stallion spermatozoa are particularly susceptible to damage arising as a consequence of capacitation-like changes induced prematurely in response to semen handling and transport conditions. To address these limitations, this study sought to develop an effective system to both suppress and promote the in vitro capacitation of stallion spermatozoa. Our data indicated that the latter could be achieved in a bicarbonate-rich medium supplemented with a phosphodiesterase inhibitor, a cyclic AMP analogue, and methyl-β-cyclodextrin, an efficient cholesterol-withdrawing agent. The populations of spermatozoa generated under these conditions displayed a number of hallmarks of capacitation, including elevated levels of tyrosine phosphorylation, a reorganisation of the plasma membrane leading to lipid raft coalescence in the peri-acrosomal region of the sperm head, and a dramatic increase in their ability to interact with heterologous bovine zona pellucida (ZP) and undergo agonist-induced acrosomal exocytosis. Furthermore, this functional transformation was effectively suppressed in media devoid of bicarbonate. Collectively, these results highlight the importance of efficient cholesterol removal in priming stallion spermatozoa for ZP binding in vitro.

  7. Effect of UV lamp irradiation during oxidation of Zr/Pt/Si structure on electrical properties of Pt/ZrO 2/Pt/Si structure

    NASA Astrophysics Data System (ADS)

    Bae, Joon Woo; Lim, Jae-Won; Mimura, Kouji; Uchikoshi, Masahito; Miyazaki, Takamichi; Isshiki, Minoru

    2010-03-01

    Metal-insulator-metal (MIM) capacitors were fabricated using ZrO 2 films and the effects of structural and native defects of the ZrO 2 films on the electrical and dielectric properties were investigated. For preparing ZrO 2 films, Zr films were deposited on Pt/Si substrates by ion beam deposition (IBD) system with/without substrate bias voltages and oxidized at 200 °C for 60 min under 0.1 MPa O 2 atmosphere with/without UV light irradiation ( λ = 193 nm, Deep UV lamp). The ZrO 2(˜12 nm) films on Pt(˜100 nm)/Si were characterized by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HRTEM), capacitance-voltage ( C- V) and current-voltage ( I- V) measurements were carried out on MIM structures. ZrO 2 films, fabricated by oxidizing the Zr film deposited with substrate bias voltage under UV light irradiation, show the highest capacitance (784 pF) and the lowest leakage current density. The active oxygen species formed by UV irradiation are considered to play an important role in the reduction of the leakage current density, because they can reduce the density of oxygen vacancies.

  8. High-Voltage, Asymmetric-Waveform Generator

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Duong, Tuan A.; Duong, Vu A.; Kanik, Isik

    2008-01-01

    The shapes of waveforms generated by commercially available analytical separation devices, such as some types of mass spectrometers and differential mobility spectrometers are, in general, inadequate and result in resolution degradation in output spectra. A waveform generator was designed that would be able to circumvent these shortcomings. It is capable of generating an asymmetric waveform, having a peak amplitude as large as 2 kV and frequency of several megahertz, which can be applied to a capacitive load. In the original intended application, the capacitive load would consist of the drift plates in a differential-mobility spectrometer. The main advantage to be gained by developing the proposed generator is that the shape of the waveform is made nearly optimum for various analytical devices requiring asymmetric-waveform such as differential-mobility spectrometers. In addition, this waveform generator could easily be adjusted to modify the waveform in accordance with changed operational requirements for differential-mobility spectrometers. The capacitive nature of the load is an important consideration in the design of the proposed waveform generator. For example, the design provision for shaping the output waveform is based partly on the principle that (1) the potential (V) on a capacitor is given by V=q/C, where C is the capacitance and q is the charge stored in the capacitor; and, hence (2) the rate of increase or decrease of the potential is similarly proportional to the charging or discharging current. The proposed waveform generator would comprise four functional blocks: a sine-wave generator, a buffer, a voltage shifter, and a high-voltage switch (see Figure 1). The sine-wave generator would include a pair of operational amplifiers in a feedback configuration, the parameters of which would be chosen to obtain a sinusoidal timing signal of the desired frequency. The buffer would introduce a slight delay (approximately equal to 20 ns) but would otherwise leave the fundamental timing signal unchanged. The buffered timing signal would be fed as input to the level shifter. The output of the level shifter would serve as a timing and control signal for the high-voltage switch, causing the switch to alternately be (1) opened, allowing the capacitive load to be charged from a high-voltage DC power supply; then (2) closed to discharge the capacitive load to ground. Hence, the output waveform would closely approximate a series of exponential charging and discharging curves (see Figure 2).

  9. Uterosome-like vesicles prompt human sperm fertilizing capability.

    PubMed

    Franchi, A; Cubilla, M; Guidobaldi, H A; Bravo, A A; Giojalas, L C

    2016-12-01

    Does the rapid transit through the uterine environment modulate the sperm physiological state? The uterosome-like vesicles (ULVs) secreted by endometrial epithelial cells (EECs) in vitro are able to fuse with human spermatozoa, prompting their fertilizing capacity. Early studies suggest that sperm capacitation begins in the uterus and ends in the oviduct, and that a synergistic effect of both female organs may accelerate this process. Although it has been reported that co-incubation of human spermatozoa with endometrial cell-conditioned medium (CM) stimulates sperm capacitation, the mechanism mediating this communication is unknown. Human ULVs secreted by EECs were characterized and their effect on human sperm physiology was analysed. Spermatozoa were incubated with EEC-derived CM or ULV, after which sperm capacitation was evaluated at different time points. In addition, the interaction of spermatozoa with ULV was analysed. ULVs were isolated by ultracentrifugation and identified using electron microscopy and Western blotting to assess the presence of specific protein markers. Following seminal plasma removal, human spermatozoa were incubated CM or ULV, after which sperm capacitation was evaluated as the ability of the sperm to undergo the induced acrosome reaction and the level of protein tyrosine phosphorylation (PY) determined by Western blot and immunocytochemistry. The interaction of spermatozoa with labelled ULV was analysed by fluorescence microscopy. In all cases, at least three biological replicates from different sperm donors were performed for each set of experiments. Significant differences between mean values were determined by one-way ANOVA followed by Tukey's post hoc test. Differences between treatments were considered statistically significant at P ≤ 0.05. The level of capacitated spermatozoa and those recruited by chemotaxis increased 3- to 4-fold when spermatozoa were incubated in the presence of CM for 4 h. Even a 15 min incubation of spermatozoa with CM was also enough to increase the level of capacitated cells 3- to 4-fold (P < 0.05). Furthermore, a short co-incubation of spermatozoa with ULV stimulates sperm capacitation, as determined by the increase in the level of induced acrosome reaction and the induction of PY. In addition, after the co-incubation of spermatozoa with fluorescent labelled ULV, the sperm cells acquired the fluorescent staining which indicates that ULV might be transferred to the sperm surface by a fusion mechanism. This is an in vitro study performed with human biological material, spermatozoa and endometrial derived cells; the latter being a cell line originally isolated from a uterine adenocarcinoma. The capability of spermatozoa to briefly interact with ULVs supports the hypothesis that any step of sperm transport may have physiological consequences, despite the interaction lasting for only a limited period of time. This way of communication of spermatozoa with cell products of uterine origin opens new frontiers of investigation (e.g. the signalling molecules involved), shedding light on the sperm processes that prepare the male gamete for fertilization, which might have implications for human infertility treatment. N/A. The project was financially supported by SECyT-UNC. The authors declare no conflict of interest. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Measurement of Gas-Liquid Two-Phase Flow in Micro-Pipes by a Capacitance Sensor

    PubMed Central

    Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2014-01-01

    A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes. PMID:25587879

  11. Measurement of gas-liquid two-phase flow in micro-pipes by a capacitance sensor.

    PubMed

    Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2014-11-26

    A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes.

  12. Effect of ion concentration, solution and membrane permittivity on electric energy storage and capacitance.

    PubMed

    Tajparast, Mohammad; Glavinović, Mladen I

    2018-06-06

    Bio-membranes as capacitors store electric energy, but their permittivity is low whereas the permittivity of surrounding solution is high. To evaluate the effective capacitance of the membrane/solution system and determine the electric energy stored within the membrane and in the solution, we estimated their electric variables using Poisson-Nernst-Planck simulations. We calculated membrane and solution capacitances from stored electric energy. The effective capacitance was calculated by fitting a six-capacitance model to charges (fixed and ion) and associated potentials, because it cannot be considered as a result of membrane and solution capacitance in series. The electric energy stored within the membrane (typically much smaller than that in the solution), depends on the membrane permittivity, but also on the external electric field, surface charge density, water permittivity and ion concentration. The effect on capacitances is more specific. Solution capacitance rises with greater solution permittivity or ion concentration, but the membrane capacitance (much smaller than solution capacitance) is only influenced by its permittivity. Interestingly, the effective capacitance is independent of membrane or solution permittivity, but rises as the ion concentration increases and surface charge becomes positive. Experimental estimates of membrane capacitance are thus not necessarily a reliable index of its surface area. Copyright © 2018. Published by Elsevier B.V.

  13. An analytical model with flexible accuracy for deep submicron DCVSL cells

    NASA Astrophysics Data System (ADS)

    Valiollahi, Sepideh; Ardeshir, Gholamreza

    2018-07-01

    Differential cascoded voltage switch logic (DCVSL) cells are among the best candidates of circuit designers for a wide range of applications due to advantages such as low input capacitance, high switching speed, small area and noise-immunity; nevertheless, a proper model has not yet been developed to analyse them. This paper analyses deep submicron DCVSL cells based on a flexible accuracy-simplicity trade-off including the following key features: (1) the model is capable of producing closed-form expressions with an acceptable accuracy; (2) model equations can be solved numerically to offer higher accuracy; (3) the short-circuit currents occurring in high-low/low-high transitions are accounted in analysis and (4) the changes in the operating modes of transistors during transitions together with an efficient submicron I-V model, which incorporates the most important non-ideal short-channel effects, are considered. The accuracy of the proposed model is validated in IBM 0.13 µm CMOS technology through comparisons with the accurate physically based BSIM3 model. The maximum error caused by analytical solutions is below 10%, while this amount is below 7% for numerical solutions.

  14. MMIC linear-phase and digital modulators for deep space spacecraft X-band transponder applications

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Ali, Fazal

    1991-01-01

    The design concepts, analyses, and development of GaAs monolithic microwave integrated circuit (MMIC) linear-phase and digital modulators for the next generation of space-borne communications systems are summarized. The design approach uses a compact lumped element quadrature hybrid and Metal Semiconductor Field Effect Transistors (MESFET)-varactors to provide low loss and well-controlled phase performance for deep space transponder (DST) applications. The measured results of the MESFET-diode show a capacitance range of 2:1 under reverse bias, and a Q of 38 at 10 GHz. Three cascaded sections of hybrid-coupled reflection phase shifters were modeled and simulations performed to provide an X-band (8415 +/- 50 MHz) DST phase modulator with +/- 2.5 radians of peak phase deviation. The modulator will accommodate downlink signal modulation with composite telemetry and ranging data, with a deviation linearity tolerance of +/- 8 percent and insertion loss of less than 8 +/- 0.5 dB. The MMIC digital modulator is designed to provide greater than 10 Mb/s of bi-phase modulation at X-band.

  15. Full data acquisition in Kelvin Probe Force Microscopy: Mapping dynamic electric phenomena in real space.

    PubMed

    Collins, Liam; Belianinov, Alex; Somnath, Suhas; Balke, Nina; Kalinin, Sergei V; Jesse, Stephen

    2016-08-12

    Kelvin probe force microscopy (KPFM) has provided deep insights into the local electronic, ionic and electrochemical functionalities in a broad range of materials and devices. In classical KPFM, which utilizes heterodyne detection and closed loop bias feedback, the cantilever response is down-sampled to a single measurement of the contact potential difference (CPD) per pixel. This level of detail, however, is insufficient for materials and devices involving bias and time dependent electrochemical events; or at solid-liquid interfaces, where non-linear or lossy dielectrics are present. Here, we demonstrate direct recovery of the bias dependence of the electrostatic force at high temporal resolution using General acquisition Mode (G-Mode) KPFM. G-Mode KPFM utilizes high speed detection, compression, and storage of the raw cantilever deflection signal in its entirety at high sampling rates. We show how G-Mode KPFM can be used to capture nanoscale CPD and capacitance information with a temporal resolution much faster than the cantilever bandwidth, determined by the modulation frequency of the AC voltage. In this way, G-Mode KPFM offers a new paradigm to study dynamic electric phenomena in electroactive interfaces as well as a promising route to extend KPFM to the solid-liquid interface.

  16. Gate oxide thickness dependence of the leakage current mechanism in Ru/Ta2O5/SiON/Si structures

    NASA Astrophysics Data System (ADS)

    Ťapajna, M.; Paskaleva, A.; Atanassova, E.; Dobročka, E.; Hušeková, K.; Fröhlich, K.

    2010-07-01

    Leakage conduction mechanisms in Ru/Ta2O5/SiON/Si structures with rf-sputtered Ta2O5 with thicknesses ranging from 13.5 to 1.8 nm were systematically studied. Notable reaction at the Ru/Ta2O5 interface was revealed by capacitance-voltage measurements. Temperature-dependent current-voltage characteristics suggest the bulk-limited conduction mechanism in all metal-oxide-semiconductor structures. Under gate injection, Poole-Frenkel emission was identified as a dominant mechanism for 13.5 nm thick Ta2O5. With an oxide thickness decreasing down to 3.5 nm, the conduction mechanism transforms to thermionic trap-assisted tunnelling through the triangular barrier. Under substrate injection, the dominant mechanism gradually changes with decreasing thickness from thermionic trap-assisted tunnelling to trap-assisted tunnelling through the triangular barrier; Poole-Frenkel emission was not observed at all. A 0.7 eV deep defect level distributed over Ta2O5 is assumed to be responsible for bulk-limited conduction mechanisms and is attributed to H-related defects or oxygen vacancies in Ta2O5.

  17. An approach to evaluate capacitance, capacitive reactance and resistance of pivoted pads of a thrust bearing

    NASA Astrophysics Data System (ADS)

    Prashad, Har

    1992-07-01

    A theoretical approach is developed for determining the capacitance and active resistance between the interacting surfaces of pivoted pads and thrust collar, under different conditions of operation. It is shown that resistance and capacitive reactance of a thrust bearing decrease with the number of pads times the values of these parameters for an individual pad, and that capacitance increases with the number of pads times the capacitance of an individual pad. The analysis presented has a potential to diagnose the behavior of pivoted pad thrust bearings with the angle of tilt and the ratio of film thickness at the leading to trailing edge, by determining the variation of capacitance, resistance, and capacitive reactance.

  18. Linear phase compressive filter

    DOEpatents

    McEwan, T.E.

    1995-06-06

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line. 2 figs.

  19. Plasma membrane calcium ATPase 4 (PMCA4) co-ordinates calcium and nitric oxide signaling in regulating murine sperm functional activity.

    PubMed

    Olli, Kristine E; Li, Kun; Galileo, Deni S; Martin-DeLeon, Patricia A

    2018-01-01

    Reduced sperm motility (asthenospermia) and resulting infertility arise from deletion of the Plasma Membrane Ca 2+ -ATPase 4 (Pmca4) gene which encodes the highly conserved Ca 2+ efflux pump, PMCA4. This is the major Ca 2+ clearance protein in murine sperm. Since the mechanism underlying asthenospermia in PMCA4's absence or reduced activity is unknown, we investigated if sperm PMCA4 negatively regulates nitric oxide synthases (NOSs) and when absent NO, peroxynitrite, and oxidative stress levels are increased. Using co-immunoprecipitation (Co-IP) and Fluorescence Resonance Energy Transfer (FRET), we show an association of PMCA4 with the NOSs in elevated cytosolic [Ca 2+ ] in capacitated and Ca 2+ ionophore-treated sperm and with neuronal (nNOS) at basal [Ca 2+ ] (ucapacitated sperm). FRET efficiencies for PMCA4-eNOS were 35% and 23% in capacitated and uncapacitated sperm, significantly (p < 0.01) different, with the molecules being <10 nm apart. For PMCA4-nNOS, this interaction was seen only for capacitated sperm where FRET efficiency was 24%, significantly (p < 0.05) higher than in uncapacitated sperm (6%). PMCA4 and the NOSs were identified as interacting partners in a quaternary complex that includes Caveolin1, which co-immunoprecipitated with eNOS in a Ca 2+ -dependent manner. In Pmca4 -/- sperm NOS activity was elevated twofold in capacitated/uncapacitated sperm (vs. wild-type), accompanied by a twofold increase in peroxynitrite levels and significantly (p < 0.001) increased numbers of apoptotic germ cells. The data support a quaternary complex model in which PMCA4 co-ordinates Ca 2+ and NO signaling to maintain motility, with increased NO levels resulting in asthenospermia in Pmca4 -/- males. They suggest the involvement of PMCA4 mutations in human asthenospermia, with diagnostic relevance. © 2017 Wiley Periodicals, Inc.

  20. Effectiveness, active energy produced by molecular motors, and nonlinear capacitance of the cochlear outer hair cell.

    PubMed

    Spector, Alexander A

    2005-06-01

    Cochlear outer hair cells are crucial for active hearing. These cells have a unique form of motility, named electromotility, whose main features are the cell's length changes, active force production, and nonlinear capacitance. The molecular motor, prestin, that drives outer hair cell electromotility has recently been identified. We reveal relationships between the active energy produced by the outer hair cell molecular motors, motor effectiveness, and the capacitive properties of the cell membrane. We quantitatively characterize these relationships by introducing three characteristics: effective capacitance, zero-strain capacitance, and zero-resultant capacitance. We show that zero-strain capacitance is smaller than zero-resultant capacitance, and that the effective capacitance is between the two. It was also found that the differences between the introduced capacitive characteristics can be expressed in terms of the active energy produced by the cell's molecular motors. The effectiveness of the cell and its molecular motors is introduced as the ratio of the motors'active energy to the energy of the externally applied electric field. It is shown that the effectiveness is proportional to the difference between zero-strain and zero-resultant capacitance. We analyze the cell and motor's effectiveness within a broad range of cellular parameters and estimate it to be within a range of 12%-30%.

  1. Capacitance Measurement with a Sigma Delta Converter for 3D Electrical Capacitance Tomography

    NASA Technical Reports Server (NTRS)

    Nurge, Mark

    2005-01-01

    This paper will explore suitability of a newly available capacitance to digital converter for use in a 3D Electrical Capacitance Tomography system. A switch design is presented along with circuitry needed to extend the range of the capacitance to digital converter. Results are then discussed for a 15+ hour drift and noise test.

  2. Development of a programmable standard of ultra-low capacitance values.

    PubMed

    Khan, M S; Séron, O; Thuillier, G; Thévenot, O; Gournay, P; Piquemal, F

    2017-05-01

    A set of ultra-low value capacitance standards together with a programmable coaxial multiplexer (mux) have been developed. The mux allows the connection of these capacitances in parallel configuration and they together form the programmable capacitance standard. It is capable of producing decadic standard capacitances from 10 aF to at least 0.1 pF, which are later used to calibrate commercial precision capacitance bridges. This paper describes the realization and the characterization of this standard together with results obtained during the calibration of Andeen-Hagerling AH2700A bridges with a maximum uncertainty of 0.8 aF for all the capacitances generated ranging from 10 aF to 0.1 pF, at 1 kHz. These latter could be then integrated to functionalized AFMs or probe stations for quantitative capacitance measurements. Sources of uncertainties of the programmable capacitance standard, such as parasitic effects due to stray impedances, are evaluated and a method to overcome these hindrances is also discussed.

  3. Characterization of Textile-Insulated Capacitive Biosensors

    PubMed Central

    Ng, Charn Loong; Reaz, Mamun Bin Ibne

    2017-01-01

    Capacitive biosensors are an emerging technology revolutionizing wearable sensing systems and personal healthcare devices. They are capable of continuously measuring bioelectrical signals from the human body while utilizing textiles as an insulator. Different textile types have their own unique properties that alter skin-electrode capacitance and the performance of capacitive biosensors. This paper aims to identify the best textile insulator to be used with capacitive biosensors by analysing the characteristics of 6 types of common textile materials (cotton, linen, rayon, nylon, polyester, and PVC-textile) while evaluating their impact on the performance of a capacitive biosensor. A textile-insulated capacitive (TEX-C) biosensor was developed and validated on 3 subjects. Experimental results revealed that higher skin-electrode capacitance of a TEX-C biosensor yields a lower noise floor and better signal quality. Natural fabric such as cotton and linen were the two best insulating materials to integrate with a capacitive biosensor. They yielded the lowest noise floor of 2 mV and achieved consistent electromyography (EMG) signals measurements throughout the performance test. PMID:28287493

  4. Carbon Nanofiber versus Graphene‐Based Stretchable Capacitive Touch Sensors for Artificial Electronic Skin

    PubMed Central

    Dussoni, Simeone; Ceseracciu, Luca; Maggiali, Marco; Natale, Lorenzo; Metta, Giorgio; Athanassiou, Athanassia

    2017-01-01

    Abstract Stretchable capacitive devices are instrumental for new‐generation multifunctional haptic technologies particularly suited for soft robotics and electronic skin applications. A majority of elongating soft electronics still rely on silicone for building devices or sensors by multiple‐step replication. In this study, fabrication of a reliable elongating parallel‐plate capacitive touch sensor, using nitrile rubber gloves as templates, is demonstrated. Spray coating both sides of a rubber piece cut out of a glove with a conductive polymer suspension carrying dispersed carbon nanofibers (CnFs) or graphene nanoplatelets (GnPs) is sufficient for making electrodes with low sheet resistance values (≈10 Ω sq−1). The electrodes based on CnFs maintain their conductivity up to 100% elongation whereas the GnPs‐based ones form cracks before 60% elongation. However, both electrodes are reliable under elongation levels associated with human joints motility (≈20%). Strikingly, structural damages due to repeated elongation/recovery cycles could be healed through annealing. Haptic sensing characteristics of a stretchable capacitive device by wrapping it around the fingertip of a robotic hand (ICub) are demonstrated. Tactile forces as low as 0.03 N and as high as 5 N can be easily sensed by the device under elongation or over curvilinear surfaces. PMID:29619306

  5. The effect of various electrolyte cations on electrochemical performance of polypyrrole/RGO based supercapacitors.

    PubMed

    Zhu, Jianbo; Xu, Youlong; Wang, Jie; Lin, Jun; Sun, Xiaofei; Mao, Shengchun

    2015-11-21

    In this work, polypyrrole/graphene doped by p-toluenesulfonic is prepared as an active material for supercapacitors, and its capacitance performance is investigated in various aqueous electrolytes including HCl, LiCl, NaCl, and KCl with a concentration of 3 M, respectively. A rising trend of capacitance is observed according to the cationic mobility (Li(+) < Na(+) < K(+) < H(+)), which is due to its effect on the ionic conductivity, efficient ion/charge diffusion/exchange and relaxation time. On the other hand, long-term cycling stability is in the following order: KCl < NaCl < LiCl < HCl, corresponding to the decreasing tendency of cation size (K(+) > Na(+) > Li(+) > H(+)). The reason can be attributed to the fact that the insertion/de-insertion of large size cation brings a significant doping level decrease and an over-oxidation increase during the charging-discharging cycles. Hence, we not only obtain good capacitance performance (280.3 F g(-1) at 5 mV s(-1)), superior rate capability (225.8 F g(-1) at 500 mV s(-1)) and high cycling stability (92.0% capacitance retention after 10,000 cycles at 1 A g(-1)) by employing 3 M HCl as an electrolyte, but also reveal that the electrolyte cations have a significant effect on the supercapacitors' electrochemical performance.

  6. Carbon Nanofiber versus Graphene-Based Stretchable Capacitive Touch Sensors for Artificial Electronic Skin.

    PubMed

    Cataldi, Pietro; Dussoni, Simeone; Ceseracciu, Luca; Maggiali, Marco; Natale, Lorenzo; Metta, Giorgio; Athanassiou, Athanassia; Bayer, Ilker S

    2018-02-01

    Stretchable capacitive devices are instrumental for new-generation multifunctional haptic technologies particularly suited for soft robotics and electronic skin applications. A majority of elongating soft electronics still rely on silicone for building devices or sensors by multiple-step replication. In this study, fabrication of a reliable elongating parallel-plate capacitive touch sensor, using nitrile rubber gloves as templates, is demonstrated. Spray coating both sides of a rubber piece cut out of a glove with a conductive polymer suspension carrying dispersed carbon nanofibers (CnFs) or graphene nanoplatelets (GnPs) is sufficient for making electrodes with low sheet resistance values (≈10 Ω sq -1 ). The electrodes based on CnFs maintain their conductivity up to 100% elongation whereas the GnPs-based ones form cracks before 60% elongation. However, both electrodes are reliable under elongation levels associated with human joints motility (≈20%). Strikingly, structural damages due to repeated elongation/recovery cycles could be healed through annealing. Haptic sensing characteristics of a stretchable capacitive device by wrapping it around the fingertip of a robotic hand (ICub) are demonstrated. Tactile forces as low as 0.03 N and as high as 5 N can be easily sensed by the device under elongation or over curvilinear surfaces.

  7. Ice detector

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor)

    1988-01-01

    An ice detector is provided for the determination of the thickness of ice on the outer surface on an object (e.g., aircraft) independently of temperature or the composition of the ice. First capacitive gauge, second capacitive gauge, and temperature gauge are embedded in embedding material located within a hollowed out portion of the outer surface. This embedding material is flush with the outer surface to prevent undesirable drag. The first capacitive gauge, second capacitive gauge, and the temperature gauge are respectively connected to first capacitive measuring circuit, second capacitive measuring circuit, and temperature measuring circuit. The geometry of the first and second capacitive gauges is such that the ratio of the voltage outputs of the first and second capacitance measuring circuits is proportional to the thickness of ice, regardless of ice temperature or composition. This ratio is determined by offset and dividing circuit.

  8. Current source enhancements in Electrical Impedance Spectroscopy (EIS) to cancel unwanted capacitive effects

    NASA Astrophysics Data System (ADS)

    Zarafshani, Ali; Bach, Thomas; Chatwin, Chris; Xiang, Liangzhong; Zheng, Bin

    2017-03-01

    Electrical Impedance Spectroscopy (EIS) has emerged as a non-invasive imaging modality to detect and quantify functional or electrical properties related to the suspicious tumors in cancer screening, diagnosis and prognosis assessment. A constraint on EIS systems is that the current excitation system suffers from the effects of stray capacitance having a major impact on the hardware subsystem as the EIS is an ill-posed inverse problem which depends on the noise level in EIS measured data and regularization parameter in the reconstruction algorithm. There is high complexity in the design of stable current sources, with stray capacitance reducing the output impedance and bandwidth of the system. To confront this, we have designed an EIS current source which eliminates the effect of stray capacitance and other impacts of the capacitance via a variable inductance. In this paper, we present a combination of operational CCII based on a generalized impedance converter (OCCII-GIC) with a current source. The aim of this study is to use the EIS system as a biomedical imaging technique, which is effective in the early detection of breast cancer. This article begins with the theoretical description of the EIS structure, current source topologies and proposes a current conveyor in application of a Gyrator to eliminate the current source limitations and its development followed by simulation and experimental results. We demonstrated that the new design could achieve a high output impedance over a 3MHz frequency bandwidth when compared to other types of GIC circuits combined with an improved Howland topology.

  9. Aspheric surface measurement using capacitive probes

    NASA Astrophysics Data System (ADS)

    Tao, Xin; Yuan, Daocheng; Li, Shaobo

    2017-02-01

    With the application of aspheres in optical fields, high precision and high efficiency aspheric surface metrology becomes a hot research topic. We describe a novel method of non-contact measurement of aspheric surface with capacitive probe. Taking an eccentric spherical surface as the object of study, the averaging effect of capacitive probe measurement and the influence of tilting the capacitive probe on the measurement results are investigated. By comparing measurement results from simultaneous measurement of the capacitive probe and contact probe of roundness instrument, this paper indicates the feasibility of using capacitive probes to test aspheric surface and proposes the compensation method of measurement error caused by averaging effect and the tilting of the capacitive probe.

  10. Miniature X-band GaAs MMIC analog and bi-phase modulators for spaceborne communications applications

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Ali, Fazal

    1992-01-01

    The design concepts, analyses, and the development of GaAs monolithic microwave integrated circuit (MMIC) linear-phase and digital modulators for the next generation of spaceborne communications systems are summarized. The design approach uses a very compact lumped-element, quadrature hybrid, and MESFET-varactors to provide low-loss and well-controlled phase performance for deep-space transponder (DST) applications. The measured results of the MESFET-diode show a capacitance range of 2:1 under reverse bias, and a Q of 38 at 10 GHz. Three cascaded sections of hybrid-coupled reflection phase shifters have been modeled and simulations performed to provide an X-band (8415 +/- 50 MHz) DST phase modulator with +/-2.5 radians of peak phase deviation.

  11. Inhibition of capacitation-associated tyrosine phosphorylation signaling in rat sperm by epididymal protein Crisp-1.

    PubMed

    Roberts, Kenneth P; Wamstad, Joseph A; Ensrud, Kathy M; Hamilton, David W

    2003-08-01

    Ejaculated sperm are unable to fertilize an egg until they undergo capacitation. Capacitation results in the acquisition of hyperactivated motility, changes in the properties of the plasma membrane, including changes in proteins and glycoproteins, and acquisition of the ability to undergo the acrosome reaction. In all mammalian species examined, capacitation requires removal of cholesterol from the plasma membrane and the presence of extracellular Ca2+ and HCO3-. We designed experiments to elucidate the conditions required for in vitro capacitation of rat spermatozoa and the effects of Crisp-1, an epididymal secretory protein, on capacitation. Protein tyrosine phosphorylation, a hallmark of capacitation in sperm of other species, occurs during 5 h of in vitro incubation, and this phosphorylation is dependent upon HCO3-, Ca2+, and the removal of cholesterol from the membrane. Crisp-1, which is added to the sperm surface in the epididymis in vivo, is lost during capacitation, and addition of exogenous Crisp-1 to the incubation medium inhibits tyrosine phosphorylation in a dose-dependent manner, thus inhibiting capacitation and ultimately the acrosome reaction. Inhibition of capacitation by Crisp-1 occurs upstream of the production of cAMP by the sperm.

  12. The effect of ultrasonic and HNO3 treatment of activated carbon from fruit stones on capacitive and pseudocapacitive energy storage in electrochemical supercapacitors.

    PubMed

    Venhryn, B Ya; Stotsko, Z A; Grygorchak, I I; Bakhmatyuk, B P; Mudry, S I

    2013-09-01

    The effect of ultrasonic treatment and modification with nitric acid of activated carbon obtained from fruit stones, on the parameters of electric double-layer (EDL) as well as on farad-volt characteristics of its boundary with electrolyte 7.6 m KОН, 4 m KI and 2 m ZnI2 aqueous solutions has been studied by means of precision porometry, cyclic voltamperometry, electrochemical impedance spectroscopy and computer simulation methods. It is shown that HNO3 treatment results in an increase of the electrostatic capacitance up to 202 F/g in 7.6 m KОН-solution as well as pseudocapacitance up to 1250 F/g in 4 m KI. This increase is supposed to be related both with hydrophilicity and with an increase of the density of states on Fermi level. The ultrasonic treatment enables one to significantly increase (more than 200 times) the density of states on Fermi level which in turn causes both quantitative and qualitative changes in farad-volt dependences. A hybrid supercapacitor with specific capacitance of 1100 F/g and specific energy of 49 Wh/kg per active mass of two electrodes was developed. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. LLNL/Lion Precision LVDT amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, D.J.

    1994-04-01

    A high-precision, low-noise, LVDT amplifier has been developed which is a significant advancement on the current state of the art in contact displacement measurement. This amplifier offers the dynamic range of a typical LVDT probe but with a resolution that rivals that of non contact displacement measuring systems such as capacitance gauges and laser interferometers. Resolution of 0.1 {mu} in with 100 Hz bandwidth is possible. This level of resolution is over an order of magnitude greater than what is now commercially available. A front panel switch can reduce the bandwidth to 2.5 Hz and attain a resolution of 0.025more » {mu} in. This level of resolution meets or exceeds that of displacement measuring laser interferometry or capacitance gauge systems. Contact displacement measurement offers high part spatial resolution and therefore can measure not only part contour but surface finish. Capacitance gauges and displacement laser interferometry offer poor part spatial resolution and can not provide good surface finish measurements. Machine tool builders, meteorologists and quality inspection departments can immediately utilize the higher accuracy and capabilities that this amplifier offers. The precision manufacturing industry can improve as a result of improved capability to measure parts that help reduce costs and minimize material waste.« less

  14. Effect of Plasma Membrane Semipermeability in Making the Membrane Electric Double Layer Capacitances Significant.

    PubMed

    Sinha, Shayandev; Sachar, Harnoor Singh; Das, Siddhartha

    2018-01-30

    Electric double layers (or EDLs) formed at the membrane-electrolyte interface (MEI) and membrane-cytosol interface (MCI) of a charged lipid bilayer plasma membrane develop finitely large capacitances. However, these EDL capacitances are often much larger than the intrinsic capacitance of the membrane, and all of these capacitances are in series. Consequently, the effect of these EDL capacitances in dictating the overall membrane-EDL effective capacitance C eff becomes negligible. In this paper, we challenge this conventional notion pertaining to the membrane-EDL capacitances. We demonstrate that, on the basis of the system parameters, the EDL capacitance for both the permeable and semipermeable membranes can be small enough to influence C eff . For the semipermeable membranes, however, this lowering of the EDL capacitance can be much larger, ensuring a reduction of C eff by more than 20-25%. Furthermore, for the semipermeable membranes, the reduction in C eff is witnessed over a much larger range of system parameters. We attribute such an occurrence to the highly nonintuitive electrostatic potential distribution associated with the recently discovered phenomena of charge-inversion-like electrostatics and the attainment of a positive zeta potential at the MCI for charged semipermeable membranes. We anticipate that our findings will impact the quantification and the identification of a large number of biophysical phenomena that are probed by measuring the plasma membrane capacitance.

  15. Redox regulation of mammalian sperm capacitation

    PubMed Central

    O’Flaherty, Cristian

    2015-01-01

    Capacitation is a series of morphological and metabolic changes necessary for the spermatozoon to achieve fertilizing ability. One of the earlier happenings during mammalian sperm capacitation is the production of reactive oxygen species (ROS) that will trigger and regulate a series of events including protein phosphorylation, in a time-dependent fashion. The identity of the sperm oxidase responsible for the production of ROS involved in capacitation is still elusive, and several candidates are discussed in this review. Interestingly, ROS-induced ROS formation has been described during human sperm capacitation. Redox signaling during capacitation is associated with changes in thiol groups of proteins located on the plasma membrane and subcellular compartments of the spermatozoon. Both, oxidation of thiols forming disulfide bridges and the increase on thiol content are necessary to regulate different sperm proteins associated with capacitation. Reducing equivalents such as NADH and NADPH are necessary to support capacitation in many species including humans. Lactate dehydrogenase, glucose-6-phospohate dehydrogenase, and isocitrate dehydrogenase are responsible in supplying NAD (P) H for sperm capacitation. Peroxiredoxins (PRDXs) are newly described enzymes with antioxidant properties that can protect mammalian spermatozoa; however, they are also candidates for assuring the regulation of redox signaling required for sperm capacitation. The dysregulation of PRDXs and of enzymes needed for their reactivation such as thioredoxin/thioredoxin reductase system and glutathione-S-transferases impairs sperm motility, capacitation, and promotes DNA damage in spermatozoa leading to male infertility. PMID:25926608

  16. Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors

    PubMed Central

    Tao, Ying; Xie, Xiaoying; Lv, Wei; Tang, Dai-Ming; Kong, Debin; Huang, Zhenghong; Nishihara, Hirotomo; Ishii, Takafumi; Li, Baohua; Golberg, Dmitri; Kang, Feiyu; Kyotani, Takashi; Yang, Quan-Hong

    2013-01-01

    A small volumetric capacitance resulting from a low packing density is one of the major limitations for novel nanocarbons finding real applications in commercial electrochemical energy storage devices. Here we report a carbon with a density of 1.58 g cm−3, 70% of the density of graphite, constructed of compactly interlinked graphene nanosheets, which is produced by an evaporation-induced drying of a graphene hydrogel. Such a carbon balances two seemingly incompatible characteristics: a porous microstructure and a high density, and therefore has a volumetric capacitance for electrochemical capacitors (ECs) up to 376 F cm−3, which is the highest value so far reported for carbon materials in an aqueous electrolyte. More promising, the carbon is conductive and moldable, and thus could be used directly as a well-shaped electrode sheet for the assembly of a supercapacitor device free of any additives, resulting in device-level high energy density ECs. PMID:24131954

  17. Comparative performances of microbial capacitive deionization cell and microbial fuel cell fed with produced water from the Bakken shale.

    PubMed

    Shrestha, Namita; Chilkoor, Govinda; Wilder, Joseph; Ren, Zhiyong Jason; Gadhamshetty, Venkataramana

    2018-06-01

    This study evaluates and compares the performance of microbial fuel cells (MFCs) and microbial capacitive deionization cells (MCDCs) fed with wastewater produced from the Bakken shale. The produced water was characterized by high levels of dissolved solids and chemical oxygen demand (COD). Two-compartment MFCs and three-compartment MCDCs were evaluated under batch-fed mode using mixed microbial consortia in the anode, ferricyanide in the cathode, and produced water as the electrolyte in the anode and capacitive deionization units. COD removal in the MFCs was 88%, while that in the MCDCs was limited to 76%. The lower performance of the MCDCs was due to the large impedance (6600 Ω cm 2 ) compared with the MFCs (870 Ω cm 2 ). However, the MCDCs achieved two-fold higher removal of dissolved solids. Both the MFCs and MCDCs suffered from a higher impedance induced by fouling in the latter stages of the operation. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Effect of Fe doping on the electrochemical capacitor behavior of MnO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Poonguzhali, R.; Shanmugam, N.; Gobi, R.; Senthilkumar, A.; Viruthagiri, G.; Kannadasan, N.

    2015-10-01

    In this work, the influence of Fe doping on the capacitance behavior of MnO2 nanoparticles synthesized by chemical precipitation was investigated. During the doping process the concentration of Fe was increased from 0.025 M to 0.125 M in steps of 0.025 M. The products obtained were characterized by X-ray diffraction, Fourier infrared spectroscopy, scanning electron microscopy and N2 adsorption-desorption isotherms. To demonstrate the suitability of Fe-doped MnO2 for capacitor applications, cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance were recorded. Among the different levels of doping, the specific capacitance of 912 F/g was delivered by 0.075 M of Fe-doped MnO2 at a scan rate of 10 mV/s, which is almost more than fourfold that of the bare MnO2 electrode (210 F/g). Moreover, for the same concentration the charge, discharge studies revealed the highest specific capacitance of 1084 F/g at a current density of 10 A/g.

  19. Transparent Flexible Active Faraday Cage Enables In Vivo Capacitance Measurement in Assembled Microsensor.

    PubMed

    Ahmadi, Mahdi; Rajamani, Rajesh; Sezen, Serdar

    2017-10-01

    Capacitive micro-sensors such as accelerometers, gyroscopes and pressure sensors are increasingly used in the modern electronic world. However, the in vivo use of capacitive sensing for measurement of pressure or other variables inside a human body suffers from significant errors due to stray capacitance. This paper proposes a solution consisting of a transparent thin flexible Faraday cage that surrounds the sensor. By supplying the active sensing voltage simultaneously to the deformable electrode of the capacitive sensor and to the Faraday cage, the stray capacitance during in vivo measurements can be largely eliminated. Due to the transparency of the Faraday cage, the top and bottom portions of a capacitive sensor can be accurately aligned and assembled together. Experimental results presented in the paper show that stray capacitance is reduced by a factor of 10 by the Faraday cage, when the sensor is subjected to a full immersion in water.

  20. Electrochemical double layers at the interface between glassy electrolytes and platinum: Differentiating between the anode and the cathode capacitance

    NASA Astrophysics Data System (ADS)

    Kruempelmann, J.; Mariappan, C. R.; Schober, C.; Roling, B.

    2010-12-01

    We have measured potential-dependent interfacial capacitances of two Na-Ca-phosphosilicate glasses and of an AgI-doped silver borate glass between ion-blocking Pt electrodes. An asymmetric electrode configuration with highly dissimilar electrode areas on both faces of the glass samples allowed us to determine the capacitance at the small-area electrode. Using equivalent circuit fitting we extract potential-dependent double-layer capacitances. The potential-dependent anodic capacitance exhibits a weak maximum and drops strongly at higher potentials. The cathodic capacitance exhibits a more pronounced maximum, this maximum being responsible for the maximum in the total capacitance observed in measurements in a symmetrical electrode configuration. The capacitance maxima of the Na-Ca phosphosilicate glasses show up at higher electrode potentials than the maxima of the AgI-doped silver borate glass. Remarkably, for both types of glasses, the potential of the cathodic capacitance maximum is closely related to the activation energy of the bulk ion transport. We compare our results to recent theoretical predictions by Shklovskii and co-workers.

  1. Packaging Technologies for 500C SiC Electronics and Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu

    2013-01-01

    Various SiC electronics and sensors are currently under development for applications in 500C high temperature environments such as hot sections of aerospace engines and the surface of Venus. In order to conduct long-term test and eventually commercialize these SiC devices, compatible packaging technologies for the SiC electronics and sensors are required. This presentation reviews packaging technologies developed for 500C SiC electronics and sensors to address both component and subsystem level packaging needs for high temperature environments. The packaging system for high temperature SiC electronics includes ceramic chip-level packages, ceramic printed circuit boards (PCBs), and edge-connectors. High temperature durable die-attach and precious metal wire-bonding are used in the chip-level packaging process. A high temperature sensor package is specifically designed to address high temperature micro-fabricated capacitive pressure sensors for high differential pressure environments. This presentation describes development of these electronics and sensor packaging technologies, including some testing results of SiC electronics and capacitive pressure sensors using these packaging technologies.

  2. A hybrid binary particle swarm optimization for large capacitated multi item multi level lot sizing (CMIMLLS) problem

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Sahithi, V. V. D.; Rao, C. S. P.

    2016-09-01

    The lot sizing problem deals with finding optimal order quantities which minimizes the ordering and holding cost of product mix. when multiple items at multiple levels with all capacity restrictions are considered, the lot sizing problem become NP hard. Many heuristics were developed in the past have inevitably failed due to size, computational complexity and time. However the authors were successful in the development of PSO based technique namely iterative improvement binary particles swarm technique to address very large capacitated multi-item multi level lot sizing (CMIMLLS) problem. First binary particle Swarm Optimization algorithm is used to find a solution in a reasonable time and iterative improvement local search mechanism is employed to improvise the solution obtained by BPSO algorithm. This hybrid mechanism of using local search on the global solution is found to improve the quality of solutions with respect to time thus IIBPSO method is found best and show excellent results.

  3. Current concepts of molecular events during bovine and porcine spermatozoa capacitation.

    PubMed

    Vadnais, Melissa L; Galantino-Homer, Hannah L; Althouse, Gary C

    2007-01-01

    Spermatozoa are required to undergo the processes of capacitation before they obtain fertilizing ability. The molecular changes of capacitation are still not fully understood. However, it is accepted that capacitation is a sequential process involving numerous physiological changes including destabilization of the plasma membrane, alterations of intracellular ion concentrations and membrane potential, and protein phosphorylation. There are no known morphological changes that occur to the spermatozoon during capacitation. The purpose of this review is to summarize current evidence on the molecular aspects of capacitation both in vivo and in vitro in bovine and porcine spermatozoa. For the purpose of this review, the process of sperm capacitation will encompass maturational events that occur following ejaculation up to binding to the zona pellucida, that triggers acrosomal exocytosis and initiates fertilization.

  4. Contribution of Dielectric Screening to the Total Capacitance of Few-Layer Graphene Electrodes.

    PubMed

    Zhan, Cheng; Jiang, De-en

    2016-03-03

    We apply joint density functional theory (JDFT), which treats the electrode/electrolyte interface self-consistently, to an electric double-layer capacitor (EDLC) based on few-layer graphene electrodes. The JDFT approach allows us to quantify a third contribution to the total capacitance beyond quantum capacitance (CQ) and EDL capacitance (CEDL). This contribution arises from the dielectric screening of the electric field by the surface of the few-layer graphene electrode, and we therefore term it the dielectric capacitance (CDielec). We find that CDielec becomes significant in affecting the total capacitance when the number of graphene layers in the electrode is more than three. Our investigation sheds new light on the significance of the electrode dielectric screening on the capacitance of few-layer graphene electrodes.

  5. Microscopic Theory of Supercapacitors

    NASA Astrophysics Data System (ADS)

    Skinner, Brian Joseph

    As new energy technologies are designed and implemented, there is a rising demand for improved energy storage devices. At present the most promising class of these devices is the electric double-layer capacitor (EDLC), also known as the supercapacitor. A number of recently created supercapacitors have been shown to produce remarkably large capacitance, but the microscopic mechanisms that underlie their operation remain largely mysterious. In this thesis we present an analytical, microscopic-level theory of supercapacitors, and we explain how such large capacitance can result. Specifically, we focus on four types of devices that have been shown to produce large capacitance. The first is a capacitor composed of a clean, low-temperature two-dimensional electron gas adjacent to a metal gate electrode. Recent experiments have shown that such a device can produce capacitance as much as 40% larger than that of a conventional plane capacitor. We show that this enhanced capacitance can be understood as the result of positional correlations between electrons and screening by the gate electrode in the form of image charges. Thus, the enhancement of the capacitance can be understood primarily as a classical, electrostatic phenomenon. Accounting for the quantum mechanical properties of the electron gas provides corrections to the classical theory, and these are discussed. We also present a detailed numerical calculation of the capacitance of the system based on a calculation of the system's ground state energy using the variational principle. The variational technique that we develop is broadly applicable, and we use it here to make an accurate comparison to experiment and to discuss quantitatively the behavior of the electrons' correlation function. The second device discussed in this thesis is a simple EDLC composed of an ionic liquid between two metal electrodes. We adopt a simple description of the ionic liquid and show that for realistic parameter values the capacitance can be as much as three times larger than that of a plane capacitor with thickness equal to the ion diameter. As in the previous system, this large capacitance is the result of image charge formation in the metal electrode and positional correlations between discrete ions that comprise the electric double-layer. We show that the maximum capacitance scales with the temperature to the power -1/3, and that at moderately large voltage the capacitance also decays as the inverse one third power of voltage. These results are confirmed by a Monte Carlo simulation. The third type of device we consider is that of a porous supercapacitor, where the electrode is made from a conducting material with a dense arrangement of narrow, planar pores into which ionic liquid can enter when a voltage is applied. In this case we show that when the electrode is metallic the narrow pores aggressively screen the interaction between neighboring ions in a pore, leading to an interaction energy between ions that decays exponentially. This exponential interaction between ions allows the capacitance to be nearly an order of magnitude larger than what is predicted by mean-field theories. This result is confirmed by a Monte Carlo simulation. We also present a theory for the capacitance when the electrode is not a perfect metal, but has a finite electronic screening radius. When this screening radius is larger than the distance between pores, ions begin to interact across multiple pores and the capacitance is determined by the Yukawa-like interaction of a three-dimensional, correlated arrangement of ions. Finally, we consider the case of supercapacitor electrodes made from a stack of graphene sheets with randomly-inserted "spacer" molecules. For such devices, experiments have produced very large capacitance despite the small density of states of the electrode material, which would seem to imply poor screening of the ionic charge. We show that these large capacitance values can be understood as the result of collective entrance of ions into the graphene stack (GS) and the renormalization of the ionic charge produced by nonlinear screening. The collective behavior of ions results from the strong elastic energy associated with intercalated ions deforming the GS, which creates an effective attraction between them. The result is the formation of "disks" of charge that enter the electrode collectively and have their charge renormalized by the strong, nonlinear screening of the surrounding graphene layers. This renormalization leads to a capacitance that at small voltages increases linearly with voltage and is enhanced over mean-field predictions by a large factor proportional to the number of ions within the disk to the power 9/4. At large voltages, the capacitance is dictated by the physics of graphite intercalation compounds and is proportional to the voltage raised to the power -4/5. We also examine theoretically the case where the effective fine structure constant of the GS is a small parameter, and we uncover a wealth of scaling regimes.

  6. Computational insight into the capacitive performance of graphene edge planes

    DOE PAGES

    Zhan, Cheng; Zhang, Yu; Cummings, Peter T.; ...

    2017-02-01

    Recent experiments have shown that electric double-layer capacitors utilizing electrodes consisting of graphene edge plane exhibit higher capacitance than graphene basal plane. However, theoretical understanding of this capacitance enhancement is still limited. Here we applied a self-consistent joint density functional theory calculation on the electrode/electrolyte interface and found that the capacitance of graphene edge plane depends on the edge type: zigzag edge has higher capacitance than armchair edge due to the difference in their electronic structures. We further examined the quantum, dielectric, and electric double-layer (EDL) contributions to the total capacitance of the edge-plane electrodes. Classical molecular dynamics simulation foundmore » that the edge planes have higher EDL capacitance than the basal plane due to better adsorption of counter-ions and higher solvent accessible surface area. Finally, our work therefore has elucidated the capacitive energy storage in graphene edge planes that take into account both the electrode's electronic structure and the EDL structure.« less

  7. Abnormal hump in capacitance-voltage measurements induced by ultraviolet light in a-IGZO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Tsao, Yu-Ching; Chang, Ting-Chang; Chen, Hua-Mao; Chen, Bo-Wei; Chiang, Hsiao-Cheng; Chen, Guan-Fu; Chien, Yu-Chieh; Tai, Ya-Hsiang; Hung, Yu-Ju; Huang, Shin-Ping; Yang, Chung-Yi; Chou, Wu-Ching

    2017-01-01

    This work demonstrates the generation of abnormal capacitance for amorphous indium-gallium-zinc oxide (a-InGaZnO4) thin-film transistors after being subjected to negative bias stress under ultraviolet light illumination stress (NBIS). At various operation frequencies, there are two-step tendencies in their capacitance-voltage curves. When gate bias is smaller than threshold voltage, the measured capacitance is dominated by interface defects. Conversely, the measured capacitance is dominated by oxygen vacancies when gate bias is larger than threshold voltage. The impact of these interface defects and oxygen vacancies on capacitance-voltage curves is verified by TCAD simulation software.

  8. Biological capacitance studies of anodes in microbial fuel cells using electrochemical impedance spectroscopy.

    PubMed

    Lu, Zhihao; Girguis, Peter; Liang, Peng; Shi, Haifeng; Huang, Guangtuan; Cai, Lankun; Zhang, Lehua

    2015-07-01

    It is known that cell potential increases while anode resistance decreases during the start-up of microbial fuel cells (MFCs). Biological capacitance, defined as the apparent capacitance attributed to biological activity including biofilm production, plays a role in this phenomenon. In this research, electrochemical impedance spectroscopy was employed to study anode capacitance and resistance during the start-up period of MFCs so that the role of biological capacitance was revealed in electricity generation by MFCs. It was observed that the anode capacitance ranged from 3.29 to 120 mF which increased by 16.8% to 18-20 times over 10-12 days. Notably, lowering the temperature and arresting biological activity via fixation by 4% para formaldehyde resulted in the decrease of biological capacitance by 16.9 and 62.6%, indicating a negative correlation between anode capacitance and anode resistance of MFCs. Thus, biological capacitance of anode should play an important role in power generation by MFCs. We suggest that MFCs are not only biological reactors and/or electrochemical cells, but also biological capacitors, extending the vision on mechanism exploration of electron transfer, reactor structure design and electrode materials development of MFCs.

  9. Reagentless Detection of Low-Molecular-Weight Triamterene Using Self-Doped TiO2 Nanotubes.

    PubMed

    Hudari, Felipe F; Bessegato, Guilherme G; Bedatty Fernandes, Flávio C; Zanoni, Maria V B; Bueno, Paulo R

    2018-06-19

    TiO 2 nanotube electrodes were self-doped by electrochemical cathodic polarization, potentially converting Ti 4+ into Ti 3+ , and thereby increasing both the normalized conductance and capacitance of the electrodes. One-hundred (from 19.2 ± 0.1 μF cm -2 to 1.9 ± 0.1 mF cm -2 for SD-TNT) and two-fold (from ∼6.2 to ∼14.4 mS cm -2 ) concomitant increases in capacitance and conductance, respectively, were achieved in self-doped TiO 2 nanotubes; this was compared with the results for their undoped counterparts. The increases in the capacitance and conductance indicate that the Ti 3+ states enhance the density of the electronic states; this is attributed to an existing relationship between the conductance and capacitance for nanoscale structures built on macroscopic electrodes. The ratio between the conductance and capacitance was used to detect and quantify, in a reagentless manner, the triamterene (TRT) diuretic by designing an appropriate doping level of TiO 2 nanotubes. The sensitivity was improved when using immittance spectroscopy (Patil et al. Anal. Chem. 2015, 87, 944-950; Bedatty Fernandes et al. Anal. Chem. 2015, 87, 12137-12144) (2.4 × 10 6 % decade -1 ) compared to cyclic voltammetry (5.8 × 10 5 % decade -1 ). Furthermore, a higher linear range from 0.5 to 100 μmol L -1 (5.0 to 100 μmol L -1 for cyclic voltammetry measurements) and a lower limit-of-detection of approximately 0.2 μmol L -1 were achieved by using immittance function methodology (better than the 4.1 μmol L -1 obtained by using cyclic voltammetry).

  10. All-solid-state asymmetric supercapacitors based on Fe-doped mesoporous Co3O4 and three-dimensional reduced graphene oxide electrodes with high energy and power densities.

    PubMed

    Zhang, Cheng; Wei, Jun; Chen, Leiyi; Tang, Shaolong; Deng, Mingsen; Du, Youwei

    2017-10-19

    An asymmetric supercapacitor offers opportunities to effectively utilize the full potential of the different potential windows of the two electrodes for a higher operating voltage, resulting in an enhanced specific capacitance and significantly improved energy without sacrificing the power delivery and cycle life. To achieve high energy and power densities, we have synthesized an all-solid-state asymmetric supercapacitor with a wider voltage range using Fe-doped Co 3 O 4 and three-dimensional reduced graphene oxide (3DrGO) as the positive and negative electrodes, respectively. In contrast to undoped Co 3 O 4 , the increased density of states and modified charge spatial separation endow the Fe-doped Co 3 O 4 electrode with greatly improved electrochemical capacitive performance, including high specific capacitance (1997 F g -1 and 1757 F g -1 at current densities of 1 and 20 A g -1 , respectively), excellent rate capability, and superior cycling stability. Remarkably, the optimized all-solid-state asymmetric supercapacitor can be cycled reversibly in a wide range of 0-1.8 V, thus delivering a high energy density (270.3 W h kg -1 ), high power density (9.0 kW kg -1 at 224.2 W h kg -1 ), and excellent cycling stability (91.8% capacitance retention after 10 000 charge-discharge cycles at a constant current density of 10 A g -1 ). The superior capacitive performance suggests that such an all-solid-state asymmetric supercapacitor shows great potential for developing energy storage systems with high levels of energy and power delivery.

  11. Measuring, modeling, and minimizing capacitances in heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Anholt, R.; Bozada, C.; Dettmer, R.; Via, D.; Jenkins, T.; Barrette, J.; Ebel, J.; Havasy, C.; Sewell, J.; Quach, T.

    1996-07-01

    We demonstrate methods to separate junction and pad capacitances from on-wafer S-parameter measurements of HBTs with different areas and layouts. The measured junction capacitances are in good agreement with models, indicating that large-area devices are suitable for monitoring vendor epi-wafer doping. Measuring open HBTs does not give the correct pad capacitances. Finally, a capacitance comparison for a variety of layouts shows that bar-devices consistently give smaller base-collector values than multiple dot HBTs.

  12. Humidity and illumination organic semiconductor copper phthalocyanine sensor for environmental monitoring.

    PubMed

    Karimov, K S; Qazi, I; Khan, T A; Draper, P H; Khalid, F A; Mahroof-Tahir, M

    2008-06-01

    In this investigation properties of organic semiconductor copper phthalocyanine (CuPc) capacitive humidity and illumination sensors were studied. Organic thin film was deposited by vacuum evaporation on a glass substrate with silver surface-type electrodes to form the Ag/CuPc/Ag sensor. The capacitance of the samples was evaluated at room temperature in the relative humidity range of 35-92%. It was observed that capacitance of the Ag/CuPc/Ag sensor increases with increase in humidity. The ratio of the relative capacitance to relative humidity was about 200. It is assumed that in general the capacitive response of the sensor is associated with polarization due to absorption of water molecules and transfer of charges (electrons and holes). It was observed that under filament lamp illumination of up to 1,000 lx the capacitance of the Ag/CuPc/Ag photo capacitive detectors increased continuously by 20% as compared to dark condition. It is assumed that photo capacitive response of the sensor is associated with polarization due to transfer of photo-generated electrons and holes. An equivalent circuit of the Ag/CuPc/Ag capacitive humidity and illumination sensor was developed. Humidity and illumination dependent capacitance properties of this sensor make it attractive for use in humidity and illumination multi-meters. The sensor may be used in instruments for environmental monitoring of humidity and illumination.

  13. Contribution of dielectric screening to the total capacitance of few-layer graphene electrodes

    DOE PAGES

    Zhan, Cheng; Jiang, De-en

    2016-02-17

    We apply joint density functional theory (JDFT), which treats the electrode/electrolyte interface self-consistently, to an electric double-layer capacitor (EDLC) based on few-layer graphene electrodes. The JDFT approach allows us to quantify a third contribution to the total capacitance beyond quantum capacitance (C Q) and EDL capacitance (C EDL). This contribution arises from the dielectric screening of the electric field by the surface of the few-layer graphene electrode, and we therefore term it the dielectric capacitance (C Dielec). We find that C Dielec becomes significant in affecting the total capacitance when the number of graphene layers in the electrode is moremore » than three. In conclusion, our investigation sheds new light on the significance of the electrode dielectric screening on the capacitance of few-layer graphene electrodes.« less

  14. Effect of swift heavy ion irradiation on deep levels in Au /n-Si (100) Schottky diode studied by deep level transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Katharria, Y. S.; Kumar, Sugam; Kanjilal, D.

    2007-12-01

    In situ deep level transient spectroscopy has been applied to investigate the influence of 100MeV Si7+ ion irradiation on the deep levels present in Au/n-Si (100) Schottky structure in a wide fluence range from 5×109to1×1012ions cm-2. The swift heavy ion irradiation introduces a deep level at Ec-0.32eV. It is found that initially, trap level concentration of the energy level at Ec-0.40eV increases with irradiation up to a fluence value of 1×1010cm-2 while the deep level concentration decreases as irradiation fluence increases beyond the fluence value of 5×1010cm-2. These results are discussed, taking into account the role of energy transfer mechanism of high energy ions in material.

  15. A finite element procedure for radio-frequency sheath–plasma interactions based on a sheath impedance model

    DOE PAGES

    Kohno, H.; Myra, J. R.

    2017-07-24

    A finite element code that solves self-consistent radio-frequency (RF) sheath-plasma interaction problems is improved by incorporating a generalized sheath boundary condition in the macroscopic solution scheme. This sheath boundary condition makes use of a complex sheath impedance including both the sheath capacitance and resistance, which enables evaluation of not only the RF voltage across the sheath but also the power dissipation in the sheath. The newly developed finite element procedure is applied to cases where the background magnetic field is perpendicular to the sheath surface in one- and two-dimensional domains filled by uniform low- and high-density plasmas. The numerical resultsmore » are compared with those obtained by employing the previous capacitive sheath model at a typical frequency for ion cyclotron heating used in fusion experiments. It is shown that for sheaths on the order of 100 V in a high-density plasma, localized RF power deposition can reach a level which causes material damage. It is also shown that the sheath-plasma wave resonances predicted by the capacitive sheath model do not occur when parameters are such that the generalized sheath impedance model substantially modifies the capacitive character of the sheath. Here, possible explanations for the difference in the maximum RF sheath voltage depending on the plasma density are also discussed.« less

  16. A finite element procedure for radio-frequency sheath–plasma interactions based on a sheath impedance model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohno, H.; Myra, J. R.

    A finite element code that solves self-consistent radio-frequency (RF) sheath-plasma interaction problems is improved by incorporating a generalized sheath boundary condition in the macroscopic solution scheme. This sheath boundary condition makes use of a complex sheath impedance including both the sheath capacitance and resistance, which enables evaluation of not only the RF voltage across the sheath but also the power dissipation in the sheath. The newly developed finite element procedure is applied to cases where the background magnetic field is perpendicular to the sheath surface in one- and two-dimensional domains filled by uniform low- and high-density plasmas. The numerical resultsmore » are compared with those obtained by employing the previous capacitive sheath model at a typical frequency for ion cyclotron heating used in fusion experiments. It is shown that for sheaths on the order of 100 V in a high-density plasma, localized RF power deposition can reach a level which causes material damage. It is also shown that the sheath-plasma wave resonances predicted by the capacitive sheath model do not occur when parameters are such that the generalized sheath impedance model substantially modifies the capacitive character of the sheath. Here, possible explanations for the difference in the maximum RF sheath voltage depending on the plasma density are also discussed.« less

  17. Deep levels in osmium doped p-type GaAs grown by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Iqbal, M. Zafar; Majid, A.; Dadgar, A.; Bimberg, D.

    2005-06-01

    Results of a preliminary study on deep level transient spectroscopy (DLTS) investigations of osmium (Os) impurity in p-type GaAs, introduced in situ during MOCVD crystal growth, are reported for the first time. Os is clearly shown to introduce two prominent deep levels in the lower half-bandgap of GaAs at energy positions Ev + 0.42 eV (OsA) and Ev + 0.72 eV (OsB). A minority-carrier emitting defect feature observed in the upper half-bandgap is shown to consist of a band of Os-related deep levels with a concentration significantly higher than that of the majority carrier emitting deep levels. Detailed data on the emission rate signatures and related parameters of the Os-related deep levels are reported.

  18. The effects of dielectric decrement and finite ion size on differential capacitance of electrolytically gated graphene

    NASA Astrophysics Data System (ADS)

    Daniels, Lindsey; Scott, Matthew; Mišković, Z. L.

    2018-06-01

    We analyze the effects of dielectric decrement and finite ion size in an aqueous electrolyte on the capacitance of a graphene electrode, and make comparisons with the effects of dielectric saturation combined with finite ion size. We first derive conditions for the cross-over from a camel-shaped to a bell-shaped capacitance of the diffuse layer. We show next that the total capacitance is dominated by a V-shaped quantum capacitance of graphene at low potentials. A broad peak develops in the total capacitance at high potentials, which is sensitive to the ion size with dielectric saturation, but is stable with dielectric decrement.

  19. Capacitance-digital and impedance converter as electrical tomography measurement system for biological tissue

    NASA Astrophysics Data System (ADS)

    Ikhsanti, Mila Izzatul; Bouzida, Rana; Wijaya, Sastra Kusuma; Rohmadi, Muttakin, Imamul; Taruno, Warsito P.

    2017-02-01

    This research aims to explore the feasibility of capacitance-digital converter and impedance converter for measurement module in electrical capacitance tomography (ECT) system. ECT sensor used was a cylindrical sensor having 8 electrodes. Absolute capacitance measurement system based on Sigma Delta Capacitance-to-Digital-Converter AD7746 has been shown to produce measurement with high resolution. Whereas, capacitance measurement with wide range of frequency is possible using Impedance Converter AD5933. Comparison of measurement accuracy by both AD7746 and AD5933 with reference of LCR meter was evaluated. Biological matters represented in water and oil were treated as object reconstructed into image using linear back projection (LBP) algorithm.

  20. Capacitive Biosensors and Molecularly Imprinted Electrodes.

    PubMed

    Ertürk, Gizem; Mattiasson, Bo

    2017-02-17

    Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications.

  1. Negative Capacitance in BaTiO3/BiFeO3 Bilayer Capacitors.

    PubMed

    Hou, Ya-Fei; Li, Wei-Li; Zhang, Tian-Dong; Yu, Yang; Han, Ren-Lu; Fei, Wei-Dong

    2016-08-31

    Negative capacitances provide an approach to reduce heat generations in field-effect transistors during the switch processes, which contributes to further miniaturization of the conventional integrated circuits. Although there are many studies about negative capacitances using ferroelectric materials, the direct observation of stable ferroelectric negative capacitances has rarely been reported. Here, we put forward a dc bias assistant model in bilayer capacitors, where one ferroelectric layer with large dielectric constant and the other ferroelectric layer with small dielectric constant are needed. Negative capacitances can be obtained when external dc bias electric fields are larger than a critical value. Based on the model, BaTiO3/BiFeO3 bilayer capacitors are chosen as study objects, and negative capacitances are observed directly. Additionally, the upward self-polarization effect in the ferroelectric layer reduces the critical electric field, which may provide a method for realizing zero and/or small dc bias assistant negative capacitances.

  2. Study on effective MOSFET channel length extracted from gate capacitance

    NASA Astrophysics Data System (ADS)

    Tsuji, Katsuhiro; Terada, Kazuo; Fujisaka, Hisato

    2018-01-01

    The effective channel length (L GCM) of metal-oxide-semiconductor field-effect transistors (MOSFETs) is extracted from the gate capacitances of actual-size MOSFETs, which are measured by charge-injection-induced-error-free charge-based capacitance measurement (CIEF CBCM). To accurately evaluate the capacitances between the gate and the channel of test MOSFETs, the parasitic capacitances are removed by using test MOSFETs having various channel sizes and a source/drain reference device. A strong linear relationship between the gate-channel capacitance and the design channel length is obtained, from which L GCM is extracted. It is found that L GCM is slightly less than the effective channel length (L CRM) extracted from the measured MOSFET drain current. The reason for this is discussed, and it is found that the capacitance between the gate electrode and the source and drain regions affects this extraction.

  3. Capacitance of carbon-based electrical double-layer capacitors.

    PubMed

    Ji, Hengxing; Zhao, Xin; Qiao, Zhenhua; Jung, Jeil; Zhu, Yanwu; Lu, Yalin; Zhang, Li Li; MacDonald, Allan H; Ruoff, Rodney S

    2014-01-01

    Experimental electrical double-layer capacitances of porous carbon electrodes fall below ideal values, thus limiting the practical energy densities of carbon-based electrical double-layer capacitors. Here we investigate the origin of this behaviour by measuring the electrical double-layer capacitance in one to five-layer graphene. We find that the capacitances are suppressed near neutrality, and are anomalously enhanced for thicknesses below a few layers. We attribute the first effect to quantum capacitance effects near the point of zero charge, and the second to correlations between electrons in the graphene sheet and ions in the electrolyte. The large capacitance values imply gravimetric energy storage densities in the single-layer graphene limit that are comparable to those of batteries. We anticipate that these results shed light on developing new theoretical models in understanding the electrical double-layer capacitance of carbon electrodes, and on opening up new strategies for improving the energy density of carbon-based capacitors.

  4. Absolute Position Sensing Based on a Robust Differential Capacitive Sensor with a Grounded Shield Window

    PubMed Central

    Bai, Yang; Lu, Yunfeng; Hu, Pengcheng; Wang, Gang; Xu, Jinxin; Zeng, Tao; Li, Zhengkun; Zhang, Zhonghua; Tan, Jiubin

    2016-01-01

    A simple differential capacitive sensor is provided in this paper to measure the absolute positions of length measuring systems. By utilizing a shield window inside the differential capacitor, the measurement range and linearity range of the sensor can reach several millimeters. What is more interesting is that this differential capacitive sensor is only sensitive to one translational degree of freedom (DOF) movement, and immune to the vibration along the other two translational DOFs. In the experiment, we used a novel circuit based on an AC capacitance bridge to directly measure the differential capacitance value. The experimental result shows that this differential capacitive sensor has a sensitivity of 2 × 10−4 pF/μm with 0.08 μm resolution. The measurement range of this differential capacitive sensor is 6 mm, and the linearity error are less than 0.01% over the whole absolute position measurement range. PMID:27187393

  5. Equilibrium charge fluctuations of a charge detector and its effect on a nearby quantum dot

    NASA Astrophysics Data System (ADS)

    Ruiz-Tijerina, David; Vernek, Edson; Ulloa, Sergio

    2014-03-01

    We study the Kondo state of a spin-1/2 quantum dot (QD), in close proximity to a quantum point contact (QPC) charge detector near the conductance regime of the 0.7 anomaly. The electrostatic coupling between the QD and QPC introduces a remote gate on the QD level, which varies with the QPC gate voltage. Furthermore, models for the 0.7 anomaly [Y. Meir et al., PRL 89,196802(2002)] suggest that the QPC lodges a Kondo-screened level with charge-correlated hybridization, which may be also affected by capacitive coupling to the QD, giving rise to a competition between the two Kondo ground states. We model the QD-QPC system as two capacitively-coupled Kondo impurities, and explore the zero-bias transport of both the QD and the QPC for different local gate voltages and coupling strengths, using the numerical renormalization group and variational methods. We find that the capacitive coupling produces a remote gating effect, non-monotonic in the gate voltages, which reduces the gate voltage window for Kondo screening in either impurity, and which can also drive a quantum phase transition out of the Kondo regime. Our study is carried out for intermediate coupling strengths, and as such is highly relevant to experiments; particularly, to recent studies of decoherence effects on QDs. Supported by MWN/CIAM and NSF PIRE.

  6. VHDL-AMS modelling and simulation of a planar electrostatic micromotor

    NASA Astrophysics Data System (ADS)

    Endemaño, A.; Fourniols, J. Y.; Camon, H.; Marchese, A.; Muratet, S.; Bony, F.; Dunnigan, M.; Desmulliez, M. P. Y.; Overton, G.

    2003-09-01

    System level simulation results of a planar electrostatic micromotor, based on analytical models of the static and dynamic torque behaviours, are presented. A planar variable capacitance (VC) electrostatic micromotor designed, fabricated and tested at LAAS (Toulouse) in 1995 is simulated using the high level language VHDL-AMS (VHSIC (very high speed integrated circuits) hardware description language-analog mixed signal). The analytical torque model is obtained by first calculating the overlaps and capacitances between different electrodes based on a conformal mapping transformation. Capacitance values in the order of 10-16 F and torque values in the order of 10-11 N m have been calculated in agreement with previous measurements and simulations from this type of motor. A dynamic model has been developed for the motor by calculating the inertia coefficient and estimating the friction-coefficient-based values calculated previously for other similar devices. Starting voltage results obtained from experimental measurement are in good agreement with our proposed simulation model. Simulation results of starting voltage values, step response, switching response and continuous operation of the micromotor, based on the dynamic model of the torque, are also presented. Four VHDL-AMS blocks were created, validated and simulated for power supply, excitation control, micromotor torque creation and micromotor dynamics. These blocks can be considered as the initial phase towards the creation of intellectual property (IP) blocks for microsystems in general and electrostatic micromotors in particular.

  7. Imaging metallic samples using electrical capacitance tomography: forward modelling and reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Hosani, E. Al; Zhang, M.; Abascal, J. F. P. J.; Soleimani, M.

    2016-11-01

    Electrical capacitance tomography (ECT) is an imaging technology used to reconstruct the permittivity distribution within the sensing region. So far, ECT has been primarily used to image non-conductive media only, since if the conductivity of the imaged object is high, the capacitance measuring circuit will be almost shortened by the conductivity path and a clear image cannot be produced using the standard image reconstruction approaches. This paper tackles the problem of imaging metallic samples using conventional ECT systems by investigating the two main aspects of image reconstruction algorithms, namely the forward problem and the inverse problem. For the forward problem, two different methods to model the region of high conductivity in ECT is presented. On the other hand, for the inverse problem, three different algorithms to reconstruct the high contrast images are examined. The first two methods are the linear single step Tikhonov method and the iterative total variation regularization method, and use two sets of ECT data to reconstruct the image in time difference mode. The third method, namely the level set method, uses absolute ECT measurements and was developed using a metallic forward model. The results indicate that the applications of conventional ECT systems can be extended to metal samples using the suggested algorithms and forward model, especially using a level set algorithm to find the boundary of the metal.

  8. Active Targets For Capacitive Proximity Sensors

    NASA Technical Reports Server (NTRS)

    Jenstrom, Del T.; Mcconnell, Robert L.

    1994-01-01

    Lightweight, low-power active targets devised for use with improved capacitive proximity sensors described in "Capacitive Proximity Sensor Has Longer Range" (GSC-13377), and "Capacitive Proximity Sensors With Additional Driven Shields" (GSC-13475). Active targets are short-distance electrostatic beacons; they generate known alternating electro-static fields used for alignment and/or to measure distances.

  9. The Origin of Improved Electrical Double-Layer Capacitance by Inclusion of Topological Defects and Dopants in Graphene for Supercapacitors.

    PubMed

    Chen, Jiafeng; Han, Yulei; Kong, Xianghua; Deng, Xinzhou; Park, Hyo Ju; Guo, Yali; Jin, Song; Qi, Zhikai; Lee, Zonghoon; Qiao, Zhenhua; Ruoff, Rodney S; Ji, Hengxing

    2016-10-24

    Low-energy density has long been the major limitation to the application of supercapacitors. Introducing topological defects and dopants in carbon-based electrodes in a supercapacitor improves the performance by maximizing the gravimetric capacitance per mass of the electrode. However, the main mechanisms governing this capacitance improvement are still unclear. We fabricated planar electrodes from CVD-derived single-layer graphene with deliberately introduced topological defects and nitrogen dopants in controlled concentrations and of known configurations, to estimate the influence of these defects on the electrical double-layer (EDL) capacitance. Our experimental study and theoretical calculations show that the increase in EDL capacitance due to either the topological defects or the nitrogen dopants has the same origin, yet these two factors improve the EDL capacitance in different ways. Our work provides a better understanding of the correlation between the atomic-scale structure and the EDL capacitance and presents a new strategy for the development of experimental and theoretical models for understanding the EDL capacitance of carbon electrodes. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Fully integrated low-noise readout circuit with automatic offset cancellation loop for capacitive microsensors.

    PubMed

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-Il Dan; Ko, Hyoungho

    2015-10-14

    Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm². The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of -250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms.

  11. Separation of neural stem cells by whole cell membrane capacitance using dielectrophoresis.

    PubMed

    Adams, Tayloria N G; Jiang, Alan Y L; Vyas, Prema D; Flanagan, Lisa A

    2018-01-15

    Whole cell membrane capacitance is an electrophysiological property of the plasma membrane that serves as a biomarker for stem cell fate potential. Neural stem and progenitor cells (NSPCs) that differ in ability to form neurons or astrocytes are distinguished by membrane capacitance measured by dielectrophoresis (DEP). Differences in membrane capacitance are sufficient to enable the enrichment of neuron- or astrocyte-forming cells by DEP, showing the separation of stem cells on the basis of fate potential by membrane capacitance. NSPCs sorted by DEP need not be labeled and do not experience toxic effects from the sorting procedure. Other stem cell populations also display shifts in membrane capacitance as cells differentiate to a particular fate, clarifying the value of sorting a variety of stem cell types by capacitance. Here, we describe methods developed by our lab for separating NSPCs on the basis of capacitance using several types of DEP microfluidic devices, providing basic information on the sorting procedure as well as specific advantages and disadvantages of each device. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Fully Integrated Low-Noise Readout Circuit with Automatic Offset Cancellation Loop for Capacitive Microsensors

    PubMed Central

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-il Dan; Ko, Hyoungho

    2015-01-01

    Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm2. The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of −250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms. PMID:26473877

  13. Thermal quenching effect of an infrared deep level in Mg-doped p-type GaN films

    NASA Astrophysics Data System (ADS)

    Kim, Keunjoo; Chung, Sang Jo

    2002-03-01

    The thermal quenching of an infrared deep level of 1.2-1.5 eV has been investigated on Mg-doped p-type GaN films, using one- and two-step annealing processes and photocurrent measurements. The deep level appeared in the one-step annealing process at a relatively high temperature of 900 °C, but disappeared in the two-step annealing process with a low-temperature step and a subsequent high-temperature step. The persistent photocurrent was residual in the sample including the deep level, while it was terminated in the sample without the deep level. This indicates that the deep level is a neutral hole center located above a quasi-Fermi level, estimated with an energy of EpF=0.1-0.15 eV above the valence band at a hole carrier concentration of 2.0-2.5×1017/cm3.

  14. Biredox ionic liquids: new opportunities toward high performance supercapacitors.

    PubMed

    Bodin, C; Mourad, E; Zigah, D; Le Vot, S; Freunberger, S A; Favier, F; Fontaine, O

    2018-01-01

    Nowadays commercial supercapacitors are based on purely capacitive storage at the porous carbons that are used for the electrodes. However, the limits that capacitive storage imposes on energy density calls to investigate new materials to improve the capacitance of the device. This new type of electrodes (e.g., RuO 2 , MnO 2 …) involves pseudo-capacitive faradaic redox processes with the solid material. Ion exchange with solid materials is, however, much slower than the adsorption process in capacitive storage and inevitably leads to significant loss of power. Faradaic process in the liquid state, in contrast can be similarly fast as capacitive processes due to the fast ion transport. Designing new devices with liquid like dynamics and improved specific capacitance is challenging. We present a new approach to increase the specific capacitance using biredox ionic liquids, where redox moieties are tethered to the electrolyte ions, allowing high redox concentrations and significant pseudo-capacitive storage in the liquid state. Anions and cations are functionalized with anthraquinone (AQ) and 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO) moieties, respectively. Glassy carbon, carbon-onion, and commercial activated carbon electrodes that exhibit different double layer structures and thus different diffusion dynamics were used to simultaneously study the electrochemical response of biredox ionic liquids at the positive and negative electrode.

  15. Exogenous pyruvate accelerates glycolysis and promotes capacitation in human spermatozoa.

    PubMed

    Hereng, T H; Elgstøen, K B P; Cederkvist, F H; Eide, L; Jahnsen, T; Skålhegg, B S; Rosendal, K R

    2011-12-01

    There has been an ongoing debate in the reproductive field about whether mammalian spermatozoa rely on glycolysis, oxidative phosphorylation or both for their energy production. Recent studies have proposed that human spermatozoa depend mainly on glucose for motility and fertilization but the mechanism behind an efficient glycolysis in human spermatozoa is not well understood. Here, we demonstrate how human spermatozoa utilize exogenous pyruvate to enhance glycolytic ATP production, motility, hyperactivation and capacitation, events that are crucial for male fertility. Purified human spermatozoa from healthy donors were incubated under capacitating conditions (including albumin, bicarbonate and glucose) and tested for changes in ATP levels, motility, hyperactivation and tyrosine phosphorylation after treatment with pyruvate. The experiments were repeated in the presence of sodium cyanide in order to assess the contribution from mitochondrial respiration. The metabolism of (13)C labeled glucose and pyruvate was traced by a combination of liquid chromatography and mass spectrometry. The treatment of human spermatozoa with exogenous pyruvate increased intracellular ATP levels, progressive motility and hyperactivation by 56, 21 and 130%, respectively. In addition, added pyruvate induced a significant increase in tyrosine phosphorylation levels. Blocking of the electron transport chain did not markedly affect the results, indicating that the mechanism is independent of oxidative phosphorylation. However, the observed effects could be counteracted by oxamate, an inhibitor of lactate dehydrogenase (LDH). Metabolic tracing experiments revealed that the observed rise in ATP concentration resulted from an enhanced glycolytic flux, which was increased by more than 50% in the presence of exogenous pyruvate. Moreover, all consumed (13)C labeled pyruvate added was converted to lactate rather than oxidized in the tricarboxylic acid cycle. Human spermatozoa seem to rely mainly, if not entirely, on glycolysis as the source of ATP fueling the energy-demanding processes of motility and capacitation. The efficient glycolysis is dependent on exogenous pyruvate, which indirectly feeds the accelerated glycolysis with NAD(+) through the LDH-mediated conversion of pyruvate to lactate. Pyruvate is present in the human female reproductive tract at concentrations in accordance with our results. As seen in other mammals, the motility and fertility of human spermatozoa seem to be dictated by the available energy substrates present in the conspecific female.

  16. Evaluation of Strain Measurement Devices for Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Litteken, Douglas A.

    2017-01-01

    Inflatable structures provide a significant volume savings for future NASA deep space missions. The complexity of these structures, however, provides difficulty for engineers in designing, analyzing, and testing. Common strain measurement systems for metallic parts cannot be used directly on fabrics. New technologies must be developed and tested to accuractly measure the strain of inflatable structures. This paper documents the testing of six candidate strain measurement devices for use on fabrics. The resistance devices tested showed significant hysteresis during creep and cyclic testing. The capacitive device, however, showed excellent results and little-to-no hysteresis. Because of this issue, only two out of the six proposed devices will continue in development. The resulting data and lessons learned from this effort provides direction for continued work to produce a structural health monitoring system for inflatable habitats.

  17. Evaluation of Strain Measurement Devices for Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Litteken, Doug

    2017-01-01

    Inflatable structures provide a significant volume savings for future NASA deep space missions. The complexity of these structures, however, provides difficulty for engineers in designing, analyzing, and testing. Common strain measurement systems for metallic parts cannot be used directly on fabrics. New technologies must be developed and tested to accurately measure the strain of inflatable structures. This paper documents the testing of six candidate strain measurement devices for use on fabrics. The resistance devices tested showed significant hysteresis during creep and cyclic testing. The capacitive device, however, showed excellent results and little-to-no hysteresis. Because of this issue, only two out of the six proposed devices will continue in development. The resulting data and lessons learned from this effort provides direction for continued work to produce a structural health monitoring system for inflatable habitats.

  18. Proton irradiation effects on minority carrier diffusion length and defect introduction in homoepitaxial and heteroepitaxial n-GaN

    NASA Astrophysics Data System (ADS)

    Collins, K. C.; Armstrong, A. M.; Allerman, A. A.; Vizkelethy, G.; Van Deusen, S. B.; Léonard, F.; Talin, A. A.

    2017-12-01

    Inherent advantages of wide bandgap materials make GaN-based devices attractive for power electronics and applications in radiation environments. Recent advances in the availability of wafer-scale, bulk GaN substrates have enabled the production of high quality, low defect density GaN devices, but fundamental studies of carrier transport and radiation hardness in such devices are lacking. Here, we report measurements of the hole diffusion length in low threading dislocation density (TDD), homoepitaxial n-GaN, and high TDD heteroepitaxial n-GaN Schottky diodes before and after irradiation with 2.5 MeV protons at fluences of 4-6 × 1013 protons/cm2. We also characterize the specimens before and after irradiation using electron beam-induced-current (EBIC) imaging, cathodoluminescence, deep level optical spectroscopy (DLOS), steady-state photocapacitance, and lighted capacitance-voltage (LCV) techniques. We observe a substantial reduction in the hole diffusion length following irradiation (50%-55%) and the introduction of electrically active defects which could be attributed to gallium vacancies and associated complexes (VGa-related), carbon impurities (C-related), and gallium interstitials (Gai). EBIC imaging suggests long-range migration and clustering of radiation-induced point defects over distances of ˜500 nm, which suggests mobile Gai. Following irradiation, DLOS and LCV reveal the introduction of a prominent optical energy level at 1.9 eV below the conduction band edge, consistent with the introduction of Gai.

  19. A membrane-associated adenylate cyclase modulates lactate dehydrogenase and creatine kinase activities required for bull sperm capacitation induced by hyaluronic acid.

    PubMed

    Fernández, Silvina; Córdoba, Mariana

    2017-04-01

    Hyaluronic acid, as well as heparin, is a glycosaminoglycan present in the female genital tract of cattle. The aim of this study was to evaluate oxidative metabolism and intracellular signals mediated by a membrane-associated adenylate cyclase (mAC), in sperm capacitation with hyaluronic acid and heparin, in cryopreserved bull sperm. The mAC inhibitor, 2',5'-dideoxyadenosine, was used in the present study. Lactate dehydrogenase (LDH) and creatine kinase (CK) activities and lactate concentration were determined spectrophotometrically in the incubation medium. Capacitation and acrosome reaction were evaluated by chlortetracycline technique, while plasma membrane and acrosome integrity were determined by trypan blue stain/differential interference contrast microscopy. Heparin capacitated samples had a significant decrease in LDH and CK activities, while in hyaluronic acid capacitated samples LDH and CK activities both increased compared to control samples, in heparin and hyaluronic acid capacitation conditions, respectively. A significant increase in lactate concentration in the incubation medium occurred in hyaluronic acid-treated sperm samples compared to heparin treatment, indicating this energetic metabolite is produced during capacitation. The LDH and CK enzyme activities and lactate concentrations in the incubation medium were decreased with 2',5'-dideoxyadenosine treatment in hyaluronic acid samples. The mAC inhibitor significantly inhibited heparin-induced capacitation of sperm cells, but did not completely inhibit hyaluronic acid capacitation. Therefore, hyaluronic acid and heparin are physiological glycosaminoglycans capable of inducing in vitro capacitation in cryopreserved bull sperm, stimulating different enzymatic pathways and intracellular signals modulated by a mAC. Hyaluronic acid induces sperm capacitation involving LDH and CK activities, thereby reducing oxidative metabolism, and this process is mediated by mAC. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Modeling methodology for a CMOS-MEMS electrostatic comb

    NASA Astrophysics Data System (ADS)

    Iyer, Sitaraman V.; Lakdawala, Hasnain; Mukherjee, Tamal; Fedder, Gary K.

    2002-04-01

    A methodology for combined modeling of capacitance and force 9in a multi-layer electrostatic comb is demonstrated in this paper. Conformal mapping-based analytical methods are limited to 2D symmetric cross-sections and cannot account for charge concentration effects at corners. Vertex capacitance can be more than 30% of the total capacitance in a single-layer 2 micrometers thick comb with 10 micrometers overlap. Furthermore, analytical equations are strictly valid only for perfectly symmetrical finger positions. Fringing and corner effects are likely to be more significant in a multi- layered CMOS-MEMS comb because of the presence of more edges and vertices. Vertical curling of CMOS-MEMS comb fingers may also lead to reduced capacitance and vertical forces. Gyroscopes are particularly sensitive to such undesirable forces, which therefore, need to be well-quantified. In order to address the above issues, a hybrid approach of superposing linear regression models over a set of core analytical models is implemented. Design of experiments is used to obtain data for capacitance and force using a commercial 3D boundary-element solver. Since accurate force values require significantly higher mesh refinement than accurate capacitance, we use numerical derivatives of capacitance values to compute the forces. The model is formulated such that the capacitance and force models use the same regression coefficients. The comb model thus obtained, fits the numerical capacitance data to within +/- 3% and force to within +/- 10%. The model is experimentally verified by measuring capacitance change in a specially designed test structure. The capacitance model matches measurements to within 10%. The comb model is implemented in an Analog Hardware Description Language (ADHL) for use in behavioral simulation of manufacturing variations in a CMOS-MEMS gyroscope.

  1. Covariance versus correlation in capacitated vehicle routing problem-investment fund allocation problem

    NASA Astrophysics Data System (ADS)

    Mamat, Nur Jumaadzan Zaleha; Jaaman, Saiful Hafizah; Ahmad, Rokiah@Rozita

    2017-04-01

    Capacitated Vehicle Routing Problem-Investment Fund Allocation Problem (CVRP-IFAP) provides investors with a sequence of assets to allocate their funds into. To minimize total risks of investment in CVRP-IFAP covariance values measure the risks between two assets. Another measure of risks are correlation values between returns. The correlation values can be used to diversify the risk of investment loss in order to optimize expected return against a certain level of risk. This study compares the total risk obtained from CVRP-IFAP when using covariance values and correlation values. Results show that CVRP-IFAP with covariance values provides lesser total risks and a significantly better measure of risk.

  2. Paper as Active Layer in Inkjet-Printed Capacitive Humidity Sensors

    PubMed Central

    Gaspar, Cristina; Olkkonen, Juuso; Passoja, Soile; Smolander, Maria

    2017-01-01

    An inkjet-printed relative humidity sensor based on capacitive changes which responds to different humidity levels in the environment is presented in this work. The inkjet-printed silver interdigitated electrodes configuration on the paper substrate allowed for the fabrication of a functional proof-of-concept of the relative humidity sensor, by using the paper itself as a sensing material. The sensor sensitivity in terms of relative humidity changes was calculated to be around 2 pF/RH %. The response time against different temperature steps from 3 to 85 °C was fairly constant (about 4–5 min), and it was considered fast for the aimed application, a smart label. PMID:28640182

  3. Application of positron annihilation lifetime technique to the study of deep level transients in semiconductors

    NASA Astrophysics Data System (ADS)

    Deng, A. H.; Shan, Y. Y.; Fung, S.; Beling, C. D.

    2002-03-01

    Unlike its conventional applications in lattice defect characterization, positron annihilation lifetime technique was applied to study temperature-dependent deep level transients in semiconductors. Defect levels in the band gap can be determined as they are determined by conventional deep level transient spectroscopy (DLTS) studies. The promising advantage of this application of positron annihilation over the conventional DLTS is that it could further extract extra microstructure information of deep-level defects, such as whether a deep level defect is vacancy related or not. A demonstration of EL2 defect level transient study in GaAs was shown and the EL2 level of 0.82±0.02 eV was obtained by a standard Arrhenius analysis, similar to that in conventional DLTS studies.

  4. Insight into the Near-Conduction Band States at the Crystallized Interface between GaN and SiN x Grown by Low-Pressure Chemical Vapor Deposition.

    PubMed

    Liu, Xinyu; Wang, Xinhua; Zhang, Yange; Wei, Ke; Zheng, Yingkui; Kang, Xuanwu; Jiang, Haojie; Li, Junfeng; Wang, Wenwu; Wu, Xuebang; Wang, Xianping; Huang, Sen

    2018-06-12

    Constant-capacitance deep-level transient Fourier spectroscopy is utilized to characterize the interface between a GaN epitaxial layer and a SiN x passivation layer grown by low-pressure chemical vapor deposition (LPCVD). A near-conduction band (NCB) state E LP ( E C - E T = 60 meV) featuring a very small capture cross section of 1.5 × 10 -20 cm -2 was detected at 70 K at the LPCVD-SiN x /GaN interface. A partially crystallized Si 2 N 2 O thin layer was detected at the interface by high-resolution transmission electron microscopy. Based on first-principles calculations of crystallized Si 2 N 2 O/GaN slabs, it was confirmed that the NCB state E LP mainly originates from the strong interactions between the dangling bonds of gallium and its vicinal atoms near the interface. The partially crystallized Si 2 N 2 O interfacial layer might also give rise to the very small capture cross section of the E LP owing to the smaller lattice mismatch between the Si 2 N 2 O and GaN epitaxial layer and a larger mean free path of the electron in the crystallized portion compared with an amorphous interfacial layer.

  5. An Overview of the Canadian Forces’ Second Generation Capability-Based Planning Analytical Process

    DTIC Science & Technology

    2010-09-01

    gestion et intgration des capacités Feuille de route des capacits stratégiques Produits clès Plan d’investissement Plan de capacités de défense...méthodes de recherche opérationnelle objectives et subjectives permet- tant la mise en œuvre du volet « planification, gestion et intégration des ...pacités, la gestion des capacités et l’intégration des capacités. Le processus comprend des intrants, des méthodes

  6. Capacitance measuring device

    DOEpatents

    Andrews, W.H. Jr.

    1984-08-01

    A capacitance measuring circuit is provided in which an unknown capacitance is measured by comparing the charge stored in the unknown capacitor with that stored in a known capacitance. Equal and opposite voltages are repetitively simultaneously switched onto the capacitors through an electronic switch driven by a pulse generator to charge the capacitors during the ''on'' portion of the cycle. The stored charge is compared by summing discharge currents flowing through matched resistors at the input of a current sensor during the ''off'' portion of the switching cycle. The net current measured is thus proportional to the difference in value of the two capacitances. The circuit is capable of providing much needed accuracy and stability to a great variety of capacitance-based measurement devices at a relatively low cost.

  7. Interdigitated electrodes as impedance and capacitance biosensors: A review

    NASA Astrophysics Data System (ADS)

    Mazlan, N. S.; Ramli, M. M.; Abdullah, M. M. A. B.; Halin, D. S. C.; Isa, S. S. M.; Talip, L. F. A.; Danial, N. S.; Murad, S. A. Z.

    2017-09-01

    Interdigitated electrodes (IDEs) are made of two individually addressable interdigitated comb-like electrode structures. IDEs are one of the most favored transducers, widely utilized in technological applications especially in the field of biological and chemical sensors due to their inexpensive, ease of fabrication process and high sensitivity. In order to detect and analyze a biochemical molecule or analyte, the impedance and capacitance signal need to be obtained. This paper investigates the working principle and influencer of the impedance and capacitance biosensors. The impedance biosensor depends on the resistance and capacitance while the capacitance biosensor influenced by the dielectric permittivity. However, the geometry and structures of the interdigitated electrodes affect both impedance and capacitance biosensor. The details have been discussed in this paper.

  8. A high energy and power sodium-ion hybrid capacitor based on nitrogen-doped hollow carbon nanowires anode

    NASA Astrophysics Data System (ADS)

    Li, Dongdong; Ye, Chao; Chen, Xinzhi; Wang, Suqing; Wang, Haihui

    2018-04-01

    The sodium ion hybrid capacitor (SHC) has been attracting much attention. However, the SHC's power density is significantly confined to a low level due to the sluggish ion diffusion in the anode. Herein, we propose to use an electrode with a high double layer capacitance as the anode in the SHC instead of insertion anodes. To this aim, nitrogen doped hollow carbon nanowires (N-HCNWs) with a high specific surface area are prepared, and the high capacitive contribution during the sodium ion storage process is confirmed by a series of electrochemical measurements. A new SHC consisting of a N-HCNW anode and a commercial active carbon (AC) cathode is fabricated for the first time. Due to the hybrid charge storage mechanism combining ion insertion and capacitive process, the as-fabricated SHC strikes a balance between the energy density and power density, a energy density of 108 Wh kg-1 and a power density of 9 kW kg-1 can be achieved, which overwhelms the electrochemical performances of most reported AC-based SHCs.

  9. Multi-level Capacitive Memory Effect in Metal/Oxide/Floating-Schottky Junction

    NASA Astrophysics Data System (ADS)

    Choi, Gahyun; Jung, Sungchul; Yoon, Hoon Hahn; Jeon, Youngeun; Park*, Kibog

    2015-03-01

    A memory computing (memcomputing) system can store and process information at the same physical location simultaneously. The essential components of memcomputing are passive devices with memory functionality, such as memristor, memcapacitor, and meminductor. We report the realization of a Schottky contact memcapacitor compatible with the current Si CMOS technology. Our memcapacitor is formed by depositing a stack of metal and oxide thin films on top of a Schottky contact. Here, the metal electrode of the Schottky contact is floating. The working principle of our memcapacitor is based on the fact that the depletion width of the Schottky contact varies according to the amount of charge stored in the floating metal electrode. The voltage pulse applied across the Metal/Oxide/Floating-Schottky junction controls charge flow in the Schottky contact and determines the amount of charge stored eventually. It is demonstrated experimentally that our memcapacitor exhibits hysteresis behaviors in capacitance-voltage curves and possesses multiple capacitance values that are switchable by the applied voltage pulse. Supported by NRF in South Korea (2013R1A1A2007070).

  10. Triangulating the source of tunneling resonances in a point contact with nanometer scale sensitivity

    NASA Astrophysics Data System (ADS)

    Bishop, N. C.; Boras Pinilla, C.; Stalford, H. L.; Young, R. W.; Ten Eyck, G. A.; Wendt, J. R.; Eng, K.; Lilly, M. P.; Carroll, M. S.

    2011-03-01

    We observe resonant tunneling in split gate point contacts defined in a double gate enhancement mode Si-MOS device structure. We determine the capacitances from the resonant feature to each of the conducting gates and the source/drain two dimensional electron gas regions. In our device, these capacitances provide information about the resonance location in three dimensions. Semi-classical electrostatic simulations of capacitance, already used to map quantum dot size and position [Stalford et al., IEEE Nanotechnology], identify a combination of location and confinement potential size that satisfy our experimental observations. The sensitivity of simulation to position and size allow us to triangulate possible locations of the resonant level with nanometer resolution. We discuss our results and how they may apply to resonant tunneling through a single donor. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  11. A multi-period capacitated school location problem with modular equipment and closest assignment considerations

    NASA Astrophysics Data System (ADS)

    Delmelle, Eric M.; Thill, Jean-Claude; Peeters, Dominique; Thomas, Isabelle

    2014-07-01

    In rapidly growing urban areas, it is deemed vital to expand (or contract) an existing network of public facilities to meet anticipated changes in the level of demand. We present a multi-period capacitated median model for school network facility location planning that minimizes transportation costs, while functional costs are subject to a budget constraint. The proposed Vintage Flexible Capacitated Location Problem (ViFCLP) has the flexibility to account for a minimum school-age closing requirement, while the maximum capacity of each school can be adjusted by the addition of modular units. Non-closest assignments are controlled by the introduction of a parameter penalizing excess travel. The applicability of the ViFCLP is illustrated on a large US school system (Charlotte-Mecklenburg, North Carolina) where high school demand is expected to grow faster with distance to the city center. Higher school capacities and greater penalty on travel impedance parameter reduce the number of non-closest assignments. The proposed model is beneficial to policy makers seeking to improve the provision and efficiency of public services over a multi-period planning horizon.

  12. Extracellular cAMP activates molecular signalling pathways associated with sperm capacitation in bovines.

    PubMed

    Alonso, Carlos Agustín I; Osycka-Salut, Claudia E; Castellano, Luciana; Cesari, Andreína; Di Siervi, Nicolás; Mutto, Adrián; Johannisson, Anders; Morrell, Jane M; Davio, Carlos; Perez-Martinez, Silvina

    2017-08-01

    Is extracellular cAMP involved in the regulation of signalling pathways in bovine sperm capacitation? Extracellular cAMP induces sperm capacitation through the activation of different signalling pathways that involve phospholipase C (PLC), PKC/ERK1-2 signalling and an increase in sperm Ca2+ levels, as well as soluble AC and cAMP/protein kinase A (PKA) signalling. In order to fertilize the oocyte, ejaculated spermatozoa must undergo a series of changes in the female reproductive tract, known as capacitation. This correlates with a number of membrane and metabolic modifications that include an increased influx of bicarbonate and Ca2+, activation of a soluble adenylyl cyclase (sAC) to produce cAMP, PKA activation, protein tyrosine phosphorylation and the development of hyperactivated motility. We previously reported that cAMP efflux by Multidrug Resistance Protein 4 (MRP4) occurs during sperm capacitation and the pharmacological blockade of this inhibits the process. Moreover, the supplementation of incubation media with cAMP abolishes the inhibition and leads to sperm capacitation, suggesting that extracellular cAMP regulates crucial signalling cascades involved in this process. Bovine sperm were selected by the wool glass column method, and washed by centrifugation in BSA-Free Tyrode's Albumin Lactate Pyruvate (sp-TALP). Pellets were resuspended then diluted for each treatment. For in vitro capacitation, 10 to 15 × 106 SPZ/ml were incubated in 0.3% BSA sp-TALP at 38.5°C for 45 min under different experimental conditions. To evaluate the role of extracellular cAMP on different events associated with sperm capacitation, 10 nM cAMP was added to the incubation medium as well as different inhibitors of enzymes associated with signalling transduction pathways: U73122 (PLC inhibitor, 10 μM), Gö6983 (PKC inhibitor, 10 μM), PD98059 (ERK-1/2 inhibitor, 30 μM), H89 and KT (PKA inhibitors, 50 μM and 100 nM, respectively), KH7 (sAC inhibitor, 10 μM), BAPTA-AM (intracellular Ca2+ chelator, 50 μM), EGTA (10 μM) and Probenecid (MRPs general inhibitor, 500 μM). In addition, assays for binding to oviductal epithelial cells and IVF were carried out to test the effect of cAMP compared with other known capacitant agents such as heparin (60 μg/ml) and bicarbonate (40 mM). Straws of frozen bovine semen (20-25 × 106 spermatozoa/ml) were kindly provided by Las Lilas, CIALE and CIAVT Artificial Insemination Centers. The methods used in this work include western blot, immunohistochemistry, flow cytometry, computer-assisted semen analysis, live imaging of Ca2+ and fluorescence scanning. At least three independent assays with bull samples of proven fertility were carried. In the present study, we elucidate the molecular events induced by extracellular cAMP. Our results showed that external cAMP induces sperm capacitation, depending upon the action of PLC. Downstream, this enzyme increased ERK1-2 activation through PKC and elicited a rise in sperm Ca2+ levels (P < 0.01). Moreover, extracellular cAMP-induced capacitation also depended on the activity of sAC and PKA, and increased tyrosine phosphorylation, indicating that the nucleotide exerts a broad range of responses. In addition, extracellular cAMP-induced sperm hyperactivation and concomitantly increased the proportion of spermatozoa with high mitochondrial activity (P < 0.01). Finally, cAMP increased the in vitro fertilization rate compared to control conditions (P < 0.001). None. This is an in vitro study performed with bovine cryopreserved spermatozoa. Studies in other species and with fresh samples are needed to extrapolate these data. These findings strongly suggest an important role of extracellular cAMP in the regulation of the signalling pathways involved in the acquisition of bull sperm fertilizing capability. The data presented here indicate that not only a rise, but also a regulation of cAMP levels is necessary to ensure sperm fertilizing ability. Thus, exclusion of the nucleotide to the extracellular space might be essential to guarantee the achievement of a cAMP tone, needed for all capacitation-associated events to take place. Moreover, the ability of cAMP to trigger such broad and complex signalling events allows us to hypothesize that cAMP is a self-produced autocrine/paracrine factor, and supports the emerging paradigm that spermatozoa do not compete but, in fact, communicate with each other. A precise understanding of the functional competence of mammalian spermatozoa is essential to generate clinical advances in the treatment of infertility and the development of novel contraceptive strategies. This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas [PIP0 496 to S.P.-M.], Agencia Nacional de Promoción Científica y Tecológica [PICT 2012-1195 and PICT2014-2325 to S.P.-M., and PICT 2013-2050 to C.D.], Boehringer Ingelheim Funds, and the Swedish Farmers Foundation [SLF-H13300339 to J.M.]. The authors declare there are no conflicts of interests. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  13. Capacitive Energy Extraction by Few-Layer Graphene Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Cheng; Zhan, Cheng; Jiang, De-en

    Capacitive double-layer expansion is a promising technology to harvest energy arising from the salinity difference between freshwater and seawater. Its optimal performance requires a careful selection of the operation potentials and electrode materials. While carbonaceous materials such as graphene and various forms of activated carbons are routinely used as the electrodes, there is little knowledge on how the quantum capacitance and the electric double-layer (EDL) capacitance, which are on the same order of magnitude, affect the capacitive performance. Toward understanding that from a theoretical perspective, here we study the capacitive energy extraction with graphene electrodes as a function of themore » number of graphene layers. The classical density functional theory is joined with the electronic density functional theory to obtain the EDL and the quantum capacitance, respectively. The theoretical results show that the quantum capacitance contribution plays a dominant role in extracting energy using the single-layer graphene, but its effect diminishes as the number of graphene layers increases. The overall extracted energy is dominated by the EDL contribution beyond about four graphene layers. Electrodes with more graphene layers are able to extract more energy at low charging potential. Here, because many porous carbons have nanopores with stacked graphene layers, our theoretical predictions are useful to identify optimal operation parameters for capacitive energy extraction with porous electrodes of different wall thickness.« less

  14. Capacitive Energy Extraction by Few-Layer Graphene Electrodes

    DOE PAGES

    Lian, Cheng; Zhan, Cheng; Jiang, De-en; ...

    2017-06-09

    Capacitive double-layer expansion is a promising technology to harvest energy arising from the salinity difference between freshwater and seawater. Its optimal performance requires a careful selection of the operation potentials and electrode materials. While carbonaceous materials such as graphene and various forms of activated carbons are routinely used as the electrodes, there is little knowledge on how the quantum capacitance and the electric double-layer (EDL) capacitance, which are on the same order of magnitude, affect the capacitive performance. Toward understanding that from a theoretical perspective, here we study the capacitive energy extraction with graphene electrodes as a function of themore » number of graphene layers. The classical density functional theory is joined with the electronic density functional theory to obtain the EDL and the quantum capacitance, respectively. The theoretical results show that the quantum capacitance contribution plays a dominant role in extracting energy using the single-layer graphene, but its effect diminishes as the number of graphene layers increases. The overall extracted energy is dominated by the EDL contribution beyond about four graphene layers. Electrodes with more graphene layers are able to extract more energy at low charging potential. Here, because many porous carbons have nanopores with stacked graphene layers, our theoretical predictions are useful to identify optimal operation parameters for capacitive energy extraction with porous electrodes of different wall thickness.« less

  15. Impedance spectroscopy study of a catechol-modified activated carbon electrode as active material in electrochemical capacitor

    NASA Astrophysics Data System (ADS)

    Cougnon, C.; Lebègue, E.; Pognon, G.

    2015-01-01

    Modified activated carbon (Norit S-50) electrodes with electrochemical double layer (EDL) capacitance and redox capacitance contributions to the electric charge storage were tested in 1 M H2SO4 to quantify the benefit and the limitation of the surface redox reactions on the electrochemical performances of the resulting pseudo-capacitive materials. The electrochemical performances of an electrochemically anodized carbon electrode and a catechol-modified carbon electrode, which make use both EDL capacitance of the porous structure of the carbon and redox capacitance, were compared to the performances obtained for the pristine carbon. Nitrogen gas adsorption measurements have been used for studying the impact of the grafting on the BET surface area, pore size distribution, pore volume and average pore diameter. The electrochemical behavior of carbon materials was studied by cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The EIS data were discussed by using a complex capacitance model that allows defining the characteristic time constant, the global capacitance and the frequency at which the maximum charge stored is reached. The EIS measurements were achieved at different dc potential values where a redox activity occurs and the evolution of the capacitance and the capacitive relaxation time with the electrode potential are presented. Realistic galvanostatic charge/discharge measurements performed at different current rates corroborate the results obtained by impedance.

  16. Lateral displacement and rotational displacement sensor

    DOEpatents

    Duden, Thomas

    2014-04-22

    A position measuring sensor formed from opposing sets of capacitor plates measures both rotational displacement and lateral displacement from the changes in capacitances as overlapping areas of capacitors change. Capacitances are measured by a measuring circuit. The measured capacitances are provided to a calculating circuit that performs calculations to obtain angular and lateral displacement from the capacitances measured by the measuring circuit.

  17. Improving accuracy of electrochemical capacitance and solvation energetics in first-principles calculations

    NASA Astrophysics Data System (ADS)

    Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.

    2018-04-01

    Reliable first-principles calculations of electrochemical processes require accurate prediction of the interfacial capacitance, a challenge for current computationally efficient continuum solvation methodologies. We develop a model for the double layer of a metallic electrode that reproduces the features of the experimental capacitance of Ag(100) in a non-adsorbing, aqueous electrolyte, including a broad hump in the capacitance near the potential of zero charge and a dip in the capacitance under conditions of low ionic strength. Using this model, we identify the necessary characteristics of a solvation model suitable for first-principles electrochemistry of metal surfaces in non-adsorbing, aqueous electrolytes: dielectric and ionic nonlinearity, and a dielectric-only region at the interface. The dielectric nonlinearity, caused by the saturation of dipole rotational response in water, creates the capacitance hump, while ionic nonlinearity, caused by the compactness of the diffuse layer, generates the capacitance dip seen at low ionic strength. We show that none of the previously developed solvation models simultaneously meet all these criteria. We design the nonlinear electrochemical soft-sphere solvation model which both captures the capacitance features observed experimentally and serves as a general-purpose continuum solvation model.

  18. Ferroelectric negative capacitance domain dynamics

    NASA Astrophysics Data System (ADS)

    Hoffmann, Michael; Khan, Asif Islam; Serrao, Claudy; Lu, Zhongyuan; Salahuddin, Sayeef; Pešić, Milan; Slesazeck, Stefan; Schroeder, Uwe; Mikolajick, Thomas

    2018-05-01

    Transient negative capacitance effects in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 capacitors are investigated with a focus on the dynamical switching behavior governed by domain nucleation and growth. Voltage pulses are applied to a series connection of the ferroelectric capacitor and a resistor to directly measure the ferroelectric negative capacitance during switching. A time-dependent Ginzburg-Landau approach is used to investigate the underlying domain dynamics. The transient negative capacitance is shown to originate from reverse domain nucleation and unrestricted domain growth. However, with the onset of domain coalescence, the capacitance becomes positive again. The persistence of the negative capacitance state is therefore limited by the speed of domain wall motion. By changing the applied electric field, capacitor area or external resistance, this domain wall velocity can be varied predictably over several orders of magnitude. Additionally, detailed insights into the intrinsic material properties of the ferroelectric are obtainable through these measurements. A new method for reliable extraction of the average negative capacitance of the ferroelectric is presented. Furthermore, a simple analytical model is developed, which accurately describes the negative capacitance transient time as a function of the material properties and the experimental boundary conditions.

  19. Interpretation of deep levels in Si-GaAs crystals observed by photo-induced current transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Hlinomaz, P.; Šmíd, V.; Krištofik, J.

    1993-05-01

    Deep levels measured by Photo-Induced Current Transient Spectroscopy (PICTS) are interpreted taking into account different bulk and surface properties of semi-insulating crystals, results of directly measured isothermal transients and types of observed deep levels determined from the measurements with different voltage polarity. The principal interest is focused on the temperature interval 250-450 K where peaks related to the deep levels causing semiinsulating properties are observed in the PICTS spectra. Majority of deep levels observed in various samples may be ascribed to the EL2, EL3, EL4, HL1 and HL9 levels. Maxima exhibiting inverse polarity in PICTS spectra are not related to EL2 or HL1.

  20. Large capacitance enhancement induced by metal-doping in graphene-based supercapacitors: a first-principles-based assessment.

    PubMed

    Paek, Eunsu; Pak, Alexander J; Hwang, Gyeong S

    2014-08-13

    Chemically doped graphene-based materials have recently been explored as a means to improve the performance of supercapacitors. In this work, we investigate the effects of 3d transition metals bound to vacancy sites in graphene with [BMIM][PF6] ionic liquid on the interfacial capacitance; these results are compared to the pristine graphene case with particular attention to the relative contributions of the quantum and electric double layer capacitances. Our study highlights that the presence of metal-vacancy complexes significantly increases the availability of electronic states near the charge neutrality point, thereby enhancing the quantum capacitance drastically. In addition, the use of metal-doped graphene electrodes is found to only marginally influence the microstructure and capacitance of the electric double layer. Our findings indicate that metal-doping of graphene-like electrodes can be a promising route toward increasing the interfacial capacitance of electrochemical double layer capacitors, primarily by enhancing the quantum capacitance.

  1. From MEMRISTOR to MEMImpedance device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakrim, T.; Univ. Grenoble Alpes, G2Elab, F-38000 Grenoble; Vallée, C., E-mail: christophe.vallee@cea.fr

    2016-02-01

    The behavior of the capacitance switching of HfO{sub 2} Resistive non-volatile Memories is investigated in view of realizing a MEMImpedance (MEM-Z) device. In such a Metal Insulator Metal structure, the impedance value can be tuned by the adjustment of both resistance and capacitance values. We observe a strong variation of capacitance from positive to negative values in a single layer Metal Insulator Metal device made of HfO{sub 2} deposited by Atomic Layer Deposition, but unfortunately no memory effect is observed. However, in the case of a two layer structure, a device has been obtained with a memory effect where bothmore » resistance and capacitance values can be tuned simultaneously, with a variation of capacitance down to negative values to get an inductive behavior. Negative capacitance values are observed for voltage values near SET voltage. A schematic model based on shaped oxygen vacancy density is proposed to account for this capacitance variation. The oxygen vacancies can be either isolated or connected in the bulk of the oxide.« less

  2. Development of a Capacitive Ice Sensor to Measure Ice Growth in Real Time

    PubMed Central

    Zhi, Xiang; Cho, Hyo Chang; Wang, Bo; Ahn, Cheol Hee; Moon, Hyeong Soon; Go, Jeung Sang

    2015-01-01

    This paper presents the development of the capacitive sensor to measure the growth of ice on a fuel pipe surface in real time. The ice sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the ice formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the ice formation conditions. From the humidity, a water film is formed on the ice sensor, which results in an increase in capacitance. Ice nucleation occurs, followed by the rapid formation of frost ice that decreases the capacitance suddenly. The capacitance is saturated. The developed ice sensor explains the ice growth providing information about the icing temperature in real time. PMID:25808770

  3. Development of a capacitive ice sensor to measure ice growth in real time.

    PubMed

    Zhi, Xiang; Cho, Hyo Chang; Wang, Bo; Ahn, Cheol Hee; Moon, Hyeong Soon; Go, Jeung Sang

    2015-03-19

    This paper presents the development of the capacitive sensor to measure the growth of ice on a fuel pipe surface in real time. The ice sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the ice formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the ice formation conditions. From the humidity, a water film is formed on the ice sensor, which results in an increase in capacitance. Ice nucleation occurs, followed by the rapid formation of frost ice that decreases the capacitance suddenly. The capacitance is saturated. The developed ice sensor explains the ice growth providing information about the icing temperature in real time.

  4. Wavelength-modulated photocapacitance spectroscopy

    NASA Technical Reports Server (NTRS)

    Kamieniecki, E.; Lagowski, J.; Gatos, H. C.

    1980-01-01

    Derivative deep-level spectroscopy was achieved with wavelength-modulated photocapacitance employing MOS structures and Schottky barriers. The energy position and photoionization characteristics of deep levels of melt-grown GaAs and the Cr level in high-resistivity GaAs were determined. The advantages of this method over existing methods for deep-level spectroscopy are discussed.

  5. Bevacizumab-Based Chemotherapy Combined with Regional Deep Capacitive Hyperthermia in Metastatic Cancer Patients: A Pilot Study.

    PubMed

    Ranieri, Girolamo; Ferrari, Cristina; Di Palo, Alessandra; Marech, Ilaria; Porcelli, Mariangela; Falagario, Gianmarco; Ritrovato, Fabiana; Ramunni, Luigi; Fanelli, Margherita; Rubini, Giuseppe; Gadaleta, Cosmo Damiano

    2017-07-06

    As an angiogenesis inhibitor, bevacizumab has been investigated in combination with different chemotherapeutic agents, achieving an established role for metastatic cancer treatment. However, potential synergic anti-angiogenic effects of hyperthermia have not tested to date in literature. The aim of our study was to analyze efficacy, safety, and survival of anti-angiogenic-based chemotherapy associated to regional deep capacitive hyperthermia (HT) in metastatic cancer patients. Twenty-three patients with metastatic colorectal ( n = 16), ovarian ( n = 5), and breast ( n = 2) cancer were treated with HT in addition to a standard bevacizumab-based chemotherapy regimen. Treatment response assessment was performed, according to the modified Response Evaluation Criteria for Solid Tumors (mRECIST), at 80 days (timepoint-1) and at 160 days (timepoint-2) after therapy. Disease Response Rate (DRR), considered as the proportion of patients who had the best response rating (complete response (CR), partial response (PR), or stable disease (SD)), was assessed at timepoint-1 and timepoint-2. Chi-squared for linear trend test was performed to evaluated the association between response groups (R/NR) and the number of previous treatment (none, 1, 2, 3), number of chemotherapy cycles (<6, 6, 12, >12), number of hyperthermia sessions (<12, 12, 24, >24), and lines of chemotherapy (I, II). Survival curves were estimated by Kaplan-Meier method. DRR was 85.7% and 72.2% at timepoint-1 and timepoint-2, respectively. HT was well tolerated without additional adverse effects on chemotherapy-related toxicity. Chi-squared for linear trend test demonstrated that the percentage of responders grew in relation to the number of chemotherapy cycles ( p = 0.015) and to number of HT sessions ( p < 0.001) performed. Both overall survival (OS) and time to progression (TTP) were influenced by the number of chemotherapy cycles ( p < 0.001) and HT sessions ( p < 0.001) performed. Our preliminary data, that need to be confirmed in larger studies, suggest that the combined treatment of bevacizumab-based chemotherapy with HT has a favorable tumor response, is feasible and well tolerated, and offers a potentially promising option for metastatic cancer patients.

  6. Potentiometric Titrations for Measuring the Capacitance of Colloidal Photodoped ZnO Nanocrystals.

    PubMed

    Brozek, Carl K; Hartstein, Kimberly H; Gamelin, Daniel R

    2016-08-24

    Colloidal semiconductor nanocrystals offer a unique opportunity to bridge molecular and bulk semiconductor redox phenomena. Here, potentiometric titration is demonstrated as a method for quantifying the Fermi levels and charging potentials of free-standing colloidal n-type ZnO nanocrystals possessing between 0 and 20 conduction-band electrons per nanocrystal, corresponding to carrier densities between 0 and 1.2 × 10(20) cm(-3). Potentiometric titration of colloidal semiconductor nanocrystals has not been described previously, and little precedent exists for analogous potentiometric titration of any soluble reductants involving so many electrons. Linear changes in Fermi level vs charge-carrier density are observed for each ensemble of nanocrystals, with slopes that depend on the nanocrystal size. Analysis indicates that the ensemble nanocrystal capacitance is governed by classical surface electrical double layers, showing no evidence of quantum contributions. Systematic shifts in the Fermi level are also observed with specific changes in the identity of the charge-compensating countercation. As a simple and contactless alternative to more common thin-film-based voltammetric techniques, potentiometric titration offers a powerful new approach for quantifying the redox properties of colloidal semiconductor nanocrystals.

  7. A humidity sensing organic-inorganic composite for environmental monitoring.

    PubMed

    Ahmad, Zubair; Zafar, Qayyum; Sulaiman, Khaulah; Akram, Rizwan; Karimov, Khasan S

    2013-03-14

    In this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu2O)-based humidity sensor. Silver thin films (thickness ~200 nm) were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD) technique. A pair of rectangular silver electrodes was formed by patterning silver film through standard optical lithography technique. An active layer of organic-inorganic composite for humidity sensing was later spun coated to cover the separation between the silver electrodes. The electrical characterization of the sensor was performed as a function of relative humidity levels and frequency of the AC input signal. The sensor showed reversible changes in its capacitance with variations in humidity level. The maximum sensitivity ~31.6 pF/%RH at 100 Hz in capacitive mode of operation has been attained. The aim of this study was to increase the sensitivity of the previously reported humidity sensors using PEPC and NiPc, which has been successfully achieved.

  8. A Humidity Sensing Organic-Inorganic Composite for Environmental Monitoring

    PubMed Central

    Ahmad, Zubair; Zafar, Qayyum; Sulaiman, Khaulah; Akram, Rizwan; Karimov, Khasan S.

    2013-01-01

    In this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu2O)-based humidity sensor. Silver thin films (thickness ∼200 nm) were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD) technique. A pair of rectangular silver electrodes was formed by patterning silver film through standard optical lithography technique. An active layer of organic-inorganic composite for humidity sensing was later spun coated to cover the separation between the silver electrodes. The electrical characterization of the sensor was performed as a function of relative humidity levels and frequency of the AC input signal. The sensor showed reversible changes in its capacitance with variations in humidity level. The maximum sensitivity ∼31.6 pF/%RH at 100 Hz in capacitive mode of operation has been attained. The aim of this study was to increase the sensitivity of the previously reported humidity sensors using PEPC and NiPc, which has been successfully achieved. PMID:23493124

  9. Decadal trends in deep ocean salinity and regional effects on steric sea level

    NASA Astrophysics Data System (ADS)

    Purkey, S. G.; Llovel, W.

    2017-12-01

    We present deep (below 2000 m) and abyssal (below 4000 m) global ocean salinity trends from the 1990s through the 2010s and assess the role of deep salinity in local and global sea level budgets. Deep salinity trends are assessed using all deep basins with available full-depth, high-quality hydrographic section data that have been occupied two or more times since the 1980s through either the World Ocean Circulation Experiment (WOCE) Hydrographic Program or the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). All salinity data is calibrated to standard seawater and any intercruise offsets applied. While the global mean deep halosteric contribution to sea level rise is close to zero (-0.017 +/- 0.023 mm/yr below 4000 m), there is a large regional variability with the southern deep basins becoming fresher and northern deep basins becoming more saline. This meridional gradient in the deep salinity trend reflects different mechanisms driving the deep salinity variability. The deep Southern Ocean is freshening owing to a recent increased flux of freshwater to the deep ocean. Outside of the Southern Ocean, the deep salinity and temperature changes are tied to isopycnal heave associated with a falling of deep isopycnals in recent decades. Therefore, regions of the ocean with a deep salinity minimum are experiencing both a halosteric contraction with a thermosteric expansion. While the thermosteric expansion is larger in most cases, in some regions the halosteric compensates for as much as 50% of the deep thermal expansion, making a significant contribution to local sea level rise budgets.

  10. A Solid-State Fibriform Supercapacitor Boosted by Host-Guest Hybridization between the Carbon Nanotube Scaffold and MXene Nanosheets.

    PubMed

    Yu, Chenyang; Gong, Yujiao; Chen, Ruyi; Zhang, Mingyi; Zhou, Jinyuan; An, Jianing; Lv, Fan; Guo, Shaojun; Sun, Gengzhi

    2018-06-25

    Fiber-shaped supercapacitors with improved specific capacitance and high rate capability are a promising candidate as power supply for smart textiles. However, the synergistic interaction between conductive filaments and active nanomaterials remains a crucial challenge, especially when hydrothermal or electrochemical deposition is used to produce a core (fiber)-shell (active materials) fibrous structure. On the other hand, although 2D pseudocapacitive materials, e.g., Ti 3 C 2 T x (MXene), have demonstrated high volumetric capacitance, high electrical conductivity, and hydrophilic characteristics, MXene-based electrodes normally suffer from poor rate capability owing to the sheet restacking especially when the loading level is high and solid-state gel is used as electrolyte. Herein, by hosting MXene nanosheets (Ti 3 C 2 T x ) in the corridor of a scrolled carbon nanotube (CNT) scaffold, a MXene/CNT fiber with helical structure is successfully fabricated. These features offer open spaces for rapid ion diffusion and guarantee fast electron transport. The solid-state supercapacitor based on such hybrid fibers with gel electrolyte coating exhibits a volumetric capacitance of 22.7 F cm -3 at 0.1 A cm -3 with capacitance retention of 84% at current density of 1.0 A cm -3 (19.1 F cm -3 ), improved volumetric energy density of 2.55 mWh cm -3 at the power density of 45.9 mW cm -3 , and excellent mechanical robustness. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Silicon Carbide Capacitive High Temperature MEMS Strain Transducer

    DTIC Science & Technology

    2012-03-22

    SILICON CARBIDE CAPACITIVE HIGH TEMPURATURE MEMS STRAIN TRANSDUCER THESIS Richard P. Weisenberger, DR01, USAF AFIT/GE/ENG...declared a work of the U.S. Government and is not subject to copyright protection in the United States AFIT/GE/ENG/12-43 SILICON CARBIDE CAPACITIVE...STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/GE/ENG/12-43 SILICON CARBIDE CAPACITIVE IDGH TEMPURATURE MEMS STRAIN TRANSDUCER

  12. Predicting ion specific capacitances of supercapacitors due to quantum ionic interactions.

    PubMed

    Parsons, Drew F

    2014-08-01

    A new theoretical framework is now available to help explain ion specific (Hofmeister) effects. All measurements in physical chemistry show ion specificity, inexplicable by classical electrostatic theories. These ignore ionic dispersion forces that change ionic adsorption. We explored ion specificity in supercapacitors using a modified Poisson-Boltzmann approach that includes ionic dispersion energies. We have applied ab initio quantum chemical methods to determine required ion sizes and ion polarisabilities. Our model represents graphite electrodes through their optical dielectric spectra. The electrolyte was 1.2 M Li salt in propylene carbonate, using the common battery anions, PF6(-), BF4(-) and ClO4(-). We also investigated the perhalate series with BrO4(-) and IO4(-). The capacitance C=dσ/dψ was calculated from the predicted electrode surface charge σ of each electrode with potential ψ between electrodes. Compared to the purely electrostatic calculation, the capacitance of a positively charged graphite electrode was enhanced by more than 15%, with PF6(-) showing >50% increase in capacitance. IO4(-) provided minimal enhancement. The enhancement is due to adsorption of both anions and cations, driven by ionic dispersion forces. The Hofmeister series in the single-electrode capacitance was PF6(-)>BF4(-)>ClO4(-)>BrO4(-)>IO4(-) . When the graphite electrode was negatively charged, the perhalates provided almost no enhancement of capacitance, while PF6(-) and BF4(-) decreased capacitance by about 15%. Due to the asymmetric impact of nonelectrostatic ion interactions, the capacitances of positive and negative electrodes are not equal. The capacitance of a supercapacitor should therefore be reported as two values rather than one, similar to the matrix of mutual capacitances used in multielectrode devices. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Effect of Pseudomonas aeruginosa on sperm capacitation and protein phosphorylation of boar spermatozoa.

    PubMed

    Sepúlveda, Lilian; Bussalleu, Eva; Yeste, Marc; Bonet, Sergi

    2016-05-01

    Several studies have reported the detrimental effects that bacteriospermia causes on boar sperm quality, but little is known about its effects on IVC. Considering that, the present study sought to evaluate the effects of different concentrations of Pseudomonas aeruginosa on different indicators of capacitation status (sperm viability, membrane lipid disorder, sperm motility kinematics, and protein phosphorylation of boar spermatozoa) after IVC. Flow cytometry and computer assisted sperm analysis (CASA) revealed that the presence of P aeruginosa in boar sperm samples, mostly at concentrations greater than 10(6) CFU/mL, is associated with a significant (P < 0.05) decrease in the percentages of both sperm membrane integrity and sperm with low membrane lipid disorder, and also with a reduction in sperm motility kinetic parameters when compared with results obtained from the control sample, which presented the typical motility pattern of capacitated-like boar spermatozoa. Moreover, Western blot results also showed significant (P < 0.05) changes in the levels of tyrosine, serine, and threonine protein phosphorylation because of bacterial contamination, the decrease in phosphotyrosine levels of p32, a well-known marker of IVC achievement in boar sperm, being the most relevant. Indeed, after 3 hours of IVC, phosphotyrosine levels of p32 in the control sample were 3.13 ± 0.81, whereas in the tubes with 10(6) and 10(8) CFU/mL were 1.05 ± 0.20 and 0.36 ± 0.07, respectively. Therefore, the present study provides novel data regarding the effects of bacterial contamination on boar sperm, suggesting that the presence of P aeruginosa affects the fertilizing ability of boar sperm by altering its ability to accomplish IVC. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. New experimental techniques for solar cells

    NASA Technical Reports Server (NTRS)

    Lenk, R.

    1993-01-01

    Solar cell capacitance has special importance for an array controlled by shunting. Experimental measurements of solar cell capacitance in the past have shown disagreements of orders of magnitude. Correct measurement technique depends on maintaining the excitation voltage less than the thermal voltage. Two different experimental methods are shown to match theory well, and two effective capacitances are defined for quantifying the effect of the solar cell capacitance on the shunting system.

  15. Modeling and Characterization of Capacitive Elements With Tissue as Dielectric Material for Wireless Powering of Neural Implants.

    PubMed

    Erfani, Reza; Marefat, Fatemeh; Sodagar, Amir M; Mohseni, Pedram

    2018-05-01

    This paper reports on the modeling and characterization of capacitive elements with tissue as the dielectric material, representing the core building block of a capacitive link for wireless power transfer to neural implants. Each capacitive element consists of two parallel plates that are aligned around the tissue layer and incorporate a grounded, guarded, capacitive pad to mitigate the adverse effect of stray capacitances and shield the plates from external interfering electric fields. The plates are also coated with a biocompatible, insulating, coating layer on the inner side of each plate in contact with the tissue. A comprehensive circuit model is presented that accounts for the effect of the coating layers and is validated by measurements of the equivalent capacitance as well as impedance magnitude/phase of the parallel plates over a wide frequency range of 1 kHz-10 MHz. Using insulating coating layers of Parylene-C at a thickness of and Parylene-N at a thickness of deposited on two sets of parallel plates with different sizes and shapes of the guarded pad, our modeling and characterization results accurately capture the effect of the thickness and electrical properties of the coating layers on the behavior of the capacitive elements over frequency and with different tissues.

  16. Redundancy Analysis of Capacitance Data of a Coplanar Electrode Array for Fast and Stable Imaging Processing

    PubMed Central

    Wen, Yintang; Zhang, Zhenda; Zhang, Yuyan; Sun, Dongtao

    2017-01-01

    A coplanar electrode array sensor is established for the imaging of composite-material adhesive-layer defect detection. The sensor is based on the capacitive edge effect, which leads to capacitance data being considerably weak and susceptible to environmental noise. The inverse problem of coplanar array electrical capacitance tomography (C-ECT) is ill-conditioning, in which a small error of capacitance data can seriously affect the quality of reconstructed images. In order to achieve a stable image reconstruction process, a redundancy analysis method for capacitance data is proposed. The proposed method is based on contribution rate and anti-interference capability. According to the redundancy analysis, the capacitance data are divided into valid and invalid data. When the image is reconstructed by valid data, the sensitivity matrix needs to be changed accordingly. In order to evaluate the effectiveness of the sensitivity map, singular value decomposition (SVD) is used. Finally, the two-dimensional (2D) and three-dimensional (3D) images are reconstructed by the Tikhonov regularization method. Through comparison of the reconstructed images of raw capacitance data, the stability of the image reconstruction process can be improved, and the quality of reconstructed images is not degraded. As a result, much invalid data are not collected, and the data acquisition time can also be reduced. PMID:29295537

  17. [Human venous hemodynamics in microgravity and prediction of orthostatic tolerance in flight].

    PubMed

    Kotovskaya, A R; Fomina, G A

    2013-01-01

    The paper presents the results of investigating the lower limbs venous status in cosmonauts (n = 13) with the use of occlusion plethysmography in 6-month missions to the Russian segment of the International space station (ISS). An interrelation of shifts in venous capacitance, compliance and filling with orthostatic tolerance (OT) in the lower body negative pressure test (LBNP) was stated. OT predictability by the leg vein status in the course of space flight was demonstrated. The objective changes of veins predictive of OT reduction were identified. There are 3 levels of changes in venous capacitance, compliance and filling that prognosticate respective reductions in LBNP tolerance and were attested in 91% of the in-flight LBNP testing.

  18. Fabrication and Analysis of a Selectively Contacted Dual Channel High Electron Mobility Field-Effect Transistor

    NASA Astrophysics Data System (ADS)

    Khanna, Ravi

    1992-01-01

    A selectively contacted dual-channel high electron mobility transistor (SCD-CHEMT) has been designed, fabricated, and electrically characterized, in order to better understand the properties of two layers of two-dimensional electron gases (2DEGs) confined within a quantum well. The 2DEGs are placed under a Schottky barrier control gate which modulates their sheet charge densities, and by use of auxiliary Schottky barrier gates and two levels of ohmic contacts, electrical contacts to the individual channels in which each 2DEG resides is achieved. The design of the dual channel FET structure, and its practical realization by recourse to process development and fabrication are described, as are the techniques, results, and interpretations of electrical characterizations used to analyze the completed device. Critical fabrication procedures involving photolithography, etching, deposition, shallow and deep ohmic contact formation, and gate formation are developed, and a simple technique to reduce gate leakage by photo-oxidation is demonstrated. Analysis of the completed device is performed using one-dimensional band diagram simulations, magnetotransport and electrical measurements. Magnetotransport studies establish the existence of two 2DEGs within the quantum well at 4K. Drain current vs. drain voltage, and transconductance vs. gate voltage characteristics at room temperature confirm the presence of two 2DEGs and show that current flow between them occurs easily at room temperature. Carrier electron mobility profiles are taken of the 2DEGs and show that the lower 2DEG has a mobility comparable to that of a 2DEG formed at a normal interface, indicating that the "inverted interface problem" has been overcome. Capacitance vs. gate voltage measurements are taken, which are consistent with a simple device model consisting of gate depletion and interelectrode parasitic capacitances. It is concluded from the analysis that the dual channel system resides in three basic states: (1) Both channels are occupied by 2DEGs or (2) The upper channel is depleted, or (3) Both channels depleted. Finally, increase in isolation between the two 2DEGs is dramatically demonstrated at 77K by the drain current vs. drain voltage, and transconductance vs. gate voltage characteristics.

  19. High energy overcurrent protective device

    DOEpatents

    Praeg, Walter F.

    1982-01-01

    Electrical loads connected to capacitance elements in high voltage direct current systems are protected from damage by capacitance discharge overcurrents by connecting between the capacitance element and the load, a longitudinal inductor comprising a bifilar winding wound about a magnetic core, which forms an incomplete magnetic circuit. A diode is connected across a portion of the bifilar winding which conducts a unidirectional current only. Energy discharged from the capacitance element is stored in the inductor and then dissipated in an L-R circuit including the diode and the coil winding. Multiple high voltage circuits having capacitance elements may be connected to loads through bifilar windings all wound about the aforementioned magnetic core.

  20. Capacitance pressure sensor

    DOEpatents

    Eaton, William P.; Staple, Bevan D.; Smith, James H.

    2000-01-01

    A microelectromechanical (MEM) capacitance pressure sensor integrated with electronic circuitry on a common substrate and a method for forming such a device are disclosed. The MEM capacitance pressure sensor includes a capacitance pressure sensor formed at least partially in a cavity etched below the surface of a silicon substrate and adjacent circuitry (CMOS, BiCMOS, or bipolar circuitry) formed on the substrate. By forming the capacitance pressure sensor in the cavity, the substrate can be planarized (e.g. by chemical-mechanical polishing) so that a standard set of integrated circuit processing steps can be used to form the electronic circuitry (e.g. using an aluminum or aluminum-alloy interconnect metallization).

  1. In situ synthesized heteropoly acid/polyaniline/graphene nanocomposites to simultaneously boost both double layer- and pseudo-capacitance for supercapacitors.

    PubMed

    Cui, Zhiming; Guo, Chun Xian; Yuan, Weiyong; Li, Chang Ming

    2012-10-05

    It is challenging to simultaneously increase double layer- and pseudo-capacitance for supercapacitors. Phosphomolybdic acid/polyaniline/graphene nanocomposites (PMo(12)-PANI/GS) were prepared by using PMo(12) as a bifunctional reagent for not only well dispersing graphene for high electrochemical double layer capacitance but also in situ chemically polymerizing aniline for high pseudocapacitance, resulting in a specific capacitance of 587 F g(-1), which is ~1.5 and 6 times higher than that of PANI/GS (392 F g(-1)) and GS (103 F g(-1)), respectively. The nanocomposites also exhibit good reversibility and stability. Other kinds of heteropolyacids such as molybdovanadophosphoric acids (PMo(12-x)V(x), x = 1, 2 and 3) were also used to prepare PMo(12-x)V(x)-PANI/GS nanocomposites, also showing enhanced double layer- and pseudo-capacitance. This further proves the proposed concept to simultaneously boost both double layer- and pseudo-capacitance and demonstrates that it could be a universal approach to significantly improve the capacitance for supercapacitors.

  2. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance

    DOE PAGES

    Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.; ...

    2018-01-01

    For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. In this paper, we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is inmore » sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm -3 and high areal capacitances over 20 F cm -2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. In conclusion, these promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.« less

  3. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.

    For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. In this paper, we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is inmore » sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm -3 and high areal capacitances over 20 F cm -2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. In conclusion, these promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.« less

  4. Electrochemical and Capacitive Properties of Carbon Dots/Reduced Graphene Oxide Supercapacitors.

    PubMed

    Dang, Yong-Qiang; Ren, Shao-Zhao; Liu, Guoyang; Cai, Jiangtao; Zhang, Yating; Qiu, Jieshan

    2016-11-14

    There is much recent interest in graphene-based composite electrode materials because of their excellent mechanical strengths, high electron mobilities, and large specific surface areas. These materials are good candidates for applications in supercapacitors. In this work, a new graphene-based electrode material for supercapacitors was fabricated by anchoring carbon dots (CDs) on reduced graphene oxide (rGO). The capacitive properties of electrodes in aqueous electrolytes were systematically studied by galvanostatic charge-discharge measurements, cyclic voltammetry, and electrochemical impedance spectroscopy. The capacitance of rGO was improved when an appropriate amount of CDs were added to the material. The CD/rGO electrode exhibited a good reversibility, excellent rate capability, fast charge transfer, and high specific capacitance in 1 M H₂SO₄. Its capacitance was as high as 211.9 F/g at a current density of 0.5 A/g. This capacitance was 74.3% higher than that of a pristine rGO electrode (121.6 F/g), and the capacitance of the CD/rGO electrode retained 92.8% of its original value after 1000 cycles at a CDs-to-rGO ratio of 5:1.

  5. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance

    NASA Astrophysics Data System (ADS)

    Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.; Park, Jihye; Huang, Zhehao; Lee, Minah; Shaw, Leo; Chen, Shucheng; Yakovenko, Andrey A.; Kulkarni, Ambarish; Xiao, Jianping; Fredrickson, Kurt; Tok, Jeffrey B.; Zou, Xiaodong; Cui, Yi; Bao, Zhenan

    2018-01-01

    For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. Here we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is in sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm-3 and high areal capacitances over 20 F cm-2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. These promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.

  6. Effect of hysteretic and non-hysteretic negative capacitance on tunnel FETs DC performance

    NASA Astrophysics Data System (ADS)

    Saeidi, Ali; Jazaeri, Farzan; Stolichnov, Igor; Luong, Gia V.; Zhao, Qing-Tai; Mantl, Siegfried; Ionescu, Adrian M.

    2018-03-01

    This work experimentally demonstrates that the negative capacitance effect can be used to significantly improve the key figures of merit of tunnel field effect transistor (FET) switches. In the proposed approach, a matching condition is fulfilled between a trained-polycrystalline PZT capacitor and the tunnel FET (TFET) gate capacitance fabricated on a strained silicon-nanowire technology. We report a non-hysteretic switch configuration by combining a homojunction TFET and a negative capacitance effect booster, suitable for logic applications, for which the on-current is increased by a factor of 100, the transconductance by 2 orders of magnitude, and the low swing region is extended. The operation of a hysteretic negative capacitance TFET, when the matching condition for the negative capacitance is fulfilled only in a limited region of operation, is also reported and discussed. In this late case, a limited improvement in the device performance is observed. Overall, the paper demonstrates the main beneficial effects of negative capacitance on TFETs are the overdrive and transconductance amplification, which exactly address the most limiting performances of current TFETs.

  7. A low-cost fabrication method for sub-millimeter wave GaAs Schottky diode

    NASA Astrophysics Data System (ADS)

    Jenabi, Sarvenaz; Deslandes, Dominic; Boone, Francois; Charlebois, Serge A.

    2017-10-01

    In this paper, a submillimeter-wave Schottky diode is designed and simulated. Effect of Schottky layer thickness on cut-off frequency is studied. A novel microfabrication process is proposed and implemented. The presented microfabrication process avoids electron-beam (e-beam) lithography which reduces the cost. Also, this process provides more flexibility in selection of design parameters and allows significant reduction in the device parasitic capacitance. A key feature of the process is that the Schottky contact, the air-bridges, and the transmission lines, are fabricated in a single lift-off step. This process relies on a planarization method that is suitable for trenches of 1-10 μm deep and is tolerant to end-point variations. The fabricated diode is measured and results are compared with simulations. A very good agreement between simulation and measurement results are observed.

  8. Recent progress in supercapacitors: from materials design to system construction.

    PubMed

    Wang, Yonggang; Xia, Yongyao

    2013-10-04

    Supercapacitors are currently attracting intensive attention because they can provide energy density by orders of magnitude higher than dielectric capacitors, greater power density, and longer cycling ability than batteries. The main challenge for supercapacitors is to develop them with high energy density that is close to that of a current rechargeable battery, while maintaining their inherent characteristics of high power and long cycling life. Consequently, much research has been devoted to enhance the performance of supercapacitors by either maximizing the specific capacitance and/or increasing the cell voltage. The latest advances in the exploration and development of new supercapacitor systems and related electrode materials are highlighted. Also, the prospects and challenges in practical application are analyzed, aiming to give deep insights into the material science and electrochemical fields. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Evaluation of Capacitors at Cryogenic Temperatures for Space Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Gerber, Scott S.

    1998-01-01

    Advanced electronic systems designed for use in planetary exploration missions must operate efficiently and reliably under the extreme cold temperatures of deep space environment. In addition, spacecraft power electronics capable of cold temperature operation will greatly simplify the thermal management system by eliminating the need for heating units and associated equipment and thereby reduce the size and weight of the overall power system. In this study, film, mica, solid tantalum and electric double layer capacitors were evaluated as a function of temperature from room to liquid nitrogen in terms of their dielectric properties. These properties included capacitance stability and dielectric loss in the frequency range of 50 Hz to 100 kHz. DC leakage current measurements were also performed on the capacitors. The results obtained are discussed and conclusions are made concerning the suitability of the capacitors investigated for low temperature applications.

  10. Low Temperature Characterization of Ceramic and Film Power Capacitors

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad; Overton, Eric

    1996-01-01

    Among the key requirements for advanced electronic systems is the ability to withstand harsh environments while maintaining reliable and efficient operation. Exposures to low temperature as well as high temperature constitute such stresses. Applications where low temperatures are encountered include deep space missions, medical imaging equipment, and cryogenic instrumentation. Efforts were taken to design and develop power capacitors capable of wide temperature operation. In this work, ceramic and film power capacitors were developed and characterized as a function of temperature from 20 C to -185 C in terms of their dielectric properties. These properties included capacitance stability and dielectric loss in the frequency range of 50 Hz to 100 kHz. DC leakage current measurements were also performed on the capacitors. The manuscript presents the results that indicate good operational characteristic behavior and stability of the components tested at low temperatures.

  11. Electrical characteristics and step coverage of ZrO2 films deposited by atomic layer deposition for through-silicon via and metal-insulator-metal applications

    NASA Astrophysics Data System (ADS)

    Choi, Kyeong-Keun; Park, Chan-Gyung; Kim, Deok-kee

    2016-01-01

    The electrical characteristics and step coverage of ZrO2 films deposited by atomic layer deposition were investigated for through-silicon via (TSV) and metal-insulator-metal applications at temperatures below 300 °C. ZrO2 films were able to be conformally deposited on the scallops of 50-µm-diameter, 100-µm-deep TSV holes. The mean breakdown field of 30-nm-thick ZrO2 films on 30-nm-thick Ta(N) increased about 41% (from 2.7 to 3.8 MV/cm) upon H2 plasma treatment. With the plasma treatment, the breakdown field of the film increased and the temperature coefficient of capacitance decreased significantly, probably as a result of the decreased carbon concentration in the film.

  12. Investigation of Defect Distributions in SiO2/AlGaN/GaN High-Electron-Mobility Transistors by Using Capacitance-Voltage Measurement with Resonant Optical Excitation

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Soo; Lim, Seung-Young; Park, Yong-Keun; Jung, Gunwoo; Song, Jung-Hoon; Cha, Ho-Young; Han, Sang-Woo

    2018-06-01

    We investigated the distributions and the energy levels of defects in SiO2/AlGaN/GaN highelectron-mobility transistors (HEMTs) by using frequency-dependent ( F- D) capacitance-voltage ( C- V) measurements with resonant optical excitation. A Schottky barrier (SB) and a metal-oxidesemiconductor (MOS) HEMT were prepared to compare the effects of defects in their respective layers. We also investigated the effects of those layers on the threshold voltage ( V th ). A drastic voltage shift in the C- V curve at higher frequencies was caused by the large number of defect levels in the SiO2/GaN interface. A significant shift in V th with additional light illumination was observed due to a charging of the defect states in the SiO2/GaN interface. The voltage shifts were attributed to the detrapping of defect states at the SiO2/GaN interface.

  13. Capacitive density measurement for supercritical hydrogen

    NASA Astrophysics Data System (ADS)

    Funke, Th; Haberstroh, Ch; Szoucsek, K.; Schott, S.; Kunze, K.

    2017-12-01

    A new approach for automotive hydrogen storage systems is the so-called cryo-compressed hydrogen storage (CcH2). It has a potential for increased energy densities and thus bigger hydrogen amounts onboard, which is the main attractiveness for car manufacturers such as BMW. This system has further advantages in terms of safety, refueling and cooling potential. The current filling level measurement by means of pressure and temperature measurement and subsequent density calculation faces challenges especially in terms of precision. A promising alternative is the capacitive gauge. This measuring principle can determine the filling level of the CcH2 tank with significantly smaller tolerances. The measuring principle is based on different dielectric constants of gaseous and liquid hydrogen. These differences are successfully leveraged in liquid hydrogen storage systems (LH2). The present theoretical analysis shows that the dielectric values of CcH2 in the relevant operating range are comparable to LH2, thus achieving similarly good accuracy. The present work discusses embodiments and implementations for such a sensor in the CcH2 tank.

  14. The deep levels in InGaAlP epilayers grown by metalorganic chemical vapor deposition using tertiarybutylphosphine

    NASA Astrophysics Data System (ADS)

    Izumiya, T.; Ishikawa, H.; Mashita, M.

    1994-12-01

    InGaAlP epilayers and double-hetero structure light emitting diodes (LEDs) were grown by metalorganic chemical vapor deposition (MOCVD) using tertiarybutylphosphine (TBP). The photoluminescence (PL) intensities were low compared with the epilayer grown using PH 3, and depended markedly on the TBP synthesis lots. Deep levels, were studied and two oxygen related levels were observed in the epilayers with small PL intensities. An intimate relation between the deep levels and the photoluminescence (PL) intensity has been found. A larger TBP flow rate reduced the deep level concentrations and improved the PL intensity.

  15. Programmable differential capacitance-to-voltage converter for MEMS accelerometers

    NASA Astrophysics Data System (ADS)

    Royo, G.; Sánchez-Azqueta, C.; Gimeno, C.; Aldea, C.; Celma, S.

    2017-05-01

    Capacitive MEMS sensors exhibit an excellent noise performance, high sensitivity and low power consumption. They offer a huge range of applications, being the accelerometer one of its main uses. In this work, we present the design of a capacitance-to-voltage converter in CMOS technology to measure the acceleration from the capacitance variations. It is based on a low-power, fully-differential transimpedance amplifier with low input impedance and a very low input noise.

  16. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ya'akobovitz, A.; Department of Mechanical Engineering, Faculty of Engineering Sciences, Ben-Gurion University, Beer-Sheva; Bedewy, M.

    2015-02-02

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we findmore » that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.« less

  17. Factors and pathways involved in capacitation: how are they regulated?

    PubMed Central

    Jin, Shi-Kai; Yang, Wan-Xi

    2017-01-01

    In mammals, fertilization occurs via a comprehensive progression of events. Freshly ejaculated sperm have yet to acquire progressive motility or fertilization ability. They must first undergo a series of biochemical and physiological changes, collectively known as capacitation. Capacitation is a significant prerequisite to fertilization. During the process of capacitation, changes in membrane properties, intracellular ion concentration and the activities of enzymes, together with other protein modifications, induce multiple signaling events and pathways in defined media in vitro or in the female reproductive tract in vivo. These, in turn, stimulate the acrosome reaction and prepare spermatozoa for penetration of the egg zona pellucida prior to fertilization. In the present review, we conclude all mainstream factors and pathways regulate capacitation and highlight their crosstalk. We also summarize the relationship between capacitation and assisted reproductive technology or human disease. In the end, we sum up the open questions and future avenues in this field. PMID:27690295

  18. Studies on the Evaluation Methods for the Food Quality with a Non-contact type Capacitance Sensor.

    NASA Astrophysics Data System (ADS)

    Narumiya, Tadaoki; Hagura, Yoshio

    Changes of capacitance and temperature of ethyl alcohol, hamburger and dough with cheese filling were measured with specially-made measuring devices during the freezing and thawing. The results of measurement of capacitance and temperature suggest a linear correlation for ethyl alcohol as a single constituent substance. The adequate correlation is too estimated from the results of food samples, though the capacitance of food sample varies greatly at the start and end of freezing and thawing process. It has been demonstrated that the quality or physical condition of food sample can be determined easily by the measurement of capacitance using the specially-made devices. Also the quality or physical condition of food can be determined easily by the non-contact and non-destructive measurements of capacitance. A variety application of the present technique is conceivable for the process control of the freezing and thawing foods.

  19. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    NASA Astrophysics Data System (ADS)

    Ya'akobovitz, A.; Bedewy, M.; Hart, A. J.

    2015-02-01

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.

  20. Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation.

    PubMed

    Chen, Jian Z; Darhuber, Anton A; Troian, Sandra M; Wagner, Sigurd

    2004-10-01

    The design and performance of a miniaturized coplanar capacitive sensor is presented whose electrode arrays can also function as resistive microheaters for thermocapillary actuation of liquid films and droplets. Optimal compromise between large capacitive signal and high spatial resolution is obtained for electrode widths comparable to the liquid film thickness measured, in agreement with supporting numerical simulations which include mutual capacitance effects. An interdigitated, variable width design, allowing for wider central electrodes, increases the capacitive signal for liquid structures with non-uniform height profiles. The capacitive resolution and time response of the current design is approximately 0.03 pF and 10 ms, respectively, which makes possible a number of sensing functions for nanoliter droplets. These include detection of droplet position, size, composition or percentage water uptake for hygroscopic liquids. Its rapid response time allows measurements of the rate of mass loss in evaporating droplets.

  1. Quantifying the thickness of the electrical double layer neutralizing a planar electrode: the capacitive compactness.

    PubMed

    Guerrero-García, Guillermo Iván; González-Tovar, Enrique; Chávez-Páez, Martín; Kłos, Jacek; Lamperski, Stanisław

    2017-12-20

    The spatial extension of the ionic cloud neutralizing a charged colloid or an electrode is usually characterized by the Debye length associated with the supporting charged fluid in the bulk. This spatial length arises naturally in the linear Poisson-Boltzmann theory of point charges, which is the cornerstone of the widely used Derjaguin-Landau-Verwey-Overbeek formalism describing the colloidal stability of electrified macroparticles. By definition, the Debye length is independent of important physical features of charged solutions such as the colloidal charge, electrostatic ion correlations, ionic excluded volume effects, or specific short-range interactions, just to mention a few. In order to include consistently these features to describe more accurately the thickness of the electrical double layer of an inhomogeneous charged fluid in planar geometry, we propose here the use of the capacitive compactness concept as a generalization of the compactness of the spherical electrical double layer around a small macroion (González-Tovar et al., J. Chem. Phys. 2004, 120, 9782). To exemplify the usefulness of the capacitive compactness to characterize strongly coupled charged fluids in external electric fields, we use integral equations theory and Monte Carlo simulations to analyze the electrical properties of a model molten salt near a planar electrode. In particular, we study the electrode's charge neutralization, and the maximum inversion of the net charge per unit area of the electrode-molten salt system as a function of the ionic concentration, and the electrode's charge. The behaviour of the associated capacitive compactness is interpreted in terms of the charge neutralization capacity of the highly correlated charged fluid, which evidences a shrinking/expansion of the electrical double layer at a microscopic level. The capacitive compactness and its first two derivatives are expressed in terms of experimentally measurable macroscopic properties such as the differential and integral capacity, the electrode's surface charge density, and the mean electrostatic potential at the electrode's surface.

  2. MEMS for Practical Applications

    NASA Astrophysics Data System (ADS)

    Esashi, Masayoshi

    Silicon MEMS as electrostatically levitated rotational gyroscopes and 2D optical scanners, and wafer level packaged devices as integrated capacitive pressure sensors and MEMS switches are described. MEMS which use non-silicon materials as LTCC with electrical feedthrough, SiC and LiNbO3 for probe cards for wafer-level burn-in test, molds for glass press molding and SAW wireless passive sensors respectively are also described.

  3. A non-capacitative pathway activated by arachidonic acid is the major Ca2+ entry mechanism in rat A7r5 smooth muscle cells stimulated with low concentrations of vasopressin

    PubMed Central

    Broad, Lisa M; Cannon, Toby R; Taylor, Colin W

    1999-01-01

    Depletion of the Ca2+ stores of A7r5 cells stimulated Ca2+, though not Sr2+, entry. Vasopressin (AVP) or platelet-derived growth factor (PDGF) stimulated Sr2+ entry. The cells therefore express a capacitative pathway activated by empty stores and a non-capacitative pathway stimulated by receptors; only the former is permeable to Mn2+ and only the latter to Sr2+. Neither empty stores nor inositol 1,4,5-trisphosphate (InsP3) binding to its receptors are required for activation of the non-capacitative pathway, because microinjection of cells with heparin prevented PDGF-evoked Ca2+ mobilization but not Sr2+ entry. Low concentrations of Gd3+ irreversibly blocked capacitative Ca2+ entry without affecting AVP-evoked Sr2+ entry. After inhibition of the capacitative pathway with Gd3+, AVP evoked a substantial increase in cytosolic [Ca2+], confirming that the non-capacitative pathway can evoke a significant increase in cytosolic [Ca2+]. Arachidonic acid mimicked the effect of AVP on Sr2+ entry without stimulating Mn2+ entry; the Sr2+ entry was inhibited by 100 μM Gd3+, but not by 1 μM Gd3+ which completely inhibited capacitative Ca2+ entry. The effects of arachidonic acid did not require its metabolism. AVP-evoked Sr2+ entry was unaffected by isotetrandrine, an inhibitor of G protein-coupled phospholipase A2. U73122, an inhibitor of phosphoinositidase C, inhibited AVP-evoked formation of inositol phosphates and Sr2+ entry. The effects of phorbol esters and Ro31-8220 (a protein kinase C inhibitor) established that protein kinase C did not mediate the effects of AVP on the non-capacitative pathway. An inhibitor of diacylglycerol lipase, RHC-80267, inhibited AVP-evoked Sr2+ entry without affecting capacitative Ca2+ entry or release of Ca2+ stores. Selective inhibition of capacitative Ca2+ entry with Gd3+ revealed that the non-capacitative pathway is the major route for the Ca2+ entry evoked by low AVP concentrations. We conclude that in A7r5 cells, the Ca2+ entry evoked by low concentrations of AVP is mediated largely by a non-capacitative pathway directly regulated by arachidonic acid produced by the sequential activities of phosphoinositidase C and diacylglycerol lipase. PMID:10226154

  4. Processing-Induced Electrically Active Defects in Black Silicon Nanowire Devices.

    PubMed

    Carapezzi, Stefania; Castaldini, Antonio; Mancarella, Fulvio; Poggi, Antonella; Cavallini, Anna

    2016-04-27

    Silicon nanowires (Si NWs) are widely investigated nowadays for implementation in advanced energy conversion and storage devices, as well as many other possible applications. Black silicon (BSi)-NWs are dry etched NWs that merge the advantages related to low-dimensionality with the special industrial appeal connected to deep reactive ion etching (RIE). In fact, RIE is a well established technique in microelectronics manufacturing. However, RIE processing could affect the electrical properties of BSi-NWs by introducing deep states into their forbidden gap. This work applies deep level transient spectroscopy (DLTS) to identify electrically active deep levels and the associated defects in dry etched Si NW arrays. Besides, the successful fitting of DLTS spectra of BSi-NWs-based Schottky barrier diodes is an experimental confirmation that the same theoretical framework of dynamic electronic behavior of deep levels applies in bulk as well as in low dimensional structures like NWs, when quantum confinement conditions do not occur. This has been validated for deep levels associated with simple pointlike defects as well as for deep levels associated with defects with richer structures, whose dynamic electronic behavior implies a more complex picture.

  5. Hyper-activated motility in sperm capacitation is mediated by phospholipase D-dependent actin polymerization.

    PubMed

    Itach, Sarit Bar-Sheshet; Finklestein, Maya; Etkovitz, Nir; Breitbart, Haim

    2012-02-15

    In order to fertilize the oocyte, sperm must undergo a series of biochemical changes in the female reproductive tract, known as capacitation. Once capacitated, spermatozoon can bind to the zona pellucida of the egg and undergo the acrosome reaction (AR), a process that enables its penetration and fertilization of the oocyte. Important processes that characterize sperm capacitation are actin polymerization and the development of hyper-activated motility (HAM). Previously, we showed that Phospholipase D (PLD)-dependent actin polymerization occurs during sperm capacitation, however the role of this process in sperm capacitation is not yet known. In the present study, we showed for the first time the involvement of PLD-dependent actin polymerization in sperm motility during mouse and human capacitation. Sperm incubated under capacitation conditions revealed a time dependent increase in actin polymerization and HAM. Inhibition of Phosphatidic Acid (PA) formation by PLD using butan-1-ol, inhibited actin polymerization and motility, as well as in vitro fertilization (IVF) and the ability of the sperm to undergo the AR. The inhibition of sperm HAM by low concentration of butan-1-ol is completely restored by adding PA, further indicating the involvement of PLD in these processes. Furthermore, exogenous PA enhanced rapid actin polymerization that was followed by a rise in the HAM, as well as an increased in IVF rate. In conclusion, our results demonstrate that PLD-dependent actin polymerization is a critical step needed for the development of HAM during mouse and human sperm capacitation. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Pre-selection by double layer density gradient centrifugation improves the fertilising capacity of frozen-thawed, capacitated stallion sperm.

    PubMed

    Morató, Roser; Soares, Juleide M De Souza; Orero, Guifré; Mogas, Teresa; Miró, Jordi

    2013-06-01

    The effect of combining double layer density gradient centrifugation (DL-DGC) with different capacitation treatments on the fertilising capacity of frozen-thawed stallion sperm was examined via a heterologous assay involving in vitro-matured, zona pellucida-free bovine oocytes. In a first experiment, aliquots of frozen-thawed stallion sperm were subjected to one of five capacitation treatments without DL-DGC - ionomycin at 1.0μM, 0.1μM, 0.05μM or 0.01μM, or caffeine at 200μg/mL. The fertilising capacity of the semen was then assessed at 18h by staining the above oocytes with 4,6-diamidino-2-phenylindole (DAPI) and examining for sperm penetration, the number of penetrated spermatozoa per oocyte, and male pronucleus formation. In a second experiment, aliquots of frozen-thawed stallion sperm were subjected to DL-DGC selection - or not - and then further subjected to the two best capacitation treatments (0.1μM and 0.05μM ionomycin). The fertilising capacity of the semen was then determined as above. The DL-DGC/capacitated sperm samples showed the highest mean penetration rates: 24.16% following capacitation with 0.1μM ionomycin, and 12.21% following capacitation with 0.05μM ionomycin. The capacitated but non-DL-DGC-selected sperm returned significantly lower values: 6.26% and 7.02% for the same ionomycin treatments respectively. These findings suggest that combining DL-DGC selection with ionomycin capacitation improves the fertilising capacity of frozen-thawed stallion sperm. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Setup for in situ deep level transient spectroscopy of semiconductors during swift heavy ion irradiation.

    PubMed

    Kumar, Sandeep; Kumar, Sugam; Katharria, Y S; Safvan, C P; Kanjilal, D

    2008-05-01

    A computerized system for in situ deep level characterization during irradiation in semiconductors has been set up and tested in the beam line for materials science studies of the 15 MV Pelletron accelerator at the Inter-University Accelerator Centre, New Delhi. This is a new facility for in situ irradiation-induced deep level studies, available in the beam line of an accelerator laboratory. It is based on the well-known deep level transient spectroscopy (DLTS) technique. High versatility for data manipulation is achieved through multifunction data acquisition card and LABVIEW. In situ DLTS studies of deep levels produced by impact of 100 MeV Si ions on Aun-Si(100) Schottky barrier diode are presented to illustrate performance of the automated DLTS facility in the beam line.

  8. Maximizing the value of gate capacitance in field-effect devices using an organic interface layer

    NASA Astrophysics Data System (ADS)

    Kwok, H. L.

    2015-12-01

    Past research has confirmed the existence of negative capacitance in organics such as tris (8-Hydroxyquinoline) Aluminum (Alq3). This work explored using such an organic interface layer to enhance the channel voltage in the field-effect transistor (FET) thereby lowering the sub-threshold swing. In particular, if the values of the positive and negative gate capacitances are approximately equal, the composite negative capacitance will increase by orders of magnitude. One concern is the upper frequency limit (∼100 Hz) over which negative capacitance has been observed. Nonetheless, this frequency limit can be raised to kHz when the organic layer is subjected to a DC bias.

  9. Efficiency of thermoelectric conversion in ferroelectric film capacitive structures

    NASA Astrophysics Data System (ADS)

    Volpyas, V. A.; Kozyrev, A. B.; Soldatenkov, O. I.; Tepina, E. R.

    2012-06-01

    Thermal heating/cooling conditions for metal-insulator-metal structures based on barium strontium titanate ferroelectric films are studied by numerical methods with the aim of their application in capacitive thermoelectric converters. A correlation between the thermal and capacitive properties of thin-film ferroelectric capacitors is considered. The time of the temperature response and the rate of variation of the capacitive properties of the metal-insulator-metal structures are determined by analyzing the dynamics of thermal processes. Thermophysical calculations are carried out that take into consideration the real electrical properties of barium strontium titanate ferroelectric films and allow estimation of thermal modulation parameters and the efficiency of capacitive thermoelectric converters on their basis.

  10. A Poor Relationship Between Sea Level and Deep-Water Sand Delivery

    NASA Astrophysics Data System (ADS)

    Harris, Ashley D.; Baumgardner, Sarah E.; Sun, Tao; Granjeon, Didier

    2018-08-01

    The most commonly cited control on delivery of sand to deep water is the rate of relative sea-level fall. The rapid rate of accommodation loss on the shelf causes sedimentation to shift basinward. Field and experimental numerical modeling studies have shown that deep-water sand delivery can occur during any stage of relative sea level position and across a large range of values of rate of relative sea-level change. However, these studies did not investigate the impact of sediment transport efficiency on the relationship between rate of relative sea-level change and deep-water sand delivery rate. We explore this relationship using a deterministic nonlinear diffusion-based numerical stratigraphic forward model. We vary across three orders of magnitude the diffusion coefficient value for marine settings, which controls sediment transport efficiency. We find that the rate of relative sea-level change can explain no more than 1% of the variability in deep-water sand delivery rates, regardless of sediment transport efficiency. Model results show a better correlation with relative sea level, with up to 55% of the variability in deep water sand delivery rates explained. The results presented here are consistent with studies of natural settings which suggest stochastic processes such as avulsion and slope failure, and interactions among such processes, may explain the remaining variance. Relative sea level is a better predictor of deep-water sand delivery than rate of relative sea-level change because it is the sea-level fall itself which promotes sand delivery, not the rate of the fall. We conclude that the poor relationship between sea level and sand delivery is not an artifact of the modeling parameters but is instead due to the inadequacy of relative sea level and the rate of relative sea-level change to fully describe the dimensional space in which depositional systems reside. Subsequently, sea level itself is unable to account for the interaction of multiple processes that contribute to sand delivery to deep water.

  11. Energy Harvesting & Recapture from Human Subjects: Dual-Stage MEMS Cantilever Energy Harvester

    DTIC Science & Technology

    2015-03-01

    15 Figure 5. (a) In-plane overlap-varying capacitive harvester, (b) In-plane gap-closing capacitive harvester, (c) Out -of-plane gap-closing...capacitive harvester, (c) Out -of-plane gap-closing capacitive harvester [1] The two-way arrows in each subpart of Figure 5 indicate the shuttle’s direction...are compatible with other wafer -based technologies. Bismuth Telluride (Bi2Te3), a common Seebeck thermoelectric material, is able to be processed

  12. A Power-Efficient Capacitive Read-Out Circuit With Parasitic-Cancellation for MEMS Cochlea Sensors.

    PubMed

    Wang, Shiwei; Koickal, Thomas Jacob; Hamilton, Alister; Mastropaolo, Enrico; Cheung, Rebecca; Abel, Andrew; Smith, Leslie S; Wang, Lei

    2016-02-01

    This paper proposes a solution for signal read-out in the MEMS cochlea sensors that have very small sensing capacitance and do not have differential sensing structures. The key challenge in such sensors is the significant signal degradation caused by the parasitic capacitance at the MEMS-CMOS interface. Therefore, a novel capacitive read-out circuit with parasitic-cancellation mechanism is developed; the equivalent input capacitance of the circuit is negative and can be adjusted to cancel the parasitic capacitance. Chip results prove that the use of parasitic-cancellation is able to increase the sensor sensitivity by 35 dB without consuming any extra power. In general, the circuit follows a low-degradation low-amplification approach which is more power-efficient than the traditional high-degradation high-amplification approach; it employs parasitic-cancellation to reduce the signal degradation and therefore a lower gain is required in the amplification stage. Besides, the chopper-stabilization technique is employed to effectively reduce the low-frequency circuit noise and DC offsets. As a result of these design considerations, the prototype chip demonstrates the capability of converting a 7.5 fF capacitance change of a 1-Volt-biased 0.5 pF capacitive sensor pair into a 0.745 V signal-conditioned output at the cost of only 165.2 μW power consumption.

  13. Focal adhesion kinase is required for actin polymerization and remodeling of the cytoskeleton during sperm capacitation

    PubMed Central

    Roa-Espitia, Ana L.; Hernández-Rendón, Eva R.; Baltiérrez-Hoyos, Rafael; Muñoz-Gotera, Rafaela J.; Cote-Vélez, Antonieta; Jiménez, Irma; González-Márquez, Humberto

    2016-01-01

    ABSTRACT Several focal adhesion proteins are known to cooperate with integrins to link the extracellular matrix to the actin cytoskeleton; as a result, many intracellular signaling pathways are activated and several focal adhesion complexes are formed. However, how these proteins function in mammalian spermatozoa remains unknown. We confirm the presence of focal adhesion proteins in guinea pig spermatozoa, and we explore their role during capacitation and the acrosome reaction, and their relationship with the actin cytoskeleton. Our results suggest the presence of a focal adhesion complex formed by β1-integrin, focal adhesion kinase (FAK), paxillin, vinculin, talin, and α-actinin in the acrosomal region. Inhibition of FAK during capacitation affected the protein tyrosine phosphorylation associated with capacitation that occurs within the first few minutes of capacitation, which caused the acrosome reaction to become increasingly Ca2+ dependent and inhibited the polymerization of actin. The integration of vinculin and talin into the complex, and the activation of FAK and paxillin during capacitation, suggests that the complex assembles at this time. We identify that vinculin and α-actinin increase their interaction with F-actin while it remodels during capacitation, and that during capacitation focal adhesion complexes are structured. FAK contributes to acrosome integrity, likely by regulating the polymerization and the remodeling of the actin cytoskeleton. PMID:27402964

  14. Effect of poly(3,4-ethylenedioxythiophene) (PEDOT) in carbon-based composite electrodes for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Lei, Chunhong; Wilson, Peter; Lekakou, Constantina

    Electrochemical double layer supercapacitor cells were fabricated and tested using composite electrodes of activated carbon with carbon black and poly(3,4-ethylenedioxythiophene) (PEDOT), and an organic electrolyte 1 M TEABF 4/PC solution. The effect of PEDOT on the performance of the EDLC cells was explored and the cells were characterised by electrochemical impedance spectroscopy (EIS), cyclic voltammetry and galvanostatic charge-discharge. A generalised equivalent circuit model was developed for which numerical simulations were performed to determine the properties and parameters of its components from the EIS data. It was found that the proposed model fitted successfully the data of all tested cells. PEDOT enhanced the electrode and cell capacitance via its pseudo-capacitance effect up to a maximum value for an optimum PEDOT loading and greatly increased the energy density of the cell while the maximum power density has been still maintained at supercapacitor levels. Furthermore, PEDOT replaced PVDF as a binder and harmful solvent release was reduced during electrode processing. Activated carbon-carbon black composite electrodes with PEDOT as binder were found to have specific capacitance superior to that of activated carbon-carbon black electrodes with PVDF binder.

  15. A Wirelessly Powered Smart Contact Lens with Reconfigurable Wide Range and Tunable Sensitivity Sensor Readout Circuitry

    PubMed Central

    Chiou, Jin-Chern; Hsu, Shun-Hsi; Huang, Yu-Chieh; Yeh, Guan-Ting; Liou, Wei-Ting; Kuei, Cheng-Kai

    2017-01-01

    This study presented a wireless smart contact lens system that was composed of a reconfigurable capacitive sensor interface circuitry and wirelessly powered radio-frequency identification (RFID) addressable system for sensor control and data communication. In order to improve compliance and reduce user discomfort, a capacitive sensor was embedded on a soft contact lens of 200 μm thickness using commercially available bio-compatible lens material and a standard manufacturing process. The results indicated that the reconfigurable sensor interface achieved sensitivity and baseline tuning up to 120 pF while consuming only 110 μW power. The range and sensitivity tuning of the readout circuitry ensured a reliable operation with respect to sensor fabrication variations and independent calibration of the sensor baseline for individuals. The on-chip voltage scaling allowed the further extension of the detection range and prevented the implementation of large on-chip elements. The on-lens system enabled the detection of capacitive variation caused by pressure changes in the range of 2.25 to 30 mmHg and hydration level variation from a distance of 1 cm using incident power from an RFID reader at 26.5 dBm. PMID:28067859

  16. Measurement of intestinal edema using an impedance analyzer circuit.

    PubMed

    Radhakrishnan, Ravi S; Shah, Kunal; Xue, Hasen; Moore-Olufemi, Stacey D; Moore, Frederick A; Weisbrodt, Norman W; Allen, Steven J; Gill, Brijesh; Cox, Charles S

    2007-03-01

    Acute intestinal edema adversely affects intestinal transit, permeability, and contractility. Current resuscitation modalities, while effective, are associated with development of acute intestinal edema. Knowledge of levels of tissue edema would allow clinicians to monitor intestinal tissue water and may help prevent the detrimental effects of edema. However, there is no simple method to measure intestinal tissue water without biopsy. We sought to develop a tissue impedance analyzer to measure tissue edema, without the need for invasive biopsy. Oscillating voltage input was applied to the analyzer circuit and an oscilloscope measured the voltage output across any load. Rats were randomized to three groups: sham, mild edema (80 mL/kg of NS resuscitation), and severe edema (80 mL/kg of NS resuscitation with intestinal venous hypertension). Intestinal edema was measured by wet-to-dry tissue weight ratio. Bowel impedance was measured and converted to capacitance using a standard curve. Acute intestinal edema causes a significant increase in bowel capacitance. This capacitance can be used to predict tissue water concentration. Using an impedance analyzer circuit, it is possible to measure intestinal edema reliably and quickly. This may prove to be a useful tool in the resuscitation of critically ill patients.

  17. Closed-loop feedback control for microfluidic systems through automated capacitive fluid height sensing.

    PubMed

    Soenksen, L R; Kassis, T; Noh, M; Griffith, L G; Trumper, D L

    2018-03-13

    Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications. However, performing accurate measurements of the fluid level in small-scale reservoirs (<1 mL) has proven to be an elusive goal, especially if direct fluid-sensor contact needs to be avoided. In particular, gravity-driven systems used in several microfluidic applications to establish pressure gradients and impose flow remain open-loop and largely unmonitored due to these sensing limitations. Here we present an optimized self-shielded coplanar capacitive sensor design and automated control system to provide submillimeter fluid-height resolution (∼250 μm) and control of small-scale open reservoirs without the need for direct fluid contact. Results from testing and validation of our optimized sensor and system also suggest that accurate fluid height information can be used to robustly characterize, calibrate and dynamically control a range of microfluidic systems with complex pumping mechanisms, even in cell culture conditions. Capacitive sensing technology provides a scalable and cost-effective way to enable continuous monitoring and closed-loop feedback control of fluid volumes in small-scale gravity-dominated wells in a variety of microfluidic applications.

  18. Improved circuit for measuring capacitive and inductive reactances

    NASA Technical Reports Server (NTRS)

    Dalins, I.; Mc Carty, V.

    1967-01-01

    Amplifier circuit measures very small changes of capacitive or inductive reactance, such as produced by a variable capacitance or a variable inductance displacement transducer. The circuit employs reactance-sensing oscillators in which field effect transistors serve as the active elements.

  19. Semi-automatized segmentation method using image-based flow cytometry to study sperm physiology: the case of capacitation-induced tyrosine phosphorylation.

    PubMed

    Matamoros-Volante, Arturo; Moreno-Irusta, Ayelen; Torres-Rodriguez, Paulina; Giojalas, Laura; Gervasi, María G; Visconti, Pablo E; Treviño, Claudia L

    2018-02-01

    Is image-based flow cytometry a useful tool to study intracellular events in human sperm such as protein tyrosine phosphorylation or signaling processes? Image-based flow cytometry is a powerful tool to study intracellular events in a relevant number of sperm cells, which enables a robust statistical analysis providing spatial resolution in terms of the specific subcellular localization of the labeling. Sperm capacitation is required for fertilization. During this process, spermatozoa undergo numerous physiological changes, via activation of different signaling pathways, which are not completely understood. Classical approaches for studying sperm physiology include conventional microscopy, flow cytometry and Western blotting. These techniques present disadvantages for obtaining detailed subcellular information of signaling pathways in a relevant number of cells. This work describes a new semi-automatized analysis using image-based flow cytometry which enables the study, at the subcellular and population levels, of different sperm parameters associated with signaling. The increase in protein tyrosine phosphorylation during capacitation is presented as an example. Sperm cells were isolated from seminal plasma by the swim-up technique. We evaluated the intensity and distribution of protein tyrosine phosphorylation in sperm incubated in non-capacitation and capacitation-supporting media for 1 and 18 h under different experimental conditions. We used an antibody against FER kinase and pharmacological inhibitors in an attempt to identify the kinases involved in protein tyrosine phosphorylation during human sperm capacitation. Semen samples from normospermic donors were obtained by masturbation after 2-3 days of sexual abstinence. We used the innovative technique image-based flow cytometry and image analysis tools to segment individual images of spermatozoa. We evaluated and quantified the regions of sperm where protein tyrosine phosphorylation takes place at the subcellular level in a large number of cells. We also used immunocytochemistry and Western blot analysis. Independent experiments were performed with semen samples from seven different donors. Using image analysis tools, we developed a completely novel semi-automatic strategy useful for segmenting thousands of individual cell images obtained using image-based flow cytometry. Contrary to immunofluorescence which relies on the analysis of a limited sperm population and also on the observer, image-based flow cytometry allows for unbiased quantification and simultaneous localization of post-translational changes in an extended sperm population. Interestingly, important data can be independently analyzed by looking to the frame of interest. As an example, we evaluated the capacitation-associated increase in tyrosine phosphorylation in sperm incubated in non-capacitation and capacitation-supporting media for 1 and 18 h. As previously reported, protein tyrosine phosphorylation increases in a time-depending manner, but our method revealed that this increase occurs differentially among distinct sperm segments. FER kinase is reported to be the enzyme responsible for the increase in protein tyrosine phosphorylation in mouse sperm. Our Western blot analysis revealed for the first time the presence of this enzyme in human sperm. Using our segmentation strategy, we aimed to quantify the effect of pharmacological inhibition of FER kinase and found a marked reduction of protein tyrosine phosphorylation only in the flagellum, which corresponded to the physical localization of FER in human sperm. Our method provides an alternative strategy to study signaling markers associated with capacitation, such as protein tyrosine phosphorylation, in a fast and quantitative manner. None. This is an in vitro study performed under controlled conditions. Chemical inhibitors are not completely specific for the intended target; the possibility of side effects cannot be discarded. Our results demonstrate that the use of image-based flow cytometry is a very powerful tool to study sperm physiology. A large number of cells can be easily analyzed and information at the subcellular level can be obtained. As the segmentation process works with bright-field images, it can be extended to study expression of other proteins of interest using different antibodies or it can be used in living sperm to study intracellular parameters that can be followed using fluorescent dyes sensitive to the parameter of interest (e.g. pH, Ca2+). Therefore, this a versatile method that can be exploited to study several aspects of sperm physiology. This work was supported DGAPA (IN203116 to C. Treviño), Fronteras-CONACyT No. 71 and Eunice Kennedy Shriver National Institute of Child Health and Human Development NIH (RO1 HD38082) to P.E. Visconti and by a Lalor Foundation fellowship to M.G. Gervasi. A. Matamoros is a student of the Maestría en Ciencias Bioquímicas-UNAM program supported by CONACyT (416400) and DGAPA-UNAM. A. Moreno obtained a scholarship from Red MacroUniversidades and L. Giojalas obtained a schloarhip from CONICET and Universidad Nacional de Cordoba. The authors declare there are not conflicts of interest. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email:journals.permissions@oup.com

  20. Ultra-large suspended graphene as a highly elastic membrane for capacitive pressure sensors

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Min; He, Shih-Ming; Huang, Chi-Hsien; Huang, Cheng-Chun; Shih, Wen-Pin; Chu, Chun-Lin; Kong, Jing; Li, Ju; Su, Ching-Yuan

    2016-02-01

    In this work, we fabricate ultra-large suspended graphene membranes, where stacks of a few layers of graphene could be suspended over a circular hole with a diameter of up to 1.5 mm, with a diameter to thickness aspect ratio of 3 × 105, which is the record for free-standing graphene membranes. The process is based on large crystalline graphene (~55 μm) obtained using a chemical vapor deposition (CVD) method, followed by a gradual solvent replacement technique. Combining a hydrogen bubbling transfer approach with thermal annealing to reduce polymer residue results in an extremely clean surface, where the ultra-large suspended graphene retains the intrinsic features of graphene, including phonon response and an enhanced carrier mobility (200% higher than that of graphene on a substrate). The highly elastic mechanical properties of the graphene membrane are demonstrated, and the Q-factor under 2 MHz stimulation is measured to be 200-300. A graphene-based capacitive pressure sensor is fabricated, where it shows a linear response and a high sensitivity of 15.15 aF Pa-1, which is 770% higher than that of frequently used silicon-based membranes. The reported approach is universal, which could be employed to fabricate other suspended 2D materials with macro-scale sizes on versatile support substrates, such as arrays of Si nano-pillars and deep trenches.In this work, we fabricate ultra-large suspended graphene membranes, where stacks of a few layers of graphene could be suspended over a circular hole with a diameter of up to 1.5 mm, with a diameter to thickness aspect ratio of 3 × 105, which is the record for free-standing graphene membranes. The process is based on large crystalline graphene (~55 μm) obtained using a chemical vapor deposition (CVD) method, followed by a gradual solvent replacement technique. Combining a hydrogen bubbling transfer approach with thermal annealing to reduce polymer residue results in an extremely clean surface, where the ultra-large suspended graphene retains the intrinsic features of graphene, including phonon response and an enhanced carrier mobility (200% higher than that of graphene on a substrate). The highly elastic mechanical properties of the graphene membrane are demonstrated, and the Q-factor under 2 MHz stimulation is measured to be 200-300. A graphene-based capacitive pressure sensor is fabricated, where it shows a linear response and a high sensitivity of 15.15 aF Pa-1, which is 770% higher than that of frequently used silicon-based membranes. The reported approach is universal, which could be employed to fabricate other suspended 2D materials with macro-scale sizes on versatile support substrates, such as arrays of Si nano-pillars and deep trenches. Electronic supplementary information (ESI) available: The detailed process/recipe for CVD-grown graphene and the transferring process, SEM and TEM images, contact angles, force curves, and movie clips. See DOI: 10.1039/c5nr08668j

  1. Exogenous pyruvate accelerates glycolysis and promotes capacitation in human spermatozoa

    PubMed Central

    Hereng, T.H.; Elgstøen, K.B.P.; Cederkvist, F.H.; Eide, L.; Jahnsen, T.; Skålhegg, B.S.; Rosendal, K.R.

    2011-01-01

    BACKGROUND There has been an ongoing debate in the reproductive field about whether mammalian spermatozoa rely on glycolysis, oxidative phosphorylation or both for their energy production. Recent studies have proposed that human spermatozoa depend mainly on glucose for motility and fertilization but the mechanism behind an efficient glycolysis in human spermatozoa is not well understood. Here, we demonstrate how human spermatozoa utilize exogenous pyruvate to enhance glycolytic ATP production, motility, hyperactivation and capacitation, events that are crucial for male fertility. METHODS Purified human spermatozoa from healthy donors were incubated under capacitating conditions (including albumin, bicarbonate and glucose) and tested for changes in ATP levels, motility, hyperactivation and tyrosine phosphorylation after treatment with pyruvate. The experiments were repeated in the presence of sodium cyanide in order to assess the contribution from mitochondrial respiration. The metabolism of 13C labeled glucose and pyruvate was traced by a combination of liquid chromatography and mass spectrometry. RESULTS The treatment of human spermatozoa with exogenous pyruvate increased intracellular ATP levels, progressive motility and hyperactivation by 56, 21 and 130%, respectively. In addition, added pyruvate induced a significant increase in tyrosine phosphorylation levels. Blocking of the electron transport chain did not markedly affect the results, indicating that the mechanism is independent of oxidative phosphorylation. However, the observed effects could be counteracted by oxamate, an inhibitor of lactate dehydrogenase (LDH). Metabolic tracing experiments revealed that the observed rise in ATP concentration resulted from an enhanced glycolytic flux, which was increased by more than 50% in the presence of exogenous pyruvate. Moreover, all consumed 13C labeled pyruvate added was converted to lactate rather than oxidized in the tricarboxylic acid cycle. CONCLUSIONS Human spermatozoa seem to rely mainly, if not entirely, on glycolysis as the source of ATP fueling the energy-demanding processes of motility and capacitation. The efficient glycolysis is dependent on exogenous pyruvate, which indirectly feeds the accelerated glycolysis with NAD+ through the LDH-mediated conversion of pyruvate to lactate. Pyruvate is present in the human female reproductive tract at concentrations in accordance with our results. As seen in other mammals, the motility and fertility of human spermatozoa seem to be dictated by the available energy substrates present in the conspecific female. PMID:21946930

  2. Na/K-ATPase regulates bovine sperm capacitation through raft- and non-raft-mediated signaling mechanisms.

    PubMed

    Rajamanickam, Gayathri D; Kastelic, John P; Thundathil, Jacob C

    2017-11-01

    Highly dynamic lipid microdomains (rafts) in the sperm plasma membrane contain several signaling proteins that regulate sperm capacitation. Na/K-ATPase isoforms (testis-specific isoform ATP1A4 and ubiquitous isoform ATP1A1) are abundant in bovine sperm plasma membrane. We previously reported that incubation of bovine sperm with ouabain, a specific Na/K-ATPase ligand, induced tyrosine phosphorylation of several sperm proteins during capacitation. The objective of this study was to investigate the roles of lipid rafts and non-rafts in Na/K-ATPase enzyme activity and signaling during bovine sperm capacitation. Content of ATP1A4 and, to a lesser extent, ATP1A1 was increased in raft and non-raft fractions of capacitated sperm, although non-raft enzyme activities of both isoforms were higher than the corresponding activities in rafts from capacitated sperm. Yet, ATP1A4 was the predominant isoform responsible for total Na/K-ATPase activity in both rafts and non-rafts. A comparative increase in phosphorylation of signaling molecules was observed in both raft (CAV1) and non-raft (EGFR and ERK1/2) membrane fractions during capacitation. Although SRC was phosphorylated in both membrane fractions, the non-raft fraction possessed more of this activated form. We also inferred, by immunoprecipitation, that ATP1A4 interacted with CAV1 and EGFR in the raft fraction, whereas interactions of ATP1A4 with SRC, EGFR, and ERK1/2 occurred in the non-raft fraction of ouabain-capacitated sperm; conversely, ATP1A1 interacted only with CAV1 in both fractions of uncapacitated and capacitated sperm. In conclusion, both raft and non-raft cohorts of Na/K-ATPase isoforms contributed to phosphorylation of signaling molecules during bovine sperm capacitation. © 2017 Wiley Periodicals, Inc.

  3. Conductive polymer foam surface improves the performance of a capacitive EEG electrode.

    PubMed

    Baek, Hyun Jae; Lee, Hong Ji; Lim, Yong Gyu; Park, Kwang Suk

    2012-12-01

    In this paper, a new conductive polymer foam-surfaced electrode was proposed for use as a capacitive EEG electrode for nonintrusive EEG measurements in out-of-hospital environments. The current capacitive electrode has a rigid surface that produces an undefined contact area due to its stiffness, which renders it unable to conform to head curvature and locally isolates hairs between the electrode surface and scalp skin, making EEG measurement through hair difficult. In order to overcome this issue, a conductive polymer foam was applied to the capacitive electrode surface to provide a cushioning effect. This enabled EEG measurement through hair without any conductive contact with bare scalp skin. Experimental results showed that the new electrode provided lower electrode-skin impedance and higher voltage gains, signal-to-noise ratios, signal-to-error ratios, and correlation coefficients between EEGs measured by capacitive and conventional resistive methods compared to a conventional capacitive electrode. In addition, the new electrode could measure EEG signals, while the conventional capacitive electrode could not. We expect that the new electrode presented here can be easily installed in a hat or helmet to create a nonintrusive wearable EEG apparatus that does not make users look strange for real-world EEG applications.

  4. Effect of reducing system on capacitive behavior of reduced graphene oxide film: Application for supercapacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbi, Hamdane; Yu, Lei; Wang, Bin

    2015-01-15

    To determine the best chemical reduction of graphene oxide film with hydriodic acid that gives maximum energy and power density, we studied the effect of two reducing systems, hydriodic acid/water and hydriodic acid/acetic acid, on the morphology and electrochemical features of reduced graphene oxide film. Using acetic acid as solvent results in high electrical conductivity (5195 S m{sup −1}), excellent specific capacitance (384 F g{sup −1}) and good cyclic stability (about 98% of its initial response after 4000 cycles). Using water as a solvent, results in an ideal capacitive behavior and excellent cyclic stability (about 6% increase of its initialmore » response after 2100 cycles). - Graphical abstract: The choice of reducing system determines the morphology and structure of the chemically reduced graphene film and, as a result, affects largely the capacitive behavior. - Highlights: • The structure of the graphene film has a pronounced effect on capacitive behavior. • The use of water/HI as reducing system results in an ideal capacitive behavior. • The use of acetic acid/HI as reducing system results in a high specific capacitance.« less

  5. Dioxythiophene-based polymer electrodes for supercapacitor modules.

    PubMed

    Liu, David Y; Reynolds, John R

    2010-12-01

    We report on the electrochemical and capacitive behaviors of poly(2,2-dimethyl-3,4-propylene-dioxythipohene) (PProDOT-Me2) films as polymeric electrodes in Type I electrochemical supercapacitors. The supercapacitor device displays robust capacitive charging/discharging behaviors with specific capacitance of 55 F/g, based on 60 μg of PProDOT-Me2 per electrode, that retains over 85% of its storage capacity after 32 000 redox cycles at 78% depth of discharge. Moreover, an appreciable average energy density of 6 Wh/kg has been calculated for the device, along with well-behaved and rapid capacitive responses to 1.0 V between 5 to 500 mV s(-1). Tandem electrochemical supercapacitors were assembled in series, in parallel, and in combinations of the two to widen the operating voltage window and to increase the capacitive currents. Four supercapacitors coupled in series exhibited a 4.0 V charging/discharging window, whereas assembly in parallel displayed a 4-fold increase in capacitance. Combinations of both serial and parallel assembly with six supercapacitors resulted in the extension of voltage to 3 V and a 2-fold increase in capacitive currents. Utilization of bipolar electrodes facilitated the encapsulation of tandem supercapacitors as individual, flexible, and lightweight supercapacitor modules.

  6. Real-time estimation of paracellular permeability of cerebral endothelial cells by capacitance sensor array

    NASA Astrophysics Data System (ADS)

    Hyun Jo, Dong; Lee, Rimi; Hyoung Kim, Jin; Oh Jun, Hyoung; Geol Lee, Tae; Hun Kim, Jeong

    2015-06-01

    Vascular integrity is important in maintaining homeostasis of brain microenvironments. In various brain diseases including Alzheimer’s disease, stroke, and multiple sclerosis, increased paracellular permeability due to breakdown of blood-brain barrier is linked with initiation and progression of pathological conditions. We developed a capacitance sensor array to monitor dielectric responses of cerebral endothelial cell monolayer, which could be utilized to evaluate the integrity of brain microvasculature. Our system measured real-time capacitance values which demonstrated frequency- and time-dependent variations. With the measurement of capacitance at the frequency of 100 Hz, we could differentiate the effects of vascular endothelial growth factor (VEGF), a representative permeability-inducing factor, on endothelial cells and quantitatively analyse the normalized values. Interestingly, we showed differential capacitance values according to the status of endothelial cell monolayer, confluent or sparse, evidencing that the integrity of monolayer was associated with capacitance values. Another notable feature was that we could evaluate the expression of molecules in samples in our system with the reference of real-time capacitance values. We suggest that this dielectric spectroscopy system could be successfully implanted as a novel in vitro assay in the investigation of the roles of paracellular permeability in various brain diseases.

  7. Novel High Temperature Capacitive Pressure Sensor Utilizing SiC Integrated Circuit Twin Ring Oscillators

    NASA Technical Reports Server (NTRS)

    Scardelletti, M.; Neudeck, P.; Spry, D.; Meredith, R.; Jordan, J.; Prokop, N.; Krasowski, M.; Beheim, G.; Hunter, G.

    2017-01-01

    This paper describes initial development and testing of a novel high temperature capacitive pressure sensor system. The pressure sensor system consists of two 4H-SiC 11-stage ring oscillators and a SiCN capacitive pressure sensor. One oscillator has the capacitive pressure sensor fixed at one node in its feedback loop and varies as a function of pressure and temperature while the other provides a pressure-independent reference frequency which can be used to temperature compensate the output of the first oscillator. A two-day repeatability test was performed up to 500C on the oscillators and the oscillator fundamental frequency changed by only 1. The SiCN capacitive pressure sensor was characterized at room temperature from 0 to 300 psi. The sensor had an initial capacitance of 3.76 pF at 0 psi and 1.75 pF at 300 psi corresponding to a 54 change in capacitance. The integrated pressure sensor system was characterized from 0 to 300 psi in steps of 50 psi over a temperature range of 25 to 500C. The pressure sensor system sensitivity was 0.113 kHzpsi at 25C and 0.026 kHzpsi at 500C.

  8. Gas Evolution in Activated-Carbon-Based Supercapacitors with Protic Deep Eutectic Solvent as Electrolyte.

    PubMed

    Phadke, Satyajit; Amara, Samia; Anouti, Mérièm

    2017-09-06

    One of the primary causes of aging in supercapacitors are the irreversible faradaic reactions occurring near the operating-voltage limit that lead to the production of gases resulting in device swelling, increased resistance, and lowering of the capacitance. In this study, a protic deep eutectic solvent (DES) consisting of mixture of lithium bis(fluorosulfonyl)imide (LiFSI) with formamide (FMD) as H-bond donor (x LiFSI =0.25; C=2.5 m LiFSI) is investigated as electrolyte for activated carbon (AC)-based electrical double layer capacitors (EDLCs). Characterization of the viscosity, conductivity, and the ionicity of the electrolyte in a wide range of temperatures indicates >88 % salt dissociation. In situ pressure measurements are performed to understand the effect of cycling conditions on the rate of gas generation, quantified by the in operando pressure variation dP/dt. These measurements demonstrate that about 25 % of the faradaic reactions leading to gas generation are electrochemically reversible. Cell aging studies demonstrate promising potential of the LiFSI/FMD as a protic electrolyte for AC-based EDLCs and high energy density close to 30 Wh kg -1 at 2.4 V. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Modeling Stand-Scale Patterns in Evapotranspiration and Soil Moisture in a Heterogeneous Plant Canopy: A Coupled Subsurface-Land Surface Approach

    NASA Astrophysics Data System (ADS)

    Miller, G. R.; Gou, S.; Ferguson, I. M.; Maxwell, R. M.

    2011-12-01

    Savanna ecosystems present a well-known modeling challenge; understory grasses and overstory woody vegetation combine to form an open, heterogeneous canopy that creates strong spatial differences in soil moisture and evapotranspiration rates. In this analysis, we used ParFlow.CLM to create a stand-scale model of the Tonzi Ranch oak savanna, based on extensive topography, vegetation, soil, and hydrogeology data collected at the site. Measurements included canopy distribution and ground surface elevation from airborne Lidar, depth to groundwater from deep piezometers, soil and rock hydraulic conductivity, and leaf area index. We then compared the results to the site's long-term data records of radiative flux partitioning, obtained using the eddy-covariance method, and soil moisture, collected via a distributed network of capacitance probes. In order to obtain good agreement between the measured and modeled values, we identified several necessary modifications to the current CLM parameterization. These changes included the addition of a "winter grass" type and the alteration of the root structure and water stress functions to accommodate uptake of groundwater by deep roots. Finally, we compared variograms of site parameters and response variables and performed a scaling analysis relating ET and soil moisture variance to sampling size.

  10. Deep-levels in gallium arsenide for device applications

    NASA Astrophysics Data System (ADS)

    McManis, Joseph Edward

    Defects in semiconductors have been studied for over 40 years as a diagnostic of the quality of crystal growth. In this thesis, we investigate GaAs deep-levels specifically intended for devices. This thesis summarizes our efforts to characterize the near-infrared photoluminescence from deep-levels, study optical transitions via absorption, and fabricate and characterize deep-level light-emitting diodes (LEDs). This thesis also describes the first tunnel diodes which explicitly make use of GaAs deep-levels. Photoluminescence measurements of GaAs deep-levels showed a broad peak around a wavelength extending from 1.0--1.7 mum, which includes important wavelengths for fiber-optic communications (1.3--1.55 mum). Transmission measurements show the new result that very little of the radiative emission is self-absorbed. We measured the deep-level photoluminescence at several temperatures. We are also the first to report the internal quantum efficiency associated with the deep-level transitions. We have fabricated LEDs that, utilize the optical transitions of GaAs deep-levels. The electroluminescence spectra showed a broad peak from 1.0--1.7 mum at low currents, but the spectrum exhibited a blue-shift as the current was increased. To improve device performance, we designed an AlGaAs layer into the structure of the LEDs. The AlGaAs barrier layer acts as a resistive barrier so that the holes in the p-GaAs layer are swept away from underneath the gold p-contact. The AlGaAs layer also reduces the blue-shift by acting as a potential barrier so that only higher-energy holes are injected. We found that the LEDs with AlGaAs were brighter at long wavelengths, which was a significant improvement. Photoluminescence measurements show that the spectral blue-shift is not due to sample heating. We have developed a new physical model to explain the blue-shift: it is caused by Coloumb charging of the deep-centers. We have achieved the first tunnel diodes with which specifically utilize deep-levels in low-temperature-grown (LTG) GaAs. Our devices show the largest ever peak current density in a GaAs tunnel diode at room temperature. Our devices also show significant room-temperature peak-to-valley current ratios. The shape of the current-voltage characteristic and the properties of the optical emission enable us to determine the peak and valley transport mechanisms.

  11. Tunable Microwave Filter Design Using Thin-Film Ferroelectric Varactors

    NASA Astrophysics Data System (ADS)

    Haridasan, Vrinda

    Military, space, and consumer-based communication markets alike are moving towards multi-functional, multi-mode, and portable transceiver units. Ferroelectric-based tunable filter designs in RF front-ends are a relatively new area of research that provides a potential solution to support wideband and compact transceiver units. This work presents design methodologies developed to optimize a tunable filter design for system-level integration, and to improve the performance of a ferroelectric-based tunable bandpass filter. An investigative approach to find the origins of high insertion loss exhibited by these filters is also undertaken. A system-aware design guideline and figure of merit for ferroelectric-based tunable band- pass filters is developed. The guideline does not constrain the filter bandwidth as long as it falls within the range of the analog bandwidth of a system's analog to digital converter. A figure of merit (FOM) that optimizes filter design for a specific application is presented. It considers the worst-case filter performance parameters and a tuning sensitivity term that captures the relation between frequency tunability and the underlying material tunability. A non-tunable parasitic fringe capacitance associated with ferroelectric-based planar capacitors is confirmed by simulated and measured results. The fringe capacitance is an appreciable proportion of the tunable capacitance at frequencies of X-band and higher. As ferroelectric-based tunable capac- itors form tunable resonators in the filter design, a proportionally higher fringe capacitance reduces the capacitance tunability which in turn reduces the frequency tunability of the filter. Methods to reduce the fringe capacitance can thus increase frequency tunability or indirectly reduce the filter insertion-loss by trading off the increased tunability achieved to lower loss. A new two-pole tunable filter topology with high frequency tunability (> 30%), steep filter skirts, wide stopband rejection, and constant bandwidth is designed, simulated, fabricated and measured. The filters are fabricated using barium strontium titanate (BST) varactors. Electromagnetic simulations and measured results of the tunable two-pole ferroelectric filter are analyzed to explore the origins of high insertion loss in ferroelectric filters. The results indicate that the high-permittivity of the BST (a ferroelectric) not only makes the filters tunable and compact, but also increases the conductive loss of the ferroelectric-based tunable resonators which translates into high insertion loss in ferroelectric filters.

  12. 77 FR 48427 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... was prompted by a report of a capacitive density condensator (cadensicon) coil overheating during... direct path to the Capacitive Density Condensator (Cadensicon). During tests that were carried out... prompted by a report of a capacitive density condensator (cadensicon) coil overheating during testing. We...

  13. Capacitively-coupled inductive sensor

    DOEpatents

    Ekdahl, Carl A.

    1984-01-01

    A capacitively coupled inductive shunt current sensor which utilizes capacitive coupling between flanges having an annular inductive channel formed therein. A voltage dividing capacitor is connected between the coupling capacitor and ground to provide immediate capacitive division of the output signal so as to provide a high frequency response of the current pulse to be detected. The present invention can be used in any desired outer conductor such as the outer conductor of a coaxial transmission line, the outer conductor of an electron beam transmission line, etc.

  14. Flexible capacitive behavior of hybrid carbon materials prepared from graphene sheets

    NASA Astrophysics Data System (ADS)

    Ding, Y.-H.; Xie, W.; Zhang, P.; Jiang, Y.

    2016-06-01

    High frequency ultrasonication was employed to reduce the aggregation of graphene by constructing hybrid carbon materials (HCMs), which are endowed with a large electrochemical reaction area and high energy density. HCMs exhibited a specific capacitance of 168.5 F · g-1 with ˜100% capacitance retention over 500 cycles. Flexible supercapacitors fabricated from HCMs also showed an excellent capacitive behavior even under tough conditions. These outstanding electrochemical properties were ascribed to the increased specific surface area and open structure of HCMs.

  15. ANSYS simulation of the capacitance coupling of quartz tuning fork gyroscope

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Feng, Lihui; Zhao, Ke; Cui, Fang; Sun, Yu-nan

    2013-12-01

    Coupling error is one of the main error sources of the quartz tuning fork gyroscope. The mechanism of capacitance coupling error is analyzed in this article. Finite Element Method (FEM) is used to simulate the structure of the quartz tuning fork by ANSYS software. The voltage output induced by the capacitance coupling is simulated with the harmonic analysis and characteristics of electrical and mechanical parameters influenced by the capacitance coupling between drive electrodes and sense electrodes are discussed with the transient analysis.

  16. Material characteristics and equivalent circuit models of stacked graphene oxide for capacitive humidity sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Kook In; Lee, In Gyu; Hwang, Wan Sik, E-mail: mhshin@kau.ac.kr, E-mail: whwang@kau.ac.kr

    The oxidation properties of graphene oxide (GO) are systematically correlated with their chemical sensing properties. Based on an impedance analysis, the equivalent circuit models of the capacitive sensors are established, and it is demonstrated that capacitive operations are related to the degree of oxidation. This is also confirmed by X-ray diffraction and Raman analysis. Finally, highly sensitive stacked GO sensors are shown to detect humidity in capacitive mode, which can be useful in various applications requiring low power consumption.

  17. A Novel Optoelectronic Device Based on Correlated Two-Dimensional Fermions

    NASA Astrophysics Data System (ADS)

    Dianat, Pouya

    Conventional metallic contacts can be replicated by quantum two dimensional charge (of Fermion) systems (2DFS). Unlike metals, the particle concentration of these "unconventional" systems can be accurately controlled in an extensive range and by means of external electronic or optical stimuli. A 2DFS can, hence, transition from a high-density kinetic liquid into a dilute-but highly correlated-gas state, in which inter-particle Coulombic interactions are significant. Such interactions contribute negatively, by so-called exchange-correlation energies, to the overall energetics of the system, and are manifested as a series negative quantum capacitance. This dissertation investigates the capacitive performance of a class of unconventional devices based on a planar metal-semiconductor-metal structure with an embedded 2DFS. They constitute an opto-electronically controlled variable capacitor, with record breaking figures-of-merit in capacitance tuning ranges of up to 7000 and voltage sensitivities as large as 400. Internal eld manipulations by localized depletion of a dense 2DFS account for the enlarged maximum and reduced minimum capacitances. The capacitance-voltage characteristics of these devices incur an anomalous "Batman" shape capacitance enhancement (CE) of up to 200% that may be triggered optically. The CE is attributed to the release and storage of exchange-correlation energies; from the "unconventional" plate and in the dielectric, respectively. This process is enforced by density manipulation of the 2DFS by a hybrid of an external eld and light-generated carriers. Under moderate optical powers, the capacitance becomes 43 times greater than the dark value; thus a new capacitance-based photodetection method is offered. This new capacitance based photodetection method has a range of applications in optoelectronics, particularly in the next generation of photonic integrated systems.

  18. Why doesn't conventional IVF work in the horse? The equine oviduct as a microenvironment for capacitation/fertilization.

    PubMed

    Leemans, Bart; Gadella, Bart M; Stout, Tom A E; De Schauwer, Catharina; Nelis, Hilde; Hoogewijs, Maarten; Van Soom, Ann

    2016-12-01

    In contrast to man and many other mammalian species, conventional in vitro fertilization (IVF) with horse gametes is not reliably successful. The apparent inability of stallion spermatozoa to penetrate the zona pellucida in vitro is most likely due to incomplete activation of spermatozoa (capacitation) because of inadequate capacitating or fertilizing media. In vivo, the oviduct and its secretions provide a microenvironment that does reliably support and regulate interaction between the gametes. This review focuses on equine sperm-oviduct interaction. Equine sperm-oviduct binding appears to be more complex than the presumed species-specific calcium-dependent lectin binding phenomenon; unfortunately, the nature of the interaction is not understood. Various capacitation-related events are induced to regulate sperm release from the oviduct epithelium and most data suggest that exposure to oviduct secretions triggers sperm capacitation in vivo However, only limited information is available about equine oviduct secreted factors, and few have been identified. Another aspect of equine oviduct physiology relevant to capacitation is acid-base balance. In vitro, it has been demonstrated that stallion spermatozoa show tail-associated protein tyrosine phosphorylation after binding to oviduct epithelial cells containing alkaline secretory granules. In response to alkaline follicular fluid preparations (pH 7.9), stallion spermatozoa also show tail-associated protein tyrosine phosphorylation, hyperactivated motility and (limited) release from oviduct epithelial binding. However, these 'capacitating conditions' are not able to induce the acrosome reaction and fertilization. In conclusion, developing a defined capacitating medium to support successful equine IVF will depend on identifying as yet uncharacterized capacitation triggers present in the oviduct. © 2016 Society for Reproduction and Fertility.

  19. Contamination of current-clamp measurement of neuron capacitance by voltage-dependent phenomena

    PubMed Central

    White, William E.

    2013-01-01

    Measuring neuron capacitance is important for morphological description, conductance characterization, and neuron modeling. One method to estimate capacitance is to inject current pulses into a neuron and fit the resulting changes in membrane potential with multiple exponentials; if the neuron is purely passive, the amplitude and time constant of the slowest exponential give neuron capacitance (Major G, Evans JD, Jack JJ. Biophys J 65: 423–449, 1993). Golowasch et al. (Golowasch J, Thomas G, Taylor AL, Patel A, Pineda A, Khalil C, Nadim F. J Neurophysiol 102: 2161–2175, 2009) have shown that this is the best method for measuring the capacitance of nonisopotential (i.e., most) neurons. However, prior work has not tested for, or examined how much error would be introduced by, slow voltage-dependent phenomena possibly present at the membrane potentials typically used in such work. We investigated this issue in lobster (Panulirus interruptus) stomatogastric neurons by performing current clamp-based capacitance measurements at multiple membrane potentials. A slow, voltage-dependent phenomenon consistent with residual voltage-dependent conductances was present at all tested membrane potentials (−95 to −35 mV). This phenomenon was the slowest component of the neuron's voltage response, and failure to recognize and exclude it would lead to capacitance overestimates of several hundredfold. Most methods of estimating capacitance depend on the absence of voltage-dependent phenomena. Our demonstration that such phenomena make nonnegligible contributions to neuron responses even at well-hyperpolarized membrane potentials highlights the critical importance of checking for such phenomena in all work measuring neuron capacitance. We show here how to identify such phenomena and minimize their contaminating influence. PMID:23576698

  20. Vascular capacitance and cardiac output in pacing-induced canine models of acute and chronic heart failure.

    PubMed

    Ogilvie, R I; Zborowska-Sluis, D

    1995-11-01

    The relationship between stressed and total blood volume, total vascular capacitance, central blood volume, cardiac output (CO), and pulmonary capillary wedge pressure (Ppcw) was investigated in pacing-induced acute and chronic heart failure. Acute heart failure was induced in anesthetized splenectomized dogs by a volume load (20 mL/kg over 10 min) during rapid right ventricular pacing at 250 beats/min (RRVP) for 60 min. Chronic heart failure was induced by continuous RRVP for 2-6 weeks (average 24 +/- 2 days). Total vascular compliance and capacitance were calculated from the mean circulatory filling pressure (Pmcf) during transient circulatory arrest after acetylcholine at three different circulating volumes. Stressed blood volume was calculated as a product of compliance and Pmcf, with the total blood volume measured by a dye dilution. Central blood volume (CBV) and CO were measured by thermodilution. Central (heart and lung) vascular capacitance was estimated from the plot of Ppcw against CBV. Acute volume loading without RRVP increased capacitance and CO, whereas after volume loading with RRVP, capacitance and CO were unaltered from baseline. Chronic RRVP reduced capacitance and CO. All interventions, volume +/- RRVP or chronic RRVP, increased stressed and central blood volumes and Ppcw. Acute or chronic RRVP reduced central vascular capacitance. Cardiac output was increased when stressed and unstressed blood volumes increased proportionately as during volume loading alone. When CO was reduced and Ppcw increased, as during chronic RRVP or acute RRVP plus a volume load, stressed blood volume was increased and unstressed blood volume was decreased. Thus, interventions that reduced CO and increased Ppcw also increased stressed and reduced unstressed blood volume and total vascular capacitance.

  1. Recent advance in high manufacturing readiness level and high temperature CMOS mixed-signal integrated circuits on silicon carbide

    NASA Astrophysics Data System (ADS)

    Weng, M. H.; Clark, D. T.; Wright, S. N.; Gordon, D. L.; Duncan, M. A.; Kirkham, S. J.; Idris, M. I.; Chan, H. K.; Young, R. A. R.; Ramsay, E. P.; Wright, N. G.; Horsfall, A. B.

    2017-05-01

    A high manufacturing readiness level silicon carbide (SiC) CMOS technology is presented. The unique process flow enables the monolithic integration of pMOS and nMOS transistors with passive circuit elements capable of operation at temperatures of 300 °C and beyond. Critical to this functionality is the behaviour of the gate dielectric and data for high temperature capacitance-voltage measurements are reported for SiO2/4H-SiC (n and p type) MOS structures. In addition, a summary of the long term reliability for a range of structures including contact chains to both n-type and p-type SiC, as well as simple logic circuits is presented, showing function after 2000 h at 300 °C. Circuit data is also presented for the performance of digital logic devices, a 4 to 1 analogue multiplexer and a configurable timer operating over a wide temperature range. A high temperature micro-oven system has been utilised to enable the high temperature testing and stressing of units assembled in ceramic dual in line packages, including a high temperature small form-factor SiC based bridge leg power module prototype, operated for over 1000 h at 300 °C. The data presented show that SiC CMOS is a key enabling technology in high temperature integrated circuit design. In particular it provides the ability to realise sensor interface circuits capable of operating above 300 °C, accommodate shifts in key parameters enabling deployment in applications including automotive, aerospace and deep well drilling.

  2. Proton irradiation effects on minority carrier diffusion length and defect introduction in homoepitaxial and heteroepitaxial n-GaN [Proton irradiation effects on minority carrier diffusion length and defect introduction in homoepitaxial n-GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, K. C.; Armstrong, Andrew M.; Allerman, Andrew A.

    Here, inherent advantages of wide bandgap materials make GaN-based devices attractive for power electronics and applications in radiation environments. Recent advances in the availability of wafer-scale, bulk GaN substrates have enabled the production of high quality, low defect density GaN devices, but fundamental studies of carrier transport and radiation hardness in such devices are lacking. Here, we report measurements of the hole diffusion length in low threading dislocation density (TDD), homoepitaxial n-GaN, and high TDD heteroepitaxial n-GaN Schottky diodes before and after irradiation with 2.5 MeV protons at fluences of 4–6 × 10 13 protons/cm 2. We also characterize themore » specimens before and after irradiation using electron beam-induced-current (EBIC) imaging, cathodoluminescence, deep level optical spectroscopy (DLOS), steady-state photocapacitance, and lighted capacitance-voltage (LCV) techniques. We observe a substantial reduction in the hole diffusion length following irradiation (50%–55%) and the introduction of electrically active defects which could be attributed to gallium vacancies and associated complexes (V Ga-related), carbon impurities (C-related), and gallium interstitials (Ga i). EBIC imaging suggests long-range migration and clustering of radiation-induced point defects over distances of ~500 nm, which suggests mobile Ga i. Following irradiation, DLOS and LCV reveal the introduction of a prominent optical energy level at 1.9 eV below the conduction band edge, consistent with the introduction of Ga i.« less

  3. Proton irradiation effects on minority carrier diffusion length and defect introduction in homoepitaxial and heteroepitaxial n-GaN [Proton irradiation effects on minority carrier diffusion length and defect introduction in homoepitaxial n-GaN

    DOE PAGES

    Collins, K. C.; Armstrong, Andrew M.; Allerman, Andrew A.; ...

    2017-12-21

    Here, inherent advantages of wide bandgap materials make GaN-based devices attractive for power electronics and applications in radiation environments. Recent advances in the availability of wafer-scale, bulk GaN substrates have enabled the production of high quality, low defect density GaN devices, but fundamental studies of carrier transport and radiation hardness in such devices are lacking. Here, we report measurements of the hole diffusion length in low threading dislocation density (TDD), homoepitaxial n-GaN, and high TDD heteroepitaxial n-GaN Schottky diodes before and after irradiation with 2.5 MeV protons at fluences of 4–6 × 10 13 protons/cm 2. We also characterize themore » specimens before and after irradiation using electron beam-induced-current (EBIC) imaging, cathodoluminescence, deep level optical spectroscopy (DLOS), steady-state photocapacitance, and lighted capacitance-voltage (LCV) techniques. We observe a substantial reduction in the hole diffusion length following irradiation (50%–55%) and the introduction of electrically active defects which could be attributed to gallium vacancies and associated complexes (V Ga-related), carbon impurities (C-related), and gallium interstitials (Ga i). EBIC imaging suggests long-range migration and clustering of radiation-induced point defects over distances of ~500 nm, which suggests mobile Ga i. Following irradiation, DLOS and LCV reveal the introduction of a prominent optical energy level at 1.9 eV below the conduction band edge, consistent with the introduction of Ga i.« less

  4. Self-Nulling Lock-in Detection Electronics for Capacitance Probe Electrometer

    NASA Technical Reports Server (NTRS)

    Blaes, Brent R.; Schaefer, Rembrandt T.

    2012-01-01

    A multi-channel electrometer voltmeter that employs self-nulling lock-in detection electronics in conjunction with a mechanical resonator with noncontact voltage sensing electrodes has been developed for space-based measurement of an Internal Electrostatic Discharge Monitor (IESDM). The IESDM is new sensor technology targeted for integration into a Space Environmental Monitor (SEM) subsystem used for the characterization and monitoring of deep dielectric charging on spacecraft. Use of an AC-coupled lock-in amplifier with closed-loop sense-signal nulling via generation of an active guard-driving feedback voltage provides the resolution, accuracy, linearity and stability needed for long-term space-based measurement of the IESDM. This implementation relies on adjusting the feedback voltage to drive the sense current received from the resonator s variable-capacitance-probe voltage transducer to approximately zero, as limited by the signal-to-noise performance of the loop electronics. The magnitude of the sense current is proportional to the difference between the input voltage being measured and the feedback voltage, which matches the input voltage when the sense current is zero. High signal-to-noise-ratio (SNR) is achieved by synchronous detection of the sense signal using the correlated reference signal derived from the oscillator circuit that drives the mechanical resonator. The magnitude of the feedback voltage, while the loop is in a settled state with essentially zero sense current, is an accurate estimate of the input voltage being measured. This technique has many beneficial attributes including immunity to drift, high linearity, high SNR from synchronous detection of a single-frequency carrier selected to avoid potentially noisy 1/f low-frequency spectrum of the signal-chain electronics, and high accuracy provided through the benefits of a driven shield encasing the capacitance- probe transducer and guarded input triaxial lead-in. Measurements obtained from a 2- channel prototype electrometer have demonstrated good accuracy (|error| < 0.2 V) and high stability. Twenty-four-hour tests have been performed with virtually no drift. Additionally, 5,500 repeated one-second measurements of 100 V input were shown to be approximately normally distributed with a standard deviation of 140 mV.

  5. High frequency measures of OHC nonlinear capacitance (NLC) and their significance: Why measures stray away from predictions

    NASA Astrophysics Data System (ADS)

    Santos-Sacchi, Joseph

    2018-05-01

    Measures of membrane capacitance (Cm) can be used to assess important characteristics of voltage-dependent membrane proteins (e.g., channels and transporters). In particular, a protein's time-dependent voltage-sensor charge movement is equivalently represented as a frequency-dependent component of Cm, telling much about the kinetics of the protein's conformational behavior. Recently, we have explored the frequency dependence of OHC voltage-dependent capacitance (aka nonlinear capacitance, NLC) to query rates of conformational switching within prestin (SLC26a5), the cell's lateral membrane molecular motor 1. Following removal of confounding stray capacitance effects, high frequency Cm measures using wide-band stimuli accurately reveal unexpected low pass behavior in prestin's molecular motions.

  6. Creatine enhances the duration of sperm capacitation: a novel factor for improving in vitro fertilization with small numbers of sperm.

    PubMed

    Umehara, Takashi; Kawai, Tomoko; Goto, Masaaki; Richards, JoAnne S; Shimada, Masayuki

    2018-06-01

    Why are many sperm required for successful fertilization of oocytes in vitro, even though fertilization occurs in vivo when only a few sperm reach the oocyte? Creatine produced in the ovary promotes efficient fertilization in vivo; however, in vitro, creatine is not contained in the in vitro fertilization (IVF) medium. The IVF medium enables capacitation of sperm. However, the IVF medium does not fully mimic the in vivo environment during fertilization. Consequently, fertilization in vitro is more inefficient than in the oviduct. Follicular and oviductal fluids were collected and then analyzed for creatine and glucose levels. To determine the physiological functions of creatine, the creatine antagonist 3-guanidinopropionic acid (GPA) was injected into hormonally primed mice. Using conventional IVF protocols, sperm were pre-incubated in IVF medium with creatine and then co-cultured with 10 ovulated cumulus-oocyte complexes (1-1000 per oocyte) in 50 μl medium droplets. Glucose and creatine levels were measured using commercial enzymatic assay kits. The effect of creatine in vivo was assessed by mating experiments using mice treated with or without GPA just before ovulation. To assess the functions of sperm incubated in IVF medium containing creatine, we analyzed (1) the motility of sperm using computer-assisted sperm assay, (2) the capacitation level of sperm by western blot analyses, and (3) the condition of sperm acrosomes by peanut agglutinin lectin-FITC staining. Oviductal creatine levels were significantly increased following ovulation. Injecting mice with GPA just before ovulation significantly reduced the number of fertilized oocytes. The addition of creatine to IVF medium enhanced sperm capacitation by increasing ATP levels. Successful fertilization was achieved with as few as five sperm/oocyte in the creatine group, and the number of fertilized oocytes was significantly higher than in the control without creatine (P < 0.01). In the present study, a pharmacological approach, creatine antagonist (GPA) treatment, but not a knockout mouse model, was used to understand the role of creatine in vivo. The role of creatine in fertilization processes can only be shown in a mouse model. A modified IVF technique using creatine-containing medium was developed and shown to markedly improve fertilization with small numbers of sperm. This approach has the potential to be highly beneficial for human assisted reproductive technologies, especially for patients with a limited number of good quality sperm. This work was supported in part by JSPS KAKENHI Grant numbers JP24688028, JP16H05017 (to M.S.), and JP15J05331 (to T.U.), the Japan Agency for Medical Research and Development (AMED) (16gk0110015h0001 to M.S.), and National Institutes of Health (NIH-HD-076980 to J.S.R). The authors have nothing to disclose.

  7. Off-resonance frequency operation for power transfer in a loosely coupled air core transformer

    DOEpatents

    Scudiere, Matthew B

    2012-11-13

    A power transmission system includes a loosely coupled air core transformer having a resonance frequency determined by a product of inductance and capacitance of a primary circuit including a primary coil. A secondary circuit is configured to have a substantially same product of inductance and capacitance. A back EMF generating device (e.g., a battery), which generates a back EMF with power transfer, is attached to the secondary circuit. Once the load power of the back EMF generating device exceeds a certain threshold level, which depends on the system parameters, the power transfer can be achieved at higher transfer efficiency if performed at an operating frequency less than the resonance frequency, which can be from 50% to 95% of the resonance frequency.

  8. Calibration of micro-capacitance measurement system for thermal barrier coating testing

    NASA Astrophysics Data System (ADS)

    Ren, Yuan; Chen, Dixiang; Wan, Chengbiao; Tian, Wugang; Pan, Mengchun

    2018-06-01

    In order to comprehensively evaluate the thermal barrier coating system of an engine blade, an integrated planar sensor combining electromagnetic coils with planar capacitors is designed, in which the capacitance measurement accuracy of the planar capacitor is a key factor. The micro-capacitance measurement system is built based on an impedance analyzer. Because of the influence of non-ideal factors on the measuring system, there is an obvious difference between the measured value and the actual value. It is necessary to calibrate the measured results and eliminate the difference. In this paper, the measurement model of a planar capacitive sensor is established, and the relationship between the measured value and the actual value of capacitance is deduced. The model parameters are estimated with the least square method, and the calibration accuracy is evaluated with experiments under different dielectric conditions. The capacitance measurement error is reduced from 29% ˜ 46.5% to around 1% after calibration, which verifies the feasibility of the calibration method.

  9. Capacitance-type blade-tip clearance measurement system using a dual amplifier with ramp/dc inputs and integration

    NASA Technical Reports Server (NTRS)

    Sarma, Garimella R.; Barranger, John P.

    1992-01-01

    The analysis and prototype results of a dual-amplifier circuit for measuring blade-tip clearance in turbine engines are presented. The capacitance between the blade tip and mounted capacitance electrode within a guard ring of a probe forms one of the feedback elements of an operational amplifier (op amp). The differential equation governing the circuit taking into consideration the nonideal features of the op amp was formulated and solved for two types of inputs (ramp and dc) that are of interest for the application. Under certain time-dependent constraints, it is shown that (1) with a ramp input the circuit has an output voltage proportional to the static tip clearance capacitance, and (2) with a dc input, the output is proportional to the derivative of the clearance capacitance, and subsequent integration recovers the dynamic capacitance. The technique accommodates long cable lengths and environmentally induced changes in cable and probe parameters. System implementation for both static and dynamic measurements having the same high sensitivity is also presented.

  10. Capacitance-type blade-tip clearance measurement system using a dual amplifier with ramp/dc inputs and integration

    NASA Astrophysics Data System (ADS)

    Sarma, Garimella R.; Barranger, John P.

    1992-10-01

    The analysis and prototype results of a dual-amplifier circuit for measuring blade-tip clearance in turbine engines are presented. The capacitance between the blade tip and mounted capacitance electrode within a guard ring of a probe forms one of the feedback elements of an operational amplifier (op amp). The differential equation governing the circuit taking into consideration the nonideal features of the op amp was formulated and solved for two types of inputs (ramp and dc) that are of interest for the application. Under certain time-dependent constraints, it is shown that (1) with a ramp input the circuit has an output voltage proportional to the static tip clearance capacitance, and (2) with a dc input, the output is proportional to the derivative of the clearance capacitance, and subsequent integration recovers the dynamic capacitance. The technique accommodates long cable lengths and environmentally induced changes in cable and probe parameters. System implementation for both static and dynamic measurements having the same high sensitivity is also presented.

  11. A capacitive CMOS-MEMS sensor designed by multi-physics simulation for integrated CMOS-MEMS technology

    NASA Astrophysics Data System (ADS)

    Konishi, Toshifumi; Yamane, Daisuke; Matsushima, Takaaki; Masu, Kazuya; Machida, Katsuyuki; Toshiyoshi, Hiroshi

    2014-01-01

    This paper reports the design and evaluation results of a capacitive CMOS-MEMS sensor that consists of the proposed sensor circuit and a capacitive MEMS device implemented on the circuit. To design a capacitive CMOS-MEMS sensor, a multi-physics simulation of the electromechanical behavior of both the MEMS structure and the sensing LSI was carried out simultaneously. In order to verify the validity of the design, we applied the capacitive CMOS-MEMS sensor to a MEMS accelerometer implemented by the post-CMOS process onto a 0.35-µm CMOS circuit. The experimental results of the CMOS-MEMS accelerometer exhibited good agreement with the simulation results within the input acceleration range between 0.5 and 6 G (1 G = 9.8 m/s2), corresponding to the output voltages between 908.6 and 915.4 mV, respectively. Therefore, we have confirmed that our capacitive CMOS-MEMS sensor and the multi-physics simulation will be beneficial method to realize integrated CMOS-MEMS technology.

  12. Electrical capacitance volume tomography with high contrast dielectrics using a cuboid sensor geometry

    NASA Astrophysics Data System (ADS)

    Nurge, Mark A.

    2007-05-01

    An electrical capacitance volume tomography system has been created for use with a new image reconstruction algorithm capable of imaging high contrast dielectric distributions. The electrode geometry consists of two 4 × 4 parallel planes of copper conductors connected through custom built switch electronics to a commercially available capacitance to digital converter. Typical electrical capacitance tomography (ECT) systems rely solely on mutual capacitance readings to reconstruct images of dielectric distributions. This paper presents a method of reconstructing images of high contrast dielectric materials using only the self-capacitance measurements. By constraining the unknown dielectric material to one of two values, the inverse problem is no longer ill-determined. Resolution becomes limited only by the accuracy and resolution of the measurement circuitry. Images were reconstructed using this method with both synthetic and real data acquired using an aluminium structure inserted at different positions within the sensing region. Comparisons with standard two-dimensional ECT systems highlight the capabilities and limitations of the electronics and reconstruction algorithm.

  13. Electrical capacitance volume tomography of high contrast dielectrics using a cuboid geometry

    NASA Astrophysics Data System (ADS)

    Nurge, Mark A.

    An Electrical Capacitance Volume Tomography system has been created for use with a new image reconstruction algorithm capable of imaging high contrast dielectric distributions. The electrode geometry consists of two 4 x 4 parallel planes of copper conductors connected through custom built switch electronics to a commercially available capacitance to digital converter. Typical electrical capacitance tomography (ECT) systems rely solely on mutual capacitance readings to reconstruct images of dielectric distributions. This dissertation presents a method of reconstructing images of high contrast dielectric materials using only the self capacitance measurements. By constraining the unknown dielectric material to one of two values, the inverse problem is no longer ill-determined. Resolution becomes limited only by the accuracy and resolution of the measurement circuitry. Images were reconstructed using this method with both synthetic and real data acquired using an aluminum structure inserted at different positions within the sensing region. Comparisons with standard two dimensional ECT systems highlight the capabilities and limitations of the electronics and reconstruction algorithm.

  14. Electrical Capacitance Volume Tomography: Design and Applications

    PubMed Central

    Wang, Fei; Marashdeh, Qussai; Fan, Liang-Shih; Warsito, Warsito

    2010-01-01

    This article reports recent advances and progress in the field of electrical capacitance volume tomography (ECVT). ECVT, developed from the two-dimensional electrical capacitance tomography (ECT), is a promising non-intrusive imaging technology that can provide real-time three-dimensional images of the sensing domain. Images are reconstructed from capacitance measurements acquired by electrodes placed on the outside boundary of the testing vessel. In this article, a review of progress on capacitance sensor design and applications to multi-phase flows is presented. The sensor shape, electrode configuration, and the number of electrodes that comprise three key elements of three-dimensional capacitance sensors are illustrated. The article also highlights applications of ECVT sensors on vessels of various sizes from 1 to 60 inches with complex geometries. Case studies are used to show the capability and validity of ECVT. The studies provide qualitative and quantitative real-time three-dimensional information of the measuring domain under study. Advantages of ECVT render it a favorable tool to be utilized for industrial applications and fundamental multi-phase flow research. PMID:22294905

  15. Copper oxide nanowires as better performance electrode material for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Yar, A.; Dennis, J. O.; Mohamed, N. M.; Mian, M. U.; Irshad, M. I.; Mumtaz, A.

    2016-11-01

    Supercapacitors are highly attractive energy storage devices which are capable of delivering high power, with fast charging and long cycle life. Carbon based material rely on physical charging with less capacitance while metal oxide store charge by fast redox reaction with increased capacitance. Among metal oxide, copper oxide compounds are widely use in the form of nano and micro structures with no definite control over structure. In this work we utilized the well-controlled structure copper wires, originated from AAO template. Such well controlled structure offer better capacitance values due to easily excess of ions to the surface of wires. Performance of material was check in 3 M of potassium hydroxide (KOH). Specific capacitance (Cs) was calculated by using cyclic voltammetry (CV) and Charge discharge (CDC) test. The capacitance calculate on base on CV at 25 mV/s was 101.37 F/g while CDC showed the capacitance of 90 F/g at 2 A/g.

  16. Capacitance-Based Frequency Adjustment of Micro Piezoelectric Vibration Generator

    PubMed Central

    Mao, Xinhua; He, Qing; Li, Hong; Chu, Dongliang

    2014-01-01

    Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method. PMID:25133237

  17. Sea-level and deep-sea-temperature variability over the past 5.3 million years.

    PubMed

    Rohling, E J; Foster, G L; Grant, K M; Marino, G; Roberts, A P; Tamisiea, M E; Williams, F

    2014-04-24

    Ice volume (and hence sea level) and deep-sea temperature are key measures of global climate change. Sea level has been documented using several independent methods over the past 0.5 million years (Myr). Older periods, however, lack such independent validation; all existing records are related to deep-sea oxygen isotope (δ(18)O) data that are influenced by processes unrelated to sea level. For deep-sea temperature, only one continuous high-resolution (Mg/Ca-based) record exists, with related sea-level estimates, spanning the past 1.5 Myr. Here we present a novel sea-level reconstruction, with associated estimates of deep-sea temperature, which independently validates the previous 0-1.5 Myr reconstruction and extends it back to 5.3 Myr ago. We find that deep-sea temperature and sea level generally decreased through time, but distinctly out of synchrony, which is remarkable given the importance of ice-albedo feedbacks on the radiative forcing of climate. In particular, we observe a large temporal offset during the onset of Plio-Pleistocene ice ages, between a marked cooling step at 2.73 Myr ago and the first major glaciation at 2.15 Myr ago. Last, we tentatively infer that ice sheets may have grown largest during glacials with more modest reductions in deep-sea temperature.

  18. Ionic Effects on Supercritical CO2-Brine Interfacial Tensions: Molecular Dynamics Simulations and a Universal Correlation with Ionic Strength, Temperature, and Pressure.

    PubMed

    Zhao, Lingling; Ji, Jiayuan; Tao, Lu; Lin, Shangchao

    2016-09-13

    For geological CO2 storage in deep saline aquifers, the interfacial tension (IFT) between supercritical CO2 and brine is critical for the storage security and design of the storage capacitance. However, currently, no predictive model exists to determine the IFT of supercritical CO2 against complex electrolyte solutions involving various mixed salt species at different concentrations and compositions. In this paper, we use molecular dynamics (MD) simulations to investigate the effect of salt ions on the incremental IFT at the supercritical CO2-brine interface with respect to that at the reference supercritical CO2-water interface. Supercritical CO2-NaCl solution, CO2-CaCl2 solution and CO2-(NaCl+CaCl2) mixed solution systems are simulated at 343 K and 20 MPa under different salinities and salt compositions. We find that the valence of the cations is the primary contributor to the variation in IFT, while the Lennard-Jones potentials for the cations pose a smaller impact on the IFT. Interestingly, the incremental IFT exhibits a general linear correlation with the ionic strength in the above three electrolyte systems, and the slopes are almost identical and independent of the solution types. Based on this finding, a universal predictive formula for IFTs of CO2-complex electrolyte solution systems is established, as a function of ionic strength, temperature, and pressure. The predicted IFTs using the established formula agree perfectly (with a high statistical confidence level of ∼96%) with a wide range of experimental data for CO2 interfacing with different electrolyte solutions, such as those involving MgCl2 and Na2SO4. This work provides an efficient and accurate route to directly predict IFTs in supercritical CO2-complex electrolyte solution systems for practical engineering applications, such as geological CO2 sequestration in deep saline aquifers and other interfacial systems involving complex electrolyte solutions.

  19. Final report of the supplementary comparison EURAMET.EM-S31 comparison of capacitance and capacitance ratio

    NASA Astrophysics Data System (ADS)

    Schurr, J.; Fletcher, N.; Gournay, P.; Thévenot, O.; Overney, F.; Johnson, L.; Xie, R.; Dierikx, E.

    2017-01-01

    Within the framework of the supplementary comparison EURAMET.EM-S31, 'Comparison of capacitance and capacitance ratio', five participants (the BIPM, METAS, LNE, PTB, and VSL) inter-compared their capacitance realisations traced to the quantum Hall resistance measured at either ac or dc. The measurands were the capacitance values of three 10 pF standards and one 100 pF standard, and optionally their voltage and frequency dependences. Because the results were not fully satisfying, the circulation was repeated, augmented by a link to the NMIA calculable capacitor. Also two ac-dc resistors were circulated and their frequency dependences were measured in terms of the ac-dc resistance standards involved in the particular capacitance realisations, to allow inter-comparison of these resistance standards. At the end and in any case, a good agreement is achieved within the expanded uncertainties at coverage factor k = 2. Furthermore, the comparison led to new insight regarding the stability and travelling behaviour of the capacitance standards and, by virtue of the link to the NMIA calculable capacitor, to a determination of the von Klitzing constant in agreement with the 2014 CODATA value. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  20. Chloride and salicylate influence prestin-dependent specific membrane capacitance: support for the area motor model.

    PubMed

    Santos-Sacchi, Joseph; Song, Lei

    2014-04-11

    The outer hair cell is electromotile, its membrane motor identified as the protein SLC26a5 (prestin). An area motor model, based on two-state Boltzmann statistics, was developed about two decades ago and derives from the observation that outer hair cell surface area is voltage-dependent. Indeed, aside from the nonlinear capacitance imparted by the voltage sensor charge movement of prestin, linear capacitance (Clin) also displays voltage dependence as motors move between expanded and compact states. Naturally, motor surface area changes alter membrane capacitance. Unit linear motor capacitance fluctuation (δCsa) is on the order of 140 zeptofarads. A recent three-state model of prestin provides an alternative view, suggesting that voltage-dependent linear capacitance changes are not real but only apparent because the two component Boltzmann functions shift their midpoint voltages (Vh) in opposite directions during treatment with salicylate, a known competitor of required chloride binding. We show here using manipulations of nonlinear capacitance with both salicylate and chloride that an enhanced area motor model, including augmented δCsa by salicylate, can accurately account for our novel findings. We also show that although the three-state model implicitly avoids measuring voltage-dependent motor capacitance, it registers δCsa effects as a byproduct of its assessment of Clin, which increases during salicylate treatment as motors are locked in the expanded state. The area motor model, in contrast, captures the characteristics of the voltage dependence of δCsa, leading to a better understanding of prestin.

  1. Comparison of the frequency response characteristics of catheter-mounted piezoelectric and micromanometric phonotransducers.

    PubMed

    Garcia, J C; Layton, S A; Rubal, B J

    1989-05-01

    This study compares the frequency response characteristics of catheter-mounted piezoelectric sound transducers with micromanometric transducers. The tip of a 8F catheter with two piezoelectric transducers and two micromanometers was inserted into a water-filled chamber that had a speaker fixed at one end. The speaker was driven by a power amplifier and sine wave generator. The outputs of the transducers were connected to a low-level amplifier. The piezoelectric transducer behaved as a tunable high-pass filter that could be modified by altering the input impedance of the low level amplifier; the frequency response characteristics were examined at five input impedances ranging from 0.96 to 11.8 megohms. The peak-to-peak outputs of the piezoelectric and pressure transducers were recorded at frequency ranges from DC to 1 kHz with a wide-band oscilloscope. The ratio of the outputs from the piezotransducer and micromanometer (Vph/Vpr) was plotted vs. frequency for each input impedance and analyzed to determine the piezotransducer's output resistance and equivalent capacitance; roll-off frequencies were then calculated. The equivalent capacitance of the piezo-element was determined to be 500-700 picofarads. Series capacitance acted with network resistance to produce a predictable frequency-dependent change in signal amplitude and phase angle. The inherent noise of the pressure transducer was found to be approximately 0.2 mm Hg, while the noise of the piezoelectric transducer was immeasurably low. The piezoelectric phonotransducers were superior to micromanometer transducers in their higher gain and lower noise, suggesting that these transducers may prove useful to physiologic and clinical studies for measuring intravascular sound.

  2. 4H-SiC p i n diodes grown by sublimation epitaxy in vacuum (SEV) and their application as microwave diodes

    NASA Astrophysics Data System (ADS)

    Camara, N.; Zekentes, K.; Zelenin, V. V.; Abramov, P. L.; Kirillov, A. V.; Romanov, L. P.; Boltovets, N. S.; Krivutsa, V. A.; Thuaire, A.; Bano, E.; Tsoi, E.; Lebedev, A. A.

    2008-02-01

    Sublimation epitaxy under vacuum (SEV) was investigated as a method for growing 4H-SiC epitaxial structures for p-i-n diode fabrication. The SEV-grown 4H-SiC material was investigated with scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction, photo-luminescence spectroscopy (PL), cathodo-luminescence (CL) spectroscopy, photocurrent method for carrier diffusion length determination, electro-luminescence microscopy (EL), deep level transient spectroscopy (DLTS), C-V profiling and Hall-effect measurements. When possible, the same investigation techniques were used in parallel with similar layers grown by chemical vapour deposition (CVD) epitaxy and the physical properties of the two kind of epitaxied layers were compared. p-i-n diodes were fabricated in parallel on SEV and CVD-grown layers and showed close electrical performances in dc mode in term of capacitance, resistance and transient time switching, despite the lower mobility and the diffusion length of the SEV-grown layers. X-band microwave switches based on the SEV-grown p-i-n diodes have been demonstrated with insertion loss lower than 4 dB and an isolation higher than 17 dB. These single-pole single-throw (SPST) switches were able to handle a pulsed power up to 1800 W in isolation mode, similar to the value obtained with switches incorporating diodes with CVD-grown layers.

  3. Structural and electrical properties of AlN layers grown on silicon by reactive RF magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazlov, N., E-mail: n.bazlov@spbu.ru; Pilipenko, N., E-mail: nelly.pilipenko@gmail.com; Vyvenko, O.

    2016-06-17

    AlN films of different thicknesses were deposited on n-Si (100) substrates by reactive radio frequency (rf) magnetron sputtering. Dependences of structure and electrical properties on thickness of deposited films were researched. The structures of the films were analyzed with scanning electron microscopy (SEM) and with transmitting electron microscopy (TEM). Electrical properties of the films were investigated on Au-AlN-(n-Si) structures by means of current-voltage (I-V), capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) techniques. Electron microscopy investigations had shown that structure and chemical composition of the films were thickness stratified. Near silicon surface layer was amorphous aluminum oxide one contained trapsmore » of positive charges with concentration of about 4 × 10{sup 18} cm{sup −3}. Upper layers were nanocrystalline ones consisted of both wurzite AlN and cubic AlON nanocrystals. They contained traps both positive and negative charges which were situated within 30 nm distance from silicon surface. Surface densities of these traps were about 10{sup 12} cm{sup −2}. Electron traps with activation energies of (0.2 ÷ 0.4) eV and densities of about 10{sup 10} cm{sup −2} were revealed on interface between aluminum oxide layer and silicon substrate. Their densities varied weakly with the film thickness.« less

  4. A rugged 650 V SOI-based high-voltage half-bridge IGBT gate driver IC for motor drive applications

    NASA Astrophysics Data System (ADS)

    Hua, Qing; Li, Zehong; Zhang, Bo; Chen, Weizhong; Huang, Xiangjun; Feng, Yuxiang

    2015-05-01

    This paper proposes a rugged high-voltage N-channel insulated gate bipolar transistor (IGBT) gate driver integrated circuit. The device integrates a high-side and a low-side output stages on a single chip, which is designed specifically for motor drive applications. High-voltage level shift technology enables the high-side stage of this device to operate up to 650 V. The logic inputs are complementary metal oxide semiconductor (CMOS)/transistor transistor logic compatible down to 3.3 V. Undervoltage protection functionality with hysteresis characteristic has also been integrated to enhance the device reliability. The device is fabricated in a 1.0 μm, 650 V high-voltage bipolar CMOS double-diffused metal oxide semiconductor (BCD) on silicon-on-insulator (SOI) process. Deep trench dielectric isolation technology is employed to provide complete electrical isolation with advantages such as reduced parasitic effects, excellent noise immunity and low leakage current. Experimental results show that the isolation voltage of this device can be up to approximately 779 V at 25°C, and the leakage current is only 5 nA at 650 V, which is 15% higher and 67% lower than the conventional ones. In addition, it delivers an excellent thermal stability and needs very low quiescent current and offers a high gate driver capability which is needed to adequately drive IGBTs that have large input capacitances.

  5. Deep Learning and Developmental Learning: Emergence of Fine-to-Coarse Conceptual Categories at Layers of Deep Belief Network.

    PubMed

    Sadeghi, Zahra

    2016-09-01

    In this paper, I investigate conceptual categories derived from developmental processing in a deep neural network. The similarity matrices of deep representation at each layer of neural network are computed and compared with their raw representation. While the clusters generated by raw representation stand at the basic level of abstraction, conceptual categories obtained from deep representation shows a bottom-up transition procedure. Results demonstrate a developmental course of learning from specific to general level of abstraction through learned layers of representations in a deep belief network. © The Author(s) 2016.

  6. Oscillator or Amplifier With Wide Frequency Range

    NASA Technical Reports Server (NTRS)

    Kleinberg, L.; Sutton, J.

    1987-01-01

    Inductive and capacitive effects synthesized with feedback circuits. Oscillator/amplifier resistively tunable over wide frequency range. Feedback circuits containing operational amplifiers, resistors, and capacitors synthesize electrical effects of inductance and capacitance in parallel between input terminals. Synthetic inductance and capacitance, and, therefore, resonant frequency of input admittance, adjusted by changing potentiometer setting.

  7. Capacitance scaling of grain boundaries with colossal permittivity of CaCu3Ti4O12-based materials

    NASA Astrophysics Data System (ADS)

    De Almeida-Didry, Sonia; Autret, Cécile; Honstettre, Christophe; Lucas, Anthony; Pacreau, François; Gervais, François

    2015-04-01

    Samples of copper-deficient CaCu3Ti4O12 (CCTO) compared to the nominal composition, all synthesized via organic gel-assisted citrate process, show huge change of grain boundaries capacitance as deduced from a fit of an RC element model to the impedance spectroscopic data. The grain boundary capacitance is found to scale with the permittivity measured at 1 kHz weighted by the size of the grains. This result is found consistent with the internal barrier layer capacitance (IBLC) model.

  8. Capacitance of the Double Layer Formed at the Metal/Ionic-Conductor Interface: How Large Can It Be?

    NASA Astrophysics Data System (ADS)

    Skinner, Brian; Loth, M. S.; Shklovskii, B. I.

    2010-03-01

    The capacitance of the double layer formed at a metal/ionic-conductor interface can be remarkably large, so that the apparent width of the double layer is as small as 0.3 Å. Mean-field theories fail to explain such large capacitance. We propose an alternate theory of the ionic double layer which allows for the binding of discrete ions to their image charges in the metal. We show that at small voltages the capacitance of the double layer is limited only by the weak dipole-dipole repulsion between bound ions, and is therefore very large. At large voltages the depletion of bound ions from one of the capacitor electrodes triggers a collapse of the capacitance to the mean-field value.

  9. Preparation and electrochemical capacitance performances of super-hydrophilic conducting polyaniline

    NASA Astrophysics Data System (ADS)

    Li, Xingwei; Li, Xiaohan; Dai, Na; Wang, Gengchao; Wang, Zhun

    Super-hydrophilic conducting polyaniline was prepared by surface modification of polyaniline using tetraethyl orthosilicate in water/ethanol solution, whereas its conductivity was 4.16 S cm -1 at 25 °C. And its electrochemical capacitance performances as an electrode material were evaluated by the cyclic voltammetry and galvanostatic charge/discharge test in 0.1 M H 2SO 4 aqueous solution. Its initial specific capacitance was 500 F g -1 at a constant current density of 1.5 A g -1, and the capacitance still reached about 400 F g -1 after 5000 consecutive cycles. Moreover, its capacitance retention ratio was circa 70% with the growth of current densities from 1.5 to 20 A g -1, indicating excellent rate capability. It would be a promising electrode material for aqueous redox supercapacitors.

  10. Capacitive chemical sensor

    DOEpatents

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  11. Rapid detection of microbial cell abundance in aquatic systems

    DOE PAGES

    Rocha, Andrea M.; Yuan, Quan; Close, Dan M.; ...

    2016-06-01

    The detection and quantification of naturally occurring microbial cellular densities is an essential component of environmental systems monitoring. While there are a number of commonly utilized approaches for monitoring microbial abundance, capacitance-based biosensors represent a promising approach because of their low-cost and label-free detection of microbial cells, but are not as well characterized as more traditional methods. Here, we investigate the applicability of enhanced alternating current electrokinetics (ACEK) capacitive sensing as a new application for rapidly detecting and quantifying microbial cellular densities in cultured and environmentally sourced aquatic samples. ACEK capacitive sensor performance was evaluated using two distinct and dynamicmore » systems the Great Australian Bight and groundwater from the Oak Ridge Reservation in Oak Ridge, TN. Results demonstrate that ACEK capacitance-based sensing can accurately determine microbial cell counts throughout cellular concentrations typically encountered in naturally occurring microbial communities (10 3 – 10 6 cells/mL). A linear relationship was observed between cellular density and capacitance change correlations, allowing a simple linear curve fitting equation to be used for determining microbial abundances in unknown samples. As a result, this work provides a foundation for understanding the limits of capacitance-based sensing in natural environmental samples and supports future efforts focusing on evaluating the robustness ACEK capacitance-based within aquatic environments.« less

  12. Three Dimensional Nitrogen-Doped and Nitrogen, Sulfur-Codoped Graphene Hydrogels for Electrode Materials in Supercapacitors.

    PubMed

    Yuan, Zhao; Qiao, Fei; Wang, Guiqiang; Zhou, Jin; Cui, Hongyou; Zhuo, Shuping; Xing, Ling-Bao

    2018-08-01

    In present work, reduced graphene oxide hydrogels (RGOHs) with three-dimensional (3D) porous structure are prepared through chemical reduction method by using aminourea (NRGOHs) and aminothiourea (NSRGOHs) as reductants. The as-prepared RGOHs are considered not only as promising electrode materials for supercapacitors, but also the doping of nitrogen (aminourea, NRGOHs) or nitrogen/sulfur (aminothiourea, NSRGOHs) can improve electrochemical performance through faradaic pseudocapacitance. The optimized samples have been prepared by controlling the mass ratios of graphene oxide (GO) to aminourea or aminothiourea to be 1:1, 1:2 and 1:5, respectively. With adding different amounts of aminourea or aminothiourea, the obtained RGOHs exhibited different electrochemical performance in supercapacitors. With increasing the dosage of the reductants, the RGOHs revealed better specific capacitances. Moreover, NSRGOHs with nitrogen, sulfur-codoping exhibited better capacitance performance than that of NRGOHs with only nitrogen-doping. NSRGOHs showed excellent capacitive performance with a very high specific capacitance up to 232.2, 323.3 and 345.6 F g-1 at 0.2 A g-1, while NRGOHs showed capacitive performance with specific capacitance up to 220.6, 306.5 and 332.7 F g-1 at 0.2 A g-1. This provides a strategy to improve the capacitive properties of RGOHs significantly by controlling different doping the materials.

  13. Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhou, Haihan; Han, Gaoyi; Xiao, Yaoming; Chang, Yunzhen; Zhai, Hua-Jin

    2014-10-01

    A simple and low-cost electrochemical codeposition method has been introduced to fabricate polypyrrole/graphene oxide (PPy/GO) nanocomposites and the areal capacitance of conducting polymer/GO composites is reported for the first time. Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) are implemented to determine the PPy/GO nanocomposites are successfully prepared and the interaction between PPy and GO. The as-prepared PPy/GO nanocomposites show the curly sheet-like morphology, superior capacitive behaviors and cyclic stability. Furthermore, the varying deposition time is implemented to investigate the impact of the loading amount on electrochemical behavior of the composites, and a high areal capacitance of 152 mF cm-2 is achieved at 10 mV s-1 CV scan. However, the thicker films caused by the long deposition time would result in larger diffusion resistance of electrolyte ions, consequently exhibit the relatively lower capacitance value at the high current density. The GCD tests indicate moderate deposition time is more suitable for the fast charge/discharge. Considering the very simple and effective synthetic process, the PPy/GO nanocomposites with relatively high areal capacitance are competitive candidate for supercapacitor application, and its capacitive performances can be easily tuned by varying the deposition time.

  14. Rapid detection of microbial cell abundance in aquatic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocha, Andrea M.; Yuan, Quan; Close, Dan M.

    The detection and quantification of naturally occurring microbial cellular densities is an essential component of environmental systems monitoring. While there are a number of commonly utilized approaches for monitoring microbial abundance, capacitance-based biosensors represent a promising approach because of their low-cost and label-free detection of microbial cells, but are not as well characterized as more traditional methods. Here, we investigate the applicability of enhanced alternating current electrokinetics (ACEK) capacitive sensing as a new application for rapidly detecting and quantifying microbial cellular densities in cultured and environmentally sourced aquatic samples. ACEK capacitive sensor performance was evaluated using two distinct and dynamicmore » systems the Great Australian Bight and groundwater from the Oak Ridge Reservation in Oak Ridge, TN. Results demonstrate that ACEK capacitance-based sensing can accurately determine microbial cell counts throughout cellular concentrations typically encountered in naturally occurring microbial communities (10 3 – 10 6 cells/mL). A linear relationship was observed between cellular density and capacitance change correlations, allowing a simple linear curve fitting equation to be used for determining microbial abundances in unknown samples. As a result, this work provides a foundation for understanding the limits of capacitance-based sensing in natural environmental samples and supports future efforts focusing on evaluating the robustness ACEK capacitance-based within aquatic environments.« less

  15. Isolating the effect of pore size distribution on electrochemical double-layer capacitance using activated fluid coke

    NASA Astrophysics Data System (ADS)

    Zuliani, Jocelyn E.; Tong, Shitang; Kirk, Donald W.; Jia, Charles Q.

    2015-12-01

    Electrochemical double-layer capacitors (EDLCs) use physical ion adsorption in the capacitive electrical double layer of high specific surface area (SSA) materials to store electrical energy. Previous work shows that the SSA-normalized capacitance increases when pore diameters are less than 1 nm. However, there still remains uncertainty about the charge storage mechanism since the enhanced SSA-normalized capacitance is not observed in all microporous materials. In previous studies, the total specific surface area and the chemical composition of the electrode materials were not controlled. The current work is the first reported study that systematically compares the performance of activated carbon prepared from the same raw material, with similar chemical composition and specific surface area, but different pore size distributions. Preparing samples with similar SSAs, but different pores sizes is not straightforward since increasing pore diameters results in decreasing the SSA. This study observes that the microporous activated carbon has a higher SSA-normalized capacitance, 14.1 μF cm-2, compared to the mesoporous material, 12.4 μF cm-2. However, this enhanced SSA-normalized capacitance is only observed above a threshold operating voltage. Therefore, it can be concluded that a minimum applied voltage is required to induce ion adsorption in these sub-nanometer micropores, which increases the capacitance.

  16. Theory of Semiconducting Superlattices and Microstructures

    DTIC Science & Technology

    1992-03-01

    theory elucidated the various factors affecting deep levels, sets forth the conditions for obtaining shallow-deep transitions, and predicts that Si (a...theory elucidates the various factors affecting deep levels, sets forth the conditions for obtaining shallow-deep transitions, and predicts that Si (a...ondenotes the anion vacancy, which can be thought any quantitative theoretical factor are theof as originating from Column-O of the Period strengths of

  17. [Hypothermia].

    PubMed

    García Iriarte, Antxon; Sáenz Mendía, Raquel; Marín Fernández, Blanca

    2010-01-01

    A deep understanding about the causes and situations which predispose a patient to hypothermia can prevent its progression and the emergence of complications which present life-threatening risks and can lead to irreversible organ deterioration. The distinct degrees of hypothermia require a diagnosis and a distinct therapeutic treatment which share common pillars based on: the need to employ general measures which counterarrest the deterioration of those organs caused by heat loss; and the use of internal or external reheating methods which vary due to the degree of hypothermia and the hemodynamic stability of the patient. In moderate or severe cases, a nurse's role, as one who collaborates in patient treatment, requires paying special attention to strict monitoring of vital constants, neurological, metabolic and cardio-respiratory signs, as well as collaborating in various therapeutic procedures. As a nursing diagnosis, hypothermia refers to those situations in which a nurse's professional competence capacitates he/she to carry out actions which resolve that prejudicial situation a patient faces.

  18. Low power analog front-end electronics in deep submicrometer CMOS technology based on gain enhancement techniques

    NASA Astrophysics Data System (ADS)

    Gómez-Galán, J. A.; Sánchez-Rodríguez, T.; Sánchez-Raya, M.; Martel, I.; López-Martín, A.; Carvajal, R. G.; Ramírez-Angulo, J.

    2014-06-01

    This paper evaluates the design of front-end electronics in modern technologies to be used in a new generation of heavy ion detectors—HYDE (FAIR, Germany)—proposing novel architectures to achieve high gain in a low voltage environment. As conventional topologies of operational amplifiers in modern CMOS processes show limitations in terms of gain, novel approaches must be raised. The work addresses the design using transistors with channel length of no more than double the feature size and a supply voltage as low as 1.2 V. A front-end system has been fabricated in a 90 nm process including gain boosting techniques based on regulated cascode circuits. The analog channel has been optimized to match a detector capacitance of 5 pF and exhibits a good performance in terms of gain, speed, linearity and power consumption.

  19. [A case of liver metastasis of gastric cancer which was made resectable by hypertheromo-chemo-radiotherapy].

    PubMed

    Urade, M; Yonemura, Y; Fujimura, T; Takegawa, S; Kamata, T; Fushida, Y; Miyazaki, I

    1989-03-01

    A 60-year-old woman was diagnosed as having liver metastasis from gastric cancer 14 months after total gastrectomy and total pancreatectomy. The liver tumor was so huge and the complication, diabetes mellitus, was so severe that she was palliatively treated by hyperthermo-chemo-radiotherapy (HCR therapy) with 8-MHz capacitive heating system. Because hyperthermia for deep seated tumor is very difficult, irradiation (10 MV X-ray, 36 Gy) and systemic chemotherapy (CDDP, MMC) were combinedly used. After 10 session of hyperthermia, the tumor showed a remarkable regression in size, followed by S8 subsegmentectomy of the liver. Histologically, cancer cells were still viable in the midst of fibrosis around coagulation necrosis, while normal liver cells remained intact. Multidisciplinary HCR therapy is quite a useful modality for liver tumors and may serve to expand the indication for surgical operation.

  20. Performance of Surface-Mount Ceramic and Solid Tantalum Capacitors for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; MacDonald, Thomas L.; Hammoud, Ahmad; Gerber, Scott

    1998-01-01

    Low temperature electronics are of great interest for space exploration programs. These include missions to the outer planets, earth-orbiting and deep-space probes, remote-sensing and communication satellites. Terrestrial applications would also benefit from the availability of low temperature electronics. Power components capable of low temperature operation would, thus, enhance the technologies needed for the development of advanced power systems suitable for use in harsh environments. In this work, ceramic and solid tantalum capacitors were evaluated in terms of their dielectric properties as a function of temperature and at various frequencies. The surface-mount devices were characterized in terms of their capacitance stability and dissipation factor in the frequency range of 50 Hz to 100 kHz at temperatures ranging from room temperature (20 deg. C) to about liquid nitrogen temperature (-190 deg. C). The results are discussed and conclusions made concerning the suitability of the capacitors investigated for low temperature applications.

  1. Cryogenic Etching of Silicon: An Alternative Method For Fabrication of Vertical Microcantilever Master Molds

    PubMed Central

    Addae-Mensah, Kweku A.; Retterer, Scott; Opalenik, Susan R.; Thomas, Darrell; Lavrik, Nickolay V.; Wikswo, John P.

    2013-01-01

    This paper examines the use of deep reactive ion etching (DRIE) of silicon with fluorine high-density plasmas at cryogenic temperatures to produce silicon master molds for vertical microcantilever arrays used for controlling substrate stiffness for culturing living cells. The resultant profiles achieved depend on the rate of deposition and etching of a SiOxFy polymer, which serves as a passivation layer on the sidewalls of the etched structures in relation to areas that have not been passivated with the polymer. We look at how optimal tuning of two parameters, the O2 flow rate and the capacitively coupled plasma (CCP) power, determine the etch profile. All other pertinent parameters are kept constant. We examine the etch profiles produced using e-beam resist as the main etch mask, with holes having diameters of 750 nm, 1 µm, and 2 µm. PMID:24223478

  2. A Biosensor-CMOS Platform and Integrated Readout Circuit in 0.18-μm CMOS Technology for Cancer Biomarker Detection.

    PubMed

    Alhoshany, Abdulaziz; Sivashankar, Shilpa; Mashraei, Yousof; Omran, Hesham; Salama, Khaled N

    2017-08-23

    This paper presents a biosensor-CMOS platform for measuring the capacitive coupling of biorecognition elements. The biosensor is designed, fabricated, and tested for the detection and quantification of a protein that reveals the presence of early-stage cancer. For the first time, the spermidine/spermine N1 acetyltransferase (SSAT) enzyme has been screened and quantified on the surface of a capacitive sensor. The sensor surface is treated to immobilize antibodies, and the baseline capacitance of the biosensor is reduced by connecting an array of capacitors in series for fixed exposure area to the analyte. A large sensing area with small baseline capacitance is implemented to achieve a high sensitivity to SSAT enzyme concentrations. The sensed capacitance value is digitized by using a 12-bit highly digital successive-approximation capacitance-to-digital converter that is implemented in a 0.18 μm CMOS technology. The readout circuit operates in the near-subthreshold regime and provides power and area efficient operation. The capacitance range is 16.137 pF with a 4.5 fF absolute resolution, which adequately covers the concentrations of 10 mg/L, 5 mg/L, 2.5 mg/L, and 1.25 mg/L of the SSAT enzyme. The concentrations were selected as a pilot study, and the platform was shown to demonstrate high sensitivity for SSAT enzymes on the surface of the capacitive sensor. The tested prototype demonstrated 42.5 μS of measurement time and a total power consumption of 2.1 μW.

  3. A Biosensor-CMOS Platform and Integrated Readout Circuit in 0.18-μm CMOS Technology for Cancer Biomarker Detection

    PubMed Central

    Alhoshany, Abdulaziz; Sivashankar, Shilpa; Mashraei, Yousof; Omran, Hesham; Salama, Khaled N.

    2017-01-01

    This paper presents a biosensor-CMOS platform for measuring the capacitive coupling of biorecognition elements. The biosensor is designed, fabricated, and tested for the detection and quantification of a protein that reveals the presence of early-stage cancer. For the first time, the spermidine/spermine N1 acetyltransferase (SSAT) enzyme has been screened and quantified on the surface of a capacitive sensor. The sensor surface is treated to immobilize antibodies, and the baseline capacitance of the biosensor is reduced by connecting an array of capacitors in series for fixed exposure area to the analyte. A large sensing area with small baseline capacitance is implemented to achieve a high sensitivity to SSAT enzyme concentrations. The sensed capacitance value is digitized by using a 12-bit highly digital successive-approximation capacitance-to-digital converter that is implemented in a 0.18 μm CMOS technology. The readout circuit operates in the near-subthreshold regime and provides power and area efficient operation. The capacitance range is 16.137 pF with a 4.5 fF absolute resolution, which adequately covers the concentrations of 10 mg/L, 5 mg/L, 2.5 mg/L, and 1.25 mg/L of the SSAT enzyme. The concentrations were selected as a pilot study, and the platform was shown to demonstrate high sensitivity for SSAT enzymes on the surface of the capacitive sensor. The tested prototype demonstrated 42.5 μS of measurement time and a total power consumption of 2.1 μW. PMID:28832523

  4. Estimation of stream depletion using values of capacitance

    NASA Astrophysics Data System (ADS)

    Baldenkov, Mikhail; Filimonova, Elena

    2014-05-01

    Compensation pumping is used to alleviate deficiencies in streamflow discharge during dry seasons. Short-term groundwater pumping can use aquifer storage instead of catchment-zone water until the drawdown reaches the edge of the stream. Stream-aquifer interactions are the key component of the hydrologic budgets and estimation of stream depletion has top-priority when evaluating the effectiveness of application of seasonal compensation pumping. Numerous analytical equations have been developed to assess the influence of groundwater pumping on nearby streams (C.V. Theis, R.E. Glover, C.G. Balmer, M.S. Hantush, C.T. Jenkins, B. Hunt, J. Bredehoeft, V.A. Zlotnik, E.L. Minkin, N.N. Lapshin, F.M. Bochever and other researchers). R.B. Wallace and Y. Darama obtained solution for cyclic conditions groundwater pumping. Numerical model approaches used in difficult hydrogeological conditions. It is offered to estimate stream depletion by seasonal pumping using values of capacitance (complex, dimensionless parameter of an aquifer system that defines the delayed effect on steamflow when there is groundwater pumping). Capacitance (C) is determined by the following equation: ( ) L* C = f( °---) , TS-Δt where S and T are the aquifer specific yield (or storage coefficient for a confined aquifer) and transmissivity, respectively; Δt is the pumping time inside one cycle, L* is the summarizing distance between the compensation well and stream edge; in some cases it can involve a function of the stream leakance and vertical leakance of the impermeable layer. Three typical hydraulic cases of compensation pumping were classified depending on their capacitance structure (i.e. the relationship between surface water and groundwater): (a) perfect hydraulic connection between the stream and aquifer; (b) imperfect hydraulic connection between the stream and aquifer; and (c) essentially imperfect hydraulic connection between the stream and the underlying confined aquifer. The form of capacitance was obtained for all three cases and is a function of aquifer hydraulic characteristics, pumping time and distance between the well and stream edge. The distance in the first and the second cases is the sum of the shortest distance between stream edge and the well and the stream leakance; in case; and in the third case, it is the sum of real distance, stream leakance and vertical leakance through the impermeable layer. A regression test between unit stream depletion (i.e. the ratio of stream reduction to pumping rate stream depletion and capacitance was performed, and power dependences were obtained in the form of Y = a + bC-0.5 The drained storage cannot be absolutely recovered by natural processes that cause 'residual' stream depletion (RSD) even in condition of perfect hydraulic connection between the stream and aquifer. The impact of various hydraulic characteristics and engineering factors on RSD was examined by numerical modeling. It was realized lack of correlation between capacitance and RSD, but exponential dependences between capacitance and the annual amplitudes of stream depletion (A) were obtained in the form of: A = 0.95 exp(- 0.776C ) Although this approach cannot assess stream-aquifer interactions to the same degree of accuracy as analytical equations of detail as a numerical model, it can provide forecast estimation with the level of primary available data.

  5. Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees.

    Treesearch

    F.C. Meinzer; S.A. James; G. Goldstein; D. Woodruff

    2003-01-01

    The present study examines the manner in which several whole-tree water transport properties scale with species specific variation in sapwood water storage capacity. The hypothesis that constraints on relationships between sapwood capacitance and other water relations characteristics lead to predictable scaling relationships between intrinsic capacitance and whole-tree...

  6. Large Capacitance Measurement by Multiple Uses of MBL Charge Sensor

    ERIC Educational Resources Information Center

    Lee, Jung Sook; Chae, Min; Kim, Jung Bog

    2010-01-01

    A recent article by Morse described interesting electrostatics experiments using an MBL charge sensor. In this application, the charge sensor has a large capacitance compared to the charged test object, so nearly all charges can be transferred to the sensor capacitor from the capacitor to be measured. However, the typical capacitance of commercial…

  7. Scanning Capacitance Microscopy | Materials Science | NREL

    Science.gov Websites

    obtained using scanning capacitance microscopy. Top Right: Image of p-type and n-type material, obtained 'fingers' of light-colored n-type material on a yellow and blue background representing p-type material ; measurement data were obtained using scanning capacitance microscopy. Bottom Right: Image of p-type and n-type

  8. A numerical method for measuring capacitive soft sensors through one channel

    NASA Astrophysics Data System (ADS)

    Tairych, Andreas; Anderson, Iain A.

    2018-03-01

    Soft capacitive stretch sensors are well suited for unobtrusive wearable body motion capture. Conventional sensing methods measure sensor capacitances through separate channels. In sensing garments with many sensors, this results in high wiring complexity, and a large footprint of rigid sensing circuit boards. We have developed a more efficient sensing method that detects multiple sensors through only one channel, and one set of wires. It is based on a R-C transmission line assembled from capacitive conductive fabric stretch sensors, and external resistors. The unknown capacitances are identified by solving a system of nonlinear equations. These equations are established by modelling and continuously measuring transmission line reactances at different frequencies. Solving these equations numerically with a Newton-Raphson solver for the unknown capacitances enables real time reading of all sensors. The method was verified with a prototype comprising three sensors that is capable of detecting both individually and simultaneously stretched sensors. Instead of using three channels and six wires to detect the sensors, the task was achieved with only one channel and two wires.

  9. Method and apparatus for measuring low currents in capacitance devices

    DOEpatents

    Kopp, M.K.; Manning, F.W.; Guerrant, G.C.

    1986-06-04

    A method and apparatus for measuring subnanoampere currents in capacitance devices is reported. The method is based on a comparison of the voltages developed across the capacitance device with that of a reference capacitor in which the current is adjusted by means of a variable current source to produce a stable voltage difference. The current varying means of the variable current source is calibrated to provide a read out of the measured current. Current gain may be provided by using a reference capacitor which is larger than the device capacitance with a corresponding increase in current supplied through the reference capacitor. The gain is then the ratio of the reference capacitance to the device capacitance. In one illustrated embodiment, the invention makes possible a new type of ionizing radiation dose-rate monitor where dose-rate is measured by discharging a reference capacitor with a variable current source at the same rate that radiation is discharging an ionization chamber. The invention eliminates high-megohm resistors and low current ammeters used in low-current measuring instruments.

  10. Aptamer-functionalized capacitance sensors for real-time monitoring of bacterial growth and antibiotic susceptibility.

    PubMed

    Jo, Namgyeong; Kim, Bongjun; Lee, Sun-Mi; Oh, Jeseung; Park, In Ho; Jin Lim, Kook; Shin, Jeon-Soo; Yoo, Kyung-Hwa

    2018-04-15

    To prevent spread of infection and antibiotic resistance, fast and accurate diagnosis of bacterial infection and subsequent administration of antimicrobial agents are important. However, conventional methods for bacterial detection and antibiotic susceptibility testing (AST) require more than two days, leading to delays that have contributed to an increase in antibiotic-resistant bacteria. Here, we report an aptamer-functionalized capacitance sensor array that can monitor bacterial growth and antibiotic susceptibility in real-time. While E. coli and S. aureus were cultured, the capacitance increased over time, and apparent bacterial growth curves were observed even when 10 CFU/mL bacteria was inoculated. Furthermore, because of the selectivity of aptamers, bacteria could be identified within 1h using the capacitance sensor array functionalized with aptamers. In addition to bacterial growth, antibiotic susceptibility could be monitored in real-time. When bacteria were treated with antibiotics above the minimum inhibitory concentration (MIC), the capacitance decreased because the bacterial growth was inhibited. These results demonstrate that the aptamer-functionalized capacitance sensor array might be applied for rapid ASTs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Graphene/Polyaniline Aerogel with Superelasticity and High Capacitance as Highly Compression-Tolerant Supercapacitor Electrode

    NASA Astrophysics Data System (ADS)

    Lv, Peng; Tang, Xun; Zheng, Ruilin; Ma, Xiaobo; Yu, Kehan; Wei, Wei

    2017-12-01

    Superelastic graphene aerogel with ultra-high compressibility shows promising potential for compression-tolerant supercapacitor electrode. However, its specific capacitance is too low to meet the practical application. Herein, we deposited polyaniline (PANI) into the superelastic graphene aerogel to improve the capacitance while maintaining the superelasticity. Graphene/PANI aerogel with optimized PANI mass content of 63 wt% shows the improved specific capacitance of 713 F g-1 in the three-electrode system. And the graphene/PANI aerogel presents a high recoverable compressive strain of 90% due to the strong interaction between PANI and graphene. The all-solid-state supercapacitors were assembled to demonstrate the compression-tolerant ability of graphene/PANI electrodes. The gravimetric capacitance of graphene/PANI electrodes reaches 424 F g-1 and retains 96% even at 90% compressive strain. And a volumetric capacitance of 65.5 F cm-3 is achieved, which is much higher than that of other compressible composite electrodes. Furthermore, several compressible supercapacitors can be integrated and connected in series to enhance the overall output voltage, suggesting the potential to meet the practical application.

  12. Porous NiCo2O4 nanosheets/reduced graphene oxide composite: facile synthesis and excellent capacitive performance for supercapacitors.

    PubMed

    Ma, Lianbo; Shen, Xiaoping; Ji, Zhenyuan; Cai, Xiaoqing; Zhu, Guoxing; Chen, Kangmin

    2015-02-15

    A composite with porous NiCo2O4 nanosheets attached on reduced graphene oxide (RGO) sheets is synthesized through a facile solution-based method combined with a simple thermal annealing process. The capacitive performances of the as-prepared NiCo2O4/RGO (NCG) composites as electrode materials are investigated. It is found that the NCG composites exhibit a high specific capacitance up to 1186.3 F g(-1) at the current density of 0.5 A g(-1), and superior cycling stability with about 97% of the initial capacitance after 100 cycles. The greatly enhanced capacitive performance of the NCG electrode can be attributed to the existence of RGO support, which serves as both conductive channels and active interface. The approach used in the synthesis provides a facile route for preparing graphene-binary metal oxide electrode materials. The remarkable capacitive performance of NCG composites will undoubtedly make them be attractive for high performance energy storage applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Highly Compressible Carbon Sponge Supercapacitor Electrode with Enhanced Performance by Growing Nickel-Cobalt Sulfide Nanosheets.

    PubMed

    Liang, Xu; Nie, Kaiwen; Ding, Xian; Dang, Liqin; Sun, Jie; Shi, Feng; Xu, Hua; Jiang, Ruibin; He, Xuexia; Liu, Zonghuai; Lei, Zhibin

    2018-03-28

    The development of compressible supercapacitor highly relies on the innovative design of electrode materials with both superior compression property and high capacitive performance. This work reports a highly compressible supercapacitor electrode which is prepared by growing electroactive NiCo 2 S 4 (NCS) nanosheets on the compressible carbon sponge (CS). The strong adhesion of the metallic conductive NCS nanosheets to the highly porous carbon scaffolds enable the CS-NCS composite electrode to exhibit an enhanced conductivity and ideal structural integrity during repeated compression-release cycles. Accordingly, the CS-NCS composite electrode delivers a specific capacitance of 1093 F g -1 at 0.5 A g -1 and remarkable rate performance with 91% capacitance retention in the range of 0.5-20 A g -1 . Capacitance performance under the strain of 60% shows that the incorporation of NCS nanosheets in CS scaffolds leads to over five times enhancement in gravimetric capacitance and 17 times enhancement in volumetric capacitance. These performances enable the CS-NCS composite to be one of the promising candidates for potential applications in compressible electrochemical energy storage devices.

  14. Graphene/Polyaniline Aerogel with Superelasticity and High Capacitance as Highly Compression-Tolerant Supercapacitor Electrode.

    PubMed

    Lv, Peng; Tang, Xun; Zheng, Ruilin; Ma, Xiaobo; Yu, Kehan; Wei, Wei

    2017-12-19

    Superelastic graphene aerogel with ultra-high compressibility shows promising potential for compression-tolerant supercapacitor electrode. However, its specific capacitance is too low to meet the practical application. Herein, we deposited polyaniline (PANI) into the superelastic graphene aerogel to improve the capacitance while maintaining the superelasticity. Graphene/PANI aerogel with optimized PANI mass content of 63 wt% shows the improved specific capacitance of 713 F g -1 in the three-electrode system. And the graphene/PANI aerogel presents a high recoverable compressive strain of 90% due to the strong interaction between PANI and graphene. The all-solid-state supercapacitors were assembled to demonstrate the compression-tolerant ability of graphene/PANI electrodes. The gravimetric capacitance of graphene/PANI electrodes reaches 424 F g -1 and retains 96% even at 90% compressive strain. And a volumetric capacitance of 65.5 F cm -3 is achieved, which is much higher than that of other compressible composite electrodes. Furthermore, several compressible supercapacitors can be integrated and connected in series to enhance the overall output voltage, suggesting the potential to meet the practical application.

  15. The effects of ion adsorption on the potential of zero charge and the differential capacitance of charged aqueous interfaces

    NASA Astrophysics Data System (ADS)

    Uematsu, Yuki; Netz, Roland R.; Bonthuis, Douwe Jan

    2018-02-01

    Using a box profile approximation for the non-electrostatic surface adsorption potentials of anions and cations, we calculate the differential capacitance of aqueous electrolyte interfaces from a numerical solution of the Poisson-Boltzmann equation, including steric interactions between the ions and an inhomogeneous dielectric profile. Preferential adsorption of the positive (negative) ion shifts the minimum of the differential capacitance to positive (negative) surface potential values. The trends are similar for the potential of zero charge; however, the potential of zero charge does not correspond to the minimum of the differential capacitance in the case of asymmetric ion adsorption, contrary to the assumption commonly used to determine the potential of zero charge. Our model can be used to obtain more accurate estimates of ion adsorption properties from differential capacitance or electrocapillary measurements. Asymmetric ion adsorption also affects the relative heights of the characteristic maxima in the differential capacitance curves as a function of the surface potential, but even for strong adsorption potentials the effect is small, making it difficult to reliably determine the adsorption properties from the peak heights.

  16. High resolution CMOS capacitance-frequency converter for biosensor applications

    NASA Astrophysics Data System (ADS)

    Ghoor, I. S.; Land, K.; Joubert, T.-H.

    2016-02-01

    This paper presents the design of a low-complexity, linear and sub-pF CMOS capacitance-frequency converter for reading out a capacitive bacterial bio/sensors with the endeavour of creating a universal bio/sensor readout module. Therefore the priority design objectives are a high resolution as well as an extensive dynamic range. The circuit is based on a method which outputs a digital frequency signal directly from a differential capacitance by the accumulation of charges produced by repetitive charge integration and charge preservation1. A prototype has been designed for manufacture in the 0.35 μm, 3.3V ams CMOS technology. At a 1MHz clock speed, the most pertinent results obtained for the designed converter are: (i) power consumption of 1.37mW; (ii) a resolution of at least 5 fF for sensitive capacitive transduction; and (iii) an input dynamic range of at least 43.5 dB from a measurable capacitance value range of 5 - 750 fF (iv) and a Pearson's coefficient of linearity of 0.99.

  17. Capacitive Deionization of High-Salinity Solutions

    DOE PAGES

    Sharma, Ketki; Gabitto, Jorge; Mayes, Richard T.; ...

    2014-12-22

    Desalination of high salinity solutions has been studied using a novel experimental technique and a theoretical model. Neutron imaging has been employed to visualize lithium ions in mesoporous carbon materials, which are used as electrodes in capacitive deionization for water desalination. Experiments were conducted with a flow-through capacitive deionization cell designed for neutron imaging and with lithium chloride ( 6LiCl) as the electrolyte. Sequences of neutron images have been obtained at a relatively high concentration of lithium chloride ( 6LiCl) solution to provide information on the transport of ions within the electrodes. A new model that computes the individual ionicmore » concentration profiles inside mesoporous carbon electrodes has been used to simulate the capacitive deionization process. Modifications have also been introduced into the simulation model to calculate results at high electrolyte concentrations. Experimental data and simulation results provide insight into why capacitive deionization is not effective for desalination of high ionic-strength solutions. The combination of experimental information, obtained through neutron imaging, with the theoretical model will help in the design of capacitive deionization devices, which can improve the process for high ionic-strength solutions.« less

  18. Photoinduced current transient spectroscopy of deep levels and transport mechanisms in iron-doped GaN thin films grown by low pressure-metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Muret, P.; Pernot, J.; Azize, M.; Bougrioua, Z.

    2007-09-01

    Electrical transport and deep levels are investigated in GaN:Fe layers epitaxially grown on sapphire by low pressure metalorganic vapor phase epitaxy. Photoinduced current transient spectroscopy and current detected deep level spectroscopy are performed between 200 and 650 K on three Fe-doped samples and an undoped sample. A detailed study of the detected deep levels assigns dominant centers to a deep donor 1.39 eV below the conduction band edge EC and to a deep acceptor 0.75 eV above the valence band edge EV at low electric field. A strong Poole-Frenkel effect is evidenced for the donor. Schottky diodes characteristics and transport properties in the bulk GaN:Fe layer containing a homogenous concentration of 1019 Fe/cm3 are typical of a compensated semiconductor. They both indicate that the bulk Fermi level is located typically 1.4 eV below EC, in agreement with the neutrality equation and dominance of the deep donor concentration. This set of results demonstrates unambiguously that electrical transport in GaN:Fe is governed by both types, either donor or acceptor, of the iron impurity, either substitutional in gallium sites or associated with other defects.

  19. IBS-like Symptoms in Patients with Ulcerative Colitis in Deep Remission Are Associated with Increased Levels of Serum Cytokines and Poor Psychological Well-being.

    PubMed

    Jonefjäll, Börje; Öhman, Lena; Simrén, Magnus; Strid, Hans

    2016-11-01

    Gastrointestinal symptoms (GI) compatible with irritable bowel syndrome (IBS) are common in patients with ulcerative colitis (UC) in remission. The causes of these symptoms remain to be clarified. Our aim was to investigate prevalence and factors associated with IBS-like symptoms in patients with UC in deep remission. We included 298 patients with UC and used Mayo score, sigmoidoscopy, and fecal calprotectin to define deep remission versus active disease. Presence of IBS-like symptoms according to the Rome III criteria, severity of GI, extraintestinal and psychological symptoms, stress levels, and quality of life were measured with validated questionnaires. Serum cytokines and high-sensitive C-reactive peptide were determined. The criteria for deep remission was fulfilled by 132 patients (44%) and 24 of these fulfilled the Rome III criteria for IBS (18%). Patients with UC in deep remission with IBS-like symptoms had comparable levels of GI symptoms, non-GI somatic symptoms, and quality of life as patients with active UC. The patients with UC in deep remission with IBS-like symptoms had similar levels of fecal calprotectin as patients in deep remission without IBS-like symptoms (18 versus 31 μg/g, P = 0.11), but higher levels of serum cytokines (interleukin [IL]-1β, IL-6, IL-13, IL-10 and IL-8, P < 0.05) and higher levels of anxiety (P < 0.001), depression (P = 0.02) and perceived stress (P = 0.03). IBS-like symptoms in patients with UC in deep remission are common, but not as prevalent as previously reported. Poor psychological well-being and increased serum cytokine levels, but not colonic low-grade inflammation, were associated with IBS-like symptoms.

  20. Levels-of-processing effects on a task of olfactory naming.

    PubMed

    Royet, Jean-Pierre; Koenig, Olivier; Paugam-Moisy, Helene; Puzenat, Didier; Chasse, Jean-Luc

    2004-02-01

    The effects of odor processing were investigated at various analytical levels, from simple sensory analysis to deep or semantic analysis, on a subsequent task of odor naming. Students (106 women, 23.6 +/- 5.5 yr. old; 65 men, 25.1 +/- 7.1 yr. old) were tested. The experimental procedure included two successive sessions, a first session to characterize a set of 30 odors with criteria that used various depths of processing and a second session to name the odors as quickly as possible. Four processing conditions rated the odors using descriptors before naming the odor. The control condition did not rate the odors before naming. The processing conditions were based on lower-level olfactory judgments (superficial processing), higher-level olfactory-gustatory-somesthetic judgments (deep processing), and higher-level nonolfactory judgments (Deep-Control processing, with subjects rating odors with auditory and visual descriptors). One experimental condition successively grouped lower- and higher-level olfactory judgments (Superficial-Deep processing). A naming index which depended on response accuracy and the subjects' response time were calculated. Odor naming was modified for 18 out of 30 odorants as a function of the level of processing required. For 94.5% of significant variations, the scores for odor naming were higher following those tasks for which it was hypothesized that the necessary olfactory processing was carried out at a deeper level. Performance in the naming task was progressively improved as follows: no rating of odors, then superficial, deep-control, deep, and superficial-deep processings. These data show that the deepest olfactory encoding was later associated with progressively higher performance in naming.

  1. Anomalous Capacitance Maximum of the Glassy Carbon-Ionic Liquid Interface through Dilution with Organic Solvents.

    PubMed

    Bozym, David J; Uralcan, Betül; Limmer, David T; Pope, Michael A; Szamreta, Nicholas J; Debenedetti, Pablo G; Aksay, Ilhan A

    2015-07-02

    We use electrochemical impedance spectroscopy to measure the effect of diluting a hydrophobic room temperature ionic liquid with miscible organic solvents on the differential capacitance of the glassy carbon-electrolyte interface. We show that the minimum differential capacitance increases with dilution and reaches a maximum value at ionic liquid contents near 5-10 mol% (i.e., ∼1 M). We provide evidence that mixtures with 1,2-dichloroethane, a low-dielectric constant solvent, yield the largest gains in capacitance near the open circuit potential when compared against two traditional solvents, acetonitrile and propylene carbonate. To provide a fundamental basis for these observations, we use a coarse-grained model to relate structural variations at the double layer to the occurrence of the maximum. Our results reveal the potential for the enhancement of double-layer capacitance through dilution.

  2. Electrical characteristics of pentacene-based Schottky diodes

    NASA Astrophysics Data System (ADS)

    Lee, Y. S.; Park, J. H.; Choi, J. S.

    2003-01-01

    The current-voltage ( I-V), capacitance-frequency ( C-f), and capacitance-voltage ( C-V) characteristics of organic diodes with a pentacene/aluminum Sckottky contact have been investigated. From the measured diode capacitances, it is revealed that the frequency-dependent properties are related to the localized traps in the band gap of pentacene. The C-V characteristics for different test frequencies are presented. In the low frequency region, the capacitance is nearly constant with reverse bias and increase with the forward bias. With even higher forward bias, the capacitance gradually decreases, which is due to the detrapping of the trapped charges. The intrinsic charge carrier concentration in pentacene was extracted as 3.1×10 17 cm -3 from the C-V characteristics. The C-V properties of the pentacene-based metal-oxide-semiconductor structure have also studied.

  3. Electrochemical double-layer capacitors based on functionalized graphene

    NASA Astrophysics Data System (ADS)

    Pope, Michael Allan

    Graphene is a promising electrode material for electrochemical double-layer capacitors (EDLCs) used for energy storage due to its high electrical conductivity and theoretical specific surface area. However, the intrinsic capacitance of graphene is known to be low and governed by the electronic side of the interface. Furthermore, graphene tends to aggregate and stack together when processed into thick electrode films. This significantly lowers the ion-accessible specific surface area (SSA). Maximizing both the SSA and the intrinsic capacitance are the main problems addressed in this thesis in an effort to improve the specific capacitance and energy density of EDLCs. In contrast to pristine graphene, functionalized graphene produced by the thermal exfoliation of graphite oxide contains residual functional groups and lattice defects. To study how these properties affect the double-layer capacitance, a model electrode system capable of measuring the intrinsic electrochemical properties of functionalized graphene was developed. To prevent artifacts and uncertainties related to measurements on porous electrodes, the functionalized graphene sheets (FGSs) were assembled as densely tiled monolayers using a Langmuir-Blodgett technique. In this way, charging can be studied in a well-defined 2D geometry. The possibility of measuring and isolating the intrinsic electrochemical properties of FGS monolayers was first demonstrated by comparing capacitance and redox probe measurements carried out on coatings deposited on passivated gold and single crystal graphite substrates. This monolayer system was then used to follow the double-layer capacitance of the FGS/electrolyte interface as the structure and chemistry of graphene was varied by thermal treatments ranging from 300 °C to 2100 °C. Elemental analysis and Raman spectroscopy were used to determine the resulting chemical and structural transformation upon heat treatment. It was demonstrated that intrinsically defective graphene monolayers can exhibit four-fold higher double-layer capacitance than pristine graphene. High temperature annealing lowered the capacitance until it approached that of pristine graphene. An optimal level of functionalization and lattice disorder is found necessary to retain high double-layer capacitance suggesting that graphene-based materials can be chemically tailored to engineer higher capacitance electrodes. The second half of this thesis focuses on understanding the factors that control the SSA of FGS aggregates when processed into dense electrodes and the development of a new electrode fabrications strategy to improve the ion-accessible surface area of FGS-based electrodes. Using various processing conditions, it was demonstrated that aggregates can exhibit a wide range of SSAs (1 m 2/g to 1750 m2/g) accessible to the adsorption of nitrogen or methylene blue. The effects of capillary forces, van der Waals interactions and aggregation kinetics on the SSA were explored and an aggregation model was proposed to account for these effects. In order to minimize aggregation, a new strategy for preparing graphene-based electrodes for EDLCs was developed. Colloidal gels of graphene oxide in a water-ethanol-ionic liquid solution were assembled into graphene-ionic liquid laminated structures. Our process involves evaporating the solvents water and ethanol yielding a graphene oxide/ionic liquid composite, followed by thermal reduction of the graphene oxide to electrically conducting functionalized graphene. This yields an electrode in which the ionic liquid serves not only as the working electrolyte but also as a spacer to separate the graphene sheets and to increase their electrolyte-accessible surface area. Using this approach, we achieve an outstanding energy density of 17.5 Wh/kg at a gravimetric capacitance of 156 F/g and 3 V operating voltage, due to a high effective density of the active electrode material of 0.46 g/cm2. By increasing the ionic liquid content and degree of thermal reduction, we obtain electrodes that retain >90% of their capacity at a scan rate of 500 mV/s, illustrating that we can tailor the electrodes towards higher power density if energy density is not the primary goal. The ease of manufacturing, achieved by combining the steps of electrode assembly and electrolyte infiltration, makes this bottom-up assembly approach scalable and well suited for combinations of potentially any graphene material with ionic liquid electrolytes.

  4. EPR and transient capacitance studies on electron-irradiated silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lee, Y. H.; Cheng, L. J.; Mooney, P. M.; Corbett, J. W.

    1977-01-01

    One and two ohm-cm solar cells irradiated with 1 MeV electrons at 30 C were studied using both EPR and transient capacitance techniques. In 2 ohm-cm cells, Si-G6 and Si-G15 EPR spectra and majority carrier trapping levels at (E sub V + 0.23) eV and (E sub V + 0.38) eV were observed, each of which corresponded to the divacancy and the carbon-oxygen-vacancy complex, respectively. In addition, a boron-associated defect with a minority carrier trapping level at (E sub C -0.27) eV was observed. In 1 ohm-cm cells, the G15 spectrum and majority carrier trap at (E sub V + 0.38) eV were absent and an isotropic EPR line appeared at g = 1.9988 (+ or - 0.0003); additionally, a majority carrier trapping center at (E sub V + 0.32) eV, was found which could be associated with impurity lithium. The formation mechanisms of these defects are discussed according to isochronal annealing data in electron-irradiated p-type silicon.

  5. Fabrication and Evaluation of a Graphene Oxide-Based Capacitive Humidity Sensor.

    PubMed

    Feng, Jinfeng; Kang, Xiaoxu; Zuo, Qingyun; Yuan, Chao; Wang, Weijun; Zhao, Yuhang; Zhu, Limin; Lu, Hanwei; Chen, Juying

    2016-03-01

    In this study, a CMOS compatible capacitive humidity sensor structure was designed and fabricated on a 200 mm CMOS BEOL Line. A top Al interconnect layer was used as an electrode with a comb/serpent structure, and graphene oxide (GO) was used as sensing material. XRD analysis was done which shows that GO sensing material has a strong and sharp (002) peak at about 10.278°, whereas graphite has (002) peak at about 26°. Device level CV and IV curves were measured in mini-environments at different relative humidity (RH) level, and saturated salt solutions were used to build these mini-environments. To evaluate the potential value of GO material in humidity sensor applications, a prototype humidity sensor was designed and fabricated by integrating the sensor with a dedicated readout ASIC and display/calibration module. Measurements in different mini-environments show that the GO-based humidity sensor has higher sensitivity, faster recovery time and good linearity performance. Compared with a standard humidity sensor, the measured RH data of our prototype humidity sensor can match well that of the standard product.

  6. Mercury determination in non- and biodegradable materials by cold vapor capacitively coupled plasma microtorch atomic emission spectrometry.

    PubMed

    Frentiu, Tiberiu; Mihaltan, Alin I; Ponta, Michaela; Darvasi, Eugen; Frentiu, Maria; Cordos, Emil

    2011-10-15

    A new analytical system consisting of a low power capacitively coupled plasma microtorch (20 W, 13.56 MHz, 150 ml min(-1) Ar) and a microspectrometer was investigated for the Hg determination in non- and biodegradable materials by cold-vapor generation, using SnCl(2) reductant, and atomic emission spectrometry. The investigated miniaturized system was used for Hg determination in recyclable plastics from electronic equipments and biodegradable materials (shopping bags of 98% biodegradable polyethylene and corn starch) with the advantages of easy operation and low analysis costs. Samples were mineralized in HNO(3)-H(2)SO(4) mixture in a high-pressure microwave system. The detection limits of 0.05 ng ml(-1) or 0.08 μg g(-1) in solid sample were compared with those reported for other analytical systems. The method precision was 1.5-9.4% for Hg levels of 1.37-13.9 mg kg(-1), while recovery in two polyethylene certified reference materials in the range 98.7 ± 4.5% (95% confidence level). Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Photoluminescence and capacitance voltage characterization of GaAs surface passivated by an ultrathin GaN interface control layer

    NASA Astrophysics Data System (ADS)

    Anantathanasarn, Sanguan; Hasegawa, Hideki

    2002-05-01

    A novel surface passivation technique for GaAs using an ultrathin GaN interface control layer (GaN ICL) formed by surface nitridation was characterized by ultrahigh vacuum (UHV) photoluminescence (PL) and capacitance-voltage ( C- V) measurements. The PL quantum efficiency was dramatically enhanced after being passivated by the GaN ICL structure, reaching as high as 30 times of the initial clean GaAs surface. Further analysis of PL data was done by the PL surface state spectroscopy (PLS 3) simulation technique. PL and C- V results are in good agreement indicating that ultrathin GaN ICL reduces the gap states and unpins the Fermi level, realizing a wide movement of Fermi level within the midgap region and reduction of the effective surface recombination velocity by a factor of 1/60. GaN layer also introduced a large negative surface fixed charge of about 10 12 cm -2. A further improvement took place by depositing a Si 3N 4 layer on GaN ICL/GaAs structure.

  8. Suppression of multipacting in high power RF couplers operating with superconducting cavities

    NASA Astrophysics Data System (ADS)

    Ostroumov, P. N.; Kazakov, S.; Morris, D.; Larter, T.; Plastun, A. S.; Popielarski, J.; Wei, J.; Xu, T.

    2017-06-01

    Capacitive input couplers based on a 50 Ω coaxial transmission line are frequently used to transmit RF power to superconducting (SC) resonators operating in CW mode. It is well known that coaxial transmission lines are prone to multipacting phenomenon in a wide range of RF power level and operating frequency. The Facility for Rare Isotope Beams (FRIB) being constructed at Michigan State University includes two types of quarter wave SC resonators (QWR) operating at 80.5 MHz and two types of half wave SC resonators (HWR) operating at 322 MHz. As was reported in ref. [1] a capacitive input coupler used with HWRs was experiencing strong multipacting that resulted in a long conditioning time prior the cavity testing at design levels of accelerating fields. We have developed an insert into 50 Ω coaxial transmission line that provides opportunity to bias the RF coupler antenna and protect the amplifier from the bias potential in the case of breakdown in DC isolation. Two of such devices have been built and are currently used for the off-line testing of 8 HWRs installed in the cryomodule.

  9. The Calibration and Use of Capacitance Sensors to Monitor Stem Water Content in Trees.

    PubMed

    Matheny, Ashley M; Garrity, Steven R; Bohrer, Gil

    2017-12-27

    Water transport and storage through the soil-plant-atmosphere continuum is critical to the terrestrial water cycle, and has become a major research focus area. Biomass capacitance plays an integral role in the avoidance of hydraulic impairment to transpiration. However, high temporal resolution measurements of dynamic changes in the hydraulic capacitance of large trees are rare. Here, we present procedures for the calibration and use of capacitance sensors, typically used to monitor soil water content, to measure the volumetric water content in trees in the field. Frequency domain reflectometry-style observations are sensitive to the density of the media being studied. Therefore, it is necessary to perform species-specific calibrations to convert from the sensor-reported values of dielectric permittivity to volumetric water content. Calibration is performed on a harvested branch or stem cut into segments that are dried or re-hydrated to produce a full range of water contents used to generate a best-fit regression with sensor observations. Sensors are inserted into calibration segments or installed in trees after pre-drilling holes to a tolerance fit using a fabricated template to ensure proper drill alignment. Special care is taken to ensure that sensor tines make good contact with the surrounding media, while allowing them to be inserted without excessive force. Volumetric water content dynamics observed via the presented methodology align with sap flow measurements recorded using thermal dissipation techniques and environmental forcing data. Biomass water content data can be used to observe the onset of water stress, drought response and recovery, and has the potential to be applied to the calibration and evaluation of new plant-level hydrodynamics models, as well as to the partitioning of remotely sensed moisture products into above- and belowground components.

  10. Design and electrical performance of CdS/Sb2Te3 tunneling heterojunction devices

    NASA Astrophysics Data System (ADS)

    Khusayfan, Najla M.; Qasrawi, A. F.; Khanfar, Hazem K.

    2018-02-01

    In the current work, a tunneling barrier device made of 20 nm thick Sb2Te3 layer deposited onto 500 nm thick CdS is designed and characterized. The design included a Yb metallic substrate and Ag point contact of area of 10-3 cm2. The heterojunction properties are investigated by means of x-ray diffraction and impedance spectroscopy techniques. It is observed that the coating of the Sb2Te3 onto the surface of CdS causes a further deformation to the already strained structure of hexagonal CdS. The designed energy band diagram for the CdS/Sb2Te3 suggests a straddling type of heterojunction with an estimated conduction and valence band offsets of 0.35 and 1.74 eV, respectively. In addition, the analysis of the capacitance-voltage characteristic curve revealed a depletion region width of 14 nm. On the other hand, the capacitance and conductivity spectra which are analyzed in the frequency domain of 0.001-1.80 GHz indicated that the conduction in the device is dominated by the quantum mechanical tunneling in the region below 0.26 GHz and by the correlated barrier hopping in the remaining region. While the modeling of the conductivity spectra allowed investigation of the density of states near Fermi levels and an average scattering time of 1.0 ns, the capacitance spectra exhibited resonance at 0.26 GHz followed by negative differential capacitance effect in the frequency domain of 0.26-1.8 GHz. Furthermore, the evaluation of the impedance and reflection coefficient spectra indicated the usability of these devices as wide range low pass filters with ideal values of voltage standing wave ratios.

  11. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge

    NASA Astrophysics Data System (ADS)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  12. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge.

    PubMed

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  13. Skin image retrieval using Gabor wavelet texture feature.

    PubMed

    Ou, X; Pan, W; Zhang, X; Xiao, P

    2016-12-01

    Skin imaging plays a key role in many clinical studies. We have used many skin imaging techniques, including the recently developed capacitive contact skin imaging based on fingerprint sensors. The aim of this study was to develop an effective skin image retrieval technique using Gabor wavelet transform, which can be used on different types of skin images, but with a special focus on skin capacitive contact images. Content-based image retrieval (CBIR) is a useful technology to retrieve stored images from database by supplying query images. In a typical CBIR, images are retrieved based on colour, shape, texture, etc. In this study, texture feature is used for retrieving skin images, and Gabor wavelet transform is used for texture feature description and extraction. The results show that the Gabor wavelet texture features can work efficiently on different types of skin images. Although Gabor wavelet transform is slower compared with other image retrieval techniques, such as principal component analysis (PCA) and grey-level co-occurrence matrix (GLCM), Gabor wavelet transform is the best for retrieving skin capacitive contact images and facial images with different orientations. Gabor wavelet transform can also work well on facial images with different expressions and skin cancer/disease images. We have developed an effective skin image retrieval method based on Gabor wavelet transform, that it is useful for retrieving different types of images, namely digital colour face images, digital colour skin cancer and skin disease images, and particularly greyscale skin capacitive contact images. Gabor wavelet transform can also be potentially useful for face recognition (with different orientation and expressions) and skin cancer/disease diagnosis. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  14. Experimental study of the spatially-modulated light detector

    NASA Astrophysics Data System (ADS)

    Coppée, Daniël; Pan, Wei; Stiens, Johan; Vounckx, Roger; Kuijk, Maarten

    1999-03-01

    Usually, integrated detectors in CMOS exhibit long recovery times, limiting the detector bandwidth to only a few MHz. This is due to the long absorption length and the slow diffusion speed of photo-generated carriers. Different approaches have been proposed to solve these problems hereby taxing the compatibility with standard CMOS fabrication processing. We present a novel detector for high-speed light detection in standard CMOS. To solve the problem of slow CMOS-detector recovery, the incident light is spatially modulated and the spatially modulated component of the photo-generated carrier distribution is measured. Though only a single light input signal is required, from the detector on, analog signal processing can be achieved fully differentially. Subsequently, expected good PSRR (Power supply rejection ratio) allows integration with digital circuits. Avoiding hybridization eliminates the conventional problems caused by bonding-pad capacitance, bonding-wire inductance. This reduces the associated signal degradation. In addition, the very low detector capacitance, due to the low effectively used detector area and the low area capacitance of the n-well junction, yields high voltage readout of the detector. This facilitates further amplification and conversion to digital signal levels. The detector will be applicable in arrays due to expected low cross talk. The expected fields of operation involve: serial and parallel optical communication receivers (e.g. for WDM), DVD-reading heads with integrated amplifier, etc. First measurements show 200 Mbit/s operation with a detector-responsivity of 0.05 A/W at λ=860 nm and 0.132 A/W at λ=635 nm. The detector has inherently a low capacitance, in this case only 50 fF (for an effective detector area of 70×70 μm 2).

  15. Frequency-Dependent Capacitance of Hydrophobic Membranes Containing Fixed Negative Charges

    PubMed Central

    Ilani, Asher

    1968-01-01

    Filters containing fixed negative charges were saturated with hydrophobic solvent and interposed between aqueous solutions. The capacitance of such membranes was measured in the frequency range of 0.05-30 kc. The capacitance increased with decrease in frequency. The frequency dependence of the capacitance was sensitive to nature of the cation present and to salt concentration in the aqueous solution. It is suggested that variation of membrane resistivity in the space charge region of the membrane is responsible for this phenomenon. Possible effects of the potential and counterion concentration profiles at the membrane-water interface are discussed. PMID:5699796

  16. Temperature aspect of degradation of electrochemical double-layer capacitors (EDLC)

    NASA Astrophysics Data System (ADS)

    Baek, Dong-Cheon; Kim, Hyun-Ho; Lee, Soon-Bok

    2015-03-01

    Electric double layer capacitors (EDLC) cells have a process variation and temperature dependency in capacitance so that balancing is required when they are connected in series, which includes electronic voltage management based on capacitance monitoring. This paper measured temperature aspect of capacitance periodically to monitor health and degradation behavior of EDLC stressed under high temperatures and zero below temperatures respectively, which enables estimation of the state of health (SOH) regardless of temperature. At high temperature, capacitance saturation and delayed expression of degradation was observed. After cyclic stress at zero below temperature, less effective degradation and time recovery phenomenon were occurred.

  17. Supercapacitor electrodes based on polyaniline-silicon nanoparticle composite

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Nayfeh, Munir H.; Yau, Siu-Tung

    A composite material formed by dispersing ultrasmall silicon nanoparticles in polyaniline has been used as the electrode material for supercapacitors. Electrochemical characterization of the composite indicates that the nanoparticles give rise to double-layer capacitance while polyaniline produces pseudocapacitance. The composite shows significantly improved capacitance compared to that of polyaniline. The enhanced capacitance results in high power (220 kW kg -1) and energy-storage (30 Wh kg -1) capabilities of the composite material. A prototype supercapacitor using the composite as the charge storage material has been constructed. The capacitor showed the enhanced capacitance and good device stability during 1000 charging/discharging cycles.

  18. Specific methodology for capacitance imaging by atomic force microscopy: A breakthrough towards an elimination of parasitic effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estevez, Ivan; Concept Scientific Instruments, ZA de Courtaboeuf, 2 rue de la Terre de Feu, 91940 Les Ulis; Chrétien, Pascal

    2014-02-24

    On the basis of a home-made nanoscale impedance measurement device associated with a commercial atomic force microscope, a specific operating process is proposed in order to improve absolute (in sense of “nonrelative”) capacitance imaging by drastically reducing the parasitic effects due to stray capacitance, surface topography, and sample tilt. The method, combining a two-pass image acquisition with the exploitation of approach curves, has been validated on sets of calibration samples consisting in square parallel plate capacitors for which theoretical capacitance values were numerically calculated.

  19. Deep Restricted Kernel Machines Using Conjugate Feature Duality.

    PubMed

    Suykens, Johan A K

    2017-08-01

    The aim of this letter is to propose a theory of deep restricted kernel machines offering new foundations for deep learning with kernel machines. From the viewpoint of deep learning, it is partially related to restricted Boltzmann machines, which are characterized by visible and hidden units in a bipartite graph without hidden-to-hidden connections and deep learning extensions as deep belief networks and deep Boltzmann machines. From the viewpoint of kernel machines, it includes least squares support vector machines for classification and regression, kernel principal component analysis (PCA), matrix singular value decomposition, and Parzen-type models. A key element is to first characterize these kernel machines in terms of so-called conjugate feature duality, yielding a representation with visible and hidden units. It is shown how this is related to the energy form in restricted Boltzmann machines, with continuous variables in a nonprobabilistic setting. In this new framework of so-called restricted kernel machine (RKM) representations, the dual variables correspond to hidden features. Deep RKM are obtained by coupling the RKMs. The method is illustrated for deep RKM, consisting of three levels with a least squares support vector machine regression level and two kernel PCA levels. In its primal form also deep feedforward neural networks can be trained within this framework.

  20. Inherent N,O-containing carbon frameworks as electrode materials for high-performance supercapacitors.

    PubMed

    Hu, Fangyuan; Wang, Jinyan; Hu, Shui; Li, Linfei; Wang, Gang; Qiu, Jieshan; Jian, Xigao

    2016-09-15

    N,O-Containing micropore-dominated materials have been developed successfully via temperature-dependent cross-linking of 4,4'-(dioxo-diphenyl-2,3,6,7-tetraazaanthracenediyl)dibenzonitrile (DPDN) monomers. By employing a molecular engineering strategy, we have designed and synthesized a series of porous heteroatom-containing carbon frameworks (PHCFs), in which nitrogen and oxygen heteroatoms are distributed homogeneously throughout the whole framework at the atomic level, which can ensure the stability of its electrical properties. The as-made PHCFs@550 exhibits a high specific capacitance of 378 F g -1 , with an excellent long cycling life, including excellent cycling stability (capacitance retention of ca. 120% over 20 000 cycles). Moreover, the successful preparation of PHCFs provides new insights for the fabrication of nitrogen and oxygen-containing electrode materials from readily available components via a facile route.

  1. A wide-band dual-polarized VHF microstrip antenna for global sensing of sea ice thickness

    NASA Technical Reports Server (NTRS)

    Huang, John; Hussein, Ziad; Petros, Argy

    2005-01-01

    A VHF microstrip patch antenna was developed to achieve a bandwidth of 45 MHz (30%) from 127 MHz to 172 MHz with dual-linear-polarization capability. This microstrip antenna used foam substrates and dual stacked patches with capacitive probe feeds to achieve wide bandwidth. Four such capacitive feeds were used to achieve dual polarizations with less than -20 dB of cross-polarization level. Twenty-four shorting pins were used on the lower patch to achieve acceptable isolation between the four feed probes. This antenna has a measured gain of 8.5 dB at 137 MHz and 10 dB at 162 MHz. By using the Method of Moments technique, multipath scattering patterns were calculated when the antenna is mounted on the outside of a Twin Otter aircraft.

  2. Blood Stage Plasmodium falciparum Exhibits Biological Responses to Direct Current Electric Fields

    PubMed Central

    Coronado, Lorena M.; Montealegre, Stephania; Chaverra, Zumara; Mojica, Luis; Espinosa, Carlos; Almanza, Alejandro; Correa, Ricardo; Stoute, José A.; Gittens, Rolando A.

    2016-01-01

    The development of resistance to insecticides by the vector of malaria and the increasingly faster appearance of resistance to antimalarial drugs by the parasite can dangerously hamper efforts to control and eradicate the disease. Alternative ways to treat this disease are urgently needed. Here we evaluate the in vitro effect of direct current (DC) capacitive coupling electrical stimulation on the biology and viability of Plasmodium falciparum. We designed a system that exposes infected erythrocytes to different capacitively coupled electric fields in order to evaluate their effect on P. falciparum. The effect on growth of the parasite, replication of DNA, mitochondrial membrane potential and level of reactive oxygen species after exposure to electric fields demonstrate that the parasite is biologically able to respond to stimuli from DC electric fields involving calcium signaling pathways. PMID:27537497

  3. Blood Stage Plasmodium falciparum Exhibits Biological Responses to Direct Current Electric Fields.

    PubMed

    Coronado, Lorena M; Montealegre, Stephania; Chaverra, Zumara; Mojica, Luis; Espinosa, Carlos; Almanza, Alejandro; Correa, Ricardo; Stoute, José A; Gittens, Rolando A; Spadafora, Carmenza

    2016-01-01

    The development of resistance to insecticides by the vector of malaria and the increasingly faster appearance of resistance to antimalarial drugs by the parasite can dangerously hamper efforts to control and eradicate the disease. Alternative ways to treat this disease are urgently needed. Here we evaluate the in vitro effect of direct current (DC) capacitive coupling electrical stimulation on the biology and viability of Plasmodium falciparum. We designed a system that exposes infected erythrocytes to different capacitively coupled electric fields in order to evaluate their effect on P. falciparum. The effect on growth of the parasite, replication of DNA, mitochondrial membrane potential and level of reactive oxygen species after exposure to electric fields demonstrate that the parasite is biologically able to respond to stimuli from DC electric fields involving calcium signaling pathways.

  4. Structure of electric double layers in capacitive systems and to what extent (classical) density functional theory describes it

    NASA Astrophysics Data System (ADS)

    Härtel, Andreas

    2017-10-01

    Ongoing scientific interest is aimed at the properties and structure of electric double layers (EDLs), which are crucial for capacitive energy storage, water treatment, and energy harvesting technologies like supercapacitors, desalination devices, blue engines, and thermocapacitive heat-to-current converters. A promising tool to describe their physics on a microscopic level is (classical) density functional theory (DFT), which can be applied in order to analyze pair correlations and charge ordering in the primitive model of charged hard spheres. This simple model captures the main properties of ionic liquids and solutions and it predicts many of the phenomena that occur in EDLs. The latter often lead to anomalous response in the differential capacitance of EDLs. This work constructively reviews the powerful theoretical framework of DFT and its recent developments regarding the description of EDLs. It explains to what extent current approaches in DFT describe structural ordering and in-plane transitions in EDLs, which occur when the corresponding electrodes are charged. Further, the review briefly summarizes the history of modeling EDLs, presents applications, and points out limitations and strengths in present theoretical approaches. It concludes that DFT as a sophisticated microscopic theory for ionic systems is expecting a challenging but promising future in both fundamental research and applications in supercapacitive technologies.

  5. Humidity influenced capacitance and resistance of an Al/DNA/Al Schottky diode irradiated by alpha particles

    PubMed Central

    Al-Ta’ii, Hassan Maktuff Jaber; Amin, Yusoff Mohd; Periasamy, Vengadesh

    2016-01-01

    Deoxyribonucleic acid or DNA based sensors, especially as humidity and alpha particle sensors have become quite popular in recent times due to flexible and highly optimizable nature of this fundamental biomaterial. Application of DNA electronics allow for more sensitive, accurate and effective sensors to be developed and fabricated. In this work, we examined the effect of different humidity conditions on the capacitive and resistive response of Aluminum (Al)/DNA/Al Schottky barrier structure when bombarded by time-dependent dosages of alpha particles. Based on current-voltage profiles, which demonstrated rectifying behaviours, Schottky diode parameters such as ideality factor, barrier height and series resistance was calculated. Results observed generally pointed towards a decrease in the resistance value from the pristine to the radiated structures. It was also demonstrated that under the effect of humidity, the capacitance of the DNA thin film increased from 0.05894 to 92.736 nF, with rising relative humidity level. We also observed the occurrence of the hypersensitivity phenomena after alpha irradiation between 2 to 4 min by observing a drop in the series resistance, crucial in the study of DNA damage and repair mechanisms. These observations may also suggest the exciting possibility of utilizing Al/DNA/Al Schottky diodes as potentially sensitive humidity sensors. PMID:27160654

  6. Flexible graphene/carbon nanotube hybrid papers chemical-reduction-tailored by gallic acid for high-performance electrochemical capacitive energy storages

    NASA Astrophysics Data System (ADS)

    Yao, Lu; Zhou, Chao; Hu, Nantao; Hu, Jing; Hong, Min; Zhang, Liying; Zhang, Yafei

    2018-03-01

    Mechanically robust graphene papers with both high gravimetric and volumetric capacitances are desired for high-performance energy storages. However, it's still a challenge to tailor the structure of graphene papers in order to meet this requirement. In this work, a kind of chemical-reduction-tailored mechanically-robust reduced graphene oxide/carbon nanotube hybrid paper has been reported for high-performance electrochemical capacitive energy storages. Gallic acid (GA), as an excellent reducing agent, was used to reduce graphene oxide. Through vacuum filtration of gallic acid reduced graphene oxide (GA-rGO) and carboxylic multiwalled carbon nanotubes (MWCNTs) aqueous suspensions, mechanically robust GA-rGO/MWCNTs hybrid papers were obtained. The resultant hybrid papers showed high gravimetric capacitance of 337.6 F g-1 (0.5 A g-1) and volumetric capacitance of 151.2 F cm-3 (0.25 A cm-3). In addition, the assembled symmetric device based on the hybrid papers exhibited high gravimetric capacitance of 291.6 F g-1 (0.5 A g-1) and volumetric capacitance of 136.6 F cm-3 (0.25 A cm-3). Meanwhile, it exhibited excellent rate capability and cycling stability. Above all, this chemical reduction tailoring technique and the resultant high-performance GA-rGO/MWCNTs hybrid papers give an insight for designing high-performance electrodes and hold a great potential in the field of energy storages.

  7. Ultrahigh-rate supercapacitors with large capacitance based on edge oriented graphene coated carbonized cellulous paper as flexible freestanding electrodes

    NASA Astrophysics Data System (ADS)

    Ren, Guofeng; Li, Shiqi; Fan, Zhao-Xia; Hoque, Md Nadim Ferdous; Fan, Zhaoyang

    2016-09-01

    Large-capacitance and ultrahigh-rate electrochemical supercapacitors (UECs) with frequency response up to kilohertz (kHz) range are reported using light, thin, and flexible freestanding electrodes. The electrode is formed by perpendicularly edge oriented multilayer graphene/thin-graphite (EOG) sheets grown radially around individual fibers in carbonized cellulous paper (CCP), with cellulous carbonization and EOG deposition implemented in one step. The resulted ∼10 μm thick EOG/CCP electrode is light and flexible. The oriented porous structure of EOG with large surface area, in conjunction with high conductivity of the electrode, ensures ultrahigh-rate performance of the fabricated cells, with large areal capacitance of 0.59 mF cm-2 and 0.53 mF cm-2 and large phase angle of -83° and -80° at 120 Hz and 1 kHz, respectively. Particularly, the hierarchical EOG/CCP sheet structure allows multiple sheets stacked together for thick electrodes with almost linearly increased areal capacitance while maintaining the volumetric capacitance nearly no degradation, a critical merit for developing practical faraday-scale UECs. 3-layers of EOG/CCP electrode achieved an areal capacitance of 1.5 mF cm-2 and 1.4 mF cm-2 at 120 Hz and 1 kHz, respectively. This demonstration moves a step closer to the goal of bridging the frequency/capacitance gap between supercapacitors and electrolytic capacitors.

  8. A Compact Operational Amplifier with Load-Insensitive Stability Compensation for High-Precision Transducer Interface.

    PubMed

    Yu, Zhanghao; Yang, Xi; Chung, SungWon

    2018-01-29

    High-resolution electronic interface circuits for transducers with nonlinear capacitive impedance need an operational amplifier, which is stable for a wide range of load capacitance. Such operational amplifier in a conventional design requires a large area for compensation capacitors, increasing costs and limiting applications. In order to address this problem, we present a gain-boosted two-stage operational amplifier, whose frequency response compensation capacitor size is insensitive to the load capacitance and also orders of magnitude smaller compared to the conventional Miller-compensation capacitor that often dominates chip area. By exploiting pole-zero cancellation between a gain-boosting stage and the main amplifier stage, the compensation capacitor of the proposed operational amplifier becomes less dependent of load capacitance, so that it can also operate with a wide range of load capacitance. A prototype operational amplifier designed in 0.13-μm complementary metal-oxide-semiconductor (CMOS) with a 400-fF compensation capacitor occupies 900- μ m 2 chip area and achieves 0.022-2.78-MHz unity gain bandwidth and over 65 ∘ phase margin with a load capacitance of 0.1-15 nF. The prototype amplifier consumes 7.6 μ W from a single 1.0-V supply. For a given compensation capacitor size and a chip area, the prototype design demonstrates the best reported performance trade-off on unity gain bandwidth, maximum stable load capacitance, and power consumption.

  9. Competition between ionic adsorption and desorption on electrochemical double layer capacitor electrodes in acetonitrile solutions at different currents and temperatures

    NASA Astrophysics Data System (ADS)

    Park, Sieun; Kang, Seok-Won; Kim, Ketack

    2017-12-01

    The operation of electrochemical double layer capacitors at high currents and viscosities and at low temperatures is difficult. Under these conditions, ion transport is limited, and some of the electrode area is unavailable for adsorption, which results in a low capacitance. Increasing the temperature helps to increase the ionic movement, leading to enhanced adsorption and increased capacitance. In contrast, ion desorption (self-discharge) surpasses the capacitance improvement when ions gain a high amount of energy with increasing temperature. For example, temperatures as high as 70 °C cause a very high rate of ionic desorption in acetonitrile solutions in which the individual properties of the two electrolytes-tetraethylammonium tetrafluoroborate (TEA BF4) and ethylmethylimidazolium tetrafluoroborate (EMI BF4)-are not distinguishable. The capacitance improvement and self-discharge are balanced, resulting in a capacitance peak at mid-range temperatures, i.e., 35-45 °C, in the more viscous electrolyte, i.e., TEA BF4. The less viscous electrolyte, i.e., EMI BF4 has a wider capacitance peak from 25 to 45 °C and higher capacitance than that of TEA BF4. Because the maximum power is obtained in the mid-temperature range (35-45 °C), it is necessary to control the viscosity and temperature to obtain the maximum power in a given device.

  10. Actin Polymerization: An Event Regulated by Tyrosine Phosphorylation During Buffalo Sperm Capacitation.

    PubMed

    Naresh, S; Atreja, S K

    2015-12-01

    In the female reproductive tract, the spermatozoa undergo a series of physiological and biochemical changes, prior to gaining the ability to fertilize, that result to capacitation. However, the actin polymerization and protein tyrosine phosphorylation are the two necessary steps for capacitation. In this study, we have demonstrated the actin polymerization and established the correlation between protein tyrosine phosphorylation and actin reorganization during in vitro capacitation in buffalo (Bubalus bubalis) spermatozoa. Indirect immunofluorescence and Western blot techniques were used to detect actin polymerization and tyrosine phosphorylation. The time-dependent fluorimetric studies revealed that the actin polymerization starts from the tail region and progressed towards the head region of spermatozoa during capacitation. The lysophosphatidyl choline (LPC)-induced acrosome reaction (AR) stimulated quick actin depolymerization. The inhibitor cytochalasin D (CD) blocked the in vitro capacitation by inhibiting the actin polymerization. In addition, we also performed different inhibitor (Genistein, H-89, PD9809 and GF-109) and enhancer (dbcAMP, H(2)O(2) and vanadate) studies on actin tyrosine phosphorylation and actin polymerization. The inhibitors of tyrosine phosphorylation inhibit actin tyrosine phosphorylation and polymerization, whereas enhancers of tyrosine phosphorylation stimulate F-actin formation and tyrosine phosphorylation. These observations suggest that the tyrosine phosphorylation regulates the actin polymerization, and both are coupled processes during capacitation of buffalo spermatozoa. © 2015 Blackwell Verlag GmbH.

  11. A Self-Adaptive Capacitive Compensation Technique for Body Channel Communication.

    PubMed

    Mao, Jingna; Yang, Huazhong; Lian, Yong; Zhao, Bo

    2017-10-01

    In wireless body area network, capacitive-coupling body channel communication (CC-BCC) has the potential to attain better energy efficiency over conventional wireless communication schemes. The CC-BCC scheme utilizes the human body as the forward signal transmission medium, reducing the path loss in wireless body-centric communications. However, the backward path is formed by the coupling capacitance between the ground electrodes (GEs) of transmitter (Tx) and receiver (Rx), which increases the path loss and results in a body posture dependent backward impedance. Conventional methods use a fixed inductor to resonate with the backward capacitor to compensate the path loss, while it's not effective in compensating the variable backward impedance induced by the body movements. In this paper, we propose a self-adaptive capacitive compensation (SACC) technique to address such a problem. A backward distance detector is introduced to estimate the distance between two GEs of Tx and Rx, and a backward capacitance model is built to calculate the backward capacitance. The calculated backward capacitance at varying body posture is compensated by a digitally controlled tunable inductor (DCTI). The proposed SACC technique is validated by a prototype CC-BCC system, and measurements are taken on human subjects. The measurement results show that 9dB-16 dB channel enhancement can be achieved at a backward path distance of 1 cm-10 cm.

  12. Equivalent circuit simulation of cylindrical monopole impedance measurements in ionospheric electron plasma

    NASA Astrophysics Data System (ADS)

    Kiraga, A.

    Several common problems occur in measurement techniques and interpretation of plasma natural emissions and impedance data. Antenna characteristics are of prime importance in equivalent circuit analysis. Spacecraft - plasma interaction contributes to variability of equivalent circuit impedances and e.m.f. components and imposes constrains on usefulness of experimental data. In order to have independent, built in estimate of local plasma frequency and to get deeper insight into properties of equivalent circuit for wave diagnostics, impedance measurement was integrated with radio receivers on the ACTIVE, APEX and CORONAS satellites. Impedance measurements of 7.5m long monopole were performed in frequency range .1-10MHz with the frequency step of 50kHz, in voltage divider configuration. Due to high inclination of 82.5deg and altitude range of 500-3000km, data from very different plasmas were collected. Data can be split into quasi normal, disturbed and very disturbed measurements. Equivalent circuit structure evolved in attempt to m tcha even very disturbed measurements. For quasi normal measurements, satisfactory matching is obtained with computed gyrofrequency fc and fitted plasma frequency fn, stray capacitance Cs and capacitance Cv of phenomenological vacuum sheath. With Balmain formula for monopole impedance in cold magnetoplasma, two basic spectral structures are explained. For sufficiently magnetized plasma (roughly fn/fc<2 if Cs=20pF), circuit parallel resonance frequency Fr falls into upper hybrid band (max(fn,fc),fu), resonance amplitude is reduced by high antenna resistance and horn like absolute maximum points fu. For values of fn/fc ratio, greater then critical, Fr is less than fn and broad absolute maximum at Fr follows from low antenna resistance. Further increase of fn/fc results in increasing lag of Fr behind fn. Critical rati o fn/fc increases with decreasing stray capacitance Cs. It follows from data analysis that stray capacitance may change in flight, at least due to attitude changes, so mentioned basic structures may be relevant in stray compensated bridge configuration. It is found that strongly disturbed measurements are related to activation of fast diodes, designed for input protection. Injections of charged particle beams saturated instrument. On line telemetry transmission interfered directly by receipted VHF fields and indirectly by particle acceleration leading to differential charging and direct current flow. In dense equatorial plasma, very peculiar evolution of base voltage spectra is linked to differential charging and intense direct current flow of thermal electrons. Deep, quasi periodic modulations or irregular excursions on time scales much shorter than sweep period are indicative of differential charging by ambient, energetic minor populations. Presented data and simulations address challenges in instrument design, monitoring and onboard data processing.

  13. Cocaine sensitization increases subthreshold activity in dopamine neurons from the ventral tegmental area.

    PubMed

    Arencibia-Albite, Francisco; Vázquez-Torres, Rafael; Jiménez-Rivera, Carlos A

    2017-02-01

    The progressive escalation of psychomotor responses that results from repeated cocaine administration is termed sensitization. This phenomenon alters the intrinsic properties of dopamine (DA) neurons from the ventral tegmental area (VTA), leading to enhanced dopaminergic transmission in the mesocorticolimbic network. The mechanisms underlying this augmented excitation are nonetheless poorly understood. DA neurons display the hyperpolarization-activated, nonselective cation current, dubbed I h We recently demonstrated that I h and membrane capacitance are substantially reduced in VTA DA cells from cocaine-sensitized rats. The present study shows that 7 days of cocaine withdrawal did not normalize I h and capacitance. In cells from cocaine-sensitized animals, the amplitude of excitatory synaptic potentials, at -70 mV, was ∼39% larger in contrast to controls. Raise and decay phases of the synaptic signal were faster under cocaine, a result associated with a reduced membrane time constant. Synaptic summation was paradoxically elevated by cocaine exposure, as it consisted of a significantly reduced summation indexed but a considerably increased depolarization. These effects are at least a consequence of the reduced capacitance. I h attenuation is unlikely to explain such observations, since at -70 mV, no statistical differences exist in I h or input resistance. The neuronal shrinkage associated with a diminished capacitance may help to understand two fundamental elements of drug addiction: incentive sensitization and negative emotional states. A reduced cell size may lead to substantial enhancement of cue-triggered bursting, which underlies drug craving and reward anticipation, whereas it could also result in DA depletion, as smaller neurons might express low levels of tyrosine hydroxylase. This work uses a new approach that directly extracts important biophysical parameters from alpha function-evoked synaptic potentials. Two of these parameters are the cell membrane capacitance (C m ) and rate at any time point of the synaptic waveform. The use of such methodology shows that cocaine sensitization reduces C m and increases the speed of synaptic signaling. Paradoxically, although synaptic potentials show a faster decay under cocaine their temporal summation is substantially elevated. Copyright © 2017 the American Physiological Society.

  14. Method and means for measuring acoustic emissions

    DOEpatents

    Renken, Jr., Claus J.

    1976-01-06

    The detection of acoustic emissions emanating from an object is achieved with a capacitive transducer coupled to the object. The capacitive transducer is charged and then allowed to discharge with the rate of discharge being monitored. Oscillations in the rate of discharge about the normally exponential discharge curve for the capacitive transducer indicate the presence of acoustic emissions.

  15. Hydrogenated TiO2 nanotube arrays for supercapacitors.

    PubMed

    Lu, Xihong; Wang, Gongming; Zhai, Teng; Yu, Minghao; Gan, Jiayong; Tong, Yexiang; Li, Yat

    2012-03-14

    We report a new and general strategy for improving the capacitive properties of TiO(2) materials for supercapacitors, involving the synthesis of hydrogenated TiO(2) nanotube arrays (NTAs). The hydrogenated TiO(2) (denoted as H-TiO(2)) were obtained by calcination of anodized TiO(2) NTAs in hydrogen atmosphere in a range of temperatures between 300 to 600 °C. The H-TiO(2) NTAs prepared at 400 °C yields the largest specific capacitance of 3.24 mF cm(-2) at a scan rate of 100 mV s(-1), which is 40 times higher than the capacitance obtained from air-annealed TiO(2) NTAs at the same conditions. Importantly, H-TiO(2) NTAs also show remarkable rate capability with 68% areal capacitance retained when the scan rate increase from 10 to 1000 mV s(-1), as well as outstanding long-term cycling stability with only 3.1% reduction of initial specific capacitance after 10,000 cycles. The prominent electrochemical capacitive properties of H-TiO(2) are attributed to the enhanced carrier density and increased density of hydroxyl group on TiO(2) surface, as a result of hydrogenation. Furthermore, we demonstrate that H-TiO(2) NTAs is a good scaffold to support MnO(2) nanoparticles. The capacitor electrodes made by electrochemical deposition of MnO(2) nanoparticles on H-TiO(2) NTAs achieve a remarkable specific capacitance of 912 F g(-1) at a scan rate of 10 mV s(-1) (based on the mass of MnO(2)). The ability to improve the capacitive properties of TiO(2) electrode materials should open up new opportunities for high-performance supercapacitors. © 2012 American Chemical Society

  16. Synthesis and Characterization of Self-Standing and Highly Flexible δ-MnO2@CNTs/CNTs Composite Films for Direct Use of Supercapacitor Electrodes.

    PubMed

    Wu, Peng; Cheng, Shuang; Yang, Lufeng; Lin, Zhiqiang; Gui, Xuchun; Ou, Xing; Zhou, Jun; Yao, Minghai; Wang, Mengkun; Zhu, Yuanyuan; Liu, Meilin

    2016-09-14

    Self-standing and flexible films worked as pseudocapacitor electrodes have been fabricated via a simple vacuum-filtration procedure to stack δ-MnO2@carbon nanotubes (CNTs) composite layer and pure CNT layer one by one with CNT layers ended. The lightweight CNTs layers served as both current collector and supporter, while the MnO2@CNTs composite layers with birnessite-type MnO2 worked as active layer and made the main contribution to the capacitance. At a low discharge current of 0.2 A g(-1), the layered films displayed a high areal capacitance of 0.293 F cm(-2) with a mass of 1.97 mg cm(-2) (specific capacitance of 149 F g(-1)) and thickness of only 16.5 μm, and hence an volumetric capacitance of about 177.5 F cm(-3). Moreover, the films also exhibited a good rate capability (only about 15% fading for the capacitance when the discharge current increased to 5 A g(-1) from 0.2 A g(-1)), outstanding cycling stability (about 90% of the initial capacitance was remained after 5,000 cycles) and high flexibility (almost no performance change when bended to different angles). In addition, the capacitance of the films increased proportionally with the stacked layers and the geometry area. E.g., when the stacked layers were three times many with a mass of 6.18 mg cm(-2), the areal capacitance of the films was increased to 0.764 F cm(-2) at 0.5 A g(-1), indicating a high electronic conductivity. It is not overstated to say that the flexible and lightweight layered films emerged high potential for future practical applications as supercapacitor electrodes.

  17. Changes in VEGF and nitric oxide after deep dermal injury in the female, red Duroc pig-further similarities between female, Duroc scar and human hypertrophic scar.

    PubMed

    Zhu, Kathy Q; Engrav, Loren H; Armendariz, Rebecca; Muangman, Pornprom; Klein, Matthew B; Carrougher, Gretchen J; Deubner, Heike; Gibran, Nicole S

    2005-02-01

    Despite decades of research, our understanding of human hypertrophic scar is limited. A reliable animal model could significantly increase our understanding. We previously confirmed similarities between scarring in the female, red, Duroc pig and human hypertrophic scarring. The purpose of this study was to: (1) measure vascular endothelial growth factor (VEGF) and nitric oxide (NO) levels in wounds on the female Duroc; and (2) to compare the NO levels to those reported for human hypertrophic scar. Shallow and deep wounds were created on four female Durocs. VEGF levels were measured using ELISA and NO levels with the Griess reagent. VEGF and NO levels were increased in deep wounds at 10 days when compared to shallow wounds (p < 0.05). At 15 weeks, VEGF and NO levels had returned to the level of shallow wounds. At 21 weeks, VEGF and NO levels had declined below baseline levels in deep wounds and the NO levels were significantly lower (p < 0.01). We found that VEGF and NO exhibit two distinctly different temporal patterns in shallow and deep wounds on the female Durocs. Furthermore, NO is decreased in female, Duroc scar as it is in human, hypertrophic scar further validating the usefulness of the model.

  18. A High Resolution Capacitive Sensing System for the Measurement of Water Content in Crude Oil

    PubMed Central

    Aslam, Muhammad Zubair; Tang, Tong Boon

    2014-01-01

    This paper presents the design of a non-intrusive system to measure ultra-low water content in crude oil. The system is based on a capacitance to phase angle conversion method. Water content is measured with a capacitance sensor comprising two semi-cylindrical electrodes mounted on the outer side of a glass tube. The presence of water induces a capacitance change that in turn converts into a phase angle, with respect to a main oscillator. A differential sensing technique is adopted not only to ensure high immunity against temperature variation and background noise, but also to eliminate phase jitter and amplitude variation of the main oscillator that could destabilize the output. The complete capacitive sensing system was implemented in hardware and experiment results using crude oil samples demonstrated that a resolution of ±50 ppm of water content in crude oil was achieved by the proposed design. PMID:24967606

  19. cGMP and cyclic nucleotide-gated channels participate in mouse sperm capacitation.

    PubMed

    Cisneros-Mejorado, Abraham; Sánchez Herrera, Daniel P

    2012-01-20

    During capacitation of mammalian sperm intracellular [Ca(2+)] and cyclic nucleotides increase, suggesting that CNG channels play a role in the physiology of sperm. Here we study the effect of capacitation, 8Br-cAMP (8-bromoadenosine 3',5'-cyclic monophosphate) and 8Br-cGMP (8-bromoguanosine 3',5'-cyclic monophosphate) on the macroscopic ionic currents of mouse sperm, finding the existence of different populations of sperm, in terms of the recorded current and its response to cyclic nucleotides. Our results show that capacitation and cyclic nucleotides increase the ionic current, having a differential sensitivity to cGMP (cyclic guanosine monophosphate) and cAMP (cyclic adenosine monophosphate). Using a specific inhibitor we determine the contribution of CNG channels to macroscopic current and capacitation. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. The Chemical Capacitance as a Fingerprint of Defect Chemistry in Mixed Conducting Oxides.

    PubMed

    Fleig, Juergen; Schmid, Alexander; Rupp, Ghislain M; Slouka, Christoph; Navickas, Edvinas; Andrejs, Lukas; Hutter, Herbert; Volgger, Lukas; Nenning, Andreas

    2016-01-01

    The oxygen stoichiometry of mixed conducting oxides depends on the oxygen chemical potential and thus on the oxygen partial pressure in the gas phase. Also voltages may change the local oxygen stoichiometry and the amount to which such changes take place is quantified by the chemical capacitance of the sample. Impedance spectroscopy can be used to probe this chemical capacitance. Impedance measurements on different oxides ((La,Sr)FeO3-δ = LSF, Sr(Ti,Fe)O3-δ = STF, and Pb(Zr,Ti)O3 = PZT) are presented, and demonstrate how the chemical capacitance may affect impedance spectra in different types of electrochemical cells. A quantitative analysis of the spectra is based on generalized equivalent circuits developed for mixed conducting oxides by J. Jamnik and J. Maier. It is discussed how defect chemical information can be deduced from the chemical capacitance.

  1. Ramp-integration technique for capacitance-type blade-tip clearance measurement

    NASA Astrophysics Data System (ADS)

    Sarma, Garimella R.; Barranger, John P.

    The analysis of a proposed new technique for capacitance type blade tip clearance measurement is presented. The capacitance between the blade tip and a mounted capacitance electrode within a guard ring forms one of the feedback elements of a high speed operational amplifier. The differential equation governing the operational amplifier circuit is formulated and solved for two types of inputs to the amplifier - a constant voltage and a ramp. The resultant solution shows an output that contains a term that is proportional to the derivative of the product of the input voltage and the time constant of the feedback network. The blade tip clearance capacitance is obtained by subtracting the output of a balancing reference channel followed by integration. The proposed sampled data algorithm corrects for environmental effects and varying rotor speeds on-line, making the system suitable for turbine instrumentation. System requirements, block diagrams, and a typical application are included.

  2. Ramp-integration technique for capacitance-type blade-tip clearance measurement

    NASA Astrophysics Data System (ADS)

    Sarma, G. R.; Barranger, J. P.

    1986-05-01

    The analysis of a proposed new technique for capacitance type blade tip clearance measurement is presented. The capacitance between the blade tip and a mounted capacitance electrode within a guard ring forms one of the feedback elements of a high speed operational amplifier. The differential equation governing the operational amplifier circuit is formulated and solved for two types of inputs to the amplifier - a constant voltage and a ramp. The resultant solutions shows an output that contains a term that is proportional to the derivative of the product of the input voltage and the time constant of the feedback network. The blade tip clearance capacitance is obtained by subtracting the output of a balancing reference channel followed by integration. The proposed sampled data algorithm corrects the environmental effects and varying rotor speeds on-line, making the system suitable for turbine instrumentation. System requirements, block diagrams, and typical application are included.

  3. On Using the Volatile Mem-Capacitive Effect of TiO2 Resistive Random Access Memory to Mimic the Synaptic Forgetting Process

    NASA Astrophysics Data System (ADS)

    Sarkar, Biplab; Mills, Steven; Lee, Bongmook; Pitts, W. Shepherd; Misra, Veena; Franzon, Paul D.

    2018-02-01

    In this work, we report on mimicking the synaptic forgetting process using the volatile mem-capacitive effect of a resistive random access memory (RRAM). TiO2 dielectric, which is known to show volatile memory operations due to migration of inherent oxygen vacancies, was used to achieve the volatile mem-capacitive effect. By placing the volatile RRAM candidate along with SiO2 at the gate of a MOS capacitor, a volatile capacitance change resembling the forgetting nature of a human brain is demonstrated. Furthermore, the memory operation in the MOS capacitor does not require a current flow through the gate dielectric indicating the feasibility of obtaining low power memory operations. Thus, the mem-capacitive effect of volatile RRAM candidates can be attractive to the future neuromorphic systems for implementing the forgetting process of a human brain.

  4. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres

    NASA Astrophysics Data System (ADS)

    Zhou, Junshuang; Lian, Jie; Hou, Li; Zhang, Junchuan; Gou, Huiyang; Xia, Meirong; Zhao, Yufeng; Strobel, Timothy A.; Tao, Lu; Gao, Faming

    2015-09-01

    Highly porous nanostructures with large surface areas are typically employed for electrical double-layer capacitors to improve gravimetric energy storage capacity; however, high surface area carbon-based electrodes result in poor volumetric capacitance because of the low packing density of porous materials. Here, we demonstrate ultrahigh volumetric capacitance of 521 F cm-3 in aqueous electrolytes for non-porous carbon microsphere electrodes co-doped with fluorine and nitrogen synthesized by low-temperature solvothermal route, rivaling expensive RuO2 or MnO2 pseudo-capacitors. The new electrodes also exhibit excellent cyclic stability without capacitance loss after 10,000 cycles in both acidic and basic electrolytes at a high charge current of 5 A g-1. This work provides a new approach for designing high-performance electrodes with exceptional volumetric capacitance with high mass loadings and charge rates for long-lived electrochemical energy storage systems.

  5. Quantum decrease of capacitance in a nanometer-sized tunnel junction

    NASA Astrophysics Data System (ADS)

    Untiedt, C.; Saenz, G.; Olivera, B.; Corso, M.; Sabater, C.; Pascual, J. I.

    2013-03-01

    We have studied the capacitance of the tunnel junction defined by the tip and sample of a Scanning Tunnelling Microscope through the measurement of the electrostatic forces and impedance of the junction. A decrease of the capacitance when a tunnel current is present has shown to be a more general phenomenon as previously reported in other systems. On another hand, an unexpected reduction of the capacitance is also observed when increasing the applied voltage above the work function energy of the electrodes to the Field Emission (FE) regime, and the decrease of capacitance due to a single FE-Resonance has been characterized. All these effects should be considered when doing measurements of the electronic characteristics of nanometer-sized electronic devices and have been neglected up to date. Spanish government (FIS2010-21883-C02-01, CONSOLIDER CSD2007-0010), Comunidad Valenciana (ACOMP/2012/127 and PROMETEO/2012/011)

  6. Benchmark dataset for undirected and Mixed Capacitated Arc Routing Problems under Time restrictions with Intermediate Facilities.

    PubMed

    Willemse, Elias J; Joubert, Johan W

    2016-09-01

    In this article we present benchmark datasets for the Mixed Capacitated Arc Routing Problem under Time restrictions with Intermediate Facilities (MCARPTIF). The problem is a generalisation of the Capacitated Arc Routing Problem (CARP), and closely represents waste collection routing. Four different test sets are presented, each consisting of multiple instance files, and which can be used to benchmark different solution approaches for the MCARPTIF. An in-depth description of the datasets can be found in "Constructive heuristics for the Mixed Capacity Arc Routing Problem under Time Restrictions with Intermediate Facilities" (Willemseand Joubert, 2016) [2] and "Splitting procedures for the Mixed Capacitated Arc Routing Problem under Time restrictions with Intermediate Facilities" (Willemseand Joubert, in press) [4]. The datasets are publicly available from "Library of benchmark test sets for variants of the Capacitated Arc Routing Problem under Time restrictions with Intermediate Facilities" (Willemse and Joubert, 2016) [3].

  7. Ramp-integration technique for capacitance-type blade-tip clearance measurement

    NASA Technical Reports Server (NTRS)

    Sarma, Garimella R.; Barranger, John P.

    1986-01-01

    The analysis of a proposed new technique for capacitance type blade tip clearance measurement is presented. The capacitance between the blade tip and a mounted capacitance electrode within a guard ring forms one of the feedback elements of a high speed operational amplifier. The differential equation governing the operational amplifier circuit is formulated and solved for two types of inputs to the amplifier - a constant voltage and a ramp. The resultant solution shows an output that contains a term that is proportional to the derivative of the product of the input voltage and the time constant of the feedback network. The blade tip clearance capacitance is obtained by subtracting the output of a balancing reference channel followed by integration. The proposed sampled data algorithm corrects for environmental effects and varying rotor speeds on-line, making the system suitable for turbine instrumentation. System requirements, block diagrams, and a typical application are included.

  8. Ramp-integration technique for capacitance-type blade-tip clearance measurement

    NASA Technical Reports Server (NTRS)

    Sarma, G. R.; Barranger, J. P.

    1986-01-01

    The analysis of a proposed new technique for capacitance type blade tip clearance measurement is presented. The capacitance between the blade tip and a mounted capacitance electrode within a guard ring forms one of the feedback elements of a high speed operational amplifier. The differential equation governing the operational amplifier circuit is formulated and solved for two types of inputs to the amplifier - a constant voltage and a ramp. The resultant solutions shows an output that contains a term that is proportional to the derivative of the product of the input voltage and the time constant of the feedback network. The blade tip clearance capacitance is obtained by subtracting the output of a balancing reference channel followed by integration. The proposed sampled data algorithm corrects the environmental effects and varying rotor speeds on-line, making the system suitable for turbine instrumentation. System requirements, block diagrams, and typical application are included.

  9. Layered Structural Co-Based MOF with Conductive Network Frames as a New Supercapacitor Electrode.

    PubMed

    Yang, Jie; Ma, Zhihua; Gao, Weixue; Wei, Mingdeng

    2017-01-12

    Layered structural Co-MOF nanosheets were synthesized and then used as an electrode material for supercapacitors for the first time. This material exhibited a high specific capacitance, a good rate capability, and an excellent cycling stability. A maximum capacitance of 2564 F g -1 can be achieved at a current density of 1 Ag -1 . Moreover, the capacitance retention can be kept at 95.8 % respectively of its initial value after 3000 cycles. To the best of our knowledge, both the specific capacitance and the capacitance retention were the highest values reported for MOF materials as supercapacitor electrodes until now. Such a high supercapacitive performance might be attributed to the intrinsic characteristics of this kind of Co-MOF material, including its layered structure, conductive network frame, and thin nanosheet. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Silicon micromachined accelerometer/seismometer and method of making the same

    NASA Technical Reports Server (NTRS)

    Martin, Richard D. (Inventor); Pike, W. Thomas (Inventor)

    2001-01-01

    A silicon-based microaccelerometer for seismic application is provided using a low-resonant frequency (10 Hz), large proof mass (1 gram), and high Q suspension to achieve high sensitivity of less than 1 ng with a bandwidth a 0.05 to 50 Hz. The proof mass is cut away from a planar substrate in the form of a disk using abrasive cutting, which disk closely fits but does not touch a surrounding angular frame. The spring of the microaccelerometer between the angular frame and the proof mass is provided from two continuous, 3 microns thick membranes. The fixed capacitive electrodes are provided on separate, subsequently bonded substrates, and movable capacitive plates are provided on the membranes. By fabricating capacitive plates on the separate substrates, the gap between the fixed and movable capacitive plates in the differential capacitive sensor is closely controlled. The use of continuous membranes for the spring produces a shock resistant, robust sensor.

  11. Capacitance changes in frog skin caused by theophylline and antidiuretic hormone.

    PubMed

    Cuthbert, A W; Painter, E

    1969-09-01

    1. Impedance loci for frog skins have been calculated by computer analysis from voltage transients developed across the tissues.2. Attention has been paid to simultaneous changes in conductance and capacitance of skins treated either with antidiuretic hormone (ADH) or with theophylline. These drugs always caused an increase in conductance and usually the skin capacitance also increased. However, changes in conductance were not correlated with capacitance changes.3. Changes in capacitance caused by the drugs may represent pore formation in the barrier to water flow, since both drugs increase hydro-osmotic flow in epithelia. If this interpretation is correct, then 0.14% of the membrane area forms water-permeable pores in response to a maximal dose of ADH. This value is somewhat less than the value obtained previously (0.3%) by graphical analysis.4. A theoretical account is given of the relative accuracy of the computer method and the graphical method for voltage transient analysis.

  12. A high resolution capacitive sensing system for the measurement of water content in crude oil.

    PubMed

    Zubair, Muhammad; Tang, Tong Boon

    2014-06-25

    This paper presents the design of a non-intrusive system to measure ultra-low water content in crude oil. The system is based on a capacitance to phase angle conversion method. Water content is measured with a capacitance sensor comprising two semi-cylindrical electrodes mounted on the outer side of a glass tube. The presence of water induces a capacitance change that in turn converts into a phase angle, with respect to a main oscillator. A differential sensing technique is adopted not only to ensure high immunity against temperature variation and background noise, but also to eliminate phase jitter and amplitude variation of the main oscillator that could destabilize the output. The complete capacitive sensing system was implemented in hardware and experiment results using crude oil samples demonstrated that a resolution of ± 50 ppm of water content in crude oil was achieved by the proposed design.

  13. Facile fabrication of cobalt oxalate nanostructures with superior specific capacitance and super-long cycling stability

    NASA Astrophysics Data System (ADS)

    Cheng, Guanhua; Si, Conghui; Zhang, Jie; Wang, Ying; Yang, Wanfeng; Dong, Chaoqun; Zhang, Zhonghua

    2016-04-01

    Transition metal oxalate materials have shown huge competitive advantages for applications in supercapacitors. Herein, nanostructured cobalt oxalate supported on cobalt foils has been facilely fabricated by anodization, and could directly serve as additive/binder-free electrodes for supercapacitors. The as-prepared cobalt oxalate electrodes present superior specific capacitance of 1269 F g-1 at the current density of 6 A g-1 in the galvanostatic charge/discharge test. Moreover, the retained capacitance is as high as 87.2% as the current density increases from 6 A g-1 to 30 A g-1. More importantly, the specific capacitance of cobalt oxalate retains 91.9% even after super-long cycling of 100,000 cycles. In addition, an asymmetric supercapacitor assembled with cobalt oxalate (positive electrode) and activated carbon (negative electrode) demonstrates excellent capacitive performance with high energy density and power density.

  14. Vertical wind shear characteristics that promote supercell-to-MCS transitions

    NASA Astrophysics Data System (ADS)

    Peters, J. M.

    2017-12-01

    What causes supercells to transition into MCSs in some situations, but not others? To explore this question, I first examined observed environmental characteristics of supercell events when MCSs formed, and compared them to the analogous environmental characteristics of supercell events when MCSs did not form. During events when MCS growth occurred, 0-1 km (low-level) vertical wind shear was stronger and 0-10 km (deep-layer) vertical wind shear was weaker than the wind shear during events when MCS growth did not occur. Next, I used idealized simulations of supercell thunderstorms to understand the connections between low-level and deep-layer shear and MCS growth. Compared to simulations with strong deep-layer shear, the simulations with weak deep-layer shear had rain in the storm's forward-flank downdraft (FFD) that fell closer to the updraft, fell through storm-moistened air and evaporated less, and produced a more intense FFD. Compared to simulations with weak low-level shear, the simulations with stronger low-level shear showed enhanced northward low-level hydrometeor transport into the FFD. Environments with strong low-level shear and weak deep-layer shear therefore conspired to produce a storm with a more intense FFD cold pool, when compared to environments with weak low-level shear and/or strong deep-layer shear. This strong FFD periodically disrupted the supercells' mesocyclones, and favorably interacted with westerly wind shear to produce widespread linear convection initiation, which drove MCS growth. These results suggest that increasing low-level wind shear after dark - while commonly assumed to enhance tornado potential - may in fact drive MCS growth and reduce tornado potential, unless it is combined with sufficiently strong deep layer shear.

  15. Porous MoO2 nanowires as stable and high-rate negative electrodes for electrochemical capacitors.

    PubMed

    Zheng, Dezhou; Feng, Haobin; Zhang, Xiyue; He, Xinjun; Yu, Minghao; Lu, Xihong; Tong, Yexiang

    2017-04-04

    Free-standing porous MoO 2 nanowires with extraordinary capacitive performance are developed as high-performance electrodes for electrochemical capacitors. The as-obtained MoO 2 electrode exhibits a remarkable capacitance of 424.4 mF cm -2 with excellent electrochemical durability (no capacitance decay after 10 000 cycles at various scan rates).

  16. AC-conductance and capacitance measurements for ethanol vapor detection using carbon nanotube-polyvinyl alcohol composite based devices.

    PubMed

    Greenshields, Márcia W C C; Meruvia, Michelle S; Hümmelgen, Ivo A; Coville, Neil J; Mhlanga, Sabelo D; Ceragioli, Helder J; Quispe, Jose C Rojas; Baranauskas, Vitor

    2011-03-01

    We report the preparation of inexpensive ethanol sensor devices using multiwalled carbon nanotube-polyvinyl alcohol composite films deposited onto interdigitated electrodes patterned on phenolite substrates. We investigate the frequency dependent response of the device conductance and capacitance showing that higher sensitivity is obtained at higher frequency if the conductance is used as sensing parameter. In the case of capacitance measurements, higher sensitivity is obtained at low frequency. Ethanol detection at a concentration of 300 ppm in air is demonstrated. More than 80% of the sensor conductance and capacitance variation response occurs in less than 20 s.

  17. Capacitance-Based Dosimetry of Co-60 Radiation using Fully-Depleted Silicon-on-Insulator Devices

    PubMed Central

    Li, Yulong; Porter, Warren M.; Ma, Rui; Reynolds, Margaret A.; Gerbi, Bruce J.; Koester, Steven J.

    2015-01-01

    The capacitance based sensing of fully-depleted silicon-on-insulator (FDSOI) variable capacitors for Co-60 gamma radiation is investigated. Linear response of the capacitance is observed for radiation dose up to 64 Gy, while the percent capacitance change per unit dose is as high as 0.24 %/Gy. An analytical model is developed to study the operational principles of the varactors and the maximum sensitivity as a function of frequency is determined. The results show that FDSOI varactor dosimeters have potential for extremely-high sensitivity as well as the potential for high frequency operation in applications such as wireless radiation sensing. PMID:27840451

  18. Variable electronic shutter in CMOS imager with improved anti smearing techniques

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor)

    2005-01-01

    A leakage compensated snapshot imager provides a number of different aspects to prevent smear and other problems in a snapshot imager. The area where the imager is formed may be biased in a way that prevents photo carriers including electrons and holes from reaching a storage area. In addition, a number of different aspects may improve the efficiency. The capacitance per unit area of the storage area may be one, two or more orders of magnitude greater than the capacitance per-unit area of the photodiode. In addition, a ratio between photodiode capacitance and storage area capacitance is maintained larger than 0.7.

  19. Surfactant-treated graphene covered polyaniline nanowires for supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Balasubramaniyan; Hur, Seung Hyun; Chung, Jin Suk

    2015-04-01

    Surfactant-treated graphene/polyaniline (G/PANI) nanocomposites were prepared by the MnO2 template-aided oxidative polymerization of aniline (ANI) on the surfactant-treated graphene sheets. The electrochemical performances of the G/PANI nanocomposites in a three-electrode system using an aqueous sulfuric acid as an electrolyte exhibited a specific capacitance of 436 F g-1 at 1 A g-1, which is much higher than the specific capacitance of pure PANI (367 F g-1). Such a higher specific capacitance of the G/PANI nanocomposite inferred an excellent synergistic effect of respective pseudocapacitance and electrical double-layer capacitance of PANI and graphene.

  20. Nanocomposite of polyaniline nanorods grown on graphene nanoribbons for highly capacitive pseudocapacitors.

    PubMed

    Li, Lei; Raji, Abdul-Rahman O; Fei, Huilong; Yang, Yang; Samuel, Errol L G; Tour, James M

    2013-07-24

    A facile and cost-effective approach to the fabrication of a nanocomposite material of polyaniline (PANI) and graphene nanoribbons (GNRs) has been developed. The morphology of the composite was characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron microscopy, and X-ray diffraction analysis. The resulting composite has a high specific capacitance of 340 F/g and stable cycling performance with 90% capacitance retention over 4200 cycles. The high performance of the composite results from the synergistic combination of electrically conductive GNRs and highly capacitive PANI. The method developed here is practical for large-scale development of pseudocapacitor electrodes for energy storage.

Top